CHAPTER IV

STABILITY OF PERIODIC MOTIONS

1. On the reduction to generalized equilibrium.
For motion near equilibrium of a Hamiltonian or, more gene-
rally, of a Pfaffian system, the stable case is naturally defined
as that in which the multiplers 4, - - -, 4, are pure imagina-
ries, at least provided that there are no linear commen-
surability relations between these multipliers.

In this chapter, however, we shall limit attention to the
analogous but somewhat more complicated question of stability
for motion near a periodic motion of such a system.* The
method employed involves a reduction to the case of generalized
equilibrium. In the more general Pfaffian case this can be
accomplished by a change of variables

x = i+ 9i(t) (z:1772m)7

in which the periodic functions ¢;(f) of period z are the co-
ordinates of the given periodic motion. By this means the
functions X;, - - -, Xom, Z are modified (see (12), page 89), since
they are no longer independent of ¢ but periodic of period z; and
the given motion now corresponds to generalized equilibrium
at the origin in the new =z, ---., 22m space. Hence we are
led to consider the question of motion near such a point of
generalized equilibrium. _

There is, however, a difficulty associated with this reduction
to generalized equilibrium which was first signalized by
Poincaré for Hamiltonian systems, and which it is desirable
to explain briefly.

Following the analogy with the case of ordinary equilibrium,
the stable case is defined as that in which the multipliers
Ay5 -+, Ay are pure imaginaries, at least provided that there

* Cf. my article Stability and the Equations of Dynamics, Amer. Journ.

Math., vol. 49 (1927) for a treatment of the equilibrium problem.
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are no linear commensurability relations between these multi-
pliers and 27 V' —1/v. If such relations exist the questions
to be considered become ‘more complicated in character.
Unfortunately, for a point of generalized equilibrium ob-
tained by the above method of reduction, the multipliers will
not-satisfy this :condition; more specifically, there will always
be a multiplier 0, which is double of course. This may be
readxly seen.. The Pfaffian. system admifs of the integral
Z = const. in the original -variables, and therefore admits
the integral : ' :
Z(xy+ ¢y, - - -y Tom + Pom) = const.

in the modified variables. By differentiation with respect to
the 2m arbitrary constants in the general solution x, - - -, Zom,
it appears that the linear relation

8Z 0z

axl :1/1 + e + ax2m y‘_)m, —_— const-

subsists for 2m linearly independent solutions w1, - - -, yom of
the equations of variation, and so for the most general
solution; it is understood that 8Z/8x;, (i =1, . .., 2m), have
P1, -+, Pam as arguments. Now if the 2m multipliers
&+ 44, ---, + 4y, are distinct, a complete set of 2m solutions

Yi = P ot (F=1,.--.,2m)

for k=1, ..., 2m exists (Amyi = —4;), in which p; are of
period = in ¢{. Since 8Z/d«; are also periodic, substitution of
these solutions in the linear integral relations in the y;’s leads
immediately to the conclusion that the constants on the right-
hand side must vanish, at least for ix$ 0. But if these
constants vanished for such a complete set of solutions, the
constants would vanish for every solution #, - -, yam. This
cannot be the case since yi, -- -, y2m can be taken arbitrarily
for any particular value of &.* '

* It is not possible for 0. Z/0x, to vanish simultaneously fori =1, ..., 2m
along the original motmn, since the Pfaffian equations then yleld
dz/dt=0, Gi=1,-..,2m) which is 1mposslble, the case of ordinary
equilibrinm being excluded
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There is then a pair of solutions of the equations of
variation which belong to the multiplier 0. Now

X = ?i(i+k)"“?i(t) =1, ";a2m)

for any % defines -a solution of the given equations after the.
reduction, so that by dlﬁerentla,tlon with respect to %, one
solution of the equations of variation

’ ’
Y1 = P12 Yom — Po2m

is obtained. This has periodic components and so belongs
to the multiplier 0. On the other hand theperiodic motion
with which we start is not isolated, but varies analytically
with the constant ¢ in the known integral (i, e., with the
encrgy coustant in the Hamlltoman case). This ylelds the
second.: pemodlc solution
1 !
= ai’—“zl’...,yzm = 63)2"‘;

belonging to.the multiplier 0. In general there will be
no others.

