CHAPTER IX

THE PROBLEM OF THREE BODIES

1. Introductory remarks. The problem of three or
more bodies is one of the most celebrated in mathematics,
and justly so. Nevertheless until recently the interest in it
was directed toward the formal side, and in particular toward
the formal solution by means of series.

It was Poincaré* who first obtained brilliant qualitative
results, especially with reference to the very special limiting
‘restricted problem of three bodies’ treated first by Hill.
As far as the general problem is concerned, the main achieve-
ments of Poincaré were the following: (1) he established the
existence of various types. of periodic motions by the method
of analytic continuation; (2) he proved that, by the very
structure of the differential equations, complete trigonometric
series would be available; and (3) he pointed out the asymp-
_totic validity of these series. All of these results hold for
any Hamiltonian system as well as for the problem of three
bodies. Unfortunately an accessory parameter u is present
always in his researches, where for 4 = 0 the system is of
a special integrable type. Thus the difficulties which arise
are partly due to the special nature of the integrable limiting
case when two of the three bodies are of mass 0, rather
than inherent in the problem itself.

It is not too much to say that the recent work of Sund-
mant is one of the most remarkable contributions to the
problem of three bodies which has ever been made. He
proves that, at least if the angular momentum of the bodies
is not O about every axis through the center of gravity,

* See his Méthodes nouvelles de la Mécanique céleste.

+ See his Mémoire sur le probléme des trois corps, Acta Mathematica,
~ vol. 36 (1912); in thia connection see also J. Chazy, Sur Vallure du mouve-
ment dans le probléme des trois corps, Ann. Scient. de I'Ecole Normale

Sup. (1922).
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the least of the three mutual distances will always exceed
a specifiable constant depending on the initial configuration;
thus triple collision is proved to be impossible, while it is
shown that the singularity at double collision is of removable
type. In this way a conjecture of Weierstrass as to the
impossibility of triple collision is established, and convergent
series valid for all the motion are found for the coordinates
and the time. By obtaining such series Sundman ‘solved’
the problem of three bodies in the sense specified by Pain-
levé.* As a matter of fact, however, the existence of such
series is merely a reflection of the physical fact that triple
collision can not occur, and signifies nothing else as to the
qualitative nature of the solution.

In the present chapter I propose to take up the problem
of three or more bodies, and to endeavor to apply as far as
possible the points of view developed in the earlier chapters,
and in particular to show what seems to be the real signi-
ficance of Sundman’s results.t

2. The equations of motion and the classical
integrals. Let us suppose the three bodies under con-
sideration (taken as particles) to be at the points Py, P,, P
in space, and to have masses ni,, m,, ms respectively. We
denote the distance P, P, by ry, Py, Py by » and P, P,
by 7. If we write
my My My Ny Ny Mo
e + T + ro

2

(1 U=

and if we let x;, yi, zz (Z = 0, 1, 2) be the rectangular co-
ordinates of the corresponding bodies P;, while 7, y;, zi stand
for the components of velocity, the equations of ‘motion may
be written as 9 equations of the second order

m_dg.Ti o _3__(_]. m.dgy,’ o oU m.dz‘f"i o _3£
@ LA bx’ AR ay,  df T bz
(i =0,1,2),

* See his Legons sur la théorie analytique des équations différentielles.
T Most of the new results found in this chapter were announced by
me at the Chicago Colloguium in 1920.
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which are evidently of Lagrangian form; or as 18 equations
of the first order

LE - i _ dz

at at ~ ¥ at -
(7'_“:0’1’2)

@\ a4 _ou  ay_oU ad _ 2U
Y dt ox;’  dt dy:’ dt a2
(i2071}2)?

which are of course easily converted by slight modification
into Hamiltonian form. We shall not effect this modification,
which may be done in the usual way, nor shall we state the
usual principles of variation applicable to this case (see
chapter II).

The integral expressing the conservation of energy is seen
to be

1 2 / !
@ 5 2miltyitd) = U—K

where K is a constant of integration.

Besides this integral there are of course the 6 integrals
of linear momentum expressing the fact that the center of
gravity moves with uniform velocity in a straight line; if we
take a reference system in which the center of gravity is
fixed and at the origin, these integrals reduce to

ng:ci =Zm,-yi =2mi2i = O’

2mixt = Dmiy; = Xmizi = 0.
There are also 3 integrals which express the constancy of
the total angular momentum about any axis fixed in space.

If we take the axes as the cootrdinate axes, these integrals
become

6 D2mi(yidi—zy) = a, Dmilazi—mid) = b,
2wy —yizh) = ¢,

®)

(

where a, b, ¢ are constants of integration.
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These 10 integrals are all the essentially independent inte-
grals which are known.

3. Reduction to the 12th order. The reduction of the
system of differential equations (3) to the 12th order may
be at once accomplished by use of the integrals of linear
momentum as, for instance, by the following method due to
Lagrange. Let the co¢rdinates of P, with reference to P,
be (x, ¥, z) and let the coordinates of P, with reference to
the center of gravity of P, and P, be (&, 5, (). If we write
for convenience

- my g = mo
- 1 my+my’ Mo 4 my
(‘)M—m—f—m tmy, m = —o o (mot mi)m,
o ! > o mo—+my’ o mo+my+ms’

we obtain the explicit formulas of transformation

8

= &Iy — Xy, Y = Yi— Yo, Z = 21— &,
= Xy— Px — 4 Xy, N = Y2—DPYr—qYo,
£ = z,—pan—qaz,

g

(8)

together with the inverse formulas,

my ns
a.'():—M_f'—'p.T, yoz—Mﬂ"—py’
g o M
“o ﬂlc P
. _ m
x :-—%;—qu, yl=—‘jﬂ+‘1y’
(9) me
. 21 :_—A/?§+qz'
gy + m Mo 1 M
Xy — “%57 Y = -—%’J—,”
. m0+m1 -
= M

which follow with the aid of (5).
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The system of the 12th order so obtained may be written
in the elegant form

az _ ay _ 4z _

at = at - ¥ dt ’

aE dy a.
a5 a " ac = &

UMY a _au oy U a4 U
™Tat T ex Mdt T ey "t 2z’
4y U aq U ab U
B a0 = %8 PTar T ey Mar T et

With these variables the equations (5) may be regarded as
satisfied identically while the integrals of angular momentum
take the form

m(ys —ey )+ u(l’ — L") = a,
(11) m(ex' —z2")+p (¥ — &) = b,
\m@y —yz')+puEr —98) = ¢,

and the integral of energy is

(12) $me+y "+ )+ opE F 1 0 = U— K.

