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In this first part of the book we shall study aspects of classical statistical physics that ev-
ery physicist should know but are not usually treated in elementary thermodynamics courses.
This study will lay the microphysical (particle-scale) foundations for the continuum physics
of Parts II—VI. Throughout, we shall presume that the reader is familiar with elementary
thermodynamics, but not with other aspects of statistical physics. As a central feature of our
approach, we shall emphasize the intimate connections between the relativistic formulation
of statistical physics and its nonrelativistic limit, and between quantum statistical physics
and the classical theory.

Chapter 2 will deal with kinetic theory, which is the simplest of all formalisms for studying
systems of huge numbers of particles (e.g., molecules of air, or neutrons diffusing through
a nuclear reactor, or photons produced in the big-bang origin of the Universe). In kinetic
theory the key concept is the “distribution function” or “number density of particles in
phase space”, N ; i.e., the number of particles per unit 3-dimensional volume of ordinary
space and per unit 3-dimensional volume of momentum space. Despite first appearances, N
turns out to be a geometric, frame-independent entity. This N and the laws it obeys provide
us with a means for computing, from microphysics, a variety of quantities that characterize
macroscopic, continuum physics: mass density, thermal energy density, pressure, equations
of state, thermal and electrical conductivities, viscosities, diffusion coefficients, ... .

Chapter 3 will deal with the foundations of statistical mechanics. Here our statistical
study will be rather more sophisticated than in Chap. 2: We shall deal with “ensembles” of
physical systems. Each ensemble is a (conceptual) collection of a huge number of physical
systems that are identical in the sense that they have the same degrees of freedom, but
different in that their degrees of freedom may be in different states. For example, the
systems in an ensemble might be balloons that are each filled with 1023 air molecules so each
is describable by 3×1023 coordinates (the x, y, z of all the molecules) and 3×1023 momenta
(the px, py, pz of all the molecules). The state of one of the balloons is fully described, then,
by 6 × 1023 numbers. We introduce a distribution function N which is a function of these
6× 1023 different coordinates and momenta, i.e., it is defined in a phase space with 6× 1023

dimensions. This distribution function tells us how many systems in our ensemble lie in a
unit volume of that phase space. Using this distribution function we will study such issues as
the statistical meaning of entropy, the statistical origin of the second law of thermodynamics,
the statistical meaning of “thermodynamic equilibrium”, and the evolution of ensembles into
thermodynamic equilibrium.
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Chapter 4 will deal with statistical thermodynamics, i.e. with ensembles of systems that
are in thermodynamic equilibrium (also called statistical equilibrium), and their random,
spontaneous fluctuations away from equilibrium. We shall derive, using Chap. 3’s statisti-
cal mechanical considerations, the laws of thermodynamics, and we shall learn how to use
statistical mechanics and thermodynamics tools, hand in hand, to study not only equilibria,
but also probabilities for fluctuations away from equilibrium. Among the topics we shall
study by these techniques are phase transitions, chemical reactions, and electron-positron
pair production in hot gases.

Chapter 5 will deal with the theory of random processes (a modern, mathematical aspect
of which is the theory of stochastic differential equations). Here we shall study the dynamical
evolution of processes that are influenced by a huge number of factors over which we have
little control and little knowledge, except their statistical properties. One example is the
“Brownian motion” of a dust particle being buffeted by air molecules; another is the motion
of a pendulum that is part of a gravitational-wave detector, when one monitors that motion so
accurately that one can see the influences of seismic vibrations and of fluctuating “thermal”
(“Nyquist”) forces in the pendulum’s suspension wire. The position of such a dust particle
or pendulum cannot be predicted as a function of time, but one can compute the probability
that it will evolve in a given manner. The theory of random processes is a theory of the
evolution of the position’s probability distribution. Using that theory we shall study the
“fluctuation-dissipation theorem” which says that, associated with any kind of friction there
must be fluctuating forces whose statistical properties are determined by the strength of the
friction and the temperature of the entities that produce the friction.

The theory of random processes, as treated in Chapter 5, also includes the theory of
signals and noise. At first sight this undeniably important topic, which lies at the heart of
experimental and observational science, might seem a little outside the scope of this book.
However, we shall discover is that it is intimately connected to statistical physics and that
similar principles to those originally used to describe, say, Brownian motion are appropriate
when thinking about, for example, how to detect the electronic signal of a rare particle
event against a strong and random background. We shall study techniques for extracting
weak signals from noisy data by filtering of the data, and the limits that noise places on the
accuracies of physics experiments and on the reliability of communications channels.

It is possible that Chapter 5 will get split into two chapters by the time we get there in
this 2002–3 version of this book.



Chapter 2

Kinetic Theory

Version 0202.1, October 2002

2.1 Overview

We first turn to kinetic theory, the simplest of all branches of statistical physics. In kinetic
theory we study the statistical distribution of a “gas” made from a huge number of “particles”
that travel freely, without collisions, for distances (mean free paths) long compared to their
sizes. The particles might be, for example, galaxies; and our goal might be to study how
galaxies, born randomly distributed in the early universe, condense into clusters as the
universe expands. Or, the particles might be stars that reside in our own galaxy, and our
goal might be to study how spiral structure develops in the distribution of our galaxy’s stars.
Or, the particles might be molecules in interstellar space, and our goal might be to study how
a supernova explosion affects the evolution of the interstellar gas’s density and temperature
distribution. Or, the particles might be photons in the cosmic microwave radiation, and our
goal might be to study how anisotropies in the expansion of the universe affect the photons’
temperature distribution. Or, the particles might be electrons in a metal, and our goal
might be to study how changes of the metal’s temperature affect its thermal and electrical
conductivity. Or, the particles might be neutrons in a nuclear reactor, and our goal might
be to study whether they can survive long enough to maintain a nuclear chain reaction and
keep the reactor hot.

For all such problems, a powerful conceptual tool is the “distribution function” or “num-
ber density of particles in phase space”. In order to develop this concept in a manner valid
both for photons, which move with the speed of light, and for galaxies, which move slowly
compared to the speed of light, we shall use the tools of special relativity. We begin in §§2.2
and 2.3 by introducing the concepts of momentum space, phase space, and the distribution
function. In §2.4 we study the distribution functions that characterize systems of parti-
cles in thermal equilibrium; there are three such distributions: one for quantum mechanical
particles with half-integral spin (fermions), another for quantum mechanical particles with
integral spin (bosons), and a third for classical particles. As special applications we derive
the Maxwell-Boltzmann velocity distribution for low-speed, classical particles (Exercise 2.2);
and we compute the effects of an observer’s motion on his measurement of the cosmic mi-
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crowave radiation created in the big-bang origin of the universe (Exercise 2.3). In Sec. 2.5 we
meet the number-flux four-vector and the stress-energy tensor associated with a collection of
particles, and we learn how to compute these quantities by integrating over the momentum
portion of phase space. In Sec. 2.6 we show that, if the momentum distribution is isotropic in
some reference frame, then on macroscopic scales the particles constitute a perfect fluid, and
we then use momentum-space integrals to evaluate the equations of state of various kinds of
perfect fluids: a photon gas (Exercise 2.5), a nonrelativistic, classical gas (Exercise 2.6), and
electron-degenerate hydrogen gas (Exercise 2.7), and use our results to discuss the physical
nature of matter as a function of density and temperature. In Sec. 2.7 we study the evolu-
tion of the distribution function, as described by Liouville’s theorem and the Vlasov equation
when collisions between particles are unimportant, and by the Boltzmann Transport Equa-
tion when collisions are significant, and we use a simple variant of these evolution laws to
study the heating of the Earth by the Sun, and the key role played by the “Greenhouse effect”
(Exercise 2.8). Finally, in Sec. 2.8 we learn how to use the Boltzmann transport equation
to compute the transport coefficients (diffusion coefficient, electrical conductivity, thermal
conductivity, and viscosity) which describe the diffusive transport of particles, charge, en-
ergy, and momentum through a gas of particles that collide frequently; and we also use the
Boltzman equation to study chain reactions in a nuclear reactor (Exercise 2.12).

2.2 Phase Space and Distribution Function

Consider a classical particle with rest mass m, moving through spacetime along a world
line P(ζ), or equivalently ~x(ζ), where ζ is an affine parameter related to the particle’s 4-
momentum ~p by

~p = d~x/dζ . (2.1)

[Eq. (1.28)]. If the particle has non-zero rest mass, then (as we saw in Chap. 1) the particle’s
4-velocity ~u and the proper time τ along its world line are related to its 4-momentum and
affine parameter by

~p = m~u , ζ = τ/m . (2.2)

The particle can be thought of not only as living in four-dimensional spacetime [Fig. 2.1(a)],
but also as living in a four-dimensional momentum space [Fig. 2.1 (b)]. Momentum space,
like spacetime, is a geometric, coordinate-independent concept: each point in momentum
space corresponds to a specific 4-momentum ~p. The tail of the vector ~p sits at the origin
of momentum space and its head sits at the point representing ~p. The momentum-space
diagram drawn in Fig. 2.1 (b) has as its coordinate axes the components (p0, p1, p2, p3) of
the 4-momentum as measured in some arbitrary Lorentz frame. Because the squared length
of the 4-momentum is always −m2,

~p · ~p = −(p0)2 + (px)
2 + (py)

2 + (pz)
2 = −m2 , (2.3)

the particle’s 4-momentum is confined to a hyperboloid in momentum space [Fig. 2.1 (b)].
This hyperboloid is described mathematically by Eq. (2.3) and is called the mass hyperboloid.
We shall often denote the particle’s energy p0 by Ẽ ≡ p0 (with the tilde to distinguish this
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Fig. 2.1: (a) The world line ~x(ζ) of a particle in spacetime (with one spatial coordinate, z,
suppressed), parametrized by a parameter ζ that is related to the particle’s 4-momentum by ~p =
d~x/dζ. (b) The trajectory of the particle in momentum space. The particle’s momentum is confined
to the mass hyperboloid, ~p2 = −m2.

E from the nonrelativistic energy of a particle, E = 1
2
mv2);1 and we shall embody its spatial

momentum in the 3-vector p = pxex + pyey + pzez, and therefore shall rewrite the mass-
hyperboloid relation (2.3) as

Ẽ2 = m2 + |p|2 (2.4)

If no forces act on the particle, then its momentum is conserved and its location in
momentum space remains fixed. However, forces (e.g., due to an electromagnetic field) can
push the particle’s 4-momentum along some curve in momentum space that lies on the mass
hyperboloid. If we parametrize that curve by the same parameter ζ as we use in spacetime,
then the particle’s trajectory in momentum space can be written abstractly as ~p(ζ). Such a
trajectory is shown in Fig. 2.1 (b). Because the mass hyperboloid is three-dimensional, we
can characterize the particle’s location on it by just three coordinates rather than four. We
shall typically use as those coordinates the spatial components of the particle’s 4-momentum,
(px, py, pz) or the spatial momentum vector p as measured in some specific inertial frame.

Momentum space and spacetime, taken together, are called phase space. We can regard
phase space as eight dimensional (four spacetime dimensions plus four momentum-space di-
mensions). Alternatively, if we think of the 4-momentum as confined to the three-dimensional
mass hyperboloid, then we can regard phase space as seven dimensional.

Turn attention, now, from an individual particle to a collection of a huge number of
particles. Assume, for simplicity, that all the particles have the same rest mass m (they are
identical particles); and allow m to be finite or zero, it does not matter. Examine those
particles that pass close to a specific event P in spacetime; and examine them from the
viewpoint of a specific observer, who lives in a specific inertial reference frame. Fig. 2.1 (a)

1This tilde notation will be restricted to Part 1 of this book (Statistical Physics). It is motivated by
our desire to follow the convention of standard texts on thermodynamics and statistical physics that the
nonrelativistic energy of a system (e.g. a particle or a box of particles) should be denoted by E without a
tilde, and by the near universal use of E in relativity to denote the relativistic energy of a particle, and by
our need to distinguish between these two concepts.
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Fig. 2.2: Definition of the distribution function from the viewpoint of a specific observer in a
specific reference frame: At the event P the observer selects a 3-volume dVx, and she focuses on
the set G of particles that lie in dVx and have momenta lying in a region of the mass hyperboloid
which is centered on ~p and has 3-momentum volume dVp. If dN is the number of particles in that
set G, then N (P, ~p) ≡ dN/dVxdVp.

is a spacetime diagram drawn in that observer’s frame; as seen in that frame, the event P
occurs at time t and at spatial location (x, y, z).

