

REALbasic Developer’s Guide

Documentation by Geoff Perlman and David Brandt.
© 1999 by REAL Software, Inc. All rights reserved.
Printed in U.S.A.

V2.0.2, June, 1999

Mailing Address REAL Software, Inc.
3300 Bee Caves Road
Suite 650-220
Austin, TX 78746

Web Site http://www.realsoftware.com

ftp Site ftp://ftp.realsoftware.com

Support support@realsoftware.com

Bugs/
Feature Requests

bugs@realsoftware.com

Sales sales@realsoftware.com

Phone 512-263-1233

Fax 512-263-1441

Contents

CHAPTER 1 Introduction 9

Contents . 9
Welcome to REALbasic. 10
Installing REALbasic 11
Where to Begin 12
Documentation Conventions 12
Using the On-Line Help 14
Other Helpful Resources 16
Contacting REAL Software 19

CHAPTER 2 Getting Started with
REALbasic 21

Concepts 22
The Development Environment 24
Working with Projects 29

CHAPTER 3 Building a User Interface . . . 33

Working with Windows 34
Interacting with the User Through Controls 41
Object Binding 102
Adding Menus 109
Apple’s Macintosh User Interface Guidelines.114
REALbasic Developer’s Guide iii

iv

Contents

CHAPTER 4 BASIC Programming Concepts115

Contents 115
BASIC versus REALbasic 116
Storing Values in Properties and Variables 117
Executing Instructions with Methods . . . 129
Comparison Operators 134
Executing Instructions Repeatedly with Loops 136
Making Decisions with Branching 142

CHAPTER 5 Programming with Events
and Objects 147

Contents 148
Understanding Event-Driven Programming148
Using The Code Editor 149
Printing Your Code 162
Importing and Exporting Your Classes, Menus,
Modules, and Windows 163
Responding To User Actions with Event
Handlers 166

CHAPTER 6 Adding Global Functionality
with Modules 195

Contents 196
Understanding Modules 196
Adding A New Module 196
Adding Methods to Modules 198
Adding Properties to Modules 198
Adding Constants to Modules 199
Importing and Exporting Modules 205
Contents

CHAPTER 7 Working With Text and
Graphics 207

Contents 207
Working With Fonts 208
Working with the Selected Text 210
Creating a Password Field 211
Handling Styled Text 212
Formatting Numbers, Dates, and Times. . 216
Adding Pictures and Drawing Graphics . . 220
Working With Color 233
Printing Text and Graphics. 237
Transferring Text and Graphics with the
Clipboard 242
Creating Animation with Sprites 246

CHAPTER 8 Working With Files 249

Contents 249
Understanding File Types 250
Understanding FolderItems 254
How Are Aliases Handled?. 255
Getting a File at a Specific Location. . . . 256
Getting The Selected Folder From An Open
Folder Dialog Box 262
Using the Save As File Dialog Box 263
Working With Text Files 265
Working With Styled Text Files 269
Working With Picture Files 270
Working With Sound Files 273
Working With QuickTime Movie Files. . . 273
Working With Binary Files 274
Working With Macintosh Resources . . . 279
Files Opened From the Desktop 282
Contents v

vi

Contents

CHAPTER 9 Creating Reusable Objects
with Classes 285

Contents 285
The Benefits of Classes 286
Understanding Subclasses 287
Referring To A Class’s Properties and Methods
From Within the Class 289
Constructors 290
Modifying Classes 291
Managing Menus within Classes 295
Using Classes in Your Projects 296
The Application Class 300
Creating Custom Controls with Classes . . 302
Virtual Methods 304
Interface Inheritance. 305
Custom Object Bindings 308
Importing Classes From Other Projects . . 313
Exporting Classes For Use In Other Projects 314
Deleting Classes From a Project 316

CHAPTER 10 Creating Databases with
REALbasic 317

Contents 317
REALbasic’s Database Architecture 318
Structured Query Language 319
REALbasic’s Database Tools 324
Creating and Modifying Databases from the
Project Window 325
Using Object Binding 329
Creating a Database Front End
Programmatically 332
Contents

CHAPTER 11 Debugging Your Code 339

Contents 339
What is Debugging? 340
The Debugger 342
Following the Execution of Methods . . . 344
Watching Your Values 348
Starting and Stopping Your Project 350

CHAPTER 12 Communicating With The
Outside World 351

Contents 351
Communicating With Serial Devices . . . 352
TCP/IP Communications with the Socket
Control 355

CHAPTER 13 Extending the Capabilities of
REALbasic 363

Contents 363
Using XCMDs and XFCNs. 364
Making Toolbox Calls 367
Calling AppleScripts 368
Communicating with AppleEvents 372
Using and Writing REALbasic Plug-ins . . 374
Using PowerPC Shared Libraries. 376

CHAPTER 14 Building Stand-Alone
Applications 381

Contents 381
Building Your Application 382
Project Window Items 386
Assigning Custom Icons 387
Contents vii

viii

Contents
Registering Your Creator Code 388
The Thread Manager. 388

CHAPTER 15 Converting Visual Basic
Projects to REALbasic 389

Contents 389
Importing Forms and Code 390
Making The Conversion Easier 390
What about VBX and ActiveX controls? . 391
What Are My Database Options? 392

Index 393
Contents

CHAPTER 1 Introduction
Before you get started developing applications with REALbasic,
there are a few things you should know. Reading this chapter will
help you understand how to install REALbasic and how to get
answers to your questions.

Contents
• Welcome to REALbasic
• Installing REALbasic
• Documentation Conventions
• Using the On-Line Reference
• Other Helpful Resources
• Contacting REAL Software
REALbasic Developer’s Guide 9

10

Introduction
Welcome to REALbasic
REALbasic makes it easy to build powerful applications quickly. If you
are new to programming, you will find REALbasic’s programming
language easy to learn. If you are an experienced programmer, you
will find the language to be powerful. In either case, you will find
you can accomplish quite a bit in a short period of time.

REALbasic has a visual graphical user interface (“GUI”) builder
that lets you build your applications user interface without any
(or very little) programming. If you know how to drag and drop,
you can build an interface. REALbasic provides a rich set of
interface controls and you can create your own controls as well.

REALbasic’s programming language is an object-oriented version
of the BASIC programming language. BASIC is an acronym that
stands for Beginners All-Purpose Symbolic Code. It was originally
designed to be used for teaching programming. Consequently, its
syntax is less cryptic and easier to understand than most
languages. REALbasic supports most of BASIC’s commands.
However, that is where the similarities between BASIC and
REALbasic end.

Most forms of BASIC are interpreted. This means that they
include a translator that has to constantly translate BASIC code
into the code that the computer can actually understand.
REALbasic has no interpreter. REALbasic compiles your code
when you run your application. In fact, REALbasic has a dynamic
recompiler. The recompiler only compiles what needs to be
recompiled each time you run your project. That means that a
small change to your code doesn’t always require the entire
project to be recompiled before it can be run.

REALbasic’s form of the BASIC language is also “object-
oriented.” This means that it uses a modern architecture that
Introduction

Installing REALbasic
most popular programming languages (like C++ and Java) are
using today. Object-oriented programming languages make it
easier to write and debug because the code is written as
individual objects that are similar to objects in the real world. In
fact, in many ways REALbasic is more object-oriented than
languages like C++ and certainly easier to learn and program.

REALbasic also makes application development faster and easier
than traditional languages by removing the need to learn how to
access the programming interface for the operating system. This
application programming interface (or “API” for short) consists of
8,000 commands in the Mac OS, not one of which you ever need
to learn to build applications in REALbasic.

Installing REALbasic
The REALbasic application, electronic documentation, and
examples are installed by dragging files from the CD-ROM to
your hard disk. To run REALbasic you must have the following:

• A Macintosh with a 68020 or greater processor or a
Macintosh with any PowerPC processor.

• Mac OS System 7.1 with the Thread Manager and Drag
and Drop extensions installed. If you are running Mac OS
7.5 or greater, the Thread Manager and Drag and Drop
are built-in to the Mac OS.

• At least 1.5 megabytes of available memory (3.5 mega-
bytes preferred). This requirement may be higher if Vir-
tual Memory is turned off.

• A hard disk with at least 5 megabytes of free space avail-
able to install REALbasic, 10 megabytes available for the
electronic documentation and 51 megabytes of space
available for all the examples.
Introduction 11

12

Introduction
To install REALbasic from the CD ROM, drag the REALbasic
application from the CD-ROM to your hard disk.

To install the documentation and examples, drag them from the
REALbasic CD-ROM to your hard disk.

Where to Begin
After installing REALbasic, you should begin by going through
the Tutorial. This will give you a good overview of REALbasic and
introduce you to the programming language. Next, read the
Developer’s Guide. This guide will provide you with detailed
information on the language and the various components that
make up REALbasic. When you need details about a specific
control or command in the language, consult the Language
Reference.

Documentation Conventions
This documentation uses the following typographical
conventions:

Initial References
The first time a new phrase or term is used, it will appear in italics
for emphasis.
Introduction

Documentation Conventions
Menu References
When you are told to select a menu item, the menu name is
listed first, following by an arrow, then the item name and
command key shortcut. For example File . Quit (q-Q) means
“choose Quit from the File menu”.

Code Examples
Code examples are all this font:

Dim i, x as Integer
For i = 1 to 100
 \ = x + i
Next

Icons
There are three icons used to call your attention to steps, and
important notes:

This icon means that there are numbered steps for you to follow.

This icon means that the text to the right of it is supplemental
information that clarifies a point or is relevant only to some
REALbasic users.
Introduction 13

14

Introduction

Click to list comm
theme or alphabe

Expand a theme to
commands
This icon means that the text to the right of it is important
information that should not be overlooked.

Using the On-Line Help
An electronic version of the REALbasic Language Reference is
built-in to REALbasic. To access this language reference choose
Window . Reference.

FIGURE 1. The On-Line Reference

Context-Sensitive Help
The On-Line Reference is context-sensitive. If you select an
interface control in a window then open the On-Line Reference,

ands by
tically

 view
Introduction

Using the On-Line Help

HyperText Link
the Reference will open to information about the selected
control.

If you highlight a command in the Code Browser, then open the
On-Line Reference, the Reference will open to information about
the selected command.

Using the HyperText Links in the On-Line Help
Any text that appears in blue, underline style in the On-Line
Reference is a hypertext link. Clicking on the text will switch the
Reference to a page about the topic you clicked on.

FIGURE 2. A hypertext link in the on-line reference.

Using the Code Examples
The On-Line Reference contains many code examples that you
can use in your projects. The code examples appear in Courier
font and are surrounded by a grey rectangle. Figure 3 on page 16
Introduction 15

16

Introduction
shows an example of this. You can use these code examples in
your project by dragging the grey rectangle from the On-Line
Reference to your Code Browser window.

FIGURE 3. A draggable code example in the on-line reference.

Other Helpful Resources
There are many sources of helpful information to make learning
and building powerful application easier.

Electronic Documentation
All of the REALbasic documentation is available on the REALbasic
CD and at our web (http://www.realsoftware.com/release. html)
and ftp (ftp://ftp.realsoftware.com) sites. These documents are
available in PDF (Adobe Acrobat) and eDoc forms. The PDF
version is especially easy to search and allows searching across all
the Tutorial, Developer’s Guide and Language Reference. The PDF

Code Example
Introduction

Other Helpful Resources
version of the Language Reference also include hypertext links
that make it easy to view related information.

You can purchase printed copies of the Tutorial, Developer’s
Guide and Language Reference from us for an extra charge.

Our Support Web Page
Our support page is located http://www.realsoftware.com/
support.html. This page is the place to check for information on
REALbasic. You’ll find tips, information about user groups and
more.

Our FTP Site
Our ftp site is located at ftp://ftp.realsoftware.com. This site
contains everything on the REALbasic CD. It also includes dozens
of examples that may not be on the CD created by REAL
Software and other users. You will always find the latest released
version of REALbasic and the latest developer release as well.

End User Web Sites
There are dozens of web sites created by other users dedicated to
REALbasic. Check our support page at www.realsoftware.com/
support.html for links to these sites.

The REALbasic CD
The REALbasic CD contains the latest version of REALbasic, lots of
examples, and documentation. We update the CD from time to
time, adding updated documentation, examples and other useful
information. Most of the files on the CD are available at our web
site. However, if you don’t have an Internet connection or you
Introduction 17

18

Introduction
just don’t want to download hundreds of megabytes of files, you
can always purchase an updated CD for a nominal fee. You can
find the CD revision number of your CD in the Read Me file on
the CD. You can check the purchase page of our web site to see
if your CD is the latest version.

Our Internet Mailing Lists
We sponsor several Internet Mailing lists that give you the
opportunity to ask questions, and share information with other
REALbasic users via email. For more information on the available
Internet Mailing Lists, see our support page at
www.realsoftware.com/support.html.

The REALbasic Cafe
Matt Rosenberg, Alex Kushner, and Joel Watson (three very
dedicated REALbasic users) host a Hotline chat server called the
REALbasic Cafe on the Internet. With the Hotline Client software
and an Internet connection, you can chat with other REALbasic
users from all over the world. If you don't have the Hotline client
software, you can download it at http://www.hotlinesw.com. This
software requires Open Transport. The REALbasic Cafe is a great
place to chat with other users (and occasionally those of us at
REAL Software) and to find more REALbasic examples. You can
access the REALbasic Cafe 24 hours a day, 7 days a week with
the Hotline client software at cafe.realbasic.com.

Technical Support from REAL Software
As a registered user of REALbasic, you get one year of free
technical support via electronic mail. Each time you upgrade to
the latest release of REALbasic, your free technical support is
extended for another year. Send your questions to
support@realsoftware.com.
Introduction

Contacting REAL Software
We also have phone support programs available at an extra
charge. See the support page at our web site (http://
www.realsoftware.com/support.html) for more information or
call us at 512-292-9988.

Contacting REAL Software
If you need to contact REAL Software, we can be reached in the
following ways:

By Phone at 512-263-1233 from 9am to 6pm Central Time,
Monday through Friday.

By Fax at 512-263-1441, 24 hours a day, seven days a week.

By email at support@realsoftware.com.

By postal mail at:

3300 Bee Caves Road, Suite 650-220, Austin, Texas 78746 USA

Reporting Bugs and Making Feature Requests
If you think you have found a bug in REALbasic or have a feature
request, please let us know about it. The best way to report bugs
or make feature requests is using the REAL Bugs application
available on the REALbasic CD and at our web site. This
application was designed to gather all the necessary information
that helps us track down bugs and implement feature requests.
For each bug or feature request reported, you will receive a
confirmation message via email with a tracking number you can
use to check on the status of your bug report or feature request.
Once we close the issue, we will email you with the reason the
Introduction 19

20

Introduction
issue was closed (e.g., the bug has been fixed for the next
release, the feature will be implemented in the next release, it’s
not a bug after all, etc.).

If you can’t use our REAL Bugs application for some reason,
please email your bug reports and feature requests to
bugs@realsoftware.com.

If you don’t have an email account, you can send us your bug
reports and feature requests via regular mail to our mailing
address or fax them to us.

Accessing The Latest Developer Release
As a registered REALbasic user, you have the opportunity to take
part in the development of REALbasic. The REALbasic Developer
Release is the version of REALbasic currently in development.
Registered users can use this version for free while it’s in
development to access features as they are developed. This gives
you an opportunity to give us feedback on the next release and
make suggestions for features you would like to see. Keep in
mind that this is a developer release so it may not be as stable as
the current commercial release.

A new commercial release of REALbasic will be available
approximately every six months.

The latest developer release is available at our web and ftp sites.

Web Site: http://www.realsoftware.com/release. html
Ftp Site: ftp://ftp.realsoftware.com/developer_release
Introduction

CHAPTER 2 Getting Started with
REALbasic
Building an application with REALbasic can take just a few
minutes. First, you create your user interface which consists of
menus and windows filled with interface controls. Once you have
created the interface, you use REALbasic’s programming
language to make the interface do what you want it to do when
you want it to do it!

This chapter will give you an overview of the important concepts
you need to understand, the REALbasic development
environment and how to work with projects.

Contents
• Concepts
• The Development Environment
• Working with Projects
REALbasic Developer’s Guide 21

22

Getting Started with REALbasic
Concepts
There are a few important concepts you will need to understand
in order to develop applications with REALbasic. You should also
be very comfortable with the graphical user interface your
computer uses. If you are not, it would be a good idea to spend
some time getting familiar with it before you begin using
REALbasic. Otherwise, you may find many of the references in
this documentation confusing.

Applications are Driven by Events
Before computers used graphical user interfaces, applications ran
by simply executing a series of programming code statements
starting with the first statement and ending with the last.
Interfaces were all character-based. A menu was just a numbered
list of commands that the user selects from to instruct the
application to do a task. Most of the time, the application was
just sitting there waiting for the user to make up his mind. When
the user finally chose a command (perhaps by selecting the
number next to the menu item and pressing the Enter key) the
application would take whatever action was associated with the
chosen command. When the user pressed the Enter key, an event
occurred. In other words, something happened to which the
application can respond.

Now that desktop computers use a graphical user interface, users
have a far more intuitive way to interact with applications.
However, one thing hasn’t changed: applications are still driven
by events. The difference is that back in the old days there were
very few events the application had to worry about responding
to. The old-fashioned application was always in a modal state: It
only had to respond to the limited number of choices it presented
to the user. With a graphical user interface, many more choices
and ways of interacting with the computer are available. The user
Getting Started with REALbasic

Concepts
might choose a menu item, click on a button, or type in a field.
Also, the applications themselves may cause events to occur that
were not directly caused by the user. For example, when a
window opens, an event occurs (the window opened). When a
window is moved or resized, an event occurs.

Fortunately, REALbasic makes it easy to deal with all of these
different events. You can easily find out which events each part
of your application’s interface can respond to. Making your
application respond to an event is as easy as locating the object
that will receive the event, selecting the event and entering the
instructions (using REALbasic’s programming language) you want
the object to follow when the event occurs. Later on, you will
learn about events in more detail. For now, it’s just important to
understand the concept of event-driven programming.

Developing Software with REALbasic
If you have written computer programs using traditional
programming languages, you already know that the process of
development is three steps: write some code, compile the code
(turning the code into something the computer can really
understand), and test your application. When you find a problem
in your application, you start the process over again. Developing
software applications with REALbasic isn’t much different than
that. The big difference is how often you go through this process.
Compilers for traditional languages can take several minutes or
more to compile an application before you can begin testing.
Consequently, you spend a lot of time writing code before
compiling to avoid waiting for the compiler. REALbasic’s compiler
is so fast that you will find you can make a small change to your
code and immediately run it to make sure the change you made
works as expected.
Getting Started with REALbasic 23

24

Getting Started with REALbasic
Like traditional programming language compilers, REALbasic’s
compiler will stop if it finds a syntactical error in your code and
inform you what the error is so you can fix it. But unlike
traditional compilers that require you to track down the line of
code where the error occurred, REALbasic’s compiler takes you
right to the point in your source code where the error occurred. It
then displays the error message just below the line of code that
caused the error. It puts you right where you need to be to fix the
problem.

If you have used traditional programming languages, you will
find developing applications with REALbasic to be easier, faster
and more fun.

The Development Environment
REALbasic is an Integrated Development Environment (IDE) which
means that it contains everything you need to build an
application. An interface builder, code editor, compiler and
debugger are all integrated into one package. In traditional
programming languages, these items would each be a separate
application. REALbasic’s IDE is made up of the following items:

The Menus
The menu bar provides menus for:

• Managing your projects
• Turning your projects into stand-alone, double-clickable

applications
• Creating new windows
Getting Started with REALbasic

The Development Environment
• Setting fonts, styles, and sizes of the objects that make
up your interface

• Arranging the objects in your interface
• Testing and debugging your projects
• Getting more information about REALbasic from the on-

line references

The Project Window
A project is the collection of items that make up a particular
application you are developing. An example Project window is
shown in Figure 4.

FIGURE 4. The Project Window

The Project window displays a list of these elements to give you
easy access to them. For example, each of the windows that
make up your application will be listed in the Project window.
Some of the other items that might be listed in the Project
window are pictures, sounds, REAL databases, QuickTime
movies, as well as several others. You will learn more about
projects in the next chapter.
Getting Started with REALbasic 25

26

Getting Started with REALbasic
The Window Editor
This window is used to design the user interface for a window in
your project. A window created in a Window Editor is shown in
Figure 5.

FIGURE 5. An example window displayed in its Window Editor

Double-clicking on one of the windows listed in the Project
window displays a Window Editor. You can use the Window
Editor to add all kinds of interface controls (like those in the
example in Figure 5) to a window, arrange, edit, and delete
them. The Window Editor is also used to access the programming
code associated with the controls in your windows.
Getting Started with REALbasic

The Development Environment
The Tools Window
This window is used to add controls to the windows you design
with the Window Designer. To add a control to a window, you
simply double-click on the window’s name in the Project window
to open it and drag the icon that represents the control you want
to add from the Tools window to the window you are designing.

The Properties Window
Properties are values that are part of a particular control, such as
a button or a menu item. For example, pushbuttons have a
caption property that holds the button’s caption. Buttons also
have Left, Top, Width and Height properties which store the
button’s position and size. The Properties window displays all of
the properties that can be modified in the Design environment
for the currently selected item. This is an important point because
some objects have properties that can be modified only by your
programming code. An object may also have properties that
cannot be modified or can be modified only from the Design
environment.

The Colors Window
Colors are actually stored as three numbers each between 0 and
255. The Colors window makes it easy to keep track of colors
you are using in your project by storing up to 16 colors. Clicking
on a square in the Colors window presents the Macintosh Color
Picker. After you choose a color and close the Color Picker dialog
box, a small “swatch” of that color will be displayed in the
square you clicked on in the Colors window. You can then
change various color properties of controls by dragging a color
swatch and dropping it on a color property in the Properties
window.
Getting Started with REALbasic 27

28

Getting Started with REALbasic
The Code Editor Window
This window is used to edit the programming code you have
added to objects in your project, such as buttons and windows.
The Code Editor window has a browser that makes it easy to
locate the object and view all of the events the object can
receive. The Code Editor is shown in Figure 6.

FIGURE 6. The Code Editor

The Menu Editor
This window is used to set up the menus and menu items that
will be displayed when your application executes. The Menu
Editor is shown in Figure 7 on page 29.
Getting Started with REALbasic

Working with Projects
FIGURE 7. The Menu Editor

You can assign keyboard shortcuts to menu items and even
create sub-menus (a menu item that is actually just another
menu). REALbasic adds the Apple, File, and Edit menus for you by
default.

Working with Projects

All of the windows, menus, pictures, sounds, QuickTime movies,
plug-ins, and programming code that make up a single
application are stored in a Project document. Projects simply give
you a convenient way to organize the objects that make up your
application.

Projects can contain any of the following items:

• Windows
• A Menu bar
• Classes
• Modules
Getting Started with REALbasic 29

30

Getting Started with REALbasic
• Pictures
• Sounds
• QuickTime™ movies
• Databases
• AppleEvent Templates
• PPC Shared Libraries
• XCMDs and XFCNs

If some of these items are not familiar to you, don’t worry. You
will learn more about them in later chapters.

Double-clicking on an item in the Project window will either
display the item in its editor or a viewer for the item, if REALbasic
has no editor for that type of item.

Creating A New Project
When you open REALbasic by double-clicking on the REALbasic
application icon, a new project is created for you automatically. If
you have a project open and wish to begin a new one, simply
choose New from the File menu. If you have made modifications
to your project, you will be given the opportunity to save the
project before creating a new one.

Adding and Removing Items to Your Project
The method you use to add items to a project depends on the
type of item you wish to add. For example, new windows are
added by choosing New Window from the File menu. If you have
a picture, sound, movie, or REAL database you wish to use in
your project, you can add it by dragging the file from the desktop
and dropping it into the Project window. You will learn in later
Getting Started with REALbasic

Working with Projects
chapters how to add each type of item that can appear in the
Project window.

You can remove items from a Project by clicking once on the item
in the Project window to select it, then pressing the Delete key.

Saving Your Project
When you want to save the changes you have made to your
project, choose Save from the File menu. If you are making lots of
changes, save your project often just as you would if you were
editing a document in a word processor. If you aren’t sure
whether you want to keep the changes you have made, you can
choose not to save your project or choose Save As from the File
menu and save the project under another name. This will keep
your original project intact.

Creating Project Templates
If you have several items you commonly use in every project, you
can save them in a project file and make the project file a
stationery pad. When opened, a stationery pad creates a new,
untitled document that is an exact copy of the stationery
document. The stationery pad remains unchanged. This lets you
create project templates without worrying about modifying the
template itself.

To create a stationery pad, do this:

1. At the desktop, locate a project file you wish to change into a statio-
nery document.

2. Click on the project file once to select it.

3. Choose File . Get Info.

4. Place a checkmark in the stationery Pad checkbox.
Getting Started with REALbasic 31

32

Getting Started with REALbasic
When you open the stationery pad document, REALbasic creates
a copy of it and names it Untitled so that you don’t accidentally
modify your template. If you want to modify the stationery pad
itself, open the Get Info dialog box for that document and
remove the checkmark in the stationery Pad checkbox.
Getting Started with REALbasic

CHAPTER 3 Building a User
Interface
Your application’s user interface is probably the most important
part any application. The old saying “You don’t get a second
chance to make a first impression” couldn’t be more true when it
comes to your application’s user interface. If the interface is
unintuitive and sloppy, the user will react the same way they
might react to someone who has poor communication skills and
cares little for his appearance. Using your application will be
frustrating at best and, at worst, the user will give up and look
for another solution to his problem. This leaves you with
whatever goals you had for your application unfulfilled.

Fortunately, REALbasic makes building your application’s user
interface so fast and easy that you can spend the time you need
to get the interface just right. REALbasic’s built-in Interface
Assistant™ actually helps you build a proper, clean interface.

In this chapter you will learn just about everything you need to
know about creating all of the elements that make up your
application’s user interface. You will learn some guidelines to
REALbasic Developer’s Guide 33

34

Building a User Interface
follow when creating your interface and how to build windows
and menus.

Contents
• Working with Windows
• Interacting with the User Through Controls
• Adding Menus
• User Interface Guidelines

Working with Windows
Typically, most of an application’s user interface will be in the
application’s windows. This, of course, is highly application-
specific. Some applications have no windows at all, relying
completely on menus to provide the user interface. REALbasic
makes it easy to create new windows of just about any type. You
create your user interface by creating its windows and then
adding interface controls such as pushbuttons and checkboxes.
You can also drag picture directly into windows; the pictures will
be used as the “backdrop” picture for the window.

This section reviews the seven types of windows supported by
REALbasic.

Window Types
REALbasic supports seven different types of windows. The type
you choose for a particular window depends mostly on how the
window will be used.
Building a User Interface

Working with Windows
Document

The Document window is the most common type of window.
They are most often used when the window should stay open
until the user dismisses it by clicking its close box (if it has one) or
clicking a button programmed to close the window. The user can
click on other windows to bring them to the foreground, moving
the document window behind the others. Figure 8 on page 35
shows an example of a small, blank document window.

FIGURE 8. A Document window

Document windows can have a close box, a zoom box, and a
grow handle (making them user-resizable).

Movable Modal

This type of window stays in front of the application’s other open
windows until it is closed. Use a Movable Modal window when
you need to briefly communicate with the user without the user
having access to the rest of the application. Because the window
is movable, the user will be able to drag the window to another
location in case they need to see information in other windows in
order to finish what they are doing in the Movable Modal
Building a User Interface 35

36

Building a User Interface
window. Figure 9 on page 36 shows an example of a blank
Movable Modal window.

FIGURE 9. A Movable Modal window

Movable Modal windows cannot have a close box, so you need
to include a button that the user can click to dismiss the window
unless the window will dismiss itself after the application finishes
a particular task. Also, they are not resizable by the user and
cannot have zoom box. This means you will have to consider the
amount of available screen space the user will have in
determining the size you will make a Movable Modal window.

Note: There is one exception to the rule regarding Movable Modal windows
being in front of all other windows. If a Movable Modal window or one of its
controls executes code that opens a Floating window, the Floating window
will be in front of the Movable Modal window. However, it is poor interface
design for a Movable Modal window to open another window because Mov-
able Modal windows are mostly used in situations where the interaction with
the user will be brief.

Modal Dialog

These windows are very similar to Movable Modal windows. The
only difference is that Modal Dialog windows have no titlebar, so
Building a User Interface

Working with Windows
they cannot be moved. The Page Setup dialog box is an example
of a Modal Dialog window.

FIGURE 10. A Modal Dialog window

Note: Because Modal Dialog windows and Movable Modal windows are both
modal, the same exception applies regarding floating windows opening in
front of Modal windows. See the note for Movable Modal windows on
page 36.

Floating

Like Movable Modal and Modal Dialog windows, a Floating
window (also known as a Windoid) stays in front of all other
windows. The difference is that the user can still click on other
windows to access them. If you have more than one Floating
window open, clicking on another Floating window will bring
that window to the front, but all open Floating windows will be
in front of all non-floating windows. Because they are always in
front of other types of windows, their size should be kept to a
minimum or they will quickly get in the user’s way. This type of
window is most commonly used to provide tools the user will
frequently access.
Building a User Interface 37

38

Building a User Interface
A Global Floating Window is a Floating window that can float in
front of a particular application’s window or all applications’
windows.

FIGURE 11. A Floating window

Like Document windows, Floating windows can have a close box
and can be user-resizable. However, they cannot have a zoom
box.

Plain Box

These windows function as Modal Dialog windows. The only real
difference is their appearance, as you can see in Figure 12 on
page 39. Plain Box windows are commonly used for About Box
windows and for applications that need to hide the desktop.
Building a User Interface

Working with Windows
FIGURE 12. A Plain Box

Shadowed Box

Like Plain Box windows, Shadowed Box windows function as
Modal Dialog windows. The only difference is their appearance,
as you can see in Figure 13 on page 39. Shadowed Box windows
are commonly used for About Box windows.

FIGURE 13. A Shadowed Box
Building a User Interface 39

40

Building a User Interface
Rounded

Rounded windows act like Document windows. The only
differences are appearance (as you can see in Figure 14 on
page 40) and the fact that Rounded windows cannot have a
zoom box or be resizable. They are not commonly used anymore
and there is really no reason to use them instead of Document
windows.

FIGURE 14. A Rounded window

Creating Windows
When you create a new project, REALbasic adds a window
named “Window1” to your project automatically. To add
additional windows, choose File . New Window. The windows
you create act as templates. When your application opens one of
these windows, it’s really opening a copy of the window. This
means that your application can open several copies of the same
window at the same time. It’s important to understand this when
creating your user interface because there is no need to go to the
extra trouble of duplicating a window in the Design environment
if your application needs to open two of them at the same time.
Building a User Interface

Interacting with the User Through Controls
Removing Windows
To remove a window from your project, simply click on it once in
the Project window to select it and press the Delete key. You can
undo many actions in REALbasic. For example, if you delete a
window by mistake, choose Edit . Undo (q-Z).

Interacting with the User
Through Controls
Users provide information to your application through user
interface controls. REALbasic provides a tremendous amount of
flexibility in this area. Not only are there many built-in controls,
but you can even create your own controls (you will learn more
about this later). REALbasic’s built-in controls are added to
windows using the Tools Window, shown in Figure 15.
Building a User Interface 41

42

Building a User Interface
FIGURE 15. The Tools Window.

Adding, Changing, and Removing Controls
REALbasic makes adding, changing, and removing controls easy.

Adding Controls

To add a control to a window in your project, do this:

1. Bring the window to the front. If it’s not open, double-click on it in
the Project window to open it.

2. Drag the desired control from the Tools window and drop it on the
window.

StaticText Rectangle

Oval

PushButton

RadioButton

EditFieldScrollBar

Timer

Serial

MoviePlayer

Line

Round
Rectangle

PopupArrow

BevelButton

Popup

Database Query

ListBox

Slider

Socket

NotePlayer

SpriteSurface

Contextual
Menu

Separator

Placard

GroupBox

CheckBox

LittleArrows

Menu

Chasing Arrows
Progress
Bar

TabPanel

Canvas ImageWell

Disclosure
Triangle
Building a User Interface

Interacting with the User Through Controls
Selecting Controls

Controls can be selected in one of two ways: using the mouse
button or the Tab key. If you click on a control, it will be selected.
When a control is selected, REALbasic draws a border around the
control using the highlight color selected in the Appearance
Control panel on your Macintosh.

You can also move through the controls in a window by pressing
the Tab key. Each time you press the Tab key, REALbasic will move
from one control to another. This is also the order the user will
move through the controls when using the Tab key. For more
information, see “Changing The Tab (Control) Order” on
page 107. Holding down the Shift key while pressing the Tab key
selects controls in reverse Tab order. If only one control is
selected, REALbasic draws resize squares at each corner of the
control. You can select several controls by holding down the Shift
key as you click on the controls.

Changing a Control’s Position

A control’s position can be changed by dragging the control
using the mouse, by using the arrow keys (to move it one pixel at
a time in the horizontal or vertical directions) and by changing
the Position properties in the Properties window.

Changing a Control’s Properties with the Properties
window

Some changes to a control must be made with the Properties
window. For example, controls can be rearranged by simply
dragging them from one place to another inside the window.
However, most of the changes you make to controls will be made
using the Properties window.

The Properties window displays the properties of the currently
selected control that can be changed from the Design
Building a User Interface 43

44

Building a User Interface
environment. If more than one control is selected, the Properties
window displays only those properties common to all of the
selected controls.

Some properties are entered by typing, while others with on/off-
type values are represented by a checkbox. If the property is set
by typing, you can use either the Enter or the Return key to
commit the new value. Some properties that require you to
choose a value from a fixed list are displayed as pop-up menus.
Color properties display the selected color. These colors can be
changed by clicking on the color and using the Color Picker to
choose a color or by dragging a color from the Colors window
and dropping on a color property.

Removing Controls

To remove a control from a window, do this:

1. Bring the window that contains the control to the front. If it’s not
open, double-click on it in the Project window to open it.

2. Click on the control to select it.

3. Choose Edit . Cut (q-X), or press the Delete key.

Understanding Control Layers
Each control in a window has its own layer. This layer is like a
clear sheet of plastic and determines whether one control is in
front of the other. The Format menu provides commands for
moving a control forward one layer, to the front, backwards one
layer, and to the very back of the layers. These layers will usually
only be important when controls overlap. For example, when you
place controls on top of a GroupBox control or a TabPanel
control, the GroupBox or TabPanel must be in back of the other
controls. Otherwise, the GroupBox or TabPanel will be in front of
one or more of the controls, obscuring them from view. Control
layers also determine the order that your application selects the
Building a User Interface

Interacting with the User Through Controls
controls as the user presses the Tab key. However, you don’t have
to rearrange the layers of controls in order to determine their tab
order. Instead, you can use the Control Order dialog to determine
the tab order. See “Changing The Tab (Control) Order” on
page 107 for more details.

Understanding The Focus
The focus is a visual cue that tells the user which control receives
keystrokes. Only EditFields and ListBoxes can receive the focus.
EditFields display the focus by showing a blinking cursor. When a
ListBox has focus, REALbasic draws a border around the ListBox.
If the user is running System 7, this border is a black rectangle. If
the user is running Mac OS 8, the border is drawn in the Accent
Color chosen in the user’s Appearance control panel. When a
ListBox has the focus, it automatically responds to the arrow keys.
It also receives any other keys the user types. This allows you to
provide type selection functionality where typing automatically
selects the item that matches the characters being typed. An
example of type selection is provided with REALbasic.

FIGURE 16. A ListBox with the focus (System 7 and Mac OS 8)

Note: A ListBox will not receive the focus if it is the only item in the window
that can receive the focus.
Building a User Interface 45

46

Building a User Interface
Duplicating Controls
You can duplicate the selected control or controls by choosing
Edit . Duplicate (q-D) or by holding the Option key and dragging
the selected control.

The Appearance of Controls
The part of the Mac OS that handles how menus, windows and
controls will appear is called the Appearance Manager. If you are
running Mac OS 8 (or greater), you have probably used the
Appearance Control panel to select a highlight color and perhaps
an accent color. A future release of the Mac OS will add a new
feature called “Themes” to the Appearance Manager. Themes
will provide several “looks” that allow the user to subtly or
radically change the appearance of menus, windows and
controls. This in no way changes the functionality of the
interface. This is simply a way to take the idea of allowing the
user to customize their computing environment one step further.

REALbasic supports the Appearance Manager. This means that
REALbasic itself will appear differently based on your Appearance
Control Panel settings. It also means that when Themes become
available in a future release of the Mac OS, REALbasic’s interface
will change based on the Theme the user chooses. The
applications you create with REALbasic also support the
Appearance Manager automatically.

If you would like to have Themes now, there is a shareware
system extension that provides the equivalent of Themes. It’s
called Kaleidoscope and it runs under System 7 and Mac OS 8.
You can download it from www.download.com. If you are
planning on distributing the application to a large number of
people, it would probably be worth your time to install
Kaleidoscope and check out how your interface works with
Building a User Interface

Interacting with the User Through Controls
Themes. This will allow you to preview alternative themes and
make any necessary changes so that your interface will look just
right when new themes become available. Figure 17 on page 47
shows a standard pushbutton as it appears with different
Kaleidoscope themes.

FIGURE 17. A standard PushButton displayed in 3 different
Kaleidoscope Themes

Apple Computer updated the look for many interface elements in
Mac OS 8. You (or your users) may have even installed a system
extension called Aaron that changes the appearance of the
interface in System 7 to make it look like Mac OS 8. Part of this
change gives controls a more “3D” look. REALbasic, by default,
draws controls with this 3D look regardless of whether the user is
running System 7, System 7 with the Aaron extension, or
Mac OS 8.

Button Controls for Performing Actions
There are four controls that are commonly used to perform
actions when clicked: the CheckBox, the PushButton, the
BevelButton, and the RadioButton.

PushButton

When clicked, a PushButton appears to depress giving the user
feedback that they have clicked it. Pushbuttons are typically used
to take an immediate and obvious action when pressed, like
printing a report or closing a window.
Building a User Interface 47

48

Building a User Interface
FIGURE 18. A PushButton pressed and unpressed

TABLE 1. PushButton properties

Name Description

Super The class of object the PushButton is based on.

Name The internal name of the PushButton used to identify it in
programming code.

Index The PushButton’s position in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the PushButton.

Top The distance (in pixels) between the top edge of the window
and the top edge of the PushButton.

Width The width (in pixels) of the PushButton.

Height The height (in pixels) of the PushButton.

LockLeft Keeps the distance between the left side of the window and
the left side of the PushButton from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the PushButton from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the PushButton from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the PushButton from changing when the
window is resized.

Visible The PushButton will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the PushButton.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.
Building a User Interface

Interacting with the User Through Controls
BevelButton

The BevelButton control provides all the functionality of the
PushButton and adds several powerful additional features. You
can, for example:

• Add a graphic to the control,
• Control the alignment of the button’s text and/or the

positioning of the text with respect to the graphic,
• Add a popup menu to the control,
• Control the feedback the user receives when the Bevel-

Button is clicked.

Here are several examples of BevelButton options:

Caption The text that appears on the PushButton.

Default Adds the standard default ring to the PushButton and
associates the Return and Enter keys with the it.

Cancel Associates the Escape key and Command-Period key
combination with the PushButton.

Enabled The PushButton will be initially enabled.

TextFont The font used to display the PushButton’s caption.

TextSize The font size used to display the PushButton’s caption.

Bold Adds the bold style to the PushButton’s caption.

Italic Adds the italic style to the PushButton’s caption.

Underline Adds the underline style to the PushButton’s caption.

TABLE 1. PushButton properties (Continued)

Name Description
Building a User Interface 49

50

Building a User Interface
FIGURE 19. Text, Icon, and ‘combo’ BevelButtons

FIGURE 20. Bevel Sizes

TABLE 2. Bevelbutton Properties

Name Description

Bevel 0—Small bevel
1—Normal bevel
2—Large bevel

Bold Applies the bold style to the button caption.
Building a User Interface

Interacting with the User Through Controls
ButtonType 0—Button. Remains in ‘down’ position until
mouse is released.
1—Toggles. Remains in ‘down’ position until
clicked again.
2—Sticky. Remains in ‘down’ position when
clicked.

Cancel If True, the Escape key and Command-Period
key sequence are mapped to the button.

Caption The button’s text.

CaptionAlign 0—Flush left
1—Flush right
2—Sys direction
3—Center

CaptionDelta Distance in pixels of the caption from the left of
the button.

CaptionPlacement 0—Sys Direction
1—Normally
2—Right of graphic
3—Left of graphic
4—Below graphic
5—Above graphic

Default If True, the default indicator is added on the
button and the Return and Enter keys are
mapped to the button.

Icon Name of graphic to use as icon. Drag the
graphic to the Project window or import it
using File . Import.

TABLE 2. Bevelbutton Properties

Name Description
Building a User Interface 51

52

Building a User Interface
IconAlign 0—Sys Direction
1—Center
2—Left
3—Right
4—Top
5—Bottom
6—Top left
7—Bottom left
8—Top right
9—Bottom right

IconDx Distance in pixels from ‘flush’ left or right,
depending on alignment. If center is chosen,
IconDx does nothing.

IconDy Distance in pixels from ‘flush’ top or bottom,
depending on alignment. If center is chosen,
IconDy does nothing.

Italic Applies the italic style to the button caption.

LockBottom Determines whether the bottom edge of the
control should stay at a set distance from the
bottom edge of the owning window.

LockLeft Determines whether the left edge of the
control should stay at a set distance from the
left edge of the owning window. LockLeft has
no effect unless LockRight is True.

LockRight Determines whether the right edge of the
control should stay at a set distance from the
right edge of the owning window.

LockTop Determines whether the top edge of the
control should stay at a set distance from the
top edge of the owning window. LockTop has
no effect unless LockBottom is True.

HasMenu 0—No menu
1—Normal menu
2—Menu on right

TABLE 2. Bevelbutton Properties

Name Description
Building a User Interface

Interacting with the User Through Controls
CheckBox

Checkboxes are used to let the user state a preference that has
only two possible choices, where one of the choices can be
selected by default. Checkboxes should not cause an immediate
and obvious action to occur except perhaps to enable or disable
other controls.

FIGURE 21. A CheckBox checked and unchecked

MenuValue The number of the menu item the user selects.
A separator cannot be selected, but “counts” as
a menu value.

TextFont Name of the font used to display the button
caption.

TextSize Size of the font used to display the button
caption.

Underline Applies the underline style to the button
caption.

Value If True, the button initially appears as if it is
pressed.

TABLE 2. Bevelbutton Properties

Name Description
Building a User Interface 53

54

Building a User Interface
If space permits, consider using two RadioButton controls instead
of a single CheckBox control as it will make the user’s choice
more obvious especially to the new computer user.

TABLE 3. CheckBox properties

Name Description

Super The class of object the CheckBox is based on.

Name The internal name of the CheckBox used to identify it in
programming code.

Index The position of the CheckBox in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the CheckBox.

Top The distance (in pixels) between the top edge of the window
and the top edge of the CheckBox.

Width The width (in pixels) of the CheckBox.

Height The height (in pixels) of the CheckBox.

LockLeft Keeps the distance between the left side of the window and
the left side of the CheckBox from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the CheckBox from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the CheckBox from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the CheckBox from changing when the
window is resized.

Visible The CheckBox will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the CheckBox.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Caption The text that appears on the PushButton.

Enabled The CheckBox will be initially enabled.
Building a User Interface

Interacting with the User Through Controls
RadioButton

RadioButtons are used to present the user with two or more
choices, where one of the choices can be selected by default.
Selecting one RadioButton causes the RadioButton that is
currently selected to become unselected. They are called
RadioButtons because they act just like the row of buttons for
changing radio stations on car radios. Pushing one button
deselects the current radio station and selects another station.
RadioButtons should always be displayed in groups of at least
two.

FIGURE 22. A group of RadioButtons with one selected

If you are creating a window that will have two or more
independent sets of RadioButtons, you will need to use a

TextFont The font used to display the CheckBox caption.

TextSize The font size used to display the CheckBox caption.

Bold Adds the bold style to the CheckBox caption.

Italic Adds the italic style to the CheckBox caption.

Underline Adds the underline style to the CheckBox caption.

Value The default value of the CheckBox.

TABLE 3. CheckBox properties (Continued)

Name Description
Building a User Interface 55

56

Building a User Interface
GroupBox control to make your RadioButton groups respond
independently. See “GroupBox” on page 76.

TABLE 4. RadioButton properties

Name Description

Super The class of object the RadioButton is based on.

Name The internal name of the RadioButton used to identify it in
programming code.

Index The position of the RadioButton in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the RadioButton.

Top The distance (in pixels) between the top edge of the window
and the top edge of the RadioButton.

Width The width (in pixels) of the RadioButton.

Height The height (in pixels) of the RadioButton.

LockLeft Keeps the distance between the left side of the window and
the left side of the RadioButton from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the RadioButton from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the RadioButton from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the RadioButton from changing when the
window is resized.

Visible The RadioButton will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the RadioButton.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Caption The text that appears on the RadioButton.

Enabled The RadioButton will be initially enabled.

TextFont The font used to display the RadioButton caption.
Building a User Interface

Interacting with the User Through Controls
Controls for Displaying and Entering Text
REALbasic provides controls that let you display text the user
can’t select, display text the user can select but not edit, and
display text the user can both select and edit.

StaticText

Used to display text that the user cannot select. StaticText
controls are most commonly used to label other controls (like
PopupMenus) or provide titles for groups of controls.

FIGURE 23. A StaticText control used to label a PopupMenu control

TextSize The font size used to display the RadioButton caption.

Bold Adds the bold style to the RadioButton caption.

Italic Adds the italic style to the RadioButton caption.

Underline Adds the underline style to the RadioButton caption.

Value The default value of the RadioButton.

TABLE 5. StaticText properties

Name Description

Super The class of object the StaticText is based on.

Name The internal name of the StaticText used to identify it in
programming code.

Index The position of the StaticText in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the StaticText.

TABLE 4. RadioButton properties (Continued)

Name Description

Static text
Building a User Interface 57

58

Building a User Interface
Top The distance (in pixels) between the top edge of the window
and the top edge of the StaticText.

Width The width (in pixels) of the StaticText.

Height The height (in pixels) of the StaticText.

LockLeft Keeps the distance between the left side of the window and
the left side of the StaticText from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the StaticText from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the StaticText from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the StaticText from changing when the
window is resized.

Visible The StaticText will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the StaticText.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Text The text that appears in the window.

TextAlign The alignment of the text within its area (left, middle, right).

TextFont The font used to display the StaticText caption.

TextColor The color of the text.

Multiline Causes the text to start at the top of its area rather than
being centered vertically within it.

TextSize The font size used to display the StaticText caption.

Bold Adds the bold style to the StaticText caption.

Italic Adds the italic style to the StaticText caption.

Underline Adds the underline style to the StaticText caption.

TABLE 5. StaticText properties (Continued)

Name Description
Building a User Interface

Interacting with the User Through Controls
EditField

EditFields can be used to allow the user to enter text or to display
text that can copied to the Clipboard but not changed in the
EditField. They can also be configured to allow multiple lines of
text, display a scrollbar if necessary, and display text in multiple
fonts, styles, and sizes.

FIGURE 24. A Empty EditField

FIGURE 25. An EditField configured for multiple lines of text

FIGURE 26. An Editfield with multiple fonts, styles and sizes

TABLE 6. EditField properties

Name Description

Super The class of object the EditField is based on.

Name The internal name of the EditField used to identify it in
programming code.
Building a User Interface 59

60

Building a User Interface
Index The position of the EditField in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the EditField.

Top The distance (in pixels) between the top edge of the window
and the top edge of the EditField.

Width The width (in pixels) of the EditField.

Height The height (in pixels) of the EditField.

LockLeft Keeps the distance between the left side of the window and
the left side of the EditField from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the EditField from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the EditField from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the EditField from changing when the
window is resized.

Visible The EditField will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the EditField.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Border Draws a border around the EditField.

Multiline Causes the text to start at the top of its area rather than
being centered vertically within it.

ScrollBar Displays a scrollbar if Multiline property is checked.

ReadOnly Allows copying of text to the clipboard but no editing.

Styled Allows EditField to contain styled (multiple fonts, styles and
sizes) text.

Password Every character entered is replaced with a bullet character.
The actual characters typed are stored in the Text property.

TABLE 6. EditField properties (Continued)

Name Description
Building a User Interface

Interacting with the User Through Controls
Controls for Displaying and Entering Numeric
Values
REALbasic provides controls that can be used to let the user
choose a numeric value from a range or to display a numeric
value from a range. In some cases, these controls can also be
used to control the display of another control. For example, a
ScrollBar control might be used to determine which portion of a
picture in a Canvas control is displayed (in other words, act as the
Canvas control’s scrollbar).

ScrollBar

ScrollBars can be presented vertically or horizontally. By default,
they are horizontal. To make a vertical ScrollBar, simply resize the
Scrollbar object so that the height is greater than the width.
Although you can resize a ScrollBar in the direction that the
thumb travels, ScrollBars should always be 16 pixels thick.

LimitText The maximum number of characters allowed (0=no limit).

LiveUpdate If LiveUpdate is true, then the EditField will dynamically
update the bound data value. Relevant when the EditField is
bound to another control.

Enabled The EditField will be enabled when the window opens.

TextFont The font used to display the EditField caption.

TextSize The font size used to display the EditField caption.

Bold Adds the bold style to the EditField caption.