It will be seen that equations (10) may be looked upon
as the equations of motion of two particles in space at
(z, y, 2) and (&, 9, {), with masses m and p respectively, and
in a conservative field of force with potential energy — U.
These equations can also be derived from either the Lagran-
gian or Hamiltonian form by use of the variational principles
(chapter II).

4. Lagrange’s equality. Let us write

(13) R* = (mym ri+mymy12+m m,r2)/ M = mr2+ue?,
where

14) =2+t = E

If now we substitute in (13) the explicit values of r* and o®
obtained from (14), and differentiate twice, there results an
equality due to Lagrange,
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d® R?

= 2(U—2K)

when use is made of (10) and (12); it is to be observed that
U is homogeneous of dimensions — 1 in =z, ¥y, 2, & 7, ¢
so that

oU oU
9Y 4l

- U
T 15 U.

oU aU oU oU

xa—x+y'@+2—52—+§—a¥+’l

5. Sundman’s inequality. In order to arrive at Sund-
man’s inequality, we propose to seek an upper bound for
(dR/dt)® when =z, y, 2, & n, { are regarded as given
quantities while ', i/, 2/, &, 7/, {’ are to vary at pleasure
except that they are to yield the given values of the con-
stant K of energy and of the constants a, b, ¢ of angular
momentum. This is a purely algebraic problem.

We have
RR = mrv +upove,
whence :

RR® = (mr* +po") mr*+ue®) —mp (ro —or'),

which may be written

m

R? = mr? 4 po? — R": (ro' —or').

Furthermore we have the obvious identities
&ty 47’

= 4 [y — 2+ e — 22+ @y — )],
&9+

= ¢ (00— L0 + € — E 4y — 2],
Multiplying these last two equations through by m and u

respectively, and subtracting them, member for member, from
the preceding equation, there results the equation
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(16) R*’4+ P = 2(U—K)

where P (to be minimized) is a sum of seven squares,
P= %[(W'—Zy')2+(zx'—~x2’)2+(xy’——yx’)2]

(17) +{—,—[(qz'—:u'>"’+(zs'—:scf+<;~'q'—q.z')zl

+ e e — o)
Here the energy integral (12) has been made use of.

From this relation due to Sundman we may derive the
inequality which plays a fundamental part in his. work and
in the present chapter.

If we write

U=yd—ey'. V=n1q0—107.

it will be observed that there are two terms in P of the

form
§ =2 pr+ b oy
r e

while the first integral of angular momentum yields
mU~+pV = a.

It is easily found that the minimum value of S when U and
V vary subject to the restriction just written, while » and o
remain fixed, is a®*/ R®%. Similarly there are two other analogous
pairs of terms with minimum values %/ R®%, ¢*/ R® respectively.
Hence we conclude that we have

(18) P = f* R,
(19) SE= a?+ b+ 2.
Suppose now that we eliminate U between Sundman’s

equality (16) and Lagrange’s equality (15). This gives us
2RR'+R*+2K = P,
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whence, by using (18), we obtain the inequality referred to:
(20) 2RR"+R*4+2K > %Z—.

If we define the auxiliary function of Sundman,
(21) H = RR"+2KR+.f—2,
the inequality (20) enables us to infer the relation
(22) H = FR (F = 0).

Hence H increases (or at least does not decrease) as R
increases, and decreases (or at least does not increase) as R
decreases. This is the consequence which is of fundamental
inportance in what follows.

6. The  possibility of collision. Thus far we have
been taking for granted the existence of solutions in the
ordinary sense. In fact, inspection of the differential equations
shows the existence of a unique analytic solution for which
the coordinates and velocities have assigned values at ¢t = £,
provided that the bodies P,, P,, P,, are geometrically distinct.
In the case of the coincidence of two or three of these
bodies, the right-hand members of the differential equations
are no longer analytic, or even defined, so that the existence
theorems of chapter I fail to apply.

But, according to the results there obtained, either these
solutions can be continued for all values of the time, or (for
example), as ¢ increases, continuation is only possible up to .

Let us consider this possibility in the light of the elementary
existence theorems.

In the 18-dimensional manifold of states of motion associated
with the 18 dependent variables

Zi, Yiy Zi, xl"y y',,v Z;' (2 == Oy 1, 2)y
we need to exclude the three 15-dimensional analytic manifolds

ri = 0 G=0,1,2).
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The remaining region is open towards infinity and along
these excluded boundary manifolds.

According to the results obtained, indefinite analytic extension
of a particular motion will be possible unless as ¢ approaches
a certain critical value ¢, the corresponding point P approaches
the boundary of the open region specified.

Now suppose if possible that the least of the three mutual
distances does not approach 0 as ¢ approaches ¢; here it is
not implied that a specific mutual distance such as P, P
remains least near to ¢. We can then find positions of the
three bodies for ¢ arbitrarily near to ¢, for which the
three mutual distances exceed a definite positive constant d.
But by the energy integral relation (4), in which

U-Z (mgmy + ng my +mymy)/ d,

it is clear that the velocities 2j, yi, z; are uniformly limited.
It is physically obvious that for such an initial condition,
continuation of the motion is possible for an interval of time
independent of the particular mutual distances or velocities,
because of the character of the forces which enter; we shall
not stop to obtain an explicit expression for such an interval
on the basis of our first existence theorem. Thus a contra-
diction results.

Analytic continuation of a particular motion in the problem
of three bodies will be possible unless as t approaches a certain
calue t, the least of the three mutual distances approaches 0.

At this stage it is desirable to revert to Lagrange’s
equality (15). As ¢ approaches f, U becomes positively in-
finite of course. Hence if we represent R? as a function of ¢
in the plane by taking ¢ and R*® as rectangular codrdinates,
the corresponding curve will be concave upwards for ¢ suffi-
ciently near t. Therefore R? either becomes infinite, or tends
toward a finite positive value, or approaches 0.