The difficulty may be turned in the following manner.
The variable Z may be taken as-one of the dependent vari-
ables xy;---, Zom, Say aS Zom, in the original =z, .., Zom
space. Furthermore the variable 6 = x2,—1 may be selected
as the single angular-codrdinate, which increases by 27 when:
a circuit of the curve of periodic motion is made. The
remaining codrdinates z, .- ., Zzm—2 may. be made to vanish
along this curve. Now let us restrict attention to those
motions ‘near the given periodic motion for which

Z=c

has the same value as along this motion. With this under-

standing, the Pfaffian system becomes of order 2m — 1 in

&1, -+, Zom—2, 8, 4nd may be written in the variational form
7'
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t, [2m—2
aﬂ (Z: X; %+ Xom—t o') dt = 0,
0 J=

to which set of equations must be added the last equation
of the first set. But the integrand is positively homogeneous
of dimensions unity in i, ---, Zim—2, 6, so that & may be.
taken as parameter instead of ¢{. Then the variational
principle takes the form

f [MZ— X; zj +X2m_l] = 0.

Hence we obtain a Pfaffian system of even order 2m—2
only instead of 2m, in which the coefficients are periodic:
in a variable 8 of period 27, and the known periodic motion
corresponds to the origin in x;, ---, Zem—2 space.

By this second method of reduction to a generalized equi-
librium problem, the formal difficulties referred to above are
avoided.

For these reasons, in dealing with the applications we can
restrict attention to the case of generalized equilibrium of
stable type as above defined.

2. Stability of Pfaffian systems. Our starting point
is furnished by the equations of motion, normalized to terms
of an arbitrary degree s by means of an appropriate trans-
formation defined by convergent series, according to the
method of the preceding chapter. The equations are thus
given the form

dpi o H

dt - 715 pi+Li,s+l,
1 P =1....
& e om G=1.m)

dt 07 Qi+M;:,s-|-1
where we may write

H=}Z_lljquj+H‘---+H§ GE=sors+1),
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in which Hjy involves only the m products m; = p;qi, of
total degree k/2 in i ..., 7, while Ljst1, Mis41 are
convergent power series in p;, ---, gm Which commence with
terms of degree not lower than s-}1, the coefficients being
of course analytic and periodic in ¢ of period =.

Suppose that we write

m
wt = 2 pig
=

Evidently » can be appropriately regarded as measuring the
distance of a point from equilibrium at any instant ¢; for,
in terms of the original real variables z;, :--, Zsm, the
function »® is given by a real power series in zy, -+, Tom
which begins with a positive definite quadratic form in these
variables,

2m
u = ,kZlajk(t) xjxe+ -
J' —
for all ¢, whence
2'2 2 2 & 2
kD E<u< KD K>k>0,
Jj=1 Jj=1

in a certain neighborhood of the origin.
It is obvious then that we can choose NN so large that

| Lijstal, | Migta| < Nutt (G=1,---,m)

 within a sufficiently small distance of the origin.
Multiplying the first of the partially normalized equations (1)
by g¢i, the second by p;, and adding, we conclude
d 7T;
dt.

From the definition of u, the inequality

< 2Nwust? G=1,..:,m).

then follows, so that

—mNg,l du

_1_au N
wtl dt s mN
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Integrating from 4 to £, we deduce from this last inequality

1 ll
— 4 — .
T w =___msN't t|

Now let us ask in how short an interval of time « can
exceed 2u,. At the corresponding ¢ we obtain

1 1

85 98,8
ug 20 ud

<msN|[t—t,],
whence obviously since s 2> 1, this cannot happen for

1
—_— L e
@ lt—t| < 2ms N ul

Hence the minimum time interval which must elapse before
the initial distance wu, can double in magnitude is of the
s-th order in the reciprocal distance.

In this same interval of time we obtain

' i ‘ 5438 542
W g 2 N'lto y
whence by integration
3) |m— | < PPNLP2 |t —1t] ((=1,-.-,m).

Also since H and its partial derivatives are polynomials,
we have

laH_aH°

0y 9y

A

n
P |ni—nl| < 20¥0m N Pt | t—to|

Jj=1
@d=1,.-.,m)

for my, 7} small. On the other hand from the normalized
differential equations we find in this interval

dpi , 0H l dgg o H .
— < 95+1 s+1
dt + bmm ! dt m; | = 207 Nug
(i:l,...’m).
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Combining these inequalities with the preceding set, there
results
dp; , 9 H® dqi aH®
it Toam Pl T om @
< 2L Nyt 4 28+ NPudt8 [t — ¢ |

Di

for ¢ = 1, ..., m. These are essentially the same as the
following inequalities

| d 7t li .A—ml
ldt(p'ey)’ ar@e™)
< 20+ Nustt 4 95+ N Pusts [t — ¢ |

where y; = 9 H°/dm; are pure imaginary constants. The
fact here made use of, namely that H and its partial deri-
vatives as to sz; are pure imaginaries, can easily be verified:
if pi, qi, G = 1, ..., m), be interchanged and H be changed
to its conjugate in (1), these equations are not altered; but
this means that the conjugate of A coincides with its negative,
i. e. that H is a pure imaginary function. By integration
the above inequalities give

