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PREFACE

Tuis little book is the outcome of the effort annually renewed
over a long period to make clear to my students the principles
on which the Theory of Proportion is based, with a view to its
application to the study of the Properties of Similar Figures.

Its content formed recently the subject matter of a course
of lectures to Teachers, delivered at University College, under
an arrangement with the London County Council, and it is
now being published in the hope of interesting a wider circle.

At the commencement of my career as a teacher I was accus-
tomed, in accordance with the then established practice, to take
for granted the definition of proportion as given by Euclid in
the Fifth Definition of the Fifth Book of his Elements* and to
supply proofs of the other properties of proportion required
in the Sixth Book which were valid only when the magnitudes
considered were commensurable. Dissatisfied with the results
of a method which could have no claim to be considered
logical, after trying some other modes of exposition, I turned
to the syllabus of the Fifth Book drawn up by the Association
for the Improvement of Geometrical Teaching. But again I
found this hard to explain, and it was evident that my students
could not grasp the method as a whole, even when they were
able to understand its steps singly.

After prolonged study I-found that, in addition to the
difficulty arising out of Euclid’s notation, which is a matter
of form and not of substance, and the difficulty that Euclid
does not sufficiently define ratio, two reasons could be assigned
for the great difficulty of his argument.

(1) Of the long array of definitions prefixed to the Fifth
Book there are only two which effectively count. One of these,
the Fifth, is the test for deciding when two ratios are equal ;
and the other, the Seventh, is the test for distinguishing

* The substance of the Fifth Book is usually attributed to Eudoxus.
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between unequal ratios. They are intimately related, but
when once stated they can be treated as independent.

Now it can be seen at once that if the test for deciding when two
ratios are equal 1s a good and sound one, it should be possible to
deduce from il all the properties of equal ratios, and in order to
obtain these properties it should nmot be necessary to employ the
test for distinguishing between unequal ratios.

But Euclid frequently employs this last-mentioned test, or
propositions depending on it, to prove properties of equal
ratios. In fact, it is not at all easy for any one trying to follow
the course of his argument to see whether it leads naturally
to the employment of the Fifth or of the Seventh Definition,
or a proposition depending on the Seventh Definition. Euclid’s
proofs do not run on the same lines, and are so difficult and
intricate that they have almost entirely fallen out of use. It
will be shown in this book that all the properties of equal
ratios can be proved by the aid of the Fifth Definition, and that
the Seventh Definition is not required.

This is effected, without departing from the spirit or the
rigour of Euclid’s argument, by assimilating Euclid’s proofs
of those propositions in which the use of the Seventh Defini-
tion is directly or indirectly involved to his proofs of those
propositions in which he employs the Fifth Definition only.

(2) I think it will appear to any one who reads this book that
it is in a high degree probable that the two assumptions

(i) If A=B, then (4:0)=(B:0),
and (ii) If 4 >B, then (4:0) >(B:C)
form the real bed-rock of Euclid’s ideas, and that he deduced
his Fifth and Seventh Definitions from these two fundamental
assumptions as his starting-point, but that he finally re-
arranged his argument so as to take the Fifth and Seventh
Definitions as his starting-point and then deduced the above-
mentioned assumptions as propositions.

An argument which does not follow the course of discovery
is frequently very difficult to follow. De Morgan, in his
Theory of the Connexion of Number and Magnitude, gives
reasons for thinking that Euclid arrived at the conditions in
the Fifth and Seventh Definitions from the consideration of a
model representing a set of equidistant columns with a set of
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equidistant railings in front of them, and the relation between
the model and the object it represented. However that may
be it cannot, I think, be denied that these definitions appearing
at the commencement of Euclid’s argument without explan-
ation present grave difficulties to the student. I hope to
show that these difficulties can be removed and the whole
argument presented in a simple form.

I have given a few geometrical illustrations in this book,
some of which are not included in either of the two editions of
my book entitled The Contents of the Fifth and Sixth Books of
Euclid’s Elements, published by the Cambridge University
Press. I desire, however, to draw special attention to the very
beautiful applications of Stolz’s Theorem (Art. 40) to the proof
of the proposition that the areas of circles are proportional to
the squares on their radii (Euc. XII. 2), see Art. 61; and
also to the proof of the same proposition on strictly Euclidean
lines, for both of which I am indebted to my friend Mr. Rose-
Innes (see Art. 61a). These proofs differ from Euclid’s in a
most important particular, viz. they do not assume the exist-
ence of the fourth proportional to three magnitudes of which
the first and second are of the same kind. 1 think that any one
who has tried to understand Euclid’s argument will find the
proofs here given much simpler and more direct. Euclid uses
a reductio ad absurdum. As against methods other than
Euclid’s the infinitesimals are, by the aid of Euclid X. 1,
handled in a manner which is far more convincing, at any rate
to those who are commencing the study of infinitesimals.

I am aware that in bringing this subject forward, and in
suggesting that a treatment of the Theory of Proportion,
which is valid when the magnitudes concerned are incom-
mensurable, should be included in the mathematical curricu-
lum, I have immense prejudices to overcome.

On the one hand it is the outcome of all experience in teach-
ing that BEuclid’s presentation of the subject is beyond the
comprehension of most people whether old or young, a view
with which I am in complete agreement. The matter is
regarded as res judicata, and most teachers refuse to look
at Euclid’s work, or anything claiming kinship with it.

On the other hand, in suggesting any modification of

a2
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Euclid’s argument, I have before me-the dictum of that great
Master of Logic, Augustus de Morgan, who said, * This same
book (the Fifth Book of Euclid’s Elements) and the logic of
Aristotle are the two most unobjectionable and unassailable
treatises which ever were written,” and if that be so the use-
fulness of my work would be in dispute. What is presented
here is a modification of Euclid’s method, which requires for
its understanding a knowledge of Elementary Algebra. I
find no difficulty in explaining the first nine chapters, which
form Part I., to students who are commencing the study of
the properties of similar figures; and whose intellectual
equipment in Geometry includes a knowledge of the subject
matter of the first four books of Euclid’s Elements. As I have
ventured to make several criticisms on Euclid’s argument, I
hope it will not be supposed that I do not appreciate either
the magnitude or the ingenuity of the work. Its ingenuity is
in fact one of the obstacles, if not the greatest obstacle to its
finding a place in the mathematical curriculum. What is
claimed for the argument set out here is that an easier road
to the same results has been found which is not deficient in
rigour to that contained in the Euclidean text. Dedekind says
in his Essays on Number* that it was especially from the
Fifth Definition of the Fifith Book that he drew the inspira-
tion which led him to the theory of the * cut ” or “ section ”’t
in the system of rational numbers, a theory which is funda-
mental in the Calculus. The propositions in this book furnish
a number of easily understood examples of the * cut” and
thus prepare the student for the study of irrational numbers
in the Calculus. Its subject matter is thus very closely linked
with modern ideas and well worthy of study.

The book is arranged in three parts. The first part, Chap-
ters I.-1X., contains an elementary course, which can be ex-
plained to any one with average mathematical ability. The
fourth, fifth, and sixth chapters should be carefully studied.
Any difficulty that there may be in the first part will be found
in these chapters.- The table of contents gives a clear idea of
their subject matter, and the main points that have to be borne
in mind in the subsequent argument are summed up in Article

* Translated by Beman, p. 40. + Schnitt.
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41. The frequent use of Archimedes’ Axiom in this work is
of great assistance to students when they enter upon the study
of the Calculus.

The second part, Chapters X. and XI., is suitable for stu-
dents preparing for an Honours Course and for Teachers. It
is too difficult for an elementary course, and is not intended
for those who are not really interested in mathematical study.

The third part, Chapter XII., is a commentary on the
Fifth Book of Euclid’s Elements, and contains remarks on
matters which are of interest to those who are concerned with
the history of the ideas involved.

This commentary is not intended to be a complete one, but
deals only with some matters which have not been noticed in
the earlier chapters. The reader who is interested in this
part of the subject should consult Sir T. L. Heath’s Edition
of Euclid’s Elements.

My acknowledgments are due to the Syndics of the Cam-
bridge University Press for their courtesy in permitting me
to use the methods employed in the two editions of my Con-
tents of the Fifth and Sizth Books of Euclid’s Elements ; and to
the Editor of the Mathematical Gazeite for permission to use
a portion of the material of my Presidential Address to the
London Branch of the Mathematical Association, published
in the July and October numbers of the Gazette for 1912.

I am also under great obligation to De Morgan’s T'reatise on
the Connexion of Number and Magnitude, and especially in
connection with the matter of Chapter XII. to Sir T. L.

- Heath’s great edition of Euclid’s Elements.

Some further information will be found in my two papers
on the Fifth Book of Euclid’s Elements in the Cambridge
Phalosophical Transactions, Vol. XVI., Part IV., and Vol.
XIX., Part II.

M. J. M. HILL.

University of London,
University College, 1913.
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THE THEORY OF PROPORTION

PART 1

CHAPTER 1

ARTICLES 1-3

Magnitudes OF THE SAME KIND.

ARTICLE 1

No attempt will be made to give a general definition of the
term ‘ Magnitude.” It is sufficient to .give a number of
examples; e.g. lengths, areas, volumes, hours, minutes,
seconds, weights, etc., are called magnitudes.

ARTICLE 2

It is, however, important to make precise the sense in

which the term
“ magnitudes of the same kind >’

will be employed.

Some examples of what is meant will first be given.

All lengths are magnitudes of the same kind.

All areas are magnitudes of the same kind.

All volumes are magnitudes of the same kind.

All intervals of time are magnitudes of the same kind.

ARTICLE 3

Characteristics of Magnitudes OF THE SAME KIND.

In the next place the characteristics of magnitudes of the
same kind will be specified.*
* Stolz’s account of the properties of absolute magnitudes in his Alige-
meine Arithmetik, Erster Theil, page 69, is followed in essentials.
B
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These will be readily admitted if we consider the mag-
nitudes to be segments of lines, or areas, or volumes, or
weights, etc.

A system of magnitudes is said to be of the same kind when
the magnitudes possess the following characteristics :

(1) Any two magnitudes of the same kind may be regarded
as equal or unequal.
In the latter case one of them is said to be the
smaller, and the other the larger of the two.

(2) Two magnitudes of the same kind can be added
together. The resulting magnitude is a magnitude
of the same kind as the original magnitudes.

This property makes it possible to form multiples of
a magnitude.

For denoting any magnitude by A4, then A+4 isa
magnitude of the same kind as A. It will be denoted
by 24.

Then 24 +A is a magnitude of the same kind as A.
It will be denoted by 34. And so on, if » denote
any positive integer, 74 +4 is a magnitude of the
same kind as A and will be denoted by (r+1)4.

The Commutative and Associative Laws apply to the
Addition of magnitudes of the same kind. So that

A4+B=B4+A. The Commutative Law.
(A+B)+C=A4(B+0). The Associative Law.

These laws can be conveniently illustrated by taking

the case in which 4, B and C represent lengths.

(3) If 4 and B be two magnitudes of the same kind, and
A be greater than B, then another magnitude X of
the same kind as A and B exists such that

B+4+X=A.
This may also be written
X=4-B.

This can be illustrated by taking for 4 and B two
lengths of which A is the longer. If, then, a
length equal to B be cut off from A4 the remainder
left is X. :
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(4) If A be any magnitude, and = any positive integer
whatever, then a magnitude X of the same kind
as A exists such that

nX=A4.
This may also be written in either of the forms

X=14
n
or X=4

n

It can be illustrated by dividing a segment of a
straight line into any number of equal parts.

It should be mentioned that if A represent an arc of
a circle, although it is not in general possible by
the aid of the ruler and compasses to divide A
into n equal parts, yet it is assumed that an arc

X=% does exist.

(5) If A be greater than B, a multiple of B exists which
is greater than 4.
The fifth characteristic is known as the Axiom of Archi-

medes. It is not a consequence of the preceding four char-
acteristics.

The following deduction from the above is specially useful
in the Theory of Proportion :

If A and B are two magnitudes of the same kind, and any
multiple whatever of 4, say r4, is chosen, and any
multiple whatever of B, say sB, is chosen, then one
and only one of the alternatives

14 >8B, rA=sB, rA<sB
always exists, and it is assumed to be possible to
determine which one of these alternatives exists.



CHAPTER II

ARTICLES 4-12

Propositions Relating to Magnitudes and their Multiples.

ARTICLE 4

(Ix what follows, magnitudes are denoted by capital letters
and positive integers by small letters.)

Prop.
Prop.
Prop.
Prop.
Prop.
Prop.

I. m(A+B+C+...)=nd+nB+nC+....
1I. (a+b+c+...)N=aN+bN—|—cN+....
II1.  (r(s))4 =r(sd) =s(rd) =(s(r))A.
IV. If A>B, then r(4A—B)=r4d —rB.
V. If a>b, then (a—b)R=aR—bR.
VI. If A>B, then r4A >rB.
If A =B, then r4 =rB.
If A< B, then rd<rB.

Conversely. If 74 >rB, then 4 >B.

If rA =rB, then A =B.
If rA <rB, then A <B.

Prop. VII. If a>b, then aR >bR.

If @ =b, then aR =0bR.
If ¢ <b, then a R<bR.

Conversely. If aR >bR, then a >b.

If aR =bR, then a =b.
If aR<bR, then a<b.

Prop. VIII. Tf X, Y, Z are magnitudes of the same kind,
and if X >7Y +Z, then an integer ¢ exists such that X >tZ>7Y.

Corollary. If 4, B, C are magnitudes of the same kind, and
A>B, then integers n, ¢ exist such that nd >iC >nB.

ARTICLE 5

Prop. I. (Euc. V. 1))

nA+B+C+...)=nA+nB+nC+....
4
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The simplest case of this is

n(d+4B)=nd +nB.

For a rigid deduction of this from the Associative and Com-
mutative Laws I refer to my edition of Euclid V and VI, 2nd
edition, pp. 125-6. It is tedious, and the beginner should not
be stopped at this stage with it. It is sufficient to say that

‘ the effect of the Associative and Commutative Laws is this,
that when any number of magnitudes are to be added together,
they may be arranged in any order and grouped in any way,
the magnitudes in each group may be first added together,
and then finally the sum of the groups can be found, and that
the result so obtained will always be the same.