The first case is manifestly impossible, since one of the bodies
would then recede indefinitely far from the two which approach
coincidence as ¢ approaches ¢; and such a state of affairs
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is impossible because of the fact that the forces on the
distant body are bounded in magnitude. "

In the second case it is clear that a particular distance
approaches 0, for instance r,, while the other two approach
definite equal limiting values. This is the case of double
collision. Since the forces on the non-colliding body are finite
near collision, it approaches a definite limiting position; and
thus the other two colliding bodies approach a corresponding
limiting position, since the center of gravity may be taken
fixed and at the origin in the space of the three bodies.

In the third case we have triple collision of course, and
this takes place at the origin. However if the constant f is
not 0, triple collision cannot take place, as follows from (22)
immediately. For it is seen that d R*/dt¢ will be negative
tor ¢ near ¢ in the case of triple collision, since d®R*d¢* is
positive by Lagrange’s equality (15). Hence H will decrease
with B (or at least not increases) as ¢ approaches {. But
inspection of H shows that H becomes positively infinite as
R approaches 0. Thus a contradiction is reached.

As t approaches t, there is either double collision Dbetween
a definite pair of the bodies at a definite point, while the third
body approaches a definite distinct point, or there is triple
~ collision at the common center of gravity. Lf, however, f is
“mot 0, i. e, if the angular momentum of the three bodies about
“every axis in space s mot constantly 0, triple collision can
never take place at t.

Henceforth we shall make the assumption />0, thereby
eliminating the possibility of triple collision in the sense
above specified.

This assumption may be looked upon as merely confining
attention to the general case. In fact it is readily proved
that in the case f= 0, the motion is essentially in a fixed
plane. Thus immediate reduction of the problem is possible.
Moreover in the case f = 0 the angular momentum about
a perpendicular to the plane of motion at the center of gravity
vanishes. Thus we are only excluding a special case of
motion in a plane. The case excluded is of great inter-
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est and should be given thorough consideration on its own
account.

7. Indefinite continuation of the motions. In the
general case under consideration it is thus plain that any
motion can be continued up to a double collision.

We propose now to take up briefly the case of double
collision in order to render it physically plausible that the
motion admits of continuation beyond such-a double collision
in a certain definite manner. Analytic weapons sufficiently
powerful to deal with the singularity of double collision
were first developed. by Sundman (loc. cit.). A different
method of attack, not going outside of the domain of
equations of usual dynamical type, has since been obtained
by Levi-Civita.* A rigorous treatment of the question will
not be attempted here, but the analytic details can be
supplied without difficulty on the basis of the researches of
Sundman or Levi-Civita.

Let us suppose that the bodies P, and P, collide for
instance, while P, is at a distance away. The motion of
P, and P, near collision will clearly be essentially as in
the two body problem. What we propose to do is to ignore
the disturbing forces due to- P, during the near approach of
P, and P, to collision, i. e. to replace U by its single compo-
nent mym,/7,, and then to take it for granted that the
situation is of essentially the same nature in the actual case.

But if the motion of P, and P, were just as in the two
body problem, their center of gravity would move with
uniform velocity in a straight line, while, relative to this
point, P, and P, would move in a fixed straight line until
they collide. More precisely, P, and P, will be at distances
inversely proportional to their masses from the center of
gravity, while their squared relative velocity is 2 (mgy =+ m;)/1s
increased by a certain constant whose value depends on the
total energy relative to the center of gravity. The motion
relative to the center of gravity will be thought of as merely

* Sur la régularization du probléme des trois corps, Acta Mathematica.
vol. 42 (1921).
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reversed in direction after collision. In the original reference
system the bodies P, and P, will describe two cusped curves,
and will collide at the common cusp; the cuspidal tangents
of the two curves are of course oppositely directed, and it
would be easy to specify the precise motion near collision
by giving the explicit formulas.

Evidently such a motion of collision in the two body
problem is completely characterized by the following quantities:
(1) the three coosrdinates of the point of collision; (2) the
three velocity components of the center of gravity at collision;
(3) the two angular codrdinates 6, ¢ fixing -the direction in space
of the axis of the cusp described by P,, which is the same
direction as that of the line of motion relative to their center
of gravity; (4) the energy constant. Thus 9 coordinates in
all are required to characterize uniquely a state of collision in
the two body problem. But to specify any state of motion
before or after collision it is necessary to give the time 7
that has elapsed since collision.

Furthermore, any motion in which the two bodies almost
collide can be characterized in a similar way. Here it is
supposed that the initial conditions are slightly modified at
some time before collision. In the modified motion it is easy
to generalize the above coordinates as follows: (1) instead
of the coordinates of the point of collision, we may take
the coordinates of the center of gravity when the bodies are
nearest to one another; (2). the corresponding velocity com-
ponents of the center of gravity may be used as before;
(3) the angular codrdinates 6, ¢ may refer to the direction
of the transverse axis of the conics described relative to the
center of gravity; (4) the constant of total energy may be
used as before. When the motion is modified slightly in
this manner, these 9 codrdinates will be only slightly modified.

In addition to these 9 codrdinates, the plane of the relative
motion must be fixed by a further angular codrdinate ¥,
and the perihelion distance p must be specified. This gives
11 coordinates to fix upon a particular motion of the two
bodies in general position. In order to specify a particular
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state of motion it is sufficient to specify the time = measured
from perihelion passage.

The codrdinate p is not available in the special case of
circular motion relative to the center of gravity but this
possibility does not arise near a state of collision of the type
under consideration.

Hence we find 12 appropriate codrdinates in all, corres-
ponding of course to the fact that we have a system of differ-
ential equations of the 12th order in the two-body problem.

Let us consider the coordinates in the two-body problem
somewhat more attentively. The 6 coordinates determining
the position of the center of gravity at ncarest approach
are obviously unrestricted coordinates. In other words, these
sets of 6 coordinates are in one-to-one correspondence with
the neighborhood of a point in G-dimensional space. Similarly
the 2 coordinates fixing the axial direction are in one-to-one
correspondence with the neighborhood of a point of the 6, ¢
sphere and are thus unrestricted in the same sense; and so
are the total energy and the time = of course. On the other
hand, the perihelion distance p is always positive, and as p
approaches 0, the motion approaches that of a definite ‘motion
of collision, independently of the coordinate ¥ which fixes
the plane of the motion. Suppose then that we introduce
the following coordinates

a = pcosy, B = psiny,

as coordinates serving to replace p and y. Collision is then
characterized by the conditions

The new coérdinates «, 8 are, however, unrestricted.
Consequently in the problem of two bodies, the states of
motions near a particular state of collision are in one-to-
one, continuous correspondence with the neighborhood of a point
in a 12-dimensional space.  With this representation the
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states of motions at collision constitute a 9-dimensional
surface through the point.

