
Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

1

Chapter 3:The 8051
Micro-controller based
computer system

Objectives

! Study the structure of an 8051 micro-controller based system

! Study the internal memory model of the 8051

! Study the external memory interfacing architecture to enable on-line
software system development.

! Study addressing methods for interfacing various input/output
peripheral devices of an 8051 based system.

3.1 Introduction

In this chapter we discuss the structure of a micro-controller unit (MCU) based system
that will be used to build our applications. We will first talk about why we choose the
8051 as our processor and we will introduce the 8051 family members and their
differences. Then we will discuss the fundamentals of the 8051 processor. In particular
we will discuss the memory model, the internal registers and their usage. Then we will
discuss in detail the design of the 8051 single board computer (SBC), which is the heart
of our robot system. Finally we will talk about the peripheral chips of our system and
their functions.

3.2 Micro-controllers: Why? What? How?

So, why do we use a micro-controller for the soul of our robot and other applications?

It is simply because micro-controllers are cost effective and small enough to fit into our
design. In fact micro-controllers are so common that it can be found in washing machines,
microwaves, motor cars, or even inside you Octopus smart card. So the next question is
what type of micro-controller should we use? We chose the 8051 because of its popularity
and cost effectiveness. Moreover there are plenty of public domain software as well as
commercial libraries available in the industry.

The 8051 (or the ROM-less version 8031) is originally an Intel product [1], a cousin of
the 80X86 family designed for the embedded control market in the 80s. As popular
standards especially software standards don’t easily die down, it flourishes for years and
becomes one of the most popular 8-bit micro-controllers worldwide. It was in the 90s that
some other companies jumped into the bandwagon and built faster and more complex
micro-controllers based on the 8051 core. That means the whole library of 8051 assembly
code can be reused. The representatives of such products are flash based Amtel 8951 [7]
and the Philips XA (16-bit extended architecture) micro-controllers [5].

They can run as fast as 30MHz and the Philips XA even has a small network standard
(Controller Area Network CAN) [5] of its own for inter-micro-controller

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

2

communications – a microwave oven can talk to a refrigerator etc. The limitation is
therefore left for designers’ imaginations. In our discussion will still use the humble
8051 –the core design common to all members. Nevertheless, the system developed can
be upgraded later to use other faster and powerful processors of the family with minimum
modification of the software drivers.

So what exactly is a micro-controller? In fact it is a full functional computer on its own,
hence it is also called a single-chip-computer meaning it can compute and think by itself.
A typical micro-controller (e.g. 8051) may have the following modules.

! CPU (Central Processing Unit)

! Some internal data Ram (e.g. 128 byte) and a few (e.g.4~8) kilobytes of program
ROM.

! Hardware interrupt mechanisms (e.g. 5 different interrupt sources).

! Parallel (e.g. 24 bits) input/output bus so that it can communicate with the outside
world.

! A serial input/output so that it can make more distant communications with other
computers.

! Timers for counting or generating exact timing output signals for control purposes.

! Power down circuit to keep the internal data even the main power is cut off. When
it happens, the internal data ram can be supported by a small rechargeable battery.
When the main power comes back, the rechargeable battery is recharged again for
the next power failure. This feature is essential used to maintain continuous service
when the power may be cut off occasionally.

Exercise3.1: Discuss the differences between the two terms: micro-
controller and microprocessor.

Figure 3. 1 This is the 8051 pin
assignment diagram, from [1].

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

3

3.3 The 8051 micro-controller family

All have 128 bytes internal RAM, 2 timers, 32-bit parallel IO, serial IO, 5 interrupt
sources

! 8031: ROM-less ; use external ROM for programs

! 8051: 4K-byte ROM

! 8751: 4K-byte UV-EPROM (ultra-violet erasable, re-programmable)

! 8951: 4K-byte [7] (Flash-ROM-based, Electrical erasable, re-programmable)

! Philips extended Architecture (16-bit with AD converter)

! 8X52: An extended member, which has 256 bytes internal RAM and 3 timers.

