- CHAPTER 1II

VARIATIONAL PRINCIPLES AND APPLICATIONS

1. An algebraic variational principle. On the formal
side of dynamics it has proved to be a fact of fundamental
importance that the differential equations can in general be
obtained by .demanding that the ‘variation’ of some definite
integral vanishes.

To make clear the essential nature of the variational
method, we may consider an analogous question concerning
ordinary maxima and minima.

Let there be given » equations in » unknown quantities.

fi@, o m) =0 (=1, m),

in which the left hand-members are expressible as the partial
derivatives of a single unknown real analytic function F,

fi= 0F/oxi =1, ---, n)

The n equations are then of the special type which arises
in the determination of the maxima and minima of F, and
they may be combined in one symbolic equation dF = 0.
- Their significance is that for the values zf, ..., 2% under
-consideration, the function F is ‘stationary’.

Now suppose that the variables a; are changed to y; in
the n equations, where the relation between x; and y; is one-.
to-one and andlytic. Since the phenomenon of a stationary
" value of F is clearly independent of the particular variables
in terms of which F is expressed, the solutions of the original
equations can be expressed in the characteristic differential
form dF = 0, in the new as well as the old variables.
This furnishes a means of obtaining an equivalent system of
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34 DYNAMICAL SYSTEMS

equations in the new variables, which is in general simpler
than that of direct substitution in the original equations.

In cases when it is not possible to write the given equations
in the special form, it is frequently possible to find combinations
of these equations which may be so written.

Moreover any non-specialized set of » equations in zy, ---, Za
of the form first written is equivalent to 2n equations obtained
from dF = 0 where

n
F =j—2fﬁx'l+j’

at least provided that the determinant |3 f;/9x;| + 0. For we
find that zpy1, ---, x2n are 0, while x;, --., 2, must satisfy
the required equations. '

From these circumstances it is easy to conjecture that
the significance of the analogous variational principles of
dynamics is largely formal.. '

2. Hamilton’s principle. Let us formulate the concept
of a ‘stationary integral’. Suppose that the equations

i = wi(t, 4) G=1,--- m)

represent a family of functions depending on the parameter 2
in such wise that for 2 = 0 we have a given set of functions,

z;(t,0) = 20(?) =1, .--, m).

We shall assume that the functions x;(f, ) are continuous
with continuous first and second partial derivatives in ¢ and 2,
and also that these functions of ¢ and A vanish identically
sufficiently near to the two ends of the interval (%, #) under
consideration,

zi(t,4) = 0 b=tLtote h—e S < 1),
Under these conditions the integral

t A
I = J: Fxy, -y Zm, x1, - -+, Tm) A,
0
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where #' and its partial derivatives of the first two orders
are taken continuous, is said to be ‘stationary’ for x;, = a0(¥),
if for every such family of functions we have

oI

—67|},=o dl == 0.

07 =

This amounts to the equation for 2 =0,

* oF ox; , 3F 8.’1:,) o
.jto ng(ax, T3z ax; 94 dt = 0.

Integrating by parts and noting that dx; vanishes at the end
points, we obtain the equivalent equations

t. m
! oF oF
f P2 [E—W(ax,)]"m” =0

In particular we may take
x; (¢, 2) = 2O+ 10z, (G =1,..-,m)

where the functions Jdz; are arbitrary continuous functions
of £with a continuous first and second derivative except that
they are to vanish near to #, and ¢.

In this way the condition that the integral be statiomary
is found to be equivalent to the system of m differential

equations of Euler in 2f, - .., 22,
oF oF .
LEB2E g =1,

In fact the above integral can not vanish for all possible
admissible functions z;(f, 2) unless this condition is satisfied.*
 But the m equations just written are identical in form
with the Lagrangian equations except that L is replaced by F.
Hence we obtain the following important result:

* See, for example, 0. Bolza, Vorlesungen iiber Variationsrechnung,
chap. 1, for fuller statements and arguments.
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36 DYNAMICAL SYSTEMS

The Lagrangian equations may be given the variational
Jorm known as Hamilton’s principle,

1) aJ:".Ldt=n

According to the principle which led us to introduce the
concept of variation, we may affect any desired change of
variables in the given Lagrangian equations by introducing
the new variables in the function L. To this fact is due
much of the convenience of the Lagrangian form.