We ask the observer, at the time t of the chosen event, to select a specific, small, 3-
dimensional box with edge lengths dx, dy, dz, with the event P at its center, and with
imaginary (i.e., not physical) walls. She measures this box to have an ordinary, three-
dimensional volume

dVx = dxdydz . (2.5)

Focus attention on a specific box-like region of the mass hyperboloid, centered on a specific
4-momentum ~p in momentum space and with spatial momenta in the range (px± 1

2
dpx, py±

1
2
dpy, pz ± 1

2
dpz); Fig. 2.2(b). Our chosen observer attributes to that region a 3-dimensional

momentum volume
dVp = dpxdpydpz . (2.6)

Ask the observer to focus on that collection G of particles which lie in the spatial 3-volume
dVx [Fig. 2.2 (a)] and have spatial momenta in the 3-volume dVp [Fig. 2.2 (b)]. If there are
dN particles in this collection G, then the observer will identify

N (P, ~p) ≡ dN

dVxdVp
(2.7)

as the number density of particles in phase space. This number density depends on the
location P in spacetime of the 3-volume dVx and on the 4-momentum ~p about which the
momentum volume dVp is centered. Regarded as a function of these quantities, N (P, ~p) is
called the particles’ distribution function. It is the fundamental concept of kinetic theory.

At first sight one might expect N to depend also on the inertial reference frame used in its
definition, i.e., on the velocity of the observer. If this were the case, i.e., ifN at fixed P and p

were different when computed by the above prescription using different inertial frames, then
we would feel compelled to seek some other frame-independent geometric object to serve as
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our foundation for kinetic theory — e.g., some 4-vector of which N is a frame-dependent
component. This is because the principle of relativity insists that all fundamental physical
laws should be expressible in frame-independent language.

Fortunately, the distribution function (2.7) is frame-independent by itself, i.e. it is a
frame-independent scalar field in spacetime; so we need seek no further for a geometric
foundation for kinetic theory. To prove the frame-independence of N , we shall consider,
first, the frame dependence of the spatial 3-volume dVx, then the frame dependence of the
momentum 3-volume dVp, and finally the frame dependence of their product dVxdVp and of
the distribution function N = dN/dVxdVp. In studying this frame dependence the thing that
identifies the 3-volume dVx and 3-momentum dVp is the set of particles G. We shall select
that set once and for all and hold it fixed, and correspondingly the number of particles dN
in the set will be fixed. Moreover, we shall assume that the particles’ rest mass m is nonzero
and shall deal with the zero-rest-mass case later by taking the limit m→ 0. Then there is a
preferred frame from which to observe the particles: their own rest frame. We shall denote
by xα′

the Lorentz coordinates of that rest frame, and shall retain our previous notation xα

for the Lorentz coordinates of our previous frame. We shall orient the coordinate axes of
the two frames so they are related by a pure boost with speed v and γ = 1/

√
1− v2 in the

x-direction; see Fig. 2.3.
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Fig. 2.3: (a) Spacetime diagram drawn from viewpoint of the (primed) rest frame of the particles
G. The length of the box occupied by the particles, dx, as measured in the moving (unprimed)
frame, is Lorentz contracted, so dx = γ−1dx′ and dVx = γ−1dV ′x. (b) Momentum space diagram
drawn from viewpoint of the unprimed observer. The ranges of x-components of momenta occupied
by the particles G are related by dpx′ = γ−1dpx, so that dV ′p = γ−1dVp.

Figure 2.3(a) is a spacetime diagram that shows the world lines of a few of the particles
in the set G. These world lines go straight upward because the diagram’s chosen reference
frame is the particles’ (primed) rest frame. The leftmost and rightmost world lines demark
the walls of the particles’ box. The box’s length dx′ as measured in the particles’ rest
frame is the square root of the spacetime interval along the thick horizontal line in the
figure. Its length dx as measured in the unprimed reference frame is the square root of the
spacetime interval along the thick slanted line. The slanted line dx is the hypotenuse of a
right triangle in spacetime with spatial leg dx′ and temporal leg vdx′. By the spacetime
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“Pythagorean theorem” (equation for the interval) applied to this triangle, we have dx′2 =
dx2 − (vdx)2 = (1 − v2)dx2 = γ−2dx2, so dx = γ−1dx, which is the standard formula
for the Lorentz contraction of a moving box along its direction of motion. Since lengths
are preserved along the perpendicular directions, dy = dy ′, dz = dz′, we conclude that
dVx ≡ dxdydz = γ−1dx′dy′dz′ = γ−1dVx′. Since the dN particles all have nearly the same
energy, Ẽ = mγ, as seen in the unprimed frame, this Lorentz-contraction relation can be
rewritten as ẼdVx = mdVx′ , which says that

ẼdVx = (a frame-independent quantity) . (2.8)

Thus, the spatial volume occupied by the particles is not frame-independent, but the product
of their volume and their energy is.

Fig. 2.3 (b) shows the mass hyperboloid, the region on that hyperboloid occupied by
the momenta of the particles G, and the projections dpx and dpx′ of that box on the two
frames’ axes. We have chosen to draw this diagram in the unprimed frame, rather than the
particles’ primed frame, because we thereby obtain a convenient right triangle to use in our
computation. The hypotenuse of the right triangle is dpx′ (thick slanted curve), the horizontal
leg is dpx (thick dashed curve), and the vertical leg is vdpx; so the spacetime “Pythagorean
theorem” says (dpx′)2 = (dpx)

2 − (vdpx)
2 = γ−2(dpx)

2. Therefore, dpx′ = γ−1dpx, which is a
reversal from the relation dx = γ−1dx′. Correspondingly, there is a reversal from Eq. (2.8):

dVp

Ẽ
= (a frame-independent quantity) . (2.9)

[Those readers who feel uncomfortable with this spacetime-diagram analysis may find it
instructive to redraw each of the two diagrams in Fig. 2.3 in the alternate reference frame
and repeat the analysis.]

By taking the product of Eqs. (2.8) and (2.9) we see that for our chosen set of particles
G,

dVxdVp = (a frame-independent quantity) ; (2.10)

and since the number of particles in the set, dN , is obviously frame-independent, we conclude
that

N =
dN

dVxdVp
≡ dN

dV2
= (a frame-independent quantity) . (2.11)

Here we have introduced the notation dV2 ≡ dVxdVp for the frame-independent six-dimensional
phase-space volume occupied by the particles, a notation that suppresses any reference to
the individually frame-dependent dVx and dVp.

Although we assumed nonzero rest mass, m 6= 0, in our derivation, the conclusions that
ẼdVx and dVp/Ẽ are frame-independent continue to hold if we take the limit as m→ 0 and
the 4-momenta become null. Correspondingly, all of Eqs. (2.8) – (2.11) are valid for particles
with zero rest mass as well as nonzero.
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2.3 Other Normalizations for the Distribution Func-

tion

The normalization that one uses for the distribution function is arbitrary; renormalize N by
multiplying with any constant, and N will still be a geometric, frame-independent quantity
and will still contain the same information as before. In this book, we shall use several
different normalizations, depending on the situation. We shall now introduce them:

The distribution function f(t,x,v) for particles in a plasma.
In Part V, when dealing with nonrelativistic plasmas (collections of electrons and ions

that have speeds small compared to light), we shall regard the distribution function as a
function of time t, location x in Euclidean space, and velocity v (instead of momentum),
and we shall use the notation and normalization

f(t,x,v) =
dN

dxdydzdvxdvydvz
= m3N . (2.12)

However, we shall not use this normalization in the present chapter.

The distribution function Iν/ν
3 for photons.

d x

dA

d
n

dt
Ω

Fig. 2.4: Geometric construction used in defining the “specific intensity” Iν .

When dealing with photons or other zero-rest-mass particles, one often reexpresses N
in terms of the specific intensity, Iν. This quantity is defined as follows (cf. Fig. 2.4): An
observer places a CCD (or other measuring device) perpendicular to the spatial direction n

of propagation of the photons—perpendicular as measured in her Lorentz frame. The region
of the CCD that the photons hit has surface area dA as measured by her, and because the
photons move at the speed of light c = 1, the product of that surface area with the time dt
that they take to all go through the CCD is equal to the volume they occupy at a specific
moment of time

dVx = dAdt . (2.13)

The photons all have nearly the same frequency ν as measured by the observer, and their
4-momenta as measured by her have components related to that frequency and to their
propagation direction n by

Ẽ = p0 = hν , pj = hνnj , (2.14)

where h is Planck’s constant. Their frequencies lie in a range dν centered on ν, and they
come from a small solid angle dΩ centered on −n; and the volume they occupy in momentum
space is related to these by

dVp = |p|2dΩd|p| = h3ν2dΩdν . (2.15)
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The photons’ specific intensity, as measured by the observer, is defined to be the total energy,

dẼ = hνdN , (2.16)

that crosses the CCD per unit area dA, per unit time dt, per unit frequency dν, and per unit
solid angle dΩ (i.e., “per unit everything”):

Iν ≡
dẼ

dAdtdνdΩ
. (2.17)

(This Iν is sometimes denoted IνΩ.) From Eqs. (2.11) – (2.17) we readily deduce the following
relationship between this specific intensity and distribution function:

N =
c2

h4

Iν
ν3.

(2.18)

Here the factor c2 has been inserted so that Iν is expressed in ordinary (cgs or mks) units
in accord with astronomers’ conventions. This relation shows that, with an appropriate
renormalization, Iν/ν

3 is the photons’ distribution function.
Astronomers and opticians regard specific intensity (or equally well Iν/ν

3) as a function
of the photon propagation direction n, and the photon frequency ν, location x in space,
and time t. By contrast, physicists regard the distribution function N as a function of the
photon 4-momentum ~p and of location P in spacetime. Clearly, the information contained
in these two sets of variables, the astronomers’ set and the physicists’ set, is the same.

If two different astronomers in two different Lorentz frames at the same event in space-
time examine the same set of photons, they will measure the photons to have different
frequencies ν (because of the Doppler shift between their two frames); and they will measure
different specific intensities Iν (because of Doppler shifts of frequencies, Doppler shifts of
energies, dilation of times, Lorentz contraction of areas of CCD’s, and aberrations of photon
propagation directions and thence distortions of solid angles); however, if each astronomer
computes the ratio of the specific intensity that she measures to the cube of the frequency
she measures, that ratio, according to Eq. (2.18), will be the same as computed by the other
astronomer; i.e., the distribution function Iν/ν

3 will be frame-independent.

The mean occupation number η
Although this book is about classical physics, we cannot avoid making occasional contact

with quantum theory. The reason is that classical physics is quantum mechanical in origin.
Classical physics is an approximation to quantum physics, and not conversely. Classical
physics is derivable from quantum physics, and not conversely.

In statistical physics, the classical theory cannot fully shake itself free from its quantum
roots; it must rely on them in crucial ways that we shall meet in this chapter and the next.
Therefore, rather than try to free it from its roots, we shall expose them and make profit
from them by introducing a quantum mechanically based normalization for the distribution
function: the “mean occupation number” η.

As an aid in defining the mean occupation number, we introduce the concept of the
density of states: Consider a relativistic particle of mass m, described quantum mechanically.
Suppose that the particle is known to be located in a volume dVx (as observed in a specific
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Lorentz frame) and to have a spatial momentum in the region dVp centered on ~p. Suppose,
further, that the particle does not interact with any other particles or fields. How many
single-particle quantum mechanical states2 are available to the free particle? This question is
answered most easily by constructing, in the particle’s Lorentz frame, a complete set of wave
functions for the particle’s spatial degrees of freedom, with the wave functions (i) confined
to be eigenfunctions of the momentum operator, and (ii) confined to satisfy the standard
periodic boundary conditions on the walls of the box dVx. For simplicity, let the box have
edge length L along each of the three spatial axes of the Lorentz coordinates, so dVx = L3.
(This L is arbitrary and will drop out of our analysis shortly.) Then a complete set of wave
functions satisfying (i) and (ii) is the set {ψj,k,l} with

ψj,k,l(x, y, z) =
1

L3/2
ei(2π/L)(jx+ky+lz)e−iω̃t , (2.19)

where
ω̃ =

√

(m/~)2 + (2π/L)2(j2 + k2 + l2) . (2.20)

Here the demand that the wave function take on the same values at the left and right faces
of the box (x = −L/2 and x = +L/2), and at the front and back faces, and at the top and
bottom faces (the demand for “periodic boundary conditions”) dictates that the quantum
numbers j, k, and l be integers. The tilde on the angular frequency ω̃ tells us that it is
a relativistic frequency, i.e. it includes the influence of the particle’s rest mass, i.e. it is
related to the particle’s energy by Ẽ = ~ω̃; and correspondingly, Eq. (2.20) is the relation
Ẽ =

√

m2 + |p|2 [Eq.(2.4)] in disguise. The basis states (2.19) are eigenfunctions of the
momentum operator (~/i)∇ with momentum eigenvalues

px =
2π~

L
, py =

2π~

L
, pz =

2π~

L
. (2.21)

Thus, the allowed values of the momentum are confined to “lattice sites” in 3-momentum
space with one site in each cube of side 2π~/L. Correspondingly, the total number of states
in the region dVxdVp of phase space is the number of cubes of side 2π~/L in the region dVp

of momentum space:

dNstates =
dVp

(2π~/L)3
=
L3dVp

(2π~)3
=
dVxdVp

h3
. (2.22)

This is true no matter how relativistic or nonrelativistic the particle may be.
Thus far we have considered only the particle’s spatial degrees of freedom. Particles can

also have an internal degree of freedom called “spin”. For a particle with spin s, the number
of independent spin states is

gs =







2s+ 1 if m 6= 0; e.g., an electron or proton or atomic nucleus,
2 if m = 0 & s > 0; e.g., a photon (s = 1) or graviton (s = 2),
1 if m = 0 & s = 0; i.e., a hypothethical massless scalar particle.