Exercise3.2: Search another 8-bit MCU (e.g. MC68HC11 or Z84) on the
Internet, discuss and compare it with the 8051 in terms of (a) maximum
speed, (b) memory size and (c) interrupt features.

3.4 Fundamental operations of a micro-controller based system.

A typical micro-controller system has the following configuration.

Figure 3. 2 A typical micro-controller system

Every microprocessor system has a similar startup and operating procedure, which is
depicted below.

! The microprocessor is connected to a clock, which determines the operating
frequency of the system, and a reset switch that starts the program from a reset
location. Our system uses a clock of 11.0592 MHz, it is the basic clock for
generating memory read/write cycles, baud rate for the serial port and the main
clock of the internal timers.

! After the reset switch is depressed, the microprocessor first loads the content of a
startup location from the startup ROM (e.g. 0000Hex for 8051).

! Then it executes the content of the startup program; usually it is a long jump to the
ROM space for the starting point of the booting program, says the boot loader.

Micro-controller
e.g. 8051

/reset

RAM for data and
program

ROM for storing
startup program

Clock
oscillator
i.e.
11.0592
Mhz

Reset
switch

Peripheral IO devices,
e.g. 8255, 8253 real-
time-clock, etc.

GND

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

4

3.5 The 8051 system architecture

To understand the operation of the 8051 based system, we need to study how data and
programs are stored in the system. Here we will examine two memory storage subsystems:

" The 8051 memory model

" The 8051 internal registers

3.5.1 The 8051 memory model
This is the memory model of an 8051 micro-controller.

Figure 3. 3 memory model of an 8051 micro-controller

The 8051 memory model has 3 parts (A) the internal RAM inside the MCU, (B)the
external data space (c) the external program space as depicted below.

Internal address (RAM) in Hex

inside the MCU

External address space in Hex

outside the MCU

00->FF (128 bytes)

! 80#FF (special function
registers

! 00# 7F (4 register banks
R0,R1,R2,R3)

Data 64K bytes

0000#FFFF

Program 64K bytes

0000#FFFF

The lower addresses of the internal RAM , contain 4 data register banks (R0,R1,R2,R3)
for the program to store temporary data.

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

5

The upper internal RAM contains the Special Function Registers (SFR) for storing
various operating data (e.g. program counter, stack address registers etc.) for the MCU.
They can be accessed by the direct addressing method -- ‘mov’ instructions.

The external data memory can be accessed by the ‘movx’ instructions.

The external program memory is used to store programs.

Table 3. 1 internal RAM usage and Special Function Register SFR map[1]

Address location (H=hex) Content

80-FFH Special function
registers (SFR)

30-7FH (64 bytes) Scratch pad area for
stack

20-2FH (128 bits) Bit addressable
segment

18-1FH (8 bytes) R0-R7 bank3

10-17H (8 bytes) R0-R7 bank2

08-0FH (8 bytes) R0-R7 bank1

00-07H (8 bytes) R0-R7 bank0

You will find this table useful when we talk about the programming of the 8051 in later
chapters.

Erecise3.3: Guess what are ACC, SP in the above table?

Exercise3.4: What assembly instruction should you use to access the value
of IP?

Exercise3.5: What assembly instruction should you use to access the value
of external RAM location 2345H?

Exercise3.6: Under what circumstances should program memory location
9256H be accessed?

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

6

3.6 Assembly language of the 8051

Learn this from the textbook you brought.

3.7 A simple 8051 Single Board Computer SBC design

Now let us look at a simple computer based on an 8752 (UV-EPROM based 8052)
micro-controller device.

Figure 3. 4 An 8752 based microcomputer from [8]

This is a small Single Board Computer SBC system with the following hardware modules.
! One 8K data RAM (6264), one 4-K program ROM inside the 8752.
! A simple resistor-capacitor (RC) circuit to pull down the reset pin (pin 9) after

power up.
! A Crystal of 11.0592MHZ is connected to pin 18,19.
! Serial interfaces MAX232 (RS232 to TTL level interface) at pin 10,11. Note that

RS232 uses -12V and +12V to represent low and high, while TTL uses 0 and 5V to
represent low and high, respectively.