Italic Adds the italic style to the EditField caption.

Underline Adds the underline style to the EditField caption.

Text The default value of the EditField.

UseFocusRing If True, the object indicates that it has the focus with a ring
around its border; if False, the appearance of the object
does not change when it has the focus.

TABLE 6. EditField properties (Continued)

Name Description
Building a User Interface 61

62

Building a User Interface
FIGURE 27. Horizontal and vertical ScrollBars

TABLE 7. ScrollBar Properties

Name Description

Super The class of object the ScrollBar is based on.

Name The internal name of the ScrollBar used to identify it in
programming code.

Index The position of the ScrollBar in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the ScrollBar.

Top The distance (in pixels) between the top edge of the window
and the top edge of the ScrollBar.

Width The width (in pixels) of the ScrollBar.

Height The height (in pixels) of the ScrollBar.

LockLeft Keeps the distance between the left side of the window and
the left side of the ScrollBar from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the ScrollBar from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the ScrollBar from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the ScrollBar from changing when the
window is resized.
Building a User Interface

Interacting with the User Through Controls
Slider

This control was added to the Macintosh user interface in Mac
OS 8. It has the same functionality as a ScrollBar control.
However, ScrollBar controls have come to be associated with
scrolling text or a picture and less with assigning numeric values.
The Slider control provides an interface that is clearly for
increasing or decreasing a numeric value. Like the ScrollBar, the
Slider control can appear horizontally (which is the default) or
vertically. You can create a vertical Slider by changing its height so

Visible The ScrollBar will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the ScrollBar.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Enabled The ScrollBar will be initially enabled.

Minimum The value of the Value property when the scroll indicator is
all the way left (for horizontal scrollbars) or at the very top
(for vertical scrollbars).

Value The current position of the scroll indicator.

Maximum The value the Value Property will be set to when the scroll
indicator is all the way to the right (for horizontal scrollbars)
or at the bottom (for vertical scrollbars).

LineStep The amount by which the Value property will change when
the user clicks on one of the ScrollBar’s arrows.

PageStep The amount by which the Value property will change when
the user clicks inside the ScrollBar on either side of the scroll
indicator.

LiveScroll If true, a ValueChanged event occurs as the user drags the
thumbnail in the scrollbar. Otherwise, a single
ValueChanged event occurs when the user stops dragging
the thumbnail.

TABLE 7. ScrollBar Properties (Continued)

Name Description
Building a User Interface 63

64

Building a User Interface
that it’s greater than its width. Unlike the ScrollBar control, the
Slider control automatically maintains the correct proportions
regardless of the dimensions you give it. Because the Slider was
added in Mac OS 8, it appears as a ScrollBar for System 7 users.

FIGURE 28. A horizontal and vertical Slider controls

TABLE 8. Slider properties

Name Description

Super The class of object the Slider is based on.

Name The internal name of the Slider used to identify it in
programming code.

Index The position of the Slider in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the Slider.

Top The distance (in pixels) between the top edge of the window
and the top edge of the Slider.

Width The width (in pixels) of the Slider.

Height The height (in pixels) of the Slider.

LockLeft Keeps the distance between the left side of the window and
the left side of the Slider from changing when the window is
resized.

LockTop Keeps the distance between the top of the window and the
top of the Slider from changing when the window is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the Slider from changing when the
window is resized.
Building a User Interface

Interacting with the User Through Controls
ProgressBar

ProgressBars are designed for showing that some function of
your application is making progress (hence the name) towards its
goal or to show capacity. Unlike ScrollBars and Sliders,
ProgressBars are designed to display a value. They cannot be used

LockBottom Keeps the distance between the bottom of the window and
the bottom of the Slider from changing when the window is
resized.

Visible The Slider will initially be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the Slider.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Enabled The Slider will be initially enabled.

Minimum The value of the Value property when the indicator is all the
way left (for horizontal Sliders) or at the very top (for
vertical Sliders).

Value The current position of the indicator.

Maximum The value the Value Property will be set to when the
indicator is all the way to the right (for horizontal Sliders) or
at the bottom (for vertical Sliders).

LineStep This property is only used when the user is running System 7
as the Slider appears as a Scrollbar. The amount by which the
Value property will change when the user clicks on one of
the ScrollBar’s arrows.

PageStep This property is only used when the user is running System 7
as the Slider appears as a Scrollbar. The amount by which the
Value property will change when the user clicks inside the
ScrollBar on either side of the scroll indicator.

LiveScroll If true, a ValueChanged event occurs as the user drags the
thumbnail in the scrollbar. Otherwise, a single
ValueChanged event occurs when the user stops dragging
the thumbnail.

TABLE 8. Slider properties (Continued)

Name Description
Building a User Interface 65

66

Building a User Interface
for data entry. Also, they appear only in a horizontal orientation.
When using a ProgressBar to show duration, the ProgressBar can
be configured to show progress where the length is determinate
or indeterminate. Indeterminate ProgressBars are sometimes
referred to as “Barber Poles.”

FIGURE 29. Determinate and indeterminate ProgressBars

TABLE 9. ProgressBar properties

Name Description

Super The class of object the ProgressBar is based on.

Name The internal name of the ProgressBar used to identify it in
programming code.

Index The position of the ProgressBar in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the ProgressBar.

Top The distance (in pixels) between the top edge of the window
and the top edge of the ProgressBar.

Width The width (in pixels) of the ProgressBar.

Height The height (in pixels) of the ProgressBar.

LockLeft Keeps the distance between the left side of the window and
the left side of the ProgressBar from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the ProgressBar from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the ProgressBar from changing when
the window is resized.
Building a User Interface

Interacting with the User Through Controls
Controls for Presenting a List of Choices
RadioButton and CheckBox controls can, of course, be used to
provide the user with a limited list of choices. There are situations,
however, when using these controls is either an inefficient use of
space or impossible. Some of these situations are:

• When the number of choice items is quite long making it
difficult or impossible to use RadioButton or CheckBox
controls

• When the choices change dynamically based on the
application’s logic

• When the choice items need to display more than one
column of information

If your situation doesn’t match one of these cases, consider using
RadioButton or CheckBox controls. They are easier for a new
computer user to use because all of their choices will be right in
front of them.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the ProgressBar from changing when the
window is resized.

Visible The ProgressBar will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the ProgressBar.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Value The current position of the indicator.

Maximum The value the Value Property will be set to when the
indicator is all the way to the right.

TABLE 9. ProgressBar properties (Continued)

Name Description
Building a User Interface 67

68

Building a User Interface
ContextualMenu

ContextualMenu controls display a list of choices in a menu when
the user holds down the Control key and clicks on any control or
window that receives a MouseDown event. One ContextualMenu
control can actually display contextual menus for any number of
other controls.

FIGURE 30. An example of a contextual menu

ListBox

ListBox controls display a scrolling list of values. The user can use
the mouse or the arrow keys to choose an item. ListBox controls

TABLE 10. Contextual menu properties

Name Description

Super The class of object the ContextualMenu is based on.

Name The internal name of the ContextualMenu used to identify it
in programming code.

Index The position of the ContextualMenu in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the ContextualMenu.

Top The distance (in pixels) between the top edge of the window
and the top edge of the ContextualMenu.

UseCCM If True, the Help item is displayed. If False, the Help item is
omitted.
Building a User Interface

Interacting with the User Through Controls
can contain one or more columns of data, can be hierarchical and
can allow one row selection or multiple row selection. You can
add a header with column labels to a ListBox; the user can sort
the data in the ListBox by clicking on a column header.

FIGURE 31. Single and multi-column ListBoxes

TABLE 11. ListBox properties

Name Description

Super The class of object the ListBox is based on.

Name The internal name of the ListBox used to identify it
in programming code.

Index The position of the ListBox in a control array.

Left The distance (in pixels) between the left edge of
the window and the left edge of the ListBox.
Building a User Interface 69

70

Building a User Interface
Top The distance (in pixels) between the top edge of
the window and the top edge of the ListBox.

Width The width (in pixels) of the ListBox.

Height The height (in pixels) of the ListBox.

LockLeft Keeps the distance between the left side of the
window and the left side of the ListBox from
changing when the window is resized.

LockTop Keeps the distance between the top of the
window and the top of the ListBox from changing
when the window is resized.

LockRight Keeps the distance between the right side of the
window and the right side of the ListBox from
changing when the window is resized.

LockBottom Keeps the distance between the bottom of the
window and the bottom of the ListBox from
changing when the window is resized.

Visible The ListBox will initially be visible when the
window opens.

Balloon Help The text that will appear if the user has Balloon
Help on and moves the pointer over the ListBox.

DisabledBalloonHelp The text that should appear when the user moves
the mouse over the control while the control is
disabled and BalloonHelp is on.

CellCheck Parameters are row, column (integers). The first
cell is 0,0. Setting CellCheck to True checks the
checkbox.

TABLE 11. ListBox properties (Continued)

Name Description
Building a User Interface

Interacting with the User Through Controls
CellType Parameters are row, column (integers). The first
cell is 0,0.

Values are:

0 - default

1 - normal

2 - add checkbox

3 - inline editable

The value of CellType overrides ColumnType. For
example, if ColumnType is 2, but a cell in the
column has CellType set to 0, the cell will be
normal.

ColumnCount The number of columns the ListBox can display.

ColumnWidths A list of comma-separated values, with each value
controlling the width of the associated column.
Each value can be express in pixels or as a
percentage.

ColumnType Parameter is column number; the first column is
numbered zero. Values are:

0 - default

1 - normal

2 - add checkbox

3 - inline editable

HasHeading If True, a row of column headers is added to the
ListBox. The user can sort the column by clicking
the heading.

HeadingIndex Allows you to get and set the sort column in a
ListBox. The first column is numbered zero. If the
ListBox is unsorted, HeadingIndex returns -1.

UseFocusRing If True, the object indicates that it has the focus
with a ring around its border; if False, the
appearance of the object does not change when it
has the focus.

TABLE 11. ListBox properties (Continued)

Name Description
Building a User Interface 71

72

Building a User Interface
FIGURE 32. A hierarchical ListBox

InitialValue A list of the default items separated by carriage
returns. This property is unreadable at runtime
because the list is removed from memory once the
control is created.

Enabled The ListBox will be initially enabled.

TextFont The font used to display the ListBox caption.

TextSize The font size used to display the ListBox caption.

Bold Adds the bold style to the ListBox caption.

Italic Adds the italic style to the ListBox caption.

Underline Adds the underline style to the ListBox caption.

Hierarchical Allows rows to be added with disclosure triangles
(using the AddFolder method) and draws listbox
with a grey background.

EnableDrag Allows rows to be dragged from the listbox.

SelectionType Determines whether the user can select (highlight)
a single row or multiple rows.

TABLE 11. ListBox properties (Continued)

Name Description
Building a User Interface

Interacting with the User Through Controls
PopupMenu

PopupMenu controls are useful when you have a single column
of data to present in a limited amount of space.

FIGURE 33. A PopupMenu control

TABLE 12. PopupMenu properties

Name Description

Super The class of object the PopupMenu is based on.

Name The internal name of the PopupMenu used to identify it in
programming code.

Index The position of the PopupMenu in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the PopupMenu.

Top The distance (in pixels) between the top edge of the window
and the top edge of the PopupMenu.

Width The width (in pixels) of the PopupMenu.

Height The height (in pixels) of the ListBox.

LockLeft Keeps the distance between the left side of the window and
the left side of the PopupMenu from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the PopupMenu from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the PopupMenu from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the PopupMenu from changing when the
window is resized.

Visible The PopupMenu will initially be visible when the window
opens.
Building a User Interface 73

74

Building a User Interface
BevelButton

A BevelButton control can be configured to operate as a pop-up
menu. Simply set the HasMenu property to 1 or 2 (Normal menu
or Menu on Right).

The BevelButton menu shown in Figure 34 was created with this
code in the Open event of the Bevelbutton:

me.captionalign=0 //flush left

me.hasMenu=2 //menu on right

me.caption="Platform"

me.addRow("Macintosh")

me.addRow("Windows")

me.addRow("Unix")

me.addseparator

me.addRow("Other")

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the PopupMenu.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Enabled The PopupMenu will be initially enabled.

TextFont The font used to display the PopupMenu caption.

TextSize The font size used to display the PopupMenu caption.

Bold Adds the bold style to the PopupMenu caption.

Italic Adds the italic style to the PopupMenu caption.

Underline Adds the underline style to the PopupMenu caption.

TABLE 12. PopupMenu properties (Continued)

Name Description
Building a User Interface

Interacting with the User Through Controls
You would use the MenuValue property to determine which
menu item the user has selected.

See the description of BevelButton on page 49 for a list of
properties.

FIGURE 34. A BevelButton popup menu

Controls for Visually Grouping Other Controls
If a window contains groups of controls in which each group of
controls serves a different purpose, it can be confusing to the
user to see all of these groups lumped together in a window. It
often makes sense (and is sometimes necessary) to group related
controls. Fortunately, REALbasic provides several built-in controls
to make grouping controls simple.

Separator

The Separator control simply places a vertical or horizontal line in
the window that you can use to help organize other objects.

FIGURE 35. A Separator control
Building a User Interface 75

76

Building a User Interface
GroupBox

A GroupBox can be displayed with or without a caption. If a
window has more than one group of RadioButton controls, one
of the groups must be contained within a GroupBox control in
order for the RadioButton groups to function independently.

TABLE 13. Separator Properties

Name Description

Height The height of the separator.

Left The distance in pixels from the left of the window to the left
of the separator.

LockBottom Determines whether the bottom edge of the control should
stay at a set distance from the bottom edge of the owning
window.

LockLeft Determines whether the left edge of the control should stay
at a set distance from the left edge of the owning window.
LockLeft has no effect unless LockRight is True.

LockRight Determines whether the right edge of the control should
stay at a set distance from the right edge of the owning
window.

LockTop Determines whether the top edge of the control should stay
at a set distance from the top edge of the owning window.
LockTop has no effect unless LockBottom is True.

Top The distance in pixels from the top of the window to the top
of the separator.

Width The width of the separator.
Building a User Interface

Interacting with the User Through Controls
FIGURE 36. A GroupBox control with and without a caption

TABLE 14. GroupBox properties

Name Description

Super The class of object the GroupBox is based on.

Name The internal name of the GroupBox used to identify it in
programming code.

Index The position of the GroupBox in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the GroupBox.

Top The distance (in pixels) between the top edge of the window
and the top edge of the GroupBox.

Width The width (in pixels) of the GroupBox.

Height The height (in pixels) of the GroupBox.

LockLeft Keeps the distance between the left side of the window and
the left side of the GroupBox from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the GroupBox from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the GroupBox from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the GroupBox from changing when the
window is resized.

Visible The GroupBox will initially be visible when the window
opens.
Building a User Interface 77

78

Building a User Interface
TabPanel

When you have several groups of controls and space is very
limited, TabPanels are most appropriate. TabPanels presents each
group of controls in a separate panel. When the user clicks on a
tab in the TabPanel, REALbasic automatically hides the controls
on the current panel and displays the controls on the panel the
user selected.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the GroupBox.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Caption The text that appears on the GroupBox.

Enabled The GroupBox will be initially enabled.

TextFont The font used to display the GroupBox caption.

TextSize The font size used to display the GroupBox caption.

Bold Adds the bold style to the GroupBox caption.

Italic Adds the italic style to the GroupBox caption.

Underline Adds the underline style to the GroupBox caption.

TABLE 14. GroupBox properties (Continued)

Name Description
Building a User Interface

Interacting with the User Through Controls
FIGURE 37. A two-panel TabPanel control

TABLE 15. TabPanel properties

Name Description

Super The class of object the TabPanel is based on.

Name The internal name of the TabPanel used to identify it in
programming code.

Index The position of the TabPanel in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the TabPanel.

Top The distance (in pixels) between the top edge of the window
and the top edge of the TabPanel.

Width The width (in pixels) of the TabPanel.

Height The height (in pixels) of the TabPanel.

LockLeft Keeps the distance between the left side of the window and
the left side of the TabPanel from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the TabPanel from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the TabPanel from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the TabPanel from changing when the
window is resized.
Building a User Interface 79

80

Building a User Interface
Controls for Displaying Graphics and Pictures
REALbasic is very flexible when it comes to displaying graphics
and pictures. You can use the built-in graphic controls, display
pictures from documents, or draw the graphics using REALbasic’s
programming language.

Line

Draws a line that can be of any length, width, color, and
direction. By default, lines are 100 pixels in length, 1 pixel in
width, black, and horizontal.

Facing Tabs can face North, South, East, or West (available on
MacOS 8.5 or above only)

SmallTabs If True, the tabs are smaller than normal.

Visible The TabPanel will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the TabPanel.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Enabled The TabPanel will be initially enabled.

TABLE 16. Line properties

Name Description

Super The class of object the Line is based on.

Name The internal name of the Line used to identify it in
programming code.

Index The position of the Line in a control array.

X1 The distance (on the horizontal axis) from the left side of the
window to the end of the Line that is leftmost by default.

TABLE 15. TabPanel properties (Continued)

Name Description
Building a User Interface

Interacting with the User Through Controls
Rectangle

Draws a rectangle that can be of any length, width, border color,
and fill color. By default, rectangles are 100 pixels in length and
width, 1 pixel in width, have black borders and a white center.
Because you can control the color of the left and top borders
independently from the right and bottom borders, you can easily
create rectangles that appear to be sunken or raised.

FIGURE 38. A Rectangle with default, sunken and raised appearances

X2 The distance (on the horizontal axis) from the left side of the
window to the end of the Line that is right most by default.

Y1 The distance (on the vertical axis) from the top of the
window to the end of the Line that is leftmost by default.

Y2 The distance (on the vertical axis) from the top of the
window to the end of the Line that is right most by default.

Visible The Line will be visible when the window opens.

BorderWidth The width (in pixels) of the Line.

LineColor The color of the Line.

TABLE 17. Rectangle properties

Name Description

Super The class of object the Rectangle is based on.

Name The internal name of the Rectangle used to identify it
in programming code.

Index The position of the Rectangle in a control array.

TABLE 16. Line properties (Continued)

Name Description
Building a User Interface 81

82

Building a User Interface
RoundRectangle

RoundRectangles are similar to regular Rectangle controls. The
differences are that you don’t have the independent color control

Left The distance (in pixels) between the left edge of the
window and the left edge of the Rectangle.

Top The distance (in pixels) between the top edge of the
window and the top edge of the Rectangle.

Width The width (in pixels) of the Rectangle.

Height The height (in pixels) of the Rectangle.

LockLeft Keeps the distance between the left side of the
window and the left side of the Rectangle from
changing when the window is resized.

LockTop Keeps the distance between the top of the window
and the top of the Rectangle from changing when the
window is resized.

LockRight Keeps the distance between the right side of the
window and the right side of the Rectangle from
changing when the window is resized.

LockBottom Keeps the distance between the bottom of the
window and the bottom of the Rectangle from
changing when the window is resized.

Visible The Rectangle will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help
on and moves the pointer over the Rectangle.

DisabledBalloonHel
p

The text that should appear when the user moves the
mouse over the control while the control is disabled
and BalloonHelp is on.

FillColor The color that will fill the interior of the Rectangle.

BorderWidth The width (in pixels) of the sides of the Rectangle.

TopLeftColor The color of the lines that make up the top and left
sides of the Rectangle.

BottomRightColor The color of the lines that make up the right and
bottom sides of the Rectangle.

TABLE 17. Rectangle properties (Continued)

Name Description
Building a User Interface

Interacting with the User Through Controls
for the border (because it is one continuous line) but you can
control the width and height of the arcs that make up the round
corners.

FIGURE 39. A RoundRectangle control

TABLE 18. RoundRectangle Properties

Name Property

Super The class of object the Control is based on.

Name The internal name of the Control used to identify it in
programming code.

Index The position of the Control in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the Control.

Top The distance (in pixels) between the top edge of the window
and the top edge of the Control.

Width The width (in pixels) of the Control.

Height The height (in pixels) of the Control.

LockLeft Keeps the distance between the left side of the window and
the left side of the Control from changing when the window
is resized.

LockTop Keeps the distance between the top of the window and the
top of the Control from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the Control from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the Control from changing when the window
is resized.

Visible The Control will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the Control.
Building a User Interface 83

84

Building a User Interface
Oval

Draws an oval with a single pixel, black border, and filled with
white. All of these properties can be modified. The “ovalness” of
the Oval is controlled by its height and width. For example, an
Oval with the same width and height is a perfect circle.

FIGURE 40. An Oval control

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

FillColor The color that will fill the interior of the Control.

BorderWidth The width (in pixels) of the sides of the Control.

OvalWidth The width of the arcs that make up the corners.

OvalHeight The height of the arcs that make up the corners

TABLE 19. Oval properties

Name Description

Super The class of object the Oval is based on.

Name The internal name of the Oval used to identify it in
programming code.

Index The position of the Oval in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the Oval.

TABLE 18. RoundRectangle Properties

Name Property
Building a User Interface

Interacting with the User Through Controls
Canvas

A Canvas control can be used to display a picture from a file or a
picture drawn using REALbasic’s programming language. If your
application requires a type of control that is not built-in, you can
use a Canvas control and REALbasic drawing commands to
create the controls you need.

Top The distance (in pixels) between the top edge of the window
and the top edge of the Oval.

Width The width (in pixels) of the Oval.

Height The height (in pixels) of the Oval.

LockLeft Keeps the distance between the left side of the window and
the left side of the Oval from changing when the window is
resized.

LockTop Keeps the distance between the top of the window and the
top of the Oval from changing when the window is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the Oval from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the Oval from changing when the window is
resized.

Visible The Oval will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the Oval.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

FillColor The color that will fill the interior of the Oval.

BorderWidth The width (in pixels) of the sides of the Oval.

BorderColor The color of the Oval’s border.

TABLE 19. Oval properties (Continued)

Name Description
Building a User Interface 85

86

Building a User Interface
FIGURE 41. A Canvas control used to create a “Little Arrows” control

Canvas controls can be used to create extremely sophisticated
controls. In Figure 42, a Canvas control is used to provide a table
of data with rows that can be selected and columns that can be
sorted by clicking on the column title.

FIGURE 42. A sophisticated control created using a Canvas control

The “Little Arrow” and Table controls above were created by
Björn Eiríksson.

TABLE 20. Canvas properties

Name Description

Super The class of object the Canvas is based on.

Name The internal name of the Canvas used to identify it in
programming code.

Index The position of the Canvas in a control array.
Building a User Interface

Interacting with the User Through Controls
ImageWell

The ImageWell control provides an area in which you can display
a picture. You can easily program the ImageWell control to
accept a dragged picture.

Left The distance (in pixels) between the left edge of the window
and the left edge of the Canvas.

Top The distance (in pixels) between the top edge of the window
and the top edge of the Canvas.

Width The width (in pixels) of the Canvas.

Height The height (in pixels) of the Canvas.

LockLeft Keeps the distance between the left side of the window and
the left side of the Canvas from changing when the window
is resized.

LockTop Keeps the distance between the top of the window and the
top of the Canvas from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the Canvas from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the Canvas from changing when the window
is resized.

Visible The Canvas will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the Canvas.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Backdrop A picture from the Project window that will be displayed
inside the Canvas control.

Enabled The Enabled property will be initially enabled.

TABLE 20. Canvas properties (Continued)

Name Description
Building a User Interface 87

88

Building a User Interface
FIGURE 43. An ImageWell

TABLE 21. ImageWell Properties

Name Description

Super The class of object the ImageWell is based on.

Name The internal name of the ImageWell used to identify it in
programming code.

Index The position of the ImageWell in a control array.

Left The distance (in pixels) between the left edge of the
window and the left edge of the ImageWell.

Top The distance (in pixels) between the top edge of the
window and the top edge of the ImageWell.

Width The width (in pixels) of the ImageWell.

Height The height (in pixels) of the ImageWell.

LockLeft Keeps the distance between the left side of the window
and the left side of the ImageWell from changing when
the window is resized.

LockTop Keeps the distance between the top of the window and
the top of the ImageWell from changing when the
window is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the ImageWell from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the ImageWell from changing when
the window is resized.
Building a User Interface

Interacting with the User Through Controls
Controls for Playing Movies, Music, and Animation
If the user has QuickTime™ installed, your application can play
QuickTime movies and use QuickTime Musical Instruments to
play music.

MoviePlayer

The MoviePlayer control displays the standard QuickTime movie
controller. From the Design environment, you can select the
QuickTime movie that will be associated with a particular Mov-
iePlayer control. You can also determine the default appearance
of the movie controller. Your choices are: the controller is dis-
played, a badge (a small icon that, when clicked, reveals the con-
troller) is displayed, or no controls are displayed.

Assigning a QuickTime movie to a MoviePlayer control is
amazingly easy. First, drag the QuickTime movie to the Project
window. Then assign the movie to the movie property of the
control using the Properties Window. This is illustrated in
Figure 44.

Visible The ImageWell will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the ImageWell.

DisabledBalloon
Help

The text that should appear when the user moves the
mouse over the control while the control is disabled and
BalloonHelp is on.

Image The name of the picture to be displayed. Drag a picture to
the Project Window to make it available.

TABLE 21. ImageWell Properties

Name Description
Building a User Interface 89

90

Building a User Interface
FIGURE 44. Assigning a movie to a MoviePlayer control.

You can then add Stop and Play pushbuttons to the window and
assign them actions using object binding.

Add a PushButton to the window. Hold down the Shift and
Command keys and draw a line from the PushButton to the
MoviePlayer control. A New Binding dialog box appears, giving
you a choice of automatic actions:

Choose Play MoviePlayer1 Movie when PushButton1 pushed.
Next, add another PushButton to the window and assign the
Stop MoviePlayer1 Movie binding to it. The result is a fully
functional movieplayer application shown in Figure 45

Properties Window

Project Window
Building a User Interface

Interacting with the User Through Controls
FIGURE 45. A simple movieplayer application.

TABLE 22. MoviePlayer properties

Name Description

Super The class of object the MoviePlayer is based on.

Name The internal name of the MoviePlayer used to identify it in
programming code.

Index The position of the MoviePlayer in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the MoviePlayer.

Top The distance (in pixels) between the top edge of the window
and the top edge of the MoviePlayer.

Width The width (in pixels) of the MoviePlayer.

Height The height (in pixels) of the MoviePlayer.

LockLeft Keeps the distance between the left side of the window and
the left side of the MoviePlayer from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the MoviePlayer from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the MoviePlayer from changing when
the window is resized.
Building a User Interface 91

92

Building a User Interface
NotePlayer

Although the NotePlayer control displays an icon when placed in
a window in the Design environment, it has no interface. It is
designed only for playing musical notes using QuickTime Musical
Instruments. See “NotePlayer Control” on page 233 of the
Language Reference for more details.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the MoviePlayer from changing when the
window is resized.

Visible The MoviePlayer will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the MoviePlayer.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

AutoResize Changes the size of the movie area to fit the size of the
movie.

Border Draws a border around the MoviePlayer.

Speaker Adds the volume slider to the MoviePlayer.

HasStep Adds the previous and next frame buttons to the
MoviePlayer.

Movie The movie to be played in the MoviePlayer.

Controller Determines how the controller will appear at the bottom of
the MoviePlayer (none, badge, or controller).

Looping Plays the movie continuously once it has started.

Palindrome Plays the movie backwards once it reaches its end.

TABLE 23. NotePlayer properties

Name Description

Super The class of object the NotePlayer is based on.

Name The internal name of the NotePlayer used to identify it in
programming code.

TABLE 22. MoviePlayer properties (Continued)

Name Description
Building a User Interface

Interacting with the User Through Controls
SpriteSurface

This control is used to create animation. When you call the
SpriteSurface’s Run method, the menu bar, all windows, and the
desktop are hidden. This allows the animation to fill the screen.
This animation is done using Sprites. A Sprite is simply an object
with a picture that can be moved across the screen by your
programming code. The SpriteSurface will automatically handle
all of the drawing of the background and the sprites for you. The
SpriteSurface will tell you when two sprites collide and give you
the opportunity to test for keys pressed by the user to allow to
you interact with them.

For a complete list of SpriteSurface properties, see the Language
Reference.

Miscellaneous Controls

PopupArrow Control

In REALbasic, you can control both the direction and size of the
popup arrow using one property, Facing. Figure 46 shows all
possible directions.

Index The position of the NotePlayer in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the NotePlayer.

Top The distance (in pixels) between the top edge of the window
and the top edge of the NotePlayer.

Instrument The number that represents the QuickTime Musical
Instrument to be used to play notes. See “NotePlayer
Control” on page 233 of the Language Reference for a list
of instruments.

TABLE 23. NotePlayer properties (Continued)

Name Description
Building a User Interface 93

94

Building a User Interface
FIGURE 46. Examples of the PopupArrow Control

TABLE 24. PopupArrow Properties

Name Description

Super The class of object the PopupArrow is based on.

Name The internal name of the PopupArrow used to identify it in
programming code.

Index The position of the PopupArrow in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the PopupArrow.

Top The distance (in pixels) between the top edge of the window
and the top edge of the PopupArrow.

Width The width (in pixels) of the PopupArrow.

Height The height (in pixels) of the PopupArrow.

LockLeft Keeps the distance between the left side of the window and
the left side of the PopupArrow from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the PopupArrow from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the PopupArrow from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the PopupArrow from changing when the
window is resized.

Visible The PopupArrow will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the PopupArrow.
Building a User Interface

Interacting with the User Through Controls
DisclosureTriangle Control

A disclosure triangle control is used to display hierarchical lists,
i.e., the List view of files and folders in a Finder window. In
REALbasic, you can control the direction of the DisclosureTriangle
(left or right) and whether it is in the ‘disclosed’ (down) state.

FIGURE 47. Disclosure Triangles

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Facing Controls direction and size of PopupArrow
0—East
1—West
2—North
3—South
4—Small East
5—Small West
6—Small North
7—Small South

TABLE 25. DisclosureTriangle Properties

Name Description

Super The class of object the DisclosureTriangle is based on.

Name The internal name of the DisclosureTriangle used to identify
it in programming code.

Index The position of the DisclosureTriangle in a control array.

TABLE 24. PopupArrow Properties

Name Description
Building a User Interface 95

96

Building a User Interface
Left The distance (in pixels) between the left edge of the window
and the left edge of the DisclosureTriangle.

Top The distance (in pixels) between the top edge of the window
and the top edge of the DisclosureTriangle.

Width The width (in pixels) of the DisclosureTriangle.

Height The height (in pixels) of the DisclosureTriangle.

LockLeft Keeps the distance between the left side of the window and
the left side of the DisclosureTriangle from changing when
the window is resized.

LockTop Keeps the distance between the top of the window and the
top of the DisclosureTriangle from changing when the
window is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the DisclosureTriangle from changing
when the window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the DisclosureTriangle from changing when
the window is resized.

Visible The DisclosureTriangle will be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the DisclosureTriangle.

DisabledBallo
onHelp

The text that should appear when the user moves the mouse
over the control while the control is disabled and
BalloonHelp is on.

Facing Direction in ‘undisclosed’ state.

0—Right facing
1—Left facing

Value True corresponds to downward; False corresponds to either
left or right depending on the value of facing.

TABLE 25. DisclosureTriangle Properties

Name Description
Building a User Interface

Interacting with the User Through Controls
LittleArrows Control

The LittleArrows control is commonly used as an interface for
scrolling. You use two events, Up and Down, to determine
whether the user has clicked an arrow.

FIGURE 48. LittleArrows Control

TABLE 26. LittleArrows Events

Name Description

Up The user has clicked the Up arrow.

Down The user has clicked the Down arrow.

TABLE 27. LittleArrows Properties

Name Description

Super The class of object the LittleArrows is based on.

Name The internal name of the LittleArrows used to identify it in
programming code.

Index The position of the LittleArrows in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the LittleArrows.

Top The distance (in pixels) between the top edge of the window
and the top edge of the LittleArrows.

Width The width (in pixels) of the LittleArrows.

Height The height (in pixels) of the LittleArrows.

LockLeft Keeps the distance between the left side of the window and
the left side of the LittleArrows from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the LittleArrows from changing when the window is
resized.
Building a User Interface 97

98

Building a User Interface
ChasingArrows Control

The ChasingArrows control is often displayed to indicate that a
time-consuming operation is in progress. The ChasingArrows
control appears when its Visible property is set to True.

FIGURE 49. The ChasingArrows Control

LockRight Keeps the distance between the right side of the window
and the right side of the LittleArrows from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the LittleArrows from changing when the
window is resized.

Visible The LittleArrows will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the LittleArrows.

Disabled
Balloon Help

The text that will appear if the user has Balloon Help on and
moves the pointer over the LittleArrows when the control is
disabled.

Enabled If True, the LittleArrows control responds to mouse clicks.

TABLE 28. ChasingArrows Properties

Property Description

Super The class of object the ChasingArrows is based on.

Name The internal name of the ChasingArrows used to identify it
in programming code.

Index The position of the ChasingArrows in a control array.

TABLE 27. LittleArrows Properties

Name Description
Building a User Interface

Interacting with the User Through Controls
Controls for Handling Communications
REALbasic provides controls that allow your application to
communicate through the serial port (for communicating via a
modem or through a serial cable to another device) and over a
network to other computers using TCP/IP, the Internet’s
communication protocol.

Left The distance (in pixels) between the left edge of the
window and the left edge of the ChasingArrows.

Top The distance (in pixels) between the top edge of the
window and the top edge of the ChasingArrows.

Width The width (in pixels) of the ChasingArrows.

Height The height (in pixels) of the ChasingArrows.

LockLeft Keeps the distance between the left side of the window and
the left side of the ChasingArrows from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and the
top of the ChasingArrows from changing when the window
is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the ChasingArrows from changing
when the window is resized.

LockBottom Keeps the distance between the bottom of the window and
the bottom of the ChasingArrows from changing when the
window is resized.

Visible The ChasingArrows will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on and
moves the pointer over the ChasingArrows.

Disabled
Balloon Help

The text that will appear if the user has Balloon Help on and
moves the pointer over the ChasingArrows when the
control is disabled.

TABLE 28. ChasingArrows Properties

Property Description
Building a User Interface 99

100

Building a User Interface
Serial

Although the Serial control displays an icon when placed in a
window in the Design environment, it has no interface. It is
designed only for executing code to communicate via the serial
port. See “Serial Control” on page 312 of the Language
Reference for more details.

The Serial control can be instantiated via code since it is not a
subclass of control. This allows you to easily write code that does
communications without adding the control to a window.

TABLE 29. Serial control properties

Name Description

Super The class of object the Serial control is based on.

Name The internal name of the Serial control used to identify it in
programming code.

Index The position of the Serial control in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the Serial control.

Top The distance (in pixels) between the top edge of the window
and the top edge of the Serial control.

Port Determines which port (serial or printer) port will be used to
read and write data.

Baud The speed at which data will be read or written through the
chosen port.

Bits Determines the number of data bits used during
communications.

Parity Determines the type of parity (no parity, odd parity, even
parity).

Stop Determines the number of stop bits used during
communications.

XON Enables XON flow control.

CTS Enables CTS flow control.

DTR Enables DTR flow control.
Building a User Interface

Interacting with the User Through Controls
Socket

Although the Socket control displays an icon when placed in a
window in the Design environment, it has no interface. It is
designed only for executing code to communicate with other
computers on the Intranet or Internet using TCP/IP.

The Socket control can be instantiated via code since it is not a
subclass of control. This allows you to easily write code that does
communications without adding the control to a window.

See “Socket Control” on page 321 of the Language Reference
for more details.

The Timer Control
The Timer control executes some code once or repeatedly after a
period of time has passed. Although the Timer control displays an
icon when placed in a window in the Design environment, it has

TABLE 30. Socket control properties

Name Description

Super The class of object the Socket control is based on.

Name The internal name of the Socket control used to identify it in
programming code.

Index The position of the Socket control in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the Socket control.

Top The distance (in pixels) between the top edge of the window
and the top edge of the Socket control.

Address The IP address to send data to.

Port The TCP/IP port to transmit/receive data on.
Building a User Interface 101

102

Building a User Interface
no interface. See “Timer Control” on page 365 of the Language
Reference for more details.

Object Binding
Once you have added the application’s controls to a window, you
can use the Code Editor to add any desired functionality. For
example, you can use the Code Editor to specify the behavior of a
PushButton when the user clicks it by adding some code to the
PushButton’s Action event.

In some cases, you can actually add functionality without writing
any code whatever. To do this you use a feature called “object
binding.”

With object binding, you specify an action when some aspect of
one control changes without code. A simple example of object
binding was presented in the section on the MoviePlayer control
on page 89. Two PushButtons, a “Play” and a “Stop”

TABLE 31. Timer control properties

Name Description

Super The class of object the Timer control is based on.

Name The internal name of the Timer control used to identify it in
programming code.

Index The position of the Timer control in a control array.

Left The distance (in pixels) between the left edge of the window
and the left edge of the Timer control.

Top The distance (in pixels) between the top edge of the window
and the top edge of the Timer control.

Mode Determines the number of times the Timer will execute (off,
single, multiple).

Period The time in milliseconds between executions.
Building a User Interface

Object Binding
pushbutton were bound to the MoviePlayer control. The bindings
themselves specify the functionality; there is no code being
written “behind the scenes.”

In the case of the MoviePlayer example, the binding has a
directional characteristic. One control is referred to as the
“source” control—the control that the user interacts with—and
the other control is the “destination” control—the control that
does something when the user invokes the binding

To establish an object binding, do this:

1. Hold down the Shift and Command keys and drag from the “source”
control to the “target” control.

2. An Object Binding dialog appears, listing the possible binding
actions that are available. The built-in bindings are shown in
Table 32 on page 104. Custom bindings can be added.

3. Choose the desired action and click OK.

A line connecting the two controls appears in the window. When
you run your application, the binding works just as if you had
entered equivalent code for the action in the Code Editor. For
example, the object bindings in the MoviePlayer example are
equivalent to the lines MoviePlayer1.Play and
MoviePlayer1.Stop that could have been inserted into the
Action events of the Play and Stop buttons, respectively.

If you forget what the binding specifies, you can select the line
and its Properties window will display the currently selected
binding. If you need to modify the binding, select the line, press
the Delete key, and establish a different bind.
Building a User Interface 103

104

Building a User Interface
Here are the binds that are included with REALbasic.

TABLE 32. Built-in Object Binds in REALbasic

Source Object Target Object Binds

PushButton or
BevelButton

MoviePlayer Play MoviePlayer when Button is clicked

Stop MoviePlayer when Button is clicked.

PushButton or
BevelButton

DataBaseQuery Requery DatabaseQuery when button is
clicked.

RadioButton DatabaseQuery Requery DatabaseQuery when
RadioButton is selected.

Requery DatabaseQuery when
RadioButton is deselected.

DatabaseQuery PopupMenu Bind PopupMenu with DatabaseQuery
results.

Bind DatabaseQuery parameter with
PopupMenu.

Bind DatabaseQuery parameter with
PopupMenu RowTag.

(See the section “Using Object Binding” on
page 329 for an example of these
bindings.)

DatabaseQuery ListBox Bind Listbox with DatabaseQuery results.

Bind DatabaseQuery parameter with
ListBox.

Requery DatabaseQuery when ListBox
gains focus.

Requery DatabaseQuery when ListBox
loses focus.

PushButton or
BevelButton

ListBox Enable Button when ListBox has a
selection.

Checkbox ListBox Enable Listbox when Checkbox is checked

Enable Checkbox when Listbox has a
selection.

RadioButton Listbox Enable RadioButton when Listbox has a
selection.

CheckBox EditField Enable EditField when CheckBox is
checked.
Building a User Interface

Object Binding
Checkbox MoviePlayer Play MoviePlayer movie when Checkbox is
checked.

Stop MoviePlayer movie when Checkbox is
checked.

Play MoviePlayer movie when Checkbox is
unchecked.

Stop MoviePlayer movie when Checkbox is
unchecked.

Enable MoviePlayer when Checkbox is
checked.

Checkbox DatabaseQuery Requery DatabaseQuery when Checkbox is
checked.

Requery DatabaseQuery when Checkbox is
unchecked.

Checkbox Contextual
Menu

Enable ContextualMenu when Checkbox is
checked.

CheckBox PopupMenu Enable PopupMenu when Checkbox is
checked.

CheckBox PopupArrow Enable PopupArrow when Checkbox is
checked.

CheckBox DisclosureTriang
le

Enable DisclosureTriangle when Checkbox
is checked.

CheckBox SpriteSurface Enable SpriteSurface when CheckBox is
checked.

CheckBox NotePlayer Enable NotePlayer when CheckBox is
checked.

CheckBox ImageWell Enable ImageWell when CheckBox is
checked.

CheckBox TabPanel Enable TabPanel when CheckBox is
checked.

CheckBox ChasingArrows Enable ChasingArrows when CheckBox is
checked.

TABLE 32. Built-in Object Binds in REALbasic (Continued)

Source Object Target Object Binds
Building a User Interface 105

106

Building a User Interface
In addition, it is possible to define custom object bindings using
the language. For information on custom bindings, see the
section “Custom Object Bindings” on page 308.

RadioButton MoviePlayer Play MoviePlayer movie when RadioButton
is selected.

Stop MoviePlayer movie when
RadioButton is selected.

Play MoviePlayer movie when RadioButton
is deselected.

Stop MoviePlayer movie when
RadioButton is deselected.

ListBox LittleArrows Enable LittleArrows when Listbox has a
selection.

ListBox DisclosureTriang
le

Enable DisclosureTriangle when ListBox
has a selection.

ListBox PopupMenu Enable PopupMenu when ListBox has a
selection.

ListBox PopupArrow Enable PopupArrow when ListBox has a
selection.

ListBox ContextualMen
u

Enable ContextualMenu when ListBox has
a selection.

ListBox ScrollBar Enable ScrollBar when ListBox has a
selection.

ListBox Slider Enable Slider when ListBox has a selection.

EditField ListBox Bind EditField with ListBox (places selected
row in ListBox in EditField).

Enable EditField when ListBox has a
selection.

EditField PopupMenu Bind EditField with PopupMenu (places
selected menu item in EditField).

Bind EditField with PopupMenu RowTag.

TABLE 32. Built-in Object Binds in REALbasic (Continued)

Source Object Target Object Binds
Building a User Interface

Object Binding
Changing The Tab (Control) Order
The order in which the user moves through controls that receive
the focus (EditFields and ListBoxes) when he presses the Tab key is
called the Control Order (also known as the Tab Order). The
Control Order is actually controlled by the control layers. When a
window opens, REALbasic places the focus in the control that is
farthest back that can also receive the focus. You could change
the control order by using the Format menu to move controls
through the control layers.

Instead, the Control Order dialog box makes the job much easier.

FIGURE 50. The Control Order dialog box

To change the Control order, do this:

1. Choose Format . Control Order.
Building a User Interface 107

108

Building a User Interface
2. Select the control in the list, whose tab order you wish to change.

3. Use the Up button to move the control up one position in the tab
order or the Down key to move the control down one position in the
tab order.

Aligning Controls with Other Controls
REALbasic’s Interface Assistant makes it easy to align a particular
control with another control. Simply drag the control until it is
close to being aligned with the other control. When you get close
to aligning the two controls, REALbasic will snap the control you
are dragging into place and display a dotted line so you can tell
the controls are aligned.

Note: If the Interface Assistant is getting in your way, you can turn it off tem-
porarily by holding down the q key while dragging a control.

If you need to align several controls, do this:

1. Click on the control whose position is already correct to select it.

2. Choose Format . Move to Back to insure that the selected control
remains in place while the other controls move to align with it.

3. While holding down the Shift key, select each of the controls you
wish to align together.

4. Depending on which edges you wish to align, choose
Format . Align Objects then choose Align Left Edges, Align Right
Edges, Align Top Edges, or Align Bottom Edges from the Align
Objects submenu.

Spacing Controls Evenly
REALbasic provides an easy way to reposition controls to evenly
distribute empty space between them.

To distribute the controls evenly, do this:

1. Click on a control to select it.
Building a User Interface

Adding Menus
2. Hold down the Shift key and select at least two other controls.

3. To distribute the controls horizontally, choose Format . Align
Objects then choose Space Horizontally from the Align Objects sub-
menu.

4. To distribute the controls vertically, choose Format . Align Objects
then choose Space Vertically from the Align Objects submenu.

Adding Menus
REALbasic has a built-in Menu editor that makes adding menus
and menu items to your project easy. The menus displayed in the
Menu Editor will be displayed when you choose Debug . Run (q-
R) in the Design environment or when in a stand-alone version of
your application.

Adding Menus
REALbasic adds File and Edit menus to your project automatically.
Every application should have at least a File menu with a Quit
menu item. You can remove the Edit menu if your application has
no controls that could be edited by the Edit menu items.

To add a menu to your project, do this:

1. Bring the Project window to the front by clicking on it. If it is
obscured by other windows, Choose Window . Project (1-0).

2. Double-click on the Menu object to open the Menu Editor. The
Menu Editor window appears.

3. Click on the dotted rectangle in the Menu Editor’s menu bar to
select it.
Building a User Interface 109

110

Building a User Interface
4. In the properties window, enter the Name of the menu and the Text
that will appear in the menu bar.

Adding a Help Menu
Most Macintosh applications have a Help menu that is the right-
most menu in the application. At a minimum, this menu has an
About Balloon Help menu item and a Show Balloons menu item.
The Help menu may also contain menu items that give the user
access to Apple Guide files or an application specific help system.
You can add a Help (complete with About Balloon Help and
Show Balloons menu items) menu to your project.

To add a Help menu, do this:

1. Add a menu to the end of your menu bar.

2. Set the Text property of the menu to Help.

Any menu items you add to the Help menu will be displayed after
the About Balloon Help and Show Balloons menu items.

Note: If you are planning on including Apple Guide files with your application,
there are two handy applications for generating Guide files. AG Author is from
Lakewood Software and you can download a demo version from their web
site at www.lakewoodsoftware.com. The other is called Guide Composer and
you can download a demo version from www.downloads.com.

TABLE 33. Menu properties

Name Description

Name The internal name of the Menu used to identify it in
programming code.

Super The class of object the Menu control is based on.

Text The text that will appear in the Menu bar.
Building a User Interface

Adding Menus
Adding Menu Items
The Menu Editor makes it easy to add menu items to your
menus. You can assign keyboard shortcuts to menu items but
remember that the Macintosh looks for a shortcut starting from
the left most menu. That means that if you assign the same
keyboard shortcut to two different menu items, one of them
won’t work. There are also several specific keyboard shortcuts
that are reserved for specific functions. According to Apple’s
Macintosh Human Interface Guidelines, these are:

To add a menu item to a menu, do this:

1. In the Menu Editor, select the menu you wish to add a menu item to
by clicking on it.

2. Click on the dotted rectangle at the bottom of the menu to select it.

3. In the Properties window, enter the Name and Text for the menu
item.

TABLE 34. Reserved keyboard shortcuts

Menu Keys Command

File q-N New

File q-O Open…

File q-W Close

File q-S Save

File q-P Print…

File q-Q Quit

Edit q-Z Undo

Edit q-X Cut

Edit q-C Copy

Edit q-V Paste

Edit q-A Select All

Edit q-period Terminate an operation
Building a User Interface 111

112

Building a User Interface
4. If desired, add a keyboard shortcut by assigning a letter to the Com-
mandKey property.

If you plan to deploy your application on Windows and want to
add keyboard shortcuts for that platform, you must create such
menus and menu items using the Constants system. This process
is described in the section “Using Constants to Add Keyboard
Shortcuts to Menus and Menu Items” on page 202.

Note: Although the Menu Editor allows you to use lowercase characters as
keyboard shortcuts, only uppercase characters should be used.

Adding a Submenu
Submenus are menu items that, when selected, display an
additional menu to their right. The menu item itself is not
selectable. It acts only as a title for the submenu.

To add a submenu to an existing menu item, do this:

1. Click on the menu item in the Menu Editor to select it.

2. In the Properties window, place a checkmark in the Submenu prop-
erty. A new submenu item appears in the Menu Editor.

3. In the Menu Editor, click on the dotted rectangle that appears in the
new submenu item just to the right of the menu item you selected.

4. In the Properties window, enter the Name and Text for the submenu
Item.

Submenus can give the user fast access to a group of menu
items. However, they can be difficult to navigate for the new
computer user. They also hide menu items from view. If a user
scans through the menu items looking for a particular menu
item, he may not look at the submenus. Consider the audience
for your application before using submenus. If many of your
users will be new computer users, consider displaying a dialog
box to choose the functions you could put in a submenu.
Building a User Interface

Adding Menus
Submenu items themselves can be submenus. Seriously consider
your audience when choosing to have multiple level submenus.
Many of your users may find navigating multiple level submenus
difficult.

Moving Menu Items
A menu item can be moved to a new position by dragging the
menu item. You can only move a menu item to another position
on the same menu. If you need to move the menu item to
another menu, you have to delete it and recreate it on the other
menu.

To move a menu item, do this:

1. Click on the menu item you want to move to select it.

2. Drag the menu item towards the position on the menu where you
want it. A bold line appears above the menu item.

3. When the bold line is in the position where you want to move the
menu item to, release the mouse button.

Removing Menu Items
To remove a menu item from a menu, do this:

1. In the Menu Editor, click on the menu item to select it.

2. Press the Delete key or choose Edit . Clear.

Adding A Menu Item Separator
Menu item separators are lines that appear in between menu
items to logically group items together. To add a menu item
separator, simply create a new menu item and type a dash (“-”)
in the menu item’s Text property.
Building a User Interface 113

114

Building a User Interface
Apple’s Macintosh User Interface
Guidelines
The quality of your application’s interface will determine how
successful your user will be in using it. It’s absolutely critical that
your users find the interface intuitive. Studies have shown that if
a user can’t accomplish something within the first 15 minutes of
using an application, he will give up in frustration. Beyond simply
being intuitive, the more polished an application’s interface is, the
more professional it will appear to the user. Remember that
without realizing it, your users will be comparing your
application’s interface to all of the other applications they have
used.

