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" PREFACE

EVERY beginner in the science of geometry knows that the
circle and the sphere have always played a central rdle, yet
few people realize that the reasons for this are many and
various. Attention was first called to these figures by their
mechanical simplicity and importance, and the fortunate
position thus won was further strengthened by the Euclidean
tradition of limiting geometry, on the constructive side, to
those operations which can be carried out with the aid of
naught but ruler and compass. Yet these facts are far from
sufficient to account for the commanding position which the
circle and the sphere occupy to-day.

To begin with, there would seem no a priori reason why
those curves which are the simplest from’the mechanical point
of view should have the greatest wealth of beautiful properties.
Had Euclid started, not with the usual parallel postulate,
but with the different assumption either of Lobachevski or
Riemann, he would have been unable to prove that all angles
inseribed in the same circular arc are equal, and a large
proportion of our best elementary theorems about the circle
would have been lacking. Again, there is no a priori reason
why a curve with attractive geometric properties should be
blessed with a peculiarly simple cartesian equation; the
cycloid is particularly unmanageable in pure cartesian form.
The circle and sphere have simple equations and depend
respectively on four and five independent homogeneous para-
meters. Thus, the geometry of circles is closely related to
the projective geometry of three-dimensional space, while the
totality of spheres gives our best example of a four-dimensional
projective continuum. Still further, who could have predicted
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4 PREFACE

that cireles would play a central role in the theory of linear
functions of a complex variable, or that every conformal
transformation of space would carry spheres into spheres?
These are but examples of the way in which circles and spheres
force themselves upon our notice in all parts of geometrical
science.

The result of all this is that there is a colossal mass of
literature dealing with circles and spheres, the various parts
of which have been developed with little reference to one
another. The elementary geometry of the circle was carried
to a high degree of perfection by the ancient Greeks, but by
no means completed, for in comparatively recent times there
have been notable contributions from mathematicians of no
mean standing, Steiner and Feuerbach, Chasles and Lemoine,
Casey and Neuberg, and a countless following host. The
relation between circle geometry and projective geometry has
been thoroughly studied by Reye, Fiedler, Loria, and their
pupils. Every text-book of the theory of functions of a com-
plex variable discusses the relation of circles to the linear
function, while the general theory of circle transformations
has had such distinguished exponents as Mobius and von
Weber. The circle and sphere with positive or negative
radius have been the subject of admirable studies by Laguerre
and Lie, algebraic systems of circles in space have been studied
by Stephanos, Koenigs, Castelnuovo, and Cosserat, while circle
congruences in general have received no little attention from
recent writers on differential geometry, notably Ribaucour,
Darboux, and Guichard.

The present work is an attempt, perhaps the first, to present
a consistent and systematic account of these various theories.
The greatest difficulty in any such undertaking is obviously
that of selection. This is particularly the case in the early
part of the subject. A complete account of all known elemen-
tary theorems regarding the circle would be far beyond the
strength of any writer, or reader. The natural temptation
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is to go to the other extreme, and omit entirely the elementary
portions ; yet this would be equally fatal. How could one
write at length on the geometry of the circle without dis-
cussing the Apollonian problem and the nine-point circle ?
But if we include the circle of Feuerbach, why should we
exclude the circles of Lemoine, Tucker, and Brocard ? Where
does the geometry of the circle end, and that of the triangle
begin? Clearly any principle of choice must be largely
arbitrary and illogical.

In the present treatise preference is shown to those theorems
which are unaltered by inversion, and to those which are as
general as possible in their scope. The author has tried to
say something about every eircle that is known by a recog-
nized name, but the vast subject of the geometry of the
triangle is treated only in a superficial manner. Similarly,
only a small number of the most famous problems in con-
struction have been discussed, but these have been treated
at some length.

When we pass from the elementary to the more advanced
portions of the subject, we find a tolerably clear line of
demarcation running through the geometry of the circle and
the sphere, namely, the separation of those theorems which
involve the centre or radius from those which do not. Other-
wise stated, we have those theorems which are invariant
under the group of conformal collineations, and those which
are invariant for inversion. An attempt is made to keep
these two classes as far separate as practicable. For this
reason, distinction is drawn between cartesian space which
is supposed to have been rendered a perfect continuum by
the adjunction of a plane at infinity, and pentaspherical
space where the finite region is defined, in the real domain,
as a single point. Among the cartesian theorems there is
a sharp sub-division between those where the radius is looked
upon as essentially signless and those where a positive or
negative radius is allowable. The circle and the oriented



6 PREFACE

circle should be considered as essentially dissimilar figures ;
the former is a locus of points, the latter, in the plane, is best
handled as an envelope of oriented lines, and considered under
a totally different group. In the present work the oriented
circle and sphere are discussed in three chapters entirely
devoted to them.

Every writer knows that the pleasantest part of his task
congists in writing the preface, for here he has a chance to
express his gratitude to the generous friends who have helped
him with suggestion and counsel. The present author would
especially mention his colleague Professor Maxime Bocher,
who kindly read the proof of Ch. VIII, and his former pupil
Dr. David Barrow, who not only supplied much of the
material in Ch. XIV but also did yeoman service in unearth-
ing mistakes in various parts of the work. Another pupil,
Dr. Roger Johnson, has kindly suggested a number of minor
corrections, mostly of a bibliographical nature. Yet the
greatest debt is not to any one of these.

The present work went to press in the spring of 1914.
During the two years which have intervened, the Delegates
of the Clarendon Press, despite the fact that their country
was passing through the most severe trial in her history,
have yet seen fit to continue the publication of a book which
dealt with a subject utterly remote from all that occupied
men’s thoughts, and which was not even written by one of
their countrymen. TLet the author’s last word be one of
gratitude to them for this great kindness, as signal as it
is undeserved.

CAMBRIDGE, U.S.A.
July, 1916.
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CHAPTER 1

THE CIRCLE IN ELEMENTARY PLANE
GEOMETRY

§ 1. Fundamental Definitions and Notation.

ALL figures discussed in the present chapter are supposed
to exist in the real and finite domain of the Euclidean plane;
the domain of elementary plane geometry. As fundamental
objects, we shall take points, lines, and circles. We shall
make no attempt to define a point. By line we shall mean
a straight line; a class of points uniquely determined by any
two of its members. It extends to an infinite distance on
either side of any of its points. That portion of a line which
is on either side of any point shall be called a half-line; the
portion which includes two points and all between them shall
-be a segment. If two half-lines be given which are not
collinear, but are bounded by a common point, that portion
of the plane which includes all segments whose cxtremities
are on the given half-lines shall be called their interior angle,
or, more shortly, their angle. The remainder of the plane
shall be their exterior angle. These definitions may be easily
extended to include null and straight angles. Three non-
collinear points will determine three segments forming
together a triangle. The given points and segments are
the vertices and sides respectively, the lines whereon the
segments lie shall be called the side-lines.* The three angles,
each of which is bounded by two half-lines including two
sides of the triangle, shall be called the angles of the triangle,

* This term suggests football rather than geometry. It is, however,

proper to distinguish between the side of a triangle, and the line whereon
that side lies.

B2



20 THE CIRCLE IN CH.

their supplements its exterior angles. A line through a vertex
perpendicular to the opposite side-line shall be called an
altitude line, its intersection with the side-line its foof, and
the segment bounded by the foot and the opposite vertex,
the altitude.

We shall mean by a circle the locus of points at a given
distance from a fixed point called the centre. A segment
bounded by two points of a circle shall be called a chord,
its line a secant. The limiting position of a secant as the two
points of the cirele approach one another shall be a tangent.
A segment bounded by the centre and a point of the circle
is a radius, that which is made up of two collinear radii
a diameter.

Let us pass from these definitions to establishing certain
conventions as to notations. Points shall be denoted by large
italic letters as A B P;. 'The segment bounded by 4 and B,
or the distance of these points, shall be written (AB). When
a question of algebraic sign arises, or a segment is looked
upon as measured in a particular sense, we shall superpose
an arrow pointing to the right, to indicate that the segment
is measured from the point denoted by the first letter to that
denoted by the second, thus

— s

(AB) = —(BA).
The line determined by the points 4 and B shall be indicated
AB. Tt is often convenient to indicate a line by a single
small <talic letter as a, ;. The angle of the half-lines which
include the segments (A B)(AC), when considered as a quantity
bereft of sign, shall be indicated X BAC. When the sense
of description is essential we shall introduce a right-pointing
arrow, as

B ——

¥ BAC = -4 CAB.

When we wish one of the lesser angles determined by two
lines, including its sense of description,* we shall use the
notation ZBAC or £1,l,. Parallelism shall be denoted by |,
perpendicularity by L. The distinction in meaning between

* There is, of course, a slight ambiguity when the lines are mutually
perpendicular ; it does not, however, cause any practical inconvenience.
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our various symbols will appear from the following familiar
equations :
If 4, |1/ and 4,2/, then 411, = L1/l
If , 11/ and I, L1, then 201, =1/, .
If ABCD be concyelic,
LABC = £ ADC,
Y- ABC =% ADC or n—) ADC,

—_— C— e
Y ABC =Y ADC or +(n+X.ADC).
If ABCD be any four coplanar points,
LADB+ /. BDC+ £LCDA = ¢ (mod =),

X ADB+X BDC+ ¥ CDA =0 (mod 27).

A triangle where vertices are ABC shall be indicated
A ABC.

It is useful to make certain further conventions for the
study of a single triangle. The vertices shall be 4,4,4,,
this order of letters corresponding to a circuit of the triangle
in a counter-clockwise or positive sense. If the letters ¢, j, k
indicate a circular permutation of the numbers 1, 2, 3,

Y A; A, =4 A4 A A, =X A; (4;4;)=a; Za;=2s

If P be any other point of the plane, the line A;P shall
meet 4;4; in P;; a line through P L A;4; shall meet 4,4,
in Pa;. The middle point of 4;4, shall be M;; the centre of
gravity of the triangle is thus M. The centre of the cir-
cumscribed circle shall be O, the orthocentre, the point of
concurrence of the altitude lines, shall be /. We have thus,
incidentally, H; = Ha,;. The area of this triangle shall be A,
the radius of the circumsecribed circle shall have the length 7.
A theorem shall be referred to as ] or y] while an equation

is (p) or (g).

§ 2. Inversion.

A truce to these preliminaries! Suppose that we have
given a circle whose centre is O and radius has the length
7% 0. Let P and P’ be any two points collinear with O
such that

(OP)x (0F) = . )
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The relation between the two is perfectly symmetrical, each
is said to be the inwverse of the other with regard to that circle,
and the transformation from one to the other is called an
tnversion. The point O is called the centre of inversion, the
given circle the circle of inversion, and its radius the radius
of inversion.*

Theorem 1.] Every point other than the centre of inversion
has a single inverse.

Theorem 2.] The circle of imversion is the locus of points
which are their own inverses.

Theorem 3.] Points within the cirele of inversion other
than the centre will invert into points without, points withowt
will always invert into points within.

Another transformation similar to inversion is found by
taking S and S’ collinear with O so that

(O8) x (O8") = —1

This is seen immediately to be the product of an inversion
and a reflection in the centre, though algebraically it is an
inversion in a circle of imaginary radius. We shall make
but little use of this transformation in the present chapter.
Returning to the direct study of inversion, let the reader
show that if P be without the circle, P’ is the intersection
of OP with the chord of contact of tangents from P to this
circle, i.e. with the polar of P. We notice further that if OP
meet the circle in H and K, H lying between O and £,

(HP) _ <0H>—<0P> (KP <0K> <0P>
@7 (Oh)-0F) (KP) (0R)—0P)

* This transformation is usually credited to Pliicker. See his Analytisch-
geomelrische Aphorismen, Crelle, vol. xi, 1836, It was rediscovered a decade
later by Sir William Thompson, Principe des images électriques, Liouville,
vol. x, 1845, The most recent view, however, seems to beé that the method
was found some time previous by Steiner, Cf. Biitzberger, Ueber bizentrische
Polygone, Leipzig, 1913, pp. 50-5. The inversion of a small region can be
effected mechanically by link works invented by Peaucellier, Hart, Kempe,
and others.
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(HP) (EP) _ —rt++*~[OF) OF)+(OP)(OR)] _ _,
(HP)(KP) —1*+12—[(OP) (0H)+(0P) (OK)]

We thus reach a theorem slightly beyond the limits of elemen-
tary geometry strictly construed.

Theorem 4.] Mutually inverse points are harmonically
separated by the intersections of their line with the circle of
nversion.

If P’ and @’ be the inverses of £ and @ respectively, we have

0P (0B = (00) (00, (0B) _ (0F)
A OPQ and A OQ'P’ are similar.
PQ) = PO~ (P T . ®)
0Q) (OP) (0Q)

If PQRS be four points whose inverse are P'Q'R’S’,
PONRS PO (P&
(L) E'S’) _ (PQ) (RS)
(SP)(@R) (SP)(QR)

We shall make great use of this equation subsequently. For

the moment we merely draw therefrom an extension of the
previous proposition.

#)

Theorem 5.) The cross ratio of four points collinear with
the centre of inversion, but distinct therefrom, is equal to that
of their imverses.

We now assume specifically that P and @ are not collinear
with 0. We see from (2) that A OPQ and A OQ'F are similar,

hence X 0PQ =X 0QP.
If R be a fourth point in general position,
X OPR =X OR'P.
We substitute for each angle on the right its equivalent in

terms of the other two angles of the triangle whose vertices
are thereby designated, then subtract ;

L RPQ+ 4§ RPQ=§ ROQ = § ROQ.
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Theorem 6.] The algebraic sum of the corresponding angles
of two mutually inverse triangles is equal to the angle sub-
tended at the centre of inversion by the sides opposite these
angles.

Theorem 7.] If two opposite angles of a quadrilateral be
measured in such a way that the two initial sides and the two
terminal sides meet respectively in vertices of the quadrilateral,
their algebraic difference is numerically equal to the corre-
sponding difference for the inverse quadrilateral.

Of course, when we say that two triangles or quadrilaterals
are mutually inverse, we merely mean that this is true of their
corresponding vertices. We next let @ approach P as a limit,
so that PQ and P’Q’ approach tangency in two mutually
inverse curves.

Theorem 8.] The angle made at any point by a curve with
a lime from there to the centre of inversion is nwmerically the
supplement of the corresponding angle for the imverse curve
at the inverse point.

Theorem 9.] An angle at which two curves intersect at any
point other than the centre of inversion is the negative of the
corresponding angle made by the inverse curves at the imverse
point.

Theorem 10.] Curves which intersect at right angles not at
the centre of imwversion will invert into cwrves intersecting
at right angles.

Any curve which is its own inverse is said to be anallag-
matic*

Theorem 11.] If the circle of inversion intersect an anallag-
matic curve at any point which is a simple point for the
latter, the two will intersect at right angles.

Theorem 12.] A line through the centre of inversion is
anallagmatic.

Theorem 13.] A circle through a pair of inverse points is
anallagmatic.

* This curious word seems to be due to Moutard.
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We see, in fact, that if we consider any pair of points on
such a circle collinear with the centre of inversion, the
product of their distances therefrom is the square of the
radius of inversion. Let the reader show that

Theorem 14.] A circle which cuts the circle of imversion
at right angles is anallagmatic.

Theorem 15.] If two dntersecting cirvcles cut a third at
right angles, their intersections are inverse in the third circle.

This last theorem leads to another way of looking at
anallagmatic curves. If we have a system of circles moving
continuously yet always orthogonal to a fixed circle, we see
that the intersections of infinitely near circles are inverse in
the fixed circle, i. e. the envelope is anallagmatic. Conversely,
if an anallagmatic curve be given, a circle through two
inverse points and tangent at one, will be tangent at the
other ; the curve is the envelope of circles orthogonal to the
circle of inversion. The locus of the centres of the moving
circles shall be called the deferrent.

If a circle orthogonal to the circle of inversion be anallag-
matic, what is the inverse of a circle in general position ?

Fia. 1.
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Let € be the centre of such a circle, p the length of the
radius ; PQ shall be two points of the circle collinear with O
the centre of inversion, P’ and @’ their inverses. We assume
for the moment that our given circle does not pass through
the centre of inversion. A line through P’ | QC shall meet

0C in ¢". Now (0P)x (0Q) and (OP)x (0F’) have constant
values, hence

@_—_{):_consh = @: —-O_——_J;—Z .
(0Q) o0y (CQ)
The locus of P’ is thus a circle of centre €’ and radius
. (00)
P=p—-
(00)

Theorem 16.] The inverse of a circle not passing through
the centre of inversion is a circle of the same sort.

The reasoning above is inapplicable when the given circle
passes through the centre of inversion. In this case @
coincides with O. Let R be diametrically opposed to this
point, R’ its inverse. Then since A OPR is similar to A OR'F

LOR’P’:%-

Theorem 17.] The inverse of a circle passing through the
centre of inversion is a line not passing through that centre.

Theorem 18.] The inverse of a line not passing through
the centre of inversion is a circle through that point.

Theorem 19.] Parallel lines invert into circles tangent to
one another at the centre of inversion.

Theorem 20.] If two figures be mutually inverse with
regard to a circle, their inverses in a second circle whose
centre does mot lie on the first are mutually inverse in the
inwerse of the first circle with regard to the second. '

Suppose, in fact, that P and P’ are inverse in a circle C;.
Every circle through them will, by 13], cut C, at right angles.
The inverses of these circles with regard to a second circle C,
will cut the inverse of C; at right angles, and the two points
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common to them will be mutually inverse in that inverse
of C,.

Theorem 21.] If a circle be inverted into a straight line,
@ pair of points inverse with regard to the circle will become
« point and its reflection in the line.

Theorem 22.] If a curve be anallagmatic with regard to
two circles, it is anallagmatic with regard to every circle that
can be obtained by successively inverting one circle of inver-
sion in another.®

We saw in the reasoning which led up to 16] that mutually
inverse circles are similar figures radially situated. If two
figures be similar we may clearly adjoin to the one and the
other as many points as we please, getting more comprehensive
figures which are still similar with the same ratio of similitude,
and include the originals as parts of themselves. If there be
a point which corresponds to itself in two such similar figures,
it is called a double or self-corresponding point. When the
figures are radially situated, corresponding points are collinear
with the double point, and their distances therefrom bear to
one another a ratio fixed in magnitude and sign. The double
point is called the centre of similitude, and the fixed ratio the
ratio of similitude.

Theorem 23.] If two circles be mutually inverse, the centre
of inversion is a centre of similitude for them while the ratio
of similitude is numerically that of their radii. If this centre
lie outside of one circle it is outside of the other, and is the
point of intersection of their direct common tangents.

Suppose, conversely, that we have two circles which are
neither concentric nor of equal radius. Let us divide the
segment bounded by their centres in two parts proportional
to the radii, and find the harmonic conjugate of this point
with regard to those centres (loosely called dividing the

* Cf. Mobius, Collected Works, vol. ii, p. 610 ; also Finsterbusch, Die Geomelrie
ebener Kreissysteme, Werdau, 1893, p, 68. For the conditions that an algebraic
curve should be anallagmatic see Picquet, Sur les courbes et surfaces anallagma-
tiques, Comptes rendus de D’Association francaise pour I’avancement des
sciences, Session of 1878 at Paris.
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segment externally in that ratio). These points are the in-
ternal and external centres of similitude respectively, and are
the points of intersection of such common tangents as the
circles may have. Let O be one of these points and let a line
through it meet one circle in PQ and the other in Q'P’. Then

—_— -
©OP) _ 09 _
P —_— T =
(0¢) (0F)
— —> — —>
(OP)x (OF) = (0Q)x (0Q') = L.
We easily find that £ will be positive in the case of one
point when the circles do not intersect, and in the case of both

when they do. They are thus certainly mutually inverse in
one circle of radius V/%.

9

R

Theorem 24.] Any two circles of different centres and
wnequal radii are mutually inverse in at least one circle
whose centre is one of their centres of similitude.

The cirele or circles in which the given circles are mutually
inverse are called their circles of antisimilitude; that on the
segment bounded by the centres of similitude as diameter is
their circle of stmilitude.

Theorem 25.] If two circles of unequal radius lie outside
of one another, their common tangents intersect at their centres
of similitude and at fowr points of the cirvcle whose diameter
is the segment bounded by their centres.

Let us define as a tangential segment of a point with regard
to a circle a segment bounded by that point and the point of
contact of a tangent to the circle which passes through the
point. The common tangential segments of two circles will
be segments lying on common tangents and bounded by the
points of contact. Let us find the locus of a point whose
tangential segments to two circles are proportional to their
radii. The circles being c,c,, their centres C,C,, while the
radii have the lengths #,7,, if P be a point of the locus while ¢;
is the tangential segment from there to ¢;

g2t _ti+n? (PO (PC) _m
G RE T L PO By
We have, thus, by a familiar theorem of elementary geometry,
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Theorem 26.] The locus of points whence the tangential
segments to two mon-concentric circles of unequal radius are
proportional to the radiv is so much of the circle of simili-
tude as lies without the circles.

Theorem 27.] The distances from a point of the circle of
similitude of two given circles to their centres are proportional
to the respective radii.

Theorem 28.] The circle of similitude of two given circles
includes all points whereat equal angles are determined by
the pairs of tangents to the two.

We find at once from Menelaus’s theorem

Theorem 29.] If three circles be given, no two concentric
nor of equal radius, & line connecting o centre of similitude
of one pair with a centre of similitude of a second pair will
pass through a centre of similitude of the third pair.

If two circles touch one another, their point of contact is
a centre of similitude.

Theorem 30.] If a circle towch two others of wnequal
radius, the line connecting the points of contact will pass
through a centre of similitude of the two.

Theorem 31.] The centres of similitude determined by three
circles whereof no two are concentric or of equal radius lie by
threes on the sides of a complete quadrilateral, whose diagonal
limes conmect the pairs of centres of the circles.*

We find at once from the theorem of Ceva

Theorem 32.] If three circles be given, no two being con-
centric or of equal radius, the lines connecting each centre
with the centres of similitude of the other two are the side-
limes of a complete quadrangle whose diagonal points are the
centres of the given circles.

Let us return to the point of view where we regarded the
two circles as inverse in a circle of antisimilitude. If their
radii be p and p’, the radius of inversion

L __ (OP) ’ (OQ,)P s (5)

7=

¢ 40y L.~ OP) " L{oP){(0Q)°

* Chasles, Traité de géométrie supérieure, Paris, 1852, p. 539.
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If we define as the power of a point with regard to a circle
the product of its oriented distances to any two points of the
circle collinear with it (the square of the tangential segment
when the point lies without) we have

Theorem 33.] The radius of the inverse of a given circle
not through the centre of inversion is equal to the radius of
the given circle multiplied by the square of the length of the
radius of inversion, and divided by the absolute value of
the power of the centre of inversion with regard to the given
circle.

Let us next follow the fate of the centre of the given circle.
This point has the property that all straight lines through it cut
the given circle at right angles. These lines invert into circles
through the centre of inversion, whence by 15]

Theorem 34.] The inverse of the centre of a circle which
does mot pass through the centre of inversion is the inverse
of that centre in the inverse of the given circle. The inverse
of the centre of « circle through the centre of inversion s the
reflection of that centre in the line which is the inverse of the
given circle.

If two circles be given which do not intersect, either they
lie outside of one another, or the one includes the other. In
the first case we may easily find a point of the segment
bounded by their centres which has the same positive power
with regard to the two. This will be the centre of a circle
cutting the two at right angles, and intersecting the line of
centres in two points inverse in both circles. In the second
case, if a point move off indefinitely on the line of centres
from that intersection with the outer circle which is nearer to
the centre of the inner one, its inverse in the outer circle will
trace a segment which includes in itself the segment which is
the locus of its inverse in the inner circle. In each case we
can find a pair of points which are inverse in both circles. If
we take either as centre of inversion we find :

Theorem 35.] Any two circles which do not intersect may
be inverted into concentric circles.
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§ 8. Mutually Tangent Circles.

The last theorem enables us to solve a problem very dear to
Jakob Steiner.* Suppose that we have given two non-inter-
secting circles. What relations must exist between their radii
and the distances of their centres in order that there should be
a finite succession of circles all tangent to the given two,
and each tangent to its two neighbours in the ring? Let us
imagine that there are m circles in the ring, and that they
make m complete circuits. These numbers will be invariant
when we invert the given circles into two concentric circles of
radii », and », respectively. If the common radius of circles
of the new ring be 7,

2mm n
tan 1 = —
z( n ) «/(11+7'1)"——r2,

T4 = § (1479,

2
tanzm —_ I._...
a0 5Pty
Next, let any line through the common centre of the two
meet them in P/Q,” and P, Q,".

Fre. 2.

* See his Collected Works, vol. i, pp. 43 and 185. The resulting
systems of circles are described by English writers as °poristic’. See
H. M. Taylor, ¢ Porism on the ring of circles touching two circles’, Messenger
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To be definite, we assume that the former pair includes the
latter, and that PP, are on one side of the centre while
Q,’Q,” are on the other side. Then

(. =Tt (P/P,)X(Qz Q)

" (PIQY) % (PQy)
We saw, however, in equation (4) that the right-hand side
of this is invariant for inversion, the centre of inversion being

on the line of centres of the given circles. If, thus, this line
meet the original circles in P,Q, and P,Q,

mw _ (PP x (@) :
(PR x (P,Q)

This equation has a simple geometric meaning. Reverting
to the concentric case, let us construct circles on (P,’Q,’) and
(P, Q) as diameters. The distance from the common centre
to their centres will be 2 (r,—,), their common radius
3 (r;+7). To find the angles at which they intersect, we
have

tan?

~(ry—1r)?+ 3 (ry+m)° i ; (T2+r1)2—4"'2’

cos 6 = =
5 (ry+m)? 3 (ry+m)?
2
tan?if = — = tan? —~. (6)
Bl n

We thus get, recalling 9],

Theorem 36.] Let two mon-intersecting circles be given,
and let the line of centres meet the first in P,Q, and the second
in P,Q,; the points P,Q, separating the points P,Q,. A
necessary and sufficient condition that it should be possible
to construct a finite succession of circles tangent to the given
ones and successively tangent to one another is that the circles
constructed on the segments (P,Q,) and (P,Q,) as diameters

of Mathematics, vol, vii, 1878, and his brother W. W. Taylor, ‘On the Ring
of Circles touching two Circles’, ibid. See also Lachlan, ‘On Poristic
Systems of Circles’, ibid., vol. xvi, 1887. Our present treatment follows
Vahlen, ¢ Ueber Steinersche Kugelketten’, Zeitschrift fiir Mathematik und Physik,
vol. xli, 1896. For an interesting generalization see Emch, ¢ An Application
of Elliptic Functions’, Annals of Mathematics, Series 2, vol. ii, 1901.
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should intersect at an angle commensurable with =, The
denominator of the measure of such an angle when expressed
in terms of 27 and reduced to its lowest terms will give the
number of circles in the succession and the numerator the
number of complete circuits formed by them. If one such
circuit ewist, there will be an infinite number of them, one
circle being perfectly arbitrary except for the types of contact
with the given cirvcles. The points of contact of successive
circles in all of these circuits lie on one circle,

We may pursue this subject further. If we take as a
circle of inversion any circle orthogonal to the two given
ones, they are, by 24], anallagmatic therein, the Iine of
centres becomes a circle orthogonal to the two given circles,
the circles on (P,Q,) and (P,Q,) as diameters, become circles
tangent to the original circles, and orthogonal to a circle
orthogonal to them. We may thus state our condition in
slightly more general terms by means of the angle of these
last two circles. Suppose, then, that we have a ring of
circles, and that two circles of the ring touch the given circles
at four points of one same circle orthogonal to the original
ones. By two successive inversions we may go back to the
concentric case where, in our previous notations two circles
of the ring have (P, P,) and (Q,Q,) as diameters. The con-
centric circles will be two out of a ring tangent to the circles
on (P, P;) and (Q,Q,) and to one another in turn, and the
circles on (P,Q,) and (P,Q,) as diameters play the same role
with regard to both rings. If, then, m n, be the numbers
for the new ring, we have

m m m m

27—!=27— orelse 27—t =7—27 — .
ny 7 Ny n

The decision hetween these two possibilities requires delicate

bandling* Let us first remark that, % being given, these two

. . . m . i
. equations give different values for%-1 except in the case where
1

* Vahlen, loe, cit., overlooks the necessity for making both assumptions.
1702 (o]
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9=2. As 6 changes continuously the correct value for e

1y
cannot leap from being a root of one equation to being the

root of the other, except, perhaps, when 6 passes through
the value 2_2‘—1 First take r, = 0,
=1 =025 L 0E=Rar iy s — B == 0l
since the circles on (P, I%,) and (Q,Q,) can be simultaneously
inverted into parallel lines. Here, surely,
m oy -1

= -

o ALY 2
and this will hold for 6 > 7—; - On the other hand, if we take

r =17y,
m =1, m=®,

To find %—Ll notice that if two extremely small circles lie
1
without one another and be inverted into concentrie cireles,

the one becomes tiny, and m; = 1, n, = 2.

Theorem 37.] Given two mon-interseting circles which
possess the property that a ring of n circles may be constructed
all tangent to them and successively tangent to one another
making m complete circuits, and if two cireles of the ring
touch the original ones at points on one circle orthogonal to
these two, then the original circles arve members of « ring of n,
circles making m; complete cirewits, all tangent to the two
of the first ring, where

m o my 1

4 (7)

n ooy 2

This theorem so far astonished Steiner that he called it one
of the most remarkable in all geometry.*

We know that two mutually tangent circles can be inverted
into parallel lines. Let us do so for two internally tangent
circles ¢, ¢. The circles tangent to these two lines will all
have the same radius ;'; let ¢,/ be that circle of the system
whose centre lies on the perpendicular on the lines from the

* Coliected Works, vol. i, p. 136.
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centre of inversion, the circles of a system of successively
tangent circles, which touch the parallel lines shall be
¢ ¢ ¢y ...c;/, their eentres CyC/...C, . Inverting back
we get our original circles with the system of circles ¢, ¢; ... ¢;,
tangent to them and to one another in succession. The centre

F1c. 3.

of ¢, shall be (,, the perpendicular thence to the line of
centres of the original circles shall meet the latter in D,.
Since 0, and €, are collinear with O the centre of inversion
C,D,) 20y
(OOn) a (()C’ﬂ,)
But since O is a centre of similitude for €, and C,’
7% (Oon)’
S (AN
Theorem 38.] Given two circles ¢y and ¢ externally tangent
to ome another and « third circle ¢ having us diameter the
sum of their collinear diameters. Then if « series of circles
CoCy...cp be all drawn tangent to @ and ¢, and successively to
one another, the distance from the centre of c, to the line of
centres of ¢, ¢’ is n times the diameter of ¢,,.
This theorem is sometimes called the ¢ Ancient Theorem’
of Pappus. Steiner deduces a number of rather dull corrol-
laries therefrom.

C,D, = 2np,. (8)

& 19
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The figure bounded by the halves of ¢, ¢, ¢, which lie on one
side of the line of centres was first studied by Archimedes
and named by him ‘The Shoemaker’s knife’* TLet A be the
point of contact of ¢ and ¢, B that of ¢ and ¢,, while D is
the point of contact of ¢ and ¢;. A perpendicular to AB
at D shall meet ¢ again in E. The following theorems are
then easily proved.t

Theorem 39.] The' area of the knife is equal to that of the
circle on (DE) as diameter.

Theorem 40.] The perimeter of the knife vs equal to the
circwmference of c.

Theorem 41.] The point A has the same power with regard
to all circles which touch ¢ internally and DE on the same
side as ¢;.

Theorem 42.] The two circles which touch c imternally
and DE on opposite sides while one is externally tangent to
¢, and the other to ¢ are equal.

Theorem 43.] The common tangent to the first of these
and to ¢, passes through A.

Theorem 44.] Thecircle on (DE) as diameter passes through
the points where ¢, and ¢ touch a common tangent, while its
centre is the intersection of this tangent with DE.

We next pass to an invariant of two cireles. Let them be
¢,¢, with centres C,C, and radii p,p,. The centre and radius
of inversion being O and 7,

0Cy) = (0C)EL (0Cy) = (002,
P Po
(C/C)* = 00,2+ 00,2~ 2(0C,) (0C) cos {0, 0C,

= (0037 400 F P[00y 1+ (062) — (C,C,)7];
= (0012, + 001" 7 B2 100+ (06 - 0,07);

* Cf, Heath, The Works of Archimedes, Cambridge, 1897, pp. 304 ff.

+ For an account of the authorship of the theorems concerning the knife,
see Simon, Ueber die Entwickelung der Elementar-Geomelrie im X 1X{en Jahrhundert,
Leipzig, 1906, pp. 87, 88.
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from these and formula (5) we find
(€Y 0 —(p,—p/)? LN (CiC9)? —(p—p)”,

¢l

4p,)py == 4py 1
¢/ 02,)2 = (le +0)* = = (CiC)*—(p, + p)* .
4p,py N 4pyp;

The numerators of the left-hand sides of these equations are
the squares of the direct and transverse common tangential
segments, when these exist. Suppose that we have four
mutually external circles ¢, ¢,, ¢;, ¢, tangent to a fifth.
Either all are on one side thereof, or two on one and two on
the other, or three on one and one on the other. We may
invert them into four mutually external cireles ¢/, ¢;, ¢, ¢/
tangent to a line. Let them touch it at points P, P,
P/, P/, which will be connected by the identity

(PYP)) (P PY)+ (P By) (P By)) + (P P[) (P Py) = 0.
If t,, indicate a common tangential segment of ¢, and c,,
we may write this

the by bty 21 Ly’ = 0.
Here ¢;;” must indicate a direct common tangential segment
if ¢/ and ¢; touch the line on the same side, otherwise a trans-
verse one. Dividing through by the square root of the product
of the diameters we get a form invariant for inversion, hence

dropping the primes and multiplying the diameters out again,
we get Casey’s condition for four circles tangent to a fifth.*

Theorem 45.] Four mutually ewternal circles tangent to
a fifth are connected by a relation

bigtas  tiglyy Fty4tay = 0. 9)

Here all the t;;'s denote common direct tangential segments, or

those connecting two pairs with no common member denote

direct tangents and the other four transverse, or those which

lack one subscript denote direct, and those which include it
transverse tangential segments.*

* See his greatly overrated Sequel fo Euclid, London, 1881, p. 101. The

ingenious writer makes two characteristic mistakes. He assumes that in
proving the theorem he has also proved the converse. Secondly, he omits
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Theorem 46.] If « conver quadrilateral be inscribed in
« cirele, the swm of the products of the opposite sides is equal to
the product of the diagonals.

This is Ptolemy’s famous theorem. Let us proceed to the
converse of 45]. We assume that we have four mutually
external eircles connected by that relation. We shall call
them ¢, ¢y, ¢;, ¢, and suppose that p, is the smallest radius.
We shrink the radius of ¢; by p, and shrink by that same
amount the radius of each of the given circles whose common
tangential segment with ¢; is direct, but increase the radius
by p, if the tangential segment be transverse. We thus get
four cireles ¢,’,¢;, ¢,/ ¢/, whereof ¢, is a point-circle €’ con-
nected by

t12’ t34, i t13, t42’ * tul t23l = 0.

These circles are still mutually external. Let us next invert
with 0" as a centre, we get three new circles ¢,”, ¢,”, ¢,”,

; /ff‘)’ﬁ 7
t”:t,\/—us t”:?‘ —2’
“ N P3/P4/ i Pll

tay 1+t = 0.

Let us show that these three cireles, which are also external
to one another, will touch a line. Once more shrink the
smallest circle until it becomes a point shrinking or increasing
the radii of the other two as before. We have a point so
related to two mutually external circles that the sum of its
tangential segments with them is equal to a common tangential
segment of theirs. If the point lie on a common tangent to
the two cireles such a condition will be fulfilled, and if it
move off on a circle concentric with the one, the condition will
be unfulfilled until it fall again on the like common tangent.
Hence the point lies on a common tangent to the two circles;
hence ¢,”, ¢, ¢,” touch a line, ¢, ¢/, ¢, touch a circle
through €/, and ¢, ¢,, ¢;, ¢, touch one circle.

to require his circles to be mutually external. But in that case it is easy
to find four circles tangent to a fifth whereof one surrounds the three others
and has no common tangential segments with them, in the real domain.
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Theorem 47.] If there exist among the common tangential
segments of four mulually external circles an equation of the
type (9) with the same requirements as to direct and transverse
tangents «s there obtuined, then these four circles ure tangent
to a fifth.*

Theorem 48.] If the sum of the products of the opposite
sides of a convex quadrilateral be equul to the product of the
diagonals, the vertices are concyclic.

As a second application of our formula (9) let us prove the
justly celebrated theorem of Feuerbach.f

We start with a triangle with the standard notation ex-
plained on p. 21. Construct the three altitude lines, and let
A;H meet the circumscribed circle again at B;. We have
then

§ B;id; Ay =L B;didy = g —L A =4 B;jd;4,.

This shows that Ha; is mid-way between H and B;. If we
take H as a centre of similitude and a ratio %, the given
triangle becomes that whose vertices are half-way from I to
the given vertices, and the circumseribed circle is transformed
into the circle through these three half-way points, and also
through the feet of the altitudes. These six points are thus
concyelie. Again, if we take the A HA; Ay the orthocentre
is 4;; the feet of the altitudes are the same points as before,
the points M;, M; are half-way from the new orthocentre to
two of the vertices. We thus get the first part of our theorem,
namely, the feet of the altitudes of a triangle, the middle
points of the sides, and the points half-way from the ortho-
centre to the vertices lie on one circle. We next construct
the escribed cirele ¢; tangent to (4;4;) and to the prolonga-

* This proof is substantially taken from Lachlan, Treatise on Pure Geomelry,
London, 1893, pp. 245 ff. See also Allardice, ‘ Note on Four Circles Tangent
to a Fifth’, Proceedings Edinburgh Mathematical Society, vol. xix, 1901, Neither
writer takes the pains to require the circles to be mutually exterpal. It
might thus happen that ¢, surrounded ¢, and the proof would break down.

F First published in 1822. The number of proofs in existence is almost
transfinite, a recent writer adding nine. Swayama, ‘ Nouvelles démonstra-
tions d’un théoréeme relatif au cercle de neuf points’, L’'Enseignement
mathématique, vol, xiii, 1911.



40 THE CIRCLE IN CH.

tions of (4;4;) and (4;4,) beyond 4; and 4, respectively.
Let 2 be the tangential segment from A4; to this circle. The
equality of the two tangential segments to this cirele from A4;
gives

ak+w = aj+a,-—m,

T = 8—dy, ai—CU:S—ij.

Let us take this as our circle ¢,, while the middle points of the
sides shall be the point-circles ¢, ¢,, ¢,

— 35 —T =il
by =% tg=13%q;, tg=3a,

= 23 (0 —ap), Gy=d(ai+ay), t= 5 (e;+ay),
tutk4_tlktj4¢t’l4t]7u = 0
A similar relation will be found connecting the new circle

with the inseribed circle; we thus get the theorem in its
entirety. ‘

Theorem 49.] The middle points of the sides of a triangle,
the feet of the altitudes and the points half-way from the
orthocentre to the vertices lie on a circle which is tangent to
the inscribed and the three escribed circles.

This circle is, for obvious reasons, called the mine-point

A v

A,

Fic 4.
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circle. Let us give another proof that it touches the inseribed
and escribed circles.*

Let the circles ¢, and ¢, be escribed to the given triangle
and touch the line 4,4, in the points P, and P, respectively.
Let S be the point of concurrence of c,cg (the line of centres),
4,4, and the fourth common tangent to ¢, and ¢;. A4, and S
are thus the centres of similitude of ¢, and ¢;. Moreover, if we
recall the original definition of centres of similitude, we see
that 4, and S are harmonically separated by C, and C,, or
Ha, and S are harmonically separated by P, and P,. The
tangent at M, to the nine-point circle makes with M, M, and
so with 4, 4,, an angle equal 4.4, and so is parallel to the
fourth common tangent. The nine-point circle is thus the
inverse of the fourth common tangent in a circle whose centre
is M, and radius is equal to (M P,) = (M, P;). The nine-
point circle must thus touch the escribed circles ¢,, ¢,, which
are anallagmatic in this last circle. By similar means we
show that it touches the inscribed cirele also.

If a triangle have an obtuse angle, the orthocentre lies
without it. The feet of the altitudes lie in pairs on the three
circles on the sides of the given triangle as diameters. The
orthocentre has the same positive power with regard to these
three, so that the product of the distances from the ortho-
centre to each vertex and the foot of the corresponding
altitude is a constant positive number. '

Theorem 50.] The circumscribed and nine-point circles
of an obtuse-angled triangle are mutwally inverse in a circle
whose centre is the orthocentre.

It is to be noted that this is the only circle with regard
to which the given triangle is self-conjugate in the sense of
modern geometry.

Feuerbach’s theorem may be extended in a number of
ways. The second part states that the inseribed and eseribed
circles of a triangle touch another circle. By inversion this

* Fontené, ¢ Sur le Théoréme de Feuerbach’, Nouvelles Annales de Mathé-
matiques, Series 4, vol. viii, 1907. This proof possesses the advantage over
the other of showing where the points of contact are.
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will hold if we replace the triangle by a curvilinear one
formed by concurrent circles. Let us try to remove the
restriction that the three original cireles should be concurrent.
We start with three inter-
secting circles ¢, ¢, ¢;, the
intersections of c;c; being
points A4;4/. Eight circular
triangles are thus formed
whose angles are connected
in simple ways. It is in-
tuitively evident that a
circle may be inscribed in
each of these triangles. In
particular let us take the
triangle A, A4, A, which we
assume to be convex, and
thethree triangles 4, 4 » A,
which we shall call asso-
ciated with it. The four
inseribed cireles shall be ¢, ¢/, ¢, ¢, If we write ¢;/
to indicate a direct common tangential segment and ﬁ-j’ a
transverse one, we have three equations of the type

t_o;'l jh,i toj/‘gi, = toklzi-j, =0

Let us determine the signs more specifically. In the arcual
triangle 4,, 4,, 4, two of our circles ¢,, ¢; touch the circle of
each side between the vertices, but with opposite contacts.
Suppose, to fix our ideas, that in making the circuit of the
triangle we meet the vertices and points of contact with the
tangent cireles in the following order

Al o darraf waole s
We have the following orders on our original three circles :
on ¢, e R L
GIFI) (B o o e

’ . 7
on ¢y, el oy A ey
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These will yield the following equations :
toy 75:1/= t;’t%’ + g5 t;’,
tos b’ = b Lo + Yo tar's '
02/t S tOl,t23 +t03,t12,'
Henee o 5 ol
tog the' = oy oy + gty
We thus get Hart's theorem.*

Theorem 51.] The inscribed circle of a convex circular
triangle and those of three associated triangles are touched by
a circle which has contact of one sort with the first, and of the
opposite sort with the other three.

This new ecircle is ealled a Hart circle of the first three.
It may coineide with one of the four inscribed eircles. It will
exist even when the given triangle is not convex; our proof is
not, however, necessarily valid in that case, for the four may
not lie external to one another. These delicate considerations
are usually ignored in the geometrical treatment of this
subject. ‘

Let the Hart cirele be called ¢,. The following will give
the system of contacts.

& g b
¢, touches ¢, ¢y, 5, ¢, internally.

( - - >t oy

¢,/ , €y ¢y internally ¢, ¢, externally.
{

Co » €3, €y » Cgy Cy 3
’ 0

Cy ” 1 Cg ) C3s Cy )

The essential thing to notice is that ¢; has an opposite sort of
coutact with ¢; from what it has with ¢/, ¢/, ¢/,

Theorem 52.] If four circles be given whereof one is the
Hart circle for o convex circulur triangle formed by the
other three, then each of the four is « Hart circle for the
remainder.t

* ¢On the extension of Terquem’s Theorem ’, Quarterly Journal of Mathematics,
vol. iv, 1860. For a much simpler proof see p. 165, foot-note.

+ For an elaborate treatment of this and similar theorems see an unusually
badly written article by Orr, ‘The Contact Relations of Certain Systems
of Cireles’, Transactions Cambridge Philosophical Society, vol, xvi, 1898.
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§&. Circles related to a Triangle,

Suppose that two circles are so related that a triangle can
be inscribed to the one and circumseribed to the other. Their
radii shall be » and p respectively, while the distance of their
centres O and 0" is d. Let OO’ meet the circumscribed circle

Fre. 6.

in BC. Let 4; 4y, touch the inscribed cirele in 4;/, while 0’4,
meets A;4;" in 4;” the middle point of (4, 4,;/) and the
inverse of A; in the inscribed cirele.

Theorem 53.] If two circles be so related that a triangle
inseribed in the one is circwmscribed to the other, then the
SJormer is the inverse in the latter of the nine-point circle of
the triangle whose vertices are the points of contact.*

The nine-point circle is circumscribed to a similar triangle
of one-half the size of the original, so that its radius is one-half
that of the circumscribed circle. If the inverses of B and ¢
be B” and C” respectively,

2 2 2
‘B = _:l_’ = KL e Oy — Mz
© (0'B) r—d OIET r+d

THEIIPN i yias s P2 P2 2
S )_p_—fr+d+ r—d

* The treatment of this and the four following theorems is taken direct
from Casey, loc. cit., Book VI.
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Theorem 54.] The radii of the circles circwmscribed and
inseribed to a triangle are connected by the equation

1 1 1
=34 = M 10
r+d " r=d _ p’ (10)

where d is the distance of their centres.

This necessary condition is also sufficient if » be greater
than p, for the inverse of the nine-point circle of the triangle
whose vertices are the points of contact with the smaller circle
of a triangle circumscribed thereto and having two vertices in
the larger circle will be that larger circle which thus goes
through the third vertex. Let us pursue our inquiry further
and find a necessary and sufficient condition that it should
be possible to inscribe a quadrilateral to one circle which is
circumseribed to the other. We need two preliminary
theorems.

Theorem 55.] If a wvariable chord of a circle subtend a
right angle at a fixed point not on the civcle, the locus of the
intersection of the tangents at its extremities is a circle.

This locus is, in faet, the inverse of that of the middle
points of the chord. The sum of the squares of the distances
of this middle point from the fixed point and from the centre
of the circle is easily seen to be constant, so that it traces
a circle about the point half way between the centre of the
given circle and the given point.

Suppose, now, that we have indeed a quadrilateral inscribed
in one circle and circumsecribed to the other. The sum of
the opposite angles is =, double the angle formed by the lines
connecting opposite points of contact.

Theorem 56.] If a quadrilateral be inscribed in one circle
and circumscribed to another, the lines connecting the points
of contact of opposite sides are mutually perpendicular.

Theorem 57.] If two circles be so related that a triangle
or quadrilateral may be inscribed in the one and circum-
scribed to the other, then an infinite number of such triangles
or quadrilaterals may be found, one vertex being taken at
random on the other circle.
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Let us take this random vertex on the line of centres: call
it A,; the opposite vertex A, will clearly be on this line also.
The pairs of sides which do not meet in these vertices and are
not opposite to one another are mutually perpendicular, as
are the radii of the inner circle to their points of contact.
If thus A, and 4,” be the intersections of the line of centres

Fre. 7.

with the chords of contact to the inner circlo of the tangents
from A4, and 4,, i.e. the inverses of these points
(0A))+(045) = p’,
1 1 1
(r—d)? + (r+d) p2
As before, we have no difficulty in showing that thls necessary
condition is also sufficient, hence
Theorem 58.] If » and p be the radii of two circles, the
former surrounding the latter, while d is the distance of their
centres, a mnecessary and suffictent condition that it should
be possible to construct a quadrilateral inscribed in the one
and circumscribed to the other is that *
1 1 1
(5*7+7d) (r=d) p*’ i)
* There is a considerable body of literaturo connected with equations 10
and 11; see Simon, loc. cit., pp. 108, 109. They are originally due to Euler,
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Continuing with the inscribed quadrilateral of vertices
4., 4,, 4,, A,, let P be any point of the circumseribed cirele.

As

Az

Fra. 8.

If p;; indicate the distance from P to the side-line 4;4;,
we have

PiePsu _ Sin X PA A, sinf PA A,

PP SmL PA,A, smi PAA,~ "

Theorem 59.] The product of the distances from a point on
a circle to one pair of opposite side-lines of an inscribed
quadrilateral is equal to the product of the distances to the
other pair of side-lines, and to the product of the distances
to the diagonal lines.

If a polygon of an even number of sides be inseribed in
a circle, it may be divided into one or two less sides and
an insceribed quadrilateral. We thus get by mathematical
induction
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Theorem 60.] If a polygon of an even number of sides be
inscribed in a circle, the product of the distances of any point
of the circle to the even nmumbered side-lines is equul to the
product of its distances to the odd numbered ones.

Theorem 61.] If a polygon be inscribed in a circle and
tangents be drawn at all of its wvertices, the product of the
distances of any point of the circle from these tangents is
equal to the product of its distances from the side-lines.

The cirele circumsecribed to a triangle is, on the whole,

Ay

Az

Az
Fic. 9.

more interesting than the inseribed one. Let us take a
triangle in standard notation and consider the pedal triangle
Pa, Pa, Pa, of a point P. Let PA; meet the circumseribed
circle again in B;. To fix our ideas we shall take P outside
the triangle, near 4,,

Y. Pa,Pa,Pa, = % Pa, PPa,+) Pa,Pa, P+ ) Pa,Pa,P.

Since, however, the quadrilateral P Pa, Pa, 4, is cyclic, i.e.
inscriptible in a circle,

Y Pa,PasPa;=n—4 A, +45 A4, P+ A AP,
=7n—4 PA, B,
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A Pa, Po, Pa, = § (Pa,Pa,) (Pay,Pa,) sin - PA, B,
(PajPay)=(PA;)sin XA (PA;)sin { PA,B = (PB,)sinf 4,

t=3
APa, Pa,Pa; = 3(PA)(PB) | | sin 44,

f=1
=13

= +3[*= (0P [ [sin L 4,.
i=1
Theorem 62.] The locus of the points whose pedal triangles
with regard to a given triangle have a given area is a circle
concentric with the circumseribed circle.
Theorem 68.] The locus of the points so situated that the
feet of the perpendiculars from them to the side-lines of a triangle
are collinear is the circumseribed circle to the given triangle.
This line is called the pedal or Simson line of the givin
point.
—_—
Let the value of XA, A, P be «;, while
L 4,4, =4,
i=3
2
Conversely, if three lines be drawn through the three vertices
of a triangle in such a way that this cquation is satisfied,
these lices will be concurrent or parallel. If, then, starting
with P we take the reflection of A4,P in the bisector of
§-4;A;4;, we get three other lines concurrent in a point P’
called the isogonal conjugate of P with regard to the given
triangle, or else three parallel lines.

sin o
sin oy

= —1. (12)

Theorem 64.] Every point not on the circumscribed circle
to a triangle has a single definite isogonal conjugate. The
relation between the two is symmetrical.

Let us consider the pedal circles of two isogonally conjugate
points, i.e. the circumseribed circles of their pedal triangles.

e >
(AjPa.i') CO8 O(j (A’-Pak)
——— o T e L0
(4;Pay)) °®%  (4,Pa)
(AjPa@-) X (Aj-P(‘i’) = (Aj])ak) X ('AjPak/.)'

1702 D
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The points Pa;, Pa;, Pa;,, Pa;’ are thus concyclic. The six
points Pa;, Pa; could not lie by fours on three circles, for the
common chords of these circles would be the side-lines of

Fie. 10,

the triangle, instead of being concurrent. Hence the six
points are concyclic. We thus get a generalization of the
first part of Feuerbach’s theorem.

Theorem 6.5.] Two isogonally conjugate points have the
same pedal cirele.

Theorem 66.] If from the foot of each altitude of a triangle
a perpendicular be dropped on the remaining side-lines, the
six points so determined are concyclic.

A generalization of 65] is found as follows. It is not
necessary in the above proof to assume zf_PPa.jAkzg;
we merely need X PPa;4; = P'Pa/ A4, = 6.

The AA;PPua; is thus similar to A 4; P’ Pay/

(4;Pa) x (A;Pa}) = (4;Pa) x (4, Pdy).

Hence Pu,, Pa;, Pa;,, Pa;’ are concyclie, and, as before,
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Theorem 67.] If through a chosen point not on the circum-
seribed civcle of a triangle three lines be drawn each making
a fiwed angle with one side-line of the triangle so oriented as
to trace the whole circuit in one sense, and if through the
isogonally conjugate point three others be drawn making
the supplementary angles with their oriented side-lines, the
siz points where the lines of the two concurrent triads meet
the corresponding side-lines are concyclic.*

Let us see where the pedal circle of a point P meets the
nine-point circle. The intersection of the lines Pa;Pa; and
M; M, shall be 4;. We intend to show that the three lines
A;Pa,; are concurrent in a point L of the nine-point circle.

As

Fie. 11.

Construct the circle A;M;M,. It will contain O which,
parenthetically, is the orthocentre of the A M, M,M,, and
is diametrically opposite to A,. Let PO meet this ecirecle
again in L;. The points L;Pa;Pa; are the vertices of three
right triangles on (A4;F) as common hypotenuse, and so are
concyelic with 4;and P. This cirele will also contain Pa/,
the reflection of Pa; in M; M;,. Moreover, the points 4;L; Pa/

* Cf. Barrow, ‘A Theorem about Isogonal Conjugates’, dmerican Mathe-
matical Monthly, vol. xx, 1913, p. 25.

D2



52 THE CIRCLE IN CH.

are collinear. For L; lies on the circles 4, M; My, A;Pa, i Pag;
hence the feet of the perpendiculars thence to the four lines

A My, A My, MMy, Pa; Pay, are collinear by 63], so that Z;
lies on the clrcle A, MkPak

LA,L;Pay, = L A; M, Pa,.
The pentagon A;PPay, Pa; L; is inscriptible, as we have just
seen, and
=<4 PayL;Paj=—LPay,A;Pa/=LPajPPoy = L A; M, Pay,
the sides being perpendicular each to each.
—£ A;L;Pay = L Pay, L;Pa,.
Hence A;L;Pa; are collinear. Now let the reflection of L,

in M. Mk be L. Tt lies on the line A ;Pa; and also on the nine-
pomt circle. Also

—_— o g —_—— ——
(4;L) (A;Pay) = (4;L;) (A;Paf) = (4;Pay) (4; Pay,).
Hence L is the intersection of the nine-point and pedal circles.

If P move along a fixed line through O the points Z; L remain
fixed, whence *

Theorem 68.] If a point move along a fixzed line through
the centre of the circumscribed circle, its pedal circle will
contain a fized point of the nine-point circle.

The other intersection of the nine-point and pedal circles
will be similarly obtained from the isogonal conjugate of P,
whence

Theorem 69.] A necessary and sufficient condition that the
pedal circle of a point should touch the nine-point circle is
that the point and its isogonal conjugate should be collinear
with the centre of the circumscribed circle.

We deduce Feuerbach’s theorem, second part, at once from
this by noticing that the centres of the inscribed and escribed
circles are their own isogonal conjugate.

* This theorem and the next are due to Fontené, ¢ Extension du théoréme
de Feuerbach’, Nouvelles Annales de Mathématiques, Series 4, vol. v, 1905. The
proof here given is that of Bricard, under the initials R. B., and inserted in
the next volume of the same journal.
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We have already noticed that the orthocentre of a triangle
is one centre of similitude for the nine-point and eircumseribed
circles. The other centre of similitude will be the harmonic
conjugate of the orthocentre with regard to the centre of the
nine-point circle and the point 0. This must be the centre
of gravity, since the foot of the perpendicular from there on
A; Ay divides (4;A;) in the ratio 1:2.

Az

Fic. 12.

Theorem 70.] The orthocentre and the centre of gravity are
centres of svmilitude for the nine-point and circwmscribed
cireles, the ratios of similitude being 1:2 and —1: 2 respec-
tively.

There is another circle much less well known than the nine-
point eircle but possessing a number of analogous properties.
Let the inscribed circle touch (4;4;) in 4, while the eseribed
circle corresponding to this side touches it in 4;”.

(4;4{) =s—a;, (434])=(~qa), (4;4])=s-ay,
(A 4]") = s—a;.

The lines 4;A;” are thus concurrent in a point N.1 J shall

* Spieker, ‘Ein merkwiirdiger Kreis um den Schwerpunkt des Perimeters
des geradlinigen Dreiecks als Analogon des Kreises der neun Punkte’,
Grunert’s Archiv, vol. 1i, 1870,

+ This is Nagel’s point: Unfersuchungen iiber die wichtigsten zum Dreiecke
gehdrigen Kreise, 1836 (inaccessible to present author). It corresponds to
Gergonne’s point where meet lines from the vertices to the points of contact
of the opposite sides with the inscribed cirecle.
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be the centre of the inseribed cirele. Applying Menelaus’s
theorem to A;4; 4", and the line 4;.4,”.

Ay

Fig. 13.

(FAJ) (4:4,") (44 |
(V4y) (4;4;7) (474~ 7
(NVA) _ s—a;
(Ndy-7 Fag
(N4) _a;

(474) " s

We have further

2A i/ AN
(4iHa)) = ——, (JA4{)=—

’
8 §
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(4;Ha;) = ajeos L4,

(fjaiAi,/) = (S - ((k) et ((‘k cos 4_ AJ = ZS [%(li ad (S -~ ((j)],
1

(Ha, A{) _(4;Ha;)
(A/My) — (J4{)

(A 1112)—‘2 1 (S )9

The triangles A;Ha;4;” and JA;M; are thus similar.

TM) o« NA,
(A A 1/ ?ls‘ = %ClliAf//‘) 5 (Jﬂ[w) = %(lVAl)
[}

Hence (JN) meets (4;M;) in M, and is divided internally
thereby in the ratio 1:2. We see also by 70] that OJHN
are the vertices of a trapezoid whose diagonals meet in J/,

(JO) = L(HN).

Now let P be the middle point of (J¥). Join A, with J
and M; with P, and draw 4,1,

(JP) = L(JN), (JM)=3(IN).

It then appears that if we take the centre of gravity as centre
of similitude, a ratio of —1:2, the following are interchanged

ﬂfi"‘Ai, O~.H, J~N.

Theorem 71.] The centre of the imscribed circle is the
Nagel point of the triangle whose vertices arve the middle
points of the sides.

We have further

(JM) _(A;M) 2
’(M’P} MMy~ 1’

Hence AJ is parallel to M P, or M;P bisects X M;M;M,
so that P is the centre of the circle mscnbed in the tnangle
M, M,M,. Its radius is one-half that of the inscribed circle,
and N is a centre of similitude. ~We shall call this the
P circle, and exhibit its analogies to the nine-point circle
as follows:
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Nime-point circle.

Circumscribed to the tri-
angle whose vertices are the
middle points of the sides.

Radius one-half that of
circumseribed cirele.

Centre of gravity and
orthocentre are internal and
external centres of similitude
for nine-point and ecircum-
scribed eircles, ratios being
—1:2 and 1:2 respectively.

Nine-point circle passes
through points half-way from
orthocentre to the vertices of
the triangle.

Nine-point ecircle cuts the
sides of triangle where they
meet the corresponding alti-
tudes.

THE CIRCLE IN

CH.

P circle.

Inscribed in the triangle
whose vertices are the middle
points of the sides.

Radius one-half that of
inseribed circle.
« Centre of gravity and

Nagel point are internal and
external centres of similitude
for P circle and inscribed
circle, ratios being —1:2 and
1:2 respectively.

P circle touches the sides
of the triangle whose vertices
lie half-way between the
Nagel point and the vertices
of the given triangle.

P circle touches the sides
of the middle point triangle
where they meet the lines
from the Nagel point to the
corresponding vertices of the
given triangle.

To prove the last statement on the right let us suppose that
NV is the point of contact of (M;M;) with the P circle. Let

JA@'/ meet A{N in M’i’i

(A{ M) = 30, —(s—a;) = $(a—ay),
(A7 A{7) = (@ —a;) = 2(A{ ).

Hence, since JM; is parallel to 4;4;”, J is the middle point

of (47 M}),

(M) = (4J) = p= 2(PN}), PN/|JM.

N, is thus the middle point of (VM) and on M M,
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Nine-point circle.

Meets the lines through the
points mid-way from the
orthocentre to the given ver-
tices parallel to the corre-
sponding side-lines where they
meet the perpendicular bi-
sectors of the given sides.

P circle.

- Touches the sides of the
triangle whose vertices are
balf-way from the Nagel point
to the given vertices at the
points where each meets the
line from the centre of the in-
scribed eircle to the middle

point of the corresponding
sides of the original triangle.

The last statement is at once proved by noticing that JM;
bisects (NA;).

Theorem 72.] The nine-point circle passes through twelve
notable points, the P circle touches six notable lines at notable
points. Euch is obtained from a notable civcle by either of
two similarity trunsformations, the ratios being —1:2 and

- 1:2, while the centres of similitude are notable points whereof
the centre of gravity is one.

Returning to the Nagel point we saw that

(.ZV ,Q_S—ai (.N-Ai) _(i.
(NA-) - a; 2 (A.”A.’)_S

The altitude (A4;Ha;) has the lenguh —.

gonal projection of (4;N) thereon has the length 2p. Again,.
if A" A,”” A" be the vertices of the triangle whose side-lines
each pass through one of the original vertices parallel to the
opposite side-line, we see that XV is the centre of the inscribed
circle to A A, A4,”A4,". Since A;J passes through the
middle point of the arc A/71k of the circumseribed circle,
A{” N passes through the reflection of this point in 4;4;.
Call this 4;/; the points 4 " A;, HA; 4, are concyclic, smce
the 1eﬁectlon of Hin A;4, is on the circumseribed circle, and
HA;/” is a diameter sinco H and 4;” are at the same distance

from the diameter L to 4;4;, £ HA/N =4 HA/4/"=

Hence the ortho-
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Hence

Theorem 73.] The circle on the segment from the Nagel
point to the orthocentre as diameter pusses through those three
points on the altitudes whose distances from the corresponding
vertices ure equal to the diameter of the inscribed circle, and
the reflections in the side-lines of the given triangle of the
middle points of the corresponding ares of the circumscribed
circle.

This circle is known as Fuhrmann’s circle.*

Fre. 14.

Let us continue to study the relations of a triangle to the
circumseribed circle. Let 4;H meet the circle again in A4, so
that (HHa;) = (Ha;A;). Let B be any other point of the cir-
cumscribed circle; BA; shall meet 4;4; in R. Draw HR. The
Simson line Ba; Bay, of B shall meet BH in B’, while it meets
BA; in B”. Let RBa; meet HR in B”. We see from the
eyclic quadrilateral BBa;Ba, A,

£ Bay Ba;B = £ Ba;, A;B,
LB’"Ba;B=LA;A;B = / Ba;BB".
* Synthetische Beweise planimetrischer Sitze, Berlin, 1890. This and the
Brocard circle presently to be discussed are special cases of a more general

eircle discovered by Hagge, ‘ Der Fuhrmannsche Kreis und der Brocardsche
Kreis’, Zeitschrift fiir mathematischen Unlerricht, vol. xxxviii, 1907,
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The triangles HRA,;, Ba;B”B are similar isosceles triangles.
¥ Ba,B”"B = ¥ B"RBa;+ ¥ 1"Ba;R,
=Y HRA, = 2 Ba;RB,
X Ba;RB’= ¥ B"Ba;R
(BB") = (Ba;B") = (BR)
Ba,;B"” || HR.

Theorem 74.] The middle point of « segment bounded by
a point of the circumseribed circle and the orthocentre lies on
the corresponding Simson line and the nine-point circle.

If we drop a perpendicular from A4; on the Simson line of B
its lesser angle with 4;4; will be equal to

L BBakBai =N/ B‘A"iAk'

Theorem 75.] The isogonal conjugate with reguard to an
angle of a triangle of « line through the vertex of that angle is
perpendicular to the Simson line of the second intersection of
the given line with the circumscribed civcle.

Let us next take a fourth point A4, on the circumseribed cirele,
let 17, be the orthocentre of the A4; 4, 4;. Theline from 3 to
the middle point of (H;4,) bisects (H;0), being a diameter of the
pine-point cirele, and (4;H) = 2 (0OM;). Hence, in our present
case, (4;11;) = (4; H,), and their lines are parallel. We assume
that 4; and 4; are on the same side of A 4;.

Theorem 77.] If four points be taken upon a civele, the
wine-point circles of the four triangles which they determine
three by three are concurrent in a point common to the Simson
line of each point with regard to the triangle of the others.*®

Let us for the moment call this the point S.

Theovem 78.] The perpendicular from the middle point of
A, A on A; A, passes through S, and the distunce from S to
=] D g

* Lachlan, loc. cit., p. 69, assigns the credit of this theorem to the Cam-
bridge Tripos of 1886. It will be found much earlier in rather a clumsy
article by Greiner, ¢ Ueber das Kreisviereck’, Grunerts Archiv, vol. lx, 1877,
For this, and the five following without proof, see Kantor, ‘ Ueber das
Kreisviereck und Kreisvierzeit’, Wiener Akademie, Sitzungsberichte, vol. 1xxvi,
section v, 1877,
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the middle point of (4;4;) is equal to the distance from O
to AkAl' f
Since the diagonals of a parallelogram bisect one another,

Theorem 79.] The segments connecting the middle points of
the pairs of seqgments (A;4;) (A4 bisect one another in the
maddle point of (08).

Theorem 80.] The four orthocentres are the vertices of @ quad-
rilateral congruent to that with the vertices A, A, A; 4, and
having the same point S. Each is a reflection of the other in
this point.

Theorem 81.] The centres of the four wine-point cirvcles are
vertices of a quadrilateral similar to that with vertices 4;,
and bearing thereto a ratio 1:2. It is inseribed in a circle of
centre S.

We see, in fact, that the distance of each nine-point centre
from S is 3. Remembering the relations of O.M; H developed
in the study of the P circle,

Theorem 82.] The centres of gravity of the four triangles
are veriices of a quadrilateral similar to that having the vertices
A, and bearing thereto the ratio 1: 3.

§ 5. The Brocard Figures.

Besides the inscribed, eircumseribed, nine-point, and P eircles
there are many others which bear simple and striking relations
to the triangle. For example, let us construct three circles
through the pairs of points 4;4; tangent respectively to 4;4,.
If Q be the intersection of two of these,

Y A QA = A,; Y 4,04, =n—-) 4,;
hence A,Q4,=n—-4 A,
It thus appears that the three are concurrent in Q, which is
called the positive Brocard point of the triangle. Had we
constructed circles through A4;4; tangent to 4;A4; we should
have had three concurrent in the negative Brocard point & ¥

* In the study of the Brocard figures which follows we shall lean heavily
on an admirable little book by Emmerich, Die Brocardschen Gebilde, Berlin, 1891,
This gives not only proofs, but bibliography and historical notices. The
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The distinguishing characteristic of these points is ex-
hibited by the equations

L DA A =304,4, =4 Q4, 4, =0;
LA =104 4,= Bl A =,

Conversely, it is easily seen that if we seek a construction

Fra. 15.

for points to satisfy these equations we shall fall back upon
the Brocard points. To calculate o
(QA,):ay=sinw:sinf_A,, (24y):a;=sin{ (4d;—w):sin)f 4,
sinf 4, sinf (d;—w)sinf 4,
gimgeeds s | sinwsind A,
2 sinf_ A4, et
ctnow = Goid,sn i 2, +etnf A4, —’zctn X A; (13)
The symmetry of this expression shows that » = o’ It is
called the Brocard angle.