First let us look at what the 8051 system will do after reset.
• Power-up or reset. After power up or when the reset pin 9 is at ‘high’ for about 1ms

(if the master clock is 10MHz or over as discussed in the data book of 8752), the
system is being reset. Then the 8051 will fetch its first instruction from the ROM
space at address 0000H. Special care must be taken when you write the first
instruction. Usually it is a long jump instruction to the system initialization such as
setting up the system clock, serial communication link with a host computer or
loading the start up program from flash memory to RAM (i.e. boot loader) etc.

• A simple startup assembly segment is as follows:
1 Org 0 ; 0000H is the first instruction after reset
2 ljmp start ; long jump to the line labelled ‘start’ --line 6
3 Org 30h ; arbitrary, but addr. 0003H~002FH
5 ; are reserved for stack
6 start: mov sp,30h-1 ; set stack point at 30h (internal RAM, max size
7 is 64 bytes)
8 ; the stack will grow up to the max address of 7FH

 9…. Other start up program segment

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

7

Exercise3.7 The R,C connected to the reset (pin9) of the MCU is 4.7K and
10uF respectively., explain the choice of these values.

Exercise3.8 Describe how to modify the hardware circuit to have a 32-
Kbyte RAM. You should first determine the pin number s of the 32K-RAM
and see how it is connected to the system.

Exercise3.9: In the above start-up program, why does sp = 30h-1 not 30h?
What does tell you about the stack operation of the MCU?

• The 8051 has 128 bytes of internal RAM for storing working data such as the stack

and variables. But if that is too small for your program, you can use the external data
RAM 6264 attached (0000H - FFFFH) to the 8051. The assembly instruction for
external RAM read/write is “movx”.

Now it turns out it is not a single chip system after all. A basic system would at least have
a minimum set of electronic circuit. For example, a circuit to turn the action of pressing of
a button into a 1ms high pulse signal (reset signal). Also some circuits are needed to
connect the 8051 to a ROM for storing program and RAM for storing data. (In fact if you
use the 8051 version of the 8051 family, it has a built-in 4K ROM for storing start up and
necessary programs; or for the case of the 8951, which has 4K electrical programmable
Flash ROM for program development purpose).

Exercise3.10: State the differences among 8031, 8051 and 8951. Explain
how to enter a program to an 8951?

Exercise3.11: The internal RAM has addresses 00#FFH, and the external
data RAM also has that same addresses, will it create a conflict? (Answer in
terms of hardware and software aspects).

3.8 8051 memory interface

Diagram from http://www.pjrc.com/tech/8051/pm2_docs/hardware.html

The 8051 is designed for small systems, in order to reduce the number of pins used, time
multiplexing of signals is used. For example, port 0 and p2 are used as input/output ports
or memory interface pins. Here we will study the memory interface methods and see how
they perform during memory read/write.

The three topics that we will discuss and their related hardware pins are as follows:

(1) Address and data bus time-multiplexing for external memory devices

(2) External Program memory read: Hardware pins involved: port 0 and port 2
(P0.1~P0.7, P2.1~P2.7 = 16 bits), and /ALE, /PSEN

(3) External Data memory read/write: Hardware pins involved: port 0 and port 2
(P0.1~P0.7, P2.1~P2.7 = 16 bits), and /ALE, /PSEN, /RD, /WR

3.8.1 Address and data bus time-multiplexing for external memory
devices

As discussed before an 8051 has 4K internal ROM to store programs. But if we use the
8031 version (or if you want to have a program longer than 8K) we need to ask the 8031
to access external ROM. Note that when pin31 (/external enable /EA) of an 8051 is
grounded, it will ignore the internal ROM and use the program from external ROM; it
will be treated exactly as an 8031. Alternatively, if pin31 is connected to 5V, the 8051
will read programs from the internal ROM.

