
Cylindrical wave pattern produced in a ripple tank. When not modified by the no-slip condi-
tion at solid surfaces, waves are nearly inviscid and well represented by the potential theory of
this chapter. (Courtesy of Dr. E. R. Degginger/Color-Pic Inc.)

494



8.1 Introduction and Review

Motivation. The basic partial differential equations of mass, momentum, and energy
were discussed in Chap. 4. A few solutions were then given for incompressible poten-
tial flow in Sec. 4.10 and for incompressible viscous flow in Sec. 4.11. The viscous so-
lutions were limited to simple geometries and unidirectional flows, where the difficult
nonlinear convective terms were neglected. The potential flows were not limited by such
nonlinear terms. Then, in Chap. 7, we found an approximation: patching boundary-layer
flows onto an outer inviscid flow pattern. For more complicated viscous flows, we found
no theory or solutions, just experimental data.

The purposes of the present chapter are (1) to explore more examples of potential
theory and (2) to indicate some flows which can be approximated by computational
fluid dynamics (CFD). The combination of these two gives us a good picture of in-
compressible-flow theory and its relation to experiment. One of the most important ap-
plications of potential-flow theory is to aerodynamics and marine hydrodynamics. First,
however, we will review and extend the concepts of Sec. 4.10.

Figure 8.1 reminds us of the problems to be faced. A free stream approaches two closely
spaced bodies, creating an “internal’’ flow between them and “external’’ flows above
and below them. The fronts of the bodies are regions of favorable gradient (decreas-
ing pressure along the surface), and the boundary layers will be attached and thin: In-
viscid theory will give excellent results for the outer flow if Re � 104. For the inter-
nal flow between bodies, the boundary layers will grow and eventually meet, and the
inviscid core vanishes. Inviscid theory works well in a “short’’ duct L/D � 10, such as
the nozzle of a wind tunnel. For longer ducts we must estimate boundary-layer growth
and be cautious about using inviscid theory.
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For the external flows above and below the bodies in Fig. 8.1, inviscid theory should
work well for the outer flows, until the surface pressure gradient becomes adverse (in-
creasing pressure) and the boundary layer separates or stalls. After the separation point,
boundary-layer theory becomes inaccurate, and the outer flow streamlines are deflected
and have a strong interaction with the viscous near-wall regions. The theoretical analy-
sis of separated-flow regions is an active research area at present.

Recall from Sec. 4.9 that if viscous effects are neglected, low-speed flows are irrota-
tional, � � V � 0, and the velocity potential � exists, such that

V � �� or u � � � w � (8.1)

The continuity equation (4.73), � � V � 0, reduces to Laplace’s equation for �:

�2� � � � � 0 (8.2)

and the momentum equation (4.74) reduces to Bernoulli’s equation:

� � V2 � gz � const where V � ���� (8.3)

Typical boundary conditions are known free-stream conditions

Outer boundaries: Known , , (8.4)

and no velocity normal to the boundary at the body surface:

Solid surfaces: � 0 where n is perpendicular to body (8.5) 

Unlike the no-slip condition in viscous flow, here there is no condition on the tangen-
tial surface velocity Vs � ∂�/∂s, where s is the coordinate along the surface. This ve-
locity is determined as part of the solution to the problem.
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Fig. 8.1 Patching viscous- and in-
viscid-flow regions. Potential the-
ory in this chapter does not apply
to the boundary-layer regions
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Review of Stream Function
Concepts

Occasionally the problem involves a free surface, for which the boundary pressure
is known and equal to pa, usually a constant. The Bernoulli equation (8.3) then sup-
plies a relation at the surface between V and the elevation z of the surface. For steady
flow, e.g.,

Free surface: V2 � ����2 � const � 2gzsurf (8.6) 

It should be clear to the reader that this use of Laplace’s equation, with known values
of the derivative of � along the boundaries, is much easier than a direct attack using
the fully viscous Navier-Stokes equations. The analysis of Laplace’s equation is very
well developed and is termed potential theory, with whole books written about the gen-
eral theory [1] and its application to fluid mechanics [2 to 4]. There are many analyt-
ical techniques, including superposition of elementary functions, conformal mapping,
numerical finite differences [5], numerical finite elements [6], numerical boundary el-
ements [7], and electric or mechanical analogs [8] now outdated. Having found 
�(x, y, z, t) from such an analysis, we then compute V by direct differentiation in Eq.
(8.1), after which we compute p from Eq. (8.3). The procedure is quite straightforward,
and many interesting albeit idealized results can be obtained.

Recall from Sec. 4.7 that if a flow is described by only two coordinates, the stream
function � also exists as an alternate approach. For plane incompressible flow in xy
coordinates, the correct form is

u � 	
∂
∂
�
y
	 � � � 	

∂
∂
�
x
	 (8.7) 

The condition of irrotationality reduces to Laplace’s equation for � also:

2z � 0 � 	
∂
∂
�
x
	 � 	

∂
∂
u
y
	 � 	∂

∂
x
	 ��	

∂
∂
�
x
	� � 	∂

∂
y
	 �	

∂
∂
�
y
	�

or 	
∂
∂

2

x
�
2	 � 	

∂
∂

2

y
�
2	 � 0 (8.8) 

The boundary conditions again are known velocity in the stream and no flow through
any solid surface:

Free stream: Known 	
∂
∂
�
x
	, 	

∂
∂
�
y
	 (8.9a)

Solid surface: �body � const (8.9b)

Equation (8.9b) is particularly interesting because any line of constant � in a flow
can therefore be interpreted as a body shape and may lead to interesting applica-
tions.

For the applications in this chapter, we may compute either � or � or both, and the
solution will be an orthogonal flow net as in Fig. 8.2. Once found, either set of lines
may be considered the � lines, and the other set will be the � lines. Both sets of lines
are laplacian and could be useful.
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Fig. 8.2 Streamlines and potential
lines are orthogonal and may re-
verse roles if results are useful: (a)
typical inviscid-flow pattern; (b)
same as (a) with roles reversed.

Many solutions in this chapter are conveniently expressed in polar coordinates (r, �).
Both the velocity components and the differential relations for � and � are then changed,
as follows:

�r � � �� � � �
(8.10)

Laplace’s equation takes the form

	∂
∂
r
	 �r 	

∂
∂
�
r
	� � 	

∂
∂

2

�
�
2	 � 0 (8.11) 

Exactly the same equation holds for the polar-coordinate form of �(r, �).
An intriguing facet of potential flow with no free surface is that the governing equa-

tions (8.2) and (8.8) contain no parameters, nor do the boundary conditions. Therefore
the solutions are purely geometric, depending only upon the body shape, the free-stream
orientation, and—surprisingly—the position of the rear stagnation point.1 There is no
Reynolds, Froude, or Mach number to complicate the dynamic similarity. Inviscid flows
are kinematically similar without additional parameters—recall Fig. 5.6a.

Recall from Sec. 4.10 that we defined three elementary potential flows which are quite
useful: (1) uniform stream in the x direction, (2) line source or sink at the origin, and
(3) line vortex at the origin. (Recall Fig. 4.12 for these geometries.) Let us review these
special cases here:

Uniform stream iU: � � Uy � � Ux (8.12a)

Line source or sink: � � m� � � m ln r (8.12b)

Line vortex: � � �K ln r � � K� (8.12c) 
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1 The rear stagnation condition establishes the net amount of “circulation’’ about the body, giving rise
to a lift force. Otherwise the solution could not be unique. See Sec. 8.4.
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Circulation

The source “strength’’ m and the vortex “strength’’ K have the same dimensions, namely,
velocity times length, or {L2/T}.

If the uniform stream is written in plane polar coordinates, it becomes

Uniform stream iU: � � Ur sin � � � Ur cos � (8.13) 

This makes it easier to superimpose, say, a stream and a source or vortex by using the
same coordinates. If the uniform stream is moving at angle � with respect to the x-
axis, i.e.,

u � U cos � � 	
∂
∂
�
y
	 � 	

∂
∂
�
x
	 � � U sin � � �	

∂
∂
�
x
	 � 	

∂
∂
�
y
	

then by integration we obtain the correct functions for flow at an angle:

� � U(y cos � � x sin �) � � U(x cos � � y sin �) (8.14) 

These expressions are useful in airfoil angle-of-attack problems (Sec. 8.7).

The line-vortex flow is irrotational everywhere except at the origin, where the vortic-
ity � � V is infinite. This means that a certain line integral called the fluid circulation
� does not vanish when taken around a vortex center.

With reference to Fig. 8.3, the circulation is defined as the counterclockwise line
integral, around a closed curve C, of arc length ds times the velocity component tan-
gent to the curve

� � �
C

V cos � ds � �0

C
V � ds � �0

C
(u dx � � dy � w dz) (8.15)

From the definition of �, V � ds � �� � ds � d� for an irrotational flow; hence nor-
mally � in an irrotational flow would equal the final value of � minus the initial value
of �. Since we start and end at the same point, we compute � � 0, but not for vortex
flow: With � � K� from Eq. (8.12c) there is a change in � of amount 2�K as we make
one complete circle:

Path enclosing a vortex: � � 2�K (8.16)
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Streamline

d   S
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V

Γ = οC V cos    d sα

Fig. 8.3 Definition of the fluid cir-
culation �.



Fig. 8.4 Intersections of elementary
streamlines can be joined to form a
combined streamline.

8.3 Superposition of Plane-
Flow Solutions

Graphical Method of
Superposition

Alternately the calculation can be made by defining a circular path of radius r around
the vortex center, from Eq. (8.15)

� � �0

C
�� ds � �2�

0
	
K
r
	 r d� � 2�K (8.17) 

In general, � denotes the net algebraic strength of all the vortex filaments contained
within the closed curve. In the next section we shall see that a region of finite circu-
lation within a flowing stream will be subjected to a lift force proportional to both U�

and �.
It is easy to show, by using Eq. (8.15), that a source or sink creates no circulation.

If there are no vortices present, the circulation will be zero for any path enclosing any
number of sources and sinks.

We can now form a variety of interesting potential flows by summing the velocity-
potential and stream functions of a uniform stream, source or sink, and vortex. Most
of the results are classic, of course, needing only a brief treatment here.

A simple means of accomplishing �tot � � �i graphically is to plot the individual
stream functions separately and then look at their intersections. The value of �tot at
each intersection is the sum of the individual values �i which cross there. Connecting
intersections with the same value of �tot creates the desired superimposed flow stream-
lines.

A simple example is shown in Fig. 8.4, summing two families of streamlines �a and
�b. The individual components are plotted separately, and four typical intersections are
shown. Dashed lines are then drawn through intersections representing the same sum
of �a � �b. These dashed lines are the desired solution. Often this graphical method
is a quick means of evaluating the proposed superposition before a full-blown numer-
ical plot routine is executed.
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Some Examples from Chap. 4 In Sec. 4.10 we discussed a number of superposition examples.

1. Source m at ( � a, 0) plus an equal sink at (�a, 0), Eq. (4.133), and Fig. 4.13:

� � �m tan�1 � � m ln (4.133)

The streamlines and potential lines are two families of orthogonal circles as
plotted in Fig. 4.13. They resemble a magnet with poles at (x, y) � (�a, 0).

2. Sink m plus a vortex K, both at the origin, Eq. (4.134), and Fig. 4.14:

� � m� � K ln r � � m ln r � K� (4.134) 

The streamlines are logarithmic spirals swirling into the origin, as in Fig. 4.14.
They resemble a tornado or a bathtub vortex.

3. Uniform stream iU� plus a source m at the origin, Eq. (4.135) and Fig. 4.15, the
Rankine half-body:

� � U�r sin � � m� � � U�r cos � � m ln r (4.135) 

If the origin contains a source, a plane half-body is formed with its nose to 
the left, as in Fig. 8.5a. If the origin is a sink, m � 0, the half-body nose is to
the right, as in Fig. 8.5c. In either case the stagnation point is at a position 
a � m/U� away from the origin.

(x � a)2 � y2

		
(x � a)2 � y2

1
	
2

2ay
		
x2 � y2 � a2
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Fig. 8.5 The Rankine half-body;
pattern (c) is not found in a real
fluid because of boundary-layer
separation: (a) uniform stream plus
a source equals a half-body; stagna-
tion point at x � �a � �m/U�; (b)
slight adverse gradient for s/a
greater than 3.0: no separation; (c)
uniform stream plus a sink equals
the rear of a half-body; stagnation
point at x � a � m/U�; (d ) strong
adverse gradient for s/a � �3.0:
separation.



Flow Past a Vortex

Although the inviscid-flow patterns, Fig. 8.5a and c, are mirror images, their viscous
(boundary-layer) behavior is different. The body shape and the velocity along the sur-
face are repeated here from Sec. 4.10:

V2 � U2
��1 � � cos �� along r � (8.18)

The computed surface velocities are plotted along the half-body contours in Fig. 8.5b
and d as a function of arc length s/a measured from the stagnation point. These plots
are also mirror images. However, if the nose is in front, Fig. 8.5b, the pressure gradi-
ent there is favorable (decreasing pressure along the surface). In contrast, the pressure
gradient is adverse (increasing pressure along the surface) when the nose is in the rear,
Fig. 8.5d, and boundary-layer separation may occur.

Application to Fig. 8.5b of Thwaites’ laminar-boundary method from Eqs. (7.54)
and (7.56) reveals that separation does not occur on the front nose of the half-body.
Therefore Fig. 8.5a is a very realistic picture of streamlines past a half-body nose. In
contrast, when applied to the tail, Fig. 8.5c, Thwaites’ method predicts separation at
about s/a � � 2.2, or � � 110°. Thus, if a half-body is a solid surface, Fig. 8.5c is not
realistic and a broad separated wake will form. However, if the half-body tail is a fluid
line separating the sink-directed flow from the outer stream, as in Example 8.1, then
Fig. 8.5c is quite realistic and useful. Computations for turbulent boundary-layer the-
ory would be similar: separation on the tail, no separation on the nose.

EXAMPLE 8.1

An offshore power plant cooling-water intake sucks in 1500 ft3/s in water 30 ft deep, as in Fig.
E8.1. If the tidal velocity approaching the intake is 0.7 ft/s, (a) how far downstream does the in-
take effect extend and (b) how much width L of tidal flow is entrained into the intake?

Solution

Recall from Eq. (4.131) that the sink strength m is related to the volume flow Q and the depth
b into the paper

m � � � 7.96 ft2/s

Therefore from Fig. 8.5 the desired lengths a and L are

a � � � 11.4 ft Ans. (a)

L � 2�a � 2� (11.4 ft) � 71 ft Ans. (b)

Consider a uniform stream U� in the x direction flowing past a vortex of strength K
with center at the origin. By superposition the combined stream function is

� � �stream � �vortex � U�r sin � � K ln r (8.19)
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Fig. 8.6 Flow of a uniform stream
past a vortex constructed by the
graphical method.

An Infinite Row of Vortices

The velocity components are given by

�r � � U� cos � �� � � � �U� sin � � (8.20)

The streamlines are plotted in Fig. 8.6 by the graphical method, intersecting the cir-
cular streamlines of the vortex with the horizontal lines of the uniform stream.

By setting �r � �� � 0 from (8.20) we find a stagnation point at � � 90°, r � a �
K/U�, or (x, y) � (0, a). This is where the counterclockwise vortex velocity K/r ex-
actly cancels the stream velocity U�.

Probably the most interesting thing about this example is that there is a nonzero lift
force normal to the stream on the surface of any region enclosing the vortex, but we
postpone this discussion until the next section.

Consider an infinite row of vortices of equal strength K and equal spacing a, as in Fig.
8.7a. This case is included here to illustrate the interesting concept of a vortex sheet.

From Eq. (8.12c), the ith vortex in Fig. 8.7a has a stream function �i � �K ln ri,
so that the total infinite row has a combined stream function

� � �K �
�

i�1
ln ri (8.21) 

It can be shown [2, sec. 4.51] that this infinite sum of logarithms is equivalent to a
closed-form function

� � �	
1
2

	K ln 	 �cosh � cos �
 (8.22) 

Since the proof uses the complex variable z � x � iy, i �(�1)1/2, we are not going to
show the details here.
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The Vortex Sheet

Fig. 8.7 Superposition of vortices:
(a) an infinite row of equal
strength; (b) streamline pattern for
part (a); (c) vortex sheet: part (b)
viewed from afar.

The streamlines from Eq. (8.22) are plotted in Fig. 8.7b, showing what is called a
cat’s-eye pattern of enclosed flow cells surrounding the individual vortices. Above the
cat’s eyes the flow is entirely to the left, and below the cat’s eyes the flow is to the
right. Moreover, these left and right flows are uniform if �y� � a, which follows by dif-
ferentiating Eq. (8.22)

u � � �y��a
� � (8.23) 

where the plus sign applies below the row and the minus sign above the row. This uni-
form left and right streaming is sketched in Fig. 8.7c. We stress that this effect is in-
duced by the row of vortices: There is no uniform stream approaching the row in this
example.

When Fig. 8.7b is viewed from afar, the streaming motion is uniform left above and
uniform right below, as in Fig. 8.7c, and the vortices are packed so closely together

�K
	

a
��
	
�y

504 Chapter 8 Potential Flow and Computational Fluid Dynamics

i th
vor tex

K K K K K K K K

x

y

( x, y)

ri

(a)

a a a a a a a

x

y

(b)

x

y

(c)

u = – π K / a

u = + π K / a

  •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 



Fig. 8.8 A doublet, or source-sink
pair, is the limiting case of Fig.
4.13 viewed from afar. Streamlines
are circles tangent to the x-axis at
the origin. This figure was prepared
using the contour feature of MAT-
LAB [34, 35].

The Doublet

that they are smudged into a continuous vortex sheet. The strength of the sheet is de-
fined as 

� � (8.24)

and in the general case � can vary with x. The circulation about any closed curve which
encloses a short length dx of the sheet would be, from Eqs. (8.15) and (8.23),

d� � ul dx � uu dx � (ul � uu) dx � dx � � dx (8.25)

where the subscripts l and u stand for lower and upper, respectively. Thus the sheet
strength � � d�/dx is the circulation per unit length of the sheet. Thus when a vortex
sheet is immersed in a uniform stream, � is proportional to the lift per unit length of
any surface enclosing the sheet.

Note that there is no velocity normal to the sheet at the sheet surface. Therefore a
vortex sheet can simulate a thin-body shape, e.g., plate or thin airfoil. This is the ba-
sis of the thin-airfoil theory mentioned in Sec. 8.7.