(2.23)

2A quantum mechanical state for a single particle is called an “orbital” in the chemistry literature and in
the classic thermal physics textbook by Kittel and Kroemer (1980); we shall use physicists’ more conventional
but cumbersome phrase “single-particle quantum state”.
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We shall call this number of internal spin states the particle’s multiplicity .
Taking account both of the particle’s spatial degrees of freedom and its spin degree of

freedom, we conclude that the total number of independent quantum states available in
the region dVxdVp ≡ dV2 of phase space is dNstates = (gs/h

3)dV2, and correspondingly the
number density of states in phase space is

Nstates ≡
dNstates

dV2
=
gs

h3
. (2.24)

Note that, although we derived this number density of states using a specific Lorentz reference
frame, it is a frame-independent quantity, with a numerical value depending only on Planck’s
constant and (through gs) the particle’s rest mass m and spin s.

In quantum statistical mechanics one often focuses attention on the number of particles
that reside in a given quantum state. That number is called the state’s occupation number.
Select a specific event P in spacetime and a specific 4-momentum ~p for particles of a specific
type. Then the ratio of the number density of particles at (P, ~p) to the number density of
states is the mean occupation number η of the states near (P, ~p):

η(P, ~p) ≡ N (P, ~p)
Nstates

=
h3

gs
N . (2.25)

Because η is our most fundamental version of the distribution function, we shall generally
use this relation in the rearranged form

N ≡ dN

dV2
=
gs

h3
η . (2.26)

From quantum field theory we learn that the allowed values of the occupation number
for a quantum state depend on whether the state is that of a fermion (a particle with spin
1/2, 3/2, 5/2, . . .) or that of a boson (a particle with spin 0, 1, 2, . . .). For fermions no two
particles can occupy the same quantum state, so the occupation number can only take on
the eigenvalues 0 and 1. For bosons one can shove any number of particles one wishes into
the same quantum state, so the occupation number can take on the eigenvalues 0, 1, 2, 3,
. . .. Correspondingly, the mean occupation numbers must lie in the ranges

0 ≤ η ≤ 1 for fermions , 0 ≤ η ≤ ∞ for bosons . (2.27)

Quantum field theory also teaches us that when η � 1, the particles—whether fermions or
bosons—behave like classical, discrete, distinguishable particles; and when η � 1 (possible
only for bosons), the particles behave like a classical wave [if the particles are photons
(s = 1), like a classical electromagnetic wave; and if they are gravitons (s = 2), like a
classical gravitational wave].

****************************

EXERCISES
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Exercise 2.1 Example: Regimes of Particulate and Wave-like Behavior
(a) A gamma-ray burster is an astrophysical object (probably a fireball of hot gas exploding
outward from the vicinity of a newborn black hole or colliding black holes or neutron stars)
at a cosmological distance from earth (∼ 1010 light years). The fireball emits gamma rays,
with individual photon energies as measured at earth Ẽ ∼ 100 keV. These photons arive at
Earth in a burst whose total energy per unit area is roughly 10−6 ergs/cm2, and which lasts
about one second. Assume the diameter of the emitting surface as seen from earth is ∼ 1000
km and there is no absorption along the route to earth. Make a rough estimate of the mean
occupation number of the burst’s photon states. Your answer should be in the region η � 1,
so the photons behave like classical, distinguishable particles. Will the occupation number
change as the photons propagate from the source to earth?

(b) A highly nonspherical supernova in the Virgo cluster of galaxies (40 million light
years from earth) emits a burst of gravitational radiation with frequencies spread over the
band 500 Hz to 2000 Hz, as measured at earth. The burst comes out in a time of about 10
milliseconds, so it lasts only a few cycles, and it carries a total energy of roughly 10−3M�c

2,
where M� = 2 × 1033 g is the mass of the sun. The emitting region is about the size of
the newly forming neutron-star core (10 km), which is small compared to the wavelength of
the waves; so if one were to try to resolve the source spatially by imaging the waves with a
gravitational lens, one would see only a blur of spatial size one wavelength rather than seeing
the neutron star. What is the mean occupation number of the burst’s graviton states? Your
answer should be in the region η � 1, so the gravitons behave like a classical gravitational
wave.

****************************

2.4 Thermal Equilibrium

In the next chapter we will introduce with care, and explore in detail, the concept of “sta-
tistical equilibrium”—also called “thermal equilibrium”. For now, we rely on the reader’s
prior experience for the nature of this concept. If a collection of a large number of identical
particles is in thermal equilibrium in the neighborhood of an event P then, as we shall see
in the next chapter, there is a special Lorentz frame (the mean rest frame of the particles
near P) in which the mean occupation number takes on the following form:

η =
1

e(Ẽ−µ̃)/kT + 1
for fermions , (2.28)

η =
1

e(Ẽ−µ̃)/kT − 1
for bosons . (2.29)

Here Ẽ ≡ p0 is the total energy of an individual particle as measured in that mean rest
frame; and, thus, it is expressible in terms of the particle 4-momentum ~p and the rest-frame
4-velocity ~urf by

Ẽ ≡ −~p · ~urf (2.30)
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[Eq. (1.69)]. In terms of the spatial momentum p as measured in the mean rest frame, it is,
of course,

Ẽ = (m2 + p2)
1

2 . (2.31)

The quantities µ̃ and T in Eqs. (2.28) and (2.29) are the chemical potential and temperature
of the collection of particles. The chemical potential µ̃, the temperature T , and the rest-
frame 4-velocity ~urf can depend on location in spacetime P. Thus, the dependence of the
equilibrium η on P is through µ̃(P), T (P), and ~urf(P); while its dependence on the particle
4-momentum is only through Ẽ = −~p·~urf. The quantity k in (2.28) and (2.29) is Boltzmann’s
constant, k = 1.381× 10−16erg K−1 = 1.381× 10−23J K−1.

Notice that the equilibrium mean occupation number (2.28) for fermions lies in the range
0 to 1 as required, while that (2.29) for bosons lies in the range 0 to ∞. The equilibrium
fermion distribution (2.28) is called the Fermi-Dirac distribution, while the equilibrium boson
distribution (2.29) is called the Bose-Einstein distribution. In the regime (Ẽ − µ̃)/kT � 1
the mean occupation number is small compared to unity and is the same for fermions and
bosons:

η = e−(Ẽ−µ̃)/kT when (Ẽ − µ̃)/kT � 1 . (2.32)

This is the regime of classical, distinguishable-particle behavior; and this limiting distribution
is called the Boltzmann distribution.

The temperature T should already be familiar to the reader as a measure of the average
energy per particle in thermal equilibrium. The chemical potential µ̃might not be so familiar.
We shall learn its nature by exploring the consequences of the thermal distributions (2.28),
(2.29), (2.32). As we shall see, µ̃ is a measure of how many particles are present. It can
be positive or negative (though for bosons it cannot exceed the rest mass m; otherwise η
would be negative at low energies, Ẽ ' m); and the more positive µ̃ is, the larger is the
number of particles. In the special case that the particles of interest can be created and
destroyed completely freely, with creation and destruction constrained only by the laws of 4-
momentum conservation, the particles quickly achieve a thermodynamic equilibrium in which
the chemical potential vanishes, µ̃ = 0 (as we shall see in the next chapter). For example,
photons inside a box with perfectly emitting and absorbing walls that have temperature T
acquire the mean occupation number (2.29) with zero chemical potential; expressed in terms
of photon frequency ν as measured in the box’s rest frame, the corresponding distribution
function in its various normalizations takes on the standard black-body (Planck) form

η =
1

ehν/kT − 1
, N =

2

h3

1

ehν/kT − 1
, Iν =

(2h/c2)ν3

ehν/kT − 1
. (2.33)

(Here, in the third expression, we have inserted the factor c−2 so that Iν will be in ordinary
units.) On the other hand, if one places a fixed number of photons inside a box whose
walls cannot emit or absorb them but can scatter them, exchanging energy with them in the
process, then the photons will acquire the Bose-Einstein distribution (2.29) with temperature
T equal to that of the walls and with nonzero chemical potential µ̃ fixed by the number of
photons present; the more photons there are, the larger will be the chemical potential.

When the particles have finite rest mass m and kT is small compared to m, then almost
all of them will have speeds small compared to light. In this nonrelativistic regime, we shall
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replace the particle energy Ẽ = m/
√

1− v2 =
√

m2 + |p|2 by its nonrelativistic limit

E =
1

2
mv2 = |p|2/2m , (2.34)

from which the rest mass has been removed, and we shall replace the chemical potential µ̃
by a corresponding nonrelativistic chemical potential µ from which the rest mass has been
removed:

µ ≡ µ̃−m . (2.35)

The thermal distributions then take on nonrelativistic forms that are identical to their fully
relativistic forms (2.28), (2.29), (2.32), but with tildes removed:

η =
1

e(E−µ)/kT + 1
for fermions (Fermi-Dirac distribution), (2.36)

η =
1

e(E−µ)/kT − 1
for bosons (Bose-Einstein distribution), (2.37)

η = e−(E−µ)/kT for classical regime (Boltzman distribution). (2.38)

****************************

EXERCISES

Exercise 2.2 Example: Velocity Distribution for Thermalized, Classical Particles
Consider a collection of thermalized, classical particles, with zero spin and nonzero rest

mass, so as measured in their mean rest frame where a particle’s ordinary velocity is denoted
by v, they have the relativistic Boltzman distribution. Denote by t, x, y, z the Lorentz
coordinates of their mean rest frame.

(a) Show that the chemical potential determines the total number density of particles
n in physical space, as measured in the mean rest frame; more specifically, show that n ≡
dN/dxdydz ∝ eµ̃/kT .

(b) Show that the distribution of particle energies as measured in the mean rest frame is

dN

dxdydzdẼ
=

(

4π

h3
eµ̃/kT

)

Ẽ
√

Ẽ2 −m2 e−Ẽ/kT . (2.39)

(c) What is the distribution of particle speeds v = |v|, dN/dxdydzdv? Show that in the
limit v � 1 your answer reduces to the Maxwell velocity distribution

dN

dxdydzdv
=

(

4πm3

h3
e(µ̃−m)/kT

)

v2 exp

(−1
2
mv2

kT

)

. (2.40)

Draw a graph of this distribution.
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Exercise 2.3 Example: Observations of Cosmic Microwave Radiation from a Moving Earth
The universe is filled with cosmic microwave radiation left over from the big bang. At

each event in spacetime the microwave radiation has a mean rest frame; and as seen in that
mean rest frame the radiation’s distribution function η is isotropic and thermal with zero
chemical potential:

η =
1

ehν/kTo − 1
, with To = 2.73 K . (2.41)

Here ν is the frequency of a photon as measured in the mean rest frame.
a. Show that the specific intensity of the radiation as measured in its mean rest frame

has the Planck spectrum

Iν =
(2h/c2)ν3

ehν/kTo − 1
. (2.42)

Plot this specific intensity as a function of wavelength and from your plot determine the
wavelength of the intensity peak.

b. Show that η can be rewritten in the frame-independent form

η =
1

e−~p·~uo/kTo − 1
, (2.43)

where ~p is the photon 4-momentum and ~uo is the 4-velocity of the mean rest frame.
c. In actuality the earth moves relative to the mean rest frame of the microwave back-

ground with a speed v of about 600 km/sec toward the Hydra-Centaurus region of the sky.
An observer on earth points his microwave receiver in a direction that makes an angle θ
with the direction of that motion, as measured in the earth’s frame. Show that the specific
intensity of the radiation received is precisely Planckian in form [Eq. (2.33)], but with a
Doppler-shifted temperature

T = To

(
√

1− v2

1− v cos θ

)

. (2.44)

Note that this Doppler shift of T is precisely the same as the Doppler shift of the frequency
of any specific photon. Note also that the θ dependence corresponds to an anisotropy of
the microwave radiation as seen from earth. Show that because the earth’s velocity is small
compared to the speed of light, the anisotropy is dipolar in form. What is the magnitude
∆T/T of the variations between maximum and minimum microwave temperature on the
sky? It was by measuring these variations that astronomers3 discovered the motion of the
earth relative to the mean rest frame of the cosmic microwave radiation.