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

8

Let us examine the circuit diagram and see how a ROM memory chip is connected to the
8031. The ROM device is 270251, which is a 64K = 216bytes (with 16 address pins)
ROM. To save the number of pins we see that the 8031 micro-controller uses a technique
called time multiplexing, it multiplexes data and address bus together. For a 64K-byte
ROM, it needs 16 bits address and 8 bit of data, so a total number of 16+8=24 bits are
required. However, by multiplexing the two sets of signals together we can save 8-bit of
signals so as to reduce the size of the bus. To achieve this goal an additional device, an
external device -- 8-bit latch, is needed to hold the address bits when they appear when
ALE is high and use it later on, we see how it woks in the following diagrams.

Figure 3. 5 External program memory read interface block diagram and timing diagram

3.8.2 External Program MEMORY (ROM) interface
The timing diagram is shown above. When the 8031 wants to read program code from
external memory, it acts as follows:
! It first sets up ALE (address latch enable) and /PSEN (program access enable) to

high.
! The 8031 outputs address bits A0-A7 at port0(P0.0-P0.7) and outputs A8-A15 at

port2 (P2.0-P2.7).
! Then the 8031 resets ALE to 0 to signal to the outside circuit that address bits at

port0 are needed to be latched.
! An 8-bit latch, usually a 74373, with latch input (LE) connected to ALE will do it

fine and the address bits a0-A7 are latched at the outputs of the latch 74373.
! Also /PSEN (program store enable) is reset to 0, as an effect, the ROM responses to

give the data stored at the address pointed by A0-A7 & A8-A16 to the data bus
connected at P0.

! The 8031 at this stage will read (latch) the data inside at the rising edge of /PSEN
through the port P0.

ALE

/PSEN

PORT0

PORT2

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

9

3.8.3 External Data Memory (RAM) interface

The standard memory read procedure would now be explained. The configuration is very
similar to program read, instead of using /PSEN for accessing the ROM, it uses /RD and
/WR to access the RAM. As you may aware that RAM is “read” and “write” allowed,
therefore two pins are designated for data memory interface. Here are the block diagram
and the timing diagram. As you can see address/data time multiplexing is also used here.

Figure 3. 6 External data memory read interface block diagram and timing diagram

ALE

/PSEN

/RD

PORT0

PORT2

ALE

/PSEN

/WR

PORT0

PORT2

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

10

3.9 The 8031RL Single Board Computer SBD Design

We now uses a SBC called 8031RL, which is versatile and cost effective design to
illustrate the design of a typical system.

(See http://www.cse.cuhk.edu.hk/~khwong/ceg3430/8031rl_schematic_vert.jpg)

" Has an 8031 micro-controller.

" Power management circuitry to cope with power down failure.

" One 8~32-Kbyte (6764 or 67256) startup ROM

" One data 32-Kbyte SRAM (62256)

" One 32-Kbyte data/program SRAM ((actually 24K is usable)

" Two 8255 parallel interface chips, totally 48 IO bits

" One real-time clock DC1287 with internal battery for keeping system time and
generation of interrupt clock.

" RS232 interface to PC through a converter chip MAX-232.

" Watch dog timer MAX691.

" A full bridge rectifier circuit and a power stabilizer 7805 for accepting 7~9V AC or
DC power supply.

" LCD interface to a standard 20x2 LCD panel.

3.9.1 8051 and external memory interfaces
We will first start to discuss the interface between the program Rom and the data RAM.
Then we will talk about how to make RAM used as both program and data store.

Recall again the 8031 has three external memory read/write operations.

Table 3. 2 8051 external memory read/write operations

 /PSEN /RD /WR

(1) External program read 0 1 1

(2) External data read 1 0 1

(3) External data write 1 1 0

3.9.2 8051 and external program ROM (UV-EPROM) interface
Our system uses a UV-EPROM (or called EPROM, U5 in the 8031RL schematic) as the
read only memory store to hold the startup program. The circuit is a straightforward one
and requires the 74373 to latch the address, and the ALE of 8031 is connected to latch
input (LE) of 74373. The system uses a programmable array logic circuit (GAL) 18CV8
for address decode. So that if necessary one can change the address map by changing the
content of the GAL chip. The connections are as follows:

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

11

! /PSEN (Program enable select) of 8031 is connected directly to the /OE of the
EPROM. Therefore only external program can be read from this EPROM. Since it
is an 8031 (same as 8051 with pin /EA=0) chip so no programs would be found
within the MCU, all programs should be stored externally.