As we move far away from the source-sink pair of Fig. 4.13, the flow pattern begins
to resemble a family of circles tangent to the origin, as in Fig. 8.8. This limit of van-
ishingly small distance a is called a doublet. To keep the flow strength large enough
to exhibit decent velocities as a becomes small, we specify that the product 2am re-
main constant. Let us call this constant �. Then the stream function of a doublet is

� � lim
a→0 ��m tan�1 � � � � � (8.26)
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We have used the fact that tan�1 � � � as � becomes small. The quantity � is called
the strength of the doublet.

Equation (8.26) can be rearranged to yield

x2 � �y � �
2

� � �
2

so that, as advertised, the streamlines are circles tangent to the origin with centers on
the y-axis. This pattern is sketched in Fig. 8.8.

Although the author has in the past laboriously sketched streamlines by hand,
this is no longer necessary. Figure 8.8 was computer-drawn, using the contour
feature of the student version of MATLAB [35]. Simply set up a grid of points, spell
out the stream function, and call for a contour. For Fig. 8.8, the actual statements
were

[X,Y] � meshgrid(�1:.02:1);

PSI � �Y./(X.^2 � Y.^2);

contour(X,Y,PSI,100)

This would produce 100 contour lines of � from Eq. (8.26), with � � 1 for conve-
nience. The plot would include grid lines, scale markings, and a surrounding box, and
the circles might look a bit elliptical. These blemishes can be eliminated with three
statements of cosmetic improvement:

axis square

grid off

axis off

The final plot, Fig. 8.8, has no markings but the streamlines themselves. MATLAB is
thus a recommended tool and, in addition, has scores of other uses. All this chapter’s
problem assignments which call for “sketch the streamlines/potential lines” can be com-
pleted using this contour feature. For further details, consult Ref. 34.

In a similar manner the velocity potential of a doublet is found by taking the limit
of Eq. (4.133) as a → 0 and 2am � �

�doublet �

or

�x � �
2

� y2 � � �
2

(8.27) 

The potential lines are circles tangent to the origin with centers on the x-axis. Simply
turn Fig. 8.8 clockwise 90° to visualize the � lines, which are everywhere normal to
the streamlines.

The doublet functions can also be written in polar coordinates

� � � � � (8.28)

These forms are convenient for the cylinder flows of the next section.
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Fig. 8.9 Flow past a Rankine oval:
(a) uniform stream plus a source-
sink pair; (b) oval shape and
streamlines for m/(U�a) � 1.0.

8.4 Plane Flow Past Closed-
Body Shapes

The Rankine Oval

A variety of closed-body external flows can be constructed by superimposing a uni-
form stream with sources, sinks, and vortices. The body shape will be closed only if
the net source outflow equals the net sink inflow.

A cylindrical shape called a Rankine oval, which is long compared with its height, is
formed by a source-sink pair aligned parallel to a uniform stream, as in Fig. 8.9a.

From Eqs. (8.12a) and (4.133) the combined stream function is

� � U�y � m tan�1 � U�r sin � � m(�1 � �2) (8.29)

When streamlines of constant � are plotted from Eq. (8.29), an oval body shape ap-
pears, as in Fig. (8.9b). The half-length L and half-height h of the oval depend upon
the relative strength of source and stream, i.e., the ratio m/(U�a), which equals 1.0 in
Fig. 8.9b. The circulating streamlines inside the oval are uninteresting and not usually
shown. The oval is the line � � 0.

2ay
		
x2 � y2 � a2
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Flow Past a Circular Cylinder
with Circulation

There are stagnation points at the front and rear, x � �L, and points of maximum
velocity and minimum pressure at the shoulders, y � �h, of the oval. All these pa-
rameters are a function of the basic dimensionless parameter m/(U�a), which we can
determine from Eq. (8.29):

� cot � �1 � �
1/2

(8.30)

� 1 �

As we increase m/(U�a) from zero to large values, the oval shape increases in size and
thickness from a flat plate of length 2a to a huge, nearly circular cylinder. This is shown
in Table 8.1. In the limit as m/(U�a) → �, L/h → 1.0 and umax/U� → 2.0, which is
equivalent to flow past a circular cylinder.

All the Rankine ovals except very thin ones have a large adverse pressure gradient
on their leeward surface. Thus boundary-layer separation will occur in the rear with a
broad wake flow, and the inviscid pattern is unrealistic in that region.

From Table 8.1 at large source strength the Rankine oval becomes a large circle, much
greater in diameter than the source-sink spacing 2a. Viewed on the scale of the cylin-
der, this is equivalent to a uniform stream plus a doublet. We also throw in a vortex at
the doublet center, which does not change the shape of the cylinder.

Thus the stream function for flow past a circular cylinder with circulation, centered
at the origin, is a uniform stream plus a doublet plus a vortex

� � U�r sin � � � K ln r � const (8.31)

The doublet strength � has units of velocity times length squared. For convenience, let
� � U�a2, where a is a length, and let the arbitrary constant in Eq. (8.31) equal 
K ln a. Then the stream function becomes

� � U� sin ��r � � � K ln (8.32)

The streamlines are plotted in Fig. 8.10 for four different values of the dimension-
less vortex strength K/(U�a). For all cases the line � � 0 corresponds to the circle r �

r
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m/(U�a) h/a L/a L/h umax/U�

0.0 0.0 1.0 � 1.0 
0.01 0.031 1.010 32.79 1.020
0.1 0.263 1.095 4.169 1.187
1.0 1.307 1.732 1.326 1.739

10.0 4.435 4.583 1.033 1.968
100.0 14.130 14.177 1.003 1.997

� � � 1.000 2.000

Table 8.1 Rankine-Oval Parameters
from Eq. (8.30)



Fig. 8.10 Flow past a circular
cylinder with circulation for values
of K/(U�a) of (a) 0, (b) 1.0, (c)
2.0, and (d) 3.0.

a, that is, the shape of the cylindrical body. As circulation � � 2�K increases, the ve-
locity becomes faster and faster below the cylinder and slower and slower above it.
The velocity components in the flow are given by

�r � � U� cos ��1 � 	
a
r2

2

	�
�� � � � �U� sin ��1 � 	

a
r2

2

	� �

(8.33)

The velocity at the cylinder surface r � a is purely tangential, as expected

�r(r � a) � 0 ��(r � a) � �2U� sin � � (8.34)

For small K, two stagnation points appear on the surface at angles �s where �� � 0, or,
from Eq. (8.34),

sin �s � (8.35)

Figure 8.10a is for K � 0, �s � 0 and 180°, or doubly symmetric inviscid flow past a
cylinder with no circulation. Figure 8.10b is for K/(U�a) � 1, �s � 30 and 150°, and
Fig. 8.10c is the limiting case where the two stagnation points meet at the top,
K/(U�a) � 2, �s � 90°.

K
	
2U�a

K
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K
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The Kutta-Joukowski Lift
Theorem

For K � 2U�a, Eq. (8.35) is invalid, and the single stagnation point is above the
cylinder, as in Fig. 8.10d, at a point y � h given by

� [� � (�2 � 4)1/2] � � � 2 (8.36)

In Fig. 8.10d, K/(U�a) � 3.0, and h/a � 2.6.

For the cylinder flows of Fig. 8.10b to d there is a downward force, or negative lift,
called the Magnus effect, which is proportional to stream velocity and vortex strength.
We can see from the streamline pattern that the velocity on the top of the cylinder is
less and therefore the pressure higher from Bernoulli’s equation; this explains the force.
There is no viscous force, of course, because our theory is inviscid.

The surface velocity is given by Eq. (8.34). From Bernoulli’s equation (8.4), ne-
glecting gravity, the surface pressure ps is given by

p� � 
U2
� � ps � 
��2U� sin � � �

2

or ps � p� � 	
1
2

	
U2
�(1 � 4 sin2 � � 4� sin � � �2) (8.37)

where � � K/(U�a) and p� is the free-stream pressure. If b is the cylinder depth into
the paper, the drag D is the integral over the surface of the horizontal component of
pressure force

D � ��2�

0
(ps � p�) cos � ba d�

where ps � p� is substituted from Eq. (8.37). But the integral of cos � times any power
of sin � over a full cycle 2� is identically zero. Thus we obtain the (perhaps surpris-
ing) result

D(cylinder with circulation) � 0 (8.38)

This is a special case of d’Alembert’s paradox, mentioned in Sec. 1.10:

According to inviscid theory, the drag of any body of any shape immersed in a uni-
form stream is identically zero.

D’Alembert published this result in 1752 and pointed out himself that it did not square
with the facts for real fluid flows. This unfortunate paradox caused everyone to over-
react and reject all inviscid theory until 1904, when Prandtl first pointed out the pro-
found effect of the thin viscous boundary layer on the flow pattern in the rear, as in
Fig. 7.2b, for example.

The lift force L normal to the stream, taken positive upward, is given by summa-
tion of vertical pressure forces

L � ��2�

0
(ps � p�) sin � ba d�

Since the integral over 2� of any odd power of sin � is zero, only the third term in the
parentheses in Eq. (8.37) contributes to the lift:

L � � 
U2
� ba �2�

0
sin2 � d� � �
U�(2�K)b

4K
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h
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Experimental Lift and Drag of
Rotating Cylinders

or � �
U�� (8.39)

Notice that the lift is independent of the radius a of the cylinder. Actually, though, as
we shall see in Sec. 8.7, the circulation � depends upon the body size and orientation
through a physical requirement.

Equation (8.39) was generalized by W. M. Kutta in 1902 and independently by N.
Joukowski in 1906 as follows:

According to inviscid theory, the lift per unit depth of any cylinder of any shape im-
mersed in a uniform stream equals 
u��, where � is the total net circulation con-
tained within the body shape. The direction of the lift is 90° from the stream di-
rection, rotating opposite to the circulation.

The problem in airfoil analysis, Sec. 8.7, is thus to determine the circulation � as a
function of airfoil shape and orientation.

It is nearly impossible to test Fig. 8.10 by constructing a doublet and vortex with the
same center and then letting a stream flow past them. But one physical realization
would be a rotating cylinder in a stream. The viscous no-slip condition would cause
the fluid in contact with the cylinder to move tangentially at the cylinder peripheral
speed �� � a. A net circulation � would be set up by this no-slip mechanism, but it
turns out to be less than 50 percent of the value expected from inviscid theory, pri-
marily because of flow separation behind the cylinder.

Figure 8.11 shows experimental lift and drag coefficients, based on planform area
2ba, of rotating cylinders. From Eq. (8.38) the theoretical drag is zero, but the actual
CD is quite large, more even than the stationary cylinder of Fig. 5.3. The theoretical
lift follows from Eq. (8.39)

CL � � � (8.40)

where ��s � K/a is the peripheral speed of the cylinder.
Figure 8.11 shows that the theoretical lift from Eq. (8.40) is much too high, but the

measured lift is quite respectable, much larger in fact than a typical airfoil of the same
chord length, e.g., Fig. 7.25. Thus rotating cylinders have practical possibilities. The
Flettner rotor ship built in Germany in 1924 employed rotating vertical cylinders which
developed a thrust due to any winds blowing past the ship. The Flettner design did not
gain any popularity, but such inventions may be more attractive in this era of high en-
ergy costs.

EXAMPLE 8.2

The experimental Flettner rotor sailboat at the University of Rhode Island is shown in Fig. E8.2.
The rotor is 2.5 ft in diameter and 10 ft long and rotates at 220 r/min. It is driven by a small
lawnmower engine. If the wind is a steady 10 kn and boat relative motion is neglected, what is
the maximum thrust expected for the rotor? Assume standard air and water density.

2���s	
U�

2�
U�Kb
		


U2
�ba

L
		

	
1
2

	
U2
�(2ba)

L
	
b
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Fig. 8.11 Theoretical and experi-
mental lift and drag of a rotating
cylinder. (From Ref. 22.)
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The Kelvin Oval

Potential-Flow Analogs

Solution

Convert the rotation rate to  � 2�(220)/60 � 23.04 rad/s. The wind velocity is 10 kn � 16.88
ft/s, so the velocity ratio is

� � 1.71

Entering Fig. 8.11, we read CL � 3.3 and CD � 1.2. From Table A.6, standard air density is
0.002377 slug/ft3. Then the estimated rotor lift and drag are

L � CL	
1
2

	
U2
�2ba � 3.3(	

1
2

	)(0.002377)(16.88)2(2)(10)(1.25) 

� 27.9 lbf 

D � CD	
1
2

	
U2
�2ba � L � 27.9� � � 10.2 lbf 

The maximum thrust available is the resultant of these two

F � [(27.9)2 � (10.2)2]1/2 � 29 lbf Ans. 

If aligned along the boat’s keel, this thrust will drive the boat at a speed of about 5 kn through
the water.

A family of body shapes taller than they are wide can be formed by letting a uniform
stream flow normal to a vortex pair. If U� is to the right, the negative vortex � K is
placed at y � �a and the counterclockwise vortex � K placed at y � �a, as in Fig.
8.12. The combined stream function is

� � U�y � K ln (8.41)

The body shape is the line � � 0, and some of these shapes are shown in Fig. 8.12.
For K/(U�a) � 10 the shape is within 1 percent of a Rankine oval (Fig. 8.9) turned
90°, but for small K/(U�a) the waist becomes pinched in, and a figure-eight shape oc-
curs at 0.5. For K/(U�a) � 0.5 the stream blasts right between the vortices and iso-
lates two more or less circular body shapes, one surrounding each vortex.

A closed body of practically any shape can be constructed by proper superposition
of sources, sinks, and vortices. See the advanced work in Refs. 2 to 4 for further de-
tails. A summary of elementary potential flows is given in Table 8.2.

For complicated potential-flow geometries, one can resort to other methods than su-
perposition of sources, sinks, and vortices. There are a variety of devices which simu-
late solutions to Laplace’s equation.

From 1897 to 1900 Hele-Shaw [9] developed a technique whereby laminar flow be-
tween very closely spaced parallel plates simulated potential flow when viewed from
above the plates. Obstructions simulate body shapes, and dye streaks represent the
streamlines. The Hele-Shaw apparatus makes an excellent laboratory demonstration of
potential flow [10, pp. 8–10]. Figure 8.13a illustrates Hele-Shaw (potential) flow

x2 � (y � a)2

		
x2 � (y � a)2

1
	
2

1.2
	
3.3

CD	
CL

(1.25 ft)(23.04 rad/s)
			

16.88 ft/s

a
	
U�
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Fig. 8.12 Kelvin-oval body shapes
as a function of the vortex-strength
parameter K/(U�a); outer stream-
lines not shown.

through an array of cylinders, a flow pattern that would be difficult to analyze just us-
ing Laplace’s equation. However beautiful this array pattern may be, it is not a good
approximation to real (laminar viscous) array flow. Figure 8.13b shows experimental
streakline patterns for a similar staggered-array flow at Re � 6400. We see that the in-
teracting wakes of the real flow (Fig. 8.13b) cause intensive mixing and transverse mo-
tion, not the smooth streaming passage of the potential-flow model (Fig. 8.13a). The
moral is that this is an internal flow with multiple bodies and, therefore, not a good
candidate for a realistic potential-flow model.

Other flow-mapping techniques are discussed in Ref. 8. Electromagnetic fields also
satisfy Laplace’s equation, with voltage analogous to velocity potential and current
lines analogous to streamlines. At one time commercial analog field plotters were avail-
able, using thin conducting paper cut to the shape of the flow geometry. Potential lines
(voltage contours) were plotted by probing the paper with a potentiometer pointer.
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Type of flow Potential functions Remarks

Stream iU � � Uy � � Ux See Fig. 4.12a
Line source (m � 0) or sink (m � 0) � � m� � � m ln r See Fig. 4.12b
Line vortex � � �K ln r � � K� See Fig. 4.12c
Half-body � � Ur sin � � m�

� � Ur cos � � m ln r See Fig. 8.5

Doublet � � � � See Fig. 8.8

Rankine oval � � Ur sin � � m(�1 � �2) See Fig. 8.9

Cylinder with circulation � � U sin ��r � � � K ln See Fig. 8.10
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Table 8.2 Summary of Plane
Incompressible Potential Flows



Fig. 8.13 Flow past a staggered ar-
ray of cylinders: (a) potential-flow
model using the Hele-Shaw appara-
tus (Tecquipment Ltd., Nottingham,
England); (b) experimental streak-
lines for actual staggered-array
flow at ReD � 6400. (From Ref. 36,
courtesy of Jack Hoyt, with the per-
mission of the American Society of
Mechanical Engineers.)

Hand-sketching “curvilinear square’’ techniques were also popular. The availability and
the simplicity of digital-computer potential-flow methods [5 to 7] have made analog
models obsolete.

EXAMPLE 8.3

A Kelvin oval from Fig. 8.12 has K/(U�a) � 1.0. Compute the velocity at the top shoulder of
the oval in terms of U�.
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8.5 Other Plane Potential
Flows2

Solution

We must locate the shoulder y � h from Eq. (8.41) for � � 0 and then compute the velocity by
differentiation. At � � 0 and y � h and x � 0, Eq. (8.41) becomes

� ln 

With K/(U�a) � 1.0 and the initial guess h/a � 1.5 from Fig. 8.12, we iterate and find the lo-
cation h/a � 1.5434.

By inspection � � 0 at the shoulder because the streamline is horizontal. Therefore the shoul-
der velocity is, from Eq. (8.41),

u�y�h
� �y�h

� U� � �

Introducing K � U�a and h � 1.5434a, we obtain

ushoulder � U�(1.0 � 1.84 � 0.39) � 2.45U� Ans.

Because they are short-waisted compared with a circular cylinder, all the Kelvin ovals have shoul-
der velocity greater than the cylinder result 2.0U� from Eq. (8.34).

References 2 to 4 treat many other potential flows of interest in addition to the cases
presented in Secs. 8.3 and 8.4. In principle, any plane potential flow can be solved by
the method of conformal mapping, by using the complex variable

z � x � iy i � (�1)1/2

It turns out that any arbitrary analytic function of this complex variable z has the re-
markable property that both its real and its imaginary parts are solutions of Laplace’s
equation. If

f(z) � f(x � iy) � f1(x, y) � i f2(x, y) 

then 	
∂
∂

2

x
f
2
1	 � 	

∂
∂

2

y
f
2
1	 � 0 � 	

∂
∂

2

x
f
2
2	 � 	

∂
∂

2

y
f
2
2	 (8.42)

We shall assign the proof of this as a problem. Even more remarkable if you have never
seen it before is that lines of constant f1 will be everywhere perpendicular to lines of
constant f2:

� �f1�C
� � (8.43)

We also leave this proof as a problem exercise. This is true for totally arbitrary f(z) as
long as this function is analytic; i.e., it must have a unique derivative df/dz at every
point in the region.