Brocardian geometry, like the study of nine-point and P circles, is part of the
modern ¢ Geometry of the Triangle’. This subject has attained colossal pro-
portions almost over night. Vigarié, ‘La bibliographie de la géométrie du
triangle’, Mathésis, Series 2, vol. vi, 1896, estimates that, up to 1895,
603 articles had been written dealing therewith, The subject was only
started in the seventies.
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Theorem 83.] The two Brocard points are isogonal con-

Jugates of one another.

csc’w = ese? A, +etn? A, +etn?f A, 425 ctn)f 4, ctn A,

l—ctn) A etni 4,

But ctnf 4, = Y W BTN
i1=3
eselw —Ecsczzf_A
=1
£1=3
Isinyg 4,
) 3= LA 4A2
SIN“w = =

k

3

[\

k

it

1
16 A% = 168 T (s —q,)
= % Ea-"’aj?—Eai‘*,
1—3
i=1

2y, e )
(3OSuu—k=3 J

2 2
S afa;
K=l

=3

> sin?y A
From (13) ctn —-'.Ti———,
211 sin 4_ A,
t=1
=g
2 af
e 2
ctnw = >
sinfw

~(QQ(JL,‘) (@4 sinw = a; Sepriy

&
(QQa;) = Zo'bin%oa'l, (2'Qay) = 2rsine

1

=3 3
sinf A;sin?f 4, kz aifa?
=1

(15)

(16)

(17)

(18)
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sin({ A, —w) sin“)LAk : (19)
sin o ~ sin¥ Ad;sin) A4;
(Ajgi) = aki
a;—(4;9Q,) o
v WL M)
(4;2) o @
sin (¥~ 4; + o) _ % %
sin o ar a;

sin (. 4;+ ) > 2sino.
sine < .
Theorem 84.] The Brocard angle is not greater than one-
third of a right angle.
(.AiQ) o sin @ i (Aiﬂ') :

(lj sin).f_Ai S ak

Theorem 85.] The distances from each vertex to the two
Brocard points are proportional to the two sides including
that vertex.

The three triangles into which the original one is divided
by connecting the vertices with the positive Brocard point
are similar to those obtained by connecting them with the
negative one,

The area of A4;Q4; is

X a;?sin (. 4;,~w) . o o
3(4;Q) apsine =% B AE ) sinw = rsine L —

sinf_ 4, P

Theorem 86.] 7he triangles into which the given triangle
ts divided by connecting its vertices with the positive Brocard
point are equal to those obtained by connecting them with the
negative one.

As the Brocard points are isogonal conjugates they have
the same pedal circle by 65], and so by 62] are at equal
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distances from O. Let 4;Q2 mecet the circumscribed circle
again at A,

Fre, 16,

L A, =4 A; A A, +4 AkaJj,
—X—A 7.¥ Ak"'zf—Ak W _;’
= Zf_A ;—0+ o= Zf_.A
We have thus two similar triangles inseribed in the same
cirele, i e,

Theorem 87.] The points where the lines from a Brocard
point to the vertices of a triangle meet the circumseribed circle
again are vertices of an equal tv'ia'ngle

]

Since {434, A = w, zf_Ak =

We may pass f10m AA 4,4, to A4 ﬁ E by a rotation
about O through an angle whose measure is 2w Moreover,
since zf_A 4,0 = o,

Theorem 88.] Q is the mnegative Brocard point for the
B A

Theorem 89.] The siw triangles A,QA;, 4,04, are
similar to the given triangles.

We have but to compare the various base angles.

(Q4;):(4;4;) = (4;4;) :(4;Q),

—> —
(Q4) x (Q4;) = —4r?sin o,
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Theorem 90.] The power of a Brocard point with regard
to the circumscribed circle is minus the square of the chord
determined by a central angle equal to the Brocard angle.

72 —(0Q)? = 47r%sino,

0Q = r+v/1—4sin‘o,

I blys RSO0 S (20)
COS w

3
(QQ)) = 27sin w\/cos = (21)

Cos w
We have here a second proof of 84].

There is another notable point of the triangle which bears
the closest relation to the Brocard points. We reach it as
follows. Let a transversal meet 4;4; and 4;4; in two such
points By, and B; respectively that

ByBid;=4 A;, Y BB A;=4 A

Such a line is said to be antiparallel to A4;4;.* The
distances from the middle point of (B;B;) to (4;4;) and
(4;4;) are proportional to a;: ay,.

The locus of the points is thus a line, called a symmedian.
Incidentally, the tangent to the circumseribed circle at 4;
is antiparallel to 4;4,,.

The three symmedians of a triangle meet in a point called
the symmedian point,t and indicated in our present scheme
by the letter K. It is the isogonal conjugate of the centre
of gravity, and its distances from the side-lines are propor-
tional to the lengths of the corresponding sides. Three anti-
parallels pass through this point, and it is the centre of the
three equal segments determined by each two sides on the
antiparallel to the third.

Theorem 91.| The symmedian point is the centre of a circle
meeting each side of the triangle where the latter meets the two

* This term is said to be due to Leibnitz.

+ In German works this is referred to as Grebe’s, and in French ones as
Lemoine’s point. We are not in a position to decide the question of
priority, so use the usual English term.

1702 o}
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antiparallels to the other side which pass through this sym-
median point.

This circle is called Lemoine’s second circle.

Having premised this account of K, let us draw through Q;
a line | 4, A; and let it meet 4;4; in K’. The distances
from Q; to A ;4 and A;A4; are proportional to sino,
sin (),(_A —w); K’ is at the same distance from 4;4; as is Q;;
its dlstance from A; 4, is (Q;K') sin)¥_ A4;, and so bears to the
distance from Q; to 4,4, the ratio a;: aj =sin) Ay,sinf A4,
The ratio of the dlstances flom K'to A;A; and 4;4, is thus
by (18), a; 1ay. K'=

Theorem 92.] Q;K; is parallel to A;4;

We have already seen that
—_— R —>
(4;2) a2 (4K _ap M4y

)

— 2 =i 2 ==
Qidy) " KAy TF O (4;0)

AL
A
Theorem 93.] The line from A; to the positive Brocard

point, the symmedian through A;, and the median through A,
are concurrent.

F1e. 17.

Let the point of the circumscribed circle diametrically
opposite to A; be B;, and let A;B; meet A4;B; in L;. We pro-
ceed to prove
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Theorem 94.] The triangles A, A,A,, L,L L, are similar
JSigures with the double point Q
The quadrilateral Q 4;L; A, is inscriptible, since
Hence © is the positive Brocard point for the triangle
L;L L,. To find the ratio of similarity we have

LiLy) : (4;45) = (QLy) : (@4)),
= sin (g ~w):sino,

= ctn .

Since 4;B; is antiparallel to L;L;, we have

Theorem 95.] The centre of the circumscribed circle is the
symmedian point for AL,L, L,.

Let us next notice that we pass from 4, 4,4, to L,L, L, by
rotating through an angle —g about Q, and altering radii

vectores (distances from Q) in the ratio ctn w:1. It is evident
that we might have reached a similar triangle L,/L/L, by
rotating about Q' through an angle 721 This yields the im-

portant result

Theorem 96.] The centre of the circumscribed circle and
the symmedian point subtend right angles at the Brocard
points.

We have from our previous formula (20)

(09) = (09') = r v/ 1—4sine. (20)
(KQ) = (KQ') = rtanw v'1—4sin . (22)
(2) = 2rsinw v/1— 4 sin’w. (21)

(OK) = 2rsecw+/1 —4sin*w = 27+/1 =3 tan‘w.  (23)

The Brocard points play an important role in the problem
ER
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of inseribing in a given triangle a second similar thereto.
Let P; be such.a point of (4;4;) that L 4;0P; =o.

(OPj) = (Q‘Q“i) es¢ (w + 0),

T sin o
e (0+06)
The A P,P, P, is thus similar to A A 4,4, and has Q
as its positive Brocard
point. Conversely, if the
AP;P P, be similar to
the given triangle, P;
lying on A4;4;, then the
three circles A;P; P will
be seen to pass through
such a point that the angle

subtended there by P;P;

will be 7—4_ A4,, and this

is easily found to be the
common positive Brocard
- point for both triangles.

In like manner from the

negative Brocard point and
the angle —60 we get another inseribed similar triangle
P{/P/P,. The six points P;P; are concyclic by 67]. Let
0, be the centre of this circle

(QP)): (Q4y) = (20,):(Q0).

(QP;):(20,) is a ratio independent of 6, and since
L P;90,= ¥ 4,90 the locus of 0, is a straight line. This
line goes through O corresponding to ¢ = O, and through the

w

middle point of (') corresponding to 0:—2-—a). It is
therefore the line OK.

Theorem 97.] The six points P;P; lie on a circle whose
centre 18 on OK.
Such a circle is called a Tucker circle.
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Theorem 98.] The line PP} is parallel to 4;4;.

Theorem 99.]  The line P/ P; is antiparallel to 4;4;.

The proofs of these latter theorems come immediately from
the definition of the Tucker circle. They also give a means
for constructing a Tucker circle.

Theorem 100.] The three segments (P{P;) are equal to
one another.

We see, in fact, that the lines of any two are equally
inclined to one side-line of the triangle, and the segments are
comprehended between parallel lines.

Theorem 101.] The triangle formed by the three lines
PP/ is similar to the original triangle, the double point
being a symmedian point for each.

We see, in fact, that the sides of the two are parallel in
pairs, and in the parallelogram having as three vertices
Ay, P;, P{ a diagonal goes from 4, to a vertex of the second
triangle and, being a symmedian, passes through K.

Theorem 102.] The triangle formed by the three lines
P/ P; bears such a relation to the original triangle that lines
connecting corresponding vertices are concurrent in K.,

We have but to find the ratio of the distances of a vertex
of the first triangle from two sides of the second.

Theorem 103.] The perpendiculars on the side-lines of the
given triangle from the corresponding vertices of that triangle
whose side-lines are P/ P; are concurrent in the centre of the
Tucker circle.

Let us take up certain special cases of the Tucker circle
obtained by giving to 6 special values.

0 = 0. The Tucker circle is the circumseribed cirele.
Bii= 7—2r—m. The Tucker circle is the pedal circle of the

Brocard points.

= g Here, by theorem 96], the centre of the Tucker

circle is the symmedian point. Moreover, we shall have
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P{P/ | P;P,. Hence the lines P/P; are concurrent in the
centre of the Tucker circle. But these are also antiparallels
to the side-lines of the original triangle, whence,

Theorem 104.] The Tucker circle where = ;—T is the second
Lemoine circle.

The segments which this circle cuts on the sides of the
triangle will be bases of isosceles triangles whose base angles
are equal to the angles of the original triangle.

Theorem 105.] Lemoine’s second circle cuts on each side
of the triangle a segment proportional to the cosine of the
opposite angle.

For this reason Lemoine’s second circle is sometimes called
the Cosine Circle. The perpendicular from Ka; on (P;Py)
bisects the latter at a point of A4,M;, and the symmedian

point is half-way from there to Ka;. Hence M;K bisects
(.A.iHai).

Theorem 106.] The lines connecting the middle points of
the sides of a triangle with the middle points of the corre-
sponding altitudes are concurrent tn the symmedian point.

0 = w. Here P; is equidistant from 4; and , and P/
is equidistant from 4, and Q', P;P, || 4;4,. Moreover,
X 000,=0=3f 000, and the centre of this ecircle,
called Lemoine’s first circle, is the middle point of (0OK).
The three lines P;P; must be concurrent in the second
Brocard point of A P;P; P, or the first Brocard point of
AP/P/P,/. Thisis K since { KOQ' = o.

Theorem 107.] In the case of Lemoines first circle the
segments (P; Py) are bisected at the symmedian point, and
the centre of the circle is half-way from there to the centre of
the circumseribed circle. The symmedian point is a Brocard
point for each of the triangles.

This circle is easily obtained by drawing through the
symmedian point parallels to the side-lines of the triangle.

(PP oy = (KKay) : (A;Ha;) = (KKa,;) x .2a_zA ]
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But, by the fundamental symmedian property, (KKa;) is
proportional to a; and

Theorem 108.] The segments which Lemoine’s first circle
cuts on the sides of the triangle are proportional to the cubes
on those sides.

For this reason this circle is sometimes called the triplicate
ratio circle.

There is one more Tucker circle which merits special
attention ; it is, however, more easily approached from another
point of view.

As

Fic. 19.

Let G; be the middle point of HajHak, and let GiGj meet,
A;4; in P;, and 4;4, in P/. It is easy to see that the
length of our segment (P;P;) is equal to the semi-perimeter
of the pedal triangle of H

LPkPk,Pi': LAk

K"‘Pk'Pi/"Pi = LA’I:—{-Z{“'PL‘P’I:,GJ = X—'Ai"-g—‘Pi,Pij’
i = 4_ ‘Aj Q- 4_ Ai‘

Since
Hence the four points P;, P/, P;, P}/ are concyclic, and so
all six points P,, P,’ lie on one circle. This circle is called
Taylor's circle. Since the A G; P, P/ is isosceles, the perpen-
dicular bisector of (P;,P’/) bisects also ¥~ G;.
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Theorem 109.] Taylor's circle is concentric with the circle
tnseribed in the triangle whose vertices lie midway between
the feet of the altitudes.

Let us show that Taylor’s circle is a Tucker circle. The
three lines 4;G; are concurrent in the symmedian point.
PrP/ || A; Ay since f P P; 4;= 77—-4’_11@-—-2;_11]-.
The triangles Bl By Py P{P/ are equal by three sides, and
I PPl s R P 7 el
Hence these equal triangles are similar to the original one, and

Theorem 110.] Taylor's circle is a Tucker circle.

The process of finding the corresponding value of  is a bit
difficult. TLet ©; be the foot of the perpendicular from 0,
on G; Gy,

Zf_.PkOoQi == LPk.Pij/=7T—6,
(Pk®@)=—;—(PkPJ’)=%2(HaiHaJ), J
=33a;co8f A;=rIlsinf 4,.
0,0; is, by 109], the radius of the inseribed circle in a
triangle whose sides are }a;cosy_4;
(0,0,) = rilcosf 4,;,
tanf = —Itan J 4, _
(GjHay) = (G; ) = (G; 1)) = (G Ha).

The circle on (Ha; Hay,) as diameter passes through P/, P;.

Theorem 111.] Taylor's circle contains the intersections of
each side-line with the perpendiculars Jrom the feet of the
altitudes on the other two.*

(Ajp,/) = (AjHak) CcoS LAJ' = a; 00324_ AJ’
(4 P) = a;cos?) 4,
(P P)) = a; (1 —cos?)_ A;—cos’y Ay),
= a;(sin®f A4;sin* X A4; —cos?§ A;cos?f A).

Theorem 112.] The segment cut by Taylor’s circle on the

side (A ;A3) has the value
a;cos X A, cos (¥- d,—% A4.)

* Cf. Theorem 66.
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The centre of the circumscribed cirvele is the orthocentre
of the AM,M,M,. Hence, by 74], the Simson line of Ha;
with regard to this triangle passes through the middle point
of (H«;0). The segment (4;Ha,) is bisected perpendicularly
by M; M), so that the before-mentioned Simson line of Ha;
is || OA The A @;G0, is similar to the triangle Whose
vertices are HwkHCL and the orthocentre of A A;Ha; Hay,
the ratio of simila,rity being 1:2, while Ia; is the centre of
similitude. Hence O, is the middle point of the segment from

Ha; to the orthocentre of the A A;Huy Hay, which point lies
on AiO.

Theorem 113.] The centre of Taylor’s cirvcle lies on the
Simson line of the foot of each altitude with regard to the
triangle whose vertices are the middle points of the sides of
the given triangle.

The perpendicular from M; on Ha;Ha;, biseets (Ha;Hay)
since (M;Ha;) = (M;Hay). The perpendiculars from 3/ on
Ha;Ha; and Ha ¢Ha;, make equal angles with A;4,;. Hence
the Simson line of M; with regard to A Hu, Ha jHay, is the

perpendicular on A] Ak or on P ; Py from the mldd}e point of
Ha; Hay, and so is the line G; 0

Theorem 114.] The centre of Taylor’s circle lies on the
Simson line of the middle point of each side with regard to
the triangle whose vertices are the feet of the altitudes.

(A P)x(A /) = a;*cos® A cos? Y A,

This last expression is equal to the square of the distance from
A; to Ha;Hay. But A; is the centre of a circle eseribed to
the AHaiHajHak.

Theorem 115.] Taylor's circle cuts at right angles the
circles escribed to the triangle whose vertices are the feet of
the altitudes.

Enough has now been said about the Tucker circles.
Returning to the figures more nearly associated with the
name of Brocard, we remember that we originally found
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the Brocard points by constructing circles through 4,4 j
tangent to 4,4, for Q or to 4,4, for Q". The centre of the
first of these circles shall be called X, that of the second X

Theorem 116.] The triangles X, X, X, and X/X,/X. are
similar to the original triangle, the double points being the
positive and megative Brocard points respectively, and the
ratio of similitude being 1:2 sin w.

Theorem 117.] The centre of the circumscribed civcle is the
negative Brocard point for A X, X,X, and the positive
Brocard point for A X,/X, X,

We see, in fact, that X; lies on the perpendicular from O on
A A;, while X; X, is the perpendicular bisector of (Q4,).
Hence ¥ QX X; =Y Q4 4;= o.

We have already seen that

1009 =20, 00K = g .
Hence, if Z be the middle point of (0K),
(LK)
s A ol .
(ZQ) = (ZK) = L (0K) = =

Theorem 118.] The centre of the first Lemoine circle is the

common symmedian point for A X, X, X, and A X/X, X,

Frg¢. 20.
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Let the circles whose centres are X; and X intersect, not
only at 4;, but againat 4,”. AA,”A,” A, is called Brocard’s
second triangle.

X—Aj'Ai//Ak = X_..A.,i-*'g_ Ai”.Ain"l'z{_.Ai”.AkAi = 2&‘Ai'
Theorem 119.] The points A4; A, 0A" are concyclic.

Theorem 120.] A, lies on the symmedian through A;.

We see, in fact, that the triangles A;4.4,7, A, 4,4, are
similar; hence the altitudes from A’ have the ratio az:a;.
We notice also, since ;4,04 are concyclic,

LOA/A; = LOAkA- =Z—14,
But LAAVA; = (n—A;) LA;.
Theorem 121.] A;” is the projection of O on 4;K.

Theorem 122.] The three points A’ lie on the circle on
(OK) as diameter.

We have thus, remembering 96], seven points on this
important circle, which is called Brocard’s circle. We find
three more as follows. Let A4, be the intersection of A Q
with A4,Q. The AA/A ’A / is called Brocard’s ﬁrst
triangle.

Theorem 123.] The three triangles A/ A, j4r are stmilar
isosceles triangles.

The distance from A/ to A;4; is ja;tanw, and this is
also the distance from the symmedian point to that line
by (17).

Theorem 124.] Thethreelines through the points 4/ par allel
to the corresponding side-lines A;4; are concuwent in the
symmedian point.

Since ¥ QA/Q'=20

Theorem 125.] The vertices of Brocard’s first triangle lie on
Brocard’s circle.

Since (4,4,) subtends at 4;” and at K an angle = ¥ 4,
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Theorem 1R6.] Brocard's first triangle is similar to the
given triangle.

We get from formula (23)

Theorem 127.] The ratio of similitude of Brocard’s first
triangle and the given triangle is

V/1—3tan?e: 1.

Ay

Al
Fie. 21.
Let 4/ be the reflection of 4, in 4. Ay, so that
(47M) = (4; ’M
Connect 4; with 4; and 4, also connect 4; and 4, with
Aj and 4; ’ Then A A4, ’AkA is similar to A 4; 44, since
LA' ,AkA = X—'Ak_w-l'w =1 K—Aha
Ak'A ) (AkA )_ @y 2 e
Hence also 4,4, A/ is similar to A 4,4, 4y, and as
(A;4)) = (4, 4)); A4 pdi A= AA’Ak’A
(47 4]) = (4/4) = (4,/4,).
Similarly (4;/4;) = (4;4;) and 4,4, JA/4, are the vertices
of a parallelogram. Hence the medlan from 47 in AA/A/ 4y
is the median from A4, in A A/4,4;. A second medlan of

this triangleis A, M,. The medlan of A A7A/ A} through 4/
divides (4;M;) in the ratio 2:1, i.e. goes thlouch M.
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Theorem 128.] Brocard’s first triangle has the same centre
of gravity as the given triangle.

The quadrilaterals A4,4;4,74;/, A, A;A"A; are equi-
angular and similar, so that

(4 A7) (A7 A) = ay 2 a; = (4 4]): (4] 4y)
= sinf A AJAL :sind AAJAL

Hence 4/A4;” is a median of the A A4/A/A;/.

Theorem 129.] The lines connecting the corresponding
vertices of Brocard’s two triangles are concwrrent in the
common centre of gravity of the first Brocard and the given
triangle.

The triangles 4,/4,/4,’, 4, 4,4, are similar, but arc easily
seen to be arranged in opposite order. It is easy to see that
under the similarity transformation of the plane thus defined,
a line through 4;| 44, will pass into one through
A | 4;4;.

Theorem 130.] The lines through the vertices of a triangle
parallel to the corresponding side-lines of Brocard’s first
triangle are concurrent on the circumscribed circle.

This point of concurrence is called Steiner's point. That
diametrically opposite is Tarry’s point.

Theorem 131.] The lines through the vertices of a triangle
perpendicular to the corresponding side-lines of Brocard’s
Jirst triangle are concwrrent in Tarry’s point.

Suppose that 4;0 meets the Brocard circle again in 7.
Let us find the magnitude of X T;04/.

OA@" 4 AjAk 5 X_ OA,,;H(I,L- = X—Ak_K—A' )
4_ TiAj/A'i/ = X—AR_L'A‘]' H 4_ T‘iA'j/'A'h/ = K_Ak/.

Theorem 132.] The angle between A;A; and A A;" is
equal to X KOA;.

It appears at once from the construction of Fig. 14 that
the Simson line of any point P makes with 4;4; an angle
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equal to the angle formed therewith hy P4, and this is equal

™

to 5 — (- 4;,—% PA;4;). The angle which 4,0 makes

with 4,4, is X_4, + (g—zf_Aj)-

Fra. 22.

Hence the angle which the Simson line makes with 04, is
Y Ay—4 PA;A;, and this is the angle of P4; with 4;4,.
The Simson line of Steiner's point and OK are equally
inclined to OA4;. They must, thus, be parallel, or make with
0OA4; an angle whose algebraic sum is zero. But two lines
cannot simultaneously make with the three concurrent lines
pairs of angles differing only in sign.

Theorem 133.] The Simson line of Steiner’s point is
parallel to the line from the centre of the circwmscribed circle
to the symmedian point, while the Simson line of Tarrys
point is perpendicular thereto.

Suppose that we have given the side (4;4;) of our original
triangle, and the Brocard angle, what will be the locus of the
opposite vertex? Restricting ourselves to one side of A4,
we construct an arc at whose points (4;4;) subtends an
angle equal to w. Suppose that A; has been found, and that
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A;A; meets this arc again at Y;. Draw Y, 4;, and 4;Q
which is || Y3, 4; and meets 4;4; in Q;.
- —
2 (Aid) % (4;)) = —ad.

A; has thus a constant power with regard to a given circle;
its locus is the arc of a second circle concentric therewith.

(4;92)): (Qidy) = a5’ 0

Theorem 184.] The locus of the vertex of a triangle whose
opposite side and Brocard angle are given is formed by the
arcs of two circles concentric with those containing all points
whereat the given side subtends the given Brocard angle.

These circles are called Neuberg circles and have many
interesting properties whereof we shall give but a few.* If
the original triangle be given there are three pairs of Neuberg
circles ; let us restrict ourselves to those three whose centres
lie on the same sides of the side-lines as the opposite vertices
of the original triangle, and call these the Neuberg circles
of the given triangle. Let the centre of the Neuberg circle

corresponding to A4;4; be N;. Then Z{_NiAjAk=1—2r—w.
The distances from N; to 4;4; and 4;4; are in the ratio
cos (Y- Ay +w):cos (f-4;+w). Now if a point lie on the
perpendicular from A4; on 4;4,/, i.e. on the line from 4,
to Tarry’s point, the ratio of its distances from 4;4; and
cos KOA; :cos ¥ KOA/ =siny OKA,; :sinf OKA/.
The sine of the angle of OK and 4;4;, or of OK and K4/,
is, by (23),
(KKa;)—(OM;) _ sin 4; tan o —cos 4,
(OK) v//1—3tan‘e

Hence
sin OKA, : sinA'_OKAj'z cos (-~ A + ) : cos (X_Aj+¢o).

Theorem 185.] 7'he lines connecting the vertices of a triangle
with the centres of the corresponding Neuberg circles are con-
current in Tarry's point.

* Emmerich, loe, ¢it., pp. 1338 ff.
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We see that if one angle and the Brocard angle of a triangle
be given, the other angles are determined by symmetrical

B
2 ey

Bs/ \Cs

A, A3
Fra. 23.

equations. Hence the various possible triangles with these
data are similar.

Theorem 136.] If 4; A; and A; Ay meet the corresponding
Neuberg circle again in B and By, respectively, then DA;B; 4,
and A A; B Ay are swmlm to AA;A; Ay,

Theorem 137.] The power of 4; or Ay with regard to the
corresponding Neuberg circle is a; 2

If the points 4; and A; be given, there will be o circles
with regard to which each has the power (4;4;)% and these
will all be Neuberg circles. Let 4;B; meet such a Neuberg
circle again at Cj, whlle A B; meet it at Cj. Then, by the
precedlng, 4,0, and 4;0; w111 1nte1 sect on the Neuberg circle,
which gives the cu110us bheorem

Theorem 138.] If a circle bear such a relation to two points
that the power of each with regard to it is the square of the
distance of the points, then ®! re-entrant hexagons may be
inseribed im the circle such that alternate side-lines pass
through the one or the other given point.

We obtain an interesting sidelight on the Brocard con-
figuration by a study of three similar figures to which we now
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turn our attention* Two figures are directly similar if
corresponding distances be proportional and corresponding
angles equal in magnitude and sense; when the signs of
corresponding angles are opposite, the figures are inversely
similar. A relation of direct similarity will be determined
as soon as we know the two points 4;'4;” which correspond
to two given points 4.4;. The locus of the points whose
distances from 4; and A bear the ratio (4;4;):(4;4;) is
a circle, and a similar circle may be found for A4, and 4,
These circles intersect in two points which are the double
points of the similarity transformations determined by the
corresponding segments.

Suppose that we have three similar figures £, f,, ;. The
double point of f; and f, shall be .S;, the three ratios of simili-
tude r,:7y:75. Let Dy, D,, D; be the vertices of a triangle
whose sides lie along three corresponding lines. The distances
from S; to D; D;, and D; D; are proportional to #;: 7. Hence,
by Ceva’s theorem,

Theorem 139.] If three similar figures be given, the three
lines connecting each double point to the corresponding vertex
of a triangle whose side-lines correspond in the three figures
are concurrent.

Let us call this point of concurrence . Notice that if not
only the side-line but the actual sides are corresponding, it
will be the symmedian point. The angles of A D, D,D,
depend merely on the transformation, as do the angles which
S;D; make with D;D; and D;Dj, since their sum and the
ratio of their sines are constant. Hence the angles £8;08;
are constant in size.

Theorem 140.] The locus of the points of concurrence of lines
Jrom each double point to the corresponding vertex of a triangle
whose side-lines correspond s the circle through the three
double points.

If we draw through C three lines parallel to the three lines
D;D; they will intersect this circle again in points R;. They
will also be three corresponding lines as their angles are those

* McCleland, 4 Treatise on the Geometry of the Circle, London, 1891, ch. ix.
1702 F
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of any three corresponding lines, and the distances from S; to
CR; and CR;, are in the ratio 75 : 7;. Also the points £; are
fixed, since ZR;CS; has a constant value. Conversely, if
three corresponding lines be concurrent, the locus of their
point of concurrence is, by 140], this circle.

Theorem 141.] The locus of points where three corresponding
lines are concurrent is the circle through the three double
points; the three corresponding lines must pass through fixed
points of this circle.

These fixed points on the concurrent lines are called in-
variable points.

Theorem 142.] The lines connecting the double points to
the corresponding tnvariable points are concurrent.
We see, in fact, that the invariable points are surely corre-
sponding.
7y = (S B;) : (S;Ry)
_smzf_S B R sm)j._SRRk
= sin . S;R; R :sin XS,

Hence the three lines S; R, meet in a pomt M

Suppose that we have P,, P,, P, three corresponding points
which are collinear. The angles of A 8;P; Py, are constant in
magnitude, hence £.S;,P;S; has a constant value, or the locus
of P;is a circle through §; and §,. If S/ be the point which
corresponds to S; in f;, the line S;S; must correspond to two
other lines through S;, namely S; R and S; Ry, so that §; is
on S;R;. Again, /S, P.P; is constant so that P;P; meets
the P clrcle in a fixed pomt namely M, and this is common
to all three circles. Conversely, there are surely oo! sets of
corresponding collinear triads, generating three circles which
correspond, and if we take P,, P,, P, three corresponding
points on them .5, P;P; has a fixed value, so that P;P; goes
through a fixed point, namely M, and P}, lies on P, P;.

Theorem 148.] The loci of three collinear points in three
directly similar figures are three circles each through two
double points. There is one point common to all three circles,
and sets of three collinear corresponding points are collinear
with this.
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Theorem 144.] If three directly similar figures be con-
structed on the three sides of a triangle following one another
i cyclic order,

(@) The vertices of the second Brocard triangle will be the
double points.

(b) The vertices of the first Brocard triangle will be the
invariable points.

(¢) The limes connecting corresponding vertices of the
original and second Brocard triangle will be concurrent in
the symmedian point of the former which lies on the Brocard
circle.

(d) The lines connecting corresponding vertices of the two
Brocard triangles are concurrent in the common centre of
gravity of the given and first Brocard triangle.

(e) The symmedian point of every triangle formed by three
corresponding segments in cyclic order will lie on the Brocard
circle.

(f) If three corresponding lines be concurrent they pass
through the vertices of the first Brocard triangle, and their
point of concurrence is on the Brocard circle.

(9) The loci of three corresponding collinear points are the
three circles through two vertices of Brocard’s second triangle
and the centre of gravity of the given triangle.

The three circles mentioned in (g) are called MacKay circles
and deserve some further notice. The three lines 4;/4,” pass
through M, which lies between 4" and 4,”.

Theorem 145.] The MacKay circles are the reflections in the
centre of gravity of the given triangle of the inverses of the
sides of the first Brocard triangle in a fixed circle whose centre
18 that centre of gravity.

Theorem 146.] The MacKay circles intersect at angles equal
to those of the given triangle.

As M is the centre of gravity of the first Brocard triangle,
it is the middle point of three segments each on a line parallel
to one side-line of this triangle and terminated by the
other two.

F2
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Theorem 147.] The centre of gravity of the given triangle
is the middle point of the three segments which each two
MacKay circles cut on the tangent to the third at that point.

C, .

Aj

Cs C,
Fia. 24.

As

Starting with our original triangle, we may construct three
others similar to it as follows:
C, shall be such a point on the same side of 4,4, as 4, that

1.0 A, 4, =% A, LO0iA 8 =% A
C, shall be such a point on 4,4, that
XaC A, Ay =3 Ao
C, shall be such a point on 4,4, that
04,4, =% 4,
The centres of gravity of our three triangles C,4,4,,
A,C,A,, A,4,C, lie on the line through M || 4,4, and are
corresponding points. The centre of gravity of A (4,4, is

thus on the MacKay cirele through 4,”4,” and is the reflection
of M in the perpendicular bisector of (4,4.,).

Theorem 148.] The centre of each MacKay circle lies on the
perpendicular bisector of the corresponding side of the original
triangle.

We shall show in the next chapter that M; is a centre
of similitude for the corresponding MacKay and Neuberg
circles. The geometric proof seems to be, however, decidedly
intricate.*

* MecCleland, loc, cit., pp. 213 ff.
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§ 8. Concurrent Circles and Concyclic Points.

We have so far had certain examples of circles through
a number of notable points: the nine-point circle passed
through twelve, the Brocard circle through ten. We shall
next proceed to find, by induction, circles which contain
notable points ad libitum. Suppose that on each side-line
A;A; of our typical triangle we take a random point B;.
It P be the intersection of the circles A4,B,B,, 4,B,B,,

BE P = LA 4.4, LB, PB4 diA, 4
hence LB, PB, = £ dy A, 44

and our three circles are concurrent,

Theorem 149.] If a point be marked on each side-line of
a triangle, the three circles each through a wvertexr and the
adjacent marked points are concurrent.®

The number of corollaries which flow from this truly
admirable theorem is almost transfinite. Suppose that P lies
within the triangle, the most important case,

A similar result is easily found when P is not within. It

appears also that if the angles of the A B, B,B; be known
the point P is also known.

Theorem 150.] If a triangle with known angles have its
vertices anywhere on specified side-lines of a given triangle,
the three circles each through one vertex of the fixed triangle
and two adjacent ones of the variable triangle are concurrent
in a fixed point.

The most interesting case is where the two triangles are
similar. If X A; = X B; we may take for B; the point /.

* The earliest proof of this theoremm known to the author is that of
Miquel, ‘Théorémes de géométrie’, Liouville'’s Jowrnal, vol. iii, 1838.
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If X A;=% B, we take By infinitely near to 4; on 4;4;,
and similarly if X 4, = B,.

Theorem 151.] If three points be so taken on the side-lines
of a triangle that they are vertices of a triangle similar to the
given one, then the three circles each through a vertex of the
given triangle, and the two adjacent vertices of the mew
triangle are concurrent either im the centre of the circum-
scribed cirvcle of the given triangle or in one of the Brocard
points.F

Let the reader prove:

Theorem 152.] The only case where the lines A;B; are
concurrent in the point P is where they are the altitude lines
of the triangle.

We easily find from 67]:

Theorem 153.] If the intersections of a circle with the
side-lines of a triangle be divided into two groups of three,
each group containing one point on each side-line, then the
point of concurrence of the three circles each through one
vertex and the adjacent points of the first group, and that of
circles through each vertex and the adjacent poimts of the
second group, are isogonal conjugates.t

It is immediately evident by inversion that our funda-
mental theorem 149] holds equally well when the side-lines
of the triangle are replaced by concurrent circles. It may
then be reworded as follows:

Theorem 154.] If four points on a circle or line be taken
i sequence and if each successive pair be connected by a circle,
the remaining intersections of successive pairs of circles are
concyelic or collinear.

Still another form for the theorem is as follows:

Theorem 155.] If four circles be arranged in sequence,
each two successive circles intersecting, and « circle pass

* MecCleland, loe. cit., ch. iii, takes this as the basis of the whole Brocard
theory.
+ This excellent theorem is due to Barrow, loe. cit., p. 252.
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through one point of each such pair of intersections, then the
remaining intersections lie on another circle or a line*
Let us give another proof of this theorem depending on
different considerations. If a triangle be formed by the arcs
< .
of three circles ¢, ¢,, ¢;, and if X c¢,c, mean the oriented
angle of the half-tangents to two circles at a vertex of the
triangle, those halves being taken which correspond to the
positive orientation of the circle, then, if the three circles be
concurrent, we have

— - >
X cico+K-coes+A-cycp = 0.
Conversely, if this equation holds, it is easy to see that the
circles are concurrent. Suppose now that we have a sequence
of four circles ¢, ¢,, ¢s, ¢, and that one intersection of each
two successive lines lies on ¢,

—> —_ — — — —
Loy +4cico+ i coe =4 coy+ X epe,+ 4 cye
— —_ — —_— — —
=X ccg+ Y cye,+%c.c = §coy+ X c 0+ %-cye= 0.

— —_— e —_—
e+ X cyes+ ez, + 4 en0; = 0.
Conversely, when this equation holds, the circle through three

properly chosen interseetions passes through the fourth. But
when we move from one intersection on ¢, and ¢, to the other

we have merely to reverse the sign of 2$_cl_c>2; the theorem is
thus proved.

Let us next suppose that we have given not three lines
but four, no two being parallel nor any three concurrent.
Let each line be used to determine the marked points on the
other three; we thus get

Theorem 156.] If four lines be given, whereof no two are
parallel nor any three concurrent, the circumseribing circles
of the triangles which they form three by three are concurrent.

Let us call this the Miquel point of the four lines. If we
invert with this as centre we get a second figure entirely
analogous to the given one, but the present circles become

* Miquel, ¢ Mémoire de géométrie’, Liouville’s Journal, vol. ix, 1844, p. 23.
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lines and the present lines become circles. The feet of the
perpendiculars on the four new lines from the Miquel point
are on the Simson line of the four new triangles for this
point; the four reflections of the Miquel point in the four
new lines are also collinear; hence, inverting back and
remembering 34],

Theorem 157.] The centres of the circles which circum-

scribe the triangle formed by four lines lie on a circle through
the Miquel point.*

The following theorem is interesting in this connexion,
though the proof is based upon different considerations which
we leave to the reader.

Theorem 158.] The centres of the circles which touch sets
of three out of four given lines, whereof no three are concurrent
or parallel, lie by fours on four circles.

Fie. 25,

* Cf. Steiner, Collected Works, vol. i, p. 223.
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The circle in theorem 157] seems to contain five notable
points; we may easily find five others thereon. Let the
original lines be /;, l,, l;, {,. The lines /; and /; shall inter-
sect in A, while the circle about the triangle formed by
L;l;ly, shall be ¢;, its centre Cf, the Miquel point M.

We shall temporarily use | ZXYZ| for the positive value
of LXYZ.

| LA M0; | =3 — | LAz Ap I |,

| LAZMCy, | = g —| 2434,

Let Ale’i meet A,l-lC'k in S,
| £OSCy | = | LAjAdpC| —| £LA;Ag0Cy |

™

™
—2—|4Ajk[—(‘2'-|144ij|)
=| L4y

Theorem 159.] Given four lines in « plane,no two parallel
and mo three concurrent. The lines connecting each vertex of
a triangle formed by three of the lines with centre of the circle
circumscribed to the triangle formed by the two lines meeting
in this vertex and the fourth line, are concurrent on the circle
through the centres of the four circumseribing circles.

Suppose that five lines are given 4;, l,, I3, {;, [;. Omitting
each in turn, we have five Miquel points. Consider the circles
circumscribing the triangles with /; as a common side-line.
Successive circles intersect on [, ; hence, by 154], their other
intersections, which are Miquel points, are concyelic.

Theorem 160.] If five lines be given, no two parallel and
no three concwrrent, the five Miquel points which they determine
Sfour by four are concyclic or collinear.

Theorem 161.] If a pentagon be given, and five triangles
be constructed each having as vertices two adjacent vertices of
the pentagon and the intersection of the remaining side-lines



90 THE CIRCLE IN CH.

through them, then, if circles be circumscribed to these five
triangles, the remaining intersection of pairs of successive
circles are concyclic or collinear.®

Let us tabulate the results so far attained.

One line may be associated with a cirele of infinite radius,
the line itself.

Two lines may be associated with their point of inter-
section.

Three lines may be associated with the circle circumseribed
to their triangle.

Four lines may be associated with their Miquel point.

Five lines may be associated with a circle or line through
the five Miquel points which they determine four by four.

We are thus led by analogy to announce the following
theorem :

Theorem 162.] Given n lines in a plane, no two parallel
and no three concurrent. If n be odd there is associated there-
with a circle, and if n be even a point. The circle will contain
the m points associated with the m sets of lines obtained by
neglecting each of the given lines in turn ; the point will lie on
each of the m-circles obtained by meglecting each of the lines
n twrn.t

It is to be understood for the purposes of this theorem that
a line is considered as a special form of circle. Let us begin
with the case where n is even. We take the three sets of
lines (Iyly...0), (40s...0,), (4 41,...0,). The associated
circles shall be ¢, ¢,, ¢;, and, in general, the circle associated
with the system obtained by omitting the line /; shall be ¢;.
If lines [;/; be omitted, the point associated with the others
shall be P;;, and so on.

* Tt is to this theorem alone that the name of Miquel is usually attached.

+ This theorem is due to Clifford, ¢ A Synthetic Proof of Miquel's Theorem’,
Messenger of Mathematics, vol. v, 1870. Independently given by Fuortes,
¢ Ricerche geometriche’, Battaglini’s Journal, vol. xvi, 1878, and Kantor,
¢ Ueber den Zusammenhang von »n Geraden in der Ebene’, Wicner Berichte,
vol. 1xxvi, section v, 1877. Recently given without demonstration and in
incorrect form by Hagge, ¢ Ueber Umkreise und Transversalen des vollstin-
digen n-seits’, Zeitschrift fiir mathematischen Unferricki, vol, xxxvi, 1905.
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Circle ¢,y contains Py, P,,, Py, Pigoy.

Cirele ¢,y, contains Py, P,,, Py, Py,

Circle ¢y, contains Py, P,,, P,,, P,.,.

We have thus exactly the figure of three concurrent circles

corresponding to 149] generalized by inversion.

Points P,,, P,,, Py, lie on ¢;.

Points P,,, P,,, P,, lie on c,.

Points P,,, P,,, P,, lie on ¢.

Hence these three circles are concurrent, and as they are
any three of our system the theorem is proved for n even,
provided it holds for n—1. We now imagine that we have
an odd number « of lines; let us show that any four of the
points P, P,, P, P, are concyclic or collinear.

The circles ¢;, and ¢,; meet in P, and P,,,.

The circles ¢y, and ¢,, meet in P, and P,,,.

The circles ¢,, and ¢,; meet in P, and P,,,.

The circles ¢, and ¢;, meet in P, and P,,.

But the four points Py, P,,,, Py, P,,, are on the circle
Cig343 hence the four points P, Py, P,, P, are concyclic or
collinear, and so all of our points are on a circle or line.

Let us try another method of generalizing 149]. We start
with four lines /,, /,,7;, /,, and on each line {; mark a point
P;. If these four be concyeclic or collinear, then, by 154], the
six circles each of which passes through the intersection of
two lines and the marked points thereon will pass by threes
through four points on one circle or line. Suppose, next,
that we have five lines /,, /,, I;, [,, I;, and five concyclic
marked points thereon. The point marked on 7; shall be P;.
The point obtained by omitting /; and /; shall be P;. The
circle obtained from what immediately precedes by neglecting
l; shall be ¢;; that which contains P; P; Py; shall be ¢;;.

Seermising P, P, P, P,.

¢, contains P,, P,,, P,,, P,,.

g genbaing P, Iy, Py, Py,
€ containg P, P,,, P,,.

Cg5 contains Py, P,,, P,,.
¢y5 contains Py, P,,, P,,.



92 THE CIRCLE IN CH.

But the circles ¢y, c,5, €55 are concurrent in Pg; hence the
circles ¢, ¢,, ¢, are concurrent, and so all five are. The
extension to m is as before, and, as before, we define a line
as & special case of a circle.

Theorem 163.] Let n concyclic or collinear points be marked
on n lines whereof no two are parallel and no three concurrent.
If m be even there is associated therewith a circle, and if n be
odd a point; the circle will contain the n points associated
with the n sets of n—1 limes obtained by meglecting each of the
given lines tn turn; the point will lie on each of the circles
obtained by neglecting each of the lines in turn.*

In these two generalizations there is a distinction between
n even and n odd. In the remarkable one which follows this
disgppears. Four coplanar lines are given, no two parallel and
no three concurrent. Each line is associated with the circle
circumscribing the triangle formed by the other three. The
centres of these four circles are concyclic, and the circles
themselves pass through the Miquel point.

Theorem 164.] Given n lines whereof no two are parallel
and no three concurrent. Each set of n—1 will be associated
with a circle in such a way that all n circles pass through
a point, and their centres lie on a circle which is associated
with the n given lines.}

We shall assume that the theorem has been proven for n—1
lines. We use the previous notation for the circle associated
with certain lines, its centre being indicated conformably,
while the point associated with certain lines shall be in-
dicated by the letter M with suitable subseript. We shall
also assume that

this equation being certainly true in the case n = 4, if Cj;

* Due to Grace, ‘Circles, Spheres, and Linear Complexes’, Cambridge
Philosophical Transactions, vol. xvi, 1898.

+ Pesci, ‘Dei cercoli circonscritti ai triangoli formati di n rette in un
piano’, Periodico di Muatematica, vol. v, 1891. The case n = 5 was given by
Kantor, ¢ Ueber das vollstindige Vierseit ', Wiener Berichte, 1xxviii, section 2,
1878. -
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indicate the intersection of /,/;. Suppose that ¢, and ¢, inter-
sect in M,
¢, contains Cy,, Oy, Oy, M.
¢, contains Cyy, Oy, Cyp, M.
LCuMCy, = L0500 = L5
L0y MGy = £, 0, Co = i1
LO; MO, = L1,
But L0 00y = LU,
Hence M lies on ¢; and the circles are concurrent. Again,
¢, and ¢; meet in C}; and M.
¢; and ¢, meet in C,; and M.
L0,C;C, = LC;MCy; = L1,1,.
Hence all points C; are concyclic, and the theorem is
proved.
The following corollary is rather curious.

Theorem 165.] If w be greater than four, M will not
lie on c. ;

Suppose, on the contrary, £C,C,M = 2C,C; M,

(Cjz M) is the common chord of ¢, and ¢,,

L0300 = LU0 M
LOC,M = £ O ,Cpu M.
Hence GO M = £0,,0. M,
L0300 = 0.
But C,Cp L O M, and C,,C, L Clpp M,
LM, Cps My = 0.

This, however, is impossible since these three points lie on
Cy5. Hence, if C,, exist or n > 4, the point M cannot be
concyeclic with all C’s.

In the theorem last given we associated n lines with
a circle and a point, the cirele being the locus of the centres
of n others. In the theorem before we associated n circles or

points with « lines and n concyelic points. Here is another
form of association akin to both,
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Theorem 166.] Given m points on a fixed circle n = 4.
We may associate with them a point and a circle in the
Jollowing manner :

(@) The point is the centre of the circle.
(b) The radius of the circle is one-half that of the fixed

circle.
(¢) The point lies on the n circles each associated with n—1
points obtained by omitting each of the given points in turn.
(d) The circle contains the centres of these circles.*

Let us call the radius of the fixed circle 2, for convenience.
When n = 2 we shall associate with two points the point
midway between them. When n = 3 we associate the nine-
point circle whose radius is here unity. When n = 4 we
have, by 77], four nine-point circles passing through a common
point. Their centres lie, therefore, on a circle of radius 1
about that point as centre. The theorem thus holds when
n =4. To prove it in the case where » =5 we proceed,
exactly as in the case of 162], to prove that the circles are
concurrent. P will be the centre of the nine-point circle
of the AP, P P,. c, will be the circle through the centres
of the three nine-point circles associated with P; and P, i.e.
the locus of points at a unit distance from the middle point of
(PyPy).  Pypq will be the point midway between P, and
the centre of the fixed circle, which is at a unit’s distance
from the middle point of each of the chords (P;P,), (P;Py),
(PrP,), (PiP,), and so on all three circles Cjkls Cril> Cij1e We
may thus repeat our previous reasoning word for word; the
five cireles ¢, ¢,, ¢;, ¢;, ¢; are concurrent, and as all have
a unit radius their centres lie on a unit circle about the point
of concurrence as centre. For m > 5 we proceed in exactly
the same way.

Here is a second proof of the foregoing that has the advan-
tage of being easily extended to the analogous case in three
dimensions, while our first proof cannot be so enlarged.
Take nm = 4, the centre of gravity of the four points will be

* See the Author’s ¢ Circles Associated with Concyclic Points’, 4Annals of
Mathematics, Series 2, vol, xii, 1910,
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the point of concurrence of the segments, each bounded by
one given point and the centre of gravity of the other three,
and will divide these segments in the ratio 1:3. The centres
of gravity of the four triangles will thus lie on a circle whose
radius is one-third the radius of the given circle ; hence, by
what precedes 72], the centres of the four nine-point circles lie
on a circle of half the radius of the circumscribed circle, and

whose distance from the fixed centre is g the distance to the

centre of gravity. The theorem thus holds for n=4. Assume
that it is true for n—1 points, and that the centre of their
circle is collinear with the centre of the fixed circle, and the
centre of gravity of the m—1 points, but the distances from
the centre of the fixed circle to these points is in the ratio
'n,_g_l_. If n points be given, we have n centres of gravity
of groups of n—1 points. These lie on a circle whose radius
bears to that of the fixed cirele the ratio 1:n—1. Hence the
7 points lie on a circle whose radius is one-half that of
the fixed circle, and the m associated circles pass through
a fixed point at the proper distance from the fixed centre.

§ 7. Coaxal Circles.

We have defined the power of a point with regard to
a circle as the product of its oriented distances to any two
points of the circle collinear with it. When the point is
outside the circle this is the square of the length of the
tangential segment. The sum of the power and the square
of the radius is seen to be the square of the distance from
the point to the centre. We see, thus, that if a point move
along a line perpendicular to the line of centres of two non-
concentric circles, the difference of its powers with regard to
the two is constant.

Theorem 167.] The locus of points having like powers
with regard to two mon-concentric circles is a line perpen-
dicular to the line of centres.



96 THE CIRCLE IN- CH.

This line is called the radical awmis. It is the common
secant when the circles intersect, the common tangent when
they touch.

Theorem 168.] The radical axes formed by the pairs of
three given circles whereof no two are concentric, are concurrent
or parallel.

The point of concurrence, when it exists, is called the
radical centre of the three. It is the only point having
equal powers with regard to all three, and when these powers
are all positive it is the centre of a circle whose radius is the
square root of this power, and which cuts the three given
circles at right angles.

Let us calculate the difference of the powers of a point with
regard to two given circles. When the circles are concentric,
it is the difference of the squares of the radii. Suppose them
non-concentriec. Their centres shall be C'C”, their radii »+/,
while the distance of their centres shall be d. Let ¥ be the
intersection of the radical axis with the line of centres

((JT])f’)z—((}’_I?)')2 = ri—r"?
(CF)—("F) = +d

2 — "2 + 2
Now let P be any point, H the foot of the perpendicular
from there on the line of centres, its powers with regard to the
two circles p and p’.  We easily find

p—p'= 2(ﬁ)d. (25)

Theorem 169.] The numerical value of the difference of
the powers of a point with regard to two non-concentric circles
s twice the product of its distance from the radical axes
multiplied by the distance between the centres. *

If a point be taken upon the circle of similitude of two
circles, outside of both, and a tangent be drawn thence to each
circle, the two not separated by the centres, it will be found at
once from 26] that the chords which the circles determine on
the line connecting the points of contact are equal, so that the
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power of each point of contact with regard to the other circle
is the same; the converse will also hold, hence

Theorem 170.] If two points be taken on two unequal and
non-concentric cireles in such a way that each has the swme
power with regard to the other circle, and the tangents at these
points are not separated by the centres of the circles, then the
intersection of these tangents is on the circle of similitude of
the two.

Let the distance from C to a point of CC” be , this point
being the centre of a circle of radius p. If

P22 4 2 _ r—ptta?
2d % 2@
(12— "2+ d2)
d
then each two of our three circles have the same radical axis.
Let us put p= 0, and consider the discriminant of the resulting
quadratic in z ; we assume 72 = %

(7.2_7.'2 +d2)2 %
N
Assume, first, (r—d)?—7"?>o0.
The two original cireles did not intersect; there are two real
values of 2 for which p = 0, i.e. two points which may be
looked upon as limiting circles of radius zero. These shall
be called the limiting points of the system of circles. The
power of a point with regard to a point circle shall, naturally,
be defined as the square of its distance from the point to
which the circle has shrunk. Any point outside the segment
of these limiting points may be taken as the centre of a cirele
having with either of the original circles the same radical
axis as they have with one another.

w?__ m_l_,).z — pz,

472

Suppose, secondly, (r—d)?—+"%2= 0.

Here the original circles are tangent to one another. Their
point of contact is the single limiting point of the system,
every other point of the line of centres in the centre of
a circle touching the two at the limiting point.

Lastly, let (r—d)?—+"? < 0.

1702 G
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Here the given circles intersect in real points. Any point
on their line may be taken as the centre of a circle through
their intersections; the least possible radius for such a circle
will be one-half the distance between these two common
points, and there are no limiting points in the system.

If a system of circles be so related that each two have the
same radical axis, they are said to be coaxal circles. Circles
through two common points or touching the same line at the
same point are examples of such systems.

A system of circles through two points will cut interesting
ranges on any line through either point.* Let two such
points be A and B, and let two lines through B meet the
various circles in the ranges P, P,...P, and Q,0Q,...Q,
respectively.

Since AAPij and AAQ;Q;, are similar,

(P;P)): (Q:Q)) = (AP;): (4Q) = (P; Py) : (Q; Qp),
(PiP)): (P Pr): (PP = (@:Q)) : (@ Q1) : (@1 Q)

Theorem 171.] A system of circles through two points cut
such ranges on any two lines through one of the points that
corresponding distances are proportional, and, conversely, if
two ranges be given on intersecting lines in such a way that
corresponding distances are proportional and the point of
intersection does mot correspond to itself, then the lines con-
necting corresponding points in the two ranges are concurrent
in « point common to all circles containing a pair of corre-
sponding points and the point of intersection of the two lines.

Since the Simson line of A is the same for all triangles

Theorem 172.] If a system of circles through two points cut
ranges on two lines through one of these points, then the feet of
the perpendiculars from the other point on all lines connecting
corresponding pairs of points of the two ranges are collinear.

Theorem 178.] If two circles cut a third either orthogonally
or in two pairs of diametrically opposite points of the latter,

* Casey, loc. cit., ch. v.
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then the centre of the third circleis on the radical axis of the two,
and every point of the radical azis not between the intersections
of the circles, when such exist, is the centre of a circle cut by
hoth at right angles, while every point between such intersections
is the centre of @ cirvcle cut by both in pairs of diametrically
opposite points.

We see, in fact, that if a point have the same positive power
with regard to two cireles it is the centre of a circle cutting
both orthogonally, while if it have the same negative power
with regard to both it is the centre of one cut by both in
pairs of diametrically opposite points, the radius being in the
first case the square root of the power, and in the second the
square root of the negative of the power.

Theorem 174.] If two circles intersect two others ortho-
gonally, then every circle coaxal with (orthogonal to) one pair
48 orthogonal to (coaxal with) the other. The radical axis of
each system is the line of centres of the other.

We see that the plane is thus covered with a double net-
work of circles in such a way that every point not on either
radical axis is the intersection of two ecircles, one of each
net-work, and these circles cut orthogonally. Remembering
that the limiting points of a coaxal system are point circles of
the system,

Theorem 175.] If two cireles intersect, the coaxal system of
circles cutting them orthogonally will have their points of in-
tersection as limiting points; if two non-concentric circles do
not intersect, the limiting points of their coaxal system are
common to all circles orthogonal to them.

Theorem 176.] If a system of circles be tangent to one
another at any point, they are orthogonal to @ second system
tangent at this point.

Two coaxal systems of mutually orthogonal circles are sald
to be conjugate.

Theorem 177.] The limiting points of @ coaxal system of
circles are mutually inverse with regard to every circle of the
system.

G 2
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Theorem 178.] The inverse of a coaxal system is either
@ coaxal or concentric system, or a pencil of concurrent or
parallel lines.

Theorem 179.] If three non-coaxal circles be given, no two
concentric or intersecting, the three pairs of limiting points
which they determine two by two are concyclic or collinear.

Theorem 180.] Two mutually inverse civcles are coaxal
with the circle of inversion.

Theorem 181.] If two points A and C lie on a circle ortho-
gonal to all circles through B and D, then B and D lie on
@ cirele orthogonal to all cirveles through A and C.

Two such pairs of points are said to be orthocyclic.

It is perfeetly clear that the cireles of a coaxal system with
two common points may be inverted into a system of con-
current lines. A system with no common point, being the
orthogonal trajectories of a system with two such points,
may be inverted into a concentric system. A system all
tangent at one point may be inverted into parallel lines.
The following theorem has already been suggested.

Theorem 182.] If the radical centre of three circles lie
without one, and, hence. without all of them, it is the centre
of a circle cutting all three orthogonally, and they may be
inverted into three civeles with collinear centres; if it lie
within one, and, hence, within «ll three, it is the centre of
a circle eut by all three in pairs of diametrically opposite
points.

Suppose that we have a triangle with our usual notation,
a point P not on any side-line, and let P;P; meet 4,4,
in B;. Applymﬂ Desargues’ triangle theo1em to A A4, A b,
and A I8 P , Py, since the three lines 4;P; are concurrent the
points B;, B;, By, are collinear. If, in par ticulax P be the ortho-
centle, we qee H, H), is anti-parallel to 4;A4;, and the points
5o Ay, H Hk are concyclie, i.e. B; has the same power with
regard to the nine-point and circumseribed cireles.
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Theorem 183.] The radical axis of the nine-point wnd
cirewmscribed circles contains the intersections of corresponding
side-lines of the given triangle and the pedal triangle of the
orthocentre.

Theorem 184.] Z'he orthocentre of a triangle is the radical
centre of any three circles euch of which has a diameter whose
extremities are a vertex and a point of the opposite side-line,
but no two pussing through the same vertezx.

We see, in fact, that, since the orthocentre is a centre of
similitude for the circumscribed and nine-point circles, the
product of its distances from each vertex and the foot of
the corresponding altitude is constant. Suppose next that
we have a complete quadrilateral®* The orthocentres of the
triangles formed by the given side-lines three by three will,
apparently, all be radical centres for the three circles whose
diameters are the three diagonals of the complete quadri-
lateral. 'This apparent contradiction leads to the Gauss-
Bodenmiller theorem.

" Theorem 185.] The three civcles on the diagonals of a
complete quadrilateral as diameters are coaxal.t

We get from 74] and 156]

Theorem 186.] The radical axis of the three civcles on the
diagonals of « complete quadrilateral as diameters contains
the orthocentres of the four triangles determined three by three
by the side-lines of the quadrilateral, and is parallel to the
Simson line of the Miquel point, but twice as far from this
point as is the Simson line.

Theorem 187.] Two pairs of circles c,c; and cyey are euch
coaxal with « given civcle; then if ¢, intersect ¢, and c,
intersect ¢, the four points so determined are concyclic.}

Suppose that we have three segments each bounded by onc
vertex of a triangle and a point of the opposite side-line, and

* Cf. McCleland, loe. cit., p. 189. Not a little of the remainder of the
present chapter is taken from this source.

+ Bodenmiller, Analytische Sphirik, Cologue, 1830, p. 188,
% Chasles, loc. cit., p. 540,
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all having in common a point 8. Let the perpendiculars on
the lines of these segments from the orthocentre meet the
circles having the segments as diameters in the three pairs
of points B;B;. Let us first show that these six points are
coneyclic. We see, in fact, since I is the radical centre of
the three circles with diameters (4;5;), (4;5;), (4;,5),

—> > = - > s>

(HB)) x (HB)') = (HB,) x (IB,)) = (HB,) x (HB,).
On the other hand, the perpendicular bisectors of the segments
(B;B;) pass through S, hence S is the centre of a ecirele
through all six. We next notice that H has the same power
with regard to the three circles on diameters (4,8;) as with
regard to those with diameters (4;4,;). If we take M as
a centre of similitude, and a ratio —1: 2, we change 4,4,4,
into M, M,M,. Let 1" be transformed into S.

Let 0;C{ be the points where the line through I7 174,
meets the circle whose diameter is (4;4;). Once more

—> > - —
(HC,) x (HCY) = (HC,)x (C).

The perpendicular bisectors of the segments (C;C;) pass
through the points 3/; and are parallel to the lines 4,7, and
correspond to them in the similarity transformation. They
arc thus concurrent in S. Lastly, since [ has like powers
with regard to all six circles,

Theorem 188.] If S be any point, and T the point which
bears to the original triangle the same relation that S bears to
the middle point triangle My M, My, then the intersections of
the circles on segments (4;S;) as diameters with the perpen-
diculars from the orthocenire on these segments, and of the
circles on the segments (A;4;) as diameters with the corre-
sponding perpendiculars from the orthocentre on the lines T4,
lie on a circle with centre S.*

Let us return to our theorem 169] from which flow a great
wealth of interesting results. If a circle of radius p have
contact of a specified kind with two others, the difference of
the powers of its centre with regard to these two will be
2p (r7).

* Hagge, ‘Ein merkwirdiger Kreis des Dreiecks’, Zeilschrift fir mathe-
matischen Unlerricht, vol. xxxix, 1908.
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Theorem 189.] If « variable circle huve contact of « fixed
type with each of two given non-concentric circles, or have just
the reverse contact with each, then its radius will bear o fixed
ratio to the distance of its centre from the radical axis.

If we call the distance to the radical axis &, the fixed ratio ¢,
and take a line parallel to the radical axis at a distanceg
therefrom and on the proper side thereof, the distance of the
centre of the variable circle therefrom is %times its distance

from the centre of the circle of radius ». We see, also, that
the sum or difference of the distances from the variable eentre
to the fixed centres is constant. We thus reach the fundamental
theorem for central conics.

Theorem 190.] If a point so move that the sum or differeice
of its distances from two fixed points is constant, its distance
Jrom either fixed point bears o constant ratio to its distance
Jrom a corresponding fized line perpendicular to that which
connects the fized points.

The power of a point with regard to any circle of a coaxal
system is by 169] twice the produect of its distance from the
radical axis multiplied by the distance from the centre of
the circle to that of the circle of the coaxal system through
the given point. The point is supposed, of course, not to be
on the radical axis.

Theorem 191,] If there be any points whose powers with
regard to two non-concentric circles bear « fixed given ratio
different from wwity, they all lie on one circle coaxal with the
two given ones.

The necessity of the proviso that such points should exist
is apparent when we reflect that if, for instance, the circles
were very small and far apart there could be no point corre-
sponding to such a ratio as —1.

Theorem 192.] If a wvariable chord of o circle subtend a
right angle at a fized point, the foot of the perpendicular from
the fixed point on the line of the chord und the point of inter-
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sections of the tangents at its extremities trace coaxal or
concentric circles.

We see, in fact, that if we treat the given point as a cirele of
radius zero, the foot of the perpendicular on the line of the
chord and the middle point of that chord trace the same
circle, since the power of each with regard to the given circle
is the negative of the square of its distance from the fixed
point. We have then but to apply 180].

Suppose that a variable line meets one circle in points S, 1,
and makes therewith an angle a;, while its intersections and
angle with a second circle are S, T, and «,. If we find a point
where a tangent at S or 7', meets one at S, or T),, we see that
the tangential segments thence to the two circles bear the
ratio sin o, :sin ;.

Theorem 198.] If a pair of tangents be drawn to each of
two circles, the points of contact being collinear, then the
intersections of the tangents to one civcle with the tangents
to the other will lie on « circle concentric or couxal with the
given cireles, or on their radical axis.

Theorem 194.] If a variable line move in such a way that
the segments cut thereon by two fixed civcles have a constant
ratio, then the locus of the intersections of the tangents to the
Jirst circle where it meets this line, with the corresponding
tangents to the second, is a circle concentric or counxal with the
given circles or their radical awxis.

Suppose that we have a quadrilateral inscribed in a circle.
If a transversal be so drawn that it makes an isosceles triangle
with one pair of side-lines, or with the diagonal lines, then it
will do so with the remaining side-lines or diagonal ones.
Let us also momentarily extend our concept of the isosceles
triangle so as to say that a line perpendicular to two parallel
lines makes an isosceles triangle with them.

Theorem 195.] If a quadrilateral be inscribed in a circle,
then we may, in an infinite number of ways, find three other
circles concentric or coaxal with the original circle and with
one another such that each is tangent to a pair of opposite
side-lines or diagonal lines of the quadrilateral.
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Theorem 196.] If a wvariable triangle be imscribed in
« circle, and if two of its side-lines continually touch two
circles concentric or coaxal with the given circle, the sume is
true of the third side-line.

A rigorous proof of this is not difficult, but a little delicate.
Let us take two positions of our triangle 4,4,4,, A'A4,/A;.
Suppose that 4,4, and A4,/A, touch a certain cirele, while
A4/, A,A,) touch another concentric or coaxal with this
and with the given circle. In the same way 4,4/, 4,4/
will touch a third circle of the coaxal system. Now it is
conceivable that the circle touched by 4,4, 4,4, should
be different from that touched by A;4,, 4,4/, for two
circles of the coaxal system might well both touch A4 4.
If, however, we can show in a particular case that one of the
circles of the coaxal system tangent to 4,4, is extraneous
to the discussion, we shall know that in general both circles
will not appear. The particular case is when A4, is infinitely
near A4, the circle tangent to 4,4, is the original circle, the
other coaxal circle tangent to this is distinet from this and
not connected with the discussion. Hence 4,4/, 4,4,
A, A/ all touch opne circle of the coaxal system, and
A,A4,, A/A, also touch one of these cireles.

Theorem 197.] Pouncelel’'s theorem. If a polygon of any
number of sides be inscribed in « circle, and all of its side-
lines but one each touch « fized circle of a system concentric
or coaxal with the given one, then the sume is true of the
remaining side-line.*

Theorem 198.] The problem of inscribing a polygon of
any given nwmber of sides in a given circle so that its side-
lines shall also touch a second given circle has an infinite
number of solutions if it have any at all.

There are certain special cases coming under our theorem 191]
which deserve particular notice. If the fixed ratio be unity
we do not get a circle, but the radical axis. Let us rather
look at the case where the ratio is —1. The locus is in this

* For the most full discussion of this and allied questions see Weill, ‘Sur

les polygones inscrits et circonscrits & la fois b deux cercles?, Liouville's
Journal, Series 8, vol. iv, 1878 ; also Biitzberger, loc. cit., pp. 7-32.
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case called the radical circle of the two original ones* Tt
will actually exist if the circles intersect, or if, not inter-
secting, they lie on the same side of their radical axis, or if
they be concentric. The centre will be half-way between
their centres. We leave the verification of these statements
to the reader.

Theorem 199.] Two intersecting or tangent circles, or two
non-intersecting circles which are concentric or else lie on the
sume side of their radical axis, have a radical circle which
is the circle coumal with them whose centre is mid-way between
their centres.

The slight modification needed in the case of concentric
cireles is easily made. J

Theorem 200.] If three circles be given whereof no two are
concentric, the radical circle of each puwir is identical with that
of the radical circles determined by the circles of the pair
severally with the third circle.

The truth of this theorem is, of course, contingent on the
existence of all the radical circles in question. We see, more-
over, that the radical axes of both pairs of circles are parallel,
for ome is orthogonal to a side-line of a triangle while the
other is perpendicular to the line connecting the middle points
of the other two sides, Moreover, the radical centre of three
original circles is easily seen to be the radical centre of the
radical cireles which they determine two by two. The theorem
is thus proved.

If a circle be cut by a second orthogonally, while it is cut by
a third in a pair of diametrically opposite points, its centre
has powers with regard to the other two circles which differ
only in sign.

Theorem 201.] ZT'he radical circle of two given circles is the
locus of the centres of circles cut by the one orthogonally, and by
the other in diametrically opposite points.

* Cf. Duran-Loriga, ¢ Ueber Radicalkreise’, Grunerts Archiv, Series 2, vol, xv,
1896.
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Theorem 202,] The pedal circle of two isogonally conjugate
points is the radical cirele of any pair of circles whose centres
are these points, and each of which cuts orthogonally the three
circles whose diameters are the segments cut by the other on the
side-lines of the triangle* -

Theorem 203.] The wine-point circle of an cobtuse-angled
triangle is the radicul circle of the circumscribed circle and
a circle of anti-similitude of this and the pedal circle of the
orthocentre.

Theorem 204.] ZThe circles on two sides of a triangle us
diameters have the circle whose diameter is the included median
as their radical circle.