! The address decoder output for the range 0000-7FFFH is connected to the /CE of
the EPROM. We see that upper address lines (A14,A15) are used for address
decode to point to the EPROM chip. And lower address lines (A0-A13) are used to
address to memory addresses within the memory chip.

Figure 3. 7 An 8031 and UV-EPROM 27256 interface

3.9.3 8051 and external data RAM interface
Our system uses an SRAM 62256 (U6 in the 8031RL schematic) as the data memory
store. The circuit is a similar to the MCU-EPROM circuit, which also requires the 74373
to latch the address. The ALE of 8031 is connected to latch input (LE) of 74373. And the
system uses a programmable array logic circuit (GAL) 18CV8 for address decode. So that,
if necessary, one can change the address map by changing the content of the GAL chip.
The connections are as follows:

" A15 of the 8031 is connected to /CE of the SRAM through a MAX691 watch-dog-
timer chip. Let’s forget about the special functions of the MAX691 (its function
will be explained later) and treat it as a direct connection. Therefore whenever
A15=0, the address is within 0000-7FFFH, the memory chip is selected. The
read/write operations are now coordinated by /RD and /WR of the 8031.

" /RD (pin17 of 8031), /RW (pin16 of 8031) are connected to /RD (pin 22 of 622256)
and /WR (pin 27 of 62256), respectively. Since during external program read as
discussed above in Table 3. 2, /RD and /WR are high, therefore only external data
read/write instructions can read/write this SRAM.

" As a conclusion, this SRAM will only used for external data storage.

32K-byte EPROM
27256

/CE

A0-A7

D0-D7

A8-A14

/OE

LE
74373
latch

8031 MCU
/EA

 A15, /PSEN
/RD,/WR

ALE
P00-P07
(A0A7)/
(D0-D7)

Address/dat
multiplexed

P20-P26(A8-A14)

 /PSEN

Address
decoder
18CV8

0000-7FFFH
program read select
/output

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

12

Figure 3. 8 An 8031 and External Data SRAM 62256 interface.** Note that treat
MAX691 as direct connection at this stage

3.9.4 8051 and data/program RAM interface: Making the RAM as both
data and program store

(Refer to the schematic of the 8031RL SBC from cache computer), see
http://www.cse.cuhk.edu.hk/~khwong/ceg3430/8031rl_schematic_vert.jpg

In the above discussion, we have a system that has 64 Kbytes ROM space for program
and also 64K bytes for data storage. We should be happy about it. However, this set-up is
not suitable for program development, why? Since you need to develop the program in
the hard way, such as.
" Use a PC to write your program.
" Make UV-EPROM (or ROM) that has the object file (or machine code) or the

program
" Insert the ROM into the circuit board.

The main problem is, programming the UV-EPROM once will take 10 minutes, and it is
too long for a debug cycle. So the ideal way is to have an operating System (O.S.) sitting
on the SBC, and a user is able to write program, run it and debug it interactively with the
operating system. But our SBC system is too small to have everything inside, so some
people developed a scheme for developing a small SBC system with the assistance of a
Personal Computer. It is a method using a monitoring ROM (similar to the BIOS of your
PC, in fact it is a small operating system) in the SBC, which looks like the following.

1. Write your program using the editor on a host PC.
2. Compile your program in the PC and generate an object file (machine code) for 8051.
3. Download the object file to the program RAM of the 8051-SBC
4. RUN the object file at the program RAM.

