ADDENDUM

General Remarks. First we want to refer to the book of A.
Wintner [ 3] which deals with the analytic aspects of celestial
mechanics and contains a large number of references to old and
new literature. Secondly Siegel's book |[2] contains many
topics related to Birkhoff's book and is a very valuable source
of information. Finally the second part of Nemytskii’'s and
Stepanov’s book [ 1] deals with the abstract aspects of dynami-
cal systems and has much contact with Chapter 7 of Birkhoff's
book. In [ 1] the reader will find a large number of references
about the more recent developments in this area.

Chapter 111: In this chapter the formal aspects of trigono-
metrical expansions of solutions is discussed. The ‘“Hamiltonian
multipliers” are of basic importance and it is shown (see p. 78)
that at an equilibrium of a Hamiltonian system these multi-
pliers occur in pairs of A, — X\; (which was also proven by
Liapounov). A similar statement holds near a periodic solution
for the so-called Floquet exponents (see Chapter 111, Section
9). It is remarkable that another restriction on the Floquet
exponents was overlooked and only discovered by M. G. Krein
'in 1950 (see {22], [23]), namely that for the pairs A, — A, on
the circle |A| = 1 there is an ordering which is invariant under
canonical transformations. In other words, if

xi=exp(— 1)y,

one can associate a sign with the frequencies w;. This fact is
of importance for the stability theory of periodic solutions
(see Gelfand and Lidskii [ 12] for the linear theory and Moser
[29] for the nonlinear theory). This phenomenon is related to
the different behavior between ‘‘difference and sum reso-
nances’’. :
Chapter V: Contains a discussion of Birkhoff’'s minimax
method and an “‘extension of Morse” (see Section 8). This area
expanded to a vast theory, the now well-known Morse theory
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for which we refer to Morse’s book [25]. This theory, which
started with Poincaré’s study of closed orbits for the three
body problem has now taken many new directions and proved so
successful in topology (see, for example, Milnor’s book [24]).
We mention some further developments of the geodesics prob-
lem. After Morse’s and Lusternik and Schnirelman’s study of
this problem there appeared recently a long papér by Alber
[4]estimating the minimal number of closed geodesics on an n-
dimensional sphere which contains further references (see also
Klingenberg [ 19]). However, it should be mentioned also that
the general Morse theory has not yet been successfully applied
to the problems of dynamics. Even for the restricted three body
problem such an application would be of great interest.

Chapter VI: This chapter contains a discussion of the cele-
brated ‘““Poincaré’s geometric theorem”, the proof of which was
Birkhoff’s first work in this subject (1915). This beautiful theo-
rem withstood all attempts of generalizations and still it is not
clear whether it has an analogue in higher dimensions, for say,
canonical transformations.

We mention a new application of this theorem to the re-
stricted three body problem. In [11] Conley established the
existence of infinitely many periodic solutions around the small
mass point (lunar orbits). This is a nontrivial extension of
Birkhoff’s study of 1915 mentioned in the footnote on p. 177.

Chapter V1I: The subject of this chapter has become a basis
of a very abstract formulation in the book by Gottschalk and
Hedlund [ 14]. Another source of references related to Chap-
ter 7 is the second part of Nemytskii’s and Stepanov’s book
on Differential Equations [1]. We make special mention of a
paper by S. Schwartzman [ 33] in which the concept of rotation
numbers is generalized to flows on a compact manifold.

Chapter VIII: In the problems discussed in Chapter VIII
many advances have been made. A number of questions have
been settled and others have expanded into theories of their
own. The example of Section 11 illustrates a transitive flow.
The study of the geodesic flow on a manifold of negative curva-
ture has been studied thoroughly in ergodic theory and we
refer to Hopf’s book [ 16], his fundamental papers [17] and to
Hedlund’s paper [15]. Recently Anosov [5] generalized these
ideas considerably and studied a class of differential equations
(so-called U-systems) for which he proves transitivity. For
recent surveys in this direction see Sinai [37], [38].
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The question of stability raised in Section 7 has been an-
swered and it is known that every fixed point of general stable
type (in the terminology of this book) is stable in the sense of
Liapounov. This assertion is contained in the work of Arnol'd
(6], (7], [8] and [9], Kolmogorov [20], [21] and Moser [31].
The problem is intimately connected with the difficulty of the
small divisors. The first definitive results concerning such small
divisor problems were found by C. L. Siegel [34], [35] but his
approach did not cover the case in question here. In 1954
Kolmogorov suggested an approach which ultimately led to the
stability proof of periodic solutions of general stable type for
systems of two degrees of freedom. However, the results of
Arnol’d reach much further covering Hamiltonian systems of
several degrees of freedom, although in this case stability in the
sense of Liapounov cannot be inferred. In fact, Arnol'd [9a]
proves instability for asystem of 3 degrees of freedom and one can
say that the concept of stability for Hamiltonian systems has
been clarified to a large extent. In [7], [9] Arnol’d gives a most
remarkable application of these results to the n-body problem.