Thus n(4-+B) is the sum of n groups, each of which is
A+B.

The magnitude 4 occurs n times; and therefore taking
these together, their sum is nd.

The magnitude B occurs » times ; -and taking these to-
gether, their sum is nB.

The sum of the two groups is nd +-nB.

o n(d+B)=nd +nB.

If on both sides B be replaced by C, and then 4 by 4 +B,

it follows that
n((4A+B)+C)=n(4+B)+nC.
sn(d+B+C)=nd +nB-+nC.

Proceeding in this way, it follows that

n(d+B+C+...)=nA+nB4+nC+....

ARTICLE 6
Prop. II. (Euc. V. 2))
(a+b+c+...)N=aN+dN+cN+...
The simplest case of this is
(a+b)N =alN +bN.

Now (@+b)N means that NV is taken ¢ -+b times.
Group the first a N’s together. Their sum is aN.
Group the remaining b N’s together. Their sum is bN.

o (@+b)N=aN +bN.
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If on both sides b be replaced by ¢, and then a by (a+b) it
follows that

(6 48)+0)N=(a+DB)N +cN
s (@+-b4-c)N=aN +bN +cN.
Proceeding in this way it follows that
(@+b+ct... ) N=aN-+-bN+cN+. ...
For a rigid deduction of the proposition from the Associa-

tive and Commutative Laws see my Euclid V. and V1., 2nd
edition, p. 127.

ArTICLE 7
Prop. I11. (r(s8))A=r(sd)=s(rd)=(s(r))A4.
In Prop. I., suppose that each of the magnitudes B, C, ...

is equal to A, and that there are, including 4, altogether
s magnitudes. \

Then nA+B+C+...)1is n(sd),
and nA+nB+nC+-. .. is s(nd).
<o n(sd)=s(nd).
Orreplacingnbyr, r(sd)=s(rd)................ (I).

Next in Prop. II. suppose that each of the integers a,b,¢, . . .
is equal to s ; and that there are r such integers.

Then (@4+b+c+...)N becomes (r(s))N,
and aN +bN +cN ... becomes r(sN).
s (r(s)) N=r(sN),
or replacing N by A4, ((s))A=ri(sANE L. (Im).
Interchanging s and 7, (s(r))A=s(rd)......... (11I).

Then from (I), (IT), (III) it follows that
(r(s))A=r(sd)=s(rd)=(s(r))4.
Corollary : s[{n(r)} Al=r[{n(s)} 4]
To prove this, observe that
{n(r)}A=n(rd)=r(nd)

= s[{n(r)} A]=s[r(nd)]
=1{s(nd)]

=r[{n(s)} 4]
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This Corollary is not required until Propositions XVIIL.
and XX. are reached (see Arts. 51, 53).

The effect of Prop. ITI. and the Corollary amount to this,
that the factors of a product when they are all positive
integers may be taken in any order and grouped in any way.

Beginners will find the Corollary a little difficult, and too
much time ought not to be spent on it. It is enough to call
attention to the effect of the Proposition and Corollary as
just stated.

* ARTICLE 8

Prop. IV. If A>B, then r(4—B)=rd—rB. (Euc.V.5.)

Since 4 >B, then by Art. 3 (3) a magnitude C exists such
that

A=B+C,
Sord =rB+1rC,
s rC=rdA—rB,

but C =4 —B,

. 1(4d—B) =rA—rB.

ARTICLE 9

Prop. V. If a>b, then (a—b)E =vaR~—bR. (Euc. V. 6.)

Since a, b are integers, and a >b, an integer ¢ exists such
that

a=b+c,
s aR=(b+¢)R=bR—+cR (Prop. 11.)
.. ¢cR=uR—bR,
but since @ =b+-c,
s.c =a—b,

S (@e—b)R=aR—bR.

AgrTIiCLE 10

Prop. VI. If 4>B, then rA>rB,
If A=B, then r4=rB,
If A<B, then rA<rB.
Conversely, If r4 >rB, then A>B,
If rA=rB, then 4 =B,
If rA <rB, then A<B.
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If A >B, then, as in Prop. 1V.,
r4 =rB+1rC, where A =B+,
L S
If A =B, then r4 means (A+A4-.... to r terms)
=(B+B+.... tor terms)
=rB,
.rd=rB.
1f A<B, then B>A4,
and .. by the first case
rB>rA,
s rA<rB.
The Converse Proposition follows as a logical consequence
of the preceding.
Take for example the first part.
If rA >rB,
then since 4 and B are supposed to be of the same kind, one of
the three alternatives must hold :
A>B, or A=B, or A<B.

If A =B, then r4 =rB, by what has been shown already,
which is contrary to the hypothesis that »4 >rB.

Hence 4 is not equal to B.

If A<B, then r4 <rB, by what has been shown already,
which is contrary to the hypothesis that r4 >rB.

Hence 4 is not less than B.

Consequently A is greater than B.

The remaining cases can be proved in like manner.

ArTICLE 11

Prop. VII. If a>b, then aR>bR,
If a=b, thenaR=>HR,
 a<b, then aR<bR.
Conversely, If aR>bR, then a>b,
If aR=bR, then a=b,
If aR<bR, then a<b.
If a >b, then, as in Prop. V.,
aR=bR-}cR, where a =b-c,
. aR>bR.
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If a =0, then aR means (R+R+.... toa terms)
=(R+R+.... to b terms)
—bis
AR =bl;
If a<b, then b >a,
. by the first case
bR >aR,
.. aR<bR.

The Converse part of the Proposition follows as a logical
consequence from the preceding, as in Prop. VI.

ARTICLE 12

Prop. VIII. If X, Y, Z are magnitudes of the same kind,
and if X >Y +Z, then an integer ¢ exists such that

X>tZ>Y.

Corollary. If 4, B, C are magnitudes of the same kind,
and if 4 >B, then integers =, ¢ exist such that

nd >tC >nB.

Since X >Y 47,
o ROV
It may be that X is also greater than 2Z or 3Z or 4Z, and
SO on.
Suppose that ¢Z is the greatest multiple of Z which is less
than X.
Then (¢+1)Z must be either greater than X or equal to X.

If ¢(+1)Z>X, If ¢+1)Z=X,
then since X >Y +2Z, then since X >Y 4 Z,
SN2 >Y4Z, . S22 >Y+Z,

S tZ>Y. LA

Hence in both cases 1Z>7Y.

But also tZ<X.

Consequently X >tZ>7Y.

This proposition is not an easy one for beginners to grasp.
It may be illustrated graphically thus:
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Suppose that X, Y, Z are lengths.
On one side of a straight line mark off a length OB =7,
and BC =Z.

b On the other side mark off 04 =X.
Then since X>Y-+Z,
-C .. 0A>0B4BC,
e . 04>0C.
-B If now, starting from O, successive lengths equal
to BC be marked off, one of the markings must fall
3 between B and 4, because B4 >Z. Let this mark-
ing be D. Let OD be equal to ¢BC), i.e. tZ.
T Then since 04 >0D >0B,
R 6 5 %
-
Fie. 1.

To prove the Corollary, observe that since 4 >B, .. A—B
is a magnitude of the same kind as 4 and B, and therefore
of the same kind as C.

Hence, by Archimedes’ Axiom an integer » exists such that

n(4—B)>C,
s.nd—nB >0,
. nA >nB+C.

Putting, in Prop. VII1I.,
X =nd; Y =nB, Z=C,
it follows that an integer ¢ exists such that
nd >tC >nB.



CHAPTER III

ARTICLES 13-18

The Relations between Multiples of the same Magnitude.
Commensurable Magnitudes.

ARTICLE 13

Ir two magnitudes are multiples of the same magnitude, they
may be said to be measured by that magnitude. Thus lengths
of 7 feet and 13 feet can be exactly measured by an undivided
foot rule.

These two lengths are said to have a common measure, viz.
1 foot, and are called commensurable.

If a length of 2 feet and a length of 1 foot be taken the
first is said to be twice as great as the second, whilst the second
is said to be half as great as the first.

Thus if these two lengths be considered, not separately,
but in relation to one another, they determine two numbers,
viz. 2 and .

Note that in each case from the two lengths and the order in
which they are taken, a number which is not a length has been
determined, and that the unit in terms of which the lengths
are measured does not appear in the result.

In this case it is said that
The ratio of 2 feet to 1 foot is 2.
) 5 » 1foot to 2 feet is 1.
Similarly :
The ratio of 3 inches to 1 inch is 3
53 »» s 3inches to 2 inches is 3.
i »» s 2inches to 3 inches is £.

2 TR 3 ya»I'dS to 2 yards iS %—
»s s 3 2 yards to 3 yards is £.

J91
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The ratio of 3 yards to 2 feet

=the ratio of 9 feet to 2 feet=3.
The ratio of 2 yards to 3 feet

=the ratio of 6 feet to 3 feet=5=2.
The ratio of 5 miles to 7 miles=3.
The ratio of 5 miles to 7 furlongs

=the ratio of 40 furlongs to 7 furlongs=42.
The ratio of 7 minutes to 105 seconds

=the ratio of 420 seconds to 105 seconds=%22=4.
The ratio of 13 hours to 2 days

=the ratio of 13 hours to 24 hours=13.

In all these cases the unit in terms of which the magnitudes
are measured does not appear in the result. [When there are
two units, those units are magnitudes of the same kind, e.g. an
hour and a day, and the two magnitudes are expressible in
terms of the same unit.]

Similarly it may be said that
The ratio of 34 to 24=43.

3
X 9 24 to 3A='§'
» o oo rdtod=I=r.
s s s, nA to rA=%,7-’.

, ) ”
SR B KT D) nA=ﬁ.

Thus if two multiples of the same magnitude are given,
and the order in which they are taken is fixed, then these par-
ticulars determine a number.

This number is the quotient of one positive whole number
by another. It is usually called a vulgar fraction. All positive
and negative whole numbers or fractions, which are quotients
of one whole number by another, are called rational numbers,
but we shall only have to deal with those which are positive in
this book.

The usual notation for the ratio of X to Y is
X%
and consequently the ratio of Y to X is denoted by
P G
It is advisable to write these in brackets, thus
(X :Y)and (Y : X),
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because beginners who have not grasped the idea that the
whole symbol represents a single number not infrequently
imagine that X : Y still represents the two distinct things
X and Y.

GEOMETRICAL ILLUSTRATIONS

ARTICLE 14

(i.) There are two parallelograms on bases 3 inches and
2 inches respectively.

The height of each parallelogram is 1 inch.

Prove that the ratio of the areas of the parallelograms is
equal to the ratio of the lengths of the bases.

Let the parallelograms be ABCD and EFGH.

T |

F1e. 2.

Since they have the same height they may be placed be-
tween the same parallels as in the figure.

Let the base AB represent 3 inches, and the base EF
2 inches.

Then (AB: EF)=3.

On 4B mark off 4J=JK=KB to represent 1 inch, and on
EF mark off EP=PF to represent 1 inch.

Draw JM, KL parallel to AD, and PQ parallel to EH.

Then the five parallelograms

AJMD,JKLM, KBCL, EPQH, PFGQ

are equal in area, for they stand on equal bases and are between
the same parallels.

Consequently 4ABCD=3(4JMD),
EFGH=2(AJMD),
- (ABCD : EFGH)=34,
but (AB:EF)=3,
. (ABCD : EFGH)=(AB : EF).
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ARTICLE 15

(ii.) There are two triangles on bases 4 inches and 3 inches
respectively.

The height of each triangle is 2 inches.

It can be shown as in the last example that the ratio of the
lengths of the bases of the triangles is 4, and also that the ratio
of the areas of the triangles is 4.

Hence the ratio of the areas of the triangles is equal to the
ratio of the lengths of their bases.

ARTICLE 16

(iii.) In two equal circles there are arcs whose lengths are
54 and 74 respectively, 4 representing the length of a certain
are.
Suppose that the arc 4 subtends an angle a at the centre
of either circle ; then the arc 54, being divisible into 5 equal
parts, each of which subtends an angle a at the centre of its
circle, will subtend an angle 5a at that centre.

Similarly the arc 74 subtends an angle 7a at the centre of

Fie. 3.
Now the ratio of the arcs=(54 : 74)=3.
The ratio of the angles subtended by the arcs
:(5(1 . 7a)=~p?-—
Hence the ratio of the arcs is equal to the ratio of the angles
they subtend at the centre.

Tt will be noticed that in each of these examples the par-
ticular numbers which occur, viz. 3 and 2 in the first, 4 and
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3 in the second, 5 and 7 in the third, do not appear in the final
result, which is a general proposition having no apparent con-
nection with the numbers that occur. And in fact each of
these propositions can be generalised.

It will be sufficient to take the first.

ARTICLE 17 .

Two parallelograms, situated between the same parallels, have
commensurable bases, to prove that the ratio of the area of the
first parallelogram to the area of the second parallelogram s
equal to the ratio of the length of the base of the first parallelo-
gram to the length of the base of the second parallelogram.

A, NS, » R, el 1 e Sl LI
VR AN R R E N @ F
Fic. 4.
Let the parallelograms ABCD, EFGH have their bases

AB, EF commensurable.
Let AK be a common measure of AB, EF.

Suppose that AB=r(4K),
EF=s(AK).

Let AB, EF be divided as in the figure into parts each
equal to AK, and through the points of division of 4B let
straight lines be drawn parallel to 4D ; and through the
points of division of EF let straight lines be drawn parallel to
EH, so that each parallelogram is divided up into equal
parallelograms.

Since the bases of all these parallelograms are equal, and
they are situated between the same parallels, they are equal
in area.

Since AB contains r lengths each equal to 4K, therefore

the parallelogram 4 BCD contains r parallelograms each equal
to AKPD.