3. The principle of least action. There is a second
well-known variational form for the Lagrangian equations
termed the ‘principle of least action’, and we proceed to
clarify the relation of this principle to the one just formulated.
We assume that L = L,+L1+Lo is quadratic in the
velocities, and recall that the Lagrangian equatlons admit
the energy 1nteg1 al

, 0L
W= 2(9}5?})—19 = Ly—L, = c.

/=1
It is on this fact that our considerations will be based.
Let us confine attention to the case where the energy
constant ¢ has a specified value, say ¢ = 0. Hence we have
L, = L, along the motion ¢, = ¢?(), G=1, .-, m), con-
sidered.
 Now define 7* as follows:

I+ = —f(VL, V) t—f'(2VLoL,+Ll)dt
This yields
SI* — 61—2 f‘(Vf,_VE,) GVIL—oVIL) dt.

Accordmgly, if the ¢?(?) satlsfy the assumed energy condition

we -shall have
0I* =401

for all variations of the ¢;. Hence if the ¢ in addition
satisfy the Lagrangian equations, so that d1 = 0, we shall
have dI* = 0 also.
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The integrand of I* is positively homogeneous of dimen-
sions unity in the derivatives ¢i. Consequently the numerical
~ value of this integral I'* is independent of the parameter ¢
used along the path of integration, and the value of the
integral depends only on the path in ¢y, ---, ¢gm space;t for
variations of the admitted type the end points of the path
are fixed. Thus the integral of energy can be regarded as
merely determining the parameter ¢, since if we write

i=[VEIVLa,

the integral relation is satisfied in the new parameter ¢.
Consequently, if we have dI* = 0 for ¢; = ¢?(¢) and if
the new- parameter ¢ is chosen in this manner, we have
01 =0 also for ¢, = ¢?(?).
An alternative variational form for the equations of motion
of such a Lagrangian system is 0 T* = 0, or more explicitly,

2 GJZI(2VIE+L1)dt=O

provided that Ly is so choser that the energy constant vanishes,
and the parametert is determined as specified.

The equation -0 7* = 0 constitutes the ‘principle of least
- action’ for this problem, and is usually given for the case
wheré the linear term L, in the velocities is not present.

By means of this principle not only the variables ¢;
but also the variable ¢ may be transformed with facility.
Indeed, it is obvious that the condition d I* = 0 is invariant
in form under a transformation of the dependent variables g;
to new variables g For along the transformed curve the
- same variational condition will be satisfied, except that L is
replaced by its expression in terms of the new variables,
while ¢ has the same meaning as before. Consequently in
order to transform these variables, it is sufficient to effect
the transformation of L directly. The corresponding trans-

1 See 0. Bolza, Vorlesungen iiber Variationsrechnung, chap. 5.
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formed equations are then obtained by the use of the new
expression for L. :

The allowable type of transformation of the independent
variable ¢ is the following:

’dt = plq, -, Qm)d7-

In other words, the differential element of time is divided
by a factor u depending upon the coordinates. We may
determine the nature of the modification which the Langrangian
equations undergo as a result of this transformation as follows:
We note that the integral 7* may be written equally well

% -
I* =J‘: @VuLy-nL, +pL)dt.
(]
This modified integral is of the same form as before if we set
L = uL.

Furthermore J7* vanishes along the curve whether ¢ or ¢
be regarded as parameter. By this transformation of ¢, then,
the equations of Lagrange and the given integral condition
go over into other equations of the same type with the
principal function L multiplied by w.

The differential form Ld¢ is invariant under transformations
of either type. We conclude therefore the following fact:

By a transformation

G=Ffi@, - Qm) G=1,---,m), dt=1p@, - am)dt,

the Lagrangian equations with energy constant 0 go over into
a like set of equations with energy comstant O in which L is
obtained from the formula

Ldt = Ldt.

In the reversible case we have Ly = 0, and thus

I*=J:‘2VE‘LTdt=2£:'ds,
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where ds® = Lo L;(dt)* is the squared element of arc on
a surface with coordinates ¢i,---, gm. '

Thus in the reversible case with fixed energy constant the
curves of motion may be interpreted as geodesics on the
m-dimensional surface with squared element of arc

ds® = Ly Ly (d?t)®.

This result indicates the degree of generality which attaches
to the geodesic problem on an m-dimensional surface.

4. Normal form (two degrees of freedom). The
transformations deduced above admit of particularly elegant
application of the case of two degrees of freedom.* In this
case the differential element .

