Cosmological Time in Quantum Supergravity
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Abstract

The version of supergravity formulated by Ogievetsky and Sokatchev is al-
most identical to the conventional N = 1 theory, except that the cosmological
constant A appears as a dynamical variable which is constant only by virtue
of the field equations. We consider the canonical quantisation of this theory,
and show that the wave function evolves with respect to a dynamical variable
which can be interpreted as a cosmological time parameter. The square of the
modulus of the wave function obeys a set of simple conservation equations and
can be interpreted as a probability density functional. The usual problems
associated with time in quantum gravity are avoided.
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One of the most fundamental questions in quantum cosmology is that of identi-
fying a suitable time parameter, with respect to which the dynamics of the Universe
can be measured. The conventional Wheeler-DeWitt formulation gives a time-
independent quantum theory, and does not suggest any obvious reason why ob-
servers should experience the passage of time. Moreover, the absence of any special
parametrisation leads to ambiguities when defining transition amplitudes between
specified 3-geometries [1]. A related problem is that of choosing an inner product
on the Hilbert space of physical states, in the absence of any parameter with respect
to which this inner product should be conserved.

Supersymmetry transformations are more fundamental than time translations,
in the sense that the latter may be generated by anticommutators of supersymmetry
generators. For this reason, it is natural to look to supersymmetry for a solution
to the problems outlined above. One is therefore led to consider theories such as
N =1 supergravity.

Perhaps the most elegant and economical description of supergravity is that
of Ogievetsky and Sokatchev [2]. In this formulation, the supergravity multiplet
is obtained from a complex vector superfield by imposing simple gauge conditions
together with a type of unimodularity condition on the supercoordinate transforma-
tions. The resulting theory is identical in most respects to conventional supergravity
(as described by Wess and Bagger, for example [3]).

However there is a subtle difference between the multiplet of Ogievetsky and
Sokatchev and that of the conventional theory, which does not appear to have been
previously exploited [4]. The conventional supergravity multiplet contains a scalar
density M which is treated as an independent auxiliary field; however, in the theory
of Ogievetsky and Sokatchev M is given in terms of a vector density whose longitu-
dinal component is actually dynamical. It turns out that this additional dynamical
degree of freedom is essentially the cosmological “constant” A, which in this case is

constant only by virtue of the equations of motion.



A dynamical A also appears in general relativity if a unimodular condition is
imposed on the metric before the variation of the fields [5, 6, 7]. In that case, A is
found to be canonically conjugate to a parameter which is naturally interpreted as
cosmological time.

It is shown below that a similar result is obtained in the Ogievetsky and Sokatchev
version of supergravity. However in this case, unlike that of unimodular general rel-
ativity, the result is achieved without the imposition of any ad-hoc constraints on
the physical fields. Moreover the cosmological time is a dynamical variable deter-
mined by the fields on a given hypersurface, while in unimodular general relativity
it depends on the entire past history of the fields prior to this hypersurface.

The Lagrangian for N = 1 supergravity is
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where A, \* are externally specfied constants, e is the determinant of the tetrad ¢;?,
and R is the Ricci scalar '. Conventionally, M and M* are treated as auxiliary
fields and eliminated using their equations of motion M = —3X and M* = —3\*.
This leads to a theory with fixed gravitino mass m = |A| and cosmological constant
A = —3m?.

In the formulation of Ogievetsky and Sokatchev, the cosmological constant arises
in quite a different way [2]. In this approach M is not an independent field, but is
given by the expression

M =e10, M™ — 0%, (2)

where the complex vector density M™ now plays the part of the auxiliary field. The
A A" terms appearing in the Lagrangian (1) are then just total divergences and can
be dropped. Varying M™ (rather than M as in the usual approach) leads to the

field equations 0,, M = d,, M* = 0. The equations of motion for the remaining fields

1We use the notation and conventions of [3], with spacetime coordinates denoted by letters from
the middle of the alphabet. Note that R differs by a sign from the curvature scalar defined in [8]
and [9].



are identical to those of conventional supergravity with gravitino mass m = 1| M|

and cosmological constant A = —3m?.