****************************

2.5 Number-Flux Vector and Stress-Energy Tensor

The constraint that the laws of physics be frame-independent relationships between frame-
independent objects is a powerful one. We shall see an example of that power in this section:

3Corey and Wilkinson (1976), and Smoot, Gorenstein, and Muller (1977).
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Our objective is to study macroscopic features of a distribution of particles; and, guided
by the Principle of Relativity (Chap. 1), we shall try to describe those features as geomet-
ric, frame-independent objects (scalar, vector, and tensor fields in spacetime), expressed as
frame-independent integrals over momentum space. The integrals over momentum space
must satisfy a number of properties: (i) Their integrands must involve the distribution func-
tion N = (gs/h

3)η, since η and its renormalized variants are the only frame-independent
objects we have to describe the state of the particles, and the appropriate normalization for
a momentum space integral is a “per unit momentum space” one (i.e., that of N ), rather
than a “per quantum state” one (i.e., that of η). (ii) The most interesting of the integrals
(and the only ones we shall study) will be linear in N , so that if we double the number of
particles present, we double the amount of the quantity being computed. (iii) Besides N ,
the only other frame-independent quantity we know that lives in momentum space is the
4-momentum ~p; and, thus, the integrand can involve N , ~p, and no other quantities. (iv) The
integration element must be frame-independent, so it must be dVp/Ẽ = dpxdpydpz/p

0 when
expressed in terms of the momentum components in any Lorentz frame. The only integrals
satisfying these four properties (aside from normalization) are

R ≡
∫

N dVp

p0
, (2.45)

Sµ ≡
∫

N pµdVp

p0
, (2.46)

T µν ≡
∫

N pµpν dVp

p0
, (2.47)

and higher-order (cubic, quartic, . . .) “moments” of N . Here, and throughout this chapter,
momentum space integrals unless otherwise specified are taken over the entire mass hyper-
boloid. We shall explore each of the geometric, frame-independent entities (2.45)–(2.47) by
computing its components in a Lorentz frame.

In any Lorentz frame the scalar field R of Eq. (2.45) is

R =

∫

N 1

p0
dpxdpydpz . (2.48)

This is the sum, over all particles in a unit 3-volume, of the inverse energy. Although it is
intriguing that this quantity is frame-independent, it is not a quantity that appears in any
important way in the laws of physics.

By contrast, the 4-vector field ~S of Eq. (2.46) plays a very important role in physics. Its
time component in a Lorentz frame is

S0 =

∫

Ndpxdpydpz =

∫

dN

dxdydzdpxdpydpz

dpxdpydpz . (2.49)

Obviously, this is the number of particles per unit three-dimensional volume n, i.e., the
particle number density, as measured in the Lorentz frame:

S0 = n . (2.50)
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The x-component of ~S, similarly, is

Sx =

∫

N px
dpxdpydpz

p0
=

∫

dN

dxdydzdpxdpydpz

dx

dt
dpxdpydpz (2.51)

=

∫

dN

dtdydzdpxdpydpz

dpxdpydpz . (2.52)

Here the second equality follows from

px

p0
=
dx/dζ

dt/dζ
=
dx

dt
= (x-component of velocity) . (2.53)

It should be obvious from Eq. (2.53) that Sx is the flux of particles in the x-direction, i.e.,
the number of particles that cross a unit area orthogonal to the x-direction per unit time, as
measured in the Lorentz frame. Similarly, Sy and Sz are the fluxes of particles in the y and z
directions; and S (denoted Sj in index notation) is the particle flux vector—a 3-dimensional
vector residing in the three-dimensional space of the chosen Lorentz frame. The full, 4-
dimensional quantity ~S (Sµ in index notation) is called the number-flux 4-vector because
its time component is the particle number density and its spatial part, the particle flux.
By analogy with our discussions of the the charge-current 4-vector ~J and the stress-energy
tensor T in Sec. 1.12, if ~Σ is a 3-volume in 4-dimensional spacetime, then when we put the
4-vector ~Σ into the single slot of ~S, we obtain the total number of particles that flow through
that 3-volume from the negative side to the positive side:

(number of particles crossing Σ) = ~S(~Σ) = ~S · ~Σ . (2.54)

And by analogy with the laws of conservation of charge ~∇· ~J = 0 and 4-momentum ~∇·T = 0
[Eq. (1.138)], when no particles are being created or destroyed, the particle-flux 4-vector

must satisfy the conservation law ~∇ · ~S = 0. In a Lorentz frame this conservation law says
∂n/∂t + ∇ · S = 0. Notice that ∂n/∂t has the interpretation of the increase in the number
of particles in a unit volume per unit time, i.e. the increase in the number of particles per
unit 4-dimensional volume of spacetime; and the term ∇ ·S accounts for this increase by the
flow of particles across the spatial volume’s walls. Correspondingly, if particles are actually
being created or destroyed, the frame-invariant evolution law for ~S must take the form

~∇· ~S = (number of particles created minus number annihilated per unit spacetime volume).
(2.55)

Turn to the quantity T µν defined by the integral (2.47). By evaluating its components in
a chosen Lorentz frame, we can easily verify that this is the particles’ stress-energy tensor,
which we studied in Chap. 1. Specifically, the component

T µ0 =

∫

N pµp0dpxdpydpz

p0
=

∫

dN

dxdydzdpxdpydpz
pµdpxdpydpz (2.56)

is obviously the µ-component of 4-momentum per unit volume; i.e., T 00 is the energy per unit
volume and T j0 is the j-component of momentum per unit volume. Similarly, the component

T µx =

∫

N pµpx
dpxdpydpz

p0
=

∫

dN

dxdydzdpxdpydpz

dx

dt
pµdpxdpydpz (2.57)

=

∫

dN

dtdydzdpxdpydpz

pµdpxdpydpz (2.58)
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is the amount of µ-component of 4-momentum per unit time that crosses a unit area orthog-
onal to the x-direction; i.e., it is the x-component of flux of µ-component of 4-momentum.
More specifically, T 0x is the x-component of energy flux and T jx is the x component of
spatial-momentum flux—or, equivalently, the jx component of the stress tensor. These, and
the analogous expressions and interpretations of T µy and T µz can be summarized by the
familiar stress-energy-tensor relations

T 00 = (energy density) , T j0 = (momentum density) = T 0j = (energy flux) ,

T jk = (stress tensor) . (2.59)

Notice that the energy density includes the contribution of rest mass, since p0 includes rest
mass.

The mean rest frame of the particles, at some event P, is that frame in which the
particle flux Sj vanishes. We shall denote by ~urf the 4-velocity of this mean rest frame.
Especially interesting are distribution functions N that are isotropic in the mean rest frame,
i.e., distribution functions that depend on the magnitude |p| ≡ p of the spatial momentum
of a particle, but not on its direction. Since the energy of a particle as measured in the mean
rest frame is also a function of |p| = p and not of the momentum direction (Ẽ =

√

m2 + p2),
we can equally well say that isotropic distributions are those for which N depends on the
4-momentum only through the energy as measured in the mean rest frame, i.e., only through

Ẽ = −~urf · ~p expressed in frame-independent form,

Ẽ = p0 = (m2 + p2)
1

2 in mean rest frame . (2.60)

Notice that isotropy in the mean rest frame, i.e., N = N (P, Ẽ) does not imply isotropy
in any other Lorentz frame. As seen in some other (“primed”) frame, ~urf will have a time
component u0′

rf = γ and a space component u′rf = γV [where V is the mean rest frame’s

velocity relative to the primed frame and γ = (1−V2)
1

2 ]; and correspondingly, N will be a
function of

Ẽ = −~urf · ~p = γ[(m2 + p′
2
)

1

2 −V · p′] , (2.61)

which is anisotropic: it depends on whether the spatial momentum p′ is along or opposite
to the mean particle velocity V. For a specific example see Exercise 2.3, above.

****************************

EXERCISES

Exercise 2.4 Example: Lorentz Transformation Laws for Sµ and T µν, and Inertial Mass
Per Unit Volume

Suppose that two inertial frames differ by a boost with speed v in the x-direction, so

t′ = γ(t+ vx) , x′ = γ(x + vt) , y′ = y , z′ = z ;

t = γ(t′ − vx′) , x = γ(x′ − vt′) , y = y′ , z = z′ . (2.62)

(a) How are the particle number density n and particle flux Sj as measured in the two
frames related to each other?
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(b) How are the energy density, momentum density, energy flux, and stress as measured
in the two frames related to each other?

(c) Suppose that some medium has a mean rest frame (unprimed frame) in which T 0j =
T j0 = 0. Suppose, further, that the speed v of the medium’s rest frame relative to the
primed, laboratory frame, is very small compared to the speed of light; and ignore factors of
order v2. The “ratio” of the medium’s momentum density T j′0′

as measured in the laboratory
frame to its velocity vi = vδix is called its total inertial mass per unit volume, and is denoted
ρinert

ji :

T j′0′

= ρinert
ji vi . (2.63)

Show that
ρinert

ji = T 00δji + Tji . (2.64)

Show that for a perfect fluid [Eq. (1.142)] the inertial mass per unit volume is isotropic and
has magnitude ρ+P , where ρ is the mass-energy density and P is the pressure measured in
the fluid’s rest frame.

****************************

2.6 Perfect Fluids and Equations of State

Consider a collection of particles whose distribution function is isotropic in their mean rest
frame. Such isotropy is readily produced by collisions between the particles. As measured
in the mean rest frame, the components of the number-flux 4-vector (2.46) are

n ≡ S0 =

∫

Ndpxdpydpz = 4π

∫

∞

0

N p2dp = number density , (2.65)

Sj =

∫

N pj

Ẽ
dpxdpydpz = 0 , Ẽ =

√

m2 + p2 . (2.66)

Here the integral (2.66) vanishes because the integrand N pj/Ẽ is odd in the integration
variable pj, and the integration being over the entire mass hyperboloid runs from pj = −∞
to pj = +∞. Similarly, the time-time component of the stress-energy tensor (2.47), i.e., the
energy density as measured in the rest frame, is

ρ ≡ T 00 =

∫

N Ẽdpxdpydpz = 4π

∫

∞

0

N Ẽp2dp ; (2.67)

and the energy flux (same as momentum density) is

T 0j =

∫

N pjdpxdpydpz = 0 , (2.68)

which vanishes because the integrand is odd in pj. Finally, because the distribution function
is isotropic in the momentum, the stress tensor Tjk turns out to be isotropic, i.e., to be a
multiple of the metric gjk = δjk of the rest frame’s 3-dimensional space, so

Tjk = Pδjk . (2.69)
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Here P is a scalar that is defined only in this isotropic situation.
Notice that the stress-energy tensor (2.67)–(2.69) is that of a perfect fluid [Eq. (1.142)].

The mean rest frame of the particles, in which we are computing its components, is the rest
frame of the fluid, and ρ and P are the fluid’s density and pressure as measured in this mean
rest frame.

The most computationally useful expression for the fluid’s pressure P is that obtained
by taking one-third the trace of the stress tensor:

P =
1

3
(Txx + Tyy + Tzz) =

1

3

∫

N|p|2Ẽ−1dpxdpydpz =
4π

3

∫

∞

0

N Ẽ−1p4dp , (2.70)

where p = |p| is the magnitude of the momentum.
If we know the distribution function for an isotropic collection of relativistic particles,

Eqs. (2.65), (2.67), and (2.70) give us a straightforward way of computing the collection’s
number density of particles n, its perfect-fluid energy density ρ, and its perfect-fluid pressure
P as measured in the mean rest frame. For the thermalized distribution functions (2.28),
(2.29), and (2.32) [with N = (gs/h

3)η], that calculation gives n, ρ and P in terms of the
particles’ temperature T and chemical potential µ̃. One can then invert the expression for
n(µ̃, T ) to give µ̃(n, T ) and then insert into the expressions for ρ and P to obtain equations
of state for thermalized particles

ρ = ρ(n, T ) , P = P (n, T ) . (2.71)

The details of this calculation are carried out in Exercise 2.5 for a gas of thermalized
photons with vanishing chemical potential (i.e., with an isotropic, black-body distribution);
the result is

ρ = aT 4 , P =
1

3
ρ , (2.72)

where

a =
8π5

15

k4

h3c3
= 7.56× 10−15erg cm−3 K−4 = 7.56× 10−16J m−3 K−4 (2.73)

is the “radiation constant.”
As we shall see in Part VI, when the Universe was younger than about 100,000 years, its

energy density and pressure were predominantly due to thermalized photons (plus neutrinos
which contributed roughly the same as the photons), so its equation of state was given by Eq.
(2.72) with the coefficient changed by a factor of order unity. Einstein’s general relativistic
field equations (Part VI) required that

3

32πGτ 2
= ρ ' aT 4 , (2.74)

where G is Newton’s gravitation constant and τ was the age of the universe as measured in
the mean rest frame of the photons. Putting in numbers, we find that

ρ =
4.9× 10−12g/cm3

(τ/1yr)2
, T ' 106K

√

τ/1yr
. (2.75)
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This implies that when the universe was one minute old, its radiation density and temper-
ature were about 1 g/cm3 and 6 × 108 K. These conditions were well suited for burning
hydrogen to helium; and, indeed, about 1/4 of all the mass of the universe did get burned
to helium at this early epoch. We shall examine this in further detail in Part VI.