REALbasic’s Interface Assistant™ helps you create a nice interface
by making it easy to align controls with other controls. But there
is more to a professional, polished interface than simply aligning
controls. We all think we know how to create a nice interface
because we have used lots of applications. But using an interface
is a lot different from designing one. If you haven’t done so
already, read Apple’s Macintosh Human Interface Guidelines. This
comprehensive guide will teach you what you need to know to
give your application a professional interface. You will also learn
the reasons behind the implementation of many of the features
of the Macintosh user interface. Apple’s Macintosh Human
Interface Guidelines is part of the Inside Macintosh series
published by Addison-Wesley and can be purchased through
most bookstores. You can also download it for free through
Apple’s Developer World web site at www.devworld.apple.com.
Building a User Interface

CHAPTER 4 BASIC Programming
Concepts
Programming is all about getting the computer to do what you
want it to do. The key is knowing how give the computer
instructions in a way it will understand. That’s where
programming languages come in. There are many different
programming languages that are designed to make the
communication easier in different situations.

In this chapter you will learn about the BASIC programming
language, how it is different in REALbasic, and the fundamentals
of programming.

Contents
• Data Types
• Storing Values in Properties and Variables
• Executing Instructions with Methods
• Executing Instructions Repeatedly with Loops
REALbasic Developer’s Guide 115

116

BASIC Programming Concepts
• Decision Making

BASIC versus REALbasic

The BASIC language was created in the 1960’s for the purpose of
teaching people programming. Most of what made other
languages difficult to master was removed from BASIC to make
learning it easier. In fact, BASIC is an acronym that stands for
Beginners All-Purpose Symbolic Instruction Code.

For a long time BASIC was considered less powerful than other
languages, but this was mostly due to the way it was imple-
mented rather than the language itself. Spoken languages
wouldn’t be considered to be very powerful if you could only
speak one word every 10 minutes. Computers actually only
understand two things, 1 and 0. That’s it. That’s all they know.
The rest of what a computer does all breaks down to that funda-
mental concept. These 1’s and 0’s that computers understand are
referred to as machine language. Most versions of BASIC have
used an interpreter program to execute the code. This means that
each time a program ran, the BASIC interpreter had to turn the
BASIC code into machine language. Other languages had compil-
ers which are special programs that translate the programing lan-
guage into machine language all at once. This makes programs
execute faster because the real-time interpretation is removed.

REALbasic has a compiler built-in to it. That means your code
runs as fast as possible. BASIC is a traditional programming
language that starts with the first line programming code and
continues until the last line. REALbasic is a modern, object-
oriented version of BASIC. If you are new to programming that
might not mean much now but it will. REALbasic takes the
BASIC Programming Concepts

Storing Values in Properties and Variables
simplicity of the BASIC language and adds the power of modern
programming through its object-oriented implementation and
compiler. Also, most programming languages require you to
know quite a bit about how to communicate with the computer’s
operating system. REALbasic abstracts you from all of that
making it easier for you to learn and easier to run your
application on computers running operating systems that are
different from the one you created your application on.

Storing Values in Properties and
Variables
When you need to store information so you can access it again
even after you have shut off your computer, you tell your
computer to store the information in a document. When a
computer needs to store information temporarily, it’s stored in
the computer’s memory. The computer’s memory is like a series of
organized boxes. Each box has a location in memory with an
address that is used to locate it. These locations are given names
to make them easier to work with. Depending on how these
memory locations are used, they are called Variables and
Properties.

What are Properties?
The values that make up the description of an object like a
window are called Properties. The title of a window is a property.
The width of the window is a property. When a window is
opened, these properties are copied into memory. You can access
them using their names. You can get values from them and you
can store new values in them. For example, if you wanted the
title of a window to change when the user clicks a button, you
BASIC Programming Concepts 117

118

BASIC Programming Concepts
would set the title property of the window to the new value.
Each property can hold a certain type of data. Some properties
store text (like a window title) while others store numbers (like
the window’s width property). Later in this chapter, you will learn
how to assign values to properties and how to get the values that
are stored in properties.

Variables
Sometimes you will need to store a value that isn’t related directly
to an object like a window or a button. In this case you use a
variable. A variable is just like a property but it isn’t directly
related to any particular object. Later in this chapter, you will
learn how to create variables, assign values to them and get
values from them.

Data Types
To make programming code execute faster and to provide
powerful commands that save you time when programming,
computers have to be able to make certain assumptions about
the information you give them. For example, when you give a
computer a piece of information, the computer needs to know if
it’s a number, a string of characters, a date, etc. If you didn’t tell
the computer what kind of data you are giving it, it wouldn’t
know whether you meant 1 plus 1 to be 2 or 11. In this example,
telling the computer that you are giving it numbers will result in
2. Telling it you are giving it simply a string of typed characters
will result in 11. There are many data types that REALbasic
understand but there are five data types that are by far the most
common. They are String, Integer, Single, Double, and Boolean.
BASIC Programming Concepts

Storing Values in Properties and Variables
String

A String is just series (or string) of characters. Basically any kind of
information can be stored as a string. “Jannice”, “3/17/98”,
“45.90” are all examples of strings. You might be thinking “Hey,
those last two don’t look like strings” but they are. When you
place quotes around information in your code, you are telling
REALbasic to look at the data as just a string of characters and
nothing more. The maximum length of a string is based only on
available memory.

You can concatenate two strings with the addition symbol (+).
For example, the statement “Big” + “Dog” results in the string
“BigDog”. That is really the extent of the “mathematics” you can
perform on strings. However, REALbasic has many built-in
functions that make processing strings easy.

Integer

An Integer is a whole number between approximately -2 billion
and +2 billion. In other programming languages, REALbasic’s
Integer type is called a Long Integer or just a Long. Because
integers are numbers, you can perform mathematical calculations
on them. Unlike strings, integers do not have quotes around
them in your code. An Integer value uses 4 bytes of memory.

Single

A Single is a number that can contain a decimal value. There is no
practical limit to the value of a Single. In other languages,
REALbasic’s Single may be referred to as a single precision real
number. Because Singles are numbers, you can perform
mathematical calculations on them. Single numbers use 4 bytes
of memory.
BASIC Programming Concepts 119

120

BASIC Programming Concepts
Double

A Double is a number that can contain a decimal value. Unlike
Integers, Doubles have no limit to the range of numbers they can
hold. In other languages, REALbasic’s Double may be referred to
as a double precision real number. Because Doubles are numbers,
you can perform mathematical calculations on them. Doubles use
8 bytes of memory. The PowerPC microprocessor converts Singles
to Doubles before performing calculations on them so you are
probably better off using a Double instead of a Single.

Boolean

Boolean means True or False. Boolean values are False by default
but can be set to True using REALbasic’s True function and back
to False using the False function. Some of the properties of
objects in REALbasic are boolean values. For example, most of
the controls have an Enabled property that is boolean.

Other Data Types

There are many other data types. You will learn about these in
the next chapter.

Changing a Value From One Data Type to Another
There may be times when you need to change a value from one
data type to another. This is usually because you want to use the
value with something that is designed to work with a different
data type. For example, you might want to include a number in
the title of a window. The title of a window is a string, not a
number. Consequently, if you try to assign a number to the title
of a window, REALbasic will display an error message when you
run your application. The error will tell you that the two data
types are not compatible (they are different). Since the window
BASIC Programming Concepts

Storing Values in Properties and Variables
title is a string, you will need to change the number into a string
before you can assign it to the window title.

Fortunately, REALbasic has a built-in function called Str (which
stands for String) that can change a number into a string. See
“Str Function” on page 343 of the Language Reference for more
information. There is also a built-in function called Val (which is
short for Value) that changes strings into numbers. See “Val
Function” on page 372 of the Language Reference for more
information.

Assigning Values to Properties
The basic syntax for assigning a value is:

objectName.propertyName=value

For example, if you have a pushbutton called pushbutton1, and
you want to set its caption property to “OK”, you would use the
following code:

pushbutton1.caption="OK"

You can read this as change pushbutton1’s caption property to
“OK”. This syntax is used when you want a control in a window
to change a property of a control in the same window. If you
want a control to change a property of a control in another open
window, you must include the target window’s name (not title) in
the syntax. For example, say you have two open windows whose
names are window1 and window2 respectively. You want a
pushbutton on window1 to set the value of pushbutton1’s
caption on window2 to “OK”. The syntax looks like this:

window2.pushbutton1.caption="OK"
BASIC Programming Concepts 121

122

BASIC Programming Concepts
If you didn’t specify the window, REALbasic would implicitly
assume you meant the control called pushbutton1 in the window
that contains the object executing the code. If you specify a
window that is not open, REALbasic will open the window and
make the change. If you have more than one copy of the window
open that contains the control you are trying to change, this
syntax won’t work because you won’t be able to tell REALbasic
which copy of the window you are referring to. You will learn
how to deal with this issue in the next chapter.

If a control is going to change a property of its own window, the
window name is not required. The window name is implicit. For
example, if you wanted a pushbutton to change its window’s title
property to “Hello World” when the user clicks it, you would use
this syntax:

title="Hello World"

Getting Values From Properties
You can get a value from a property in almost the same way you
store values in properties. The only difference is that the target of
the value (where you want the value of the property stored) goes
on the left side of the equals sign and the object and property
names go on the right. For example, if you had a variable named
X and you wanted to assign pushbutton1’s caption to it, the
syntax would be:

x=pushbutton1.caption

And just as in setting properties, you can get the property of a
control in another window by including the window’s name. For
example, if you want to assign the variable x to window2’s
pushbutton1 caption property, you would use this syntax:

x=window2.pushbutton1.caption
BASIC Programming Concepts

Storing Values in Properties and Variables
And just like setting properties, if you include only the property
name, REALbasic assumes you are referring to a property of the
window that contains the control that is executing the code. For
example, if you have a pushbutton called pushbutton1 and you
want it to assign the window title to the variable x when it is
clicked, you would use this syntax:

x=title

Getting and Setting Values in Variables
When you need to store a value that is not associated with an
object (the way a property is associated with a control or
window), you use a variable. A variable is nothing more than a
location in memory that stores a value. Variables have names just
like properties do. The name you give a variable should describe
the purpose of the variable. Suppose you want to calculate the
age of a person in days from the year he was born. You might
have a variable called “Days” to keep track of that information.
Variable names can be any length but must begin with a letter
and can contain only alphanumeric characters (A-Z, a-z, 0-9).
Variable names are case-insensitive so REALbasic sees x and X as
the same variable.

You can put values in variables and get values from variables in
the same way you do with properties. To get a value from a
variable, it must be on the right side of the assignment operator
(=). Say for example, you wanted to set the caption of a
pushbutton to the value in a variable called “buttonTitle”. The
example below accomplishes that:

Pushbutton1.Caption=buttonTitle
BASIC Programming Concepts 123

124

BASIC Programming Concepts
Conversely, if you wanted to store the value of a property (like
the pushbutton’s caption in the last example) in a variable, you
would simply reverse the syntax:

buttontitle=pushButton1.Caption

Like properties, variables have data types. Before you can use a
variable, its data type must be made known using the Dim
statement. Dim is short for Dimension which means to make
space for the variable. In the example below, the variable i is
dimensioned (or dimed) as an integer:

Dim i as integer

If you have several variables of the same type, you can declare
them all with one Dim statement:

Dim i,j,k as integer

You already know about the data types Integer, String, Boolean,
Single and Double. But variables can also be declared as specific
object types. For example, REALbasic has an object type called a
FolderItem. A FolderItem can represent any item that can exist in
a folder on the desktop (file, application, or another folder). To
store a FolderItem object, you must first declare a variable of type
FolderItem as in this example:

Dim f as FolderItem

In this case, f is now an object with properties. One of the
properties of a FolderItem is its name which is the name of the
file, application, or folder that the FolderItem represents. The
variable f’s name property could then be assigned to say, variable
n like this:

n=f.name
BASIC Programming Concepts

Storing Values in Properties and Variables
The Dim statement creates the variable but when does the
variable get erased from memory? You will find out the answer to
that question in the next chapter.

Just like properties, you can only assign values to variables that
are compatible with the variable’s data type. The last line of the
following example generates an error because the types don’t
match:

Dim x as integer

Dim y as string

x=1

y="Hello"

z=x+y

In the example above x is a number and y is a string. An error is
generated because you can’t add different data types together.

The Dim statement also lets you create and type arrays. An array
is simply a variable that can contain multiple values of the same
data type. You create an array by specifying the number of
elements (values) of the array in parentheses. The number of
values that you specify in the Dim statement is actually one less
than the actual number of array elements because REALbasic
arrays always have an element zero. Such an array is sometimes
referred to as a zero-based array. For example, the statement:

Dim aNames (10) as string

creates a string array with eleven elements.

You can create multi-dimensional arrays in REALbasic. You do so
by indicating the size of each dimension. For example, the
statement:
BASIC Programming Concepts 125

126

BASIC Programming Concepts
Dim aNames (2,10) as string

creates a two-dimensional array with 3 rows and 11 columns.

You refer to an element of an array by placing the desired
element in parentheses. For example, the statement:

aNames(1,1)="Frank"

places the string “Frank” in array element (1,1).

Mathematical Operators
Performing mathematical calculations is a very common task in
programming. REALbasic supports all of the common
mathematical operations.

There are also many built-in mathematical functions. See the
Language Reference for more information.

REALbasic supports standard mathematical precedence. This
means that equations surrounded by parenthesis are handled
first. REALbasic will begin with the set of parenthesis that is
embedded inside the most other sets of parenthesis. Next any
multiplication or division from left to right is performed. Finally

Operation Performed Operator Example

Addition + 2 + 3 = 5

Subtraction - 3 - 2 = 1

Multiplication * 3 * 2 = 6

Floating Point Division / 6 / 4 = 1.5

Integer Division \ 6 \ 4 = 1

Modulo Mod 6 Mod 3 = 0

6 Mod 4 = 2
BASIC Programming Concepts

Storing Values in Properties and Variables
any addition or subtraction is performed. In the example below,
the three expressions return different results because of the
placement of parentheses:

Constants
You can create constants in REALbasic at either the local or global
level. A local constant is assigned its value within a method and
can be referred to anywhere within that method. A global
constant can be created only within a module and can be
referred to anywhere in your application. Global constants are
described in the section “Adding Constants to Modules” on
page 199.

Global constants can make it easier to maintain your code
because you can adopt the convention of defining your constants
at one central place in the application. Whenever you need to
modify a constant, you know where to find its definition and you
can be sure that the change will take effect throughout the
application.

Global constants in REALbasic also provide a very handy way to
manage multiple language versions of your application. This
feature is discussed in the section “Using Constants to Localize
Your Application” on page 200.

To define a local constant, use the keyword Const within a
method, followed by an assignment statement. That is,

Const <constname> = <value>

Expression Result

2+3*(5+3) 26

(2+3)*(5+3) 40

2+(3*5)+3 20
BASIC Programming Concepts 127

128

BASIC Programming Concepts
You do not have to type the constant using a DIM statement. For
example, the following code is acceptable:

Const Accept="OK"

bevelbutton1.caption=Accept

This code sets the caption of bevelbutton1 to “OK”.

Reserved Words
The following words should not be used as variable names
because they are used as part of the REALbasic language itself:

TABLE 35. Reserved Words

And Mod

Array New

As Next

Boolean Nil

Case Not

Color Of

Dim Or

Do Raise

Double Redim

Downto Rem

Else Return

ElseIf Select

End Self

Exception Single

Exit Step

FALSE String

For Sub

Function Then

GoTo To
BASIC Programming Concepts

Executing Instructions with Methods
Executing Instructions with
Methods
A method is one or more instructions that are performed to
accomplish a specific task. REALbasic has many built-in methods.
For example, the Quit method causes your application to exit to
the Finder. Some object types (classes) have built-in methods. For
example, the ListBox class has a method called AddRow for
adding rows to a ListBox (as the name implies). You can also
create your own custom methods. Just like variables, methods
are given names to describe them and the same rules apply: the
name can be any length, but must start with a letter and can
contain only alphanumeric values (a-z, A-Z, 0-9).

You can also write your own methods and use them in your code.
The following is an example of a simple method that calculates
how many days old a person is in 1998 who was born in 1960:

Dim yearBorn, thisYear, daysOld as Integer

yearBorn=1960

thisYear=1998

daysOld=(thisYear-yearBorn)*365

If TRUE

Integer Until

Isa Var

Loop Wend

Me While

TABLE 35. Reserved Words (Continued)
BASIC Programming Concepts 129

130

BASIC Programming Concepts
Methods can, of course, be far more complex and longer than
this example. There are three different places you can put your
code. You will learn about these in the next chapter.

Documenting (Commenting) Your Code
Documenting your code is important because while it might
make sense at the time you write it, it may not make sense days
or weeks later. Also, if someone else has to understand your
methods, documentation will make their job a whole lot easier.
Comments can be added to your code as separate lines or to the
right of any code on an existing line. Comments are ignored by
REALbasic when it runs your application and have no impact on
performance. In order for the REALbasic compiler to ignore your
comments, you must start the comment with a backwards
hyphen (‘), two forward slashes (//) or the word REM (short for
reminder). The example below shows how the previous example
could be commented:

//Create the necessary variables

Dim yearBorn, thisYear, daysOld as Integer

yearBorn=1960 //set the year they were born

thisYear=1998 //store the current year

//Now calculate the number of days old

daysOld=(thisYear-yearBorn)*365

Comments in your code appear in red automatically.

If you have several consecutive lines that you want to convert to
comments, highlight the lines and press Command-' (up-down
quote). You also use this keystroke to convert the lines of
comments back to executable code. This technique is especially
BASIC Programming Concepts

Executing Instructions with Methods
useful if you want to temporarily convert several lines of
programming statements to comments.

Passing Values to Methods
Some of REALbasic’s built-in methods require one or more pieces
of information to perform their function. These pieces of
information are called parameters. Parameters are passed to a
method placing them to the right of the method name in your
code. In the example below, the AddRow method of a ListBox
called ListBox1 is being called. AddRow requires one parameter
which is the text that should be displayed in the new row:

ListBox1.AddRow "January"

If a method requires more than one parameter, commas are used
to separate them. The ListBox class has a method called
InsertRow which is used to insert new rows into a ListBox at any
position. The InsertRow method requires two values: the row
number where the new row should appear and the text value
that should be displayed in the new row. Because more than one
parameter is required, the parameters are separated by commas:

ListBox1.InsertRow 3, "January"

Parameters can also be variables. If a variable is passed as a
parameter, it is the current value of the variable that is passed. In
the example below, a variable is assigned a value and then
passed as a parameter:

Month="January"

ListBox1.InsertRow 3, Month
BASIC Programming Concepts 131

132

BASIC Programming Concepts
In the next chapter, you will learn how to define parameters for
your own custom methods.

Returning Values from Methods
Some methods return values. This means that a value is passed
back from the method to the line of code that called the method.
For example, REALbasic’s built-in method, Ticks, returns the
number of ticks (60th’s of a second) that have passed since you
turned on your computer. You can assign the value returned by a
method the same way you assign a value. In the example below,
the value returned by Ticks is assigned to the variable x:

x=Ticks

Some methods require parameters and return a value. For
example, the Chr method returns the character whose ASCII
code is passed to it. When you pass parameters to a method that
returns a value, the parameters must be enclosed in parenthesis.
In the example below, the Chr method is passed 13 (the ASCII
code for a carriage return) and returns a carriage return to the
variable x:

x=Chr(13)

The parentheses are required because the value returned might
be passed as a parameter to yet another method. Without the
parentheses, it would be difficult to distinguish which parameters
were being passed to which method. In the example below, the
numeric value returned by the Len method (which returns the
number of characters in the string passed to it) is then passed to
the Str method (which converts a numeric value to a string). The
string returned by the Str method is then passed as a parameter
to the InsertRow method of a ListBox:
BASIC Programming Concepts

Executing Instructions with Methods
ListBox1.InsertRow 3, Str(Len("Hello"))

Methods that return a value are also referred to as functions. In
the REALbasic Language Reference, the names of methods that
return a value are followed by the word function. In the next
chapter, you will learn how to return values from your own
custom functions.

Passing Parameters by Value and by Reference
By default, you pass values to a method by value. When you do
so, the method receives a copy of the data in the object that you
pass. Your method receives the data and can perform operations
on it.

When you write your own methods, you have the option of
passing information by reference. When you pass information by
reference, you actually pass a pointer to the object containing the
information. The practical advantage of this technique is that the
method can change the values of each parameter. When you
pass parameters by value, you can’t do this because the
parameter only represents a copy of the data itself.

Passing parameters by reference is especially valuable when your
method must return several values. When you pass parameters
by value, the method can return only one value. You do this by
making the method a function and obtaining the value as the
result of the function.

You use the keywords ByVal or ByRef to specify the type of
parameter passing. To pass a parameter by reference, use the
ByRef keyword in the method declaration. For example, Figure 51
on page 134 shows two parameters that are declared ByRef. The
method can then replace both parameters with computed values.
BASIC Programming Concepts 133

134

BASIC Programming Concepts
FIGURE 51. Declaring a parameter ByRef

Suppose the code that calls this method is:

dim a as integer

a=3

powers a

editField1.text=str(a)

and the method is simply:

a=a*a

The EditField will display the number 9.

When you want to use parameter passing by value, you do not
need to use the ByVal keyword explicitly. Parameter passing by
value is the default and is used unless overridden by use of ByRef.

Comparison Operators
There are many times when you need to compare two values to
determine whether or not a particular condition exists. When
making a comparison, what you are really doing is making a
statement that will either be True or False. For example, the
BASIC Programming Concepts

Comparison Operators
statement “My dog is a cat” evaluates to False. However, the
statement “My dog weighs more than my cat” may evaluate to
True. The table below shows examples of the comparison
operators that are available:

String and boolean values can also be used for comparisons.
String comparisons are case insensitive and alphabetical. This
means that “Jannice” and “jannice” are equal. But “Jannice” is
less than “Jason” because “Jannice” falls alphabetically before
“Jason”. If you need to make case sensitive or lexicographic
comparisons, See “StrComp Function” on page 344 of the
Language Reference.

Testing Multiple Comparisons
You can test more than one comparison at a time using the And
and Or operators.

And Operator

Use this operator when you need to know if all comparisons
evaluate to True. In the example below, if the variable x is 5 then
the expression evaluates to False:

x>1 And x<5

Description Symbol
Numeric
Example Evaluates To

Equality = 5=5 True

Inequality <> 5<>5 False

Greater Than > 6>5 True

Less Than < 6<5 False

Greater Than or Equal
To

>= 6>=5 True

Less Than or Equal To <= 6<=5 False
BASIC Programming Concepts 135

136

BASIC Programming Concepts
Or Operator

Use this operator when you need to know if any of the
comparisons evaluate to True. In the example below, if the
variable x is 5 then the expression evaluates to True:

x>1 Or x<5

Executing Instructions
Repeatedly with Loops
There may be times when one or more lines of code need to be
executed more than once. If you know how many times the code
should execute, you could simply repeat the code that many
times. For example, if you wanted a pushbutton to beep three
times when clicked, you could simply put the Beep method in
your code three times like this:

Beep

Beep

Beep

But say you need it to beep fifty times or perhaps until a certain
condition is met? Simply repeating the code over and over in
these cases will either be just tedious or not possible. How do you
solve this problem? The answer is a loop.

Loops execute one or more lines of code over and over again.
BASIC Programming Concepts

Executing Instructions Repeatedly with Loops
While...Wend
A While loop executes one or more lines of code between the
While and the Wend (While End) statements. The code between
these statements is executed repeatedly, provided that the
condition passed to the While statement continues to evaluate to
True. Consider the following example:

Dim n As Integer

While n<10

 n=n+1

 Beep

Wend

The variable “n” will be zero by default when it is created by the
Dim statement. Because zero is less than ten, execution will move
inside the While...Wend loop. The variable n is incremented by
one. The Beep method plays the alert sound. REALbasic checks to
see if the condition is still True and if it is, then the code inside the
loop executes again. This continues until the condition is no
longer True. If the variable n was not less than ten in the first
place, execution would continue at the line of code after the
Wend statement.

Do...Loop
Do loops are similar to While loops but a bit more flexible. Do
loops continue to execute all lines of code between the Do and
Loop statements until a particular condition is True. While loops
on the other hand execute as long as the condition remains True.
Do loops provide more flexibility than While loops because they
allow you to test the condition at the beginning or end of the
loop. The example below shows two loops; one testing the
condition at the beginning and the other testing it at the end:
BASIC Programming Concepts 137

138

BASIC Programming Concepts
Do Until n=10

 n=n+1

 Beep

Loop

Do

 n=n+1

 Beep

Loop Until n=10

The difference between these two loops is this. In the first case,
the loop will not execute if the variable n is already equal to ten.
The second loop executes at least once regardless of the value of
n because the condition is not tested until the end of the loop.

It is possible to create a Do loop that does not test for any
condition. Consider this loop:

Do

 n=n+1

 Beep

Loop

Because there is no test, this loop will run endlessly. You can call
the Exit method to force a loop to exit without testing for a
condition. However, this is poor design because you have to read
through the code to figure out what will cause the loop to end.
BASIC Programming Concepts

Executing Instructions Repeatedly with Loops
Endless Loops

Make sure that the code inside your While and Do loops
eventually causes the condition to be satisfied. Otherwise, you
will end up with an endless loop that runs forever. Should you do
this accidently, you can attempt to switch back to the Design
environment by clicking on one of the Design environment’s
windows. Then you can choose Debug . Kill (q-K) to stop the
loop. If this doesn’t work, you will need to force REALbasic to
quit by pressing q-Option-Escape.

For...Next
While and Do loops are great when the number of times the loop
should execute cannot be determined because it’s based on a
condition. A For loop is for cases in which you can determine the
number of times to execute the loop. For example, suppose you
want to add the numbers one through ten to a ListBox. Since you
know exactly how many times the code should execute, a For
loop is the right choice. For loops also differ from While and Do
loops because For loops have a loop counter variable, a starting
value for that variable and an ending value. The basic
construction of a For loop is:

Dim counter As Integer

For counter=startingValue to endingValue

 [your code goes here]

Next

Notice the Dim statement is declaring counter as an Integer. This
is because the counter variable in a For loop must be an integer.
The first time through the loop, the counter variable will be set to
startingValue. When the loop reaches the Next statement, the
BASIC Programming Concepts 139

140

BASIC Programming Concepts
counter variable will be incremented by one. When the Next
statement is reached and the counter variable is equal to
endingValue, the counter will be incremented and the loop will
end.

Let’s take a look at the example mentioned earlier. You want to
add the numbers one through ten to a ListBox. The following
example accomplishes that:

Dim i As Integer

For i=1 to 10

 ListBox1.AddRow Str(i)

Next

The counter variable (i in this case) is passed to the Str function to
be converted to a string so that it can be passed to the AddRow
method of ListBox1.

Note: The letter “i” is commonly used as the loop counter for historical
reasons. In FORTRAN, the letters I to N are typed as integers by default.
Therefore, FORTRAN programmers began the practice of using those letters as
counters, and in the order they appear in the alphabet. That is, if a FORTRAN
programmer needed to nest one loop in another (as is described on
page 141), he would use j as the counter for the inner loop. This convention
made it easy for FORTRAN programmers to follow the logic of code that
processed multi-dimensional arrays.

By default, For loops increment the counter by one. You can
specify another increment value using the Step statement. In this
example, the Step statement is added to increment the counter
variable by 5 instead of 1:

Dim i As Integer

For i=5 to 100 Step 5
BASIC Programming Concepts

Executing Instructions Repeatedly with Loops
 ListBox1.AddRow Str(i)

Next

In this example, the For loop starts the counter at 100 and
decrements by 5:

Dim i As Integer

For i=100 to 1 Step -5

 ListBox1.AddRow Str(i)

Next

A For loop (as well as any other kind of loop) can have another
loop inside it. In the case of a For loop, the only thing you will
have to watch out for is making sure that the counter variables
are different so that the loops won’t confuse each other. The
example below uses a For loop embedded inside another For
loop to go through all the cells of a multi-column ListBox
counting the number of items the word “Hello” appears:

Dim row, column, count As Integer

For row=0 to listBox1.ListCount-1

 For column=0 to listBox1.ColumnCount-1

 if listbox1.cell(row,column)="hello" then

 count=count+1

 End if

 Next

Next

MsgBox Str(count)
BASIC Programming Concepts 141

142

BASIC Programming Concepts
For loops are generally more efficient than Do and While loops
because the compiled code generated is more efficient.

Making Decisions with Branching
The methods you write execute one line at a time from top to
bottom, left to right. There will be times when you want your
application to execute some of its code based on certain
conditions. When your application’s logic needs to make
decisions it’s called branching. This allows you to control what
code gets executed and when. REALbasic provides two branching
statements: If…Then and Select…Case.

If…Then…End If
The If…Then statement is used when your code needs to test a
single boolean (True or False) condition and then execute code
based on that condition. If the condition you are testing is True,
then the lines of code you place between the If...Then line and
the End If line are executed.

If condition Then

 [Your code goes here]

End If

Say you want to test the integer variable month and if its value
is 1, execute some code:

If month=1 Then

 [Your code goes here]
BASIC Programming Concepts

Making Decisions with Branching
End If

month=1 is a boolean expression; it’s either True or False. The
variable month is either 1 or it’s not 1.

Suppose you have a pushbutton that performs an additional task
if a particular checkbox is checked. The value property of a
checkbox is boolean so you can test it in an If statement easily:

If checkbox1.value Then

 [Your code goes here]

End If

If...Then...Else...End If

In some cases, you need to perform one action if the boolean
condition is True and another if it is False. In these cases, you can
use the optional Else clause of an If statement. The Else clause
allows you to divide the code to be executed into two sections:
the code that is executed when the condition is True and the
code that is executed when it’s False. In this example, one
message is displayed if the condition is True while another is
displayed if it’s False:

If month=1 Then

 MsgBox "It’s January."

Else

 MsgBox "It’s not January."

End If

If...Then...ElseIf...End If

In some cases, you need to perform an additional test when the
initial condition is False. Use the optional ElseIf statement. In the
BASIC Programming Concepts 143

144

BASIC Programming Concepts
example below, if the variable month is not 1, then the ElseIf
statement performs an additional test:

If month=1 Then

 MsgBox "It’s January."

ElseIf month<4 Then

 MsgBox "It’s still Winter."

End If

You could, of course, use an additional If...Then...EndIf statement
inside the Else portion of the first If statement to perform another
test. However, this adds another EndIf and needlessly complicates
your code. You can use as many ElseIf statements as you need.

In this example, another ElseIf has been added to perform an
additional test:

If month=1 Then

 MsgBox "It’s January."

ElseIf month<4 Then

 MsgBox "It’s still Winter."

ElseIf month<6 Then

 MsgBox "It must be Spring."

End If

If the initial condition is False, REALbasic continues to test the
ElseIf conditions until it finds one that is True. It then executes the
code associated with that ElseIf statement and continues
executing the lines of code that follow the End If statement.
BASIC Programming Concepts

Making Decisions with Branching
Select...Case
When you need to test a property or variable for one of many
possible values and then take action based on that value, use a
Select...Case statement. Consider the following example that
tests a variable (dayNumber) and displays a message to the user
to tell him which day of the week it is:

If dayNumber=2 Then

 MsgBox "It’s Monday."

ElseIf dayNumber=3 Then

 MsgBox "It’s Tuesday."

ElseIf dayNumber=4 Then

 MsgBox "It’s Wednesday."

ElseIf dayNumber=5 Then

 MsgBox "It’s Thursday."

ElseIf dayNumber=6 Then

 MsgBox "It’s Friday."

Else

 MsgBox "It’s the weekend."

End If

No two of these conditions can be True at the same time. While
this method of writing the code works, it’s not that easy to read.
In this example, the same code is presented in a Select...Case
statement, making it far easier to read:

Select Case dayNumber

Case 2
BASIC Programming Concepts 145

146

BASIC Programming Concepts
 MsgBox "It’s Monday."

Case 3

 MsgBox "It’s Tuesday."

Case 4

 MsgBox "It’s Wednesday."

Case 5

 MsgBox "It’s Thursday."

Case 6

 MsgBox "It’s Friday."

Else

 MsgBox "It’s the weekend."

End Select

The Select...Case statement compares the variable or property
passed in the first line to each case value. Once a match is found,
the code between that case and the next is executed.
Select...Case statements can contain an Else statement to handle
all other values not explicitly handled by a case.

The Select...Case statement supports string and integer
comparisons only. If you need to compare boolean, single or
double values, or if you need to use a comparison operator other
than the equality operator (=), use an If statement.
BASIC Programming Concepts

CHAPTER 5 Programming with
Events and Objects
Most of your code will execute in response to something the user
does, such as selecting a menu item, clicking on a button, or
typing in an EditField. This kind of programming is called
event-driven programming because events cause the
programming code to execute. Understanding how events work
and which user actions cause which events to occur will take you
a long way towards getting your application to do what you
want it to do.

In this chapter you will learn about event-driven programming,
how to use the Code Editor, and how to get your application to
respond when the user clicks on interface objects or types on the
keyboard.
REALbasic Developer’s Guide 147

148

Programming with Events and Objects
Contents
• Understanding Event-Driven Programming
• Using the Code Editor
• Printing and Exporting Your Code
• Responding to User Actions with Event Handlers

Understanding Event-Driven
Programming
Your users will interact with your applications by clicking the
mouse and typing on the keyboard. Each time the user clicks the
mouse on a part of your application’s interface or types
something in an EditField, an event occurs. The event is simply
the action the user took (the mouse click or the key press) and
where it took place (on this button, on that menu item or in this
EditField). Some events can indirectly cause other events. For
example, when the user selects a menu item (causing an event)
that opens a window, it causes another event — the opening of
the window).

Each object you create in REALbasic can include, as part of itself,
the code you write that executes in response to the various
events that can occur for that type of object. For example, a
pushbutton can include the code you wish to execute when the
pushbutton is pushed. An object can even respond to events you
might not have thought it could — such as responding as the
user moves the pointer over a button. When the user causes an
event, REALbasic checks to see if the object the event was
directed towards has any code that needs to execute in response
to that event. If the object has code for the event, REALbasic
executes that code and then waits for the user to cause another
Programming with Events and Objects

Using The Code Editor
event to occur. This continues until something causes the
application to quit (usually the user’s choosing Quit from the File
menu).

As mentioned earlier, the user can also indirectly cause events to
occur. Buttons, for example, have an event called Action which
occurs when the user clicks the button. The code that handles
the response to an event is called (appropriately enough) an
event handler. Suppose the button’s Action event handler has
code that opens another window. When the user clicks the
button, the Action event handler opens a window and REALbasic
sends an Open event to the window. This is not an event the user
caused directly. The user caused this event indirectly by clicking
the button whose code opened the new window.

There are many events that can occur to each object in your
application. The good news is that you don’t have to learn about
all of them. You simply need to know where to look for them so
that, if you want to respond to an event, you can find out if the
object is able to respond to that event. Later in this chapter, you
will learn about many of the common events you will need to be
aware of in order to create your applications.

Using The Code Editor
The Code Editor is used to enter the code for the various events
that can occur for the objects that make up your application’s
interface. It’s also used to add properties and methods to objects.
The Code Editor has two sections: the Browser and the Editor
itself.
Programming with Events and Objects 149

150

Programming with Events and Objects

Disclosure triangle
FIGURE 52. The Code Editor

The Browser is a hierarchical list of the programming-related
components that make up a particular window. The Browser lists
the window’s:

• Controls
• Events
• Menu Handlers
• Methods
• Properties

You will learn more about each of these items later in this
chapter.

The EditorThe Object List
Programming with Events and Objects

Using The Code Editor
Opening The Code Editor
The Code Editor is used to edit the code for controls, windows,
classes, and modules. You will learn more about classes and
modules in later chapters. There are two ways to open the Code
Editor for a specific window.

To open the Code Editor when the window is already open in the
interface builder, double-click anywhere in the window (but not
on a control) or press Option-Tab.

To open the Code Editor from the Project window without
opening the window in the interface builder, click on the window
whose code you wish to view then press q-Tab.

To open the Code Editor for a specific control, do this:

1. Open the window in the interface builder that contains the control.

2. Double-click on the control or single-click and then press the Return
key.

This will open the Code Editor for the control’s parent window.
REALbasic will then automatically expand the control’s category,
expand the control you double-clicked on, and select either the
default event handler (e.g., the Action event handler for a
pushbutton) or the first event handler for the control.

Configuring the Code Editor
You can specify various preferences for the Code Editor. Choose
Edit . Editor Settings to display the Editor Settings dialog box,
shown in Figure 53.
Programming with Events and Objects 151

152

Programming with Events and Objects
FIGURE 53. The Editor Settings Dialog box

You can specify the font and font size separately for screen
display and printing. For printing, you can elect to retain bold
keywords and the colors used on-screen. The default Control
Font is used as the default text font for controls that use text,
such as PushButtons and Tab panels. By default, REALbasic hides
the Tools, Properties, and Colors windows when the Code Editor
window is active. You can selectively turn this set of options off.

The Browser
To view the items in each category, click the disclosure triangle to
the left of the category name. For example, to view all of the
controls for the window, click the disclosure triangle next to the
Controls category name. When you do this, the list of controls
will appear below and to the right. Each of controls can then be
expanded in the same way to display a list of the event handlers
for that control. For example, in Figure 52, “The Code Editor,” on
page 150 you can see that window1 has a pushbutton named
Programming with Events and Objects

Using The Code Editor

Selected event
handler
pushbutton1. You can also see that pushbuttons have the
following event handlers:

• Action
• Close
• MouseEnter
• MouseExit
• MouseMove
• Open

You will learn more about these event handlers later in this
chapter. Clicking on a control’s event handler in the Browser list
displays the code associated with that event handler in the Code
Editor.

FIGURE 54. Some code associated with a control’s event handler

Items in the Browser that have code associated with them appear
in bold. For example, if one of a control’s event handlers has code
in it, the event handler’s name, the control’s name and the
Controls category itself, will all appear in bold. When you are
Programming with Events and Objects 153

154

Programming with Events and Objects
trying to find some code, the bold style acts as a visual cue to let
you know if there is any code you might need to look at.

Note: When you add new controls to a window, REALbasic gives them default
names. For example, the first pushbutton you add to a window will be named
“PushButton1” by default. A name like that describes the type of object but
not what it does. Fortunately, the Browser displays icons next to each control
to make the control type clear. This allows you to give the controls names that
describe their function rather than their type. Figure 54 on page 153 shows an
example of this. The pushbutton is named “OK” rather than “pushbutton1”
and the EditField is named “FirstName” instead of “EditField1.”

Understanding Methods in the Code Editor
Event handlers, Menu handlers, and Methods are all, in fact,
methods. Event and Menu handlers are simply methods that are
called when certain events occur or menu items are selected.
When you select a method, its code appears in the Editor.
Methods are made up of three parts: The parameter line, your
lines of code, and the End method line.

FIGURE 55. The three parts of a method

The Parameter Line

The parameter line displays Sub (short for subroutine) if the
method does not return any values, followed by the name of the

Parameter line

End Method

Your Code
Programming with Events and Objects

Using The Code Editor
method or event handler, and then any parameters surrounded
by parens. The example in Figure 56 on page 155 shows the
MouseMove event handler. This event handler is called anytime
the mouse is moved inside the control. It is passed two parame-
ters that can be used to determine the current mouse location.

FIGURE 56. The parts of the parameter line

For more information on parameter passing, see “Passing Values
to Methods” on page 131 of chapter 4.

If the method returns a value, it’s called a Function. A function’s
parameter line begins with Function instead of Sub and has an
additional parameter; the parameter for the value that will be
returned by the function. The declaration of the value returned
by the function follows the parameters. Figure 57 on page 155
shows the parameter line for an EditField’s KeyDown event han-
dler. This event handler is called when the user types a key in an
EditField. It is passed the key that was pressed in the parameter
key. The value returned is a boolean. If you return True from the
function, the event is discarded as if it never happened at all and
the key that was pressed will not appear in the EditField.

FIGURE 57. The parameter line of a function

For more information on functions, see “Returning Values from
Methods” on page 132 of chapter 4.

Name Parameters

The value returned
Programming with Events and Objects 155

156

Programming with Events and Objects
Entering Your Code in the Code Editor

As you enter your code, REALbasic does a few things for you
automatically. First, it indents your If...Then, Select...Case, and
loops as you type them to make it easier to see which lines of
code fall inside a particular statement. Figure 55 on page 154
shows an example of this indentation.

As you type, REALbasic also attempts to guess what you are
typing and makes a suggestion to complete the typing for you.
Suppose you have a ListBox control called “Listbox1.” As you
type the first few characters of the control’s name in the Code
Editor, REALbasic will guess you mean ListBox1. It will then
display the rest of the name in light grey. Figure 58 on page 156
shows an example of this. If you want REALbasic to complete the
entry for you, simply press the Tab key. If REALbasic has guessed
incorrectly, simply continue typing the rest of the name.

FIGURE 58. REALbasic’s auto-code completion feature in action

Auto-code completion also works for method and property
names.

Getting More Usable Space in the Code Editor

There may be times when you need more vertical or horizontal
space in the Code Editor. You can, of course, resize the Code
Editor window to get more space, but this isn’t always an option.
One way to get more space is to use a smaller font. You can set
the font and font size for the Code Editor by choosing Editor
Settings from the Edit menu and selecting the Code Editor font
and font size.

Before

After
Programming with Events and Objects

Using The Code Editor
You can also hide the Browser when you don’t need it. You can
hide the Browser by dragging the resize bar (the space between
the Browser and the Code Editor) all the way to the left side of
the Code Editor window.

FIGURE 59. The Code Editor’s Resize Bar

When you do this, the Browser is hidden and the resize bar is
reduced to a small square in the bottom left corner of the Code
Editor.

The Resize Bar
Programming with Events and Objects 157

158

Programming with Events and Objects
FIGURE 60. The Code Editor with the Browser hidden

As you can see in Figure 60, this gives you quite a bit of
horizontal space to work with in the Code Editor. You can show
the Browser again by dragging the Resize Bar towards the right
side of the Code Editor window.

If you prefer to use the keyboard, all of this dragging might seem
tedious. The good news is there is a keyboard shortcut for hiding
and showing the Browser. After you have hidden the Browser by
dragging, press Shift-Tab to show the Browser. This will also place
the focus on the Browser, allowing you to use the arrow keys to
move between items. You can then hide the Browser again by
pressing Shift-Tab.

You might notice that Shift-Tab doesn’t appear to always hide
and show the Browser. It will always work if you are using the
keyboard to move between items in the Browser. If you use the
mouse to click on an item in the Browser, Shift-Tab will simply

The Resize Bar
Programming with Events and Objects

Using The Code Editor
move the focus between the Browser and the Code Editor. The
assumption here is that if you are using the mouse to select items
in the Browser, you don’t want the focus to move to the Browser
when you click in it. If it did, you would then have to click in the
Editor to give it the focus to continue typing your code.

Note: The Browser will expand and collapse the categories (Controls, Events,
Menu Handlers, Properties) when they are selected by pressing q-Left Arrow
(to collapse) and q-Right Arrow (to expand) just like the Macintosh Finder.

Using Contextual Menus
Another way to access the items in the Browser is with contextual
menus. Contextual menus are context-sensitive pop-up menus
that appear when you Control-click on an interface item.
Control-clicking in the Code Editor displays a contextual menu
with all of the items from the Browser. This is especially handy
when you have the Browser hidden to provide more horizontal
space in the Code Editor. Although contextual menus were
added in Mac OS 8, REALbasic’s contextual menus work with
System 7 as well. Figure 61 shows a contextual menu.
Programming with Events and Objects 159

160

Programming with Events and Objects
FIGURE 61. The Code Editor’s contextual menus

The contextual menu will only show categories that have items.
For example, in Figure 61, Menu Handlers and Properties are not
displayed because the window has no menu handlers or
properties.

Find and Replace
Use the Find/Replace window to find something in your code and
perhaps replace it with something else. With this window you
can find the next occurrence of the item you are searching for
and then, optionally, replace it with something else.
Programming with Events and Objects

Using The Code Editor
FIGURE 62. The Find/Replace Window

You can also determine the scope of the find and replace.
Table 36 describes the various scopes of find and replace.

The Find/Replace window’s buttons give you the ability to find
the next occurrence of the item you are searching for, replace the
highlighted text in the Code Editor with the text in the Find
window’s Replace field, and replace all occurrences within the
chosen scope.

TABLE 36. The Find/Replace Scope

Scope Description

Source Find and replace will affect only the currently displayed
method.

Module Find and replace will affect only the methods of the current
window, module, or class.

Project Find and replace will affect all code in the project.
Programming with Events and Objects 161

162

Programming with Events and Objects
Printing Your Code
When you need to print your source code, choose File . Print
(q-P). The Print Code dialog box lets you choose how much code
you wish to print.

FIGURE 63. The Print Code dialog box

TABLE 37. Print Code dialog box options

Option Description

Current Source Prints the currently displayed method.

Current Module Prints all code for the currently displayed window, mod-
ule, or class.

Entire Project Prints all code for the entire project.
Programming with Events and Objects

Importing and Exporting Your Classes, Menus, Modules, and Windows
Importing and Exporting Your
Classes, Menus, Modules, and
Windows
REALbasic makes it easy to import and export the various objects
you can create. You can also import files you wish to use in your
project, such as REALbasic code, REALbasic windows, REALbasic
menus, sounds, pictures, QuickTime movies, REAL databases,
and resources.

Importing
To import a file you wish to use in your project, simply drag it
from the desktop and drop it in your Project window. Or, if the
file is not conveniently located on the desktop, choose
File . Import. An open-file dialog box appears, allowing you to
navigate to and import the file.

Some of the items you import are copied into your project. Some
types of objects are not copied but instead an alias to the original
file is stored inside your project. When you build a stand-alone
version of your project, most of these files are then copied into
the stand-alone application. Table 38 on page 164 shows how all
of the different file types are handled.
Programming with Events and Objects 163

164

Programming with Events and Objects
TABLE 38. How REALbasic handles imported files

Because REALbasic stores aliases to your imported files, they can
be renamed and even moved. If both the project file and the
imported files are moved to another drive, REALbasic may have
trouble locating the files. Should this happen, REALbasic will ask
you to locate any files it can’t find.

All file types, except PowerPC shared libraries, REAL databases,
and QuickTime movies, are included in the stand-alone version of
your application, so there is no need to include them with your
application when you distribute it.

Exporting
The code for methods, events, constants, properties, and so forth
can be dragged out of the Code Editor as text clippings. You can
either select some code in the Code Editor and drag or select the

File Type Copied Into Project?
Copied into stand
alone applications?

Bitmap, PICT, JPEG, GIF N Y

Cursors Y Y

PowerPC Shared
Libraries

N N

QuickTime Movies N Y

REAL Databases N N

REALbasic Classes Y Y

REALbasic Menubars Y Y

REALbasic Modules Y Y

REALbasic Plug-ins N Y

REALbasic Windows Y Y

Resources N Y

Sounds N Y

XCMDs and XFCNs N Y
Programming with Events and Objects

Importing and Exporting Your Classes, Menus, Modules, and Windows
name of the object in the Browser and drag that object. In the
latter case, all the code associated with the object will be
included in the text clipping.

You can also export your source code to a text file or in
REALbasic’s native format using an Export… menu command.
Which method you use depends on what you will be doing with
the exported code. If you are going to be including code in some
kind of documentation, drag the code to the other application or
export your code to a text file. Choosing File . Export Source will
export all of the code in the project to a text file. This is the same
as the drag and drop method.

If you want to export a window, module, class, or menu bar for
use in another REALbasic project, do this:

1. Open the item so that it’s displayed on the screen or select it in the
Project window.

2. Choose File . Export Window/Menu/Module/Class.

3. When the Save As dialog box appear, type a name and click the Save
button.

Protecting Your Source Code
If you want to distribute a copy of a window, menu bar, module,
or class for others to use but you do not want them to be able to
view or edit your code, select the Protected option in the Save As
dialog box when you export.
Programming with Events and Objects 165

166

Programming with Events and Objects
Responding To User Actions with
Event Handlers
The applications you create with REALbasic are event-driven. This
means that the user takes some action which results in
something happening. For example, the user chooses Print from
the File menu to print something or clicks a button to confirm a
message in a dialog box. The user takes an action, and the
application reacts to that action. The user’s actions are called
events. Earlier in this chapter, you learned that some events are
caused directly by the user. For example, the Action event of a
pushbutton occurs when the user clicks the pushbutton. Other
events are indirectly caused by the user, such as the Open event
of a window that occurs when the window opens.

The key to writing the code for your applications is to know what
events (both direct and indirect) you can respond to.

Object-Oriented Programming
REALbasic’s programming language is object-oriented. This
means that the code that is executed in response to an event is
actually part of the object itself. Code that handles an event is
called (appropriately) an event handler.