.. ABCD=r(AKPD).
Also EF=s(EN)=s(AK).
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Thus EF contains s lengths each equal to 4K,
.. the parallelogram EFGH contains s parallelograms each
equal to AKPD,
. EFGH=s(AKPD).
Since AB=7r(4K),
and EF=s(4K);
. (AB: EF)=}.
Since ABCD=r(AKPD),
and EFGH=s(AKPD);
.. (ABCD : EFGH)=}%
" (ABCD : EFGH)=(AB : EF).
Another step may now be taken.

ARrTICLE 18
Suppose that there are three magnitudes 4, B, C which are
all multiples of the same magnitude @.
Let A =a@, B=b@, C =c@G, where a, b, ¢ are some positive
integers.
Then the ratio of 4 to O,
i.e. of a@G to c@,

is by definition §.
Similarly the ratio of B to C' is &

o
Now if 4 >B, If A=B, If A<B,
then aG >b@, then aG=0bG, then aG<b@,
exar=b} < W=, ..a<b (Prop.VII).
RPN 2 9L -~ ach
¢ ¢ ¢c c c ¢C

(A0 >(B:0). | (4:C)=(B:C).|.. (4:0)<(B:0).

Hence if 4, B, C are multiples of the same magnitude,
Then, if 4> B, I 4=8, If A<B,

(4:Cy>(B:0).then (4 :C)=(B: C).[then (4:C)< (B : ).

These results have been obtained on the hypothesis that
4, B, C are multiples of the same magnitude.

It will be noticed that the fact that 4, B, C are multiples
of the same magnitude does not appear plainly in the statement
of the results. It appears indirectly because only in this case
has the meaning of the symbols (4 :C) and (B:C) been
defined.
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Let it be supposed that 4, B, C represent any lengths, then,
if A= B, the magnitude of 4 compared with that of C is the
same as that of B compared with that of C. This idea is
fundamental.

It will be noticed that it does not involve the condition
that 4, B, C have a common measure. The result is expressed
by saying that if A=2DB, then the ratio of 4 to C is equal to that
of B to C, or more shortly (4 : C)=(B : C), and it will be proved
later that the statement has a meaning when 4, B, C have no
common measure.

If, next, 4 be greater than B the magnitude of A compared
with that of C is greater than that of B compared with that of
C. This idea, too, is fundamental. It will be noticed that it
does not involve the condition that A, B, C have a common
measure. The result is expressed by saying that if 4 be
greater than B, then the ratio of 4 to C is greater than that of
B to C, or more shortly (4 : C)>(B : C), and it will be proved
later that the statement has a meaning when 4, B, C have no
common measure.

I think it must be evident to any one who compares these
two fundamental ideas with the Fifth and Seventh Definitions
of Euclid’s Fifth Book that they are of a far simpler nature
than those definitions, and that they must have formed the
starting-point from which the book was built up.



CHAPTER 1V
ArTICLES 19-21

Magnitudes oF THE SAME KIND which are ot Multiples of the
same Magnitude. Incommensurable Magnitudes.

ARTICLE 19

It will now be shown that if two magnitudes of the same kind
be chosen at random they may not have a common measure.
To prove this all that is necessary is to show that it is
possible to choose some two magnitudes of the same kind,
out of the infinite number that exist, which have no common
measure.
ARTICLE 20

Take the diagonal and side of a square.

If possible let them have a common measure, viz. a
length L. Let the side of the square be p times L, and let
the diagonal of the square be ¢ times L, where p, ¢ are some
positive whole numbers. ‘

Now the square on the diagonal has twice the area of the
square on the side.

. gRa=dpt,

If p, ¢ have a common factor, let their greatest common

factor be g.

Let g=r, z)=s.
q 9

Then r, s have no common factor and r2=2s2
As r, s have no common factor they cannot both be even,
and therefore the following cases only need be considered :

(i.) r odd, s odd.

(ii.) r odd, s even.

(iii.) r even, s odd.

In the first and second cases 72 is odd, and cannot there-

18
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fore be equal to 2s2, which is even. Hence the first and second
alternatives cannot hold.

In the third case put r=2m.

This gives 2m2=s2.

But 2m? is even, and s? is odd.

Hence the third alternative cannot hold.

Hence the equation r*=2s* cannot hold.

Consequently the side and diagonal of a square have no
common measure.

It has thus been proved that magnitudes of the same
kind exist which have no common measure.

ARrTICLE 21

Having reached this result the question arises :

If two magnitudes have no common measure,
‘can one of them have a ratio to the other,
and if so how is it to be measured ?

Let us return to the study of the
case of the diagonal and side of a
square and see where it leads us.

Fie. 5,
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Suppose that 04 is the diagonal and OB the side of the
square.

On 0A measure off OP=0B, and 0Q=20B.

It will be found that

OP <04 <0Q.
Now (OP:0B)=(0B:0B)=1,
(0Q : OB)=(20B : OB)=2.

Next divide OB into tenths, and set off tenths of OB along

the diagonal OA.

If 0R=14(%—§) and 08:15(%—3) it will be found that

OR<0A<OS.
OB OB 14

(08 : 0B)=(15 OT?) : 10(-01-65 )=%—;

Next divide OB into hundredths and set off hundredths of
OB along OA.

If 0T=141<—(1)—£) and 0U=142((1—)—0%), it will be found that

0T <04<0U.

Now (OT : 03):(141(?——0]%) : 100(%)%»:%,

OB OB 142
v :0B)=( 142(1—06 : 100(?&)»“%'
This process may be continued indefinitely.
It is possible to construct a series of steadily increasing
lengths
0P, OR, 0%5. ., ;
approaching closer and closer in length to the diagonal 0OA,
but never actually reaching it, each of them having a ratio
to OB ; and also a series of steadily decreasing lengths

0Q, 08,0U,....*
approaching closer and closer in length to the diagonal OA,

* The scale on which the figure is drawn is too small for the insertion of
the points 7', U.
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but never actually reaching it, and each of them having a
ratio to OB.

This process never comes to an end, because however much
OB may be subdivided, whether into tenths, hundredths,
ete., or into any number of equal parts, no part of OB can
ever be found of which 04 is a multiple, as has just been
proved in Art. 20.

It would be incorrect to conclude from these facts that
OA has not a ratio to OB.

All that they justify is that if OA has a ratio to OB it is not
a rational number. If,then, OA has a ratio to OB, and this ratio
18 a number of some kind, then there must be numbers which are
not rational.



CHAPTER V

ARTIC]:_.ES 22-28

Extension of the Idea of Number.

ARTICLE 22

WEz are thus led to enquire whether it is possible to widen the
idea of number so as to include numbers which are not rational.
Such numbers will be shown to exist, and when they have
been defined it will be possible to construct a theory of ratio
which is applicable when 4 and B are two magnitudes of the
same kind which have no common measure, and then it will
appear that the ratio of 4 to B is a number of this kind. Such
numbers are called irrational numbers.

The subject will be made clearer by going back to some
earlier stages in the extension of the idea of number.

Commencing with the series of positive whole numbers, it
is seen that if any two positive whole numbers are added to-
gether, their sum is also a positive whole number, and no new
kind of number is required to express the result of the opera-
tion of addition.

If, however, any two positive numbers are taken at random,
and one is subtracted from the other, then the result is not
always a positive whole number. In order that it may be
possible to express the result of the subtraction as a number
in all cases, it is necessary to widen the idea of number by
introducing the idea of the negative whole number.

If, next, any two positive whole numbers be taken and
multiplied together the result is always a positive whole num-
ber, and no new kind of number is required to express the
result of the multiplication.

If, however, any two positive numbers be taken and one
of them divided by the other, the result of the division cannot

22
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always be expressed by a positive whole number. It cannot
in general be expressed as a number at all until the idea of
number is widened by introducing the idea of the vulgar
fraction.

To express the result of subtracting any positive vulgar
fraction from any other it is necessary to introduce the idea -
of the negative vulgar fraction.

In all these cases the idea of number has been widened by
endeavouring to express as numbers the results of certain
operations.

Thus, starting from the idea of the positive whole number,
the idea of number has gradually been widened so as to include
positive vulgar fractions, negative whole numbers and negative
vulgar fractions.

Positive whole numbers and positive vulgar fractions may
be regarded as magnitudes of the same kind in the technical
sense explained in Article 3. :

Similarly negative whole numbers and negative vulgar
fractions may be regarded as magnitudes of the same kind.

All these numbers together are said to form

"THE SYSTEM OF RATIONAL NUMBERS.

ARTICLE 23

Every number in this system has a definile place WITH REGARD
TO the other numbers, and provided that all fractions are sup-
posed to be reduced to their lowest terms, each place is occu-
pied by one and only one number.

If % and (Ci be any two positive numbers in the system,
then the rule for determining their order is as follows :

oo Na Lad
Since P
SN CENDG
and since 10
% will be said to precede or be less than (% if ad <bc ;

% will be said to follow or be greater than Uﬁl if ad > be.

The case in which ad=bc can only occur when either
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% or t% or both of them have not been reduced to their lowest

terms. In this case they are said to be equal.
Suppose that when reduced to their lowest terms the result

is jg Then both are replaced by the single number ;.*

ARTICLE 24}

Let us now put to ourselves the question :

Does anything exist, which is mot a RATIONAL number,
which s nevertheless entitled to be ranked as a number ?

If so we may agree that it must be in the technical sense
of the words, a magnitude of the same kind as the rational
numbers.

Now the first of the characteristics of magnitudes of the
same kind, enumerated in Chapter I (Article 3 (1)) is this:

‘“ Any two magnitudes of the same kind may be regarded
as equal or unequal.

“In the latter case one of them is said to be the smaller
and the other the larger of the two.”

Suppose that g is any rational number whatever, and that
¢ is a magnitude of the same kind in the technical sense as the
rational numbers, but yet is not a rational number.

Thus ¢ and % are in the technical sense magnitudes of the
same kind.

Hence either 7 is equal to %, or 7 is not equal to .

Now 7 cannot be equal to g, for then 7 would be a rational
number contrary to the hypothesis.
=9 r
Hence i is not equal to 3,

and .. either Z>g or i’<g.

* The negative numbers precede the positive numbers, and are arranged
according to the following rule :

a @

If 5 precede @

a

b
These may be written %<§',

then —3 precedes —

and —ﬁ <——%.
For the purposes of this book the negative numbers will not be required.
t+ For a more complete treatment of this subject see Chapter XI., Arts.
68-69
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In order that this result may be of any use, it is necessary
to have the means of deciding whether 7 is greater or less than
any rational number whatever.

ARTICLE 25

As a particular case take the number known as the square
root of 2. If it be defined as that number whose square is 2,
then it is plainly not a rational number g, for it has been
shown that no integers r and s exist such that r2=2s%, and

therefore there is no rational number g such that

(==

Let us now consider the process for finding approximately
the square root of 2. In essence it is a process for obtaining
rapidly the results described below.

Commencing with the natural numbers 1, 2, .... we find
that 2 lies between 12 and 22; we say, therefore, that 4/2 lies
between 1 and 2. Take next the numbers between 1 and 2
which have a figure in the first place of decimals, and include
1 and 2 as well.

These are 1, 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1.8, 1.9, 2.
Squaring each of these it will be found that 2 lies between
(1-4)2 and (1-5)2.

We say therefore that 4/2 lies between 1-4 and 1-5.

Taking next between 1-4 and 1-5 inclusive the numbers :
1-4, 1-41, 1-42, 1-43, 1-44, 1-45, 1-46, 1-47, 1-48, 1-49, 1-5
it will be found that
2 lies between (1-41)2 and (1-42)2.
We say, therefore, that
1/2 lies between 1-41 and 1-42.
This is a process that can be continued indefinitely. It
gives us an infinite series of numbers,
1, 14, 141, 1-414, 1-4142, . ...
in ascending order of magnitude whose squares are all less
than 2; and we say that /2 is greater than each member of
this series. It gives us also an infinite series of numbers,
2,15, 1-42, 1-415, 1-4143, . ...
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in descending order of magnitude whose squares are all greater
than 2; and we say that 4/2 is less than each member of
this series.
Now suppose ”is any rational number ; then it is known
that either
r2< 252 or else 72 >>2s2,

and .. either (§)2<2 or else (£)2>2.
Then, as in the preceding cases, we shall say if (£)2<2,
then (g) is less than the square root of 2; but if (§)2>2

then g is greater than the square root of 2.

b

On this understanding the square root of 2 has a definite
place WITH REGARD TO the system of rational numbers. It is
not itself a rational number, but whenever any rational
number is assigned, it is possible to say whether it is greater
or less than the square root of 2. The square root of 2 fills
the gap between those rational numbers whose squares are
greater than 2 and those whose squares are less than 2.
We proceed to generalise the idea we have reached.

ARTICLE 26

An irrational number ¢ will be regarded as known, when-
ever any rule has been given which will make it possible to
dlstlngulsh those rational numbers which are greater than
7 from those which are less than 3, because this knowledge
makes it possible to determine all the properties of ©. The
effect of the adoption of such a rule is that

Any irrational number has a definite place with regard to
the system of rational numbers. It fills the gap between those
rational numbers which are greater than it and those rational
numbers which are less than it.

Mode of Distinguishing between Unequal Irrational Numbers.

ARTICLE 27

Suppose next that ¢ and j are two irrational numbers.
If they are not equal to one another, they occupy different
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places with regard to the system of rational numbers, and
therefore some rational number g must fall between them.

Hence either ¢ <5<,
and then ¢ is said to be less than j ;
or else ¢ >§ >7,
and then 7 is said to be greater than ;

Conditions for Equality of Irrational Numbers.
ARTICLE 28

If, however, ¢ and}' are the same irrational number, then
they have the same place with regard to the system of rational
numbers, hence no rational number can lie between them.

T# ez
and if g represent any rational number whatever, then

S rope AR, S el !
if ¢ >, it is necessary that j>¢;

but if 3<%, it is necessary that j<%.
Conversely, if 75 represent any rational number whatever,
and if it be known
that whenever ?>§, then §>g ;
and whenever E<g, then j <£,
then will 7=j7.
For since % represents any rational number whatever,

the data amount to the statement that‘no rational number
whatever can lie between i and 7, and .. 1=j.