Chapter 1X: Concerning Sundman’s results we mention the
clear and complete exposition in Siegel’s book [2]. Also Wint-
ner’s book on celestial mechanics [ 3] contains a wealth of infor-
mation on the n-body problem.



FOOTNOTES

1. Page 78; Line 9 after ‘‘quantities.”

This statement is certainly incorrect as it stands. It can
occur that A, X, — X\, — \ are four distinct numbers as in the
example H = u(p,q, + p,q;) + v(p192 — p2q)). Incidentally, an
equilibrium of this type occurs for the equilateral solution (of
Lagrange) of the restricted three body problem, at least for
appropriate mass ratios (see Wintner |3, §476]).

2. Page 86; Third line from below, after “pure imaginary.”
The remark of Footnote 1, p. 78, applies here too.

3. Page 91; Line 8, after ‘“‘quantities.”
See Footnote 1.

4. Page 99; Line 13, after “solution.”

This solution will be periodic if the period T'(c) of the family
of reference solutions is independent of c. Otherwise the solu-
tion in question involves a term linear in ¢, but still contributes
a second multiplier zero.

5. Page 116; Line 13, after “‘definition.”

The investigation of complete stability has been carried fur-
ther by J. Glimm [13]. He considered an equilibrium (or a
periodic solution) also in the case where the A\, are rationally
dependent. He replaced the power series expansion by expan-
sions in terms of rational functions.

6. Page 165; At the end of Section 4, after ‘“‘period.”

This question was pursued further by G. D. Birkhoff him-
self in “Une généralisation a n-dimensions due dernier théo-
reme de geometrie de Poincaré,” Compt. Rend des Sciences de
I'Acad. d. S. 192, p. 196, 1931.

7. Page 211; Line 8 from below, after “or 2x — v/ — 1.”
This case distinction refers to Floquet theory: if the eigen-
296
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values of linearized mapping over one period are real and
denoted by e**”, then for e** > 0 one can choose A real and
for e* < 0 one can choose 2\ — ( — 1)"?* real.

8. Page 211; At the end of formula (3), line 4 from below, after
“luFExl)”

In this case one can actually take & =¥ = 0 as was proven
in Moser [28]. The transformation into the normal form is
indeed convergent. This point was left open in Birkhoff’s paper
of 1920 (which is cited on p. 211).

9. Page 213; Line 14, after “motion).”

The contents of this parenthesis apparently refers to degen-
erate cases, illustrated by a transformation u, = uy+ vy, v; = ¥
where v, = 0 represents a family of fixed points.

10. Page 214; Line 7 after “‘from the origin.”

This remark has to be qualified. If ¢/~ is rational one can
easily produce unstable examples and for integral 3¢/2x in-
stability is the generic case, see for example [26].

11. Page 215; Line 15 after “multiples are simple with [ = 0.”

This means that the number ¢ appearing in equation (2) of
p. 211 is assumed to be incommensurable with ». The number [
was defined on p. 211 as [ = ( — 1)"%s/2x. For the definition
of “simple” and “multiple” see p. 142 bottom.

12. Page 217; The sentence starting on line 5 is misleading and
“should be replaced by:

In this case the corresponding normal form is of type (2)
(see p. 211). In the unstable case the normal form is of the
form (3) where u is positive or negative but not + 1.

13. Page 218; Line 4, replace period after ‘‘negative” by a comma.
Replace lines 5 and 6 by:

as was mentioned on p. 215 bottom. Consequently a real
negative root u is not possible, and the case (3) can occur only
with 4 > 0, i.e. I is a fixed point of stable type.