1
detg == ?(an dqf—*— 2(142 dql dQ2+ 22 dqg)

may be regarded as the squared element of arc length of
a certain two-dimensional surface. By choosing ¢, and ¢.
to be the coordinates of an isothermal net on the surface,
the squared element of arc is given the form

1 _ —_
5 1A+ 7).

Consequently if we choose the function g as 14, and make"
the transformation of ¢ above, 2 reduces to 1.

For a given Lagrangian system with two degrees of free-
dom and given energy comstant O, there exist variables of the
above type for which the principal function L has the form

1 /
L=5@+a)tegt+B8e+r
The equations and condition then take the nmormal form

@'+Age = 0y/0q, ¢@—Aiq = 3r/og
(A = daldgs —0B/0q),
1 y
< (@' +a) = 7.

* See my paper Dynamical Systems with Two Degrees of Freedom,
Trans. Amer. Math. Soc., vol. 18 (1917), sectious 2-5.
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Now if we regard ¢, ¢g- as the rectangular coérdinates of
a particle of unit mass in the plane, it is seen that the
above equations express the fact that the particle moves
subject to a field of force derived from a potential energy
— 7 and a force of magnitude Av perpendicular to the direction
of motion, where v denotes velocity.

Any such Lagrangian system with two degrees of freedom
can be regarded as that of a mass particle in the q,, gs-plane,
subject to a conservative field of force derived from a potential
energy — 7, .and a non-energic force Av (v, velocity) acting
n a direction perpendicular to the direction of motion.

5. Ignorable codrdinates. The search for integrals is a
task of fundamental importance in connection with differential
systems. The question as to whether integrals of a particular
type exist or not can usually be answered by formal methods.
Their determination has been considered in many cases. In
order to refer somewhat to this phase of dynamics, we con-
sider briefly integrals of Lagrangian systems which are either
linear or quadratic in the velocities. The variables-g,, ---, q,,
are .confined to the small neighborhood of a point ¢}, -- -, 4,
while g1, - - -, gm are arbitrary for the integrals treated.

We shall assume that I is quadratic in the velocities with
the homogeneous quadratic component Ly a positive definite
form.

There is one very simple case in wluch a particular integral
of the Lagrangian equatlons linear in the velocities can be
found immediately, namely the case in which one of the
-codrdinates, as g;, does not appear explicitly in the principal
function L. In this case, the corresponding differential

equation becomes
4125 =
dt\ogi/ 7’

0L/bgt = ¢

so that

is an integral lidear in the velocities. The codrdinate g,
is then said to be.an ‘ignorable coordinate’.
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It may be proved by the method of variation that the
m—1 equations remaining, which gi_ve a system of m—1
equations of the second order in gy, - --, gm after the above
integral has been used to eliminate g1, can be expressed in
Lagrangian form. Let us denote by L the function of
Qs, -, gm, G5, -+, gm oObtained from L by this elimination.
g, -, satlsfy the given Lagrangian equatlons, we find
for an arbltrary varlatlon of g, -+, qm

af'Ldt— aL by
=1 ;

‘after an integration by parts; here q{ is determined by the
‘integral relation, although ¢, is not determined up to an
additive constant. If the Jdgqs, ---, dgm vanish near the
end points, this reduces to

L — t,
61? Ldt = c6g1|:‘ or 6£ (L—cqn) dt = 0.

If ¢ is an ignorable coordinate, the Lagrangion equations
can be replaced by a set of Lagrangian equations in gs, -+, m
only, with modified principal function

aL
L——+ / q{,

in which the known integral is used to eliminate gi.

We sketch the above reduction of the number of degrees
of freedom by use of such an integral because it is typical
of the kind of reduction aimed at in many dynamical problems,
namely a reductlon maintaining the general form of the
equations.

6. The method of multipliers. Let us ask next the
following question: Under what conditions is it possible to
find m ‘multipliers’ M;, depending upon the codrdinates and
-the velocities, such that when the Lagrangian equations are
multiplied by M, ..., M, respectively and added, the left-
hand. member of the resulting equation is the exact derivative
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of a function V linear in the velocities? If a set of such
multipliers exist, we have

S d (3L oL | __ dv
Sulits)—rl="a

Evidently this will lead to a generalization of the notion
of ignorable codrdinates, in which special case we have
M; =1 for some : while M; =0 for 4.