CHAPTER VI

ARTICLES 29-41

ON THE RATIOS OF MAGNITUDES WHICH HAVE NO COMMON
MEASURE.

Principles on which the Theory of the Ratio of Magnitudes
which have no Common Measure is based.

ARTICLE 29

Havine now explained how irrational numbers are defined
the next step is to lay down certain principles upon which
a theory of the ratio of magnitudes which have no common
measure can be constructed.

It was seen in the third chapter that when 4, B, C were
magnitudes of the same kind which had a common measure,
then '

(1) if A>B, (2) if A=B8,
then (4 : C)>(B:0); ; then (4 : C)=(B:0);
(3)* if 4<B,

then (4 : C)<(B: 0).

The new theory of ratio is constructed so as to satisfy the
above conditions (1), (2), and (3) in all cases, whether 4, B, C
have or have not a common measure.

Since these conditions are exactly those which held good
when 4, B, C have a common measure, there will be no con-
tradiction between this and what precedes.

This will have prepared the way for
ARTICLE 30
Prop. IX. Let it be assumed to be true that, when 4, B, C

* It is to be observed that condition (3) is not distinet from (1).
28
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are magnitudes of the same kind, whether they are multiples of
the same magnitude or not,*

(1) if A>B, (2) if A=B,
then (4 : C)>(B: C); then (4 : C)=(B:0C);

(3) if A<B,
then (4 : C)<(B:0)3

then it will be proved that it follows as a logical consequence
that
(4) if(4:C)>(B:0), (5) if (4 :0)=(B:0),
then 4 >B; then A=D0B;

(6) if (4:C)<(B:0),
then A <B.

It will be sufficient to take case (4).
In this case (4 : C)>(B: ().
Now since 4 and B are magnitudes of the same kind,

SA>Bor A=Bor A<B.

Now if A=B, then, by (2), (4 : C)=(B : C), which is con-
trary to the hypothesis that (4 :C)>(B:0).

Hence 4 is not equal to B.

And if 4 <B, then, by (3), (4 : C)<(B : C), which is con-
trary to the hypothesis that (4 : C) >(B: O).

Hence A is not less than B, and it was shown that 4 was
not equal to B.

~. A must be greater than B.

The other two cases can be proved in like manner.

We shall refer to the assumptions

(1) if 4 >B, (2) if A=B,

then (4 : C)>(B:C); then (4 : C)=(B: C);
(3) if A<B,
then (4 : C)<(B: C),

in what follows as the fundamental assumptions or principles
on which the theory of ratio is constructed.

* Tt will be proved later on that in this case the symbols (4 : C) and (B : C)
have & meaning.
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Since the third is included in the first, they are equivalent to
only two assumptions. It will be found that they make it pos-
sible to construct a theory of the ratio of magnitudes of the
same kind, whether they have or have not a common measure,
which is consistent with and includes the former theory.

We shall require thé following Proposition :

ARTICLE 31
Pror. X.
(i) 1f 74 >sB, then is (4 : B)>3;

(ii.) 1f rA=sB, then is (4 : B)=1-‘f g
(iii.) If 4 <sB, then is (4 : B)<&.
Conversely
(iv.) If (4 : B) >§, then is 74 >sB ;
(v.) If (4 : B)=§,, then is rd=sB ;
(vi.) If (4 : B)<J, then is 74 <sB.
To prove (i.) :
By Art. 3 (4)
a magnitude X exists such that
IR
- if 74 >sB,
then r4 >s(rX),
S B (T )i s o Prop. III.
i B e AR L SN Prop. VI.

. by the fundamental assumption (Art. 29)
(4 : B)y>(sX : B),
so(4: B)y>(sX 1 rX),
. (4:B)>E,
To prove (ii.) :
In this case r4=sB,

but B=rX,
cSorA=s(rX),
e e LS s o Prop. III.

A =t Qe 3 TR Prop. VI.
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.. by the fundamental assumption (Art. 29)
(4 : B)y=(sX : rX)

(It is to be specially noted that if any relation of the form
rd=sB exist, then 4 and B have a common measure. This
result will be useful afterwards.)

To prove (iii.) :
In this case r4 <sB,
B=rX,
sord <s(rX),
A (sNE) S UNSS Prop. I1I.
s ¥ AR Prop. VI.
.. by the fundamental assumption (Art. 29)
(4:B)< (sX B),
So(4: B)<(sX : 7 X),
L (4:B)<L
To prove (iv.) :
In this case (4 : B) >;.
Now B=rX,
and $=(sX : rX)
=(SX 3 B),
“(4:B)>(sX:B),
B L Wit o o GOPET Prop. IX.
»ord >r(sX),
L AT s (2XG) S S e Prop. II1.
sord >sB.
To prove (v.):
In this case (4 : B)=$.
Now B=rX,
g:(sX :rX)
=(sX : B),
" (4 :B)=(sX : B),
S SN, s e Prop. IX.
SorA=r(sX)
Ao, s 350 & b b 55 e Prop. 11I1.
ord=sB.
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To prove (vi.):
In this case (4 : B)<3.
Now B=rX

S=(sX : 1X)

=(SX 5 B),
o (4 :By<(sX : B),

R o S e Y Prop. IX.
sord <r(sX),

e B A IR Ot w7 Prop. III.
srd<sB.

The Ratio of Two Magnitudes OF THE SAME KIND 78 @
Number Rational or Irrational.

ARTICLE 32

It is now possible to show that if 4 and B be two magni-
tudes of the same kind, then the ratio of 4 to B is a number
rational or irrational.

Let any rational number 'o% be taken, it will be shown that

it is possible to determine whether (4 : B) is greater than %L-
or equal to ,—ut—, or less than % For since 4 and B are magni-
tudes of the same kind, ud and ¢B are magnitudes of the same

kind, and hence one of the following alternatives must hold :

(1) ud >tB; (2) uA=tB; (3) ud<tB;
and hence by Prop. X.

If uA >1B, then (4 : B)>L.

If uA=1B, then (4 : B)=L.

If ud <iB, then (4 : B)<1_t1,'

Hence it is possible to determine the position of (4 : B)
with regard to the system of rational numbers.

Hence (4 : B) is a number rational or irrational.

Note 1.—In the case in which some integers ¢, u exist such
that (4 : B)=7¢ti , then (4 : B) is a rational number.

In this case 4 and B have a common measure (see Prop. X.).
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Note 2.—If 4 and B have no common measure, then no
relation of the form
uA=tB or (4 :B)=-,ltz
can exist.
The preceding theory can now be applied to find tests for
determining :
(e¢) When two ratios are equal ;
(b) When two ratios are unequal.

Equal Ratios
ARTICLE 33

If two ratios are equal they occupy the same place with
regard to the system of rational numbers.

Hence no rational number can lie between them.

We give the following definition of Equal Ratios :

Two ratios are said to be equal when no rational number lies
between them.* )

This may be expressed in greater detail as follows :

Suppose that (4 : B)=(C : D).

Let ” ¢ represent any rational number whatever.

If now (4 : B) be compared with & 5> one of three alternatives
must hold.

(1) (4 :B)>g; (2) (4:B)=%; (3) (4:B)<%

(1) If (4: B) then in order that £ 5 may not lie between
(4: B) and (C : D) 1t is necessary that (C’ D) >—

. (4 : B)>, then (C : D) >-

(2) If (4 :B)_g, then in order that no rational number
may lie between (4 :B) and (C:D), it is necessary that
(C: D)—-

(A B)=- then (C : D)=

(3) If (4: B)< I, then in order that 5 may not lie between
(4:B)and (C: D) it is necessary that (C': D)<-

Hence if (4 : B)< then (C .D)<—

* This definition does not conflict with what has been said before about
equal ratios, see Note in Art, 34,

D
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NOTE ON ARTICLE 33

ARrTICLE 34

In the preceding work some cases of equal ratios have been con-
sidered.

(1) Ratios which were equal to the same rational number were said
to be equal.

(2) When 4 =B it was laid down as a fundamental principle that
(4:C)=(B:0).
In the first case it is obvious that no rational number can lie between

the equal ratios, and it will now be proved that, when 4 =B, no
rational number can lie between

(A:0)and (B: Q).
For if possible let some rational number P Jie between (4:C)and
(B:0). Let (4 :0C)be greater than (B : C).
Then (4 : 0)>’qf> (B:0).
Since (4 : O)> g,
S.qd>pC.
Since (B : C) <g,

s qB<pC,

s qA>pC>gB,

SaqAE=g By
PR,

which is contrary to the hypothesis that 4 =B.
Hence if 4 =B no rational number can fall between (4 : C) and
(B:C).

The Test for Equal Ratios
ArTICLE 35
Conversely, if whatever the integers r and s may be, then
if (4:B) >§, it is also true that (C : D) >£;
but if (4 : B)=L, it is also true that (O : D)=%;
and if (4 : B)<§, it is also true that (C : D)<
then will (4 : B)=(C : D),

for these conditions simply express the fact that no rational
number lies between (4 : B) and (C : D),

and .. (4 : B)=(C: D).

I @i

b
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Euclid V., Definition 5
ARTICLE 36

Derivation from the preceding article of the conditions of
the Fifth Definition of the Fifth Book of Euclid’s Elements.
This follows immediately by the aid of Prop. X.

If s4 >rB,
then (4 : B) >§, .............. Prop. X.
SO TR s Il o S Art. 35.
e SELp A iy AE Prop. X.
If sA=rB,
then (4 : B)-——g, .............. Prop. X.
3 0r R P Art. 35.
LT R SR Prop. X.
If sA <rB,
thén {4 -RyE5 L) oo T Prop. X.
R o 7 YL Bt o o Art. 35.
JeSierdd o Ll BE) L Prop. X.

Hence, if whatever the integers r, s may be, it is true that
when s4 >rB, then sC >rD ; i)
but when s4 =rB, then sC=rD (1)
and when s4 <7B, then sC' <7D ; (iii.)
thenis (4 : B)=(C : D).
And these are Euclid’s conditions.

It will appear in Prop. XI., Art. 40 (Stolz’s Theorem) that
the set of conditions marked (ii.) is superfluous.

Unequal Ratios

ARTICLE 37

If two ratios are unequal they occupy different places with
regard to the system of rational numbers.
Hence some rational number falls between them.
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We give the following definition :

Two ratios are sard to be unequal when some rational number
falis between them.*

Let (4 : B) and (C : D) be two unequal ratios. Then some

rational number % falls between them, and
either (4 : B) >:—f>(0 : D),
orelse (4 : B)<%<(C’ : D).
In the first case (4 : B) is said to be greater than (C: D);
in the second case (4 : B) is said to be less than (C : D).
In the first case,
since (4 : B)>2,
SLvA>uB;
and since (C : D)<%‘,
s vC<uD.
This may be put thus :

The Test for distinguishing between Unequal Ratios

ARTICLE 38
If (4 : B)>(C : D), then integers u, v exist such that
vA4 >uB, but vC<uD.

It will be proved at a later stage that these conditions are
equivalent to, though they are not the same in form as, the
conditions laid down in the Seventh Definition of the Fifth
Book of Euclid’s Elements. For the present these conditions
will not be required. They have been mentioned here only on
account of their close connection in thought with the preceding
work.

In the case where (4 : B)<(C : D), some rational number
%‘ exists such that

(4: By<z<(C:D).

Hence integers u, v exist such that

vA <uB, but vC >uD.

* This definition does not conflict with what was said before about
unequal ratios, see Note in Art. 39.
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NOTE ON ARTICLES 37-38

ARrTICLE 39
In the preceding work a case of unequal ratios was considered.
It was laid down as a fundamental principle that
if A> B,
then (4 : C)> (B : C).
In this case it will be proved that a rational number falls between
(4 :C) and (B: 0).
It was shown in the Corollary to Prop. VIIIL. that if 4>B, then
integers n, ¢ exist such that

nA>tC>nB.
Since nd > tC,

S (4:0)> 1%
Since nB <tC,
S (B:O)<k
S(4:0)> 7%> (B:0O).
Hence the rational number % falls between (4 : C) and (B : C).

Simplification of the Test for Equal Ratios (Stolz’s Theorem)
ARTICLE 40

I proceed now to show that the second of the three sets of
conditions in the Test for Equal Ratios (Art. 35) is superfluous.

Prop. XI. If all values of r, s which make

sA>rBalsomakesC>rD............ (1.),
and if all values of », s which make
sA<rBalsomakesC<rD............ (11.),

and if any values of r, s exist, say r=r,, s=s,; which make
s d=r,B, then must also s,C=r,D.
By hypothesis s,4 =r,B.
Suppose if possible ¢,C is not equal to r,D.
Hence either
(i.) s,C>r,D.

. §;C —r D is a magnitude of the same kind as D.
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. An integer n exists such that
n(s,C—r,D)>D,
oo ms,C >(nry4-1)D,
but s,4=r,B,
oo nsyd=nr,B<(nr,+1)B.
Hence ns,4 <(nr,+1)B,
but ns,C >(nr,+1)D,

and .. putting s=ns,, r=nr,+1, it is seen that for these
values of 7, s the hypothesis (I1.) is not satisfied.

. 8,C is not greater than r,D.
Or
(ii.) s,C<r,D.
. r.D—s,C is a magnitude of the same kind as D.
.. An integer n exists such that
n(r,D—s,0)>D,
soms,C<(nr;—1)D,
but s,4=r,B,
S ns A=nr,B>(nr,—1)B.
Hence ns;4 >(nr,—1)B,
but ns,C <(nr,—1)D,

and .. putting s=ns,, r=nr,;—1, it is seen that for these values
of 7, s the hypothesis (I.) is not satisfied.
. 8,C is not less than r,D.

it has now been shown that s,C is neither greater nor less
than r,D.
810 =l

Hence the second set of conditions in Euclid’s Definition
is involved in the first and third sets of conditions. It is there-
fore superfluous.