Objects can also have their own methods. This allows you to
associate code with an object even though it may not be
executed in response to an event directed at that object. For
example, suppose you have a window that displays the contents
of a document and allows the user to edit it. It would make sense
that the window would know how to save changes made to the
document. You can add a method to the window that is called
automatically when the user indicates that he wants to save
changes to the document.
Programming with Events and Objects

Responding To User Actions with Event Handlers
Because objects in your application are supposed to be just like
objects in the real world, you want to associate code with the
object that it truly belongs to. For example, if you wanted a
window to change its size automatically when it opens based on
certain conditions, it makes the most sense to put that code in
the window’s open event handler. On the other hand, if you want
a button to be enabled or disabled when the window opens that
the button is a part of, you would put that code in the
pushbutton’s open event handler because the code affects the
button. The code works perfectly in both places, but it is more
object-oriented to associate it with the pushbutton, since it
affects the pushbutton. For example, in the real world, when the
door to the room you are in suddenly opens, you probably turn to
look at it to see why it opened. The door does not turn your
head. You have that ability to react to the door opening (an
event). You choose to handle that event by turning and looking
in the direction of the door. That ability is part of you — just as
the code to enable or disable the button when the window
opens should be part of the button and not the window.

Another benefit of associating code with the appropriate object
is that the code goes with the object when you use the object
elsewhere. If the code is not associated with the object, you will
have to look for it or rewrite it. When you go somewhere, you
take your computer skills with you because they are part of you.

Windows

Events

Windows get many different events. Table 39 on page 168
describes these events in general. If you need specific information
Programming with Events and Objects 167

168

Programming with Events and Objects
about window events, see “Window Class” on page 256 of the
Language Reference.

TABLE 39. Window events

Event Description

Open The window is about to open but hasn’t been displayed
yet. Controls also receive Open events. A window receives
its Open event after all of the controls have received their
Open events.

Close The window is about to close but hasn’t closed yet. Con-
trols also receive Close events. A window receives its Close
event after all of the controls have received their Close
events.

CancelClose The Quit method has been called so the application is
about to quit. Returning True from this method will cancel
the quit and the application will remain open.

Resized The window has been resized by the user or by code that
changes the window’s Width or Height properties.

Moved The window has been moved by the user or by code that
changes the window’s Left or Top properties.

Paint Some portion of the window needs to be redrawn either
because the window is opening or it’s been exposed when
a window in front of it was moved or closed. This event
handler receives a Graphics object as a parameter which
represents the graphics that will be drawn in the window.
Graphics objects have their own methods for drawing
graphics. See “Graphics Class” in the Language Reference
for more information.

Enable-
MenuItems

While the window is front of all other windows, the user
has clicked in the menu bar to select a menu item or
pressed a menu item’s keyboard equivalent. This event
handler gives you a place to decide which menu items
should be enabled before the user can actually choose one.

DropObject A file, piece of text, or a picture has been dropped on the
window itself (not on a control in the window). This event
handler is passed a parameter that gives you access to the
item dropped.
Programming with Events and Objects

Responding To User Actions with Event Handlers
Opening Windows

There are two different techniques you can use to open
windows. The technique you use depends on what you are going
to do with the window once it’s open. If your application will
never have more than one copy of a particular window open at a

KeyDown A key has been pressed that has to be handled by the win-
dow. For example, the tab key is never sent to any control.
It is instead handled by the window itself. If the window
has no controls that can receive the focus, any keys that are
pressed will generate KeyDown events for the window.
This event handler is passed a parameter that tells you
which key was pressed.

MouseDown The mouse button has been pressed and has not yet been
released. You can return False in this event handler to filter
the event causing the window to act as if the mouse but-
ton was never clicked. This event handler receives parame-
ters that indicate where the mouse was clicked in local
window coordinates.

MouseUp The mouse button has been released inside the window.
This event will not occur unless you return True in the
MouseDown event handler. The idea behind this is that if
the mouse was never down, it can’t be up. This event han-
dler receives parameters that indicate where the mouse
was released in local window coordinates.

MouseDrag The user has moved the mouse inside the window (but not
over a control) while the mouse button is held down. This
event handler receives parameters that indicate where the
mouse is in local window coordinates.

MouseMove The user has moved the mouse inside the window. This
event handler receives parameters that indicate where the
mouse is in local window coordinates.

MouseEnter The user has moved the mouse inside the window from a
location outside the window.

MouseExit The user have moved the mouse outside the window from
a location inside the window.

TABLE 39. Window events (Continued)

Event Description
Programming with Events and Objects 169

170

Programming with Events and Objects
time, you can open the window simply by making reference to
any of the window’s properties or by using the window’s Show
method.

The following example opens a window by accessing one of the
window’s properties (the window title in this case):

aboutBoxWindow.Title="About My Application"

If you don’t need to change any properties of the window, you
can simply call its Show method to open it, as in this example:

aboutBoxWindow.Show

This technique works when you will only have one copy of the
window open at a time because the name of the window acts as
a reference to the window. If you have two copies of the window
open, REALbasic will access the window that is already open
rather than opening a second copy of the window.

If your application may have more than one copy of a window
open at a time, you need to use the New operator to explicitly
create a new instance of the window. To use the New operator,
you must have a local variable or a property defined as the
window you are going to open. This variable or property is used
to store a reference to the window once it has been created. You
can then use this reference to access the window.

Dim w as aboutBoxWindow

w=New aboutBoxWindow

Because aboutBoxWindow is an object of type Window, you can
also Dim the variable as a Window, as in this example:

Dim w as Window
Programming with Events and Objects

Responding To User Actions with Event Handlers
w=New aboutBoxWindow

This is beneficial when your code may open many different
windows and you can’t be sure which window it will need to
open, as in this example:

Dim w as Window

If theOptionKeyIsDown then

 w=New secretAboutBoxWindow

Else

 w=New aboutBoxWindow

End if

You could, of course, dimension two different variables; one as
secretAboutBoxWindow and the other as aboutBoxWindow. But
that might be a bit more confusing, especially if you had ten
possible windows.

Because windows are objects, you can also dimension the
variable as an object, as in this example:

Dim w as Object

w=New aboutBoxWindow

There is less of a need to dimension a window variable as type
“Object” than there is to use type “Window.” However, you
might use this technique when you are creating new instances of
controls on the fly. With controls, you can have a variable storing
a reference to many different kinds of controls. See “Creating
New Instances of Controls On The Fly” on page 181 for more
information. See “Accessing Controls, Methods, and Properties
Programming with Events and Objects 171

172

Programming with Events and Objects
of Other Windows” on page 176 for more information on how
to use window references.

Adding Properties to Windows

Properties of an object are simply pieces of information that help
define the object. Windows have many pre-defined properties
such as their title, width, height, etc. You can also add your own
properties to windows that allow you to store information that is
specific to the instance of the window. For example, if you have a
window that displays the contents of a document, you might
need to keep track of whether the user has modified the data to
determine if he should be given a chance to save changes when
he quits your application. Where do you keep track of this? Since
the window is effectively a representation of the document, you
can add a boolean property called Changed to the window.
When the user makes a change in the window that affects the
document, your code can change the value of the Changed
property from False to True. Later, when the user closes the
window, the code in the window’s Close event handler can check
the Changed property to determine if the user needs to be given
the opportunity to save his changes. The syntax for accessing the
properties you add to windows is the same as the syntax you use
to access a window’s pre-defined properties. For example to set
the Changed property of a window called
“myDocumentWindow” to True, you use the following syntax:

myDocumentWindow.Changed=True

The Changed property should be not changed (no pun intended)
from anywhere but the window. It wouldn’t make sense for
another window to be changing this property. However, six
months after you add a property to a window, you might have
forgotten this fact and add some code to another window that
changes the Changed property. To avoid this problem, you can
Programming with Events and Objects

Responding To User Actions with Event Handlers
make the Changed property private. Properties that are marked
as private can be accessed only by the window they are a part of.

To add a property to a window, do this:

1. Open the Code Editor for the window.

2. Choose Edit . New Property.

3. Enter the name of the property and define its type. For example, to
the Changed property would be entered as Changed as Boolean.

4. If this property should not be accessible by other code in other win-
dows, check the Private checkbox.

FIGURE 64. The Property Declaration window

To Edit a property you’ve added to a window, do this:

1. Open the Code Editor for the window that contains the property.

2. In the Browser, expand the Properties category to display the list of
properties for the window.

3. Double-click on the property or choose Edit . Edit (q-E) to edit it.

To Delete a property from a window, do this:

1. Open the Code Editor for the window that contains the property.

2. In the Browser, expand the Properties category to display the list of
properties for the window.

1. Click on the property you want to delete to select it.

2. Choose Edit . Delete.
Programming with Events and Objects 173

174

Programming with Events and Objects
The properties of a window can be accessed from any code
within the window itself or any of its controls, using the property
name alone. The window name is not required as in this example
that changes the window’s title:

Title="My New Window"

In the absence of the window name, the current window is
assumed.

Adding Methods to Windows

Like properties, windows can also have their own methods. The
benefit of associating a method with a window is that you can
keep code that will be used only with a particular window with
that window. For example, suppose you have a window that
displays the contents of a document. If the user can save changes
to the document in the window, you will need some code that
handles saving those changes. Since the window is handling the
document, it makes sense that the window should know how to
save changes to the document. Therefore, you might want to
add a method called SaveChanges to the window that handles
this. Later, should you decide to use this window for another
project, it will have the SaveChanges method.

You can pass parameters to methods you add to windows and
they can return a value, if necessary. Parameters are defined the
same way that properties are (e.g., Age as Integer). If the method
requires multiple parameters, the parameter definitions should be
separated by commas. The Return Type is the data type of the
value to be returned if your method will be returning a value. The
pop-up menu to the right of the Return Type field has a list of
common data types but any type can be defined in the Return
Type field.
Programming with Events and Objects

Responding To User Actions with Event Handlers
Like properties, methods can be made private so that they can
only be called from within the window and not from other
windows.

FIGURE 65. The Method Declaration window

To add a method to a window, do this:

1. Open the Code Editor for the window.

2. Choose Edit . New Method.

3. Enter the name of the method.

4. If the method will be passed parameters, define the parameters as
you would properties, with multiple parameters separated by com-
mas (example: Age as Boolean, Name as String).

5. If the method will return a value (making it a function), enter the
type of data it will return.

6. If this method should not be accessible by code in other windows,
check the Private checkbox.

To Edit a method you have added to a window, do this:

1. Open the Code Editor for the window that contains the method.

2. In the Browser, expand the Methods category to display the list of
methods for the window.

3. Double-click on the method or highlight it and choose Edit . Edit
(q-E) to edit it.
Programming with Events and Objects 175

176

Programming with Events and Objects
To Delete a method you’ve added to a window, do this:

1. Open the Code Editor for the window that contains the method.

2. In the Browser, expand the Methods category to display the list of
methods for the window.

3. Click on the method you want to delete to select it.

4. Choose Edit . Delete.

Accessing Controls, Methods, and Properties of Other
Windows

Items in other windows can be accessed using the window name
followed by the control, method, or property name. In the case
of controls, the control name can then be followed by one of its
property names. For example, suppose a button in window1 will,
when clicked, place the text “Hello World” in the text property of
a control called StaticText1 in window2. The syntax is:

Window2.StaticText1.Text="Hello World"

Methods can be called using the same syntax. For example a
button in Window1, when clicked, passes the value “Hello” to
the “Find” method of Window2. The syntax is:

Window2.Find "Hello"

The properties of other windows can also be accessed using this
syntax. For example, if a button in Window1 should, when
clicked, change the title of Window2 to “Hello World”, the
syntax is:

Window2.Title="Hello World"

The syntax in the previous examples works provided there is only
one instance of the target window open. If there are two
instances of Window2 open, the code in the previous examples
Programming with Events and Objects

Responding To User Actions with Event Handlers
would affect only the first instance of Window2 that was
opened.

If there can be more than one instance of the target window
open, you need to store a reference to that window somewhere
so your code will know which instance of the window you are
referring to. Where you store this reference depends on how your
application works. Suppose you have many instances of a
window named “DocWindow” open that displays the contents
of a text document. A button in this window opens a Find
window that lets the user enter a value he wishes to search for in
that instance of DocWindow. Since there can be many
DocWindows open, you will need to store a reference to the
specific instance of the DocWindow that opens the Find window
in a property of the Find window. You do this by adding a
property (let’s call it “Target”) to the Find window of type
DocWindow. When the Find button in an instance of the
DocWindow opens the Find window, it can store a reference to
the DocWindow in that property. Assuming your application only
allows one Find window to be open at a time (perhaps by making
the Find window modal), the syntax looks like this:

FindWindow.target=Self

The Self function returns a reference to the instance of a window
(or class) that calls the Self function. In this case, the target
property of the FindWindow is being set to a reference to the
specific instance of the DocWindow that executed this code.
Later, when the user clicks the Find button in the FindWindow,
the FindWindow can use the Target property to reference the
instance of the DocWindow that opened the FindWindow in the
first place.
Programming with Events and Objects 177

178

Programming with Events and Objects
FIGURE 66. An Example Find window

In Figure 66 the FindWindow has an EditField named
“FindValue” where the user types what he wishes to find. Let’s
also assume that the DocWindow has a method called “Find”
that, when passed a value, locates that value (if it exists) in an
EditField in the DocWindow and highlights the value found.
When the user clicks the Find button in the FindWindow, the Find
button’s Action event handler calls the Find method of the
instance of the DocWindow that opened the FindWindow. It
does this using the FindWindow’s target property and the
following syntax:

Target.Find FindValue.Text

The Target property contains a reference to the DocWindow, so
its Find method can be called. In this example, the Find method is
being passed the value of the Text property of the FindValue
EditField.

The Target property can also be used to change properties of
controls in the target window. For example, if you want to
disable the Find button in the DocWindow from the
FindWindow, you can do so using the following syntax:

Target.FindButton.Enabled=False
Programming with Events and Objects

Responding To User Actions with Event Handlers
In this example, the Target property of the FindWindow is defined
as being of type DocWindow. However, if the FindWindow needs
to reference more than one window class, you would define the
Target property as type Window to be more generic. This allows
the Target property to store a reference to an instance of any kind
of window rather than just an instance of DocWindow. However,
it also makes the code less readable because it is not clear which
windows the FindWindow meant to work with. For this reason,
use the generic Window type only when necessary.

Controls
Controls are items that appear inside a window that can have
their own code to respond to events directed to them. Unlike
windows, you cannot add methods or properties to the controls
you drag to the window from the Tools window. However, you
can create controls that have custom properties, methods, and
even menu handlers by creating new classes based on the
controls. See the chapter, “Creating Reusable Objects with
Classes” on page 285 for more information.

Events

Controls, like windows, receive events and have event handlers
to respond to the events they receive. For every event a control
receives that you can respond to, there is a corresponding event
handler.

TABLE 40. The standard events that all controls receive

Name Description

Open The window containing the control is about to open. This
event handler is a great place to doing anything to the
control you need to do before the window is displayed.
Programming with Events and Objects 179

180

Programming with Events and Objects
All of the visible controls have several standard mouse events
they can receive as well.

The button controls (pushbuttons, radiobuttons, bevelbuttons,
and checkboxes) all have an Action event handler that is
executed when the button is clicked.

ListBoxes and popupMenus both have a Change event handler
that is executed when the user changes the selected item or
items. ListBoxes have additional event handlers because they can
be hierarchical, can receive the focus, and can be draggable.

Close The window containing the control is about to close. This
event handler is a great place to do any cleanup related to
the control before the window closes.

DropObject Something has been dropped on the control. For more
information on handling drag and drop, see “Drag and
Drop” on page 184.

TABLE 41. The standard mouse events for visible controls

Name Description

MouseEnter The mouse has moved from a point outside the control to a
point inside the control.

MouseMove The mouse has moved from a point inside the control to
another point inside the control.

MouseExit The mouse has moved from a point inside the control to a
point outside the control.

TABLE 42. Additional ListBox event handlers

Name Description

DoubleClick The user has double-clicked on an item.

KeyDown The user has pressed a key while the listbox has the focus.

TABLE 40. The standard events that all controls receive (Continued)

Name Description
Programming with Events and Objects

Responding To User Actions with Event Handlers
Because Sliders and Scrollbars operate the same way, they both
have a ValueChanged event handler that is executed when the
user scrolls the Scrollbar or drags the Slider.

The Serial and Socket controls both have a DataAvailable event
handler that is executed when the control receives data.

Creating New Instances of Controls On The Fly

There may be situations where you can’t build the entire interface
ahead of time and need to create some or all of the interface
elements on the fly. This can be done in REALbasic provided that
the window already contains a control of the type you wish to
create. The existing control is used as a template. For example, if
you wish to create a pushbutton via code, there must already be
a pushbutton in the window that you can “clone.” Remember
that controls can be made invisible, so there is no need for your
template control to appear in the window. Once you have
created a new instance of the control, you can then change any
of its properties.

ExpandRow The user has clicked on a row’s disclosure triangle to
expand it. In order for a disclosure triangle to appear, the
Hierarchical property of the Listbox must be set to True and
the row must be added using the AddFolder method.

CollapseRow The user has clicked on a row’s disclosure triangle to col-
lapse it.

DragRow The user has dragged a row from the Listbox. In order for a
user to drag a row, the EnableDrag property of the Listbox
must be set to True.

TABLE 42. Additional ListBox event handlers (Continued)

Name Description
Programming with Events and Objects 181

182

Programming with Events and Objects
To create a new control on the fly via code, do this:

1. Dimension a local variable of the type of the control you will be
using as a template. For example, if the template control is a push-
button, dimension your variable as a pushbutton.

2. Assign the variable a reference to a new control using the New oper-
ator and pass it the name of the template control.

This example shows a new pushbutton being created using the
existing Pushbutton1 as a template. Because the new control will
have the same properties and code as the template, once the
new control is created, the control is then moved to the right of
the template control:

Dim b as PushButton

b= new Pushbutton1

b.Left=me.Left+me.Width+10

Since any new control you create shares the same code as the
template control, you may need to be able to differentiate
between them from the code. You can use the index property of
the control to identify which control was clicked, but in order for
this to work, the template must have an index value. This
effectively makes all of the controls of a particular type act as a
control array. For more information on control arrays, see
“Sharing Code Among An Array of Controls” on page 183.

If your code needs to create different kinds of controls and store
the reference to the new control in one variable, you can
dimension the variable as being of the type of object that all the
possible controls you might be creating have in common. For
example, if a variable can contain a reference to a new
radiobutton or a new checkbox, the variable can be dimensioned
as a RectControl because both radiobuttons and checkboxes are
RectControls. Keep in mind, however, since the variable is a
Programming with Events and Objects

Responding To User Actions with Event Handlers
RectControl, the properties specific to a radiobutton or checkbox
will not be accessible. If you need to see which classes of control
are common to different controls, see “The Class Hierarchy” on
page 3 of the Language Reference.

Sharing Code Among An Array of Controls

When you have several controls of the same type that all have
essentially the same code, the best solution is a control array. A
control array allows two or more controls to share the same code.
You create a control array by assigning all of the controls the
same name. The first time you give a control the same name as
another control (that’s not already part of a control array),
REALbasic will ask you if you wish to create a control array. If you
click OK, REALbasic will assign the first control’s Index property
the value 0. The control you are renaming will then have its Index
property set to 1. After that, any controls in the same window
with the same name will be assigned the next number in the
sequence automatically.

For example, you have a checkbox named “Option”. If you create
a second checkbox and rename it “Option”, REALbasic will ask
you if you wish to create a control array. When you click OK,
REALbasic will assign the Index property to 0 for the first Option
checkbox and 1 for the second.

In the Code Editor, rather than seeing several controls with the
same name, the control will appear only once followed by parens
to let you know it’s a control array. All of the controls in the
control array share one set of events. Each event in a control
array is automatically passed an Index parameter which tells you
which control in the control array actually receives the event.
Programming with Events and Objects 183

184

Programming with Events and Objects
Drag and Drop
Drag and drop is a very important part of the interface in many
applications. It extends the concept of the mouse’s being an
extension of the user’s hand. Fortunately, drag and drop is easy to
implement in REALbasic. Dragging and dropping of text, pictures,
and documents is supported.

When something is dragged, a DragItem object is created.
DragItems have a Text property that is used to hold text being
dragged, a Picture property for holding images being dragged,
and a FolderItem property that can contain a FolderItem that
references a document, folder, or application being dragged. In
some cases, you need to populate these properties with data you
wish dragged, while in others, the appropriate property will be
populated automatically.

DragItems that are dragged to the Desktop or two other
applications will act just as you would expect them to. For
example, dragging text to the Desktop creates a text clipping file.
A DragItem containing a picture that is dragged to the Desktop
creates a picture clipping file.

Dragging Text From EditFields

Only text in EditFields, rows in ListBoxes, and portions of Canvas
controls and Windows can be dragged. If you have never
implemented drag and drop before, this may sound like a
limitation, but in fact, it isn’t. These controls are the only types of
objects that can be dragged in other applications that support
drag and drop.

The text in an EditField can be dragged automatically without any
coding necessary, provided that the Multiline property of the
EditField is True. A DragItem object is automatically created and
Programming with Events and Objects

Responding To User Actions with Event Handlers
the text the user is dragging is placed in the Text property of the
DragItem.

Dragging A Row From A ListBox

In order for the user to be able to drag a row from a ListBox, the
EnableDrag property of the ListBox must be set to True. When the
user attempts to drag a row, the DragRow event handler of the
ListBox executes and is passed the DragItem that was created and
the row number of the row being dragged. You then have to
populate the Text property of the DragItem passed. Finally, since
the DragRow event handler is actually a function, your code must
return True to allow the drag to occur. Returning False or
returning nothing at all prevents the drag. This example code
from the DragRow event handler of a Listbox handles dragging a
row from the listbox:

Function DragRow(Drag as DragItem, Row as Integer)

 Drag.Text=Me.List(Row) //get the text

 Return True //allow the drag

End Function

Dragging From A Canvas Control or Window

There are only two differences between dragging from a ListBox
and dragging from a Canvas control or from the Window itself.
When dragging from a Canvas control or from the Window itself,
you must:

• Create a DragItem
• Call the DragItem’s Drag method to allow the drag to

occur

To create a new DragItem, dimension a local variable as type
DragItem, then use the NewDragItem function to create the
DragItem. This function takes as its parameters the left, top,
Programming with Events and Objects 185

186

Programming with Events and Objects
width, and height of the drag rectangle you want displayed
when the user begins the drag. As with ListBoxes, you must
populate the DragItem’s properties. Finally, you must call the Drag
method of the new DragItem you have created to allow the drag.

Dragging from a Canvas control or from the Window occurs in
the MouseDown event handler. This example allows the user to
drag the backdrop of a Canvas control or a Window:

Function MouseDown(X as Integer,Y as Integer) As Boolean

 Dim d as DragItem

 d=NewDragItem(Me.Left, Me.Top, Me.Width, Me.Height)

 d.Picture=Me.Backdrop

 d.Drag

End Function

Dropping

In order for the user to be able to drop something on a control or
window in your application, the control or window must have
previously indicated that it will accept the kind of data the user
wishes to drop on it. There are three methods that any control
can call to indicate the type or types of data that can be dropped
on that control.

TABLE 43. Methods for indicating acceptable data

Name Description

AcceptTextDrop Indicates that the control or window will accept text
being dropped on it.

AcceptPictureDrop Indicates that the control or window will accept a
picture being dropped on it.

AcceptFileDrop Indicates that the control or window will accept files
(of the type or types passed) being dropped on it.
The file types must be defined as file types for this
project in the File Types dialog box.
Programming with Events and Objects

Responding To User Actions with Event Handlers
Typically, the control or window will call one or more of these
methods in its Open event handler. However, if a control or
window only accepts items dropped on it under certain
conditions, these methods can be called once those conditions
are met even after the window is opened.

In most cases, when something acceptable is dropped on a
control or window, the target’s DropObject event handler is
executed. This event handler is passed a DragItem object that
represents the item being dropped. If the target has indicated
that only one kind of data is acceptable, your code can get the
data from the appropriate property of the DragItem. The
properties are:

If more than one kind of data can be dropped, the code in the
DropObject event handler needs to determine what kind of data
has been dropped. This can be done using these functions of the
DragItem:

TABLE 44. DragItem properties that contain data

Name Description

FolderItem Represents an application, folder, or document that has
been dropped.

Picture The picture, if any, that has been dropped.

Text The text, if any, that has been dropped.

TABLE 45. DragItem functions that determine what has been dropped

Name Description

FolderItemAvailable Returns True if one or more applications, folders, or
documents have been dropped.

PictureAvailable Returns True if a picture was dropped.

TextAvailable Returns True if text was dropped.
Programming with Events and Objects 187

188

Programming with Events and Objects
In this example, an EditField has been set up to accept text or text
files dropped on it. Me is the generic representation for the
object that owns the event handler:

Sub DropObject(Obj as DragItem)

Obj.FolderItem.OpenStyledEditField Me

 End If

End Sub

Since more than one file can be dropped at a time, you need to
use the NextItem function of the DragItem to determine if there
is another file that has been dropped. The NextItem function also
changes the FolderItem property of the DragItem to the next file.
The last example, modified to handle more than one file dropped
on it, looks like this:

Sub DropObject(Obj as DragItem)

 If Obj.TextAvailable Then

 Me.Text=Obj.Text

 Else

 Do

 Obj.FolderItem.OpenStyledEditField Me

 Loop Until Not Obj.NextItem

 End If

End Sub
Programming with Events and Objects

Responding To User Actions with Event Handlers
Dropping Items On EditFields

Text dropped on a multiline EditField is placed in the EditField at
the insertion point automatically. The EditField’s DropObject event
handler is not called. Pictures and files dropped on a multiline
EditField, however, cause the DropObject event handler to
execute. For example, if you want to be able to drop a text file on
an EditField and have the contents appear in the EditField, you
need to get the FolderItem from the DragItem that is passed to
the EditField’s DropObject event handler and read the contents of
the file.

Menu Items
Menu items are handled in a way similar to controls and are just
as object-oriented. This means that the handling of menus can
occur at the application, window, or even control level. When the
user selects a menu item or presses the menu item’s command
key equivalent, an event occurs much in the same way that an
event occurs when the user clicks on a pushbutton. In this case,
the event handlers are instead called menu handlers. For
information on creating menus, see “Adding Menus” on
page 109 of chapter 3.

Adding Code To a Menu Item

To add a menu handler to the current window or class, do this:

1. Open the Code Editor for the window or class.

2. Choose Edit . New Menu Handler. The New Menu Handler dialog
box appears.

3. Choose a menu item object from the Menu Item pop-up menu.

4. Click OK.

5. Enter the code that should execute when the user chooses the menu
item.
Programming with Events and Objects 189

190

Programming with Events and Objects
FIGURE 67. The New Menu Handler dialog box

Enabling Menu Items

All menu items are always disabled. When the user clicks on a
menu to select a menu item or presses a keyboard equivalent, an
EnableMenuItems event occurs. The purpose of this event is to
give you the opportunity to determine whether the menu item
being selected should be enabled or disabled based on
conditions at the time. REALbasic first checks to see if the control
that has the focus is capable of handing menus. If it is, it is sent
an EnableMenuItems event. Then, assuming a window is open,
the frontmost window is sent the EnableMenuItems event.
Finally, the application object is sent the EnableMenuItems event.

Menu items are objects just like controls. Consequently they have
an Enabled property that determines if the menu item is enabled
or disabled. This EnableMenuItems event handler is checking a
property called Changed to determine if the Save menu item
should be enabled:

Sub EnableMenuItems()

 If Me.Changed Then

 FileSave.Enabled=True
Programming with Events and Objects

Responding To User Actions with Event Handlers
 End If

End Sub

Handling Menu Items From Individual Controls

If the control that has the focus is capable of handling menus, its
EnableMenuItems event handler will be executed. If the menu
item selected is then enabled and the user selects it, the control’s
menu handler for the selected menu item (if it has one) will be
executed. In order for a control to be able to handle menu items,
it must be able to receive the focus (it must be an EditField or
ListBox) and it must be based on a class you have added to your
project rather than created by dragging a control from the Tools
window. See Chapter 9 for more information on handling menu
items from control classes.

Handling Menu Items When a Window Is Open

You already know that when the user attempts to select a menu
item, the frontmost window’s EnableMenuItems event handler is
executed followed by the application object’s EnableMenuItem
event handler. This gives you the opportunity to determine if
conditions in the current window are right to permit the user to
select various menu items. When the user selects the menu item,
REALbasic executes the frontmost window’s menu handler for
the selected menu item (assuming one exists) followed by the
application object’s menu handler.

Handling Menu Items When No Windows Are Open

When there are no windows open, the EnableMenuItems event is
sent to the application object. Assuming the application object
enables the menu item and the user selects the menu item, the
application object’s menu handler for the selected menu item (if
one exists) is executed.
Programming with Events and Objects 191

192

Programming with Events and Objects
To create an application object, do this:

1. Choose File . New Class.

2. In the Properties window, choose Application from the Super pop-up
menu.

3. Enter App in the Name property of the new class.

For more information on the application object, see chapter 9.

Creating New Menu Items On The Fly

This is handled in a way that is similar to how you create controls
on the fly. A menu item that can act as a template must already
exist. This menu item will effectively be “cloned.” You can then
change the clone’s properties such as the Text, keyboard shortcut,
etc. The difference is that the menu items must have an index
value in their Index property in order to be used as a template.
Assign a zero to the Index property of the menu item to create a
menu item array. The menu handlers for the menu item will then
be passed an Index parameter that allows you to determine
which menu item was selected. If you don’t assign an index
value, you will have no way of knowing which menu item was
passed. Once you have setup the template menu item, you can
create new menu items on the fly using the New operator. This
example creates a new menu item based on an existing menu
item named “WindowItem.”

Dim t as MenuItem

t=New WindowItem

Remember that once you have created a menu item array, you
must refer to the items in that array as array elements. For
example, to enable the first menu item (item zero from the
WindowItem example), use the following syntax:

WindowItem(0).Enabled=True
Programming with Events and Objects

Responding To User Actions with Event Handlers
If you wish to be able to programmatically remove menu items
you have created dynamically, you need to store the reference
that was returned when you created the menu item. You can
then use this reference to remove the menu item by calling the
Close method. For example, you are storing references to the
menu items in a module property array called “WindowRefs.”
You can then remove a particular dynamically created menu item
(the item stored in the fourth array element in this case) using
this syntax:

WindowRefs(4).Close

Classes
Classes can be used to create custom controls that can also
respond to the user. For more information on using classes to
create custom controls see chapter 9.
Programming with Events and Objects 193

194

Programming with Events and Objects
Programming with Events and Objects

CHAPTER 6 Adding Global
Functionality with
Modules
Object-oriented programming can be very efficient but you may
find occasions when you need to add methods, functions, and
even properties that are not associated with any one object. For
example, you might need to add some custom financial functions
that will be called from many different places within your
application. You may need to store a value that is associated with
those functions. In most cases, when you need to add a method,
function, or property that isn’t associated with any particular
object and needs to be accessible globally, a module is the
perfect place to add it.

In this chapter, you will learn what modules are, when to use
them, and how to add methods and properties to them.
REALbasic Developer’s Guide 195

196

Adding Global Functionality with Modules
Contents
• Understanding Modules
• Adding Methods
• Adding Constants
• Adding Properties

Understanding Modules
In REALbasic’s object-oriented environment, methods, constants,
and properties are usually part of another object. Methods,
constants, and properties associated with objects are only
accessible through those objects. However, the methods,
constants, and properties associated with a module are accessible
to all objects and code in your application at all times.

Modules are not objects. You don’t instantiate modules in order
to access them. Once you add a module to your project and then
add methods, constants, or properties to it, those objects are
immediately accessible. The only exceptions are private methods
and properties. These methods and properties are accessible only
from other methods in the same module.

Adding A New Module
You can add a new module to your project by choosing
File . New Module. The Code Editor for the module will be
displayed automatically. The new module appears in your project
window with a default name (the first module you add will be
named “Module1,” for example). You can then use the
Adding Global Functionality with Modules

Adding A New Module
Properties window to rename the module to something more
appropriate. If the module will contain your financial functions,
you might name it “Financial.”

Modules can only contain methods, constants, and properties.
The only way to modify them is through the Code Editor. To
access the Code Editor for a module that is not already open,
simply double-click on the module in the Project window.
Modules can be identified by their special icon in the Project
window.

FIGURE 68. A module in the Project window

A Module
Adding Global Functionality with Modules 197

198

Adding Global Functionality with Modules
Adding Methods to Modules
Adding methods to modules is done in the same way you add
methods to a window.

To add a method to a module, do this:

1. Double-click on the module in the Project window to open it. The
Code Editor for the module appears.

2. Choose Edit . New Method. The Method Declaration dialog box
appears.

3. Enter the method name and parameters. If the method is going to
be a function, choose the data type of the value the function will
return. If you click the Private checkbox, the method will only be
accessible to other methods in the same module.

4. Click OK.

Adding Properties to Modules
Module properties are global in scope. They are accessible to all
code in the project unless you choose to make them private.
Private properties are only accessible by methods in the same
module as the property. Adding properties to modules is done in
the same way you add properties to a window.

To add a property to a module, do this:

1. Double-click on the module in the Project window to open it. The
Code Editor for the module appears.

2. Choose Edit . New Property. The Property Declaration dialog box
appears.

3. Enter the property name, “as,” and the data type. For example, a
string property called “Name” would be entered as “Name as
String” (without the quotations). If you click the Private checkbox,
Adding Global Functionality with Modules

Adding Constants to Modules
the property will only be accessible to other methods in the same
module.

4. Click OK.

If you are creating a module for the sole purpose of adding
properties to your application that will be global (accessible from
everywhere in the application), consider creating a class based on
the Application object and adding your global properties to the
application object. They will still be global and this approach is
more object-oriented since the properties are now associated
with the application directly rather than with a module that
happens to be part of the application. See the chapter “Creating
Reusable Objects with Classes” on page 285 for more
information on creating a class based on the application object.

Adding Constants to Modules

Like methods and properties, a constant added to a module is
global in scope. It is recognized everywhere in your application.
You can also add constants to individual methods (local
constants), but adding all your constants to a module makes it
easier to maintain your application. This point is discussed in the
section “Constants” on page 127, which explains the process of
creating local constants.

Global constants provide a very convenient way to localize your
application. If you use global constants for all the text that
appears in your application’s interface, you can instantly localize
the application simply by changing the Default Language setting
in Project Settings and specifying the Default Language in the
Build Application dialog box when you are ready to create your
standalone application. For more information, see the section
“Building Your Application” on page 382.
Adding Global Functionality with Modules 199

200

Adding Global Functionality with Modules
To add a constant to a module, do this:

1. Double-click on the module in the Project window to open it. The
Code Editor for the module appears.

2. Choose Edit . New Constant. The Constant Declaration dialog box
appears. It is shown in Figure 69.

FIGURE 69. The New Constant Dialog Box

3. Enter the name of the constant, its data type, and its value.

4. Click OK.

Using Constants to Localize Your Application
The lower section of the New Constant dialog box lets you assign
different values to the constant depending on platform and
default language. When you change the Default Language in
Project Settings or the Build Application dialog box, the
corresponding values for each constant take effect automatically.

The following illustrates how to set up a constant that will be
used as the caption for a button control.
Adding Global Functionality with Modules

Adding Constants to Modules
1. Using the New Constant dialog box, add new constant whose name
is “OKButton”.

2. Define “OK” as the Value.

3. Click the Add button at the bottom of the dialog box and add a
value of “Ja” for any platform and set the language to German.

This is shown in Figure 70 on page 201.

FIGURE 70. Localizing the OK Button for the German Version

4. Click OK and then add a button to a window. Change the button
caption to “#OKButton”.

5. Choose Edit . Project Settings and change the default language to
German.

When you test your application, the button’s caption will be “Ja”
instead of OK.

You can localize menus and menu items in exactly the same way.
Create a global constant for each text string that will be used as a
menu and menu item. Then use a constant's name as the menu’s
Text property, preceded by the number sign (“#”). Similarly, use
another constant’s name as each menu item’s Text property.

A localized menu and menu item are shown in Figure 71 on
page 202.
Adding Global Functionality with Modules 201

202

Adding Global Functionality with Modules
FIGURE 71. Localizing a Menu and a Menu item.

This technique works for all static text that appears in windows:
bevel button menus, contextual menus, tab panel labels, etc.

Using Constants to Add Keyboard Shortcuts to
Menus and Menu Items
On the Windows platform, keyboard shortcuts for menus and
menu items are denoted by an underlined character in the name
of the menu or menu item. Although Macintosh keyboard
shortcuts can be added as a property of the menu or menu item,
this does not work for the Windows version of the application.
Windows keyboard shortcuts can be added only via constants.
You define the Windows keyboard shortcut using the Constants
system and then assign the name of the constant to the Text
property of the menu or menu item.

To add a Windows keyboard shortcut to a menu or menu item,
do this:

1. Add a new constant to a module. Give it an appropriate name for
the menu or menu item it will represent.

2. Assign the default value for the Macintosh platform in the Value
field.

3. Click the Add button to add a platform-specific constant. Choose
Windows as the platform name and enter the value in the Value
field. Type an & just before the keyboard shortcut character.

Menu Menu Item
Adding Global Functionality with Modules

Adding Constants to Modules
This is illustrated in Figure 72.

FIGURE 72. Assigning “F” as the Windows keyboard equivalent for the
Find menu item.

4. Click OK to close this dialog box and click OK again to close the Con-
stants editor.

5. Select the menu or menu item in the Menu Editor and enter # and
the name of the constant as the Text property of the menu or menu
item. If applicable, enter the Macintosh keyboard equivalent as the
CommandKey property.

This is illustrated in Figure 73.
Adding Global Functionality with Modules 203

204

Adding Global Functionality with Modules
FIGURE 73. Assigning a constant and Macintosh keyboard equivalent
to a menu item.

When you deploy the application in Windows, the command key
you assigned via the Constants system will appear. This is
illustrated in Figure 74.

FIGURE 74. The Windows keyboard shortcut denoted by an
underlined character.
Adding Global Functionality with Modules

Importing and Exporting Modules
Importing and Exporting Modules
Modules can be imported from other REALbasic projects.
Modules that have been exported from other projects appear on
the desktop with a cube icon.

FIGURE 75. An exported module’s desktop icon

Importing

To import a module into your project, drag the module into your
Project window. Or, choose File . Import and locate the module
to be imported using the open-file dialog box. If the module is
protected, you won’t be able to see or edit its methods or
properties. To determine if a module is protected, double-click on
it in the Project window after you import it. REALbasic will inform
you when you attempt to open it in the Code Editor if it’s
protected.

Exporting
Modules can be exported for use in other REALbasic projects. You
can export a module using two different procedures:

• Drag the module from the Project window to the desk-
top

• Click on the module in the Project window to select it
and choose File . Export Module. This method allows
you to export a protected copy of the module.
Adding Global Functionality with Modules 205

206

Adding Global Functionality with Modules
Both procedures will export the module. The first procedure is
easier if you can see the folder, the desktop, or the disk you wish
to copy the module to. If you need to save the exported module
to a specific folder, use the second procedure. The second
procedure also allows you to export a protected copy of your
module that others can’t edit. To export a protected copy, select
the Protect option in the Save As dialog box when you choose
File . Export Module.
Adding Global Functionality with Modules

CHAPTER 7 Working With Text
and Graphics
Almost every application manipulates text and graphics in some
way. Fortunately, REALbasic provides a rich set of functions for
creating, manipulating, displaying, and printing text and
graphics. Should you wish to create your own custom control,
you can use the Canvas control and its graphics methods to
create it.

Contents
• Working With Fonts
• Working with the Selected Text
• Handling Styled Text
• Formatting Numbers, Dates and Times
• Understanding the Canvas Control and Graphics Object
• Drawing Pictures
• Working with Color
REALbasic Developer’s Guide 207

208

Working With Text and Graphics
• Printing Text and Graphics
• Transferring Text and Graphics with the Clipboard
• Creating Animation with Sprites

Working With Fonts
REALbasic gives you the ability to set the font, font size, and font
style of many of the objects and controls in your application.
EditFields support multiple fonts, styles, and sizes (collectively
referred to as styled text) and ListBoxes support multiple styles.
Controls that use a single font have a TextFont property that you
can set by assigning it the name of the font you want used to
display text for the control. EditFields have a TextFont property
but they can also display multiple fonts. For information on styled
text in EditFields, see “Creating a Password Field” on page 211.

The System Font
The System font is the font used by the system software as its
default font. It’s the font used for the menus as well. The System
font can changed. For example, in System 7, the System font is
Chicago. If the user is running the Aaron extension, the system
font may be Espi and if they are running Mac OS 8 it’s Charcoal.
Users who are running Kaleidoscope can use any installed font as
their System font.

If you want text to be displayed or printed in the user’s System
font, use the name “System” as the font when you assign it. This
name doesn’t appear in REALbasic’s Font menu but you can enter
it for the TextFont property in the Properties window.
Working With Text and Graphics

Working With Fonts
What Fonts Are Available?
You may want to use fonts other than the System font. In this
case you will need to determine if a particular font is installed on
the user’s computer. REALbasic has two functions, FontCount
and Font, that make determining available fonts easy. The
following function, when passed a font name, will return True or
False to inform you if the font passed is installed:

Function FontAvailable(FontName as String) As Boolean

Dim i as Integer

For i=0 to FontCount-1

 If Font(i)=FontName Then

 Return True

 End If

Next

Return False

End Function

The following code can be used in the Open event handler of a
PopupMenu or ListBox to build a list of all available fonts:

Dim i as Integer

For i=0 to FontCount-1

 Me.AddRow Font(i)

Next

To add a Font menu to your application, do this:

1. Add a menu with the name “Font” and set the Text property to
“Font”.

2. Add an item to the Font menu set the Text property to “FontName”.
REALbasic will automatically name the new item “FontFontName”.

3. Set the Index property of the menu item to 0 (zero).
Working With Text and Graphics 209

210

Working With Text and Graphics
4. If you don’t have a class based on “Application,” add a new class to
your project, name the class “App” and set its Super property to
“Application”.

5. Put the following code in the Open event handler of the App class:

Dim m as MenuItem

Dim i as Integer

FontFontName(0).text=Font(0)

For i=1 to FontCount-1

 m=New FontFontName

 m.text=font(i)

next

All of these menu items will share one menu handler. This menu
handler will be passed an Index parameter which will indicate
which menu item as passed. This Index parameter can be used in
conjunction with the Font function to determine which font was
selected.

Working with the Selected Text
The “Selected Text” refers to text that is selected (or
“highlighted”) in the EditField that currently has the focus.
Working With Text and Graphics

Creating a Password Field
EditFields have three properties that can be used to get and/or set
the selected text.

This code selects all the text in the EditField that currently has the
focus:

EditField1.SelStart=0

EditField1.SelLength=Len(EditField1.Text)

If you need to execute some code when the user moves the
cursor or highlights some characters, place your code in the
SelChange event handler of the EditField.

Creating a Password Field
EditFields have Password and LimitText properties that can be
used to create password fields. When you set the Password

TABLE 46. EditField properties for getting and setting selected text

Name Description

SelLength The number of characters currently selected. You can
change the selected text by changing this number. Setting
this value to 0 (zero) will position the cursor based on the
value in the SelStart property rather than selecting any
text.

SelStart The number of the character just before the selected text.
For example, if the fifth character in an EditField was
selected, this property would be 4. Setting this value to 0
(zero) will start the selection at the beginning of the Edit-
Field.

SelText A string containing all of the selected text. Changing this
value will replace the selected text with the SelText value.
If no text is selected, the SelText value will be inserted at
the position of the cursor (the value in SelStart).
Working With Text and Graphics 211

212

Working With Text and Graphics
property, bullet characters (Option-8) appear instead of the
characters you type. However, the characters you enter are
placed in the EditField’s Text property. The LimitText property
allows you to control the maximum number of characters the
user can type in the EditField.

The Password property will function only if the Multiline property is False (not
checked).

Handling Styled Text
The term styled text means text that can have more than one
font, font size, and font style. In order for an EditField to display
styled text, its Multiline property must be True (checked) and its
Styled property must be True (checked). In order to print styled
text, you must use the StyledTextPrinter class. See the section
“Printing Styled Text” on page 241 for more information.

Determining the Font, Size, and Style of Text
EditFields have properties that make it easy to determine the
font, font size, and font style of the selected text in an EditField.
The SelTextFont property can be used to determine the font of
the selected text. If the selected text has only one font, the
SelTextFont property contains the name of that font. If the
selected text uses more than one font, the SelTextFont property is
empty.

This function returns the names of fonts for the selected text of
the EditField passed:

Function Fonts(item as EditField) as String

 Dim fonts, theFont as String
Working With Text and Graphics

Handling Styled Text
 Dim i, Start, Length as Integer

 If Field.SelTextFont="" Then

 Start=Field.SelStart

 Length=Field.SelLength

 For i=Start to Start+Length

 Field.SelStart=i

 Field.SelLength=1

 If InStr(fonts,Field.SelTextFont)=0 Then

 If fonts="" Then

 fonts=Field.SelTextFont

 Else

 fonts=fonts+", "+Field.SelTextFont

 End if

 End if

 Next

 Return fonts

 Else

 Return Field.SelTextFont

 End If

End Function

The SelTextSize property is used to determine the font size of the
selected text and works the same way as the SelTextFont
property. If all characters of the selected text are the same font
size, the SelTextSize property will contain that size. If different
sizes are used, the SelTextSize property will be 0.
Working With Text and Graphics 213

214

Working With Text and Graphics
There are also boolean properties for determining if all of the
characters in the selected text are the same font style. Since text
can have multiple styles applied to it, these properties determine
if all of the characters in the selected text have a particular font
style applied to them. For example, if all of the characters in the
selected text are bold but some are also italic, a test for bold
returns True. On the other hand, a test for italic returns False
since some of the selected text is not in the italic font style. For all
of these properties, you test to see if the property is True or False.
The test returns True, then all of the characters in the selected
text have that font style. If it returns False, the selected text
contains more than one font style. If you want to determine
which styles are in use, you can programmatically select each
character in the selected text and then test the style properties.
This is an operation similar to the sample Fonts function that
determines which fonts are in use in the selected text. The
properties for testing the various available font styles are:

In this example, if the selected text of the EditField is bold, then
the Bold menu item is checked:

 StyleBold.Checked=EditField1.SelBold

TABLE 47. Font Style Properties

Property Style

SelBold Bold

SelItalic Italic

SelUnderline Underline

SelOutline Outline

SelShadow Shadow

SelCondense Condensed

SelExtend Extended
Working With Text and Graphics

Handling Styled Text
If all of the characters in the selected text are not bold then
EditField1.SelBold returns False which will then be assigned to the
Checked property of the StyleBold menu item.

Setting the Font, Size, and Style of Text
The properties used to check the font, font size, and font styles
of the selected text are also used to set these values. For
example, to set the font of the selected text to Helvetica, you do
the following:

Editfield1.SelTextFont="Helvetica"

Keep in mind when setting fonts that the font must be installed
on the user’s computer or the assignment will have no effect. You
can use the FontAvailable function mentioned earlier in this
chapter to determine if a particular font is installed.

You can set the font size of the selected text using the SelTextSize
property. For example, the following code sets the font size of
Editfield1 to 12 point:

Editfield1.SelTextSize=12

To apply a particular font style to the selected text, set the
appropriate style property to True. For example, the following
code applies the Bold style to the selected text in Editfield1:

Editfield1.SelBold=True

Table 47 on page 214 lists all the font style properties of
EditFields that can be used in this same way.

EditFields also have built-in methods for toggling the font styles
on and off. “Toggling” in this case means applying the style if
Working With Text and Graphics 215

216

Working With Text and Graphics
some of the selected text doesn’t have the style already applied
or removing the style from any of the selected text that already
has it applied. The following code toggles the bold style of the
selected text in editfield1:

Editfield1.ToggleSelectionBold

The methods for toggling the styles of the selected text are
shown in Table 48 on page 216.

Formatting Numbers, Dates, and
Times
REALbasic provides the ability to display and print numbers,
dates, and times in many different formats.

Numbers
Numbers are stored unformatted. Fortunately, REALbasic provides
a Format function that makes providing formatting to numbers
easy. To use this function, pass it a format specification and the

TABLE 48. EditField control methods for toggling selected text styles

Method Name Style

ToggleSelectionBold Bold

ToggleSelectionItalic Italic

ToggleSelectionUnderline Underline

ToggleSelectionOutline Outline

ToggleSelectionShadow Shadow

ToggleSelectionCondense Condensed

ToggleSelectionExtend Extended
Working With Text and Graphics

Formatting Numbers, Dates, and Times
number you wish formatted. The Format function then returns a
string that represents the number with the formatting applied to
it. The syntax for the Format function is:

result=Format(Number, FormatSpec)

The FormatSpec is a string made up of one or more characters
that control how the number will be formatted. For example, the
format spec “$###,##0.00” applies the typical dollars and cents
formatting used in the United States.

By default, the FormatSpec applies to all numbers. If you want to
specify different FormatSpecs for postive numbers, negative
numbers, and zero, simply separate the formats with semi-colons

TABLE 49. Formatting characters used with the Format function

Character Description

Placeholder that displays the digit from the value if it’s
present.

0 Placeholder that displays the digit from the value if it’s
present. If no digit is present, 0 (zero) is displayed in its
place.

. Placeholder for the position of the decimal point.

, Placeholder that indicates that the number should be for-
matted with thousands separators.

% Displays the number multiplied by 100.