Returning to our use of kinetic theory to compute equations of state: In the nonrelativistic
limit, the energy Ẽ of a particle becomes m + E where E = p2/2m, the relativistic energy
density ρ becomes ρ = mn + ε, where ε is the energy density excluding rest mass, and Eqs.
(2.65), (2.67), and (2.70) reduce to the following nonrelativistic expressions:

n =

∫

∞

0

N 4πp2dp , ε =
3

2
P =

∫

∞

0

N p2

2m
4πp2dp . (2.76)

In Exercise 2.6, we use these expressions to derive the equations of state for a thermalized,
nonrelativistic (i.e., kT � mc2), classical (i.e., η � 1) gas; the result is

n =
gs

h3
eµ/kT (2πmkT )3/2 , (2.77)

ε =
3

2
nkT , P = nkT . (2.78)
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Fig. 2.5: Physical nature of matter at various densities and temperatures.

As an application, consider ordinary matter. Fig. 2.5 shows its physical nature as a
function of density and temperature, near and above “room temperature”, 300 K. We shall
study solids (lower right) in Part III, fluids (lower middle) in Part IV, and plasmas (middle)
in Part V. Our kinetic theory tools are well suited to plasmas, and also in some situations
(when particles have mean free paths large compared to their sizes) to fluids and solids. Here
we shall focus on the region of a nonrelativistic plasma, which is bounded by the two dashed
lines and the slanted solid line. For concreteness and simplicity, we shall regard the plasma
as made solely of hydrogen. (This is a good approximation in most astrophysical situations;
the modest amounts of helium and traces of other elements usually do not play a major role
in equations of state. By contrast, for a laboratory plasma it can be a poor approximation;
for quantitative analyses one must pay attention to the plasma’s chemical composition.)

Our nonrelativistic plasma, then, consists of a mixture of two gases (or “fluids”): free
electrons and free protons, in equal numbers. Each fluid has a particle number density



21

n = ρ/mp, where ρ is the total mass density and mp is the proton mass. (The electrons are so
light that they do not contribute significantly to ρ, and because the plasma is nonrelativistic,
the thermal contributions to ρ are negligible.) Correspondingly, the equation of state includes
equal contributions from the electrons and protons and is given by

ε = 3(k/mp)ρT , P = 2(k/mp)ρT . (2.79)

The upper dashed boundary (Fig. 2.5) on the region of validity for this equation of state is
the temperature Trel = mec

2/k = 6× 109 K at which the electrons become strongly relativis-
tic. In Chap. 4 we shall compute the thermal production of electron/positron pairs in the hot
plasma and thereby shall discover that the upper boundary of validity is actually somewhat
lower than this. The lower dashed boundary is the temperature Trec ∼ (ionization energy of
hydrogen)/(a few k) ∼ 104 K at which electrons and protons begin to recombine and form
neutral hydrogen. In Chap. 4 we shall analyze the conditions for ionization/recombination
equilibrium and thereby shall refine this boundary. The solid right boundary is the point at
which the electrons cease to behave like classical particles, because their mean occupation
number η ceases to be small compared to unity. As one can see from the Fermi-Dirac dis-
tribution (2.36) with Ẽ − µ̃ = E − µ, for typical electrons (which have energies E ∼ kT ),
the regime of classical behavior (η � 1; left side of solid line) is µ� −kT and the regime of
strong quantum behavior (η ∼ 1; electron degeneracy; right side of solid line) is µ � +kT .
The slanted solid boundary in Fig. 2.5 is thus the location µ = 0, which translates via Eq.
(2.77) to

ρ = ρdeg ≡ (2mp/h
3)(2πmekT )3/2 = 0.01(T/104K)3/2g/cm3 . (2.80)

Although the hydrogen gas is degenerate to the right of this boundary, we can still com-
pute its equation of state using our kinetic-theory equations (2.67) and (2.70), so long as
we use the quantum mechanically correct distribution function for the electrons—the Fermi-
Dirac distribution (2.36). In this electron-degenerate region, the proton pressure retains its
classical value, P ∝ ρ, while the electron pressure grows much more rapidly with density.
Heuristically, this is because the electrons are being confined by the Pauli exclusion Principle
to regions of ever shrinking size, causing their zero-point motions and associated pressure to
grow. As a result, the proton pressure becomes negligible and the electron pressure dom-
inates. Moreover, when the density gets sufficiently high, the zero-point motions become
relativistically fast (the electron chemical potential µe = µ̃e − me becomes of order me),
so the non-relativistic, Newtonian analysis fails and the matter enters a domain of “rela-
tivistic degeneracy”. Both domains, nonrelativistic degeneracy (µe � me) and relativistic
degeneracy (µe & me), occur for matter inside a massive white-dwarf star—the type of star
that the Sun will become when it dies. We shall study the structures of such stars in the
Fluid-Mechanics part of this book, Part IV; and in Part VI we shall see how general relativ-
ity (spacetime curvature) modifies that structure and helps force sufficiently massive white
dwarfs to collapse.

The equation of state for electron-degenerate hydrogen will be a key foundation for our
study of these stars. That equation of state, due to Wilhelm Anderson and Edmund Stoner
in 1930 [see the history on pp. 153–154 of Thorne (1994)] and derived in Exercise 2.7, is
the following: Denote by x the ratio of the “Fermi momentum” pF =

√

µ̃2
e −m2

e (i.e., the
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momentum of a particle whose energy is Ẽ = µ̃e) to the electron rest mass me:

x ≡ pF

me
=

√

µ̃2
e −m2

e

me
. (2.81)

Then the density and pressure as a function of x are

ρ =
8πmp

3(h/me)3
x3 , P =

πm4
e

h3
ψ(x) , (2.82)

where ψ(x) = sinh−1 x− x

(

1− 2x2

3

)√
1 + x2 '

{

8
15
x5 for x� 1

2
3
x4 for x� 1 .

}

Note that the dividing line, x = µ̃e/me = 1, between nonrelativistic and relativistic degen-
eracy is at density

ρrel deg =
8πmp

3(h/me)3
' 3× 106g/cm3 . (2.83)

In the nonrelativistic regime ρ� ρrel deg, the equation of state is P ∝ ρ5/3; in the relativistic
regime ρ � ρrel deg, it is P ∝ ρ4/3. These asymptotic equations of state turn out to play a
crucial role in the structure and stability of white-dwarf stars [Parts IV and VI; Chap. 4 of
Thorne(1994)].

****************************

EXERCISES

Exercise 2.5 Example and Derivation: Equation of State for a Photon Gas
(a) Consider a collection of photons with a distribution function N which, in the mean

rest frame of the photons, is isotropic. Show, using Eqs. (2.67) and (2.70), that this photon
gas obeys the equation of state P = 1

3
ρ.

(b) Suppose the photons are thermalized with zero chemical potential, i.e., they are
isotropic with a black-body spectrum. Show that ρ = aT 4, where a is the radiation constant
of Eq. (2.73). Note: Equations in the note at the end of this problem may be helpful.

(c) Show that for the isotropic, black-body photon gas the number density of photons is

n = bT 3 , where b = 16πζ(3)

(

k

hc

)3

; (2.84)

and thus that the mean energy of a photon in the gas is

¯̃Eγ =
π4

30ζ(3)
kT = 2.7011780... kT . (2.85)

Here ζ(q) is Riemann’s Zeta function, expressible for q > 1 as

ζ(q) =

∞
∑

n=1

1

nq
. (2.86)
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Note: The following integral will be helpful in this problem:

∫

∞

0

xq−1

ex − 1
dx = Γ(q)ζ(q) , (2.87)

where ζ(q) is the zeta function defined in Eq. (2.86) and Γ(q) is the gamma function, which
is equal to (q − 1)! if q is an integer. For the special case where q is an even integer and is
≥ 2, so q − 1 is odd and ≥ 1, the integral (2.87) takes on the value

∫

∞

0

x2q−1

ex − 1
dx = (−1)q−1(2π)2qB2q

4q
, (2.88)

where Bn is the Bernoulli number. Values of the zeta functions and Bernoulli numbers for
several values of their arguments are:

n 1 2 3 4 5
ζ(n) ∞ 1.64493 1.20206 1.08232 1.03693
B2n

1
6

− 1
30

1
42

− 1
30

5
66

Table 2.1: Bernoulli Numbers

Exercise 2.6 Example and Derivation: Equation of State for a Nonrelativistic, Classical
Gas

Consider a collection of identical, classical (i.e., with η � 1) particles with a distribution
function N which is thermalized at a temperature T such that kT � mc2 (nonrelativistic
temperature).

(a) Show that the distribution function, expressed in terms of the particles’ momentum
or velocity in the mean rest frame, is

N =
gs

h3
eµ/kT e−p2/2mkT , where p = |p| = mv , (2.89)

with v being the speed of a particle.
(b) Show that the number density of particles in the mean rest frame is

n =
gs

h3
eµ/kT (2πmkT )3/2 . (2.90)

(c) Show that this gas satisfies the equations of state

ε =
3

2
nkT , P = nkT , (2.91)

so the mean energy per particle is

Ē =
3

2
kT . (2.92)

Note: The following integrals, for nonnegative integral values of q, will be useful:
∫

∞

0

x2qe−x2

dx =
(2q − 1)!!

2q+1

√
π , (2.93)
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where n!! ≡ n(n− 2)(n− 4) . . . (2 or 1); and

∫

∞

0

x2q+1e−x2

dx =
1

2
q! . (2.94)

Exercise 2.7 Problem and Derivation: Equation of State for Electron-Degenerate Hydrogen
Derive the equation of state (2.82) for an electron-degenerate hydrogen gas. In your

derivation, approximate the temperature T as zero and explain why this approximation is
justified. (Note: It might be easiest to compute the integrals with the help of symbolic
manipulation software such as Mathematica, Macsyma or Maple.)

****************************

2.7 Evolution of the Distribution Function: Liouville’s

Theorem, the Vlasov Equation, and the Boltzmann

Transport Equation

We now turn to the issue of how the distribution function η(P, ~p), or equivalently N =
(gs/h

3)η, evolves from point to point in phase space. We shall explore the evolution under
the simple assumption that, except for occasional, very brief collisions, the particles all move
freely, uninfluenced by any forces. It is straightforward to generalize to a situation where
the particles interact with electromagnetic or gravitational or other fields as they move, and
we shall do so in the next chapter and in Part VI. However, in this chapter we shall restrict
attention to the very common situation of free motion between collisions.

Initially we shall even rule out collisions; only at the end of this section will we restore
them, by inserting them as an additional term in our collision-free evolution equation for η.

The foundation for our collision-free evolution law will be Liouville’s Theorem: Consider
a collection G of particles which are initially all near some location (Po, ~po) in phase space
and initially occupy an infinitesimal (frame-independent) phase-space volume dVxdVp there.
Pick a particle at the center of the collection G and call it the “fiducial particle”. Since all
the particles in G have nearly the same initial position Po and 4-velocity ~u = ~po/m, they
subsequently all move along nearly the same world line through spacetime; i.e., they all
remain congregated around the fiducial particle. We thus can regard their volume dVxdVp

in phase space as a function of the fiducial particle’s parameter ζ (so normalized that ~p =
dP/dζ). Liouville’s theorem says that the phase-space volume occupied by the particles G
is conserved,

d

dζ
(dVxdVp) = 0 ; (2.95)

i.e., it is a constant along the world line of the fiducial particle.
We can prove Liouville’s theorem with the aid of the diagrams in Fig. 2.6. Assume,

for simplicity, that the particles have nonzero rest mass, and switch from ζ to proper time
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(a) (b)

px

p x

x

px

p x

x

xx
∆∆

∆ ∆

Fig. 2.6: The phase space region (x-px part) occupied by a collection of particles with finite rest
mass, as seen in the Lorentz frame of the central, fiducial particle. (a) The initial region. (b) The
region after a short time.

τ = mζ as the parameter with respect to which changes are monitored. Consider the region
in phase space occupied by the particles, as seen in the Lorentz frame of the fiducial particle.
Choose that region to be a rectangular box at the initial event Po [Fig. 2.6(a)]; and set the
fiducial proper time τ to zero at that initial event. Examine the evolution with time of the
2-dimensional slice y = py = z = pz = 0 through the occupied region. The evolution of other
slices will be similar. Then, as Lorentz time t = τ passes, the particle at location (x, px)
moves with velocity

dx

dt
=
px

m
, (2.96)

where the nonrelativistic approximation to the velocity is used because all the particles are
very nearly at rest in the fiducial particle’s Lorentz frame. Because the particles move freely,
each one has a conserved px, and their motion (2.96) deforms the particles’ phase space
region as shown in Fig. 2.6(b). Obviously, the area of that region, ∆x∆px, is conserved.

This same argument shows that the x-px area is conserved at all values of y, z, py, pz; and
similarly for the areas in the y-py planes and the areas in the z-pz planes. As a consequence,
the total volume in phase space, dVxdVp = ∆x∆px∆y∆py∆z∆pz is conserved.