On comparing coefficients of ¢;" we derive first

8* L ov
M’ = 7 ) = 1 cee, M),
jZ——l 7 8gi 9 0qi . 27w )

Here, because of the assumption on L, the coefficients of 3
are functions of the codrdinates only. The right-hand member
is also a function of the codrdinates only, since V is linear
in the gi. Hence the functions M; must involve only the
coordinates, and partial integration with respect to ¢ yields

oL
V = Mi—=-+8(q, -+, gm)-
121 Jaqj+ (@ gm)

For a given V only one such a set of functions M, § exist,
since the coefficients 9 L/9g; of M; are linearly independent
expressions in the velocities, ¢i. Furthermore, this type of
relation will persist if the variables are changed, since an
integral linear in the velocities remains linear under any
change of variable. Making then, a change from ¢; to g,
we find

S oL dqx
j,k2=l ‘ogi oq) +

Thus the new coefficients are given by

m

— , g
M= 2 ML
! /§1 Y ogj
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From the known theory of linear partial differential equations
of the first order, we can determine m functionally independen*
functions ¢; such that we have the relations:

1ﬁl=17 ﬂgz...zﬂﬁzo,
On making this change, we obtain
= aL/oq+S.

Differentiating with respect to ¢ and using the first La-
grangian equation, we find the identity

oL S 08
— + j = 0.
0¢p  j=10¢; v

Hence 9 L/9¢, is linear in the velocities. Consequently the
quadratic terms in L must have-the form

m

L, = .kzlafk(QM Tt Qm)qj'q;u
Jy K=

Now let us write

m
L = jzlbj(qu Ty Qm) Q.;'r Ly = e(q;, <oy Qm)-

Then the above identity simplifies to

< abj ’ ae < aS !
— —_ — O.

J= Jj=1

i

We infer- at once that ¢ is independent of ¢;, and that if
we write §* = deql, then L, is given by

< 09*

L = —
' /=1 0¢;

m .
Q.; + J% bf (q2’ Tty qflt) q}’

i. e, by an exact differential augmented by a linear expression
in g2, - - -, ym with coefficients depending only upon ¢, - - -, qm-
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Since the L function may be modified by an exact derivative
without affecting the variation and the Lagrangian equations,
we may omit the first term in Z,. Hence L may be written
so as not to involve the coodrdinate ¢, directly. ’

The most general case, in which multipliers M;(qy, - - -, qm)
of the various Lagrangian equations exist, by the aid of which
the left-hand members of these equations may be combined to
form an exact derivative of a function V linear in the velocities
qi, -+, qm, reduces by change of variable to the case of an
ignorable coordinate q; in which all of the multipliers but one
are zero and that one ts unity.

The existence of such linear integrals can be determined
by purely geometric methods. We observe that in the
derivation of the result above, only transformations involving
¢i, -+, gm were made so that ¢ was unchanged. Hence the
quadratic differential form ds® = L, d¢* is an invariant,
which~ in "the final variables has coefficients only involving
gs, -+, qm. But. of course this analytic property merely
means that the surface with differential element belonging
to this form admits of one-parameter continuous group of
transformations into itself, '

G =qt¢ @=0q 5 Im = n.

A necessary condition for the existence of such a generalized
ignorable coordinate is that the swrface ds® = Ly dt® ad-
mits of a one-parameter continuous group of transformations
into itself. ,

We shall not attempt to develop such necessary conditions -
further. : v

7. The general integral linear in the velocities.
So far as our reasoning above is concerned, we cannot as
yet infer that all integrals linear in the velocities can be
obtained by the method of generalized ignorable coordinates.
However, this may be demonstrated to be the case as follows.

Since L, is by assumption a positive definite form, we may
write the integral in the form used in.the preceding section,
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m
8L
V=2 Mj——+8
J=1 @

where M; and S are functions of the coordinates only.
‘Employing exactly the method of that section, it appears
that by a suitable change of variables we can take M; = 1,
My, = ... = M, = 0, and then by differentiation as to ¢
it appears just as there, that L is esseutially independent
of ¢, so that ¢, is ignorable.

The method of multipliers specified yields all integrals of
the Lagrangian equations which are linear in the velocities.