In the present formulation, however, M
is not an externally specified constant but a dynamical variable which is constant
only on-shell. This difference is vital, because it means that the quantum theory
admits linear superpositions of states with different values of the gravitino mass and
cosmological constant.

The Ogievetsky-Sokatchev model also has two other important new features.

Firstly, it is invariant under the gauge transformation
M™— M™ 4+ 6M™,  §M™ = ec™™0; Ay (3)

where Ay, is an anti-symmetric tensor density. Secondly, owing to the elimination of
the A, A* terms from the action, the Ogievetsky-Sokatchev model also has the global
U(1) symmetry

Y e, M™ — oM™, (4)
In the conventional formulation of supergravity this symmetry is broken for A # 0.

We wish to determine whether the dynamical nature of A in Ogievetsky-Sokatchev
supergravity leads to a natural definition of cosmological time, as in unimodular gen-
eral relativity. To this end we now consider the canonical formulation of the theory,
focussing on those points which arise from the replacement of the scalars M, M*
by the vector densities M™ M*™ as independent fields. (See [9] for a canonical
description of the conventional theory.)

We begin by making a 341 space-time split, with spacelike coordinates denoted
by hatted latin indices (m,n,...) and the timelike coordinate denoted by the index
t. For example, the tetrad €”, is split into a timelike part ef, = —n,/N and a spatial
part €”y = n,(N"/N)+h"" e, where N is the lapse funtion, N™ is the shift vector,
hpi = €7 %€na is the spatial 3-metric, A7 is its inverse, and n, is defined so that
nen® = —1 and ez *n, = 0.

Similarly, the vector densities M™, M*™ consist of spatial components M™, M*™

which are non-dynamical, and time-like components M*, M** which are dynamical
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and have canonical momenta p = —%M*, p* = —%M.

Within any spatial hypersurface ¥(t), the spatially varying part of M* can be
gauged away by a transformation of the form (3). (One simply chooses the gauge
transformation parameter as A;; = e_letfcimBm where 20,0, B™ + 0; M = 0.) After
the removal of the gauge degrees of freedom, all that remains of M? is the spatially

constant part whose integral is

o=, M (5)

The Rarita-Schwinger fields are also split into timelike parts v, ¥, and spatial

parts ¥, . It is convenient to eliminate ¥,%, 14 in favour of the spinor
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and its hermitian conjugate Y. This definition leads to the useful identity e,0%%; =
—Qh%(xa“bd)m)nahmﬁeﬁb, where h = det[h;].
We also eliminate N in favour of the variable N = Nh2. The Hamiltonian is

then

H = /de{Mmamp + M 0p* + w0, T

+N[R™TH — 3p™p + %h—%hmﬁemnb(%%abﬁasa + ;z?mﬁ@ab%sa')]
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where the expressions for the quantities H(z), Hp (), So(x), S%(z), and J,p(x) are
familiar from the standard formulation of canonical supergravity [9], in which they
play the roles of Hamiltonian, momentum, supersymmetry and Lorentz constraints
respectively.

The momenta conjugate to N(ZL’), N™(z), x*(z), ¥a(z), w:®(z), M™(z) and
M*™(z) are found to vanish, indicating that these variables act as Lagrange multi-

pliers in (7). The requirement that H be stationary with respect to these Lagrange
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multipliers then leads to a set of secondary constraints at each point x. In partic-
ular, M™ and M*™ enforce the constraints d;p = 9;p* = 0 indicating that p, p*
are spatially constant. In fact the parameters p(t), p*(¢) are simply the momenta
conjugate to the canonical coordinates ¢(t), ¢*(¢).

The quantity A = —3p*p has physical significance, as it plays the role of the
cosmological constant in the field equations derived from (1). We therefore eliminate
p(t),p*(t) in favour of real dynamical variables A(t) and (1), defined so that p =
(—A/3)z¢*. The equations of motion then ensure that A and 6 remain constant
along classical trajectories.

In unimodular general relativity, A is canonically conjugate to a variable which
can be interpreted as the cosmological time parameter. In the present case, the vari-
ables A(t) and 6(t) can be identified respectively as the momenta Ilz, Il conjugate
to the new canonical coordinates

1) =~ ) 8

Q(t) = ilpg—pq) (9)

as can be seen by calculating the Dirac bracket relations.