It is obvious that in a certain sense the singularity of
collision is removed by the use of the above codrdinates.*

Let us return now to the problem of three bodies in the
case under consideration when two and only two of the
bodies, say P, and P,, collide. For the motion of collision,
we must have as before a definite point of collision, a definite
vector velocity of their center of gravity at collision, a cuspidal
direction in which collision takes place, and finally a limiting
total energy. Furthermore any state of motion before or
after collision is characterized by the elapsed time 7.

For motions near a motion of collision, these 9 coordinates
admit of simple generalization. For example the instant of
‘perihelion’ passage can be fixed as that at which the distance
P, P, is a minimum, and in this way the position and velocity
codrdinates of the center of gravity, the axial coordinates,
and the perihelion distance can be defined at once, and also
the energy constant. The angular codrdinate y can be taken
as that given by the plane which bisects the small dihedral
angle defined by the two planes through P, P, and the
velocity vectors at P,, P, respectively relative to their center
~ of gravity. The time = is defined as before. The coordinates
p, ¥ may be replaced by «, 8 of course.

"Thus on the basis of physical reasoning it appears certain
that the singularity of double collision s of removable type.
and that the states of motion at double collision form three
15-dimensional (analytic) sub-manifolds in the 18-dimensional
manifold Mg of states of motion, corresponding to the collisions
of Py and Py, of Py and Py, and of P, and P, respectively.

When the manifold of states of motion is augmented by
the adjunction of the parts of the boundary corresponding to
double collision, it is obvious that indefinite analytic con-

* For actual removal of the singularity by analytic transformation in
the two body problem and similar problems, see Levi-Civita, Traiettorie
singolari ed urti nel problema ristretto dei tre corpi, Annali di Mathematica,
ser. 3, vol. 9 (1903).

18
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tinuation of a motion is possible unless, as ¢ approaches
a certain value ¢ (t<t_say), there are an infinite number of
double collisions. Let us eliminate this possibility for the
case f>>0, which is under consideration.

In the first place we observe that not only R but also R’
must be continuous at double collision. In fact the differential
equations themselves show that d*&/d (3, d®q/d ¢, d*C/dt® are
continuous at collision so that ¢’ as well as ¢ must be con-
tinuous. On the other hand »’ will not be; but, since we have

7’27',2 — (xx/+yyl+zzl)2 é (x’—}—y”-}—z”) (x/:!_{_ y/2+ 2_12)
< o (U+]K)
zm

on account of the energy integral (12), it is clear that »»’
is continuous and vanishes at collision. Hence R’ is con-
tinuous at collision, having the value weoo'/R, as follows
from (13).

Secondly, as ¢ approaches t—, the least »; must approach 0.
Otherwise we should have r;>d >0 (: = 0, 1, 2) indefinitely
near {. We have already seen that, because of the energy
integral, this would require z', ¢/, 2/, &, 3", ¢’ to be limited,
so that continuation of the motion during a definite interval
of time, dependent only on d, would be possible without
collision. This is absurd.

Thirdly, B must approach a finite limit as ¢ approaches?,
as follows from Lagrange’s equality (15), just as in the case
of approach to double collision, inasmuch as R’ and R are
both continuous at double collision. Reasoning on the basis of
Sundman’s inequality (22) in the same way as before, we
infer also that B cannot approach 0 as ¢ approaches ¢.

Hence we conclude that as ¢ approaches ¢, the body P
approaches a definite limiting position distinct from the corre-
sponding definite limiting coincident position of F, and P.
But it is physically obvious, and might readily be established
analytically, that there can only be a finite number of collisions
for t< ¢ in such a case. Thus a contradiction arises.
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In the augmented manifold of states of motion Mg, inde-
Jfinite continuation of every motion for which f>>0 is possible
in etther semse of time. In the case f =0, continuation can
only be terminated by triple collision.

Hitherto we have dealt with only the 18-dimensional mani-
fold M. It is easy to modify the above results so as to
apply to the manifold 3,s, obtained when only those motions
are considered for which the center of gravity of P, P,, Ps
lies at the origin. In this case the six codrdinates fixing
the position and velocity of the center of gravity of 7, and P,
for instance, determine these codrdinates for P;.

Entirely similar results obtain in the 12-dimensional mani-
Sfold M,y obtained by fixing upon those molions for which the
center of gravity of the three bodies lies at the origin.

As remarked earlier, these results can be fully established
by use of the explicit regularizations effected by Sundman
or Levi-Civita. An inspection of the formulas leads to the
following additional conclusion:

In the augmented manifold M,s mot only are the states of
motion at collision to be regarded as constituted by three
15-dimensional analytic manifolds, but the curves of motion
are also to be regarded as analytic and as varying analytically
with the initial point and interval, provided this interval be
measured by such a parameter as u where

t =frorlrzdu.

8. Further properties of the motions. The case K <0
is immediately disposed of, so far as the general qualitative
character of the motions are concerned. Lagrange’s equality
(15) insures that d® R%*/d ¢* will then exceed 4| K|. Hence R?
when plotted as a function of ¢ in the ¢, R® plane of rect-
angular codrdinates, yields a curve with a single minimum
which is everywhere concave upwards and rises indefinitely.

Evidently the same conclusion holds for X = 0, at least
unless U approaches 0. But this can only happen if all three
mutual distances increase indefinitely.

18*
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In the case K <0, f>>0, at least two, if mot all three,
of the mutual distances increase indefinitely as time increases
and decreases. In the case K < 0, f = 0, the same is true
unless the motion terminates in triple colliston in one direction
of the time.

A fuller qualitative consideration of the motions K <0
is obviously desirable. But on account of the results just
stated it seems proper to consider this case as ‘solved’ in
the qualitative sense.

Henceforth we shall confine attention to the case f >0,
K >0, i. e. to the case when the angular momentum of the
three bodies about every line through the center of gravity
is not constantly 0, and the potential energy is insufficient
to allow all three mutual distances to increase indefinitely.

The case f =0, K>0 thus remains. Here the motion
is essentially in one plane, and it may be possible to obtain
results similar to those here obtained in the case />0, K >0
by suitable refinement of Sundman’s inequality.

We proceed to develop some of the simple and important
properties of the motion in the case />0, K> 0.