(Displays an open paren.

) Displays a closing paren.

+ Displays a plus sign to the left of the number if the number
is positive or a minus sign if the number is negative.

_ Displays a minus sign to the left of the number if the num-
ber is negative. There is no effect for positive numbers.

E or e Displays the number is scientific notation.

\character Displays the character that follows the backslash.
Working With Text and Graphics 217

218

Working With Text and Graphics
within the formatspec. The last three examples in Table 50 on
page 218 show this. It shows some examples of FormatSpecs:

Dates
Dates are objects and have properties that hold the date in
various different formats. To get a date as a string formatted in a
specific way, you simply access the appropriate property. Table 51
on page 218 lists the properties of date objects and an example
of the format the property contains:

To get the current date in any of these formats, simply create a
date object and then access the appropriate property. In this

TABLE 50. Examples of FormatSpecs of the Format function

Format Syntax Result

Format(1.784, "#.##") 1.78

Format(1.3, "#.0000") 1.3000

Format(5, "0000") 0005

Format(.25, "#%") 25%

Format(145678.5, "#.##") 145,678.5

Format(145678.5, "#.##e+") 146e+5

Format(-3.7, "-#.##") -3.7

Format(3.7, "+#.##") +3.7

Format(3.7, "#.##; (#.##); \z\e\r\o") 3.7

Format(-3.7, "#.##; (#.##); \z\e\r\o") (3.7)

Format(0, "#.##; (#.##); \z\e\r\o") zero

TABLE 51. Date format properties

Property Example

ShortDate 12/31/97

LongDate Wednesday, December 31, 1997

AbbreviatedDate Wed, Dec 31, 1997
Working With Text and Graphics

Formatting Numbers, Dates, and Times
example, the current date formatted as a long date, is assigned
to a variable:

Dim today as Date

Dim theDate as String

today=new Date

theDate=today.LongDate

Times
Time values are stored as part of a date. Date objects have two
properties that store time values in two different formats.
Table 52 on page 219 lists the two properties and shows
examples of how the time is returned.

To get the current time in either of these formats, create a date
object and then access the appropriate property. In this example,
the current time formatted as a LongTime, is assigned to a
variable:

Dim today as Date

Dim Now as String

today=new Date

Now=today.LongTime

TABLE 52. Time formats

Property Example

ShortTime 2:32 PM

LongTime 2:32:34 PM
Working With Text and Graphics 219

220

Working With Text and Graphics
Adding Pictures and Drawing
Graphics
You can add pictures from documents or draw your own pictures
in REALbasic. In some cases you can add the graphics you want
without writing any code. When you do need to write code,
REALbasic provides methods for creating all kinds of graphics.

Understanding the Coordinates System
Most of the graphics methods require you to indicate the location
inside the window or within a Canvas control where you wish to
begin drawing. This location is specified using the coordinates
system. This system is a grid of invisible horizontal and vertical
lines that are 1 pixel apart. If you have never done a computer
drawing with a coordinates system, you might expect the origin
(0,0) to be in the center of the window, but it’s not. The origin is
always in the upper-left corner of the area. For the entire screen,
this is the upper-left corner of the screen. For a window, the
origin is the upper-left corner of the window, and for a control,
it’s the upper-left corner of the control. The X axis (the horizontal
axis) increases in value moving from left to right and the Y axis
(the vertical axis) increases in value moving from top to bottom.

So, a point that at 10, 20 (within a window) is 10 pixels from the
left side of the window and 20 pixels from the top of the
window.
Working With Text and Graphics

Adding Pictures and Drawing Graphics
FIGURE 76. The X,Y Coordinates System

Displaying Pictures In a Window
There are different techniques you use to display pictures in a
window. The technique you use depends on what you plan to do
with the picture.

Using the Entire Window

If you want to use a window to display a picture, the window’s
Backdrop property is one way to do it. The Backdrop property is a
picture that will be displayed behind any controls in the window.
By default, the Backdrop is set to “None” meaning that no
Backdrop picture will be displayed. You can set the Backdrop
from the Design environment by dragging a picture document
into your Project window and then choosing it by name as the
picture for the Backdrop property in the Properties window.

0,0 (window coordinates)

X Axis

Y Axis

0,0 (canvas control coordinates)
Working With Text and Graphics 221

222

Working With Text and Graphics
You can set the Backdrop property at runtime simply by assigning
a picture in your Project to the Backdrop property, by loading a
picture via code, or creating a new picture using the graphics
class drawing methods. This example presents the standard open
file dialog box and lets the user choose a PICT, JPEG, or GIF file to
be used as the backdrop of the current window:

Dim f as FolderItem

f=GetOpenFolderItem("image/gif;image/
jpeg;image/x-pict")

If f<> Nil Then

 Backdrop=f.OpenAsPicture

End If

You can then resize the window to the size of the picture by
setting the window’s width and height properties to the
backdrop’s width and height properties:

width=Backdrop.width

height=Backdrop.height

You don’t need to worry about redrawing the Backdrop.
REALbasic will handle redrawing the Backdrop when necessary.

Using a Portion of the Window

Use a Canvas control to display a picture in a portion of the
window. This type of control gives you a graphics area that can
be drawn in and also receives events. You might also use a
Canvas control if you need to display a picture that the user will
interact with. The Canvas control has a Backdrop property just
like a window. This means that you can display an existing picture
by assigning it to the Backdrop property of a Canvas control. This
Working With Text and Graphics

Adding Pictures and Drawing Graphics
can be done manually in the Design environment by clicking on
the Canvas control in a window to select it and then choosing a
picture from your project from the Backdrop property’s pop-up
menu in the Properties window. A picture can also be assigned to
the Backdrop property at runtime. This example displays an open-
file dialog box when the user clicks on the Canvas control and
then lets the user choose a picture to be displayed in the Canvas
area:

Dim f as FolderItem

f=GetOpenFolderItem("image/jpeg")

If f<> Nil Then

 Me.Backdrop=f.OpenAsPicture

End If

Creating Pictures
You can create pictures programmatically using the methods of
the Graphics class. A Graphics object is simply an object in
memory that holds an image. For example, Windows and Canvas
controls have a Paint event. This event is executed any time the
Window or Canvas control needs to be redrawn. For example,
when a window opens, its Paint event is executed because the
contents of the window need to be drawn. Any Canvas controls
in a window will also execute their Paint event when the window
opens because the Canvas control needs to be drawn. These
Paint events are also executed when a portion of the window
and/or Canvas control that was previously hidden by another
window is exposed.

The Paint event is passed a Graphics object. When the Paint event
is finished executing, this graphics object will be drawn in the
Working With Text and Graphics 223

224

Working With Text and Graphics
window or Canvas control. You draw in a window or Canvas
control by calling the drawing methods of this graphics object.

Displaying Pictures

You can display a picture in a graphics object using the
DrawPicture method of the graphics class. This method is passed
a picture and the coordinates that describe where you want the
picture drawn within the graphics object. This example uses the
Paint event to draw two pictures (BartPict and LisaPict) side by
side that have been dragged into the project:

Sub Paint(g As Graphics)

 g.DrawPicture BartPict, 0,0

 g.DrawPicture LisaPict,BartPict.Width, 0

End Sub

Copying A Portion of a Picture

The DrawPicture method of the Graphics class can be used to
copy a portion of a picture to a Graphics object. This is done
using the optional parameters of the DrawPicture method. These
parameters allow you to specify the portion of the picture you
want to draw. You can specify the coordinates where you wish to
begin copying from the picture as well as the amount (in width
and height) you wish to copy.

This example draws a 20 pixel square portion of the source
picture starting 10 pixels from the left and 10 pixels from the top
of the source picture and drawing the picture 5 pixels from the
left and 5 pixels from the top of the Canvas control or window
background:

Sub Paint(g As Graphics)
Working With Text and Graphics

Adding Pictures and Drawing Graphics
 g.DrawPicture
Lisa,5,5,Lisa.width,Lisa.height,10,10,20,20

End Sub

Scaling Pictures

The DrawPicture method of the Graphics class can scale a picture
when it is drawn. To do this, you must include all of the
DrawPicture parameters. Scaling is done by specifying a
destination width and/or height that is larger or smaller than the
picture’s original width and/or height. This example draws a
picture at two times its original size:

Sub Paint(g As Graphics)

 Dim w,l as integer

 w=lisa.width

 l=lisa.height

 g.drawpicture lisa,
0,0,w*2,l*2,0,0,lisa.width,lisa.height

End Sub

Drawing Standard Dialog Icons

REALbasic has a MsgBox method for displaying a standard
message dialog box with an note icon and an OK button.
However, there may be times when this isn’t appropriate. For
example, the note icon is appropriate when you need to inform
the user about something that isn’t a warning. If the user is
about to do something where data loss could occur (like quitting
the application without saving a changed document), then the
caution icon is more appropriate. If the user has started an
operation that cannot be completed (such as saving a document
to a locked volume), the stop icon is more appropriate.
Working With Text and Graphics 225

226

Working With Text and Graphics
FIGURE 77. Note, Caution, and Stop icons

The Graphics class provides the DrawNoteIcon,
DrawCautionIcon, and DrawStopIcon methods that make it easy
to display these icons in a Canvas control or a window
background. The advantage of using these methods is that these
icons change between different versions of the operating system
and on different platforms. Using these methods, you will also
been displaying the appropriate icon. This example draws the
note icon in a Canvas control:

Sub Paint(g As Graphics)

 g.DrawNoteIcon 0,0

End Sub

Drawing Pixels

You can get and set the color of individual pixels in a Graphics
object using the Pixel property. You use this property by passing it
X and Y coordinates and then setting the color of that pixel to a
color object or getting its color.

This example draws pixels at randomly selected coordindates
within a Graphics object using randomly selected colors until the
user presses q-Period:

Sub Paint(g As Graphics)

 Dim c as Color

 Do

 c=Rgb(Rnd*255,Rnd*255,Rnd*255)
Working With Text and Graphics

Adding Pictures and Drawing Graphics
 g.Pixel(Rnd*me.Width,Rnd*me.Height)=c

 Loop until UserCancelled

End Sub

This example gets the color of the pixel the mouse is over in a
Canvas control and fills another Canvas control called PixelColor
with that color:

Sub MouseMove(X As Integer, Y As Integer)

 Dim c as Color

 c=Me.Graphics.Pixel(X,Y)

 PixelColor.Graphics.ForeColor=c

 PixelColor.Graphics.FillRect 0,0,Pixel-
Color.Width,PixelColor.Height

End Sub

Drawing Lines

Lines are drawn using the DrawLine method of the Graphics
class. The color of the line is the color stored in the ForeColor
property of the Graphics object the line is being drawn in. To use
the DrawLine method, you pass it starting coordinates and
ending coordinates of the line.

This example uses the DrawLine method to draw a grid inside a
Canvas control or window background. The size of each box in
the grid is defined by the value of the boxSize variable:

Sub Paint(g as Graphics)

 Dim i,boxSize as Integer

 boxSize=10
Working With Text and Graphics 227

228

Working With Text and Graphics
 For i=boxSize to Me.Width Step boxSize

 g.DrawLine i,0,i,Me.Height

 Next

 For i=boxSize to Me.Height Step boxSize

 g.DrawLine 0,i,Me.Width,i

 Next

End Sub

The thickness of the line is controlled by the PenHeight and
PenWidth properties of the Graphics object.

Drawing Ovals

Ovals are drawn with the DrawOval and FillOval methods of the
Graphics class. Both require the same parameters: the X and Y
coordinates where the oval starts and the width and height of
the oval. Both draw ovals using the ForeColor property of the
Graphics object. Both use the PenWidth and PenHeight
properties of the Graphics object to determine the line thickness.
The difference between the two is that DrawOval draws only the
border of the oval, leaving the interior blank. FillOval draws an
oval with the interior filled with the ForeColor.

This example draws an oval in a Canvas control or Window
background:

Sub Paint(g as Graphics)

 g.DrawOval 0,0,50,75

End Sub
Working With Text and Graphics

Adding Pictures and Drawing Graphics
Drawing Rectangles

Rectangles are drawn using the DrawRect, FillRect,
DrawRoundRect, and FillRoundRect methods of the Graphics
class. All of these methods use the ForeColor property of the
Graphics object and the PenWidth and PenHeight properties to
determine the line thickness. All of these methods require the X
and Y coordinates of the upper-left corner of the rectangle, as
well as the width and height of the rectangle. RoundRectangles
are rectangles with rounded corners. Therefore, DrawRoundRect
and FillRoundRect require two additional parameters: the width
and height of the curve of the corners.

DrawRect and DrawRoundRect both draw empty rectangles.
FillRect and FillRoundRect draw solid rectangles.

Drawing Polygons

Polygons are drawn using the DrawPolygon and FillPolygon
methods of the Graphics class. Polygons are drawn by passing
the DrawPolygon or FillPolygon method an integer array that
contains each point in the polygon. This is a 1-based array where
odd numbered array elements contain X values and even
numbered array elements contain Y coordinates. This means that
element 1 contains the X coordinate of the first point in the
polygon and element 2 contains the Y coordinate of the first
point in the polygon. Consider the following array values:

TABLE 53. Array values for a polygon

Element # Value

1 10

2 5

3 40

4 40
Working With Text and Graphics 229

230

Working With Text and Graphics
When passed to the DrawPolygon or FillPolygon method, this
array would draw a polygon by drawing a line starting at 10,5
and ending at 40,40 then drawing another line starting from
40,40 ending at 5,60 and finally a line from 5,60 back to 10,5 to
complete the polygon. This polygon has only three sets of
coordinates so it is a triangle.

The code in the Canvas control or Window Paint event to draw
this polygon, looks like this:

Sub Paint(g As Graphics)

 Dim points(6) as Integer

 points(1)=10

 points(2)=5

 points(3)=40

 points(4)=40

 points(5)=5

 points(6)=60

 g.DrawPolygon points

5 5

6 60

TABLE 53. Array values for a polygon

Element # Value
Working With Text and Graphics

Adding Pictures and Drawing Graphics
End Sub

FillPolygon draws the same polygon but with the interior filled
with the ForeColor:

Creating Custom Controls with the Canvas Control

Visible controls (controls that have a graphical interface the user
can interact with directly, like pushbuttons) are pictures that have
code that controls how they are drawn. This means that a Canvas
control can easily be used to create controls that are not built-in
to REALbasic.

Suppose you wanted to create a simple custom control like a
rectangle whose fill color toggles from black to white when
clicked. First you would drag a Canvas control into a window.
You want the rectangle to switch colors when the user clicks the
mouse, so this code goes in the MouseDown event handler of
the Canvas control. The code checks to see if the rectangle is
white and, if it is, make fill it in black, otherwise fill it in white.
You can check the color of any particular pixel using the Pixel
property of the graphics property of the Canvas control. You can
determine if a pixel is a particular color by comparing it to a color
value returned by the Rgb function. Passing 0 (zero) to each of
the parameters of the Rgb function returns the color white.
Passing 255 to each parameter of the Rgb function returns the
color black. You will learn more about color later in this chapter.
So, the code for the MouseDown event handler looks like this:
Working With Text and Graphics 231

232

Working With Text and Graphics
Function MouseDown(X As Integer, Y As Integer)
As Boolean

 If Me.Graphics.Pixel(X,Y)=Rgb(0,0,0) Then

 Me.Graphics.ForeColor=Rgb(255,255,255)

 Else

 Me.Graphics.ForeColor=Rgb(0,0,0)

 End If

 Me.Graphics.FillRect
Me.Left,Me.Top,Me.Width,Me.Height

End Function

This code checks to see if the pixel the user clicked on is white
and, if it is, the ForeColor property of the graphics object of the
Canvas control (generically represented here using the Me
function) is set to black, else it’s set to white. Next, the FillRect
method of the Graphics property of the Canvas control is called
to fill the rectangle with the color stored in the ForeColor
property.

There’s one more step before our custom control is complete. If
the Canvas control needs to be redrawn for some reason (such as
when the window first opens or the user moves another window
in front of the one with the Canvas control), REALbasic calls the
Canvas control’s Paint event handler to redraw the Canvas
control. If there is no code in the Paint event handler, REALbasic
won’t draw the rectangle and, to the user it will seem to appear
and disappear at different times, which will be confusing. To
solve this problem, you need to put a slightly altered version of
the code you have in the MouseDown event handler in the Paint
event handler:

Sub Paint(g As Graphics)
Working With Text and Graphics

Working With Color
 If g.Pixel(0,0)=Rgb(0,0,0) Then

 g.ForeColor=Rgb(255,255,255)

 Else

 g.ForeColor=Rgb(0,0,0)

 End If

 g.FillRect Me.Left,Me.Top,Me.Width,Me.Height

End Sub

Since the Paint event handler is passed a reference to the
Graphics object of the Canvas (the g parameter), you can make
the code a bit more generic and use “g” instead of
“me.graphics”. Also, since the user isn’t clicking anywhere, you
need to choose a pixel whose color you check. In this example we
chose the pixel at 0,0.

This is an example of a very simple custom control. More complex
and generic controls can be created using classes. See chapter 9
for more information.

Working With Color
Color in REALbasic is an object. A color can be specified using
either the RGB, HSV, or CMY models. It has three properties
which depend on the model you use. The RGB function, for
example, specifies the amounts of red, green, and blue that make
up the color. These values range from 0 to 255. The RGB function
returns a Color object when passed values for the amount of red,
green, and blue. Several classes have Color properties. For
example, the ForeColor property of the Graphics class is a Color
object.
Working With Text and Graphics 233

234

Working With Text and Graphics
If you need to store a Color, you can create a property or variable
of type Color then use the RGB, HSV, or CMY function. In this
example, a new variable of type Color is created and the values
for the white are assigned using the Rgb function:

Dim c as Color

c=Rgb(255,255,255)

In this example, the ForeColor property of a Graphics object is set
to blue so the text drawn will be in that color:

Sub Paint(g as Graphics)

 g.ForeColor=Rgb(9,13,80)

 g.DrawString "Hello World",50,50

End Sub

Determining The RGB Values For A Color

If you aren’t sure which RGB values to use to get a particular
color, you can use the Mac OS Color Picker. You may have already
used the Color Picker to assign a color a control in the Interface
Builder. If you haven’t, the Color Picker displays color and allows
you to click on one to pick it (hence the name). Figure 78 on
page 235 shows the Mac OS 8 Color Picker. If you are running
System 7, the Color Picker looks a little different.
Working With Text and Graphics

Working With Color
FIGURE 78. The MacOS8 Color Picker

The System 7 Color Picker displays a large circle of color you can
click on. The Mac OS 8 Color Picker gives you several different
ways to choose colors. Figure 78 shows the RGB Color Picker that
displays the percentage of red, green and blue for the selected
color. Since Red, Green and Blue properties of a Color object in
REALbasic are values between 0 and 255, you can convert the
values from the RGB Color Picker into values you can use in
REALbasic by multiplying 255 by the percentage shown. For
example, in Figure 78, the red percentage is 9 so 255 x .09
equals 22.95, which rounds to 23. If you need a simpler way to
choose a color than dragging the sliders back and forth, scroll up
in the ListBox on the left and click on the Crayon Picker.
Working With Text and Graphics 235

236

Working With Text and Graphics
FIGURE 79. The Crayon Color Picker in MacOS8

The Crayon Color Picker displays a box of crayons of commonly
used colors. You can click on a crayon to select a color, then go
back to the RGB Picker to look at the percentages of red, green,
and blue and convert them to values between 0 and 255.

The Pixel Property of Graphics Objects
The Pixel property of a Graphics object lets you get and set the
color of the pixel you specify. This property is an example of a
property whose data type is Color. In this example, the Paint
event handler is setting a pixel to black if it is white and white if it
is black:

Sub Paint(g As Graphics)

 If g.Pixel(10,20)=Rgb(0,0,0) Then

 g.Pixel(10,20)=Rgb(255,255,255)

 Else

 g.Pixel(10,20)=Rgb(0,0,0)
Working With Text and Graphics

Printing Text and Graphics
End Sub

You can see that the code to check the color of a pixel and set
the color of a pixel is basically the same.

Printing Text and Graphics
REALbasic provides a lot of flexibility when it comes to printing.
You can display the Page Setup dialog box and store the settings
the user chooses. You can display the Print dialog box before
printing or not.

Printing is almost exactly the same as drawing text and graphics
into a Canvas control or the graphics property of a Window.
When you call the OpenPrinter or OpenPrinterDialog function, a
Graphics object is returned. To print, you simply draw your text
and graphics into this Graphics object. To cause the page to print,
you call the NextPage method of the Graphics object. This
method forces the Graphics object to be printed, then clears it so
you can use it again to draw the next page.

Working with the Page Setup Dialog Box
The PrinterSetup class lets you create an object that can be used
to display the Page Setup dialog box, get and set the individual
Page Setup settings, as well as store and restore these settings. To
display the Page Setup dialog box, call the PageSetupDialog
method of the PrinterSetup object you have instantiated. This
method returns True if the user clicks the OK button in the Page
Setup dialog box and False if he clicks the Cancel button. The
PrinterSetup class has properties for accessing all of the settings
in the Page Setup dialog box (page orientation, scale, etc.). For a
list of PrinterSetup properties, see “PrinterSetup Class” on
Working With Text and Graphics 237

238

Working With Text and Graphics
page 263 of the Language Reference. However, in most cases
you won’t have to deal with these properties because a
composite version of these settings is stored in the SetupString
property. The SetupString property is read/write and is used to
get all of the PrinterSetup settings as string so you can store them
and to restore that string later on. For example, in a document-
based application, a string property could be added to the
document window that stores the SetupString value. When the
user chooses to display the Page Setup dialog box (in most
applications by choosing Page Setup from the File menu), a
PrinterSetup object is created and its SetupString property is
assigned the value in the window property storing these settings.
Then the Page Setup dialog box is displayed showing these
settings. In this example, the window property is called
“Settings”:

Dim ps as PrinterSetup

ps=New PrinterSetup

ps.SetupString=Settings

If ps.PageSetupDialog Then

 Settings=ps.SetupString

End if

If the user clicks OK in the Page Setup dialog box, the window’s
Settings property is assigned the value of the SetupString
because settings in the Page Setup dialog box may have been
changed by the user.

PrinterSetup class objects can be optionally passed as a
parameter to the OpenPrinter and OpenPrinterDialog functions
so that the Page Setup settings can be used during printing.
Working With Text and Graphics

Printing Text and Graphics
If you wish to store the PrinterSetup’s SetupString property with
the document when the user saves the document (assuming you
provide this capability), you will probably need to store it in a
string resource in the resource fork of the document. See chapter
8 for more information on the resource fork.

Printing With The Print Dialog Box
You use the OpenPrinterDialog function to display the Print
dialog box and print. If the user clicks the OK button in the Print
dialog box, a Graphics class object is returned. If the user clicks
the Cancel button, the Graphics object returned will be nil. To
create the first page to be printed, you utilize the Graphics object
returned, calling the various Graphics class methods such as
DrawString, DrawLine, DrawOval, DrawPicture, etc. Once you
have created the page, you can send the page to the printer by
calling the NextPage method of the Graphics class. This method
will both send the page to the printer for printing and clear the
Graphics object so you can begin creating the next page.

This example displays the Print dialog box then prints “Hello” on
the first page and “World” on the second page:

Dim page as Graphics

page=OpenPrinterDialog()

If page<> nil Then

 page.DrawString "Hello", 50, 50

 page.NextPage

 page.DrawString "World", 50, 50

 page.NextPage

End
Working With Text and Graphics 239

240

Working With Text and Graphics
The Print dialog box page range is automatically supported. In
the last example, if the user chooses to print pages 2 through 2,
they will get only page 2.

If you are storing the SetupSting property of the a PrinterSetup
class object, you can optionally pass this string to the
OpenPrinterDialog function if you want it to consider the settings
stored in the SetupString. This example assumes that the
SetupString is stored in a window property called “Settings” and
passes it to the OpenPrintertDialog function for consideration
during printing:

Dim page as Graphics

Dim ps as PrinterSetup

ps=New PrinterSetup

If Settings <> "" Then

 ps.SetupString=Settings

End If

page=OpenPrinterDialog(ps)

If page <> nil Then

 page.DrawString "Hello", 50, 50

 page.NextPage

 page.DrawString "World", 50, 50

 page.NextPage

End If

For more information on the OpenPrinterDialog function, see
“OpenPrinterDialog Function” on page 249 of the Language
Reference.
Working With Text and Graphics

Printing Text and Graphics
Printing Without The Print Dialog Box
To print without displaying the Print dialog box, call the
OpenPrinter function. This function is identical to the
OpenPrintDialog function except that it doesn’t display the Print
dialog box before printing. For information on printing, see
“Printing With The Print Dialog Box” on page 239. For more
information on the OpenPrinter function, see “OpenPrinter
Function” on page 248 of the Language Reference.

Printing Styled Text
Because EditFields are capable of displaying styled text and
multiple font sizes, you will usually want to retain the styled text
in your reports. The StyledTextPrinter class supports this
capability. It uses the DrawBlock method (rather than the
DrawString method) to accomplish this. Here is a simple example
that prints the contents of an EditField as styled text.

dim stp as styledTextPrinter

dim g as graphics

g=openPrinterDialog()

if g <> nil then

 stp=editField1.styledTextPrinter(g,72*7.5)

 stp.drawBlock 0,0,72*9

end if

The parameters of DrawBlock are the top-left x, y coordinates on
the page and the height of the block. This example starts at the
top-left corner. See the description of StyledTextPrinter in the
Language reference for more information.
Working With Text and Graphics 241

242

Working With Text and Graphics
Transferring Text and Graphics
with the Clipboard
The Clipboard is a class of object in REALbasic with properties
and methods. The properties and methods let you determine
what kind of data is available on the Clipboard, get data from the
Clipboard and send data to the Clipboard. The Clipboard class
supports three kinds of data: text, picture, and binary. Binary data
is represented in string form and is marked with a type you
specify so you can tell what the binary data represents.

For EditFields, REALbasic handles the Cut, Copy, and Paste operations of the
Edit menu automatically. However, for other controls that contain data such as
Canvas and ListBox controls, this is not the case.

To access the Clipboard for any reason, you must first create a
new object of type Clipboard:

Dim c as Clipboard

c=New Clipboard

In the event handler that opened the Clipboard, you must call the
Clipboard object’s Close method or an error may occur.

Testing The Clipboard For Specific Data Types
You can test the Clipboard using the following methods and
properties all of which return True or False: TextAvailable,
PictureAvailable, and MacDataAvailable. MacDataAvailable is
used to determine if a specific kind of binary data (usually data
put there by your application) is available. To use the
MacDataAvailable method, you must pass it the MacType string
that represents the type of data. This string was passed when the
binary data was passed when the data was put on the Clipboard.
Working With Text and Graphics

Transferring Text and Graphics with the Clipboard
Getting Data From The Clipboard
Once you know what kind of data is available on the Clipboard,
you can get the data using the Text, Picture, and MacData
properties. In this example, if text is available, the text is placed in
a variable called “Cliptext.”

Dim c as Clipboard

Dim ClipText as String

c=New Clipboard

If c.TextAvailable Then

 ClipText=c.Text

End If

C.Close

If a picture is available, the picture is placed in a variable called
“ClipPict.”

Dim c as Clipboard

Dim ClipPict as Picture

c=New Clipboard

If c.PictureAvailable Then

 ClipPict=c.Picture

End If

C.Close

In this example, rows from a ListBox that have been copied to the
Clipboard are added to a ListBox:

dim theRows as string
Working With Text and Graphics 243

244

Working With Text and Graphics
dim c as clipboard

c=New Clipboard

If c.MacDataAvailable("rows") Then

 theRows=c.MacData("rows")

 Do

 Listbox1.AddRow
Left(theRows,InStr(theRows,Chr(13))-1)

theRows=Mid(theRows,InStr(theRows,Chr(13))+1)

 Loop until theRows=""

End If

C.Close

Remember, you must call the Clipboard object’s Close method in the event
handler that opened the Clipboard or an error may occur.

Putting Data On The Clipboard
You can put text, picture, or binary data (in the form of a string)
on the Clipboard. To do this, you create a new Clipboard object
then use the appropriate method or property based on the type
of data you wish to put on the Clipboard.

In this example, text is added to the Clipboard:

TABLE 54. Methods or properties for putting data on the Clipboard

Data Type Method or Property

Text SetText method

Picture Picture property

Binary Data AddMacData method
Working With Text and Graphics

Transferring Text and Graphics with the Clipboard
Dim c as clipboard

c=New Clipboard

c.SetText "Hello World"

c.Close

In this example, a picture from Canvas1 is copied to the
Clipboard:

Dim c as Clipboard

c=New Clipboard

c.Picture=Canvas1.Picture

c.Close

In this example, rows from a ListBox are copied to the Clipboard.
They are copied using the AddMacData method so they don’t
appear as text on the Clipboard:

Dim i as Integer

Dim c as Clipboard

Dim rows as String

c=New Clipboard

For i=0 to ListCount

 If Listbox1.Selected(i) Then

 rows=rows+Listbox1.List(i)+Chr(13)

 End If

Next

c.AddMacData rows,"rows"

c.Close
Working With Text and Graphics 245

246

Working With Text and Graphics
Remember, you must call the Clipboard object’s Close method in the event
handler that opened the Clipboard or an error may occur.

Creating Animation with Sprites
The SpriteSurface control is used to create animation where
pictures can be moved around the screen with all redrawing
handled automatically by the SpriteSurface control. Each picture
is a Sprite object. Sprite objects have x and y properties that
determine their current location on the screen when the
SpriteSurface is running the sprite animation.

Causing Sprites to Move and Change Images
The NextFrame event handler is called each time the
SpriteSurface is ready to draw the next frame of animation. If you
want a Sprite to change position in the next frame, change its X
and/or Y properties in the NextFrame event handler. If you want
the Sprite’s picture to change in the next frame of animation,
change its Image property in the NextFrame event handler. To
remove a Sprite from the animation, call the Sprite’s Close
method.

Frame Redrawing

The speed at which frames are redrawn is based on the
FrameSpeed property. This property determines the number of
times the monitor will refresh each second. This also determines
the number of times per second that the NextFrame event
handler will execute.
Working With Text and Graphics

Creating Animation with Sprites
The FrameSpeed parameter is defined as the number of vertical
retraces per frame. Zero is the fastest the computer can redraw.
Compute FrameSpeed by dividing 60 by the number of frames
per second you want and round to the next integer. Each frame
will cause the NextFrame event to execute.

The definition of FrameSpeed has changed under version 2 of
REALbasic. Please update version 1 applications accordingly.

Starting and Stopping the Animation
To begin or continue the animation, call the SpriteSurface’s Run
method. To stop the animation, call the SpriteSurface’s Close
method. Once the Run method is called, NextFrame events will
continue to be called until the user clicks the mouse button or
the Close method of the SpriteSurface is called. If you want to
prevent the SpriteSurface from closing when the user clicks the
mouse button, set the CloseOnClick property of the
SpriteSurface to False.

Sprite Surface Area
When the SpriteSurface’s Run method is executed, the screen
turns black, hiding the menu bar and all windows. While the
screen is completely black, the total sprite area available is 640 by
480, by default, although you can change this with SpriteSurface
properties. The SpriteSurface Backdrop property can hold an
image that is displayed when the animation begins. Because this
is a picture, you can update it while the animation is running.
However, you should avoid drawing into the active animation
area. This area is controlled by the SurfaceWidth, SurfaceHeight,
SurfaceLeft, and SurfaceTop properties.
Working With Text and Graphics 247

248

Working With Text and Graphics
Responding To The User During Sprite Animation
In the NextFrame event handler, you can use the SpriteSurface’s
KeyTest method to determine if the user is pressing a particular
key. To use this method, you pass it a key code and the KeyTest
method returns True if that key is being pressed and False if it’s
not. Key codes are not ASCII codes because some keys don’t
have ASCII codes (like the Shift, Command, and Option keys).
Instead, key codes are special codes assigned to each key on the
keyboard and they can vary for different keyboard configurations
(i.e., between the English keyboard and the French keyboard).
Figure 80 shows the English and French keyboards.

FIGURE 80. Keycodes for use with the KeyTest method.

F13 F14 F15 num
lock

caps
lock

scroll
lock

= /

7 8 9

4 5 6

1 2 3

0 .

_

+

num
lock

del

help

ins

home
page
up

end
page
down

enter

esc F6 F7 F8F5F1 F2 F3 F4 F9 F10 F11 F12

alt alt

2 3 4 5 6 7 8 9 0
+@ # % ^ & ()

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

$

control

{
[]

}

?
/.,

=

: "
; '

control

shift

caps
lock

tab

option option

shift

delete

return

clear

num majus defilF13 F14 F15

imp
ecran

pausearret
defil

= /

7 8 9

4 5 6

1 2 3

0 ,

_

+

verr
num

suppr

aide

inser

esc F6 F7 F8F5F1 F2 F3 F4 F9 F10 F11 F12

alt alt

& e " ' (§ e ! ç a
°1 2 3 5 6 7 9 0

A Z E R T Y U I O P

Q S D F G H J K L

W X C V B N ,

4

ctrl

..

v $

+
=:;

)

%
M

ctrl

@
#

37 37

12 13 14 15 17 16 1A 1C 19 1D

0C 0D 0E 0F 11 10 20 22 1F 23

00 01 02 03 05 04 26 28 25

06 07 08 09 0B 2D 2E

21 1E

382F2B

29

1B 33

6F35 7A 78 63 76 60 61 62 65 6D 67

72 73 74

75 77 79

69 6B 71

7B 7D 7C

7E

51 4B 4347

5B 5C 4E59

57 58 4556

54

41

4C

52

53 55

180A

30

39 27 2A
24

3238

31 3A

2C

64

3A3B 3B

1`

35 7A 78 63 76

72 73 74

75 77 79

7B 7D 7C

7E

51 4B 4347

5B 5C 4E59

57 58 4556

54

41

4C

52

53 55

37 37

12 13 14 15 17 16 1A 1C 19 1D

0C 0D 0E 0F 11 10 20 22 1F 23

00 01 02 03 05 04 26 28 25

07 08 09 0B 2D 2E 2B

21 1E

382C2F

29

1B 331832

30

39 27 24

0638

31 3A

2A

3B 3A

7F7F

7F7F

60 61 62 64 65 6D 67 6F 69 6B 71

3B

!~

`
8

` `

ù
£

/.?
<
>

`
`

` `
Working With Text and Graphics

CHAPTER 8 Working With Files
Many applications read from and/or write to files. Some create
files that have their own special formats. Often this process starts
with the user’s selecting a file with the Open File dialog box or
saving a file with the Save As dialog box. REALbasic makes it easy
to use the Open and Save dialog boxes, as well as to read from
and write to many different types of files.

Contents
• Understanding File Types
• Understanding FolderItems
• Accessing Files
• Working with Text and Binary Files
• Working with Pictures, Sounds and QuickTime Files
• Reading and Writing to the Resource Fork
• Handling Files Double-Clicked At the Desktop
REALbasic Developer’s Guide 249

250

Working With Files
Understanding File Types
There are many different file types. The type of a file defines a
unique type of data stored in that file. For example, a text file
stores text while a PICT file stores pictures. Every file on your
Macintosh computer has a four letter file type code and a four
letter file creator code stored with it. For Windows users, files
have a three letter suffix that defines the file type. The file type
makes it easy for an application to know if it is prepared to deal
with a particular file. For example, any application that can open
text files expects the file type of any text file it shall open is
“TEXT”. This file type tells the application that this is a standard
text file. PICT files are so named because “PICT” is the file type of
a PICT file. Applications are also files but all applications have a
file type of “APPL” which tells the Mac OS that this file is
executable and not just data.

Rather than writing code that deals directly with all of these file
types, creator codes, and file suffixes, REALbasic abstracts you
and your code from them with file types. A file type in REALbasic
is an item stored with your project that represents a specific file
type, creator, and one or more suffixes. Each file type has a name
that is used in your code when opening and creating files. This
allows you to work with names you can choose and easily
remember instead of cryptic codes. It also abstracts your code
from the Mac OS, making it easier for you to create versions of
your application for other operating systems when compilers for
them are added to REALbasic.

Using The File Types Dialog Box
The File Types dialog box is used to create the items that will
represent the different kinds of files you want your application to
be able to open or create. You can access the File Types dialog
box by choosing Edit . File Types.
Working With Files

Understanding File Types
FIGURE 81. The File Types dialog box

This list displays any file types stored with the project. REALbasic
creates a default file type called “Text” which is used when
accessing text files. The File Types dialog box makes it easy to
add, edit, and delete file types in your project.

Adding a File Type

REALbasic provides many File Type templates you can choose
from. There’s a good chance the file type you need to add to your
project is already available in the File Type Templates pop-up
menu.

To add a file type, do this:
Working With Files 251

252

Working With Files
1. If the File Types dialog box is not already open, choose Edit . File
Types.

2. Click the Add button.

The Add File Type dialog box appears.

FIGURE 82. The Add File Type dialog box

3. Choose a File Type template from the File Type Templates pop-up
menu or enter the Name, Mac Creator, Mac Type, and any exten-
sions.

4. If you are finished with the File Types dialog box, click the OK button
to save any changes you have made.

Multiple extensions can be entered separated by semicolons.

Editing a File Type

Making changes to file types is easy.

To edit a file type, do this:

1. If the File Types dialog box is not already open, choose Edit . File
Types.

2. Click on the file type you wish to edit to select it.

File Type
Templates
Pop-up
Menu
Working With Files

Understanding File Types
3. Click the Edit button.

The Edit File Type dialog box appears.

4. Make any changes you wish and click the OK button.

5. If you are finished with the File Types dialog box, click the OK button
to save any changes you have made.

If you change the name of the file type, make sure you update any code that
uses this file type. You can replace any occurrences of the old file type name
with the new one easily using the Find/Change dialog box.

Deleting a File Type

Deleting a file type is simple.

To delete a file type, do this:

1. If the File Types dialog box is not already open, choose Edit . File
Types.

2. Click on the file type you wish to delete to select it.

3. Click the Delete button.

4. If you are finished with the File Types dialog box, click the OK button
to save any changes you have made.

If you delete a file type, make sure you update any code that uses this file type.

Creating Custom File Types for Your Application
Most applications create files and assign custom icons to them.
These icons usually look similar to the application’s custom icon.
This makes it easier for the user to recognize that the file goes
with the application that produced it. Any custom icons you add
will appear only if you have assigned a creator code to your
project and built a stand-alone application.

To add custom icons to any of the file types for your project, do
this:
Working With Files 253

254

Working With Files
1. Choose Edit . Project Settings.

2. Enter a four letter creator code that uniquely identifies your applica-
tion.

3. Click the OK button.

4. Choose Edit . File Types.

5. Add a new file type or edit an existing one.

6. Make sure the file type’s Mac Creator exactly matches the one you
assigned to your application in the Project Settings dialog box.

7. Make sure the Document Icon checkbox is selected.

8. Copy your custom icon to the Clipboard.

9. Click on the plain document icon in the File Types dialog box to
select it.

10. Choose Edit . Paste (q-V).

11. Click OK.

Once you have assigned custom icons and built a stand-alone
application, you may need to rebuild the Finder’s desktop before
the Finder will display the icons. Rebuilding the desktop forces
the Finder to update its icon database. You can rebuild the
Finder’s desktop by restarting your computer and holding down
the q and Option keys until the computer asks you if you want to
rebuild the desktop.

Creator codes are case sensitive and must be unique. You can register a
unique creator code for your application with Apple Computer at their web
site at http://developer.apple.com/dev/cftype/find.html.

Understanding FolderItems
To REALbasic, volumes, folders, applications, and documents are
all considered to be FolderItems. A FolderItem is anything that
can appear on the desktop. This doesn’t mean that only items on
the desktop are FolderItems. It means that if the item could be
Working With Files

How Are Aliases Handled?
placed on the desktop, it’s a FolderItem. For example, the Trash is
a FolderItem because it appears on the desktop.

The FolderItem class is your first point of contact with any item
on a disk you want to read from or write to. To read from a file,
for example, you get a FolderItem that represents the file, then
use various methods to read from the file via the FolderItem.
There are many different ways to get a FolderItem object that
represents a particular volume, folder, application, or document.
You can present the user with an Open File or Save As dialog box,
you can get the FolderItem at a specific path, or you can even get
a FolderItem from another FolderItem.

FolderItems have properties that store the path to the item, the
name of the item, the size of the item, its type. etc. FolderItems
also have methods you can use to create files, open files, delete
files, copy files, etc.

For detailed information on the properties and methods of the
FolderItem Class, see “FolderItem Class” on page 119 of the
Language Reference.

How Are Aliases Handled?
Aliases are files that actually represent a volume, application,
folder, or file stored in another location and possibly under
another name. Aliases were introduced in the Macintosh OS in
System 7.0. REALbasic contains commands that allow you to
either resolve the alias and work with the actual object or work
with the object directly. The GetFolderItem function automatically
resolves an alias when it encounters it, while the
GetTrueFolderItem function works with the alias itself.
Working With Files 255

256

Working With Files
Getting a File at a Specific
Location
If you know the full path to a file and you wish to access the file,
you can do so using the GetFolderItem function. This function
when passed the full path to volume, folder, application, or
document, will return a FolderItem object that represents that
item.

The “path” to a volume, folder, application, or document, is a string of charac-
ters that indicates the location of the file. A path starts with the volume name
followed by the path delimiter character (a colon on the Macintosh), the name
any folders in the path (each separated by the path delimiter) and ending with
the name of the item. For example, say you had a document called “Sched-
ule” stored in a folder called “Stuff” that was on a volume called “My Disk”.
The path to the document would look like this “My Disk:Stuff:Schedule”.

The following code creates a FolderItem object in the local
variable “f” that represents the document mentioned above:

Dim f as FolderItem

f=GetFolderItem("My Disk:Stuff:Schedule")

Once you have a FolderItem, you can (depending on what type of
item it is) copy it, delete it, rename it, read from it or write to it,
etc. You will learn how to read and write to files using
FolderItems later in this chapter.

Getting Information About a FolderItem
You can now get information about the FolderItem using the
local variable “f”. For example, you can get the modification date
of the FolderItem. This example displays the modification date of
the FolderItem above:
Working With Files

Getting a File at a Specific Location
Dim f as FolderItem

f=GetFolderItem("My Disk:Stuff:Schedule")

MsgBox f.ModificationDate.ShortDate

If the FolderItem doesn’t exist, no FolderItem will be returned.
Therefore, you should check the value returned to see if it’s nil
before proceeding to access it. If you don’t, an
UnhandledNilObjectException error will be generated. Here’s the
same code from above that properly checks the returned
FolderItem before accessing any of its properties:

Dim f as FolderItem

f=GetFolderItem("My Disk:Stuff:Schedule")

If f <> nil Then

 MsgBox f.ModificationDate.ShortDate

End if

Deleting A FolderItem
Once you have a FolderItem that represents an item that can be
deleted, you can call the FolderItem’s Delete method. The
following example deletes the file represented by the folderItem
returned:

Dim f as FolderItem

f=GetFolderItem("My Disk:Stuff:Schedule")

If f <> nil Then

 f.Delete
Working With Files 257

258

Working With Files
End if

If the FolderItem is locked, an error will occur. You can check to
see if the FolderItem is locked by checking the FolderItem’s
Locked property.

Deleting a FolderItem does not simply move the FolderItem to the trash. The
FolderItem is deleted permanently from the volume.

Getting The Path To Your Application’s Folder
Passing a null string (two quotes with no characters in between
them) to the GetFolderItem function returns a FolderItem
representing the folder your application or project is in. You can
then use the FolderItem’s Item property to access all the items in
the folder your application is in.

Getting Specific Items In the Application’s Folder
If the first item in the path is not a volume, the GetFolderItem
function assumes that the first item in the path is in the same
folder as the your application. If you are running your project in
REALbasic, GetFolderItem looks for the item in the folder your
project is in. If you haven’t saved your project yet, GetFolderItem
will look in the folder that REALbasic is in.

The following example returns a FolderItem that represents a file
called “My Template” in a folder called “Templates” that is
located in the same folder as the application:

Dim f as FolderItem

f=GetFolderItem("Templates:My Template")
Working With Files

Getting a File at a Specific Location
Accessing Specific System/Finder Folders
REALbasic provides several functions that return FolderItems
representing various folders that are part of the System software
or the Finder. When you need to access one of these folders, use
the appropriate function from the list below. These functions will
still work properly even if the folder’s name changes. They are
also language independent. For more information on these
functions, see the Language Reference.

• AppleMenuFolder
• ControlPanelsFolder
• DesktopFolder
• ExtensionsFolder
• FontsFolder
• PreferencesFolder
• ShutDownItemsFolder
• StartupItemsFolder
• SystemFolder
• TemporaryFolder
• TrashFolder

This example displays the number of items that are in the Trash:

Dim f as FolderItem

f=TrashFolder

MsgBox "Items in Trash: "+Str(f.Count)
Working With Files 259

260

Working With Files
Getting The Selected File From An
Open File Dialog Box

The Open File dialog box lets the user navigate to a particular
location on any mounted volume and select a file to open.
Figure 83 shows an example of the Open File dialog box.

FIGURE 83. The standard Open File dialog box

To present the user with a standard Open File dialog box, call the
GetOpenFolderItem function. This function displays the Open File
dialog box and returns a FolderItem object that represents the file
the user selected. One or more file types (that have been defined
in the File Types dialog box) must be passed to the
GetOpenFolderItem function. It presents only those file types to
the user in its browser. In this way, the user can only open files of
the appropriate type. To pass more than one file type, separate
them with semicolons.
Working With Files

Getting a File at a Specific Location
The following example displays the Open File dialog box,
allowing the user to select files of type “Text Files” or “Movie
Files”, and then displays the files modification date:

Dim f as FolderItem

f=GetOpenFolderItem("Text Files;Movie Files")

Msgbox f.ModificationDate.ShortDate

If the user clicks the Cancel button rather than the Open button
in the Open File dialog box, GetOpenFolderItem returns nothing.
You will need to make sure the value returned is not nil before
using it. If you don’t, a NilObjectException error will be
generated. The following example shows how the code from the
previous example should be written to check for a nil object:

 Dim f as FolderItem

f=GetOpenFolderItem("Text Files;Movie Files")

If f <> Nil Then

 Msgbox f.ModificationDate.ShortDate

End if

For more information, see “GetOpenFolderItem Function” on
page 147 of the Language Reference.

For more information on file types, see “Understanding File
Types” on page 250.
Working With Files 261

262

Working With Files
Getting The Selected Folder From
An Open Folder Dialog Box
The Open File dialog box doesn’t allow the user to select a folder.
Fortunately, REALbasic’s SelectFolder function displays an Open
Folder dialog box that lets the user choose a folder rather than a
file. Figure 84 on page 262 shows and example of this dialog
box.

FIGURE 84. The Open Folder dialog box

The SelectFolder function returns a FolderItem that represents the
folder the user selects when he clicks the Select button at the
bottom of the dialog box. If the user clicks the Cancel button
rather than the Select button, SelectFolder returns nil. You need
to check for it before using the returned value.
Working With Files

Using the Save As File Dialog Box
The following example displays the number of items in the folder
selected by the user:

Dim f as FolderItem

f=SelectFolder

If f <> Nil Then

 MsgBox Str(f.Count)

End if

For more information, see “SelectFolder Function” on page 305
of the Language Reference.

Using the Save As File Dialog Box
The Save As dialog box is used to let the user choose a location in
which to save a file and give the file to be saved a name.
Figure 85 on page 264 shows an example of the Save As dialog
box.
Working With Files 263

264

Working With Files
FIGURE 85. The Save As dialog box

REALbasic’s GetSaveFolderItem function presents the Save As
dialog box and returns a FolderItem that represents the file the
user wishes to save. This is an important distinction because the
file doesn’t exist yet. You must provide additional code that will
create the file and write the data to the file. You will learn about
creating files and writing data later in this chapter.

When you call the GetSaveFolderItem function, you define the
type of file and the default name for the file (that will appear in the
Save As dialog box). The file type (which is the first parameter of
the function) is any file type defined for the project in the File Types
dialog box. Like the other functions that return FolderItems, you
should make sure the FolderItem returned by GetSaveFolderItem is
not nil before using it.

The following example presents the Save As dialog box. The
dialog presents a default file name of “Untitled”. It also returns a
FolderItem whose Mactype and MacCreator match the “my app”
file type as defined for the project in the File Types dialog box. If
Working With Files

Working With Text Files
the user clicks the Save button, the name the user chose for the
file is displayed:

Dim f as FolderItem

f=GetSaveFolderItem("my app","Untitled")

If f <> Nil Then

 MsgBox f.name

End if

If you are going to create a text file with the FolderItem returned, you can pass
an empty string as the first parameter of the GetSaveFolderItem function. The
method that creates a text file (CreateTextFile) will assign the file type and cre-
ator automatically.

For more information on file types, see “Understanding File
Types” on page 250.

For more information, see “GetSaveFolderItem Function” on
page 159 of the Language Reference.

Working With Text Files
Text files are files whose MacType is “TEXT”. Text files can be read
by text editors (like SimpleText) and word processors (like
Microsoft Word). Text files can easily be created, read from, or
written to with REALbasic. Text files are convenient since they can
be read by other applications.