Hence (4 : B)=(C : D),
if all values of », s which make s4 >rB also make sC >rD,
and if all values of », s which make s4 <rB also make sC <rD.

Hence if whenever (4 : B) >§, then also (C' : D) >g,
and if whenever (A4 : B)<£, then also (C : D)<£,
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whatever integers r, s may be, then will (4 : B)=(C : D), and
it is not necessary to show also that
if (4 : B)=%, then (C : D)=1%.
Magnitudes vn Proportion
If (4 : B)=(C : D), the magnitudes 4, B, C, D are said to
be proportionals, or in proportion.
The proportion is usually written thus :
A Bl CD)
and is read ‘‘the ratio of 4 to B is the same as the ratio of
CtoD.”

A and D are called the extremes, B and C the means of the
proportion. D 1is called the fourth proportional to 4, B
and C.

If C=B so that (4 : B)=(B: D), then the three magnitudes
A, B, D are said to be in proportion, B is said to be a mean
proportional between A4 and D, and D is said to be a third
proportional to 4 and B.

Recapitulation of the Chief Points of the Preceding Theory
ARTICLE 41

Before illustrating the preceding theory it is well to re-
capitulate the chief points which have to be borne in mind in
what follows.

(1) Numbers exist which are not rational numbers. They
are called irrational numbers. They are in the technical sense
of the words magnitudes of the same kind as the rational
numbers (Art. 24).

(2) An irrational number is determined when a rule is
given which makes it possible to decide whether the irrational
number is greater or less than any rational number whatever.
An irrational number has therefore a definite place amongst the
rational numbers (Art. 26).

(3) If 4 and B are any two magnitudes of the same kind,
then the ratio of 4 to B is a number rational or irrational
(Art. 32).

(4) Two ratios are equal when no rational number lies
between them (Art. 33).



CHAPTER VII
ARTICLES 42-49
Properties of Equal Ratios. First Group of Propositions.

ARTICLE 42

THE proofs of the following propositions may be conducted on
the same lines. They are independent of one another and may
be taken in any order.

Prop. XII. If (4:B)=(C:D),
then (rd : sB)=(rC :sD). ......... Euc. V. 4.

Prop. XIII. If (4:B)=(C:D),

then (B: 4)=(D : C).

Euc. V. Corollary to 4.
Prop. XIV. If (4:B)=(C:D)=(E:F), and if all the
magnitudes are of the same kind, then
(A:B)=(4+C+E : B+D+F).
Eue. V. 12.
Prop. XV. (4:B)=@nd:aB). .........Euc. V. 15.
Prop. XVI. If(Ad:B)=(X:7),
then (A+B: B)=(X+Y:7Y). ..Euc. V. 18.
Prop. XVII. If(A+B:B)=(X+7Y:7),

then (4:B)=(X:7). ...... Euc. V. 17.
ARTICLE 43
Prop. XI1I. 1f (4: B)=(C : D), to show that
(AR $iB) = (nCF TS D)) N Euec. V. 4.

Let g denote any rational number whatever, then it follows

from Art. 40 that it is sufficient to consider the following
alternatives :

40



FIRST GROUP OF

Either (r4 : sB) >P
. q(r4) >p(sB),
- (g(n)4 >(I()(S)))B,
(s
S
But (4 : B)=(C : D),
R (55 D)>

P(s)
q(ry

= (g(r)C >(p(s)) D,

= q(rC) >p(sD),

<. (rC : sD) >§‘
Hence if (r4 : sB) >§,
then (»C : sD) >.g.

PROPOSITIONS 41

Or (r4 :sB)<§,
q(rd)<p(sB),
- (q(r))4 <(12(8)))B,
. . p(s
R ¢ 'B)<§T7)'
But (4 : B)=(C: D),
- 0:01 <)
- (q(r)C<(p(s))D,
. q(r0)<p(sD),

(€l sD)<§.
Hence if (r4 : sB) <2
then (»C : sD)<g.

Hence no rational number can lie between (r4 : sB) and

(rC : sD).
oo (rd :8B)=(rC : sD).
ARTICLE 44
Prop. XII1. 1f (4 : B)=(C : D),
then (B : A)=(D.: (). ...... Eue. V. Cor. to 4.

It has to be shown that no rational number falls between
(B:4)and (D:0).

Let f

be any rational number whatever.

Then it is suffi-

cient to consider the alternatives :

If (B: 4) >},
then tB >s4,
. sA<tB,
(A : B)<L.
But (4 : B)=(C : D),
MO D)<§,
.. sC<tD,
s tD>s0,
2o (D €) >‘t-g.

If (B: 4)<3,
then tB<sA,
. sA >tB,
(A : B)>tL,
But (4 : B)=(C : D),
- (C:D)>4,
- 8C>tD,
s tD <80,

$oa(D: C)<%.
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Hence if (B : 4)>2 Hence if (B : A)<%,
then (D : C) >;3. then (D : C) <‘§.

Hence no rational number lies between (B : 4) and (D : C).
S (B:A)=(D:Q0).
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ARTICLE 45

Prop. XIV. If(4:B)=(C: D)=(E:F),

and if all the magnitudes are of the same kind, -
then (4 : B)=(4+C+E : B+D+F).
Euec. V. 12,
It has to be shown that no rational number lies between
(4:B)and (A+C+E: B+D+F).

Let g be any rational number whatever. Then it is sufficient

to consider the alternatives g

(4:B)>F (4 : B)<l;.
Then since Then since
(4:B)=(C:D)=(E : F), (4:B)=(C:D)=(¥:1),
it follows that it follows that
(C:D)>P (C: D)<,
C(B:F)>D (E;F)<-§.
Hence g4 >pB, Hence ¢4 <pB,
qC>pD, 9C<pD,
qE >pF, qE <pF,
g4 +C+E)>P(B+D+F), -q(4 +C+E’)<P(B+D+F)
L (44+C+E: B+D+F) >- L (A4+C+E: B+D—|—F)<~
Hence if (4 : B) > Hence if (4 : B)<-
then(4 4-C+E: B+D+F) then (A+C+E: B+D+F)

Hence no rational number falls between
(4:B)and (A-+-C+E: B+D+F),

SNARB) =

(A+C+E: B+D-+F).

In like manner it can be proved that

if(4,: By)=(4,

: By)=

=(An : Bn):

and if all the magnitudes are of the same kind,

then (4,: B;)=

(i A

PSS . N TR 3
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ARTICLE 46

Prop. XV. To prove that (4 : B)=(rd4 : nB). ..Euc.V.15.
It has to be shown that no rational number falls between
(4 : B) and (n4 : nB).
Let %be any rational number whatever. Then it is enough
to consider the alternatives :

(4:B)>%, (4:B)<L,
.. v4 >iB, vA <itB,
- n(vd) >n(tB), n(vd)<n(tB),
s v(nd) >t(nB), sov(nd)y<i(nB),
. (nd : nB) >%. s (nd nB)<f—,.
Hence if (4 : B) >£_), Hence if (4 : B)<%,
then (nd : nB) >%. then (nd : nB)<%.

Hence no rational number lies between
(4 : B) and (n4 : nB),
o (4 : B)=(nd : nB).
Note.—This is a particular case of the preceding proposi-
tion, viz. thatin which 4,=4,=...=4,=4,

andieBr =18, —Imsi BB
ARTICLE 47
Prop. XVI. If(A:B)=(X:7),

then (A+B:B)=(X+Y :Y)...Euc. V. 18.

Compare (4 + B : B) with any rational number whatever, %—
It is sufficient to consider the alternatives :

Either (44B: B)>%, Or (4+B: B)<i,
.. 8(4d+B)>rB. - 8(A+B)y<rB.
It is necessary to take sep- In this case s must be <7,
arately the casess<r,s=r,s>r.
(i.) s<r,sd >(r—s)B, L sA<(r—s)B,
(4 By =t (4 : Byaslst,
but (4 : B)=(X: Y), but (4 : B)=(X : Y),
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(X 7SS (X V)<,
cosX >(r—s)Y, snsX<(r—s)Y,
S8 X+Y)>rY, ~s(X4-Y)<rY,
(XYY S (X+Y: )<L
(ii.) s=r,sY=rY,
S X4 Y)>rY,
S (X+Y Y)>L
(iii.) s>r,sY >rY,
S8 X+Y)>rY,
S (X+Y:Y) >£.
Hence if (4 +B: B) >%, Hence if (4+B : B) <%,
then (X+7: ¥)>¢. then (X +7 : ¥)<L.

Hence no rational number lies between (4B : B) and
(X+7Y:7).
S (A+B:B)=(X+7Y:7).

‘ ARTICLE 48
Prop. XVII. If (A+B:B)=(X+7Y:7Y)it is required to
prove that (4 : B)=(X: Y)......... Euc. V. 17.
Compare (4 : B) with any rational number whatever, %.
Then it is sufficient to consider the alternatives :
@, (480 (iL) (4:B)<L.
In this case s4 >rB, In this case s4 <rB,
o 8(A4B)>(r+s)B, oo 8(A+By<(r+s)B,
- (4+B: B>, © (44B: B)<=5,
but (4+B:B)=(X+Y:Y), | but(4d+B:B)=(X+7Y:7),
(XYY > L (X477 7)<
S XH4Y)>(r+s)Y, L8 X+HY)<(r+s)Y,
ssX>rY, S B
5 ; r 5 2 r
(X Y) > sA(X e Y)<s
Henceif (4 : B)>L, Hence if (4 : B)<L,
then(X : ) >§. then (X : Y) <£.
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Hence no rational number can lie between
(4:B)and (X :7Y),
(A B) = (X0 ¥ H)!

ARTICLE 49

As a geometrical illustration take the proposition that the
ratio of the areas of two triangles of equal altitudes is equal
to the ratio of the lengths of their bases (Euc. VI. 1).

The proof depends on the following :

(1) If two triangles of equal altitudes have equal bases
their areas are equal.

(2) If two triangles of equal altitudes have unequal
bases the one with the larger base has the
larger area.

(3) If two triangles having the same altitude are such
that the base of one is equal to » times the base
of the other, then the area of the first is equal to
r times the area of the second (it being understood
that » is some positive whole number).

A D

B © E F G H | J
Fic. 6.

Let the triangles ABC, DEJ have the same altitude.
Suppose that EJ=r(BC).
It is required to prove that

ADEJ=r( AABC).

EJ can be divided into r pieces each equal to BC.

Suppose that EF, FG, GH, HI, IJ are these r pieces.

Then the triangles DEF, DFG, DGH, DHI, DIJ are
each equal to the triangle 4 BC.

Now EJ contains r parts each equal to BC.
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Hence the triangle DEJ is divided into r triangles each
equal to ABC.
- ADEJ=r(NABC).

Proceeding now to the proposition.

Let ABC and DEF be any two triangles having equal
altitudes, and let BC, EF be their bases. It is required to
prove that

(BC : EF)=(AABC : NDEF).

It has to be shown that no rational number can fall be-
tween the two ratios.

Take any rational number whatever, ; If it be compared
with (BC : I'F), then one of the following alternatives must
oceur :

(i) (BC:EF)>S. (i) (BO:EF)=5%. (iii) (BC: BF)<(

It is known by Prop. XI. (Stolz’s Theorem), Art. 40,
that we need not consider the second alternative.*
Take the first alternative :

(BC : E’F)>§,
- r(BO) >s(EF).
Now set off BR=r(BC),
and ES=s(EF).
Since the triangles have the same altitude they may be
placed between the same parallels.
A D

I i L L

B C R E (i S

Fre. 7.
Join AR and DS.
Then since BR=r(BC),
.. by (3) above AABR=r(AABC),
and since ES=s(EF),
- by (3) above ADES=s( ADEF).

* There is no difficulty in considering it in this case, as there is in some
of the propositions which follow.
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Now #(BC) >s(EF),
i.e. BR>ES,
. by (2) above AABR> ADES,
i.e. r(AABC)>s(ANDEF),

.. (AABC: ADEF)>3.
Hence if (BC : EF) >g, 1)
then (A4BC: ADEF)>E )

A D

B~ G R E F ’ ' 3
Fre. 8.

Take now the alternative :
(BC : EF)<%,
- r(BO) <s(EF).
As before set off, BE=r(BC)
and ES=s(EF).
Join AR, DS.
As before, AABR=r( AABC)
and ADES=s(ADEF),
Since r(BC)<s(EF),
.. BR<ES.
Hence by (2) above AABR< ADES,
ie. "(AABC)<s(ADEF),
- (AABC : ADEF)<3.
Hence if (BC : EF)<;

i (I1.)
then (AABC : ADEF)<;

It follows from (I.) and (II.) that no rational number falls
between
(BC : EF) and (AABC : ADEF),
- (BC : EF)=(AABC : ADEF).



CHAPTER VIII
ARTICLES 50-53

Properties of Equal Ratios. Second Group of Propositions.

ARTICLE 50

Prop. XVIII. If 4, B, C, D be four magnitudes of the
same kind, and if

then (4 : 0)=(B DA RSl Euc. V. 16.

Corollary :

If also 4 >C, then B>D;
but if 4=C, then B=D;
and if A<C,then B<D, ......... Euc. V. 14,

Prop. XI1X. If (4:B)=(T:0),
and if (B: O)=(U : V),
then (AL E) =(I-EVFS Ry Eue. V. 22

From this follows as a corollary :

If also 4 >C, then 7>V ;
but if 4=C, then T=V.
and if A<C,thenT<V. ......... Eue. V. 20.

Prop. XX. If (4 : B)=(U : V),
and if (B: C)=(T: U),
then (@) == RN S S Eue. V. 23.

From this follows a corollary (Euc. V. 21) the statement
of which is identical with that of the Corollary to Prop. XIX.
These propositions are independent of one another, and
they may therefore be proved in any order.
The proofs differ from those of the preceding propositions
in that they depend on Prop. VIII. or its Corollary.
48
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The proofs of Props. XVIII. and XX. require in addition
the Corollary to Prop. III.

Prop. ITI. and its Corollary amount to this, that the factors
of a product can be taken in any order.