32K-byte SRAM
62256

/CE

A0-A7

D0-D7

A8-A14
/OE
/WR

LE
74373
latch

8031 MCU
/EA

 A15, /PSEN

/RD,/WR

ALE

P00-P07
(A0A7)/
(D0-D7)

Address/dat
multiplexed

P20-P26(A8-A14)

/RD
/WR

Address
decoder
18CV8

0000-7FFFH
external data RD/WR
select /output

Max
691

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

13

Figure 3. 9 Software development using monitor ROM

To have the above scheme we need two important things:
1. A program at the ROM for monitoring the 8051 system, it should be able to

communicate with a host PC computer and download object file form the PC to local
RAM and run the program there. Thus this program at ROM is called a monitor
program.

2. A shared RAM space for holding program and data simultaneously, in this light we
have the design shown below.

Figure 3. 10 Memory architecture showing external shared program and data RAM

One way to have this development system is have a program ROM at 0000-7FFFH to
store your monitor program (a simple operating system), data RAM at 0000-7FFFH for
storing variables and your working data. It is noted that even the address is the same as
the program space, it doesn’t matter, since program and data are separate entities and
differentiable by the hardware signals /PSEN (for retrieving programs) and /RD, /WR (for
read, write data reps.).

The most important part is a program/data shared RAM at 8000-FFFFH for storing data
and at the same time for saving programs for testing. It is interesting to see that this RAM
space can be used for both purposes, such that:
! It is treated as data store when the 8031 executes external data read/write

instructions to access data in this address range.

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

14

! It is treated as program store when the 8031 is reading program instructions within
this address range.

So how to design a circuit to have such functions?

 It is done by a careful design of the chip select decoder for the /CS and /OE pins of
RAM and ROM devices using the following rules:
! ROM1: Program retrieval, /PSEN=0; address range is total 16-bit (64K bytes)
! RAM1 for data only (range 0000-7FFFH):

$ Data memory read: /RD = 0, /WR = 1, /PSEN = 1
$ Data memory write /RD = 1, /WR = 0, /PSEN = 1

! RAM2 (for data and program, range 8000-FFFFH):
$ Data memory read: /RD = 0, /WR = 1, /PSEN =1
$ Data memory write: /RD = 1, /WR = 0, /PSEN =1
$ Program memory read: /PSEN =0
$ Program memory write : never happen

Exercise3.12 When will an 8051 read in instructions, from where, and how?

Exercise3.13 What 8051 signals are involved during (1) data write, (2) data
read?

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

15

3.9.5 Address decoding
So this is the decoding table used in the 8031RL SBC computer:
(* is logical AND, + is logical OR)

! ROM1 (0000-7FFFH) 32K program
! /CE A15 (for all addresses 0000-7FFFH has A15=0)
! /OE /PSEN
! RAM1 (0000-7FFFH) data only

$ /CE A15 (for all addresses 0000-7FFFH has A15=0)
$ /WR /WE of 8031
$ /OE /RD of 8031

! RAM2 (8000-FFFFH) program data shared
$ /CE /A15 (for all addresses 8000-FFFFH has A15=1)
$ /WR /WE of 8031
$ /OE /PSEN and /RD (either data read or program read will get output)

Figure 3. 11 Address decoder and memory devices

Exercise3.14 Redesign the above circuit so that we only use address space
8000-DFFFH of SRAM2.

1. In practice, the operating system (or monitor program) will be in ROM1. The

development cycle is:
2. At power up, it will enable a serial communication link with a terminal (Windows

Hyper terminal etc).
3. A programmer will develop his program on the PC using a cross compiler of C and

generates 8031 executable code (object code).
4. Then under the instruction of the developer using the monitor program it can delivery

the object code to the space starting at 8000H as if it is writing data to this space.
5. Finally the developer issues a run-from-8000H command to the monitor program at

the 8031–SBC and the 8031 will execute from that location which is the object code
he/she is testing.

The advantage of using this development system is:

• The development hardware is very minimal: a single chip computer, a PC and a serial

cable, no need for an In Circuit Emulator, which is an expensive piece of equipment.
• Turn around time is fast, there is no need to blow an EPROM (may take 10 minutes

or more) for a development cycle.