Whether you are going to read from a text file or write to a text
file, you must first have a FolderItem that represents the file you
are going to read from or write to.
Working With Files 265

266

Working With Files
Reading From a Text File
Once you have a FolderItem that represents an existing text file
you wish to open, you open the file using the OpenAsTextFile
method of the FolderItem. This method is a function that returns
a “stream” that carries the text from the text file to your
application. The stream is called a TextInputStream. This is a
special class of object designed specifically for reading text from
text files. You then use ReadAll or ReadLine methods of the
TextInputStream to get the text from the text file. The
TextInputStream keeps track of the last position in the file you
read from.

The ReadAll method returns all the text from the file (via the
TextInputStream) as a string. The ReadLine method returns the
next line of text (the text after the last character read but before
the next carriage return). As you read text, you can determine if
you have reached the end of the file by checking the
TextInputStream’s EOF (end of file) property. This property will be
True once the end of the file is reached. When you are finished
reading text from the file, call the TextInputStream’s Close
method to close the stream to the file, making the file available
to be opened again.

This example lets the user choose a text file using the Open File
dialog box and displays all the text in the file in a message box:

Dim f as FolderItem

Dim stream as TextInputStream

f=GetOpenFolderItem("text/plain")

If f<> Nil Then

 stream=f.OpenAsTextFile

 MsgBox stream.ReadAll()
Working With Files

Working With Text Files
 stream.Close

End if

Because ReadAll reads all of the text in the file, the resulting string will be as
large as the file. Keep this in mind because reading a large file could require
more memory than the user has allocated to your application.

This example reads the lines of text into a string array from a file
stored in the Preferences folder in the System folder:

Dim f as FolderItem

Dim stream as TextInputStream

Dim PrefsArray(0)

f = PreferencesFolder.child("My Apps Prefs")

stream = f.OpenAsTextFile

While Not stream.EOF

 PrefsArray.Append stream.ReadLine

Wend

stream.Close

Writing to a Text File
Once you have a FolderItem that represents the text file you wish
to open and write to, you open the file using the
AppendToTextFile method of the FolderItem. If you are creating a
new text file or overwriting an existing text file, use the
createtextfile method of the FolderItem. These methods are
functions that return a “stream” that carries the text from your
application to the text file. The stream is called a
TextOutputStream. This is a special class of object designed
specifically for writing text to text files. You then use the
WriteLine method of the TextOutputStream to write the text to
Working With Files 267

268

Working With Files
the text file. Text written to a text file is always appended to the
end of the text file.

The WriteLine method, by default, adds a carriage return to the
end of each line. This is controlled by the TextOutputstream’s
delimiter property which can be changed to any other character.

When you are finished writing text to the file, call the
TextOutputStream’s Close method to close the stream to the file
making the file available to be opened again.

This example displays the Save As dialog box then writes the
contents of three EditFields to the text file and closes the stream.

Dim file As FolderItem

Dim fileStream As TextOutputStream

file=GetSaveFolderItem("plain/text","My Info")

fileStream=file.CreateTextFile

fileStream.WriteLine namefield.Text

fileStream.WriteLine addressfield.Text

fileStream.WriteLine phonefield.Text

fileStream.Close

Limitations of Text Files
Text files can only be accessed sequentially. This means that to
read some text that is in the middle of the file, you must read all
of the text that comes before it. It also means that to write some
text to the middle of a text file, you have to write all of the text
that comes before the text you wish to insert, then write the text
you wish to insert, then the text that follows the text you wish to
insert. You can not read text from a text file and write to the
Working With Files

Working With Styled Text Files
same text file at the same time. If these limitations are going to
be a problem for your project, consider using a binary file instead.
For more information on binary files, see “Working With Binary
Files” on page 274.

Working With Styled Text Files
REALbasic makes it easy to read from and write to text files that
support styled text. SimpleText is an example of an application
that supports styled text.

Loading Styled Text Into an EditField
Once you have a FolderItem that represents the styled text file
you wish to read text from, you can read the styled text using the
OpenStyledEditField method of the FolderItem. To use this
method, pass it the EditField you wish to display the styled text in.
This EditField must have its Styled property set to True.

This example displays an Open File dialog box. It then reads the
styled text from the file chosen and displays it in an EditField:

Dim f as FolderItem

f=GetOpenFolderItem("SimpleText Files")

If f <> Nil Then

 f.OpenStyledEditfield EditField1

End if
Working With Files 269

270

Working With Files
Writing Styled Text From an EditField to a File
Once you have a FolderItem that represents the styled text file to
which you wish to open and write to, you can write the styled
text using the SaveStyledEditField method of the FolderItem. To
use this method, pass it the EditField from which you wish to get
the styled text. This EditField must have its Styled property set to
True.

This example displays the Save As dialog box. It then writes the
styled text from EditField1 to a new file:

Dim f as FolderItem

f=GetSaveFolderItem("plain/text","Untitled")

If f <> Nil Then

 f.SaveStyledEditField EditField1

End if

Working With Picture Files
REALbasic has built-in support for opening and saving PICT files.
This is the most common Macintosh picture file format. Before
opening or saving a PICT file, you must have a FolderItem that
represents the PICT file you wish to work with. From there, you
can open PICT files with the FolderItem’s OpenAsPicture method
and save a picture to the file with the SaveAsPicture or
SaveAsJPEG method.

Saving Pictures
To save a picture to a PICT file, you need a FolderItem that
represents a new PICT file or an existing PICT file. Next you call
Working With Files

Working With Picture Files
the FolderItem’s SaveAsPicture method passing it the picture you
wish to save. This example saves the backdrop of a Canvas
control to a PICT file, the name of which is specified by the user
in a Save As dialog box:

Dim f as FolderItem

f=GetSaveFolderItem("image/x-macpict","Unti-
tled")

If f <> Nil Then

 f.SaveAsPicture canvas1.backdrop

End If

To save in JPEG format, simply substitute “image/jpeg” as the
first parameter of GetSaveFolderItem.

Saving the image drawn into the graphics property of a Canvas
control (perhaps by its Paint event handler) is a bit trickier. That’s
because the graphics property isn’t a picture. The way to solve
this is to add a picture property to the window. Any drawing you
do in the Canvas control’s graphics property should also be
drawn into the picture property. The picture can then be saved
using the SaveAsPicture method. The picture property you add to
the window must be filled with a reference to a new picture
before you attempt to write to it. This is accomplished using the
NewPicture function in the window’s Open event handler. In this
example, the picture property (called “p”) is set to a new picture:

p=newpicture(canvas1.width,canvas1.height,32)

In this example, the mouseDown event handler of the Canvas1
control draws a black pixel when the user clicks on the Canvas1
control. The drawing is also done to the window’s p (picture)
property:
Working With Files 271

272

Working With Files
Me.Graphics.Pixel(x,y)=Rgb(0,0,0)

p.Graphics.Pixel(x,y)=Rgb(0,0,0)

Finally, the picture property “p” can be saved to a picture file:

Dim f as FolderItem

f=GetSaveFolderItem("image/x-macpict","Unti-
tled")

If f <> Nil Then

 f.SaveAsPicture p

End If

Opening Pictures
To open a picture, you need a FolderItem that represents the PICT
file you wish to open. Next, you call the FolderItem’s
OpenAsPicture method which returns the picture. This example
displays the Open File dialog box that lets the user choose a PICT
file which is then placed in the Backdrop property of a Canvas
control:

Dim f as FolderItem

f=GetOpenFolderItem("image/x-macpict")

If f <> Nil Then

 Canvas1.Backdrop=f.OpenAsPicture

End if
Working With Files

Working With Sound Files
Working With Sound Files
REALbasic supports opening Macintosh sound files but not saving
them. Specifically, Macintosh sound files are those files whose
“Kind” field in the file’s Get Info dialog box is listed as “Sound.”
To open a sound file, you must first have a FolderItem that
represents the sound file you wish to open. Next, you can open
the sound file and place its contents into a Sound object with the
FolderItem’s OpenAsSound method. This example opens a sound
file and plays it:

Dim f as FolderItem

Dim s as Sound

f=GetFolderItem("Doh!")

If f<> Nil Then

 s=f.OpenAsSound

 s.Play

End if

You can also get sounds stored in a snd resource inside your
application. For more information, see “Supported Resource
Types” on page 281.

Working With QuickTime Movie
Files
Like sound files, REALbasic supports opening QuickTime movie
files but not saving them. To open a QuickTime file, you must first
have a FolderItem that represents the QuickTime file you wish to
open. Next, you can open the QuickTime file and place its
Working With Files 273

274

Working With Files
contents into a Movie object with the FolderItem’s OpenAsMovie
method. This example opens a QuickTime file, assigns its movie
to the Movie property of a MoviePlayer control, and plays the
movie:

Dim f as FolderItem

Dim m as Movie

f=GetOpenFolderItem("video/quicktime")

If f<> Nil Then

 m=f.OpenAsMovie

 moviePlayer1.Movie=m

 moviePlayer1.Play

End if

Working With Binary Files
Binary files are simply files that store values in their binary format
rather than as text. For example, the number 30000 stored as
text requires 5 characters of text (or bytes) to store in a text file. In
a binary file, this number can be written as short integer (or just
“short” or short). A short requires only 2 bytes.

Binary files also have the added benefit that you can read and
write to a file without having to close the file in-between. For
example, you can open a binary file, read some data, then write
some data, and close it. You can also read and write anywhere in
the file without having to read through all the data preceding the
data you want.
Working With Files

Working With Binary Files
Most applications store data in a binary format. The format is
simply the arrangement of data within the file. In order to read a
binary file, you must know how the data is arranged. If your own
application created the file, you will know this, but if the file was
created by an application you didn’t write, you may not know it.
Some formats are made public. For example, the PICT format is
public. Other formats are not. Many software vendors do not
publish the binary formats that their applications use to create
documents.

BinaryStreams
Data read from or written to a binary file travels through a
BinaryStream. A BinaryStream is a class of object in REALbasic
that represents the flow of information between the a FolderItem
and the file it represents. Unlike the TextInputStream class (which
can only be used to read from a text file) and the
TextOutputStream class (which can only be used to write data to
a text file), BinaryStreams can be used for both reading data and
writing data. You can even indicate to the BinaryStream that you
will only be reading data from the file so that the file can
continue to be available to other applications for writing.

BinaryStreams can read and write specific types of data, such as
strings, short integers, long integers, and single bytes. They can
also be used to read and write raw unformatted binary data.

Reading From a Binary File
Once you have a FolderItem that represents the file you wish to
open, you open the file using the OpenAsBinaryFile method of the
FolderItem. This method is a function that returns a BinaryStream.
You then use Read, ReadByte, ReadLong, ReadPString and
ReadShort methods to read data from the stream. The
BinaryStream keeps track of the last position in the file you read
Working With Files 275

276

Working With Files
from in its Position property. However, you can change this
property to move the position to any location in the file.

This example presents the Open File dialog box, reads a file made
up of strings, and displays those strings in a ListBox. Notice that
since the code is only reading data and not writing, False is
passed to the OpenAsBinaryFile method to indicate the file
should be opened in “read-only” mode. Also, reading continues
in a loop until the stream’s EOF (end of file) property is True.
REALbasic will set the EOF property to True automatically once
the end of the file is reached.

Dim f as FolderItem

Dim stream as BinaryStream

f=GetOpenFolderItem("myFileType")

If f<> Nil Then

ListBox1.DeleteAllRows

stream=f.OpenAsBinaryFile(False)

do

 ListBox1.AddRow stream.ReadPString

 ListBox1.Cell(ListBox1.ListCount-
1,1)=stream.ReadPString

 Loop Until stream.EOF

 stream.Close

End if

This code would run about 25% faster using a For...Next loop
instead of a Do loop. However, the format of the file would have
to be different because you need to know in advance how many
rows of data to read in order to provide the ending value to the
Working With Files

Working With Binary Files
For loop. For example, if the first four bytes of the file format was
a long integer that was the number of rows in the file, you could
use that integer in your For loop. This is illustrated in the
following example:

Dim f as FolderItem

Dim stream as Binarystream

Dim count,i as Integer

f=GetOpenFolderItem("myFileType")

If f<> Nil Then

 ListBox1.DeleteAllRows

 stream=f.OpenAsBinaryFile(False)

 count=stream.ReadLong

 For i=1 to count

 Listbox1.AddRow stream.ReadPString

 Listbox1.Cell(ListBox1.Listcount-
1,1)=stream.ReadPString

 Next

 stream.Close

End if

Writing to a Binary File
Once you have a FolderItem that represents the file you wish to
open and write to, you can open the file using the
OpenAsBinaryFile method of the FolderItem. If you are creating a
new file, use the CreateBinaryFile method of the FolderItem. This
method is a function that returns a BinaryStream. You then use
Write, WriteByte, WriteLong, WritePString, and WriteShort
Working With Files 277

278

Working With Files
methods to write data to the stream. The BinaryStream keeps
track of the last position in the file you wrote to in its Position
property. However, you can change this property to move the
position to any location in the file.

When you are finished writing data to the file, call the
BinaryStream’s Close method to close the stream to the file
making the file available to be opened again.

This example displays the Save As dialog box and writes the
contents of two columns of a ListBox to the file and closes the
stream. This code creates the file that is opened and read in the
read binary file example that uses a For...Next loop.

Dim f as FolderItem

Dim i as Integer

Dim stream as BinaryStream

f=GetSaveFolderItem("myFileType","Untitled")

If f<> Nil Then

 stream=f.CreateBinaryFile("myFileType")

 stream.WriteLong ListBox1.ListCount

 For i=0 to ListBox1.Listcount-1

 stream.WritePString ListBox1.List(i)

 stream.WritePString ListBox1.Cell(i,1)

 Next

 stream.Close

End if
Working With Files

Working With Macintosh Resources
Working With Macintosh Resources
All Macintosh files (including applications, which are really just
files) can have two sections called “forks.” The “data” fork holds
data that is in whatever format the application that created the
file chose to put it in. The resource fork can contain formatted
information such as icons, sounds, menu bars, pictures, string
lists, etc.

REALbasic provides support for reading from and writing to the
resource fork of a file. This is done using a FolderItem class object
that represents the file whose resource fork you wish to access or
create.

If you need more information on Macintosh resources, read
Inside Macintosh: Resources published by Addison-Wesley.

Opening a File’s Resource Fork
Once you have a FolderItem, you can open the resource fork for
the file the FolderItem represents. This is done using the
OpenResourceFork method of the FolderItem. This method
returns a ResourceFork class object which can then be used to
access the resource fork of the file. If the file has no resource
fork, the OpenResourceFork method returns Nil.

This example displays the Open File dialog box allowing the user
to choose a file. It then reports if the file has no resource fork or
tells the user how many different types of resources are in the
file’s resource fork:

Dim f as FolderItem

Dim rf as ResourceFork

f=GetOpenFolderItem("any")
Working With Files 279

280

Working With Files
If f <> Nil Then

 rf=f.OpenResourceFork

 If rf=Nil Then

 Beep

 MsgBox "This file has no resource fork."

 Else

 MsgBox "This file has "+str(rf.TypeCount)+"
resource types."

 End if

End if

Adding a Resource Fork to a File
Before you can write to the resource fork of a file, it must have
one first. You can use the FolderItem’s OpenResourceFork
method to determine if the file has a resource fork. If it doesn’t,
you can use the FolderItem’s CreateResourceFork method to add
a resource fork to the FolderItem. Once the file has a resource
fork, you can begin writing to it.

This example displays an Open File dialog box and adds a
resource fork to the file (if the file doesn’t already have one):

Dim f as FolderItem

Dim rf as ResourceFork

f=GetOpenFolderItem("any")

If f <> Nil Then

 rf=f.OpenResourceFork

 If rf=Nil Then
Working With Files

Working With Macintosh Resources
 rf=f.CreateResourceFork("any")

 End if

End if

Supported Resource Types
REALbasic provides high level support for PICT, CICN, and snd
resources. You can used the AddPicture method to add PICT
resources to the resource fork and use GetPicture or
GetNamedPicture to get PICT resources from the resource fork.
You can use GetCicn to get a cicn (color icon) resource. Sounds
can be read from snd resources using the GetSound method of
the ResourceFork class. However, you can access any type of
resource. REALbasic provides method for getting and setting raw
data from any type of resource in a resource fork. However, you
must know the format of the resource data to be able to
successfully read from it or write to it.

Reading Resources
The ResourceFork class has methods for reading data from three
different types of resources. You can read PICT resources using
the GetPicture and GetNamedPicture methods of the
ResourceFork class. You can get a color icon as a picture by
calling the GetCicn method. You can load sounds from snd
resources using the GetSound method.

To read data from other resources, you must know the format of
the resource. For example, to read the STR# resource, you can
use the GetResource method of a ResourceFork class. This will
return the bytes that make up the resource ID you specify. To
then do anything useful with the data, you will need to know
that the first two bytes are the number of strings in the resource
Working With Files 281

282

Working With Files
following by the strings themselves. The strings are Pascal strings
so their first byte is the length of the string.

Writing To Resources
REALbasic provides methods via the ResourceFork class that can
be used to write to resources. You can use the AddPicture
method to write REALbasic pictures into a PICT resource. For all
other types of resources, you can use the AddResource method
to create new resources and the RemoveResource method to
delete specific resources. To modify a resource other than PICT
resources, you read the data of the resource using the
GetResource method, then write the data back by deleting the
resource with the RemoveResource method and then recreating
the resource using the AddResource method.

More Information on the ResourceFork
For more information on the ResourceFork class, see
“ResourceFork Class” on page 283 of the Language Reference.

Files Opened From the Desktop
If you application is designed to read from and/or write to files,
you may have consider how you application will react when the
user accesses files from the Finder (the desktop).

Files Opened by Double-Clicking
If the user double-clicks on a file whose creator code matches
your stand-alone application’s creator code, the user will be
expecting your application to open the file automatically. If your
Working With Files

Files Opened From the Desktop
application is prepared to open a file and take some action, then
you should also support the user’s double-clicking on the file
from the desktop. This is done by adding a new class based on
the Application class. This new class represents your application
as a whole and will receive information when the user double-
clicks on a document whose creator code matches your
application’s creator code. The application class you are adding
has an OpenDocument event handler that is executed when the
user double-clicks on a file at the desktop. This event handler is
passed a FolderItem as a parameter. This FolderItem represents
the file the user double-clicked on.

To take action when the user double-clicks on a file from the
desktop, do this:

1. If your project doesn’t already have a class based on Application,
choose File . New Class.

A new Code Browser window appears.

2. In the Properties window, choose Application from the Super pop-up
menu.

3. In the Properties window, type “App” as the Name field.

4. Expand the Events list in the Code Editor browser.

5. Click on the OpenDocument event to select it.

6. Enter the code that should execute when the user double-clicks on a
file at the desktop. You can access the file using the item parameter
passed to the OpenDocument event handler.

Files Dropped On Your Application’s Icon
REALbasic treats a file dropped on your application’s icon at the
desktop the same way it treats the user’s double-clicking on a file
from the desktop. For more information, see “Files Opened by
Double-Clicking” on page 282.
Working With Files 283

284

Working With Files
Creating New Files
When the user launches your application without opening a file,
REALbasic assumes that the user will probably want to create a
document (assuming you application is document/file based). If
you have created a class based on the Application class, that
class’s NewDocument event handler will execute. This event
handler also executes when your application receives an Open
Application AppleEvent (oapp) or when a user uses AppleScript
to tell the Finder to open your application.

You can call the NewDocument event handler by entering
NewDocument in your code. This allows you to have a single
location to put the code for your application that creates new
documents. Using this event handler, your application will
respond to all the appropriate calls to create a new document.
Working With Files

CHAPTER 9 Creating Reusable
Objects with Classes
Classes act as templates for objects much in the same way that
the windows listed in the Project window act as templates for the
windows you open in your application. This chapter will
introduce you to the benefits of classes, explain how to modify
them, and how you can create custom interface controls using
classes.

Contents
• The Benefits of Classes
• Understanding Subclasses
• Modifying Classes
• Managing Menus within Classes
• Using Classes in Your Projects
• The Application Class
• Creating Custom Controls with Classes
REALbasic Developer’s Guide 285

286

Creating Reusable Objects with Classes
• Virtual Methods
• Interface Inheritance
• Custom Object Bindings

The Benefits of Classes
There are lots of benefits to creating classes. They are:

Reusable Code
When you add code to something like a pushbutton to customize
it’s behavior, you can only use that code with that pushbutton. If
you want to use the same code with another pushbutton, you
need to copy the code and then make changes to the code in
case it refers to the original pushbutton (since the new
pushbutton will have a different name than the original).

Classes store the code once and refer to the object (like the
pushbutton) generically so that the same code can be reused any
number of times without modification.

Smaller Projects/Applications
Because classes allow you to store code once and use it over and
over in a project, your project and the resulting application is
smaller in size and may require less memory.

Easier Code Maintenance
Less code means less maintenance. If you have basically the same
code in several places in your application, you have to keep that
in mind when you make changes or fix bugs. By storing one copy
Creating Reusable Objects with Classes

Understanding Subclasses
of the code, you will spend less time tracking down all those
places in your project where you are using the same code.
Making a change to the code in a class automatically updates any
places where the class is used.

Easier Debugging
The less code you have, the less code there is to debug.

More Control
Classes give you more control than you can get by adding code
to the event handlers of a control in a window. In fact, some
classes can even manage menus. You can also use classes to
create custom controls. And with classes, you have the option to
create versions that don’t allow access to the source code of the
class, allowing you to create classes you can share or sell to other
REALbasic users.

As you can see, there are many benefits to creating classes.
Overall, classes make your programming effort more efficient.

Understanding Subclasses
REALbasic has many classes built-in to it. Pushbutton, StaticText,
EditField, and ListBox are examples of some of the built-in classes.
You may find situations where you would like to have an object
that is a slightly altered version of one of the built-in classes. For
example, you might want a version of the EditField control that
disables the Cut and Copy items on the Edit menu, preventing
the user from putting sensitive data on the Clipboard. You might
want to create a ListBox that, by default, has the months of the
Creating Reusable Objects with Classes 287

288

Creating Reusable Objects with Classes
year in it. You can create your own versions of these built-in
classes by creating subclasses.

What is a Subclass?
A subclass is simply a class that has a super class. A super class is
a class the subclass is based on. The super class is also sometimes
called the “parent” class. Subclasses inherit all of their super’s
properties, methods, and events. The subclass can then modify
them. In fact, a subclass is identical to its super class until you
start modifying it. After that, it’s different from its super class only
in the ways you make it different by adding properties, modifying
events, and adding or modifying methods.

Examples of Subclasses
For example, to create an EditField that prevents the user from
copying data to the Clipboard (Let’s call it a SecureEditField), you
create a new class and choose EditField as its super class.
REALbasic automatically enables the Cut and Copy menu items
on the Edit menu when characters are selected in an EditField.
Because EditFields can get the focus, any subclass of the EditField
control has an EnableMenuItems event handler. This allows the
EditField to control the menus when it has the focus. To prevent
the user from using the Cut and Copy menu items, you set the
Enabled property of these menu items to False in your
SecureEditField’s EnableMenuItems event handler.

Suppose you want to create a ListBox that, by default, displays
the names of the months of the year, with the current month
selected. You create a new class and choose ListBox as its super
class. In the Open event handler of your new subclass, you use
the AddRow method of the ListBox to add the month names.
You then write code to select the appropriate month in the list.
Creating Reusable Objects with Classes

Referring To A Class’s Properties and Methods From Within the Class
You might want to create an EditField that only allows the user to
enter numbers. Let’s call it “NumbersOnlyEditField.” To do this,
you create a subclass of the EditField control and put code in the
KeyDown event handler that allows only numbers and rejects all
other characters. Once created, you can use your new subclass in
many different places in your project, but the code exists only in
one place.

Subclasses are classes. They are called subclasses to differentiate
them from classes that have no super class. Because subclasses
are classes, they can be the super class to other subclasses. For
example, suppose you had already created the
NumbersOnlyEditField subclass mentioned earlier. Now, you need
an EditField that allows only numbers within a certain range. You
could duplicate the NumbersOnlyEditField subclass and then
modify its code. However, this would make your project larger
and more difficult to maintain. If you found a bug in the code of
the NumbersOnlyEditField, you would have to remember that
you used that code in other places as well, track them down, and
fix them. A more efficient way is to create a new subclass and
choose the NumbersOnlyEditField as its super class. The new
subclass (let’s call it “NumberRangeEditField”) would utilize all of
the properties, events, and methods of its super class. However,
you can add code to the TextChanged event handler that allows
only numbers within a specific range.

Referring To A Class’s Properties
and Methods From Within the Class
When you add code to a control like a pushbutton in a window,
you are really adding code to an instance of the pushbutton class.
Consequently, you must include some reference to the instance
Creating Reusable Objects with Classes 289

290

Creating Reusable Objects with Classes
or REALbasic would have no way of knowing which pushbutton,
for example, your code is referring to.

However, when you are adding code to a class or subclass, there
is no need to refer to any instance because the code is part of the
class to which you have added code, not the instance of the
class. Consequently, you don’t include object references to the
class in its own code. For example, suppose you create a
pushbutton named “Pushbutton1” in a window that should be
disabled after the user clicks it. The code in the pushbutton’s
Action event handler would be:

Pushbutton1.Enabled=False

If you had instead created a subclass with Pushbutton as its super
class, you would not include the instance reference, so the code
would be:

Enabled=False

When the subclass is used, the code will automatically be
operating on the instance of the class that’s in use.

Constructors
When you create a new object, you will sometimes want to
perform some sort of initialization on the object. The constructor
is a mechanism for doing this. To create a constructor, simply
define a method with the same name as the class. This method
will then be called automatically when an instance of the parent
class is created.
Creating Reusable Objects with Classes

Modifying Classes
You can also create a destructor by creating a method that has
the same name as the class, preceded by the tilde (~). The
destructor is called automatically when an instance of the parent
class is deleted or goes out of scope.

Modifying Classes
One of the big advantages of classes is the ability to modify
existing classes. You do this by adding properties, adding or
changing events, and adding or changing methods.

Adding Properties
You can add properties to a class to store values that its super
class doesn’t store. For example, you might want to create a
subclass of the EditField control that stores the last value the user
entered. This would allow you to selectively reject the current
entry and restore the last entry. You add properties to a class the
same way you add properties to a window.

To add a property to a class, do this:

1. If the class is not already open, double-click on it in the Project win-
dow to open it.

2. Choose Edit . New Property.

3. Enter the property definition (like: Name as String).

4. Click the OK button.

You probably noticed the checkbox labeled “Private.” Making a
property private means that the property can be accessed only by
the event handlers and methods of the class.
Creating Reusable Objects with Classes 291

292

Creating Reusable Objects with Classes
Adding Methods
You can add methods to classes to provide functionality that the
class previously didn’t have. For example, you might want to add
a new method to a class based on the ListBox control that inserts
a row rather than appends the row to the end of the list (the way
the built-in AddRow method does).

To add a method to a class, do this:

1. If the class is not already open, double-click on it in the Project win-
dow to open it.

2. Choose Edit . New Method.

The New Method dialog box appears. Figure 86 on page 292 shows
an example of the New Method dialog box.

3. Enter a name for the method.

4. Enter the parameters if any, separating multiple parameters with
commas.

5. Enter the data type of the value to be returned if the method will be
a function.

6. Click the OK button.

FIGURE 86. The New Method dialog box.

You probably noticed the checkbox labeled “Private.” Making a
method private means that the method can be called only by the
event handlers and methods of the class.
Creating Reusable Objects with Classes

Modifying Classes
Adding New Events
Any events in a class you have added code to will not, by default,
be available to any instance of the class. Consider this example.
You create a class based on the ListBox class and you put some
code in its Open event handler. Any instances of that class that
appear in a window will not have an Open event handler. The
assumption is that since the event handler of the class has code
for the event, it is handling that event.

There may be times, however, when you want the class to have
code in an event handler but you also want to be able to put
code in that event handler for any instance of the class. An
example of this is when you set up default values. In the Open
event handler, you might set the default values of the class. For
example, in a class that displays the names of the months in a
listbox, you might want to select the current month name by
default. However, when you use this class in a window, you
might want to be able to override the default action and choose
a different month instead. The instance of the month’s ListBox
won’t have an Open event handler because its class is handling
the Open event.

Adding new events solves this problem. You add a new Open
event to the class and then call it from the class’s Open event
handler. New events are available only to the instances of the
class. When you add a new Open event, you are adding that
event to any instance of the class. When will this new Open event
occur? Since you are calling it in the class’s Open event handler, it
will occur when the window opens — just like a regular Open
event handler.

Let’s look at another example in which you would want to add
new events. Suppose you are creating a custom class that will
display a grid. The grid allows the user to click on individual cells
Creating Reusable Objects with Classes 293

294

Creating Reusable Objects with Classes
to turn them on and off. You might want to add an event that
occurs when the user clicks on a cell in the grid. Let’s call this
event “CellClicked.” You also want the event to be passed the
row and column numbers where the click occurred. In any
particular instance of the class, you could then use the
CellClicked event as a place to take action when the user clicks in
a cell.

So how do you go about adding the CellClicked event? First, add
a new event called CellClicked to the class. You want to pass the
row and column numbers to this event, so include them as
parameters for the event. Figure 87 on page 294 shows what the
New Event dialog box might look like when you are adding the
CellClicked event.

FIGURE 87. The New Event dialog box

The next step is to determine when this event will occur. Since
the user clicks the mouse to select a cell, it makes sense that this
event is generated when he clicks the mouse. For the Canvas
control (the class the grid class would be based on), this means
calling this event in the MouseDown and MouseDrag event
handlers. To do this, call the CellClicked event as if it were a
method. You do the necessary calculations to determine the row
and column numbers and pass these to the CellClicked event.

When the user clicks on a cell, the MouseDown event handler of
the class is executed. This causes the CellClicked event to be
Creating Reusable Objects with Classes

Managing Menus within Classes
called and passed the row and column numbers. This causes the
CellClicked event to occur for the instance of the class the user
clicked on in the window. The class is basically calling a subrou-
tine of the instance of the class. And, because the CellClicked
event could be designed to return a value, the instance of the
class can return data back to the super class. This could be bene-
ficial in this particular example if you wanted to filter the click.
You could code the class to only continue with handling the click
should the CellClicked event return False (use False since this is
the default value returned by a function). This would allow any
instance of the class to determine which cells are valid for clicking
and which cells are not.

See the “Gridlock” project on the REALbasic CD for an example
of this kind of new event.

Managing Menus within Classes
Classes that can receive the focus can control the menus when
they have the focus. This make it even easier to encapsulate code
within a control. The EditField and ListBox classes are the only
classes that can receive the focus. Any classes you create with
either of these classes as the super class will have an
EnableMenuItems event handler and can have menu handlers for
any of the menu items in your project.

When an instance of a class based on the EditField or Listbox has
the focus and the user clicks in the menu bar (or presses a
keyboard shortcut for a menu item), the class’s EnableMenuItems
event handler is executed. This gives the class the opportunity to
enable or disable any menu items. The window’s
EnableMenuItems event handler will be executed next, followed
by the application class EnableMenuItems event handler
Creating Reusable Objects with Classes 295

296

Creating Reusable Objects with Classes
(assuming you have created a class with Application as its super
property). If a menu item is then selected, REALbasic first checks
the class to see if it has a menu handler for the selected menu
item. If the menu handler exists, it is executed, followed by the
window’s menu handler (if it has one for the selected menu
item), followed by the application’s menu handler (if it has one
for the selected menu item).

The SecureEditField mentioned earlier in this chapter is an
example of a class controlling menu items. When the
SecureEditField has the focus and the user clicks in the menu bar,
the SecureEditField’s EnableMenuItems event handler sets the
Enabled property of the Cut and Copy menu items to False,
disabling them. These menu items would normally be enabled
automatically by REALbasic.

Another example of a class that manages menus is a class based
on the Listbox that allows the user to use the Cut and Copy
menu items to move menus between ListBoxes. See the
ClipListBox project of the REALbasic CD for an example.

Using Classes in Your Projects
Before you can use a class in your project, you must first
understand a few concepts and terms. The use of a class in a
project involves three items: the class, the instance, and the
reference.

The Class
The class is a template set of the events, methods, and
properties.
Creating Reusable Objects with Classes

Using Classes in Your Projects
The Instance
An instance is a place in memory that stores a copy of the
properties of the class. Methods are not stored in memory with
each instance. Instead, they are loaded from the class into
memory when they are called.

The Reference
The reference is a value stored in a property or local variable that
keeps track of where the instance is in memory. You use the
property or local variable holding the reference to access the
instance of the class. In this example, “person” is a local variable
storing a reference to the instance of the class “Programmer.”
The reference is then used to access the value in the name
property of the instance created using the New operator.

Dim person as Programmer

person=New Programmer
person.name="Jason"

You will learn more about using the New operator later in this
chapter.

How you use a class in your project depends on whether the class
is based on a control.

Classes Based on Controls

To create an instance of a class based on a control in a window,
simply drag the class from the Project window to the window in
which you want the new instance.
Creating Reusable Objects with Classes 297

298

Creating Reusable Objects with Classes
Classes Based on Classes Other Than Controls
Classes don’t have to be based on controls. You can also create
classes based on classes that are not part of the control class. For
example, the Thread class is not part of the control class. You
might need to create a subclass of the Thread class and add
properties to it to store information used or created by the
thread. You might even need to create classes which have no
super class. This is often the case when you need to store
complex information. For example, you could create a class called
“People” that had properties like Name, Age, and Height to store
information about people. You could then create a subclass of
people called “ComputerUsers” which would add additional
properties that define a computer user.

To create an instance of a class based on a class other than one of
the control classes, you must first have a place to store the
instance. You can store the instance in a property or a local
variable. The property or local variable must be of the same type
as the class or one of the class’s super classes. For example, if
class Programmers is a subclass of ComputerUsers which is a
subclass of People, then the property or variable must be of type
Programmers, ComputerUsers, or People.

The New operator is used to create a new instance of the class in
memory and then assign a reference to the new instance to the
property or local variable you have typed. In this example, the
local variable “person” is typed as class Programmer. The New
operator is then used to create a new instance of Programmer
and assign a reference to this new instance to the variable
person.

Dim person as Programmer

person=New Programmer
Creating Reusable Objects with Classes

Using Classes in Your Projects
Although you can type the property or variable as the class or any
of the super classes above it, the property or variable will only
have access to the properties and methods of the class you type it
as. For example, in the code below, the local variable person has
access only to the properties and methods of the ComputerUser
and People classes, even though it was created as a Programmer
class object with the New operator.

Dim person as ComputerUser

person=New Programmer

Accessing the Properties and Methods of a Class
Once you have created an instance of a class and stored a
reference to it in a local variable or property, you can access its
properties and methods the same way you access any object’s
properties and methods. In this example, a new instance of a
class called Programmers is created and a value is assigned to one
of its properties:

Dim person as Programmer

person=New Programmer
person.name="Jason"

When are Instances of Classes Removed From
Memory?
REALbasic manages memory for you automatically using
something called garbage collection. This means that instances of
classes are removed from memory automatically when they are
no longer used. Suppose you create a class based on a ListBox.
You then create an instance of that class in a window. When the
window is opened, the instance of the class is created in memory
automatically. When the window is closed, the instance of the
Creating Reusable Objects with Classes 299

300

Creating Reusable Objects with Classes
class is automatically removed from memory. If you store the
reference to a class in a local variable, when the method or event
handler is finished executing, the instance of the class is removed
from memory. If you store a reference to an instance of a class in
a property, the instance will be removed from memory when the
object owning the property is removed from memory.

The Application Class
This special class is used to create a subclass that represents your
application rather than a window or a control. Consequently, you
can only have one class based on Application. If you create more
than one, REALbasic ignores all other classes based on the
Application class.

Special Event Handlers
The Application class has special event handlers. They are:

• Open
Executes when the you run the application by choosing
Debug . Run (q-R) or when launching a stand-alone version of
your application.

• Close
Executes when you quit your application either from the
Runtime environment or in a stand-alone application.

• NewDocument
Executes when the stand-alone version of the application is
launched without double-clicking one of the application’s docu-
ments.

• OpenDocument
Executes when one of the application’s documents is double-
clicked at the Finder.
Creating Reusable Objects with Classes

The Application Class
• EnableMenuItems
Executes when the user clicks in the menu bar but before any
menu items are displayed. This EnableMenuItems event handler
executes after the EnableMenuItems event handler of any
classes with instances in the frontmost window and after the
window’s EnableMenuItems event handler. This is the event
handler that should be used to enable menu items that should
be enabled regardless of whether there is a window open or
not.

• HandleAppleEvent
Executes when an AppleEvent is received by the application.

Properties Are Global
Properties of the Application class are accessible to all code in
your project.

Methods Are Global
Methods of the Application class are accessible to all code in your
project.

Naming Your Application-Based Subclass
REALbasic creates an application object when your application
runs regardless of whether you have an application-based
subclass in your project. The App function returns a reference to
this application object. If you name your application-based
subclass “App,” it will make your code more clear as the App
function and your App subclass will effectively operate as the
same thing.
Creating Reusable Objects with Classes 301

302

Creating Reusable Objects with Classes
Creating Custom Controls with
Classes
One of the most important uses of classes is for creating custom
interface controls. While REALbasic provides most of the interface
controls you will need in your project, you may find you need to
create interface controls that are not built-in to REALbasic.
Suppose you need to create a control that displays a grid of cells.
You want the user to be able to click on the cells in the grid to
select them. Figure 88 on page 302 shows an example of what
such a grid control might look like.

FIGURE 88. Custom grid control

Custom interface controls are created by building a subclass
based on the Canvas control. The Canvas control gives you an
area you can draw your control in and it receives events allowing
you to interact with the user. For example, in the grid control
example above, the Paint event handler of the Canvas control is
used to draw the grid. This is actually the Gridlock class example
that you can find on the REALbasic CD. The Gridlock class has
Creating Reusable Objects with Classes

Creating Custom Controls with Classes
properties that store the number of rows and columns the
programmer wants for a particular instance of the Gridlock.
There are also properties that store the selected cell color and the
unselected cell color. When the user clicks in the grid area, the
MouseDown event handler for the Gridlock class executes. The
code for this event handler determines which cell was clicked and
then determines if the cell should now be selected or unselected.
A new event called CellClicked has been added to the Gridlock
class that is executed when the user clicks on a cell. The purpose
of this event is to allow an instance of a Gridlock class to react to
a cell click. The CellClicked event handler is passed the row and
column numbers of the cell that was clicked. The CellClicked
event handler also acts as a function. If an instance of the
Gridlock class returns True in the CellClicked event handler, the
Gridlock class assumes the programmer wants to filter the click,
so it acts as if the user didn’t click in the cell.

Drawing Your Custom Control
The Paint event handler of a Canvas control (or a Canvas Control
based subclass) is executed any time the control needs to be
redrawn. For example, if a window is covering part of the control
and it is then moved to uncover more of the control, the Paint
event handler executes to redraw the control. If the look of the
control doesn’t change at all when it’s used, you can do all of the
drawing of your control in the Paint event handler. However, if
your control changes, you will need to take a different approach.
For example, the Gridlock control changes when the user clicks
on a cell. The Gridlock control also has a method that allows the
number or rows and columns in the grid to be changed on the
fly. This requires the grid to be redrawn.

In the Gridlock example, the grid needs to be redrawn at two
different times. It needs to be redrawn in the Paint event handler
in case something (like a window position over the control) has
Creating Reusable Objects with Classes 303

304

Creating Reusable Objects with Classes
uncovered a portion of the control, and when the grid is
redefined to have a different number of rows and columns.
Because of this, the code to do the actual drawing is placed in its
own method. The method is called DrawGrid and it is passed the
Graphics property of the Canvas control that the Gridlock class is
based on. The DrawGrid method can then use this property to
redraw the grid. By placing this code in a separate method, the
same code can be used by the Paint event handler and by the
DefineGrid method. The Paint event handler is passed a reference
to the Graphics property of the Canvas so this reference can be
passed on to the DrawGrid method when calling it from the Paint
event handler. The DefineGrid method calls the DrawGrid
method as well since the grid is being resized and needs to be
redrawn. The DrawGrid method can be passed the graphics
property in this case by using the syntax:

DrawGrid Me.Graphics

Me is a reference to the instance of the class in the window. So
although this code is being called from inside the Gridlock class,
the use of Me allows it access to properties of the instance in use.

Virtual Methods
Virtual methods provide a way for a subclass to have its own
version of a method. Ordinarily, a subclass inherits the methods
belonging to its parent.

When a subclass has a method that has the same name as its
parent, the subclass’s version is called unless you use the syntax:

parentclassname.methodname

To create a ‘virtual’ method, do this:
Creating Reusable Objects with Classes

Interface Inheritance
1. Create a class.

2. Add a method to the class.

3. Create a subclass of the first class.

4. Add a method to the subclass with the same name as the method
you added in step 2.

When the subclass calls the method, it will call its own version
and not its parent class’s version.

Interface Inheritance
Although Interface Inheritance sounds complicated when
described in abstract language, it actually addresses a simple
problem. If you have several controls that need to perform the
same task but in a different way (depending on the specifics of
the types of control) you can write and execute interface-specific
code in an elegant way.

Figure 89 on page 306 that shows an application that uses
interface inheritance. The purpose of this application is to
conduct a search for a user-entered string and find the string in
the three controls located above the separator: The EditField,
ListBox, and PopupMenu are all based on custom classes.
Although the task is identical (a find operation), it cannot be
done with exactly the same code for all three objects, since the
three objects store and manipulate data differently. Therefore,
each custom class has its own implementations of the methods
used to do the search.

The ListBox, EditField, and PopupMenu are all derived from
custom classes that use a custom interface, FindInListInterface.
They all have a Find function that takes the same parameter, but
Creating Reusable Objects with Classes 305

306

Creating Reusable Objects with Classes
all implement it differently. The code for the Find button can call
all of their Find functions using the same syntax.

FIGURE 89. An example application that uses interface inheritance

The user enters a search string in the EditField, FindValue, to the
left of the Find button. When he clicks the Find button, the
following code is executed:

FindIt FindValue.text, listBox1
FindIt FindValue.text, popupMenu1
FindIt FindValue.text, editField1

The same method, FindIt, is called for each of the three controls,
but each line of code actually executes a different version of
FindIt—the one that is appropriate for that type of control. The
second parameter is the name of the control; each control
inherits methods from the custom class on which it is based.

The EditField, PopupMenu, and ListBox are all instances of
custom classes. The custom classes have two methods, Find and
Creating Reusable Objects with Classes

Interface Inheritance
SelectRow, that implement the correct search routines for that
object type. This is shown in Table 55.

The FindIt method itself uses the FindInListInterface:

Sub FindIt (findValue as String, source as
FindInListInterface)
 dim row as integer

TABLE 55. Find and SelectRow methods by Control Type

Control Find Function SelectRow Method

EditField Function Find (FindValue as
string) as Integer
dim rows, foundPos, foundCR-
pos as integer
rows=-1
foundPos=instr(text,find-
Value+chr(13))
do until foundCRpos>=found-
Pos

foundCRpos=instr(foundCR-
pos+1,text,chr(13))

rows=rows+1
loop
return rows

Sub SelectRow (Row as Integer)
dim counter, startPos, endPos as integer
do until counter=row

startPos=instr(startPos+1, text,
chr(13))

if startPos <> 0 then
counter=counter+1

end if
loop
endPos=instr(startPos+1,text,chr(13))
selStart=startPos
selLength=endPos-startPos

ListBox Function Find (FindValue as
string) as Integer
dim i as integer
for i=0 to listcount-1

if list(i)=findValue then
return i

end if
next

Sub SelectRow (Row as Integer)
listindex=row

PopupMenu Function Find (FindValue as
string) as Integer
dim i as integer
for i=0 to listcount-1

if list(i)=findValue then
return i

end if
next

Sub SelectRow (Row as Integer)
listindex=row
Creating Reusable Objects with Classes 307

308

Creating Reusable Objects with Classes
 source.selectRow source.find(findValue)
End Sub

The FindInListInterface class simply has two blank methods, Find
and SelectRow. It simply defines the methods and their
parameters. When the FindIt method runs, it actually executes
the versions of the methods that are appropriate for the control
passed as the second parameter to FindIt.

Custom Object Bindings

Object binding allows you to add functionality to your interface
without writing any code. There are many binding actions you
can choose that are built-in to REALbasic. Built-in binds are listed
in the section “Object Binding” on page 102. You can also
program your own binds using custom classes. Your custom
binds will appear in the New Binding dialog box when you
Command-Shift drag from eligible objects.

You can drop your custom binding into any project and it will
work as transparently just as if it was built-in to REALbasic. This
section shows two examples of custom object binds.

A “Delete All Rows” Bind

This first example creates a user defined bind between
PushButtons and ListBoxes. It allows the user to create a
PushButton that deletes all rows from a ListBox. You first create a
custom class that implements the binding Interface.

To create the custom bind:

1. Add a new class to your project.
Creating Reusable Objects with Classes

Custom Object Bindings
2. Name this class “DeleteAllRowsBind”.

Since this class is going to be a bind, it needs to support the
bindingInterface. Also, you will want to assign an action to the
Action event of the pushbutton that, when clicked, tells the
ListBox to delete all the rows. In order to add code that will
execute when the user clicks the pushbutton, you will need to
support the ActionNotificationReceiver interface.

3. To support the bindingInterface and ActionNotificationReciever
interface, enter "bindingInterface,ActionNotificationReceiver" in
the Interfaces property of the class.

Now that the class supports the bindingInterface, you can add
the Bind method.

4. Add a new method to the class and call it "Bind". Include the param-
eters “Source as Object, Target as Object”.

Since the code that executes when the user presses the
pushbutton will need to know which pushbutton and listbox
have been bound, these will need to be stored as properties in
the class.

5. Add the following properties to the class: BindSource as Pushbutton
button and BindTarget as Listbox.

6. Add the following code to the Bind method:

#pragma bindingSpecification pushbutton,list-
box,"Delete all rows in %2 when %1 is pushed"

BindSource=pushbutton(source)

bindTarget=listbox(target)

BindSource.addActionNotificationReceiver self

The #pragma statement defines what will appear in the Bind
dialog box when the user binds the two objects by command-
shift dragging from the source to the target (the pushbutton to
Creating Reusable Objects with Classes 309

310

Creating Reusable Objects with Classes
the listbox). It indicates the source class, the target class and the
text that will appear in the Bind window. %1 will be the name of
the source control and %2 will be the name of the target control.

When the bind occurs, the controls that are bound will be passed
to the Bind method. However, they are passed as generic objects.
In order for the code to store them in the BindSource and
BindTarget properties you just added to the class, these two
object parameters have to be recast as PushButton and ListBox.
Lines 2 and 3 in the Bind method do just that.

Finally, the last line connects the bind class to the Action event of
the pushbutton by calling the addActionNotificationReceiver
method of the PushButton class. Self is passed as a parameter to
this method and represents the class itself.

Now you need to add the code that will delete the rows when
the user clicks the pushbutton.

7. To do this, add a method called “PerformAction” to the class.

8. The code for the PerformAction method is simple:

bindTarget.DeleteAllRows

To try out this new bind, drag a ListBox and a PushButton onto a
window and add some rows of data to the ListBox. Bind the two
controls by Command-Shift dragging from the PushButton to the
ListBox. When the Bind dialog appears, the custom binding
appears in the list, as shown in Figure 90.
Creating Reusable Objects with Classes

Custom Object Bindings
FIGURE 90. The Custom Binding added to the list of binds

9. Choose the option “Delete all rows from listbox1 when pushbutton1
is pushed” and then test the binding in the Runtime environment.

A “Delete Selected Row” Bind

To create a bind that will delete the selected row from a listbox
when a pushbutton is pushed, create another class in your
project and duplicate all the steps you did above.

Since this version of the bind should work only when a row is
selected, you will need to support a few more interfaces in order
to detect when the user selects a row.

1. Add a class called DeleteSelectedRowBind.

2. Add listSelectionNotificationReceiver to the list of interfaces in the
Interfaces property of the class. The class’s Property window should
look like Figure 91.
Creating Reusable Objects with Classes 311

312

Creating Reusable Objects with Classes
FIGURE 91. The Property window for the DeleteSelectedRowBind

3. Add a new method to the class and called it “Bind”. Include the
parameters “Source as Object, Target as Object”.

4. Enter the following code:

#pragma bindingSpecification pushbutton,list-
box,"Delete the selected row in %2 when %1 is
pushed"

BindSource=pushbutton(source)

bindTarget=listbox(target)

BindTarget.addListSelectionNotificationRe-
ceiver self

BindSource.addActionNotificationReceiver self

bindSource.enabled=(bindTarget.listindex >= 0)

The first new line links the bind class to any change to the list
selection. The last line, sets the source (the PushButton) to
enabled if a row of the target (the ListBox) is selected and
disables the source if no row is selected when the window opens.

Now you need to add the code that will disable or enable the
pushbutton once the window is open the user begins selecting or
deselecting rows in the ListBox. In order to do this, you will need
to add the methods that are part of the
ListSelectionNotificationReceiver interface to the class.
Creating Reusable Objects with Classes

Importing Classes From Other Projects
5. Add methods “SelectionChanged” and “SelectionChanging” to the
class. Neither has any parameters. Add the following code to the
SelectionChanged method:

bindSource.enabled=(bindTarget.listindex >= 0)

Any time the selection in the ListBox is changed, the bind will be
notified and the SelectionChanged method will fire.

The SelectionChanging method has no code.

Lastly, you need to add the code that will delete the selected row
when the user clicks the pushbutton.

6. Add the PerformAction method and enter the following line of
code:

bindTarget.removeRow bindTarget.listindex

Now you can add another button and bind it to the ListBox.