Besides the radical eircle there is one other circle of the
coaxal family that is interesting. We see at once from 27]

Theorem 205,] The circle of similitude of two given circles
is coawal with them.

Consider, now, three circles with non-collinear centres. The
three circles of similitude which then determine two by two
cut orthogonally the common orthogonal circle of the original
three, when that exists, and the circle through the centres
of the original three by 13]. This latter will be the radical
circle of the common orthogonal circle and the circle cutting
each of the original three in a pair of diametrically opposite
points.

Theorem 206.] If three civcles have non-collinear centres,
and their radical centre lies outside of them, then the circle
througlh their three centres is the radical circle of their common
orthogonal circle and that circle, when it exists, which cuts
cach of the three in a pair of diwmetrically opposite points.
The coaxal system conjugate to that determined by these new
circles contains the circles of similitude determined two by two
by the given circles.

¥ Roberts, ‘On the Analogues of the Nine-point Circle in the Space of
Three Dimensions’, Proccedings London Mathematical Sociely, vol. xix, 1878,
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Theorem 207.] If a circle move so that each of two given
points has @ constant power with regard to it, it will trace
o coaxal system.

The line connecting the points is a radical axis for any two
positions of the circle.

Theorem 208.] If « circle so move that it culs two others
in diametrically opposite points, or cuts one in diametrically
opposite points and the other orthogonally, it will generate
o coaxal system.

Theorem R09.] If three mutually external circles be given,
their centres being non-collinear, three other circles may be
Jound each cutting two of them orthogonally and the third in
diametrically opposite points, and three each cutting two
in diametrically opposite points and the third orthogonally.® -

Theorem 210.] Given two non-concentric circles. If there
be a cirvcle coawal with them whose centre is the reflexion of
the centre of the first cirvcle in that of the second, then this
third circle will cut in diametrically opposite points all
circles orthogonal to the first circle whose centres lie on the
second.

Theorem 211.] Given two non-concentric circles. If there
be a circle coawal with them whose centre is the reflexion of
the centre of the first civcle in that of the second, then this
circle will cut orthogonally all circles cut by the first in
diametrically opposite points, and having their centres on the
second.

Let us start with two fixed circles. These may be inverted
into concentric circles or into two lines. We thus get

Theorem 212.] If a variable circle cut two fixed circles at
given angles, it will cut every circle coaxal with them either
at a fixed angle or at the supplementary angle.

It is clear that there would be advantage in sharpening
our idea of the angle of two circles in such a way as to
remove the ambiguity in this statement. We do so as follows,
Let each circle be looked upon as generated by a point

* For the three theorems which follow see Affolter, ‘Zur Geometrie des
Kreises und der Kugel’, Grunerts Archiv, vol. lvii, 1875.
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tracing its circumference in a positive or counter-clockwise
sensc. At a point of intersection draw the half-tangents
which lie on the same sides of their respective diameters
as near by-points of the circle traced subsequent to the point
of contact. At each intersection these half-tangents will
make the same angle, except for algebraic sign, and this shall
be defined as the angle of the two circles.* Analytically it is
the angle 6, where Nt
e et
s e (24)

Theorem 218.] If a variable circle cut two fixed circles at
given angles, it will cut at a given angle every civcle con-
centric or coaxal with them.

Suppose that we have a circle cutting three given circles
at chosen angles. If we simplify the figure by inversion, we
see that there will be a second circle cutting them at the same
angles or cutting all three at just the supplementary angles;
the two are mutually inverse in the common orthogonal circle
of the first three, when this circle exists. The problem of
finding a circle cutting three given circles at assigned angles
or at exactly the supplementary angles has thus, usually,
more than one solution. The cireles will be orthogonal to
three circles each coaxal with two of the given circles. These
three new circles must be coaxal, as otherwise they would
have but one common orthogonal circle. The circles sought
will thus belong to a coaxal system, and touch six given
cireles, but every circle of the system touching one of the six
will touch the other five,

cosf =

Theorem 214.1 The problem of constructing a circle to cut
three non-concentric and mnon-coaxal circles at preassigned
angles or at just the supplements of these angles has, at most,
two solutions. The construction may be effected by the aid of
ruler and compass.

We shall postpone to a subsequent chapter the explanatidn
of the actual construction to be employed. For the moment

* The angle, so defined, will be transformed into its supplement by
inversion if one circle surrounds the centre of inversion, and the other
does not.
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let us consider the problem of constructing a circle to meet
certain given circles at equal angles. We easily see by
inverting two circles into concentric circles or into two lines
that a circle cutting them at equal angles will be orthogonal
to one particular circle of anti-similitude, when such exists,
and, conversely, every circle orthogonal to this circle of
anti-similitude will cut them at equal angles, while a circle
orthogonal to the other circle of anti-similitude will cut them
at supplementary angles. To be more specific, we see that
if two circles intersect, both cireles, of anti-similitude, exist ;
the circles which cut them at equal angles are orthogonal
to the external circle of anti-similitude, i.e. to that whose
centre is the external centre of similitude ; a circle cutting
them at supplementary angles will be orthogonal to the
internal ecircle of anti-similitude. If two circles lie outside
one another, there is no internal circle of anti-similitude, and
circles cutting them at equal angles are orthogonal to the
external circle of anti-similitude, or to the radical axis when
the radii are equal. When one circle surrounds the other
there is no external circle of anti-similitude, and the internal
one is orthogonal to those circles which cut the two at
supplementary angles.

Theorem 215.] If a circle cut two others at equal angles
it s orthogonal to their external civcle of anti-similitude
when this civele exists, and every such circle cuts them at equal
angles if at all. If a cirvcle cut two others at supplementary
angles it will be orthogonal to their internal circle of anti-
simalitude when such a circle exists, and every circle orthogonal
to an internal circle of anti-similitude will cut the given
cireles at supplementary angles if it cut them at all.

If a circle cut two others and be orthogonal to a circle of
anti-similitude, it is anallagmatie with regard to the inversion
in that latter circle (which interchanges the original circles).
The intersections with the original circles are thus collinear
in pairs with the centre of this circle of anti-similitude. If
the circle of anti-similitude do not exist, and be not replaced
by the radical axis, the given circles are interchanged by the
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product of a reflexion in the centre of similitude, and an
inversion in a circle with this as centre, and every circle
invariant for such a transformation will cut the original
circles in equal or supplementary angles. Conversely, if
a circle cut two others at equal or supplementary angles, yet
be not orthogonal to a circle of anti-similitude or radical axis,
it is easily seen to be carried into itself by such a trans-
formation.

Theorem 216.] If a circle intersect two other non-concentric
circles of unequal radius at equal angles, the points of inter-
section are collinear two by two with the external centre of
simalitude; of it intersect two others at supplementary angles,
the points of intersection are collinear in pairs with the
anternal centre of similitude.

Theorem 217.] If each of two mon-concentric circles cut
two other mon-concentric ones at one same angle, then the
radical axis of euch pair passes through the external centre
of similitude of the other pair or is parallel to their line of
centres when the circles of the second pair have equal radii.
If each of two momn-concentric circles make supplementary
angles with each of two other non-concentric circles, and each
cirvcle of the second pair make supplementary angles with
each of the first, then the internal centre of similitude of each
pair lies on the radical axis of the other.

The radical axis of two circles will replace the external
circle of similitude when, and only when, they have equal
radii, whence

Theorem 218.] If a centre of inversion be taken on a circle
of anti-similitude, the inverses of two given circles will have
equal radii.

Suppose next that we have three circles. A line connecting
two external centres of similitude will pass through the third,
when the latter exists; a line connecting two internal centres
of similitude will pass through an external centre.

Theorem 219.] If three civcles be given with non-collinear
centres, the circles cutting them at equal angles form a coazal
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or concentric system, as do those which cut one at angles
supplementary to those cut on the other three. The locus of the
centres is the perpendicular from the radical centre of the
original three on « line containing three of the centres of
similitude which they determine two by two.

Theorem 220.] If four circles be given, mo three having
collinear centres, there is at most one circle cutting all at
equal angles, four cutting one in angles supplementary to the
angles cut in the other three, and three cutting one pair in
angles supplementary to those cut in the other pair.

Theorem 221.] A necessary and sufficient condition that it
should be possible to invert three circles simultaneously into
three circles with equal radii is that « civele of anti-similitude
of one pair should intersect such a circle of another pair in
a point outside all three given circles.

It is a parlous undertaking to suggest possible lines of
further advance in the subject of plane geometry. On the
one hand, the subject has shown itself inexhaustibly fertile,
new discoveries have come in such numbers at times when
a superficial observer would have felt sure that the last word
had been said, that it would be highly unwise to assert that
with a little patience one might not strike oil by working in
any portion of the subject. On the other hand, the existing
literature is so vast that there is a large antecedent probability
that any new seeming result may have been discovered decades
if not centuries before.

It seems likely that there are other simple criteria for
various systems of tangent circles like Casey’s condition for
four eircles tangent to a fifth, Vahlen’s criterion for poristic
systems, or the Euler conditions that there may be a triangle
or quadrilateral inseribed in one circle which is circumseribed
to the other. There seem to be limitless possibilities for
finding circles through notable points or tangent to notable
lines. There must be other circles analogous to the P circle.
It seems likely also that there are other special cases of Tucker
circles which are worthy of attention. Moreover, it may be
possible to generalize the Tucker systems in interesting ways
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as suggested by 67]. It seems likely that there are other
chains of concurrent circles and concyclic points besides those
noticed in theorems 162-6. The Brocard figures seem to offer
an inexhaustible store of theorems. It is quite likely also that
in coaxal systems of circles there may be other interesting
circles besides the special ones which we have discussed. For
instance, the following theorem came to our notice too late
to be inserted in its proper place.

Theorem 222.]1 If a transversal through the centre of the
circumseribed civcle meet the sides of a triangle in the points
B,, B,, B,, the circles on (4;B,) as diameters are concurrent
on the circumseribed and nine-point circles*

The concurrence on the nine-point cirele comes from 68],
that on the circumscribed circle comes from 184] and the
remark immediately following.

* Thébault, ‘Sur quel-ques théorsmes de géométrie élémentaire’, Nowvelles
Annales de Math., Series 4, vol. x, 1910,

1703 H



CHAPTER 1II

THE CIRCLE IN CARTESIAN PLANE
GEOMETRY

§ 1. The Circle studied by means of Trilinear
Coordinates.

ALL figures studied in the present chapter are supposed to
exist in one plane which has been rendered a perfect con-
tinuum by the adjunction of the line at infinity. The
complex domain is included as well as the real. We call
this the cartesian plane. The assemblage of all points in
such a plane may be put into one to one correspondence with
that of all triads of homogeneous coordinate values, not all
simultaneously zero.

In studying circles in the cartesian plane, three types of
coordinates may properly be used. We start with the least
fraitful, trilinear coordinates* Let us take a fundamental
triangle whose side-lines have the equations

cosoyz+sinoy—m; =0, 1=1,2,3. (1)

We take as the trilinear coordinates of any finite point,
whose cartesian rectangular coordinates are (z, %), the three
quantities

Pi = —(cos oz + sin oY) + 75 (2)

We assume that the triangle surrounds the cartesian origin,
so that each ecoordinate of the origin is positive. Every
other point within the triangle will also have three positive

* Cf. Whitworth, Trilinear Coordinotes, London, 1866; Casey, Analytic
Geometry of the Point, Line, Circle, and Conic Sections, Dublin, 1893, a brilliant
but untrustworthy book. Also Clebsch-Lindemann, Vorlesungen tiber Geometrie,
second ed., Leipzig, 1906, vol. i, part 2, pp. 312 ff.
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coordinates. The coordinates of any finite point will be
connected by the fundamental identity
i=3
Sap; =24, (3)
=)

If the left-hand side of this equation be equated to zero,
we have the equation of the line at infinity, whose points
may be put into one to one correspondence with sets of
coordinate values satisfying such an equation. If the radius
of the circumseribed circle be #, our fundamental identity
may also be written

i=3
2 2A
ESIDX_.A@']?Z- = 3-igie (4)
e=1
Let us begin by finding the equation of this circumseribed
circle. Since it is a conic circumscribing the triangle of
reference, it must come under the form
i=3
2 N\ipipr = 0.
i=1
We determine the coefficients by noticing that the tangent
at a vertex will have an equation

sinf_ A;pp+sinX Ay p;.

Hence the equation of our circle may be put in any one of
the three forms

t=3 i=3 i=3

: a
Zsmzf_Aipjpk =0, Zaipjpk =0, 22—;—:'= 0. (5)
i=1 i=1 i=1

We may proceed in similar fashion to find the equation of
the inscribed ecircle. In line coordinates it must have an
equation of the form

=13
2 iy, = 0,
i=1

The point of contact of a side-line will have the equation

cos® 4 Aju;+cos® 4 Auy = 0.
H 2
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Hence the equation of the inscribed cirele will be

=8
zcos%zf_Aiujuk =19, (6)
i=1
i=38 i=3
Zcos,‘%z{_Aipf—chos?%z{_Aj cos®3 XAy p; pr. = 0.
i=1 i=1

This last equation is factorable, giving the reduced form
for the equation

cos 3 ¥4, \/@icos%Z_Aj /@icos%zf_zlk Vp,=0. (7)

The escribed circle corresponding to the side a; will he
likewise

icost X A, JEisin%l{.Aj «/;)_jisin%z{__flk Vp = 0.

The equations of circles circumseribed or inseribed to a
polygon of n sides may be found in like shape.* Suppose,
in fact, that the sides of an inscribed polygon have the
lengths «, ... @, ; the perpendiculars on these side-lines from
any point of the circle shall be p, ... p,. Taking this point as
centre of inversion, we transform our circle into a straight
line. Let p’ be the distance from the centre of inversion to
this line. Then

=

’ g ) A
Pi =P =g 3 D (A74,. ) =o.
(Ai/Ai-{»l/) el 1 e+l

With regard to signs, we may take all of these segments
except the extreme one as positive, while the latter, which
comes from that side of the original polygon (supposed to be
convex) which shuts the given point from the other sides,
is negative. On the other hand, the number p; corresponding
to this side is negative, while the other numbers p; are
positive. Hence, for every point of our cirele,

=0

2a—i‘=0.

i=1%"

The equation of the cirele will be a factor of this,

* See a highly ingenious article by Casey, ¢ On the Equations of Circles?,
Transactions Royal Irish Academy, vol. xxvi, 1878.
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To find the equation of an inscribed cirecle we see that if
B; be the point of contact of the side (4;4;,,), the circle
must have an equation of the type

PiaaPi = opi%
where p;’ is the distance to (B;_,B;). We see also that ¢ = 1,
since our circle passes through the middle point of the circle
inscribed in the triangle B; ;4,B;. But, by the formula for
the eircumseribed cirele,

i=an

2 (—BZII,B—'L) =R0 (Bi—l Bi) =2p OOS%X—A#
i=1 *

Hence for our inseribed circle

Jeosild;
VPi1Pi

i=1

When the polygon has an even number of sides, the
equation of the circumseribed circle may be put into much
simpler form by means of I. 60], namely

P1PsPs v+ Pan-1F P2 PsPs ++e Pon = 0-
In the case of the quadrilateral this gives
DiPs+Papy =0

When this is reduced to rectangular cartesian form the
coefficient of 2% +7? is

1 [cos (o, — &) + cos (o, — ).

Since properly oriented opposite angles of our quadrilateral
are equal,
c0s (0 — 0g) = — €08 (A — L),

€08 (0 — &) = — €08 (o — Oy).

Now, suppose that this same quadrilateral is circumseribed
to another circle of radius p, the distance of the centres being d
and the radius of the circumsecribed circle » as before. Taking
the centre of the inscribed circle as origin, the cartesian
coordinates of the centre of the circumscribed circle will be
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i=4

/0 z COS O;
e i=1
? 7 eos (0 — o) + cos (0, — )’
i=4
— > sinq;
i=1
Yo

= cos (0, — i) + cos (og—0y)

The power of the centre of the inseribed cirele with regard
to the circumscribed may be obtained by substituting (ppp) in
the equation of the latter when the coeflicient of a2+ 92 has
been divided out, and found to be

4p?
€08 (0 — 0l) + €08 {0ty — ) ]

—(r—d?) =

On the other hand, if we first find d we get

] [(§ cos ;) + (igsin °‘i>2] — 4p?[ 008 (0 — ;) + cos (o — )]

i=1

ol e 1
it [eos (o, — ;) + cos (X — ) |?

i=4 i=4
202 +d?) _1_[(2 cos °‘i>2+ (2 sin ai)2—2[cos(o<1—a3)+cos(a2—or4)]].
2 i=1

=R | =

4

Multiplying out on the right, and remembering the identities
recently found,
2% +d?) _ 1 o g S}
@=dF P Grdf T r=dP P
This is our old formula I (11).

A circle concentric with that circumseribed to our triangle
will have an equation

i=3
5, sin¥ A;p; p; = const.
i=1
The left-hand side of this equation is the double area of the
pedal triangle of the point (p) which proves L 62]. Let us
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inquire under what circumstances the general equation of the
second degree

g

i=s

zuij pipp =90, ay=a;

o=
will represent a circle. It is necessary and sufficient that
it should be possible to rewrite this

j=1 1=3 i=3
)\zsinzf_Aipjpk+p.Eu,;piZsinz,(_A@-pb- =
i=1 i=1 i=1

We have three equations
Ui

Uy =0 = )
Y sinf A;

and three others

Agsti 9 L
sinf A; 4 p[ m{_Ajsm;_ : sz{_Aksm),(_Aj]
e = p (a5, + ay;)-
Eliminating p
aj; sin®f- Ay + ey sin®f A ;—2ay, sin®4_ A4;sin ¥ A; = const.
In the special case where ¢, = 0, j # k,
gay; = sin?f A, [sin?f_ 4; —smzzf_A —sin?f 4;]
Jj=3
=sin24 A, [sin g 4,;.
j=1
We thus find the equation of the only circle with regard to
which the triangle is self-conjugate,
i=3
> sin24 4;p? = 0. (8)
i=1
Let us find the coefficient of @?+3? when the circle
Sa;p;p; =0 is changed to its cartesian form. The coefli-
cient of a,z is Sa;; cosx;cosa;, that of y® is Za,; sino;sin;
i ij
As these two are equal we may replace both by half then
sum, namely

Flan®+ag,’ +ag —2 kCOSZ—A]
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For the circumseribed circle this becomes

i=3 i=3

1 : .
—ZE sin2f 4, = —]]sinx 4,

i=1 i=l

This will also be the coefficient of 2*+ %% in the cartesian
equation corresponding to the trilinear form

i=3 i=3 i=3

zsinzf_Aipjpk+ > wip; 2sini A p; =0,

i=1 i=1 i=1
since the second factor of the last term is a constant. If the
coordinates of a point be substituted in the equation of a circle
and the result be divided by the coefficient of x* + y% we shall
get the power of the point with regard to the circle. Thus, if
we take (ppp) the coordinates of the centre of the inscribed
circle, and substitute in the equation of the circumsecribed

circle,
i=3

p? X sinf A,
i=1

2 o ey .
P=rt= — =3 —-—2)[):

This is our previous formula I (10).

It is geometrically evident that the centre of our circle (8)
is the orthocentre of the triangle, for the polar of any point
with regard to a circle is perpendicular to the line from that
point to the centre. We know from I 50] that this is
a circle of antisimilitude for the circumscribed and nine-
point circles, so that the equation of the latter will be of
the type

i=3 “=3

D sin2 L A;p2—\ zsinzﬁ_Aipjpk =0,
i=1 i=1

We find A by requiring this circle to pass through the foot
of one altitude. '
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The nine-point circle has thus the equation

i=3 t=3
Dsin2) Ad;p2—2 Zsinzﬁ.Aipjpk = O (9)
i=1 i=1

We next notice the identity *

£1=3 i=3
2 sin 24 A, $+2 Zinf dipip
= i=3 =3
= 225in4_Ail)iZGOSX_Ail),E-
G2l ="l

Hence the equation of the nine-point circle may be written

i=3 §=3 (=3

2> sinf A;p Pilr— 2s1n2,(_.A1p D cosid;p;=0. (10)

=1 i=1

The equation of the inscribed circle was seen to be
i=3 i=3

Dcostif A;pr-2> cos’ 3 A cos’ 3 App;pp=0, (7)
i=1

=yl]

and this may also be written

i=3 t=3
costlf A a
; sm?. T 2904 ésm L A;p;

i=3

 cos? 14 A4,
—41—[ sz(_A Zsmzf_A ;i Py = 0.

i= =1

The radical axis of the nine-point and inscribed cirele
will be

1=9

cos 4,
Tnts, 3 SEEL,
=1 U=y |

i=3 t=3

——2:[_[cos2 L A; D cosfA;p; = 0,

i=1

* Whitworth, loc. eit., pp. 294 ff.
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=8
2 cosy i Agsing (L A;—f Aj)sing (L A;—4 A}) p; = 0,
gi==n]
Eg cost i A, AT
RN A

i=1

The coordinates of this line are seen to satisfy our
equation (6), so that the nine-point cirele touches the inseribed
one. In like manner we may prove that it touches the
eseribed circles.

At this point let us make a short digression into the geometry
of conicsections.* We start with the familiar theorem that, if
the side-lines of two triangles touch a conie, their vertices lie on
another conic. If the first conic be a parabola and one triangle
be formed by the tangents through the focus and the line at
infinity, we see that a circle circumscribed to a triangle circum-
scribed to a parabola will pass through the focus. The Miquel
point of four lines is thus the focus of the parabola which
touches them. Let this be the point #, and let us find the
polar reciprocal of our figure with regard to another circle of
centre C. The polar of the parabola will be a conic through C.
A triangle with vertices 4,, 4,, 4, will be inscribed in this
conie, and another conic with focus at C will touch the side-
lines of the triangle. This last conic, regardless of the positions
of 4,, 4,, A, on the conic through them, will always touch
a fixed line, the polar of F with regard to the circle of
reciprocation. The foot of the perpendicular from C on any
line is the inverse of the pole of this line with regard to the
circle whose centre is C; the pedal circle of € with regard to
AA4,, A, A, is the inverse of the circle through F and will
pass through the inverse of F, a fixed point.

Theorem 1.] The pedal civcle of a chosen finite point of
a cowic with regard to all triangles inscribed in this conie
passes through a fixed point.

If the conic be a rectangular hyperbola, we see, by taking
the special case where the vertices are the extremities of the

* Mannheim, ‘Solutions de questions 1798 et 18037, Nouvelles Annales de
Mathématiques, Series 4, vol. ii, 1902.
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asymptotes and either vertex, that this fixed point will be
the centre.*

Let us return to the geometry of the circle. Every conie
through the vertices and orthocentre of a triangle is a rectan-
gular hyperbola, for the involution determined by such conies
on the line at infinity has three pairs of mutually perpendicular
directions. The locus of the centres of these conics is a conie,
namely, the nine-point circle. We thus get

Theorem 2.] If four finite points be given, whereof no three
are collinear, which are not the vertices and orthocentre of
a triangle, the four nine-point circles which they determine
three by three, and the pedal civcle of each with regard to the
triangle of the other three, arve concurrent.

This theorem enables us at once to deduce Fonténé’s exten-
sion of Feuerbach’s theorem which we had before in I. 68].
For if a point move along a line through the centre of the
circumseribed cirele, its isogonal conjugate, whose coordinates
are proportional to the reciprocals of its own, will trace a conic
through the vertices and orthocentre of the triangle, i.e.
a rectangular hyperbola, and the pedal circle of the moving
point and its isogonal conjugate will continually pass through
the centre of this hyperbola.

For the sake of reference it may be worth while to give the
trilinear coordinates of the various notable points of the
triangle which appear in connexion with the Brocard figures.
We get from formulae (13) to (23) of Ch. I,

teilnb O, pepyipy=cosf Ajve08 % A, :co8y A,
Point K, p,:p,:py=sinf A :sinf A,:sinf 4,
=T N,

sinf A; sinf A, sinf 4,
sinf A, sinf A4, sinf 4,

= a5 : aya®: aga,t (11)

Point Q, p,:p,:p, =

* See a remark by ¢ G.’, Nouvelles Annales de Mathématiques, Series 4, vol. v,
1905.

T Fonténé, ibid., p. 504, speaks of this as a well-known theorem.
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_sinf. 4, sinf A, i A4,
POlnt Q .l)l 2)2 1)3 m . —S_]H'X___A_— Sl S]_HK_A
= a,a,? : ayad: 0.2
Point 4/, p;:p;:p;, =sinw:sin ({4, —w):sin (¥-4;—w)
= @yt az® 0t
The vertices of the second Brocard triangle are not quite so
easy to determine.

The equation of any circle through 4; and 4; will be of
the form

t=8 p=t3
2 a; p; pr+lpy, 2 a;p;=0.
t=1 =1

We wish this to touch 4,4, at 4,. Putting P =0,
& Pp Py + Py (03 Py + 2, pp) = 0.

There will be two roots p, =0 if I = — &l The equation

of our circle is, then,
(@ —a®) p; pp+ s, pi p; — ajay, pp* = 0.
To find where this meets the line from 4 to K we put
PP; = Q55 PPR = Oy
We thus get our desired coordinates.
Point 4", p;:p;:pp = af + ot —at: a0, ;0. (12)

Let us find the equation of a Tucker circle. If P; be such
a point of 4,4, that
Z_.Aj QPQ' = 0,

e sing (7, 51N w 8in 0
(AjPi) ot (‘Q'Aj) Sin (w+6) = Sin (w‘l"e) Sing"Aj,

The distance from P; to 4;4, is, thus,

ty,sin o sin 6
sin (o + 0)
The equation of the line P; P/ is, by L 98],

=38

. a smwsmd
prsin (o +06)— —k—zr 2 aip;= 0.
i=1
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The cubie curve

t=1

i=3 Jj=38
[H(zA sin (0 +6) p;—a; sin o sin 0 Eajpj)] — APy PP, =0
Jj=1

will contain the six points P;P;. If we can so choose A that
="8

this equation contains > «;p; as a factor, the other factor
d=]1

will give the Tucker circle for the angle §. We have but to

take A = 8A%sin®(w+6). The Tucker circle is

]S =13
1 J
= [H (24 8in (o +60) p;—«; sin w sin 6 >, @; p;)
g ‘ =t
i=1

—8A3%sin® (v + 6)2)1p2p3] =0, (13)

In the special case of the first Lemoine circle sin 6 = sin o,

i=3 i=3 i=3
16 coszwAEaipjpk—‘iAsinwcosuo Ea,;p,- Zaj ay, ;
=] . i=1 #=1

Si=3

E 2
+a, a0, 81n2w(2 aipi) = 0.
w="1

The Brocard circle is concentric with this, and so has an
equation of the type
#='3 i=3 i=3
16 cos?w A? X a; PjPp—4 Asinw cos > a;p; s a;a p;
% =T i=1 i=1
i=3 R
+ (@, a0, 8in*w —A) ( >a; }’i) =0.
i=1
This must pass through the symmedian point whose

coordinates are proportional to the sides of the triangle.

2
a;

4A

Remembering that ctn w = s A = a,a,0,8in*w, we get the
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following different forms for the equation of the Brocard
circle :

=3 =18 i=8
4Actnw2apjpk 2“ “mzaﬂ%—o
ZI=h) t=1
i=38 9=t =3 1=3
2af 2“ ;D Pp— Z“j“k}’iza'ipi=0- (14)
=1 A=D1} ="l
i=3 1=3
2 sin®{_ 4; Z sin lf—Ainﬁ’k
7 = =E!

=13]

i=3
~ Esinzﬁ_Ajsinzf_A-kpiEsinzﬁ_Aipz =
=31,

A=l

It will be found by direct substitution that the circle with
this equation does effectively pass through our ten points.
Radical axis of Brocard and circumseribed circle

p’l,__o
bt

The area of the pedal triangle of a point (p) is

i=3

2 azpjpk

Uy Qa g

The sum of the squares of the lengths of its sides will be

=3 i=8 -
2 > pif+2 2 pppoosi-4;
i=1 = i J

i=3

=2 pf+ Ghnd, 2“ (@ +az—aif) p; s

=8l

The cotangent of the Brocard angle of this triangle will be

t=3 =13
; 2 ay0ytty 22’ + 2 a; (“ + ot ~a?) yoyan
ctno' = A= &

i=3
]

48 X aspipy

i=1
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Writing the equation of the Brocard circle

i=3 1=3
ayayty 2 PP = 2 4Py, (15)
i=1 t=1
t=3

2 a?

ctn /=i-=1
e vy

= ctn w,
we thus reach an interesting theorem due to Schoute.*

Theorem 3.] The locus of points whose pedal triangles have

the same Brocard angle as the given triangle is the Brocard
circle.

Theorem 4.] The locus of points whose pedal triangles have
a given Brocard angle is a circle coazal with the circumscribed
and Brocard circles.

Let us find the equation of the Neuberg circle corresponding
to (4;4;).

i=3 ©=38 i=8
2“@2 0; Py, + Zuzpz 2%2% = 0.
=L i=1 t-=1

As this is to contain 4;, while 4; and 4 are to have like
powers with regard to it,

u; =0, w; = Aay, Uy, = Aay,.

=¢3 #=3

2“@2 i1+ A (a;p; +aypr) 2 a;p; = 0.

i=1 =1

The coordinates of 4; are 0, zu—A 0. Itspower with regard

J
to the Neuberg circle is, by L. 137], «,% and the coefficient of
#*+%* in the corresponding cartesian equation is
—a;sin)} A;sin)f Aj.
—A4A? ot wl i ey

il = @ .
«; a;sin X A sinX A, a;ay,

* ¢Over een nauwer verband tusschen hoek en cirkel van Brocard’,
Amsterdam Transactions, Series 3, vol. iii, 1887,
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The equation of the Neuberg cirele is

¢t =3 =13
;g > @;P; P — 04 (05 + g Py 2 a;p;=0. (16)
i=1 i=1

We turn to the closely related MacKay circle. The radical
axis of the MacKay and Brocard circles is 4,”4,” whose
equation is
(at—at—at+atar?) pi+ azo; et —af—a) p;

+a;a, (2 af—af—a,f) =0,
The MacKay circle will thus have an equation of the type

=13 i=3 =18

2 a? 2 @p; Pr— E o;p;{la;ap + A (et —at —at + %'2“7;2)] i

=1 ? =1 i=1
+ [apa; + Xaza; (2037 —af—a?)] p;
+[a@a +Aa;ap (20 —at—aP)] p} = 0.
Moreover, by I. 148] A; and 4, have like powers with
regard to the MacKay ecircle,

a;ap +Aa;a; (2a’—al—af) a4 e (207 —af ~ap’)

aj ‘ ay.
e S
e 3(1/']'@]5’
£=3 $=3 2=I8
3ajay, 202 2 a;p;pp— 2 pi{[@f + 42 —a ] p;
F =l i=1 i=1

=8

+a; 2 af[a;pj+arp]} = 0. (17)

t=1

Substituting p, = (—l’i', the coefficient of p? will be

£

=3 212 4 i=38
OL +a —a;
(B[S s S

i=1 7 =4

[(S-(89]-

@Iw
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This shows that the centre of gravity lies on the MacKay
circle. M, has the coordinates

(lr,': ap. aial-

B SO BT e 1 P = 4r

Its power with regard to the Neuberg circle is

i 3a:a.2a:2 % ML
- - — 3a;afa,, =1
@ dpaysiny A,sinX A, J

Its power with regard to the MacKay circle is
2

AL,
1

5

The ratio of these is 1:9, A4, is three times as far from M,
as is M, hence the second intersection of A,M with the
Neuberg circle is three times as far from M as is the second
intersection with the MacKay circle.

Theorem 5.] The middle point of a side of a triangle is
a centre of similitude for the corresponding MacKay and
Neuberg circles, the ratio of similitude being }.

This justifies a remark made after I. 148]. Remembering
the original definition of MacKay circles, we have

Theorem 6.] The MacKay circle corresponding to a par-
ticular side of a given triangle is the locus of the centre of
gravity of a triangle having the given side and Brocard
angle, its vertex also lying on a specified side of the given
side-line.

§ 2. Fundamental Relations, Special Tetracyclic
Coordinates.

It is clear that the trilinear coordinates which we have so
far used are not adapted to dealing with the circle in any
broad way, and, in fact, are of use only in studying those pro-
perties of a circle which are related to a particular triangle.
Let us now turn to homogeneous rectangular cartesian coordi-
nates «:%:¢, and define, once for all, as a circle in the

1702 1
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cartesian plane every locus which corresponds to an equation

of the type

@yt (0% + Y +12) + ) (2 + 2 — %)+, (22t) + 2, (2yt) = 0. (18)
The quantities () shall be called the coordinates of the

circle; they are homogeneous, and subjected only to the

restriction that all may not vanish at once. We distinguish
the following types of circles:

=3
2 Y% = (92
i=0

(a) Proper circles (xx) #0, ix,+x, # 0.

(b) Non-linear null circles (xx) = 0, a,+x, # 0.
These consist in pairs of finite lines through the circular
points at infinity.

(¢) Non-isotropic line circles (ax) # 0, ixy+x, = 0.
These consist in a non-isotropic line and the line at infinity.

(d) Limear null circles (xx) =0, iz,+z,=0.

These consist in an isotropic line and the line at infinity, or
the line at infinity counted twice.

The four multipliers of x,, #,, #,, #; in (18) shall be called
the special tetracyclic coordinates of the point (x, ¥, t), or rather,
any four quantities not all zero which are proportional to
them. The reason for this curious designation will appear
later. The relation between our homogeneous cartesian co-
ordinates and our special tetracyclic ones may be written

Yo:th:Ys:Ys S0 +yP+8): (@ +y ) s 2ab: 298, )

@Yt =Yy Yy — (o + )
Every finite point has thus a definite set of special tetracyeclic
coordinates (y) for which
(¥y) = 0, oty # 0.

Conversely, every set of homogeneous values which satisfy
these relations will correspond to a single definite finite point.
Returning to our circle (z), which we assume to be not a line
circle, we have for the radius

o V()

Wy + X,

(20)
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This expression is, of course, double valued as it stands
Where the circle is real we assume that such a sign has been
attached to the radical that » = 0. The concept of a circle
with a negative radius will be treated most fully in a subse-
quent chapter. Let the reader show that the special tetracyelic
coordinates of a point are nothing more nor less than the
coordinates of that null circle whose centre the point is. The
special tetracyclic coordinates of the centre of (x) are

dim o t (zx)

e 2 (iwy+ )
7 (2x)

)= o, — ————— 21
P& 1 2 (Zwo'l'wl) 3 ( )
py = w,y,
poy = m,.

The coordinates of the circle concentric with (z) and ortho-
gonal thereto are

s © (xx)
TR @y ta)’
- @ (xx)
=@, — 22
o-ml xl (%mo-'-x]), ( )
ch; = Z,,
o‘@: L.

The power of the finite point (y) with regard to the proper
circle () will be

—2(zy)
(Yo + 1) (22 +y) e
This formula holds even when () is null, if it be not a line
circle, and gives the square of the distance of the finite points
() and (y). If the power of a finite point with regard to
a proper cirele be divided by the radius, the quotient is

i ﬂ_ i (24)
V(@) (o + )

This expression has a meaning when the circle is a non-

isotropic line circle. In fact we see that if a point remain

fixed while the radius of a certain eircle increase indefinitely,

12
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the ratio of power to radius will approach as a limit double
the distance from the point to that line which is the limit of the
circle. If we extend the phrase ratio of power to radius to
include this limiting case, it is easy to see that this ratio for
the circle z; = 1, #; = 0 will be

fea .M
o+
The special tetracyclic coordinates of a point are thus pro-
portional to the ratio of power to radius with regard to four
mutually orthogonal cireles, namely, the y axis, the « axis, the
unit circle around.the origin as centre, and the concentric
circle the square of whose radius is —1. It is this aspect of
our coordinates which we shall subsequently generalize. If
two circles be given which are not null, their angle 6 will be
given by

(zy)
cosf = ——2 . (25)
¥ () v/ (yy)
In the case of real circles the radicals in the denominator
should be so taken as to make the radius of each positive.
The formula is then
2+ 7,2 —d?

cosf = T (26)
The condition for orthogonal intersection is
(zy) = 0. (27)
For internal or external contact we shall have
(zy)?
=1, 28
(@) (yy) i

Before proceeding further, let us look at our tetracyclic
coordinates from still another point of view.* The homo-
geneous coordinates (z) may be taken to represent a point in
a three-dimensional space S, which we shall assume has an

* One of the earliest writers to look upon circles as corresponding to
points in a three-dimensional space seems to have been Mehmke, ¢ Geometrie
der Kreise in einer Ebene’, Zeitschrift fiir Mathemalik und Physik, vol. xxiv,
1879. He does not, however, make use of the idea of elliptic measurement,
The reader not familiar with non-Euclidean geometry will find this measure-
ment fully treated in all books on the subject, e.g. the Author’s Elements of
Non-Euclidean Geometry, Oxford, 1909,
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elliptic type of measurement, the equation of the absolute
quadric being
(xz) = 0.

Our formula (25) for the cosine of the angle of two circles
(«) and (y) will give exactly the cosine of the distance of two
points in our non-Euclidean space. The totality of cireles
whose coordinates are linearly dependent on those of two
will give the pencil of circles through the intersections of
two given circles. When the given circles are proper, this
will be a coaxal system as defined in the last chapter. We
shall extend the term coaxal system to include the pencil in

every case.

Plane .
Cirele.
Null circle.
Angle of two not null circles.

Mutually orthogonal cireles.

Coaxal system of circles.

Peneil of tangent circles.

Circles mutually inverse in
proper circle, or reflexions
of one another in a non-
isotropic line.

Cirele of anti-similitude of
two cireles.

Inversion, or reflexion in a
line.

Our correspondence may thus be written :

Space s.
Point.

Point of Absolute.

- Distance of two points not

on Absolute.

Points conjugate with regard
to. Absolute.

Line.

Line tangent to Absolute.

Points collinear with a given
point and equidistant there-
from.

Centre of gravity of two
points.
Reflexion in a point.

As an example of the sort of theorems that correspond in
the two domains, we take the following :

Plane .
The circles of anti-similitude
of three non-coawal circles
are cowxal in threes.

Space S.
The centres of gravity of pairs
Jormed by three given points
are collinear by threes.®

* See the Author’s Non-Euclidean Geometry, cit., p. 102.
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We may establish our correspondence of circles in » with
points in § by a direet geometric process without recurrence
to non-Euclidean notions. Starting with our typical cirele (18),
the cone with the vertex (0, 0, 1,¢) through that circle will
have the equation

Lot [@? + Y2+ 12—t —2uts] + oy [+ Y2 + 22—t + 2ilz]
+ay (22t —2i2z) + 2, (2yt — 2 iy2) = 0.
This may be written
(i ) (224 427+ 1)
— 20 (2 Fut) (R + 2,y + 22 +ayt) = 0.
This cone will thus cut the sphere
P+ yi i +ti =0
in a circle whose plane is
T + L3 Y + L2+ 2yt = 0,
The coordinates of the pole of this plane with regard to the
sphere in question will be

TiY:2:b = &y 1%y %y ).

The coordinates of a circle in the cartesian. plane may be
wnterpreted as the coordinates of a point in space whose polar
plane with regard to a fundamental spheve cuwts that sphere
in a circle whose stereographic projection is the given circle.

Let us in this connexion give the formulae for inversion.
Suppose that we have a point (y) and a circle of inversion (x).
Since every circle through (y) and (y) is orthogonal to (),
and these relations are expressed by lincar equations of like
type, the coordinates of (y’) must be linearly dependent on
those of (z) and (y).

Yi = Ny +tpeg,

W'y)= () =0,
pYi = (w2)y;—2 (xy) =;. (29)
We may go further. Suppose in this equation (y) is any
circle.  Then if (¢) lie on (y) we shall find that its inverse
lies on (y’). Our formula will thus give the inverse of any
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chosen circle. We next turn to the non-homogeneous cartesian
coordinates, taking for our cirele of inversion

24yt =1;
the inverse of (, i) will be
/= "2Lz’ Y=
x+y &+ y*
da?+ dy? = ‘éjf_:;;)«i:,
da! 30/ 4 dy' 8y ~ dzdw+dydy

—=o .
VAP +dy* Vot +oy? T T Y daP+dy* Véat+oy

This last equation shows that the angle between two curves
is equal or supplementary to that of their inverses.

§ 8. The Identity of Darboux and Frobenius.*

It is now time to take up an important identity connecting
the coordinates of any ten circles, which plays a fundamental
réle in much of our theory. Let us suppose that we have two
groups of five circles each, (x) (y) (2) (s) (t) and (') (¥') (")(s) ().
Multiplying together the two determinants |2y 2zst0 | and
| a’y'2’s't’0 | we get the fundamental identity

(') () (22) (as”) (at')

W) (yy') (7)) (') (t))

(22') (zy) (27) (28) (et) = o. (30)
(s2) () (2) () (sF)
(t) (ty) (t2) (@) ()

As a first special case, let (), (¥'), (¢), (s) be four finite
points, no three collinear, nor are all four concyelic. (z) shall

* Tt is rather a delicate question to know to whom one should give the
credit for the identity which forms the subject of the present section. It
was first given in a particular form by Darboux, ¢ Groupes de points, de cercles
et de spheéres’, Annales de 1’ Ecole Normale, Series 2, vol. i, 1872. Frobenius
thereupon announced that he had long been familiar with it, and proceeded
to publish his results, ‘ Anwendungen der Determinantentheoric auf die
Geometrie des Masses’, Crelle's Journal, vol. Ixxix, 1875. Another elaborate
discussion is in an important article, by Lachlan, ¢ On Systems of Circles and
Spheres ?, Philosophical Transactions of the Royal Society, vol. clxxvii, 1886.
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be the circle circumseribed to the triangle whose vertices are
(%), (¢/), ('), and so for (y), (2), and (s): (t) and (¢') shall be the
line at infinity.

| (@) 0 0 0 (lwy+w,)
| ¢ (vy) 0 0 (o)
0=| 0 0 (22) 0 (i3,+2,)
0 0 0 (s8')  (isy+8y)
l ()’ + @) (' +y1') (320 +21) (isy + 8/) 0
__ w2 . " ]
@t m (i, 1a) ©
2t o 0 1
; o
(G0 +y0) (e +y))
= —2(z?)
0 : : 0 1
(220 +21) (i) +27) 1
—2(ss’)
0 0 : : =
(isy+8y) (48" +8,) ‘
| 1 1 1 0

If p, be the power of (') with regard to the circle (x), and

8o for pg, ps, P,
1 1 1 1

P P Py Py

Theovem 7.] If four finite points be given of which no three
are collinear nor do all four lie on one circle, then the sum of
the reciprocals of the powers of each point with vegard to the
circle passing through the other three is zero.

If none of our circles be null or isotropic line circles, we
may divide the various rows and columns in the left side of (30)
by expressions of the type +/(zz). If, then, we indicate the
angle formed by the circles (z) and (') by 4 (z2),

l cos Xz’ cos Y- xy’ cos a2’ cos Y. as cos Y at’
cos £y’ cos X_yy’ cos X yz’ cos X ys' cos L yt’
l cos J_za’ cos X_ 2y’ cos ¥z’ cos Y_zs’ cos Xzt | — o, (31)
cos ¥_s2’ cos J_sy’ cos ¥ sz’ cos Y_ss’ cos Y st’
cos J_tx’ cos Aty cos Y-tz’ cos ¥_ts' cos Y tt’
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On the other hand, suppose that (t) and (¢') are both the line
at infinity, so that the last row and column are d1v1ded by
ity +t, and ¥ty +1¢,, we have

' 1
cos X’ cos X xy’ cos X xz cos i ws pes

] cos X_ya’ cos X_yy’ cos Xy cos L ys

i
" cos ¥z’ cos fzy’ cos Y2z’ cos §z¥ 0. (32)

coa).f_sx cos X8y’ cos L sz cos f_ss’ =

1 1 1 1
T ")’yr ’I'ml % s

i
|
|
l

Ty Ty Ty Ty aT€ the radii of the first four circles and
Ty, Ty Tys Ty those of the second four. Again, suppose that
our circles are non-linear null circles. We have, for any two
groups of five finite points,

dacw'z dxz’z (l:m;'2 dmt'z
2 2 2 2 2
dyxlg dyy'2 L;yz'Z dysfz dytlz
dzw' dzy' C_lzz' dzs' dzl' =10} (33)
d.* d,? d, 2 2 d

Here d,, means the distance from the point (x) to the
point (x’). If the second set of five proper circles or non-
isotropic lines be identical with the first, we have

) 1 cos f_xy cos f_wz cos fws cos Y at |

| cos X yx 1 cos¥_yz cos X ys cos Xyt
cos X_zx cos f_zy 1 cos.zs cos izt | = 0. (34)
cos X sx cos i sy cos)_sz 1 cos X_st

| cos X tw cosi-ty cos¥.tz cos)_ts 1
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We get similarly from (32)

1
1 cos f_xy cos X_xz cos X.as =
X
1
cos X yx 1 cos J-yz cos X ys r
y
1
cosX_zx cosX.zy 1 cos X zs — =0 (35)
4
cos fsx cosX_sy cosX sz 1 o
7‘8
1 1 1 1
= = — U |
Ty 7y r, 7y

If each set of five be made up of four finite points and the
line at infinity, we get Euler’s identical relation for any four
(finite) points in the plane,

0 dyy? dy? dy? 1
dy? 0 dytdy 1
dz‘r2 dzy2 0 d’zsz l11=0 (36)
dggiid,e bt 10,5, 1
ol 1 1 1 0

If we take four finite concyelic points, and the cirele through
them,
| o dtdtdnt
A 0] 2 2
clwz 02 dy, (Zyg2 .
% clzy 0 d,

dd 4yt 4,2 0

(dxydzs + d.rz dys + darsdyz) (Clity dZS + dxz dys = tlil’s dyz)
(dpydg=dpydyg+ dpydy,)) (—dpydp + dyydyy+ dyyd,y )= 0. (37)
This last equation gives Ptolemy’s theoremm for a quadri-
lateral inscribed in a cirele.
If three circles have the coordinates (y), (2), (), their equa-
tions are
(zy) = (x2) = (ws) = 0.

The coordinates of their common orthogonal circle will be

) ;
pary = 7| ty3s | (38)
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A necessary and sufficient condition that this should he
null is
() (y2) (ys)
(2y) (22) (zs) | =0. (39)
(sy) (s2) (ss)
When all of our given circles are proper this may be written
1 cos faxy cos X az |

cos Xy 1 cos X yz
cos §—zx cos 4 zy 1

A necessary and suflicient condition that four circles (y), (2),
(s), (t) should be orthogonal to a fifth is

=0. (40)

| (wy) (y2) (ys) (yt) |
(~3/) (22) (28) (at) | = (41)
| (s) (SZ) (ss) (st) |
‘ (ty) (t2) (ts) (t1)

When none of them are null we may write

1 cos J-yz cos i-ys cos iyt
cos X zy 1 cos ) zs cos fzt
cos X_sy cos X_sz 1 cos A st
cos ¥ty cos Xtz cos)i_1s 1

On the other hand, if we have four proper circles, (), (y),
(2), (s), each two of which are orthogonal, we get from (35)

| yast | =

=0. (42)

T
Bt b

Theorem 8.] The sum of the squares of the reciprocals of the
radii of four mutually orthogonal proper circles is zero.

We defined as the special tetracyclic coordinates of a point
numbers proportional to the ratio of power to radius with
regard to four mutually orthogonal circles which were not
null ; extending the meaning of this ratio to the cases where
some of the cireles were non-isotropie lines. Suppose, now,
that we have any four mutually orthogonal circles not null
and we take the ratio of power to radius with regard to each,

1
o R = 0. (43)
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interpreting this ratio as before for line circles. If the four
ratios be proportional to s, s,, 8, s,, wo have

1 0 0 0 —g
0 il 0 0 =g
0 0 I 0 —s =0
‘ 0 0 0 1 =—sg
=8 T8 T =8 0|
s+ 82+ +82=0. (44)

If, then, we deiine these ratios as the general tetracyclic
coordinates of a point* we see that they are linear in the
special tetracyclic coordinates, and connected by the same
quadratic identity ; the sum of the squares vanishes.

Theorem 9.] The passage from one set of tetracyclic
coordinates to another is effected by a quaternary orthogonal
substitution.t

The sum of the squares of the four variables will be a
relative invariant for all such substitutions, as will be the
polar of this form, hence the expression for the angle of two
not null or isotropic cireles will be invariant, and we have in
the general tetracyclic coordinates for two circles (x) and (y)

(xy)
€08 0 = ——— =
V(@) v/ (yy)
The determination of the signs of the radicals in the
denominator can only be effected by a further knowledge
of the relation of the present coordinate system to the
original one. It is to be noted also that our formula (29) for
the inverse of a point or cirele will hold equally well here.

(25)

* Strictly speaking, perhaps, the term general should be extended to the
case of any four circles where the simple identity would be replaced by
a more complicated quadratic relation. The restriction to the orthogonal
case is highly useful in the case of tetracyclic coordinates, and sanctioned by
custom.

+ The term orthogonal substitution is sometimes restricted to the case where
the square of the determinant is unity. We do not impose this restriction,
and merely require the invariance of the sum of the squares of the variables.



11 " CARTESIAN PLANE GEOMETRY 141

Theorem 10.] The equation of a cirele will be linear in the
general system of tetracyclic coordinates, and the expression
for the cosine of the angle of two not null or isotropic circles
will be invariable in form.

If two proper circles cut two others orthogonally, the
radical axis of one pair is the line of centres of the other.

Theorem 11.] If four mutually orthogonal proper circles
be given, their vertices are the vertices and orthocentre of
a triangle.

Let (y), (2), (s) be three proper circles, (/) (') (s') the vertices
of an arcual triangle determined by them. Let (2) be the
circle circumseribed to this triangle, (¢) the common ortho-
gonal cirele to (y) (2) (s), while (y”) is orthogonal to (2)(s) (¢).
Taking the two groups of circles

) (@) (5) (@) (¢), &))@,
() o 0 (y") 0 |

0 () 0 0 0 '

0 0 () 0 © [

0 0 o (zy”) ()
(ty) () () o (tt)
(yy) (y”) () + (yy") (wt) (ty') = o.

B ) (at) [ (vy") (ty) J:

() v/ (y (y”y”) rr () N (tt) wy') V() V("'y")
Now, since (y) (y”) (t) are orthogonal to (z) and (s),
t=pyi +qyi",
0=pWy)+q(yy"), ty)=qy'y")
) =pty)=2pg (YY" )+ W"y") = 2p (ty) + " Y").
() =pty)=—*W"y"),

(&) Sair (=) b L e,
) Vi) YY) T Ve YY) T Ve V)
The right-hand side of this equation is unaltered when we
permute the letters (y), (2), (s).

|
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We thus get an interesting theorem due to Study :*

Theorem 12.] The circles circwmseribed to the arcual triangles
Jormed by three non-concurrent proper circles cut at equal or
supplementary angles the three circles each orthogonal to two
of the given circles and to the common orthogonal cirele.

If four proper circles touch one another externally,

T gl ey R R
Ir.?',
-1 1 -1 -1 -l-
Ty
1
o e 1 —1 —|=o.
,rz
=1 EI 2 p L
7'8
1 1 1
e o (e ot gy
Fp g e W
1 1
i (45)
z % 2,y %Y

Each term on the right appears twice. This formula is due to
Steiner.}

If a circle (s) be externally tangent to (), (y), (¢), three not
null circles, while (¢) is a point thereon, and if s, s,, s, be the
~ ratio of power to radius for () with regard to (z), (¥), (¢),

(= cos¥_xy cosf xz —1 8
"eos L yx 1 cos yz —1 s,

' cos Jzx cos 2y 1 —1s =0
o | —~1 =30 10
8 8 8 00

sin 4 X yz v/s, +sin & § 2 v/5, +sin £ Xy s, = 0.
We see that formula (7) for the inseribed circle is a special

* See a condensed but important article, ¢ Das Apollonische Problem’,
Mathematische Annalen, vol. xlix, 1897, Owing to a mistake in sign, the
present theorem is there given too great an extension.

+ ¢ Einige geometrische Sitze?’, Crelle’s Journal, vol. i, 1826, p. 274,
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case of this. Suppose, more generally, that (z) cuts (), (2), (s)
at angles oy, oy, ;. We get from (33)

1

1 cos X_yz cos J-ys cosx, —

1

cos X zy 1 cos 28 €08, a

Z

1

cos X_sy cos X so 1 cosay — | =0, (46)

8

1

COSQX;  COBO,  COSO 1 =
1 1 1 1

= 5 oy rARR
s 7, T 7

The condition that there should be a real cirele cutting the
three real circles at these three real angles is that the dis-

; 0 . . o 0L
criminant of this quadratic equation in P should be greater

than zero. This condition is easily transformed by means of
the familiar determinant identity

A JA o dA A __ 2 A2A 7
daty; bajj Daij baji TN T ij’ (47)

thus giving

1 cos -z cos X_ys cos &,

cos X2y 1 cos J_ 28 cos X, |
cos X-sy cos X8z 1 cos oy |
COS®,  COSO,  COS O TR
1
l 1 cos X yz cos X ys —
» 'ry
11
cos ¥ zy 1 cos X zs —
X le >0
cos X8y cos ¥_sz 1 £
g
1 1 1
= e 3 0
y 3 :




144 THE CIRCLE IN CH.

The second of these factors may be written

?/0_ "/1_~ "/z_ Y3
iy Yy Vy Yy

0 2 2y 2

Vzz) V(ezz) V(z2) (e2)

| - 8 8, 8, 8,

Ve Ve Vs Ve
I 1 0 0

The three original circles being real and proper, we see from
(18) that this is essentially negative. Our eriterion for a real
cirele is thus

1 cos X9z cos §-Ys cos o,

Cos 42 1 CO0S 428 COS &
L y 4“ & 2 é 0. (48)
cos X_sy cos X sz 1 COS X,
COSQ;  COS O,  COS O 1

One or more roots of our equation (46) may be negative.
Arithmetically speaking, the sum of the roots of the equation
is the sum or difference of the reciprocals of the radii satis-
fying the given conditions. We thus get

="

<) -
<] -

= A, cosx;+ A, cosox,+ 4, cos x,.

Replacing two angles by their supplements, and keeping
the other one fixed,

’

1

7 = A, cosx,— A, cosx,— A, cos .

S8 o

Permuting the three angles, we get two other similar equa-
tions. Adding,

1 1

1
= + et ,,77 = B 28 (49)

1
Tt

<
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.To find a circle which meets four others at one same angle ¢.

1 cos X_yz cos X-ys cos Xyt cos ¢
cos X_zy 1 cos f_zs cos X st cos ¢
cos X sy cos f-sz 1 cos A_st cos ¢ | =0,
cos Xty cos Xtz cosA_ts 1 cos ¢
cos ¢ cos ¢ cos ¢ cos ¢ 1

1 cos Xz cos §_ys cos Xyt
cos X zy 1 cos 4 zs cos Xzt
cos X_sy cos 4 sz 1 cos X st
cos Xty cos Xtz cos X ts 1

| 1 cos X yz cos X ys cos Xyt
| cos X_zy 1 cos X zs cos Azt
| cos §-sy cos X.sz 1 cos ¥_st
| cos Xty cos Xtz cos i ts 1

(O 1 1 1

= cos?p. (50)

O ot =

This equation will be unaltered if we change ¢ into w—¢.
If we do not specify which of the two angles ¢ and n—¢
we wish, the equation for ¢ becomes,

1 cos _yz cos _ys cos Y-yt €
cos X zy 1 cos §zs cos -zt e,

cos X_sy cos X_sz 1 cosX st € | =0,
cos ity cos Atz cos X ts 1 €
6 € € ¢, sec’d

A o S S T
= =gl =¢ = 1.

There are usually eight distinet ecircles which touch three
given circles. It is easy to distinguish the cases where the
number is less, but we confine ourselves to the general case.
The angle which one of our eight circles makes with the
common orthogonal circle to the three is given only through
the square of its cosine in (34), and we see that when the
common orthogonal circle is not null, the eight circles are in
pairs inverse therein. Such a pair of tangent circles are said
to be coupled. When the orthogonal circle is a non-isotropic
line, inversion is, of course, replaced by reflection. The radical

1702 K
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axis of the couple and the orthogonal circle will, by I. 217],
pass through a centre of similitude of each two of the three.
Let the given circles be (y) (2) (5), (f) the circle sought,
(z) a point thereon,

(ty) (tz) (ts)
(@y) (x2) (xs) 0  (0)

Multiplying through by | (yy) (22) (ss) | and remembering (47),

(yy) (yz) (ys) (y)

(zg)) E::)) g:) ((iz) + | yzst | x | yzsz| = o. (51)
(ty) (te) (ts) O

But (ty) = ¢ V() Vyy); ¢ = 1, &e.
Lot Yos=4 A Lsy=XA,; Lyz=4A4,.

1 cos - A, cos -4, %)
cos J-4, 1 cos -4, 4(/2(% ,
cos ¥~ A, cos i 4, 1 j:_l)_
» € € € 0

1 cos XA, cosy A, €|

(! cos XA, 1 cos¥-A, ¢ | yzse |
T | cos A4, cos i A, 1 & v/ (yy) v (22) J(sa)
i € € €3 1
= et =",

This is the equation of a cirele touching our given three;
the radicals in the denominator of the second part have known
signs. The problem of constructing a circle tangent to two
circles and orthogonal to a third has clearly four solutions, for
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the coordinates of the cirele sought are limited by one linear
and two quadratic equations. We thus get

Theorem 13.] Any two couples of circles tangent to three
given circles are tangent to a fowrth circle also.

It is easy to see by examining the case, where the common
orthogonal circle is a line, that no two of the four circles of
this theorem can fall together unless two circles of a couple
become null. But then our three original circles would be
coaxal, and the whole theorem goes to pieces. The three
original circles and the fourth found by this theorem are said to
form a Hart system of the second sort.* The discussion of the
Hart systems of the first sort is much more difficult, but, in
compensation, reveals a number of most interesting theorems.
To this we now turn our attention. We start with two circles
(/) and (2). Let (y) have external contact with (') and internal
contact with (2'); (z) has external contact with () and internal
contact with (y). Let (s) have internal contact with (y')
and (2/), while () has external contact with both. From
|xsyzy' 0|2 =0,

. 1 cos Y_xs cos L.xy cos Y.z —1
| cos L sz 1 cosf-sy cosf.sz 1
leosXyw cosXys 1  cos¥yr —1|=0;
cos Xz cos {2y cos Xzs 1 1
l -1 1 -1 i 1
0 cos? <l sin? Loy cos? 3o
2 2 2
x ! .
cos? <A 0 cos? Lys sin? = 1
2 2 |
= 0.
sin? &5 cos? £y 0 cos? Lyz |
2 2 2|
|
cos? &2 sin? it cos? Ly 0
2 2 2 |
xs e N ST 2z
cosg' cosz'(_y + smx" Jsmx—zs+cos£azcos§'—'-?—/—s=0.
2 200 Kot 2 Vi 2 2
* Study, loe. cit., p. 537. .

K2
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If we replace (y') by (¢') and interchange (y) and (2),
§as ZI—J . Yaz . Xys X—;ycos?S—Tzs:O_

cos —-—cos + sin sin + cos
2 2 20—

Yoyt oz = +(fsy+¥ s2).

The left side of this equation is independent of (s). If,
then, we drop the terminology of speaking of internal or
external contact, which is meaningless in the complex domain,
and refer to the circles which are tangent to two given circles
as belonging to the one or the other system, according to the
circle of similitude to which they are orthogonal, we have

Theorem 14.] If two circles of one system be taken tangent
to two fixed circles, neither of which is null, the sum or differ-
ence of their angles with all tangent circles of the other system
is constant.

Let us now sharpen our concept of angle as we did for the
second proof of I. 155]. Let us measure the oriented angle of
two circles at a point by measuring the angle at that point
from the half-tangent to the first, which starts there and is
oriented in the positive sense of rotation (for a real circle)
to the similarly oriented tangent to the second. The angles
which two circles make at their two intersections will thus
differ in sign. By choosing the proper intersection for each
two successive circles above, we may write the congruence

—> — —> —
Lay—% ys+X sz+X zx = 0, mod. 2. (53)

If three cireles («), (b), and (¢) be concurrent, we have

- —-s —
A ab+X% . bec+ ¥4 ca =0, mod. 27,
Conversely, if this equation hold, since the cosine of the
negative of an angle is the cosine of the angle, we may deduce
@ " @ls
V(aa) Vbh) ¥ (bb) ¥ (aa) (cc)
x/ (bb) (ce) — (bo)* v/ (cc) (aa) —(ca)*
® : 4/bb x/aa (CC)
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The last equation shows that the common orthogonal circle
of the three given ecircles is null, they are concurrent, or have
their centres on an isotropic, and each two have but one finite
intersection.

We now return to equation (53), and explicitly exelude the
possibility that two of the circles should have their centres on
an isotropic. This equation distinguishes two sets of four
points, each point being the intersection of two successive
circles of the sequence. Let a ecircle (f) pass through the
intersection of (x) and (y), that of (y) and (s), and that of (s)
and (2) in one set. We have

o e S
ts —

(41— 4= 1) — (4= Ts — §-3y)) + (4 U5 — 4_1s) + ¥ 2@ = 0, mod. 2.

Now the two expressions for Lgare equal with opposite
sines since they are taken at the two intersections of (f) and (y),

and the same will hold for the two expressions Lt.s.>
e > ——
A at+X tz+ 4 22 = 0.

Theorem 15.] If four proper cireles be given tangent to two
Jixed proper circles, two belonging to the first system and two to
the second, but no two having their centres on an isotropic,
the intersections of the two cirvcles of the first system with the
two of the second lie by fours on two circles*

Suppose, conversely, that (y) (z) (s) are given, tangent to
(y) and (2’), where (y) (2) belong to one system and (s) to the'
other. If P be an arbitrary point on (y), we may find two
points (@) on (2) where it meets the circles through P, and
through an intersection of (y) (s) and one of (z) (s), which give

. =2 £ 11 o .
properly chosen signs to ¥ ys and §_sz. These points are the
* See a carelessly written paper by Orr, ‘On the Contact Relations of

Certain Systems of Circles’, Transactions Cambridge Philosophical Society, vol. xvi,
1895. Theorem 16 is from the same source.
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two intersections of (z) with the two circles through I’ tangent
to (¥') and (') and belonging to the same system as (s).

Theorem 16.] * If three proper cirvcles be given tangent to
two fixed proper circles, two belonging to one system and one to
the other, yet no two having their centres on an isotropic, and
if a point be taken on euch of the first two concyclic with
@ properly chosen intersection of each of the two with the third,
then these two points lie on a circle tangent to the fized cirecles
and belonging to the same system as the third.

Let us next assume that (53) holds, that (y) (z) (s) have
the same contacts with () (2/) as before, and that (x) is
tangent to (y'). The intersections of (z) and (s) with () and
(2) lie on two cireles (f). But, by (16), such pairs of points lie
on circles touching both (y') and (2/). Hence (z) touches (2')
also. We are thus led once more to the Hart system of the
first sort developed in Ch. I. We start with (y) (2) (s), and
suppose that circles (y')(2) (/) are all tangent to them,
circles given by the same letter having external contact, while
those given by different letters have internal contact. We
then take («') having internal contact with (y)(2) (s), and,
lastly, (z) having external contact with (y') (') (). Since
(y) and (2) have unlike contacts with (y') and (2/), while ()
has like contacts with both, and (s) has also, (53) holds. But
(y) bas like contacts with (2') and (s), (2) has like contacts
with them also, (s) has unlike contacts with them, and ()
touches (s') externally. Hence (x) touches (z’) internally, and
we have indeed the Hart system. In the complex domain,
of course, the words external and internal contact lose their
geometric significance, and depend merely on the sign of a
complex radical. Our Hart system may be arranged in three
sequences :

@) @) () (@), (@) @) @) (), @) () @) @)

Each sequence gives rise to two circles of the type above,
thus leading to two beautiful propositions due to Larmor.*

* Cf. Lachlan, ‘On the Propeltles of some Circles connected with a
Triangle formed by Circular Ares’, Proceedings London Math. Soc., vol. xxi,
1890, p. 267. Also Study, loc. cit., p. 521.
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Theorem 17.] The intersections of the circles of « Hart
system of the first sort fall into two groups of siw points each ;
each system s the total intersection of three circles.

Theorem 18.] The circles circumscribing the arcual triangles
Jormed by three non-concurrent proper circles are two Hart
systems of the first sort, mutually twverse in the common
orthogonal circle of the given circles.

These two theorems may also be established in the following
manner, which is of interest in itself. Let us start with
a fundamental proper circle ¢. Each finite point P, except
the centre of ¢, and its inverse / with regard to ¢, may be
associated with the circle coaxal with the null cireles (P), (£’)
and orthogonal to ¢. Conversely, ¢ and any circle orthogonal
thereto but not concentric will determine a pencil or coaxal
system whose limiting points are inverse in ¢. When the
circles are concentric we take the centre as one limiting point,
and treat every straight line as though it were a circle through
the other limiting point.*

We next notice that two circles mutually inverse in ¢, if
looked upon as point loci, will be transformed into two other
such circles, considered as envelopes and vice versa, and that
tangency of circles is an invariant property. A Hart system
will go into a Hart system. We start with a Hart system of
the first sort, and take c¢;, c,, c; as three circles of the com-
plementary Hart system, ¢ being the common orthogonal circle.
The original Hart system, and its inverse in ¢, looked upon
as envelopes, will gointo the eight circles circumscribed to the
arcual triangles of ¢, ¢, ¢;, and these eight will be seen to
form two Hart systems. Clearly there is nothing special about
the circles ¢, ¢,, ¢;, so that 18] is proved. To prove 17] we
have but to show that there is nothing special about the type
of Hart systems formed by the circles circumscribing eight
arcual triangles. But this is evident when we remember that
we may choose three circles, so that three of the surrounding

* This transformation is due to Lachlan, ¢ On Coaxal Systems of Circles’,
Quarterly Journal of Mathematics, vol. xxvi, 1892, If we take the corresponding

transformation on a sphere, and take for ¢ the circle at infinity, we have
the correspondence of a great circle to its two poles.
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Hart circles shall intersect at any three chosen angles not
congruent to zero, modulo #=. But we may pass from any
Hart system where three circles meet at specified angles to
any other where the same angles appear by means of inver-
sions and transformations of central similitude; hence any
Hart system may be so transformed into one surrounding
eight arcual triangles, and 17] is proved. '

The Hart systems of the second sort are simpler ; their pro-
perties are intuitively evident when we replace the circle of
inversion by a straight line.

Theorem 19.] The relation of « Hart system of the second
sort to the four circles tangent to them is veciprocal; the
common orthogonal circle of one system s a circle of anti-
similitude of each paiv of the other.*

Theorem 20.] The intersection of a system of Hart civcles
of the second sort fall into two groups. The pairs of inter-
sections of couples of cirvcles lie on the common orthogonal
civele of the complementary system, the remaining eight lie by
Jowrs on two circles orthogonal to this orthogonal circle.

Theorem 21.] If of the twelve intersections of four circles
six are thetotal intersections of three other circles, then the four
belong to « Hart system. :

§ 4. Analytical Systems of Circles.