In the case f >0, K >0 the least of the three mutual
distances cannot exceed M% (3 K).

The proof is immediate. By the energy integral (12), U is
at least as great as K. But », r,, 7, are at least as great
as r, the least distance. Hence we obtain

(mo my + mome + mymg)/r = K.

The numerator on the left is not more than A7%/3, whence
the stated inequality follows at once.

In the case f>>0, K>0, the largest distance r; will neces-
sarily exceed k times the smallest distance rj, providea that

R < 2m*2f2/(k* M%) or R = kM**/(3K),

where m* denotes the least of the three masses mg, my, ms.
To establish this fact, let k, denote the actual ratio of the
largest to the smallest distance. Then we have at once
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2 2 2
R < (momy + momy + myms) ks v’/ M < Mkir/3

where » denotes the smallest distance. Likewise we find by
a similar calculation

U < (momy 4 momg 4 myms) /v ;/ M2/ 3.
But Sundman’s equality (16) together with (18) gives
SYR? <2U.

If we employ the inequalities for R* and U derived above,
this gives readily .
r>4f kMY,

But inasmuch as E is at least m'?r, while m in turn is at
least half of the least mass m™* (see (7)), we find

R>2m*2 f2/ (i M?),

Consequently if R is at most of the first stated value, we
infer at once that %, exceeds . This proves the first of
the two results.

In order to prove the second result, let » denote the
greatest distance. We then obtain

R < (moml+m0m2—|—m1mg)'73/M'_'>i Miyt/3,

whence there results
F >R/M™

If we use the inequality already derived for the least
distance r, in combination with the one just written, we find

ly>3 KR/ M52,

Hence if R is at least of the second value, k, will exceed
k. This is the second result to be proved.

In the case f>0, K >0, any partof the curve R = E(f),
(¢, R, rectangular codrdinates) for which R<<[/(2V2 KV?) consists .
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of a finite arc, concave upwards and with a single minimum.
If R = R, gives this minimwm, the curve rises on either

side until
R> /(2K R,),

with corresponding slope R’ at least as great as demanded by

the inequality
2
s ﬁ:&[ S ]
R > 7 R 2K

at every intermediate stage.

To prove this statement, we observe first that when R is
restricted as in the first part, £ cannot be a constant. In fact
if it were, Lagrange's equality (15) would yield U = 2 K.
But the combination of Sundman’s equality (16) and of (18)
with the equation U = 2K would give

FUR < 2K,

in contradiction with the limitation imposed upon R. The
same kind of argument shows that if R’ vanishes when R
is so restricted, then R” must be positive. For otherwise,
by using Lagrange’s equality, we find U < 2K, and thence
by using Sundman’s equality (16) and (18) we are led to
the contradictory conclusion written above.

If there is a point R’ = 0 along the arc under consideration,
it corresponds to a proper minimum. On either side of it A
(section 5) will increase (or at least not decrease) with R,
until a second point R = 0 reached for K = R,. Hence
we obtain

Sf? S*
2KR, +%>2KR,+ %~
l+ Rl- 0+ Ro

whence, since R, > R,

f!
2K> BB

In this case R does increase until the specified value is
passed. Furthermore until this happens, H is as great as H,.
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This fact demonstrates that R'> is as great at every stage
as stated, so that R must finally so increase.

The case when R'F O anywhere along the arc can be
eliminated. Here H must decrease (or at least not increase)
with decreasing . Consequently R cannot approach 0, since
H then becomes infinite. As R approaches its lower limit F,,
R will approach 0. Consequently we infer that the inequality
of the statement for R'> continues to hold if R, be defined
in this manner.

But this kind of asymptotic approach to £ = R, as { in-
creases (or decreases) indefinitely is impossible. This im-
possibility may be made evident as follows. In the inequality
H > H, we may replace the inequality sign by the equality
sign.. Thereby we define a new curve 2 = R(f) whose slope
for any R is not greater in numerical value than that along
the actual curve under consideration. Hence the new curve
so defined approaches the ¢ axis less rapidly, and must also
approach R = R, asymptotically as follows from the equation
H = H,. But, by differentiation of this equation as to ¢,

there results
2

QRR"+R'2+2K—E§ = 0.
Hence as ¢ approaches infinity, and R, R" approach R,, 0,
it is clear that R"” would approach a definite positive quantity,
which is absurd.

The results thus far obtained may be regarded as concerned
with motions in which the three bodies are all near together
at some instant ¢ = f,, the amount of separation being
measured by R. The bodies will separate in such a way
that R increases, and very rapidly as long as R is not too
large or small, until R has become very large.

We turn next to derive somewhat analogous results when
at least one of the three mutual distances is large. Here
it is convenient to use the quantity ¢ instead of R, but it
is to be borne in mind that » denotes the smallest of the
three distances in what follows.
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In the case >0, K>0 as long as ¢ = 2M*/(3K), one
and the same distance r; 1s the least distance.

Under this condition it follows that ¢ is at least twice
the least of the distances » = r,. Hence r, and », exceed 7,
since ¢ is the distance from P, to the center of gravity of
P, and P,. But when », and », are greater than r;, one
and the same distance 7, remains least.

In the case f >0, K>0, for e > 2M*/(3K), the mequalzty

" >—8M/e®
obtains. If for any such value of e, we have
Q’ z 4M1/2/91/2,

o will constantly increase without bound.
We begin with the identity

9(’"+le . ~¢//+7]7]u+ -w/_|_ t/2+ﬂr2+tl"

The last three terms on the right give the square of the
velocity of the point (£, 7, £), while ¢'> is the square of the
radial velocity and is therefore not greater. By virtue of
this fact and the differential equations (10) we obtain

e z (5 Gt 7).
But the terms in parenthesis on the right are precisely
00U/dn where P, is taken to vary by a distance n along
the straight line which joins P, to the center of gravity of
P, and P,. Clearly the rate of change of », and », with
respect to » cannot exceed 1 in absolute value, and we infer

0 [my me My Ny : 1
"‘"—'( B + /"2 >>“Jf(}(‘,_‘T

-2
m 7o 1 0

”
’°~
v

(see (7)). Now in the case under consideration 7, and 7,
exceed ¢—r and therefore ¢/2. This leads to the first
inequality to be proved.
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Instead of continuing analytically we need simply observe
that this inequality may be looked upon as requiring that
a particle moves along a ¢ axis acted upon by a force towards
the origin which does not exceed the gravitational force due
to a mass 8M. But in this case it is obvious that the
particle will recede indefinitely provided that the initial velocity
outward is as great as the velocity of fall from infinity under
the attraction of such a mass. This is precisely the fact
stated.