7. Choose the new bind as the bind action and test it in the Runtime
environment.

Importing Classes From Other
Projects
Because classes can be exported, they can also be imported.
When a class is exported, it appears on the desktop with a cube
icon. Figure 92 on page 314 shows an example of an exported
class. To import a class, just drag the class file into your Project
window. This copies the class into the Project so you can delete
the class file if don’t need to use it elsewhere. The Project is not
dependent upon it.
Creating Reusable Objects with Classes 313

314

Creating Reusable Objects with Classes
FIGURE 92. An exported class file

If a class you are importing is based on another class, that other
class must be present in order for the class you are importing to
function. If that class is based on one of the built-in classes (like
the EditField for example), this isn’t an issue. However, if the class
is based on a class that isn’t built-in, then that other class must be
present in your Project window.

Exported classes can be protected. This means that, while you
can import and use the class, you cannot view or edit the source
code for the class. You can check to see if a class you have
imported is protected by double-clicking on the class in the
Project window. If the class is protected, a dialog box will be
displayed informing you of this.

Exporting Classes For Use In
Other Projects
Classes can be easily exported from your Projects for use in other
projects. There are two ways to export a class. You can export a
class simply by dragging it from the Project window to the
desktop. This will create a file on the desktop with the name of
the class. Figure 92 on page 314 shows an example of this.

Sometimes the folder you want to place the exported class in is
not easy to get to. For example, the folder might be a folder
within another folder that isn’t open at the moment. In these
Creating Reusable Objects with Classes

Exporting Classes For Use In Other Projects
cases, you can export the class by clicking on the class to select it
in the Project window, then choosing File . Export Class.

Protecting Your Source Code
You may want to share classes with other REALbasic users. If you
wish to share a class with other users but you don’t want to share
the source code itself, you can protect the class when you export
it. This creates an exported class that can be imported and used
but cannot be edited. The user cannot even view the source
code. This is especially important if you plan to create
sophisticated classes that you wish to sell as third party add-ons
to REALbasic.

To export a protected class, do this:

1. Click on the class in the Project window to select it.

2. Choose File . Export Class.

The Export Class dialog box appears.

3. Click the Protect checkbox to select it.

4. Click the OK button to export the class.

Protected classes that have been exported use the same desktop
icon as unprotected classes, so you will need to keep track of
which ones are protected.

Since other users cannot open a protected class to view its source code, you
will need to provide them with a list of methods and properties if they should
have access to them.
Creating Reusable Objects with Classes 315

316

Creating Reusable Objects with Classes
Deleting Classes From a Project
Before deleting classes from a Project, make sure you are not
using the class in your code anymore. Also be sure to check for
other classes that may have this class as their super class.

To delete a class from a Project, do this:

1. Click on the class in the Project window to select it.

2. Press the Delete key on the keyboard.

If you delete a class accidently, choose Edit . Undo (q-Z).
Creating Reusable Objects with Classes

CHAPTER 10 Creating Databases
with REALbasic
With REALbasic, you can create database front end applications
that can be used with a variety of database engines, including
REAL Software’s own database.

Database-related features are fully supported in the Professional
version of REALbasic. In the Standard version, you can experi-
ment with all database features, but you are limited to 50 rows of
data and you cannot build runtime database applications.

Contents
• REALbasic’s Database Architecture,
• Structured Query Language,
• REALbasic’s Database tools,
• Creating and Modifying databases from the Project Win-

dow,
REALbasic Developer’s Guide 317

318

Creating Databases with REALbasic
• Using Object Binding,
• Creating a Database Front End Programatically.

REALbasic’s Database Architecture
You use REALbasic to build a “front-end” to your database. It
works in conjunction with a database “back-end” that actually
stores the data itself. The database back-end may be a separate
application or it may be REALbasic’s own database back-end. The
front end serves as the user interface and the means by which
queries are sent to the database itself. The end user uses the
front-end to view, enter, and modify records, search for and sort
and sort records, and print reports.

You use another database application, such as 4th Dimension’s
4D Server or Oracle, to actually store the data. The database
application that actually holds the data is referred to in REALbasic
as the “data source.” For your convenience in development,
REALbasic ships with an internal database that you can use for
development and/or for deployment of single-user databases.

A great feature of this architecture is that any database front-end
that you create in REALbasic works with any supported data
source—or multiple data sources. You can develop a database
application with the internal REAL database and then deploy the
system simply by switching the data source. Your database code
will work without any other modifications.

A REALbasic front end can also use two or more data sources
simultaneously. For example, you can access data locally on
4D Server while simultaneously accessing remote data on a SQL
or ODBC-compliant database.
Creating Databases with REALbasic

Structured Query Language
REALbasic uses its plug-in architecture to support multiple data
sources. Except for 4th Dimension and OpenBase, the plug-ins
are built into REALbasic and don’t appear in the plugins folder.
You (or a third-party) can add support for additional data sources
by writing a plug-in for that back end. REAL Software’s plug-in
SDK contains information on writing database plug-ins.

Structured Query Language

A REALbasic front end uses the Structured Query Language (SQL)
to communicate with its data sources. The plug-in for your data
source receives a SQL statement from REALbasic, translates the
statement into a form that the data source understands, and
sends it to the data source.

If you are unfamiliar with SQL, you will need to learn its basics
before implementing your REALbasic front end. This manual does
not attempt to teach you SQL. Please consult one of the many
good SQL references, such as SQL for Dummies by Allen G. Taylor
(ISBN: 0-7645-0105-4).
Creating Databases with REALbasic 319

320

Creating Databases with REALbasic
SQL in REALbasic
REALbasic currently supports a subset of SQL. This section
provides an overview of SQL in REALbasic. Table 56 lists the
supported SQL statements.

Select Statement
The following is the syntax for a Select statement in REALbasic:

TABLE 56. Supported SQL statements in REALbasic.

Statement Example Description

SELECT

 WHERE
 ORDER BY
 GROUP BY

SELECT * from Customers Returns a group of rows, known
as a cursor. You can specify the
columns (fields), the table(s),
search conditions, grouping, and
sorting columns.

CREATE TABLE CREATE TABLE invoice(id
integer not null, Cust_ID
integer not null, Amount
varchar (25), Date
varchar (25), primary key
(id))")

Creates a table and specifies the
fields and their attributes.

UPDATE UPDATE Customers
SET
City=’Toldeo’,Telephone
=’312 555-1212’ WHERE
Cust_ID=’0121’

Updates existing records.

Set functions:
Min, Max,
Avg, Count,
Sum

Select Count (*) from
Customers

Select Sum(Total) from
Invoice

Select Name from Invoice
where total=(select
max(Total) from Invoice)

Returns calculated values from a
group of rows. Used with SELECT
statement and optional WHERE
clause.
Creating Databases with REALbasic

Structured Query Language
SELECT columnlist FROM tablelist WHERE searchcondition
GROUP BY groupingcondition ORDER BY sortcondition

Joins

You do relational operations (‘joins’) by specifying the tables to
be joined in the SELECT statement’s tablelist and indicating in the
WHERE clause how the tables are to be joined, i.e., rows in the
‘many’ table whose foreign key matches the primary key in the
‘one’ table. Please refer to a SQL reference book for detailed
information on relational operations.

TABLE 57. Arguments in SELECT Statement

Argument Description

columnlist List of fields separated by commas. Using the asterisk (*)
in place of the fieldnames retrieves all fields in table. If
a column name has spaces in it, it must be surrounded
by brackets, e.g., [first name] should be used for the
field ‘first name. If tablelist refers to multiple tables, use
the syntax tablename.fieldname to refer to a field.

tablelist List of tables separated by commas. If a tablename has
spaces in it, it must be surrounded by brackets, e.g.,
[Product Groups]

searchcondition Expression that specifies a subset of the rows in the
table or tables. Must evaluate to a Boolean whose value
is True for the desired rows. If tablename refers to
multiple tables, use the syntax tablename.fieldname in
searchcondition, i.e.,
Customers.Customer_ID=Invoices.Customer_ID.

groupingcondition Field or fields on which you wish to group the rows in
the cursor. If a GROUP BY clause is used, the rows are
organized in groups defined by the fields in this clause.
The groups appear in alphabetical order.

sortcondition Field or fields on which you wish to sort the individual
rows in the cursor. Use ORDER BY rather than GROUP BY
if the field is unlikely to define groups, such as Last
Name. By default, the rows appear in ascending order. If
you wish to use descending order, include the modifier
DESC, i.e., ‘ORDER BY invoices.date DESC’.
Creating Databases with REALbasic 321

322

Creating Databases with REALbasic
Create Table Statement
The Create Table statement creates a table structure on the
current data source. It specifies the table name, field names, and
field attributes. The syntax is:

CREATE TABLE tablename (fieldname1 fieldtype [not null],
....Fieldnamen fieldtype [not null], Primary key fieldname)

Use the SQLExecute method when using the CREATE TABLE
statement.

Update statement
The Update statement changes existing data in a table. Its syntax
is:

TABLE 58. Arguments in the CREATE TABLE Statement

Argument Description

TableName Name of the new table.

FieldName Name of a field

FieldType Data type. The REAL database supports the following data
types: Smallint, integer, float, double, boolean, date, and
time. If you are using another vendor’s data source, see their
documentation on supported data types.

Primary Key The field whose values uniquely identifies the row, i.e., the
identifying field in the table for relational operations.

Not Null Optional. If Not Null is used, the database will require a
value for that field in ever row, i.e., the field may not be
missing.
Creating Databases with REALbasic

Structured Query Language
UPDATE tablename SET fieldname1=expression1,…
fieldnamen=expressionn WHERE searchcondition

You can also perform updates using the Edit…Update methods
within the REALbasic language. See the section “Editing
Records” on page 335 for more information.

Set Functions
The Set functions apply to sets of rows in a table and return the
results of an arithmetic calculation. You determine the number of
rows in the set using a standard WHERE clause and include the
Set function in a SELECT statement. If the WHERE clause is
omitted, the function is computed on all the rows in the table.

TABLE 59. Arguments in UPDATE Statement

Argument Description

TableName Name of table containing fields to be updated.

FieldName Field in TableName

Expression Value to be assigned to Field

SearchConditon Boolean expression that identifies the row or rows to be
updated.

TABLE 60. Set Functions in REALbasic

Function Description and Example

Count Number of rows in cursor that have nonmissing data on
fields specified in select statement.

SELECT COUNT (Name, Phone) from Customers WHERE
Zip=’48070’

Min Minimum value of the field specified in SELECT statement.

Select MIN (Price) from Products

Max Maximum value of the field specified in the SELECT
statement.

Select MAX (Population) from Cities
Creating Databases with REALbasic 323

324

Creating Databases with REALbasic
REALbasic’s Database Tools
A database front end typically uses a mixture of database-specific
and generic controls and commands. There is one database-
specific control, the DatabaseQuery control, and several classes
and methods that are database-specific. Beyond that, you will
use generic controls such as EditFields and ListBoxes to display
and edit data, PushButtons and menu items to perform actions,
and tab controls and other interface elements to polish the user
interface.

REALbasic’s built-in data source can be used for development
purposes and for the deployment of single-user solutions. The
built-in data source is limited to single-user applications and each
record may contain no more than 8,000 characters, not including
blob fields. Each table can have a maximum of 254 columns.
There is no fixed maximum number of rows.

Selecting a Data Source
You can select a data source using either the language or the
File . Add Data Source submenu in the Design environment. The
latter provides the following options.

Avg Computes the average value of the field specified in the
SELECT statement.

SELECT AVG (Price) from Products WHERE
Product='Database'

Sum Computes the total of the values in the field specified in the
Select statement.

SELECT SUM (Population) from States WHERE Region='NE'

TABLE 60. Set Functions in REALbasic

Function Description and Example
Creating Databases with REALbasic

Creating and Modifying Databases from the Project Window
FIGURE 93. The Add Data Source submenu

When you choose a data source in this manner, it appears in the
project window, as shown in Figure 94 on page 325.

FIGURE 94. A database in the Project Window.

Alternatively, you can simply drag an existing REAL database from the Finder
into the Project Window.

Creating and Modifying Databases
from the Project Window

You can double-click a database in the Project Window to display
its Schema—the list of its tables. From that list, you can view the
data itself and the list of fields and field properties.
Creating Databases with REALbasic 325

326

Creating Databases with REALbasic
FIGURE 95. A database Schema for an existing database.

If the database is new (i.e., you chose Add Data Source . New
REAL database), the list of tables will be blank; you can add
tables by clicking the New button.

The Design button displays the schema for the selected table. An
example table schema is shown in Figure 96.

FIGURE 96. Fields and Field Properties.

The Add button (or Command-A) lets you add a new field using
the dialog box shown in Figure 97. The Edit button displays the
same dialog box showing the properties of the selected field,
allowing you to modify its name and properties.

Displays list of records
in selected table

Opens editable list of
fields for selected table

Opens dialog for
creating new table
and fields

List of tables in
database
Creating Databases with REALbasic

Creating and Modifying Databases from the Project Window
FIGURE 97. The Add Field dialog box.

The Open button in the Database Schema dialog box (Figure 95
on page 326) opens a static list of the data in the selected table.
You can view the list but not edit or open a record. An example
of such a list is shown in Figure 98 on page 327.

FIGURE 98. A listing of records.

The New button in the database Schema dialog box (Figure 95
on page 326) lets you create a new table using the following
dialog box.
Creating Databases with REALbasic 327

328

Creating Databases with REALbasic
FIGURE 99. New Table dialog box.

You can name the table and add fields and field properties using
the Add button (or Command-A).

The DatabaseQuery Control

The DatabaseQuery control can be used to send queries to the
data source, but this function can also be performed entirely with
the language. It is up to you.

FIGURE 100. The DatabaseQuery control

You add a DatabaseQuery control to a window like any other
control, but it is not visible to the end-user. It is used only as an
object that performs database queries.

TABLE 61. DatabaseQuery Properties

Name Description

Database The data source that will be queried.

SQLQuery The text of the SQL query to be run against Database
Creating Databases with REALbasic

Using Object Binding
SQLQuery is executed automatically when its window appears.
For example, the properties shown in Figure 101 will retrieve all
rows and columns from the customer table when the window
opens. However, the DatabaseQuery control cannot display the
rows and columns all by itself.

FIGURE 101. A DatabaseQuery control’s properties

The DatabaseQuery control has one method, RunQuery, which
executes SQLQuery against Database.

Using Object Binding
The DatabaseQuery control, together with object binding, allows
you to create a simple database front-end with no programming.
Since the DatabaseQuery control automatically executes
SQLQuery, you only need a means to display the results. Simply
add a ListBox to the window and bind the DatabaseQuery and
the ListBox controls (hold down Shift and Command and draw a
line connecting the two controls). An Object Binding dialog box
will appear. Select the option that binds the ListBox to the
DatabaseQuery control’s results.

When you choose Debug . Run, the data appear in the ListBox,
as shown in Figure 102.1
Creating Databases with REALbasic 329

330

Creating Databases with REALbasic
FIGURE 102. A Simple database built with no programming

Similarly, you can bind a DatabaseQuery control to a popup menu
so that the results of the query populate the pop-up menu. You
can also bind the Popup to the DatabaseQuery control so that the
query can be changed by selecting an item from the popup
menu. Figure 103 illustrates this concept:

1. Headings were added to the ListBox using its Properties window.

Design Environment Runtime Environment
Creating Databases with REALbasic

Using Object Binding
FIGURE 103. Using object binding to populate a PopupMenu control

The selected DatabaseQuery control contains the SQL query:

Select name, id from airports

The binding to the PopupMenu control is simply: Bind
DatabaseQuery1 to PopupMenu1.The first column of the query is
displayed by the PopupMenu control (name of a city). The second
column, the ID, populates the PopupMenu’s RowTag property, an
invisible column that can be used as an identifier.

The binding from the PopupMenu to the second DatabaseQuery
is:

Bind DatabaseQuery2 parameter to PopupMenu1
RowTag

and the SQL statement associated with DatabaseQuery2 is:

select * from airport where id='%1'.

This statement includes the parameter %1, which is assigned to
the value of the RowTag for the selected item in the popup
Creating Databases with REALbasic 331

332

Creating Databases with REALbasic
menu, i.e., the ID belonging to the city selected by the user. In
other words, this query selects all columns for the selected city,
but it uses the invisible column rather than the city to do the
query. The last binding, of course, binds the results of the
DatabaseQuery to the ListBox. An example is shown in
Figure 104.

FIGURE 104. A simple database that uses only object binding.

Creating a Database Front End
Programmatically

To fully exploit REALbasic’s capabilities, you will need to write
some code. The commands that are listed in the Database theme
in the Language Reference provide you with all the necessary
tools to build sophisticated database front ends.
Creating Databases with REALbasic

Creating a Database Front End Programmatically
Choosing a Data Source
The following methods or functions allow you to choose the
database back end(s) used in your application:

TABLE 62. Methods and Functions for choosing a data source

Method Description

NewREALDatabase Creates a new REAL Database.

OpenREALDatabase Opens an existing REAL Database.

OpenOracleDatabase Opens an Oracle database.

OpenODBCDatabase Opens an ODBC database.

SelectODBCDatabase Displays a dialog allowing the user to choose
an ODBC database.

Select4DDatabaseByADSP Displays a dialog allowing the user to choose
an 4th Dimension database.

Open4DDatabaseByADSP Opens a 4th Dimension database using ADSP.

Open4DDatabaseByTCPIP Opens a 4th Dimension database using TCP/IP.

OpenDBFCursor Opens an xBase format file (i.e., a dbf file from
dbase).

OpenDTFDatabase Opens a dtF database.

OpenCSVCursor Opens a comma delimited text file as a
database cursor.

OpenPostgreSQLDatabase Opens a (Linux) Postgre database.
Creating Databases with REALbasic 333

334

Creating Databases with REALbasic
With the exception of OpenCSVCursor, these methods return an
object of type Database. Table 63 gives the Database Class
methods.

The SQLSelect method can be used instead of a DatabaseQuery
control to send queries to the database. The the SQLExecute
statement can be used in place of the database Schema dialog
boxes to build database schema (as well as perform many other
functions). For example, the following statement can be used to
create the table schema shown in Figure 96 on page 326:

db.SQLExecute("create table customer(id integer not null, name var-
char (25), jobtitle varchar (25), primary key (id))")

TABLE 63. Database Class methods

Name Parameters Description

Commit Commits (saves) changes to
records. Use Commit and
Rollback for transactions
processing.

FieldSchema TableName as String Returns DatabaseCursor with a
information about all fields in
the table.

InsertRecord TableName as String

Data as DatabaseRecord

Inserts Data as the last row of
TableName.

Rollback Cancels a set of changes to
records.

SQLSelect SelectString as String SQL Select statement. Returns a
DatabaseCursor.

SQLExecute ExecuteString as String SQL Execute statement

TableSchema Returns DatabaseCursor with a
list of all tables in the database.
Creating Databases with REALbasic

Creating a Database Front End Programmatically
Editing Records

The SQLSelect method returns an object of type DatabaseCursor.
The cursor contains the rows of data that meet the selection
criteria and, in multi-user applications, locks them against
modification by other users. You can then display the rows and/or
edit them. If you need to edit the rows, you must process the
records one row at a time.

The properties and methods of a DatabaseCursor are shown in
Table 64.

TABLE 64. DatabaseCursor Properties

Name Type Description

BOF Boolean Beginning of file

EOF Boolean End of file

FieldCount Integer Number of fields in cursor

TABLE 65. DatabaseCursor Methods

Name Parameters Description

Close Closes an open cursor.

MoveNext Moves the record pointer to the
next record in the cursor

Field Name as String Returns value of Field in row the
record pointer is pointing to.

IdxField Index as Integer 1-based array. Use to refer to ith
field in the cursor.

Edit Call prior to performing
modifications to the current
record.
Creating Databases with REALbasic 335

336

Creating Databases with REALbasic
When an SQL statement returns a database cursor, the user has
‘possession’ of those records for his exclusive use. If the cursor
contains more than one record, you can use the cursor’s
properties and methods to cycle through the rows and columns
of the cursor.

As the record pointer moves to a particular record, you can use
the Edit…Update methods to edit the record or the DeleteRecord
method to remove the record. To modify the record, cell the Edit
method, perform the modifications, and then call Update. This
process updates the record within the DatabaseCursor. When you
are finished, call the Database object’s Commit method to
commit the set of modifications to the database, or call the
Rollback method to cancel the modifications.

If you don’t call Commit, REALbasic issues an implicit Commit
when the user quits the application.

See the examples for the classes and methods in the Database
theme in the Language Reference for more information.

Update Call to update cursor to reflect
changes to the record the record
pointer is pointing to.

DeleteRecord Deletes the record in the cursor
the record pointer is pointing to.

TABLE 65. DatabaseCursor Methods

Name Parameters Description
Creating Databases with REALbasic

Creating a Database Front End Programmatically
Adding Records
You add a new record using the Database object’s InsertRecord
method. It has two parameters, the database object and an
object of type DatabaseRecord.

For example, the following code adds a record to the
“employees” table.

dim db as Database
.
dim rec as DatabaseRecord
rec = new DatabaseRecord
.
rec.Column("id") = "09"
rec.Column("name") = "Clark Kent"
rec.Column("jobtitle")="Reporter"
db.InsertRecord("employees",rec)

TABLE 66. DatabaseRecord Properties

Name Type Description

Column Name as String Column in current table.
Creating Databases with REALbasic 337

338

Creating Databases with REALbasic
Creating Databases with REALbasic

CHAPTER 11 Debugging Your
Code
Wouldn’t it be great if every line of code executes just the way
you want without a single error? Well, for those times when it
doesn’t work out that way, REALbasic provides you with some
tools to track down the bugs and fix them.

Contents
• What is Debugging?
• Displaying the Debugger By Setting Breakpoints
• Watching Your Variables and Properties
• Following the Execution of Methods
• Interrupting Code Execution at Runtime
REALbasic Developer’s Guide 339

340

Debugging Your Code
What is Debugging?
Debugging means removing errors, both logical and syntactical,
from your programming code. Errors in programming code are
referred to as bugs. You are probably wondering why errors are
called bugs. Well, back in the 1940’s, the United States Navy had
a computer that occupied an entire warehouse. At that time,
computers used vacuum tubes and the light from the tubes
attracted moths. These moths would get inside the computer and
short out the tubes. Technicians would have to go in and remove
the bugs to make the computer work again. Since this was a
government project, everything had to be logged, so they would
put down “debugging computer” in the log. But enough of the
history lesson.

Debugging is part of programming. It’s the part of programming
most programmers like the least. Fortunately, REALbasic makes it
easy to track down those nasty bugs and squash them like a,
well, bug. REALbasic comes with a Debugger which is a set of
windows that help you see what is going wrong.

Logical Bugs
These are bugs in your programming logic. You will know you
have found one of these when your code zigged when it should
have zagged. REALbasic’s built-in Debugger can help you find
these by letting you watch your code execute one line at a time.

Syntactical Bugs
These are bugs where you have mistyped the name of a class,
property, variable, or method. You may have also tried to use two
values together that don’t go together. For example, if you try to
assign a string value to a variable or property of type integer, you
will get a Type Mismatch error because they are different data
Debugging Your Code

What is Debugging?
types. REALbasic makes finding syntax errors a snap. As soon as
you choose Debug . Run (q-R), REALbasic checks your code for
syntax errors and reports them instead of running your project.
Yes, you have to fix them before you can run your code.
Figure 105 shows an example of an error displayed by REALbasic.

FIGURE 105. An error message

REALbasic highlights the line with the error and displays an error
message below the offending line. This syntax error occurred
because the MsgBox method is expecting a string as its
parameter, not a number. To pass the value 12345 to the MsgBox
method, it would have to be in quotes (making it a string) or be
passed to the Str function which would convert it to a string.
Debugging Your Code 341

342

Debugging Your Code
The Debugger
The Debugger window looks just like the Code Editor window
you used to write your code, with a few important differences.
First, the Debugger displays a little green arrow to the left of the
line of code that is about to be executed. Also, the when the
Debugger is active, the other menu items on the Debug menu
become active.

FIGURE 106. The Debugger

There are three ways you can display the Debugger:

You Have A Syntax Error In Your Code
When you attempt to run your project by choosing Debug . Run
(q-R) or by choosing File . Build Application and then clicking
the Build button, REALbasic checks your code for syntax errors. If
Debugging Your Code

The Debugger
it finds one, it stops immediately and displays the Debugger
along with the error message.

You Have Set A Breakpoint In Your Code
A breakpoint is a marker you can set for any line of code that tells
REALbasic to display the Debugger when it reaches that line of
code but before it executes it. You set a breakpoint in the Code
Editor by clicking on a line of code to place the cursor there and
then choosing Debug . Set Breakpoint. A red circle will appear to
the left of the line of code to indicate that a breakpoint has been
set. Figure 107 shows the Code Editor with a breakpoint set on a
line of code.

FIGURE 107. A breakpoint in the Code Editor

Breakpoints are persistent. This means they will stay in your code
until you remove them. You remove a breakpoint by clicking on
Debugging Your Code 343

344

Debugging Your Code
the line that contains the breakpoint then choosing
Debug . Clear Breakpoint.

Breakpoints have no effect in stand-alone applications you build by choosing
File . Build Application.

You Have Pressed q-Shift-Period
If you are running your project and you need to interrupt the
code that is executing, you can hold down the Command key (q)
along with the Shift and Period keys to halt code execution and
display the Debugger. This is handy if you find yourself in an
endless loop.

You can also switch back to the Design environment by clicking
on any Design environment window.

Following the Execution of
Methods
When your code isn’t cooperating or you’re just not sure what is
executing and when, it’s helpful to be able to watch your code as
each line executes. The Debugger makes this easy. Once the
Debugger is displayed, the current line icon (the green arrow)
indicates which line of code is about to be executed. When you
tell the Debugger to continue, it executes that line and goes on
to the next line of code. What it does next depends on the
command you give it when you wish to continue. The Debug
menu gives you three commands, each of which will execute the
current line and then take a different course of action for the
next line of code.
Debugging Your Code

Following the Execution of Methods
Step Over
Choosing Debug . Step Over (q-]) executes the current line and
moves on to the next line. If the current line includes one of your
methods, the Debugger executes the method but will not step
through the method’s code. When the method is finished
executing, the Debugger will continue from the next line of code
in the current method. Consider the following code:

EditField1.SelBold=True

EditField1.Text=ToFrench(EditField1.Text)

EditField.SelBold=False

Let’s assume that “ToFrench” is a method that to translates
English to French. If you step through this code using the Step
Over menu item, the second line of code is executed, but the
Debugger won’t display the code in the ToFrench method. It
executes the ToFrench method and continues with the next line
of code.

Step Into
Choosing Debug . Step Into (q-[) executes the current line and
moves on to the next line. If the current line includes one of your
methods, the Debugger displays the method and steps through
the method’s code. When the method is finished executing, the
Debugger returns to the calling method or event handler and
continues with the next line of code.

Step Out
Choosing Debug . Step Out (q-Y) executes the rest of the
method without stopping on each line. This is handy when you
have used Step Into to step through a method that was called by
Debugging Your Code 345

346

Debugging Your Code
another method and now wish to continue code execution
without stopping on each line. If you entered the current method
or event handler using Step Into, then stepping out executes the
rest of the method and stops on the next line of code in the
method that called the method you are stepping out of.

Tracking Method Execution with the Stack
A method or event handler can call another method or event
handler which can call another one. This can go on for a while
and you may need to keep track of the path of methods that
were executed to get you where you are now. The Stack window
does just that. When code execution begins (for example, when a
button is clicked), the Stack window lists the pushbutton’s action
event handler. If the action event handler calls a method, that
method is added to the top of the list in the Stack window when
it’s called. If that method calls another method, it is added to the
top of the list. Once the current method finishes executing, it is
removed from the list as REALbasic returns to the method that
called it. Figure 108 shows the Stack window listing a few
methods. The window is called the Stack window because the
methods are “stacked” one on top of the other.
Debugging Your Code

Following the Execution of Methods
FIGURE 108. The Stack window

In Figure 108, The Action event handler of Pushbutton1 of
Window1 called the PaymentCalculation method of the Financial
module.

If you need to see the code from a method or event handler
called earlier in the stack, you can simply double-click on its name
in the Stack window to display the Debugger for that method.

The Stack window is displayed when the Debugger is displayed.
But you can hide it if you aren’t using it by choosing
Debug . Hide Stack.

The larger the Stack list gets, the more memory is being used. If you run out of
memory it could be because your stack is so long that it takes up all the mem-
ory that has been allocated to the stack. The solution is try to make fewer
method calls and use fewer local variables.
Debugging Your Code 347

348

Debugging Your Code
Watching Your Values
Part of debugging is monitoring the conditions under which
certain lines of code execute. Another part of debugging is
monitoring the values of variables, objects, and properties as your
code executes. The Variables window is used for these purposes.
This window displays any local variables, parameters, the current
object, and its super class. It also displays global properties from
modules and the application subclass if there is one.

Local Values
In Figure 109, a pushbutton’s action event handler is executing.
The local variable Self refers to its parent, which is the window.
Me refers to the object whose code is executing (the pushbutton
in this case). Pb is a local variable defined as a pushbutton1 and is
storing a reference to a pushbutton1 created with the New
operator.

FIGURE 109. The variables window
Debugging Your Code

Watching Your Values
Because all of these items (Self, Me, and pb) are objects, they
each have a View button next to them. This button displays the
Object Viewer that shows the current values for all the properties
of the object.

FIGURE 110. The Object Viewer displaying Pushbutton1

I, J, Start, and Stop are local integer variables while Name is a
local string variable. Continue is a local boolean variable. All of
these variables can be edited in the Variables window. This comes
in handy when you figure out that a variable has the wrong value
due to a bug but you want to see how the rest of the code would
act if it had the right value. You can simply change the value and
continue executing the code.

People is a local array. The Object Viewer can be used here to
view the elements of the People array.

The Object Viewer currently only supports viewing single dimension arrays.
Debugging Your Code 349

350

Debugging Your Code
Global Values
Because Pi is a property of a module, it is global in scope.
Appropriately, it’s listed under the Globals label. If your project
has a class based on Application, any properties of this subclass
appear under the Globals label as well, since they are global in
scope.

Starting and Stopping Your
Project
You can switch back to the Design environment while your
application is running in the Runtime environment by clicking on
any Design environment window. This causes the execution of
code in the Runtime environment to pause. Should you decide to
resume execution of code in the Runtime environment, choose
Debug . Run (q-R). To stop the execution of code and quit from
the Runtime environment, choose Debug . Kill (q-K).
Debugging Your Code

CHAPTER 12 Communicating With
The Outside World
Some applications need to communicate with other applications
or even serial hardware devices to exchange information. Some-
times this is done automatically while other times it is initiated by
the user. For example, when you use your computer to connect
to the Internet, you are initiating communications between an
application on your computer and an application on another
computer at your Internet Service Provider (ISP). Fortunately,
REALbasic provides controls that make communications between
applications on different computers, and even communications
between a computer and a serial hardware device easy.

Contents
• Communicating with Serial Devices
• Communicating with Other Computers Via TCP/IP
REALbasic Developer’s Guide 351

352

Communicating With The Outside World
Communicating With Serial
Devices
A serial device is a device that communicates by sending and/or
receiving data in serial. This means that it is either sending data
or receiving data at any one moment. It doesn’t send and receive
at the same time. The most common serial device is a modem.
Some printers are serial devices. Serial communications using
REALbasic are done with the Serial control. To communicate with
a serial device you configure a Serial control, open the serial port
to make the connection, read and/or write data to and/or from
the serial device connected to one of your serial ports, and finally
close the serial port when you are through to disconnect from the
serial device.

Getting Set Up
So the first step is to place a Serial control on one of your
project’s windows or instantiate a Serial object using code. Before
you can begin communicating with a serial device using a Serial
control, you need to set up the Serial control so that it will know
which serial port your serial device is connected to. You will also
need to set the speed at which communications will occur, as
well as a few other settings. This can all be done at design time
using the Properties window or at runtime using code.

How you configure the Serial control’s behavior properties will
depend on what the serial device is expecting. Some devices can
only communicate with one specific configuration. Other devices
(like modems) can communicate using many different
configurations. In the case of a modem, you will not only have to
consider what configurations the modem will accept but also
what configuration the modem your modem will be connecting
to will accept. The Serial control’s default configuration should
Communicating With The Outside World

Communicating With Serial Devices
work for most modems. You may need to change the default
configuration for other serial devices.

Opening the Serial Port
Once you have configured the Serial control, you can open the
serial port to initiate communications with the serial device. This
is done by calling the Open method of the Serial control. This
method is, in fact, a function that returns True if the connection is
opened and False if it is not. For example, suppose you have a
Serial control whose name is “Serial1.” To open the serial port
using this control, you can use the following code:

If Serial1.Open then

 MsgBox "The serial port was opened."

Else

 MsgBox "The serial port could not be opened."

End if

Once you have successfully opened the serial port, it will be
unavailable to all other applications (and in fact, to other Serial
controls as well) until it’s closed.

Reading Data
When the serial device sends data back to the Serial control that
is connected to it, the Serial control’s DataAvailable event handler
executes. The data that has been sent back goes into a place in
the computer’s memory called a buffer. The buffer is simply a
place to store the data that has been sent by the serial device
because most serial devices don’t have much memory of their
own. When new data arrives in the buffer, REALbasic executes
the DataAvailable event handler of the Serial control.
Communicating With The Outside World 353

354

Communicating With The Outside World
In the DataAvailable event handler, you use the Serial control’s
Read or ReadAll methods to get some or all of the data in the
buffer. Both of these methods act as functions. Use the Read
method when you want to get a specific number of bytes
(characters) from the buffer. If you want to get all the data in the
buffer, use the ReadAll method. In both cases, the data returned
from the buffer is removed from the buffer to make room for
more incoming data. If you need to examine the data in the
buffer without removing it from the buffer, you can read the data
from the Serial control’s LookAhead property.

This example appends any incoming data to an EditField:

Sub DataAvailable()

 EditField1.Text=EditField1.Text+Me.ReadAll()

End Sub

You can clear all data from the buffer without reading it by
calling the Serial control’s Flush method.

Writing Data
You can send data to the serial device at any time as long as you
have opened the serial port with the Serial control’s Open
method. You send data using the Serial control’s Write method.
The data you wish to send must be a string, as the Write method
accepts only a string as a parameter.

The Write method is performed asynchronously. This means that
the next line of code following the Write method can already be
executing before all the data has actually been sent to the serial
device. If you need your code to wait for all data to be sent to the
serial device before continuing, call the Serial control’s XmitWait
method immediately following a call to the Write method.
Communicating With The Outside World

TCP/IP Communications with the Socket Control
Changing a Serial Control’s Configuration on the Fly
There may be times when you need to change a Serial control’s
behavior properties while the serial port is open. While you can
change these properties, the changes won’t take effect until you
close the serial port and reopen it. If you need the behavior
properties to update immediately, call the Serial control’s Poll
method. This updates all properties immediately and calls the
DataAvailable event handler immediately if there is any data
waiting in the buffer.

Closing the Port
Once you are finished communicating with a serial device, you
must close the serial port to end the communications session and
make the port available to other Serial controls or other
applications. To close the serial port, call the Close method of the
Serial control that opened the serial port.

Communicating With Modems
Modems have a set of commands you can send them to tell the
modem to do things such as dial a particular number. Most of
these commands are the same for every modem. Your modem
probably came with a guide that lists its commands. Consult that
guide for more information.

TCP/IP Communications with the
Socket Control
Sometimes applications need to communicate with other
applications on the same network. This can be accomplished
Communicating With The Outside World 355

356

Communicating With The Outside World
using the REALbasic’s Socket control. The Socket control can send
and receive data using TCP/IP.

TCP/IP is the protocol of the Internet. It’s the way most data is
transmitted via the Internet. In fact the “IP” in TCP/IP stands for
“Internet Protocol.”

The Socket control can be used to communicate with other
computers on the same network, provided they have TCP/IP
drivers. In the case of the Macintosh, this driver is implemented
as part of Open Transport which comes with the system software.
When you connect to the Internet, you are part of the Internet
network. This allows you to communicate with other computers
on the Internet via TCP/IP.

Getting Set Up
You can either add a Socket control to a window or instantiate a
Socket object using code. Before you can connect to another
computer using the Socket control, you must first set the port.
The port is to TCP/IP what channels are to television or frequency
assignments are to radio stations. Ports give an application the
ability to focus on specific data rather than receiving all the data
transmitted to your computer via TCP/IP. This allows you to
browse the web and send email at the same time because the
web uses one port and email uses another. The port is repre-
sented by a number and there are thousands of available ports.
Some have already been designated for specific functions like
web browsing, email, FTP, etc. If you are designing an application
that will need to communicate with another application, you will
need to find out what port the other application is using. For
example, if the other application is an SMTP server, it’s probably
using port 25 since that is the port that is reserved for SMTP (Sim-
ple Mail Transfer Protocol).
Communicating With The Outside World

TCP/IP Communications with the Socket Control
A Socket control has a Port property that can be assigned at
design time or runtime but it must be assigned a value before
you can connect to another computer. If you plan on initiating
the connection, you must also assign the IP address of the
computer you wish to connect to the Address property of the
Socket control that will make the connection.

Note: A Socket control can only be connected to one application at a time. If
you need to maintain multiple connections simultaneously, you will need to
have multiple Socket controls; one for each connection.

Making a Connection to Another Computer
Once you have assigned a port and an IP address, you can
connect to an application on the computer at that IP address,
provided that the application is listening for TCP/IP connections
on the port you have specified. To initiate a connection, you
simply call the Socket control’s Connect method. If a connection
is established, the Socket control’s Connected event handler
executes. If a connection is not established, an error occurs and
the Socket control’s Error event handler is executed. Once a
connection is established, your application can begin sending and
receiving data with the application at the other end of the
connection.

Listening For a Connection From Another
Computer
In some cases you may want your application to wait for another
application to connect to it rather than initiate the connection. To
do this, you use the Socket control’s Listen method. For example
you have a button that when pressed, causes the application to
listen for a TCP/IP connection on the port number that is assigned
to the Socket’s Port property. Let’s assume that the Socket control
Communicating With The Outside World 357

358

Communicating With The Outside World
is named “Socket1.” In the pushbutton’s Action event handler,
you use the following code:

Sub Action()

 Socket1.Listen

End Sub

Once a connection is established, the Socket control’s Connected
event handler executes, letting you know that you have a
connection.

Reading Data
When the application at the other end of the connection sends
data back to the Socket control that it’s connected to, the Socket
control’s DataAvailable event handler executes. The data that has
been sent back goes into a place in the computer’s memory
called a buffer. The buffer is simply a place to store the data that
has been sent by the other application. When new data arrives in
the buffer, REALbasic executes the DataAvailable event handler
of the Socket control.

In the DataAvailable event handler, you can use the Socket
control’s Read or ReadAll methods to get some or all of the data
in the buffer. Both of these methods act as functions. Use the
Read method when you want to get a specific number of bytes
(characters) from the buffer. If you want to get all the data in the
buffer, use the ReadAll method. In both cases, the data returned
from the buffer is removed from the buffer to make room for
more incoming data. If you need to examine the data in the
buffer without removing it from the buffer, you can read the data
from the Socket control’s LookAhead property.

This example appends any incoming data to an EditField:
Communicating With The Outside World

TCP/IP Communications with the Socket Control
Sub DataAvailable()

 EditField1.Text=EditField1.Text+Me.ReadAll()

End Sub

Writing Data
You can send data to the application you are connected to at any
time. You send data using the Socket control’s Write method. The
data you wish to send must be a string, as the Write method
accepts only a string as a parameter. In this example, the text
from an EditField is being sent via a Socket control:

Socket1.Write EditField1.Text

Handling Errors
Errors can occur attempting to connect, sending data, or receiv-
ing data. Errors are not always what they seem. For example,
when the other computer closes the connection, an error is gen-
erated. When an error occurs, the Socket control’s Error event
handler is executed. Errors are represented by numbers. The
Socket control’s LastErrorCode property will contain the number
of the last error that occurred. See the Socket Control in the Lan-
guage Reference for a complete list of error numbers.

Errors are simply ways to alert your application to conditions it
may not have anticipated or be able to anticipate. For example, if
you attempt to make a connection or listen for one and you
don’t have Open Transport installed, an error is generated.

Closing the Connection
When you are finished communicating and wish to disconnect
from the other application, you do so by closing the connection.
Communicating With The Outside World 359

360

Communicating With The Outside World
The connect is closed by calling the Socket control’s Close
method. Suppose you have a Socket named “Socket1” that has
established a connection. To close the connection, you can use
the following code:

Socket1.Close

Understanding Protocols
Any kind of communication requires that all parties involved
agree on a method of communication and a language. For
example, if you want to communicate with a friend, you might
go talk to them face to face, call them on the phone, or send
them email. Both of you must be able to communicate using the
same language or you won’t be able to communicate at all.
Communications via TCP/IP work the same way. The language
used is called a protocol. A protocol is simply an organized way
of sending and/or receiving information.

If you are writing an application that will communicate with
another application via TCP/IP, you will need to understand the
protocol the other application will be expecting in order to
communicate with it. For example, on the Internet, the protocol
for the world wide web is called HTTP (HyperText Transfer
Protocol), the protocol for sending email is called SMTP (Simple
Mail Transfer Protocol), and the protocol for receiving email mail
is called POP3 (Post Office Protocol 3). Complete descriptions of
these Internet protocols and others are available on the Internet.
The descriptions of these protocols are called RFCs (Request For
Comments). The easiest way to find information on RFCs is to go
to www.yahoo.com and search for “RFC”. This will give you a list
of links to various web sites that explain all of the various Internet
protocols.
Communicating With The Outside World

TCP/IP Communications with the Socket Control
If you are writing an application that communicates with another
applications you have written, then you can define your own
protocol. Your protocol will simply be a set of commands you
define that allow the applications to understand what the other
wants.
Communicating With The Outside World 361

362

Communicating With The Outside World
Communicating With The Outside World

CHAPTER 13 Extending the
Capabilities of
REALbasic
One of the things that makes REALbasic easy to learn and use is
that it abstracts you from the inner workings of the operating
system. You don’t have to know any of the 8,000 commands
that make up the API (application programming interface) used
to work with the Mac OS. This also means that REALbasic may
not have a particular capability that you require. Fortunately,
REALbasic provides several ways to extend its capabilities,
allowing you to add just about any functionality you need.

Contents
• Using XCMDs and XFCNs
• Making Toolbox calls
• Calling AppleScripts
• Communicating with AppleEvents
• Using and Writing REALbasic Plug-ins
REALbasic Developer’s Guide 363

364

Extending the Capabilities of REALbasic
• Using PowerPC Shared Libraries

Using XCMDs and XFCNs
XCMDs are individual commands written in a language like
Pascal, C or C++ and then compiled. XFCNs are the same thing
except that they are functions so they return a value. The “X” in
the name is short for “external,” which simply means a
command that is external to the environment or “not built-in.”
XCMDs and XFCNs became popular with Apple Computer’s
HyperCard application. HyperCard does not allow the
programmer direct access to the Mac OS, so programmers write
XCMDs and XFCNs when they need this kind of access. There are
thousands of public domain XCMDs and XFCNs available,
especially on the Internet. Fortunately, REALbasic supports this
external format.

There are two types of XCMDs: type 1 and type 2. Apple
Computer created the type 2 format to add additional
capabilities to XCMDs. Most existing XCMDs are type 1.
REALbasic currently supports type 1 XCMDs and will support
type 2 XCMDs in a future release.

Getting an XCMD Out of a HyperCard Stack
To use an XCMD or XFCN with REALbasic, you must have it in it’s
stand alone format. Most of these commands and functions are
installed inside HyperCard files called “stacks.” There are
applications available that can look inside a HyperCard stack and
extract any XCMDs or XFCNs and save them has individual
desktop files. One such application is written in REALbasic and is
called “Xtractor.” It was written by Red Designs and is available
Extending the Capabilities of REALbasic

Using XCMDs and XFCNs
on the REALbasic CD and at the REAL Software web and ftp sites.
An XCMD or XFCN once extracted appears as a ResEdit file.

FIGURE 111. An Extracted XFCN

Installing an XCMD/XFCN in a Project
Once you have an XCMD/XFCN extracted from a HyperCard
stack, loading it into your project is easy. To load the XCMD/XFCN
into your project, just drag it into the Project window. It will
appear in the Project window with a special icon that indicates
that it’s an XCMD or XFCN.

Extending the Capabilities of REALbasic 365

366

Extending the Capabilities of REALbasic
FIGURE 112. An XFCN installed in a project

Calling an XCMD or XFCN in a Method
XCMDs are called the same way methods are and are passed
parameters (when they require them) the same way parameters
are passed to methods. The following is an example of how a
XCMD called SetSound would be called:

SetSound 10

XFCNs are called and passed parameters the same way functions
in REALbasic are. The following is an example of how an XFCN
called GetSound would be called:

Dim i as Integer

i=GetSound()

XFCN
Installed
Extending the Capabilities of REALbasic

Making Toolbox Calls
Removing an XCMD or XFCN
To remove an XCMD or XFCN from a project, click on the XCMD/
CFCN in the Project window to select it and press the Delete key.

Where to Find XCMDs and XFCNs
The best place to look for XCMDs and XFCNs that might provide
some functionality you need is on the Internet. A quick search
using Yahoo on the keyword “Hypercard” listed about 40 sites.
The XCMD Hideout is one place to start. It’s located at http://
www.nmc.csulb.edu/projects/xcmdhideout/ and includes source
code for some of the XCMDs available there.

Making Toolbox Calls
Using the Declare statement, you can access the toolbox on
either the Macintosh or Windows platforms. PPC, 68K, and Intel
machines are supported. You need to use the conditional
compilation feature to isolate your Declare statements for each
platform. With the Declare statement, you specify the name of
the toolbox call and its shared library, and the parameters the call
uses. If the call returns a value, you specify the data type of the
value that is returned.

If the functionality is available on both platforms, you can use the
same name for both platforms. However, often the parameters
for the call will be different. Use conditional compilation to
isolate your calls as well.

The following button Action uses the Macintosh Speech manager
to speak the text in an EditField:

dim s as string
Extending the Capabilities of REALbasic 367

368

Extending the Capabilities of REALbasic
dim i as integer

#if TargetMacOS then

 Declare Function SpeakString lib "SpeechLib"
 (SpeakString as pstring) as Integer

#endif

s=editField1.text

#if TargetMacOS then

 i=SpeakString(s)

#else

 MsgBox "Speech is supported only on Macintosh!"

#endif

If the name of the toolbox call is the same as a REALbasic
method, use the Alias keyword to refer to the call. For example, if
SpeakString was the name of a REALbasic method, you could not
use the above syntax. You could use, for example:

Declare Function MySpeakString lib "SpeechLib" Alias
"SpeakString" (SpeakString as pstring) as Integer

You would then use MySpeakString in your code to invoke the
toolbox call.

See the description of the Declare statement in the Language
Reference for more information.

Calling AppleScripts
AppleScript is Apple Computer’s system-level scripting language
that makes controlling applications easy. REALbasic supports
AppleScript. You can write a script in AppleScript and then call
that script in your REALbasic project.
Extending the Capabilities of REALbasic

Calling AppleScripts
Preparing an AppleScript to Work in REALbasic
In order for REALbasic to run an AppleScript, the entire script
must be enclosed in an on run handler like this:

on run

 //your script code goes here

end run

Next, your script must be saved as a compiled script. In the Script
Editor supplied by Apple Computer, choose File . Save As. Then
choose Compiled Script from the Kind popup menu.

Loading an AppleScript into a Project
To load an AppleScript, just drag your compiled script file into the
REALbasic Project window. The script will appear with a script
icon next to it. Figure 113 shows an example of a project with a
script installed.
Extending the Capabilities of REALbasic 369

370

Extending the Capabilities of REALbasic
FIGURE 113. A compiled AppleScript in Project window

When you drag a compiled script into your Project window,
REALbasic copies the script into the Project. Therefore, once you
have dragged the script into the project, you can delete the
compiled script if you don’t need to use it elsewhere.

Passing Values To an AppleScript
If you are writing a script you want to pass parameters to, the
parameters must be enclosed in curly braces following the on run
statement. In the following example, the x and y are parameter
variables that will hold the values of the two parameters passed
to the script:

on run {x,y}

 //your script code goes here

end run

Installed
Script
Extending the Capabilities of REALbasic

Calling AppleScripts
Returning Values From an AppleScript
You write a script to act as a function by having it return a value.
To return a value from a script, simply use the return command in
AppleScript followed by the value you wish to return. This simple
example takes a number of days and returns the equivalent
number of years:

on run {daysOld}

 return daysOld/365

end run

Calling an AppleScript
Scripts are called just like the built-in methods and functions.
Type the name of the script as it appears in the Project window. If
the script requires parameters, the parameters follow the name
of the script just as they do with any of the built-in commands.
This example calls a script that sets the sound level of the
Macintosh to 5:

SetSoundLevel 5

Scripts that return values (acting as functions) work just like the
built-in REALbasic functions. This script gets the current sound
level and assigns it to a variable:

Dim level as Integer

level=GetSoundLevel()

Removing an AppleScript
To remove a script from a project, click on the script in the Project
window to select it then press the Delete key.
Extending the Capabilities of REALbasic 371

372

Extending the Capabilities of REALbasic
Communicating with
AppleEvents
AppleEvents is the core communications system between
applications on the Macintosh. As a matter of fact, when you are
calling AppleScript code, AppleScript is actually performing all of
its magic with AppleEvents. When you choose Special . Restart
in the Finder, the Finder sends a “Quit” AppleEvent to any open
applications. This particular AppleEvent is one that all
applications are required to support.