We have now given a sufficient number of examples of our
fundamental Frobenius identity (30); let us pass on and con-
sider systems of many circles. The theorems concerned with
concyclic points and concurrent circles which we took up in
the last chapter are, for the most part, better handled by
geometric means than by analytic ones. This rule, like all
others, however, has exceptions. For instance, take I. 149].
The three circles each through a vertex of a triangle and two
marked points of the adjacent side-lines will constitute, with
the adjunction of these side-lines, a system of three cubic
curves through eight common points. Such cubics have always

* For this theorem and the two following see Study, loc. cit., p. 525. °
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a ninth point in common, hence the circles are concurrcnt.
Let us next repeat Clifford’s own proof of I. 162]*

A curve of class v+ 1 is required to have the line at intinity
as a multiple tangent of order » and to touch 2n+1 given
finite lines, no threc of which are concurrent, and no two
parallel. The number of linear conditions imposed on the
coeflicients is
n(n+1)  (n+1)(n+4)

B 13 o e f )
w41+ 3 9 1

If these conditions were not independent, we could have
! curves touching the line at infinity » times and 2(n+1)
common finite tangents. Two such curves would have
(n+1)>4+1 common tangents, which is absurd. The con-
ditions are independent, and we have a one-parameter family
of curves; all are linearly dependent on two of their number.
From each circular point at infinity we may draw one more
tangent to each curve, and these two tangents will clearly
generate projective pencils; the locus of their intersections,
the finite focus, is thus a circle. Among our curves are n+ 1,
which degenerate and consist in the infinite point of one of
our finite tangents, and a curve of class n, touching 2 n given
lines, We thus get 2n+1 curves of class %, each touching
2n of our given lines and having their foci on a circle. If
another line were added there would be one focus associated
with 2742 lines lying on as many circles each through
27+ 1 focl, and so0 on.

The analytic discussion of I. 155] will bring to light a new
theorem not easily reached geometrically. We started with
four points on a circle, and arranged them in order. Through
each two successive points we passed a circle, and showed that
the remaining intersections of successive circles were con-
cyclic. Now the four points may be arranged in three different
cyelic orders, so that they are connected in pairs by six circles,
and three new cireles are produced. The points being Py, P,,

* loc. cit. For a proof by an ingenious analysis apparently invented
ad hoc, see Morley, ¢On the Metric Geometry of the Plane n line’, Transactions

i«imerican Math. Soc., vol. i, 1900. A proof is also given of Pesci's theorem,
. 164).
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P, P, on the circle ¢, the points P, P; shall be connected
by the circle ¢;;. The cireles ¢;; and ¢;;, will intersect again
in Pz_}k

o R SR 2 I y Pyye lie on ¢,
let y e O 14,J lie on ¢,,
let 1124,] 1431,13]2 lie on Cy. Pijk: iji'

The sextic ¢y, ¢, ¢, contains every point common to ¢ ¢y,
and ¢, ¢,y, and has a triple point at each circular point at
infinity ; hence, by Nother’s fundamental theorem, we have an
identity

C13C24C1 = PC1pC5 + Yy €y

The curves ¢ and v are circles, since they are curves of the
second order passing through the circular points at infinity,
and they contain the remaining points P;;. Hence they are
the circles c,, c,.

C13€94C1 = C34C19C + Cyy Cg3Cs.
But this shows that ¢, c,, ¢, are coaxal.

Theorem 22.] If four points on a circle be arranged in
three cyclic orders, each two points be joined by a circle, and
euch cyclic order be associated with that. cirele which contains
the remaining intersections of successive circles joining pairs
of points im the given cyclic order,then will the three associated
circles be comxal *

The advantages of the analytic as compared with the
synthetic method are nowhere more apparent than when we
come to study coaxal systems of circles. We shall extend
that term to include every system through the intersections
of two, i.e. every system linearly dependent on two circles,
If () be the coordinates of a point on a circle coaxal with two
proper circles (y) and (z), we have an equation,

(y2) _ _(s2)
Yo+ 12+ %

This proves immediately the important theorem, I 191].

A (yx) + p (zx) = 0,

* See the Author’s Circles Associated, &e., cit.
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The equations of the most interesting circles coaxal with ()
and (z) are written immediately.
Radical axis

(t20 + %) (o) = (tyo + ) (22) = 0. (64)
Radical cirele ‘
(i20+21) () + (Yo + ) (22) = O (55)

Circle of similitude
(Yo +4) (ya)  (iz+2y) (2w)

= 0. 56
(yy) (22) g

Circles of antisimilitude
v (22) (y@) + v (yy) (ex) = 0. (67)

We easily see that the two circles represented by these
equations are mutually orthogonal, and bisect the angles made
by the circles (y) and (z) when these are not null or isotropic.
The limiting points of the coaxal system will have the co-
ordinates

= () 2~ (W) £ V@) — () )] i (58)

If» and iy be the radii of (y) and (2), while their angle is 6,

the limiting points are §
pzy = V(yy)z;—er" v (2) y;.

The fact that if two circles be orthogonal to two others,
every circle coaxal with (orthogonal to) one pair is orthogonal
to (coaxal with) the other appears at once, for if

(yy) = 2) = (cy) = (27) = 0,

t=3

2 My +pz) Wy +pw'z) =o.

=0

then

Such conjugate coaxal systems will appear in three dimen-
sions as pairs of lines conjugate with regard to the absolute
quadric. The cirele coaxal with (y) and () which is orthogonal

to (s) will be
(ys) ()= (y2) (5).

Theorem 23.] If three circles be given, the three circles each
coaxal with two and orthogonal to the third are coaxal.
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Theorem 24.] If three circles be given, the three circles euch
coawal with two of them and orthogonal to a fowrth circle are
coaxal.

- The concurrence of the radical axes appears as a limiting
form of this. Let the reader devise an analytic proof of I. 201],
namely, the radical circle is the locus of the centres of circles
cut by one circle orthogonally, and by the other in diametri-
cally opposite points.

A system of circles whose coordinates are proportional to
analytic functions of one variable yet not bearing to one
another constant ratios shall be called a series of circles.
A coaxal system is the simplest type of series, and the only
one lacking a curved envelope. If the circles be orthogonal to
a fixed not null or isotropic circle, the envelope is anallagmatic
with regard to this fixed circle. This was proved geometrically
in what followed I.15]; the easiest analytic proof is found by
taking the fixed circle as fundamental for a tetracyclic coordi-
nate system; the corresponding coordinate will be lacking
in the generating circles and in the envelope.

Plane . Space S.
Anallagmatic envelope. Plane curve.

In general the circles of a series will touch their envelope
in pairs of distinet points. In special cases there will be but
one point of contact. It is tolerably clear geometrically that
this occurs when we have the circles osculating a given curve,
and then only. Let us give an analytic demonstration. Let
the variable circle be

Y =9: 0,
then, if adjacent circles tend to touch one another,
W) Gy)—-y'F =0, y/= %‘%
y) WY") = (y) y")-

The point of contact will have the coordinates

ey = (YY) ¥’ — WY) Yi-

But from this

(y2) = (yo') = (y2") = 0,
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which shows that the circle osculates the envelope. Con-
versely, take three adjacent points of the envelope

(@), (x)+ @) dt, (x)+2 (@) dt + (") dt®.
We have identically
(@2) = (o)) = 0.
The osculating circle will have the equation
yX) = |xdx” X| = 0.
The adjacent osculating circle is
|ea'a” X |+ | w2 X | dt = (yX) + (' X) dt = 0.
The condition of contact for (y) and (y)+(¥’) dt gives
(xa”) (@) (xa”’) (') (') (xa””’) — [(@””) (&) (w2 ) ] = o.
Theorem 25.] A necessary and sufficient condition that

the circles of a series should touch their envelope but once each
is that they should be the osculating circles thereof.

Plane . Space S.
Series of osculating circles. Curve of length zero.

Next to the linear or coaxal series, the simplest are those
whose coordinates are quadratic functions of the variable.
Such will correspond to a conic in S, and we shall call it
a conic series. We exclude the case where the series is re-
ducible.

Theorem 26.] If a circle move so that it is orthogonal to
a fized circle not null or isotropic, and the sum or difference
of its angles with two fixed circles be constant, it traces a conic
series.*

We see, in fact, that in S we have the intersection of a plane
with a quadric of revolution. If we accept that the pro-
perties of confocal quadrics (which are nearly the same in
non-Euclidean as in Euclidean space), in particular the relations
of their focal conies, we have, from the known relations of
three such coniecs,

* For the proofs of the theorems about non-Euclidean conies and quadrics
on which our present circle theorems are based see the Author’s Non-Euclidean
Geometry, cit., ch. xii and xiii.
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Theorem 27.] The general conic series contains four dis-
tinet null circles. If such a series be given, there are associated
therewith two other general conic series. The swm or difference
of the angles which all circles of one series make with any two
of another series depends merely on the choice of the latter.

We shall prove this theorem in a later chapter without the
use of non-Euclidean geometry.

Theorem 28.] The radical axes of the circles of a conic series
and a fixed circle will envelop a conic; the radical centres of
these circles and two fixed circles generate a trinodal quartic.

Theorem 29.] The locus of a circle orthogonal to a fixed
circle, and to corresponding circles in two projective pencils,
neither of which includes the fixed circle, is a conic series.

Since a central non-Euclidean conic has three axes of
symmetry.

Theorem 80.] A conic series which includes four distinct
wull or isotropic circles is anallagmatic in three mutually

orthogonal circles, all orthogonal to that cirele which is ortho-
gonal to all circles of the series.

From the focus and directrix property of central conies.

Theorem 81.] If a circle move so that it is orthogonal to
a fized not null or isotropic circle, and the sine of its angle
~with one circle orthogonal thereto bears a constant ratio to the

cosine of its angle with another circle also orthogonal thereto,
it generates a conic series.

Since the coordinates of a circle of a conic series are quad-
ratic functions of an auxiliary variable, the same is true of the
cartesian coordinates of their centres.

Theorem 82.] The locus of the centres of the circles of a conic
series is a conic.

To find the envelope of the circles of a conic series, we put
Y; = a;r2+2b,rs + ¢ (59)
g dy dy
We then eliminate  and s between (w < ) =0 and (oc ———) =0,
or or

and replace the z;'s by their cartesian values.
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Theorem 33.] The envelope of the circles of a conic series is,
in general, a curve of the fourth order with a double point
at each circular point at infinity.

As we shall study this curve in some detail in a subsequent
chapter, we shall say no more about it now.

We pass next to the general cubic series., We shall define
this as an algebraic series whose members are not all ortho-
gonal to one circle, but whereof three are orthogonal to an
arbitrary circle. In three dimensions we have a non-planar
curve which is algebraic and of the third order, and there is
only one such type of curve (under the genmeral projective
group).

Theorem 34.] The common orthogonal circles to correspond-
ing triads in three projective pencils of circles whereof no two
have a. common member will generate a general cubic series, and
every general cubic series may be so generated in o ways.*

Theorem 85.] The coordinates of the circles of a general
cubic series are homogeneous functions of the third order of two
variables.

Theorem 36.] The locus of the centres of the circles of a
general cubic series is a rational curve of the third order.

Since the osculating planes of a space cubic generate
a developable envelope whose properties are dual to those of
the curve.

Theorem 37.] The common orthogonal circles to sets of three
successive circles of a general cubic series generate another such
series. The relation between the two series is reciprocal,

Theorem 38.] The envelope of the radical axes of successive
circles of a general cubic series is the locus of the centres of the
circles of the reciprocal series.

A theorem analogous to this is clearly true of any series
not orthogonal to one circle. The general cubic series is

* For a general purely geometrical account of this series see Timerding,
‘Ueber eine Kugelschar’, Crelle’s Journal, vol. cxxi, 1899, Also Tauberth, Die
Abdbildung des ebenen Kreissystemes auf den Raum, Dissertation, Jena, 1885.
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distinguished by the fact that it is not the same type as the
reciprocal series.

Theorem 839.] The envelope of the circles of a general cubic
series is a cwrve of the eighth order with a quadruple point
at each circular point at infinity.

Theorem 40.] The tangents to the loci of the centres of the
circles of two reciprocal general cubic series can be put into
such one to one correspondence that corresponding lines are
mutually orthogonal. The asymptotes to one curve will corre-
spond to the inflexional tangents to the other.

A two-parameter family of circles, that is, a system whose
coordinates are proportional to analytic functions of two
independent variables, not having ratios all functions of one
variable, shall be defined as a congruence of circles. Such
a system, when algebraic, is best represented by means of an
equation

J (@2, 255) = 0.
Remembering that in non-Euclidean space, as in Euclidean,
every surface not a developable circumscribed to the Absolute,
is covered by a double network of curves of zero length,
isotropic curves, we have

Theorem 41.] Every congruence of circles may be either
generated on a one-parameter family of pencils of tangent
circles, or, in two ways, by the osculating circles of a one-
parameter family of curves.

If (x) be a circle of the congruence, the circle (g%:) shall be

called its correlative circle. It is orthogonal to (2), and, to the
first degree of approximation, to all infinitely near circles
of the congruence. If we take two adjacent circles of our
congruence, the pencil which they determine is not, in general,
orthogonal to the pencil determined by their correlative
circles. If we take the pencils determined by () (z +dx) and
() (@ +5x), then, if the first be orthogonal to the pencil
determined by the correlatives of the second two circles,
the second pencil is orthogonal to that determined by the
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correlatives of the first two circles. Two such pencils are said
to be pseudo-conjugate; they correspond to conjugate direc-
tions on the surface in S which corresponds to our congruence.*
Since the only surface where the asymptotic lines fall
together is a developable, we have

Theorem 42.] A congruence of circles is either determined
by a one-parameter family of coaxal systems each determined
by successive circles of a series, or else each coaxal system
determined by a civcle of the congruence in general position
and an adjacent circle is pseudo-conjugate to another such
coaxal system. Each circle will belong to two coaxal systems
pseudo-conjugate to themselves which cannot coincide for every
circle of the congruence.

We mean by a circle in general position one whose cor-
relative exists. Since there are two sorts of ruled surfaces
in space,

Theorem 43.] Congruences of circles generated by one-
parameter families of coaxal systems are of two sorts. In the
Jirst case the coaxal systems are determined by adjacent circles
of @ series, in the second case they are not so determined. In
the first case all circles of a coaxal system have the same cor-
relative circle, in the second case no two have the same.

If we define as the order of an algebraic congruence the
number of its members in an arbitrary coaxal system, we see
that this is equal to the order of the equation of the con-
gruence. A congruence of the first order is the system of
circles orthogonal to one circle.

The most interesting congruences of circles are the quadric
ones. We shall define such a congruence as the totality of
circles satisfying an equation

i,j=3
2 @ ¢;2; = 0. (60)
4,j=0

We may classify these in various ways. The broadest
classification is under the fifteen-parameter group of all linear

* We call these coaxal systems ¢ pseudo-conjugate ’, as ¢ conjugate ’ coaxal
systems have already been otherwise defined, p. 99.

1702 L
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transformations of our circle coordinates. Here we have the
following types : ¥

I I“ijl # 0.
df @y |
n )
11, l“i] | =0, Tr * 0.
A a,: | a,:
IIL. | “lso, _—_I i £0
% .
IV, S‘—|'—§d— = 0.
Upq © Urj

We shall call I the general quadratic congruence.

Theorem 44.1 The general quadratic congruence contains
two families of coawal systems; each circle belongsto one coaxal
system of each family, each two systems of different families
share a circle, but not two of the same family have any common
circle. The congruence may be generated in 2 o? ways by the
coaxal systems, determined by corresponding members in two
given projective coaxal systems which have no common circle.
The lines of centres of the coaxal civeles of the two families
envelop one same conic.

To prove this last part of the theorem, the line of centres
of a coaxal system in 7 will correspond in § to the point
where the polar in the Absolute of the line corresponding to
the coaxal system meets that plane which represents the
totality of straight lines. The totality of lines of centres will
be represented by the intersection of this plane with the
polar in the Absolute of the quadric representing the series.

Theorem 45.] The assemblage of all circles mecting a given
not null or isotropic circle at a given angle or its supplement
18 & quadric congruence.

Theorem 46.] The correlative of a general quadric con-
gruence s @ second such congruence.

* The best discussion of these congruences is in a pleasantly written
paper by Loria, ‘ Remarques sur la géométrie analytique des cercles du plan’,
Quarterly Journal of Mathematics, vol. xxii, 1886.
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Theorem 47.] If two correlative quadric congruences be
given, the coaxal systems of one will correspond to those of the
other. All circles of one coaxal system cut all those of the
correlative system at right angles.

Theorem 48.] The locus of the centres of the null circles
of a quadric congruence includes the locus of the points
common to coaxal systems of the correlative congruence.

Two quadric congruences which have the same null and
isotropic circles shall be called homothetic ; if their correlatives
have the same null circles they shall be called confocal.

Plane 7. Space S.

Homothetic quadric con- Homothetic quadrie surfaces,
gruences,
Confocal quadric congruences. Confocal quadric surfaces.

Theorem 49.] There are o' general quadric congruences
confocal with o given general congruence; an arbitrary circle
will belong to three of these.

The system of congruences confocal with (60) will be
Agp+r 4y, Ay, Ay x
Ay, Ay +a 4y, Ay Ly
Ay Ay Ap+r Ay
Ay Ay Ay Ay +A o
x, 8y x, x, 0

8
N
Il

0. (61)

Theorem 50.] In a homothetic system of quadric con-
gruences there will, in general, be four congruences of type I1.
The correlative to each of these will be a conic series of circles
which envelop the locus of the centres of the null circles of the
given homothetic congruences.

The meaning of the words in general as here used will
appear more fully in Ch. IV.

Theorem 51.] The assemblage of all circles the sum or
difference of whose angles with two given mot wull or isotropic
cireles is constant is a quadric congruence.

L2
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In non-Euclidean space there are two types of parallel
lines. The first are Lobachevski parallels and intersect on
the Absolute, the second are Clifford parallels and intersect
the same two generators of one set of the Absolute. Let
us reserve the name parallel for the first kind and use
paratactic for the second.

Plane . Space S.
Coaxal systems with common Parallel lines.
limiting point.
Coaxal systems whose null Paratactic lines.
circles are orthogonal in

pairs.

Theorem 52.] If a coaxal system of circles be given with
two distinct null circles, an arbitrary mot null circle will
belong to two coaxal systems each sharing one limiting point
with this coaxal system, and to two whose limiting points are
in pairs at null distances from those of the given system.

In special cases the coaxal system may be concentric and
have no limiting points; the reader can easily find for himself
the slight modification here needed.

Paratactic lines are at a constant distance from one another,
and have an infinite number of common non-Euclidean per-
pendiculars. These generate a quadric, whose generators of
each set are paratactic.*

Theorem 53.] If two coaxal systems have their limiting
points in pairs at null distances from one another, but no
point is at a null distance from all four, nor do they lie on one
isotropic line, then their circles may be so paired that corre-
sponding circles make a constant angle with one another, the
least angle which any proper circle of one system makes with
one of the other. The coaxal systems determined by such sets
of circles will generate a quadm'c congruence. Two coazxal
systems of the same famely in this congruence fwzll have their
limiting points in pairs at null distances.

* See the Author’s Non-Euclidean Geometry, cit., pp. 114, 129, 130,
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It is clear that our quadric congruence of type II will
correspond to a cone in S, and, as we have seen, its correlative
is a conic series.

Theorem 54.] A quadric congruence of type 11 may be
generated in ? ways by coaxal systems determined by one
Sixed circle and the circles of a conic series.

Theorem 55.] A quadric congruence of type III is re-
ducible, and conmsists in the totality of circles orthogonal to
either of two distinct circles. A congruence of type IV consists
wn the circles orthogonal to a given circle all counted twice.

It is clear that although the subject-matter of the present
chapter does not offer such a wide field for further study
as did that of Ch. I, yet there is room for further advance.
It is probable that there is little to be gained by a further
study of the circle in trilinear coordinates. On the other hand,
there is no knowing how much more may be obtained by
a further study of the Frobenius identity. The subject of
Hart circles and the circles inscribed or circumseribed to
arcual triangles seems almost illimitable. It seems likely that
the Frobenius identity should yield a simpler proof of the
existence of the Hart circle than any yet found, and this would
be a real gain.f There is also room for much new material
connected with the interpretation of non-Euclidean three-
dimensional space in the geometry of the circle.*

* An extended account of how the geometry of the circle may be used to
interpret non-Euclidean geometry will be found in Weber und Wellstein,

¢ Encyklopidie der Elementar-Mathematik’, Second Edition, vol. iv, Leipzig,
1907.

+ Since the present work went to press the Author has noticed that
either the transformation of p. 151 or a dilatation will carry three proper
circles in general position into three circles through one point. Hart’s
theorem will then come at once from Feuerbach’s, generalized by inversion.



CHAPTER III

FAMOUS PROBLEMS IN CONSTRUCTION

THERE has been one conspicuous lack in all the work that
we have done so far in the geometry of the circle; we have
paid next to no attention to any problems in construction.
This omission, let us hasten to say, has been intentional, as
it is much easier to attack such problems satisfactorily if both
algebraic and geometric methods are available. No one would
ever have found by the aid of pure geometry alone that it
was impossible to square the circle. The time has now come
when certain problems in construction must be seriously faced.
It is clear that the number of such problems is illimitable;
we shall restrict ourselves to a very few which have become
famous in the history of the subject.

In discussing problems of geometrical construction one has
frequently to face the question, Which of the various solutions
is the simplest?’ Such a query cannot be answered categori-
cally. What is a simple solution? Is it one that involves
very little drawing, or one that is based on elementary
theorems, or one that can be explained and proved in a few
words? These desiderata seem to vary almost independently
of one another ; there must be a great measure of arbitrariness
in any criterion of simplicity.

The best known and least undesirable tests for the sim-
plicity of a geometrical construction are those originally
devised by Emile Lemoine.* Three distinct operations are
recognized for the compass, two for the ungraded ruler:

(1) To place one point of the compass in a given position.
(2) To place one point of the compass on a given line.

* His various writings on this subject are summed up in his Géométrographie,
Paris, 1902. For convenience we shall refer to this work by page number.
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(8) To draw a circle.

(4) To place one edge of the ruler on a given point.

(5) To draw a line.

The sum of the number of times that all of these operations
are performed is called the simplicity of the construction, the
sum of the number of times that the first, second, and fourth
are performed is called its exactitude. Lemoine recognizes
that these names are ill chosen, and suggests that the word
simplicity might better be replaced by measure of com-
plication’, but neither he nor his followers have seen fit to
adopt this improvement in terminology. Moreover, as tests
they are of the roughest. As the area of a parallelogram is
equal to the product of its altitudes divided by the sine of the
angle formed by intersecting sides, the exactitude of the
operation of drawing a line through the intersection of two
others will vary directly with the sine of their angle. It is not,
however, our present business to devise tests of geometrical
simplicity, but to apply certain recognized tests to concrete
problems. We shall start with the most famous of all, the
problem of Apollonius, 7o construct a circle tangent to three
given circles.®

Let us begin by examining how many real solutions can be
found for the problem. The answer to this is intuitively
evident in any particular case by examining the figure. It is
more sportsmanlike, however, to use 1L (48), which we rewrite
for the case of contact,

1 cos_yz cos i ys €
cos X zy 1 cos X zs8 € <o,
cos J—sy cos X_sz 1 € |
€ € € 1
Remembering that 277'cos 6 = r2 42— d?,
if (y) and (2) lie outside one another,

cosX-yz < —1, sin?3 L 5z > 0, cos®L L yz < 0.

* Simon, loc. cit., pp. 98 ff.,, mentions some seventy works dealing with
this problem which appeared in the nineteentl century.
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If they intersect in real points,

—l1<cosX yz< 1, sin?3 4 yz > 0, cos*L L yz > 0.
If one include the other,
cosX-yz > 1, sin?3 X yz < 0, cos*3 L yz > 0.
(A) A circle having like contact with all three,
sin®4 ) zssin?3 A sysin?if yz > 0, ¢ =¢, =¢,.
The construction of two circles satisfying the given con-
ditions is real unless one circle separate the other two, or

unless two intersect and the third surrounds or lies within
the one but not the other.

(B) A circle having with (y) a contact opposite to that with

(») and (s),
sin?3 ¥ zscos®$ Y sycos’if Yz 2 0, —¢ =€ = €.

The construction is possible unless two circles are separated
by the third, or (z) and (s) intersect, while (y) lies within one
but not within the other, or surrounds the one but not the
other.

The first method which we shall employ for the solution of
the problem is that ascribed to Apollonius himself*

Problem 1.] To construct a circle which shall pass through
two given points and touch a given circle.

It is clear that to obtain a real solution we must have two
points not separated by the circle. We see also that the
common secants of the given circle and all circles through the
two points will be concurrent on the line through these two
points.—We therefore make the following construction. Draw
a convenient circle through the two points, find where the
radical axis meets the line through the two points, and draw
tangents thence to the given circle. A circle through the given
points and either point of contact will satisfy the given con-
ditions, and there are no other circles which do so.

Let us apply Lemoine’s criteria. To construct a circle
through two given points involves drawing two circles with

* Killing-Hovestadt, Handbuck des mathematischen Unlerrichis, Leipzig, 1910,
p. 414. A very clear and easy discussion of the method will be found in
Cranz, Das apollonische Berithrungsproblem, Stuttgart, 1891,
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the same compass opening and the given points as centres,
and a third circle with the same radius and a given centre
S. 6, E. 3.

We next connect the two intersections of two circles by
a line, S. 3, E. 2. Then draw tangents to a given circle from
an exterior point, S. 18, E. 12 (p. 33; the usual construction
has S. 19). Then construct two circles through two common
points, one through each of two given points, S. 23, E. 14.
We have for the total construction

Simplicity 38, Exactitude 25.

Problem 2.] To construct a circle through a given point
tangent to two given circles.

Let us, to be specific, take a point P external to both circles
and imagine them external to one another. A shall be the
external centre of similitude. We find @ on AP so that
(A—l—-’)) (216) is the square of the radius of the circle of anti-
similitude corresponding to A. Then a circle through P
and Q tangent to one of the given circles is tangent to the
other also.

We first construct the common tangents to two mutually
external circles, S. 35, E. 22. (These are Lemoine’s numbers,
p. 43; the usual construction runs much higher.) Starting
with one centre of similitude, let R and R’ be corresponding
points of contact on the same tangent which are mutually
inverse in the circle of antisimilitude. We must find @ on AP

so that (fP) X (ﬁ@)) = (ﬁ%) X (A_l_i)’). To accomplish this
we draw AP and PR, S. 6, E. 4, and through R’ a line making
a given angle with AR, S. 11, E. 7. There is another point @
found in similar fashion from the other centre of similitude.
These operations give S. 34, E. 22. We then must solve
problem 1] twice in succession. Our total numbers are

Simplicity 145, Exactitude 94.

As an alternative we offer the closely allied solution. Zake
any convenient circle about the given point as centre for
a circle of inversion, and find the inverses of the given circles.
Find the common tangents to these circles and invert buck.
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We see that this construction is simpler than the last, in the
sense that it is described in fewer words. To construct our
circle of inversion, which we shall imagine cuts the given
circles in real points, we have S. 1, E. 0. We next find the
inverses of two given points, one on each circle, S. 19, E. 12
(p. 54). To find the inverses of our given circles we must
find the inverse of a point on each and construct two circles
each through three points; each of these latter constructions
involves S. 15, E. 9. We next construct the common tangents
to two circles, S. 35, E. 22. Assuming that these intersect
the circle of inversion, the construction of their inverses will
amount merely to drawing a circle through three points four
times, one point being the same in each case; this will require
S. 54, E. 43. For our total construction,

Simplicity 139, Exactitude 95.

Problem of Apollonius. To construct a circle tangent to
three given circles.* We assume for the sake of definiteness
that they lie outside of one another, so that there are effec-
tively eight real solutions. Let O, be the centre of the circle of
smallest radius r,. Construct a circle or cirvcles through C,
having external contact with the two circles concentric with the
other two given circles, but whose radii are less than the radii
of these by the quantity r,. Two of the required circles are
concentric with those lust constructed, but their radii are r,
greater. To construct circles tangent externally to some of our
circles and internally to others we must shrink some radii by
7y, and increase others by like amount ; on the other hand, we
shall not in any one case need more than two out of the four
circles through a given point tangent to two given circles. The
processes of finding direct and transverse common tangents to
two circles have nothing in common except the drawing of
the line of centres, hence the construction of ome pair of
common tangents involves S. 19, E. 12. The construction
of two of the four circles through a point touchipg two circles
will require S. 97, E. 60. This operation will have to be

* An elaborate geometrographic discussion of various solutions of this

problem will be found in Bodenstedt, ¢ Das Berithrungsproblem des Apollo-
nius’, Zeitschrift fir mathematischen Unterricht, vol. xxxvii, 1906.



mr  FAMOUS PROBLEMS IN CONSTRUCTION 171

performed four times. To shrink or swell a radius by a given
amount will involve S. 10, E. 8, and this operation must be
performed twice on two of the given circles, and once on each
of eight constructed. We have, all told,

Simplicity 508, Exactitude 336.

It is certain that these numbers can be very greatly reduced
by ingenuity in construction; they are sufficiently exact to
show, however, that the problem is not of the simplest.

As a second solution of the Apollonian problem we give
the neatest and most famous of all, that of Gergonne.* We
saw in I. 217] that if two circles intersect two others at equal
or supplementary angles the radical axis of each pair passes
through a centre of similitude of the other. When the given
eircles are mutually external there will exist a pair of circles
which have either a preassigned type of contact with each, or
else exactly the opposite type of contact with each. The
radical axes of the circles sought will be the lines which contain
triads of centres of similitude for pairs of the given circles.
On the other hand, a centre of similitude of a pair of solu-
tions (which have each the same or exactly opposite contacts
with each of the three given omnes) will lie on the radical axis
of each two given circles, i.e. be their radical centre. The line
connecting the points of contact of a pair of circles sought
with one given circle will go through this radical centre, and
through the pole with regard to this chosen circle of the
eorresponding line containing three centres of similitude, for
the pole of this line will lie on the radical axis of the pair.
We thus get Gergonne’s construction. Find the poles with
regard to the given circles of the lines containing triads of
their centres of similitude two by two. The lines connecting
the corresponding poles with the radical centre of the three
cireles will meet these circles in the points of contact with one
pair of the circles sought.

Let us examine this geometrographically. The determina-
tion of the radical centre of non-intersecting circles involves

* ‘Recherche du cercle qui en touche trois autres dans un plan’, Annales de
Mathématiques, vol., vii, 1817. Inaccessible to the Author.
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(p- 57) S. 26, E. 16. The construetion of the three tetrads of

common tangents calls for S. 105, E. 66. The determination

of the lines containing triads of centres of similitude, S. 12,

E. 8. Determining their four poles of each (p. 55), S. 60, E. 36.

Twenty-four points of contact, S. 36, E. 24. Construction of

the eight circles through given points, S. 120, E. 96. Totals,
Simplicity 479, Exactitude 318.

As an example of how much the manual labour of geometry
may be shortened by using constructions which are difficult
to remember, and ingenious rather than obvious, let us mention
that, apparently, these numbers can be reduced to

Simplicity 199, Exactitude 129.%

It is geometrically evident that Gergonne’s construction
fails when the centres of the three circles are collinear. Here,
however, we may employ a very simple method. All circles
tangent externally to ¢, and ¢, will cut the radical axis at
a fixed angle by I. 212], the angle which this axis makes with
a direct common tangent, or the angle which either circle
makes with the corresponding polar of the external centre of
similitude. The polar and radical axis are corresponding lines
in a transformation of central similitude between ¢, and the
circle sought, the centre of similarity being the point of contact.
The radical axis of ¢; and ¢, being «,, while the polar is /,,
and c is the centre of the circle sought,

(cl_l:;) b (‘;l:) ™ ! (a;:s)
e == ; 5 = e '; 9 Ta— e
- (eay) (cas) (ls)

The value of # is thus easily found, and so the circle sought.}
Gergonne’s construetion is also at fault when the radii of two
given circles reduce to zero. The solution by other means is,
however, extremely easy in this case, as we have already seen.

Another problem closely allied to that of Apollonius is

* Reusch, Planimetrische Konstruktionen in geometrographischer Ausfiihrung,
Leipzig, 1904, p. 84, Gerard, Scientia, vol. vi (inaccessible to the Author), is
said to give a construction of S. 1562 ; Lemoine, Géométrographie, cit. p. 62, gives
one of S. 154,

+ Cranz, loc. cit., p. 167.
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the problem of Steiner, to construct a circle meeting three
given circles at given angles.* The easiest way here is to
throw the problem back on the preceding one. We have
already seen in I. 212] that all circles which make given
angles with two given circles will make constant angles with
every circle coaxal with them, and this may also be easily
shown analytically. If, therefore, we assume that the three
circles lie outside one another, we have

To construct a circle cutting three given civcles ¢y, c,, c; at
the angles 0,, 0,, 0, respectively. Let P; and P; be two con-
venient points on the circles ¢; and c; respectively. Through

them draw lines which make with the radei (mgles = —80; and
g— 0; respectively, and on these lines take Q; and Q; so that

(P;Q)=(P;Q). Findtheintersections of the circles with centres
C; and G}, and radii (C;Q;) (C;Q;), and with one of these points
as centre and radii equal to (P;Q);) construct a circle ¢;/. This
will intersect ¢; and c; in the angles 0; and 0; respectively.
Construct ¢, coaxal with c; aml c; and tangent to ¢;/. The
circles required will touch ¢, ] NS

It is to be noted that whenever the problem can be solved
at all we shall get the solution by this method. Let us see
how much has been added geometrographically to our original
problem. One circle ¢;” will involve S. 36, E. 23 (p. 22).
Three such circles will cost but S. 63, E. 39. We have sup-

posed that both 6; and g—ei were known, i.e. constructed.

It would be easy to find ¢;” if we supposed c; and c; intersected,
but for the purposes of our present problem it is better to
suppose them external to one another. We draw the radical
axis of ¢; and ¢;/, 8. 3, E. 2, and the radical axis of ¢; and ¢;,
which costs, if cleverly done (p. 56), S. 16, E. 10. The radical
centre of c;, ¢;, ¢; is thus found, and from here we draw
tangents to ¢;’ which will (p. 33) involve S, 18, E. 12. We
next must draw a ecircle coaxal with ¢;c;, and passing through
a given point of contact. We know a line ¢;¢; through the

* (Einige geometrische Betrachtungen’, Crelle’s Journal, vol. i, 1826, p. 162,
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centre of such a circle, and one of its points. We find the
centre then as the intersection of ¢;c; with the diametral line
of ¢;’ through the point of contact. The total labour on ¢;”
has been S. 46, E. 30. Multiplying by 3, and adding to the
price of ¢;/, we have finally
Simplicity 201, Exactitude 129.

Here again it is certain that great reductions could be
effected by suflicient geometrographic ingenuity.

We pass now to another problem of an analogous sort. 7o
construct a circle cutting four given circles at equal or supple-
mentary angles. We may determine the number of real
solutions from II (50). The circles sought are orthogonal to
a circle of antisimilitude of each pair of the given circles.
Among such circles of antisimilitude we may always find
three which are not coaxal. The problem then resolves itself
into that of finding the common orthogonal circle of three
given circles. Instead of supposing that the given circles are
mutually external, let us this time assume that each two
intersect. We first draw tangents to two circles at an inter-
section (p. 32), S. 18, E. 12. Draw the bisectors of the angles
of the tangents, S. 12, E. 10. Since the two circles of anti-
similitude of intersecting circles are mutually orthogonal, the
tangents to one intersect in the centre of the other. Hence
the construction of two such circles will involve in addition
S. 6, E. 4. Three such pairs of circles must be constructed.
The construction on the common orthogonal circles of three
given circles involves (p. 57) S. 44, E. 28, if done in the most
improved fashion. Hence we may construct the eight solu-
tions of our problem for the small cost of

Simplicity 460, Exactitude 302.

Our next problem has also to deal with contact of circles,
and is nearly as well known as the others; the celebrated and
often-discussed problem of Malfatti. Lo construct three circles,
each of which shall touch the other two, and tiwo sides of a given
triangle* One reason for the popularity of the problem is

* Memorie di matematica e di fisica della Societs Italiana delle Scienze, vol. x,
Modena, 1803. Inaccessible to the Author. Simon, loc. eit., pp. 147 ff., gives
some forty titles bearing thereon.
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that Steiner * left the classical solution without proof as an
example of the power of his methods. His solution is as
follows :

Let the vertices of the triangle be A, A,, A,. Let I bethe
centre of the inscribed circle. Inscribe a circle in each of the
triangles IA;Ay. The circles imscribed in ATA;A; and
ATA; Ay have IA; as one transverse common tangent. Con-
struct DjEj, the other such common tangent. The circles
required are inscribed in the quadrilaterals whose side-lines

are A;4;, A; Ay, D;E;, DyEy,.

The simplest proof, beyond a peradventure, is that of Hart.f
Suppose, first, that the figure has been drawn. The two
circles which touch (4;4,) shall touch one another in P;.
Their common tangent thereat shall meet A;4; in D;. The
radical centre of our three circles, the point of concurrence of
the tangents D, P;, shall be K (not supposed here to be the
symmedian point). The points of contact on A;4; shall be
B;C;, the former being supposed to be the nearer to 4;. Each
of the lines P;D; meets two sides of the triangle. Suppose,

* Einige geometrische, efc.

+ ¢Geometrical investigation of Steiner’s Solution of Malfatti’s Problem’,
Quarterly Journal of Mathematics, vol. i, 1856.



176 FAMOUS PROBLEMS IN CONSTRUCTION cm.

to be specific, that P, D, and P, D, both meet 4,4, in E, and
E, respectively.

(ElDz)*(EsDz) = (EIBz)_(E?,Oz) = (E1P1)“(E3P3)
5 (ElK)'"(EsK)'

It thus appears that D, is the point of contact of A, 4, with
the circle inscribed in the A E,KE,. The reasoning would
hold equally well if E,, or E,, or both, were not between
A, and A,. We shall therefore inscribe circles in the three
triangles with side-lines K%, , KE;, A} A;, the points of con-
tact being D; with (A4,4,), F; with (£;K), and G} with
(£, K). We next notice that

(A1D2)“(A1D3) = (CzDz)—(BaDa)
= (P3G3)_(P2F2)
= (P1F1)“(P1G1) = (FlGl)-

Hence the other transverse common tangent goes through
A,, and a similar phenomenon holds for 4, and 4,.

(Dze) = (szz) et (Pze)
= (ngz) "y (DaBs)
= (P3G3)+(D3P3) T (D3G3)°

The circles D, F,G, and D,F,G, cut equal segments on
(D,D,), and so, by 1. 170}, 4, is on their circle of similitude,
and, by I. 28] converse, the other transverse common tangent
will bisect the ¥ A,. If there be a solution of Malfatti’s
problem this will be it. Conversely, if a very small circle be
drawn tangent to two sides of the triangle, the two circles
each touching this little circle and two other sides will surely
intersect. But if the little circle swell up, always touching
the two sides till it become the inscribed cirele, the other two
circles are eventually separated by it. Hence, for some inter-
mediate value of the little circle, the three will touch. Hart’s
solution is thus complete.

It has been objected to Hart’s proof that it makes use of
theorems which probably Steiner did not know, but were
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invented ad hoc by Hart.* The criticism seems to us trivial,
and certainly not of sufficient importance to justify the great
pains bestowed by subsequent writers to devise less simple
proofs of the construction. There is a suspicion which
naturally arises that, if the first discoverer of a proof had been
of Steiner’s own nationality, less trouble would have been
given to disparaging his work.

Let us find what geometrographic numbers should be
attached to Steiner’s construction. We first bisect the angles
of a triangle (p. 27), S. 21, E. 12. Inscribe circles in three
adjacent triangles (p. 27), S. 80, E. 46. If we take two of
these circles, we have already one common transverse tangent.
To draw the other, we find the intersection of this tangent
with the line of centres, sweep out an arc with a radius equal
to the given tangential segment to one circle, and thus find
the point of contact for the other common transverse tangent.
This tangent will involve S. 9, E. 6. We draw three such
common tangents, then inscribe circles in three given triangles,
which can be done at a cost of S. 63, E. 36, since some
bisectors are already known. The totals will be

Simplicity 191, Exactitude 112.

Let us give another solution of the problem, which depends
on finding the point of contact of the circles.t The lengths
of the sides of the triangle shall be, as usual, ¢, a,, a,, the
distance from A, to the points of contact of the circle
which touches (4;4;) (4;4;) shall be z;. We also write, by
definition,

1=3 Tt T
‘ S—da. N o
Zai = 23, /\/ P = bi’ \/_Sl = C;. (1)

=l

The radii of our three circles shall be »,, r,, r,. The

* See Schroster in Crelle’s Journal, vol, 1xxvii, 1874, p. 232, As a matter
of fact some of the theorems objected to were discovered by Pliicker long
before Hart’s time, though after Steiner’s.

+ These formulae were first found by Schellbach, Sammlung und Auflisung
mathematischer Aufgaben, Berlin, 1863, pp. 100 ff. The form here given is from
Mertens, ‘Die Malfattische Aufgabe fiir das geradlinige Dreieck’, Zeitschrift fiir
Mathematik und Physik, vol. xxi, 1886.

1702 M
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distance from A4, to the centre of the inscribed circle shall
be d;. We have the following additional relations:

p= Sbl bz b3. (2)

p=disin 3£ A;. 3)
b.b

EN N (4)
00

d’L = Sb’l: Cj Ck‘ (5)

The side (4; A;) is made up of distances from A; and A; to
two points of contact, and a common tangential segment

Tyt @i+ (gt —(r—ry)® = ap.

The radical reduces to the simple value 2 \/’I‘@-'I‘i. We
have also

ry=atand L A, vy = wjtan £ 4, 2vryr; =2,V iby.
$i+£j+zbk\/xi\/.%:i=(tk. (6)

x/aTi-i-bkx/aTj:ck«/s—wj,
«/&_‘j+bk«/m—; = ckx/s—wl
Multiplying these together, and subtracting (6) multiplied
by bk’ S & N
(1 _ka) \/m' '\/w = Ckz ‘\/S—W' \/s—wj—ak bk’
«/_—«/a:—«/b~ac Vs—u; w; = —shy, (7)
\/QJ,,:= _bk \/$J+('k «/s—wj,
’\/Q?= —Z)k’\/i—"[-ck\/s— .
Vg Vg = b2V Vol Vs—a Vs —a;
—byer [Vay Vs—a; + VoV s—a),
Va,Vs—aj+ Vo Vs—u; = sep. (8)

From (7) and (8) we get, permuting the subseripts,
(Vay+ivs—ay) (Vaj+iVs—a) =s(—b,+ic), (9)

8(—b;+ic;) (— by +1icy)

(@;+5 v s—w)? = (—bs+1cy)
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But b24cr=1.

Vot Ve—x; = bi—ic;) (—bj+1c;) (= by +icy) (10)

RENE IS
NS eSS

= u;+;,

z;=wl ultvi=s,
(w;+ivy)? = 2u2— s+ 2u,v;4,
—_-s(— i—169) (—bj +dc;) (— by +icy),
= % [8—8b, 0,0, + sb;c;e;,—sbjepe;—sbyeios],
2 = 3 [s—p+d;—d;—dy]. (11)

These simple equations give us another construction which
is geometrographically simpler than that of Steiner. Deter-
mination of d,, d,, d,, S. 27, E. 15. Determination of 2s, S.6,
E. 4, that of s—p, S. 11, E. 6. Combining the quantities
d,, dy, d, with these, the total determination of 22, 2«,, 2,
involves S. 69, E. 41. We next bisect three collinear seg-
ments 2z; with one common extremity, which will cost S. 17,
E. 10. To find a point of contact after 2, is known requires
S. 4, E. 3. We pick one point of contact for each circle, erect
a perpendicular to the corresponding side-line, and, finding
where it meets the corresponding bisector (p. 24), already
drawn, construct circle. These will involve S. 33, E. 21, so
that we have for our total construction

Simplicity 131, Exactitude 81.*%

Let us now try to generalize the problem. We first replace
side by side-line. The problem then reads '

To construct three circles each of which shall touch the other
two and two out of three given lines which form a triangle.

* These numbers also can be wonderfully reduced. Hagge, ‘Zur Kon-
struktion der Malfattischen Kreise’, Zeitschrift fir mathematischen Unterrichi,
vol. xxxix, 1908, p. 588, gives S. 66, E. 42,

M2
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We begin by seeking the number of solutions. How many
real solutions are possible? There will surely be no fewer
solutions in the general case than in the special one, where
the lines determine an equilateral triangle. To count the
solutions here let us first notice that the two side-lines at any
vertex form four angular openings, which we shall refer to as
inside, vertical, and the two adjacent. We notice also that
if two circles touch one another, and also the same line at
different points, their contact must be external, and they lie
on the same side of the line. These facts premised, it is easy
to show that we have the following real solutions; the proofs
come by simple considerations of continuity.

Circles in three inside openings . ; 8 ways.
Circles in two inside and one vertical

opemng c : 3 ways.
Circles in one inside and two adJacent

openings . g 15 ways.
Cireles in two adjacent a,nd one veltlcal

opening . . 5 . . 5 6 ways.

Malfatti’s problem so generalized must usually have thirty-
two real solutions: how shall we find them analytically ? *

When we pass from the narrower to this wider form for the
problem, the quantities «; must be allowed to take either
positive or negative values, the quantities a;, s;, s—a; will be
permuted among one another. More specifically, as reversing
the signs of all three quantities a,, a,, a; may be looked upon
as leaving everything unaltered, we see that the quantities
b;, bj, by, may take the following sets of values:

0 B LB
V=N N NN )

The product, multlphed by the common denominator within

* Taken with some alteration from Pampuch, ‘Die 32 Losungen des
Malfattischen Problems’, Grunerts Archiv, Series 8, vol, viii, 1904.
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the radicals, will be the radius of an inseribed or escribed circle.
We now write

4 (s—ay) x'wj = (ag,—2;—x;)%s,

a=A;, a Aj, = 4,, (12)
assuming that 4;, 4, A; are known values. These equations
have sixty-four solutions, which include the thirty-two real
solutions of the problem in hand and thirty-two others
obtained by altering the signs of all the «;’s and ;'s, which
gives nothing new geometrically. These equations will thus
contain nothing extraneous if we impose the restriction
a,aya, > 0. They give the thirty-two real solutions of the
problem and nothing besides. The quantities «,, a,, a, are
capable of taking four sets of values. We pick out one set,
and write the equation

w-+x-+2,8k x/aT«/aT=dk,
A 0( A I: —.A;,

= 20% B =

g=1l

)’iz = —., 6 = (rﬁLYJ Yo Uﬁlﬂzﬁ3 = )\’
w; 44 Vo —a; +~/0‘(«/ —Bz_i\/l—-;é)
—B: 1+ 1— !
(x/ 2J+z‘ ﬂ,)(\/ By ,\/ +@L)

;= [0 —A+8;—d;—0].

Of the qua,ntltles here involved ¢ is single valued, 8; and y;
double valued in (x). To be specific let us assume that
B8B83 > 0. Then, since 3,3,8,0 = A is the radius of an
inseribed or escribed circle, we shall have

@y =Flo—At0;4+8; 48] (14)
The quantities here involved are all single-valued funetions
of oy, oy, a; and the radius of the inscribed or eseribed ecirele

while 3,, 3,, 8, are the distances from the centre of that circle to
the vertices of the triangle.

(13)
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The analytical expression of the distance from each vertex
to the points of contact of the corresponding circle in the thirty-
two cases of the extended Malfatti problem is of the same type.

It would be tedious to determine which value of &; and
which sign for each 9; should be used in every case. On the
other hand, let us notice that Hart’s proof may easily be
extended to every case, so that

Steiner’s construction may be extended to all thirty-two cases
of the extended Malfatti problem, the triangles abutting at
the centre of the inscribed circle being replaced in twenty-four
cases by those abutting at the centre of an escribed cirvcle. The
triangles being chosen, we can associate with each, either its
inseribed circle, or the escribed one which actually touches the
side which it shares with the original triangle.

There is a further extension of Malfatti’s problem due even
to Steiner himself. To construct three circles, each of which
shall touch two out of three given non-coaxal but intersecting
circles, and also the other two circles sought.*

When ' the three given circles are concurrent, we get the
construction at once by inversion. Steiner’s own construction
for the general case is as follows:

Find o circle of antisimilitude of each puwir of the given
circles. Inscribe circles in the arcual triangles each deter-
mined by one given circle and two circles of antistmilitude.
The remaining circles orthogonal to the common orthogonal
circle of the original three, each touching a pair of the con-
structed ones, and belonging to the same system as the common
tangent circle of antisimilitude will, in pairs, touch the circles
sought.

The proof of this is given by Hart immediately after his
proof of the simpler case. The reasoning is as follows. Hart’s
proof for the Steiner construction holds just as well on the
surface of a sphere as in a plane, provided that straight lines
be replaced by great circles, and that I. 28] and 170] be
extended to the sphere, which can be done as follows. If two

* Binige geometrische, &e., loe. cit., p. 180.
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small circles cut equal arcs on a great circle, we tind, by the
formulae for a right spherical triangle, that if a circular
triangle be formed by this great circle and tangents to the
small ones at a pair of points of intersection that do not
separate the other pair, then the sines of the legs of this
triangle are proportional to the tangents of the radii of the
small circles, i.e. the two small circles will subtend equal
angles at the opposite vertex of the triangle. On the sphere
then, as in the plane, the second transverse common tangent
of the cirveles D, kG, D, F,G, will bisect the J A,. This
established, the previous proof holds word for word. We next
see that any three circles of the plane which are not concurrent
may be carried by a real or imaginary stereographic projection
into three great circles. We have but to take the sphere
whose equator circle is concentric with but orthogonal to the
common orthogonal circle of the three. This transformation
is conformal and carries great circles bisecting the angles of
given great circles into circles of antisimilitude in the plane.
The number of solutions is seen to be sixty-four.

The most systematic attempt ever made to reduce to a
uniform method the solution of all problems involving the
construction of circles subject to given conditions was made
by Fiedler,* and we must now give some account of his
method.

In the preceding chapter we showed how the circles of
a plane may be represented by the points of a three-dimen-
sional space. A more direct method of accomplishing the
same end, when none but proper circles are involved, is as
follows. At the centre of each proper circle in the plane, erect
a perpendicular on a specified side of the plane, which we
shall call above, equal in length to the radius of the circle.
The extremity of this perpendicular shall be taken to repre-
sent the circle. Conversely, if any point (in the finite domain)
be given above the plane or upon it, the circle whose centre
is the foot of the perpendicular from the point to the plane,
and whose radius is the length of this perpendicular, will be

* Cyklographie, Leipzig, 1882. See also Miiller, ¢ Beitriige zur Zyklographie’,
Jahresbericht der deutschen Mathematikervereinigung, vol. xiv, 1905,
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the circle which is represented by the point. There is thus
a one to one correspondence between the proper circles of the
plane and the finite points above ; the points of the plane will
represent the null circles whereof they are centres.

The circles of one system tangent to two intersecting lines
will be represented by the points of two half-lines above the
plane, intersecting in the intersection of the lines, and making,
with the plane, angles whose cotangents are equal to the
cosecant of the corresponding half-angle of the given lines.
Conversely, the points of every half-line above the plane will
be represented by circles tangent to two intersecting or parallel
lines which will be real if the angle which the half-line makes

with the plane be = Z The reflection of the opposite half-

line in the same plane will represent the remaining circles
tangent to the two lines and belonging to the same system.

The points of a half-plane above the given plane, and of the
reflection in that plane of the opposite half-plane, will represent
the circles intersecting at a fixed angle the line eommon to
the two half-planes and the given plane. The cosine of this
angle will be the cotangent of the angle between the half-plane
and the given plane. Conversely, every such system of circles
will be represented by a half-plane and the reflection of its
opposite.

We next observe that every line in space, not parallel to
our plane or lying therein, may be represented by its inter-
section with the plane, and by the intersection therewith of a
parallel to the given line through a fixed point above the plane.
The line connecting the two points will be the intersection
of our given plane with the plane through the given line and
the fixed point. The circles tangent externally to a given
circle will be represented by the portion above the given plane
of a cone of revolution through the given circle, with its
vertex at a radius distance below. The circles which touch
the given circle internally will be represented by the reflection
in that plane of the remainder of the same cone. The word
cone is here used in its widest sense to indicate a conical surface
of two nappes.
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Let us make two specific applications of these methods.

Problem 1.] To construct a circle having contact of a pre-
assigned sort with each of two given intersecting lines, and
with a given proper circle

Analysis. The given cirele shall be ¢ with its centre C.
The vertex of the corresponding cone, which we shall assume
below the plane, shall be V. The lines shall be / and I meeting
in P at an angle 6. Their bisector orthogonal to the circle
sought shall be 5. We wish to find the intersection of the
cone with a line through P whose projection on the plane
shall be b, and making with the plane an angle whose cotan-

gent is cos g -+ A plane through this line and V" will meet the

given plane in the line from P to the imtersection with a
parallel to the given line passing through V, and will meet
the circle ¢ in the points of contact desired.

Construction. Through C draw a line parallel to b, and
take thereon points whose distances from C are 2 cos g - Connect

these points with P. These lines will intersect the given circle
in the points of contact desired.

Problem 2] of Apollonius. To construct a circle tangent
externally to three mutwally external circles.f

Analysis. Let the cones of revolution be constructed as
before, the vertices being V,V,V,. Each two of these have
a common conic in the plane at infinity, hence they intersect
also in a finite conic. We wish to find the intersections of
two of these conics, as one intersection .will represent the
circle desired. - Let A, be the intersection of the given plane
with V,, V,, assuming no two circles are of equal radius;
it is the external centre of similitude of ¢,, ¢;. The plane
through the line 4,V,V,, tangent to ¢,, ¢;, will touch the
finite conie, but at infinity, since it is there that the finite and
infinite conic intersect. Hence a plane through V,, parallel to

* Fiedler, loc. cit., p. 80.
+ Ibid., p. 161,
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the plane of the finite conic, will intersect the given plane
in the polar of A4, with regard to ¢;. The plane of the finite
conic will meet the given plane in the radical axis of ¢, and ¢,.
The line common to the planes of the three finite coniecs may
be represented, if V, be the fixed point without the plane,
by the radical centre and the pole with regard to ¢, of the line
containing the three external centres of similitude.

Construction. Find the poles with regard to each circle of
the line containing the external centres of similitude. The
lines connecting these poles with the radical centre will meet
the circles in the points of contact sought.

It is certainly striking that Fiedler’s method should lead us
back to the Gergonne construction.

The work which we have done in problems of construction
not unnaturally raises the old question of what constructions
are possible and what ones are not with the means allowed
in elementary geometry, namely, the ungraded ruler and the
compass. Various suggestions have also been made for sub-
stituting other instruments for these. Steiner employed the
ruler and one circlé completely drawn. Others have studied
the constructions possible with the ruler and compass of
a single opening, the two-edge ruler, and even the constructions
possible with the aid of paper folding.* The most interesting
attempt of this sort from our present point of view is that
originally made by Mascheroni,} to see what constructions
are possible with the aid of the compass alone. Mascheroni’s
original procedure may be greatly shortened by the aid of
inversion.

What are the constructions possible with ruler and compass ?
To connect two points by a straight line, and to describe
a circle of given radius about a given point. Clearly no
compass alone will enable us to perform the first of these.
At the same time the primary uses which we make of these
constructions are to determine certain points, and, so con-

* For an excellent account of all these attempts, as well as the construe-
tions that follow, see Enriques, Questioni riguardanti la geomelria elementare,
Bologna, 1900. |

+ La geometria del compasso, Pavia, 1797,
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sidered, the fundamental problems are three in number: (1)
To find the intersections of two circles given by radius and
centre. (2) To find the intersection of a line given by two
points with a circle given by radius and centre. (3) To find
the intersections of two lines, each given by two points. The
primary object of the geometry of the compass is to show that
all three of these problems may be solved by the aid of that
instrument alone. About the first nothing need be said; the
last two may be thrown back upon the first by means of
inversion. It is only needful to show, therefore, that with the
aid of the compass alone we can find the inverse of a given
point with regard to a given circle, and can find the centre of
a circle through three given points.

Problem 1.] 7o construct the multiples of a given seg-
ment (40).

Construct a circle with centre O and radius (O4). Inscribe
a regular hexagon with one vertex at A. The opposite vertex
B will determine a segment (4B) whose middle point is O.

Problem 2.] To construct a fourth proportional to three
given lengths m, n, p.

Take a convenient centre O and construct concentric circles
with radii m, n. Let A and B be two points of the first
separated by a distance p. If 2m < p we replace our circles

by concentric ones of radius km, kn, both > 222; and proceed

as before. With A and B as centres and the same radius,
construct circles intersecting the other cirele in two pairs of
points. We then take the points A’ and B, one belonging
to each pair. (A’B’)is the length sought.

We may, in fact, take such a radius at 4 and B that the
radii (04), (OB’), (0B), (0A4’) follow around in order. Then,
since A AOA’= A BOB’ by three sides,

¥ AOB =4 A'0D.
Hence the isosceles triangles AOB and A’OB’ are similar.

(0A):(04") = (AB): (A'B)).
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Problem 8.] 7o construct « circle through three non-collinear
points.

The points shall be 4, B, C. With B as centre and (B4) as
radius, and with C as centre and (C4), construet circles meeting
again in A’, the reflection of 4 in BC. If O be the centre
of the circle sought, the triangles BAA’, OAC are clearly
similar. Hence the radius sought is a fourth proportional to
(44’), (AB), (AC). The radius being found, the centre is
found at once, and so the circle.

Problem 4.] 7o construct the inverse of a given point with
regard to a given circle.

The given point shall be P, the centre of the given circle O,
and its radius ». Suppose, first, that (OP) > g Take P as

centre, and radius (P0O), and construct a circle cutting the
given circle in A and B. With A and B as centres construct
circles intersecting in O and P’. Then P’ is the point sought.
We see, in fact, that by symmetry P’ is on the line OP.
Moreover, A OPA and A OAP are similar,

(0P) x (OP) = (04) x (4P") = 12,

r

When (0P) < 7 let us find (OM) = L(OP) > =

Then, if (O31) x (0} = %,

—> —>
k(OP) (OM') = r?,
(OF) =k (OM).
We can now find the intersection of a line and a circle or
of two lines by finding those of their inverses, and our funda-
mental problems are solved. It is surely a remarkable fact

that with the single instrument we can find any individual
point which normally we reach only with the aid of both.



CHAPTER IV

THE TETRACYCLIC PLANE

§ 1. Fundamental Theorems and Definitions.

ANY set of objects which can be put into one to one corre-
spondence with the sets of essentially distinct values of four
homogeneous coordinates x, : z; : z,: 2,, not all simultaneously
zevo, but connected by the relation

w02+w12+d322+w32 = (az) = 0, (1)
shall be called points; their assemblage shall be called a
tetracyclic plane. The assemblage of all points () whose
coordinates satisfy a linear equation
(yx) = 0,
where the values of (y) are not all simultaneously zero, shall
be called a circle, to which the points (x) are said to belong,
or be upon. The coeflicients (y) are called the coordinates of
the circle. If they satisfy the identity (1) the point (y) is
called the vertex of the circle, which is then said to be null,
If (y) and (2) be two not null circles, the number 6 defined by

(y2)
cos ) = ———"—— (2)
V(yy) V(22)
is called their angle. If one possible value for the angle be 127,
the circles ave said to be mutually perpendicular or prthogbnal, .
or to cut at right angles. If one possible value be O or 7 the

circles are said to be tangent. The conditions for orthogonality
and tangency are, respectively,

(y2) = o. 3)
(yy) (22) = (y2)* = 0. (4)
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If (y) and (2) be two mutually orthogonal null circles, i.e.
two null circles whose coordinates satisfy equations (3), (4),
every circle of the system

Ty = AY;+ 2y
is null and orthogonal to every other. The locus of the ver-
tices of the circles () shall be called an isotropic. Through
each point in the tetracyclic plane will pass two distinct
isotropics which together constitute the null cirele having the
given point as vertex.

The coordinates of each point in the tetracyeclic plane may
be parametrically represented by means of the isotropies
through it as follows. Let ¢ be supposed to be a well-defined
value of +/'—1, a given irrational adjoined to the number
system. We may write

17 840, B 13, 3 sy
= (Agpiy+Agiy) t (Apy = Agpig) + (A pg  Agpry) 2 (Aypy— Agpiy)s
Ay Ay = (12 +1y) ¢ (2 —1y) = (Ay+1,) 1 (i, —1y),
Bty = (g4 @)t (2, + i) = (A, —ixy) : (i) — ;). (5)
If () and (2/) be two points, we shall have
p @’y = (\A = AN) (st — pray)-

It thus appears that it we keep either A, : A, or g, : p, fixed we
have the points of an isotropic.

The system of all circles through the intersections of two
given circles, i.e. that of all circles whose coordinates are
linearly dependent on those of two given circles, shall be called
a coaxal system.

Two points are said to be mutually ¢nverse in a cirele (which
is supposed not to be null) when every cirele through them is
orthogonal to the given circle. The vertices of the null circles
" orthogonal to those null circles whose vertices are the given
points must lie on the circle of inversion ; hence the coordinates
of the circle of inversion are linearly dependent on those of
the given points. If the points be (z) and (2'), while (y) is the
circle of inversion,

pai = (yy)x;—2 (2Y) y;+ (6)
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The transformation from (z) to («’), being linear, carries
a circle into a circle, and we see also that equation (6) may be
interpreted as giving the relation between any two mutually
inverse circles. They are coaxal with the circle of inver-
sion, and make equal or supplementary angles therewith. We
shall also speak of (y) as a circle of antisimilitude for (x)
and (/).

The definitions so far given have been apparently arbitrary.
Let us see whether there be any sets of familiar objects which
obey all the rules prescribed for the points of a tetracyclic
plane. Obviously a Euclidian sphere is a perfect example
of such a plane, and the definitions of angles, inversions, &c.,
for the tetracyclic plane are entirely in consonance with what
we should have on the surface of such a sphere. Again, the
relation between the tetracyclic coordinates of all finite points
of the cartesian plane is the same as that for all points of the
tetracyelic plane. We rewrite the equations:

Byt = wyiay: — (1% + ), (7)
Xy &y &y = (@Y1 (2P —1P) 2t : 2yt

Every finite point of the cartesian plane (¢ s 0) will be
represented by a definite point of the tetracyclic plane for
which iz, + 2, # 0, and conversely. If, however, we makec
the cartesian plane a perfect continuum by adjoining the line
at infinity, the correspondence ceases to be unique, for all
infinite cartesian points other than the circular ones will
correspond to the same point of the tetracyclic plane. We
may extend the finite cartesian plane to a tetracyclic plane
by first omitting the line at infinity, then extending the plane
to be a perfect continuum as follows : *

The set of coordinates wy: @, :@,: @, =12¢:1:0:0 shall be
said to represent the point at infinity. Every other set of
coordinates (y) satisfying the equations

Woty = (yy) = 0

* Conf. Beck, ‘Ein Gegenstiick zur projektiven Geometrie’, Grunerts
Archiv, Series 8, vol. xviii, 1911, and Bocher, ¢ The Infinite Regions of various
Geometries’, Bulletin American Math. Soc., vol. xx, 1914.
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shall be taken to represent a minimal line

Yo+ Y5y +3 (o —y1) ¢ = 0.

The point at infinity and the totality of such minimal lines
shall be called improper points. By adjoining them to the
finite domain, the cartesian plane becomes once more a perfect
continuum, and obeys all the laws for a tetracyclic plane.
The definitions of cirele, angle, inversion, &e., given in Ch. IT
for the cartesian plane, and here for the tetracyclic one, are
entirely compatible. Care must be taken not to confuse
minimal lines, looked upon as improper tetracyclic points,
with isotropics which are point loci. If we take as our tetra-
cyclic plane the cartesian plane rendered a perfect continuum
in this fashion, the following expressions are synonymous :

Circle orthogonal to point at Line.
infinity.

Inversion in such a circle. Reflection in line.

Null circle whose vertex is Totality of minimal lines.
point at infinity.

Null circle containing point Points of a minimal line
at infinity. and minimal lines parallel

thereto.

Improper points of a circle Asymptotes of a circle.
not through the infinite
point.

We shall mean by the cartesian equivalent of a tetracyelic
figure the following: If the tetracyclic plane be taken as
a Euclidean sphere, we take the stereographic projection of
this sphere. If the tetracyclic plane be built on the cartesian
one in the present fashion, we replace the coordinates of each
proper tetracyclic point by their cartesian equivalents from
(7), then render the plane a perfect continuum by the adjunc-
tion of the line at infinity. In either case, if we mean by the
degree of an algebraic curve of the tetracyclic plane the
number of its intersections with a circle, we see

The cartesian equivalent of an algebraic curve of order m
with a multiple point of order k at infinity, is an algebraic
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curve of order n — k with a combined multiplicity of order
n—2k at the circular points at infinity.

It is worth while to look also at cross ratios in the tetra-
eyclic plane. We start with the cirele @, = 0. Let (¥,v,%,¥,)
and (¥,¥%,%, —¥;) be any two points mutually inverse therein.
Let (3) be any circle through these points, cutting the funda-
mental circle again in (x) and (y),

Yo U Y
A O & | = 2(ay) (yy) — (oy)ys* = 0.
Yo V1 Ve
Our cirele 2, = 0 may be represented parametrically by the
equation
z; = tzai+t,3,‘+}’i, (BB) +2(y) = 0, ©t=0,1,2. (8

The circles through the points (¥, ¥, ¥s¥s) (4o ¥1 Yy —¥,) and
the points with parameter values ¢, and 7, will be

(1) 2, = 1,2 & A +t, i Br ’ /R l :
Y Y Y Y Y5 Un

(2) z;= ,2 o &j, i B + Yj vE ’.
Y; Yr ?/J Y Y Y

For the cosine of the angle between them we have

824 (xy)"+ (7 + 1) () (vy) — 4yt () (yy) + (vy)®
Lt @) + )] [8 (@) + (ry)]

i DN Gt

2 [t @) + )] [ ey + )]

Giving the parameter ¢ four scts of values ¢, 4,, ¢,, ¢, we
have

cos 0, =

sin - 9 2sin g:g
2 2 - (tl_t2) (t3—~t4)‘ (9)
sin %& sin 9_32 (t,—t,) (t;—1y)

This expression is independent of (y) and is defined as
a cross ratio of the four points of the fundamental circle

1702 N
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2, = 0. Had we taken any other pair of points besides (x)
and (y) to use in the parametric equation (8), we should have
pt+q
rt 48
have been unaltered. Moreover, every not null circle can be
expressed parametrically in this form, and our two expressions
(9) for a cross ratio will be the same for all such circles. If
this cross ratio have the value —1, the points ¢, and ¢, are said
to separate the points ¢, and ¢, harmonically. The relation
between the two pairs is reciprocal. If we take the harmonic
pairs of parameter values 0, o0 ,t, —¢, we see that the circle (3)
is orthogonal to every circle through the last two points. Our
four points are thus both concyclic and orthocyclic if we
extend the definition of p. 100 to the tetracyclic plane, and,
in fact, we find that

replaced ¢ by ; the right-hand side of the equation would

A necessary and sufficient condition for harmonic separa-
tion s that the concyclic points should also be orthocyclic.

If we pass a circle through the fundamental circle meeting
it orthogonally at the points #,¢,, while another orthogonal
circle meets it at the points ¢,¢,, and if 6 be the angle of these
circles, we easily find

g0 _ (=1 (ty—1,)
e T Gt Gt
For harmonic sets, our new circles will be orthogonal to one
another.

We must next consider the cross ratios of four points of an
isotropic. If (&) and (') be two points of one isotropic, then
every point thereof will have coordinates of the form

S a0 0 ’
@y =toy +yq.

