Solution for Chapter 24
(compiled by Xinkai Wu)
Exercise 24.4 Constant of geodesic motion in a spacetime with symmetry

[Alexander Putilin/99]
(a) Geodesic equation V5 =0, i.e.

pﬁpa;ﬁ =0
dzP Ope
(Pa.g — T )0’ = v N sPup”
dpa
- i Cyappp” =0

which gives
B

¢~ 2
where in the brackets the first and the third terms are antisymmetric over (Su)
so their contraction with the symmetric tensor p®p# is zero. Thus

dp 1
— = (g,uaﬂ + guB,a — ga@#)pﬂp

dpo, 1
o gV’
Take o to be A and using g, 4 = 0, we find
dpa _
d¢

namely p4 is a constant of motion.
(b) Let 27 (t) be the trajectory of a particle. Its proper time is

dr* = —ds®=dt* [1+2® — (6;x + hjk)vjvk}
4

dt2(1 + 20 — 5070k + 0(2—4))

thus
1
dr =dtV/1+20 —v2=dt(1+ o — 5v2)

where we have omitted terms of order v*/c*(i.e. |®|?). The 4-velocity is given

by
o dz® dz®
u = _— e —_——
dr dt(1+ @ — %V2)

dz® 1,



thus in particular % =1 — & + %v2.
4-momentum: p* = mu®, and in particular p® = mu® = m(1 — ® + %VQ).
And the conserved quantity is then given by

1
P = Goap™ = goop’ = —(1+2®)m(1 — @+ §V2)

= —m—(md+ §mv2)

we see that p; is indeed the non-relativistic energy of a particle aside from an
additive constant —m and an overall minus sign.

Exercise 24.5 Action Principle for Geodesic Motion [Xinkai Wu,/00]
The action is given by:

“N] = fo ~Yap df,\ df,\ )1/2dA

05 = fol ~Yap d;)\ ddm)\ )1/2dA
1 d d _
= 11( Gap ;A fA ) 1/25( agaﬁ by d)\ )d)‘
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(by renaming p «— v, and noticing gu, = gy, we get:)

_ 11 da® daP\—1/2 ng p dz* dz” ddzt dx”
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Integrating the 2nd term in {.. }by parts, we find, after renaming some
indices:

2@ daPy1/2
_ ol da® da®\—1/2 22" | Oguv da” dz” 1 0gpy da” dz¥ _ dIn(—gap L 427 “
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Thus 65 = 0 if and only if
o guB
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Guv gz T Bgr dx dx 2 Ozr dx dx dax Guv gy =

Contracting both sides with g™, we get

8 y P a . P dln Ja dz® dz 1/2
/\24_1##{29# dz” dz” Gpv dx dz}_ (= ﬁdk )

=0

dxzr dN _dX _ Ozr dx dX 4
By renaming p «— v for the first term in {..}, the above equatlon becomes
d’z" T aun 8‘7up _ 8‘]pu dipdm _ dln( Japs ddﬁ\ d>\ )1/2
DT +29 {819 T 22 T Dan Ay d =0
which is just, using the expression for the Chrlstoﬁel symbols,
42z x de? dp¥ _ dIn(—gap T )2 g,
‘o 15 ax S =0

dax ax
Now let’s reparametrize the world line, A — s()\), then the equation becomes,

4" da” d do™ (d2s _ dIn(—gap T 7)1
(G5 + T3 S5 (R + s - D ml =0
Integrating [...] twice we readily find that [..] vanishes for

s= [ A(—gapi ddﬁ Y1/2d\ + B, where A and B are arbitrary constants.
After this reparametrization, we get the familiar geodesic equation:

d?z™ m dxf dz¥ _
ds? +FPV ds ds =0

Exercise 24.7 Orders of magnitude of the radius of curvature [Alexander
Putilin/99)



Eq. (24.43) tells us that, if a system has characteristic mass M and charac-
teristic length R, order of magnitude estimate gives,
1 GM
R2 T R

where R is the radius of curvature

R3
RNHM inunits G=c=1

1. near earth’s surfae: R ~ Rg ~ 6.4 x 10%n (earth’s radius), M ~ Mg ~
4.4mm (earth’s mass), and R ~ 2.4 x 101m ~ 1 astronomical unit = 1AU.

2. near sun’s surface: R ~ Rgun ~ 7 x 108m, M ~ Mg, ~ 1.5km, and
R ~ 5 x 101 m ~ 1AU.

3. near the surface of a white-dwarf star: R ~ 5000km, M ~ Mg, ~ 1.5km,
and R ~ 3 x 108m ~ 1 (sun radius).

4. near the surface of a neutron star: R ~ 10km, M ~ Mg,, ~ 3km, and
R ~ 20km.

5. near the surface of a one-solar-mass black hole: M ~ Mgy, ~ 1.5km,
R~ 2M ~ 3km, and R ~ 4km.