The analogy with unimodular general relativity raises the hope that the new
variable 7" might play the role a cosmological time parameter. This hope is fulfilled.
The equations of motion derived from (1) imply that

hz

dT 2 _ .
= / &’z [6 7 (pxo“"ts, -I-P*Xaab’é/)m)nahmneﬁb] : (10)

dt /
B(t)
Integrating and making use of the supersymmetry constaints (enforced in (7) by the

Lagrange multipliers x®, xs) one obtains the weak equalities [10]

1 _ .
th/d“[— aada] 11
) [ 4w |e— (x5 + XaS?) (11)
where M denotes the 4-volume between the hypersurfaces ¥(#g) and X(t), with o

defined so that T'(to) = 0. Similarly, one finds that
Q) = Qta) ~ =i [ d'a (x"Sa = Xa5"), (12)
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In order to extract the gauge-invariant content of 7'(¢) and Q(¢), we may now
choose a gauge with xy* = y, = 0 everywhere. The equations of motion then imply
that Q(t) is constant while 7'(¢) is the invariant 4-volume of spacetime preceeding
the hypersurface ¥(t). In this gauge, therefore, T'(¢) coincides classically with the
cosmological time parameter that arises both in unimodular general relativity [5, 6, 7]
and in Sorkin’s sum-over-histories approach [11]. Note that 7" is a monotonically
increasing function along any classical trajectory and so can indeed be used to
parametrise this trajectory.

As well as imposing gauge conditions on x* x4, it is also necessary to fix the other
Lagrange multipliers N(r), N™(z) and w;**(z) at each spacetime point z in order
that the equations of motion have a unique solution and the classical evolution is
well-defined. (It is immaterial how these Lagrange multipliers are chosen, provided
that N > 0.) Then through each point in phase space at which the constraints hold,
there passes a unique classical trajectory parametrised by 7. The closure of the
Dirac constraint algebra ensures that the whole trajectory will be confined to the
region in phase space where the classical constraints are satisfied.

Having removed the ambiguities from the classical evolution equations by spec-
ifying the Lagrange multipliers, we now proceed to the quantum theory. The con-
straints become conditions on the wave function W, their precise form depending
on the representation used. An obvious choice is the (A,#) representation, with
a wave function W(A,0;ez?,1,,%]. However, more insight into the nature of the
supersymmetry constraints is obtained by switching to the (A, Q) representation,

with (A, 0; e,,%,1,,%] decomposed as a linear combination of eigenmodes Wy of the

operator () = 1hd/0d0:

(A, Oy en", 0a] = 3 eV UN(As e, ] (13)

N=—00

At each point x there is a family of constraints, which in this representation have

the form

1 2. 1 - —
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(For brevity, we have suppressed the spatial dependence of the operators h_%(x),
H(z), Hplz), Jup(), So(z), S4(x), K™ (2), ena(x), na(x), ¥p®(x) and ga(x).)
The argument A is restricted to the non-positive part of the real axis, and each Wy
is required to vanish at A = 0. This boundary condition can be derived from the
continuity of the wave function in the (p,p*) representation, and ensures that the
operator T' = 1hd/0A is self-adjoint.

An alternative description of the quantum theory can be obtained using the

(T, Q) representation, in which the wave function is defined by the Fourier transform

o 1 0
Un(Tsex”, "] = E/_ d

and A is represented by the operator —ihd/dT. In this representation, the Hamilto-

A exp {%TA} Un(A; e, ¥’ (19)

nian constraints (14) take the form of a family of Schrodinger equations (one at each
point z) describing the evolution of the cosmological wave function with respect to
the cosmological time parameter 7"

AaN

1h o7

_pb {H—l— =B ey [ 157 0 0% S 4 15 0 5] }xpN. (20)

The momentum and angular momentum constraints have the same form (15,18)
in the (7, Q) representation as in the (A, Q) representation. However, the super-
symmetry constraints are awkward to express in the (T, Q) representation, as they
involve the square root of the operator A = —ithd/0T'; when considering these con-
straints, it is convenient to return to the (A, Q) representation.