We shall define the right-hand side of (9) as a cross ratio
of the four points corresponding to the parameter values
t,, ty, t, t,. Harmonic separation shall be as before. We
find the geometric meaning of the cross ratio of four points
of an isotropic as follows. What point of the circle (8) will
lie on an isotropic with a given point of the isotropic (10)?
Writing the condition of orthogonality for the corresponding
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null circles, we have an equation quadratic in ¢ and linear in ¢/,
This must be reducible, if looked upon as an equation in ¢, for
one point sought is the intersection of the circle and isotropiec.
The other root is a fractional linear function of ¢/, and, since
a linear transformation leaves cross ratios invariant, we see
that the cross ratio of four points of an isotropic may be
defined as that of the points where the other four isotropics
through them meet any not null circle.

We next take up the question of problems of construction
in the tetracyelic plane.* What constructions shall be allowed
here? The point at infinity shall play no special réle, and we
shall require our constructions to be invariant for inversion.
We next remark that there are two different ways in which
we may suppose that a circle is known. We may know all
of its points, or all in a domain called real. Or, secondly, we
may know how to find the inverse of any known point. In
the first case we say that the circle is known by points, in the
second that it is known by inversion.

Suppose that we took for our tetracyclic plane the real
domain of a real sphere and represented each circle known by
points by the pole of its plane. Points of the sphere collinear
with this pole would be mutually inverse in the circle. On
the other hand, if we took an interior point of the sphere it
would be the pole of a self-conjugate imaginary circle of the
sphere whose points are not in the domain; at the same time
we know the circle by inversion, for we can join any point
of the sphere with the interior pole and find where the line
meets the sphere again. Moreover, in three dimensions, we
assume that we can connect two points by a line, three points
by a plane, and find the intersection of lines, planes, and
sphere when such intersections exist. This leads us naturally
to the following postulates for constructions in the tetracyclic
plane.

Postulate 1.] If three points be known, all points of their
circle are known.

* The whole question of tetracyelic constructions is elaborately discussed
by Study, loc. cit.

N2
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Postulate 2.] If two circles be known by points, their inter-
sections, if in the known domain, are also known.*

If we consider as known the whole tetracyclic plane, then
the intersections are always known. On the other hand, we
might limit ourselves to such a domain as one where %, was
proportional to a pure imaginary value, while the other
coordinates were proportional to real values, in which case
it is not certain that intersections will be real. We make,
therefore, the further assumption

Postulate 8.1 If two not null circles known by points have
one common known point, they have a second such point unless
they be tangent to one another.

Theorem 1.] A circle is completely known by inversion if
two pairs of inverse points be known.

Suppose, in fact, that we have two pairs of inverse points
QQ’, RR, to find the inverse of any point P we have but to
construct the other intersection of the circles PQQ’, PRR'.
The construction is of the first degree.

Problem 1.] Given two circles by imversion, to find by
points a circle through a given point orthogonal to them.

We have but to find the two inverses of the point, then
apply postulate 1].

Problem 2.] Given a circle by points, to determine it by
tmversion.

Take four points thereon. They may be divided into two
pairs in three different ways. The product of the three inver-
sions, each of which interchanges the members of two pairs,
will be the inversion sought. The proof comes hy easy
analysis, which we leave to the reader.

Problem 8.] Given two circles by inversion, to construct by
points the circle coaxal with them passing through a given
point.

* Study, loc. cit., p. 53, makes a different assumption. 1le is not interested
in separating real from imaginary, and so assumes that if two cireles be
mutually orthogonal, and one be known by points, their intersections are

known, It will easily follow from this that if a ecircle be known by
inversion it is also known by points.
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We construct by points two circles orthogonal to these two.
Then we find these same two by inversion, and then the circle
through the chosen point orthogonal to them.

Problem 4.] To construct by inversion the circle orthogonal
to three non-coaxal circles given by inversion.

Through any point pass three circles, each coaxal with two
of the given circles. These three are concurrent again in the
point inverse to the given one in the circle sought.

Problem 5.] To puss a circle through two points of a circle
given by points which shall be orthogonal thereto.

We pass any circle through these points, find the inversions
in both, then find by points, and so, by inversion, two circles
orthogonal to the given ones. Lastly, find by points the circle
orthogonal to these last two circles, and to the original one.

Problem 6.] Given the points A, B, and O, to find the
harmonwic conjugate of B with regard to A and C.

We assume that these points are not on one isotropic. We
take two other pairs of points 4’C” and A”C”, both concyelic
with AC. We next find the inversion which interchanges A4
with C, A’ with (’, and that which interchanges 4 with C,
A” with C”. We pass a circle through B coaxal with these
last two circles of inversion. It will meet the circle ABC
again in the point required.

Definition. Two ranges of points on the same or different
circles shall be said to be projective if their members are in
one to one correspondence, and corresponding cross ratios are
equal., We have at once

Theorem 2.] Two ranges of points on the swme circle har-
monically separated by two fixed points of the circle are
projective.

Two such ranges are said to form an involution.

Theorem 3.] The circles through a fixed point and through
the pairs of an involution will be a coaxal system.

We see, in fact, that all of these circles will pass through
the inverse of the given point in the circle orthogonal to the
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given circle, and passing through the two points which
separate the pairs of the involution. These separating points
shall be called the double points of the involution. We shall
also extend the meaning of the word ¢nvolution to validate
the converse theorem, i.e.

Definition. The pairs of points where a fixed circle inter-
sects the circles of a coaxal system not including this circle
form an ¢nvolution. We see that if any circle of the coaxal
system (in the given domain) touch the given circle, the point
of contact, which is said to be double for the involution, lies
on the circle orthogonal to the given cirele and to those of the
coaxal system, and that an inversion in this circle interchanges
the pairs of the involution, i.e. they are harmonically separated
by the double points. The coordinates of these double points
may always be found, even though the corresponding points
may not be in that domain which for the purposes of our
construction we define as real ; hence the two definitions of
involution amount to the same thing if we include the limiting
case where the double points fall together.

Problem 7.] Given two pairs of an involution, to find the
double points if they exist in the given domain.

The solution comes at once from what immediately precedes,
and from problem 4].

Theorem 4.] If two projective ranges have three self-corre-
sponding points, every point is self-corresponding.

The proof of this is immediate from the definition, and from
the fact that a point is uniquely known as soon as we know
a cross ratio determined thereby with three given points.
Equally evident is

Theorem 5.] The projective transformation between two
ranges is completely determined by the fate of three points.

The analytic formula for a projective transformation is found
immediately if we write our circle in the paramethic form (8)
and then make the transformation

ot +3
yt+9

t =

’ oad — By # 0.
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The whole theory of projective ranges may be at once
deduced from this familiar analytic form by simple methods
known to every student of geometry. Nevertheless, we shall
continue to follow a geometric development more closely akin
to the fundamental methods of the tetracyclic plane. We
next have

Theorem 6.] Fowr points of a circle correspond projectively
to the points obtained by interchanging them two by two.

We see, in fact, that this may be done by an inversion.*

Theovem 7.] If, in a projective transformation of a circle
into tself, MAA, correspond to MA,A,, and M and A, be
separated harmonically by A and A,, then M is the only self-
corresponding point. )

Consider the involution with double points A/ and 4,. The
given projective ranges are carried hereby into those deter-
mined by MA,A,C, MA,AC,, and were it possible for C; to
be identical with ¢ we might find an involution to carry
CMAA,into MCA,A. Hence MA,A,C, AMA,AC, KCAA, M,
if we use the symbol A for projective, and CM, AA,, A, A, are
pairs of an involution. But MM, A4,, A, A, are pairs of an
involution; and two involutions cannot share two pairs.

Theorem 8.] Given two projective ranges of points. They
have either a single self-corresponding point which may be
Jound by a linear construction, or the problem of finding their
self-corresponding points is the problem of finding the doulble
points of an involution.

If the projective ranges form an involution, nothing need
be said. If not, let 44, in the first correspond to 4,4, in
the second. Let H; be the harmonic conjugate of A, with
regard to A and 4,. If H, be self-corresponding, it is the
only such point, by the last theorem. If not, suppose that
H, in the first corresponds to I, in the second. Suppose
that there is a pair of points MN which are double for the

* For the next three theorems see Von Staudt, Beifrige zur Geometrie der
Lage, Nuremberg, 1858, pp. 144-6, or Wiener, ¢ Verwandtschaften als Folgen
zweier Spiegelungen’, Leipziger Berichte, vol. xliii, 1891, pp. 651 ff.
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involution A, H,, A,H,. There is also an involution with
double points A, H,, and in this MYV, AA4,, A, A4, are three
pairs, so that

MNAA,, A"NMA,A,, XKMNAA,.

Similarly MNAH,, " MNA,H,.
Hence MNAA H, XMNA A, H,,

and M and N are the self-corresponding members of our two
projective ranges. The reasoning is reversible, so that the
theorem is proved.

Problem 8.]  Given two pairs of an involution, to find the
mate of any point.

This comes by a simple construction which we leave to the
reader.

Problem 9.] Given ABC, A A’B'C’, to find the mate of any
chosen point.

This transformation is the product of two involutions,
ABC, AB'A’C; and B’A’C;, AA’B'C’. Incidentally, we have
proved that in a projective transformation the mates of three
members may be chosen at random.

Problem 10.] To construct the circles of antisimilitude of
two given circles. .

We mean, of course, the eircles which invert the given
circles into one another. Any circle orthogonal to both our
circles is anallagmatic with regard to every such circle of
antisimilitude, and it will interseet the circle of antisimilitude,
if at all, in a pair of double points of the involution deter-
mined by the intersections with the given circles. The prob-
lem thus reduces to that of finding the double points of an
involution, or the intersections of two circles given by points.

Problem 11.] Of Apollonius. To construct a circle tangent
to three given circles.

We begin by finding their circles of antisimilitude two by
two. These, when they intersect in our domain, will pass
by threes through at most eight points, inverse in pairs in
the cirele orthogonal to the three given circles. Through each
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such pair of points pass a circle orthogonal to each of the
given circles; when the points of contact of the circles sought
exist in our domain they will be found in this way.* The
proof consists in noticing that this is exactly the construction
for finding the circles which touch three great circles of
a sphere,

Before proceeding to discuss further loci in the tetracyclic
plane, let us look once more at the parametric representation
already touched upon.f We begin with a slight change of
notation, writing

Ly = Wy, &) =Xy, Ly =Py, Ly = Ty

S

A point shall be said to be real if the homogeneous coordi-
nates (&) be proportional to real values. The real domain of
a sphere will serve as the best example of a real tetracyclic
domain, the identical relation being

— &2+ &2+ a2+ 2,2 = 0,
Ay idy = (B + &) s (g — i) = (By+d5) : (Bg—3,), (10)
By ey = (B + ) (B + 1) = (dg —idhy) 1 (g — ).

For a real point the isotropic parameters A, : A, and p, : p,
must take conjugate imaginary values. We therefore write
Midg= &by mim= &b
A real circle, or a self-conjugate imaginary one, will be
given by an equation bilinear in (£) and (¢), which is unaltered
by interchanging conjugate imaginary values, i.e. by a Hermite
form

“5151'*'[3‘5152'*‘351524'05252 = 0.

Here ¢ and ¢ are supposed to be real, 3 and 3 conjugate
imaginaries. This may be written in a satisfactory abbreviated

form by the aid of the Clebsch-Aronhold symbolic notation
a,d: = 0. 11
* Cf. Pliicker, ‘Analytisch-geometrische Aphorismen’, Crelle’s Journal,
vol. x, 1833.
+ See Kasner, ‘The Invariant Theory of the Inversion Group ’, Transactions
American Mathematical Society, vol. i, 1900,
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If p and o be fixed complex multipliers, while  and m are
real variables, the assemblage of points
&=1lm+mel;; &= Lpi; + mé( (12)
are said to form a chain. These equations are equivalent to
requiring ¢ to be real in our equations (8). The cross ratio
of any four points of a chain is real, and, conversely, every
set of points on a circle, such that the cross ratios of any four
are real, will belong to one chain.* If, in these equations, we

allow % to take all values, real and imaginary, we have a

parametric representation of a circle connecting the points
(n) and (¢); by changing the constant multipliers p and o, we
get every circle through these two points in this fashion.

Let us write the relation between the binary and quaternary
coordinates once more :

&, = (bb+ 65D,
@ = (L& —&E)
&, = (66,4 68),
&y = (6,&—&E)-

(v &)= a,0; = 0,

Uy Q) = Uy + Uy, Ay = Ug— Uy, U)Wy = Uy + Wy, Uyly=Uy— Uy,

(13)

If thus

(=G0 + 00 + U +0g0) = —F|a b|-| @ b |

The cosine of the angle of the circles (w) and (v) will take
the simple form N
|ab|-|ab|

: 14
Viaed |- 1a6d| V|b|- bV | e

cosf =

Here @ and o are equivalent symbols, as are b and &. The
condition for orthogonal intersection of two circles will be

lab|-|ab|=o. (15)
To find the inverse of the point (n) in the cirele (11) we

* The corresponding concept in projective geometry is due to Von Staudt,
loe. cit., p. 137.
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have merely to require that every circle through them shall be
orthogonal to this cirele :

A = ay0,
o (16)
AG = —a,d.
§ 2. Cyeclics.

The only loci which we have so far discussed in the tetra-
eyelic plane are circles (or chains). Let us now take up others
of a more complicated sort.

Definition. The locus of the vertices of the null circles of
a quadric circle congruence shall be called a cyclic. 'We mean
by a quadric circle congruence of the tetracyclic plane exactly
what was meant by that term in the case of the cartesian
plane. Every cyclic will have two equations of the type

4,j=3
= Uy =0, (22) =0, a5 = ;. (17)
hj=0
The first of these equations has ten different coeflicients.
As, however, the cyclic is unaltered if we replace that equa-
tion by
ij=
2 @y ; ]+)\(xm)—0

4j=0

Theorem 9.] Eight points in general position will deter-
mine a single cyclic, but all cyclics through seven points have
an eighth common point also.

The problem of classifying cyclics under the inversion
group, that is, under the group of quaternary orthogonal
substitutions, is the problem of classifying the intersections
of two quadric surfaces in three-dimensional projective space,
of which one surely has a non-vanishing diseriminant. The
modern way to do this is by means of Weierstrassian elemen-
tary divisors applied to the two quadratic forms. We may
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take this problem as solved, merely interpreting the known
results in the language of our tetracyclic plane.*

[T111] General cyclic.

[((11)11] Two circles, not tangent and
neither null.

[(11)(11)] Two isotropics of each set.

[(111)1] Not null circle counted twice.

[(1111)] No locus.

[211] Nodal cyelie.

[(21)1] Mutually tangent not null circles.

[2 (11)] Null and not null circle, not
mutually orthogonal.

[(211)] Null circle counted twice.

[22] Cubic cyclic and isotropic, not
tangent to it.

[(22)] Two mutually orthogonal null
circles.

[31] Cuspidal cyelic.

[(31)] Null and not null circle, mutually
orthogonal.

[4] Cubic cyclic and isotropic tan-

gent thereto.

In what follows, unless otherwise stated, we shall confine
ourselves to the first type, the general cyclic. A number of
facts can be at once stated about this curve by considering
the Cayleyan characteristics of the elliptic space curve of
the fourth order, and re-interpreting them in our present
terminology.f

Tetracyclic plane . Projective space S.

General cyclic. Elliptic quartic space curve.
Twelve osculating circles or- Class of developable 12.
thogonal to given circle.

* Cf. Bromwich, Quadratic Forms, and their Classification by means of Invariant
Factors, Cambridge, 1906, especially pp. 46, 47. Also Kasner, loc. cit.
+ Cf. Salmon, Geometry of Three Dimensions, Fourth ed., Dublin, 1882, p. 312.
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Eight circles of arbitrary co- Order of developable 8.
axal system orthogonal to

the curve, :

Sixteen circles have four-point  Sixteen planes have stationary
contact. contact.

Sixteen circles orthogonal to Sixteen points on two tan-
an arbitrary circle belong gents lie in an arbitrary
to two pencils of mutually plane.

tangent circles orthogonal
to the curve.

Eight circles orthogonal to an Eight planes having double
arbitrary circle have double contact pass through an
contact. arbitrary point.

A simple construction for a cyclic is suggested by the
foregoing. There is a theorem ascribed to Chasles whereby
a line meeting two skew-lines and touching a quadric will
have its points of contact with the latter on a quartic. The
easiest proof would seem to consist in writing the condition
that the line from a point of the quadric to meet two skew-
lines shall touch the quadric. If we take this quadric to
correspond to our tetracyclic identity, we have

Theorem 10.] If two coaxal systems be given, with mo
common circle, the locus of the points where a circle of one
system touches one of the other will be a cyclic, general or special.

Let us simplify the equation of our general cyeclic. This is
immediately accomplished if we remember that in the case
of the elementary divisors {111 1] the two quadratic forms
may be simultaneously carried by a Jinear transformation
into two forms involving only the squared terms; in other
words, keeping the identity for tetracyclic coordinates in-
variant, we may write the equation of the general cyclic

in the form
i=8

(a2?) =D a;22 =0, aga a0, %0, a;% a;.  (18)
i=0
This last equation is unaltered if we change the sign of any
one of the ,’s, hence
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Theorem 11.] The general cyclic is anallagmatic with
regard to four mutwally orthogonal circles. It may be
generated in four ways by the circles of a conic series.

The circles with regard to which the cyclic is anallagmatic
shall be called the fundamental circles. To prove the last
part of the theorem, take the circle

Y; = 7\&’,’1: +Clviw1:.

If this be orthogonal to one of our fundamental circles,

= —;.
It is, moreover, tangent to our cyclic at the point (). Sub-
stituting for (x) in the equations (18),
Y2 i
Y; = _J}_C? - Yk " Y

aj— i

2

=H0) ' 159
ak—(li al'—ai ( )

The last part of our theorem is thus proved. Let (z) and
(s) be inverse in the cirele (y):

Yi =0, Y;=872;—82; Y =8%—S% Y11= 8&7—8%,

- - 2 {
(82— 8;2;)° " (8321, ~81.3) P (82— 812)* s
aj—(l‘i Up—d; a—a;

Theorem 12.] 7he locus of the inverse of a fixed point with
regard to the generating circles of one system of a cyclic is a nodal
or cuspidal cyclic, whose double point is at the fixed point.

If we take the equivalent cartesian figure, the fixed point
being the point at infinity,

Theorem 13.] The general cartesian cyclic vs a curve of the
fouwrth order with a mode at each circular point at infinity ;
and, conversely, every such curve is a cyclic. It may be
generated in four ways as the envelope of a circle moving
orthogonally to a fized fundamental circle, while its centre
traces a central conic. The four fundamental circles are
matwally orthogonal, and each meets the corresponding deferent
in four of the sixteen foci of the cyclic.
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We mean by a focus of any curve the vertex of a null ecircle
having double contact therewith, this definition holding
equally in the cartesian and the tetracyclic plane. It appears
also that the inverse of a focus will be a focus.

Theorem 14.] The general cyclic has sizteen foci lying by
Jours on the fundamental circles.

If we invert in either the tetracyclic or cartesian plane the
inverse of a general eyclic will, in the first case, always be
a general cyclic; in the second case it will usually be such a
eyclic except for special positions of the centre of inversion
which we need not particularize. The foci will be inverted
into foci also. Now in the case of the cartesian cyelic the
foci are the intersections of isotropies, not tangent to the curve
at the circular points at infinity. At each circular point there
will be two tangents to the curve, and these intersect in pairs
in four points called the double foci, which are not invariant
for inversion but have a certain importance. Let the centre
of a generating circle pass through a point of contact of a
tangent to the deferent from a focus of the latter, i.e. a tangent
from one of the circular points at infinity. The centres of two
successive generating circles will lie on this line; hence the
circles will touch this line and one another at a circular point
at infinity, or

Theorem 15.] The four deferent conics of the general
cartesian cyclic are confocal, their foci being the double foci of
the cyclic.

The eyclic is completely determined by one fundamental
circle and the corresponding deferent. The radical axis of
successive generating circles is the perpendicular from the
centre of the fundamental circle on the corresponding tangent
to the deferent. The cyclic will cut the fundamental circle
at points of contact of common tangents to circle and deferent.
These four tangents form a complete quadrilateral. Let us
take a pair of opposite vertices of this quadrilateral and
construct two circles, with these points as centres, orthogonal
to the fundamental circle, i.e. cutting it at pairs of points of



208 THE TETRACYCLIC PLANE CH.

contact with the tangents mentioned. These circles have
double contact with the eyclic and, so, are generating circles of
a second family, The common orthogonal eircle to these two
and to the given fundamental circle will be a second funda-
mental circle ; the conic confocal with the given deferent and
passing through the chosen pair of vertices of the complete
quadrilateral of common tangents is the deferent corresponding
to the second fundamental circle. We are thus enabled to
pass from one generation to another.*

The locus of the centres of gravity of the intersections of
a cartesian algebraic plane curve with a set of parallel lines
is a line, the line-polar of the infinite point common to the
parallels. In the case of a cartesian cyeclic, this line will
meet the line at infinity in the harmonic conjugate of the
point common to the parallels with regard to the circular
points at infinity, ie. this line-polar will be perpendicular
to the direetion of the parallels. The line-polars corresponding
to two such systems of parallels meet in a finite point O,
whose first polar meets the like at infinity four times, i.e.
includes the line at infinity. Hence O lies on the line-polar
of every infinite point. If a point on the line at infinity
approach one of the circular points as a limiting position, its
conic polar with regard to a general cartesian cyclic will
approach as a limit the two tangents to the cyclic at that
circular point, and its line-polar will approach the line from
that circular point to O. This line will be harmonically
separated from the line at infinity by the two tangents to the
cyclic at that circular point We thus reach an interesting
theorem due to Humbert.

Theorem 16.] The locus of the centres of gravity of the
intersections of a general cartesian cyclic with a set of parallel
lines not passing through a circular poimt at infinity is the
perpendicular on these lines from the common centre of the
Sfour deferents.

* Darboux, Sur wune classe remarquable de courbes et de surfaces, Paris, 1878,
p. 35.

4 ¢Sur les surfaces cyclides’, Journal de I Ecole Polytechnique, vol. lv, 1885,
p. 127 ff.
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If we take the common centre of the deferents as origin,
the rectangular cartesian equation of the general cyclic will be

@+ )+ (=y) = 0. (20)
Here f? is a quadrate polynomial from which we may remove

the term in ay if we choose the axes of the foeal conics as
axes of coordinates.

Let us return to the tetracyclic cyclic from which we have
strayed. To find the coordinates of a focus, we have
j2 ;2 ap? ]

a]-—ai adp—a; ty—a;

=1 2 2 q=s
xi—xj +CUL +wl =

>

T; xj 1y X = OF: ‘\/((lj—ai) (ak—alj 5 x/(ak—ui) (al—aj)
V(@ —ay) (a;—ap). (21)
Let us find the cross ratio of these four, which will clearly
be an invariant of the curve. In particular, if we take the
foci on 2, = 0 and seek the corresponding values of A; : A, from
(5), we get
Ayidg = V(ay—ao) (ay—ag) : [+ ¥ (@y—ap) (a5—ay)
F o v (ag—ap) (@, —ay)]:

The cross ratio of four points of a circle will be that deter-
mined by four isotropics through them, as we have seen from
the definition of the latter. Hence we have, as a cross ratio
for four foci,

(tg—ay) (4, —ay) ; (22)
(@o—ag) (@, —ay)

The six possible cross ratios are obtained by permuting the
four letters a;. Hence we have the same sets of cross ratios
on all four fundamental circles.

Let us next seek the points of contact of the eyelic with
isotropics tangent thereto. If such a point be (y), a tangent
circle there will be i, + pa,;y;. This will be null if p?(a?y?) = 0.
Hence the points sought are the intersections of the eyelic
with a second general cyclic whose equation is

(a%y?) = o.

1702 (o}
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The coordinates of the points of contact will be

d
B Y 2

PY; _38i|1aa 8. (23)
These eight points will also lie on the cyelic

i=3

2(a™y?) - [2 a‘i] (ay®) = 0, (24)

=10
which bears to the given cyclic a curious relation. Substitut-
ing the isotropic parameters from (5) in (18) and (24) we get
[ty =) py® + (@ — ) p® N2+ 2 [(— g — ) + @y + ) py ] Ay Ay
+ [(ag— a3) py® + (a5 — o) p5°] 2% = 0.
(ay—az)®— (0, — a,)®
(g + az) — (@ + @)
+[ = (@y—ag) p? + (@, — a) gt A7 = 0.

[(@—ag) iy — (ag— ay) p57] ’\1é +2

Pytg Ay Ay

Keeping either parameter fixed, we may look on these as
quadratic equations in the other parameter, and it will be

found that the simultaneous invariant vanishes identically;
hence

Theorem 17.] A general cyclic hus a covariant cyclic so
related that every isotropic of either set intersects the two in
pairs of harmonically separated points. The relation of the
two cyclics is mutual, and at every intersection each curve is
tangent to one of the isotropics through that point.*

This covariant is simply expressed in our symbolic nota-
tion.t Let our cyelic be

5 DA 1
a0y = 0.
The covariant is

lad |-|a@d |a,ap dzag = 0.

* This excellent theorem was discovered by the Author’s former pupil,
Mr. Lloyd Dixon, but never published.

+ Kasner, loc. cit.,, pp. 480 ff.,, gives a list of concomitants with their
geometric properties. Those which follow are from this source.
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We see, in fact, that if (E} be fixed the roots of these two
quadratics in (¢) divide one another harmonically. Or we may
reason otherwise. The circle

g ve st
is called the polar circle of (¢). It contains the harmonie
conjugate of (£) with regard to the intersections of the iso-
tropics through that point with that cyclic. The covariant

eyelic is the locus of points whose polar circles are null. If
we add to our equation (18) such a multiple of (yy) that

2a;=0,
i=0
the equation of the covariant becomes simply

(a?a?) = 0, (25)

The polar circle of (y) will be

K

]

3

M

a;y;x; = 0. (26)
0

i

Another covariant circle is the autopolar circle

Y= 3

Yi% _
EO St 0. (27)

This is orthogonal to the polar circle of every point on the
null circle whose vertex is (y). The locus of points lying on
their own autopolar circles will be another covariant cyclic :

GL BY) &0, (28)

The circles of different generations of a cyclic are connected
by an interesting relation which we shall now develop. Let
(y) be a circle of one generation:

el Y, Yi* yr*

+ + =
(l/j—ai ak—tli (ll—(li
02

3
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(t —0/ aj

o 5 2
YL = 1
./_7 aty— yh q—a; Yy
ak—ai al—aj
= Ly 2 4 2,
Wy) =g —a, % * g =a, ¥

In the same way, if (2) and (2') be two circles of another

generation, :
= et
(7)) = (0= 05) 23 (= )zl g
(ap—ay) " (gy—ay)
cos . yz = ?/7-‘7 Yt

(ar,~— ay— \/ a— L =) i
3/» ?/ % z
(“k-a ( 1—a (“k—“ (az—a.;) l

/\/( —a ) (al 1) (ak = a@) (al )

Ea ) <k—a)(az—a>”’”

(ay,—a)) (—a;) (m—a) , (u-a) ,
\/:ak—ai)y"’z* @=a N @iyt mma)

cos ¥z cos X— y2’ Fsin L yz sin f_y2’

sinf yz= +

(a.—a)) (a;—a; a
Uit [Zkzk"F k’—l) :] /e (——-lu——)zkzkl'F Zzzz/]
<ak—a-><az—a-) (=) (1=
ap—a; Ay — z ap—a; “k—ai 3 ) ——64‘{ 4
(a Za,n + a—a; yl) ay,—a; 24 h —azr-zl2 a —a-z",2+a —avzll‘
5 i 1 I sy 5 g Uty
Q. —a; ay—a;
bt + gz
ak——aj ay—a,
. —a; Oy —a; Ay, — ay—a;
J k i Zkz i (] zzlz /\/ k 1 zk/g =4 l i zllz
ark—aj al—aj ak—-aj Ofl—"aj

This expression is independent of (y), thus giving an
admirable theorem.*

* Jessop, ‘A Pr- .rty of Bicircular Quartics’, Quarterly Journal of Math., \
vol. xxiii, 1889.
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Theorem 18.] The sum or difference of the angles which all
circles of one generation of a general cyclic make with two fixed
circles of another is constant.

This theorem enables us to give an invariant geometric
definition of the cyeclic.

Theorem 19.] The envelope of circles orthogonal to « ﬁxed
circle the sum of whose angles with two other fized circles is
constant is a cyelic.

This is essentially, II. 26], proved without the aid of non-
Euclidean geometry. If we pass to the limiting case whtre
the cyclic becomes a pair of circles we reach another proof
of II. 14].

The generating circles tangent to our eyclic at the point (z)
will be

Yi=0, y;=(0;—a))x;, = (ap—a)zy, Y= (q—a)z.

Permuting the indices, and taking the cross ratio of the
four, we get _
(@i=a)) (4 —ay)

(g —ay) (2, — ;)

Theorem 20.] The cross ratios of four generating circles
tangent at the same point are those of the four foci on any
Jundamental circle.

This theorem can be easily generalized. 'Passing over to
the cartesian plane, let I’ and ¢ be any two points of a general
cyclic. Inverting, with I as centre of inversion, we get an
elliptic cubic curve. The cross ratio of the four tangents to
this curve from the inverse of ¢, is independent of the position
of the latter on the curve, by Salmon’s theorem ; hence

Thec. 121.] The cross ratio of four circles through two
points of a cyclic tangent to the curve at other points is equal
to that of four concyelic foci.

We find the coordinates of the osculating circle at (z) as

follows. We write
Y = )\w@- +a;x;.
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Since

(yd*x) = o,

(dadz) = — (zd?x),

=%

1=0

A(dzdz) + (ada?) = 0.

Let us assume

i=38

(udx) = 0.

i=38

D oadep = — > aga;dia,

i=0

(adz) = D, a;z,da; = (udx) = 0,
i=0
v L
pdu;=| wm; apay, am
w; o U U
x/ajwj ‘\/EC-;uxk '\/(l—ll'l
.L)' Xy €y
— = a; a a
P «/ajakal J . !
i, . b | S
‘\/(l.} '\/ah ‘\/(ll

1
A (@?a?) + aya, a2a,3(a a? ) — i

1
- 2 2,2
Y= a‘oarla‘z%(aw )w@ (a2?) a; ;.

CH.

(29)

Theorem 22.] Twelve osculating circles to a general cyclic
are orthogonal to an arbitrary circle.

Theorem 23.] The evolute of the general cartesian cyclic is

of the twelfth order.

We may get the class of a cartesian cyelic, and also of its

envelope, from one same formula.

which is orthogonal to (s), will be

e[S

Jj=0

] — (xs) a ;.

The circle tangent at (x),
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This will be orthogonal to (¢) also if

j=3 =1
2( 1;;8; (wt) — Sa a;x;t; (ws) = 0.
7'=0 J =0

Adjoining the equation (18) we see

Theorem 24.] Eight circles of an arbitrary coaxal system
will touch a general cyclic.

Theorem 25.] The class of the general cartesian cyclic is
eight.

This agrees with Pliicker’s equations. If the coaxal system
be a concentric one, we see

Theorem 26.] The cluss of the evolute of « general cartesian
cyclic is eight.

A circle in the cartesian plane is an adjoint curve to the
general cyclic. We may thus apply Nother’s fundamental
theorem and the residue theorem.

Theorem 27.] If a circle meets a cyclic in ABCD, while
@ second meets it in ABC D, ,and a third meets it in A, B,CD,
then A,B,C, D, are concyclic.

When the cyclic has a node we may invert into a conic.
The theorem is easily proved for a conic; hence it is true
of the universal cyeclic.

Numerous simple and easy corollaries follow from this
theorem.*

Problem 12.] To construct a tangent circle at « given point
of a cyclic passing through another given point.

Let the given points be A;B,. Suppose that the pair of
points A,B, is coresidual to the pair A4,B; on the cyclic, that
is, both are concyclic with the same pair of the cyclic. Let
A, B/ be concyelic with A4, B,, and on the eyelic, i.e. residual
to A,B,; then A, B, and A,B/ are residual, or the circle
through A, B, B/’ is tangent at 4,.

* Cf. Saltel, ‘Théoréemes sur les cycliques planes’, Bulletin de la Société
mathématique de France vol. iii, 1874, pp. 96 ff.
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Problem 13]. To construct the osculating circle at o given
point.

Let A, be the point. Construct a tangent circle there, and
let 4,B, be the residual pair. Let 4,B, be residual to 4,B,,
and let 4, be residual to A, A,B,. Then the circle tangent
at A, and passing through 4., which can be constructed by
the last problem, is the cirele required.

Theorem 28.] The locus of pairs of points concyclic with
each of three given pairs of points, no two of which are con-
cyelic, is a cyclic.

We may, in fact, pass a cyclic through the six given points
and through one pair of the locus. The residuation with
regard to this eyclic will give pairs of points concyclic with
the given pairs.

Problem 14.] To construct a cyclic through eight given
points.

Let the points be 4,, B;, 4, B,C, D, E, F. Omitting the point
F, we have «! cyelics with one other common point L, by 9].
We find this point as follows. Let the circles 4, B, ¢ and A BC
meet again in C”; let the circles 4, B, D and ABD meet again
in I; let CC'E and DD'E meet again in £’. The cyclic deter-
mined by pairs of points coneyclic with 4, B,, AB, KE" will
contain all of our given points but F. A second such cyclic
may be found by interchanging the rdles of D and £. Now
take an arbitrary cirele ¢ through A, B;. The pencil of cyclics
through 4., B,, 4, B, 0, D, E meets ¢ in pairs of points. The
circles through such pairs, and through a fixed point V, will
be a one-parameter family linearly dependent on two of its
members, i.e. a coaxal system. Two circles of the system
may be determined from the two cyclics just found, and so
the other fixed point V; of the coaxal system. Replacing ¥ by F
we find V,, which plays the réle formerly played by V,. Let
the cirele VV,V, meet ¢ in 4,B,. Then 4,B, are two points
of the cyclic sought. We may find two such on every circle
through A4,B,; the construction is thus complete. We may
also, with the aid of the two preceding theorems, find tangent
and osculating circles to the cyclic given by eight points.
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Suppose that we have in the cartesian plane two sets of
four circles. By taking one circle from each set we have,
in all, sixteen pairs of circles. Let one intersection of each
of fifteen pairs lie on a given cyclic ; one intersection of the
sixteenth pair will lie thereon also. We see, in fact, that
a linear combination of the product of the equations of the
first four circles and of the product of the equations of the last
four will be a curve of the eighth order, with each circular
point at infinity as a quadruple point. These curves have
sixteen infinite and fifteen finite fixed intersections with our
cyclic. If there were one variable intersection the ecyclic
would be a rational curve, which it is not. Hence our cyclic
contains sixteen intersections of pairs of circles. It is to be
noted that the other sixteen lie on another cyclic, for'a curve
of the family containing a seventeenth point of the given
cyclic would degenerate into that and another cyelic. We
may restate our theorem in better form.

Theorem R9]. If three circles meet « general cyclic in
A,4,4,4,, B, B,B,B,, C,C,C,C, respectively, and if each of
the four points D; be residual to the corresponding triad
A,B;C;, then D,D,D,D, are concyclic.*

The limiting cases of this theorem are more interesting than
the general one.

Theorem 80.] The osculating circles at four concyclic points
of & cyclic meet the curve again in four concyclic points.
If the first three circles have four-point contact.

Theorem 81.] A circle which meets a cyclic in three points
where the osculating circles have four-point contact meets the
cwrve again in such a point.

There are, as- we have seen, sixteen of these points. Let us
look a little more closely at their position. To begin with,
a circle with four-point contact is a generating circle, so that
our points lie by fours on four fundamental circles. If we take
two of our points on one fundamental circle they are mutually

* Lachlan, ¢On a Theorem relating to Bicircular Quarties’, Proceedings

London Math, Soc., vol. xxi, 1891, pp. 276 ff. Cf. Schriter, Grundziige ciner
reingeometrischen Theorie der Raumkurven vierter Ordnung, Leipzig, 1890.
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inverse in one of the other fundamental circles. Another
pair of points of four-point contact not on either fundamental
cirele so far mentioned, but mutually inverse, can be found in
four ways. We may thus find two pairs of points of four-
point contact mutually inverse in one of the fundamental
circles in forty-eight ways. Lastly, we may find four points
of four-point contact, one on each fundamental circle, in sixty-
four ways. There are thus 116 circles, each of which meets
the cyeclie in four points of four-point contact. The coordinates
of these points are easily found by taking the intersections of
the curve with each fundamental circle :

2;=0, z;= + Vap—aj, 7=+ */az—“'j» 7=+ Jaj—ak. (30)

We have already seen that twelve osculating circles are
orthogonal to a given circle. If the given circle be null, its
vertex on the curve, three of these will be accounted for by
the osculating circle at that point.

Theorem 32.] Let the osculating circles at the points
A, A,, ..., A, meet the general cyclic again at A, those at
B, B,, ..., B, meet it at B, those at C,,C,,...,C, meet it at C,
and those at Dy, D,, ..., Dy meet it at D; then, if the points
A, B, C, D be concyclic, the points A;, B;, Cy, Dy lie on 729
circles.

Theorem 33.] If the osculating circles at Ay, A,, ..., 4,
meet the general cyclic again at A, while those at A, By, ..., By
meet it at B, then the points A;, 4;, Ay, lie by threes on eighty-
Jour circles, each of which contains a point By.

Theorem 84.] Let A, B, C, D be four concyclic points of
« general cyclic. Let the four generating circles which touch at
A touch the curve again respectively at A,, A,, A,, A,, and so
Jor B, C, D. Then the points A;, B;, Cy, Dy lie by fours on
siaty-four circles.

The theorems of intersection and residuation for the general
eyclic are best handled by the parametric representation of
the curve with the aid of elliptic functions. This, of course,
is essentially a familiar process, being one of the classical
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examples of the application of elliptic functions to geometry.*
We first replace our equations (18) by

(g — ) g + () — a5) 2 + (A — a5) 2 = 0,
(ag— ag) 2,2+ (@, — ap) @2 + (ay—ay) 2,2 = 0.

Let us then write

A, —a, & Ay — g Xy Ao —Qy L

w=\/1 N y=\/2 2 zz\/a .3,

ty— g T, Uy — g 2, g — Ay &,
x2+y?t—1=0,

k2a?+22—1=0. (31)

i = @—a) (@ —ay),
(g — ttg) (g — )

It is to be noted that A2 is one of our fundamental cross ratios.
These equations are equivalent to

T = snu,
Y = Cn, (32)
z = dnu.

The right-hand sides of these equations are the Legendrian
elliptic functions of periods 4k, 47k’. There will be a one to
one correspondence between the points of the eyclic and the
values of w in a period parallelogram of sides 4k, 4ik’.
Four points u,, w,, u,, u, will be concyelic if

Uy + Uy + Uy + Uy = 0 (mod 4k, 40K). (33)

To prove 27], let

Uy + Uy + Uy + 2, = 0 (mod 4k, 41k7),
Uy + Uy + vy + v, = 0 (mod 4k, 4ik),
vy + 0, + ug+uy = 0 (mod 4k, 4ik).

Then v, + Uy + V3 + v, = 0 (mod 4k, 4ik).

* Cf. e. g. Appell et Lacour, Principes de lu théorie des fonctions elliptiques, Paris,

1897, ch. v.
+ Ibid., p. 163.
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To prove 29]. If
Uy + Uy + Uy + U, = 0 (mod 4k, 4ik),
v+ v, + v+ v, =0 (mod 4k, 43k,
W, + Uy + Uy +w, = 0 (mod 4k, 4ik),
Wy + v, +w, + 1w, = 0 (mod 4k, 47k'),
Uy + Vy + 20, + W, = 0 (mod 4k, 47k),
Uy+ vy + Wy 4wy, = 0 (mod 4k, 4ik),
U+ v +w+w, =0 (mod 4k, 4ik’).
Then w, +w, + 2w, + w, = 0 (mod 4k, 4ik).
Let us next take up 34] in detail. If a point A = u, be

chosen, the other points of contact of generating circles tangent
at A are

—uy, —u;+2k —u 42k, —u,+2k+2ik.

(«) If the generating circles tangent at AA;, BB;, OC),
belong to the same generation, that tangent at DD; belongs
to the same generation also, for the cireles 4, B, C, D and
4;, B;, Oy, Dy are interchanged by inverting in the corre-
sponding fundamental circle.

(b) Let the circles A4; and BB; belong to one generation,
while CC), belongs to a second : we may write

A=w, A;,=—w,

B:"L'l, Bj: ==y

C=w, O,=—w +2k
Then D= —(u,+v+w), D= (u,+v,+w)—2k
This shows that CC; and DD, belong to one generation.

(¢) If A4,, BB;, and CC), belong to different generations,
then DD; must belong to the fourth generation, as otherwise
we should be in conflict with (b).*

* Lachlan, Bicircular Quartics, cit., seems rather afraid of 384], as he
says, p. 278: ‘But it would seem in the above reasoning that the three
bitangent circles at 4BC need not necessarily belong to the same system.’
Of course they need not !
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The osculating circle at v will meet the curve again at
% = —3

The point « lies on the osculating circles at the nine points,
w  4mk | 4nik

Y= — —

33+3’

The points where the osculating circles have four-point
contact are

w=mk+nikly, m=0,1,2,3, n=0,1,2 3.

Besides the study of individual cyclies there is not a little
of importance in the study of systems of eyclics. The most
interesting systems are the confocal ones. We shall define
these as the loci of the vertices of the null circles of a system
of confocal quadric congruences, these latter being defined
exactly as in the cartesian case. Analytically, we replace our
eyclic (18) by

=3
> L S (@) = 0 (34)
Sl-Aa i

where A takes all possible values. The expression for the
coordinates of the foci in (21) will be unaltered, so that con-
focal cyclics have the same foci. We shall presently see that
the converse is not always the case. If we look upon (x)
as fixed in (34), we have a quadratic equation in A, for the
coefficient of A® will vanish in virtue of our fundamental
identity. There are thus two confocal general cyclics through
each point in general position. If these correspond to the
parameter values A and A’, we have for two tangent circles
to the two curves at

y; =l + la_iffli’ ¥ = U+ T‘ii}_"\”/ibz
Since () lies on both cyclics, we have
i=8 = i :
i=0 1_;‘“1‘ mf:i%l—)@\’aixi? = 0.
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Subtracting one equation from the other we get

i=3
a. e
z‘go(l "';‘“z‘) (1 —)l\’ai) <t

This yields, however,

(yy') = 0.

Theorem 85.] Through each point in general position in
the tetracyclic plane will pass two confocal general cyclics of
a given system, and these two intersect orthogonally at that
point.

We mean by a point in general position one where the
roots of the quadratic in A are distinet, i.e. a point not on
the isotropics, which are the envelope of the system.

Confocal cyelics in the tetracyclic plane will correspond to
confocal ones in the cartesian plane. There are some advan-
tages in studying the latter rather than the former, as we shall
now show. We begin with the differential equation

; du dv
W= i) (B~ Y- =B
These lead to the solution

w = snw,

35)

v = sn(w—o),
where « is the constant of integration. Eliminating w, we
get *
au?v® + buPv + cuv + du+ e + fu +gv+h = 0.
If we give u and v the following values,
w=x+iy, v=x—1Y,

we see that we have the general cartesian cyclic. By varying
o we get a one-parameter family of cyclics, and these have
the same foci. We see, in fact, that in (35)

duv=01if vw= 41, u= £

* Darboux, Sur une classe, cit., p. 76 ; Appell et Lacour, loe. cit., p. 129.
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Hence +1 and + 1are the values of the isotropic para-

meters corresponding to the tangent isotropics of the two
systems. The fact that we have the same quadratic expression
on both sides corresponds to the fact, proved at once by
inversion, that the two triads of tangent isotropics of the two
systems have the same cross ratios. Suppose, conversely,
that we have a general cyclic. The tangent isotropics of the
two systems have the same cross ratios, and, by a linear
fractional transformation of w and v, we may make these
tangents correspond to the parameter values +1+ Tt Then
the one-parameter family of cyclics given by (35) will include
the given cyelic. If w v be known, the two values of cOZZ_Z
obtained from (35) differ only in sign, i.e. the curves intersect
at right angles.

Let us consider what will be the effect on (35) if we subject
v to such a linear transformation,

, _ov+p

T v 4o’
that the denominator on the right is covariant. There are
four conceivable types of such tra,nsfmmatlon, when the tan-
gent isotropics are all different.

(2) The tangent isotropics are interchanged in pairs. This
will be done by the involution whose double members separate
the interchanged pairs harmonically, i.e. the double members
are a pair of roots of the sextic covariant of the quartic form.
The sextic covariant has the property that each pair (not
each two) of its roots separates harmonically two pairs of the
roots of the quartic. If we take for the roots of the sextic

O, «, 1; —1: ’i, _7::

2y

the three involutory transformations of the quartic into

itself are : :
= — 5 vV=—, V= -
v v

these will change the right-hand side of (35) at most in sign.
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(b) The roots of the quartic are permuted cyclically. Here
we reduce the sextic to the previous form. The quartic will
involve only even terms, and not lack the term in v*. The
transformation will carry the sextic into itself, and it is easy
to see that it will leave one pair of roots of the sextic in place.
Hence we shall easily find that it is of the form *
v+ 1 v—1 v41 v—1

1
v, = 2 L——> g —_—
x i'v’ x v——l’ * v+1 ey — v+

These will all leave the whole right-hand side of (35) in-
variant, except for sign.

(¢) One root of the quartic is left in place, the other two
permuted. The roots here have at most two cross ratios,
instead of the usual number of six, i.e. they must be equi-
harmoniec. Under these circumstances we may rewrite (35)

dw —  dv
VURr1l /gl

the transformations to be effected on the right are

(36)

V=wv, =0y, wd=1,

The right-hand side of (36) will be multiplied by +w or
+? and we get two new confocal systems with the same
foci. The angle of the curves % ) %?3 is, by Laguerre’s
projective definition, ZL times the logarithm of the cross ratio

i v odv

of the four quantities 0, oo, e e

The six curves through any point make equal angles with
one another.

(d) One pair of roots remain in place, the others are inter-

* These are the transformations of the tetrahedral group. Cf. Weber,
Lehrbuch der Algebra, second ed., Braunschweig, 1899, vol. ii, p. 274.
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changed. Here the roots must form a harmonic set. If we

take two of them as 0 and ©, we may replace (35) by
du dv

—— = g ] 37

Vu@i=1) Ju@Ei-1) 37)

The change of v into —v will multiply the right-hand side
by +.

Theorem 36.] There is but one set of cyclics having the
same foci as a given general cyclic, namely, those confocal with
it, except where the tangent isotropics form a harmonic or an
equiharmonic set. In the harmowic case four cyclics pass
through each point in general position, making successively

k . « . . .
angles of R the harmonic case six cyclics will pass throwgh

. . . ey
a general point, making successively angles of r; 2

The tetracyclic plane does not seem to offer such a promising
field for further study as some other parts of our subject. The
subject of problems of construction might certainly be carried
further. Something might be done to line up our analytic
work with the large amount of literature dealing with the
geometry on a sphere in general, and the study of sphero-
conics in particular. There are doubtless also numerous
theorems of interest concerning special types of cyclies still to
be discovered. Some of these, such as the lemniscate, have
been already extensively treated. It is never safe to say that
any branch of mathematics has been explored to the end;
merely, in this case, the outlook is less promising than in some
others.

* The equiharmonic case seems to have been discovered by Roberts, ‘On
foci, and confocal Plane Curves’, Quarterly Journal of Mathematics, vol. xxxv,
1904. It is not clear how he was first led to his results: had he made an
exhaustivo study of the transformations of the quartic into itself he could
not have overlooked the simpler harmonic ecase.

1702 P



CHAPTER V

THE SPHERE IN ELEMENTARY GEOMETRY

§ 1. Miscellaneous Elementary Theorems.

THE elementary geometry of the sphere is closely allied to
that of the circle, or, rather, to certain portions of the latter.
Theorems about the circle, which are largely descriptive in
character, carry over easily into three dimensions. On the
other hand, the sphere has no simple property corresponding
to the invariance of the angle inscribed in a given circular
arc. For this reason we fail to find in the case of a sphere
many theorems corresponding to the most beautiful metrical
ones associated with the circle.

The likeness between circles and spheres extends beyond
individual theorems to general methods of proof. Often the
procedure which is applicable in one case may be directly
transferred to the other. Furthermore, a goodly number
of theorems, where all the spheres involved have collinear
centres, may be obtained from the corresponding -circle
theorems by rotation about an axis. For this reason it will
be possible in the present chapter to omit the proofs of
a considerable proportion of the theorems, leaving to the
reader the task of referring back to the corresponding cases
in Ch. I. To facilitate such reference we shall follow much
the same order as there prevailed.

All figures considered in the present chapter shall be
supposed to exist in the finite real domain of Euclidean space,
the domain of elementary solid geometry. Points, lines, and
angles have the same meaning as before. Let us mean by
a plane the surface generated by lines meeting in distinet
points any?two sides of a given triangle. The. portion of
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a plane on one side of one of its lines shall be called a Aalf-
plane. If two non-coplanar half-planes be bounded by the
same line, the region which includes all segments whose
extremities lie in these two half-planes shall be called their
interior dihedral angle, or, more shortly, their dikedral angle.
The remainder of space shall be their exterior dikedral angle.
Four non-coplanar points determine four triangles, and the
figure bounded by them is called a fetrahedron, the triangles
are its faces, their planes its fuce-planes, the sides of the
triangle are the edges of the tetrahedron, their lines its edge-
lines. The meanings of such words as wvertex, face angle,
dihedral angle,trikedral angle of a tetrahedron are immediately
evident. A line through a vertex perpendicular to the
opposite face-plane is called an altitude line, the portion
between the vertex and the intersection with the plane is
the altitude, the extremities of the altitude are the vertex
and its foot.

The locus of points at a given distance from a given point
shall be called a sphere. Centre, radius, diameter, diametral
line have meanings conformable to those used for a ecircle.
Spheres of equal radius shall be called equal.

Let a sphere be given with centre O and radius ». Let
P and P’ be two such points collinear with O that

> —>
. {OP) (O ) =+% (1)
Each is said to be the inverse of the other in the given

sphere. The sphere is called the sphere of inversion, its
centre and radius the centre and radius of tnversion.

Theorem 1.] Every point except the centre of inversion
has a single definite inverse with regard to a given sphere.

Theorem 2.] The sphere of inversion is the locus of points

- which are their own inverses. Points outside the sphere will

invert into points within, points within, other than the centre,
“will invert into points without.

Theorem 3.] Mutually inverse points are harmonically
separated by the intersections of their line with the sphere
of imversion.

P2
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Theorem 4.] If A, B, C, D be four points, and A’, B, ", I/
their inverses,
(AB)(CD) _ (4'B) (' D))
(4D)(0B) ~ (A’D)(C'B)’

Theorem 5.] The angle at which two curves intersect is
equal in absolute value to that made Ly their inverses.

This is easily proved when we remember that two trihedral
angles are symmetrical if two face angles and the included
dihedral angle are equal to the corresponding parts in the
other, but arranged in opposite senses.

Theorem 6.] The angle at which two surfaces intersect is
equal to that made by their inverses.

Any locus which is its own inverse shall be said to be
anallagmatic.

Theorem 7.} An anallagmatic curve or surface euts the
sphere of imversion orthogonally at every imtersection wlich
is a stmple point of the curve or surface.

Theorem 8.] A plane through the centre of inversion is
anallagmatic,

Theorem 9.] A sphere through any pair of inverse points
is anallagmatic ; every sphere cutting the sphere of inversion
orthogonally is of this sort.

Theorem 10.] The inverse of a plane not passing through
the centre of inversion is a sphere passing through that point,
and vice versa.

Theorem 11.] The inverse of « spheve not passing through
the centre of inversion is a sphere of the sume sort.

Theorem 12.] The inverse of a circle not passing through
the centre of imversion is a like circle, the inverse of a circle
passing through the centre of inversion s a line not passing
through that point, and vice versa.
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Theorem 13.] A circle passing through a puir of (nverse
points, or « circle or line orthogonal to the sphere of inversion,
is anallagmatic.

Theorem 14.] If two figures be mutwally inverse with
regurd to « sphere, their inverses with regard to a second
sphere, whose centre is not on the first, are mutually inverse
in the inverse of the first sphere with regard to the second.
When the centre of inversion is on the first sphere, the inverses
are the reflections of one another in the plane into which the
Jirst sphere is transformed.

Theorem 15.] If two figures be mutually inverse with
regard to two spheres, they are mutually inverse with regard
to the inverse of one sphere in the other, or are reflections of
one another in the plane which is the inverse of one sphere
in the other.

Theorem 16.] If an anallagmatic surface do not contain an
anallagmatic series of circles, it is the envelope of a two-para-
meter faomily of anallagmatic spheres whose centres move on @
Jized surface called the deferent, and, conversely, the envelope of
every such system of spheres, if a surface, will be an anallag-
matic one. The line connecting corresponding points on the
anallagmatic surface is the perpendicular from the centre
of inversion on the corresponding tangent plane to the
deferent.

Theorem 17.] An anallugmatic surfuce which contains a
one-purameter family of anallagmatic circles, which are lines
of curvature, is the envelope of @ one-parameter faomily of
anallagmatic spheres, and vice versa.

These last two theorems belong more properly in the
domain of differential geometry, the last one arising from
the well-known fact that every evolute of a circle is a point.

Theorem 18.] If two spheres be mutually inverse, the centre
of inversion is a centre of similitude for them, the ratio of
similitude being in absolute value that of their radii.

It is immediately evident that two non-concentric spheres
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of unequal radii have two centres of similitude, the ratio
being positive in one case, negative in the other.

Theorem 19.] Any two spheres of unequal radius are
mutwally inverse with regard to one real sphere. When they
intersect in a real circle they are mutwally inverse with regard
to a second such sphere. When they do mot inmtersect or
touch and are not concentric, there is unother sphere of such
o natwre that the two are interchanged by an inversion in
this sphere followed by a reflection in its centre.

A sphere with regard to which two spheres are mutually
inverse is called a sphere of antisimilitude for them; its
centre is one of their centres of similitude. We shall also
define as the power of a point with regard to a sphere its
power with regard to any circle of the sphere coplanar
with it.

Theorem 20.] The locus of points whose powers with regard
to two wnequal and non-concentric spheres are proportional
to the squares of the corresponding radii is the sphere having
as diameter the segment bounded by the centres of similitude
of the two spheres. :

This sphere shall be called the sphere of similitude of
the two.

Theorem 21.] If three wnequal spheres be given, no two
concentric, @ line connecting a centre of similitude of one
pair with a centre of similitude of a second pair will puss
through a centre of similitude of the third pair.

Theorem 22.] If a sphere touch two others, the line con-
necting the two points of contact will pass through « centre
of similitude or be parallel to the line of centres.

Theorem 23.] If fowr spheres be given, no two concentric or
equal, nor with their four centres coplanar, they will determine
in pairs twelve centres of similitude. These lie by simes in
planes through three centres of given spheres, and by threes
on sixteen lines. Four such lines pass through each centre
of similitude, four lie in each plane through the centres of
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three spheres, and four in each of eight other planes, whereof
two pass through each of the sixteen lines. The centres of
stmilitude lie by sixes in these twelve planes.

To prove this theorem let the spheres be s, s,, 85, 8,. The
external centre of similitude of s; and s; shall be C;;, their
internal centre 0. Then by I. 31] the following triads are

collinear :
’ /7
017 Ujk Ch.i» Oij Oﬂ 78

Hence C;; 05, Ch; Oy’ Oy € are coplanar, and of these
there are four. Similarly C;; 013 Cy” Oy’ Cyy/ 0} are coplanar,
and here there are three. Lastly, C;;C;; C;C; 0y ave
coplanar. The twelve planes may be grouped to be the face-
planes of three tetrahedra. Every face-plane of one tetra-
hedron, and every face-plane of a second, will be coaxal with
a face-plane of the third, thus giving the well-known desmic
configuration of Stephanos.* Three parallel planes are here
considered coaxal, and the word tetrahedron means any four
planes, no three coaxal.

Theorem 24.] The radius of the inverse of a sphere not
through the centre of inversion is equal to that of the given
sphere multiplied by the square of the radius of inversion, and
divided by the absolute value of the power of the centre of
inwversion with regard to the given sphere.

Theorem 25.] The inverse of the centre of a sphere not
through the centre of inversion is the inverse of the centre
of inwversion with regard to the inverse of the given sphere.

Theorem 26.] The inverse of the centre of  sphere through
the centre of inversion is the reflection of the centre of inversion
in that plane which is the inverse of the given sphere.

Theorem 27.] Any two mon-intersecting spheres may be
inverted into concentric spheres, the centre of inversion being
on their line of centres.

* ¢Sur les systémes desmiques de trois tétracdres’, Bulletin des Sciences
malhématiques, Series 2, vol, iii, 1879, pp. 424 ff,
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The three-dimensional analogue of Steiner’s chain of succes-
sively tangent spheres is neither easy nor attractive except in
special cases.* The criterion for five spheres tangent to -a
sixth is not neatly expressible except in determinant form,
so that we pass it over till the next chapter. Let us turn to
the relations of a tetrahedron to certain special spheres. In
particular, let us search for something to correspond to the
nine-point cirele. It will be remembered that one method
of finding that circle is to treat it as the pedal circle of two
isogonally conjugate points. In a similar spirit we now take
up the question of isogonal conjugates in three dimensions.

Let two half-planes be given forming a dihedral angle,
but not coplanar. If P be any point not in either plane, and @
any point in that plane through the edge ! of the dihedral
angle, which is the reflection of the plane I’/ in the bisector,
then the points P and @ are said to be isogonal conjugates
with regard to the dihedral angle; the relation between the
two is clearly reciprocal. If P,Pg, Q,@s be the feet of
the perpendiculars from P and ) on the two planes,

(PP,) _ (QQe).
(PPg) ~ QT

If P move parallel to the edge 7 till it fall into the plane
Q.QQp at P’, while @ moves parallel to / till it reaches @ in
the plane P, PPg, then, by I. 66], P Pg’, Q,Qg lie on a circle
whose centre is the middle point of (P’Q), while P, Pg, Q. Q8
lie in a circle whose centre is the middle point of (PQ’).
Hence P, Pz and Q,Qp lie on a sphere whose centre is the
middle point of (PQ).

We next take a trihedral angle. The locus of points isogo-
nally conjugate to a point which does not lie on any edge of
this trihedral angle with regard to two of the dihedral angles,
is a line through the vertex, and since the feet of the perpen-
diculars from two such points on the three face-planes lie on
a certain sphere whose centre is half-way between them, we
see that they are isogonally conjugate with regard to all three
dihedral angles. Lastly, we take a tetrahedron. We see that

* Vahlen, loc. cit.
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every point not on any edge-line has a definite isogonal con-
jugate with regard to all six dihedral angles. If, thus, we
define as the pedal sphere of a point that which passes through
the feet of the perpendiculars, thence to the face-planes of
a tetrahedron, we get the interesting theorem *

Theorem 28.] If two points be isogonally conjugate with
regard to a tetrahedron, they have the same pedal sphere, whose
centre is mid-way between them.

We reached the nine-point circle as the pedal circle of the
centre of the circumseribed circle and the orthocentre. Let us
try a similar method here. We must first notice that, by I. 199]
and 201], the locus of points whose powers with regard to two
spheres differ only in sign is a sphere whose centre is mid-way
between theirs. Let us call this their radical sphere.

Theorem 29.] The locus of the centre of a sphere which
is cut by one of two given spheres orthogonally, and by the
other in a great circle, is their radical sphere or « portion
thereof.

Let us anticipate our future work to the extent of assuming
that if four spheres be given with non-coplanar centres, there
is just one point which has the same power with regard to
all four. This shall be called their radical centre. If it be
without the given spheres, it is the centre of their common
orthogonal sphere; if within them, the centre of a sphere cut
by all in great circles. Suppose, then, that we have given
a tetrabedron, and the circumscribed sphere. We may find
four spheres each having as a great circle a circle cut by
a face-plane from s. The centres of these four spheres are
not coplanar, there is a sphere s’ which is either orthogonal
to all or cut by all in great circles. If s be orthogonal to
the four spheres whose centres are in the face-planes, we see
that these centres are on the radical sphere of s and . In
any case, it is quite easy to prove trigonometrically that the
centres of s and s” are isogonal conjugates; hence T

* Cf. Neuberg, ‘ Mémoire sur le tétraddre ’, Mémoires couronnés de I' Académie

royale de Belgique, vol. xxxvii, 1886, p. 11.
T Roberts, On the Analogues, &c
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Theorem 80.] The centre of the circumseribed sphere to
a tetrahedron and the radical centre of the four spheres, each
of which has a great circle through three vertices of the tetra-
hedron, are isogonal conjugates ; the feet of the perpendiculars
from these points on the face-planes and the reflections of
these feet in the point mid-way between the two points are
co-spherical.

Let us call this the sixteen-point sphere. 1t is the first
analogue to the nine-point circle. We reach another analogue
as follows.*

Let the vertices of a tetrahedron be 4,4,4,4,. Let us
first assume A, 4,1 A,4, and A, 4,1 A,A,. The plane
through 4,4, and the altitude line from A; will be perpen-
dicular to 4,4,, and meet that line at the foot of the 4,
altitude line in the A 4,4,4,. In the same way the plane
through A, A4, and the A, altitude line will meet 4,4,4, in
a second altitude line. Hence the altitude line through 4,
meets the opposite face-plane in the orthocentre of that face.
Hence each pair of opposite edge-lines will be perpendicular
in direction, each altitude will pass through the orthocentre
of the corresponding face, and the four altitude lines are
concurrent in a point called the orthocentre of the tetrahedron.
Conversely, if the altitude lines be concurrent, each edge-
line is perpendicular in direction to two altitude lines, and,
s0, to the opposite edge-line. This special case shall be called
the orthogonal tetrahedron.

In the general case we see that if we pass a plane through
any altitude line and the orthocentre of any face, we have
a plane perpendicular to the plane of that face. If, further,
we speak for the moment of parallel lines as meeting at
infinity, and consider on the one hand the four altitude lines,
and, on the other, the perpendiculars to each face-plane at
the orthocentre, we see that each line of one system meets
each of the other, but in neither case are all four lines
parallel to one plane. In the general case the altitude lines
of a tetrahedron are generators of the same system of a

* See an excellent article by Intrigila, ‘Sul tetraedro’, Rendiconti della
R. Accademia delle Scienze di Napoli, vol. xxii, 1883.
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hyperboloid.* Let us call this the associated hyperboloid,
its centre . Let us prove that the centre of gravity G of the
tetrahedron is half-way between C and O, the centre of

Fra. 27.

the circumscribed sphere. The orthogonal projection of P
on the face-plane ; shall be Pa;; the orthocentre of this face
shall ‘be H;. Remembering that the centre of the hyper-
boloid lies mid-way between each pair of parallel generators,
—_——
(A(Xi OCX,L) -
(o H)
But we know, from I. 72],

ilg

—— ———
(H;00;) = =3 (0, Gy),
where G; is the centre of gravity of this face. Again, from

* It is highly unsportsmanlike to make use of a hyperboloid in elementary

geometry. Frankly, the author does not know how to dispense with it in
this case.
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the fundamental property of the centre of gravity of a tetra-
hedron,

(Ado;Goy) = 3(Ga; Gy),

(Aai Cai) X (Hi Oai) X (Gz Gai) = (Hzaai) X (G,,;Oai) X (Aai G(xi).
A

Boe,
Ay Cay Hy

G,

Fia. 28.

Applying Menelaus’s theorem to the AH;Ax;G;, we see
that the points Cx;, O, Go; are collinear. Reasoning in the
same way for the other face-planes, COG must be collinear.
Again, since Co; is the middle point of (H; A «;), a line through
it parallel to Ao;G; meets H;G; in the middle point of
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(H;G,;), and this is the reflection of Oa; in G;. Hence Gu;
is the middle point of (Cx;0a;), or G is the middle point
of (00).

The tetrahedron ¢, G,G,G, is inversely similar to the tetra-
hedron A, 4,4,4,, the ratio of similarity being — 3, while
the centre of similitude is " Hence O’, the harmonic con-
jugate of O with regard to G and C, which divides (GC) in
the ratio —3, is the centre of the sphere about G,G,G,G,:
G and C are the centres of similitude for the spheres circum-
scribed to our two tetrahedra. The four points, one-third of
the distance from C to the vertices of the tetrahedron, lie on
the new sphere. If such a point be B;, we see that B; and
G; are diametrically opposite on the new sphere, since
A;B;,COGG,; are in a plane through the centres of both

- ™ :
spheres. Hence, since ¥ B;Bwx;C; = o Ba; is on our new

sphere. We also see that Bx; is the harmonic conjugate of
H; with regard to Cx; and Ao;.

Theorem 81.] The centres of gravity of the faces of a tetra-
hedron, the points on one-third of the distance from the centre
of the associated kyperboloid to the vertices, and the harmonic
conjugates of the orthocentre of each face with regard to the
orthogonal projections on its plane of the opposite vertex, and
the centre of the associated hyperboloid, are on one sphere.

We shall call this the twelve-point sphere of the tetrahedron.

Let us now take up the special case of the orthogonal
tetrahedron. Here €' will coincide with H, the orthocentre of
the tetrahedron. The points 4;, Co;. H; coalesce.

Theorem 32.] In an orthogonal tetrakedron the centres of
gravity of the faces, their orthocentres, and the points one-third
the distance from the orthocentre to the vertices are co-spherical.*

Let us call this the first twelve-point sphere of the orthogonal
tetrahedron. We might naturally guess that it was identical
with the sixteen-point sphere, but such is not the case. The

* Cf. Prouhet, ¢ Analogies du triangle et du tétraddre’, Nouvelles Annales de
Math., Series 2, vol. ii, 1863, p. 138.
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sixteen-point sphere passes through the centres of the circles
circumseribed to the face triangles, while the first twelve-point
sphere passes through their orthocentres and centres of gravity,
and these three points are collinear. It is true, however, that
the first twelve-point sphere passes through sixteen notable
points, for

Aq
0
G
=
H
Gy Heci
Fre. 29.

Theorem 38.] If each altitude of an orthogonal tetrahedron
be extended beyond its foot by double the distance from that
foot to the orthocentre, the points so found lie on the first twelve-
point sphere.

Besides the first twelve-point sphere we have a second one
reached as follows :

Theorem 34.] The nine-point circles of the four fuces of an
orthogonal tetrahedron lie on the second twelve-point sphere.
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The centre of this sphere is the centre of gravity of the tetra-
hedron.

The four vertices and orthocentre of an orthogonal tetra-
hedron shall be called an orthogonal system : each point is the
orthocentre of the tetrahedron whose vertices are the other
four. We thus determine four circumscribed spheres, four
twelve-point spheres of the first sort, and four of the second
sort. Each face-plane is the radical plane (i.e. the locus of
points having like powers) for two circumseribed spheres,
and two twelve-point circles of each sort.

Theorem 85.] FEach point of an orthogonal system is the
radical centre for four circumscribed spheres, four twelve-
point spheres of the first sort, and four twelve-point spheres
of the second sort.

Turning especially to the twelve-point spheres of the first
sort, we see that the centre of gravity of all five points
lies one-fifth of the distance from G to H. The distance
from G to the centre of the first twelve-point sphere asso-
ciated with H is 1 (GH), hence the distance from T' to the
centre of this sphere is 1 (T'H); T is the centre of similitude
for the given points and the centres of the first twelve-point

spheres. Lastly (I‘_0>) = 3(175) = —%(F—?I).