The net result of Eqs. (8.42) and (8.43) is that the functions f1 and f2 can be inter-
preted to be the potential lines and streamlines of an inviscid flow. By long custom we

1
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2 This section may be omitted without loss of continuity.



Uniform Stream at an Angle 
of Attack

Line Source at a Point z0

let the real part of f(z) be the velocity potential and the imaginary part be the stream
function

f(z) � �(x, y) � i�(x, y) (8.44)

We try various functions f(z) and see whether any interesting flow pattern results. Of
course, most of them have already been found, and we simply report on them here.

We shall not go into the details, but there are excellent treatments of this complex-
variable technique on both an introductory [4, chap. 5; 10, chap. 5] and a more ad-
vanced [2, 3,] level. The method is less important now because of the popularity of
digital-computer techniques.

As a simple example, consider the linear function

f(z) � U�z � U�x � iU�y

It follows from Eq. (8.44) that � � U�x and � � U�y, which, we recall from Eq.
(8.12a), represents a uniform stream in the x direction. Once you get used to the com-
plex variable, the solution practically falls in your lap.

To find the velocities, you may either separate � and � from f(z) and differentiate
or differentiate f directly

� � i � �i � � u � i� (8.45)

Thus the real part of df/dz equals u(x, y), and the imaginary part equals � �(x, y). To
get a practical result, the derivative df/dz must exist and be unique, hence the require-
ment that f be an analytic function. For Eq. (8.45), df/dz � U� � u, since it is real, and
� � 0, as expected.

Sometimes it is convenient to use the polar-coordinate form of the complex variable

z � x � iy � rei� � r cos � � ir sin �

where r � (x2 � y2)1/2 � � tan�1

This form is especially convenient when powers of z occur.

All the elementary plane flows of Sec. 8.2 have a complex-variable formulation. The
uniform stream U� at an angle of attack � has the complex potential

f(z) � U�ze�i� (8.46) 

Compare this form with Eq. (8.14).

Consider a line source of strength m placed off the origin at a point z0 � x0 � iy0. Its
complex potential is

f(z) � m ln (z � z0) (8.47)

This can be compared with Eq. (8.12b), which is valid only for the source at the ori-
gin. For a line sink, the strength m is negative.
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Flow around a Corner of
Arbitrary Angle

Line Vortex at a Point z0

Fig. 8.14 Streamlines for corner
flow, Eq. (8.49) for corner angle �
of (a) 60°, (b) 90°, (c) 120°, (d)
270°, and (e) 360°.

If a line vortex of strength K is placed at point z0, its complex potential is

f(z) � �iK ln (z � z0) (8.48)

to be compared with Eq. (8.12c). Also compare to Eq. (8.47) to see that we reverse the
meaning of � and � simply by multiplying the complex potential by �i.

Corner flow is an example of a pattern that cannot be conveniently produced by su-
perimposing sources, sinks, and vortices. It has a strikingly simple complex represen-
tation

f(z) � Azn � Arnein� � Arn cos n� � iArn sin n�

where A and n are constants.
It follows from Eq. (8.44) that for this pattern

� � Arn cos n� � � Arn sin n� (8.49)

Streamlines from Eq. (8.49) are plotted in Fig. 8.14 for five different values of n.
The flow is seen to represent a stream turning through an angle � � �/n. Patterns in
Fig. 8.14d and e are not realistic on the downstream side of the corner, where separa-
tion will occur due to the adverse pressure gradient and sudden change of direction. In
general, separation always occurs downstream of salient, or protruding corners, except
in creeping flows at low Reynolds number Re � 1.

Since 360° � 2� is the largest possible corner, the patterns for n � 	
1
2

	 do not repre-
sent corner flow. They are peculiar-looking, and we ask you to plot one as a problem.

If we expand the plot of Fig. 8.14a to c to double size, we can represent stagnation
flow toward a corner of angle 2� � 2�/n. This is done in Fig. 8.15 for n � 3, 2, and
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Fig. 8.15 Streamlines for stagnation flow from Eq. (8.49) for corner angle 2� of (a) 120°, (b) 180°, and (c) 240°.

1.5. These are very realistic flows; although they slip at the wall, they can be patched
to boundary-layer theories very successfully. We took a brief look at corner flows be-
fore, in Examples 4.5 and 4.9 and in Probs. 4.49 to 4.51.

We treat this case separately because the Kelvin ovals of Fig. 8.12 failed to degener-
ate into a flat plate as K became small. The flat plate normal to a uniform stream is an
extreme case worthy of our attention.

Although the result is quite simple, the derivation is very complicated and is given,
e.g., in Ref. 2, sec. 9.3. There are three changes of complex variable, or mappings, be-
ginning with the basic cylinder-flow solution of Fig. 8.10a. First the uniform stream is
rotated to be vertical upward, then the cylinder is squeezed down into a plate shape,
and finally the free stream is rotated back to the horizontal. The final result for com-
plex potential is

f(z) � � � i� � U�(z2 � a2)1/2 (8.50)

where 2a is the height of the plate. To isolate � or �, square both sides and separate
real and imaginary parts

�2 � �2 � U2
�(x2 � y2 � a2) �� � U2

�xy
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Flow Normal to a Flat
Plate



Fig. 8.16 Streamlines in upper half-
plane for flow normal to a flat plate
of height 2a: (a) continuous poten-
tial-flow theory, Eq. (8.51); (b) ac-
tual measured flow pattern; (c) dis-
continuous potential theory with
k � 1.5.

We can solve for � to determine the streamlines

�4 � �2U2
�(x2 � y2 � a2) � U4

�x2y2 (8.51)

Equation (8.51) is plotted in Fig. 8.16a, revealing a doubly symmetric pattern of stream-
lines which approach very closely to the plate and then deflect up and over, with very
high velocities and low pressures near the plate tips.

The velocity �s along the plate surface is found by computing df/dz from Eq. (8.50)
and isolating the imaginary part

�
plate surface

� (8.52)

Some values of surface velocity can be tabulated as follows:

y/a 0.0 0.2 0.4 0.6 0.71 0.8 0.9 1.0

�s/U� 0.0 0.204 0.436 0.750 1.00 1.33 2.07 �

y/a
		
(1 � y2/a2)1/2

�s	
U�
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8.6 Images3

The origin is a stagnation point; then the velocity grows linearly at first and very rapidly
near the tip, with both velocity and acceleration being infinite at the tip.

As you might guess, Fig. 8.16a is not realistic. In a real flow the sharp salient edge
causes separation, and a broad, low-pressure wake forms in the lee, as in Fig. 8.16b.
Instead of being zero, the drag coefficient is very large, CD � 2.0 from Table 7.2.

A discontinuous-potential-flow theory which accounts for flow separation was de-
vised by Helmholtz in 1868 and Kirchhoff in 1869. This free-streamline solution is
shown in Fig. 8.16c, with the streamline which breaks away from the tip having a con-
stant velocity V � kU�. From Bernoulli’s equation the pressure in the dead-water re-
gion behind the plate will equal pr � p� � 	

1
2

	
U2
�(1 � k2) to match the pressure along

the free streamline. For k � 1.5 this Helmholtz-Kirchoff theory predicts pr � p� �
0.625
U2

� and an average pressure on the front pf � p� � 0.375
U2
�, giving an over-

all drag coefficient of 2.0, in agreement with experiment. However, the coefficient k is
a priori unknown and must be tuned to experimental data, so free-streamline theory
can be considered only a qualified success. For further details see Ref. 2, sec. 11.2.

The previous solutions have all been for unbounded flows, such as a circular cylinder
immersed in a broad expanse of uniformly streaming fluid, Fig. 8.10a. However, many
practical problems involve a nearby rigid boundary constraining the flow, e.g., (1)
groundwater flow near the bottom of a dam, (2) an airfoil near the ground, simulating
landing or takeoff, or (3) a cylinder mounted in a wind tunnel with narrow walls. In
such cases the basic unbounded-potential-flow solutions can be modified for wall ef-
fects by the method of images.

Consider a line source placed a distance a from a wall, as in Fig. 8.17a. To create
the desired wall, an image source of identical strength is placed the same distance be-
low the wall. By symmetry the two sources create a plane-surface streamline between
them, which is taken to be the wall.

In Fig. 8.17b a vortex near a wall requires an image vortex the same distance be-
low but of opposite rotation. We have shaded in the wall, but of course the pattern could
also be interpreted as the flow near a vortex pair in an unbounded fluid.

In Fig. 8.17c an airfoil in a uniform stream near the ground is created by an image
airfoil below the ground of opposite circulation and lift. This looks easy, but actually
it is not because the airfoils are so close together that they interact and distort each
other’s shapes. A rule of thumb is that nonnegligible shape distortion occurs if the body
shape is within two chord lengths of the wall. To eliminate distortion, a whole series
of “corrective’’ images must be added to the flow to recapture the shape of the origi-
nal isolated airfoil. Reference 2, sec. 7.75, has a good discussion of this procedure,
which usually requires digital-computer summation of the multiple images needed.

Figure 8.17d shows a source constrained between two walls. One wall required only
one image in Fig. 8.17a, but two walls require an infinite array of image sources above
and below the desired pattern, as shown. Usually computer summation is necessary,
but sometimes a closed-form summation can be achieved, as in the infinite vortex row
of Eq. (8.22).
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Fig. 8.17 Constraining walls can be
created by image flows: (a) source
near a wall with identical image
source; (b) vortex near a wall with
image vortex of opposite sense; (c)
airfoil in ground effect with image
airfoil of opposite circulation; (d)
source between two walls requiring
an infinite row of images.

EXAMPLE 8.4

For the source near a wall as in Fig. 8.17a, the wall velocity is zero between the sources, rises
to a maximum moving out along the wall, and then drops to zero far from the sources. If the
source strength is 8 m2/s, how far from the wall should the source be to ensure that the maxi-
mum velocity along the wall will be 5 m/s?

Solution

At any point x along the wall, as in Fig. E8.4, each source induces a radial outward velocity
�r � m/r, which has a component �r cos � along the wall. The total wall velocity is thus
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E8.4 

uwall � 2�r cos �

From the geometry of Fig. E8.4, r � (x2 � a2)1/2 and cos � � x/r. Then the total wall velocity
can be expressed as

u �

This is zero at x � 0 and at x → �. To find the maximum velocity, differentiate and set equal
to zero

� 0 at x � a and umax �

We have omitted a bit of algebra in giving these results. For the given source strength and max-
imum velocity, the proper distance a is

a � � � 1.625 m Ans. 

For x � a, there is an adverse pressure gradient along the wall, and boundary-layer theory should
be used to predict separation.

As mentioned in conjunction with the Kutta-Joukowski lift theorem, Eq. (8.39), the
problem in airfoil theory is to determine the net circulation � as a function of airfoil
shape and free-stream angle of attack �.

Even if the airfoil shape and free-stream angle of attack are specified, the potential-
flow-theory solution is nonunique: An infinite family of solutions can be found corre-
sponding to different values of circulation �. Four examples of this nonuniqueness were
shown for the cylinder flows in Fig. 8.10. The same is true of the airfoil, and Fig. 8.18
shows three mathematically acceptable “solutions’’ to a given airfoil flow for small
(Fig. 8.18a), large (Fig. 8.18b), and medium (Fig. 8.18c) net circulation. You can guess

8 m2/s
	
5 m/s

m
	
umax

m
	
a

du
	
dx

2mx
	
x2 � a2
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The Kutta Condition



Fig. 8.18 The Kutta condition prop-
erly simulates the flow about an
airfoil; (a) too little circulation,
stagnation point on rear upper sur-
face; (b) too much, stagnation point
on rear lower surface; (c) just right,
Kutta condition requires smooth
flow at trailing edge.

which case best simulates a real airfoil from the earlier discussion of transient-lift de-
velopment in Fig. 7.23. It is the case (Fig. 8.18c) where the upper and lower flows
meet and leave the trailing edge smoothly. If the trailing edge is rounded slightly, there
will be a stagnation point there. If the trailing edge is sharp, approximating most air-
foil designs, the upper- and lower-surface flow velocities will be equal as they meet
and leave the airfoil.

This statement of the physically proper value of � is generally attributed to W. M.
Kutta, hence the name Kutta condition, although some texts give credit to Joukowski
and/or Chaplygin. All airfoil theories use the Kutta condition, which is in good agree-
ment with experiment. It turns out that the correct circulation �Kutta depends upon flow
velocity, angle of attack, and airfoil shape.

The flat plate is the simplest airfoil, having no thickness or “shape,’’ but even its the-
ory is not so simple. The problem can be solved by a complex-variable mapping [2,
p. 480], but here we shall use a vortex-sheet approach. Figure 8.19a shows a flat plate
of length C simulated by a vortex sheet of variable strength �(x). The free stream U�

is at an angle of attack � with respect to the plate chord line.
To make the lift “up’’ with flow from left to right as shown, we specify here that

the circulation is positive clockwise. Recall from Fig. 8.7c that there is a jump in tan-
gential velocity across a sheet equal to the local strength

uu � ul � �(x) (8.53) 
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Fig. 8.19 Vortex-sheet solution for
the flat-plate airfoil; (a) sheet
geometry; (b) theoretical pressure
coefficient on upper and lower sur-
faces; (c) upper-surface velocity
with laminar separation points S.

If we omit the free stream, the sheet should cause a rightward flow �u � � 	
1
2

	� on the
upper surface and an equal and opposite leftward flow on the lower surface, as shown
in Fig. 8.19a. The Kutta condition for this sharp trailing edge requires that this veloc-
ity difference vanish at the trailing edge to keep the exit flow smooth and parallel

�(C) � 0 (8.54) 

The proper solution must satisfy this condition, after which the total lift can be com-
puted by summing the sheet strength over the whole airfoil. From Eq. (8.39) for a foil
of depth b

L � 
U�b� � � �C

0
�(x) dx (8.55) 
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An alternate way to compute lift is from the dimensionless pressure coefficient Cp

on the upper and lower surfaces

Cpu,l
� � 1 � (8.56) 

where the last expression follows from Bernoulli’s equation. The surface velocity
squared is given by combining the uniform stream and the vortex-sheet velocity com-
ponents from Fig. 8.19a:

U2
u,l � (U� cos � � �u)2 � (U� sin �)2

U2
u,l � U2

� � 2U� �u cos � � �u2 � U2
��1 � � (8.57) 

where we have made the approximations �u � U� and cos in the last expres-
sion, assuming a small angle of attack. Equations (8.56) and (8.57) combine to the first-
order approximation

Cpu,l
� 	 � 	 (8.58) 

The lift force is the integral of the pressure difference over the length of the airfoil, as-
suming depth b

L � �C

0
(pl � pu)b dx

or CL � � �1

0
(Cpl

� Cpu
) � 2 �1

0
d� � (8.59) 

Equations (8.55) and (8.59) are entirely equivalent within the small-angle approxima-
tions.

The sheet strength 
(x) is computed from the requirement that the net normal ve-
locity �(x) be zero at the sheet (y � 0), since the sheet represents a solid plate or
stream surface. Consider a small piece of sheet 
 dx located at position x0. The ve-
locity � at point x on the sheet is that of an infinitesimal line vortex of strength d� �
� 
 dx

d� �x � �

The total normal velocity induced by the entire sheet at point x is thus

�sheet � ��C

0

(8.60)

Meanwhile, from Fig. 8.19a, the uniform stream induces a constant normal veloc-
ity at every point on the sheet given by

�stream � U� sin �

Setting the sum of �sheet and �stream equal to zero gives the integral equation

�C

0
� 2U� sin � (8.61) 

to be solved for 
(x) subject to the Kutta condition 
(C) � 0 from Eq. (8.54).


 dx
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Although Eq. (8.61) is quite formidable (and not only for beginners), in fact it was
solved long ago by using integral formulas developed by Poisson in the nineteenth cen-
tury. The sheet strength which satisfies Eq. (8.61) is

�(x) � 2U� sin �� � 1�
1/2

(8.62) 

From Eq. (8.58) the surface-pressure coefficients are thus

Cpu,l
� �2 sin �� � 1�

1/2

(8.63) 

Details of the calculations are given in advanced texts [for example, 11, chap. 5].
The pressure coefficients from Eq. (8.63) are plotted in Fig. 8.19b, showing that the

upper surface has pressure continually increasing with x, that is, an adverse gradient.
The upper-surface velocity Uu � U� � �u � U� � 	

1
2

	� is plotted in Fig. 8.19c for var-
ious angles of attack. Above � � 5° the sheet contribution �u is about 20 percent of
U� so that the small-disturbance assumption is violated. Figure 8.19c also shows sep-
aration points computed by Thwaites’ laminar-boundary-layer method, Eqs. (7.54) and
(7.55). The prediction is that a flat plate would be extensively stalled on the upper sur-
face for � � 6°, which is approximately correct.

The lift coefficient of the airfoil is proportional to the area between cpl
and cpu

in
Fig. 8.19b, from Eq. (8.59):

CL � 2 �1

0
d � � � 4 sin � �1

0 � � 1�
1/2

d � � � 2� sin � � 2�� (8.64) 

This is a classic result which was alluded to earlier in Eq. (7.70) without proof.
Also of interest is the moment coefficient about the leading edge (LE) of the air-

foil, taken as positive counterclockwise

CMLE
� � �1

0
(Cpl

� Cpu
) d� � � sin � � CL (8.65) 

Thus the center of pressure (CP), or position of the resultant lift force, is at the one-
quarter-chord point

� �CP
� (8.66) 

This theoretical result is independent of the angle of attack.
These results can be compared with experimental results for NACA airfoils in Fig.

8.20). The thinnest NACA airfoil is t/C � 0.06, and the thickest is 24 percent, or
t/C � 0.24. The lift-curve slope dCL /d� is within 9 percent of the theoretical value
of 2� for all the various airfoil families at all thicknesses. Increasing thickness tends
to increase both CL,max and the stall angle. The stall angle at t/C � 0.06 is about 8°
and would be even less for a flat plate, verifying the boundary-layer separation esti-
mates in Fig. 8.19c. Best performance is usually at about the 12 percent thickness
point for any airfoil.