Assuming that the operator-ordering is chosen so that H is self-adjoint and

5% Ss are mutually adjoint with respect to the measure on the configuration space



(€42,15%), then it follows from the Schrodinger equations (20) that the integral
of the quantity W3 Wy is conserved with respect to 7. Moreover, once we have
integrated over the fermionic degrees of freedom and summed over all values of
N, this quantity is real and non-negative, and so is naturally interpreted as the
probability density function for the Universe.

The momentum constraints (15) imply that U depends only on 7" and the equiv-
alence class of configurations related to (e;%, ¥,,%) by spatial diffeomorphisms. An
argument by Kuchaf [12] can be adapted to show that these equivalence classes
are not Dirac observables. However, this is not an obstacle to the interpretation
of the wave function suggested above; in a parametrised theory, the wave function
arguments need not be observables. (For example, see [13].)

This is illustrated by the parametrised description of particle dynamics in a one-
dimensional potential. In this description both ¢(7) and z(7) are coordinates, with

conjugate momenta 7(7), p(7). The Hamiltonian
1, .
H = N[r+ §p + V(z)]. (21)

contains a Lagrange multiplier N enforcing the constraint ¢ = = + %p2 +V(z)=~0
which in the quantum theory imposes the condition
2

—rl = [% + V(2)] . (22)
In the (¢, z) representation, the momenta are given by the operators 7 = —ihd/0t
and p = —thd/0x and so (22) is just the Schrodinger equation. We must there-
fore adopt the conventional interpretation of W(¢, z) as the amplitude at time ¢ for
observing the particle at position z.

It is easily seen that the variables ¢ and = have non-vanishing Dirac brackets
with the constraint ¢, and so are not Dirac observables. However this fact does
not prevent us from adopting the conventional interpretation of the wave function
U(t,z) ; it simply reflects the breaking of time-translation symmetry by the act of

measurement at a definite instant.



Similarly, in the present theory, the non-commutation of the wave function ar-
guments with the Hamiltonian and supersymmetry constraints reflects the fact that
measurements are to be made on a definite hypersurface ¥ and in a definite super-
symmetry gauge. Once again, this does not prevent us from adopting the conven-
tional interpretation of the wave function.

It should be noted here that the dynamical variable T' need not be assumed to
play any special role in the identification of the hypersurface ¥ in the classical theory.
(For example, one might specify the embedding of the hypersurface by giving the
spacetime coordinates of each point on X.) However, since T increases monotically
along classical trajectories (at least in the gauge x = y = 0), there is a strong
temptation to view it as a Heraclitean time parameter labelling the hypersurfaces
in some foliation of spacetime [7].

In the context of unimodular gravity, it has been argued that the specification
of the cosmological time 7' is insufficient to identify the hypersurface on which the
measurements are to be made [1, 12]. While this is certainly true, the argument no
longer holds if the Lagrange multipliers N(r) and N™(z) are fixed in advance, as
in the present approach; then the classical evolution is completely determined and
each value of T' specifies a unique hypersurface. Thus, one can identify a particular
hypersurface by specifying a value of the parameter 7' and the Lagrange multipliers
at each spacetime point.

It is clear that the choice of Lagrange multipliers makes no difference at all to the
quantum constraints (14-18), or to the evolution of the wave function ¥ with respect
to the cosmological time parameter T'. Hence the the transition amplitude between
two specified hypersurfaces is independent of any coordinate conditions which may
be imposed on the interpolating spacetimes. The quantum theory therefore escapes
the “multiple choice problem”, which arises in most other approaches to quantum
gravity in which time is found among the canonical variables [1].

In conclusion, we have shown that the canonical quantisation of Ogievetsky-
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Sokatchev supergravity leads directly to a time-dependent wave function with a
straightforward probabilistic interpretation. It is natural to ask whether this result
applies only in N = 1 supergravity, or is enjoyed by a wider class of supersymmetric
theories. The essential ingredient appears to be the replacement of an auxiliary
scalar field by the divergence of a vector field with well-defined supersymmetric
transformation properties. This is not a very stringent requirement, and can prob-
ably be satisfied by a wide variety of locally supersymmetric theories. Any such
theory will have features similar to those outlined above.
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