8031 Decoder
PEEL
GAL
18CV8

/CE

0000-
7FFFH
ROM1

/OE

A15

/PSEN

/CE
0000-
7FFFH
RAM1

/WE
/OE

A15

/WR
/RD

/CE
8000-FFFFH
RAM2
/WE

/OE

/A15

/WR
/PSEN
and /RD

A15
/WR
/RD
/PSEN

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

16

• The monitor program at the 8031 can provide the necessary library, i.e. serial
interface drivers for the target program to call from. It is in fact akin to system calls
of an operating system.

• It supports any programming languages as long as the output of the cross compiler at
the PC is the object code understood by the 8031.

We will discuss it more in the chapter on software development.

In order to save space and complexity the whole address-decoding job is handled by the
programmable logic device PEEL GAL 18CV8 as follows.

Figure 3. 12 Address decoder circuit and truth table, diagrams are from the 8031RL SBC
manual from Cache computer.

Exercise3.15 Write the Logic formulas of the decoding circuit in term of A0-
A15, /RD, /WR, /PSEN whichever applicable. Use loosely decoding method
to reduce the complexity, i.e. you don’t need to decode the exact locations.
The result would be acceptable as long as the addresses do not overlap.

External address range Device and pin
name

Formulas

Program 0000-7FFFH /CS of ROM1

Data 0000-7FFFH /CS of RAM1

Data 8000-Data DFFFH /CS of RAM2

Data E000-E003H /CS of 8255-U8

Data E800-E803H /CS of 8255-U9

Data EC00-EC0D /CS of DS1287
real time clock

Data F000-F002H /CS of LCD

Table 3. 3 Input/output peripheral devices address map

3.10 Conclusion

The design and functioning of an 8031 single board computer are discussed in this note.
In particular, basic knowledge of how to use the 8031 internal registers, interfacing

/range of (8000-DFFFH)
/PSEN or /RD

PEEL GAL
18CV8 used
as address decoder

A15

A15

/E00XH

/E80XH

/F8XX

A10-A15,
/PSEN,
/RD,/WR
of 8031

/CS
/OE of RAM2 (U7)
Program/data

/CS of 8255-U9

/CS of 8255-U8

/CS of RAM1(U6)

/CS of ROM1(U5)

LCD

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

17

techniques to external memory systems and parallel input/output pins are given. Various
hardware development techniques are mentioned.

3.11 References:

1. MCS® 51 Microcontroller Family User's Manual from (page 1-50)
http://www.intel.com/design/mcs51/manuals/272383.htm

2. Data sheet of a 32K-byte Static RAM (SRAM) device 76C256
http://www.skt.co.kr/gm76c256clcll.pdf

3. 8031 serial interface http://www.8052.com/8051ser.htm

4. Manual (8031m7.pdf) of 8031RL SBC from http://www.cachecom.com/

5. Philips MCU home page http://www.semiconductors.com/mcu/

6. http://www.cse.cuhk.edu.hk/~khwong/ceg3430.htm#Useful information

7. Amtel’s 8951 page: http://www.atmel.com/atmel/products/prod20.htm

8. Paulmon http://www.pjrc.com/tech/8051/pm2_docs/hardware.html

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

18

3.12 Appendix 1

Figure 3. 13 Address map of the 8031RL-SBC all addresses are in hex.

 External

RAM2 and
IO addresses

 F000-F002 LCD (con2)

 EC00-EC0D /CS of
DS1287 real
time clock

 E800-E803

E000-E003

8255(U8)

8255 (U9)

 8000-DFFF External

RAM2
62256 (U7)

Internal RAM

of 8031

Special function
registers, SFR (80-
FF)

Stack

(30-7F)

Bit addressable
segment

(20-2F)

128 bytes RAM

(00-1F):4 registers
banks RB0,1,2,3

External
data
RAM1

0000-

7FFFH

IC=62256

(U6)

External

Program
ROM1

0000-

7FFFH

IC=27256

(U5)

-- End of this chapter --

Mobile Robot chapter 3: The 8051 micro-processor based computer system (v.4.a)

19