Although this proof of Liouville’s theorem relied on the assumption that the particles
have nonzero rest mass, the theorem is also true for particles with zero rest mass—as one
can see by taking the limit as the rest mass goes to zero and the particles’ 4-momenta become
null.

Since, in the absence of collisions or other nongravitational interactions, the number dN
of particles in the collection G will be conserved, Liouville’s theorem immediately implies
also the conservation of the number density in phase space, N = dN/dVxdVp:

dN
dζ

= 0 along the trajectory of a fiducial particle. (2.97)

This conservation law is called the Vlasov equation, or the collisionless Boltzmann equation.
Note that it says that not only is the distribution function N frame-independent; N also is
a constant along the phase-space trajectory of any freely moving particle.

The Vlasov equation is actually far more general than is suggested by the above deriva-
tion; see Box 2.1, which is best read after finishing this section.
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The Vlasov equation is most nicely expressed in the frame-independent form (2.97). For
some purposes, however, it is helpful to express the equation in a form that relies on a specific
but arbitrary choice of Lorentz reference frame. Then N (P, ~p) can be regarded as a function
of the seven phase-space coordinates {xµ, pj}:

N = N (xµ, pj) ; (2.98)

and the Vlasov equation (2.97) then takes the coordinate-dependent form

dN
dζ

=
dxµ

dζ

∂N
∂xµ

+
dpj

dζ

∂N
∂pj

=
√

m2 + |p|2
(

∂N
∂t

+ vj
∂N
∂xj

)

= 0 . (2.99)

Here we have used the equations of motion for the fiducial particle: dxµ/dζ = pµ, p0 = Ẽ =
√

m2 + |p|2, pj = p0vj, and dpj/dt = 0.
Since our derivation of the Vlasov equation relied on the assumption that no particles

are created or destroyed as time passes, the Vlasov equation in turn should guarantee con-
servation of the number of particles,

~∇ · ~S = 0 (2.100)

[cf. Eq. (2.55)]. Indeed, this is so; see Exercise 2.8.
Similarly, since the Vlasov equation is based on the law of 4-momentum conservation for

all the individual particles, it is reasonable to expect that the Vlasov equation will guarantee
the conservation of their total 4-momentum, i.e. will guarantee that

~∇ · T = 0 . (2.101)

Indeed, this conservation law does follow from the Vlasov equation; see Exercise 2.8.
Thus far we have assumed that the particles move freely through phase space with no

collisions. If collisions occur, they will produce some nonconservation of N along the tra-
jectory of a freely moving, noncolliding fiducial particle, and correspondingly, the Vlasov
equation will get modified to read

dN
dζ

=

(

dN
dζ

)

collisions

, (2.102)

where the right hand side represents the effects of collisions. This equation, with collision
terms present, is called the Boltzmann transport equation. The actual form of the collision
terms depends, of course, on the details of the collisions. We shall meet some specific
examples in the next section and in Part V of this book (Plasma Physics).

Whenever one applies the Vlasov or Boltzmann transport equation to a given situation,
it is helpful to simplify one’s thinking in two ways: (i) Adjust the normalization of the
distribution function so it is naturally tuned to the situation. For example, when dealing
with photons, Iν/ν

3 is typically best, and if—as is usually the case—the photons do not
change their frequencies as they move and only a single reference frame is of any importance,
then Iν alone may do; see Exercise 2.9. (ii) Adjust the differentiation parameter (ζ above)
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Box 2.1

Sophisticated Derivation of Vlasov Equation

Denote by ~X a point in 8-dimensional phase space. In a Lorentz frame the coor-
dinates of ~X can be taken to be {x0, x1, x2, x3, p0, p1, p2, p3}. [We use up indices (“con-
travariant” indices) on x and down indices (“covariant” indices) on p because this is
the form required in Hamilton’s equations below; i.e., it is pα not pα that is canonically
conjugate to xα.] Regard N as a function of location ~X in 8-dimensional phase space.
The fact that our particles all have the same rest mass so N is nonzero only on the mass
hyperboloid means that as a function of ~X, N entails a delta function. For the following
derivation that delta function is irrelevant; the derivation is valid also for distributions
of non-identical particles.
A particle in our distribution at location ~X moves through phase space along a world
line with tangent vector d ~X/dζ, where ζ is its affine parameter. The product Nd ~X/dζ
represents the number-flux 8-vector of particles through spacetime, as one can see by
an argument analogous to Eq. (2.53). We presume that, as the particles move through
phase space, none are created or destroyed. The law of particle conservation in phase
space, by analogy with ~∇ · ~S = 0 in spacetime, takes the form ~∇ · (Nd ~X/dζ) = 0. In
terms of coordinates in a Lorentz frame, this conservation law says

∂

∂xα

(

N dxα

dζ

)

+
∂

∂pα

(

N dpα

dζ

)

= 0 . (1)

The motions of individual particles in phase space are governed by Hamilton’s equations

dxα

dζ
=
∂H
∂pα

,
dpα

dζ
= − ∂H

∂xα
. (2)

For the freely moving particles of this chapter, the relativistic Hamiltonian is [cf. Eq.
(8.62) of Goldstein (1980) and pp. 488–489 of Misner, Thorne and Wheeler (1973)]

H =
1

2
(pαpβg

αβ −m2) . (3)

Our derivation of the Vlasov equation does not depend on this specific form of the
Hamiltonian; it is valid for any Hamiltonian and thus, e.g., for particles interacting with
an electromagnetic field or even a relativistic gravitational field (spacetime curvature;
Part VI). By inserting Hamilton’s equations (2) into the 8-dimensional law of particle
conservation (1), we obtain

∂

∂xα

(

N ∂H
∂pα

)

− ∂

∂pα

(

N ∂H
∂xα

)

= 0 . (4)

Using the rule for differentiating products, and noting that the terms involving two
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Box 2.1, Continued

derivatives of H cancel, we bring this into the form

0 =
∂N
∂xα

∂H
∂pα

− ∂N
∂pα

∂H
∂xα

=
∂N
∂xα

dxα

dζ
− ∂N
∂pα

dpα

dζ
=
dN
dζ

, (1)

which is the Vlasov equation. (To get the second expression we have used Hamilton’s
equations, and the third follows directly from the formulas of differential calculus.) Thus,
the Vlasov equation is a consequence of just two assumptions, conservation of particles
and Hamilton’s equations for the motion of each particle, which implies it has very great
generality. We shall extend and explore this generality in the next chapter.

so it is also naturally tuned to the situation. For example, instead of ζ, one might use the
distance l or time t traveled in some preferred inertial reference frame.

****************************

EXERCISES

Exercise 2.8 Derivation: Vlasov Implies Conservation of Particles and of 4-Momentum
(a) Consider a collection of freely moving, noncolliding particles, which satisfy the Vlasov

equation dN /dζ = 0. Show that this Vlasov equation guarantees that the conservation laws
~∇ · ~S = 0 and ~∇ ·T = 0 are satisfied, where the number-flux vector ~S and the stress-energy
tensor T are expressed in terms of N by the momentum-space integrals (2.46) and (2.47).

(b) Show that the law of particle conservation ~∇ · ~S = 0 (i.e., Sα
;α = 0) in a Lorentz

frame reduces to
∂n

∂t
+ ∇ · S = 0 , (2.103)

where n is the number density of particles and S is the (3-dimensional) flux of particles. The

analogous Lorentz-frame form of 4-momentum conservation ~∇ · T = 0 was explored in Eqs.
(1.139) and (1.140).

Exercise 2.9 Problem: Solar Heating of the Earth: The Greenhouse Effect
In this example we shall study the heating of the Earth by the Sun. Along the way, we

shall derive some important relations for black-body radiation.
Since we will study photon propagation from the Sun to the Earth with Doppler shifts

playing a negligible role, there is a preferred inertial reference frame: that of the Sun and
Earth with their relative motion neglected. We shall carry out our analysis in that frame.
Since we are dealing with thermalized photons, the natural choice for the distribution func-
tion is Iν/ν

3; and since we use just one unique reference frame, each photon has a fixed
frequency ν, so we can forget about the ν3 and use Iν.

(a) Assume, as is very nearly true, that each spot on the sun emits black-body radiation
in all outward directions with a temperature T� = 5800 K. Show, by integrating over the
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black-body Iν, that the total energy flux (i.e. power per unit surface area) F emitted by the
Sun is

F ≡ dẼ

dtdA
= σT 4

�
, where σ =

ac

4
=

2π5

15

k4

h3c2
= 5.67× 10−5 erg

cm2sK4
. (2.104)

(b) Since the distribution function Iν is conserved along each photon’s trajectory, ob-
servers on Earth, looking at the sun, see identically the same black-body specific intensity
Iν as they would if they were on the Sun’s surface. (No wonder our eyes hurt if we look
directly at the Sun!). By integrating over Iν at the Earth [and not by the simpler method of
using Eq. (2.104) for the flux leaving the Sun], show that the energy flux arriving at Earth
is F = σT 4

�
(R�/r)

2, where R� = 696, 000 km is the Sun’s radius and r = 1.496× 108 km is
the distance from the Sun to Earth.

(c) Our goal is to compute the temperature T⊕ of the Earth’s surface. As a first attempt,
assume that all the Sun’s flux arriving at Earth is absorbed by the Earth’s surface, heating
it to the temperature T⊕, and then is reradiated into space as black-body radiation at
temperature T⊕. Show that this leads to a surface temperature of

T⊕ = T�

(

R�
2r

)1/2

= 280 K = 7 C . (2.105)

This is a bit cooler than the correct mean surface temperature (287 K = 14 C).
(d) Actually, the Earth has an “albedo” of A = 0.30, which means that 40 per cent of

the sunlight that falls onto it gets reflected back into space with an essentially unchanged
spectrum, rather than being absorbed. Show that with only a fraction 1− A = 0.70 of the
solar radiation being absorbed, the above estimate of the Earth’s temperature becomes

T⊕ = T�

(
√

1− AR�
2r

)1/2

= 255 K = −18 C . (2.106)

This is even farther from the correct answer.
(e) The missing piece of physics, which raises the temperature from −27C to the more

nearly correct +20C is the Greenhouse Effect : The absorbed solar radiation has most of its
energy at wavelengths of ∼ 0.5µm (in the visual band), which pass rather easily through the
Earth’s atmosphere. By contrast, the black-body radiation that the Earth’s surface wants to
radiate back into space, with its temperature ∼ 300K, is concentrated in the infrared range
from ∼ 8µm to ∼ 30µm. Water molecules and carbon dioxide in the Earth’s atmosphere
absorb about half of the energy that the Earth tries to reradiate at these energies,4 causing the
reradiated energy to be about half that of a black body at the Earth’s surface temperature.
Show that with this “Greenhouse” correction, T⊕ becomes about 293K = +20C. Of course,
the worry is that human activity will increase the amount of carbon dioxide in the atmosphere
by enough to raise the Earth’s temperature still further, thereby disrupting our comfortable
lives.

4See, e.g., the section and figures on “Long-wave Absorption of Atmospheric Gases” in Allen (1973)
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Exercise 2.10 Challenge: Olbers’ Paradox and Solar Furnace
Consider a universe in which spacetime is flat and is populated throughout by stars that
cluster into galaxies like our own and our neighbors, with interstellar and intergalactic dis-
tances similar to those in our neighborhood. Assume that the galaxies are not moving apart,
i.e., there is no universal expansion. Using the Vlasov equation for photons, show that the
Earth’s temperature in this universe would be about the same as the surface temperatures
of the universe’s hotter stars, ∼ 10, 000 K, so we would all be fried to death. What features
of our universe protect us from this fate?

Motivated by this model universe, describe a design for a furnace that relies on sunlight
for its heat and achieves a temperature nearly equal to that of the sun’s surface, 5770 K.

2.8 Transport Coefficients

In this section we turn to a practical application of kinetic theory: the computation of
transport coefficients. Our primary objective is to illustrate the use of kinetic theory; but
the transport coefficients themselves are also of interest: they will play an important role in
Parts IV and V of this book (Fluid Mechanics and Plasma Physics).

What are transport coefficients? An example is the electrical conductivity σ of a sample of
matter. Ohm’s law says that, as measured in the sample’s proper reference frame, the current
density J is directly proportional to the electric field E, with proportionality constant σ; i.e.,
J = σE. The electrical conductivity is high if electrons can move through the material with
ease; it is low if electrons have difficulty moving. The impediment to the electron motion
is scattering off other particles—off ions, other electrons, phonons (quantized sound waves),
plasmons (quantized plasma waves), . . .. In order to compute the electrical conductivity,
one must analyze the effects of those scatterings on the motion of the electrons; and since
huge numbers of electrons and scatterers are involved, the analysis must be statistical. The
foundation for an accurate analysis is the Boltzmann transport equation.

