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INTRODUCTION TO THE 1966 EDITION

Many mathematicians will welcome the new edition of
G. D. Birkhoff’s book on Dynamical Systems. It represents
essentially a continuation of Poincaré’s profound and extensive
work on Celestial Mechanics. Altogether Birkhoff was strongly
influenced by Poincaré and devoted a major part of his mathe-
matical work to subjects arising from Poincaré’s tradition. The
present book contains Birkhoff’s views and ideas of his earlier
period of life—it appeared when Birkhoff was 43.

To the modern reader the style of this book may appear less
formal and rigorous than it is now customary. But just the
informal and lively manner of writing has been inspiring to
many mathematicians. The effect of this inspiration is visible in a
number of later papers. For example, Morse’s theory on geodes-
ics on a closed manifold originated directly in Birkhoff’s ideas
in dynamical systems. The recent work by Anosov on U-Sys-
tems answers the question of ergodicity and density of periodic
solutions for a wide class of differential equations—a problem
which in Birkhoff’s book was studied for a single model system.
These and other examples (given below) justify the hope that
the reprinting of this book again will stimulate further progress.

Of course, after nearly 40 years a number of statements are
outdated. For this reason I have selected a list of references
to pertinent literature after 1927. Naturally, the list cannot
be complete and further references can be found in the books
and survey articles quoted. In the Addendum section at the
back of this -book I added some general remarks to various
chapters. More specific comments are supplied as footnotes at
the end of the book. References to these footnotes are given as

small numbers in the margin of the text.*
JURGEN MOSER

*] am indebted to Dr. R. Sacker for his assistance.
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A PREFACE TO THE 1966 EDITION

I met George Birkhoff in 1914, the year after he published
his “Proof of Poincaré’s Geometric Theorem” [1]. In a paper
[2]in 1912 Poincaré had enunciated a theorem of great impor-
tance for the restricted problem of three bodies, but had suc-
ceeded in treating only a variety of special cases after long
efforts. Poincaré had also referred to this theorem in lectures
in Gottingen. Birkhoffff formulated this theorem in [1] as fol-
lows.

“Let us suppose that a continuous one-to-one transformation
T takes the ring R formed by concentric circles C, and C, of
radii a and b respectively (a > b > 0) into itself in such a way
as to advance the points of C, in a positive sense, and the
points of C, in a negative sense and at the same time preserve
areas. Then there are at least two invariant points.”

Birkhoff’s proof of this theorem in 1913 was one of the most
exciting mathematical events of the era and was widely ac-
claimed. ‘

In 1912 in [ 3] Birkhoff outlined the conjecture of Poincaré
that the ““general” motion in dynamics in phase space was of
the so-called ‘““discontinuous type”. It was in this paper that
Birkhoff introduced his novel and beautiful conceptions of
“minimal’’ or equivalently ‘“recurrent” sets of motions. A min-
imal non-periodic set of motions is of ‘“‘discontinuous’” type if
in phase space it possesses no subsets which are continua ex-
cept arcs of motions. Birkhoff asked me in 1915 to examine the
conjecture of Poincaré. My answer was by way of a “symbolic
dynamics”. A non-periodic recurrent symbol introduced at that
time was discovered independently by a Russian in 1934 and
used by Novikov in his disproof of the Frobenius-Burnside con-
jecture in group theory.

The problem of the generality of ‘“non-degenerate” periodic
orbits, that is orbits whose equations of variation admit no non-
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PREFACE TO THE 1966 EDITION v

trivial periodic solutions was often emphasized by Birkhoff. It
is now of major interest to differential topologists of whom
Birkhoff and Poincaré were among the first, although not so
called. The work of Moser, Arnol’d and others on stability
belongs to a related field, one close to the center of Birkhoff’s
interest.

The above merely samples the many aspects of dynamics in
which Birkhoff introduced new ideas, new theorems and new
questions. One of Birkhoff’s theorems which has aroused the
greatest interest was his so-called “Ergodic Theorem’ with its
subsequent variations, interpretations and consequences in
measure theory and probability.

Birkhoff once remarked that “it is fortunate that the world
of mathematics is as large as it is”’. Only by bringing to bear
the genius and imagination of many lands and intellectual ori-
gins can one be sure of adequate appreciation of new mathe-
matical ideas and significant responses.

History has responded to these pages on Dynamical Systems
in an unmistakable way. For this we are more than content.

REFERENCES
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PREFACE TO THE 1927 EDITION

The Colloquium Lectures which I had the privilege of
delivering at the University of Chicago before the American
Mathematical Society, September 5-8, 1920, contained a large
part of the material presented in the following pages. The
delay in publication has been due to several causes, one of
which has been my desire to wait until some of my own ideas
had developed further. I have taken advantage of a well-
established tradition of our Colloquia by giving particular
emphasis to my own researches on dynamical systems. It is my
earnest hope that the lectures may serve to stimulate others to
investigate the outstanding problems in this most fascinating
field.

It is only necessary to recall the work of Galileo, Newton,
" Laplace, Clausius, Rayleigh in the physical applications of
dynamics, of Lagrange, W. R. Hamilton, Jacobi in its formal
development, and of Hill and Poincaré in the qualitative treat-
ment of dynamical questions, in order to realize the remark-
able significance of dynamics in the past for scientific thought.
At a time when no physical theory can properly be termed
fundamental—the known theories appear to be merely more or
less fundamental in certain directions—it may be asserted with
confidence that ordinary differential equations in the real
domain, and particularly equations of dynamical origin, will
continue to hold a position of the highest importance.

In looking back over my own dynamical work, of which a
certain period is finished with the publication of this book,
I cannot but express my feeling of deep admiration and
gratitude to Hadamard, Levi-Civita, Sundman and Whittaker,
to whom many important recent advances in theoretical dy-
namics are due, and in whose work I have found especial
inspiration. It is with much regret that I have been unable to
give adequate space to their achievements.

Vi



PREFACE TO THE 1927 EDITION vii

Professor Philip Franklin cooperated with me in a first re-

writing of part of my notes on these lectures. I owe him cordial
thanks for his help.

November 18, 1927. GEORGE D. BIRKHOFF.
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