@ [ pi — pg e—-)’nt—to) ’, ‘ g — q?' e)"(t—to) ,
< 25 Nyt [t — t,| + 28 m N Pusts [t — ]2

fore=1,...,m.
Now if we return to the convergent power series expressing
Zy,-++, Tam in terms of py, ---, gm and if we replace py, ---, gm by

0 —y t-t) 0 t—t,
pre ¥, ( °,---,qm67"‘( o)

‘respectively, the series obtained agree with the formal series
solutions up to terms of the (s+ 1)-th order in the 2 m
arbitrary constants pf, ..., ¢°. But the error committed in
so, doing is of the order of the differences appearing in (4).
Hence if we- express zi,---, zom by means of the formal
- series solutions derived from the normal form, broken off
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after the terms of degree s in the 2m arbitrary constants
28, -+, g%, the error committed will not exceed in numerical
value an expression

Augtt 4+ Bustt |t — t |+ Cugts |t — 1|2

during the interval (2), where 4, B, C are suitably chosen
positive constants.

‘On account of the fact that s is an arbitrary positive
integer in the above inequalities, these can be given a still
more simple form. Suppose that-| ¢t — & is even more severely
restricted than in (2), namely to be of the order at most
(s/3)41 in the reciprocal distance. Then the constitutents
of the sum above are cleariy of order exceeding s/3 in the
distance u, itself. Consequently if all the terms of the formal
series solutions of degree exceeding s/3 are discarded, the
order of the error will exceed s/3. But s/3 is arbitrary, whence
the conclusion:

If this formal series solution of the generalized Pfaffian
equilibrium problem of stable type is written to terms of an
arbitrary degrée s in the initial values p°,---, ¢° of the
arbitrary constants, the 2m trigonometric sums so obtained
will have coefficients of at most the first order in uy, and will
represent the cobrdinates xi, : -+, Xam with an error of order
T at most during a time interval of at least the reciprocal
order. Here uo represents the distance to the origin for t =1,
n x1, -+, Tam SPace. .

When written out explicitly these trigonometric sums for
Z1, - -+, Zzm have the real form

Ao+; (4j cos [t —l—‘Bj sin ¥ t)
where '
— . 3H° . 3H® ™
LV —1 = 4—— +---+1m7;m—, a =j§hj|§31

811'1

in which 4, ..., ¢ are intqgérs; and. where A4;; B; are
polynomials in p?, - .., g% whose terms are of degree at least
‘d and not more than s. :
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3. Instability of Pfaffian systems. In the case when
some of thé multipliers 4; are real, the situation is entirely
altered. If we assume that there are positive and negative
multipliers &+ 4,, - - ., == 4%, there will be a real k-dimensional,
analytic manifold of curves of motion approaching the curve
of periodic motion. Points on these curves near to the periodic
motion leave its vicinity in a relatively short interval of time.
More exactly, the distance will exceed

A(¢—
uoe( to)’

if u, denotes the initial distance from the motion at ¢ =%,
and 4 is a positive constant less than the least positive
multiplier. Similarly if ¢ decreases the distance wu, may
increase in a like manner along a second real analytic
manifold of curves.

Evidently such a situation is entirely different from that
found in the stable case and is properly termed unstable.

We shall not enter upon a derivation of results of this
sort, the first of which weére obtained by Poincaré.*

4. Complete stability: The work of section 2 makes
it clear that Pfaffian and Hamiltonian systems possess a
species of complete formal or trigonometric stability, in case
Ay, -++y Am, 2cV —1/7 are pure imaginary quantities without
linear relations of commensurability. Let us elaborate this
concept of ‘complete stability’.

Consider a differential system of even order 2m,

®) dzi/ At = Xi(@1,+--, Tam, ) (G = 1,---,2m),

for which the origin is a point of generalized equilibrium.
- Suppose that for ¢ = ¢, the point z? is at a distance ¢ from
. the origin. .Let T be any fixed time interval, f any positive
integer, and P, (w1, - - -, Z2m, {) any polynomial with terms of
- lowest degree s in the codrdinates and with coefficients
analytic and - of period-s in £. If then it is posgible always.

‘flvi‘or@ome of the fundamental results see Picard;, Traité d’Analyse,
volL. 8, chap. 1. - '
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to approximate to P, for [t —¢t,| < T with an error less

numerically than
Mefts+l1

by a trigonometric sum of order N
N
Zeosyt+Bisingt)  (k—1y[>1>0),

where M, N, ! depend only on f and P,, and where /, = 0,
~ the equations (5) will be said to be ‘completely stable’.
- As a very simple example consider the pair of equations

dz/dt = kxy, daxs/dt = —kax,,
of which the general solution is

z; = Acoskt+ Bsinkt, x; = — Asinkt-+} Bcoskt,

so that the codrdinates x;, x; are represented by trigono-
metric sums of the first order. Any polynomial P; of degree
8 = s can also be exactly represented by a sum of order N
not exceeding 2"*'. Hence the conditions of the definition
are satisfied. :

The results of section 2 show that in the case of Hamiltonian
or Pfaffian systems, there will be complete stability if there is
ordinary stability as defined earlier.