14. Page 222; Line 3 from bottom, after “is bounded.”

The statements of this section are not sufficiently proven
and it seems impossible to supply the necessary arguments.
It is quite conceivable that such an invariant “curve’” is very
pathological making the geometrical considerations inadequate.
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In fact, N. Levinson [ 18] constructed a second order differen-
tial equation where such a pathological invariant set occurs.
In Levinson’s example the rotation number (which on an in-
variant curve should be constant) takes on various values on
the invariant set which is of measure zero. But it has to be
mentioned that Levinson’s differential equation is not con-
servative and can only be considered as an illustration, not as
a counterexample.

15. Page 227; Line 12 from below after “‘such actual stability?”

This question has been answered in the affirmative as was
mentioned in my General Remarks to Chapter VIII, (see [9],
[31]).

16. Page 227; Last line after ‘‘variable periods.”

According to the previous footnote a periodic motion of
general stable type is stable, which makes the present assump-
tion as well as Section 8 vacuous!

iR}

17. Page 237; After first paragraph, i.e. after ‘‘stable type.

Recent work by Smale |39] extends these results, to which
Birkhoff alludes, considerably. Smale finds infinitely many
periodic motions, and even a perfect minimal Cantor set near a
“homoclinic”’ motion, even for several dimensional systems.:
Unfortunately, his results are not applicable to Hamiltonian
systems of more than two degrees of freedom, due to some
assumption which fails for Hamiltonian systems.

18. Page 238; Line 3 after title of Section:

A very interesting example of this type had been discussed
already in 1924 by E. Artin [10] (following a suggestion of
Herglotz). It also deals with the geodesic flow on a manifold
of two dimensions (the modular region in the upper half plane)
and a symbolism for these geodesics is put into correspondence
with the continued fraction expansions. '

19. Page 245; Line 5 after ‘“‘of motions.”

Extensions of such results are contained in the recent work
by Anosov [5]. He considers systems of differential equations
(so-called U-systems) in several dimensions whose solutions
have a similar behavior as the geodesic flow on a manifold
with negative curvature.
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20. Page 257; Line 12 after “for m = 1.”

The following argument leaves a number of points unclear.
Careful proofs and sharper results have been given by Siegel
[36], Ritssmann [ 32] and Moser [27]. The paper [ 30] contains
an explicit class of nonintegrable polynomial transformations.

21. Page 259; Line 13 after “‘analytic families.”

These families lie on the level surface of the Hamiltonian and
of the integral I which was assumed to exist. The family could
be parametrized by the canonically conjugate variable of I. For
this purpose one would have to introduce new variables, say
u,, Uy U, vy by a canonical transformation such that u, = I,
say, which can be done. Then v, would be a family parameter.
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Bliss, 1
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recurrent
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Energy, 23-25
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Equivalence, 56

Euler, 35

Existence theorem, 1-5, 10-12

External forces, 14-15
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Hamilton, iii
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Hamiltonian systems, 50-53; La-
grangian and, 50-53; transfor-
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Hamilton's principle, 34-36

Hilbert, 130

i Hill, iii, 139, 260
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221-6
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the problem of three bodies, 261-3

Jacobi, iii, 170, 248
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146-9
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150-4; near a periodic motion,
159-65; stable and unstable,
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systems, 17
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Problem of three bodies, 260-1;
equations of, 261-2; integrals of,
262-3; reduction of, 263-4,283—4;
Lagrange’'s equality in, 264-5;
Sundman's inequality in, 265-7;
collision in, 267-70; manifold of
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See Restricted Problem of Three
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Recurrent motions, 198-201, 204-5,
223-4

Restricted problem of three bodies,
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115-20; problem of, 121, 227;
permanent, 121; unilateral, 122;
in the sense of Poisson, 174, 190,
197; in case of two degrees of
freedom, 220-7; criterionof, 226-7

State of motion, 1

Sundman, iv, 260, 261, 265, 270,
278, 283

Surface of section, 143-5; local, 151-2

Systems with one degree of free-
dom, 19

Systems with two degrees of freedom,

19; normal form for, 39-40; in-
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tegrals of, 45-50; motions of,
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Uniqueness theorems, 5-6. 10-12
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