1
	
4

x
	
C

1
	
4

�
	
2

x
	
C

x
	
C

MLE		
	
1
2

	
U2
�bC2

x
	
C

C
	
x

x
	
C

�
	
U

C
	
x

C
	
x

8.7 Airfoil Theory 527



Fig. 8.20 Lift characteristics of
smooth NACA airfoils as a func-
tion of thickness ratio, for infinite
aspect ratio. (From Ref. 12.)

The theory of thick cambered airfoils is covered in advanced texts [for example, 2 to
4]; Ref. 13 has a thorough and comprehensive review of both inviscid and viscous as-
pects of airfoil behavior.

Basically the theory uses a complex-variable mapping which transforms the flow
about a cylinder with circulation in Fig. 8.10 into flow about a foil shape with circu-
lation. The circulation is then adjusted to match the Kutta condition of smooth exit
flow from the trailing edge.

Regardless of the exact airfoil shape, the inviscid mapping theory predicts that the
correct circulation for any thick cambered airfoil is
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Fig. 8.21 Characteristics of NACA
airfoils: (a) typical thick cambered
airfoil; (b) center-of-pressure data;
and (c) minimum drag coefficient.

�Kutta � �bCU��1 � 0.77 � sin (� � �) (8.67)

where � � tan�1 (2h/C) and h is the maximum camber, or maximum deviation of the
airfoil midline from its chord line, as in Fig. 8.21a.

The lift coefficient of the infinite-span airfoil is thus

CL � � 2��1 � 0.77 � sin (� � �) (8.68) 
t
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Wings of Finite Span

This reduces to Eq. (8.64) when the thickness and camber are zero. Figure 8.20 shows
that the thickness effect 1 � 0.77t/C is not verified by experiment. Some airfoils in-
crease lift with thickness, others decrease, and none approach the theory very closely,
the primary reason being the boundary-layer growth on the upper surface affecting the
airfoil “shape.’’ Thus it is customary to drop the thickness effect from the theory

CL � 2� sin (� � �) (8.69) 

The theory correctly predicts that a cambered airfoil will have finite lift at zero angle
of attack and zero lift (ZL) at an angle

�ZL � �� � �tan�1 (8.70) 

Equation (8.70) overpredicts the measured zero-lift angle by 1° or so, as shown in Table
8.3. The measured values are essentially independent of thickness. The designation XX
in the NACA series indicates the thickness in percent, and the other digits refer to cam-
ber and other details. For example, the 2415 airfoil has 2 percent maximum camber
(the first digit) occurring at 40 percent chord (the second digit) with 15 percent max-
imum thickness (the last two digits). The maximum thickness need not occur at the
same position as the maximum camber.

Figure 8.21b shows the measured position of the center of pressure of the various
NACA airfoils, both symmetric and cambered. In all cases xCP is within 0.02 chord
length of the theoretical quarter-chord point predicted by Eq. (8.66). The standard cam-
bered airfoils (24, 44, and 230 series) lie slightly forward of x/C � 0.25 and the low-
drag (60 series) foils slightly aft. The symmetric airfoils are at 0.25.

Figure 8.21c shows the minimum drag coefficient of NACA airfoils as a function
of thickness. As mentioned earlier in conjunction with Fig. 7.25, these foils when
smooth actually have less drag than turbulent flow parallel to a flat plate, especially
the low-drag 60 series. However, for standard surface roughness all foils have about
the same minimum drag, roughly 30 percent greater than that for a smooth flat plate.

The results of airfoil theory and experiment in the previous subsection were for two-
dimensional, or infinite-span, wings. But all real wings have tips and are therefore of
finite span or finite aspect ratio AR, defined by

AR � � (8.71) 
b
	
C�

b2

	
Ap

2h
	
C
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Airfoil series Camber h/C, % Measured �ZL, deg Theory 	 
, deg

24XX 2.0 �2.1 �2.3
44XX 4.0 �4.0 �4.6

230XX 1.8 �1.3 �2.1
63-2XX 2.2 �1.8 �2.5
63-4XX 4.4 �3.1 �5.0
64-1XX 1.1 �0.8 �1.2

Table 8.3 Zero-Lift Angle of
NACA Airfoils



Fig. 8.22 Lifting-line theory for a
finite wing: (a) actual trailing-vor-
tex system behind a wing; (b) sim-
ulation by vortex system “bound’’
to the wing; (c) downwash on the
wing due to an element of the trail-
ing-vortex system.

where b is the span length from tip to tip and Ap is the planform area of the wing as
seen from above. The lift and drag coefficients of a finite-aspect-ratio wing depend
strongly upon the aspect ratio and slightly upon the planform shape of the wing.

Vortices cannot end in a fluid; they must either extend to the boundary or form a
closed loop. Figure 8.22a shows how the vortices which provide the wing circulation
bend downstream at finite wing tips and extend far behind the wing to join the start-
ing vortex (Fig. 7.23) downstream. The strongest vortices are shed from the tips, but
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some are shed from the body of the wing, as sketched schematically in Fig. 8.22b. The
effective circulation �(y) of these trailing shed vortices is zero at the tips and usually
a maximum at the center plane, or root, of the wing. In 1918 Prandtl successfully mod-
eled this flow by replacing the wing by a single lifting line and a continuous sheet of
semi-infinite trailing vortices of strength �(y) � d�/dy, as in Fig. 8.22c. Each elemen-
tal piece of trailing sheet �(�) d� induces a downwash, or downward velocity, dw(y),
given by

dw(y) �

at position y on the lifting line. Note the denominator term 4� rather than 2� because
the trailing vortex extends only from 0 to � rather than from �� to ��.

The total downwash w(y) induced by the entire trailing vortex system is thus

w(y) � �(1/2)b

�(1/2)b
(8.72) 

When the downwash is vectorially added to the approaching free stream U�, the ef-
fective angle of attack at this section of the wing is reduced to

�eff � � � �i �i � tan�1 � (8.73) 

where we have used a small-amplitude approximation w � U�.
The final step is to assume that the local circulation �(y) is equal to that of a two-

dimensional wing of the same shape and same effective angle of attack. From thin-air-
foil theory, Eqs. (8.55) and (8.64), we have the estimate

CL � � 2��eff

or � � �CU�� eff (8.74) 

Combining Eqs. (8.72) and (8.74), we obtain Prandtl’s lifting-line theory for a finite-
span wing

�(y) � �C(y)U�	�(y) � �(1/2)b

�(1/2)b 
 (8.75) 

This is an integrodifferential equation to be solved for �(y) subject to the conditions
�(	

1
2

	b) � �(�	
1
2

	b) � 0. It is similar to the thin-airfoil integral equation (8.61) and 
even more formidable. Once it is solved, the total wing lift and induced drag are
given by

L � 
U� �(1/2)b

�(1/2)b
�(y) dy Di � 
U� �(1/2)b

�(1/2)b
�(y)�i(y) dy (8.76)

Here is a case where the drag is not zero in a frictionless theory because the down-
wash causes the lift to slant backward by angle �i so that it has a drag component par-
allel to the free-stream direction, dDi � dL sin �i � dL�i.

The complete solution to Eq. (8.75) for arbitrary wing planform C(y) and arbitrary
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twist �(y) is treated in advanced texts [for example, 11]. It turns out that there is a sim-
ple representative solution for an untwisted wing of elliptical planform

C(y) � C0	1 � � �
2



1/2

(8.77) 

The area and aspect ratio of this wing are

Ap � �(1/2)b

�(1/2)b
C dy � �bC0 AR � (8.78) 

The solution to Eq. (8.75) for this C(y) is an elliptical circulation distribution of ex-
actly similar shape

�(y) � �0	1 � � �
2



1/2

(8.79) 

Substituting into Eq. (8.75) and integrating give a relation between �0 and C0

�0 � (8.80) 

where � is assumed constant across the untwisted wing.
Substitution into Eq. (8.76) gives the elliptical-wing lift

L � 	
1
4

	� 2bC0
U2
��/(1 � 2/AR)

or CL � (8.81) 

If we generalize this to a thick cambered finite wing of approximately elliptical plan-
form, we obtain

CL � (8.82) 

This result was given without proof as Eq. (7.70). From Eq. (8.72) the computed down-
wash for the elliptical wing is constant

w(y) � � const (8.83) 

Finally, the induced drag coefficient from Eq. (8.76) is

CDi � CL � (8.84) 

This was given without proof as Eq. (7.71).
Figure 8.23 shows the effectiveness of this theory when tested against a nonellipti-

cal cambered wing by Prandtl in 1921 [14]. Figure 8.23a and b shows the measured
lift curves and drag polars for five different aspect ratios. Note the increase in stall an-
gle and drag and the decrease in lift slope as the aspect ratio decreases.

Figure 8.23c shows the lift data replotted against effective angle of attack �eff �
(� � �)/(1 � 2/AR), as predicted by Eq. (8.82). These curves should be equivalent to
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Fig. 8.23 Comparison of theory and
experiment for a finite wing: (a)
measured lift [14]; (b) measured
drag polar [14]; (c) lift reduced to
infinite aspect ratio; (d) drag polar
reduced to infinite aspect ratio.

an infinite-aspect-ratio wing, and they do collapse together except near stall. Their com-
mon slope dCL/d� is about 10 percent less than the theoretical value 2�, but this is
consistent with the thickness and shape effects noted in Fig. 8.20.

Figure 8.23d shows the drag data replotted with the theoretical induced drag CDi �
C2

L /(�AR) subtracted out. Again, except near stall, the data collapse onto a single line
of nearly constant infinite-aspect-ratio drag CD0 � 0.01. We conclude that the finite-
wing theory is very effective and may be used for design calculations.

The same superposition technique which worked so well for plane flow in Sec. 8.3 is
also successful for axisymmetric potential flow. We give some brief examples here.

Most of the basic results carry over from plane to axisymmetric flow with only slight
changes owing to the geometric differences. Consider the following related flows:
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Fig. 8.24 Spherical polar coordi-
nates for axisymmetric flow.

Spherical Polar Coordinates

Basic plane flow Counterpart axisymmetric flow

Uniform stream Uniform stream
Line source or sink Point source or sink
Line doublet Point doublet
Line vortex No counterpart
Rankine half-body cylinder Rankine half-body of revolution
Rankine-oval cylinder Rankine oval of revolution
Circular cylinder Sphere
Symmetric airfoil Tear-shaped body

Since there is no such thing as a point vortex, we must forgo the pleasure of studying
circulation effects in axisymmetric flow. However, as any smoker knows, there is an
axisymmetric ring vortex, and there are also ring sources and ring sinks, which we
leave to advanced texts [for example, 3].

Axisymmetric potential flows are conveniently treated in the spherical polar coordi-
nates of Fig. 8.24. There are only two coordinates (r, �), and flow properties are con-
stant on a circle of radius r sin � about the x-axis.

The equation of continuity for incompressible flow in these coordinates is

	∂
∂
r
	 (r2�r sin �) � 	∂

∂
�
	 (r�� sin �) � 0 (8.85) 

where �r and �� are radial and tangential velocity as shown. Thus a spherical polar
stream function6 exists such that

�r � � �� � (8.86) 

In like manner a velocity potential �(r, �) exists such that

�r � 	
∂
∂
�
r
	 �� � (8.87) 
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6 It is often called Stokes’ stream function, having been used in a paper Stokes wrote in 1851 on vis-
cous sphere flow.



Uniform Stream plus a 
Point Source

Uniform Stream in the x Direction

Point Source or Sink

Point Doublet

These formulas serve to deduce the � and � functions for various elementary-
axisymmetric potential flows.

A stream U� in the x direction has components

�r � U� cos � �� � �U� sin �

Substitution into Eqs. (8.86) and (8.87) and integrating give

Uniform stream: � � �	
1
2

	U�r2 sin2 � � � U�r cos � (8.88) 

As usual, arbitrary constants of integration have been neglected.

Consider a volume flux Q issuing from a point source. The flow will spread out radi-
ally and at radius r will equal Q divided by the area 4�r2 of a sphere. Thus

�r � � �� � 0 (8.89) 

with m � Q/(4�) for convenience. Integrating (8.86) and (8.87) gives

Point source � � m cos � � � � (8.90) 

For a point sink, change m to � m in Eq. (8.90).

Exactly as in Fig. 8.8, place a source at (x, y) � ( � a, 0) and an equal sink at ( � a,
0), taking the limit as a becomes small with the product 2am � � held constant

�doublet � lim
a→0

(m cos �source � m cos �sink) � (8.91) 

We leave the proof of this limit as a problem. The point-doublet velocity potential

�doublet � lim
a→0 �� � � � (8.92) 

The streamlines and potential lines are shown in Fig. 8.25. Unlike the plane doublet
flow of Fig. 8.8, neither set of lines represents perfect circles.

By combining Eqs. (8.88) and (8.90) we obtain the stream function for a uniform stream
plus a point source at the origin

� � �	
1
2

	U�r2 sin2 � � m cos � (8.93) 

From Eq. (8.86) the velocity components are, by differentiation,

�r � U� cos � � �� � �U� sin � (8.94) 
m
	
r2

� cos �
	

r2
m

	
rsink

m
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� sin2 �
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2am � �



Fig. 8.25 Streamlines and potential
lines due to a point doublet at the
origin, from Eqs. (8.91) and (8.92).

Setting these equal to zero reveals a stagnation point at � � 180° and r � a �
(m/U�)1/2, as shown in Fig. 8.26. If we let m � U�a2, the stream function can be rewrit-
ten as

� cos � � � �
2

sin2 � (8.95) 

The stream surface which passes through the stagnation point (r, �) � (a, �) has the
value � � �U�a2 and forms a half-body of revolution enclosing the point source, as
shown in Fig. 8.26. This half-body can be used to simulate a pitot tube. Far down-
stream the half-body approaches the constant radius R � 2a about the x-axis. The max-
imum velocity and minimum pressure along the half-body surface occur at � � 70.5°,

r
	
a

1
	
2

�
	
U�a2
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Fig. 8.26 Streamlines for a Rankine
half-body of revolution.



Fig. 8.27 Streamlines and potential
lines for inviscid flow past a
sphere.

r � a�3�, Vs � 1.155U�. Downstream of this point there is an adverse gradient as Vs

slowly decelerates to U�, but boundary-layer theory indicates no flow separation. Thus
Eq. (8.95) is a very realistic simulation of a real half-body flow. But when the uniform
stream is added to a sink to form a half-body rear surface, e.g., similar to Fig. 8.5c,
separation is predicted and the inviscid pattern is not realistic.

From Eqs. (8.88) and (8.91), combination of a uniform stream and a point doublet at
the origin gives

� � � U�r2 sin2 � � sin2 � (8.96) 

Examination of this relation reveals that the stream surface � � 0 corresponds to the
sphere of radius

r � a � � �
1/3

(8.97) 

This is exactly analogous to the cylinder flow of Fig. 8.10a formed by combining a
uniform stream and a line doublet.

Letting � � 	
1
2

	U�a3 for convenience, we rewrite Eq. (8.96) as

� �sin2 �� � � (8.98) 

The streamlines for this sphere flow are plotted in Fig. 8.27. By differentiation from
Eq. (8.86) the velocity components are

�r � U� cos ��1 � � �� � � U� sin ��2 � � (8.99) 

We see that the radial velocity vanishes at the sphere surface r � a, as expected. There
is a stagnation point at the front (a, �) and the rear (a, 0) of the sphere. The maximum
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The Concept of Hydrodynamic
Mass

velocity occurs at the shoulder (a, �	
1
2

	�), where �r � 0 and �� � �1.5U�. The 
surface-velocity distribution is

Vs � ����r�a � 	
3
2

	U� sin � (8.100) 

Note the similarity to the cylinder surface velocity equal to 2U� sin � from Eq. (8.34)
with zero circulation.

Equation (8.100) predicts, as expected, an adverse pressure gradient on the rear (� �
90°) of the sphere. If we use this distribution with laminar-boundary-layer theory [for
example, 15, p. 298], separation is computed to occur at about � � 76°, so that in the
actual flow pattern of Fig. 7.14 a broad wake forms in the rear. This wake interacts
with the free stream and causes Eq. (8.100) to be inaccurate even in the front of the
sphere. The measured maximum surface velocity is equal only to about 1.3U� and oc-
curs at about � � 107° (see Ref. 15, sec. 4.10.4, for further details).

When a body moves through a fluid, it must push a finite mass of fluid out of the way.
If the body is accelerated, the surrounding fluid must also be accelerated. The body
behaves as if it were heavier by an amount called the hydrodynamic mass (also called
the added or virtual mass) of the fluid. If the instantaneous body velocity is U(t), the
summation of forces must include this effect

� F � (m � mh) (8.101) 

where mh, the hydrodynamic mass, is a function of body shape, the direction of mo-
tion, and (to a lesser extent) flow parameters such as the Reynolds number.

According to potential theory [2, sec. 6.4; 3, sec. 9.22], mh depends only on the
shape and direction of motion and can be computed by summing the total kinetic en-
ergy of the fluid relative to the body and setting this equal to an equivalent body en-
ergy

KEfluid � � 	
1
2

	dm V2
rel � 	

1
2

	mhU2 (8.102) 

The integration of fluid kinetic energy can also be accomplished by a body-surface in-
tegral involving the velocity potential [16, sec. 11].

Consider the previous example of a sphere immersed in a uniform stream. By sub-
tracting out the stream velocity we can replot the flow as in Fig. 8.28, showing the
streamlines relative to the moving sphere. Note the similarity to the doublet flow in
Fig. 8.25. The relative-velocity components are found by subtracting U from Eqs. (8.99)

�r � � �� � �

The element of fluid mass, in spherical polar coordinates, is

dm � 
(2�r sin �)r dr d�

When dm and V2
rel � �2

r � �2
� are substituted into Eq. (8.102), the integral can be eval-

uated

KEfluid � 	
1
3

	
�a3U2

Ua3 sin �
		

2r3

Ua3 cos �
		

r3

dU
	
dt
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Fig. 8.28 Potential-flow streamlines
relative to a moving sphere. Com-
pare with Figs. 8.25 and 8.27.

8.9 Numerical Analysis

or mh(sphere) � 	
2
3

	
�a3 (8.103)

Thus, according to potential theory, the hydrodynamic mass of a sphere equals one-
half of its displaced mass, independent of the direction of motion.

A similar result for a cylinder moving normal to its axis can be computed from Eqs.
(8.33) after subtracting out the stream velocity. The result is

mh(cylinder) � 
�a2L (8.104) 

for a cylinder of length L, assuming two-dimensional motion. The cylinder’s hydro-
dynamic mass equals its displaced mass.

Tables of hydrodynamic mass for various body shapes and directions of motion are
given by Patton [17]. See also Ref. 21.