‘This is obvious since the differences % —; which enter
in the trigonometric sums of section 2 are nearly given by
a certain limited number of integral linear combinations of
the m -+ 1 quantities 4,/V —1, ..+, 4,/V —1, 27/r, and no
such combination vanishes.

In case of complete stability, the solutions of the normalized
equations of variation (chapter III, section 5) are limits of
trigonometric sums of the specified type, and are trigonometric
by the lemma on trigonometric sums of sections 5,6. Hence
the multipliers are pure imaginaries.

It is important to establish -that this definition of com-
plete stability is independent of the particular codrdinates
Zyy -+, Tam Selected. In fact, suppose that the given system
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is completely stable. Let us make the admissible change of
variables ,
;ii:?i(xlf"'rw?m, t) (@ = _ly“‘; 2m)

in which. ¢; are analytic in =z, ---, Zom, ¢, vanish at the
origin, and are such that the determinant |3 ¢:/dx;| is not O
there, while the coefficients in ¢; are analytic periodic func-
tions of ¢ of period r. Then the two variables

=+ 7P,

and
& = [lLI) + ¢t + xzmlllz,tzto

evidently serve equally well to measure the distance from
the origin at ¢ = {¢,, since we have

0<ld<ele<D

in the neighborhood of the origin.
Now consider any polynomial P; (zy, - - -, Zom, £) which can
obviously be written

P*(xl’ sy Xomy t)+Q(.’L‘1, sy Xomy t)

where P* is a polynomial in ay, - - -, X2, With terms of lowest
degree s while @ is given by a power series commencing
with terms of degree atleast f+s-+4 1. It is clear that the
polynomial P* can be represented by a trigonometric sum of
the specified type with an error of order f+s-1 in ¢ by
the condition for tomplete stability, while it is clear further-
more that Q is of order f+s-4 1. Hence it is plain that
Ps(zy, - -+, Tom) can be repx:eseuted by the same trigonometric
sum in the desired manner. This establishes the complete
stability in the new. variables.

The mere fact that the multipliers of the system of 2m
equations of .the first order fall into pure imaginary pairs by
no means -ensures complete stability in the above sense.
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A sufficiently simple example is furnished by the pair of
equations
dz/dt = ky+ z(z*+vy?), dyldt = —kx +yE*+y?),

in which % is positive, and the fundamental period is taken
as 2n. The multipliers are then pure imaginaries, namely
+kV —1. But if the first of these equations be multi-
plied by 2z, the second by 2y, and the two equations so
modified be added, there results

du/dt = 2u? (v = 2*+ 9%,

whence, by a further integration

Uo
1—2u(t— 18, °

But, if there were complete stability, it would be possible
to find a fixed integer NV so large that, for some constant K,
the inequality

U ==

[ — 8y < Kud

held, in which Sy represents a trigonometric expression of

order N of the specified type; this follows from the fact that »

is a homogeneous polynomial of the second degree in x and v,

while u, is the squared distance ¢%. This inequality may be

written :
U—u  Sv—up < Kie.

2 2
Uy Uy

Now let u, approach 0. It is obvious that

lim 2% — 2t — ).

uolﬂo 2 (t—1)
We infer then that

uo=0 uo

But the expression on the left is a trigonometric sum of
order at most N of the specified form, and approaches its
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limit uniformly. Consequently by the lemma on trigonometric
sums consideied in seetions 5, 6, the limit of -this sum is
necessarily a sum of the same type. However it is impossible
that 2(¢ — ¢,) should be so represented. Hence in this case
there is not complete stability.

The condition that the multipliers be pure imaginaries has
been seen L0 be necessary for complete stability even if not
sufficient. Henceforth we shall assume that, if the m pairs of
pure imaginary multipliers be denoted by =4 24,, .-, & in,
there are no linear commensurability relations between

Ay -+, Ay and 27 V' —1/z. Of course by so doing
certain exceptional cases are excluded which require further
study.

For complete stability an infinite number of conditions
besides that of pure imaginary multipliers will be found to
be requisite.

5. Normal form for completely stable systems.
We have already seen that Pfaffian and Hamiltonian systems
of equations possess the property of complete stability, in
case the characteristic numbers are pure imaginaries. It
becomes a very interesting question to determine the most
general case in which there is complete stability and to find
the characteristics of motion near generalized equilibrium in
" this case. This we shall do by establishing a suitable normal
" form for equations of completely stable type.