8. Conditional integrals linear in the velocities.
In the preceding section we have considered integrals linear
in the velocities which hold for all values of the energy
constant. A more difficult problem is that of obtaining the
conditional integral, holding for a specified particular value
of the energy constant ¢, say for ¢ = 0. We proceed. to
treat this problem for the case of two degrees of freedom.
Here, by the use of the normalizing variables obtained earlier,
we may write the equations of motion and the energy integral
in-the form:

xl/+ l:l/’ = 7z, :(/"-—)-.1:’ = 7y x/2+ y12 =7,

where 7z, for instance, denotes 9y/9 .
Moreover, since any change of variables leaves the linear
nature of the integral unaltered, the integral may be written

V=1d+my+n==F,

where it is understood that this relation is required to hold
only when the energy constant vanishes.

If the linear integral be differentiated as to the time, the

" equation which results must be an identity in virtue of the
differential equations of motion written above and the energy

relation. The differential equations may be employed to

eliminate z”, y”. When this has been done, an equation

quadratic in z', 3 is obtained, which must be an identity
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in virtue of the integral relation alone. The gquadratic terms
are ,
Loz’ (ty + ma) 2y +nyy”.

In order that this sum shall combine with those of lower
degrees in 2, 4’ by use of the integral relation, it must be
of the form ¢(x'*+y'?). This implies

le = my, Uy = —mg
i. e., that
Il = uy, m = ug

where u is a harmonic function.
The integral can now be written:

Uy +uzy’ +n = k.

According to the principles outlined above in section 4, a
further arbitrary conformal transformation of the x, y-plane,
joined with the appropriate change in # will leave the
differential equation and integral relation in the normal form.
In order to simplify further the linear integral, we shall
choose the transformation to z, y defined by

Ztiy =f%% G = V=0

This is evidently conformal in type. The inverse trans-

formation, L
z+iy = fl@+iy),

is also conformal, and we have

2

do+idy

|f@+iy) )P = Az Fidy = uj +u.

Now let the transformed value of ¢ be defined by

dt = (uf,-{-ui)d?
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From this last equation we find at once
T +iy = (uy—iug) (@ +iy)

where 7’ = dz/di, y' — dy/di. Thus we have in par-
ticular

' = uyr +ucy'.
Consequently when such a further transformation has been
made, the above integral is simplified to

Z4n =rkL

Now let this integral be differentiated as to ¢ and let z”
be eliminated by means of the first Lagrangian equation.
There results v
' nad + (ny—A)y'+ 7. = 0,

which must vanish identically in virtue of the .integral re-
lation. Therefore, we conclude that the left-hand member
vanishes identically in 2/, y’. But this will happen only if
4 and y are functions of y only. In this case the equation
can-be made to vanish identically by a proper choice of =,

némely f Ady.

If such a dynamical system with two degrees of freedom with
energy constant O admits of a conditional integral linear in
the velocities, then by means of a suitable transformation of
the covrdinates and the time, the equations can be taken in
normal form with

= L@y Fr@e +r @),

so that the system contains the tgnorable cobrdinate x. In this:
integrable case the curves of motion are given by

— n) dy
* fV2r—(cl—n)’+cz’

b= V27——((,—n)* + .




‘48 DYNAMICAL SYSTEMS

9. Integrals quadratic in the velocities. The energy
integral is a known integral which is quadratic in the velo-
cities. Furthermore it is well known that dynamical systems
of the so-called Liouville type with L of the form

L =5 U2y —WD),

m m
U= 2ulg), W= 2wl
J=1 Jj=1
admit of m integrals quadratic in the velocities, in particular
1 2 ' :
?UzviQi_Cui'lei:-ci (t=1,.--,m),

and can be completely integrated.

We propose here only to discuss a special converse problem:
to determine the conditions under which a Lagrangian system’
with two degrees of freedom and of reversible type, with energy
constant O, admits of a conditional integral

%(am’2+2b:p’y’+ ey + dx’—l— ey +f =%

where -a, - - -, f are functions of « and y, and where a, b, ¢
are not all identically zero.-

If such an integral exists, any transformation of z,y, ¢
of the type discussed in section 3 leaves ‘the form of the
integral unaltered. Hence we may ‘transform the equations
to the normal form for which '

L= %(w'z-l-y’z) +7.

Differentiating the above assumed integral relation, and
making use of the Lagrangian equations to eliminate z”, y”,
we obtain a polynomial of the third degree in z’, ¥’ at most,
which must vanish identically in virtue of the above integral
relation. Now the third degree terms are

1 ’ 1 2 7 1 N 1 ’
o't (bt g o)yt (bt g ey
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and these must combine with those of lower degree by virtue
of the.integral relation. This can only happen if this poly-
nomial is divisible by z'*4 7% i. e., if

a;]y_"—Cx:‘?by, ay_0y=“2bx.