6. in intergalactic space: R ~ 10x(galaxy diameter) ~ 10°¢ light-year,
M ~(galaxy mass)~ 0.03 light-year (for Milky way), and R ~ 6x 109 light-years
~ Hubble Distance.

Exercise 24.8 Components of Riemann in an arbitrary basis [Xinkai Wu/02]

Ps = D%y = _Raﬁ'vzspﬁ
we have

(63

Diys = (pa;'y)?‘; = (pa,'y _,_pupaw);(s
= (p%, +P'T%,) s + 1% (0", +p"T%,,) =T ;(p°, +p"T%,,)

interchaging v and § in the above expression and then taking the difference, we
get

(0%

Divs — pa;é'v = (Faﬁ%zs - Faﬁ&’y + Fam?ruﬁ'y - Fawruﬁé)pﬁ +

+(T5, = T"5) aﬁﬂpﬁ + (% = P%,) + (T, =T 5)p%,
= (D% = D%sq + DT, — T D) +

+Cvéuraﬁ#pﬁ + (paﬁ& - pa,é'y) + Cvéupa,,u

where in the last step we've used ¢ ¢ =T"; —T" ; (eq. (23.44)). We can see
that the last two terms cancel, because

Py —P%y = Vg Ve p® — Ve Ve p®
- v[€6>€w]pa = C5V#v€upa
- C5V#p0iﬂ = _C'yé#pa,u



where to get to the second line, we’ve used the fact that for any scalar f,
ViVel —=VEVaf = Aa(Bﬁf;ﬁ);a - Bﬁ(Aaf;a);ﬁ :HAiBﬁf;Ba + AaBB;af;ﬁ -
BBAaf;aﬁ - BﬁAa;ﬁf;a = (AaBﬁ;a - BaAB;a)f;B = [A, B]ﬁf;ﬁ = V[A,é]f' (note
fiap = f.8a by the “torsion free” condition).

Thus we finally conclude that

— " n n
R05 = D50 = T%5 + 190 T s = T, = T%,005

Exercise 24.9 Curvature of the surface of a sphere [Alexander Putilin/99]
Hard copies of computerized part of this problem will be distributed in class.
(a) We read off the metric components from the line element:

gdoo = az, 9o = 0251.”297 gog =0
o0 _ 1 44 1 9 _

g :F’g " a2sin20’ g

There are six independent connection coefficients

1
%0 = 9"To00 = ¢°° = g00.0 = 0

2
F09¢ = F0¢9 = 9"'Too4 = % %(QGG,CI) + 906,06 — 9o4,0) =0
Pecbgb = 999%(29‘%@ — Gop,0) = — T;(a%in%‘),@ = —sinfcosl
T = 9¢¢%(29¢9,9 — ge6,6) =0
P¢9¢ = Fie = QW%(Q@,O + 90,6 — 9p0,6) = m(a%mz@)ﬂ = cotf
s = 9¢¢%9¢¢,¢ =0

(b) We can think of the Riemann tensor as a symmetric matrix Rk with
indices [ij] and [kl]. Since R;ji; is antisymmetric in the first and the second
pairs of indices, the only nontrivial component is [ij] = [0¢], [kl] = [0¢)]

Rog9p = —Rppep = —Roppo = Repoen

(c) Using eq. (24.57) and the fact that in a coordinate basis the cw‘“s all
vanish, we get

0 e 0 0 0 Tu
Rgpy = Tgp0—Tg0.6 T 00l gs =176l g0
1.
= — 5(517120)19 — F9¢¢F¢¢9

=  —c0s8260 — (—sinfcosd)cotl

= sin%0



and thus
R9¢9¢ = 999R9¢9¢ = a%sin30

(d) The new basis is related to the old by &; = L&, €5 = ——¢&,. Thus by
the multilinearity of tensors in their slots, we have

1 :
6.g¢¢ = 1, gé(z; = 5 90¢ = 0. i.e. gj’fc = 551;

1
fa — =1 Ty =
960 = 2900 1 986 T 2gin? a?sinb

R%% - a4sin29R9¢9¢ a2

Ry = 9" Ry = 0" Rk
thus
Rgg = Roggo + Rosg6 = Rogos = 2
1
Rys = Rgaps+ Rogos = Rogos =
Ry = Rgggq + Rgpss =0

[
namely, R;; = -5 955

152
—R.-gdkF = g = 2
R=Ry9" = 29T 2

Exercise 24.10 Geodesic deviation on a sphere [Alexander Putilin/99]

(a) ds* = a*(df? + sin*dp?). on the equator, § = I, dI* = a*d¢?, | = a¢ is
the proper distance.

(b) Geodesic deviation eqn: vﬁvﬁfz —R(...,, €, p), with

d

1o 1
P — — = — — :O ¢:—
p d_ a » P » P o

99

At 6 = T, connection coefficients vanish (see Ex. 24.9)

VipVipg® = w2 ({ ;¢);¢ a2 (5 ;¢>),¢

§e.¢, = fa)d, + F9M¢§“ = 50705 — sinfcosfE?