In explaining these propositions to beginners the teacher
would, I think, be well advised to take this result for granted,
as I have done in the proofs of Props. XVIII. and XIX.

On the other hand, the proof of Prop. XX. is set out in
a perfectly formal way with reference to the Corollary to
Prop. 111.

ARTICLE 51

Prop. XVIII. If 4, B, C, D be four magnitudes of the
same kind, and if
(4:B)=(C: D),
to prove that (4 : C)=(B: D). .......... Eue. V. 16.

It has to be shown that no rational fraction whatever can
lie between (4 : C) and (B : D).
Let g represent any rational number whatever. Com-

paring it with (4 :C), it is necessary to consider only the
alternatives :

(1) (4:0)>F, (2) (4:0)<3,
sord >sC. s rd<sC.

Hence 74 —sC is a magni- Hence sC—rA4 is a magni-
tude of the same kind as A, B, | tude of the same kind as A, B,
C, D. o.P,

Compare it with cither B or | Compare it with either B or
D, say with B. D, say with D.

Then by Archimedes’ Axiom Then by Archimedes’ Axiom
an integer n exists such that | an integer p exists such that

n(rd —sC)>B, p(sC—rA)>D,
- nrd >nsC-+-B, psC >prA-+-D,
~.an integer ¢ exists such .. an integer w exists such
that that
nrd >tB >nsC psC >uD >prd
(Prop. VIIIL.). (Prop. VIIL.).
Since nrd >tB, Since psC >uD,
S (4:B)>L L0 B >%.

E
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But (4 : B)=(C: D), But (4 : B)=(C : D),
ke ¢ R u
..(0.D)>ﬁ, ..(A.B)>ps,

»onrC >tD. - psd >uB.
But tB >nsC, But uD >prd,
st B >rnsC >stD, coruB<rpsA <suD,
rtB >stD, soruB<suD,
rB>sD, o rB<sD,
S (B:D)>Z, S (B: D)<,

Hence if (4:0C) >§, then (B: D) >§; but if (4 : 0)<78—.,
then (B : D) <.
Hence no rational number lies between (4 : C) and (B : D).
(4 :C)=(B: D).
Corollary :
To prove that with the data in the proposition
If A>C, then B>D.
If A=C, then B=D.
TP < sthent B2 DA skt S 2 S Euc. V. 14,
Since (4 : C)=(B: D),
let us compare (4 : C) with the rational number 1.
Then one of the following alternatives must hold :
(1) (4:0)>1, (2) (4:0)=1, (3) (4:0)<]1.

S 3 ERID) (8- Bl (Bl <sly
Hence if 4 >C, Hence if A=0C, Hence if 4 <C,
then B>D. then B=D. then B<D.

ARTICLE 52

Prop. XIX. If 4, B, C are three magnitudes of the same
kind, and if 7, U, V are three magnitudes of the same kind,
and if

(4:B)=(T:0),
andif (B:0)=(U: V),
toprove that (4 :C)=(T : V). ..cvvvvn.... Eue. V. 22.

It has to be shown that no rational number falls between
(4:C)and (T': V).
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Let l; denote any rational number whatever. Then com-
paring it with (4 :C), it is necessary to consider only the

alternatives :

(1) @:0>%
- lA>EkC,
.. 14 —kC is a magnitude of
the same kind as A, B, C.
Comparing it with B, it
follows by Archimedes’ Axiom

that an integer v exists such
that

v(lA—kC) >B,
- ol4 >vkC 4B,
.. an integer w exists such
that
vld >wB >vk(C
(Prop. VIIL.).
Since vlA >wB,
(4 :B)y>1.
But (4: B)= (T U),
L G B
~ T >wU.
But wB >vkC,
Co{7278.E; >1-’u]70.
Now (B:C)=(U : V),
(0 By=2t,
SowU>vkV,
ool >wU >okV,
ool >okV,
IT>kV,

(7:V) >]—c.

Hence if (A 0) >- then (7:V) >’7"

then (7 : V) <-

(2) (:0)<k,
S A<kC,
.. kC —IA is a magnitude of
the same kind as 4, B, C.

Comparing it with B, it
follows by Archimedes’ Axiom
that an integer n exists such
that

n(kC —14) >B,
nkC >nld 4B,
.. an integer r exists such
that
nld <rB<nkC
(Prop. VIIL.).
Since nlA <rB,

A
But (4:B)=(7":
(T U)<n—rz,
Bl <<y
But rB<nkC,
SABHE) <-’§—L
Now (B:C)=(U: V),
S V)<”Tk,
s rl<nkV,
SonlT <rU <nkV,
ST <nkV,
IR <V,

(T V)<t

U),

but if (A: 0)<’7“,
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Hence no rational number falls between

(A:C)and (7 : V),
4 O0)=(T:V).

Corollary (Euc. V. 20) :

To prove that with the data in the proposition

If A>C, then T>V.
If A=C, then T=V.
If A<C, then T'<V.

The proof can be derived from that of the Corollary to
Prop. XVIII. by changing therein B into 7', and D into V.

ARTICLE 53

Prop. XX.

If (4:B)=(U: V), and i (B:C)=(T: V),

then (4 : C)=(T: V). (Euc. V. 23).
Compare 4 : C with any rational number whatever, g
It is necessary to consider the two following alternatives

only :
Either (4:0)>L,
s A =10

Now B is a magnitude of the
same kind as sA, rC.

Hence by the Corollary to
Prop. VIII. integers n, ¢ exist
such that

n(s4) >tB >n(rC).
Now (n(s))4=n(s4)>tB,
(4 By >oh,

But (U:V)=(4 :B)>-ﬁ(t§)-’

So(n(s)U >tV ... (1L
Also ¢B>n(r0),
s tB>(n(r))C,

~(B:0) >’i(z’?.

Or (4:0)<%,
s sA<rC.

Now B is a magnitude of the
same kind as s4, rC.

Hence by the Corollary to
Prop. VIII. integers =, ¢ exist
such that

n(sA)<tB<n(rC).

Now (n(s))4d=n(sd)<iB,
s (4 B)<7~Z~é—).
t

But (U:V)=(4 :B)<Ws),

(e U<tV. .. (I11.)
Also tB<n(rC),
s tB<(n(r))C,

T (BEG) <ZZ—(Z—).
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Now (T': U):(B:0)>”_(tﬂ,
ST >(n(r))U . (11.)
We have to eliminate U be-
tween (I.) and (I1.),
s(tT) >s[(n(r))U] from (I1.),
s[(n(r))Ul=r{(n(s)) U],
by Cor. to Prop. III.
Also r{(n(s))U]>r(tV) from
(L)
~os(ET) >r(eV),
s HSTY >H(r V),
S8sT>rV,
(TR >§.
U (40
then (7: V) >g.

53

Now (T:U):(B:C)<$)
ST <(n(r)U ... (IV.)
We have to eliminate U be-
tween (III.) and (IV.),
s(tT)<sf(n(r))U] from (IV.),
s[(n(r)Ul=rl(n(s))U],
by Cor. to Prop. III.

Also r[(n(s))U]<r(tV) from
(I1IL.),

b

sos(ETy<r(tV),
sHsTY<t(r V),
sosT<rV,
AT V)<L
If - (4:0)<
then (7': V)<L

Hence no rational number lies between (4 : C) and (7' : V).
o (ASICN= (TIN5

Corollary (Euc. V. 21) :

To prove that with the data in the proposition
ItA>C,thenT>V.
If A=C, then T=V.
IfA<C,thenT<V.

The proof can be derived from that of the Corollary to
Prop. XVIII. by changing therein B into 7', and D into V.



CHAPTER IX
ARTICLES 54-57

Properties of Equal Ratios. Third Group of Propositions.

ARTICLE 54
Prop. XXI. If(4+4C:B+D)=(C:D),
then (4 : B)y=(C: D). ..... Eue. V. 19.

Prop. XXII. If(4:0)=(X:2Z),andif (B: C)=(Y : Z),
then (4+B:C)=(X+Y : Z).
Euc. V. 24.
Prop. XXIII. If 4, B, C, D are four magnitudes of the
same kind, if A be the greatest of them,
and if (4 : B)=(C : D),
thenA+D>B+C........... Eue. V. 25.

As in the Fifth Book, the proofs of these propositions are
made to depend on the proofs of the preceding propositions.
They could be proved in a manner having some resemblance
to those of the earlier propositions, but the proofs are compli-
cated and difficult ; and altogether unsuited for an elementary
course of instruction.

It will be seen that the proofs of these propositions are not
automatic like those which have gone before. They involve a
considerable strain on the memory, but on the whole they are
very much simpler than any other proofs known to me.

ARTICLE 55

Prop. XXI. If(A+C:B+D)=(C: D),
to prove that (A : B)=(C : D).....Euc. V. 19.
Since (A+C : B4+D)=(C : D),
. by Prop. XVIII.
(A+C : O)=(B+D : D),
54
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~. by Prop. XVII.

(4:0)=(B: D),
. by Prop. XVIII.

(4 : B)=(C : D).

ARTICLE 56

Prop. XXII. (Euc. V. 24).
If (4:C)=(X : 2),
and if (B: C)=(Y : 2),
to prove that (4+B:C)=(X+Y : 2).
Since (B:C)=(Y :2),
*. by Prop. XIIIL.
(C:B)=(Z:7).
Now (4 : 0)=(X:2),
and (C:B)=(Z:7),
. by Prop. XIX.
(4A:B)=(X:7),
*. by Prop. XVL
(A+B:B)=(X4+Y:7Y).
But (B:C)=(Y :2),
. by Prop. XIX.
(A4+B:0)=(X+Y:2).

ARTICLE 57

Prop. XXIII. If 4, B, C, D are four magnitudes of the same
kind, if A be the greatest of them,
and if (4 : B)=(C : D),
then (A+D)>(B+C)....... Euc. V. 25.
Since A >B,
.. (4 : B)>1,
(Ot
- C>D.
Since (4 : B)=(C: D),
~. by Prop. XVIII.
(4:C)=(B:D).
But 4>C,
S ARECY=1T
SEBHD)=T
s B>D.
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Hence D is the smallest of the four magnitudes.

Since (4 : B)=(C: D),
.. by Prop. XVII.
(4—B:B)=(C—D: D),
. by Prop. XVIII.
(A—B:C—D)=(B: D).
But B>D,
SA(B:D)>1,
S (A—B:C—-D)>1,
S 4A—B>C—-D,
S A+D>B4C.



PART 1I

CHAPTER X

ARTICLES 58-67

Geometrical Applications of Stolz’s Theorem (Art. 40).
ARTICLE 58

ALL the properties of equal ratios that can be put into an
elementary course have now been given.

I will now give a remarkable application of Stolz’s Theorem,
due to my friend, Mr. Rose-Innes, to prove that the areas of
circles are proportional to the squares described on their radii.

Some preliminary propositions from the Tenth and Twelfth
Books of Euclid’s Elements are required. They are set out
here in order to make the argument complete in itself.

Buclhd X. 1

If A and B be two magnitudes OF THE SAME KIND, of which
A is the larger, and if from A more than its half be taken away,
leaving a remainder R, ; and if from R, more than its half be
taken away, leaving a remainder R, ; and so on, then if this
process be continued long enough, the remainder left will be less
than B.

This is deduced by repeated applications of the following :

If X and Y be two magnitudes of the same kind, and if
X be greater than Y, then if from X less than its half be taken
away, and if from Y more than its half be taken away, then
the remainder of X left is greater than the remainder of 1.

If from X less than }X is taken, more than X is left.

57
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If from Y more than }Y is taken, less than 1Y is left.

But since X>Y,
$1X>1Y,
.. (more than 1X)>(less than 17).
To apply this to Euc. X. 1.
Since 4>B it follows by Archimedes’ Axiom that an

integer » exists such that
nb>A4.

From the greater magnitude nB take away B, which is less
sthan inB. The remainder is (n—1)B.

From the smaller magnitude 4 take away more than its
half. Let the remainder be RB,,

. (n—1)B>R, by what has just been proved.
From the greater magnitude (n—1)B, take away B, which
is less than 1(n—1)B. The remainder is (n—2)B.

From the smaller magnitude R, take away more than its
half. Let the remainder be R,,

~ (n—2)B>R,.
Proceeding thus we get after s applications
(n—s8)B>R,,
and .. after (n—2) applications
2B>R,_,.

Now take from R, _, more than its half.
Let the remainder be £, _,.

FhenWSrem, SR
But B>1R, _,,
o B>R, .
So that after (n—1) operations on A, the remainder of
A left, viz. B, _,, is less than B.

ARTICLE 59

As a geometrical application of this result take the follow-
ing from the Second Proposition of the Twelfth Book of
Euclid’s Elements :
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If a regular polygon of 2" sides be inscribed in a circle, then
the part of the circular area outside the polygon can be made as
small as we please by making n large enough.

Take a segment of a circle which is a semicircle or less than
a semicircle.

D g E
D c E
A B A B
Fie. 9.

Let its chord be AB, and the middle point of its arc C.

Through C draw a tangent to the circle. This is parallel
to AB.

Let the perpendiculars to 4B, through 4 and B, cut the
tangent at C' at D, E.

Then the triangle 4BC is equal to the sum of the triangles
ACD, BCE.

Hence the triangle ABC is greater than the sum of the
segments cut off by AC, BC.

Hence the triangle ABC is greater than half the area of
the segment ABC ; and therefore if the triangular area 4 BC
be removed from the segment, the remainder left is less than
half the original segment. _

Suppose now that a square ABCD is inscribed in a circle,
then if the square be cut out from the circular area less than
half the circular area is left. The part cut out is shaded.
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Let each of the arcs AB, BC, CD, DA be bisected at
E, F, G, H respectively.
Then from the unshaded area remove the triangles

AEB, BFC, CGD, DHA.
Then by what has been proved the triangles

AEB, BFC, CGD, DHA -

are greater than half the segments
AEB, BFC, CGD, DHA respectively.

And therefore, if the triangles are removed, more than half of
the portion of the circle outside the square will have been
removed.

We have left, then, only the unshaded arcas shown in the
next figure.

