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ERRATA.

Page 10, § 31. The first formula should read
(A+B)C=AC + BC.
Page 30. The third formula should read
EG—k)=j.
Page 36. Foot-note, second line of second paragraph, read

: il p ¥ 1 Y
.7=7(.?1‘—Jk1)’ Z=”2’(1 + Jiy).

Page 40. Last line of foot-note. 'For ¢, read /.
Page 52. Multiplication table of (i), Forji=14, read ji=j.
Page 75. Last line of foot-note, insert 7, at beginning of line.

Page 86. Foot-note. Add that on substituting % -+ vj for %, the algebra
(aw5) reduces to (aag); and the same substitution reduces (ays) to (azs).

Page 91. Last line of foot-note. For i, read /.
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PREFACE.

Lithographed copies of this book were distributed by Professor Peirce among his
friends in 1870. The present issue consists of separate copies extracted from 7he Ameri-
can Journal of Mathematics, where the work has at length been published.*

The body of the text has been printed directly from the lithograph with only slight
verbal changes. Appended to it will be found a reprint of a paper by Professor Peirce,
dated 1875, and two brief contributions by the editor. The foot-notes contain transforma-
tions of several of the algebra:s, as well as what appeared necessary in order to complete
the analysis in the text at a few points. A relative form is also given for each algebra ; for
the rule in Addendwm II. by which such forms may be immediately written down, was
unknown until the printing was approaching completion.

The original edition was prefaced by this dedication :

To My Friexps.
This work has been the pleasantest mathematical effort of my life. In no other have
I seemed to myself to have received so full a reward for my mental labor in the novelty
and breadth of the results. I presume that to the uninitiated the formulae will appear cold
and cheerless ; but let it be remembered that, like other mathematical formulae, they find
their origin in the divine source of all geometry. Whether I shall have the satisfaction of
taking part in their exposition, or whether that will remain for some more profound

expositor, will be seen in the future.

B. P

* To page n of this issue corresponds page n+96 of V;l.ilv. of The Jouma; W
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LINEAR ASSOCIATIVE ALGEBRA.

1. Mathematies is the science which draws necessary conclusions.

This definition of mathematics is wider than that which is ordinarily given,
and by which its range is limited to quantitative research. The ordinary
definition, like those of other sciences, is objective ; whereas this is subjective.
Recent investigations, of which quaternions is the most noteworthy instance,
make it manifest that the old definition is too restricted. The sphere of mathe-
matics is here extended, in accordance with the derivation of its name, to all
demonstrative research, so as to include all knowledge strictly capable of dog-
matic teaching. Mathematics is not the discoverer of laws, for it is not
induction ; neither is it the framer of theories, for it is not hypothesis; but it is
the judge over both, and it is the arbiter to which each must refer its claims;
and neither law can rule nor theory explain without the sanction of mathematics.
It deduces from a law all its consequences, and develops them into the suitable
form for comparison with observation, and thereby measures the strength of the
argument from observation in favor of a proposed law or of a proposed form of
application of a law.

Mathematics, under this definition, belongs to every enquiry, moral as well
as physical. Even the rules of logic, by which it is rigidly bound, could not be
deduced without its aid. The laws of argument admit of simple statement, but
they must be curiously transposed before they can be applied to the living speech
and verified by observation. In its pure and simple form the syllogism cannot
be directly compared with all experience, or it would not have required an
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Aristotle to discover it. It must be transmuted into all the possible shapes in
which reasoning loves to clothe itself. The transmutation is the mathematical
process in the establishment of the law. Of some sciences, it is so large a
portion that they have been quite abandoned to the mathematician,—which
may not have been altogether to the advantage of philosophy. Such is the
case with geometry and analytic mechanics. But in many other sciences, as in
all those of mental philosophy and most of the branches of natural history, the
deductions are so immediate and of such simple construction, that it is of no
practical use to separate the mathematical portion and subject it to isolated
discussion.