It should be noted that since the initial value of ¢ is as
great as 2 M*/(3K), o continues greater than this quantity,
and accordingly one and the same distance r is the least of
the three distances always.

We propose next to combine these results in order to show
that, for the minimum R, sufficiently small, B and ¢ increase
indefinitely. The qualitative basis of the reasoning is obvious.
According to what has been proved, for R* and R* arbi-
trarily large a positive R, can be chosen so small that all
motions for which the minimum R is not more than R,
correspond to an K which increases from the minimum to R*
and has, for R = R*, a derivative R’ which is at least as
great as R*. This means of course that o¢* is arbitrarily
large since |,

lim R/¢ = (moms -+ my ms)t?

R=00
uniformly. Furthermore since the relation
RR = mrr'+uod
obtains, it is clear that |go’ | must be large, and in particular

|¢'| must be large, provided that |r'|is uniformly bounded.
But we have

7"2-§ 2+ y'z-{—z'z < 2U0/m
by the energy integral (12). Hence

7't < 2(momy + moms + mymg) r/m < 2MEr/m*
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since m exceeds one half of the least mass m*. Thus we
find
[’ | < M2/ (KV2m*12) -

and thereby establish the fact that |r+'[ is uniformly bounded.

For f>0, K>0, if R, is taken sufficiently small, every
motion for which the three bodies approach so closely that
R < Ry at some instant is such that two of the distances
ro. 1 become infinite with t while rs remains less than M /(3 K).

We shall not pause to develop an analytic formula which
yields a suitable R,, although the specific results found
above would supply the basis for such a computation.

There is an interesting question to which we wish to
refer briefly in conclusion. Which one of the three bodies
will recede indefinitely from the other two nearby bodies, in
the case of a near approach to triple collision? The answer
is to be found in the following statement:

Any motion of the above type is characterized by the pro-
perty that one and the same body P; remains relatively re-
mote from the two mearest bodies Py, P, throughout the entire
motion. :

The truth of this fact is readily inferred. At the beginning -
of this section it was shown that, for R greater or less than
fixed values, the ratio of the largest to the smallest distance
would be arbitrarily large. Hence we need only consider
this intermediate range of values of K. But in such a range,
if the ratio of the largest to the smallest side did not re-
main large for R, sufficiently small, there would be con-
figurations of the three bodies in which the distances ; and
the ratios »;/r; lie between fixed bounds, no matter how
small R, is chosen. However, the value of U does not
exceed an assignable quantity in such configurations, and
thus, by the energy integral (12), the same would be true
of the velocities «', ¥/, 2/, &, 7/, ¥. Finally it is clear that
RR' would not exceed an assignable quantity. But we have
established that R’ becomes arbitrarily large in such a de-
finite range of values of R, so that this conclusion is absurd.
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Evidently there is further work to be done in the more
precise determination of the motions on the quantitative side,
but the facts developed above are sufficient to show that
the only possibility of simultaneous near approach of the
three bodies for given f >0, K > 0, is that in which the
three bodies act as a pair of bodies, one member of which
corresponds to a close double pair ‘P,, P,, while the second
is P;. The motions of P, and the center of gravity of P,
P, are then along nearly hyperbolic paths, while P, P, move
in nearly elliptic paths relative to their center of gravity.

9. On a result of Sundman. Sundman established
(loc. cit.) that for given initial codrdinates and velocities
with £ >0, K > 0, the quantity R(¢) for the corresponding
motion will always exceed a specifiable positive constant.
This fact is at once evident from the analysis of section 8.
In the contrary case we should have indefinitely near
approach to triple collision, and thus a motion for which
R’ is arbitrarily large for the given initial value of R, which
is of course absurd.

10. The reduced manifold M, of states of motion.
Let us turn next to the consideration of the problem of
three bodies after use has been made of the 10 known
integrals to reduce the system of differential equations from
the 18th to the 8th order. In other words the 10 corre-
sponding constants of integration are given fixed values, and
attention is directed towards the oo’ motions which corre-
spond to the given set of constants. In what follows we
shall suppose that not all the constants of angular momentum
vanish, and that the constant of energy is positive, i. e. we
take £ >0, K > 0.

The angular momentum vector with components a, ), ¢
will define a spatial direction which plays an important role
in the sequel. Evidently two motions which correspond to
the same configuration of positions and velocities at some
instant, aside from mere angular orientation relative to this
axis of angular momentum, will continue to differ merely in
this respect. In other words, if ¢ denotes any angular
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coordinate which fixes the orientation about the axis of
angular momentum, while u,, ---, u; are any set of relative
coordinates which do not involve ¢, the differential equations
defining the oo motions take the form

dui/dt = Ui(u,, ---,1;) (@ =1,.-..7),
de/dt = @ (wy, -, Ur).

The first set of equations constitutes a system of the 7th order
in the coordinates wu,, - - -, u;, while the last equation enables
one to determine ¢ by a further integration. If it be desired,
the time ¢ can be eliminated, and the system becomes of
the 6th order,

dui/dw, = Ui/ Uy (= 2,3,.--, 7).

Thus from the purely formal standpoint the system of the
18th order can be ‘reduced’ to one of the 6th order.

From the point of view which we shall adopt, there is no
essential gain in actually carrying through such a reduction
which can be accomplished without affecting the Hamiltonian
form.* '

‘Let us consider the augmented manifold M5 of states of
motion, in which the singularities corresponding to double
collision have been removed by the method indicated in
section 7.

The boundary of Ms is to be regarded as made up of
states of motion specified by one of the following possibilities:
one of the coordinates x;, y;, #; incrcases indefinitely in absolute
value; the quantity R approaches O; the energy constant of
some pair P;, P; of the bodies relative to their center of
gravity at the instant increases indefinitely in absolute value.
It is clear that points away from the boundary in the specific
sense of these three possibilities will have limited coordinates,
with not all three distances small; the condition of energy
imposed insures that the energy constant relative to the
center of gravity of all three bodies is not large in absolute

* See, for instance, Whittaker, Analytical Dynamics, chap. 13.
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value, while the fact that the relative energy constants are
not large means that the nearest pair of bodies must shortly
separate to a considerable distance. Thus either all coérdinates
and velocity components are limited, and none of the mutual
distances are small, or else the motion is near such a state
in time, and therefore not near to the boundary of M.