These are the Cauchy-Riemann differential equations for the
conjugate harmonic functions a —c, 2b, and we may write

a—c = 2uy, b = ug,

where u is a harmonic function.
Our conclusion is that the hypothetical integral has quadratic
terms :

1 ; ra 1 / / /
guyxz-Fuxw y—~-2—uyy2+e(x2+ ¥,
Taking account of the energy relation we may replace the

last term by 2¢y. The remaining quadratic terms may
be written

\ _;—?R [(wy—iuz). (& +iy)’]

where R stands for ‘the real part of’.
Now write
Fr = 1/ (uy + duz)

S0 that fis an analytic function of x +¢y. Make the change
of variables '

T+iy = fle+iy), dt = |f[dt,

which leaves the normal form of the equations unaltered.
We find that the above quadratic terms, which may be written

1 o[/ @z +idy)
e[ e

_;__ (512 — 1—-/—12)

become -
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in the new variables. Hence, dropping the bars, the integral
relation takes the simplified form

%(w’z— YY)+ do’ ey +f — k.

Again if this be differentiated with respect to ¢ as before, .
there is obtained

Ao’ +(dy+e) 2’y +eyy”
+(fe+tra) 2 +(fy_2’u) ?/I +drz—+ery = 0.

The linear terms must vanish so that we find

r=9@+vQ@), [f=—9@+yQ.
But for this value of y the differential equations are of
immediately integrable type:

If a reversible Lagrangian system with two degrees of. freedom
and with the energy constant 0 admits of a conditional integral
quadratic in the velocities and distinct from the energy integral,
then, by a transformation of variables, the equations and
integral take the form

P =y@, ¥ =¥, S6 =@+
A special quadratic integral is then
5@ =y = 9@ —p) +1

and the equations are integrable with

¢ 1 J" dz 1 j’ dy
V2 ) Vetr V2 J Vy—k’

The Liouville type of equations is essentially an equi-
valent case.

10. The Hamiltonian equations. Next we proceed to
formulate another important type of variational principle,
which leads to the so-called Hamiltonian or canonical form
of the equations of dynamics.
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Let us write

¢, . m
GJ: [j_]pj ' —-ngperL(ql, C gmy Ty s rm)]dt =0,
L= <

in which the r; are the functions of py, <--. pm, q1; -5 gm
properly defined by the m equations
pi = 8L/ G=1,.---,m),

and where py, .-, Pm, @1, - -+, ¢m are to be varied independently.
The first m equations, obtained from the variation of p,, ---, Pmy
are of course

d (0F\ @aF __ , '/ or; 9L ar,)
dt (Bpé)_ opi q"+r’+jg": (p’ dp:i dr; Opi
= —qi+r =0,

- where F' stands for the integrand. The second set of m equa-
tions can be likewise obtained and may be written

pi+98Hjags = O,

if we introduce the abbreviation H for
m .
2 viri—L.
Jj=1

It is important to observe that the 2m differential equations
so0 obtained are each only of the first order, with the general
solution containing only 2m arbitrary constants.

The. first set of equations show that the functions pf, ¢?
which make the integral stationary are such that »{ = ¢'.
Now let r; be fixed as ¢i, so that the integral reduces to the
Lagrangian integral

'JZIL(qla oty qm, qir St q;n)dt'

The variation of ¢y, - - -, ¢m is still arbitrary, but the variation
of p1,---, pm is determined. Furthermore if the variations
of q1, ---, ¢m vanish near to # and ¢,, so will the variations
of p1,---, pm. Hence we have

4%
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af‘Ldt=o,

along ¢, = ¢{(¢), and we conclude that ¢} satisfy the associated
Lagrangian equations, with 7? = ¢¥’, thus determining the
corresponding p}.

Thus each solution of the proposed variational problem
leads to a solution of the associated Lagrangian equations.
The converse is also true, since the choice of p;, ¢; at any
time ¢ is arbitrary and leads to an arbitrary set of values

of g, ¢i.