This process of bisecting the arcs and removing the tri-
angular areas can be continued indefinitely.

At each step more than half the remaining area is removed,
and therefore, if the process be carried on long enough, there
will at length remain an area less than any area, say D, which
may be fixed in advance.

EBuclid XI11. 1

ARTICLE 60

The areas of similar polygons inscribed in two circles are
proportional to the areas of the squares described on the radii of.
the circles.
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The areas of any two similar polygons are proportional
to the squares described on corresponding sides.

If the similar polygons are inscribed in two circles, then
corresponding sides are proportional to the radii of the circles,
and therefore the squares on corresponding sides are propor-
tional to the squares described on the radii of the circles.

Hence the areas of similar polygons inscribed in two circles
are proportional to the areas of the squares described on the
radii of the circles.

EBuclid XII. 2
ARTICLE 61

The areas of circles are proportional to the squares described
on their radiv.

Let C, be the area of a circle whose radius is 7,.

Let C, be the area of a circle whose radius is r,.

*If the ratio (C,:C,) be compared with any rational
number é’, then it is sufficient to consider the alternatives
(C,:C)) >Tt4 and (C;: Cp)<i.

Suppose (C,: C,) >?t¢’

o IOl
. uCy—1C,=some area C.

Inside C, describe the polygon P, as explained in Art. 59,
so that CI—P1<Q

ll,
uCi—uPy< C,
but «C,—iC,=C,
uCi—uP,<uC,—1tC,,
G <ulP).
Inside C, describe a polygon P, similar to P,.
Then C,>P,,
2 0 >,
but uP,>tC,,
L uP >tP,,
AP IPYSE

* From this point onwards the argument is applicable to many other
propositions than the one under consideration.
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Hence if (O, : 02>t
then (P,: P,) >Ttr
Now let §; be the square described on r,
and S, be the square described on 7,.
Then (P,: P,)= (S )
But (P P,)>
( S2) u
Hence if (C;: 0’2)>t @)
then (8,:8,)>E
Suppose next ;
(Cy:0y)<
O <t
o t0y,—ulC;=some area D.
Inside C, inscribe a polygon @, as explained in Art. 59,
so that 02~Q2<f—),
s 10, —tQ,< D,
50, —1Q,<tCy—uly,
oo tQ, >uly.
Inside C, inscribe a polygon @, similar to @,.
Then C, >Q,,
souCi>uQ)y,

Q. >uC, >u@,,
Sou@y <tQ,,

- (@ 1 Q)<L
BUt (Q1: Q2)=(8;: 85).
Hence (S, :S2)<,L_i.

Hence if :0,)<t
©1:09<k)
then (S, : Sz)<5_

It follows from (I.) and (II.) that no rational number
falls between (C,: C,) and (8, : S,),

S(CREiC =SS )"
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ARTICLE 61 (a)

This result has been arrived at by the aid of Stolz’s Theorem
(Art. 40), which is involved.

It is of interest to see how Mr. Rose-Innes completes the
proof of the proposition on strictly Euclidean lines, without the
aid of Stolz’s Theorem.

It has been shown that

if 'y >0, them w848, 1.0 vale e vnin (1.)
and if uC,<#C,, then 8, <#84 .....c0ovvuuveenn. (I1.)

From these results it follows that
if uS,=t9,, then must uC,=iC,.

For if uC,>tC,, then by (I.) wS,>tS,, which is contrary
to the hypothesis.
And if uC,<tC,, then by (IL.) uS,<tS,, which is contrary
to the hypothesis.
Henoe if 48,=18,, then w0, =1Cy. +........... (I11.)
Suppose now that uC';=1C,, construct a rectangle R with
one side equal to ¢ times the side of §,, and the other side
equal to % of the side of §,, and make a square S equal to
the rectangle R.
Then uS=tS,.
Let C be the area of the circle, whose radius is equal to
the side of S.
Then from (II1.) it follows that
since uS=iS,,
SauwC=i0,.
But «C,=tC,,
SAmC=uC,
A0 =170 1.
Hence the radii of these circles are equal,
S USI=8 1-
But u§=t8,,
S, =485

Hence it has now been shown that
if uCy=tC,, then uS, =18, ............... v,
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Using (1.), (I1.), and (IV.) and Euclid’s Fifth Definition, it
follows that :
(C1:Cy)=(8,:8,).

ArrTIicLE 61 (D)

There is still another way, due also to Mr. Rose-Innes, of
obtaining the result.
Having proved the results marked (I.) and (II.) above,
suppose next that
uS, >t8,.

Let I,, I, be the squares inscribed in the circles C,, C,
respectively.
Then Il= 281, I2= 282,
oIt

Now let us go on doubling the number of sides of the
polygons inscribed in the circle €', until we reach a polygon
P, such that :

Co—Py<t(ul,—tl,).
Now (I, :1,) =(8,:8,),
(Py:Py)=(8,:8,),
i Whns S =2 B
S B S = A By
Now ul,>tl,,
Co e SR
Also ul,—tl,: tl,=uP;—tP,:tP,.
But <,
oul,—tl,<uP,—tP,,
o Cy—Py<uP —tPy),
s 10y —tPy<uP,—tP,,

SO =
But P,<(C,,
2 GOl

Hence if S, >tS,, then uC,>tC,.
In a similar way it can be shown that

if wS,<t8,, then uC,<iC,.
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We have now the four results :
if uC,>tC,, then uS,>tS,; (i)
if uC,<tC,, then uS,<tS,; (ii.)
if u8,>t8,, then uC,>t0,; (iii.)
if uS,<18,, then uC,<tC,; (iv.)
Suppose now that uC,=1C,, then if we compare .S, with
tS, the logical alternatives are
uS,; >t8, or uS,<tS, or uS,=tS,.

But if u8,>1S,, then uC,>tC, by (iii.), which is contrary
to the hypothesis that uC,=10,.

And if u8,<tS,, then uC,<tC, by (iv.), which is contrary
to the hypothesis that uC,=tC,. .

Hence if uC,=1C,, we must have uS,=tS, (v.).

From (i.), (ii.), and (v.) it follows that

(C1:Cy)=(8,:8,).

[In the first edition of my Euclid, p. 18, Art. 37, I em-
ployed the four sets of conditions (i.), (ii.), (iii.), and (iv.),
and did not use Stolz’s Theorem in the form in which he him-
self gave it, which will be found in the second edition of my
Euclid, V and VI, p. 29, and has been given above (Art. 40.)]

ARTICLE 62

If we now go over the steps of the proposition proved in
Art. 61 and try to distinguish what is incidental to the par-
ticular proposition from what is necessary to obtain the final
result, we get the following :

Let Cy, C, represent the contents of any two lengths, or of
any two areas, or of any two volumes of such a nature that it is
possible to inscribe in the first an infinite series of figures, which
may be denoted by P,, and in the second a series of related figures
P, (not necessarily similar to P,), but such that the ratio of the
contents of two related figures (P, : P,) always has a FIXED
value, say (8, :8,), and if further by increasing the number of
sides of P, it is possible to make the difference between C L ond Py
as small as we please, and if in like manner it is possible to
make the difference between C, and P, as small as we please,
then will (C,:Cy)=(8,:8,), for the argument of Art. 61
from the point specially noted therein applies.

F
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ARTICLE 63

As a first illustration I will prove that the lengths of the
circumferences of circles are proportional to their radii.

Without going too deeply into the matter, let us assume
that the length of the circumference is the limit to which the
length of the perimeter of an inscribed regular polygon of 2
sides approaches as n tends to infinity.

Now let C,, C, denote the lengths of the circumferences of
two circles whose radii are 7, 7,.

Inscribe in each circle a regular polygon of 2" sides.

The two inscribed polygons are similar.

Let their perimeters be P,, P,.

Then (P, : P,)=(ry:7,) and is therefore fixed.

Hence the fixed ratio (S,:8,) of Art. 62 is in this case
=(ry:7y)- :

Now by the assumption we have made as to the meaning
of the length of the circumference of a circle, we know that
C,—P, and C,—P, can be made as small as we please by
increasing » sufficiently.

. the argument of Arts. 61, 62 applies,

5 (011 0y)=(8y: 8;), which is here (r,:7),

SHEOEe =)

Hence the circumferences of circles are proportional to
their radii.

ARTICLE 64

As a second illustration it will be shown that the area of
the radian sector of a circle is equal to half the area of the
square described on its radius.

s , R
z W
v U
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Let AB be an arc of a circle whose centre is O, such that
the length of the arc A B is equal to the radius 04, it is required
to prove that the area of the sector OAB is equal to half the
area of the square described on 04 as side.

I will call the sector OAB the radian sector.

When we say that the length of the arc AB is equal to
the radius we may agree to mean that if we divide the arc
into 2" equal parts, and join the points of division by straight
lines, then the sum of the lengths of the joining lines increases
as n increases up to a limit which is equal to the length
of the radius.

In the figure the arc AB is divided into equal parts AE,
EF, FG, GB. :

OH is drawn perpendicular to 4Z.

PQRS is a square on PQ=04.

In it we take PT=0H,

PV=AE,
PZ=AE+EF+FG+GB.

Then the rectangle PTUV is double the triangle OAE,
and the rectangle PTWZ is double the figure OAEFGB in-
seribed in the radian sector.

Moreover, by increasing the number of points of division
of the arc AB the difference between the radian sector and the
figure OAEFGB can be made as small as we please. When
this is done OH and .. PT tends to the radius as its limiting
value, and .. the point 7' tends to Q.

Also AE+EF +FG+GB tends to the radius as its limiting
value, and .. PZ tends to PS, and .. Z to 8.

Hence the rectangle PTWZ tends to coincide with
PQRS, and can be made to differ from it by as little as
we please.

In this case the argument of Arts. 61, 62 applies if we
make (', the area of the radian sector, C, the area of the square
described on the radius, P, the figures represented by OAEFGB,
and P, the figures represented by PTWZ.

And here the fixed ratio (S, : S,) is now the ratio (1 : 2).

Hence (the area of the radian sector: the area of the
square on the radius)=(1: 2).

.. area of radian sector=4(the square on the radius).
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ARTICLE 65

The area of a circle whose radius is r is wr2.

Let us now compare the area of the whole circle with that
of the radian sector.

Since the areas of sectors of the same circle are propor-
tional to their arcs,

.. (area of whole circle : area of radian sector)

=(length of circumference : length of radius),

*. (area of whole circle : $r%)=(2nr :7),

. area of whole circle=ar2.

ARTICLE 66

As a third illustration it will be proved that the volumes of
tetrahedra standing on the same base are proportional to their
altitudes. ;

Fie. 13.

Only one tetrahedron ABCD is drawn in the figure.
Let the side AC be divided into n equal parts.
Let E, G be two consecutive points of division.

Draw EF, GH parallel to BC.
» EI,GK o4 AD.
» FJ,HL ¥ AD.
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Then it can be shown that

KL, 1J are parallel to CB.
Also if IM be drawn parallel to CA4,
and JP be drawn parallel to B4,

then the figure standing on EFHG as base, and having
the equal and parallel edges E£1, FJ, HP, GM is a prism whose
volume is

base EFHG X perpendicular from I on the plane ABC.

If, through all the points of division of AC, parallels be
drawn to BC such as EF, GH, and if on each of the areas such
as EFHG there be erected a prism corresponding to the one
just described, then the aggregate of all these prisms will be
a polyhedron inscribed in 4 BCD, which, using the notation of
Art. 62, may be called P,. The volume of the tetrahedron
ABCD may, with the notation of Art. 62, be denoted
by C,.

The volume of P, differs from that of C'; by the sum of the
pieces such as MIJPLK, which is a frustum of the prism
whose parallel edges IJ, MP, KL are cut by the non-parallel
planes IMK, JPL.

Now MI=GE=1(40).
Also (KM : MI)=(DA : AC),
KM:%(DA ).
Also MIJP is congruent with GEFH.

Hence if the piece MIJPLK be detached from its position,
and made to slide until MIJP falls upon GEFH, K will fall at

a point R, such that GR= }L(DA), and L will fall at a point S
such that HS= 7%(DA). MIJPLK will coincide with GEFHSR.
If all the pieces like MIJPLK are treated in the same way,
their bases will together cover up the base ABC and the lines
such as RS will all fall on a plane parallel to ABC, cutting
AD at a distance from A=_7-1L(AD).
Their total volume will therefore be less than that of a

prism whose base is ABC and whose height is % of the perpen-
dicular from D on ABC.
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Hence their total volume is less than
,’lb(base ABC) (perpendicular from D on 4BC).

Hence by increasing n the difference between the volume
of the tetrahedron and the aggregate of the prisms such as
EFHGMIJP can be made as small as we please.

Call the figure inscribed in the second tetrahedron, which
corresponds to P, in the first, P,.

It will be proved that

(Py: Po)=(hy:hy),

where %, h, are the heights of the tetrahedrons.

Suppose that accented letters denote the points in the
second tetrahedron which correspond to unaccented letters in
the first.

The ratio of the volumes of corresponding prisms,

ie. (BEFHGMIJP :E'F'H'GM'I'J'P’)
=(EFHG x perp. from I on ABC): (E'F'H'G' X perp. from
I’ on A’B'C")
=(perp. from I on 4BC) : (perp. from I' on 4'B'C"),

because the bases ABC and A'B’C’ are the same, and so
EFHG and E'F'H'G' coincide. ; ’

Further
(perp. from I on ABC) : (perp. from D on ABC)
=(IC: DO)=(EC : AC).
Also
(perp. from I’ on A’B'C’) : (perp. from D’ on A4'B'C")
=I'C': D'C"=(E'C" : A'C")y=(EC : AC)

because the bases A'B'C’, ABC are the same ; and the points
A, B, C coincide with 4’, E', C' respectively.