Another example of a transport coefficient is the thermal conductivity κ, which enters into
the law of heat conduction, q = −κ∇T where q is the energy flux and T is the temperature
as measured in the mean rest frame of the matter. The impediment to heat conduction
is the scattering of the conducting particles off other particles; and, correspondingly, the
foundation for accurately computing the thermal conductivity κ is the Boltzmann transport
equation.

Other examples of transport coefficients are the coefficient of shear viscosity ηshear which
enters into the Navier Stokes equation of fluid mechanics (Part IV of this book, where it is
denoted η), and which describes the ability of a fluid to transport momentum in directions
transverse to its flow; and the diffusion coefficient D which enters into the diffusion equation
(Exercise 2.11 below) and describes the ability of particles to diffuse through matter.

The physical laws into which these transport coefficients enter (Ohm’s law, the law of
heat conduction, the Navier-Stokes equation, the diffusion equation) are approximations to
the real world—approximations that are valid if and only if (i) many particles are involved
in the transport of the quantity of interest (charge, heat, momentum, particles) and (ii) on
average each particle undergoes many scatterings in moving over the length scale of the
macroscopic inhomogeneities that drive the transport. This second requirement for validity
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can be expressed quantitatively in terms of the mean free path λ between scatterings (i.e.,
the mean distance a particle travels between scatterings, as measured in the mean rest frame
of the matter) and the macroscopic inhomogeneity scale L for the quantity that drives the
transport (for example, in heat transport that scale is L ∼ T/|∇T |, i.e., it is the scale on
which the temperature changes by an amount of order itself). In terms of these quantities,
the second criterion of validity is that λ � L. These two criteria (many particles and
λ � L) together are called diffusion criteria, since they guarantee that the quantity being
transported (charge, heat, momentum, particles) will diffuse through the matter. If either
of the two diffusion criteria fails, then the standard transport law (Ohm’s law, the law of
heat conduction, the Navier-Stokes equation, or the diffusion equation) breaks down and the
corresponding transport coefficient becomes irrelevant and meaningless.

The accuracy with which one can compute a transport coefficient using the Boltzmann
transport equation depends on the accuracy of one’s description of the scattering. If one
uses a high-accuracy collision term (dN /dζ)collisions in the Boltzmann equation, one can
derive a highly accurate transport coefficient. If one uses a very crude approximation for the
collision term, one’s resulting transport coefficient might be accurate only to within an order
of magnitude—in which case, it was probably not worth the effort to use the Boltzmann
equation; a simple order-of-magnitude argument would have done just as well.

In this section we shall compute the coefficient of thermal conductivity κ first by an
order-of-magnitude argument, and then by the Boltzmann equation with a highly accurate
collision term. In Exercise 2.11 readers will have the opportunity to compute the diffusion
coefficient using a moderately accurate collision term.

The specific problem we shall treat here in the text is heat transport through hot gas
deep inside a young, massive star. We shall confine attention to that portion of the star in
which the temperature is 107 K . T . 109K, the mass density is ρ . 10 g/cm3(T/107K)2,
and heat is carried by diffusing photons rather than convection. (We shall study convection
in Part III.) In this regime the primary impediment to the photons’ flow is collisions with
electrons. The lower limit on temperature, 107K ∼ T , guarantees that the gas is almost fully
ionized, so there is a plethora of electrons to do the scattering. The upper limit on density,
ρ ∼ 10 g/cm3(T/107K)2 guarantees that (i) the electrons are nondegenerate, i.e., they have
mean occupation numbers η small compared to unity and thus behave like classical, free,
charged particles; and (ii) the inelastic scattering, absorption, and emission of photons by
electrons that are accelerating in the coulomb fields of ions (“bremsstrahlung” processes)
are unimportant as impediments to heat flow compared to scattering off free electrons. The
upper limit on temperature, T ∼ 109K, guarantees that (i) the electrons which do the
scattering are moving thermally at much less than the speed of light (the mean thermal
energy 1.5kT of an electron is much less than its rest mass-energy mec

2); and (ii) the
scattering is nearly elastic, with negligible energy exchange between photon and electron,
and is describable with good accuracy by the Thomson scattering cross section: In the rest
frame of the electron, which to good accuracy will be the same as the mean rest frame of the
gas since the electron’s speed relative to the mean rest frame is � c, the differential cross
section dσ for a photon to scatter from its initial propagation direction n′ into a unit solid
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angle dΩ centered on a new propagation direction n is

dσ(n′ → n)

dΩ
=

3

16π
σT[1 + (n · n′)2] . (2.107)

Here σT is the total Thomson cross section [the integral of the differential cross section
(2.107) over solid angle]

σT =

∫

dσ(n′ → n)

dΩ
dΩ =

8π

3
r2
o = 0.665× 10−24 cm2 , (2.108)

where ro = e2/mec
2 is the classical electron radius. For a derivation and discussion of the

differential Thomson cross section (2.107) and the total Thomson cross section (2.108) see,
e.g., Sec. 14.7 of Jackson (1975).

Before embarking on any complicated calculation, it is always helpful to do a rough, order-
of-magnitude analysis, thereby identifying the key physics and the approximate answer. The
first step of a rough analysis of our heat transport problem is to identify the magnitudes of
the relevant lengthscales. The inhomogeneity scale L for the temperature, which drives the
heat flow, is the size of the hot stellar core, a moderate fraction of the Sun’s radius: L ∼ 105

km. The mean free path of a photon can be estimated by noting that, since each electron
presents a cross section σT to the photon and there are ne electrons per unit volume, the
probability of a photon being scattered when it travels a distance l through the gas is of
order neσTl; and therefore to build up to unit probability for scattering, the photon must
travel a distance

λ ∼ 1

neσT
∼ mp

ρσT
∼ 3 cm

(

1g/cm3

ρ

)

∼ 3 cm . (2.109)

Here mp is the proton rest mass, ρ ∼ 1 g/cm3 is the mass density in the core of a young,
massive star, and we have used the fact that stellar gas is mostly hydrogen to infer that there
is approximately one nucleon per electron in the gas and hence that ne ' ρ/mp. Note that
L ∼ 105 km is roughly 3× 104 times larger than λ ∼ 3 cm, and the number of electrons and
photons inside a cube of side L is enormous, so the diffusion description of heat transport is
quite accurate.

In the diffusion description the heat flux q as measured in the gas’s rest frame is related
to the temperature gradient ∇T by

q = −κ∇T , (2.110)

where κ is the thermal conductivity. To estimate κ, orient the coordinates so the temperature
gradient is in the z direction, and consider the rate of heat exchange between a gas layer
located near z = 0 and a layer one photon-mean-free-path away, at z = λ (Fig. 2.7). The heat
exchange is carried by photons that are emitted from one layer, propagate nearly unimpeded
to the other, and then are stopped by scattering in the other. Although the individual
scatterings are nearly elastic (and we thus are ignoring changes of photon frequency in the
Boltzmann equation), tiny changes of photon energy add up over many scatterings to keep
the photons nearly in local thermal equilibrium with the gas. Thus, we shall approximate
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Fig. 2.7: Heat exchange between two layers of gas separated by a distance of one photon mean
free path in the direction of the gas’s temperature gradient.

the photons and gas in the layer at z = 0 to have a common temperature T0 and those in
the layer at z = λ to have a common temperature Tλ = T0 + λdT/dz. Then the photons
propagating from the layer at z = 0 to that at z = λ carry an energy flux

qλ→0 = αca(T0)
4 , (2.111)

where a is the radiation constant of Eq. (2.73), a(T0)
4 is the photon energy density at

z = 0, and α is a dimensionless constant of order 1/4 that accounts for what fraction of the
photons at z = 0 are moving rightward rather than leftward, and at what mean angle to
the z direction. (Throughout this section, by contrast with early sections of this chapter, we
shall use cgs units with c present explicitly). Similarly, the flux of energy from the layer at
z = λ to the layer at z = 0 is

qλ→0 = −αca(Tλ)
4 ; (2.112)

and the net rightward flux, the sum of (2.111) and (2.112), is

q = αca[(T0)
4 − (Tλ)

4] = −4αcaT 3λ
dT

dz
. (2.113)

Noting that 4α is of order unity, inserting expression (2.109) for the photon mean free path,
and comparing with the law of diffusive heat flow q = −κ∇T , we conclude that the thermal
conductivity is

κ ∼ aT 3cλ =
acT 3

σTne

. (2.114)

With these physical insights and rough answer in hand, we turn to a Boltzmann transport
analysis of the heat transfer. Our first step is to formulate the Boltzmann transport equation
for the photons, including effects of Thomson scattering off the electrons, in the rest frame
of the gas.

The effects of electron scattering are most easily written down in terms of the specific
intensity Iν of the photons, so we initially shall use Iν as our distribution function. It is
easiest to study the scattering as a function of the time t the photons have been traveling,
or equally well the distance ct traveled, so we shall use t as our independent variable.

Consider those photons that propagate very nearly in the n direction as seen in the rest
frame of the gas, and that have frequencies very nearly equal to ν. The specific intensity
[Eq. (2.17)] describes the energy per unit time per unit area per unit solid angle per unit
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frequency (dẼ/dtdAdΩdν; “energy per unit everything”) carried by those photons. If ob-
servers in the rest frame of the gas watch the evolution of Iν in the neighborhood of a fiducial
photon (i.e., moving with that photon at the speed of light in the n direction), they will see
Iν change as a result of two things: (i) the scattering of photons out of the n direction and
into other directions; and (ii) the scattering of photons from other directions n′ and into the
n direction. Since these scatterings leave the frequency of the scattered photon unchanged
(a key property of Thomson scattering), we can treat the frequency ν and the frequency
interval dν as constant in our description of the scattering. Scattering out of and into the
n direction are embodied quantitatively in the two terms that contribute to the following
expression for the rate of change of Iν:

dIν(n, ν)

dt
= −σTnecIν(n, ν) +

∫

dσ(n′ → n)

dΩ
necIν(n

′, ν)dΩ′ . (2.115)

Here t is proper time (Lorentz time) in the gas’s rest frame, ne is the number density of
electrons in that frame, and all other quantities have previously been defined. The first term
represents scattering out of the n direction into other directions; the second, scattering into
the n direction from other directions n′. That these terms have the forms shown should be
obvious from the physical meanings of the scattering cross sections, together with the fact
that the photons are moving with the speed of light c.

From the relation N = constant × Iν/ν
3 [Eq. (2.18)], and the fact that the photon

frequency ν (as measured in the gas rest frame) is a constant along the trajectory of our
fiducial photon, we infer that the distribution function N must satisfy the same transport
equation (2.115) as the specific intensity:

dN (t,x,n, ν)

dt
= −σTnecN (t,x,n, ν) +

∫

dσ(n′ → n)

dΩ
necN (t,x,n′, ν)dΩ′ . (2.116)

Here our notation shows explicitly that N depends not only on the photon propagation
direction and frequency (as measured in the mean rest frame of the gas), but also on time t
and spatial location x. To make the notation fully explicit, we must also note that the time
derivative d/dt on the left side is taken moving with the fiducial photon, i.e.,

d

dt
=

∂

∂t
+ cnj

∂

∂xj

. (2.117)

(There are no contributions (dν/dt)∂/∂ν or (dnj/dt)∂/∂nj in (2.117) because photon fre-
quency ν and direction of propagation nj are constants along the trajectory of a fiducial
photon in the gas’s mean rest frame; i.e., the tiny effects of gravitational redshift and of
gravitational light deflection are being neglected.)

Equation (2.116), with d/dt given by (2.117), is the Boltzmann transport equation for
the photons, written using the gas’s proper time t as the parameter along the fiducial photon
trajectory. The terms on the right side of (2.116) are the explicit realizations, for our star’s
gas, of the Boltzmann equation’s collision terms.

Because the mean free path λ is so short compared to the length scale L of the tem-
perature gradient, the heat flow will show up as a tiny correction to an otherwise isotropic,
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Box 2.2

Two-Lengthscale Expansions

Equation (2.119) is indicative of the mathematical technique that underlies
Boltzmann-transport computations: a perturbative expansion in the dimensionless ratio
of two lengthscales, the tiny mean free path λ of the transporter particles and the far
larger macroscopic scale L of the inhomogeneities that drive the transport. Expansions
in lengthscale ratios λ/L are called two-lengthscale expansions, and are widely used in
physics and engineering. Most readers will previously have met such an expansion in
quantum mechanics: the WKB approximation, where λ is the lengthscale on which the
wave function changes and L is the scale of changes in the potential V (x) that drives
the wave function. Kinetic theory itself is the result of a two-lengthscale expansion: It
follows from the more sophisticated statistical-mechanics formalism in Chap. 3, in the
limit where the particle sizes are small compared to their mean free paths. In this book
we shall use two-lengthscale expansions frequently—e.g., in the geometric optics approx-
imation to wave propagation (Part II), in the study of boundary layers in fluid mechanics
(Part III), and in the definition of a gravitational wave (Part V).

perfectly thermal distribution function. Thus, we can write the photon distribution func-
tion as the sum of an unperturbed, perfectly isotropic and thermalized piece N0 and a tiny,
anisotropic perturbation N1:

N = N0 +N1 , where N0 =
2

h3

1

ehν/kT − 1
. (2.118)

Here the perfectly thermal piece N0 has the standard black-body form (2.33); it depends
on the photon 4-momentum only through the frequency ν as measured in the mean rest
frame of the gas, and it depends on location in spacetime only through the temperature
T , which we assume is time independent in the star but is a function of spatial location,
T = T (x). If the photon mean free path were vanishingly small, there would be no way
for photons at different locations x to discover that the temperature is inhomogeneous; and,
correspondingly, N1 would be vanishingly small. The finiteness of the mean free path permits
N1 to be finite, and it is reasonable to expect (and turns out to be true) that the magnitude
of N1 is

N1 ∼
λ

L0
N0 . (2.119)

Thus, N0 is the leading order term, and N1 is the first-order correction in an expansion of
the distribution function N powers of λ/L. This is called a two-lengthscale expansion; see
Box 2.2.