Since the multipliers 4, -- -, 4, are of the stated type, we
may transform the variables z;, ---, Zsm t0 p1, ---, gm by
a linear transformation so that the transformed system is

dpildt = —Aipi+ P, dg/dt=2q¢+Q (GE=1,-.-,m)

“with p;, ¢; conjugate, and P;, @; beginning with terms of at
least the second degree.
Now change the variables once more by writing

Di =]7i+6i2; qi ‘—’—-’Ei'*"?iz (i =1, .. m).
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It:is readily found ‘that the equations'preserve their form,
with . the: new P;, Q; having homogeneous quadratic terms

Pis 0 0 9;
Prz+2(1’./ 3 p; —4qj a{;ﬁ)l ;’-i.?-’iz"r‘ 39’;:

ot 5 (ot~ 5 4

respectively. On inspecting these terms and makmg use of
the incommensurability of the multipliers, it appears at once
that these new expressions can be made to vamsh in one’
and only one way. In fact let

P(t)pll.-.p::-qfl...gg;f (¢1+'--'+ﬂm;2

be -such a term in P; while the corresponding term in g
has a coefficient ¢ (f). By comparison there is obtained the
differential equation for ¢

P(t)+[2 (aj—8)) bi— ]q:+ =0,

which can be satisfied by a periodic function ¢ of period =
unless the . coefficient of ¢ is an integral multiple of
27wV —1/z. This is not possible because of the hypothesis
of incommensurability. Moreover the periodic solution is
unique (cf. chapter III, section 9).

"Thus all of the second degree terms in P;, Q; may be
removed.

By a precisely similar method all of the third degree terms
in P;, @; may be removed by a further transformation

pi = pi+ ¢s, ¢ =qi+Pa G=1,---,m
except when the analogous coefficients

jgl(“j_ﬂ.i) Aj— A, j;:(aj—ﬁj) Aj 4
@+t = 3)
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vanish. Such exceptional terms will have the form
PO Pz Uy QWery G =1, 5 m).

But even in these terms the functions ¢, ¥ may be so selected
as to make the new coefﬁclents, namely

PO+LL,  Qo+2Y,

reduce to constants (cf. chapter ITI, section 9). Hence we
may normalize P;, Q; so that

P, = pf(cupqu—l—--~+ Cim Pm qm) + + -,
Q= qi(dilplqi+"'+dimmeM)+ .

where the complete terms Pjs, Qi of the third degree appear
explicitly written in the right-hand members.

Our next step will be to show that in the event of com-
plete stability we must have the further relations

Qi})i3+17i Qis = 0 (2 =1, te m)y

le, cg+dy=0, (4,j=1,...,m). In order to establish
thls fact we employ the followmg lemma whlch is almost
self-evident:

LEMMA ON TRIGONOMETRIC SuMs. If a sequence of trigono-
metric sums of the type

N ) o .
_20'(A; cosljt+ Bjsingit)  (|L—1§|>1>0),
J= .

with N, ! fixed while 4;, B;, I; vary except that I, = 0,
approaches a limit ¢ (¢) uniformly in some interval, then g (f)
is itself a tngonometnc sum of order at ‘most N in this
interval.

The proof of this simple lemma is deferred to the follow-
ing section.

‘Consider the quadratic polynomials p; g m the coordmates.
We find from the gwen equations -



112 DYNAMICAL SYSTEMS
d(ptqz)/dt = QiPis+pian+-~-, (Z = 1’ ey m)’

where the terms ‘not expliéitly indicated are at least of the
fifth degree, and where the terms written explicitly are

Diqi [(Cil + dil) pP1qa + s + (cim + dim) Pm Qm]

G=1,-..,m).

‘We desire to prove that these terms vanish identically.
Now the differential equations above lead at once to the
inequalities
ldmi/dt! < K(m+---+mm)®  (mi=pig))

for § = 1, 2,..., m, where m,, .-+, 7, are of course positive
or 0. From these last inequalities it follows that we have’

|duidt] < mKu? ( =2 ﬂj),

Jj=1
and - thence
lu—u| < dmKullt—1t| < 2m KTul

for any given interval of time |t—1{,| < 7, provided that u,
is sufficiently small. This follows by the methods of section 2.
Hence 1 — u, is of the second order in w, throughout this
interval, while the inequalities for dn;/d¢ show that 7r;—n

is also. Thus
_ ¢i Pis+ pi Qss,

which is a quadratic pelynomial in 7y, - .., 7y, differs from
its value at ¢ = {, by terms of the third order in u;, and
the differential equations above give

dm
at

—(@Py+QY| < Luk2 (G=1,...,m).
By integration there results

|70, —m2—(Q P+ Q%) (t—1t)| < LTl
. . . G=1,...,m)
in the interval under consideration.
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Suppose now that we write
p(z:ai£7 q:?:ﬂis (i=1,---,m),