You can perform some very fast and powerful actions with
AppleEvents. You create AppleEvent objects in REALbasic using
the NewAppleEvent function. AppleEvents have three parts: an
event class, an event id, and the creator code of the target
application.

The Event Class and Event ID together uniquely define a
particular AppleEvent. The EventClass acts as a category for
logically grouping events together. While there are many
standard (and even some required) AppleEvents, many
applications have several custom AppleEvents for performing
actions specific to the application. Consult the application’s
documentation or its author to get information on what custom
AppleEvents may be available.

Sending AppleEvents
Once you create the AppleEvent object and populate the
necessary parameters with data, you then send the AppleEvent to
the target application using the AppleEvent object’s Send
method.

In this example, an AppleEvent is created to tell the Finder to
restart the Macintosh. “FNDR” is the class of AppleEvent and
Extending the Capabilities of REALbasic

Communicating with AppleEvents
“rest” is the event ID. “rest” is clearly short for “restart”. Finally,
“MACS” is the creator code for the Finder. The AppleEvent class
has a Send method. This method is a function that returns True if
the AppleEvent is successful and False if it fails.

dim ae as AppleEvent

ae=newAppleEvent("FNDR","rest","MACS")

if not ae.send then

 msgBox "The computer couldn't be restarted."

end if

Receiving AppleEvents
In order to receive AppleEvents your project must have a subclass
that has Application as its Super property value. That’s because
the Application class is the only class with a HandleAppleEvent
event handler. When your application receives an AppleEvent, the
application class HandleAppleEvent event handler is executed
and the AppleEvent is passed as a parameter to the event
handler.

This event handler, when called, is passed an AppleEvent object,
the event class, and the event id. There are required AppleEvents
that your application should support. One of the them is the Quit
AppleEvent.

In this example, if the HandleAppleEvent event handler receives a
quit AppleEvent from the Finder, it calls the Quit method.

Function HandleAppleEvent(Event as AppleEvent,
eventClass as String, EventID as String) as
Boolean

 if eventClass="aevt" and eventID="quit" then

 //the Finder wants the app to quit
Extending the Capabilities of REALbasic 373

374

Extending the Capabilities of REALbasic
 beep

 msgBox "I must quit now."

 quit

 end if

End Function

You can create your own set of AppleEvent classes and event IDs
for your application that represent various actions your
application can take in response to them.

Sophisticated AppleEvents
AppleEvents can actually contain quite a bit of very specific data.
AppleEvents for example, can be used write to applications that
process data for web servers. For more information on
AppleEvents, see the AppleEvent class in the Language
Reference.

Using and Writing REALbasic
Plug-ins
Many applications have their own plug-in format. Netscape
Navigator, Adobe PhotoShop, 4th Dimension, are just a few
examples of applications that have a plug-in format. Plug-ins are
a way for an application to be extended by other programmers.
For example, there is a plug-in for Netscape Navigator that allows
it to play QuickTime movies that have been embedded into web
pages.

REALbasic also has its own plug-in format. Plug-ins are written in
languages like C and C++. For example, James Milne of Cyberex
wrote a plug-in for REALbasic that plays a particular type of music
Extending the Capabilities of REALbasic

Using and Writing REALbasic Plug-ins
file. REALbasic also uses plug-ins to manage connectivity to
database back ends. You can add support for other database
engines simply by writing (or obtaining from a third-party) the
plug-in for that database engine.

Loading Plug-ins
Loading plug-ins is easy. Simply create a folder called “Plugins” in
the same folder that contains REALbasic. Then drop your plug-in
files into that folder. Any plug-ins in this folder will automatically
be available to your projects.

Using Plug-ins
Some plug-ins are in the form of controls similar to those that
appear in the REALbasic Tools window. When you have this type
of plug-in in your Plug-ins folder, a new control will appear in the
Tools window. Plug-in controls are visually different from the
built-in controls. Plug-in controls appear raised while the built-in
controls appear sunken. Figure 114 shows an example of a plug-
in control as it appears in the Tools window.

FIGURE 114. A plug-in control in the Tools window

You use a plug-in control the same way you use any other control
in the Tools window, by dragging it to a window. The properties
window will then display any properties that can be set from the
Design environment.

Plug-in Control
Extending the Capabilities of REALbasic 375

376

Extending the Capabilities of REALbasic
Plug-ins can also be a set of methods that has no interface
whatsoever. Plug-ins of this type do not appear anywhere in the
interface. You must have some documentation to know which
methods exist in the plug-in, what the methods do, and how to
use them.

Including Plug-ins in Your Stand-Alone
Applications
When you build a stand-alone application from your project, any
plug-ins you are using in your project will automatically be built-
in to the stand-alone application.

Writing Your Own Plug-ins
If you know C or C++, you can write REALbasic native plug-ins.
The REALbasic Plug-in Software Development Kit (SDK) is
available on the REALbasic CD and at the REAL Software web
and ftp sites. This kit contains all the information you need to
write plug-ins including sample plug-ins and include files for
Metrowerks CodeWarrior.

Using PowerPC Shared Libraries
PowerPC shared libraries are files that have subroutines that can
be called and passed parameters. These parameters are referred
to as “entry points” and, as the name suggests, these libraries
run only on PowerPC-based Macintosh computers. REALbasic
supports shared libraries. This can be a convenient way to write
external code for REALbasic, especially if you want to use the
same code with other applications that support shared libraries.
Extending the Capabilities of REALbasic

Using PowerPC Shared Libraries
Accessing Commands In Shared Libraries
To access the commands (or “entry points”) in a shared library
from within a REALbasic project, you must first load the shared
library into the project. This is done by dragging the shared library
into the Project window. Figure 115 shows an example of a
shared library loaded into a project.

FIGURE 115. A shared library loaded into a project

Next, you need to define the entry points you are going to access
in the shared library. This is done with the Entry Point Editor. You
can access this editor by double-clicking on the shared library in
the Project window. The Entry Point Editor displays a list of entry
points you have defined. Figure 116 shows a list of entry points.

A shared library
Extending the Capabilities of REALbasic 377

378

Extending the Capabilities of REALbasic
FIGURE 116. The Entry Point Editor

Click the New button to define a new entry point, select an entry
point from the list, and click the Edit button to edit it. This
displays the Edit window where you name the entry point and
define its parameters. Figure 117 shows this Edit window.

FIGURE 117. The Edit Entry Point window
Extending the Capabilities of REALbasic

Using PowerPC Shared Libraries
You must know the name of the entry point and its parameter
types in order to successfully use a PowerPC shared library in your
code.

Calling Commands In Shared Libraries

To use an entry point from a shared library in your code, simply
call the entry point as if it were a method of a module. In this
example, the HMSetBalloons entry point (for turning Balloon
Help on or off) is passed a 1 to turn Balloon Help on and a 0 to
turn it off. This particular entry point is a function that returns an
error code, so it is being called as such.

Dim err as Integer

err = InterfaceLib.HMSetBalloons(1)
Extending the Capabilities of REALbasic 379

380

Extending the Capabilities of REALbasic
Extending the Capabilities of REALbasic

CHAPTER 14 Building Stand-Alone
Applications
When you are ready to turn your project into a stand-alone
application, there are a few things you will need to know. This
chapter will help you understand what finishing touches your
application may need to make it complete.

If you have the Standard Edition of REALbasic, you can only build
demo versions of Windows applications. A demo version quits
automatically after 5 minutes. You can build fully functional
Macintosh applications with either the Standard or Professional
editions.

Contents
• Building Your Application
• Project Window Items
• Assigning Custom Icons
• Registering Your Creator Code
REALbasic Developer’s Guide 381

382

Building Stand-Alone Applications
• Using and Writing REALbasic Plugins
• The Thread Manager

Building Your Application
Building a stand-alone version of your project as an application
couldn’t be easier than it is in REALbasic. Just choose File . Build
Application. This displays the Build Application dialog box.
Figure 118 shows this dialog box.

FIGURE 118. The Build Application dialog box

In this dialog box you assign a few settings and then click the
Build button to create the stand-alone version of your
application.
Building Stand-Alone Applications

Building Your Application
Compiling for Other Platforms
Most notably, the Build Application dialog box lets you compile
your application for Windows computers. Simply check the target
platform for the build and enter the name of the .exe file. The
compiler will create a single executable application for the
Windows environment. The text you enter as the Caption
appears in the Title bar of the Windows application. If you want
the Windows application to run in multiple windows, check the
Multiple Document Interface check box.

Windows Considerations
A few REALbasic capabilities are Macintosh-specific. AppleEvents
and AppleScript, for example, are available only on Macintosh.
You can use conditional compilation feature to isolate this code.
It uses the structure:

#If TargetBoolean then

 //platform-specific code

#Else

 //other platform-specific code

#Endif

TargetBoolean is a boolean constant, TargetMacOS or
TargetWin32, that lets you determine the platform on which the
application is running. See the section in the Language Reference
on Cross-Platform Development and the descriptions of
TargetMacOS and TargetWin32 for more information.

Some of the functions that are designed to return MacOS-specific
folders, such as TrashFolder and ControlPanelsFolder, may return
Nil on Windows or return FolderItems that are different than
what you are expecting. Be sure that your code checks for Nil
Building Stand-Alone Applications 383

384

Building Stand-Alone Applications
values and/or the platform on which the application is running
when using these functions.

With the Declare statement, you can make direct toolbox calls for
either Macintosh or Windows platforms. Of course, the nature of
the toolbox call will differ by platform. Use conditional
compilation to isolate both the Declare statements and your
usage of your toolbox calls later in your code.

Version 2.0 of REALbasic does not support the Sprite engine.
Only the ODBC driver and the built-in REAL database engine are
currently supported on Windows.

Default Language
If you have provided support for more than one language via
constants (see “Using Constants to Localize Your Application” on
page 200), you can choose the default language for this build
from the Default Language pop-up menu.

Including 68K and PowerPC Code
You can choose to include 68k code, PowerPC code, or both.
Unless your application is doing lots of computations or running
lots of loops, the user probably won’t notice the difference
between a 68K and PowerPC application. Including both makes
the application larger, so you might want to do some testing with
both to see whether your users will benefit from the extra code.

Compressing PowerPC Code

If you are going to include PowerPC code, you can choose to
compress it. This reduces the size of the code that REALbasic
adds to your application by about 50 per cent. However, it also
Building Stand-Alone Applications

Building Your Application
adds 600k to the memory requirement. You are sacrificing
memory for a smaller disk footprint.

Memory Settings
By default, REALbasic sets the suggested and preferred memory
settings to 1024k. Is this too much? Is this too little? How do I
know what the right amount of memory is for my application?
Well, as it turns out it’s not all that straightforward. For the most
part, it just takes some experimenting. One indicator is the
Finder’s About This Computer dialog box located in the Apple
menu. This dialog box lists all running applications along with the
amount of memory reserved for them and the percentage of the
memory they are actually using. For many applications you will
find that 1024k is plenty of memory. It may even be overkill. For
other applications it won’t be nearly enough because they are
doing things that are using up memory. For example, loading lots
of data into memory, especially pictures, increases the memory
requirement. If you are using the sprite engine, the more sprites
displayed at once, the more memory you will need.
Unfortunately, there is no really straightforward logic to
determining the memory requirement for your application. You
will have to experiment.

Custom Application Icons
The Build Application dialog box has a place for you to paste in a
custom application icon. Copy your icon to the Clipboard, click
on the icon field in the Build Application dialog box, and choose
Paste from the Edit menu. The icon you paste will be preserved
once you build your application. If your stand-alone application
doesn’t display your custom icon, you may need to rebuild the
desktop. This can be done by restarting your Macintosh and
holding down the Command and Option keys until a dialog box
appears asking you if you wish to rebuild the desktop.
Building Stand-Alone Applications 385

386

Building Stand-Alone Applications
Get Info
The information in the Get Info dialog box is what will be
displayed when the user clicks on your application icon and
chooses File . Get Info (q-I). The text you enter in the Version
Info area appears directly below the application’s name. The text
you enter in the Long Version entry area appears in the Version
area below the modification date.

Project Window Items
Your Project window lists many different kinds of resources used
in your code. You may have:

• QuickTime movies
• Pictures
• Sounds
• Databases
• PowerPC Shared Libraries
• AppleScripts
• Classes
• Modules
• Windows
• XCMDs
• REALbasic Plugins

Databases that you include in your Project Window are not
included in the built application. End users must have access to
the data sources that your application references.
Building Stand-Alone Applications

Assigning Custom Icons
Assigning Custom Icons
As you already know, you can assign a custom application icon in
the Build Application dialog box. If your application creates
documents, you will probably want to assign icons that match
the theme of your application icon, to the documents it creates.
This can be done through the File Types dialog box.

FIGURE 119. A File Type in the File Types dialog box

To assign a custom icon to a particular file type, do this:

1. Use any graphics program to create your icon. Remember, its size is
32 x 32 pixels.

2. Copy the icon you wish for a particular file type to the Clipboard.

3. Open the File Type in the File Types dialog box.

4. Click the Document Icon checkbox.

5. Click on the blank document icon and choose Edit . Paste (q-V).

6. Click the OK button.
Building Stand-Alone Applications 387

388

Building Stand-Alone Applications
Registering Your Creator Code
Each application’s creator code should be unique. This is because
the Finder uses these codes to determine which application to
launch when a file is double-clicked. The Finder simply locates the
first application it can find with a matching creator code.

You can register your application’s creator code with Apple
Computer to be reasonably sure that it’s unique. To register your
creator code, go to the following web address:

http://developer.apple.com/dev/cftype/information.html

The Thread Manager
While REALbasic requires the Thread Manager to be installed in
order for it to run, your stand-alone application may not. Your
application will not require the Thread Manager unless you are
creating subclasses based on the Thread class. The Thread
Manager was installed as an extension in prior to System 7.5
when it was built-in to the Mac OS.
Building Stand-Alone Applications

CHAPTER 15 Converting Visual
Basic Projects to
REALbasic
Because of the similarities between REALbasic and Visual Basic,
creating a Macintosh version of a Visual Basic application is fairly
easy. REALbasic can save you hours of time by handling the
tedious job of recreating the interface and pasting in your code
into all the various event handlers and methods.

Contents
• Importing Forms and Code
• Tips that make the process easier
• What about VBX and ActiveX controls?
• Database Options
REALbasic Developer’s Guide 389

390

Converting Visual Basic Projects to REALbasic
Importing Forms and Code
REALbasic can import Visual Basic 2.0 (or greater) forms and the
code associated with them. REALbasic recreates the interface and
imports the code for all of the various controls into the
appropriate event handlers and methods.

To import VB forms into a REALbasic project, do this:

1. Move your Visual Basic form files (those ending in.frm) over to your
Macintosh.

2. Open a new or existing project in REALbasic.

3. Drag the form files from the desktop into the Project window to
import them.

Because there are differences between REALbasic and Visual
Basic, there are going to be errors in your code that you will need
to correct. Once you finish import the form files, you can run
your project to begin tracking down those errors.

Making The Conversion Easier
There are a number of steps you can take proactively to make the
process of converting a VB project to REALbasic easier. First, there
is a preprocessor for VB applications on your REALbasic
CD,VB Cleaner. It preprocesses VB forms, projects, and classes
and does an extensive job of preparing these files for import,
saving hours and hours of time. As a first step, run VB Cleaner on
your VB application.

Here are some specific tips for manual preprocessing VB
applications. Special thanks to Tony Hansen for compiling this list
of do’s and don’ts based on his first hand experience:
Converting Visual Basic Projects to REALbasic

What about VBX and ActiveX controls?
• Don't use the object!property syntax, use object.property
• Remove all type declaration characters (no A$, n%, etc.)
• Don't use the Call syntax on subs
• Don't use '* x' declarations on strings (i.e. dim strA as

string * 10)
• Don't use REDIM
• Minimize use of variants
• Don't change passed vars within functions and subs
• Use 'one place in and one place out' design in functions

and subs
• Make sure source files are being maintained in text
• Only one statement per line

In REALbasic you will have to:

• Remove the $ on str$, trim$, etc
• Change ucase to uppercase, .clear to .deleteallrows,

.additem to addrow, etc.
• Change the way files are opened and read

What about VBX and ActiveX
controls?
VBX and ActiveX controls are usually written using quite a bit of
Windows API calls, making them very Windows dependent.
However, if you are using these for Internet, for serial
connectivity, or for animation, there are controls that are built-in
to REALbasic that provide this functionality. The Visual Basic
importer won’t do the conversion for you in these cases but you
do have a solution.
Converting Visual Basic Projects to REALbasic 391

392

Converting Visual Basic Projects to REALbasic
What Are My Database Options?
Visual Basic applications often use Microsoft Access or the Jet
database engine that comes with Visual Basic to provide single-
user database capabilities. You can convert these applications to
use the built-in REALbasic database engine or any other
supported data sources.
Converting Visual Basic Projects to REALbasic

Index
A
Aaron extension 208
ActiveX controls 391
AddMacData method 244, 245
AddPicture method 281, 282
AddResource method 282
Address property 357
AddRow method 131
aliases 255

importing 164
And operator 135
animation

starting and stopping 247
with sprites 246–248

App function 301
Appearance Control panel 46
AppendToTextFile method 267
AppleEvent object

Send method 372
AppleEvent objects

creating in REALbasic 372
AppleEvents 383

communicating with 372–374
receiving 373–374
required 373
sending 372
sophisticated 374

AppleScript 383
adding to a project 369
adding to REALbasic 369
calling 371
passing values to 370
returning values from 371

AppleScripts
calling 368–371

Application class 283, 284, 300–301, 373
event handlers 300
methods of 301
properties of 301

application icons
custom 385

application object
creating a 192

application-based subclass
naming recommendation 301

array
definition of 125

array element
referring to an 126

arrays

zero-based 125

B
Backdrop property 272

of Canvas control 222
to display a picture 221

BASIC
compiled 10
disadvantages of interpreted 116
history of 10, 116–117
interpreted 10
object-oriented 10

binary file
reading a 275–277
writing to 277–278

binary files
benefits of 274
definition of 274
random read/write access to 274

BinaryStream 277
compared to TextInputStream 275
definition of 275

branching
definition of 142

breakpoint
definition of 343
removing a 343
setting a 343

breakpoints
in stand-alone applications 344

Browser 149–153, 157
contents of 150
contextual menus in 159
expanding and collapsing categories 159
Find and Replace window 160–161
hiding the 157
hiding using keyboard equivalent 158
use of bold in 153
using to access code 153
viewing items in 152

buffer
definition of 353

bugs
logical 340
syntactical 340

Build Application dialog box 382, 383, 385
button controls 180
Index 393

Index
C
Canvas control 61, 85–87, 294

Backdrop property 272
copying a picture in a 224
creating custom controls with 302
implementing drag and drop 185
redrawing 232
saving image drawn in 271

carriage return
used in writing to text files 268

CellClicked event 294
CellClicked event handler 303
Checkbox 53–55
Chr method 132
CICN resource 281
class

accessing properties and methods of 299
creating based on controls 297
definition of 296

classes
adding methods to 292
adding properties to 291
built-in 287
constructors 290
deleting 316
exporting 314–315
exporting protected 314
importing 313–314
not based on controls 298–299

Clipboard
getting data from 243–244
putting data on 244–246
testing for data types 242
transferring text and graphics with 242–246

Clipboard class 242
Close event handler 300
code

commenting 130
exporting 165
line by line execution 344–346
protecting 315
protecting exported 165
step into 345
step out 345
step over line of 345

Code Editor 149–162
accessing the 197
auto-completion in 156
Browser 149–153
Editor Settings dialog box 152
entering code in 156

opening the 151
printing code in 162
resize bar 157, 158
role of 151

Code Editor Window 28
code examples 16
color

working with 233–237
Color class object

properties of 233
Color Picker 234

Crayon 235–236
RGB 235
System 7 235

colors
changing using Color Picker 27

Colors Window 27
comments

adding to code 130
multiline 131

comparison operators 134–135
conditional compilation 383–384
constructors 290
contextual menus

accessing in Code Editor 159
in Browser 159

ContextualMenu 68
control

Timer 101–102
control array 183

creating a 183
for managing several controls of the same

type 183
control layers 44, 107
Control order

changing the 107
Control Order dialog box 107
controls 179–183

adding to a window 42
aligning 108
appearance of 46–47
BevelButton 74
button 180
Canvas 85–87
changing properties of 43–44
Checkbox 53–55
ContextualMenu 68
creating custom 302–304
creating new instances on the fly 181
definition of 179
distributing evenly 108
dragging from Tools window 42
394 Index

Index
duplicating 46
EditFields 59–61
events for 179
GroupBox 76–78
line 80–81
ListBox 68–72
mouse events for 180
MoviePlayer 89–92
moving 43
NotePlayer 92–93
oval 84–85
PopupMenu 73–74
Position properties 43
Progressbar 65–67
Pushbutton 47–49
Radiobutton 55–57
rectangle 81–82
removing 44
RoundRectangle 82–83
Scrollbar 61–63
selecting 43
selecting in reverse order 43
selecting several 43
Serial 100
Slider 63–65
Socket 101
SpriteSurface 93
StaticText 57–58
TabPanels 78–80

coordinates system
description of 220

counter
choice of "i" as 140
incrementing a 140

counter variable
in loops 140

counter variables
in nested loops 141
typing as Integer 139

Crayon Color Picker 235–236
CreateResourceFork method 280
creator code

registering 254, 388
custom control

drawing 303–304
custom controls

231–233
creating 302–304

custom document icons
in stand-alone applications 387

custom icons
adding to custom file types 253

displaying at Finder level 254

D
data type

Boolean 120
changing 120
Double 120
establishing with Dim statement 124
Integer 119
Single 119
String 119

data types
definition of 118–120

data typing
in parameter line 155

DataAvailable event handler 353, 354
date format properties 218
dates

formatting 218–219
Debugger window 342
debugging

definition of 340
Declare statement 367, 384
Delete method 257
dialog icons

drawing 225
Dim statement 124

for declaring an array 125
Do loop 137–138
Document window 35
double-clicking

to open a file 283
drag and drop 184–189

implementing 184
dragging

from a Canvas control 185
from a ListBox 185

dragging text
in EditFields 184

DragItem object 187
DrawCautionIcon method 226
DrawLine method 227
DrawNoteIcon method 226
DrawOval method 228
DrawPicture method 224
DrawPolygon method 229, 230
DrawRect method 229
DrawRoundRect method 229
DrawStopIcon method 226
DropObject event handler 187, 189
dropping
Index 395

Index
implementing 186–189
on EditFields 189

E
EditField 359

implementing drag and drop 184
Styled property 269

EditFields 45, 59–61
cut, copy, and paste in 242

Editor Settings dialog box 152
Else clause

in If statement 143
ElseIf statement

in If statement 143
Enabled property 296
EnableMenuItems

event handler 301
EnableMenuItems event 190
EnableMenuItems event handler 295
end of file

checking for 266
endless loop

escaping from an 139
endless loops 138
entry point

defining a new 378
Entry Point Editor 377
EOF property 266, 276
event handler 166

Close 300
definition of 149
EnableMenuItems 301
HandleAppleEvent 301
Open 300
OpenDocument 300

event handlers
for controls 179
for ListBox 180

event-driven programming
concept of 23
definition of 147

events
adding to classes 293–295
examples of 148, 166
indirect 148

exported class
desktop icon of 313

exporting
items 165
protected module 206
source code 165

exporting classes 314–315

F
file

accessing a 256
File menu

New Window command 40
file type

adding a 251
definition of 250
deleting 253
editing 252

file types
APPL 250
custom 253–254
overview of 250
PICT 250
TEXT 250

File Types dialog box 250
files

creating new 284
opened by dropping 283
opening from desktop 282–283

FillOval method 228
FillPolygon method 229, 230
FillRect methods 229
FillRoundRect method 229
Find scope 161
Find/Replace window

in Browser 160–161
Floating windows 37–38
flow of control 142
focus 295

definition of 45
FolderItem

definition of 124
folderitem

checking for nil 257
deleting a 257
getting for application’s folder 258
getting info on 256
locked 258
uses of a 255

FolderItem class 255
folderitems 254–255

definition of 254
properties of 255
representing System folders 259

font
System 208

font attributes
396 Index

Index
determining the 212–215
setting 215–216

Font function 209
Font menu

adding a 209
font style

determining the 214
font style properties 214
font styles

toggling the 215
FontAvailable function 215
FontCount function 209
fonts

determining available 209–210
setting attributes of 208–216

For loop 139–142
ForeColor property 228, 229, 234
Format function 216, 217

characters used with 217
Format menu

used to move controls 107
formatting

numbers, dates, and times 216–219
FORTRAN

historical note on 140
frame redrawing speed 246
FrameSpeed 247
function 155
functions

definition of 132–133

G
garbage collection

definition of 299
Get Info dialog box

in stand-alone applications 386
GetCicn method 281
GetFolderItem function 256
GetNamedPicture method 281
GetOpenFolderItem function 260
GetPicture method 281
GetResource method 281, 282
GetSaveFolderItem function 264, 265
GetSound method 281
Global Floating Window 38
global values

monitoring 350
graphical user interface

characteristics of 22
grid

drawing a 227

Gridlock class example 302
GroupBox 76–78

for organizing RadioButtons 76

H
HandleAppleEvent event handler 301, 373
Help menu

adding a 110
HTTP 360

I
If…Then structure 142–146
Image property

in NextFrame event handler 246
importing

into a project 163–164
importing classes 313–314
Index parameter 210
Index property 192, 209
index property

used to differentiate multiple instances 182
InsertRow 132
installation requirements

for Mac OS System 7 11
instance

definition of 297
interface controls 302
interface inheritance 305
interfaces

character based 22
Internet 101
interrupting execution 344
IP address 357

J
Jet database engine 392

K
Kaleidoscope 47, 208
keyboard shortcuts 111

Windows 202
KeyTest method

SpriteSurface 248

L
LastErrorCode property 359
line 80–81
lines
Index 397

Index
drawing 227
ListBox 68–72, 131, 132

event handlers for 180
hierarchical 69, 72
implementing drag and drop 185
multicolumn 141
selection in 69

ListBox class 129
ListBox control 292
ListBoxes 45
local values

monitoring 348
Locked property 258
loop

endless 138
loops 136–142

nested 141

M
Mac OS System 7 11
MacData property 243
MacDataAvailable method 242
Macintosh Color Picker 27
MacType string 242
mathematical operators 126
mathematical precedence 126
Me 304
Me function 232, 304
memory errors

caused by excessive calls 347
memory management 299

examples of 299
memory requirement

of stand-alone apps 385
Menu Editor 28, 109
menu handler

adding a 189
menu handlers

definition of 189
menu item array 192
menu item separators

adding 113
menu items

adding 111–112
creating on the fly 192
enabling 190
enabling or disabling 295
handling from controls 191
handling when a window is open 191
handling when no windows are open 191
implementing 189–193

keyboard shortcuts for 111
moving 113
removing 113
removing programmatically 193

menus
adding 109–113
managing within classes 295–296

method
adding to a module 198, 200
definition of 129
parameter line 154

methods
AddRow 129
associated with objects 166
built-in 129
components of 154
parameters passed to 131
passing values to 131
private 175, 292
referring to in subclasses 290
tracking path of 346–347
values returned from 132

Microsoft Access 392
Modal Dialog windows 36–37
modems

communicating with 355
module

adding a 196
compared to class based on Application

object 199
importing a protected 205

modules
importing and exporting 205–206
role of 195

moths
role of in history of computing 340

MouseDown event handler 231, 294, 303
Movable Modal window 35–36
movie controller

default appearance of 89
MoviePlayer 89–92
MoviePlayer control 274
movies

importing into projects 30
MsgBox method 225
Multiline property

in EditField 212
multiple connections 357

N
nested loops 141
398 Index

Index
new events
reasons for adding 293

New operator 297, 298
to open a window 170
used to create menu item on the fly 192

NewAppleEvent function 372
NewDocument event handler 284, 300
NewPicture function 271
NextFrame event handler

sprite animation 246
NextItem function 188
NextPage method 239
NotePlayer 92–93
numbers

formatting 216–218

O
object binding 102–106

custom 308–313
object-oriented programming

advantages of 11
definition of 166

on run handler 369
on run statement 370
On-Line Reference

using code examples 16
Open Application AppleEvent 284
Open event handler 300
open file dialog

limiting file types displayed in 260
Open Transport 359
OpenAsBinaryFile method 275, 276, 277
OpenAsMovie method 274
OpenAsPicture method 270, 272
OpenAsSound method 273
OpenDocument

event handler 300
OpenDocument event handler 283
OpenPrinter function 238
OpenPrinterDialog function 239

passing SetupString to 240
OpenPrinterDialog functions 238
OpenPrintertDialog function 240
OpenResourceFork method 279, 280
OpenStyledEditField method 269
Or operator 136
order of mathematical operations 126
oval 84–85

controlling "ovalness" of 84
ovals

drawing 228

P
Page Setup dialog box 237
PageSetupDialog method 237
Paint event handler 232, 233, 236, 302
Palindrome 92
parameter line

data typing 155
in method 154

parameter passing
in parameter line 155

parameters
definition of 131
more than one 131

password field
creating a 211–212

path
absolute 256

PenHeight property 228
PenWidth property 228
PICT file

opening a 272
saving a 270–272

PICT files 270–272
PICT resource 281, 282
picture

copying a portion of 224
displaying a 224
displaying in a portion of a window 222
displaying in a window 221–223
scaling a 225

Picture property 243, 244
PictureAvailable method 242
pictures

creating 223–224
importing into projects 30

Pixel property 226
of a Graphics object 236

pixels
drawing 226

Plain Box windows 38–39
plug-ins 374–376

formats of 374
including in stand-alone apps 376
loading 375
using 375–376
writing 376

polygons
drawing 229–231

PopupMenu control 73–74
port

definition of 356
Index 399

Index
Port property 357
PowerPC code

compressing 384
PowerPC shared libraries

definition of 376
using 376–379

PowerPC shared library
accessing commands in 377

Print dialog box
displaying the 239

PrinterSetup class objects 238
PrinterSetup settings 238
printing 237–241

in Code Editor 162
overview of process 237
sending a page to the printer 239
without the Print dialog box 241

printing scope 162
private methods 196
private properties 196

of a module 198
Progressbar 65–67
project

adding and removing items from a 30
creating a new 30
removing items from 31
saving a 31
starting and stopping 350

project templates
creating 31

Project window 25
adding shared library to 377
importing files into 163

properties
adding to a module 198–199
assigning values to 121
data type mismatches 125
definition of 117
getting value from 122
private 291
referring to in subclasses 290

Properties Window 27, 43
protected classes

documenting 315
importing 314

Protected option
in Save As dialog box 165

protecting
exported code 315

protocol
defining your own 361
definition of 360

Pushbutton 47–49

Q
QuickTime 89
QuickTime movie file

opening a 274
QuickTime movies 273–274
QuickTime Musical Instruments 89, 93

R
Radiobutton control 55–57
RadioButtons

compared to Checkbox 54
Read method 354
ReadAll method 266, 266–267, 354
ReadLine method 266
REAL Software

contacting 19
REALbasic

adding AppleScripts to 369
advantages of compiled 116
Code Editor Window 28
Colors Window 27
controls 41–109
converting Visual Basic apps to 389–392
coordinates system 220
debugging in 24
developer release 20
development process in 23
differences from BASIC 116
electronic documentation 16
ftp site 17
IDE 24
Interface Assistant 33, 114
mailing lists 18
memory management 299
Menu Editor 28
new commercial releases 20
On-Line Reference 14
overview of 10
plug-ins 374–376
Project window 25
projects in 29
Properties Window 27
reporting bugs 19
reserved words in 128
SDK 376
technical support 18
third-party web sites 17
Tools Window 27
400 Index

Index
using code examples 15
using database with 392
web page 17
Window Editor 26
window types 34–41

REALbasic Cafe 18
rectangle 81–82
rectangles

drawing 229
reference

definition of 297
RemoveResource method 282
reserved words 128
resize bar

in Code Editor 158
resizing 157
resource fork

adding a 280–281
contents of 279
opening a 279–280

resource forks
definition of 279

resource types
supported 281

ResourceFork class 281, 282
resources

reading 281–282
writing to 282

reusable code 286
RGB Color Picker 235
Rgb function 233, 234, 236
RGB values

getting the 234
Rounded windows 40
RoundRectangle 82–83
Run method

SpriteSurface 247

S
Save As dialog box

managing the 263–265
SaveAsPicture method 270
SaveStyledEditField method 270
Scrollbar 61–63
Scrollbars

event handlers for 181
SelChange event handler 211
Select...Case statement 145–146

restrictions on 146
selected file

getting folderitem for 260

selected folder
getting folderitem for 262

selected text
determining attributes of 212
working with 210–211

SelectFolder function 262
Self function 177
Self variable 348
SelLength property 211
SelStart property 211
SelText property 211
SelTextFont property 212
SelTextSize property 213, 215
Serial control 100, 352

changing configuration of 355
configuring 352
Flush method 354
LookAhead property 354
Open method 354
overview of use 352
placing in a window 352
Poll method 355
reading data with 353
Write method 354
writing data 354
XmitWait method 354

Serial controls
event handlers for 181

serial device
definition of 352

serial devices
communicating with 352–355

serial port
closing the 355
opening the 353

SetText method 244
SetupString property 238

storing the 239
shared libraries

accessing commands in 377
calling commands in 379
definition of 376
using 376–379

Slider 63–65
Sliders

event handlers for 181
SMTP protocol 360
SMTP server 356
snd resource 281

getting sounds from 273
Socket control 101, 356, 358

Close method 360
Index 401

Index
Connect method 357
Connected event handler 357, 358
DataAvailable event handler 358
Error event handler 359
for communicating via the Internet 101
Listen method 357
Port property 357
Write method 359

Socket controls
event handlers for 181

sound file
opening a 273

sound files 273
sounds

importing into projects 30
sprite animation

detecting keystrokes during 248
sprite area 247
Sprites

definition of 93
sprites 246–248

animating 246–247
SpriteSurface 93
SpriteSurface Backdrop property 247
SpriteSurface control 246
Stack window 346

hiding 347
viewing code from 347

stand-alone applications
building 382–386
compressing PPC code 384
custom document icons 387
custom icons for 385
ease of building 382
including 68K and/or PPC code 384
memory requirements for 385

StaticText control 57–58
Step statement

for incrementing a counter 140
Str method 132
Styled property

in EditField 269
styled text

definition of 212
handling 212–216
reading into an EditField 269
writing to a file 270

styled text files 269–270
subclasses

examples of 287, 288–289
submenu

adding a 112–113

super class 288
syntax errors

checking for 341, 342
System font 208

T
Tab order 43

changing the 107
TabPanels 78–80

advantages of 78
Target property 177, 178, 179

used to change properties of controls 178
TargetMacOS constant 383
TargetWin32 constant 383
TCP/IP 101, 356

supporting multiple connections 357
TCP/IP communications 355–361
TCP/IP connection

closing 359
error handling 359
listening for a 357
reading data 358–359
to another computer 357–360
writing data 359

TCP/IP protocols 360
text

getting and selecting 211
text file

creating a 265
reading from 266
writing to 267–268

text files
compared to binary files 269
limitations of 268
working with 265–270

Text property 243
TextAvailable method 242
TextInputStream

definition of 266
TextOutputStream

definition of 267
themes

altered by Aaron 47
in Kaleidoscope 47
in Mac OS 46

Thread class 388
Thread Manager 11

requirement of 388
time format properties 219
Timer control 101–102
times
402 Index

Index
formatting 219
toolbox calls 367
Tools Window 27
type selection 45

U
user interface

importance of 33

V
vacuum tubes

use of in computers 340
values

changing the data type of 120
debugging 348–350
getting and setting in variables 123
getting from properties 122

variables
definition of 118
getting and setting values 123

Variables window 348
VBX controls 391
virtual methods 304
Visual Basic

converting to REALbasic 389–392
importing forms and code 390
tips in converting to REALbasic 390–391

W
While loop 137
window

accessing properties of 174
adding a method to 175
adding a property to 173
deleting a method 176
deleting a property 173
editing a method 175
editing a property 173

Window Editor 26
Windows

keyboard shortcuts for 202
windows

accessing controls, methods, and properties of
other 176

adding methods to 174–176
adding properties to 172–174
creating 40
deleting 41
events 167–169
multiple instances of 177

opening 169–172
opening with New operator 170

Windows API calls 391
WriteLine method 267, 268

X
XCMD 364

extracting from HyperCard 364
XCMD/XCFN

calling in a method 366
XCMD/XFCN

installing in a project 365
locating on the Internet 367
removing 367

XFCN 364

Z
zero-based array

definition of 125
Index 403

Index
404 Index

	Contents
	CHAPTER 1 Introduction
	Contents
	Welcome to REALbasic
	Installing REALbasic
	Where to Begin
	Documentation Conventions
	Initial References
	Menu References
	Code Examples
	Icons

	Using the On-Line Help
	Context-Sensitive Help
	Using the HyperText Links in the On-Line Help
	Using the Code Examples

	Other Helpful Resources
	Electronic Documentation
	Our Support Web Page
	Our FTP Site
	End User Web Sites
	The REALbasic CD
	Our Internet Mailing Lists
	The REALbasic Cafe
	Technical Support from REAL Software

	Contacting REAL Software
	Reporting Bugs and Making Feature Requests
	Accessing The Latest Developer Release

	CHAPTER 2 Getting Started with REALbasic
	Contents
	Concepts
	Applications are Driven by Events
	Developing Software with REALbasic

	The Development Environment
	The Menus
	The Project Window
	The Window Editor
	The Tools Window
	The Properties Window
	The Colors Window
	The Code Editor Window
	The Menu Editor

	Working with Projects
	Creating A New Project
	Adding and Removing Items to Your Project
	Saving Your Project
	Creating Project Templates

	CHAPTER 3 Building a User Interface
	Contents
	Working with Windows
	Window Types
	Document
	Movable Modal
	Modal Dialog
	Floating
	Plain Box
	Shadowed Box
	Rounded

	Creating Windows
	Removing Windows

	Interacting with the User Through Controls
	Adding, Changing, and Removing Controls
	Adding Controls
	Selecting Controls
	Changing a Control’s Position
	Changing a Control’s Properties with the Properties window
	Removing Controls

	Understanding Control Layers
	Understanding The Focus
	Duplicating Controls
	The Appearance of Controls
	Button Controls for Performing Actions
	PushButton
	BevelButton
	CheckBox
	RadioButton

	Controls for Displaying and Entering Text
	StaticText
	EditField

	Controls for Displaying and Entering Numeric Values
	ScrollBar
	Slider
	ProgressBar

	Controls for Presenting a List of Choices
	ContextualMenu
	ListBox
	PopupMenu
	BevelButton

	Controls for Visually Grouping Other Controls
	Separator
	GroupBox
	TabPanel

	Controls for Displaying Graphics and Pictures
	Line
	Rectangle
	RoundRectangle
	Oval
	Canvas
	ImageWell

	Controls for Playing Movies, Music, and Animation
	MoviePlayer
	NotePlayer
	SpriteSurface

	Miscellaneous Controls
	PopupArrow Control
	DisclosureTriangle Control
	LittleArrows Control
	ChasingArrows Control

	Controls for Handling Communications
	Serial
	Socket

	The Timer Control

	Object Binding
	Changing The Tab (Control) Order
	Aligning Controls with Other Controls
	Spacing Controls Evenly

	Adding Menus
	Adding Menus
	Adding a Help Menu
	Adding Menu Items
	Adding a Submenu
	Moving Menu Items
	Removing Menu Items
	Adding A Menu Item Separator

	Apple’s Macintosh User Interface Guidelines

	CHAPTER 4 BASIC Programming Concepts
	Contents
	BASIC versus REALbasic
	Storing Values in Properties and Variables
	What are Properties?
	Variables
	Data Types
	String
	Integer
	Single
	Double
	Boolean
	Other Data Types

	Changing a Value From One Data Type to Another
	Assigning Values to Properties
	Getting Values From Properties
	Getting and Setting Values in Variables
	Mathematical Operators
	Constants
	Reserved Words

	Executing Instructions with Methods
	Documenting (Commenting) Your Code
	Passing Values to Methods
	Returning Values from Methods
	Passing Parameters by Value and by Reference

	Comparison Operators
	Testing Multiple Comparisons
	And Operator
	Or Operator

	Executing Instructions Repeatedly with Loops
	While...Wend
	Do...Loop
	Endless Loops
	For...Next

	Making Decisions with Branching
	If…Then…End If
	If...Then...Else...End If
	If...Then...ElseIf...End If

	Select...Case

	CHAPTER 5 Programming with Events and Objects
	Contents
	Understanding Event-Driven Programming
	Using The Code Editor
	Opening The Code Editor
	Configuring the Code Editor
	The Browser
	Understanding Methods in the Code Editor
	The Parameter Line
	Entering Your Code in the Code Editor
	Getting More Usable Space in the Code Editor

	Using Contextual Menus
	Find and Replace

	Printing Your Code
	Importing and Exporting Your Classes, Menus, Modules, and Windows
	Importing
	Exporting
	Protecting Your Source Code

	Responding To User Actions with Event Handlers
	Object-Oriented Programming
	Windows
	Events
	Opening Windows
	Adding Properties to Windows
	Adding Methods to Windows
	Accessing Controls, Methods, and Properties of Other Windows

	Controls
	Events
	Creating New Instances of Controls On The Fly
	Sharing Code Among An Array of Controls

	Drag and Drop
	Dragging Text From EditFields
	Dragging A Row From A ListBox
	Dragging From A Canvas Control or Window
	Dropping
	Dropping Items On EditFields

	Menu Items
	Adding Code To a Menu Item
	Enabling Menu Items
	Handling Menu Items From Individual Controls
	Handling Menu Items When a Window Is Open
	Handling Menu Items When No Windows Are Open
	Creating New Menu Items On The Fly

	Classes

	CHAPTER 6 Adding Global Functionality with Modules
	Contents
	Understanding Modules
	Adding A New Module
	Adding Methods to Modules
	Adding Properties to Modules
	Adding Constants to Modules
	Using Constants to Localize Your Application
	Using Constants to Add Keyboard Shortcuts to Menus and Menu Items

	Importing and Exporting Modules
	Importing
	Exporting

	CHAPTER 7 Working With Text and Graphics
	Contents
	Working With Fonts
	The System Font
	What Fonts Are Available?

	Working with the Selected Text
	Creating a Password Field
	Handling Styled Text
	Determining the Font, Size, and Style of Text
	Setting the Font, Size, and Style of Text

	Formatting Numbers, Dates, and Times
	Numbers
	Dates
	Times

	Adding Pictures and Drawing Graphics
	Understanding the Coordinates System
	Displaying Pictures In a Window
	Using the Entire Window
	Using a Portion of the Window

	Creating Pictures
	Displaying Pictures
	Copying A Portion of a Picture
	Scaling Pictures
	Drawing Standard Dialog Icons
	Drawing Pixels
	Drawing Lines
	Drawing Ovals
	Drawing Rectangles
	Drawing Polygons
	Creating Custom Controls with the Canvas Control

	Working With Color
	Determining The RGB Values For A Color
	The Pixel Property of Graphics Objects

	Printing Text and Graphics
	Working with the Page Setup Dialog Box
	Printing With The Print Dialog Box
	Printing Without The Print Dialog Box
	Printing Styled Text

	Transferring Text and Graphics with the Clipboard
	Testing The Clipboard For Specific Data Types
	Getting Data From The Clipboard
	Putting Data On The Clipboard

	Creating Animation with Sprites
	Causing Sprites to Move and Change Images
	Frame Redrawing
	Starting and Stopping the Animation
	Sprite Surface Area
	Responding To The User During Sprite Animation

	CHAPTER 8 Working With Files
	Contents
	Understanding File Types
	Using The File Types Dialog Box
	Adding a File Type
	Editing a File Type
	Deleting a File Type

	Creating Custom File Types for Your Application

	Understanding FolderItems
	How Are Aliases Handled?
	Getting a File at a Specific Location
	Getting Information About a FolderItem
	Deleting A FolderItem
	Getting The Path To Your Application’s Folder
	Getting Specific Items In the Application’s Folder
	Accessing Specific System/Finder Folders

	Getting The Selected Folder From An Open Folder Dialog Box
	Using the Save As File Dialog Box
	Working With Text Files
	Reading From a Text File
	Writing to a Text File
	Limitations of Text Files

	Working With Styled Text Files
	Loading Styled Text Into an EditField
	Writing Styled Text From an EditField to a File

	Working With Picture Files
	Saving Pictures
	Opening Pictures

	Working With Sound Files
	Working With QuickTime Movie Files
	Working With Binary Files
	BinaryStreams
	Reading From a Binary File
	Writing to a Binary File

	Working With Macintosh Resources
	Opening a File’s Resource Fork
	Adding a Resource Fork to a File
	Supported Resource Types
	Reading Resources
	Writing To Resources
	More Information on the ResourceFork

	Files Opened From the Desktop
	Files Opened by Double-Clicking
	Files Dropped On Your Application’s Icon
	Creating New Files

	CHAPTER 9 Creating Reusable Objects with Classes
	Contents
	The Benefits of Classes
	Reusable Code
	Smaller Projects/Applications
	Easier Code Maintenance
	Easier Debugging
	More Control

	Understanding Subclasses
	What is a Subclass?
	Examples of Subclasses

	Referring To A Class’s Properties and Methods From Within the Class
	Constructors
	Modifying Classes
	Adding Properties
	Adding Methods
	Adding New Events

	Managing Menus within Classes
	Using Classes in Your Projects
	The Class
	The Instance
	The Reference
	Classes Based on Controls
	Classes Based on Classes Other Than Controls
	Accessing the Properties and Methods of a Class
	When are Instances of Classes Removed From Memory?

	The Application Class
	Special Event Handlers
	Properties Are Global
	Methods Are Global
	Naming Your Application-Based Subclass

	Creating Custom Controls with Classes
	Drawing Your Custom Control

	Virtual Methods
	Interface Inheritance
	Custom Object Bindings
	A “Delete All Rows” Bind
	A “Delete Selected Row” Bind

	Importing Classes From Other Projects
	Exporting Classes For Use In Other Projects
	Protecting Your Source Code

	Deleting Classes From a Project

	CHAPTER 10 Creating Databases with REALbasic
	Contents
	REALbasic’s Database Architecture
	Structured Query Language
	SQL in REALbasic
	Select Statement
	Joins

	Create Table Statement
	Update statement
	Set Functions

	REALbasic’s Database Tools
	Selecting a Data Source

	Creating and Modifying Databases from the Project Window
	The DatabaseQuery Control

	Using Object Binding
	Creating a Database Front End Programmatically
	Choosing a Data Source
	Editing Records
	Adding Records

	CHAPTER 11 Debugging Your Code
	Contents
	What is Debugging?
	Logical Bugs
	Syntactical Bugs

	The Debugger
	You Have A Syntax Error In Your Code
	You Have Set A Breakpoint In Your Code
	You Have Pressed q-Shift-Period

	Following the Execution of Methods
	Step Over
	Step Into
	Step Out
	Tracking Method Execution with the Stack

	Watching Your Values
	Local Values
	Global Values

	Starting and Stopping Your Project

	CHAPTER 12 Communicating With The Outside World
	Contents
	Communicating With Serial Devices
	Getting Set Up
	Opening the Serial Port
	Reading Data
	Writing Data
	Changing a Serial Control’s Configuration on the Fly
	Closing the Port
	Communicating With Modems

	TCP/IP Communications with the Socket Control
	Getting Set Up
	Making a Connection to Another Computer
	Listening For a Connection From Another Computer
	Reading Data
	Writing Data
	Handling Errors
	Closing the Connection
	Understanding Protocols

	CHAPTER 13 Extending the Capabilities of REALbasic
	Contents
	Using XCMDs and XFCNs
	Getting an XCMD Out of a HyperCard Stack
	Installing an XCMD/XFCN in a Project
	Calling an XCMD or XFCN in a Method
	Removing an XCMD or XFCN
	Where to Find XCMDs and XFCNs

	Making Toolbox Calls
	Calling AppleScripts
	Preparing an AppleScript to Work in REALbasic
	Loading an AppleScript into a Project
	Passing Values To an AppleScript
	Returning Values From an AppleScript
	Calling an AppleScript
	Removing an AppleScript

	Communicating with AppleEvents
	Sending AppleEvents
	Receiving AppleEvents
	Sophisticated AppleEvents

	Using and Writing REALbasic Plug-ins
	Loading Plug-ins
	Using Plug-ins
	Including Plug-ins in Your Stand-Alone Applications
	Writing Your Own Plug-ins

	Using PowerPC Shared Libraries
	Accessing Commands In Shared Libraries

	CHAPTER 14 Building Stand-Alone Applications
	Contents
	Building Your Application
	Compiling for Other Platforms
	Windows Considerations
	Default Language
	Including 68K and PowerPC Code
	Compressing PowerPC Code

	Memory Settings
	Custom Application Icons
	Get Info

	Project Window Items
	Assigning Custom Icons
	Registering Your Creator Code
	The Thread Manager

	CHAPTER 15 Converting Visual Basic Projects to REALbasic
	Contents
	Importing Forms and Code
	Making The Conversion Easier
	What about VBX and ActiveX controls?
	What Are My Database Options?

	Index