If the principal function for a Lagrangian system is
Lg:, -+, qm, qi,~ cey q_in) and we form the function of
D1, -0, Pmy Q1 -, gm defined by

m
®) = —L+2nd,
where the variables q; are to be eliminated by means of the
equations
(4) bi = BL/3q§ (@ = 1,...,m),

the original equations dedt = 0 may be replaced .by the
equivalent system in pi, q;

L[ m

®) aj; [ijqf-—ft]dt =0,
o LU=1"

or, more explicitly,

(6) dpi/dt = —0H/dqi, dqi/dt = 0H/3p; (t=1,---,m).

The equations (6) are the ‘Hamiltonian’ equations, and the
variables p; are called the ‘generalized momenta’. A pair of
variables pi, ¢; are called ‘conjugate’. Furthermore it is to
be noted that the Hamiltonian ‘principal function’ H is the
total energy expressed in terms of the generalized coordinates
and momenta. The energy integral H = const. follows at
once from the canonical equations.
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It may be observed here that the above variational principle
leads to the same canonical equations even if L and H involve
the time £.

Conversely, any Hamiltonian system (5), (6), H being arbitrary,
can be reduced to a Lagrangian system.

To prove this statement we need only define L by the
equation

m
L(q17 ey Gmy Ty ey Tm) = "—H+f__21pj7:i
where pi, ---, pm are functions of ¢; and »; given by the

implicit relations ‘
ri = 0H/0p;i G=1,..-, m.

It is obvious that the Lagrangian system with this principal
function L is associated with the prescribed function H in
the way desired.

If H contains £, so will L of course, and the same method
is applicable.

11. Transformation of the Hamiltonian equations.
The variational principle (5) is remarkable in that it only
involves the second half of the derivatives pi, ---, pm,
qi, -+, gm under the intégral sign, and those linearly with
coefficients precisely the conjugate variables. A general
point transformation from g, -+, gm to P1, - -, Im Will yield
a form linear in pi, ---, gm but not of this special type.
We shall desire in the next section to consider the corresponding
Pfaffian type of equation so obtained, which has certain
advantages over the Hamiltonian type.

A general ‘contact transformation’ preserving the canonical
form is the following

(7) pi = ?)K/aq,-,ﬁi:—aK/Bq_; (’= 17"'7""):

where K is an arbitrary function of ¢1, -« -, qm, q1, -+, qm, ¢
except it must be such as to define a proper transformation
from ps, - -+, gm t0 P31, - - -, ¢m by means of the above equations.
We shall not undertake to explain the apparent artificiality in
these equations, but proceed to prove thatsuch transformations
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do indeed leave invariant the canonical form. By use of the
first m of these equations we modify the variational problem

to the form
¢ m
1 K
af[ "-—H]dtz——O
t 'J; og; ¥

where the independent variables are now taken as py , - - -, @u.
But for these same variables, we have

W& (aK 9K _, ; 3K
oS E e s e =o
. A:.Z oy U 55 Ot 5

since the expression under the integral sign is an exact de-
rivative. By subtraction and use of the second set of m
equations of transformation we deduce

At [ m o .
"ft [Ejjq}—H]dt =0 (H=H+0K/at).
0 W=

The transformation (1) preserves the. Hamiltonian form
with H = H+0K/0t, in case the arbitrary function K
yields a proper tramsformation.

Similarly we may write

(8) pi = aK/aqi: G = 3K/317" (2= 17"‘ym)a

and find a corresponding result.

The transformation (8) also preserves the Hamiltonian form
with H= H-+03K/at.

It deserves to be remarked that transformations of type (8)
form a group. In fact such a transformation is characterized
by. the fact that

m
,2:1 (pidg;+q; dp)
is an exact differential, d X, For a second such trans-

formation from py, ---, m to Py, -+ -, @m, there is a second
characteristic d K. By addition we infer
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m . m _
12=1(19jd91+?jd7ﬂ = d(K-I—K—-g_l}?_jqu'),

so that the compound transformation is of the same type.
Similarly the inverse of a transformation (7), or the resul-
tant of an odd number of transformations is of the same
. type, while the resultant of an even number of transfor-
mations (7) is of type (8).*

12. The Pfaffian equations. It is clear that Hamiltonian
equations can be regarded as a special type arising from the
- more general Pfaffian variational principle,

(9) JLQ[JZ;RP}-I-Q]W =0,

in which the integral is linear in all of the first derivatives
with arbitrary functions P, ..., Py, @ of p,, ---, pn as
coefficients, and » is even.