a, -+, Bm being m arbitrary pairs of conjugate imaginaries,
and suppose that the positive quantity ¢ approaches 0. The
inequality last written in which w«, is to be regarded as
a constant multiple of &, shows that we have

lir_no(n'i— et = a.B,[(c,+ d.) e, B+ - (it di) @, 8,1 (E—1,),

where the limit is approached uniformly in the interval under
consideration. On the other hand sr; can be approximated
to by a trigonometric sum of the specified type to terms of
order ¢° in this interval, and consequently (7,—7?)/e* can
be approximated to terms of order e. Thus the left-hand
member is the uniform limit of a trigonometric sum having
the properties specified in the lemma, and must therefore
itself be trigonometric. This can only be true if the sums
¢+ di; vanish for all values of ¢z and j, as we desired to
prove. _

. Thus we have to terms of the third order for i =1,...,m,

dpildt = —p; [7-z'—,21 Cij pj qJ'] +ee
J=

dqi/dt = pi[li—'Z: cUquj]—l----.
J:

Evidently we have begun a process which enables us to
remove terms of higher and higher degree in P;, @; except
for terms with factors p;, ¢; respectively, and coefficients which
. are polynomials in the m products p; ¢;, one being precisely
the negative of the other.

Any completely stable system of equations (5) may be reduced

Jormally to the normal form

(6) d&/dt=—ME, dg/dt=Myu @G=1,-..,m),
: .
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where My, -+-, My, are pure imaginary power series in the m
variables &, 7i, 1. e.,

m
Mi=k— Zegfut o G=1ym),
J=

and &;, q; are conjugate pairs of variables.

Conversely, if any set of equations have this normal form,
the argument of section 2 s available to show that there is -
complete stability.

6. Proof of the lemma of section 5. Let us consider
a sequence of trigonometric sums v (¢) of the type prescribed
in the lemma to be proved. For such a sum we have

(D@D +8)--- (D*+ ]y =0

where D indicates ordinary differentiation with respect to ¢ in
the symbolic differential operator on the left. Direct integration
2N + 1 times gives

Y+ 212 ff W(t) de*+
+(gl})£--4£tw(t)dﬁN=P(t).

where P(t) is a polynomial of degree at most 2.NV.
Now all of the / exceed ! in absolute value, for by .

hypothes1s
Ili__' I=lll|zl (@=1,..-, N).

It is clear then that, by suitable choice of a sub-sequence
Y (%), the reciprocals m; = 1/l;, which are less numerically:
than 1/, will approach limits m} with |m}| < 1/I. Any
two of the quantities m} will be distinct unless both are 0.
of course. Now divide both members of the above integral
equation by the product 22 ... 7%, and pass to the limit..
Since 3 approaches ¢ uniformly, we obtain at once

N ¢ ¢ o
(Hmfz)q’_‘— -|-£ L ¢ (f) AN = Q(¥),

j=1
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where Q(¢), being the uniformly approached limit of a
sequence of polynomials P(¢) of degree not exceeding 25, is
itself such a polynomial. This leads at once to the conclusion
that ¢ satisfies the linear differential equation with constant
coefficients

[Dimy2D*+1) ... (m}¥? D*41)] ¢ =0,

with general solution a trigonometric sum

-
Cy+ 27 [C; cos (t/m¥) + D sin (t/m¥)]
. Jj=1

where the sum is only extended over those values of j for
which mJ* is not 0. Hence ¢ is of the stated type.

7. Reversibility and complete stability. It would
be possible to show further how intimately the variational
principle and the requirement of complete stability are inter-
related.t Instead I prefer to follow another direction of
thought in order to show that the requirement of complete
stability is also very intimately connected with that of re-
versibility in time of the given differential system, provided that
the ordinary definition of reversibility is suitably generalized.

We shall say that a system (5) with generalized equilibrium
point at the origin is ‘reversible’ if when ¢ is changed to
— t the system then obtained- is equivalent to (5) under the
formal group.

By this change of sign of ¢, the multipliers 4; are changed
to their negatives — 4;, Hence it is obvious at the outset
that in the reversible case of even order, these multipliers
are grouped in pairs, each member of a pair being the negative
of the other. We are primarily interested in the case when
these multipliers are furthermore pure imaginaries and with-
out linear commensurability relations. For this reason we
shall assume that these conditions for first order stability are
satisfied.