Because the temperature and density inside the star are independent of time t, the
distribution function N = N0 + N1 is independent of time; and the Boltzmann transport
equation (2.116), (2.117) for N = N0 +N1 takes the form

cnj
∂N0

∂xj

+ cnj
∂N1

∂xj

=

[

−σTnecN0 +

∫

dσ(n′ → n)

dΩ
necN0dΩ

′

]

(2.120)
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+

[

−σTnecN1(n, ν) +

∫

dσ(n′ → n)

dΩ
necN1(n

′, ν)dΩ′

]

. (2.121)

Because N0 is isotropic, i.e., is independent of photon direction n′, it can be pulled out of
the integral over n′ in the first square bracket on the right side; and when this is done, the
first and second terms in that square bracket cancel each other. Thus, the unperturbed part
of the distribution, N0, completely drops out of the right side of (2.121). On the left side
the term involving the perturbation N1 is tiny compared to that involving the unperturbed
distribution N0, so we shall drop it; and because the spatial dependence of N0 is entirely due
to the temperature gradient, we can bring the first term and the whole transport equation
into the form

nj
∂T

∂xj

∂N0

∂T
= −σTneN1(n, ν) +

∫

dσ(n′ → n)

dΩ
neN1(n

′, ν)dΩ′ . (2.122)

The left side of this equation is the amount by which the temperature gradient causes N0

to fail to satisfy the Boltzmann equation, and the right side is the manner in which the
perturbation N1 steps into the breach and enables the Boltzmann equation to be satisfied.

Because the left side is linear in the photon propagation direction nj (i.e., it has a cos θ
dependence in coordinates where ∇T is in the z-direction; i.e., it has a “dipolar”, l = 1
angular dependence), N1 must also be linear in nj, i.e., dipolar, in order to fulfill (2.122).
Thus, we shall write N1 in the dipolar form

N1 = Kj(x, ν)nj ; (2.123)

and we shall solve the transport equation (2.122) for the function Kj.
[Important side remark : This is a special case of a general situation: When solving

the Boltzmann equation in diffusion situations, one is performing a power series expansion
in λ/L; see Box 2.2. The lowest order term in the expansion, N0, is isotropic, i.e., it is
monopolar in its dependence on the direction of motion of the diffusing particles. The first-
order correction, N1, is down in magnitude by λ/L from N0 and is dipolar in its dependence
on the particles’ direction of motion. The second-order correction, N2, is down in magnitude
by (λ/L)2 from N0 and is quadrupolar in its direction dependence. And so it continues on
up to higher and higher orders.5]

When we insert the dipolar expression (2.123) into the angular integral on the right side
of the transport equation (2.122) and notice that the differential scattering cross section
(2.107) is unchanged under n′ → −n′, but Kjn

′
j changes sign, we find that the integral

vanishes. As a result the transport equation (2.122) takes the simplified form

nj
∂T

∂xj

∂N0

∂T
= −σTneKjnj , (2.124)

from which we can read off the function Kj and thence N1 = Kjnj:

N1 = −∂N0/∂T

σTne

∂T

∂xj

nj . (2.125)

5For full details in nonrelativistic situations see, e.g., Grad (1957); and for full details in the fully rela-
tivistic case see, e.g., Thorne (1981).
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Notice that, as claimed above, the perturbation has a magnitude

N1

N0
∼ 1

σTne

1

T
|∇T | ∼ λ

L . (2.126)

We can now evaluate the energy flux carried by the diffusing photons. That flux qi is
the T 0i part of the stress-energy tensor. By inserting N = N0 + N1 into the momentum-
space integral (2.47) for the stress-energy tensor and noting that because N0 is isotropic its
contribution to the integral vanishes, we obtain

qi ≡ T 0i =

∫

N1p
0pi

dVp

p0
= − 1

σTne

∂T

∂xj

∫

∂N0

∂T
njp

0pi
dVp

p0
. (2.127)

By then noting that for photons njp
0 = pj and pulling the derivative with respect to tem-

perature out from under the integral sign and noting that the integral then becomes that for
the photons’ stress tensor T ji = Pδji, and by using P = 1

3
aT 4 [Eq. (2.72)] for the photons’

pressure P , we obtain

qi = − c

σTne

∂T

∂xj

d

dT

∫

N0pjpi
dVp

p0
= − c

σTne

∂T

∂xj

d

dT
(
1

3
aT 4δji) (2.128)

= − c

σTne

4

3
aT 3 ∂T

∂xi
. (2.129)

Thus, from the Boltzmann transport equation we have simultaneously derived the law of
diffusive heat conduction q = −κ∇T and evaluated the coefficient of heat conductivity

κ =
4

3

acT 3

σTne

. (2.130)

Notice that this heat conductivity is 4/3 times our crude, order-of-magnitude estimate
(2.114).

The above calculation, while somewhat complicated in its details, is conceptually fairly
simple. The reader is encouraged to go back through the calculation and identify the main
conceptual steps (expansion of distribution function in powers of λ/L, insertion of zero-
order plus first-order parts into the Boltzmann equation, multipolar decomposition of the
zero and first-order parts with zero-order being monopolar and first-order being dipolar,
neglect of terms in the Boltzmann equation that are smaller than the leading ones by factors
λ/L, solution for the coefficient of the multipolar decomposition of the first-order part,
reconstruction of the first-order part from that coefficient, and insertion into a momentum-
space integral to get the flux of the quantity being transported). Precisely these same steps
are used to evaluate all other transport coefficients that are governed by classical physics. For
examples of other such calculations see, e.g., Shkarofsky, Johnston, and Bachynski (1966).

As an application of the thermal conductivity (2.130), consider a young (main-sequence) 7
solar mass (7M�) star as modeled, e.g., on page 480 of Clayton (1968). Just outside the star’s
convective core, at radius r ' 0.8R� ' 6×105km (where R� is the Sun’s radius), the density
and temperature are ρ ' 5g/cm3 and T ' 1.6× 107K, so the number density of electrons is
ne ' ρ/mp ' 3× 1024cm−3. For these parameters, Eq. (2.130) gives a thermal conductivity
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κ ' 7 × 1017erg s−1cm−2K−1. The lengthscale L on which the temperature is changing
is approximately the same as the radius, so the temperature gradient is |∇T | ∼ T/r ∼
3 × 10−4K/cm. The law of diffusive heat transfer then predicts a heat flux q = κ|∇T | ∼
2×1014erg s−1cm−2, and thus a total luminosity L = 4πr2q ∼ 8×1036erg/s ' 2000L� (2000
solar luminosities). What a difference the mass makes! The heavier a star, the hotter its
core, the faster it burns, and the higher its luminosity. Increasing the mass by a factor 7
drives the luminosity up by 2000.

****************************

EXERCISES

Exercise 2.11 Example: Diffusion Coefficient Computed in the “Collision-Time” Approx-
imation

Consider a collection of identical “test particles” with rest mass m 6= 0 that diffuse
through a collection of thermalized “scattering centers”. (The test particles might be
molecules of one species, and the scattering centers might be molecules of a much more
numerous species.) The scattering centers have a temperature T such that kT � mc2, so if
the test particles acquire this same temperature they will have thermal speeds small com-
pared to the speed of light, as measured in the mean rest frame of the scattering centers. We
shall study the effects of scattering on the test particles using the following “collision-time”
approximation for the collision terms in the Boltzmann equation:

(

dN
dt

)

collision

= (N0 −N )
1

τ̂
, where N0 ≡ e−p2/2mkT

(2πmkT )3/2
n . (2.131)

All frame-dependent quantities appearing here are evaluated in the mean rest frame of the
scattering centers; in particular, t is Lorentz time, T is the temperature of the scattering
centers, p = |p| is the magnitude of the test particles’ spatial momentum, n is the number
density of test particles

n =

∫

Ndpxdpydpz , (2.132)

and τ̂ is a constant to be discussed below.
a. Show that this collision term preserves test particles in the sense that

(

dn

dt

)

collision

≡
∫
(

dN
dt

)

collision

dpxdpydpz = 0 . (2.133)

b. Explain why this collision term corresponds to the following physical picture: Each test
particle has a probability per unit time 1/τ̂ of scattering; and when it scatters, its direction
of motion is randomized and its energy is thermalized at the scattering centers’ temperature.

c. Suppose that the temperature T is homogeneous (spatially constant), but that the
test particles are distributed inhomogeneously, n = n(x) 6=const. Let L be the length scale
on which their number density n varies. What condition must L, τ̂ , T , and m satisfy in
order that the diffusion approximation be reasonably accurate? Assume that this condition
is satisfied.
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d. The inhomogeneity of n induces a net flux of particles S, from high-density regions
toward low-density regions, given by

S = −D∇n . (2.134)

This is the analog of Ohm’s law J = σE for the flow of electric charge and of q = −κ∇T for
the flow of heat, and D is the diffusion coefficient . Give an order-of-magnitude derivation
of the diffusion coefficient D.

e. Show that the law of particle conservation reduces, in this situation, to the following
diffusion equation for n(t,x):

∂n

∂t
+ ∇ · (−D∇n) = 0 . (2.135)

f. Show that for this nonrelativistic problem the Boltzmann transport equation takes the
form

∂N
∂t

+
pj

m

∂N
∂xj

=
1

τ̂
(N0 −N ) . (2.136)

g. Show that to first order in a small diffusion-approximation parameter, the solution of
this equation is N = N0 +N1, where N0 is as defined in Eq. (2.131) above, and

N1 = −pj τ̂

m

∂n

∂xj

e−p2/2mkT

(2πmkT )3/2
. (2.137)

Note that N0 is monopolar (independent of the direction of p), while N1 is dipolar (linear
in p).

h. Show that the perturbation N1 gives rise to a particle flux given by Eq. (2.134), with
the diffusion coefficient

D =
kT

m
τ̂ . (2.138)

Exercise 2.12 Challenge: Neutron Diffusion in a Nuclear Reactor
Here are some salient, oversimplified facts about nuclear reactors (see, e.g., Stephenson 1954,
especially Chap. 4): A reactor’s core is made of a mixture of natural uranium (0.72 percent
235U and 99.28 percent 238U), and a solid or liquid material such as carbon, made of low-
atomic-number atoms, and called the moderator. Slow (thermalized) neutrons, with kinetic
energies of ∼ 0.1 eV, get captured by the 235U nuclei and trigger them to fission, releasing
∼ 170 MeV of kinetic energy per fission (which ultimately goes into heat and then electric
power), and also releasing an average of about 2 fast neutrons (kinetic energies ∼ 1 MeV).
The fast neutrons must be slowed to thermal speeds in order for them to induce further 235U
fissions. The slowing is achieved by scattering off the moderator atoms. The scattering is
elastic, and its cross section is isotropic in the center-of-mass frame. Multiple scatterings
cause the neutrons to diffuse downward in energy, toward thermal speeds.

There is a dangerous hurdle that the diffusing neutrons must overcome during their
slowdown: as the neutrons pass through a critical energy region of about 6 to 7 eV, the 238U
atoms can absorb them. The absorption cross section has a huge resonance there, with peak
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value σabs ∼ 2000 × 10−24cm2 (2000 “barns”) and width a moderate fraction of an eV. To
achieve a viable fission chain reaction and keep the reactor hot, it is necessary that more
than about half of the neutrons slow down through this resonant energy without getting
absorbed; if they make it through, then they will thermalize and trigger new 235U fissions.

The mean free paths of the neutrons in the reactor core are so short that their distribution
function N , as they slow down, is isotropic in direction and independent of position; and in a
steady state, it will be independent of time. It therefore depends only on the neutron kinetic
energy E. Use the Boltzman transport equation to develop the theory of the slowing down
of the neutrons, and of their struggle to pass through the 238U resonance region without
getting absorbed. Derive the criterion that the reactor must satisfy in order for at least half
of the neutrons to survive and trigger new fissions.

****************************
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