In- M5 the totality of motions is represented as a steady
fluid motion, in which the stream lines correspond to the
possible types of motion. When the 10 constants of integration
are specified, we are directing attention to the corresponding
fluid motion of the sub-manifold Mg into itself in which the
stream lines represent the oo’ motions under consideration.

Motions which differ merely in orientation with respect to
the axis of angular momentum yield a closed one parameter
family of stream lines, corresponding states of which give
closed curves; in other words w,, ---, u;, are the same along
such a curve, while ¢ varies from O to 2n. In the special
case of the Lagrangian equilateral triangle and straight line
solutions when the mutual distances are inalterable,® the
corresponding closed curve is itself a stream line.

The ‘reduced manifold M; of states of motion’ corresponds
to the oo set of states of motion given by sets of codrdinates
such as wu,, ---, u;, which are distinct except in orientation
- about the axis of angular momentum.

It is evident that in the original M;s the closed curves
which give the states of motion differing only in orientation
will give ! analytic curves, one and only one through
each point. Hence if we desire to obtain more precise
information as to the possible singularities of Mg, it is only
necessary to determine the singularities of Mz. We propose
to investigate the singularities of M, and thus of M, suffi-
ciently to establish the following result:

For general values of f>0, K>0, the analytic reduced
manzfold M, of states of motion s without singularity, and
has a-boundary specified by the fact that either R approaches

* See Lagrange’s paper, Essai sur le probléme des trois corps, Euvres,
vol. VL.
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0 or o, or that the energy constant of some pair of the bodies
relatively to their center of gravity become indefinitely large
and negative.

Let us first justify briefly the statement made about the
boundary of M;. At some distance from the boundary none
of the coordinates can be large since none of the distances
r; are large, and the center of gravity is at the origin. Since
the energy constant for the three bodies is given, the partial
energy constants cannot be large and positive. Consequently
unless one of these partial constants is large and negative,
the state of motion is not near the boundary of Af;.

In dealing with the analytic character of My, and so of
M,, we can assume that the state of motion under consideration
is not a state of double collision. In fact the ‘molecule’ of
states of motion in M,3 near a state of double collision is
carried analytically into a molecule about a modified position,
not corresponding to a state of double collision. The invariant
sub-manifold Af;, will thus be analytic all along a particular
stream line or nowhere along it.

Let us then employ the coordinates z, v, 2, &, 9, &, &', ¥/, 2/,
& 9’ & which are available in M,,;, within which we may
take Mg to lie. The sets of these 12 codrdinates which
satisfy the remaining angular momentum and energy conditions
(11) and (12), furnish uniquely the states of motion of Mg
near to the particular motion of M; under consideration.
It is evident that in general these 4 equations may be solved
analytically for any 4 of the 12 variables; i. e. My analytic
at the corresponding point. /

We can show, however, that for general values of f>0
and K >0 there can be no singularities whatsoever in Ms.
Let us choose codrdinate axes so that x = y = 7 = 0 at
the instant under consideration, i. e. the particle P, lies in
the z direction from P,, while the line from P, to the center
of gravity of P, and P, lies in the z, z plane. Let us attempt
to solve the 4 equations for 2/, 3/, 2/, ' as functions of the
other variables. The condition that this be -possible will
be satisfied it the corresponding Jacobian determinant
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0 0 0 &
00—z 0—¢
z 0 0 O
w’ yl Z, ”(

does not vanish; here we have removed an obvious factor
m from the first three columns, and a factor g from the last
column. Thus M; is analytic at this point provided that

the inequality
—E222740

holds. But it has been pointed out that z is not 0. Further-
more, we can take £+ O unless P, is on the straight line
Py P, constantly. And we can take z’' 3+ O unless the distance
P, P, (and similarly any other distance P; Pj) is a constant.
Hence we infer that either My is analytic along the particular
stream line under consideration, or the three bodies lie upon
a straight line, or at a constant distance from each other,
but not in the same straight line.

In the latter case the bodies P,, P,, P, are known to lie
at the vertices of an equilateral triangle in a plane perpen-
dicular to the angular momentum vector; this triangle rotates
at a constant angular- velocity about its center of gravity.
Furthermore it is known that there is one and only one size
of triangle of this kind for an assigned angular velocity.
Thus theré will be in general no such motion for which f
and K have the preassigned values.

Similarly in the first case further examination shows that
the distances are inalterable. It is known that there are three
solutions for an assigned angular velocity, and thus in general
no solution for general values of f and k.

In any case the manifold M; can only have a singularity
at a point corresponding to an equilateral triangle solution or -
to a straight line solution at constant mutual distances. These
possibilities will omly arise when certain analylic relations
between f and K are satisfied. It is only as f and K vary
through these critical values that the nature of M; from the
standpoint of analysis situs can change.
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The manifold J; has fundamental importance for the problem
of three bodies, but, so far as I know, it has nowhere been
studied even with respect to the elementary question of
connectivity. The work of Poincaré refers to the existence
of certain periodic motions, i. e. of certain closed stream lines
in M;, obtained by the method of analytic continuation from
a limiting integrable case of the problem of three bodies;
nearby motions, i. e., stream lines in the torus-shaped neighbor-
hood of such a closed stream line, are also considered in
relation to the formal series; but he does not consider M;
in the large. '

In conclusion it may be observed that the states of motion
in which the three bodies move constantly in a plane through
the center of gravity perpendicular to the angular momentum
vector, correspond to an invariant sub-manifold Mj within
M;, which contains the exceptional singularities when these
exist. So far as dimensionality is concerned, this manifold
Ay would be suited to form the complete boundary of a
surface of section (chapter V) of properly extended type.

11. Types of motion in M;. The problem of three bodies
is distinguished from the type of non-singular problem which
we have considered earlier, in that the manifold of states
of motion is not closed. The singularity along the boundary
cannot be removed by any exercise of analytic ingenuity.
In fact consider a tube of stream lines in M; described by
a ‘molecule’ of states of motion near triple collision at ¢ = 0.
It is clear that the molecule tends toward the boundary of
M; as tincreases, since we have then lim R = oo according
to the results decluced above (section 8). The half tube so
generated is then carried into part of itself, and would have
to correspond to an infinite value of the invariant 7-dimensional
volume integral. This situation does not arise when the
manifold of states of motion is closed and non-singular.