.. (perp. from I on ABC) : (perp. from D on ABC)
=(perp. from I’ on A'B’'C’) : (perp. from D’ on A'B'C’),
. (perp. from I on ABC) : (perp. from I’ on 4'B'C’)
=(perp. from D on ABC) : (perp. from D’ on A’B'C’)

::(hl : k2):
S (BEFHGMIJP : E'F'H'G'M'I'J'P')=(h, : hy),

1.e. the ratio of the volumes of corresponding prisms=(%, : &5).
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Hence by the aid of Prop. XIV. it can be shown that
(Py: Py)=(hy: hy).

We are now in a position to apply the argument of
Arts. 61, 62,

Here C,, C, are the volumes of the two tetrahedra. P,, P,
are the volumes of the inscribed polyhedra made up of the
prisms such as EFHGMIJP and E'F'H'G'M'I'J'P’.

Both C,—P, and C,—P, can be made as small as we
please by sufficiently increasing n.

Also (P, : P,) has the fixed value (&, : h,).

So here the (S;:8,) of Art. 62 is (h, : h,).

Hence (C,: C,)=(S,:S,), which is (k,: &,).

R (GO =il

ARTICLE 67

The volumes of tetrahedra are proportional to their bases and
altitudes jointly.

It has been proved (Art. 66) that the volumes of any two
tetrahedra standing on identical bases are proportional to
their altitudes.

The next step is to show how to take account of an altera-
tion in the bases of the tetrahedra.

Let DABC and D'A'B'C’ be any two tetrahedra.

On AB take a length AK=A'B’.

In the plane ABC make KAL=B'A'C',
and take AL=A4'C".

Join KL. Let AC meet KL at R. Join DR, CK.

Then the triangles AKL, A’'B'C’ are congruent, and it is
possible to move the tetrahedron D’A’B’C’ until its base
A'B'C’ coincides with the triangle AKL.

Then by what has been shown as to the ratio of the volumes
of tetrahedra standing on the same base,

vol. of DAKL : vol. of D’A'B’'C’
=perp. from D on AKL : perp. from D' on A’B'C’
=perp. from D on 4BC : perp. from D’ on A’B’C’.

The next step is to find the ratio of the volumes of
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the tetrahedra DABC, DAKL. This is obtained by com-
paring
(1) DABC with DACK,
then (2) DACK with DARK,
and then (3) DARK with DAKL.

If DABC be compared with DACK, they may be regarded
as standing on the same base DAC, and their heights are then
the perpendiculars from B and K on the plane DAC.

5
Fic. 14.

Now these heights are proportional to 4B and 4K.

- DABC : DACK=AB: AK=AABC : NAKC,
~. DABC : DAUK = NABC: hARCH, . ()

Next compare DACK with DARK.

They may be considered as standing on the base DAK,
and their heights to be the perpendiculars from C and R on
the plane DAK. These heights are proportional to 4C and AR.
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.. DACK : DARK=AC : AR=NACK : NARK,
SDACK S DABRK— NARKO S A ARK 5 el (2).

Lastly, consider the tetrahedra DARK, DAKL.

They may be considered as standing on the base DAK, and
their heights are the perpendiculars from R and L on the
plane DAK.

These heights are proportional to KR and KL.

.. DARK : DAKL=KR: KL=AARK : NALK,

~. DARK : DAKL=NARK : NA'B'C' ........ (3).
From (1) and (2) by Prop. XIX. it follows that
DA BCEFDARR=SNABO G NATRKE b (4).
From (4) and (3) by Prop. XIX. it follows that
DABC : DAKL=NAABC : pNA'B'C ... ... (5).

Now since the bases AKL and 4’'B’'C’ are identical,
.. DAKL : DA'BC
=perp. from D on AKL : perp. from D’ on A’B'C’,
.. DAKL : D'A'B'C'
=perp. from D on 4BC : perp. from D’ on A'B'C’. .(6).

From (5) and (6) together it follows that the volumes of
tetrahedra are proportional to their bases and altitudes
jointly.

If now DABC and D'A’B'C’ be two tetrahedra on equal
bases and having equal altitudes, it follows from (5) and (6)
that

DABC=D'A'B'C".

From this it follows in the well-known way that the volume
of a tetrahedron is equal to one-third of the base multiplied by
the height.



CHAPTER XI
ARTICLES 68-70 -

Further remarks on the Irrational Number.
The existence of the Fourth Proportional.

ARTICLE 68

Berore proceeding to discuss the existence of the Fourth
Proportional, it is necessary to say a little more about the.
Irrational Number. The subject is dealt with more fully in
the Note on Irrational Numbers appended to the Second
Iidition of my book on the Contents of the Fifth and Sixth
Books of Euclid’s Elements, pp. 147-162.

The Irrational Number

Let some rule be given by means of which the system of all
the rational numbers can be separated into two classes such
that every number in one class (called the lower class) is less
than every number in the other class (called the upper class) ;
then the following cases have to be distinguished.

(i.) The lower class has no greatest number, and the upper
class has no least number. Then between the two classes
there is a gap. This gap is filled by the creation of a number.
It cannot be a rational number, because every rational number
falls by hypothesis into one of the two classes. Consequently
it is called an srrational number ; and it separates the whole
system of rational mumbers into two classes, such that every
number of the lower class is less than every number of the
upper class.

It is regarded as known because all its properties can be
inferred from a knowledge of all the rational numbers which
are less than it, and a knowledge of all the rational numbers
which are greater than it.

74 -
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(ii.) The case in which the lower class contains a greatest
number. This greatest number is a rational number, because
it belongs to the lower class. Calling it g, the upper class

contains all the rational numbers greater than g, and therefore

can contain no least number.
Ey

In this case the number § separates the whole system of
rational numbers into two classes such that each number in
the lower class is less than each number in the upper class.

The lower class containsg and all rational numbers less
than g ; the upper class contains all the rational numbers greater
than 15

(iii.) The case in which the upper class contains a least
number.

This least number is a rational number because it belongs
to the upper class. Calling it g, the lower class contains all the
numbers less than f; and therefore can contain no greatest
number.

In this case the number % separates the whole system of
rational numbers into two classes such that each number in
the lower class is less than each number in the upper class.

The upper class contains -:; and all numbers greater than g g
the lower class contains all the numbers less than f;

Cases (ii.) and (iii.) are regarded as not essentially distinct.
In both the separation of the whole system of rational numbers
into two classes can be regarded as being effected by the
number g In any of the cases (i.), (ii.), (iii.) the separation
of the system of all the rational numbers into two classes is
such that every number in the lower class is less than cvery
number in the upper class.

ARTICLE 69

The following is a geometrical analogy to the preceding.

If P be a point in any straight line, then all the points in
the straight line may be separated into two classes P, P, as
follows :

The first-class P, contains all the points that lie on one
side, say the left, of P.
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The second class P, contains all the points that lie on the
right of P.

The point P itself may be put into either class, it does not
matter which.

If P be put into the class P,, then the class P, has a point,
viz. P, which is the farthest to the right, but the class P,
has no point which is farthest to the left.

If P be put into the class P,, then the class P, has a point,
viz. P, which is the farthest to the left, but the class P, has
no point which is farthest to the right.

In either case the separation of all the points on the straight
line into the two classes P,, P, is of such a nature that every
point of the first class P, is on the left of every point of the
second class P,.

The converse of the above statement cannot be proved.
The assumption of its truth is known as the Cantor-Dedekind
Axiom. It explains what is meant by ascribing continuity to
the straight line.

The Cantor-Dedekind Axiom

If all points of the straight line fall into two classes such
that every point of the first class lies to the left of every
point of the second class, then there exists one and only one
point which produces this separation of all points of the straight
line into two classes.

Now it has been seen that the system of rational numbers
can be separated into two classes, such that every number in
the lower class is less than every number of the upper class,
and that this separation can be produced by a number which
is not a rational number. From this it follows that the system
of rational numbers is not continuous.

The existence of the Fourth Proportional

ARTICLE 70

1 come now to a very important proposition, which is far
too difficult to be included in an elementary course, except in
the special case in which the magnitudes concerned are seg-
ments of straight lines or cases readily reducible thereto.
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Euclid assumed it in V. 18, and XII. 2, 5, 11, 12, and 18.
The proposition, as will be seen, rests for its validity on an
axiom corresponding to the Cantor-Dedekind Axiom. It is
fundamental in the Theory of Ratio. It is as follows:

Prop. XXIV. If A and B be magnitudes of the same kind,
and if C be any third magnitude, then there exists a fourth
magnitude Z of the same kind as C such that

(4:B)y=(C:2).
Now if (4 : B)=(C: 2),
then (Z:C)=(B: 4).

(1) Suppose that 4 and B have a common measure, and

.. integers r, s exist such that (B : A)=§.
Then Z="<.
For %' :C=(rC: sC’)=§=(B : 4).

(2) Suppose B and 4 have no common measure.

Let B : 4 be equal to the irrational number p.

Let p,, py's, p,',... represent rational numbers in the
lower class determined by p in ascending order of magnitude.
These contain no greatest number.

Let p,, p,/, p,’’,. . . represent rational numbers in the upper
class determined by p in descending order of magnitude.
These contain no least number.

Now if p, represent any rational number %, p,C denotes
%’C, i.e. ?'lvg’ which means the vth part of the magnitude uC,
so that the magnitude p,C can be constructed.

' Construct the magnitudes ,C, p,'C, p,"”C,...., and call
them magnitudes of the form p,C.

Construct the magnitudes p,C, p,'C, p,”’C,...., and call
them magnitudes of the form p,C.

Then p,C<p,/C<p,"C<...<p,'C<p,/C<p,C.

Let us separate all the magnitudes of the same kind as C
into two classes by the following rules :

(i.) Put all those into the upper class which are greater
than every one of the magnitudes of the form p,C.
Call any one of these a magnitude Y.
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(ii.) Into the lower class put all those magnitudes which
are not greater than every one of the magnitudes of the
form p,C.

Call any one of these magnitudes a magnitude X.

It will be proved in the first place that

Every magmitude Y s greater than every magnitude X.

From the definition of the magnitudes X, it appears that
any X, say X,, does not exceed every magnitude of the form
p.C.

Suppose X, <p,'C.
But every Y exceeds every magnitude of the form p,C.
¥ mpy
R ES e
.. every Y exceeds every X.
It will be proved in the second place that
The set of magnitudes X includes no greatest magnitude.

The characteristic of the magnitudes X is that they are
not greater than every magnitude of the form p,C.
Suppose X' is one of the magnitudes X.
Let X'Z p,'C.
Now there is no greatest p,.
Suppose p,'<p,”,
MO RC=p WO
It is then permissible to take X"'=p,"C,
B =
and so on ; other magnitudes X can be found continually in-
creasing in order of magnitude.
Therefore the set of magnitudes X includes no greatest
magnitude.
It will be proved in the third place that on the assumption
of the truth of the axiom referred to above
The set of magnitudes Y includes a least magnitude.

Now the magnitudes X and Y together include all the
magnitudes of the same kind as C. In regard to these magni-
tudes we assume an axiom corresponding to the Cantor-
Dedekind Axiom for the straight line, as follows :
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If all the magnitudes of the same kind as C be separated
into two classes such that every magnitude of the one class is
less than every magnitude of the other class, then there is
one and only one magnitude of the same kind as C which pro-
duces this separation, and it is either the greatest magni-
tude of the one class, or the least magnitude of the other class.

Now it has been proved that the magnitudes X include no
greatest magnitude.

Therefore the magnitudes Y include a least magnitude.

Call this least magnitude Z.

It will be proved in the fourth place

That (Z : C) >every p,.

Since Z is a magnitude Y, it is greater than every magni-
tude of the form p,C. Write this thus:

Z >every p,0,
- (Z : C)>every p,.
It will be proved in the fifth place
That (Z : C)<every p,,
ie. Z<every p,C.
Suppose if possible Z >some p,C,
say Z>p,"'C.

Then since the rational numbers p, include no least rational

number, take
1771

p " <p,”.
Then p,""'C<p,”C,
sopl"0<Z.
Now every p, >every p,,
sopy' >every p,,
sopy"'C >every p,C,
- py’"'C is a magnitude Y.
But p,/""C<Z.

Hence there is a magnitude Y which is less than Z.
But this is contrary to the definition of Z, viz. that it was
the least of the magnitudes Y. ~

Hence Z<every p,C,
o (Z: Cy<every p,.
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It has now been proved both that

(Z : C)>every p,,
and (Z : O)<every p,.

Hence Z : C determines the same separation of the whole
system of rational numbers as the irrational number p, i.e.
the same separation as B: 4,

RO = (B
S (4:B)=(C: 2).



PART II1

CHAPTER XII
ARTICLES 71-100

Commentary on the Fifth Book of Euclid’s Elements.

I. DEFINITIONS
ARTICLE 71

THE most important definitions are the 3rd, the 4th, the 5th,
and the 7th.

(@) The third definition is translated thus by De Morgan
in his Treatise on the Connexion of Number and Magnitude.

“ Ratio is a certain mutual habitude* of two magnitudes
of the same kind depending upon their quantuplicity.”t

He says (l.c., p. 63, line 4) : ““ Ratio is relative magnitude.”

If we say that the ratio of 4 to B is the measure of the
relative magnitude of 4 as compared with B, I think that this
will give us all that can be extracted from Euclid’s third
definition.

(b) The fourth definition is translated thus by De Morgan :

* Magnitudes are said to have a ratio to each other which
can, being multiplied, exceed ‘ one the other.’ ”’

I have given De Morgan’s translation above. It is some-
times rendered, “ Two magnitudes are said to have a ratio
when the less can be multiplied so as to exceed the greater.”

But De Morgan contends that this does not represent the
meaning of the Greek original.

Whichever form be accepted, the Axiom of Archimedes is

* oxéaes, method of holding or having, mode or kind of existence.

t wphikérys, for which there is no English word; it means relative
greatness, and is the substantive which refers to the number of times or
parts of times one is in the other.
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assumed, viz.: If 4 and B are two magnitudes of the same
kind, it is always possible to find a multiple of the less which
will exceed the greater.

The third and fourth definitions may be regarded as doing
two things :

In the first place they call attention to important properties
of two magnitudes of the same kind.

In the second place, the fourth definition taken together
with the third says tha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>