When potential flow involves complicated geometries or unusual stream conditions,
the classical superposition scheme of Secs. 8.3 and 8.4 becomes less attractive. Con-
formal mapping of body shapes, by using the complex-variable technique of Sec. 8.5,
is no longer popular. Numerical analysis is the appropriate modern approach, and at
least three different approaches are in use:

1. The finite-element method (FEM) [6, 19]

2. The finite-difference method (FDM) [5, 20]

3. a. Integral methods with distributed singularities [18]

b. The boundary-element method [7]
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The Finite-Element Method

The Finite-Difference Method

Methods 3a and 3b are closely related, having first been developed on an ad hoc ba-
sis by aerodynamicists in the 1960s [18] and then generalized into a multipurpose ap-
plied-mechanics technique in the 1970s [7].

Methods 1 (or FEM) and 2 (or FDM), though strikingly different in concept, are
comparable in scope, mesh size, and general accuracy. We concentrate here on the lat-
ter method for illustration purposes.

The finite-element method [19] is applicable to all types of linear and nonlinear par-
tial differential equations in physics and engineering. The computational domain is di-
vided into small regions, usually triangular or quadrilateral. These regions are delin-
eated with a finite number of nodes where the field variables—temperature, velocity,
pressure, stream function, etc.—are to be calculated. The solution in each region is ap-
proximated by an algebraic combination of local nodal values. Then the approximate
functions are integrated over the region, and their error is minimized, often by using a
weighting function. This process yields a set of N algebraic equations for the N un-
known nodal values. The nodal equations are solved simultaneously, by matrix inver-
sion or iteration. For further details see Ref. 6 or 19.

Although textbooks on numerical analysis [5, 20] apply finite-difference techniques to
many different problems, here we concentrate on potential flow. The idea of FDM is
to approximate the partial derivatives in a physical equation by “differences’’ between
nodel values spaced a finite distance apart—a sort of numerical calculus. The basic
partial differential equation is thus replaced by a set of algebraic equations for the nodal
values. For potential (inviscid) flow, these algebraic equations are linear, but they are
generally nonlinear for viscous flows. The solution for nodal values is obtained by it-
eration or matrix inversion. Nodal spacings need not be equal.

Here we illustrate the two-dimensional Laplace equation, choosing for convenience
the stream-function form

� � 0 (8.105) 

subject to known values of � along any body surface and known values of ∂�/∂x and
∂�/∂y in the free stream.

Our finite-difference technique divides the flow field into equally spaced nodes, as
shown in Fig. 8.29. To economize on the use of parentheses or functional notation, sub-
scripts i and j denote the position of an arbitrary, equally spaced node, and �i,j denotes
the value of the stream function at that node

�i,j � �(x0 � i �x, y0 � j �y)

Thus, �i�1,j is just to the right of �i,j, and �i,j�1 is just above.
An algebraic approximation for the derivative ∂�/∂x is

�
�(x � �x, y) � �(x, y)
			

�x

∂�
	
∂x

∂2�
	
∂y2

∂2�
	
∂x2
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Fig. 8.29 Definition sketch for a
two-dimensional rectangular finite-
difference grid.

A similar approximation for the second derivative is

� 	 � 

The subscript notation makes these expressions more compact

� (�i�1,j � �i,j)

(8.106) 

� (�i�1, j � 2�i, j � �i�1, j)

These formulas are exact in the calculus limit as �x → 0, but in numerical analysis we
keep �x and �y finite, hence the term finite differences.

In an exactly similar manner we can derive the equivalent difference expressions for
the y direction

� (�i, j�1 � �i, j)

� (�i, j�1 � 2�i, j � �i, j�1) (8.107)

The use of subscript notation allows these expressions to be programmed directly into
a scientific computer language such as BASIC or FORTRAN.

When (8.106) and (8.107) are substituted into Laplace’s equation (8.105), the result
is the algebraic formula

2(1 � �)�i, j � �i�1, j � �i�1, j � �(�i, j�1 � �i, j�1) (8.108) 
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where � � (�x/�y)2 depends upon the mesh size selected. This finite-difference model
of Laplace’s equation states that every nodal stream-function value �i, j is a linear com-
bination of its four nearest neighbors.

The most commonly programmed case is a square mesh (� � 1), for which Eq.
(8.108) reduces to

�i, j � 	
1
4

	(�i, j�1 � �i, j�1 � �i�1, j � �i�1, j) (8.109) 

Thus, for a square mesh, each nodal value equals the arithmetic average of the four
neighbors shown in Fig. 8.29. The formula is easily remembered and easily pro-
grammed. If P(I, J) is a subscripted variable stream function, the BASIC or FORTRAN
statement of (8.109) is

P(I, J) � 0.25 * (P(I, J � 1) � P(I, J � 1) � P(I � 1, J) � P(I � 1, J)) (8.110) 

This is applied in iterative fashion sweeping over each of the internal nodes (I, J), with
known values of P specified at each of the surrounding boundary nodes. Any initial
guesses can be specified for the internal nodes P(I, J), and the iteration process will
converge to the final algebraic solution in a finite number of sweeps. The numerical
error, compared with the exact solution of Laplace’s equation, is proportional to the
square of the mesh size.

Convergence can be speeded up by the successive overrelaxation (SOR) method,
discussed by Patankar [5]. The modified SOR form of the iteration is

P(I, J) � P(I, J) � 0.25 * A * (P(I, J � 1) � P(I, J � 1) 

� P(I � 1, J) � P(I � 1, J) � 4 * P(I, J)) (8.111) 

The recommended value of the SOR convergence factor A is about 1.7. Note that the
value A � 1.0 reduces Eq. (8.111) to (8.110).

Let us illustrate the finite-difference method with an example.

EXAMPLE 8.5

Make a numerical analysis, using �x � �y � 0.2 m, of potential flow in the duct expansion
shown in Fig. 8.30. The flow enters at a uniform 10 m/s, where the duct width is 1 m, and is
assumed to leave at a uniform velocity of 5 m/s, where the duct width is 2 m. There is a straight
section 1 m long, a 45° expansion section, and a final straight section 1 m long.

Solution

Using the mesh shown in Fig. 8.30 results in 45 boundary nodes and 91 internal nodes, with i
varying from 1 to 16 and j varying from 1 to 11. The internal points are modeled by Eq. (8.110).
For convenience, let the stream function be zero along the lower wall. Then since the volume
flow is (10 m/s)(1 m) � 10 m2/s per unit depth, the stream function must equal 10 m2/s along
the upper wall. Over the entrance and exit planes, the stream function must vary linearly to give
uniform velocities:

Inlet: �(1, J) � 2 * (J � 6) for J � 7 to 10

Exit: �(16, J) � J � 1 for J � 2 to 10
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Fig. 8.30 Numerical model of po-
tential flow through a two-dimen-
sional 45° expansion. The nodal
points shown are 20 cm apart.
There are 45 boundary nodes and
91 internal nodes.

All these boundary values must be input to the program and are shown printed in Fig. 8.31.
Initial guesses are stored for the internal points, say, zero or an average value of 5.0 m2/s.

The program then starts at any convenient point, such as the upper left (2, 10), and evaluates Eq.
(8.110) at every internal point, repeating this sweep iteratively until there are no further changes
(within some selected maximum change) in the nodal values. The results are the finite-differ-
ence simulation of this potential flow for this mesh size; they are shown printed in Fig. 8.31 to
three-digit accuracy. The reader should test a few nodes in Fig. 8.31 to verify that Eq. (8.110)
is satisfied everywhere. The numerical accuracy of these printed values is difficult to estimate,
since there is no known exact solution to this problem. In practice, one would keep decreasing
the mesh size to see whether there were any significant changes in nodal values.

This problem is well within the capability of a small personal computer. The values shown
in Fig. 8.31 were obtained after 100 iterations, or 6 min of execution time, on a Macintosh SE
personal computer, using BASIC.
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(1, 11) y = 2 m (16, 11)

(i, j)

10
m /s

5
m /s

i

j

(11, 1) y = 0 m (16, 1)

1 m 1 m 1 m

(1, 6) y = 1 m (6, 6)

45°

ψ = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

 8.00 8.02 8.04 8.07 8.12 8.20 8.30 8.41 8.52 8.62 8.71 8.79 8.85 8.91 8.95

10.00

9.00

 6.00 6.03 6.06 6.12 6.22 6.37 6.58 6.82 7.05 7.26 7.44 7.59 7.71 7.82 7.91 8.00

 4.00 4.03 4.07 4.13 4.26 4.48 4.84 5.24 5.61 5.93 6.19 6.41 6.59 6.74 6.88 7.00

 2.00 2.02 2.05 2.09 2.20 2.44 3.08 3.69 4.22 4.65 5.00 5.28 5.50 5.69 5.85 6.00

0.00 0.00 0.00 0.00 0.00 1.33 2.22 2.92 3.45 3.87 4.19 4.45 4.66 4.84 5.00ψ = 0.00

0.00 1.00 1.77 2.37 2.83 3.18 3.45 3.66 3.84 4.00

0.00 0.80 1.42 1.90 2.24 2.50 2.70 2.86 3.00

0.00 0.63 1.09 1.40 1.61 1.77 1.89 2.00

0.00 0.44 0.66 0.79 0.87 0.94 1.00

0.00 0.00 0.00 0.00 0.00 0.00

Fig. 8.31 Stream-function nodal val-
ues for the potential flow of Fig.
8.30. Boundary values are known in-
puts. Internal nodes are solutions to
Eq. (8.110).



Although Fig. 8.31 is the computer solution to the problem, these numbers must be manip-
ulated to yield practical engineering results. For example, one can interpolate these numbers to
sketch various streamlines of the flow. This is done in Fig. 8.32a. We see that the streamlines
are curved both upstream and downstream of the corner regions, especially near the lower wall.
This indicates that the flow is not one-dimensional.

The velocities at any point in the flow can be computed from finite-difference formulas such
as Eqs. (8.106) and (8.107). For example, at the point (I, J) � (3, 6), from Eq. (8.107), the hor-
izontal velocity is approximately

u(3, 6) � � � 10.45 m/s

and the vertical velocity is zero from Eq. (8.106). Directly above this on the upper wall, we es-
timate

u(3, 11) � � � 9.65 m/s
10.00 � 8.07
		

0.2
�(3, 11) � �(3,10)
		

�y

2.09 � 0.00
		

0.2

�(3, 7) � �(3, 6)
		

�y
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Fig. 8.32 Useful results computed
from Fig. 8.31: (a) streamlines of
the flow; (b) pressure-coefficient
distribution along each wall.



The Boundary-Element Method

The flow is not truly one-dimensional in the entrance duct. The lower wall, which contains 
the diverging section, accelerates the fluid, while the flat upper wall is actually decelerating the fluid.

Another output function, useful in making boundary-layer analyses of the wall regions, is the
pressure distribution along the walls. If p1 and V1 are the pressure and velocity at the entrance (I �
1), conditions at any other point are computed from Bernoulli’s equation (8.3), neglecting gravity

p � 	
1
2

	
V2 � p1 � 	
1
2

	
V2
1

which can be rewritten as a dimensionless pressure coefficient

Cp � � 1 � � �
2

This determines p after V is computed from the stream-function differences in Fig. 8.31.
Figure 8.32b shows the computed wall-pressure distributions as compared with the one-

dimensional continuity approximation V1A1 � V(x)A(x), or

Cp(one-dim) � 1 � � �
2

(1) 

The one-dimensional approximation, which is rather crude for this large (45°) expansion, lies
between the upper and lower wall pressures. One-dimensional theory would be much more ac-
curate for a 10° expansion.

Analyzing Fig. 8.32b, we predict that boundary-layer separation will probably occur on the
lower wall between the corners, where pressure is strongly rising (highly adverse gradient). There-
fore potential theory is probably not too realistic for this flow, where viscous effects are strong.
(Recall Figs. 6.27 and 7.8.)

Potential theory is reversible; i.e., when we reverse the flow arrows in Fig. 8.32a, then Fig.
8.32b is still valid and would represent a 45° contraction flow. The pressure would fall on both
walls (no separation) from x � 3 m to x � 1 m. Between x � 1 m and x � 0, the pressure rises
on the lower surface, indicating possible separation, probably just downstream of the corner.

This example should give the reader an idea of the usefulness and generality of numerical
analysis of fluid flows.

A relatively new technique for numerical solution of partial differential equations is
the boundary-element method (BEM). Reference 7 is an introductory textbook outlin-
ing the concepts of BEM, including FORTRAN programs for potential theory and elas-
tostatics. There are no interior elements. Rather, all nodes are placed on the boundary
of the domain, as in Fig. 8.33. The “element’’ is a small piece of the boundary sur-
rounding the node. The “strength’’ of the element can be either constant or variable.

For plane potential flow, the method takes advantage of the particular solution

�* � ln (8.112) 

which satisfies Laplace’s equation, �2� � 0. Each element i is assumed to have a dif-
ferent strength �i. Then r represents the distance from that element to any other point
in the flow field. Summing all these elemental effects, with proper boundary condi-
tions, will give the total solution to the potential-flow problem.

At each element of the boundary, we typically know either the value of � or the
value of ∂�/∂n, where n is normal to the boundary. (Mixed combinations of � and

1
	
r

1
	
2�

A1	
A

V
	
V1

p � p1	
	
1
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V2
1
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∂�/∂n are also possible but are not discussed here.) The correct strengths �i are such
that these boundary conditions are satisfied at every element. Summing these effects
over N elements requires integration by parts plus a careful evaluation of the (singu-
lar) effect of element i upon itself. The mathematical details are given in Ref. 7. The
result is a set of N algebraic equations for the unknown boundary values. In the case
of elements of constant strength, the final expression is

�i � �
N

j�1
�j ��

0

j
ds� � �

N

j�1
� �j ��

0

j
�* ds� i � 1 to N (8.113) 

The integrals, which involve the logarithmic particular solution �* from Eq. (8.112),
are evaluated numerically for each element. Reference 7 recommends � and gives a
program for � gaussian quadrature formulas.

Equations (8.113) contain 2N element values, �i and (∂�/∂n)i, of which N are known
from the given boundary conditions. The remaining N are solved simultaneously from
Eqs. (8.113). Generally this completes the analysis � only the boundary solution is
computed, and interior points are not studied. In most cases, the boundary velocity and
pressure are all that is needed.

We illustrated the method with stream function �. Naturally the entire technique
also applies to velocity potential �, if we are given proper conditions on � or ∂�/∂n
at each boundary element. The method is readily extended to three dimensions [7].

Reference 7 gives a complete FORTRAN listing for solving Eqs. (8.113) numeri-
cally for constant, linear, and quadratic element strength variations. We now use their
constant-element-strength program, POCONBE [7], to take an alternate look at Ex-
ample 8.5, which used the finite-difference method.

EXAMPLE 8.6

Solve the duct expansion problem, Example 8.5, using boundary elements. Use the same grid
spacing �x � �y � 0.2 m for the element sizes.

Solution

The boundary nodes are equally spaced, as shown in Fig. 8.34. There are only 45 nodes, whereas
there were 91 interior points for the FDM solution of Example 8.5. We expect the same accu-
racy for 50 percent fewer nodes. (Had we reduced the grid size to 0.1 m, there would be 90

∂�
	
∂n

∂�*
	
∂n

1
	
2
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dsFig. 8.33 Boundary elements of
constant strength in plane potential
flow.



One-Dimensional Unsteady Flow

Fig. 8.34 Boundary elements corre-
sponding to the same grid size as
Fig. 8.31. Nodal values of stream
function and computed surface ve-
locity are shown.

nodes as opposed to 406 interior points � a savings of 78 percent.) The program POCONBE [7]
asks you to input the location of these 45 nodes. The stream-function values are known all around
the boundary: � equals 0 on the bottom and 10.0 on the top and is linearly increasing from 0 to
10.0 at entrance and exit. These values of �, shown on the outside in Fig. 8.34, are inputted into
the program.

Once the input of nodes and element values is complete, the program immediately computes
and displays or stores the 45 unknowns, which in this case are the values of ∂�/∂n all around
the boundary. These values are shown on the inside of the top and bottom surfaces in Fig. 8.34
and represent the local surface velocity near each element, in m/s. The values of ∂�/∂n at en-
trance and exit, which are small fractions representing vertical velocity components, are not
shown here.
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The reader may verify that use of the surface velocities in Fig. 8.34 to compute surface pres-
sure coefficients, as in Example 8.5, leads to curves very similar to those shown in Fig. 8.32.
The BEM approach, using the same boundary nodes, has accuracy comparable to that for an
FDM computation. For further details see Ref. 7.

Our previous finite-difference model of Laplace’s equation, e.g., Eq. (8.109), was very
well behaved and converged nicely with or without overrelaxation. Much more care is
needed to model the full Navier-Stokes equations. The challenges are quite different,
and they have been met to a large extent, so there are now many textbooks [20, 23 to
27] on (fully viscous) computational fluid dynamics (CFD). This is not a textbook on
CFD, but we will address some of the issues in this section.

We begin with a simplified problem, showing that even a single viscous term intro-
duces new effects and possible instabilities. Recall (or review) Prob. 4.85, where a wall
moves and drives a viscous fluid parallel to itself. Gravity is neglected. Let the wall be
the plane y � 0, moving at a speed U0(t), as in Fig. 8.35. A uniform vertical grid, of
spacing �y, has nodes n at which the local velocity un

j is to be calculated, where su-

Viscous-Flow Computer Models



Fig. 8.35 An equally spaced finite-
difference mesh for one-dimen-
sional viscous flow [Eq. (8.114)].

perscript j denotes the time-step j�t. The wall is n � 1. If u � u(y, t) only and � �
w � 0, continuity, � � V � 0, is satisfied and we need only solve the x-momentum
Navier-Stokes equation:

� v (8.114)

where  � !/
. Utilizing the same finite-difference approximations as in Eq. (8.106),
we may model Eq. (8.114) algebraically as a forward time difference and a central spa-
tial difference:

�  

Rearrange and find that we can solve explicitly for un at the next time-step j � 1:

un
j�1 � (1 � 2") un

j � " (un�1
j    � un�1

j   ) " � (8.115)

Thus u at node n at the next time-step j � 1 is a weighted average of three previous
values, similar to the “four-nearest-neighbors” average in the laplacian model of Eq.
(8.109). Since the new velocity is calculated immediately, Eq. (8.115) is called an ex-
plicit model. It differs from the well-behaved laplacian model, however, because it may
be unstable. The weighting coefficients in Eq. (8.115) must all be positive to avoid di-
vergence. Now " is positive, but (1 � 2") may not be. Therefore, our explicit viscous
flow model has a stability requirement:

" � # (8.116)

Normally one would first set up the mesh size �y in Fig. 8.35, after which Eq. (8.116)
would limit the time-step �t. The solutions for nodal values would then be stable, but
not necessarily that accurate. The mesh sizes �y and �t could be reduced to increase
accuracy, similar to the case of the potential-flow laplacian model (8.109).