More precisely, the stream lines corresponding to motions
of near approach to triple collision not only lie wholly near
the boundary of A/;, and approach it as ¢ increases or decreases
indefinitely, but they fill out three entirely distinct regions
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of M;, since for every such motion there is a particular one
of the three bodies which recedes indefinitely from the other
two bodies.

The stream lines corresponding to near approach to triple
collision thus fill three distinct T-dimensional continua of M;,
corresponding to the fact that Py, Py, or Py may be the relatively
distant body during such a motion. These continua lie near
to the boundary of M-, and every stream line in them approaches
the boundary in either sense of time.

Of course these continua are not precisely defined until
- the degree to which triple collision is approached is precisely
specified.

It is natural to Dbelieve that in this case of indefinite
recession, the two nearby bodies have a definite limiting
energy constant, orientation of plane of motion, eccentricity,
and a limiting linear and angular momentum with reference
to the center of gravity of the three bodies. In any case these
motions may properly be regarded as to a large extent ‘known’.

The very interesting question now arises: Do the motions
for which lim R = oo in one or both directions of the time
fill M; densely or only in part? It is important to under-
stand the nature of the difficulty inherent in this question.
By actual computation of the motions, it can doubtless be
established whether or not a specific motion belongs to one

“of these continua or not. Certainly, for | K| small, almost
all of M; would be filled by these continua in consequence
of the results obtained in the case K < 0. Nevertheless
when there exists a single periodic motion in M; of stable
type, it will not be possible to determine whether or not
nearby motions belong to these continua without solving
the fundamental problem of stability in this particular case.
We have already alluded to the highly difficult character of
the problem of stability (chapter VIII), which arises precisely
because in a dynamical problem such as the problem of three
bodies, formal stability of the first order insures the satis-
faction of all the infinitely many further more delicate con-
ditions for complete formal stability.
19
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The question can, however, be put in a very suggestive
form, which in my opinion renders it probable that the
motions for which lim R = oo for lim¢ = + oo fill up M
densely, as do those for which lim B = oo for lim¢{ = — oo;
because of the reversibility of the system of differential
equations, both conjectures must be either true of false.

The manifold M; has already been conceived of as
a 7-dimensional fluid in steady motion. This fluid must be
thought of as having infinite extent and as incompressible,
in consequence of the existence of a 7-dimensional volume
invariant integral. The three types of motion with near
approach to triple collision correspond to three streams which
enter M; from the infinite region and leave it there.

What is likely to happen to an arbitrary point of the fluid?
It seems to me probable that in general such a point will
move about until it is caught up by one of these streams
and carried away. It may, however, be anticipated that
there will be found certain points which remain at rest or
move in closed stream lines, and so are not carried off.
In conformity with the results of chapter VII, there must
then necessarily exist other stream lines which remain near .
to the closed stream line as time increases or as time decreases.
More generally, there will exist recurrent types of stream lines
corresponding to recurrent motions, and various other stream
lines which remain in their vicinity as time increases or decreases.
The stream lines corresponding to such recurrent motions and
nearby motions cannot of course approach the boundary of M.

For the determination of the distribution of such periodic
motions, recurrent motions, and motions in their vicinity, it
obvious that elaborate detailed analysis would be necessary.
In conclusion we shall merely effect an obvious classification
based on the function R({):

An arbitrary motion in the problem of three bodies for the case
f>0, K>0 is of one of the following types as t increases:

(1) R increases toward + o, in which case one body recedes
indefinitely from the other two, while the near pair remain
within finite distance of ome another;
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(2) R tends toward a value R while U approaches 2 K, in
which case the limiting motion is of special determinable type
as in Lagrange’s equilateral triangle solution;

(3) R(t) s uniformly bounded as in case (2) but oscillatory.
Here the motion is wholly one of finite distances and velocities
except possibly for occasional double collisions or approach to
such collisions, and there mnecessarily exist periodic or other
recurrent motions among the limit motions;

(4) R(t) us oscillatory with upper bound + o and a positive
lower bound. This is an intermediate case in which the motion
is one with finite velocities except mear occasional double
collision or approach to double but mot triple collision, while
Jrom time to time one of the three bodies recedes arbitrarily
Jar from the near pair only to approach them again later.

Similar results obviously hold as t decreases.

The only part of this statement calling for any explanation
is that if R approaches R, U approaches 2 K. But this can be
proved to follow from Lagrange’s equality (15).

12. Extension to »>3 bodies and more general
laws of force. In indicating the possibility of generalizing
the above results, both in respect to the number of bodies
and the law of force, we shall entirely put to one side the
question of collision. It would suffice for our purpose,
however, if any kind of continuation after multiple collision
were possible in which the constants of linear and angular
momentum as well as of energy are the same after as before
collision, and if also R, where

R = —Q—IEI—Zmi mry.

may be regarded as continuous at collision; here the masses of
Py, ..., P, are my, .- -, my, respectively, while M is the sum
of these masses, and r; denotes the distance P;P;.

Let the function U of forces be any function of the mutual
distances rj;, of dimensions — 1 in these distances. For a
function U of this type, the original form of differential
equations, of the 10 integrals, and of Lagrange’s equality



292 DYNAMICAL SYSTEMS

(15) and of the inequality (20) due to Sundman will subsist,
provided that f denotes the total angular momentum of the
system about the center of gravity. Our main reasoning
above was essentially based upon this analytical framework.
Hence we can state the following result:

Let U be any analytic function depending on the mutual
distances between n bodies P;, (i = 1, ..., n), with codrdinates
(@i, yi, 2i) and masses m; respectively; let U be furthermore
homogeneous of dimensions — 1 in these distances. If the n
bodies are sufficiently near together, with assigned positive
values of the total angular momentum f and the constant of
energy K, at least two of the mutual distances will become very
large in either sense of the time.

Further consideration shows that the condition of homo-
geneity upon U can be lightened to the form of am inequality

oU oU o U :
) . + >
> (1’1 2 +yi 2 + 2 Bzi) =z —dU
where 0 < d <2, without affecting the argument that at least
two of the mutual distances become very large.
In this argument the function H has to be generalized to
the form
H=F|r+ 5L ik
o +@—@B+ )
I have not attempted to ascertain conditions under which
at least two of the mutual distances become infinite.
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