T See my paper, Stability and the Equations of Dynamics, loc. cit.
8‘
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It is clear that this definition of reversibility is independent
of the dependent variables employed. Hence if we have
a completely stable system to begin with, we may take it
in the normal form (6). The change of ¢ to — ¢ gives
a modified system,

d5/dt = M; &, dpldt = —Mimi G =1,---,m)
where we introduce the dashes to avoid confusion. But it

is possible to pass from one set of equations to the other
by the aid of the transformation of the formal group

& = i, 7 =

ey

I3 (i=l,--~,m).

Therefore if there is stability of the first order, a mecessary
condition for complete stability is that (b) is reversible in the
sense of the above definition.

It remains to prove that this simple necessary condition
of reversibility, together with the requirement that the
multipliers are of the prescribed type, is also sufficient.

The same process of normalization used in section 5 leads
us to the norma! form of more general type

(1) d&/dt = Uik, dmldt = Vipy (G = 1,--., m),

where U;, V; are functions of the m products & 91, ---. Emqm
with initial terms A;, — 4; respectively. This may be obtained
without the hypothesis of complete stability.

Now if we change f to — ¢ these normalized equations
become

8) d&/dt = — UL, dyl/dt = —Vig (G=1,...,m).

These are to be equivalent, by hypothesis, to the original
equations (7). It is to be observed that the equations (8)
are the same in form as (7) save that the roles of &; and 7;
are interchanged, while — U;, —V; take the place of V;, U;
respectively. _

But it is readily proved that the most general transformation
preserving this normal form (7) is of the type
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(9) E=G&f, m=mg (G=1,..-,m),

where f; and g; are arbitrary power series in the m products
E 7, -+, Em 7m mot lacking constant terms, and with co-
efficients independent of ¢.

The fact that these transformations do preserve the normal
form is obvious upon direct substitution. In the first place,
we note that the inverse relations are of the same type

':-Eihh Ei="]iki (1:1,,m)

D

&l

with
fihi=giki=1 = (i=1,-..,m).
Hence we find
d&/dt = U; &
where
7 - < 0 h;
m:ﬁh“+za.
Jj=1 0Yj

(U+7v) & w] (s = &1,

together with like expressions for dy;/dt and V;, fori =1, ..., m.
In order to establish the fact that this group of trans-

formations is the most general preserving the normal form,

we shall proceed step by step.

~ Consider the terms of the first degree in any such series

for &, yi. These may be written

a&i+by, cEkiddn
respectively, so that we must have, for instance,
d . d db
Z7 @8I = ki & — bl kB e
= ki(a&i+bg)+ -,

if the normal form is to be preserved to terms of the first
degree only. Hence we infer that b vanishes and a is a con-
stant. Similarly ¢ vanishes and 4 is a constant, conjugate
to a.
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Of course this means that the transformations from &; »;
to &, 7: are of the specified form as far as the first degree
terms are concerned.

Hence the most general transformation which preserves
the normal form may be obtained by the composition of the
special linear transformation of the group

vl

== a:Ei, ;t =d’71 (i=1°""7n);

and a transformation of the form

§ = &+ F, 7 = 7.+ G

" in which Fi, G: begins with terms of at least the second

degree.
Denote the quadratic terms in F; and G; by Fi and Gp
respectively. Thus we have to consider

E=8+Fat -y, pi=n+Gat--- (G=1,---,m)
with inverse transformation
§=8—Fn+ ..., v ni=gi—Gut+ .- G=1,.-.m),
in which .F_'iz,_éiz are merely Fj, Gy vespectively with &, 7;
replaced by &;, 7: respectively. We are to- determine what

is the most general form of Fj:, Gz which can preserve the
normal form. Now we have

(L ST 2L T2 WP
dt U“E‘+,§l’(£’-a§j LYY T +
for ¢ = 1, .... m, whence by comparison of second degree
terms

([ 0Fs  0Fn\, 0Fa . .
A,E3+j%x,(§, T 3']})+ T2 0 (=1, m)

The constituent terms which may occur in Fj can be dis-
cussed by the methods of section 5, and this leads to the
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conclusion that Fy must vanish. Likewise Gy is found to
vanish. Thus the transformation has the stated form to terms
of the second degree inclusive, and it is necessary to. con-
sider next a transformation

E=&+Fat -y, m=n+Gst. .- @G=1,-..,m)
with inverse transformation
g =8—Fag+ .-, m=17i—'a£s+ e @G=1,---, m).
Here we are led to m equations
. S 0 Fi 0Fs\ , 0Fs
—wFat 2u(5 50— ) + R = B 4T,

(7: =1,-.-., m)r
where A Uz denotes the difference between the second degree
components of U; and U;, when &1, ---, Em9m replace

E7, ) Emm in U;. Thus AUz is a linear function of
these m products with constant coefficients. But the method
of section 5 shows then that i3 contains a factor &; in every
term, these terms being of the form

m
5:'}2200‘5;'11 =1,...,m).