For example, to solve Prob. 4.85 numerically, one sets up a mesh with plenty of
nodes (30 or more �y within the expected viscous layer); selects �t according to Eq.
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An Alternate Implicit Approach

(8.116); and sets two boundary conditions for all j: u1 � U0 sin t† and uN � 0, where
N is the outermost node. For initial conditions, perhaps assume the fluid initially at
rest: un

1 � 0 for 2 # n # N � 1. Sweeping the nodes 2 # n # N �1 using Eq. (8.115)
(an Excel spreadsheet is excellent for this), one generates numerical values of un

j for
as long as one desires. After an initial transient, the final “steady” fluid oscillation will
approach the classical solution in viscous-flow textbooks [15]. Try Prob. 8.115 to
demonstrate this. 

In many finite-difference problems, a stability limitation such as Eq. (8.116) requires
an extremely small time-step. To allow larger steps, one can recast the model in an im-
plicit fashion by evaluating the second-derivative model in Eq. (8.114) at the next time-
step:

	
un

j�1

�

�

t

un
j

	 �   

This rearrangement is unconditionally stable for any ", but now we have three un-
knowns:

�"un�1
j�1 � (1 � 2")un

j�1 � " un�1
j�1 � un

j (8.117)

This is an implicit model, meaning that one must solve a large system of algebraic
equations for the new nodal values at time j � 1. Fortunately, the system is narrowly
banded, with the unknowns confined to the principal diagonal and its two nearest di-
agonals. In other words, the coefficient matrix of Eq. (8.117) is tridiagonal, a happy
event. A direct method, called the tridiagonal matrix algorithm (TDMA), is available
and explained in most CFD texts [20, 23 to 27]. Appendix A of Ref. 20 includes a
complete program for solving the TDMA. If you have not learned the TDMA yet, Eq.
(8.117) converges satisfactorily by rearrangement and iteration:

un
j�1 � (8.118)

At each time-step j � 1, sweep the nodes 2 # n # N � 1 over and over, using Eq.
(8.118), until the nodal values have converged. This implicit method is stable for any
", however large. To ensure accuracy, though, one should keep �t and �y small com-
pared to the basic time and length scales of the problem. This author’s habit is to keep
�t and �y small enough that nodal values change no more than 10 percent from one
(n, j) to the next.

EXAMPLE 8.7

SAE 30 oil at 20°C is at rest near a wall when the wall suddenly begins moving at a constant 1
m/s. Using the explicit model of Eq. (8.114), estimate the oil velocity at y � 3 cm after 1 sec-
ond of wall motion.

un
j � " (un�1

j�1 � un�1
j�1)

			
1 � 2"

un�1
j�1 � 2un

j�1 � un�1
j�1

			
�y2
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Steady Two-Dimensional 
Laminar Flow

Solution

For SAE 30 oil, from Table A-3,  � 0.29/891 � 3.25 E-4 m2/s. For convenience in putting a
node exactly at y � 3 cm, choose �y � 0.01 m. The stability limit (8.116) is  �t/�y2 � 0.5, or
�t � 0.154 s. Again for convenience, to hit t � 1 s on the nose, choose �t � 0.1 s, or " � 0.3255
and (1 � 2") � 0.3491. Then our explicit algebraic model (8.115) for this problem is

un
j�1 � 0.3491 un

j � 0.3255(un�1
j    � un�1

j ) (1)

We apply this relation from n � 2 out to at least n � N � 15, to make sure that the desired value
of u at n � 3 is accurate. The wall no-slip boundary requires u1

j � 1.0 m/s � constant for all j.
The outer boundary condition is uN � 0. The initial conditions are un

1 � 0 for n $ 2. We then
apply Eq. (1) repeatedly for n $ 2 until we reach j � 11, which corresponds to t � 1 s. This is
easily programmed on a spreadsheet such as Excel. Here we print out only j � 1, 6, and 11 as
follows:

j t u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

1 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.500 1.000 0.601 0.290 0.107 0.027 0.004 0.000 0.000 0.000 0.000 0.000
11 1.000 1.000 0.704 0.446 0.250 0.123 0.052 0.018 0.005 0.001 0.000 0.000

Note: Units for t and u’s are s and m/s, respectively.

Our numerical estimate is u4
11 � u(3 cm, 1 s) � 0.250 m/s, which is about 4 percent high—

this problem has a known exact solution, u � 0.241 m/s [15]. We could improve the accuracy
indefinitely by decreasing �y and �t.

The previous example, unsteady one-dimensional flow, had only one viscous term and
no convective accelerations. Let us look briefly at incompressible two-dimensional
steady flow, which has four of each type of term, plus a nontrivial continuity equation:

Continuity: � � 0 (8.119a)

x momentum: u � � � � �  � � � (8.119b)

y momentum u � � � � �  � � � (8.119c)

These equations, to be solved for (u, �, p) as functions of (x, y), are familiar to us from
analytical solutions in Chaps. 4 and 6. However, to a numerical analyst, they are odd,
because there is no pressure equation, that is, a differential equation for which the dom-
inant derivatives involve p. This situation has led to several different “pressure-adjust-
ment” schemes in the literature [20, 23 to 27], most of which manipulate the continu-
ity equation to insert a pressure correction.

A second difficulty in Eq. (8.119b and c) is the presence of nonlinear convective
accelerations such as u(∂u/∂x), which create asymmetry in viscous flows. Early at-
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Commercial CFD Codes

tempts, which modeled such terms with a central difference, led to numerical instabil-
ity. The remedy is to relate convection finite differences solely to the upwind flow en-
tering the cell, ignoring the downwind cell. For example, the derivative ∂u/∂x could be
modeled, for a given cell, as (uupwind � ucell)/�x. Such improvements have made fully
viscous CFD an effective tool, with various commercial user-friendly codes available.
For details beyond our scope, see Refs. 20 and 23 to 27.

Mesh generation and gridding have also become quite refined in modern CFD. Fig-
ure 8.36 illustrates a CFD solution of two-dimensional flow past an NACA 66(MOD)
hydrofoil [28]. The gridding in Fig. 8.36a is of the C type, which wraps around the
leading edge and trails off behind the foil, thus capturing the important near-wall and
wake details without wasting nodes in front or to the sides. The grid size is 262 by 91.

The CFD model for this hydrofoil flow is also quite sophisticated: a full Navier-
Stokes solver with turbulence modeling [29] and allowance for cavitation bubble for-
mation when surface pressures drop below the local vapor pressure. Figure 8.36b com-
pares computed and experimental surface pressure coefficients for an angle of attack of
1°. The dimensionless pressure coefficient is defined as Cp � (psurface � p�)/(
V�

2 /2).
The agreement is excellent, as indeed it is also for cases where the hydrofoil cavitates
[28]. Clearly, when properly implemented for the proper flow cases, CFD can be an ex-
tremely effective tool for engineers.

The coming of the third millennium has seen an enormous emphasis on computer ap-
plications in nearly every field, fluid mechanics being a prime example. It is now pos-
sible, at least for moderately complex geometries and flow patterns, to model on a dig-
ital computer, approximately, the equations of motion of fluid flow, with dedicated CFD
textbooks available [20, 23 to 27]. The flow region is broken into a fine grid of elements
and nodes, which algebraically simulate the basic partial differential equations of flow.
While simple two-dimensional flow simulations have long been reported and can be
programmed as student exercises, three-dimensional flows, involving thousands or even
millions of grid points, are now solvable with the modern supercomputer.

Although elementary computer modeling was treated briefly here, the general topic
of CFD is essentially for advanced study or professional practice. The big change over
the past decade is that engineers, rather than laboriously programming CFD problems
themselves, can now take advantage of any of several commercial CFD codes. These
are extensive software packages which allow engineers to construct a geometry and
boundary conditions to simulate a given viscous-flow problem. The software then grids
the flow region and attempts to compute flow properties at each grid element. The con-
venience is great; the danger is also great. That is, computations are not merely auto-
matic, like when using a hand calculator, but rather require care and concern from the
user. Convergence and accuracy are real problems for the modeler. Use of the codes
requires some art and experience. In particular, when the flow Reynolds number, Re �

VL/!, goes from moderate (laminar flow) to high (turbulent flow), the accuracy of
the simulation is no longer assured in any real sense. The reason is that turbulent flows
are not completely resolved by the full equations of motion, and one resorts to using
approximate turbulence models.

Turbulence models [29] are developed for particular geometries and flow conditions
and may be inaccurate or unrealistic for others. This is discussed by Freitas [30], who
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Fig. 8.36 CFD results for water
flow past an NASA 66(MOD) hy-
drofoil [from Ref 28, with permis-
sion of the American Society of
Mechanical Engineers]: (a) C grid-
ding, 262 by 91 nodes; (b) surface
pressures at � � 1°.

compared eight different commercial-code calculations (FLOW-3D, FLOTRAN, STAR-
CD, N3S, CFD-ACE, FLUENT, CFDS-FLOW3D, and NISA/3D-FLUID) with exper-
imental results for five benchmark flow experiments. Calculations were made by the
vendors themselves. Freitas concludes that commercial codes, though promising in gen-
eral, can be inaccurate for certain laminar- and turbulent-flow situations. Further re-
search is recommended before engineers can truly rely upon such software to give gen-
erally accurate fluid-flow predictions.

In spite of the above warning to treat CFD codes with care, one should also realize
that the results of a given CFD simulation can be spectacular. Figure 8.37 illustrates
turbulent flow past a cube mounted on the floor of a channel whose clearance is twice
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Fig. 8.37 Flow over a surface-
mounted cube creates a complex
and perhaps unexpected pattern: (a)
experimental oil-streak visualiza-
tion of surface flow at Re � 40,000
(based on cube height) ( from Ref.
31, courtesy of Robert Martinuzzi,
with the permission of the Ameri-
can Society of Mechanical Engi-
neers); (b) computational large-
eddy simulation of the surface flow
in (a) ( from Ref. 32, courtesy of
Kishan Shah, Stanford University);
and (c) a side view of the flow in
(a) visualized by smoke generation
and a laser light sheet ( from Ref.
31, courtesy of Robert Martinuzzi,
with the permission of the Ameri-
can Society of Mechanical Engi-
neers).
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the cube height. Compare Fig. 8.37a, a top view of the experimental surface flow [31]
as visualized by oil streaks, with Fig. 8.37b, a CFD supercomputer result using the
method of large-eddy simulation [32, 33]. The agreement is remarkable. The C-shaped
flow pattern in front of the cube is caused by formation of a horseshoe vortex, as seen
in a side view of the experiment [31] in Fig. 8.37c. Horseshoe vortices commonly re-
sult when surface shear flows meet an obstacle. We conclude that CFD has a tremen-
dous potential for flow prediction.

This chapter has analyzed a highly idealized but very useful type of flow: inviscid, in-
compressible, irrotational flow, for which Laplace’s equation holds for the velocity po-
tential (8.1) and for the plane stream function (8.7). The mathematics is well devel-
oped, and solutions of potential flows can be obtained for practically any body shape.

Some solution techniques outlined here are (1) superposition of elementary line or
point solutions in both plane and axisymmetric flow, (2) the analytic functions of a
complex variable, (3) use of variable-strength vortex sheets, and (4) numerical analy-
sis on a digital computer. Potential theory is especially useful and accurate for thin
bodies such as airfoils. The only requirement is that the boundary layer be thin, i.e.,
that the Reynolds number be large.

For blunt bodies or highly divergent flows, potential theory serves as a first approxi-
mation, to be used as input to a boundary-layer analysis. The reader should consult the
advanced texts [for example, 2 to 4, 10 to 13] for further applications of potential the-
ory. Section 8.9 discusses computational methods for viscous (nonpotential) flows.
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Problems

Most of the problems herein are fairly straightforward. More diffi-
cult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-
gineering Equation Solver (EES), while problems labeled with a
computer disk may require the use of a computer. The standard end-
of-chapter problems 8.1 to 8.115 (categorized in the problem list
below) are followed by word problems W8.1 to W8.7, comprehen-
sive problems C8.1 to C8.3, and design projects D8.1 to D8.3.

Problem Distribution

Section Topic Problems

8.1 Introduction and review 8.1–8.7
8.2 Elementary plane-flow solutions 8.8–8.17
8.3 Superposition of plane flows 8.18–8.34
8.4 Plane flow past closed-body shapes 8.35–8.59
8.5 The complex potential 8.60–8.71
8.6 Images 8.72–8.79
8.7 Airfoil theory: Two-dimensional 8.80–8.84
8.7 Airfoil theory: Finite-span wings 8.85–8.90
8.8 Axisymmetric potential flow 8.91–8.103
8.8 Hydrodynamic mass 8.104–8.105
8.9 Numerical methods 8.106–8.115

P8.1 Prove that the streamlines �(r, �) in polar coordinates from
Eqs. (8.10) are orthogonal to the potential lines �(r, �).

P8.2 The steady plane flow in Fig. P8.2 has the polar velocity
components �� � %r and �r � 0. Determine the circula-
tion � around the path shown.

R2

R1

P8.2

P8.3 Using cartesian coordinates, show that each velocity com-
ponent (u, �, w) of a potential flow satisfies Laplace’s equa-
tion separately.

P8.4 Is the function 1/r a legitimate velocity potential in plane
polar coordinates? If so, what is the associated stream func-
tion �(r, �)?

P8.5 Consider the two-dimensional velocity distribution u �
�By, � � Bx, where B is a constant. If this flow possesses a

Summary



stream function, find its form. If it has a velocity potential,
find that also. Compute the local angular velocity of the flow,
if any, and describe what the flow might represent.

P8.6 An incompressible flow has the velocity potential � � 2Bxy,
where B is a constant. Find the stream function of this flow,
sketch a few streamlines, and interpret the pattern.

P8.7 Consider a flow with constant density and viscosity. If the
flow possesses a velocity potential as defined by Eq. (8.1),
show that it exactly satisfies the full Navier-Stokes equa-
tions (4.38). If this is so, why for inviscid theory do we
back away from the full Navier-Stokes equations?

P8.8 For the velocity distribution of Prob. 8.5, evaluate the cir-
culation � around the rectangular closed curve defined by
(x, y) � (1, 1), (3, 1), (3, 2), and (1, 2). Interpret your re-
sult, especially vis-à-vis the velocity potential.

P8.9 Consider the two-dimensional flow u � �Ax, � � Ay,
where A is a constant. Evaluate the circulation � around
the rectangular closed curve defined by (x, y) � (1, 1),
(4, 1), (4, 3), and (1, 3). Interpret your result, especially
vis-à-vis the velocity potential.

P8.10 A mathematical relation sometimes used in fluid mechan-
ics is the theorem of Stokes [1]

�
C

V � ds � �
A
� (� & V) � n dA

where A is any surface and C is the curve enclosing that sur-
face. The vector ds is the differential arc length along C,
and n is the unit outward normal vector to A. How does this
relation simplify for irrotational flow, and how does the re-
sulting line integral relate to velocity potential?

P8.11 A power plant discharges cooling water through the man-
ifold in Fig. P8.11, which is 55 cm in diameter and 8 m
high and is perforated with 25,000 holes 1 cm in diame-
ter. Does this manifold simulate a line source? If so, what
is the equivalent source strength m?

P8.12 Consider the flow due to a vortex of strength K at the ori-
gin. Evaluate the circulation from Eq. (8.15) about the
clockwise path from (r, �) � (a, 0) to (2a, 0) to (2a, 3�/2)
to (a, 3�/2) and back to (a, 0). Interpret the result.

P8.13 A well-known exact solution to the Navier-Stokes equa-
tions (4.38) is the unsteady circulating motion [15]

�� � 	1 � exp�� �
 �r � �z � 0

where K is a constant and  is the kinematic viscosity. Does
this flow have a polar-coordinate stream function and/or ve-
locity potential? Explain. Evaluate the circulation � for this
motion, plot it versus r for a given finite time, and interpret
compared to ordinary line vortex motion.

P8.14 A tornado may be modeled as the circulating flow shown
in Fig. P8.14, with �r � �z � 0 and ��(r) such that

��
� 

r r # R

v� � r � R

Determine whether this flow pattern is irrotational in ei-
ther the inner or outer region. Using the r-momentum
equation (D.5) of App. D, determine the pressure distri-
bution p(r) in the tornado, assuming p � p� as r → �.
Find the location and magnitude of the lowest pressure.

R2

	
r

r2

	
4 t

K
	
2�r
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Inlet

P8.11

P8.15 Evaluate Prob. 8.14 for the particular case of a small-scale
tornado, R � 100 m, ��,max � 65 m/s, with sea-level con-
ditions at r � �. Plot p(r) out to r � 400 m.

P8.16 Consider inviscid stagnation flow, � � Kxy (see Fig.
8.15b) superimposed with a source at the origin of strength
m. Plot the resulting streamlines in the upper half plane,
using the length scale a � (m/K)1/2. Give a physical inter-
pretation of the flow pattern.

P8.17 Examine the flow of Fig. 8.30 as an analytical (not a nu-
merical) problem. Give the appropriate differential equa-
tion and the complete boundary conditions for both the
stream function and the velocity potential. Is a Fourier-
series solution possible?



R

�θ (r)

r

P8.14



P8.18 Plot the streamlines and potential lines of the flow due
to a line source of strength m at (a, 0) plus a source
3m at (�a, 0). What is the flow pattern viewed from
afar?

P8.19 Plot the streamlines and potential lines of the flow due to
a line source of strength 3m at (a, 0) plus a sink �m at
(�a, 0). What is the pattern viewed from afar?

P8.20 Plot the streamlines of the flow due to a line vortex �K at
(0, � a) and a vortex �K at (0,�a). What is the pattern
viewed from afar?

P8.21 Plot the streamlines of the flow due to a line vortex �K at
(�a, 0) and a vortex �2K at (�a, 0). What is the pattern
viewed from afar?

P8.22 Plot the streamlines of a uniform stream V � iU plus a
clockwise line vortex �K located at the origin. Are there
any stagnation points?