3

€, = €, +T° " =€, + cothe’

i



o=nt
Figure 1: geodesic deviation on a sphere
thus
0 L o , é L o
(VpVz8)" = e (&, — sinfcosfE ))q5 lo=z = ﬁf Y
1 1
¢
(ViVse)® = 5 (6% +eothe’) omg = 6%,

On the other hand

1 1
0 __ 7] (e} _ 6 B8 __ 6 6
ViVt = R DY = = R = = 5 R0
sin?0 , 1 4
= - a2 5 |9:% = - ﬁg
thus
1 4 1 6 d2§0 4
2o =" @8> =t
1 d?¢?
b L po _ _
ViV = = SR =02 o =0

(c) Initial conditions (note that the geodesics are parallel at ¢ = 0):
£°(0) =b, £°(0) = 0; £2(0) =0, £°(0) =0
This gives £ = A¢ + B = 0. And
£9(¢) = A'cosg + B'sing = bcosg



Let 8 = 0(¢) be the eqn. for a “tilted” great circle. It’s given by n-x = 0, where
n = (—sinA,0,cosAf) ~ (—AH,0,1) is the orthogonal vector and Af = g,
while x = (asinfcosg, asinfsing, acos). n - x = a(—sinbcosd - Af + cosf) =0
then gives: cotf) = Afcosp = tan(§ —0) ~ 5 —0,ie. 0 =5 — Abcoso.

From Fig. 1 we see that the separation vectors points along 6-direction (i.e.
€% = 0), and its magnitude is £ = a(§ — 0) = alAfcosp = bcosp, which is
precisely what we got before.

Exercise 24.12 Newtonian limit of general relativity [Alexander Putilin/99]

(a) Gap = Nap + hap, |has] << 1. Proper time: dr? = —gupdz®dz’ ~
—Napdr®drl =~ dt? — dx* ~ dt*. (in non-relativistic limit,|dx|/|dt| ~ |v/c| <<
1). Thus dr = dt, and u® = 922 drt. 0 = db g g = drl o drl g5

N dr ™ Tdt ¢ dt dr ~ Tdt
(b) Geodesic eqn: L= = —I‘O‘Bvuﬁzﬂ.
du? dv’ 1
7~ o~ T = Tjoo = — 5(2gj0.0 — goo,)
1
= —hjoo+ 5hoo & 5hoo;

where in the last step we’ve used |hag,t| << |hag,;jl-

dv’ o i v’ oI d 0

_— = J ~ — k—'.e.—:— V

dt T A T

dstj = —‘I)ﬁj = hoo = —2®.
(c) Faﬁ’y = %go‘”(g#gﬁ + Gy, 8= 9v.n) = %na#(huﬁﬁ‘khwﬁ_hﬁ%u)‘FO(hz)-

And the Riemann tensor is:

Ry = Tsq =%, +0(I%)
1 « 1 «
= 51" (s + s = hpsu) v = 5n™ (hupy + iy = o) s + o(h?)
1 « (67 « [0 (07 [0
= 5(71 506 T %5y — o™y — W5y — P g5 + hpy ™ 6) + O(h?)

Notice that in the last line the first and fourth terms cancel. Thus we get

1
Ropys =~ g(hmsm + hgy,a6 — havy,p5 — hgs.avy)

(d) Rjoko = %(hjquO + hko,j0 — hjk,00 — oo ji)- Recall that in non-relativistic
limit, time derivatives are small compared to spatial ones, thus the last term in
the brackets dominates. And we get

1
Rjono = — EhOO,jk =Pk

Exercise 24.13 Gauge transformation in linearized theory [Alexander Putilin/99]



(a) ‘Tgew = Igld + 5&7

H v
_ Orgy Oxgy (ota)
- a s I g,uu Told
Thew OTnew

new

9ap (Tnew)

Evaluate L.h.s. and r.h.s. up to linear order in £{* and hqg:

L.h.s. = Nap + hoi" (Totd + &) = Nap + hag" (Totd)

rhs. = (6%, =€) — & 5) 9 (Tota)

9op(Tota) = 9up(Tota)€" o — Jow (To1a)€" 5
old v

~ Nap +hos — st — N’ s

Nap + il (o1a) — Ea,p(Tota) = £p,a(Tota)

new old

= af — haﬁ - 50415 - 55704

Q

_ 1 _
hpe = hie — §hn8wm,, =R — & — o+ by

Lorentz gauge: Bﬁf,w”’ =0.

jnewv _ jold, _
P " = = 6" = G e =0

thus we need

0, =€, = hyi™

78%

(c) In Lorentz gauge, all terms on the Lh.s. of eq. (24.102) vanish except
the first one, thus it reduces to

—Ewyaa = 1677,