Theorem 36.] The centres of the five circumscribed spheres
of an orthogonal system, those of the five twelve-point spheres
of the first sort, and those of the five twelve-point spheres of
the second sort, form three orthogonal systems.

There seems to be very little in the geometry of the
tetrahedron which bears a close analogy to the Brocard
figures ; we pass therefore to the analogy of our deseriptive
theorems about concurrent circles and concyelic points.

We start with the figure of I. 149], three concurrent circles
each through a vertex of a triangle and the marked points on
the two adjacent side-lines. We invert this figure with
a centre not in its plane, and we have on a certain sphere
six circles concurrent by threes in eight points. Next let
us take a tetrahedron, and mark one point on each edge-line.
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Four spheres (or planes) may be passed, each through one
verlex and the marked points of the edge-lines adjacent.
If we consider how one of these spheres is met by the three
planes concurrent thereon, and by the other three spheres,
we have exactly the preceding figure of six ecircles. We
thus get *

Theorem 87.] If « point be marked on each edge-line of
a tetrahedron, and « sphere be passed through each vertex and
the marked points of the adjacent edge-lines, these four spheres
are concwrrent.

Unfortunately, we cannot proceed immediately from this to
the case of five, and so to m spheres. For if five planes be
given in general position, they determine five tetrahedra and
five eircumscribed spheres, but these, instead of being all con-
current in one point, are concurrent by fours in the five
planes,

There is an easy three-dimensional analogue to I.166] stated
as follows :

Theorem 38.] Given n points on a sphere, no four of which
are concyclic.  We may associate with them a point and a
sphere as follows :

() The point is the centre of the associated sphere.

(b) The radius of the sphere is one-half that of the given
sphere.

(¢) The point lies on n spheres each associuted with the
systems of n—1 points obtained Ly omitting each of the given
points in turn.

(d) The sphere contains the centres of these n spheres.

We may copy closely our second proof for the above-named
theorem. When n =5 the centres of gravity of the five
tetrahedrons are the points —% of the distance from the centre
of gravity of the five points, to those points, that is to say,

* The credit for this theorem is usually ascribed to Roberts, ‘On certain
tetrahedra specially related to four spheres’, Proccedings London Math. Soc.,
vol. xii, 1880. It is, however, implicitly given by Miquel, loe, cit.

+ Intrigila, loe. cit., pp. 78, 79.
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they are on a sphere whose radius is % that of the given
sphere. But the centre of each twelve-point sphere is 4 the
distance from the centre of the circumseribed sphere to
the centre of gravity of the tetrahedrons, and the radius of
the twelve-point sphere is % the radius of the given sphere.
Hence the centres of the five twelve-point spheres lie on
a sphere of 1 the given radius, and all pass through the centre
thereof. The theorem is thus proved when n = 5. Assume
that it is true for n—1 points, and that the point associated

with n—1 points is 71_5-—1 of the distance from the centre of
the given sphere to the centre of gravity of m—1 points.

A centre of gravity for n—1 points is — __l,i of the distance

from the centre of gravity of all » to the remaining point.
These n centres of gravity will thus lie on a sphere of

. -~ of the dis-

1 . ; q
el the given radius whose centre is —

tance from the centre of gravity of all » points to the centre
of the given sphere. Hence the associated points lie on

a sphere of % the given radius, whose centre is g the distance
from the centre of the given sphere to the centre of gravity,
and this point lies on all n spheres. The centre lies %of the

distance from the centre of the given sphere to the centre
of gravity of all n points.

§ 2. Coaxal Systems.

No part of the geometry of the sphere follows more closely
the analogy of the geometry of the circle than the system
of coaxal spheres, and allied systems.

Theorem 89.] The locus of points having equal powers
with regard to two mon-concentric spheres is a plane per-
pendicular to their line of centres, and containing all points
common to the two.

1702 Q
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This we defined as their radical plane, A system of
spheres having a common radical plane shall be called a
coazal system.

Theorem 40.] If three spheres be given, whereof no two are
concentric, the radical planes which they determine two by two
pass through a line or are parallel.

Theorem 41.] Given four spheres, whereof mo two are
concentric. The radical planes which they determine two by
two are all parallel when the centres are collinear, they are
parallel to one line when the centres are coplanar, and they
are concwrrent when the centres are not coplanar.

We have already designated this point as the radical centre
of the spheres, and noted that it was the centre of a sphere
either cut orthogonally or in great circles by all four given
spheres, unless indeed they all pass through that point.

Theorem 42.] The numerical value of the difference of the
powers of a point with regard to two non-concentric spheres
18 twice the product of its distance from their radical plane
and the distance of their centres.

Theorem 43.] If a sphere be intersected by two others either
orthogonally or im great circles, its centre lies in their radical
plane. Such a sphere will be intersected either orthogonally
or in a great circle by every spheve coaxal with the given two.

Theorvem 44.] JIf the spheres of a coaxal system have no
common points, they will have as limiting positions two point-
spheres called the limiting points of the system. These are
mutually inverse in ecvery sphere of the system, and every
sphere through them is orthogonal to all spheres of the
system. A sphere orthogonal to any two spheres of the
coaal system will pass through the limiting points and be
orthogonal to all.

Theorem 45.] The system of all spheres through a circle
will be orthogonal to that of all spheres orthogonal to that
circle.

Theorem 46.] The system of all spheres tangent to a given
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plane at a given point will be orthogonal to that of all spheres
tangent to the normal to that plane at that point.

The system of all spheres orthogonal to two spheres or two
planes, or a plane and a sphere, shall be called a linear
congruence. The assemblage of all spheres cut by a given
sphere or plane orthogonally or in great circles, or passing
through a given point, shall be called a linear complex.

Theorem 47.] Three non-coaxal spheres will belong to one
linear congruence determined by them; four spheres of non-

coplanar centres will belong to one linear complex determined
by them.*

Theorem 48.] The inverse of « coaxal system will be «
coaxal system, « concentric system, a pencil of planes through
« line, or a pencil of parallel planes.

Theorem 49.] The inverse of a linear congruence is «
linear congruence, a bundle of concurrent planes, or a bundle
of planes parallel to a line. The inverse of a linear complex
i8 a linear complex, or the assemblage of all planes.

Theorem 50.] The assemblage of all spheres cutting ortho-
gonally three given spheres with mon-collinear centres is a
coaxal system, and cuts orthogonally every member of the
linear congruence determined by the three.

Theorem 51.] Two mutually inverse spheres are coaxal
with their sphere of inversion.

We have already named this a sphere of antisimilitude.
Two spheres of unequal radius will always have at least one
sphere of antisimilitude. It is called the external sphere .
of antisimilitude if its centre be the external centre of anti-
similitude, otherwise it is the internal sphere.

Theorem 52.] If four spheres be given, whereof no two are
concentric and no three coaxal, nor do all belong to a linear
congruence, the spheres through a given point each coaxal with
two of the given spheres will belong to a linear congruence

* Cf. Reye, Synthetische Geometrie der Kugel, Leipzig, 1879, p. 21.
Q2
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and pass through a second common point which is inverse
to the given one in the common orthogonal sphere to the
Jour when such a sphere exists, and which coincides with
the given point only when the four are concurrent.

Theorem 53.] The locus of a point whose powers with
regard to two given spheres have a constant ratio different
Jrom unity is a sphere coaxal or concentric with them.

Theorem 54.] Two spheres are coaxal with their sphere
of similitude. If three spheres of unequal radius be given,
no two concentric, their spheres of similitude are coaxal.

Theorem 55.] If four spheres be given with unequal radiz
and non-coplanar centres, the six spheres of similitude which
they determine two by two belong to a linear congruence.

Theorem 56.] Given fowr spheres with non-coplanar centres.
If there be a sphere orthogonal to all four, and a sphere which
cuts them all in great circles, then these are coaxal with the
8pheres through their centres and orthogonal to the spheres
of similitude which they determine two by two.

Theorem 57.] If a sphere so move that eack of two given
points has a constant power with regard to it, it traces
a linear congruence.

Theorem 58.] If a sphere so move that each of three non-
collinear points has a constant power with regard to it, it
traces a coaxal system.

Theorem 59.] If a sphere so move that it cuts two given
spheres in great circles, or cuts one in a great circle and the
other orthogonally, it traces a linear congruence.

Theorem 60.] If a sphere so move that it cuts three spheres
of mon-collinear centres in great circles, or cuts two in great
circles and one orthogonally, or one in a great circle and two
orthogonally, it will trace a coaxal system.

Theorem 61.] If four mutually external spheres with non-
coplanar centres be given, there is a sphere cutting each set of
three orthogonally and the fourth in a great circle, and a
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sphere cutting any three in great circles and the fourth ortho-
gonally.

We have already in 29] noticed the fundamental property
of the radical sphere of two given spheres. It is the sphere
coaxal with them whose centre is mid-way between theirs.

Theorem 62.] Given two non-concentric spheres. If there
be a sphere coaxal with them whose centre is the reflection of
the centre of the first in that of the second, then this third
sphere will cut in a great circle all spheres orthogonal to the
Jirst whose centres lie on the second, and will cut orthogonally
all spheres cut by the first in great circles whose centres lie on
the second.

We may sharpen our concept of the angle of two spheres,
exactly as we did in the case of circles, by starting from the

formula

242 2
cos = -—%W—— a ( 2)

Theorem 63.] If a variable sphere cut two given spheres at
Jixed angles, it will cut also at « fixed angle every sphere con-
centric or coaxal with them.

Theorem 64.] Al spheres of a couxal system will cut at equal
or supplementary angles two spheres which cut two spheres
of the system at equal or supplementary angles.

Theorem 65.] If a sphere intersect two others which are
non-concentric and of wnequal radii, the circles of inter-
section are in perspective from the external centre of similitude,
while if it intersect them at supplementary angles, these circles
are in perspective at the internal centre of similitude.

Theorem 66.] If a sphere imtersect two others of wnequal
radii orthogonally, the circles of intersection are in perspective
Jfrom both centres of similitude.

Theorem 67.] If two spheres of wnequal radii intersect,
all spheres cutting them at equal angles are orthogonal to the
external spheve of antisimilitude, all cutting them at supple-
mentary angles are orthogonal to the internal sphere of simi-
litude. The first statement remains true when the spheres
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are mutwally external, the second when one surrownds the
other.

Theorem 68.] If each of two mon-concentric and wnequal
spheres intersect each of two other such spheres at the same
angle, the external centre of similitude of each pair lies in the
radical plane of the other. If each sphere of one pair meet
each of the other at supplementary angles, the internal centre
of similitude of each pair lies in the radical plane of the other.

Theorem 69.] If three wnequal spheres be given, passing
through two common points, the three external spheres of anti-
similitude which they determine two by two are coaxal, as are
each external and the remaining two internal spheres of
antisimalitude.

Theorem 70.] If four wnequal spheres of non-coplanar
centres be given, each two intersecting, the spheres cutting all at
equal angles form a coaxal system, as do those cutting one in
angles supplementary to the angles cut from the other three,
and those cutting two in angles supplementary to the angles
cut from the other two.

Theorem 71.] If five wnequal spheres be given, no fowr with
coplanar centres, but each two intersecting, there is at most one
sphere cutting all at equal angles, five cutting one at angles
supplementary to those cut from the other fowr, and ten cutting
two at angles supplementary to those cut from the other three.

The construction of these spheres depends on finding spheres
of antisimilitude and spheres of a given coaxal system cut-
ting a given sphere at a given angle.

Theorem 72.] If a sphere touch two others with like contact,
the line connecting the points of contact passes through the
external centre of similitude, or the common centre, or s
parallel to the line of centres; if it have opposite contacts
with the two, it passes through the internal centre of simi-
letude, or the common centre.

Theorem 73.] If two non-concentric unequal spheres touch
two other such spheres, a centre of similitude of each pwir will
lie in the radical plane of the other.
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Theorem 74.] If four mutually external spheres of non-
coplanar centres be given, there are siateen spheres which touch
all. These fall into eight pairs. To find the points of
contact of one pair with one of the given spheres we have but
to connect the radical centre of the four with the pole with
regard to that sphere of a plane not through three centres
of given spheres, but containing six centres of similitude*

Theorem 75.] If two spheres be inverted from any point
on their sphere of antistmilitude, but not on them, their
inverses will be equal, and conversely.

It is clear that much remains to be done in the elementary
geometry of the sphere to bring it to a level with that of
the circle. Leaving aside the fact that the geometry of the
tetrahedron lags far behind that of the triangle, the two
most important deficiencies are in the theorems about chains
of concurrent spheres and cospherical points, and contact
theorems. The twelve- and sixteen-point spheres are far less
known than the nine-point circle; is there an analogue to
Feuerbach’s theorem? Above all what corresponds to the
Hart systems? What is the proper analogue of Malfatti’s
problem, and how is it solved ? These difficult but important
and interesting questions offer ample scope for serious work.

The following theorems came to the Author’s attention too
late for insertion in place.t

Theorem 76.] If a sphere be inscribed in « tetrahedron,
the limes connecting each point of contact with the adjacent
vertices make the same three angles in each case.

Theorem 77.] If a tetrahedron be imscribed in « sphere,
the three angles made by three concurrent fuce-planes with the
corresponding tangent planes are the same in each case.

The proof of the first is immediate, the second comes by
inversion.

* This is, of course, the analogue of Gergenne’s construction.

+ For a history and extension of these theorems, see Neuberg, ¢ Ueber die
Berlihrungskugeln des Tetraeders’, Jakresbericht der Deutschen Mathematiker-
vereinigung, vol, 16, 1907.



CHAPTER VI

THE SPHERE IN CARTESIAN GEOMETRY
§ 1. Coordinate Systems.

ALL figures discussed in the present chapter are supposed
to lie in a three-dimensional space of Euclidean measurement,
rendered a perfect continuum by the adjunction of the plane
at infinity ; in other words, the set of points in one to one
correspondence with the homogeneous complex coordinate
values

U B4 A8 U,

S A
e
howevel, taking up the detailed study of spheres in this
space, let us glance for just a moment at the application of
tetrahedral coordinates to the study of the sphere. Starting
with a tetrahedron of reference whose face-planes have the
equations

x : r
vhele Py are rectangular cartesian coordinates. Before,

€os t+cosﬂzt+coswt m, =0, ¢t=1,2 3, 4,

we take for our tetrahedral point coordinates the four
quantities

P = (cosa 7 +cos ﬂ’t + cos y”t ﬁi)' (1)

The vertices of the tetrahedron being A4;, the altitudes #,,
and the edges d;;,

b @)
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Let us find the equation of the circumscribed sphere.*
The section of this sphere by the plane p; = 0 has the
trilinear equation

2 dipipi =0,

ij
2 dif? dip diapi p = 0,
-
! dy? Ay
2 (4, Hay (A; Ha;)Vs L
ij

The two terms in the denominator are altitudes of the
triangle. But for any point in this plane

& | h,,:

The equation of the circle is

= dif pipj
hihj

ij

Hence we have the required equation of the circumscribed
sphere,

Hj=4 3

The equation of any sphere may thus be written

,j=4 i=4

d;?
2 o Pt 2% i Di Z 0. (4)
i h@l
hj= g
The conditions that the general quadric
i‘j =4

2, Wi PiPj = 0

=1

* Salmon, loc. cit., pp. 201, 202.
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should be a sphere are

A +uh;+w:h,

Uy ) iRl v

@y = P;:.’ g+ = PT- )
hiza,ﬁ"‘}b]zajj—kihj (u'ij +a;ji) = kdifz (5)

If a tetrahedron be sclf-conjugate with regard to a sphere,
the altitude lines must be concurrent, i.e. it must be an
orthogonal tetrahedron, and the centre of the sphere will
be the orthocentre. Conversely, if we start with an ortho-
gonal tetrahedron, the orthocentre is orthocentre for every
triangle whose vertices are two vertices of the tetrahedron,
and the common foot of two face-altitudes in the opposite
face-planes. Hence the product of the distances from the
orthocentre to each vertex and the opposite face-plane is
the same, i.e. the orthocentre is the centre of a sphere, real
or imaginary, with regard to which the tetrahedron is self-
conjugate.

Theorem 1.] The sphere with regard to which an orthogonal
tetrahedron is self-conjugate is a sphere of antisimilitude for
the circumscribed and the first twelve-point sphere.

We leave the subject of tetrahedral coordinates with these
brief indications, and return to the homogeneous cartesian
form. We shall define as a sphere every locus whose equation
is of the type

ot (BB Y2+ 21+ )+ 2y (P +y2 + 22~ 1?)
+ 2, (2it) + 25 (2yt) + 2, (22t) = 0. (6)
The quantities () may take all values, real or imaginary,
provided they are not all simultaneously zero. They shall
be called the coordinates of the sphere. Under the group
of conformal collineations, we have the following types of
sphere :
(a) proper spheres
(xx) # 0, tag+ax,F0;
(b) non-minimal plane spheres
(wx) # 0, txy+ay =03
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(¢) non-planar null spheres
(xx) =0, twy+a;,%0:
these are spheres of zero radius;
(d) planar null spheres
(zx) =0, im,+x, =0:
these are planes tangent to the circle at infinity, except in the
one case ;
(¢) plane at infinity
QN s = el ] 2100101 0.

The coefficients of the coordinates of the sphere in (b) shall
be called the special pentaspherical coordinates of a point, or,
rather, any five quantities proportional to them. Every finite
point will have five such homogeneous coordinates, the sum of
whose squares is zero. Conversely, if we have values (y) for
which

WothF 0, ¥Y) =0’ + U’ +U" + Y +Y =0,
we may find a corresponding finite point. The relations
between homogeneous cartesian coordinates and special penta-
spherical ones will be exhibited by

Yo ¥ Y2 Y5 Ys

= (@24 Y+ 22407 (P +y 22 —1%): 2t i 2yt 1 228 (7)

@ry:z:it= Yo YsiYst —(Wo+ Y1) (8)
If our sphere (x) in (6) be non-planar, its radius will be
Pl () ©)
iy +a,

We shall give to the radical such a sign, in the case of
a real sphere, that this expression is positive. The special
pentaspherical coordinates of the centre are

i (xx)
Yo = 0™ 3 iy 4 )
(x2)
P =BT g iyt ay)
PlYs = Xy (10)

PYs = .
p:?h = w4.
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The special pentaspherical coordinates of a finite point are
the coordinates of the null sphere whereof it is the centre or
vertex. The power of the finite point (y) with regard to the
non-planar sphere (z) is

—2(ay) " iy
oty (miay @ E 2o (11)

When the sphere becomes null but not planar, this is the
square of the distance between the points (x) and (y). If the
sphere be proper, and we divide the power by the radius,
we get

—2(zy)
V(@) (@Yo + 41)

‘The limit of this expression as the sphere approaches the
limiting form of a non-minimal plane is twice the distance
from the point to that plane. Let us conserve the expression
‘ratio of power to radius’ even for this limiting form.

(12)

Theorem 2.1 The special pentaspherical coordinates of a
point are proportional to the ratios of power to radius with
regard to five mutwally orthogonal not null spheres.

If we define the cosine of the angle of two spheres as in
V (2), p. 245,

. (xy)
View) V) b

cos 0 =

the radicals in the denominators, in the case of real spheres,
should be taken so as to give a positive sign to each radius.
For mutually orthogonal spheres

((Z)y) = (14)
For tangent spheres

(z@) (yy) — (wy)* = 0. (15)

Theorem 3. The assemblage of all spheres of cartesian
space can be put into one to one correspondence with that
of all points of a four-dimensional projective space with
elliptic measurement. The angle of two not null spheres will
be equal to the distance of the corresponding points. Null
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spheres will correspond to points of the Absolute hyperquadric.
A coazal system will correspond to points of a line, a linear
congruence to points of a plane, and a linear complex to
points of a hyperplane. :

If (z) and (2') be two spheres, we find one of their spheres
of antisimilitude by finding (y) the sphere coaxal with them,
which makes with them equal angles,

py; = V(@) + v (wx) /. (16)
oa] = (xx)y;— 2 (@y) ;. (17)
The last equation will give the inverse of the sphere or

point (x) in the proper sphere (y), or the reflection of (z) in the
non-isotropic plane (7). If the sphere of inversion be

w2+y2+zz — 1,
the inverse of (xyz) will be

, T ; Yy ’ < (l)

S @iyt VT Erg s T T aged
From these we easily find
da'da/ + dy’ dy' +dz'd7
VAR ¥ dy?* + d2? Vx + 8y + 82

dadx +dydy +dzdz
=k : ’
vzt dyt +dz* Vx4 oyt + 02t

which shows that inversion is a conformal transformation
of space.

§ 2. The Identity of Darboux and Frobenius,

Suppose that we have given any two systems each of six
spheres () (y) (o) (r) () (5, @) @) &) () (<) (¢); they will
be connected by an identical relation entirely analogous to
that subsisting in the case of ten coplanar circles, namely,*

* Lachlan, On Systems of Circles, &c., cit. Much of our work on the present
identity follows this article fairly closely.
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(@) (ay) (@2) (xr) (x8) (at’)
(@) (yy') (y2') (yr') (y$') (yt)
(e') (2y') (z2') (217) (28') (et')
(ra’) (ry) (r2) (rr') (vs) (1t
() (sy') (&) (1) (s8) (st))
() (ty) () (&) (ts) (&)

As a first application, let the reader prove the following:

i
S

(19)

Theorem 4.] If five non-cospherical finite points be given
whereof no four are coplanar, the sum of the reciprocals of the
power of each point with regard to the sphere circuwmscribed to
the other four is zero.

Our formula (y) is usually more interesting when the two
systems are identical. For instance, if we take five proper
spheres and the plane at infinity,

g 1 cos f_ay cos)¥-az cos i ar cosf xs —
cos X yx 1 cos X yz cos L yr cos i ys

cos X_zx cos X2y 1 cos X_2r cos X_zs
=0, (20)

I""bﬁl""@ﬁl"‘t:' o2

cos 7w cosiry cosirz 'l cos X 7s

=
<

cos J_sx cos)¥_sy cosX.sz cos)i sr 1

1 1
5 _1 2 : L

& Ty 7z Ty 75

W*II)—-

=

The distances of any five finite points will be connected by
the relation
| 0 dig? dyy® dy)? dy® 1
| dy® 0 dog® dyy? dys® 1
i dy? dyg? 0 dy? df? 1
j dy? dy® d® 0 dy® 1
E 1
|
0

|
|
=0 (21)

AT S ST P
1 1 1 ]! 1]
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The common orthogonal sphere to four given spheres
will be

d
px; =+ | tyers|. 22
i =571t (22)
This will be null if

(yy) (y2) (yr) (ys)
(zy) (z2) (27) (28)
(ry) (rz) (rr) (rs)
(sy) (s2) (s7) (s9)

= 0. (23)

(y) (2) (v) (s) will belong to one linear congruence if the
following matrix have rank (3)

{ U U1 92 U5 ¥4 |
%y % %y 23 %y 2 (24)
UGy U7 ey gy i 4

ot B 95 8 B,
If (y)(2) (v) (s) (t) belong to a linear complex,
| yzrst | = o.
Squaring, we get
(y) (yZ) (yr) (ys) (yt)
(zy) (22) (2r) (z8) (2t)

(ry) (v2) (rr) (rs) (rt) | = 0. (25)

(5y) (s2) (s7) (s8) (st)

(ty) (tz) (tr) (ts) ()

If (y), (2), (), (s) be four non-collinear and non-concyclic
finite points, () the sphere or plane through them, of radius 7,
and (t) the plane at infinity,

O Tl W Mol b- 53
b 28 O e ol V2
St it L iy, w2
dldz2dl: 0 V2
V2 V2 /2 /2 0 1
0 0O 0 0 il =2

~ Z

(=) A== =)
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Remembering that if 7" be the volume of the tetrahedron
whose vertices are

(1 Y12) (@25 25) (@393 25) (0,9, 2,)

| 2 +yl+2% 2 9, 2, 1 ‘
ml yl zl 1 t 2 2 2
@, Yy 2, 1 Ty Yo 2" Xy Yy 25 1
6V= ,2 . = | 2l +y," +2, x; ys Zsl"
&Ly Yy 23 1 pav: 2, .2 .
T, Uy 2, 1 YL e wy Yy 2y 1
R & ' 1 000 0|

If we write
20 = dydyy +diydyy+ dyydy,

_ Yol =) (=) 1=y
6V

If our five spheres be mutua]ly orthogonal but proper,
S u
Z rE T (26)

Theorem 5.] The sum of the squares of the reciprocals
of the radii of five mutually orthogonal proper spheres is zero.

If s; be the ratio of power to radius with 1ega1d to the
th sphele

1 0 0 0 0 —s|
0 1 0 0 0 —s
U TR LR
0 0 .0 1 0 —s
0 070 0 1 —g|
—8 —8 —8 —8§ —8 0 '
i=5
252 =0. (27)

=Nl

Theorem 6.] The sum of the squares of the ratios of power
to radius for « finite point with regard to any five mutually
orthogonal not null spheres is zero.

* Salmon, loc. cit., p. 37.
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These five ratios, or rather, any five numbers proportional
to them, shall be defined as general pentaspherical coordinates
of the point.*

Theorem 7.] The passage from one set of pentaspherical
coordinates to another is effected by means of a quinary
orthogonal substitution. The equation of a sphere will be
linear in every set of pentaspherical coordinates, and the
expressions for the angle of two not null spheres, the inverse
of one sphere in another, and the condition that a sphere
should be null are invariant in form.

If two spheres be orthogonal to three others, the line of
centres of the two is orthogonal to the plane of centres
of the three, since this is the radical plane of the two.
Conversely, suppose that we have an orthogonal point system.
Each point is the orthocentre of the tetrahedron whose
vertices are the other four points, and so, as we saw recently,
is the centre of a sphere with regard to which the tetrahedron
is self-conjugate. Any two of these spheres will meet the
plane through the centres of the other three in the circle
where that plane meets the sphere whose diameter is the
segment joining the two points, and the two will cut ortho-
gonally there.

Theorem 8.] The centres of five mutually orthogonal spheres
form an orthogonal system and, conversely, every orthogonal
system will yield the centres of five mutually orthogonal spheres.

Four proper non-concurrent spheres will determine sixteen
spherical tetrahedra, each having its own circumscribed
sphere. If (y), (2), (8), (t) be the four spheres, (i), ('), (s), ()
the vertices of such a tetrahedron, (x) a circumseribed sphere,
(w) the common orthogonal sphere to the original four, while
(y”) is orthogonal to (2), (s), (¢), (w), we may follow exactly
the steps that led to II. 12], getting

* We might, of course, take any five sphercs not belonging to a linear
complex and get still more general coordinates with a more complicated
quadratic relation.

1702 R
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Theorem 9.] The spheres circwmscribed to the sixteen tetra-
hedra formed by four non-concurrent proper spheres cut at
equal or supplementary angles the four spheres, each of which
is orthogonal to three of the given spheres, and to their common
orthogonal sphere.

If five spheres touch one another externally, we have

1
1 -1 —-1 —1 —1 —
5
‘ 1
—1 1 -1 ~1 —1 —
‘ 7o
1 1 1 1 1 L

I - - rr3 = 0. (28)
1
=il =i =1l 1 -1 —
Ty
1
-1 =1 -1 —1 1 —
75

1 1 1 1 1

M e g

35)_1@: (=l> (29)

If a sphere meet five others either at X ¢ or X 7—¢,

| 1 cos - yz cos - yr cosi_ys cos Xyl € cos ¢
| cos X_zy 1 cos X.zr cosX.zs cos -l €, cos ¢
Ccos A1y cos d1z 1 cos X_7s cos X7t €, cos ¢

cos .y cosX.sz cos )i sr 1 cos X st ¢, cos ¢
| cos ity cos) tz cos)i.ir cosX.its 1 €; COS ¢
\ €C0S¢ €C0S¢p €C0SP €C0S¢p €C08¢ 1

=0, (30)
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If five spheres be tangent to a sixth we get the analogue
of Casey’s criterion,

| © t]Z ty? t142 '5152 '

I ta® O fyg® 1y, 5" |

i ty® t322 0 t342 ty? | = 0. (31)
|

t22 t432 0 t452

If we take four not null spheres, a sphere tangent inter-
nally to them, and a point thereon, then, if p; be the ratio of
power to radius with regard to the ¢*" sphere,

0 sin? 14 yz sin?3 L yr sin?3 4 ys p;
; sin?1 A zy 0 sin?1 ) zr sin?l) zs p,
sin?% X 1y sin®3 Y »z 0 sin?3 X re p, | =0. (32)
sin®1 X sy sin?} X sz sin?i ) e 0 Py
P Do Ds Pa 0

From this we may derive the tetrahedral equation of the
inscribed sphere to a given tetrahedron. If a sphere meet four
others at angles o, o, &y, &,, while its radius is », we find

1 1
1 cos Xz cos X-ys cos Xyt cos, = '
1
|
cos A2y 1 cos ¥ zs cos Xzt cosa, =
2
1
cos sy cos X_sz 1 cos X_st cosay 77
Sk 0., (29)
cos Xty cos X tz cos ) ts 1 cos oy
4
1
COSX;  COSX, COSQy  COSK, 1002
1 1 1 1 1
2 i = : i
* g Ty 7, r
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The equation in ,,l has real roots by II (47) if

1 cos ¥ yz cos i ys cos iyt cosoy
cos X zy 1 cos X zs cos Xzt cosa,
cos ¥ sy cos) sz 1 cos X st cosa
cos i ty cos)i tz cos) ts 1 cos o,

| cos 0 COsa,  eoSa,  COS O 1

1 cos Xz cos X_ys cos Xyt %
1

cos X2y 1 cos X zs cos X zt 71
2

il
x | cos¥ sy cosX sz 1 cos X_st )
3

v
e

cos Xty cos )X tz cos) ts 1 !

Ty

= p_ = =~ 0
7 Ty 73 7y

The second factor is

lyzsto| e LR RS PR Senp T ey
@E/)(z_z)(ss)(tt)’ 0 00yt =12:1:0:0:0,

and is essentially negative or zero for real spheres. Hence the
condition for a real sphere cutting four real proper spheres
with non-coplanar centres at given real angles is

1 cos J_yz cos X zs cos ¥zt cosqy
cos X zy 1 cos f-zs8 cos J 2zt cosa,
cos J-sy cos sz 1 cos X8t coso, | S 0. (34)
cos X ty cos )tz cos X ts 1 COS 0y
COSX;  COSGy, CCS(z  COS Oy 1
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The equation of the sphere which touches the spheres
(1), (2), (), (s), four non-concurrent proper spheres, is

1 cos J-yz cos §_yr cos X ys (?/EL
v (yy)
] ] (z)
cos £ zy 1 cos J—zr cos 28 ———
V(22
. (rx)
COS 471y cos i1z 1 COS 418 — —_
§ vy cosi- g
cos X sy cos)-sz cos X sr 1 (éf)_—
v/ (s8)
€ €, €3 €4 0

1 cos)-yz cosdyr cosdys €

cos ¥ 2y 1 cos X zr cos¥-2s €, layzrs|
~ [

cos Xy cosf_rz 1 cos X_7s € 1‘/'(?/-5/—)7(2—:) Jm =

cos ¥ sy cos )8z cos X sr 1 €
€ €, €3 € 1
BHES GE R GO Gr e=1k

Two spheres, tangent to four given non-concurrent proper
spheres, are said to form a couple if they be mutually inverse
in the common orthogonal sphere of the four. Evidently, in
the construction given at the close of the last chapter, two
such spheres will correspond to the same plane containing six
centres of similitude; or, in the equation above, the spheres
of a couple correspond to the same sets of values for the ¢;’s,
and differ only in the sign connecting the two terms. Let us
take three spheres tangent to four not null and not concurrent
spheres, no two of the three forming a couple. We easily see
that the problem of finding a sphere tangent to these three and
orthogonal to the common orthogonal sphere of the first four has
eight solutions, corresponding to eight spheres all tangent to the
inverses of the three in the common orthogonal sphere of the four.

Theorem 10.] Awny three couples of spheres tangent to four
given not null and not concurrent spheres will touck four other
spheres as well. There are eight such couples. There are also
twelve tetrads of puirs of spheres euch tangent to the given

(35)
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spheres and to the inverses of two in a sphere of antisimilitude
of the other two.*

Such systems correspond in a measure to the Hart systems
of the second sort of Ch.II. Does any figure in the geometry of
the sphere correspond to the Hart system of the first sort? This
most interesting question is still to be answered.

Let us give one theorem about cospherical points.t

Theorem 11.] If five points, no four of which are concyclic,
- lying on a not null sphere, be arranged in sequence, and any
Jive spheres be constructed, each through three successive points,
the five remaining intersections, each of three successive
spheres, are cospherical.
The points shall be P,, P,, P,, P,, P, the original sphere s.
The sphere constructed through P;, P;, Py, shall be 8- The
successive spheres s;,,;, Smij» Syji Will meet in P; and a second
point P;”. Consider the surface
A1 84518125 F A 85128250+ NyS105 8345 + AuBasaSast + N5 83458510 = 0.
This is a quartic with the circle at infinity as a double
curve, and containing all ten points P;P;. The various
terms are not usually linearly dependent, as we see from
a special case; hence, by varying the coeflicients, we have
apparently a four-parameter family of cyeclics on s. Since,
however, the system of cyclics through seven points have an
eighth common point also by IV. 9], when eight points are
fixed we still have two degrees of freedom for our surface.
Hence we may choose such a value for the X’s that the
surface includes s as part of itself. The remainder will be
a sphere through the points P;/.  When the terms are linearly
dependent we prove by continuity.

§ 8. Analytic Systems of Spheres.}

A system of spheres whose coordinates are proportional to
analytic functions of a single parameter, not all having

* Cf. Schubert, ¢ Eine geometrische Eigenschaft, &c.’, Zeitschrift fiir Mathe-
matik und Physik, vol. xiv, 1867, p. 506.

+ E. Miiller, ‘Die Kugelgeometrie nach den Principien der Grassmannschen
Ausdehnungslehre’, Monatshefte fiir Math., vol. iv, 1893, p. 35. Also the
Author’s Circles Associated, cit.

$ For an admirable elementary account of systems of spheres see
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constant ratios, shall be called a series. The simplest series
is the coaxal system of pencil.

Theorem 12.] If three non-coaxal spheres be givenm, the
three spheres, each coaxal with two of the given spheres, and all
orthogonal to a fowrth sphere, are coaxal.

We shall not waste our time in finding coordinates of the
simple spheres coaxal with two given spheres; the formulae
IT (54)-(58) suffice here also. Let us rather pass to some more
interesting series. An algebraic series of which two members
are orthogonal to an arbitrary sphere shall be called a conic
series. We see that all members of a conic series must be
orthogonal to the spheres of a coaxal system. We may take
as typical equations of a conic series

hj=4

(az) = (bx) = >, @i = 0. (36)

LJ—-

Theorem 13.] The spheres of a cowic series are orthogonul
to two distinct or coincident null spheres.

Of course, in the usual case, the spheres pass through two
distinet points. We shall mean by a general conic series one
where this is the case, and where, also, the series is unfactor-
able, and four distinct solutions are obtained by combining
the three equations with the identity for all null spheres.

Theorem 14.] The assemblage of all spheres orthogonal to
two mot null and not tangent spheres, and to corresponding
members in two projective coaxal systems with no common
member, and neither containing the fized spheres, is a general
conic series.

Theorem 15.] The general conic series may be generated in
three different ways by spheres through two flxed points, the
sum of difference of whose angles with two fixed spheres
through these two points is constand.

Dohlemann, Geometrische Transformationen, Leipzig, 1908, vol. ii ; Peschka,

Darstellende und projektive Geometrie, Vienna, 1884, vol. iii, pp. 192-810. Also
Reye and Timerding, loc. cit.
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The general conic series corresponds to the general central
conic in four-dimensional projective space of elliptic measure-
ment. More interesting is the series corresponding to a circle
in this space. This is a conic with double contact with the
Absolute, so here we shall consider an irreducible conic series
whose null spheres fall together in pairs. This shall be called
a Dupin series. If the spheres of the series be orthogonal to a
coaxal system not entirely composed of null or tangent spheres,
we shall say that such a series is general. We may write the
equations of the general Dupin series in the form

(Coy + €12y + €)= (cc) () = 5 = @, = 0. (37)
Let us next write

Yo = PCoy Y1 = PC1y Yy = PCyy Y3 = pC3t A, Yy = pCyt+p,

R p* (o) y
cos® §_xy T (@) (yy) () (p)2(ce) + AP+ 4+ 2hpey t+ 2ppe,
p* (cc)

T PP+ X+ 2p (Ao puey)
If, then, we make the further restriction
A+ p?+ 2Xpeg2ppe, = 0,
we see that every sphere (y) of a certain series is tangent to
every sphere of our Dupin series. This new series is a conic

series, with only two null spheres, a Dupin series, since its
null spheres come from p = 0.

Theorem 16.] A Dupin series will be generated by the
totality of spheres orthogonal to those of a couxal system
including distinet null spheres, and making « fixed angle

different from g with a fized sphere not belonging to the

coaxal system, and, conversely, every such series will be a Dupin
series.

Theorem 17.] The spheres of « Dupin series are all tangent
to those of a second Dupin series.®

* Strictly speaking, we have only proved this for the general case. We
see by continuity, however, that it holds in the other cases.
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Two such Dupin series shall be said to be conjugate.
Suppose, conversely, that we have three spheres (), (2), (s)
which are not coaxal, nor are they all three null. If a sphere
(x) be tangent to them we have

V(22) (y2)— v (yy) () = /(55) () — ¥/ (22) (s2)
= (22) () — (222 = 0.

Theorem 18.] The assemblage of all spheres tangent to
three non-coaxal spheres which are not all null, and having
@ fized type of contact with each, or else the exact reverse of
that type of contact with each, will be « Dupin series conjugate
to the Dupin series which includes the three given spheres.

Theorem 19.] The assemblage of all spheres tangent to
three non-coazal not null spheres is fowr Dupin series. The
radical axis of any three spheres of one series will contain
one centre of similitude of each two of the given spheres.

The normals to any proper sphere along one of its circles
generate a cone, which is a developable surface. On the
other hand, by Joachimsthal’s theorem, every evolute of
a cirele is a single point.

Theorem 20.] The characteristic circles of the spheres of
a non-coaxal series will be lines of curvatwre of their envelope ;
and, conversely, every surface, one of whose systems of lines
of curvature is composed of circles, will be the envelope of
« series of spheres.

Such a surface is called an annular surface. The first
part of the theorem suffers an exception when the charac-
teristic circles are null. Here there will be two sets of
characteristic isotropics; they will be lines of curvature on
one surface or two. Conversely, any non-developable ruled
surface circumscribed to the circle at infinity is the partial
envelope of a family of spheres.

Suppose, next, that we have a surface where the lines of
curvature of both systems are proper circles. This may be
generated in two ways by a series of spheres, and all the
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spheres of one series will touch all of the other. The two
series must be Dupin series, and the surface, when not a cone
of revolution, shall be called a Dupin cyclide.*

Theorem 21.] The only surfaces having circles for their
lines of curvatwre of both systems are Dupin cyclides and
cones of revolution. They are the envelopes of two conjugate
Dupin series.

When the null spheres of each of two conjugate Dupin
series are distinet and not planar, the Dupin cyclide shall be
said to be general. It will have four conical points at the
centres of these four null spheres.

Theorem 22.] Not more than one pair of the conical points
of the general Dupin cyclide can be real, and those of one pair
lie on isotropics with those of the other. The surface is of the
Jowrth order, and has the circle at infinity as a double curve.

To prove the latter part of the theorem we have but to
notice that the Dupin series may be written parametrically,

yi = )\2(11: + 2)\[1.6@- +]A2Ci.

Eliminating A and u from

d d
@ =0 (3 =0
we get an equation of the second order in our special penta-
spherical coordinates. The order of the surface cannot be
more than four, nor can it be less, since we have two double
points whose connecting line is not embedded.

Suppose, conversely, that we have a surface of the fourth
order with the circle at infinity as a double curve, and two
pairs of finite conical points. A plane through two such
points would cut the surface in two circles, unless the line
conneeting the finite conical points were part of the seetion,
in which case it would be an isotropic line. Now each of our
conical points could not be on an isotropic with each other one,
as we should have triangles with finite vertices and isotropic

* Dupin, Applications de la géomeéirie ¢t de la mécanique, Paris, 1822, pp. 200 f.
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side-lines, which is an absurdity. Hence, if 4 and B be two
conical points not connected by an isotropic, and we invert with
A as centre, the inverse surface will be a cone with its vertex
at the inverse of 4, two generators in each plane through AB
but not containing AB as a generator, i.e. a quadric cone.
Since the other two conical points of our surface do not invert
into conical points of the cone, they must have been on two
isotropics through A. The tangent planes to the cone will
invert back into a series of spheres each tangent to the surface
all along a circle. A second such series may be found from
the other two conical points.

Theorem 28.] Every surface of the fourth order with the
circle at infinity as double curve and four finite conical points
18 @ Dupin cyclide.

Since the inverse of a Dupin series is another such series,

Theorem 24.] Ewvery general Dupin cyclide can be inverted
into a cone of revolution.

Theorem 25.] Every general Dupin cyclide is anallagmatic
with regard to all proper spheres of two coaxal systems.

Theorem 26.] The locus of the centres of the spheres of «
general Dupin series is a conic.

We see, in fact, that it must be a plane curve, since the
spheres of the series are orthogonal to two spheres, and also
must liec on a quadric, since the sum or difference of the
distances from all its points to the centres of two chosen
spheres of the conjugate series is constant.

Theorem 27.] The assemblage of all spheres orthogonal to
a given sphere, and having contact of a preassigned type
with each of two other given proper and not tangent spheves
not coaxal therewith, or having exactly the opposite type of
contact with euch of these, is a Dupin series, as is the assem-
blage of all spheres orthogonal to two given spheres tangent to
@ third not coaxal with them.
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Theorem 28.] Every general Dupin cyclide can be tnverted
into an anchor ring.

We saw a moment ago that a general Dupin cyclide is
anallagmatic with regard to every sphere of each of two
coaxal systems. This raises the general question, what sorts
of surfaces are anallagmatic with regard to an infinite number
of surfaces? Every anallagmatic surface is the envelope
of o? or ool spheres orthogonal to the sphere of inversion.
Our given surface could not have o' systems of «? tangent
spheres, for then every sphere tangent at one point would
touch the surface again, and the surface could be inverted into
one that touched each plane of a parallel pencil at a different
point, which is quite impossible. Hence our surface is the
envelope of o' spheres, i.e. annular. These generating spheres,
being orthogonal to two spheres of inversion, must belong to
a linear congruence. If the surface be anallagmatic in any
other spheres besides those of the coaxal system determined
by two, it must be doubly annular, and so a Dupin cyclide.
We thus get an excellent theorem due to Hadamard.*

Theorem 29.] The only surfaces which are anallagmatic
with regard to a one-parameter family of spheres are those
annular surfaces which are generated by spheres orthogonal
to the spheres of a coaxal system. The only surfaces whicl
wre anallagmatic with regard to more than one one-parameter
Sfamily of spheres are Dupin cyclides and their inverses.
The only surfaces which are anallagmatic with regard to
a two-parameter family of spheres are spheres themselves, and
these are anallagmatic with regard to ©2 spheres.

If a non-degenerate central conic be given, not a circle,
there is a one-parameter family of quadrics confocal therewith,
i.e. inscribed in the developable tangent to this and to the
circle at infinity. Four quadrics of the family, considered
as envelopes, degenerate into conics, whereof one is the circle
at infinity. The other three lie in three mutually perpen-

* ¢Recherche des surfaces anallagmatiques par rapport 2 une infinité de
poles d’inversion’, Bullctin des Sciences mathématiques, Series 2, vol. xii, 1888,
p- 118,
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dicular planes, each piercing the plane of another in two foei
of the latter. These conics are the focal conics of the confocal
system of quadrics.

Theorem 80.] If the centre of a sphere trace a central
conic, while the sphere passes through a fixed point of one of
the other focal conics of the confocal system determined by the
given conic, then the sphere will trace a Dupin series.

We see, in fact, that it is a conic series, whose null spheres
fall together in pairs.

The characteristic circle of a sphere of a Dupin series is
the locus of its points of contact with the spheres of the
conjugate series. The lines from the centre of a sphere of
one series to those of the spheres of the other series will
generate a cone of revolution (in the limiting case two
isotropic planes). Hence the deferent (i.e. locus of centres)
of each series subtends a cone of revolution at each point
of the deferent of the other series. The axis of revolution
will be the tangent to that deferent which passes through the
vertex, for it is the perpendicular on the plane of the corre-
sponding characteristic circle. The isotropic planes through
this axis touch the other deferent, hence the vertex of the
cone is a double point of the developable determined by
the other deferent and the circle at infinity, i.e. the coniecs
are focal conics of a confocal system of quadrics.

Theovem 31.] The deferents of two conjugate Dupin series
whose null spheres are not planar are two central conies, focal
Jor a confocal system of quadrics and, conversely, any two
such conics will determine o' Dupin series. Each conic
subtends « cone of revolution at each point of the other, the
axis of revolution being tangent to the latter. The sum or
difference of the distances of every point on onme conic from
two points of the other will depend only on the positions
of the latter

Remembering Joachimsthal’s theorem about the evolutes

of curves,
* Dupin, loc. cit., pp. 207-9.
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Theorem 32.] The tangents to all lines of curvature of one
system on a Dupin cyclide where they meet a line of curvature
of the other system pass through a common point of the awis
of the cone of revolution of normals along this same curve.

Theorem 33.] A sphere through a circle of curvature of
@ Dupin cyclide will meet the surface again in another circle
of the same system. Two circles of different systems will
ntersect once, and only once.

The general Dupin cyclide has two planes of symmetry,
those of its two deferents. Each will cut the surface in two
circles. The circles of the other system will be orthogonal to
that plane, and, since they are anallagmatic in an inversion
which interchanges the given circles, will meet the plane in
pairs of points collinear with a determined centre of similitude
of the two circles. We thus reach a neat method of con-
structing the cyclide due to Cayley.*

Theorem 34.] The circles ovthogonal to the plane of two
proper cirvcles and meeting them in pairs of points collinear
with a fized centre of similitude of the two will generate
a Dupin cyclide.

Enough has now been said about the conic series: we pass
to the cubic. This may be defined as an algebraic series
whereof three members are orthogonal to an arbitrary sphere.
Since any four spheres have at least one common orthogonal
sphere, we see that all members of a cubic series are ortho-
gonal to at least one sphere. We shall say that the series
is general if there be but one fixed not null sphere to which
the members of the series are orthogonal. Such a series will
correspond in four dimensions to a rational non-planar cubie
curve in a space of three dimensions which is not tangent
to the Absolute.

Theorem 35.] A general cubic series will be generated by
the spheres orthogonal to a fixed sphere and to correspending
members of three projective coawxal systems, which have mo

* ¢On the Cyelide’, Quarterly Journal of Mathematics, vol. xii, 1873, p. 150.
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common sphere, and mone of which includes the fixed sphere,
and, conversely, every such series will be a general cubic series.

Theorem 36.] The centres of the spheres of a general cubic
series trace a rational cubic curve.

Theorem 37.] The general cubic series is generated by the
spheres orthogonal to a not null sphere whose centres are on
a rational cubic curve. If the fixed sphere be planar, the
rational cubic curve lies in that plane, and vice versa.

Theorem 38.] When the fixed sphere for a cubic series is
null but not planar, the spheres of the series may be inverted
into the tangent planes to a developable of the third class.

Theorem 39.] The spheres of a general cubic series cut the
Jized sphere in the circles of a general cubic series.

This series was defined in Ch. II only for coplanar circles,
but the definition is immediately extended to cospherical ones.

Theorem 40.] The spheres orthogonal to sets of three succes-
sive spheres of a general cubic series, and to the fixed sphere,
generate a second general cubic series. The relation between
the two s reciprocal.

Since the general cubic series is rational, we may express it
in the form
Yi = 4 @). (38)

We get the equation of the envelope of the spheres of the
series by equating to zero the discriminant of the cubic
equation (zy) = 0.

Theorem 41.] The spheres of a general cubic series envelop
a surface of the eighth order, anallagmatic in the fired sphere,
and having the circle at infinity as a quadruple curve.

The coordinates of the planes of the characteristic circles
of the spheres of a general cubic series are easily seen to be
rational quartic functions of »; these planes are all orthogonal
to the fixed sphere.
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Theorem 42.] The planes of the characteristic circles of
the spheres of a general cubic series gemerate a rational
quartic cone or cylinder.

Definition. An algebraic series of spheres whereof four are
orthogonal to an arbitrary sphere shall be called a quartic
series. If the spheres of the series be not orthogonal to any
fixed sphere, the series is said to be gemeral. It will corre-
spond to a curve of the fourth order in four dimensions which
lies in no space of lower dimensions. Such a series is surely
rational, for each sphere of a coaxal system orthogonal to
three of its members will be orthogonal to but one ecther
member of the series.*

Theorem 43.] The general quartic series may be generated
in o2 ways by the common orthogonal spheres to the corre-
sponding members of four projective coaxal systems, no two
of which have a common member, and, conversely, every such
system of projective coaxal systems will determine a general
quartic series.

Four spheres of the series, usually distinet, are planes;
eight, usually distinct, are null.

Theorem 44.] The locus of the centres of the spheres of
a general quartic series is a mon-planar rational quartic
curve whose asymptotic directions are perpendicular to the
planes of the series.

Theorem 45.] The common orthogonal spheres to sets of
Sfour successive spheres of a general quartic series will generate
« second such series; the relation between the two is reciprocal.

Since the coordinates of the spheres of a general quartic
series are rational quartic functions of a parameter, and the
diseriminant of the general quartic equation is of the sixth
degree,

* For an exhaustive treatment of this series by pure geometry see
Timerding, loc. cit., pp. 193 ff.
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Theorem 46.] The envelope of the spheres of a general
quartic series is a surface of the twelfth order with the circle
at infinity as a sextuple curve. The planes of the circles of
curvature of this surface generate a rational developable of the
siath class : the osculating developuble to the rational quartic
curve which is the locus of the centres of the spheres orthogonal
to sets of four successive spheres of the given series.

Definition. A system of spheres whose coordinates are
proportional to analytic functions of two independent variables,
and whose ratios also depend on two essentially independent
variables, shall be called a congruence. When the functions
involved are all algebraic, the congruence shall be said to
be algebraic. Every such congruence, if irreducible, may be
expressed in the form

x; = f; (rstw), ¢ (rstu) = 0, (39)
the only functions involved being homogeneous polynomials.

Definition. An algebraic congruence whereof two members
are orthogonal to two arbitrary spheres shall be called a
quadric congruence. Consider four spheres of the congruence,
which, three by three, determine linear congruences. If no
one of these linear congruences be included entirely in the
quadric congruence, it must share therewith a conic series.
A linear congruence which includes one member of each of
three such conic series will meet the congruence in a conie series,
and, since we may find «? spheres of our congruence in this
way, we find the whole. Hence all spheres of the congruence
are orthogonal to one fixed sphere orthogonal to the first four.
If the congruence include in itself a linear congruence, the
remainder is also a linear congruence.

Theorem 47.] A quadratic congruence consists either in
two distinet or identical linear congruences, or else all its
members are orthogonal to one sphere.

The spheres of the quadric congruence will be represented
in four dimensions by the points of a quadric surface. When
the sphere to which the members of the congruence are ortho-
gonal is not null, the ecoaxal systems in the congruence have

1702 S
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no common member, and the series of null spheres have no
double member, we shall say that we have a general quadric
congruence. Such a congruence will correspond to the general
central quadrie of three-dimensional non-Euclidean space.

Theorem 48.] A general quadric congruence contains two
SJamilies of coaxal systems. Two systems of different families
have one common sphere; mo two of the same family have
a common sphere.

Theorem 49.] A general quadric congruence may be deter-
mined in 2 x o ways by coaxal systems, each determined by
corresponding members of two projective coaxal systems with
no common member.*

Theorem 50.] The locus of the centres of the spheres of
a general quadric congruence is a quadric surfuce.

A general central quadric in non-Euclidean space has eight
sets of circular sections, a circle being a conic with double
contact with the Absolute.t

Theorem 51.] A general quadric series may be generated
in eight ways by the circles of a one-purameter family of
Dupin series.

Theorem 52.1 The spheres of a general quadric congruence
cut the sphere to which all are orthogonal in the circles of
a general quadric congruence.

Strictly speaking, we have only defined such congruences
in the case of coplanar circles, but the definition is immediately
extended to cospherical ones.

Theorem 53.] The spheres orthogonal to sets of three succes-
sive non-coaxal members of a general quadric congruence and
to the common orthogonal sphere will generate a second such
congruence. The relation between the two ts reciprocal.

* Cf. Reye, ‘Lehrsitze iiber projektive Mannigfaltigkeiten projektiver
Kugelbiischeln’, &ec., Annali di Matematica, Series 3, vol. v, 1900.
+ Cf. the Author’s Non-Euclidean Geometry, cit., pp. 157, 158,
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Theorem 54.| Z1he radicul planes which the spheres of
a general quadric congruence determine with « fized sphere
envelop « quadric. When the fixed sphere is that to which all
spheres of the congruence are orthogonal, the planes envelop
the polar reciprocal with regard to this fixed sphere of the locus
of the centres of the spheres of the congruence.

The order of the surface enveloped by the spheres of
a general quadric congruence is that of the curve where the
surface meets the fixed sphere. This curve is the locus of
the vertices of the null spheres of a quadric congruence, and
so, by 1V. 2], is a cyeclic.

Theorem 55.] The spheres of a general quadric series
envelop a surface of the fourth order lLaving the civcle at
anfinity as a double curve. It is anallagmatic with regard
to the fized sphere.

We shall find out a great deal more about this surface in
the next chapter.

Theorem 56.] The assemblage of all spheres meeting at
given angles other than g two not null spheres will be «

quadric congruence.

Theorem 57.] The spheres orthogonal to a not null sphere,
the sum or difference of whose angles with two not null spheres
is constant, will be « quadric congruence.

Definition. The assemblage of all spheres whose coordinates
are proportional to analytic functions of three independent
variables, the ratios also depending on three independent
variables, shall be called a complex. When the functions
involved are algebraic, the complex is said to be algebraic.
The simplest way to express an algebraic complex is by
means of a single equation

S (@2 2y25,) = 0, (40)

where f is a homogeneous polynomial. Next to the linear
s 2
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complex already studied, the simplest algebraic complex is
the quadratic one* This has an equation of the type
Li=14
z a/,l-jmiﬁj = 0, L(,[j = “ji' (41)
% =10 =
If we classify these complexes under the twenty-four
parameter group of linear sphere transformations we have the
following types :
General complex

| ay; | % 0. (42)

Simply special complex .
_o, el 43
[ “ij ‘ =4u, "’bakl 5‘5 . ( )

Doubly special complex
bl aij = D‘-"] “ij .
=0, ——— (44)
e LRI

The other cases consist in pairs of distinet or coincident
linear complexes, and need not be discussed. Starting with
the general quadratic complex, we may associate each sphere
(y) with the linear complex

hWi=4
2 ayyw; =0,
ij=0
which is called the polar linear complex of (y). Every linear
complex will be the polar of a determinate sphere called its
pole sphere.

Theorem 58.] The polar linear complex with regard to
a general quadratic complex of a sphere not belonging to that
complex is the totality of all spheres harmonically separated
from the given sphere by pairs of spheres of the complex.

Theorem 59.] A linear complex will intersect a quadratic
one in a quadric congruence.

* Loria, ‘Ricerche intorno alla geometria della sfera’, Memorie della
R. Accademia delle Scienze di Torino, Series 2, vol. xxxvi, 1885; Reye, ¢ Ueber
quadratische Kugelcomplexe’, Crelle, vol. xcix, 1885, and ‘Quadratische
Kugelcomplexe’, &e., Collectanea Mathematica, Naples, 1881.
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Theorem 60.] The general quadratic complex contains
w? coazal systems. Each sphere of the complex belongs to oo!
such systems, and they generate the quadratic congruence
common to the given complex and the polar complex of the
given sphere.

Definition. Two spheres shall be said to be conjugate
with regard to a general quadratic complex when each
belongs to the polar linear complex of the other.

Theorem 61.] The assemblage of all wnull spheres is «
general quadratic complex. Mutually orthogonal spheres are
conjugate with regard to this complex, and the polar of any
sphere is the complex of spheres orthogonal thereto.

Theorem 62.] The planes of a quadratic complex envelop
« quadric.

Theorem 63.] The totality of spheres, each orthogonal to
« sphere of a general quadratic complex and to three infinitely
near spheres, the four not belonging to « linear congruence,
8 a second general quadratic complex. The relation between
the two is reciprocal, and each may be defined as the totality
of spheres orthogonal to the various spheres of the linear
complexes which are polar to the spheres of the other complex.

More generally, if we have any complex of spheres, and if
we construct a sphere orthogonal to each sphere of the complex
and to three infinitely near spheres thereof which do not lie
with the first in a linear congruence, then, if the totality of
these new spheres be actually a complex, the original one is
said to be non-developable, and the new complex is called its
correlative. 'The relation between the two is reciprocal. It is
a peculiarity of the quadratic complex that we can reach the
correlative by means of polar linear complexes.

If (y) be a sphere of the complex (40), the linear complex

i=4 i
;"—.J/: 2; =0 (45)

i=0

shall be called the tungent linear complex at the sphere
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(y). The correlative complex is obtained by eliminating
Yol Y25y, from the equations

Sl
“i=5y TWnyasy,) =0

i
The reciprocal nature of the relation between the two
appears from the fact that the equations

(yz) = (ydz) = 0
involve also (zdy) = 0.

Theorem 64.] Two spheres of an arbitrary couxal system
belong to a given quadratic complex ; two spheres of the com-
plex have their centres at an arbitrary point.

Let us turn for a moment to the simply special quadratic
complexes (43). We may find one sphere (2) which is con-
Jjugate to every sphere in space with regard to the complex.
Its coordinates will satisfy the equation

j=4
Zaijz 0, t=20,1,2,3,4.
j=0

We shall call this the singular sphere of the complex. Let
the reader prove:

Theorem 65.] The simply special quadratic complex
contains every coaxal system determined by the singular
sphere and any other sphere of the complex. All spheres of
such a coaxal system Lave the same polar linear comple.

This quadratic complex is the first example of a developable
complex. We see

Theorem 66.] The corrvelative of a simply singular quad-
ratic complex is « quadratic congruence.

Two quadratic complexes which have the same null spheres
shall be called Lhomothetic; two, whose correlatives have the
same null spheres, shall be called confocal. If our original
complex be (41), we have for a homothetic one

Li=4
) ;%% + p (wa) = 0.

i,i=0
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Theorem 67.] A general quadratic complex will be homo-
thetic at most and in general with five simply special com-
plexes.  The surface which is the locus of the centres of the null
spheres of the complex is of the fourth order with the circle at
infinity as a double curve, and muy be generated in general
and in five ways us the envelope of the spheres of a quadric
congruence.

We shall not now stop to define the elusive words in
general more explicitly, as this is the surface which we have
already encountered and which we have promised to discuss
in detail.

The correlative to our complex (41) is

Gy =1 all‘(/ I
e [ “ij

2 Ayma; =0, A= o

ij=0 %

The general equation for a confocal complex will thus be
Agp+p Ay A, Ay Ay
Ay Ap+p 4y, Ay 4y @
Ay Ay Adptp Ay Ay @y
Ay Ay A Ap+p 4y =
Ay Ay Ay Ay Aytp o,

@5 2 x, @, z, 0

=0 (46)

Theorem 68.] An arbitrary sphere will belong to four
complexes confocal with a given general quadratic complex.

There are a good many types of cubic complexes, i.e.
complexes given by an equation of the third order; only one,
however, is particularly interesting.* Suppose that we have
three projective coaxal systems of spheres, not belonging to
a linear complex, nor have any two of them a common
sphere. The assemblage of linear congruences, each deter-
mined by three corresponding spheres, will determine a
complex called a rational cubic complex. This complex will
correspond in four dimensions to the hypersurface generated
by planes connecting the corresponding points of three

* Discussed without proofs by Reye, Lehrsitze, cit.
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projective ranges in general position. To justify the name of
the complex, let us note that we may express it parametrically
in the form

@ = p [NYs+ ot ot]+o [Ay +pe ot (47)
To find the order of the complex, i.e. the number of its
spheres in a given coaxal system, we adjoin the three
equations
(uz) = (va) = (wa) = 0.
Substituting for () we get three linear homogeneous
equations in the variable p and o. Equating the various
discriminants to zero,

[(uy) X+ (uz) p+ (ut) v] [(vy )N+ (v2) p+ (v8) v]
—[@y) A+ (u) p+ (ut') v] [(vy) A + (v2) g+ (vt) 1] = .

[(ug) A+ (uz) p+ (ud) 2] [(wy) A+ (w2') p+ (wt) ]
—[(vg) N+ (u2) p+ (ut') v] [(wy) A + (202) o+ (wt) v] = 0.

Here we have two homogeneous quadratic equations in the
variables A, p, .  One solution will be

(uy) A+ (uz) p+ (ut) v = (uy') A+ (wz’) p+ (ut’) v = 0.

This must be rejected, since it will not give a solution of
all three equations in p/o; the three other solutions give the
three spheres required.

Remembering that the spheres of a coaxal system are
orthogonal to those of a linear congruence, we see

Theorem 69.] The rational cubic complex contains all
spheres orthogonal to the various coazal systems determined
by corresponding members of three projective pencils of linear
complexes, which three have no common sphere, nor have any
two a common coaxal system.

We see from (47) that every sphere of the complex lies
in a linear congruence obtained by giving a fixed value to
p/a.  On the other hand, if we take two pairs of values p, ¢
and p/, o/, and give to the other parameters first the values
A, p, v, then the values X, 1/, »/, and equate the corresponding
expressions for (x), we have five linear homogeneous equations
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in the six homogeneous variables A, u, v, ', ', v".  There are
thus «? double spheres, each in two linear congruences.
A coaxal system determined by two double spheres must be
included entirely in the complex. If this system were not
composed entirely of double spheres we should have «* coaxal
systems, each sphere of the complex would lie in o! of them,
and so in ! of our linear congruences, which is absurd.

Theorem 70.] A general sphere of a rational cubic complex
lies in a single linear congruence of the complex ; a double
sphere lies in two such congruences, and the totality of double
spheres is itself a linear congruence.

Reverting to (47), if we require (z) to be a plane, we impose
one linear condition; two others are imposed by fixing two
points of the plane. On the other hand, each sphere of the
system belongs to «! coaxal systems thereof, each plane to
one pencil of planes.

Theorem 71.] The planes of a rational cubic complex
envelop a ruled surface of the third order and class. The
generators of this surface are the radical axes of the linear
congruences of the complex.

The radical axis of a linear congruence is, of course, the

locus of points having like powers with regard to all spheres
thereof.

Theorem 72.] e centres of the null spheres of a rational
cubic complex 18 a surfuce of the siwth order with the circle at
infinity as a triple curve and with a cirele of double points.

With regard to the last statement we see that the centres of
the null spheres of a linear congruence must lie on a circle.

Theorem 73.] A sphere through the double circle of the
surface meets it again in a stmple circle. The planes of these
simple circles are those of the centres of the spheres of the linear
congruences of the complex, and each circle of the surface is
cospherical with the double circle.

We see, in fact, that if we invert with a centre on the
double circle we get a quartic through the cirele at infinity
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with a double straight line, and such a surface contains no
other lines or circles.

Theorem 74.] A sphere which meets the surface in « simple
circle meets it also in a cyclic. The two imtersect twice on the
double circle, and twice at points where the sphere touches the
surface.

It is perfectly clear that there remains a good deal to
be done in the study of spheres in cartesian space. It is
hard to believe that a sufficiently intelligent use of the
TFrobenius identity will not settle the interesting question of
the existence of Hart systems, and the relation of spheres
circumseribed to spherical tetrahedra and spheres tangent to
other spheres. There must surely be a great deal more in the
subject of tangent spheres than has yet been found. Is there
a three-dimensional analogue of Malfatti’s problem, and what
is the solution? It seems likely that although the Dupin
series is undoubtedly the most interesting of the various conie
series, yet others are worthy of further investigation. The
elementary metrics of four-dimensional non-Euclidean space
has never been studied in great detail, and may well include
many beautiful theorems of real importance in the geometry
of the sphere.



CHAPTER VII

PENTASPHERICAL SPACE
§ 1. Fundamental Definitions and Theorems.

ANy set of objects which can be put into one to one
correspondence with sets of essentially distinet values of
five homogeneous coordinates @,:,:a,:,:z,, not all simul-
taneously zero, but connected by the relation

(vx) = 22+ 22+ 2t + a2+ 2,2 = 0, (1)
shall be called points, and their totality a pentaspherical
space.

The assemblage of all points (z) whose coordinates satisfy
a linear equation

(y) = Yoo+ Y121 + Yo Ty + Y53 + Y42, = 0, (2)
where the values (y) are not all zero, shall be called a sphere,
to which the points (x) are said to belong, or on which they lie.
The coeflicients (y) shall be called the coordinates of the sphere.
If they satisfy the identity (1) the sphere is said to be null,
the point with the coordinates (y) is called the vertex of the
null sphere. If (y) and (z2) be two not null spheres the
number 6, defined by v2)

wpli=— T, 3
Viyy) V(=) i

is called their angle. If one possible value for the angle

be g: the spheres are said to be orthogonal or perpendicular,
or to cut at right angles. The condition for this is

(y2) = 0, 4)
and when this condition is satisfied we shall call the spheres
orthogonal, even when one or both are null. If a possible
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value for the angle be 0 or = we say that the spheres are
tangent. Here the condition is

(¥y) (z2) —(y2)* = o. (5)

The assemblage of all spheres whose coordinates are linearly
dependent on those of two are said to form a coaxal system
or pencil. They all contain all points common to the first
two, the locus of which shall be defined as a circle.

If (y) lie on the null sphere whose vertex is (2), and so (2)
lies on the null sphere whose vertex is (y), every sphere
coaxal with (y) and (z) is null. The totality of their vertices
shall be called an ¢sotropic. Through each point will pass
! isotropies generating the null sphere whereof this point
is the vertex. The circle common to two tangent not null
spheres shall be called a null circle; it consists in two iso-
tropics. If two null spheres have a common isotropic this
is the totality of their intersection, and shall also be classed
as a null eircle.

If two null spheres be coaxal with any not null sphere,
every sphere through their vertices is orthogonal to this
sphere. The vertices are said to be mutually ¢nverse in
this sphere. The inverse of the point (x) in the sphere (y) is

@; = (yy) 2 — 2 (2y) ;- (6)

If (z) trace a sphere, («/) will also trace a sphere, and
the equation will give equally well the relation between two
inverse spheres (z) and («'). The sphere (y) is called a sphere
of antisimilitude for the two.