P8.23 Find the resultant velocity vector induced at point A
in Fig. P8.23 by the uniform stream, vortex, and line
source.

P8.26 Find the resultant velocity vector induced at point A in Fig.
P8.26 by the uniform stream, line source, line sink, and
vortex.
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P8.24 Line sources of equal strength m � Ua, where U is a ref-
erence velocity, are placed at (x, y) � (0, a) and (0,�a).
Sketch the stream and potential lines in the upper half
plane. Is y � 0 a “wall’’? If so, sketch the pressure coef-
ficient

Cp �

along the wall, where p0 is the pressure at (0, 0). Find the
minimum pressure point and indicate where flow separa-
tion might occur in the boundary layer.

P8.25 Let the vortex/sink flow of Eq. (4.134) simulate a tor-
nado as in Fig. P8.25. Suppose that the circulation
about the tornado is � � 8500 m2/s and that the pres-
sure at r � 40 m is 2200 Pa less than the far-field pres-
sure. Assuming inviscid flow at sea-level density, es-
timate (a) the appropriate sink strength �m, (b) the
pressure at r � 15 m, and (c) the angle � at which the
streamlines cross the circle at r � 40 m (see Fig.
P8.25).

p � p0	
	
1
2

	
U2

U = 8 m /s

K = 25 m2 /s

m = 15 m2 /s

1.5 m

2 m

1 m

A

P8.23

40 m

β

P8.25

P8.27 A counterclockwise line vortex of strength 3K at 
(x, y) � (0, a) is combined with a clockwise vortex K at
(0, �a). Plot the streamline and potential-line pattern,
and find the point of minimum velocity between the two
vortices.

P8.28 Sources of equal strength m are placed at the four sym-
metric positions (x, y) � (a, a), (�a, a), (�a, �a), and 
(a, �a). Sketch the streamline and potential-line patterns.
Do any plane “walls’’ appear?

P8.29 A uniform water stream, U� � 20 m/s and 
 � 998 kg/m3,
combines with a source at the origin to form a half-body.
At (x, y) � (0, 1.2 m), the pressure is 12.5 kPa less than
p�. (a) Is this point outside the body? Estimate (b) the ap-
propriate source strength m and (c) the pressure at the nose
of the body.

P8.30 Suppose that the total discharge from the manifold in Fig.
P8.11 is 450 m3/s and that there is a uniform ocean cur-
rent of 60 cm/s to the right. Sketch the flow pattern from
above, showing the dimensions and the region where the
cooling-water discharge is confined.

P8.31 A Rankine half-body is formed as shown in Fig. P8.31.
For the stream velocity and body dimension shown, com-
pute (a) the source strength m in m2/s, (b) the distance
a, (c) the distance h, and (d) the total velocity at point A.

U = 6 m /s

m = 12 m2 /s

m = – 10 m2 /s

K = 9 m2 /s
20°

2 m

1 m

A

2 m

1 m

P8.26
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P8.32 Sketch the streamlines, especially the body shape, due to
equal line sources � m at (�a, 0) and (�a, 0) plus a uni-
form stream U� � ma.

P8.33 Sketch the streamlines, especially the body shape, due to
equal line sources � m at (0, � a) and (0, �a) plus a uni-
form stream U� � ma.

P8.34 Consider three equally spaced sources of strength m placed
at (x, y) � (0, �a), (0, 0), and (0, �a). Sketch the result-
ing streamlines, noting the position of any stagnation
points. What would the pattern look like from afar?

P8.35 Consider three equal sources m in a triangular configura-
tion: one at (a/2, 0), one at (�a/2, 0), and one at (0, a).
Plot the streamlines for this flow. Are there any stagnation
points? Hint: Try the MATLAB contour command [34].

P8.36 When a line source-sink pair with m � 2 m2/s is combined
with a uniform stream, it forms a Rankine oval whose min-
imum dimension is 40 cm. If a � 15 cm, what are the
stream velocity and the velocity at the shoulder? What is
the maximum dimension?

P8.37 A Rankine oval 2 m long and 1 m high is immersed in a
stream U� � 10 m/s, as in Fig. P8.37. Estimate (a) the ve-
locity at point A and (b) the location of point B where a
particle approaching the stagnation point achieves its max-
imum deceleration.

P8.40 Consider a uniform stream U� plus line sources �m at (x,
y) � (�a, 0) and (�a, 0) and a single line sink �2m at
the origin. Does a closed-body shape appear? If so, plot
its shape for m/(U�a) equal to (a) 1.0 and (b) 5.0.

P8.41 A Kelvin oval is formed by a line-vortex pair with K � 9
m2/s, a � 1 m, and U � 10 m/s. What are the height,
width, and shoulder velocity of this oval?

P8.42 For what value of K/(U�a) does the velocity at the shoul-
der of a Kelvin oval equal 4U�? What is the height h/a of
this oval?

P8.43 Consider water at 20°C flowing at 6 m/s past a 1-m-di-
ameter circular cylinder. What doublet strength � in m3/s
is required to simulate this flow? If the stream pressure is
200 kPa, use inviscid theory to estimate the surface pres-
sure at � equal to (a) 180°, (b) 135°, and (c) 90°.

P8.44 Suppose that circulation is added to the cylinder flow of
Prob. 8.43 sufficient to place the stagnation points at �
equal to 50° and 130°. What is the required vortex strength
K in m2/s? Compute the resulting pressure and surface ve-
locity at (a) the stagnation points and (b) the upper and
lower shoulders. What will the lift per meter of cylinder
width be?

P8.45 What circulation K must be added to the cylinder flow in
Prob. 8.43 to place the stagnation point exactly at the up-
per shoulder? What will the velocity and pressure at the
lower shoulder be then? What value of K causes the lower
shoulder pressure to be 10 kPa?

P8.46 A cylinder is formed by bolting two semicylindrical chan-
nels together on the inside, as shown in Fig. P8.46. There
are 10 bolts per meter of width on each side, and the in-
side pressure is 50 kPa (gage). Using potential theory for
the outside pressure, compute the tension force in each bolt
if the fluid outside is sea-level air.
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(0, 3 m)

7 m /s (4m , 0)

A

x

y h

+ m
Source

a

P8.31

P8.38 A uniform stream U in the x direction combines with a
source m at (a, 0) and a sink �m at (�a, 0). Plot the re-
sulting streamlines and note any stagnation points.

P8.39 Sketch the streamlines of a uniform stream U� past a line
source-sink pair aligned vertically with the source at �a
and the sink at �a on the y-axis. Does a closed-body shape
form?

A

B?

2 m

1 m
10 m/s

P8.37
P8.47 A circular cylinder is fitted with two surface-mounted pres-

sure sensors, to measure pa at � � 180° and pb at � � 105°.
The intention is to use the cylinder as a stream velocime-
ter. Using inviscid theory, derive a formula for estimating
U� in terms of pa, pb, 
, and the cylinder radius a.

*P8.48 Wind at U� and p� flows past a Quonset hut which is a
half-cylinder of radius a and length L (Fig. P8.48). The in-
ternal pressure is pi. Using inviscid theory, derive an ex-

U = 25 m /s

D = 2 m

p =
50 k Pa
(gage)

P8.46
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pression for the upward force on the hut due to the dif-
ference between pi and ps.

ft2. As sketched in Fig. P8.54, it had two rotors 50 ft high
and 9 ft in diameter rotating at 750 r/min, which is far out-
side the range of Fig. 8.11. The measured lift and drag co-
efficients for each rotor were about 10 and 4, respectively.
If the ship is moored and subjected to a crosswind of 25
ft/s, as in Fig. P8.54, what will the wind force parallel and
normal to the ship centerline be? Estimate the power re-
quired to drive the rotors.
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P8.49 In strong winds the force in Prob. 8.48 can be quite large.
Suppose that a hole is introduced in the hut roof at point
A to make pi equal to the surface pressure there. At what
angle � should hole A be placed to make the net wind force
zero?

P8.50 It is desired to simulate flow past a two-dimensional ridge
or bump by using a streamline which passes above the flow
over a cylinder, as in Fig. P8.50. The bump is to be a/2
high, where a is the cylinder radius. What is the elevation
h of this streamline? What is Umax on the bump compared
with stream velocity U?

U∞ 
, p∞ A

a
θ

pi

ps 
(  )θ

P8.48

U a/2
Umax? Bump

a

U

h?

P8.50

P8.55 Assume that the Flettner rotorship of Fig. P8.54 has a wa-
ter resistance coefficient of 0.005. How fast will the ship
sail in seawater at 20°C in a 20-ft/s wind if the keel aligns
itself with the resultant force on the rotors? Hint: This is
a problem in relative velocities.

P8.56 The measured drag coefficient of a cylinder in crossflow,
based on frontal area DL, is approximately 1.0 for the lam-
inar-boundary-layer range (see Fig. 7.16a). Boundary-
layer separation occurs near the shoulder (see Fig. 7.13a).
This suggests an analytical model: the standard inviscid-
flow solution on the front of the cylinder and constant pres-
sure (equal to the shoulder value) on the rear. Use this
model to predict the drag coefficient and comment on the
results with reference to Fig. 7.13c.

P8.57 In principle, it is possible to use rotating cylinders as air-
craft wings. Consider a cylinder 30 cm in diameter, rotat-
ing at 2400 r/min. It is to lift a 55-kN airplane cruising at
100 m/s. What should the cylinder length be? How much
power is required to maintain this speed? Neglect end ef-
fects on the rotating wing.

P8.58 Plot the streamlines due to the combined flow of a line
sink �m at the origin plus line sources �m at (a, 0) and
(4a, 0). Hint: A cylinder of radius 2a will appear.

P8.59 By analogy with Prob. 8.58 plot the streamlines due to
counterclockwise line vortices � K at (0, 0) and (4a, 0)
plus a clockwise vortex �K at (a, 0). Again a cylinder ap-
pears.

P8.51 Modify Prob. 8.50 as follows. Let the bump be such that
Umax � 1.5U. Find (a) the upstream elevation h and (b)
the height of the bump.

P8.52 The Flettner rotor sailboat in Fig. E8.2 has a water 
drag coefficient of 0.006 based on a wetted area of 45
ft2. If the rotor spins at 220 r/min, find the maximum
boat velocity that can be achieved in a 15-mi/h wind.
What is the optimum angle between the boat and the
wind?

P8.53 Modify Prob. 8.52 as follows. For the same sailboat data,
find the wind velocity, in mi/h, which will drive the boat
at an optimum speed of 10 kn parallel to its keel.

P8.54 The original Flettner rotor ship was approximately 100 ft
long, displaced 800 tons, and had a wetted area of 3500

U∞ 

ω ω

P8.54



P8.60 One of the corner-flow patterns of Fig. 8.15 is given by
the cartesian stream function � � A(3yx2 � y3). Which
one? Can the correspondence be proved from Eq. (8.49)?

P8.61 Plot the streamlines of Eq. (8.49) in the upper right quad-
rant for n � 4. How does the velocity increase with x out-
ward along the x-axis from the origin? For what corner an-
gle and value of n would this increase be linear in x? For
what corner angle and n would the increase be as x5?

P8.62 Combine stagnation flow, Fig. 8.14b, with a source at the
origin:

f(z) � Az2 � m ln z

Plot the streamlines for m � AL2, where L is a length scale.
Interpret.

P8.63 The superposition in Prob. 8.62 leads to stagnation flow
near a curved bump, in contrast to the flat wall of Fig.
8.14b. Determine the maximum height H of the bump as
a function of the constants A and m.

P8.64 Determine qualitatively from boundary-layer theory (Chap.
7) whether any of the three stagnation-flow patterns of Fig.
8.15 can suffer flow separation along the walls.

P8.65 Potential flow past a wedge of half-angle � leads to an 
important application of laminar-boundary-layer theory
called the Falkner-Skan flows [15, pp. 242–247]. Let x de-
note distance along the wedge wall, as in Fig. P8.65, and
let � � 10°. Use Eq. (8.49) to find the variation of surface
velocity U(x) along the wall. Is the pressure gradient ad-
verse or favorable?

P8.69. What hyphenated word (originally French) might
describe such a flow pattern?
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x

θ
θ

U (x)

P8.65

P8.70 Show that the complex potential f � U�{z � 	
1
4

	a coth
[�(z/a)]} represents flow past an oval shape placed mid-
way between two parallel walls y � �	

1
2

	a. What is a prac-
tical application?

P8.71 Figure P8.71 shows the streamlines and potential lines of
flow over a thin-plate weir as computed by the complex po-
tential method. Compare qualitatively with Fig. 10.16a.
State the proper boundary conditions at all boundaries. The
velocity potential has equally spaced values. Why do the
flow-net “squares’’ become smaller in the overflow jet?

y

x

y = a (    = 0)ψ

Plot the streamlines
inside this region

P8.69

P8.71

Weir

0

a
a

y

x

+ m

P8.72

*P8.66 The inviscid velocity along the wedge in Prob. 8.65 has
the analytic form U(x) � Cxm, where m � n � 1 and n is
the exponent in Eq. (8.49). Show that, for any C and n,
computation of the boundary layer by Thwaites’ method,
Eqs. (7.53) and (7.54), leads to a unique value of the
Thwaites parameter �. Thus wedge flows are called simi-
lar [15, p. 244].

P8.67 Investigate the complex potential function f(z) �
U�(z � a2/z) and interpret the flow pattern.

P8.68 Investigate the complex potential function f(z) � U�z �
m ln [(z � a)/(z�a)] and interpret the flow pattern.

P8.69 Investigate the complex potential f(z) � A cosh [�(z/a)],
and plot the streamlines inside the region shown in Fig.

P8.72 Use the method of images to construct the flow pattern for
a source � m near two walls, as shown in Fig. P8.72.
Sketch the velocity distribution along the lower wall (y �
0). Is there any danger of flow separation along this wall?

P8.73 Set up an image system to compute the flow of a source at
unequal distances from two walls, as in Fig. P8.73. Find the
point of maximum velocity on the y-axis.



P8.74 A positive line vortex K is trapped in a corner, as in Fig.
P8.74. Compute the total induced velocity vector at point
B, (x, y) � (2a, a), and compare with the induced veloc-
ity when no walls are present. P8.77 Discuss how the flow pattern of Prob. 8.58 might be in-

terpreted to be an image-system construction for circular
walls. Why are there two images instead of one?

*P8.78 Indicate the system of images needed to construct the flow
of a uniform stream past a Rankine half-body constrained
between two parallel walls, as in Fig. P8.78. For the par-
ticular dimensions shown in this figure, estimate the posi-
tion of the nose of the resulting half-body.
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P8.75 The flow past a cylinder very near a wall might be simu-
lated by doublet images, as in Fig. P8.75. Explain why the
result is not very successful and the cylinder shape be-
comes badly distorted.

P8.73

a

x

y

+ m

2 a

P8.76 Use the method of images to approximate the flow pattern
past a cylinder a distance 4a from a single wall, as in Fig.
P8.76. To illustrate the effect of the wall, compute the ve-
locities at corresponding points A, B and C, D, comparing
with a cylinder flow in an infinite expanse of fluid.

B

2a

a

0
a 2a

x

y

K

V?

P8.74

P8.75

P8.79 Explain the system of images needed to simulate the flow
of a line source placed unsymmetrically between two par-
allel walls as in Fig. P8.79. Compute the velocity on the
lower wall at x � a. How many images are needed to es-
timate this velocity within 1 percent?

2a

D

U∞

4a

4a

B

A

C

P8.76

2a

a

y

a

x

U∞

P8.78

+ m 2a

a

x

y

0

P8.79



*P8.80 The beautiful expression for lift of a two-dimensional air-
foil, Eq. (8.69), arose from applying the Joukowski trans-
formation, ' � z � a2/z, where z �x � iy and ' � � � i�.
The constant a is a length scale. The theory transforms a
certain circle in the z plane into an airfoil in the ' plane.
Taking a � 1 unit for convenience, show that (a) a circle
with center at the origin and radius � 1 will become an
ellipse in the ' plane and (b) a circle with center at x �
�( �� 1, y � 0, and radius (1 � () will become an air-
foil shape in the ' plane. Hint: The Excel spreadsheet is
excellent for solving this problem.

P8.81 A two-dimensional airfoil has 2 percent camber and 10 per-
cent thickness. If C � 1.75 m, estimate its lift per meter
when immersed in 20°C water at � � 6° and U � 18 m/s.

P8.82 The ultralight plane Gossamer Condor in 1977 was the first
to complete the Kremer Prize figure-eight course under hu-
man power. Its wingspan was 29 m, with Cav � 2.3 m and
a total mass of 95 kg. The drag coefficient was approximately
0.05. The pilot was able to deliver 	

1
4

	 hp to propel the plane.
Assuming two-dimensional flow at sea level, estimate (a) the
cruise speed attained, (b) the lift coefficient, and (c) the horse-
power required to achieve a speed of 15 kn.

P8.83 Two-dimensional lift-drag data for the NACA 2412 airfoil
with 2 percent camber (from Ref. 12) may be curve-fitted
accurately as follows:

CL � 0.178 � 0.109� � 0.00109�2

CD � 0.0089 � 1.97 E-4 � � 8.45 E-5 �2

� 1.35 E-5 �3 � 9.92 E-7 �4

with � in degrees in the range �4° � � � � 10°. Com-
pare (a) the lift-curve slope and (b) the angle of zero lift
with theory, Eq. (8.69). (c) Prepare a polar lift-drag plot
and compare with Fig. 7.26.

P8.84 Reference 12 contains inviscid-theory calculations for the
upper and lower surface velocity distributions V(x) over an
airfoil, where x is the chordwise coordinate. A typical re-
sult for small angle of attack is as follows:

x/c V/U�(upper) V/U�(lower)

0.0 0.00 0.00
0.025 0.97 0.82
0.05 1.23 0.98
0.1 1.28 1.05
0.2 1.29 1.13
0.3 1.29 1.16
0.4 1.24 1.16
0.6 1.14 1.08
0.8 0.99 0.95
1.0 0.82 0.82

Use these data, plus Bernoulli’s equation, to estimate (a)
the lift coefficient and (b) the angle of attack if the airfoil
is symmetric.

P8.85 A wing of 2 percent camber, 5-in chord, and 30-in span is
tested at a certain angle of attack in a wind tunnel with
sea-level standard air at 200 ft/s and is found to have lift
of 30 lbf and drag of 1.5 lbf. Estimate from wing theory
(a) the angle of attack, (b) the minimum drag of the wing
and the angle of attack at which it occurs, and (c) the max-
imum lift-to-drag ratio.