If we develop these equations explicitly they become

ro (0P BP,-)‘ dp; 9@ .
—— ) Y 0 _ eee . ).
(10) ,2_—1(310; 9 pi ; =1, m)

Furthermore these equations are evidently those of a de-
generate Lagrangian problem with Ly = 0, Ly = 2 P;pj,
Lo = @, so that there is the particular integral @ = const.
This reduces to the energy integral in the Hamiltonian case.
' These equations admit of an arbitrary point transformation
of all of the variables without losing their form. It is only
necessary to determine the modified linear differential form
under the integral sign by direct substitution. Thus the
Pfaffian equations admit of perfect flexibility of transformation,
and in this respect are easier to deal with than either the
Lagrangian or Hamiltonian equations.

" 13. On the significance of variational principles.
Since the variational principles have taken an important
* For the applications of the theory of contact transformations and for

consideration of the associated Hamiltonian partial differential equation,
the reader is referred to Whittaker, Analytical Dynamics, chaps. 10, 11,12,
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part in dynamical theory, it is of especial interest to deter-
mine their real significance for dynamics. In other words,
what especial properties are possessed by the Lagrangian,
Hamiltonian ‘or Pfaffian equations arising from the respective
variational principles treated above? All of these can be
regarded as systems of n = 2m equations of the first order
if we introduce the new variables r; = g in the Lagrangian
equations. , '

Let us first remark that so long as these equations are
considered in the .vicinity of a point in the corresponding
space of 7z dimensions not an equilibrium point, there are
no especial characteristics to be found.

Indeed if we take a dynamical system as defined by any
set of n equations

dzi/dt = Xi(xy, -+, 2a) (E=1,....m),

it will in general remain of the same type under an arbitrary
point transformation

x"=‘]’i(y1,"‘;'yn) ({:1’...“”)

under certain conditions. Two systems of this kind will
naturally be.termed ‘equivalent’ if it is possible to pass
from one to the other by an admissible point transformation
of this kind. If we confine attention to the neighborhood
of a point 29, ..., 23 at which not all of the X; vanish, so
that this is not an equilibrium point, the equivalence with
.other such systems is unrestricted, and the new equations
may be taken to be

' dy/dt =1, dyi//dt =0 (¢ =2,...,m),

for instance. This is readily seen as follows. Conceive of
the given differential system as defining a steady fluid motion
in zy, --., T, Space so that the curves of motion are defined
by the solution z; = a3(f), 4 =1,..--,n). These curves
which have a definite direction with direction cosines pro-
portional to Xj,---. X. may be deformed into the straight
lines
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=1, Yo == Ca, "y Yn = Cn

of a w,---, ysn space by one-to-one analytic deformation.
Consequently the transformed equations have as general
solution

y1=t+cl: y2=6‘2,"',yn=cm

whence it follows immediately that these equations have the
desired normal form.

Hence in such a domain there is no distinction between
equations derived from a variational principle and the most
general equation.

In the following chapter we shall see that variational
principles play an important role in connection with the
formal stability of dynamical systems near equilibrium or
periodic motion. Indeed this appears to be their principal
significance for dynamics.

One further interesting remark concerning variational prin-
ciples may be made here. Suppose that we start with
n arbitrary equations of the -form

(11) daijdt = Xi(zy, -, 2, 8) (G =1,---,n).
The equations of variation are

dy; o 0X;
dt ~— /=1 oz

Yi (z=1,,n).

There can be formally integrated at once if the general
solution

a’i:.fi(ty'cl}"’;c'l) (z"=1,~-,n4)
is at hand, namely

2 f; 0 .
w= bl il =1,

P
Ocn

where %, ---, k. are arbitrary constants. _
Similarly the adjoint system to the equations of variation
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n
(12) dz' = 2 aX} (l = 1,"';”)

Jj=1 3:1:1

can be integrated explicitly by taking
2 ) _ .
-aic’;zl-{-...-{--—aic':;z”:ki G=1,---,n).

Hence the given system (11) of equations of the first
order can be called ‘equivalent’ to that of the extended
system (11), (12) -of twice the order in the 2n variables
Zyy -+, Tny, 21, -+, 2n, since the explicit solution of either
system involves that of the other. But the extended
system (11), (12) is Hamiltonian with conjugate variables
xi, zi; and with

mo
[ g— X;:z;
jgl‘ J “)

as may be directly verified.
Thesé¢ remarks serve to indicate the care necessary in
assigning to the variational principles their true significance.
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