Two examples of pentaspherical space will at once occur
to the reader. We may take a Euclidean hypersphere in
a space of four dimensions. Secondly, we may start with
cartesian space, that is the finite domain, and proceed as in
Ch. IV. We begin with the equations VI (8)

XYzt Sy wyiwy s —(wy+ ),
Lo @y Wy Wy, = (2 +y2+22+12) s (a2 +yt +25—1%):
2at:2yt:22t  (7)

Every finite point of cartesian space will eorrespond to
a definite point of pentaspherical space, for which i, +a; = 0,
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and conversely. If, however, we make cartesian space a
perfect complex continuum by adjoining the plane at infinity,
the correspondence ceases to be unique, for all infinite
cartesian points not on the circle at infinity correspond to
the same point of pentaspherical space. We may extend
the finite cartesian domain to be a perfect pentaspherical
continuum as follows :

The set of coordinates ¢:1:0:0:0 shall be said to repre-
sent the point at infinity. Any other set of coordinates (y)
satisfying the equations

Wotth = (yy) =0
shall be taken to represent the minimal plane

Yoo + Y3y +Ys2+3 (o —1y) = 0. _

The point at infinity and the totality of such minimal
planes shall be called vmproper points. By adjoining them
to the finite domain the cartesian space becomes once more
a perfect continuum, and obeys all the laws of pentaspherical
space. The definitions of sphere, circle, angle, inversion, &e.,
given in Ch. V for cartesian space, and here for pentaspherical
space, are entirely compatible.

If we take as our pentaspherical continuum the cartesian
space rendered a perfect continuum in this fashion, the
following terms are synonymous :

Sphere orthogonal to point Plane.
at infinity.

Inversion in such a sphere. Reflexion in plane.

Null sphere whose vertex is Totality of minimal planes.
point at infinity.

Null sphere containing point Points of minimal plane and

at infinity. minimal planes parallel
thereto.
Isotropic not containing point Minimal line.
at infinity.
Isotropic containing point at Pencil of parallel minimal
infinity. planes,

The points of pentaspherical space on any not null sphere
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will be a tetracyclide plane, and we may take over bodily
for them the definitions of Ch. IV.

We shall mean by the cartesian equivalent of a penta-
spherical figure the following. We replace the coordinates
of every proper pentaspherical point by their cartesian equi-
valents from (7), then render the space a perfect continuum by
the adjunction of the plane at infinity.

The cartesian equivalent of & surface of order n, where the
point at infinity has the multiplicity k, is an algebraic surface
of order m—Fk with the circle at infinity as a curve of order
3 (n—2k).

We mean by the order of an algebraic surface in penta-
spherical space the number of intersections with an arbitrary
circle, When the surface is given by equating to zero a homo-
geneous polynomial in (z), the order is twice that of the
polynomial.

§ 2. Cyclides.

The definitions of series, congruences, and complexes of
spheres used in the last chapter may be carried over bodily
into pentaspherical space. We thus reach the fundamental
locus with which we shall be occupied in the present chapter.

Definition. The locus of the vertices of the null spheres
of a general quadratic complex shall be called a cyclide.
The equation of a cyclide may be written
hf =4
2 agumm; =0, ay=ay;|a;|#o0. (8)
4j=0
The problem of classifying all cyclides under the group of
quinary orthogonal transformations is the problem of classi-
fying pairs of quinary quadratic forms, whereof one certainly
has a non-vanishing discriminant. This is best done by
means of the elementary divisors of Weierstrass, exactly as we
classified cyelics in Ch. IV. It will be found that there
are exactly twenty-six species of cyclides under this classifi-
cation: an enumeration of all, with canonieal forms for their
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equations, would lead us altogether too far afield; * we shall
therefore confine ourselves to one or two types beginning with
the general onme, i.e. that characterized by the scheme of

elementary divisors
RRAEE B

The canonical form for the equation of the general cyclide
will be
(az?) =0, (xx) =0, Ma;(a;—ay) # 0. (9)

Sinee this equation is unaltered by a change of sign of any
one of the s,

Theorem 1.] The general cyclide is anallagmatic with
regard to five mutually orthogonal spheres. It is a surface
of the fourth order, and s the envelope of five different quad-
ratic congruences of spheres.

This theorem has already been proved as VI, 67].

The five spheres shall be called the fundamental spheres
of the cyclide. The equations of the five generating con-
gruences are easily found. An arbitrary tangent sphere at
the point () will have the coordinates

pYi = A +a;)@;. (10)
In particular, if gi="0;
U,
A
: aj—a@
=9 2% j=4 g
Yy 2 Yy nr
- = =0, j#i. (11)
J:Oa Yy j=o(aj—ai)2

If (r) and (s) be mutually inverse in (y),
j=4 ;

T:8: —1:8;)
E(,"_Z_,J_L =A0) a.#ai,
jam0. (B5—ag) 4

Theorem 2.] The locus of the inverse of a given point with
regard to the generating spheres of one system of a general
eyclide is a cyclide with the given point as a conical point.

* Cf. Loria, Geometria della sfera, cit., and Segre, ‘Htude des différentes
surfaces de quatrieme ordre a conique double’, Math. Annalen, vol. xxiv, 1884,
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Theorem 3.] The general cartesian cyclide is « surface of
the fourth order with the circle at infinity as a double curve,
and every such surface is a cyclide of some sort. In the
general case it may be generated in five ways by a sphere
moving orthogonally to one of five mutually orthogonal spheres,
while its centre lies on a central quadric.

The words ‘in general’ mean that the point at infinity shall
not be on a fundamental sphere of the pentaspherical cyclide,
nor yet on the surface itself.

Theorem 4.] The intersection of a mot null sphere with
a cyclide is a cyclic. ]

The generating spheres will cut the cyclide in cyclics with
two double points, i.e. in two ecircles. Let us show, con-
versely, that if any sphere have double contact with the
cyelide it will be a generating sphere of one system or another.
Writing that a tangent sphere at (z) is also a tangent sphere
at ('),

A +a;) @ = (N +ay) 2.

Multiplying through by #;” and summing, also multiplying

through by z; and summing,

i=4 i=4
N@a) + D aqgaey = N (22) + D aza;m = 0.
i=0 i=0

This shows that A=\,

Zz; = x,i, if )\+ai # 0,

Hence X\ must take one of the five values —a;, which
proves our result.

These facts have a good many interesting consequences
which we shall develop gradually. We begin by noticing
that if we define as a focus of a surface the vertex of any
null sphere which has double contact therewith, the foei of
a general cyclide come merely from the five systems of
generation. Their coordinates will be given by the equations
%= zj2+zlﬁ2+zl2+zm2

2
== ZJ + Zkz zlz Ak zmz = 0. (12)

+
Qp—a;  Qp—a; = Xy —q;
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Theorem 5.] The focal curves of u general cyclide are five
cyclics, one on each of the fundamental spheres. Each cyclic
meets each fundamental sphere other than its own in four
Joci of the focal cyclic on that sphere. !

Suppose that one focal cyclic is known. Its foei and
fundamental circles are known ; hence the other fundamental
spheres are known. On each of these spheres we know the
fundamental circles of the corresponding eyelic, and four
points (on the first sphere). Hence the focal cyclics are all
known.

Theorem 6.] If two general cyclides have one focal cyclic in
common, they have all five focal cyclics in common.*

A cyclide contains five pairs of systems of circles. This
suggests that there may be a certain number of isotropies
embedded in the surface. These isotropies will not lie on the
fundamental spheres, but be inverse in pairs with regard to
them. Let such an isotropic be determined by the points (z)
and (2’), where
2, =0, (to)=0, ¢t = 0.

]

i=1
Clearly (z)) = 2, w;@;x)
i=0
z a @y
@, = a;@; a@ qay |
A AT
‘ i & -,
T Va; v, Ve
m= vy N agey, V@
Bt h U

* That erratic genius, John Casey, in an article full of interest, ‘On
Cyeclides’, &ec., Philosophical Tramsactions, vol. clxi, 1871, p. 637, seems to have
held the curious idea that a cyclide shared one focal curve with each of
five different systems of others. He gives the equations of all five systems,
failing to note that they are really identical. i

1702 .
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(@'') = (a2'?) = 0.
x; = (2w) = (aa®) = @;a5,a10,, (é wz) —a;(a%2?) = 0.

These equations give eight values for z;: ), :a;:a,,, each

corresponding to two sets of values for (2') differing in the
sign of ;.

Theorem 7.] A general cyclide contains siateen isotropics,
wnverse in pairs with regard to the five fundamental spheres.
The generating spheres tangent at (z) have coordinates
Yp = (a5 —a) ;.
Four of these will have the cross ratio
(0;—a;) (ag,— )
((ii —(,Ll) (ak '—a‘})
Theorem 8.] The generating spheres of four chosen systems
tangent at any point have a constant cross ratio.
The condition that a sphere (y) should touch the eyclide is

i=4 yz i=4 ?/2
i -9, >t _ =y, 13
E‘Buﬁ)\ ’ i%o(a,i+}\)2 (13)

This may be interpreted as requiring that the diseriminant
of the first equation, lJooked upon as an equation in A, should
vanish. The equation is quartic, the degree of the diseriminant
is six, the coefficients being linear in y,2.

Theorem 9.] Twelve spheres of an arbitrary coaxal system
will touch a given general cyclide.

Theorem 10.] The gemeral cartesian cyclide is of class
twelve, and twelve normals pass throwgh an arbitrary point.

We may draw still further conclusions from the first of our
equations (13). Let (y) be any sphere, and (z) a point
common to it and to the cyclide. A sphere tangent to the
cyclide at this point will have the coordinates

(a;+X)z;.
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Suppose that this sphere touches the cyclic of intersection
again, say at ¢,
pYitoti+at; = (a;+A) 2.
(y2) = (22) = (az?) = (yt) = (tt) = («t®) = 0.
i=4

o(et) + > a;zit; = 0.

#=10
i=4

> a7t + A (2) = 0.
i=0

(y2) = (yt) = 0.

i=t

2 Y =103

oot

It thus appears that the absolute invariant of our quartic

in (13) gives the fundamental cross ratios for the cyeclic
common to the cyclide and to (y). This absolute invariant
is a constant multiple of the ratio of the cubs of a relative
“invariant of the second degree, whose vanishing gives the
equiharmonic case, to the square of a relative invariant of
the third degree, whose vanishing gives the harmonic case.

Theorem 11.] In an arbitrary coaxal system are four
spheres meeting a general cyclide in equikharmonic cyclics,
and siz meeting it in harmonic cyclics.*

We return to the tangent sphere

¥i = +ay)a;.

This will be null if
(az?) = 0.

When this equation is satisfied, every tangent sphere at
that point is null, i.e. the two tangent isotropies coincide,
and we have a parabolic point.

* This theorem and the three preceding are taken direct from Darboux,
Sur une classe, cit., pp. 280 ff.

)
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Theorem 12.]  The locus of the parabolic points of a general
cyclide s the intersection with a second cyclide having the
same fundamental spheres.

It must not be supposed that the tangent isotropic to the
cyclide at a point of this curve is tangent to the curve itself.

The cyclide has covariants under the quinary orthogonal
group analogous to those of the cyclic. Let our orthogonal
substitution be

j=1 J=4 j=4
&; = E b”wj/, Z bijz =rl 2 b'ijbkj =0, k#i.
Jj=0 Jji=0 Jj=0

If the corresponding cyclides be

(@e5=10, [(eiati= 0,

=0
1= 4 i, j= i=4
2 aﬁl = 2 azsz2 = Z a;
H=I10 2i=10) A=
If thus Eai =0
we have also Sa/=o.

We may always suppose the first of these equations is
satisfied by replacing the first of our equations (9) by a
suitable linear combination of the twe. If (y) be any sphere,
we have the covariant polar sphere

PZ; = &Y.

If (x) and («) be any two points of the eyclide inverse
with regard to (y), the other sphere orthogonal to (y) in
which (z) and (2') are also inverse is orthogonal to the polar
sphere. The covariance of the polar sphere is thus evident.
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All spheres orthogonal to (y) will have their polar spheres
orthogonal to the antipolar sphere of (v),

yt,

’L

pry =
This also is covariant, as we see by its definition. The locus
of points whose polar spheres are null is our previous cyclide
(«?x?) = 0.
The locus of points lying on their antipolar spheres is
" i=4
(52*) =0, .2 a; = 0.
t=0
Once more we write the tangent sphere
Yi = (A+a) ;.

If this have stationary contact, the cyclic thereon must
have a cusp, the class of the corresponding cartesian cyclic
will be still further reduced, and so, by the reasoning which
led up to 11], the first equation (13) has three equal roots, or

=4 5 —gl J =l yz
> $ g g, 14
25- 2o Zaky 9

Now a quartic has three equal roots if the invariants of
degree two and three both vanish. Hence we have an equa-
tion of the fourth degree, and one of the sixth in ¥;, or,

Theorem 13.] The congruence of stationary tangent spheres
to a general cyclide is of the twenty-fourth order.

Theorem 14.] The locus of the centres of curvature of a
general cartesian cyclide is a surface of the twenty-fourth
order.*

We see that a sphere is an adjoint surface to the general

* Darboux, Sur une classe, cit., p. 289.



294 PENTASPHERICAL SPACE OH.

cartesian cyclide. Cospherical circles shall be said to be
residual, hence

Theorem 15.] If two circles of a cyclide be coresidual, every
cirele residual to the one s residual to the other also.

Theorem 16.] Two residual, or two coresidual circles of
a general cyclide are orthogonal to the same fundwmental
sphere.

Theorem 17.]  Two residual circles of a cyclide meet twice,
two coresidual ones do not meet at all, two circles which are
neither residual nor coresidual meet once.

We have so far considered all systems of generation together ;
a good deal of interesting information may be obtained by
fixing our attention on a single generation. We rewrite the

equation
Ji=4

— e
yi_ O, .2(1,-1((,-_0, aj¢ai.
j=0J v
In an arbitrary coaxal system orthogonal to x; = 0 there
will be two generating spheres of this system. If (y) and (2)
be orthogonal to the fundamental sphere, and if

j=4
- 2.
2 yj 2 =0, u‘#“"
a:— J 2
Jj=0"J v

these two are harmonically separated by the spheres coaxal
with them which are generators of the cyclide. If (2) be
fixed, the spheres satisfying this equation will generate a linear
congruence. The points common to the spheres of the con-
gruence have the coordinates

wiiwjiwk:xl:x,m
j=4 2
R v Zi Zj Zk Zl “m
=17 o, : 78 5 . 8 .
j=0(u/j—ai) aj—ai ak—-ai ((l—a,i am—~ai

4




vII PENTASPHERICAL SPACE 295

Let () be the point of contact of a generating sphere which
is orthogonal to (y), and belongs to the present system

=4

i=0
j=1

a; (xs)— >, a;8;; = 0.
j=0

Theorem 18.] The generating spheres of one system ortho-
gonal to an arbitrary sphere touch the cyclide in the points
of @ cyclic anallagmatic in the corresponding fundamental
sphere.

If we keep (s) fixed and find the corresponding eyelic for
another generation,
i=4
az, (xs) — >, a;s;e; =0,
i=0
subtracting
(as—ay) (as) = 0.

Theorem 19.] The generating spheres of all five systems
of a general cyclide orthogonal to an arbitrary sphere touch
it in the points of five cyclics lying on five spheres of a coawal
system including the arbitrary sphere.

Since the generating spheres of one system form a quadric
congruence whose members may be put into one to omne
correspondence with the points of a cartesian quadric surface,
we see that there is an immediate correspondence between
such a surface and one system of generation of the cyclide.
Suppose, conversely, that we have a cartesian surface covered
by two networks of circles, each circle of one network
being cospherical with each of the other. The axes of these
circles, that is, the lines through their centres perpendicular
to their planes, will generate a quadric or two pencils. If we
take two circles of one network, every circle cospherical
with both is orthogonal to their common orthogonal sphere,
as is, also, every circle of the same network.
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Theorem 20.] The only irreducible surface which contains
two networks of circles where each circle of one metwork s
cospherical with each of the other is a cyclide.

The correspondence between the generating spheres of one
system and the points of a quadric appears very clearly in
the cartesian case where the quadric is the corresponding
deferent. Here we have*

Point of deferent. Generating sphere.
Generator. Cirele of eyclide.
Residual generators. Residual cireles.
Coresidual generators. Coresidual circles.
Conic on deferent. Conic series.

This may also be looked upon as a means of establishing
a one to one correspondence between the points of the
deferent and the pairs of points of the cyclide which are
mutually inverse in the corresponding fundamental sphere.
Suppose that we have the cartesian cyclide with the general
pentaspherical equation (9). Eliminating z; we have
i=1
2 bjwjz = 0, b} = ((‘l/j_a/i)' '(15)
J=0
Let the condition for a planar sphere be
(wa) = 0.
If (z) be the coordinates of the centre of a sphere (s),
8; = )\zj+pwj.

If (s) be a generating sphere of the present system, we get
the equation of the deferent

Sz':O.
Hmdl 2
W2 —W; 2
2( @.lb. ! IL) =0, j¢7"

i=0 J

* Cf. Moore, ¢ Circles orthogonal to a given sphere’, Annals of Mathematics,
Series 2, vol. viii, 1907.
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A n arbitrary sphere tangent thereto at () will be

Sle) j(wiz;—w;2;)
Y= Ng—p 2—%.—,
J=0 .I

w,
Yr =Nz +w 'bf (wi2), — Wy

This will be a plane if it satisfy the condition of being
orthogonal to (w), i.e. A" = 0.

Calling this the plane (r), and the angle of intersection
j=4

r;
cosd; = —1_, b;cos?0, = 0, jFi.
J (7,7,) 2 7 J

j=0

But the cosine of the angle which a plane makes with
a sphere is the distance from the centre divided by the
radius. This yields the curious theorem due to Casey.*

Theorem 21.] If the equation of the general cartesian
cyclide be reduced to squared terms, and if one variable be
eliminated by means of the identity, the resulting form will
be identical with that which gives the quadriplanar equation
of the deferent corresponding to the variable eliminated, the
tetrahedron of reference being that whose vertices are the centres
of the foursremaining fundamental spheres, and the coordi-
nates of a plane being proportional to the distance from these
centres divided by the corresponding radii.

Let us write the tangential equations

j=1 ji=4
2 (gj=a;)rf = 2 (a;—az) 1 = 0,
ji=0 i=0

subtracting
(a,—a;) (rr) = 0.

This is characteristic of isotropic or minimal planes.

* On Cyclides, cit., p. 598. The form there given to the theorems is not
sufficiently precise, The next six theorems are from the same source.
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Theorem 22.] The five deferents of the general cartesian
cyclide are confocal.

Theorem 23.] Given nine spheres orthogonal to a tenth,
there is always at least one cyclide tangent to each at a pair of
points inverse in the tenth sphere, and, conversely, if nine
pairs of points be given inverse with regard to a sphere, there
18 al least one cyclide passing through all and inverse in the
given sphere.

Theorem 24.] QGiven eight spheres orthogonal to o winth,
which is not null. There is always a one-parameter family
of cyclides having double contact with these and with the
spheres of « series. In special cases there may be « two-
parameter family of cyclides having double contact with the
eight spheres.

Theorem 25.] Given eight pairs of points inverse in a
sphere.  There is always a pencil of cyclides anallagmatic in
the sphere through these points, and in special cases there may
be a two-parameter family of such cyclides.

Theorem 26.] All cyclides having dovble contact with seven
spheres orthogonal to a given mot null sphere have double
contact with an eighth sphere orthogonal thereto.

Theorem 27.] Al cyclides passing through seven pairs of
points inverse in a given sphere pass through an eighth
such pair.

Let us now turn more definitely to the cartesian cyclide.
Here, in the general case, there are five deferents, confocal
quadriecs. To find the points of contact of any generating
sphere we must drop a perpendicular from the centre of the
corresponding fundamental sphere upon the tangent plane to
the deferent at the centre of the generating sphere, and find
where this perpendicular meets the latter sphere. This method
will hold for every anallagmatic surface. When the point
of contact of the generating sphere is on the circle at infinity,
the tangent plane to the deferent will contain the tangent to
the circle at infinity at the corresponding point. But this
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plane will touch the cyclide also at this infinite point, for the
line connecting this point with the point of contact of the
plane with the deferent should be normal to the cyclide,
and the corresponding tangent plane is the plane just drawn.
We are thus led to the double focal curves of our eyclide ; they
are the double curves of the developable of tangent planes
along the (double) circle at infinity. These, unlike the focal
curves, are not covariant for inversion.*

Theorem 28.] The double focal curves of the general cartesian
cyclide are the focal curves of the corresponding deferents.

We may pass from one generation of such a cyelide to
another as follows. The points where a cyclide cuts one
fundamental sphere are the points of contact of the latter with
the developable tangent to this sphere, and to the correspond-
ing deferent. This developable being of the fourth class, and
elliptic in type, has four conics of striction. A point on one
is the centre of a sphere having double contact with the
cyclide, hence

Theorem 29.] The four quadrics confocal with the given
deferent, and each passing through one conic of striction of the
developable tangent to this deferent and the corresponding
Jundamental sphere, will be the four other deferents.

If we consider the plane of one of the conics of strietion, we
see that it contains the centres of four spheres common to two
generations, and so orthogonal to two fundamental spheres.
It is thus a radical plane for two fundamental spheres, and so
must bear a symmetrical relation to them and to the corre-
sponding deferents.

Theorem 30.] If two deferents be known, and the funda-
mental sphere corresponding to the fivst, that corresponding to
the second is found as follows. The planes of that conie of
striction of the developable determined by the first sphere and
deferent which lies on the second deferent will cut the first
deferent in a conic. The developable circumscribed to this
conic and the second developable will towch the sphere required.

* Darboux, Sur une classe, cit., for this and the two following,
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We saw recently that the planes tangent to a cartesian
cyelide along the cirele at infinity will touch all five deferents.
Through each tangent to the circle will pass two planes
tangent to the deferents. These planes will fall together
when, and only when, a tangent to the circle at infinity
touches alsoa deferent ; hence the five deferents and the circle
at infinity touch four (usually distinet) lines. The points
of contact with the circle at infinity will be points of all the
focal eyelies.

Theorem 81.] The general cartesian cyclide has four pinch-
points on the circle at infinity, which are common to all the
Jocal cyclics.

Let us look for a normal form for the equation of a cyclide
in rectangular cartesian coordinates. We begin by noticing
that the locus of the centres of gravity of the intersections
of a general cartesian cyclide with sets of parallel lines is
a plane, the polar of the infinite point common to the lines.
If a point trace a line in the plane at infinity, its polar line
in each plane section through the infinite line will, by IV. 16],
rotate about a point; hence its polar plane rotates about
a line. Any two such lines must intersect; hence

Theovem 32.] The polar planes of all infinitely distant
points with regard to a general cartesian cyclide pass through
@ fized finite point.

This point shall be called the centre of the cyclide* If
we consider the plane of a focal conic of any deferent, we
see that the foci of that conic are double foci of the cyclide,
and of the seetions thereof in that plane; hence, by IV. 16]
and (20),

Theorem 88.] e centre of the general Euclidean cyclide
18 the common centre of all five deferents. The planes of the
focal conics of the deferents cut the plane at infinity in the
stde-lines of the diagonal triangle of that complete quadrangle
whose vertices are the pinch-points. The tangent planes to
the cyclide at the pinch-points pass through the centre.

* Theorems 32 and 83 are from Humbert, loc. cit., p. 132.
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The canonical form for the equation will thus be
(@ +y?+2%)2+ax® + byt + 2’ +ex+fy+gz+h = 0. (16)
We now return to pentaspherical space. Before studying
systems of cyclides let us look most briefly at one or two
special types under the quinary orthogonal group. The
general cyclide being characterized as before by [111 1 1],
let us look at the type [211 1] This notation means that
in the homothetic pencil of quadratic complexes
ij=4
> ;% x; +p (xx) = 0,
i,j=0
two, which are simply singular, have fallen together. This
gives the limiting case of the general complex when two
spheres of inversion fall together. As, however, they are
mutually orthogonal, in the limiting case the double sphere
must be null The vertex of this double sphere must be
a conical point for the cyclide, for the surface is anallagmatic
in three mutually orthogonal spheres containing this point.

Theorem 34.] The cyclide of the type [2 11 1] in penta-
spherical space has one conical point, and is anallagmatic
in three mutually orthogonal spheres through that point. It
s covered with eight systems of circles, residual in pairs,
of which one pair of systems pass through the conical point.

Theorem 35.] The cartesian cyclide of type [2 11 1] may
be inverted into a mon-degenerate quadric surface, not a
surface of revolution, unless the fundamental null sphere is
planar.

Let us next take the type [(11)111]. Here there will
be a doubly singular complex in the homothetic system,
whose correlative is a series of spheres. We may write the
general equation for our complex

o2+ % + dy 1t = 0. (17)
Theorem 36.] The pentaspherical cyclide of the type

[(11) 11 1] Zas two conical points, and is the envelope of the
spheres of a general conic series.
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A tangent sphere to our surface will have the coordinates

Yo = (% + )z, Y= (3 +N) @, ¥Yy= (Ay+2),,
Ys = Az, Yy = Ay

For the sphere orthogonal to @, =z, = 0 we have A = 0,

Puttlng Y; = a; x;, 7= 0, 1, 2.

Our surface is the envelope of the conic series of spheres
172+112+112—0 Yo=Y, =0
ay Yo a N a,2J2 =0 ¥B=y=0

Theorem 387.] The pentaspherical cyclide of the type
[(11) 111] has seven systems of civcles. Six are mutually
residual in pairs. The circles of the seventh system all pass
through two conical points and are characteristic circles
of the spheres of a general conic series which envelop the
cyelide.

Theorem 38.] The Euclidean cyclide of the type [(11) 11 1]
may be inverted into a quadric cone, not of revolution, unless
the fundamental null sphere is planar.

As a last type consider [(1 1) (11) 1]. Here there are two
distinet doubly special complexes in the homothetic system ;
the surface may be enveloped in two ways by the spheres of
a conic series,

Theorem 39.] The cyclide of the type [(11)(11)1] is a
Dupin cyclide.

The Dupin series and cyclides have only been defined in
cartesian space, but the definitions carry over immediately.

We have already defined as confocal two quadratic com-
plexes whose correlatives are homothetic; the cyclides generated
by the null spheres of confocal complexes shall be defined as
confocal cyclides. If our original cyclide have the equation
(9), the general form for the confocal system will be

i=4

2‘! 8 =¥ (zz) =F0: (18)

a;+ A

=105
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Theorem 40.] The cyclides which are irreducible and
confocal with a general cyclide are themselves general. The
Sive fundamental spheres, each counted twice, are the only
reducible cyclides in a general confocal system.

We mean, of course, by a general confocal system one
composed of general cyclides. We see at once in (18) that
if (x) be known, we have a cubic equation in A.

If A, and A, be two roots, and we take the tangent spheres
('), (”’) where

’ Z; ” Z;

(= y Xy =
? K}
“i+/‘1 (li+)\2

=4

2
@) = 3 i

oA e +A,)

i=4 i=4
1 x? x?
= = =10
Ag—A [%“i‘*‘)ﬁ igoai'*‘)\z

i

Theorem 41.] Through each point of space will pass thiree
mutually orthogonal cyclides of @ general confocal system.

The word ‘space’ here means pentaspherical space’; in
cartesian space we must restrict ourselves to the finite domain.
We have from the Darboux-Dupin theorem :

Theorem 42.] The lines of curvature of a general cyclide
are its intersections with confocal eyelides.

We get immediately from our definition, or from (18),

Theorem 43.] Confocal cyclides have the same focal curves.

The fact that the focal curves of a cyclide are of the same
type as the intersections with an arbitrary sphere leads to
some curious results.* We start with the general cyclide

(ax®) = (xx) = 0. (9)

* The remaining theorems in this chapter are due to Darboux, Sur une
classe, cit., pp. 327 ff. The proofs there given are not easy to follow.
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Let (y) be an arbitrary sphere, and consider the cyelide

i=4 =y = 2
2 yi* & [ ]:0. (19)

a+)\ :a+)\

This will be found to be anallagmatic in (y). The tangent
sphere at (x) orthogonal to () will be ('), where

i=4 i=4
:1/,.2 @, Yz ;Y
= z i i SN [ i ] Z i,
0 [i:oai'*')‘:lai'*‘)‘ a; + A o % +A

4

i

il

M

(@;+ N = (y2) =

il
=3

i

The intersection of our original cyelide with (y) will be
a focal curve for the new cyclide. By varying A we get
a confocal system of new cyclides, and each is tangent
along a cyclic to a cyclide confocal with the original one.

Theorem 44.] The cyclides having for one focal curve the
cyclic common to a general cyclide and an arbitrary sphere
are confocal, and each is tangent along a cyclic to a cyelide
confocal with the original one.

Conversely, let us take an arbitrary cyclide tangent along
a cyclic to the general cyclide of our system,

i=4 9

Z—— +A(za)? = 0.

=\0 di+A
If we write
2
=(a;+Nz, k=—2 a—'%*— )
we fall back on (19).

Theorem 45.] The focal curves of all cyclides touching
a general cyclide along a cyclic lie on cyclides confocal with
the given one.

Theorem 46.] If a sphere cut a general cyclide in « cyclic,
that will be a focal curve for five cyclides each containing one
focal curve of the original cyclide.
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We see, in fact, that, considered as envelopes, the focal curves
are limiting cases of the confocal cyclides ; we then apply 44].

Several ideas for continuing the geometry of pentaspherical
space will ocecur to any one after reading the preceding
chapter. We have made no mention of problems of con-
struction ; it would be easy to lead up to the solution of the
problem of drawing a sphere tangent to four others exactly
as we did to the corresponding problem in Ch. IV. It seems
certain that some of the other cyclides deserve a more detailed
study than we have given to any but the general and Dupin
cyclides. The residuation theory for curves on cyclides should
be easy and interesting.

1702 U



CHAPTER VIII

CIRCLE TRANSFORMATIONS

§ 1. General Theory.

WE have frequently had occasion, especially in Ch. IV,
to draw distinction between the cartesian and the tetracyclie
planes. There is a one to one continuous correspondence
between their circles, but not between their points, for they
have different connectivity. In the cartesian plane we con-
sidered, besides the angles of circles, the positions of their
centres and the magnitudes of their radii. In the tetracyclic
plane we considered only those properties of eircles which
are invariant for inversion, or for quaternary orthogonal
substitutions. No circle has an absolute invariant under
this group, although the expression (zz) is a relative invariant.
The cosine of the angle of two circles is, however, an absolute
simultaneous invariant of two not null circles, and they have
no other invariant independent of this.

We next observe that although we have said a good deal
about this invariant we have paid next to no attention to
the transformations themselves, except the inversions and
conformal collineations of the cartesian plane. It is the
purpose of the present chapter to discuss the various types
of circle transformations and the groups thereof.*

Let us begin by defining as a circle transformation any
analytic transformation that carries circles of a plane into
circles. In circle coordinates this will be

=N 0 2 2ha Bl
A== (wu Ty Ly Ty Xy )9
* For an elaborate treatment by pure geomefry see Sturm, Theorie der

geomelrischen Verwondischaften, vol. iv, Leipzig, 1909. An admirable analytic
introduction is given by Déhlemann, Geometrische Transformationen, cit.
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where («/) represents a circle. If, further, null circles are
carried into null cireles,

(o) = k(o )™

Here & must be a function of the coeflicients of the trans-
formation only, as otherwise not null cireles of the congruence
I = 0 would be carried into null circles.

Let us next assume that our transformation is algebraic
and one to one. Such a transformation might be engendered
as follows. The circles of the plane are in one to one corre-
spondence with the points of a three-dimensional projective
space ; the null circles in one to one correspondence with those
points of the space which lie on the Absolute quadric. If we
take the most general Cremona transformation of space
which leaves the quadric in place, we have the required
circle transformations. Now this Absolute quadric may be
stereographically projected on the projective plane, and the
Cremona transformation of space in question will give
a Cremona transformation of that plane. Conversely, let a
Cremona transformation of the plane be given. If that be
expressed in tetracyclic coordinates, it will be a transformation
of projective space which leaves the Absolute quadric invariant.
There remains, lastly, the question, could not two different
Cremona transformations of projective space produce the same
Cremona transformation of the Absolute quadric? If such
were the case, the product of the one and the inverse of the
other would be a Cremona transformation where all points
of the quadric were invariant. Such transformations do not,
however, exist. For suppose we had one,

Py = fi @y . @)
Putting ;= x;, and eliminating p,
v fi—x; f; = 0.
We must then have
@, f; = f; = (xx) by

Solving these equations for f;, we find that each f; contains
U2
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(zx) as a factor, an absurd result, as we should naturally
remove such a factor at the start.

Theorem 1.] The group of all algebraic circle transforma-
tions of the plane whiclh carry null circles into null circles
is simply isomorplic with that of all Cremona transformations
of the cartesian plane*

An interesting sub-group of these transformations is com-
posed of those which carry tangent circles into tangent circles.
We shall reserve to a subsequent chapter the discussion of
these. Let us rather note that although our transformations
carry points into points, and circles into circles (in the tetra-
cyclie plane), we have not yet required that they should carry
points on a circle into points on another circle. For this we
require the additional restriction

(ax) = (a'2’) if (') = 0.

The first of these equations must be independent of the

£
second, for \x’, = const. for all values of (') where (2'2’) = 0,
A
T y o

ﬂf’ = b,-j + k(' zy.

J

This equation is not homogeneous, as it should be unless
k= o.

Now the most general analytic transformation of four
homogeneous variables that carries a linear form into a linear
form is a linear transformation, and since (ax) is covariant,

we shall always have

(xy) _ @y

Vi) Vg L@ VG
Theorem 2.] The most general transformation of the tetra-
cyclic plane that carries a point into a point, and the points
of a circle into points of a circle, is an orthogonal substitution.
We shall call such transformations c¢ircular transformations,
and study them in detail analytically presently. For the
* Nothing seems ever to have been published about these general trans-

formations. The Author’s attention was called to them by a conversation
with his colleague Prof. C. L. Bouton.
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moment we confine ourselves to the real cartesian plane, and
approach the subject of circular transformations by pure
geometry.*

We begin by returning to the domain of Ch. I, the real
finite cartesian domain, and inquire what will be the nature
of a transformation which is one to one, with the exception
of a finite number of exceptional points, and carries points
on a circle or line into concyclic or collinear points. Let
such a transformation be called 7, P, and ’, two corresponding
points. The cireles through P will go into circles through P’
If we precede T' by an inversion with P as centre, and follow
it by an inversion with " as centre, we have a transformation
T’ of the same type as T, which carries lines into lines. It is
clear that parallel lines will go into parallel lines, for if two
intersecting lines were carried into parallels, the o? circles
through the intersection would go into «? circles meeting
each parallel once; such circles do not exist in such numbers.
A parallelogram will go into a parallelogram, an inscriptible
parallelogram into an inscriptible parallelogram, i.e. a rectangle
into a rectangle, a square into a square, since a square is the
only rectangle with mutually perpendicular diagonal lines.
Now a necessary and sufficient condition that a point should
be between two others is that every line through this point
should intersect every circle through the other two twice, and
this is invariant under our transformation 1”. Let 7' carry
the square ABCD into the square A’B'C’D'. We may follow 1”
by a rigid motion of the plane and a similarity transformation
which carries A’B’C’D’ back into ABCD, when corresponding
orders of letters correspond to the same sense of progress about
the perimeters of these squares. Where the sense of progress
is opposite, we may accomplish the desired result by first
reflecting in a diagonal line of one square. In any case we get
a transformation 7' of the same type as 1", which leaves

* The groundwork of what follows is from Mobius's Collected Works,
vol. ii, p. 243, Leipzig, 1886. He defines a circular transformation as being
necessarily continuous, but we have avoided that assumption by following
Darboux, ‘Sur la géométrie projective’, Math. Annalen, vol. xvii, 1880,

and Swift, ¢ On the Conditions that a Point Transformation of the Plane be
a Projective Transformation’, Bulletin American Math. Soc., vol. x, 1904,
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ABCD in place. Now if a square be invariant, every square
contiguous, that is, sharing one of its sides, is invariant.
Moreover, if a square be invariant, the four equal contiguous
squares into which it cen be divided will be invariant. Hence
the plane is covered with an everywhere dense network of
invariant squares of sides as small as we please, and as
betweenness is invariant every point is invariant. Hence
T is the identical transformation, 7” is a conformal collineation,
and T is the product of such a collineation and inversions.
As a matter of fact, if 7' be not itself a conformal collineation,
it will carry straight lines into circles meeting in only one
point not exceptional for the transformation, i.e. into circles
through a singular point, and may be factored into the product
of a conformal collineation and an inversion with the singular
point as centre.

Theorem 8.] FEwvery circular transformation is either «
conformal collineation, an inversion, or the product of
the two.

Theorem 4.] Every civcular transformation is conformal.

We may sharpen our idea of conformal transformations by
using the angular notation described on p. 20. If

4 ABC =% A'B'C’,

X ABC=4 ABC or - ABC= X C B A

The first ejuality holds when the two dirccted angles have
the same sense of description, the second when they have
opposite senses. ‘

Suppose now that we have a conformal collineation, and
that

Y ABC =X A’B'C’"; X ABC= )Y ADC.
Hence 4 BCD are concyelic, as are A’ B'C'D'.

L ADC =4 ABC = § ABC = 5 ADC.
Here - ADC, ¥ A’D’C’ are any two equal angles; we may
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at once extend to the case of any two commensurable angles,
and so to any two angles, so that if

4 AB0 =4 ABC,
S —
then . HEKL =4 FKL.

Such a collineation is said to be directly conformal ; if the
sense of description be reversed in the case of one angle it
will be for every angle, and the collineation is said to be
inversely conformal. 'The concepts of directly and inversely
conformal may be extended from collineations to conformal
transformations of any sort; in the one case the sense of every
angle is preserved, in the second it is reversed. Since by
I. 9] an inversion is an inversely conformal transformation,
if we factor a circular transformation into a collineation and
an inversion, the circular transformation will be directly
(inversely) conformal if the collineation be inversely (directly)
conformal. i

Theorem 5.] The group of all circular transformations
depends upon siz parameters, and has a siz-parameter sub-
group of all divectly conformal circular transformations,
and « siz-parameter sub-assemblage of all inversely conformal
cireular transformations.

We may find the number of parameters by counting the
amount of freedom in conformal collineation, and in an inver-
sion, or by the number of arbitrary points presently to be
determined. The sub-group is called the group of direct
circular transformations, the sub-assemblage is composed of
the indirect ones.

Consider a directly conformal collineation. If there be no
fixed point it is a translation. If there be a fixed point,
the product of this transformation and a properly chosen
similarity transformation is a directly conformal collineation
which keeps one, and hence all, distances invariant. Let
the reader show that this must be a rotation or translation;
hence

Theorem 6.] Kvery divect circular transformation may
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be fuctored into an evew nwmber, and every indirect one into
an odd number of inversions or reflections.

We shall determine the minimum values for these numbers
with greater precision later, Our theorem is of importance
as showing the basal réle played by inversion in the theory
of circular transformations; it is, in faet, the reason why
inversion lies at the very heart of the geometry of the cirele.

Theorem 7.] Every direct or indirect circular transforma-
tion is completely determined by the fate of three points.

We leave the proof, which is very simple, to the reader.
The great use of the theorem is that it enables us to writo
the analytic expression for the most general circular trans-
formation of the cartesian plane. If & and y be the cartesian
rectangular coordinates of a real finite point, let us put

2= xtiy, Z=ax—1y.
A real circle will have an equation of the type
le5+pz+pz+n=0.

The most general real direct circular transformation may
then be written*

vl

Q1
(Y}

axz+p8 i
! = ‘y2+8, z = 5 s (O«’S—-By)#—‘o. (l)

2
~

~I
Qi
(o2}

The most general real indirect one will be

v aE+B &z+j
Y

= o == }72+(—°;’ (o —py) # 0. (2)

[\

Let us confine ourselves for the present to direct transforma-
tions. Suppose that the four points 4, B, C, D are carried

* For a truly admirable discussion of circular transformations starting
with these equations see Cole, ¢ Linear Functions of the Complex Variable’,
Annals of Mathematics, Series 1, vol. v. Also Dshlemann, loe. ecit.
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into the points A’, B, ¢/, ’. For any inversion of reflection
we have by 1. 4] and 7]

S S
¥ CBA+4 ADC=— ({_C'BA+§{ ADC). (3)

(4B)(CD) _ (4B (C'D) i
(AD)(CB) — (A’Dy(C’ B) :

The first of these expressions is called the double angle of
the four points, the second their double ratio*

Theovem 8.] In every direct circular transformation dovble
angles and double ratios are invariant,

It is worth while to verify this analytically. If four points
correspond to the parameter values z,, 2, 7,, z,, and the trans-
formed values are 2/, z,/, 2/, 2/, :

(21— 2,) (2,—2,) 2 (21/—227/)_(;7_3/‘—5{).
@2 (7—2) (5 —2/) (25 — %)

Now (2,—2,) = (4B), and by taking the absolute values

of both sides we find the equal double ratios. Again, the

argument of z,—z, is the angle which the line 4B makes with
the axis of «, so that

(5)

~
“9

IS_('BA

argument '

5 — %,

lv

The argument of the left-hand side of the equation is thus
e ———
Y. CBA+4 ADC.
Theorem 9.] The modulus of the cross ratio of four values
of the complex variable is the double ratio of the four corre-

sponding points in the Gauss plane; the argument is the
double angle of these four points.

Theorem 10.] A mecessary and sufficient condition that
SJour real points of the cartesian plane should be concyclic or
collinear is that their double angle should be congruent to
0, mod. . :

* These invariants are due to Mdbius, loc. cit.
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Theorem 11.] A mnecessary and sufficient condition that
Jour points should be orthocyclic is that their double ratio
should have the value 1.

Since harmonic points are both concyelic and orthocyeclie,
their double angle is zero and their double ratio unity.

Let the reader show that in tetracyclic coordinates

(y) (1) _ (21—2) (25~ 2,) < (Z1—%y) 3 —7)
@) (yz) — (1—2y) (B3—2) (21— 2) (3;— %)

The expression for the double ratio is thus

\/(wy) @)
(@) (2y)

To find the expression for the double angle we take the
special case where three of the points are the origin, the unit
point of the  axis, and the infinite point (there is but one in
the Gauss plane). We thus get

teyzat]
Viay) ¥ ¥ (at) Vigz)
Let us find the locus of a point in space forming an ortho-

eyclic set with three given points B, C, D. We wish to find Y,
so that

sin double L. =

(XB)(CD)
(XD)(©B) ~
One point of the locus will be A, the harmonic conjugate of

(' with regard to B and D. When 4, B, 0, D are collinear, we
see, by elementary geometry, that the locus is the sphere on AC
as diameter. Moreover, since double ratios are invariant for
inversion in three dimensions, the locus is always the sphere
through B and D orthogonal to the circle BCD. More
generally, if

(XB)(CD) _,

(XD)(CB) — ™
we sce that the locus of X is a sphere orthogonal to the
circle BCD.

Two circles shall be said to be in bi-involution if every sphcre
through one be orthogonal to every sphere through the other.
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This relation is clearly invariant for inversion in three dimen-
sions, and if one circle be inverted into a straight line, that
line will be the axis of the inverse of the other circle,

Let 4 and (' lie on a circle, B and D on another in hi-
involution therewith. Taking a centre of inversion on the
AC circle,

(AB)(CD) (A'B)(C'D)y _ -
(4D)(CB) = (A D) TB)~
since 4'B)y=(A4'D), (C'D)=(C'B).
(4B) _ (CB)
@D~ (D)

Hence

Theorem 12.] If two cireles be in bi-involution the ratio
of the distances of any point on one from two fixzed points
of the other depends merely on the position of the latter.*

We write again

(71— %) (53—24) | _ (4B) (CD)
(21—24) (23—25) | (4 D) (BO)

If our four points be on a circle, the double angle is zcro
or m. Assuming that A, C' separate B, D, we see from the
special case of points on the « axis that

(=) (e4—2) _ _ (AB)(OD) _
(21—2,) (s—2,)  (CB)(4D)

(2,—23) (22“24) (40)(BD) _ 1—2A
(2,— ~3) (—2)  (BO)(AD) ™~ .

(AC) (BD) = (AB) (CD) + (AD) (BC).

=A<O.

This last equation proves Ptolemy’s theorem by a method
that surely would have surprised Ptolemy.

We easily see from 11] that the locus of points forming
definitely paired orthocyelic sets with three given points and
lying in their plane is a circle, hence

Theorem 13.] A mecessary and sufficient condition that
@ one to one transformation of the finite domain of the real

* Mobius, lce. cit., p. 277, and Chasles, loc. cit., p. 559.
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plane should be a circular transformation, is that double
angles or dowble ratios should be invariant.

Among circular transformations inversion enjoys the advan-
tage of being involutory. It is, however, indirect. There is
a direct involutory transformation which we reach as follows.
Let us start with two conjugate coaxal systems. Each point
P, other than the limiting points of one coaxal system, will
determine a circle of each system, and these two shall inter-
seet again in P’.  The transformation from P to I’ is clearly
involutory, and shall be called a Mdbius involution. If we
invert one coaxal system into a pencil of radiating lines,
we see that corresponding points are harmonically separated
by the limiting points of one coaxal system. The inverted
transformation is clearly a circular transformation ; hence we
have in general a circular transformation. In the inverted case
it is the product of the reflections in any two mutually per-
pendicular lines of the radiating set; hence

Theorem 14.] Every Mobius involution is the product of
inversions tn any two mutually orthogonal circles of « deter-
minate coaxal system through two points.

It will be convenient to extend the term ¢ Mobius invola-
tion’ to include the limiting case of a reflection in a point,
which is the product of reflection in two mutually perpendicular
lines, and from now on we understand the term to be so
extended.

Theorem 15.] A Mobius involution may be found to inter-
change awy two pairs of points. :

If the two pairs be coneyelie, the two circles orthogonal to
the given circle through the two pairs of points will determine
conjugate coaxal systems, or concentric circles and radiating
lines through their centres, and so the involution required.

Suppose that they are not coneyclic, and that P and ) are
to be interchanged with 7/ and @ respectively. We first
invert in such a cirele of antisimilitude of the eircles PF'Q,
PP'Q, that @ passes to @, on the circle PP'Q’, where @, is not
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separated from Q" by P and I, then interchange.Q, and @’
by inverting in a circle of the coaxal system with limiting
points P and .

Theorem 16.] Ewvery involutory direct circular trans-
Jormation is a Mobius involution.

Such a transformation is surely determined when we know
two pairs that are interchanged, but we may find a Mobius
involution to interchange any two pairs.

Theorem 17.] If a divect circular transformation inter-
change a single pair of points it is a Mobius involution.

Suppose that such a transformation carry ABCC” into
BAC’C”. 1If we follow with the Mébius involution
BAC'C" ~ABC"C,

the product will have three fixed points and so be the
identical transformation.

Theorem 18.] Every direct civcular transformation is the
product of two Mobius involutions*

Suppose that we call our transformation 7' and determine
it by ABC~ A’B'C".

Consider the Mobius involution I which interchanges
A and B, A’ and B. Then under 7T

BAK~ADBC.

Hence 71 is an involution J, or 1'= JI.

Theorem 19.] If an indirect circular transformation be
involutory, it is either a reflection, an inversion, or the product
of an inversion and a reflection in the centre.

If it be a collineation, it could not be a reflection in a point,
since this is direct. There can be no self-corresponding

* It is instructive to compare these last theorems and 7] with theorems
4] to 6] of ch.iv. Let the reader give the analytic reason for the similarity.
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points, hence lines connecting corresponding points are all
parallel, and we have a reflection in a line.

Suppose, next, that it is not a collineation. Three non-
concurrent and not parallel lines will go into three concurrent
circles, since the sum of the angles of the arcual triangle must
be m. Any other line in the plane will go into a circle or line
meeting each of the first three in only one point not singular
for the transformation. Hence lines go into circles through
a point 0. If P and P’ be two corresponding points not
collinear with O, the circle OPP’ and the line PP’ are inter-
changed. The angle from (PI”) to arc PP’ at P would be
equal to the negative of the angle at P’ from the arc P'P to
(P’P). But evidently these angles are equal both in magni-
tude and sign. Hence corresponding points are collinear with
0. If P and P’ be not separated by O every circle through
P and P’ is transformed into itself, and clearly we have an
inversion. If P and P’ be separated by O it is the product of
an inversion and a reflection in O.

§ 2. Analytic Treatment.

The majority of facts so far noted about circular transfor-
mations have been reached by the methods of plane geometry.
It is now time to make a more detailed study of the analytic
aspect of these transformations. We shall take as our domain
the real sphere, or a real tetracyclic domain such as the Gauss
plane, the real finite cartesian plane made a perfect continuum
by the adjunction of a single point at infinity. This may
also be defined as that region of the general tetracyclic plane
where z, is proportional to a pure imaginary number; each
other z is proportional to a real number. Since the groups of
circular transformations of the cartesian and tetracyclic planes
are simply isomorphic, we have made no essential alteration
by such a choice of domain. We express our domain para-
metrically in terms of the isotropic parameters. Recalling
the equations of IV,

By =10y, & =, & =&, &=a,. (6)
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We rewrite IV (18) in non-homogeneous form :

&, =2Z+1,

@, = z2z2—1, )
T, = 2472,

&y = —1(z—2).

We get the whole tetracyclic plane by removing the
restriction that z and Z should have conjugate imaginary
values. Real direct circular transformations will be given
by (1) and indirect omes by (2). A direct transformation
has the form of a complex one-dimensional projectivity, so
that our theorems 16] to 19] might have been deduced from
familiar theorems of projective geometry.*

The inverse of our transformation (1) will be found by
interchanging o and — & ; a necessary and sufficient condition
for a Mobius involution is thus

o490 = 0. (8)

On the other hand, the inverse of (2) is

= yz,‘jaﬁ . (9)
The transformation (2) will thus be involutory if
b=-& A=f=b y=y=c (10)
All points of the circle
€25 +02+0z2-b=0 (11)

are invariant. If this be real, we have an inversion; if self-
conjugate, imaginary, the product of an inversion and a Mabius
involution.

If we follow our transformation (1) by

,/= alzl_*_BI,
y/z/+6/

* This point of view is emphasized by Wiener, loc. cit. Much of the
following discussion is taken from an article of unusual excellence by
Von Weber, ‘Zur Theorie der Kreisverwandtschaften in der Ebene?,
Miinchener Berichte, xxxi, 1901.
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the product will be

Z” s (0(/0( + B’Y)ﬁfof’/ﬁ'ﬁ/@ (1‘))
Ya+dy)z+(/B+00) X

If (2) be followed by
e )
7/5/_!_ FY 2
the product is
g XX+ BY) 24 (B4 BY)
(Ya+0"y)z+ (Y B+0'9)

(13)

Let us see what fixed or self-corresponding points there may
be in a circular transformation. We begin with the indirect
case. Here we must have

y2Z+0z2—az— B =0,
y2Z+8z—az—fB3 = 0.

Here, if the equations be distinct, we have two real and
distinet, coincident, or conjugate imaginary fixed points. If
they be identical, i.e. if

}’:_'}’-» B=p 8=-4
the transformation is involutory, and we are back on a real
inversion, or an inversion in a self-conjugate imaginary circle,
which amounts to the product of an inversion and a Mobius
involution. We pass to the more interesting direct case.
Here the fixed points must be the roots of

y2?+(d—a)z—B = 0. (14)
The discriminant of this equation is
(O +a)2—4 (xd —By).
When this vanishes, the transformation is said to be para-
bolic. 1If the single fixed point of the parabolic transformation

correspond to the value 2z = o, the transformation may be
written in the canonical form

2= z+. (15)
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Theorem 20.] Corresponding points in a parabolic trans-
Jormation lie on tangent circles through a fixed point.

A transformation of a non-parabolic type will have distinet
fixed points. It may be written in the highly suggestive
form

T (16)

7
3= 9% —2
"—1=7'(529"‘ N
< _’22 =%y

The expression 7¢'’ is called the invariant of the transfor-
mation. Let the reader show that in the cartesian plane » will
give the double angle of two corresponding points and the
fixed points, while 6 gives the corresponding double ratio.
The point of the word ‘invariant’ is that if we carry our
transformation into an equivalent one by means of a cireular
transformation, the invariant does not change in value. Taking
as the fixed points those which correspond to the parameter
values o« and 0, we get the canonical form for our non-
parabolic transformation

2= re’z. (17)
We see from this that there are three standard types of
these transformations :
Hyperbolic =0 (mod. m).
Corresponding points are concyclic with the fixed points.
Elliptic A=Ak
Corresponding points are orthocyclic with the fixed points.

Notice that a Mobius involution may be classified under
either of these types.

Loxodromic r#1, 060 (mod. 7).

This we might naturally call the general case. Corre-
sponding points will lie on the same double spiral which
circulates around the two fixed points and meets at a fixed
angle all circles through them.

Theorem 21.] The only periodic circular transformations
are of elliptic type.
1702 X
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Suppose that we have two non-parabolic direct transforma-
tions with one common fixed point. We may take this to
correspond to z = oo.

_Z = ¢’ (7— 1)

o —z, =1 (¢ =2,).

2" =1d " [ré’ (z—2) + (2, — 7,)] + 2,

(2" —2,) = 117 (2—2,).

Theorem 22.] If two non-parabolic direct transformations
have one common fixed point, the invariant of their product
18 the product of their invariants.

Consider a hyperbolic transformation with fixed points
H and K which carries P into P’. Take any circle which
has H and K as mutually inverse points, and invert. Let
P’ be carried into P;. We can find a second circle of
inversion interchanging H and K which carries P, into I
The produet of these two inversions will be a direct trans-
formation with H and K fixed and carrying P into P, i.e.
our original hyperbolic transformation. Let the reader show
similarly that an elliptic transformation may be factored
into the product of two inversions in circles through the fixed
points, and a parabolic transformation may be factored into
the product of inversions in two tangent circles. Conversely, if
we have two inversions, their product will transform into them-
selves all circles orthogonal to the two circles of inversion.

Theorem 23.] The hyperbolic, elliptic, and parabolic direct
transformations, and these alone, are the product of two
tnversions.

Theorem 24.] A necessary and sufficient condition that
the product of three inwersions should be an inversion s
that the three circles of inversion should be coaxal, or else the
circles of two successive inversions should be orthogonal to
the third circle of inversion.

Theorem 25.] The product of two inversions may be
replaced by that of two other inversions whereof one has
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a circle taken at random in the coaxal system determined by
the two given circles of inversion; the second inversion is
wniquely determined by the first.

There are certain problems in construction associated with
divect cirenlar transformations which should now claim our
attention. The postulates assumed are those of Ch. IV.

Problem 1.] Given two pairs of points corresponding in
a Mobius involution, to find the mate of any point.

When the two pairs are concyclic, this has already been
done in Ch. IV, problem 8. If not, suppose that the involu-
tion is given by the pairs PP’ and QQ’, and we wish to find
R’ the mate of R.*

Let the harmonic conjugate of R with regard to PP’ be R,,
that of R, withregard to Q@ shall be R,,; in like manner the
harmonic conjugate of R with regard to QQ’ shall be R,, while
that of R, with regard to PP’ shall be R,. Lastly, the
harmonic conjugate of R with regard to R, R, shall be I,
while R’ is the required point. Let us first take the product
of the two Mébius involutions with fixed points PP and QQ'.
We have a direct transformation whose fixed points are those
of the given involution. If, further, we operate with a M&bius
involution whose fixed points are RR/, these last-found fixed
points are interchanged. Hence the product of these three
involutions is an involution. The product of the involutions
having the successive pairs of double points PP, QQ’, RR’,
PP, Q@ is the involution with the double points RR’, but
this involution will carry R,, into R,,. Hence R and R’ arc
harmonically separated by R,, and R,,, and the problem con-
sists in finding a succession of harmonic conjugates, and was
solved in Ch. 1V.

Problem 2.] Given a dirvect transformation by means of
three sets of corresponding points, to find the mate of any
point.

We have but to factor our transformation into two involu-
tions by means of 18], then apply the solution of problem 1.

* Cf. Wiener, loc. cit., pp. 670, 671.
X 2
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Problem 8.] Given two pairs of points of a Mébius involu-
tion, to find the double points.

This is a problem of the second degree. We may, by the
solution of problem 1], find as many pairs of corresponding
points as we please, and so construct as many pairs of
corresponding circles as we like, through two chosen corre-
sponding points. These circles will cut on any circle through
one of the latter points, two ranges of points in one to one
reciprocal algebraic correspondence, i.e. an involution, and the
double points of this involution must be real, since they lie
on real self-corresponding circles of the Mobius involution.
We may thus, by Ch. IV, problem 7, find the double points
of the involution on the circle, and so two self-corresponding
circles of the transformation. On one of these circles find
two pairs of corresponding points, and through each pair pass
a circle orthogonal to the given circle. Then either these two
intersect in the two self-corresponding points sought, or else
those points are the limiting points of the coaxal system
determined by these cireles.

Problem 4.] Given two Mdbius involutions, to find their
COMMON P,

We find the fixed points of each, then the fixed points of
that M&bius involution having them as two pairs.

Problem 5.] Given a direct circular transformation, to
Jfind the fixed points.

We factor the transformation into two involutions, then
apply the solution of the last problem.

Let us now turn to the classification of indirect transforma-
tions. We see that the square of an indirect transformation
is a direct one. The fixed points of the direct transformation
were either interchanged or fixed in the indirect one. We
thus get the following types of indirect transformation, the
points mentioned being, when distinct, those which correspond
to the parameter values oo, 0.

Hyperbolic 7=1rd%% Z=res (18)



VILL CIRCLE TRANSFORMATIONS 325

Two real points are fixed, two conjugate imaginary ones
interchanged. The circles through the fixed points are inter-
changed, two being invariant ; the circles orthogonal to these
are also interchanged, but no real ones stay in place.

Elliptic 7z =1rd? 27 =re (19)

Two real points are interchanged, two conjugate imaginary
ones invariant. Cirecles through the interchanging points are
interchanged, none invariant. Circles orthogonal to these are
interchanged, one real and one sclf-conjugate imaginary one
invariant.

e " I i = =7 =
Parabolic d=z+0, Z =2+ (20)

No fixed proper circle. Members interchanged in each of
two orthogonal systems of tangent circles.

Inversion 77 = 27 = kA - (21)

Product of inversion and Miobius involution
7z =27= % (22)
Let the reader, with the aid of 24], complete 6] as follows :

Theorem 26.] Every indirect circular transformation may
be factored into three inversions; every direct one may be
Suactored into four inversions.

The last statement may also be proved immediately
from 18].

Let us turn aside for a moment to consider the effect of
a real circular transformation upon the imaginary points of
our domain. Suppose that we take an imaginary point of our
tetracyclic plane, which we shall here suppose a real sphere.
It will have parameter values (z, Z’). On each of the isotropics
through this point will lie one real point, namely, the points
(23), (772’). Conversely, to each pair of real points (2z), (27’
will correspond two conjugate imaginary points (2%), ().
The geometrical interpretation is as follows in the case of
a sphere. If two real points be given, we may draw tangent
planes to the sphere thereat, which planes meet in a line
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without the sphere. Conversely, if such a line be given,
through it we may draw real tangent planes.

Suppose, next, that we have a real indirect transformation;
what will be the locus of the pairs of conjugate imaginary
points associated in this with corresponding pairs of real
points under the transformation %

o 0az+B ’
z = H V1
vz +98

Rev]

z+
Z+

R R
o9

y2Z 437 —oz—B8=0, yz7-3—az-8=0.

Theorem 27.] If a real indirect circular transformation
be given for a real sphere, the polars with regard to that
sphere of the lines connecting pairs of corresponding points
will intersect two conjugate imaginary circles of the sphere.
These circles will fall together when, and only when, the
transformation is an tnversion in a real or self-conjugate
imaginary circle

A curious figure arises when we consider the corresponding
problem for a direet transformation :

g XtB az+p
= z .
y2+90

y2d +87 —az—B =0, 377 +37 -&z—pB=0.

We have two assemblages of points depending on two real
parameters, but not on one complex parameter.

Theorem 28.] If a real direct circular transformation. be
given for a real sphere, the polars with regard to that sphere of
the lines connecting corresponding points will meet the sphere
in pairs of points depending on two veal parameters. These
systems are characterized by the fact that the corresponding
cross ratios of the four isotropics of the two sets through four
points are conjugate imaginary.

It is to be noted that the real domain is a special case of
one of these systems.

* Von Weber, loc. cit., pp. 383 ff. See also Study, Ausgewiihite Gegenstinde
der Geometrie, Purt 1, Leipzig, 1911, p. 32.
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We next turn our attention to the question of commutative
transformations. We begin by recalling the familiar fact that
in any group of transformations those which are commmutative
with a chosen member will form a sub-group. In fact, if

TA=AT, TB= BT,
then FATV= A, FBT = B,
and TABT-' = AB, TAB= ABT.

It is also to be noted that if two transformations be commu-
tative, each must leave invariant or permute all points which
are invariant in the other.

A.] Two direct transformations. If neither be involutory
they must have the same fixed points. Conversely, we see at
once from formulae (15) and (17) that two direct transforma-
tions with the same fixed points are commutative. If one
be a Mobius involution and the other not, the fixed points
of the Mcbius involution must be fixed for the other. Lastly,
we see that harmonic pairs will determine two commuta-
tive Mobius involutions, each interchanging the other’s fixed
points.

Theorem 29.] A mecessary and sufficient condition that
two divect circular transformations should be commutative
‘18 that they should have the same distinct or coincident fixed
points, or that they should be two Mobius involutions whose
Jized points separate one another harmonically.

B.] A direct and an indirect transformation. If the indirect
one be not involutory, the fixed points of the direct one must
be fixed or interchanged thereby. If the indirect one be
hyperbolie, the two fixed points might be interchanged if the
direct one were involutory. Otherwise the fixed points and
real fixed circles of the indirect transformation must be fixed
for the direct one also, i.e. the direct one is hyperbolic also.
If the indirect one were elliptic, the direct one might be
involutory, and either keep invariant or interchange the
interchanged points of the indirect one, or else the direct
one might be elliptic, keeping invariant the interchanging
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points of the indirect one. If one were parabolic, the other
would have to be parabolic, if not involutory. On the
other hand, it is easy to see from equations (17) to (20) that
an inversion is commutative with any direct transformation
whose fixed points are either invariant or interchanged, and
these same equations show us the sufficiency of our necessary
conditions.

Theorem 30.] If a direct and an indirect circular trans-
Sformation be commutative, neither being involutory, then both
are hyperbolic or parabolic with the same fixed points, or the
interchanging points of an elliptic indirect transformation
are fixed in the elliptic direct one. If the direct transforma-
tion be involutory, its fixed points are either fixed or inter-
changed in the indirect one. These conditions are both
necessary and sufficient.

C.] Two indirect transformations. If neither be involutory,
they will be hyperbolic, elliptic, or parabolic together, with
the same fixed or interchanging points. If one be involutory,
it must either keep fixed or interchange two points which
are fixed or interchanged in the other, or transfer them to
another pair of fixed or interchanging points. If both be
inversions, they must either have the same circle of inversion
(in which case they are identical) or else their circles of
inversion intersect orthogonally. If one be an inversion and
the other the product of an inversion and a Mobius involution,
the circle of inversion must be invariant in the other trans-
formation. Two transformations of this latter type cannot
be commutative, for if two self-conjugate imaginary circles
could intersect orthogonally, two planes conjugate with regard
to a real sphere might both be outside of it, an impossibility.

Theorem 31.] If two indirect circular transformations be
commutative and neither be an inversion, they must be hyper-
bolic, elliptic, or parabolic together with the same fixed or
interchanging points. If one be an inversion, its fixed circle
s fixed in the other. These conditions are mecessary and
sufficient.
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If we have two indirect transformations

T ,,/_0(5'*'3 :,_O-(Z-}-B
g = — 9 Z = = =0
yZ+0 ya+0

g@FA &z + 3

N = =3 i e ol i
SN = yi+o’ y2+8

they are associated respectively with the circles
Yzd +8s —az—f8 =0,
yzd' +87 —o'z—3'= 0.

The condition that these should be orthogonal is the polar
of the condition that one should be null, i.e. the polar of
the condition that the corresponding indirect transformation
should be improper. We thus get

s +ad —By—py = 0.
&e+ &' —pBy—By = o.
These equations tell us, however, that
(ES T =(F 8= ST 2 = (8112 =1,

Theorem 32.] A mecessary and sufficient condition that
the product of an indirect transformation of a spheve and the
tnwerse of a second indirect one should be an involution is that
the conjugate imaginary circles determined by the polars with
regard to the sphere of lines connecting corresponding points
for each transformation should intersect orthogonally in
Pars. 1 ’

We may treat direct transformations in the same way,
and arrive at a condition which we shall call orthogonulity
for two parameter systems of complex points. We may
likewise solve problems in construction associated with these
systems. To a circle known by inversion will correspond
a two-parameter system known by the corresponding direct
circular transformation. If two circles be known, and they
have intersections in the domain in question, their inter-
sections are supposed known. So here the problem of finding
the intersections of two of our two-parameter systems is the
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problem of finding two points which correspond in two direct
cireular transformations, i.e. the fixed points of the product
of one and the inverse of the other. This is problem 5]
above,

§ 8. Continuous Groups of Transformations.

Enough attention has now been given to individual circular
transformations; it is time to turn our attention to groups
of such. The study of finite groups is nothing but the study
of finite groups of fractional linear substitutions of the linear
complex variable. It is well known that such groups are
simply isomorphic with the groups of the regular solids.
We may consider such groups as sufficiently familiar; in any
case they are of more importance to the algebraist than to
the geometer.* In the same way the study of infinite dis-
continuous groups would lead us into a vast field but little
germane to our present purpose.f Let us rather turn to
the geometrically more interesting study of continuous and
mixed groups. The problem here is nothing but the problem
of studying the groups of collineations of a three-dimensional
space which leave a real quadric with imaginary generators
in place.; Under a continuous group (corresponding to
direct transformations) the generators of each system are
permuted among themselves; in a mixed group there will be
transformations where the two systems of generators are
interchanged. What can we say about three-parameter
groups? If such a group have an invariant two-parameter
sub-group it is integrable, since every two-parameter group
is integrable.§ On the other hand, if a three-parameter
group of direct circular transformations had an invariant
one-parameter sub-group, the two fixed points of the sub-

* The classic discussion is, of course, in Klein’s Ikosaeder, Leipzig, 1884.

+ Especially Klein-Fricke, Theorie der aulomorphen Functionen, vol. i, Leipzig,
1897.

1 The following discussion is an amplification of Amaldi, ‘I gruppi reali
di trasformazioni dello Spazio’, Memorie della R. Accademiu delle Scienze di
Torinn, Series 2, vol. lv, 1905.

§ Cf. Lie-Scheffers, Vorlesungen iiber continuirliche Gruppen, Leipzig, 1893,
p. 563.
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group would be invariant throughout the three-parameter
group ; this is quite impossible when the points are distinct.
If the one-parameter group consisted in parabolic transforma-
tions, the single fixed point would be invariant throughout
the whole non-integrable three-parameter group. We shall
presently see that this is impossible.

Let us begin with the study of simple three-parameter
groups. A simple three-parameter collineation group in three
dimensions must leave invariant either a cubic space curve,
a conic and a point not in the plane thereof, one system of
generators of a quadrie, or a line and all points of a second
line skew thereto.* In the present case, where we have real
transformations leaving a real quadric with imaginary gene-
rators in place, all but the second case will be impossible.
If there be a real fixed point in three dimensions, there will
be a real or self-conjugate imaginary fixed circle in the
tetracyclic plane. The group with a real fixed circle is
simply isomorphiec with the real binary projective group. It
has no fixed real point, and so is simple. There will be
two-parameter sub-groups with any chosen point of the fixed
circle fixed, one-parameter sub-groups with two fixed points
in the circle. These will be hyperbolic. There will be
one-parameter elliptic sub-groups which keep invariant a
pair of points mutually inverse in the circle ; also a parabolic
one-parameter sub-group. When the three-parameter group
leaves a self-conjugate imaginary circle in place, the only real
sub-groups are one-parameter elliptic ones. There are no
other two-parameter sub-groups in either case, for if in such
a group both fixed points might be chosen at random on the
circle, the transformation would be determined by its fixed
points, which is absurd.