P8.86 An airplane has a mass of 20,000 kg and flies at 175 m/s
at 5000-m standard altitude. Its rectangular wing has a 3-
m chord and a symmetric airfoil at 2.5° angle of attack.
Estimate (a) the wing span, (b) the aspect ratio, and (c)
the induced drag.

P8.87 A freshwater boat of mass 400 kg is supported by a rec-
tangular hydrofoil of aspect ratio 8, 2 percent camber, and
12 percent thickness. If the boat travels at 8 m/s and � �
3.5°, estimate (a) the chord length, (b) the power required
if CD�

� 0.01, and (c) the top speed if the boat is refitted
with an engine which delivers 50 hp to the water.

P8.88 The Boeing 727 airplane has a gross weight of 125,000
lbf, a wing area of 1200 ft2, and an aspect ratio of 6. It is
fitted with two turbofan engines and cruises at 532 mi/h
at 30,000-ft standard altitude. Assume for this problem that
its airfoil is the NACA 2412 section described in Prob.
8.83. If we neglect all drag except the wing, what thrust
is required from each engine for these conditions?

P8.89 The Beechcraft T-34C aircraft has a gross weight of 5500
lbf and a wing area of 60 ft2 and flies at 322 mi/h at 10,000-
ft standard altitude. It is driven by a propeller which de-
livers 300 hp to the air. Assume for this problem that its
airfoil is the NACA 2412 section described in Prob. 8.83,
and neglect all drag except the wing. What is the appro-
priate aspect ratio for the wing?

P8.90 When moving at 15 m/s in seawater at its maximum lift-
to-drag ratio of 18:1, a symmetric hydrofoil, of plan area
3 m2, develops a lift of 120 kN. Estimate from wing the-
ory (a) the aspect ratio and (b) the angle of attack in de-
grees.

P8.91 If �(r, �) in axisymmetric flow is defined by Eq. (8.85)
and the coordinates are given in Fig. 8.24, determine what
partial differential equation is satisfied by �.

P8.92 A point source with volume flow Q � 30 m3/s is im-
mersed in a uniform stream of speed 4 m/s. A Rankine
half-body of revolution results. Compute (a) the distance
from source to the stagnation point and (b) the two points
(r, �) on the body surface where the local velocity equals
4.5 m/s.

P8.93 The Rankine half-body of revolution (Fig. 8.26) could
simulate the shape of a pitot-static tube (Fig. 6.30). Ac-
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cording to inviscid theory, how far downstream from the
nose should the static pressure holes be placed so that the
local velocity is within �0.5 percent of U�? Compare
your answer with the recommendation x � 8D in Fig.
6.30.

P8.94 Determine whether the Stokes streamlines from Eq. (8.86)
are everywhere orthogonal to the Stokes potential lines
from Eq. (8.87), as is the case for cartesian and plane po-
lar coordinates.

P8.95 Show that the-axisymmetric potential flow formed by su-
perposition of a point source �m at (x, y) � (�a, 0), a
point sink �m at (�a, 0), and a stream U� in the x di-
rection forms a Rankine body of revolution as in Fig.
P8.95. Find analytic expressions for determining the length
2L and maximum diameter 2R of the body in terms of m,
U�, and a.

P8.98 We have studied the point source (sink) and the line source
(sink) of infinite depth into the paper. Does it make any
sense to define a finite-length line sink (source) as in Fig.
P8.98? If so, how would you establish the mathematical
properties of such a finite line sink? When combined with
a uniform stream and a point source of equivalent strength
as in Fig. P8.98, should a closed-body shape be formed?
Make a guess and sketch some of these possible shapes for
various values of the dimensionless parameter m/(U�L2).
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y

x
aa

+ m – m
r

θU∞

P8.95

*P8.99 Consider air flowing past a hemisphere resting on a flat
surface, as in Fig. P8.99. If the internal pressure is pi, find
an expression for the pressure force on the hemisphere. By
analogy with Prob. 8.49, at what point A on the hemisphere
should a hole be cut so that the pressure force will be zero
according to inviscid theory?

U

 p
a
 = 40 kPa

Water at 20˚ C

A 80 cm

Rankine ovoid

P8.97

P8.96 Suppose that a sphere with a single stagnation hole is to
be used as a velocimeter. The pressure at this hole is used
to compute the stream velocity, but there are errors if the
hole is not perfectly aligned with the oncoming stream.
Using inviscid incompressible theory, plot the percent er-
ror in stream velocity estimate as a function of misalign-
ment angle �. At what angle is the error 10 percent? 

P8.97 The Rankine body of revolution in Fig. P8.97 is 60 cm
long and 30 cm in diameter. When it is immersed in the
low-pressure water tunnel as shown, cavitation may ap-
pear at point A. Compute the stream velocity U, ne-
glecting surface wave formation, for which cavitation oc-
curs.

P8.98
U∞

+ m

– m

y

x
0

Point
source

Line sink of
total strength

L

P8.99

U∞ 
, p∞

pi

2 a

P8.100 A 1-m-diameter sphere is being towed at speed V in fresh
water at 20°C as shown in Fig. P8.100. Assuming invis-
cid theory with an undistorted free surface, estimate the
speed V in m/s at which cavitation will first appear on the
sphere surface. Where will cavitation appear? For this con-
dition, what will be the pressure at point A on the sphere
which is 45° up from the direction of travel?

pa = 101.35 k Pa

D = 1 m

A

V

3 m

P8.100
P8.101 Normally by its very nature inviscid theory is incapable of

predicting body drag, but by analogy with Fig. 8.16c we
can analyze flow approaching a hemisphere, as in Fig.



P8.101. Assume that the flow on the front follows invis-
cid sphere theory, Eq. (8.96), and the pressure in the rear
equals the shoulder pressure. Compute the drag coefficient
and compare with experiment (Table 7.3). What are the
defects and limitations of this analysis?

imum thickness. Use these results to derive a formula from
the time history U(t) of the cylinder if it is accelerated from
rest in a still fluid by the sudden application of a constant
force F.

P8.106 Laplace’s equation in plane polar coordinates, Eq. (8.11),
is complicated by the variable radius. Consider the finite-
difference mesh in Fig. P8.106, with nodes (i, j) equally
spaced �� and �r apart. Derive a finite-difference model
for Eq. (8.11) similar to the cartesian expression (8.109).
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P8.102 A golf ball weighs 0.102 lbf and has a diameter of 1.7 in.
A professional golfer strikes the ball at an initial velocity
of 250 ft/s, an upward angle of 20°, and a backspin (front
of the ball rotating upward). Assume that the lift coeffi-
cient on the ball (based on frontal area) follows Fig.
P7.108. If the ground is level and drag is neglected, make
a simple analysis to predict the impact point (a) without
spin and (b) with backspin of 7500 r/min.

P8.103 Modify Prob. 8.102 as follows. Golf balls are dimpled, not
smooth, and have higher lift and lower drag (CL � 0.2 and
CD � 0.3 for typical backspin). Using these values, make
a computer analysis of the ball trajectory for the initial con-
ditions of Prob. 8.102. If time permits, investigate the ef-
fect of initial angle for the range 10° � �0 � 50°.

P8.104 Consider a cylinder of radius a moving at speed U�

through a still fluid, as in Fig. P8.104. Plot the streamlines
relative to the cylinder by modifying Eq. (8.32) to give the
relative flow with K � 0. Integrate to find the total rela-
tive kinetic energy, and verify the hydrodynamic mass of
a cylinder from Eq. (8.104).

*P8.105 In Table 7.2 the drag coefficient of a 4:1 elliptical cylin-
der in laminar-boundary-layer flow is 0.35. According to
Patton [17], the hydrodynamic mass of this cylinder is
�
hb/4, where b is width into the paper and h is the max-

U∞ 
, p∞

Hemisphere

Rear pressure
assumed equal

to shoulder
pressure

a

P8.101

P8.107 Set up the numerical problem of Fig. 8.30 for an expan-
sion of 30°. A new grid system and a nonsquare mesh may
be needed. Give the proper nodal equation and boundary
conditions. If possible, program this 30° expansion and
solve on a digital computer.

P8.108 Consider two-dimensional potential flow into a step con-
traction as in Fig. P8.108. The inlet velocity U1 � 7 m/s,
and the outlet velocity U2 is uniform. The nodes (i, j) are
labeled in the figure. Set up the complete finite-difference
algebraic relations for all nodes. Solve, if possible, on a
digital computer and plot the streamlines in the flow.

Still
fluid

U∞
a

P8.104

∆ r

∆ r

∆θ ∆θ

i – 1, j i + 1, j

i, j + 1

i, j – 1

rj + 1

rj – 1

νθ

i, j

νr

rj 
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P8.108

i = 1
 j = 1

2

3

4

5

6

7

8

U1

U2

2 3 4 5 6 7 8 9 10



P8.109 Consider inviscid flow through a two-dimensional 90°
bend with a contraction, as in Fig. P8.109. Assume uni-
form flow at the entrance and exit. Make a finite-differ-
ence computer analysis for small grid size (at least 150
nodes), determine the dimensionless pressure distribution
along the walls, and sketch the streamlines. (You may use
either square or rectangular grids.)

P8.112 In his CFD textbook, Patankar [5] replaces the left-hand
sides of Eq. (8.119b and c) with the following two ex-
pressions, respectively:

	∂
∂
x
	(u2) � 	∂

∂
y
	(�u) and 	∂

∂
x
	(u�) � 	∂

∂
y
	(�2)

Are these equivalent expressions, or are they merely sim-
plified approximations? Either way, why might these forms
be better for finite-difference purposes?

P8.113 Repeat Example 8.7 using the implicit method of Eq.
(8.118). Take �t � 0.2 s and �y � 0.01 m, which ensures
that an explicit model would diverge. Compare your ac-
curacy with Example 8.7.

P8.114 If your institution has an online potential-flow boundary-
element computer code, consider flow past a symmetric
airfoil, as in Fig. P8.114. The basic shape of an NACA
symmetric airfoil is defined by the function [12]

� 1.4845'1/2�0.63' � 1.758'2

� 1.4215'3 � 0.5075'4

where ' � x/C and the maximum thickness tmax occurs at
' � 0.3. Use this shape as part of the lower boundary for
zero angle of attack. Let the thickness be fairly large, say,
tmax � 0.12, 0.15, or 0.18. Choose a generous number of
nodes ($60), and calculate and plot the velocity distribu-
tion V/U� along the airfoil surface. Compare with the the-
oretical results in Ref. 12 for NACA 0012, 0015, or 0018
airfoils. If time permits, investigate the effect of the bound-
ary lengths L1, L2, and L3, which can initially be set equal
to the chord length C.

2y
	
tmax
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P8.110 For fully developed laminar incompressible flow through
a straight noncircular duct, as in Sec. 6.6, the Navier-
Stokes equations (4.38) reduce to

	
∂
∂

2

y
u
2	 � 	

∂
∂

2

z
u
2	 � � const � 0 

where (y, z) is the plane of the duct cross section and x is
along the duct-axis. Gravity is neglected. Using a non-
square rectangular grid (�x, �y), develop a finite-differ-
ence model for this equation, and indicate how it may be
applied to solve for flow in a rectangular duct of side
lengths a and b.

P8.111 Solve Prob. 8.110 numerically for a rectangular duct of
side length b by 2b, using at least 100 nodal points. Eval-
uate the volume flow rate and the friction factor, and com-
pare with the results in Table 6.4:

Q � 0.1143 �� � f ReDh
� 62.19 

where Dh � 4A/P � 4b/3 for this case. Comment on the
possible truncation errors of your model.

dp
	
dx

b4

	
!

dp
	
dx

1
	
!

V1 = 10 m/s

V2

5 m

6 m

10 m

10 m

15 m

16 m

P8.109

y
U∞

L1 x = 0 x = C L2

L3

Airfoil half-contour

x

P8.114

P8.115 Use the explicit method of Eq. (8.115) to solve Prob. 4.85
numerically for SAE 30 oil at 20°C with U0 � 1 m/s and
 � M rad/s, where M is the number of letters in your sur-
name. (This author will solve the problem for M � 5.)
When steady oscillation is reached, plot the oil velocity
versus time at y � 2 cm.



Word Problems

W8.1 What simplifications have been made, in the potential-flow
theory of this chapter, which result in the elimination of the
Reynolds number, Froude number, and Mach number as im-
portant parameters?

W8.2 In this chapter we superimpose many basic solutions, a con-
cept associated with linear equations. Yet Bernoulli’s equa-
tion (8.3) is nonlinear, being proportional to the square of
the velocity. How, then, do we justify the use of superposi-
tion in inviscid-flow analysis?

W8.3 Give a physical explanation of circulation � as it relates to
the lift force on an immersed body. If the line integral de-
fined by Eq. (8.15) is zero, it means that the integrand is a
perfect differential—but of what variable?

W8.4 Give a simple proof of Eq. (8.42), namely, that both the real
and imaginary parts of a function f(z) are laplacian if z �
x � iy. What is the secret of this remarkable behavior?

W8.5 Figure 8.14 contains five body corners. Without carrying out
any calculations, explain physically what the value of the
inviscid fluid velocity must be at each of these five corners.
Is any flow separation expected?

W8.6 Explain the Kutta condition physically. Why is it necessary?
W8.7 We have briefly outlined finite-difference and boundary-

element methods for potential flow but have neglected the
finite-element technique. Do some reading and write a brief
essay on the use of the finite-element method for potential-
flow problems.
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Comprehensive Problems

C8.1 Did you know that you can solve simple fluid mechanics
problems with Microsoft Excel? The successive relaxation
technique for solving the Laplace equation for potential-
flow problems is easily set up on a spreadsheet, since the
stream function at each interior cell is simply the average
of its four neighbors. As an example, solve for the irrota-
tional potential flow through a contraction, as given in Fig.
C8.1. Note: To avoid the “circular reference” error, you must
turn on the iteration option. Use the help index for more in-
formation. For full credit, attach a printout of your spread-
sheet, with stream function converged and the value of the
stream function at each node displayed to four digits of ac-
curacy.

cm and (b) the instantaneous boundary-layer thickness
(where u � 0.99 u�). Hint: There is a nonzero pressure
gradient in the outer (nearly shear-free) stream, n � N,
which must be included in Eq. (8.114) and your explicit
model.

C8.3 Consider plane inviscid flow through a symmetric diffuser,
as in Fig. C8.3. Only the upper half is shown. The flow is to
expand from inlet half-width h to exit half-width 2h, as
shown. The expansion angle � is 18.5° (L � 3h). Set up a
nonsquare potential-flow mesh for this problem, and calcu-
late and plot (a) the velocity distribution and (b) the pres-
sure coefficient along the centerline. Assume uniform inlet
and exit flows. 

Inlet

Outlet

� � 5
� � 3.333

� � 1.667

� � 4

� � 3

� � 2

� � 1

� � 0

Wall, � � 0

Wall, � � 0

Wall, � � 5

C8.1

2h

2h L

V
h

�




C8.3

C8.2 Use an explicit method, similar to but not identical to Eq.
(8.115), to solve the case of SAE 30 oil at 20°C starting
from rest near a fixed wall. Far from the wall, the oil ac-
celerates linearly, that is, u� � uN � at, where a � 9
m/s2. At t � 1 s, determine (a) the oil velocity at y � 1

C8.4 Use potential flow to approximate the flow of air being
sucked up into a vacuum cleaner through a two-dimensional
slit attachment, as in Fig. C8.4. In the x-y plane through the
centerline of the attachment, model the flow as a line sink of
strength (�m), with its axis in the z-direction at height a
above the floor. (a) Sketch the streamlines and locate any



stagnation points in the flow. (b) Find the magnitude of ve-
locity V(x) along the floor in terms of the parameters a and
m. (c) Let the pressure far away be p�, where velocity is
zero. Define a velocity scale U � m/a. Determine the varia-
tion of dimensionless pressure coefficient, Cp � (p �
p�)/(
U2/2), along the floor. (d) The vacuum cleaner is most
effective where Cp is a minimum, that is, where velocity is
maximum. Find the locations of minimum pressure coeffi-
cient along the x-axis. (e) At which points along the x-axis
do you expect the vacuum cleaner to work most effectively?
Is it best at x � 0 directly beneath the slit, or at some other
x location along the floor? Conduct a scientific experiment
at home with a vacuum cleaner and some small pieces of
dust or dirt to test your prediction. Report your results and
discuss the agreement with prediction. Give reasons for any
disagreements.
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y

x

C8.4

Design Projects

D8.1 In 1927, Theodore von Kármán developed a scheme to use a
uniform stream, plus a row of sources and sinks, to generate an
arbitrary closed-body shape. A schematic of the idea is sketched
in Fig. D8.1. The body is symmetric and at zero angle of at-
tack. A total of N sources and sinks are distributed along the
axis within the body, with strengths mi at positions xi, for i �
1 to N. The object is to find the correct distribution of strengths
which approximates a given body shape y(x) at a finite num-
ber of surface locations and then to compute the approximate
surface velocity and pressure. The technique should work for
either two-dimensional bodies (distributed line sources) or bod-
ies of revolution (distributed point sources).

For our body shape let us select the NACA 0018 airfoil,
given by the formula in Prob. 8.114 with tmax � 0.18. De-
velop the ideas stated above into N simultaneous algebraic
equations which can be used to solve for the N unknown line
source/sink strengths. Then program your equations for a
computer, with N $ 20; solve for mi; compute the surface
velocities; and compare with the theoretical velocities for this
shape in Ref. 12. Your goal should be to achieve accuracy
within �1 percent of the classical results. If necessary, you
should adjust N and the locations of the sources.

D8.2 Modify Prob. D8.1 to solve for the point-source distribution
which approximates an “0018’’ body-of-revolution shape.
Since no theoretical results are published, simply make sure
that your results converge to �1 percent.

D8.3 Consider water at 20°C flowing at 12 m/s in a water chan-
nel. A Rankine oval cylinder, 40 cm long, is to be placed
parallel to the flow, where the water static pressure is 120
kPa. The oval’s thickness is a design parameter. Prepare a
plot of the minimum pressure on the oval’s surface as a func-
tion of body thickness. Especially note the thicknesses where
(a) the local pressure is 50 kPa and (b) cavitation first oc-
curs on the surface.

C8.5 Consider a three-dimensional, incompressible, irrotational flow.
Use the following two methods to prove that the viscous term
in the Navier-Stokes equation is identically zero: (a) using vec-
tor notation; and (b) expanding out the scalar terms and substi-
tuting terms from the definition of irrotationality.
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