Of course (3 has a corresponding similar form . in which g;
appears as a factor.

It follows that the transformation has the stated form to
terms of the third degree inclusive. But then the most
general transformation can be expressed as one of the specified
group followed by a further transformation

E=§+Fut -, mi=n+Gut . G=1,...,m)

and we can continue the above method of treatment to the
terms of fourth degree and of all higher degrees. Thus we
arrive at the conclusion desired that the most general type
of formal tracsformation preserving the normal form is given
by (9). :
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It remains to consider in what cases it is possible to pass
from (7) to (8) by a transformation of the type (9), where
now we shall introduce dashes so as to distinguish the two
sets of variables &, .--, %, and &,---, m. If we write
wi = Eiqi, wi = Eiqi, Wi = U;+Vi, we obtain the two
associated sets of equations in wy, ---, um and wuy, ---, Um

(10) duildt =  Wi(uz, -+, itm)us (G =1,-.,m),
(11) dus/dt = — Wi, -, Um)u; (@ =1,---,m),

while we have the relations

(12) Ui = uihi(ula '”7um)ki (uly"'; um) = “il'i(ul’ cety um)
: (z——_—-l,,m)

Furthermore the constant term in /; is ¢;, a real positive
constant, for reasons given above. It is very easy to show
that it is impossible that (10) and (11) are related by (12)
unless W; = 0.

To begin with, we recall that U; and V; have constant
terms which are the negatives of one another. In consequence
W; starts off with terms of positive degree » in w, - --, tm,
the aggregate of which we designate by W;. If we perform
the indicated change of variables, we obtain the identities

du;
dt

= _QiMf(eiuI; cy Om ufn)‘lti—l- e
= @i Wir(us, - -+, um)ui+ -+,

in which only the terms of lowest degree r 4 1 are explicitly
indicated. Hence we obtain by comparison

]'Vif(uly () um)+mr(eluly sty émum) = 0.

But consider some term of Wi, say

o Ciulalo..u::' (a1+...+am:r).
This identity yields
Ci(l + Qlal eee ():xn"‘) = O
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which is impossible for ¢; +# 0. Hence every term of Wi
must vanish, which is contrary to assumption. In consequence,
we must have W;.= 0,(¢ =1, ..., m). In other words the
requirement of reversibility necessitates that the normal form
(8) has the special property characteristic of the case of
complete stability.

If there is stability of the first order, reversibility is a
sufficient condition for complete stability in the gemeralized
equilibrium problem.

The case of ordinary equilibrium is of course still simpler
than that of generalized equilibrium, and the results are
entirely analogous.

8. Other types of stability. We have already defined
stability of the first order, and complete or trigonometric
stability. It was proved in section 2 that, for the equations
of dynamics (taken as of Hamiltonian or Pfaffian type), first
order stability necessitated complete stability. Other types
of stability also possess interest.

In the first place as of the greatest theoretic importance
may be mentioned ‘permanent stability’, for which small
displacements from equilibrium or periodic motion remain
small for all time. This is the kind of stability of ordinary
equilibrium when the potential energy is a minimum. The
equations of dynamics are of the type for which this stability
~ may obtain, although in general the problem of determining
whether or not it does obtain is one of extraordinary diffi-
culty, and constitutes the so-called ‘problem of stability’.
Thus far the problem has only been solved when a known
convergent integral ‘guarantees such actual stability of per-
manent type.

Another type of stability is that in which these displace-
‘ments remain small for a very long interval of increasing
and decreasing time. A sufficient condition for such ‘semi-
permanent stability’ is the existence of a formal series integral
starting off with a homogeneous polynomial of least degree
constituting a definite form in the dependent variables. It
seems likely that a slight extension of this sufficient condition
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will turn out to be necessary. Completz stability necessitates
semi-permanent stability of course.

Finally a type of ‘unilateral stability’ in which the dis-
placements remain small for £>-0, and in general tend to
vanish as ¢ increases indefinitely, has been considered by
Liapounoff and others.* It is easy to demonstrate that if
the m multipliers possess negative real parts, this kind of
stability will obtain. Furthermore it is necessary for this kind
.of stability that none of these real parts are positive. In the
case of the equations of dynamics, however, the real parts
of the multipliers can not all be negative, since with every
multiplier 4; is associated its negative. Thus the only possi-
bility of unilateral stability in dynamics is seen to arise
when the multipliers are pure imaginaries. In this case the
_proof of unilateral stability would léad to the proof of per-
manent stability.

Thus for the problems of dynamics the important types
of stability are complete or trigonometric stability, and the
permanent stability mentioned above. We shall recur later
(chapter VIII) to the important problem of stability concerned
with the interrelation of these two types. :

* See, for instance, Picard, Traité d’Analyse, vol. 3, chap. 8.
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