If there were any four- or five-parameter groups of circular
transformations, they would have to contain three-parameter
groups. A five-parameter group would have to contain a three-
parameter sub-group keeping a chosen point invariant, while

* Cf. Fano, ¢ Sulle varieta algebriche con un gruppo continuo non integra-
bile di trasformazioni in se’, Memorie della R. Accademia delle Scienze di Torino,
Series 2, vol, xlvi, 1896, p. 209,
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every four-parameter group has a three-parameter sub-group.*
If our three-parameter group were contained in a four-para-
meter group it would have to be invariant, or else have an
invariant sub-group of its own.t The latter, however, is ruled
out, as we are assuming for the present that the three-
parameter group is simple. Bat if our three-parameter group
were invariant, i's fixed circle would be invariant in the four-
parameter group, which again cannot be, as the total group
with a cirele fixed has but three parameters. If our simple
group were in a five-parameter group, the latter, not having
any fixed circle or point, would have to have a fixed circle
congruence composed of the transforms of the fixed eircle of
the three-parameter group. Keeping any one circle of the
congruence fixed, we may carry any second circle into any
third circle thereof, as otherwise, each circle having but one
degree of freedom, we should have four-parameter groups with
a fixed circle. But escaping this absurdity, we fall into the
worse one of having a congruence of circles, each two of which
make the same angle. Our simple three-parameter group lies
thus neither in a four- nor a five-parameter one.

Let us next look at integrable groups. Every such group
has a one-parameter invariant sub-group, and the fixed points
of the one-parameter group must be invariant throughout. But
if the integrable group he of more than two parameters, the
invariant one-parameter group must be parabolic. A canonical
form for such a group will be

7 =z+4b.

What two-parameter groups might include our one-para-
meter one? The second fixed point for a transformation of
such a group could not trace the whole plane. If a # 1 the
transformation is hyperbolic, and the only curves carried into
themselves are circles. Hence the other fixed point must lie
on a circle through the point 2 = w. Hence the two-para-
meter group must either be of the type

2 =az+0,

* Lie-Scheffers, loc. cit., p. 577.
+ Ibid., p. 544.
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or else of the paraholic type
Z=z+ 135

Now take an integrable three-parameter group. This has
a fixed point which we may take as z = 0, and we have
a three-parameter sub-group of

7 =oz4+ 8.

It will have the two-parameter parabolic sub-group in-
variant. The second fixed point for a transformation of the
group must be free to move over the whole plane, for if it
were restricted to a certain curve, that curve would be carried
into itself by the transformations of the group, while the
parabolic sub-group is transitive for the whole plane except
its own fixed point. Now let both points be fixed. We have
a one-parameter group of the form

'=re'’z, r=1r(9),

r(@)r(0) =r(0+6),

()

r==e".

Here & would seem to depend on the position of the second
fixed point. Such is not, however, the case. We see, in fact,

that if we take two transformations with the invariants ¢*%¢?
and ¢%¢'?, since, by 22], the invariant of the product is the

product of the invariants
ko+160'=1(0+0),

Il
We thus get three-parameter groups of the form
Z,= e(k+t)82+ﬂ’

where 6 and 3 are independent variables. This equation may
be written

T o (;“””[5 : :I’ (23)

= R
e(L-Hw_l e(L+v)9_1

and it is evident, conversely from 22], that the totality of these
transformations will be a group. We shall call such a group
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a Newson group.* We characterize it geometrically by
examining the significance of the constant k. Taking for
simplicity a transformation of the group with fixed points
o and 0, we write our transformation in polar form,

"/ei¢' 8 e(k+i)9pei¢.

What sort of a double spiral will be carried into itsclf by
this transformation? If the equation of such be

Ad
p=e-,

we easily find A=Fk

This shows that & is the tangent of the angle which the
spiral makes with a cirele through the fixed points: the pitch
of the double spiral, let us say. The Newson group is thus
characterized by the fact that one point is fixed, and all double
spirals carried into themselves by transformations of the group
have a constant pitch.

We have thus covered three-parameter groups. There are
no five-parameter groups. A five-parameter group would have
a three-parameter sub-group with any chosen point fixed, and
such a group would be a Newson group. The pitch here
must be independent of the position of the fixed point, for
in any Newson group one fixed point can be chosen at
random. But this leads us to another absurdity, for it is
easy to show that if two loxodromic transformations have
different fixed points but the same pitch, the pitech of their
product is different.

If there be any four-parameter groups, and we know that
there are, they must have Newson sub-groups, as we saw two
pages back. If the Newson group be invariant, its fixed
point will be invariant throughout the four-parameter group,
and, conversely, the four-parameter group will be entirely
characterized by the invariance of this point. If the Newson
group were not invariant the position of one fixed point for
each transformation would have to be limited to a specific

* Newson, ‘Groups of Circular Transformations’, Bulletin of the American
Math. Soc., vol. iv, 1897.
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curve, for if the position of both fixed points were free the
pitch would have to be constant, there being only four
parameters, and we should run into our preceding contradiction.
But if one fixed point lay on a certain curve, this curve must
be invariant throughout the group, whereas the transformations
of the Newson group are transitive. We may summarize
as follows :

Theorem 33.] Thers are no real five-purameter continuous
groups of circular transformations.

Theorem 34.] The only real four-parameter groups are
those with one fixed point.

Theorem 35.] The only real mon-integrable three-para-
meter groups are those with a fixed real or self-conjugate
wmaginary circle.

Theorem 36.] The only real integrable three-parameter
groups are the Newson groups.

Theorem 87.] The only real two-parameter groups are
those with two fixed points, the parabolic ones with one fixed
point, and those with a real fixed circle and real fixed point
thereon.

Theorem 88.] The only real one-parameter groups are the
lozodromic, hyperbolic, elliptic, and parabolic ones.

It is doubtful whether there be room for much further
investigation of the subject of real circular transformations.
On the other hand, the sort of circle transformation which is
obtained from a Cremona transformation of the projective
plane, and was mentioned at the beginning of the chapter, is
still utterly unexplored, and may well contain new theorems
of interest and importance.



CHAPTER IX

SPHERE TRANSFORMATIONS
§ 1. General Theory.

THE subject of sphere transformations presents, naturally
enough, many analogies to that of circle transformations. It
is not so rich, however, in interesting and easily obtainable
results, owing to the impossibility of representing either
cartesian or pentaspherical space parametrically by means
of isotropics. Thus, a large part of the theory of circular
transformations which is reached through their connexion
with the theory of the linear function of the complex variable
is lost.

We shall mean by a sphere transformation any analytic
transformation that carries spheres into spheres. In sphere
coordinates this will be

= f; (@@ w25y,
where () represents a sphere. If, further, we require that
null spheres shall be carried into null spheres,
(@' 2') = k(wx),

where & depends merely on the coecfficients of the transforma-
tion. We find, exactly as in the last chapter,

Theorem 1.] The group of all one to one algebraic trans-
Jormations of the spheres of pentaspherical space which carry
null spheres into null spheres is simply isomorphic with that
of all Cremona transformations of projective three-dimensional
space.

We shall mean by a spherical transformation any analytic
point transformation of cartesian or pentaspherical space which
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carries the points of a sphere or plane into points on « sphere
or plane.

We have

Theorem 2.] The most general spherical transformation of
pentaspherical space is given by a quinary orthogonal substi-
tution.

In the last chapter we dealt with a real tetracyclic plane.
In the present one we shall deal with finite real cartesian
space, as well as a second continuum which may be called
a real pentaspherical space. We may define this as that
region of the general pentaspherical space where z, is propor-
tional to a pure imaginary number, and the other penta-
spherical coordinates to real numbers. An example of such
a domain is afforded by a real hypersphere in four-dimensional
projective space with Euclidean measurement. Or we may
start with the real finite domain of cartesian space and extend
it to a real continuum by adjoining a single real point at
infinity. We shall also fix our attention on real spherical
transformations of this space.

Let us begin with a purely geometrical analysis of the
cartesian case as hefore. If no finite point be singular for
the transformation, the latter is a conformal collineation, and
may be factored into translations, rotations, reflections in
planes, and similarity transformations, the latter being easily
factorable into two inversions, while the three preceding are
factorable into reflections in planes. If one finite point be
singular, the spheres through it being carried into planes,
we may factor into an inversion with this point as centre,
and a transformation of the preceding type.

Theorem 8. Every spherical transformation of real carte-
sian space is conformal, and may be factored into a product
of inversions and reflections in planes.

We see, incidentally, that a similar theorem holds in penta-
spherical space, the word ‘inversions’ covering both types.
We shall return to this presently ; for the moment we prefer

1702 : 4
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to prove the remarkable converse theorem which is due to
Liouville.*

Theorem 4.] Every conformal analytic transformation of
cartesian space is a spherical transformation.

The easiest proof is, perhaps, the following. Every con-
formal transformation will carry a triply orthogonal system
into another such system. Hence, by the Darboux-Dupin
theorem, it will carry a line of curvature into a line of
curvature. It will therefore carry a surface, all of whose
curves are lines of eurvature, into another such surface, i e.
it will carry a sphere into a sphere or plane.

Theorem 5.] A spherical transformation is necessarily a
circular transformation, and every analytical point trans-
Sformation that carries circles into circles will be a spherical
transformation.

The first part of this theorem is immediate ; the second comes
from the fact that the necessary and sufficient condition that
two cireles should be cospherical is that there should be «0?®
cireles meeting both twice.

Our formula for double ratio in Ch. I (4) yields an
invariant for inversion and reflection, and so for all spherical
transformations. Conversely, if we have a quadrilateral
where the sum of the products of the opposite sides is equal
to the product of the diagonals, we may take a centre of
inversion at one vertex and transform the other three vertices

into collinear points. The original four were thus coneyelie.
1If, then,
(AB) (CD)+ (AD) (BC) = (AC) (BD),
we have also
(B4)(CD)  (AD)(BC) _
(CA)(BD) T (BD)(4C)~

Theorem 6.] A mnecessary and sufficient condition that real
one to one transformation of the real finite cartesian space
should be @ spherical transformation is that doulle ratios
should be invariant.

1.

* See his appendix to Monge's Applications de Uanalyse & la géomélrie, Paris,
1850, pp. 609 ff.
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Let the reader show that in special pentaspherical coordi-
nates the double ratio of four points may be expressed in the

form
(AB)(CD) _ \/w/) (st)
(AD)(BC) ~ N (al)(ey)
Since the expressions involved are covariants, we may
remove the restriction that the pentaspherical coordinates
should be special, and let them be any pentaspherical set.
Another invariant for spherical transformations is

(1)

0 (xy) (x2) (xt)
(yx) 0 (y2) (yt)
(z2) (zy) 0 (at)
(t) (ty) (tz) ©
Vwy) V() at) VEy)

(2)

In the case of coplanar points this reduces to the sine of the
double angle.

Let us next take up the question of direct and indirect
spherical transformations. We start in finite real cartesian
space, and suppose that a transformation 7' carries a point H
into a point H’. Let S be the translation that carries H” back
into H, while R is the inversion with H as centre. The
transformation RST'R, the operator being written to the left
of the operand, will be a conformal collineation. Considering
the effect of this {ransformation on the whole of projective
cartesian space, we see that in the plane at infinity there will
be two conjugate imaginary fixed points on the circle at
infinity, and a fixed real point besides. The lines through
this point are permuted by a collineation, two conjugate
imaginary ones tangent to the circle at infinity are fixed,
hence one finite real one is fixed. Our conformal collineation
may thus be reduced to one of the following forms:

= 7 (cos &’ —sin 07'), x = r(cos 02’ +sin 6 ),
y = r(sinfa’ +cos0y’), (3) y=r(sinfz’—cos ey’), (3)
z =12’ +d. z =12 +d.
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Equations (3’) may be much simplified. We see that two
mutually perpendicular planes are invariant. These may be
taken as fundamental in the coordinate system, so that we
may write transformations of this type in the simple form

ra’,

= —ry, (4)

xR 8

rz+d.

Q
il

Such a transformation is the product of one of type (3) and
a reflection, so that we may confine ourselves mainly to
type (3). Here, if » > 0, we have the product of a translation
parallel to the fixed axis, a rotation about that axis and a simi-
larity transformation, that is, the produet of four reflections and
two inversions. When r < 0, if we change 6 into =+ 6, we fall
back on the other form. When the number of reflections and
inversions is even, we may pass by a continuous change of
parameters from the given transformation to the identical
one. When the number is odd, we may pass continuously to
a gingle inversion, but not to the identity. We see, in fact.
that if we take a reflection in a plane, the sense of each
trihedral angle is reversed, and we cannot pass continuously
from a transformation which alters the senses of trihedral
angles to one that does not. As for the number of parameters
involved, any not-null sphere may be carried into any other
such, which uses up four degrees of freedom ; when one sphere
is fixed we have as many free parameters left as there are in
a circular transformation.

Theorem 7.1 The group of all spherical transformations of
pentaspherical space depends wpon ten parameters. It has a
ten-parameter sub-group of direct transformations, and a ten-
parameter sub-assemblage of indirect ones. A direct trans-
Jformation may be factored into an even nwmber of inversions
and reflections, and may be continuously changed into the
identical transformation ; an indirect transformation may be
Sactored into an odd number of inversions and reflections, and
may be continvously changed into a single inversion, but not
into the identical transformation.
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Let us look at the fixed points of a direct transformation.
We shall confine ourselves to real transformations, and begin
in cartesian space. First take a conformal collineation. If
we consider the whole of cartesian space there will be one
fixed real point in the plane at infinity, and one fixed real line
through it; or all infinite points are fixed, Taking the cases
in order, if all the points of the fixed line are themselves fixed,
wehavein (3) d=0,r=1. Wehave a rotation; corresponding
points lie on circles with the line of fixed points as axis, Le.
on circles in bi-involution therewith.

Suppose, next, that but one finite point of the fixed lines is
invariant. Here, if we take this point for the origin, d = 0.
If 0+#0, » % 1, corresponding points lic on non-circular iso-
gonal trajectories of the generators of cones of revolution
whose common vertex is the origin and whose common origin
is the z axis. If 6 = 0, corresponding points are collinear with
the origin. If » = 1 we fall back on the preceding case.

Let us, thirdly, assume that no finite point of the fixed lines
is fixed. Here » =1, 0 5% 0. Corresponding points are on
circular helices, i.e. isogonal not circular trajectories of the
generators of cylinders of revolution with a common axis.

There then remains the case where all infinite points are
invariant. Here 6 = 0. If 731 we have essentially the next
to the last case; if » = 1 we have a translation, and corre-
sponding points lie on lines of given direction.

Suppose, now, that we have any direct spherical trans-
formation 7. If it have a finite fixed point, and I be the
inversion with this point as centre, we see that 171 is a con-
formal collineation which, under our spherical group, is equi-
valent to the given transformation. The only spherical trans-
formations not equivalent to conformal collineations under
our spherical group are those with no finite fixed point, if any
such exist.

A real spherical transformation will appear in four-dimen-
sional projective space as a real collineation, and will therc
leave at least one real point invariant in four dimensions.
Corresponding to this point will be a real or self-conjugate
imaginary sphere. If this sphere be real we may assume it
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not null, as otherwise we might assume its vertex in the
domain which amounts to the finite domain of cartesian space,
and fall back on our previous types. The real spherical
transformation will produce on the fixed real not null sphere
a real circular transformation, which must be indirect, as
otherwise there would be a real fixed point, the case we wish
to avoid. It must either be elliptie, or an inversion in a self-
conjugate imaginary circle, Taking the cases in order, when
the circular transformation is elliptic one real circle of the
sphere is invariant, as is the circle orthogonal to the sphere
through the interchanging points. This is equivalent to a
transformation of cartesian space, which leaves invariant the
7 axis and the unit cirele of the z plane, i.c.

__ (cos 02’ —sin 0y) _ (sin 02" 4 cos 0y)
I O T e I
_z,
A otk
aj.d_*_yl_*_zl

(5)

We see, in fact, that the transformation so written is the
product of a rotation, a reflection in a plane, and an inversion,
and so direct. It has no finite fixed point. Corresponding
points are on the non-circular isogonal trajectories of the
generators of cones of revolution whose common vertex is the
origin, and whose axis is the axis of 2.

We must not forget the possibility of an inversion on our
real sphere. This may be thrown back to the previous case
with 8 =a It is thus an inversion in a self-conjugate
imaginary sphere. If we mean by a Mobius involution in
three dimensions the transformation where corresponding
points are harmonically scparated by two given points, we
see that this transformation is the product of an inversion and
o Mobius involution.

There remains but one possible case, that where the one real
fixed point in four dimensions corresponds to a self-conjugate
imaginary sphere in three dimensions. Let this sphere be
@y = 0. We get the real transformations of the sort desired
by keeping «, invariant, and subjecting the other four coor-
dinates to a quaternary orthogonal substitution; the direct
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transformations will come from those transformations where
the determinant is positive, for here, and here alone, we may
pass continuously to the identical transformation. Each set of
isotropics of the fixed sphere will be permuted among them-
selves. For a real transformation there are two possibilities;
either two conjugate imaginary isotropics of each set are
invariant, or all are invariant in one set, while but two of the
other remain in place. Taking these in turn, we have the
canonical equations for a transformation of the first sort :

pry = ),

pi, = &, COS p— &, Sin ¢,

piy, = ;81N ¢ + @, COS ¢, (6)
p@; = @y cos 00—, sin 0,

pa, = @, sin 0+ x, cos 0.

Conversely, it is clear that this transformation fulfils all the
requirements. No real point or sphere is invariant; corre-
sponding points lie on the non-circular isogonal trajectories of
the generators of the Dupin eyclides

: 2%+ x,2 + kxy? = 0,
or of the Dupin cyclides

zi+al+rz?=0.

Lastly, it is possible that every isotropic of one set of the
fixed sphere is in place. Such transformation belongs to one
of the two three-parameter invariant sub-groups of the quater-

nary orthogonal group. It may be written admirably in
quaternion form. Following Hamilton, we write

s Pih= = kil (7)
Our transformation will liave one of the two forms
pxy =y,  p (@ +ic,+juy+ ey
_ (a+bi+¢j+dk)
Va0 42+ d?

() +iay +jay + k),
(8)
py = @y, p(0y+imy+jo+ k) .
(abit+dl)
Var+ bty d”

= () + ) +juy +la))
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We see, in fact, that these equations give invariant three-
parameter sub-groups of the total group which leaves x, = 0
invariant. The groups leaving the one or the other system of
isotropies invariant are also invariant three-parameter sub-
groups. Hence each three-parameter sub-group in one pair
must have invariant sub-groups of its own composed of what
it has in common with the one or the other invariant group
of the other pair. But the groups leaving all isotropies of one
systemn invariant are merely the binary projective group
applied to the isotropics of the other group, and have no
invariant sub-groups. Hence the two methods of dividing
into three-parameter sub-groups must be the same, and we
have indeed the transformations desired.

The transformation (8) will be involutory if

a=0, DP*4+c2+d®>=1.

It may also be infinitesimal. Corresponding points lie on
circles orthogonal to the fixed sphere intersecting the two fixed
isotropies of that set where only two are fixed. Two of these
circles cannot intersect, for if they intersected once they would
do so again in the inverse of the first point with regard to
x, = 0, and =0 be cospherical. But the two isotropics which
intersect both would have to lie on this sphere ; the latter would
meet #, = 0 in two skew isotropics, which is quite impossible.

Take an infinitesimal transformation of the present type.
Corresponding points lie on circles meeting two chosen iso-
tropics of the same set on «, = 0, and there will be 0?2 such
circles which are carried into themselves by all transforma-
tions of the one-parameter group generated by the infinitesimal
transformation. If we anticipate our future work to the
extent of assuming that any two circles are cut twice ortho-
gonally by at least one third cirele, we see that any two circles
of the present system, though not cospherical, are cut ortho-
gonally twice by oo! circles. Two circles so related shall be
said to be puratactic.

* These will correspond to paratactic or Clifford parallel lines of non-
Euclidean space already mentioned on p. 164. The present type of spherical

transformations will correspond to translations of elliptic space. See the
Author’s Non-Euclidean Geometry, cit., p. 99.
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Theorem 8.] There are nine types of real divect spherical
transformations of real pentaspherical space :

(«) Inversions in self-conjugate imaginary spheres. A
transformation of this sort is the product of an inversion and
a Mébius involution whose fixed points are mutually inverse in
the sphere of inversion. Corresponding points are concyclic
with the fized points of the involution.

(0) Rotatory transformations. Corresponding points lie on
circles in bi-involution with a real circle of fiwed points.

(c) Loxodromic transformations. Corresponding points are
on non-cireular isogonal trajectories of the circles of curvature
of w Dupin cyelides with given double points which are fixed.

(d) Hyperbolic transformations. Corresponding points con-
cycelic with two fixed points.

(€) Loxodromo-parabolic iransformations. These are iden-
tical with the loxodromic except that two conical points of the
Dupin cyclides fall together.

(f) Parabolic transformations. Corresponding points lie
on tangent circles through a fized point,

(9) Semi-elliptic transformations. Corresponding points
lie on non-circular isogonal trajectories of Dupin cyclides with
given conical points, whereof two are real and are interchanged
in the transformation.

(k) Loxzodromo-elliptic transformations. These are like the
loxodromo-kyperbolic transformations, but there are no real
Jized points or real fized sphere. The conical point of the
Dupin cyclides are two pairs of conjugate imaginaries.

(i) Paratactic transformations. No veal fixed spheres.
Corresponding points on puratactic circles.

Theorem 9.]  There are infinitesimal spherical transforma-
tions of every type but inversions and semi-elliptic ones.

Theorem 10.] The only involutory transformations are of
the kyperbolic rotatory, and paratactic types. The first are
inversions in self-conjugale imaginary spheres, and may be
Jactored into the products of inversions and Mdbius involutions;
the second are inversions in fized circles,
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Let us look for types of indirect transformations. Starting
with (4) we see that if d 5= 0 no finite point is fixed and the
axis of z is transformed into itself. If d = 0, the origin and
point at infinity are fixed and lines through the origin are
interchanged, whereas in a reflection in the origin these lines
are all invariant.

An indirect transformation with no real fixed point but with
a real fixed sphere is obtained from (6) by changing the sign
of 2. There are no real indirect transformations with no real
fixed sphere. Such a transformation would be given by
a quaternary orthogonal substitution with negative discrimi-
nant, and permute the isotropics of the two sets on the fixed
sphere. There would thus be two fixed conjugate imaginary
points, and two interchanging conjugate imaginary points
(as in the case of an indirect circular transformation). The
transformation could be written

'

Py = Xy .

p; = &,/ cos ¢ + a,sin ¢.

px, = x,/sin ¢ —x, cos .
/) 4 w.

py = @, eos 06—, sin 0,

— ’ 1
p, = x, 8In 6+ cos 0.

But we see at once here that two real spheres #, +Az, = 0
are invariant.

Theorem 11.] There are but six types of indirect real
spherical transformations :

(@) Inversions.

(b) Two real fized points, circles through them fixed.

(¢) Two real fixed points, civcles through them interchanged.

(d) Adjacent fized points, circles all tangent, at one point
interchanged. :

(e) Adjacent fixed points, circles tangent at one point
tnvariant.

(f) No real fixed points, points of real civcle interchanged,
real fixed sphere.
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Theorem 12.] A necessary and sufficient condition that
two inversions should be commutative is that the spheres of
inversion should be mutually orthogonal.

Theorem 18.] The product of inversions in two mutually
orthogonal spheres is the inversion in their common circle, the
product of three such inversions is the Mdbius involution
whose fized points are common to the three mutually orthogonal
spheres ; the product of four such inversions is the inversion in
the self-conjugate imaginary sphere orthogonal to the four given
mutwally orthogonal spheres.

Theorem 14.] The only veal indirect involutory spherical
transformations are inversions and Mobius involutions.

Theorem 15.] If two points be interchanged in a spherical
transformation, either the transformation is real and semi-
elliptic, the two points lying on a circle of interchanging
points, or else the transformation is involutory.

Theorem 16.] A single dirvect spherical transformation
may be found to carry any three points, whereof no two are on
an isotropic, and any not null sphere through them into any
other three points and spheve similarly arranged.

Theorem 17.] The product of two inversions may be re-
placed by that of two others. One of the new spheres of inversion
may be taken at random in the coaxal system determined by
the original two; the other is thereby uniquely determined.

Theorem 18.] Any divect spherical transformation of

pentaspherical space may be factored into the product of four
inversions.

The proof of this important theorem is as follows., The
transformation being called 7', take two corresponding spheres
s and &. Let us find an inversion I, to interchange the
spheres s and s. Then 1,7 leaves s invariant. Let it cairy
three points A, B, C into three points 4’, B/, (". We next find
an indirect circular transformation on s which carries 4", B, C’
into 4, B, C, and, by VIIL 26], factor into three inversions.
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Through the circles of inversion pass spheres orthogonal to s,
and let 1., 1,, I, be the inversions in these spheres. The trans-
formation I,1,71,1,T will be a direct transformation with
a fixed sphere and three fixed points thercon, i.e. the identical
transformation. Hence

T = I,I,I,1I..

Theorem 19.] Any direct spherical transformation may be
factored into the product of two circular inversions.

The proof comes from 13], 17], and 18], and is left to the
reader.

Theorem 20.] Any indirect spherical transformation of
pentaspherical space may be factored into the product of five
LRVErsions.

It would be tedious to discuss the various cases where pairs
of spherical transformations might be commutative. We can
foresee the answer for the general case from what we have
already done in the case of circular transformations.

§ 2. Continuous Groups.

The classification of all real continuous groups of spherical
transformations is a long and laborious task which would
lead us altogether too far afield. We shall therefore content
ourselves with noting the results which others have found *

Theorem 21.] T%he group of all direct spherical transforma-
tions depends upon ten essential parameters, and has the
Jollowing real sub-growps:

One of seven parameters.

Three of six paramelers.

One of five parameters.

Siz of four parameters.

* Cf. Lie-Engel, Theorie der Transformationsgruppen, vol. iii, pp. 219ff,,
Leipzig, 1893. In more detail Standen, Invarianfe Flicken und Kurven bei
Fonformen Gruppen des Raumes, Dissertation, Leipzig, 1899. In the text we
follow this enumeration, although it is not clear whether it will check up

exactly with that of Amaldi, loc. cit. ; in other words, it is not apparent
whether Amaldi undertook to find all groups.
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Eight of three parameters.

Siz of two parameters.

Seven of one parameter.

Let the reader note that the existence of seven one-parameter
groups agrees with theorem 9].

Before leaving spherical transformations let us return to
the pentaspherical notation, or rather, to sphere coordinates,
and try to find a parametric representation for the general
direct case. We shall follow the classic method of Cayley.*
We begin with the twin equations

j=4 j=4
wizz z]j" Z]@]’ 28 b = b,
Jj=0 Jj=0 ! .
We then find at once
wi-l'w,", = 26:1‘_’
b(ze) = (em) = (o),
(ax) = (a'T).
We have thus, indeed, an orthogonal substitution. Solving

for z

=4
1J l" Z Bﬂu'lh

This gives our substitution in final form
ji=4
| l)@-j |2; = Zaijwj’.

i=0
RS 2bBii_l bij l, aij = 2bBi}, j?é i
Unfortunately, it is not possible to express all quinary
orthogonal substitutions in this form.t We have, however,
ten independent parameters, so that we have a ten-parameter
assemblage, and this contains no indireet transformations, for

(10)

* ¢Sur quelques propriétés des déterminants gauches’, Crelle’s Journal,
vol. xxxii, 1846. Cf. Pascal, Die Determinanten, Leipzig, 1900, pp. 159 ff.

+ Cf. Netto, ¢ Uber orthogonale Substitutionen’, Acta Mathematica, vol. ix,
1887, p. 295.
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we may pass continuously to the identical transformation.
To get the real transformations of the assemblage, since a real
point must have its first coordinate proportional to a pure
imaginary number, and the others proportional to real num-
bers, we must have every «;; in the first row and column of
the matrix a pure imaginary with the exception of a;;, which,
like the other a@;’s, must be real. In other words, every
b;; which has the subsecript , appearing once only is pure
imaginary ; the other ;s are real.

The theory of spherical transformations as here outlined
is far behind that of ecircular transformations in completeness.
There seems room for various inferesting investigations con-
nected therewith. A direct circular transformation has one
invariant; how about a spherical transformation? For
instance, there is always a fixed not null sphere. On this
we have a circular transformation whose invariant must be
invariant for the spherical transformation. How many of
these invariants are there? What is their geometrical mean-
ing? The detailed study of commutative transformations
might be worth while. The various continuous groups must
have interesting geometrical characteristics not yet discovered.
The subject of spherical transformations must also have an
important relation to certain systems of oriented circles in
space. There is ample room for much valuable geometrical
work on any of these questions.



CHAPTER X

THE ORIENTED CIRCLE
§ 1. Elementary Geometrical Theory.

WE have occasionally found, in the work done so far, that
the concept of the angle of two circles is lacking in precision.
For instance, we saw in I. 212] that if a variable circle cut
two others at given angles, it will cut at either of two supple-
mentary angles every circle coaxal or concentric with the
two. To remove this ambiguity we defined the angle of two

cireles in the form
r24 92—
Ry (1)

cos f =

and were thus enabled to avoid the confusion as to which of
two supplementary angles given circles made with each other.
It is possible to reach even greater precision in handling
the angles of circles by the interesting device of assuming
that the radius of a real circle may be either positive or
negative, with a similar extension for complex circles.* This
is accomplished analytically by the introduction of a redun-
dant coordinate. Let us, however, postpone such a method
for a short while, and begin geometrically in the finite
cartesian plane of elementary geometry, the word circle
having the restricted significance allowed in Ch. I. When
a positive or negative sign has been assigned to the radius
of such a circle it shall be said to be oriented. Let us assume,
after the positive aspect of the plane has been chosen, that
every circle of positive radius is described by a point moving
about the circumference in the positive or counter-clockwise

* The Author has the impression that this idea is due to Cayley.
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direction, when viewed from the positive side of the plane.
An oriented circle of negative radius shall similarly be looked
upon as generated by a clockwise moving point. Or again,
we shall assume that the normal to a circle of positive radius
is oriented towards the centre, while a normal to a circle
of negative radius is oriented outwards.

As a circle is oriented, so a straight line may be oriented
also. We may either assume it generated by a point moving
in the one or the other sense, or by assuming that it divides
the plane into a positive and a negative region, and that the
normals to it are oriented from the negative to the positive
region of the plane.

The angle of two oriented cireles shall be defined as that of
their oriented normals, and a similar definition shall hold for
the angle of two oriented lines. This form of definition in
terms of normals has the advantage of being easily extended
to three dimensions. The cosine of the angle of two oriented
lines or circles is thus single valued, and agrees, in the latter
case, with (1).

Two oriented lines shall be said to be properly parallel
when they have the same system of oriented normals; when
the normals to one have the opposite orientation to those of
the other, they are said to be émproperly parallel. An oriented
line and circle shall be said to be properly tangent when they
touch, and have the same oriented normal at the point of
contact. When there is still contact, but the normals have
opposite orientation, they are said to be improperly tangent.
Two oriented circles are said to be properly tangent when
their angle is = 0 (mod. 27). They will be both properly
tangent to the same oriented line at the same point. When
their angle is = = (mod. 27) they are said to be tmproperly
tangent : the proper tangent to one is an improper tangent to
the other. Let the reader show that when two oriented circles
are properly tangent they touch internally if their radii have
like signs, externally if the signs are unlike.

The fundamental concepts developed in Ch. T were point,
circle, power, and tnversion. It is the object of the present
chapter to show that these concepts have duals in the geometry
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of the oriented line and circle, and that a corresponding duality
extends to a large number of theorems.*

Suppose that we have an oriented circle ¢ of radius » and
an oriented line /. The centre of the circle shall be €. Let

T

Fre. 30.

P be a point of I outside of ¢, and T, T, the points of
contact of the oriented tangents to P from C, , and «, being
the angles which thesc oriented lines make with {. The
line T',T, passes through a fixed point L (the pole of 7) as P

* The idea of this duality was certainly present to the mind of that excel-
lent geometer Laguerre. An admirable exposition is found in Epstein, ¢ Die
dualistische Erginzung des Potenzbegriffes’, Zeitschrift fiir mathematischen
Unterricht, vol. xxxvii, 1906.

1702 Z
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traces /. Let the line CL which is L 7 meet C in 4 and B

so that :
X ACP, =05 ACT, = o,

(LT} = (CLY?+r*—2(CL) r cos oy,
[(CLy—»]P—(LT)?  —(ALP+(LT}?)

tan? 9(—1 = — = .
2 = Z[CL)+ 1P+ @LLA) = (BLy— (LT,
In the same way we have

oy, —(AL®+(LT,)?

2 72 A N S
tan” 5 = BLY—(LT,?
But (LT)) (LT,) = (AL) (BL). (2)
O, Oy (AL).
Hence tan - tan 2 = (LB

Theorem 1.] If, from all points outside an oriented circle
and lying on an oviented line, oriented lines be drawn
properly tangent to the oriented circle, the product of the
tangents of the halves of the angles which they form with the
given oriented line is constant.

This constant shall be called the power of the oriented line
with regard to the oriented circle. It will be positive when
the oriented line intersects the oriented circle in real points,
negative when there is no common point. When there is
proper contact the power is zero; improper contact produces
an infinite power.

Theorem 2.] Given two pairs of oriented lines concurrent
on a given oriented line, but not concurrent or parallel with
one another. A mecessary and sufficient condition that they
should be properly tangent to one same oriented circle is that
the product of the tangents of the halves of the angles which
one pair make with the fifth line should be equal to the
corresponding product for the other pair.

Two non-oriented circles which are non-concentric and
unequal in radius have two centres of similitude. Two
oriented ecircles shall be defined as having at most and in
general one centre of similitude, namely, the external centre
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when they are non-concentric and have unequal radii of like
sign, the internal centre when their radii are of unlike sign.

Theorem 3.] An oriented line having like powers with
regard, to two oriented circles of unequal radius passes through
their centre of similitude, and every line through this centre
has like powers with regard to the two. When the radii are
equal the line vs parallel to the line of centres, and every such
line has the same power with regard to each circle.

We have so far established the following duality :

Oriented line. Point.
Oriented cirele. Cirele.

Power. Power.

Centre of similitude. Radical axis.
Circles with common centre Coaxal eircles.

of similitude.

Suppose that we have an oriented line /; we may trans-
form other oriented lines not parallel thereto as follows.
Corresponding oriented lines shall be concurrent on /, and the
product of the tangents of the halves of their angles with 7 shall
be a given constant. Such a transformation shall be called
a Laguerre inversion ; let us show tlfat it carries an oriented
circle into another. oriented circle.*

To begin with, the transform of every oriented line not
parallel to 7 is uniquely determined. By (1) there are oc?
oriented circles which are transformed into themselves;
anallagmatic let us say. Every oriented line parallel to the
line is properly tangent to «! of these circles. The remainder
of the envelope of these oriented eireles is a second oriented
line parallel to { which we define as the transform of the first
oriented line. The transformation is thus one to one for all
oriented lines; the oriented line / is reversed.

We next observe that, if we take a point on the radical
axis of two circles and draw one tangent to each, the line
connecting the points of contact meets the two ecircles at

* Laguerro, ‘ Sur la transformation par semi-droites réciprogues, Nouzclles
Annales de Math., Series 3, vol. i, 1882, pp. 542 ff.

z 2
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equal angles, and so passes through a centre of similitude,
or may be parallel to the line of centres when the radii are
equal. The tangent to one circle where it meets again the
line connecting the points of contact is parallel to the tangent
to the other circle. The two tangents to the first cirele meet
on the polar of the centre of similitude ; hence the produet of the
tangents of the halves of their angles therewith is constant
Hence the product of the tangents of the halves of the angles
which the given tangents, properly oriented, make with the
oriented radical axis is also constant. If one circle and radical
axis be given, the other circle may be found so that this product
shall take any desired value. Hence in a Laguerre inversion
an oriented circle goes into an oriented cirele, 7 being the radical
axis. Be it noticed that as a common proper tangent to two
oriented circles goes into a common proper tangent to their
transforms, the two meeting on the common radical axis of
each circle of the first pair with its mate in the sccond, then
the common proper tangential segment of two oriented cireles
is equal to that for their transforms under a Laguerre inver-
sion. The Laguerre inversion is the simplest type of what
we shall later study under the general name of equilong
transformation.

Inversion.
Point to point.

Laguerre inversion.

Oriented line to oriented
line.

Oriented ecircle to oriented
cirele.

An oriented circle properly

Circle to circle.

Cirele through twomutually

tangent to corresponding ori-
ented lines anallagmatic.

Proper tangency of oriented
circles invariant.

Common proper tangential
segment of two oriented
circles invariant.

Corresponding circles have
the fundamental line as
radical axis.

inverse points anallagmatic.
A} . .
Tangency of circles in-
variant.
Angle of intersection of two
circles invariant.

Corresponding circles have
the fundamental point as
centre of similitude.



X THE ORIENTED CIRCLE 357

There are a number of simple theorems concerning oriented
lines which are duals to the point theorems, I. 149-63]. The
algebraic preofs are, however, so much simpler than the
geometric ones that we postpone these for the moment. We
make an exception in favour of the following.

Let us start with four oriented lines /, /,, ;, /,, which we
suppose so related that no two are parallel. We shall mean
by the bisector of the angle of two intersecting oriented lines
the locus of the centres of circles properly tangent to one and
improperly tangent to the other. The bisector of the angle
of I, with the oppoe@te to I; shall be /;;, which is the locus of
the centres of circles ploperly tangent to l; and [;. Let C;
be the centre of the circle properly tangent to [;/;;. Let
Ci, O, be on the same side of C;, C}, and let

——>
L6605 0,.4.6,0,0, > o,
o O ]
W—%[Lljlk-f-x_lkll] = K__Ojoi(/l or ')T—Z{_OJ-O’:(/Z,
> — e T
Subtracting :
C—a >
0=3[41 JRR- NIURS SUUED ST
= Zf._C]CiOZ—X_CjCkOI, or
= 4_0]01;0’1+2f_0j0k01i77.

We see in a special case that the first hypothesis is right,
and so, by continuity, it is always right.

Theorem 4.] The centres of the oriented circles each properly
tangent to three out of four given oriented lines, whereof mo
two are parallel, are concyclic.

§ 2. Analytic Treatment.

It is now time to take up the analytic treatment of
oriented lines and circles, as thus, naturally, we shall obtain
a far greater wealth of results than from purely geometric
methods. The domain shall be the complex cartesian plane,
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including the line at infinity. We shall slightly alter the
traditional form for the equation of a circle, writing

o (@® +y%) +, (28) + 5 (2y) + 2, (26%) = 0. (3)

— 2@y, + @t + s’ + 22 = 0. (4)
The radius will have the value
W,

= 4, 5

= (5)

We see thus that we have for every oriented circle five
homogencous coordinates (x) connected by the identity (4).
Conversely, we shall define as an oriented circle every locus.
which satisfies the equations (3) and (4). We have the
following types:

1) Proper oriented circles a,x, # 0.

2) Non-linear null circles =, = 0, z,# 0.

3) Oriented lines 2, = 0.

4) Minimal lines iy = Lp=M

The line at infinity is included in this latter class. This
may also be looked upon as the class of all oriented lines
which are identical with their opposites. If we have two
proper oriented circles () and (y), the length of their proper
common tangential segment will be

/m - \/2 (‘moyl—xlyo+x2?/2+m3:’/3+x43/4)' (6)

~ZoYo
For their common angle we have the expression
sinzg = %Y Yo+ XYy + XY + B4y (7)
2 24y,

By continuity this formula will hold even when ,7, = 0.
The condition of proper tangency will be

=LY — & Yo+ XoYp + XY+ 2, Y, = 0. (8)

The point of contact may be a circular point at infinity ;
the radii are then equal and the centres on a minimal line.
It must be specially noted that this is the identity polarized.
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A point in the tetracyclic plane has four homogeneous
coordinates connected by a quadratic identity; the same is
true for an oriented line* Fundamentally important, how-
. ever, is this difference, that whereas the discriminant of the
quadratic identity for tetracyclic coordinates does not vanish,
the oriented line identity has a vanishing discriminant. The
two may not therefore be put into a one to one analytic
correspondence. Still, the circle has a linear equation in
tetracyclic coordinates; so, too, a linear relation among the
coordinates of an oriented line will usually give us the proper
tangents to a circle. Let us begin by writing

— Q% + Ay Ty + A3 W3+ Ay Ty = 0. (9)

When a,# 0 we see that (z) is properly tangent to the
oriented circle

a 2+a32+a42
Uy, —2*——'—2 5 Uyy Agy Ay)-
Xy

When «, = 0, a,?+a,® # 0 the slope will be

z, _ ayaytia, vValttalt+al
I 2 D)
e a+a,

The oriented line makes a fixed angle with a fixed oriented
line. An equation of the first degree will give either the
oriented lines properly tangent to a fixed cirele or two distinct
or coincident pencils of parallels. The power of the oriented
line () with regard to the oriented circle (y) will be

— & Yo+ XoYa + LaYs + Ly Yy (10)
Ly Yo—Lolo—ZL3Y3t X4 Yy

If (@) be a fixed non-minimal oriented line, and (z) an
arbitrary oriented line, let us write the following trans-
formation :

o] = (12— ) 0;— 2 (a2, + @y, + oz ) a;, TFE 4, (11)

xy = (02 — ) @y — 2 (0 @y + a3 s+ 0, 0 Xy«

* The comparison of the two is well brought out by Miiller, ¢ Die Geometrie
orientierter Kugeln *, Monaishefte fiir Math., vol. ix, 1898, pp. 288 ff.
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Here, regardless of the value of the parameter o, we have

(x2/2+w3/2+w4’2) — (a22+a32+a42)2

(@, +23® + 7).

The oriented lines (x) and (z’) are concurrent on the line (), -
the product of the tangents of half their angles therewith is

We have thus, in general, i.e.

when o2 £ a2,

a Laguerre inversion, and every Laguerre inversion may be
thrown into this form. In the limiting case where a, = a,=0,
we replace each oriented line by its opposite moved through
a fixed distance.
It seems almost axiomatic that there must be a number of
interesting theorems about oriented lines arising from the
adaptation of the Frobenius identity. The present Author
has been somewhat disappointed in the results obtained in

this fashion.

There is one interesting theorem which is

perhaps more easily proved in this way than in any other.
Let us take four proper oriented circles ¢, ¢, ¢(®, ¢, whereof
each is properly tangent to the preceding and the succeeding
The common proper oriented

in the natural cyclic order.
tangents shall be 102, 13, [64), ¢1),

(‘0(1) cl(') (;2(1) 03(1) 04(1) 0
00(2) cl(z) 32(2) 03(2) 04(2) 0

0

0
0
0

its first member ;

minants together by rows.

1,02 1,02 7,02 7,09 ¢
1,(29) 1,029 1,(23) 7,9) o
1,39 1,60 7,69 7,64 ¢
1,4 7,41 .40 1,41 ¢

—e,®
—,®
—e,®
—c,®

-
1

We write the identity

—c,® ¢,® ¢, ¢,M
—,® ¢,® ¢, ¢,®
—c,® ¢,® ¢,® ¢,
—c,® ¢, ¢,® ¢,®

—%
0

Yo

O.

Ys
0

Ys
0

SO O O © © O

Here (y) is supposed to be properly tangent to (12, [(23), 3%,
Divide each of the first two rows of the first determinant by

divide each of the first five rows of the second
determinant by its second member.

Multiply the two deter-
For simplicity write 7'(ab) for
half the square of the common tangentlal segment of the
circles (a) and (b).
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0 0 Y Pl 1 a5y TP y) 1
0 0 0 T(c@e®) T (c@y) 1
0 0 o B 0 oAl
y 0 0 d 0 0 '
€ ¢ 0 0 0 0
0 n 0 0 A 0

Now T (cWy) = T (cDy).

Taking a constant multiple of the members of the last
column from the corresponding ones of the next to the last,
we find the product of two factors is equal to zero. The
second factor is found not to vanish in a special case, the
first is

AR Ly, + L4y, + 1,0y, + U0y, y
Yo

Theorem 5.] If four proper oriented circles be sg arranged
in cyclic order that each is properly tangent to its two mext
neighbours, then the four common proper tangenis to pairs
of successive circles are properly tangent to a fifth oriented
circle or are properly parallel in pairs*

Since the two tangential segments to two circles from
a point on their radical axis are equal, we may construct
a circle tangent to each at its point of contact with one of
the given circles.

Theoremn 6.] From each of two points on the radical axis
of two mon-concentric oriented circles two oriented proper
tangents are drawn to each circle. Take two of the tangents
to each circle, not intersecting on the radical awis. These
Jour limes, if mot properly parallel in pairs, may be so
oriented as to be properly tangent to an oriented circle.

A number of interesting theorems follow from the fact that

the condition for proper contact between an oriented line and
circle is linear. For example

* Miller, ¢ Einige Gruppen von Sitze, &c.*, Jahresberichi der deutschen Mathe-
matiker- Vereinigung, vol. xx, 1911, p. 181.
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Theorem 7.] If four proper oriented circles meet a fized
oriented line al a fived angle, and if a common proper
tangent be drawn to each two, then, if no two of these tangents
be parallel, four mew oriented circles may be found, each
properly tangent to three of these tangents which do not touch
one particular circle. These four new oriented circles will
also meet o fixed oriented line at a fixed angle* or be the
limiting form of four such circles.

The proof is as follows. If an oriented circle meet a fixed
line at a fixed angle we see by (7) that all of the coordinates
but the second are connected by a linear relation, and con-
versely, if such a relation exist, the circle will usually meet
a fixed line at a fixed angle. The exceptions to this last
statement are easily noted. Secondly, if three oriented lines
be given, all of the coefficients but the second of the oriented
circle properly tangent to them are given by the three rowed
determinants of the matrix formed by the coordinates of the
given oriented lines, the first coefficient having the reverse
of the natural sign. These facts premised, let our oriented
circles be ¢, ¢®), ¢®), ¢®, the common tangents {(¥) as before.
Finding all the coordinates but the second of the oriented
circles each tangent properly to three of these lines which
lack a common index, the statement that these new oriented
circles meet a fixed oriented line at a fixed angle will lead to
the equations

| @ 169 149 169 | = o,
l a [ [ [a2) l = @
| a [(3%) [(41) 7(13) |= 0,

l a l(23) Z(31) l(12) I = 0.

Eliminating (a)

0 | L5 762) 1(3) @1 | | [69) [6D @) J02) |
| 164 141 702 7@3) | | 169 1) 102 7@ | 0 =0.
| 164) 141) 03) 139) | 0 | 169 14y 103 7a2) |

* Ibid., p. 188.
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This last equation will be unaltered if we replace each (%)
by the complementary D, which has the effect of replacing
each of our new circles by the corresponding old circle. By
hypothesis, the four original circles met a fixed oriented line
at a fixed angle. Hence the four new ones will do the same,
or at least be the limits of four circles doing so.

Suppose that we have three oriented circles ¢, ¢, ¢®
properly tangent to an oriented line /. The remaining common
proper tangents shall be (%), {() shall be an arbitrary proper
tangent to ¢, and the oriented circle properly tangent to
19, 1), 1) shall be ¢®. Consider the one-parameter family
of quadratic oriented line envelopes given by the equation

Ac® @ 4 ”0(3) ¢® = 0.

All of these will share the proper tangents Z, [, (%), {(13)
with ¢, 'We may therefore so choose A/u that this envelope
shall touch another proper tangent to ¢, i.e. include ¢® as
part of itself. The remainder of the envelope will be another
oriented circle which is properly tangent to I, I®), 1#), Tt
will then be identical with M, which latter must touch the
remaining proper common tangent to ¢ and ¢©®.

Theorem 8.] If three oriented circles be properly tangent
to an oriented line, and an arbitrary proper tangent be
drawn to each, then the three oriented circles, each properly
tangent to two of these arbitrary tangents and to the remain-
ing common proper tangent of the corresponding original
circles, are themselves properly tangent to one oriented line
or are the limit of such circles.

This theorem is dual to our fundamental I. 149]. It may
be somewhat generalized by a contact transformation of eircles,
as the previous one was generalized by inversion. The result is,
however, rather involved ; it is better to draw corollaries from
the proposition as it stands. As a first, let the reader show

Theorem 9.] If four oriented tangents to an oriented circle
be taken in cyclic order, and four oriented circles be drawn
each properly tangent to two successive oriented tangents, then
the remaining common proper tangents to successive oriented



364 THE ORIENTED CIRCLE CH.

circles of the sequence are themselves tangent to an oriented
circle or are properly parallel in pairs*

The number of simple results which can be deduced from
this is almost absurd. We first get a precise wording for
a well-known theorem due to Pliicker.t

Theorem 10.] From two points, one on each common
proper tangent to two oriented circles, the remaining proper
tangents to these circles are drawn. The two tangents to one
circle and the opposites to those to the other touch a circle
or are properly parallel in pairs.

Theorem 11.] Three oriented circles ¢®, ¢®, ¢® are so
arranged that one common proper tangent to ¢ and ¢® and
one to ¢ and ¢® are concurrent on an improper common
tangent to ¢ and ¢ ; then the remaining common proper
tangents of ¢V, ¢@ and ¢M), ¢® are concurrent on the remain-
ing improper tangent of ¢®, ¢® or are parallel thereto.

Theorem 12.] Four oriented concurrent lines are arranged
in eyclic order and an oriented circle drawn properly tangent
to each two successive lines. Then the remaining common
proper tangents to successive circles are properly tangent to
one oriented circle or are properly parallel in pairs.

Theorem 13.] Given two oriented non-parallel lines and
Jour oriented circles, the first properly tangent to both, the
second, properly tangent to the first and improperly tangent
to the second, the third improperly tangent to both, and the
Jowrth improperly tangent to the first and properly tangent to
the second. The remaining common proper tangents of succes-
sive circles are properly tangent to an oriented circle or are
properly parallel in pairs.

We get a special case of this when the first and second
circles differ only in the sign of the radius from the third
and fourth.

Theorem 14.] Given two mon-concentric civcles and the
* Ibid., p. 178. The five following are from the same source,

+ ¢ Analytisch-geometrische Aphorismen’, Crelle’s Journal, vol. xi, 1834,
p. 117,
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two common direct or transverse common tangents. Then, if
any circle be taken touching these two tangents, but not with
its centre collinear with those of the given circles, its remaining
common tangents with these circles are tangent to another
circle.

Theorem 15.] Let four oriented lines be drawn properly
tangent to an oriented circle, and siw oriented circles be
drawn each properly tangent to two of these oriented lines.
These siz may be arranged in three sequences of four, each
sequence determining a new oriented circle by Theorem 9].
The three mew oriented circles are properly tangent to the
same two oriented limes.

The proof is entirely analogous to II. 22] though demanding
a little more care. We leave the details to the reader and
continue the process of drawing corollaries from 8] even as
we drew some from I. 149].

Theorem 16.] Given four oriented circles properly tangent
to an orviented line. If four other oriented circles can
be found, each properly tangent to the three remaining
common proper tangents to three pairs of the given circles,
these four mew oriented circles are also properly tangent to
a common line.

Theorem 17.] Given five oriented circles properly tangent
to a common line. With each set of four we may, by 16],
associate another oriented line, and these five oriented lines
are properly tangent to an oriented circle.

The proof is entirely analogous to that of I. 160]. We
leave the details to the reader, as well as the task of proving
the following, which is dual to I. 162].

Theorem 18.] Given n oriented circles properly tangent to
an oriented line. If n be odd we may associate therewith an
oriented circle, if n be even an oriented line, in such a way
that the circle (line) is properly tangent to the n oriented
lines (circles) associated with the n sets of oriented circles
obtained by omitting each of the original ones in twrn.
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In the same way we have the dual to I. 163].

Theorem 19.] Given m oriented circles properly tangent to
one oriented line, and an oriented tangent common to each
and to a given oriented circle. Ifn be odd we may associate
therewith an oriented line, and if it be even an oriented circle,
in such a way that the line (circle) is properly tangent to the
oriented circles (lines) associated with the m sels of (n—1)
oriented circles obtained by omitting each of the original
circles in turn.

It is to be noted that in 17] to 19] lines properly tangent
to an oriented circle will, if two be properly parallel, be
replaced by lines of given direction.

§ 8. TLaguerre Transformations.

In our development of the analogy between the geometry
of the oriented line and elementary circle geometry we have
pointed out the three following analogies :

Oriented line. Point.
Oriented circle. Circle.
Tangential segment of two Angle of two circles.

oriented circles.

We are immediately led to the idea that there must be
a whole theory of transformations which carry oriented lines
into oriented lines, and oriented circles into oriented circles.
An example of such a transformation was the Laguerre
inversion, under which the common tangential segment of
two oriented eircles is Invariant. The question arises
immediately, Is this segment invariant under every trans-
formation that carries an oriented line into an oriented line,
and the oriented lines properly tangent to an oriented circle
into proper tangents to another circle? The answer to this
question is ‘No’. At the same time the total group of such
transformations has an important sub-group where tangential
segments do retain their size. This group presents interesting
analogies to the conformal group of cireular transformations,
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and we find invariants analogous to the double angle and
double ratio. Before attacking this group directly, let us
give a space representation of our oriented lines and circles
which is of capital importance in our subsequent work with
them.*

We begin with the equations

12 = px,,

324 V242%) = pay,
— X7 = pa,, . (12)

—-YTEpm2,

—ZT—Epm4.

Here (XYZT) are supposed to indicate homogencous rect-
angular cartesian coordinates. The null sphere with centre
(XYZT) will have the equation

(Te—Xt)2 + (Ty— Yt)2 + (T2 —Zt)’ = 0.
It will meet the plane 2 = 0 in the circle

o (2% +37) +a, (2at) + a5 (2yt) + @, (287) = 0. (3)
— 2z, +x? a2 = 0. (4)
This is the oriented circle with centre (XYT') and radius
iw, 4
Wi

If now we make our three-dimensional space a perfect
pentaspherical continuum by adjoining improper points, as in
Ch. VII, the improper point

Xy = X2+t +a,2=0,
being interpreted as the minimal plane
T+ XY + 2,2+t = 0,
we see that the latter cuts our plane z =0 in the oriented line
Loz + Y + @t = 0.
This transformation shall be called a minimal projection.

* Cf. Klein, Hihere Geometrie, Gottingen, 1893, vol. i, pp. 473ff.; Lie-
Scheffers, Beriihrungstransformationen, Leipzig, 1896, pp. 428 ff.; Scheffers,
¢ Bestimmung aller Beriihrungstransformationen des Kreises in der Ebeno’,
Leipziger Berichte, vol. 1i, 1899, p. 145.
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Theorem 20.] If finite cartesian space be made a perfect
pentaspherical continuum by adjoining a single point at
infinity, and the totality of minimal planes as improper points,
there is a perfect one to one correspondence between the points
of such a space and the oriented circles of the plane. In this
correspondence each proper point corresponds to that proper
oriented circle whose centre is the orthogonal projection of the
given point on the plane, and whose radius is the algebraic
distance from the point to the plane multiplied by —1,
a definite square root of —1; each improper point is repre-
sented by the line awhere the corresponding minimal plane
meets the given plane, with an orientation rationally depen-
dent wpon the coordinates of the improper point.

If (XYZT) and (X’Y’Z’T’) be two proper points, their
distance will be

XTI —TX' P+ (X —TY P+ (@17 —TZ)
T2

= \/2 (=@ Yy — 2y Yo + ZoY5 + L3Y5 + L4 Ys) | (13)
i —ZYo

Theorem 21.] In a minimal projection the distance between
two proper points is equal to the common tangential segment
of the corresponding proper oriented circles.

This last theorem is also simply proved by elementary
geometry. Two proper points whose distance is null deter-
mine an isctropic, the locus of points at a null distance from
both. If a proper point lie in a minimal plane, there is one
isotropic through the point lying in the plane. Parallel
minimal planes determine one tangent to the circle at infinity.
Our correspondence is as follows :

Plane =. Pentaspherical space =.
Oriented circle. Point.

Proper oriented circle. Proper point.

Non-linear null circle. Point of plane .

Oriented line. Minimal plane.

Minimal line. Minimal plane parallel to

normals to =.
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Common tangential seg- Distance of proper points.
ment of properoriented circles.

Pencil of properly tangent Isotropic in finite domain.,
oriented circles.*

Pencil of properly parallel Pencil of parallel minimal
oriented lines. planes.

Transformation  carrying Conformal collineation.

oriented line into oriented
line, and proper tangents to
oriented circle into proper
tangents to oriented circle.

Theorem 22.] The group of transformations which carry
oriented lines into oriented lines, and the proper tangents to
an oriented circle into those of another circle, depends wpon
seven parameters. Every transformation of the group will
multiply the common tangential segment of two proper
oriented circles by some constant. There is a siz-parameter
sub-group that keeps such tangential segments invariant.

Seven-parameter group of Seven-parameter group of
oriented lines and circles as conformal collineations.
envelopes of such.

Theorem 23.] The siz-parameter group which carries
oriented lines into oriented lines, oriented circles which are
the envelopes of such lines into other such circles, and keeps
inwariant the common tangential segment of two proper
oriented circles, is mized. It has a siz-parameter continuous
sub-group, and o siz-parameter continuous sub-assemblage.

Six-parameter group keep- Six-parameter congruent
ing tangential segments in- group.
variant.

Six-parameter continuous Six -parameter group of
sub-group. motions.

Six-parameter sub-assem- Six-parameter assemblage
blage. of symmetry transformations.

* Proper circles of equal radii whose centres lie on a minimal line must be
considered as properly tangent.
1702 A a
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The mixed six-parameter group for the oriented line shall
be called the group of Laguerre transformations, or the
Laguerre group. We may reach this group from another
point of view which possesses the highest interest. Let us
define as equilong any analytic transformation of the oriented
lines of a plane which keeps invariant the distance between
the points of contact of each line with any two oriented
envelopes properly tangent to it.* This is the natural dual
to a conformal transformation. Even as in determining the
most general conformal transformation of the Gauss plane we
express each point by means of a single complex coordinate,
s0 here we shall introduce complex coordinates of another sort
for an oriented line.t We begin by writing

(=é+ey, (=é—e), =0,

(14)
X+ exy
X, + T2y

¢

Every oriented line not passing through a specified circular
point at infinity will thus have a complex coordinate ¢
When x,+i2;=0 (= w, and a whole parallel pencil of
isotropies correspond to the single value w. Conversely,
suppose that we have given (= £+ ¢, we may write

py =27, poty=(1—-§), pa,= —i(1+&), pm,=2¢ (15)

and thus find a determinate oriented line corresponding to
our complex value { Suppose now that we have an equilong
transformation. It will give rise to equations of the type

=& &), o =)

If an oriented line touch an envelope at infinity, the same
will hold for the transformed line and envelope, hence in-

* Cf. Scheffers, ‘Isogonalkurven, Ejuitangentialkurven, und complexe
Zahlen’, Math. Annalen, vol. 1x, 1905.

1+ First done by Scheffers, ibid., p. 528. We follow the treatment of
Blaschke, ¢ Untersuchungen iiber die Geometrie der Speere in der Eukli-
dischen Ebene ’, Monatshefte fiir Math., vol. xxi, 1910, We shall lean heavily
on this excellent article in the present chapter. See also Griinwald, ¢ Duale
Zahlen in der Geometrie’, ibid., vol. xvii, 1906.
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finitely near parallel lines go into other such lines, i.e. & is
a function only of £ The invariance of the distance of the
intersections of a line with two others infinitely near requires
that the expression
dn dE—dEdy P
[ dgog J

shall be invariant. The corresponding expression for ¢’
will give the value

dn'8¢ —d sy’
d&se

b;, df \77 d )< 5§+ 31; 5 ) ( B£+ b_n,a,]) (bb—éf,df-*- %;i-,dn>

( l§+ d)( 6£+ )

‘Ei_-

)(dnﬁf—dfﬁr])
(E d£dE

I
+

On the other hand, if we have either function of the
complex variable,

(E+e)=f(E+en), (+e)=f(E—en),

the differential equations corresponding to the Cauchy-Riemann
equations for the usual complex variable are

¥ W
and these give an equilong transformation above. Con-

versely, when these equations are satisfied ¢’ is an analytic
function of ¢ or of ¢

Theorem 24.] The most general equilong transformation
of the plane is obtaimed by taking ¢ as an analytic function
of ¢or of & and, conversely, every such function will give an

Aa?
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equilong transformation. The group of all equilong trans-
Jormations is mized, having a sub-group which is continvous
and depends upon an arbitrary function, and also @ con-
tinuous sub-assemblage depending on an arbitrary function.

Every equilong transformation of the sub-group shall be
called direct, those of the sub-assemblage indirect. Every
indirect transformation is the product of a direct transforma-
tion, and of the indirect one

which reverses the orientation of every line. We may pass
continuously from any direct transformation to the identical
one ; not so for an indirect transformation.

The Laguerre transformation is a special case of the
equilong. The analytical expressions for the direct and
indirect transformations are

,_ (a+ed) (4 en)+(B+€B)

= r )t F01) 1

E4en

,_ (aed) (f=en) 4 (8+eB) (18)
T tre)E—a)+(+e)

E+en

The Laguerre inversion is an indirect transformation, for it
is involutory and keeps invariant all circles whiech meet an
oriented line at a fixed angle, and so corresponds to an involu-
tory congruent transformation of space with all points of
a plane invariant, i.e. a reflection in a plane,

Plane 7. Space 2.

Laguerre inversion. Reflection in a plane.

Four oriented lines will have an absolute complex invariant
under the group of direct Laguerre transformations, namely

(L= (G=4) .
(bl o (4) ((3'— fg)
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An indirect transformation will carry this into its con-
jugate. The part independent of 7 is seen at once to be

i “"i(]) xi(z) i wi(:") wi(4)
(fl_‘fz) (63 64) =2
(51 rx 54) (f:a 52) i=4
J 2 WM, @’ 2 ;D ,®
=2 i=2
_sin}X 0,sin} e 5L Oay |

T sin}f 60, sin} ) 932 (19)

This is the cross ratio of the points of contact with a fixed

oriented proper circle of proper tangents properly parallel

to the given oriented lines. The coefficient of ¢ is more
complicated : it may be written

t=4

S (-8 (G~ &) G—&)
= ’(J B e 4 —i| W, O @)
(5 (53 52 — Ti=4 i=4
2> a,0a,® D 2O,
i=2 i=2

The ratio between the two invariants is a third invariant

=) ! w](l)xz(‘l)xa@)qcé@ |_

e - — (20)
i=4 r=4 i=4 i=4

SaWe® [ Da®z® | SaOz® [0z

= 2 =2 i=2 i=2

We get the meaning as follows. Let the four oriented
lines be arranged in cyclic order, and four oriented circles be
taken, each properly tangent to two successive lines of the
system. The difference between the sum of the first and
third sides of the oriented (perhaps re-entrant) quadrilateral
determined by the given lines in order, and the sum of the
second and fourth sides, is equal to the corresponding expres-
sion among the common tangential segments of the four
circles, each circle corresponding to the vertex of the quadri-
lateral which is the intersection of the two oriented lines
which it touches. This expression among the common
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tangential segments is an invariant for a Laguerre trans-
formation; hence the difference between the sums of pairs
of opposite sides of the quadrilateral is also invariant.
Reverting to our expression (2), let us take for our oriented
lines (2, @,, x5, ®,) (0,1,0,4) (0,a,b,i+/a%+0% (0,0,1,4), as any
four may be reduced to these by a suitable Laguerre trans-
formation. The quadrilateral has for its sides three sides of
a right triangle and an infinitesimal side passing through
the vertex of the right angle. The invariant is thus the
difference betwcen the sum of the two legs and the hypo-
tenuse. But our expression (26) reduces to

z, (@ +b— va?+b?)
2 vV, +iwy Vi, + iwN a— vVt b b= Var 5 12

Zy

T @yt + i,
_wy (@ + g —1wy)
- 22,2, k

which is one-half the difference in question.

Theorem 25.] The complex invariant of four oriented lines
in chosen order is made wp of two parts. The first part is the
corresponding cross ratio of the points of contact with any
proper oriented circle of four oriented proper tangents,
properly parallel to the given lines; the ratio of the two parts
18 one-half the difference between the sums of the pairs of
opposite sides of the quadrilateral determined by the given
lines in the given order.*

The invariants of a Laguerre transformation and the sim-
plification of figure by these transformations lead us to certain
properties which might not suggest themselves naturally.
Let us say that three pairs of oriented lines belong to an
involution when this is true of the points of contact with
a fixed proper oriented ecircle of proper tangents properly

* Blaschke, loc. cit., p. 17, confuses the second part of the invariant with
the ratio of the two parts. He courteously acknowledged the mistake when
it was shown to him.
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parallel to them. This condition is invariant for a Laguerre
transformation.* We thus get

Theorem 26.] If three proper oriented circles have each
a pair of proper common tangents, these will be three pairs
of an involution.

We see, in fact, that there is a motion of our three-dimen-
sional space 2 which will bring any three proper points to lie
in a plane |7 ; hence there is a Laguerre transformation of =
which will carry three proper circles into three others all
of equal radius. The common tangents to these latter are
improperly parallel in pairs, and so clearly are pairs of an
involution.

Suppose that we have 1,1/, 1,1/, [,l,/, three pairs of a non-
parabolic involution. Since we may find a motion of = to
bring any two non-isotropic lines to be parallel to the plane
7, so we may find a Laguerre transformation carrying ;1
and [,l, into two pairs of parallel lines, and owing to the
existence of the involution /,l,” become a third pair of parallel
lines also. Let the triangle whose side-lines are ,/,l, be
marked according to the standard notation of Ch. I, 4; being
opposite to ;. Let I/ meet ijk in points whose distances
from A; are 7;a;, ;0. Under these circumstances it is an
easy matter to calculate the lengths of the common tangential
segments of the oriented circles properly tangent to the
triads of oriented lines; then, exercising great care as to
signs, we apply Casey’s criterion, I. 47]. We thus reach an
admirable theorem due to Bricard.t

Theorem 27.] If U1/, L), Il be three pairs of oriented
lines in involution, the four oriented circles properly tangent
respectively to the triads lyl,0,, 11,1, 11,1, 1,1, I are properly
tangent to a fifth oriented circle.

Numerous corollaries follow immediately. The side-lines
of a triangle and those of the middle point triangle, when

* This definition is due to Laguerre, Collected Works, vol. ii, p. 597.
+ ¢Sur le probléme d’Apollonius’, Nouvelles Annales de Math., Series 4,
vol. vii, 1907, p. 603.
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properly oriented, are pairs of an involution. The four
circles in this case are the inscribed circle (or an escribed
circle) and the middle points of the sides. We thus get
Feuerbach’s theorem, I. 49]. Again, consider the ecircle
inseribed in a triangle and the tangent thereto anti-parallel
to one side-line. We see that the line connecting the points
of contact of the anti-parallel tangents is parallel to the
bisector of the corresponding angle of the triangle. But if
through each point of contact with a side of the triangle we
draw a parallel to the bisector of the opposite angle, we have
three concurrent lines, as we see by applying Ceva’s theorem
to the triangle whose vertices are the points of contact. We
thus find

Theorem 28.] The side-lines of a triangle and three anti-
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