2. The branches of mathematics are as various as the sciences to which they
belong, and each subject of physical enquiry has its appropriate mathematics.
In every form of material manifestation, there is a corresponding form of human
thought, so that the human mind is as wide in its range of thought as the
physical universe in which it thinks. The two are wonderfully matched. But
where there is a great diversity of physical appearance, there is often a close
resemblance in the processes of deduction. It is important, therefore, to separate
the intellectual work from the external form. Symbols must be adopted which
may serve for the embodiment of forms of argument, without being trammeled
by the conditions of external representation or special interpretation. The
words of common language are usually unfit for this purpose, so that other
symbols must be adopted, and mathematics treated by such symbols is called
algebra. Algebra, then, is formal mathematics.

3. All relations are either qualitative or quantitative. Qualitative relations
can be considered by themselves without regard to quantity. The algebra of
such enquiries may be called logical algebra, of which a fine example is given
by Boole. .

Quantitative relations may also be considered by themselves without regard
to quality. They belong to arithmetic, and the corresponding algebra is the
common or arithmetical algebra.

In all other algebras both relations must be combined, and the algebra must
conform to the character of the relations.

4. The symbols of an algebra, with the laws of combination, constitute its
language ; the methods of using the symbols in the drawing of inferences is its
art; and their interpretation is its scientific application. This three-fold analysis

of algebra is adopted from President Hill, of Harvard University, and is made
the basis of a division into books.
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Boox I.*
THE LANGUAGE OF ALGEBRA.

5. The language of algebra has its alphabet, vocabulary, and grammar.

6. The symbols of algebra are of two kinds: ome class represent its
fundamental conceptions and may be called its ltiers, and the other represent
the relations or modes of combination of the letters and are called the signs.

7. The alphabet of an algebra consists of its letters; the wocabulary defines
1ts signs and the elementary combinations of its letters; and the grammar gives
the rules of composition by which the letters and signs are united into a
complete and consistent system.

The Alphabet.

8. Algebras may be distinguished from each other by the number of their
independent fundamental conceptions, or of the letters of their alphabet. Thus
an algebra which has only one letter in its alphabet is a single algebra ; one
which has two letters is a double algebra ; one of three letters a triple algebra;
one of four letters a quadruple algebra, and so on.

This artificial division of the algebras is cold and uninstructive like the
artificial Linnean system of botany. But it is useful in a preliminary investiga-
tion of algebras, until a sufficient variety is obtained to afford the material for a
natural classification.

Each fundamental conception may be called a unit; and thus each unit has
its corresponding letter, and the two words, unit and letter, may often be used
indiscriminately in place of each other, when it cannot cause confusion.

9. The present investigation, not usually extending beyond the sextuple
algebra, limits the demand of the algebra for the most part to six letters; and
the six letters, ¢, 7, %, {, m and n, will be restricted to this use except in
special cases.

10. For any given leiter another may be substituted, provided a new letter
represents a combination of the original letters of which the replaced letter is a
necessary component.

For example, any combination of two letters, which is entirely dependent
for its value upon both of its components, such as their sum, difference, or
product, may be substituted for either of them.

*Only this book was ever written. [C. S. P.]
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This principle of the substitution of letters is radically important. and i= a
Jeading element of originality in the present investigation ; and without it, such
am imvestigation would have been impossible. It enables the geometer to
amalyse an algebra reduce it to its simplest and characteristic forms. and
compare it with other algebras. It involves in its principle a corresponding
substitution of mifs of which it is in reality the formal representative.

There is. however. no danger in working with the symbols. irrespective of
the ideas attached to them. and the consideration of the change of the original
conceptions may be safely reserved for the book of interpretation.

11. In making the substitution of letters. the original letter will be preserved
with the distinction of a subscript pumber.

Thus, for the letter i there may suecessively be substituted 1;. 4. 1,, ete. In
the final forms. the subseript numbers can be omitted. and they may be omitted
at any period of the investigation, when it will not produce confusion.

It will be practically found that these subscript numbers need scarcely ever
be written. They pass throngh the mind. as a sure ideal protection from erro-
neous substitution, but disappear from the writing with the same facility with
which those evaneseent chemical compounds. which are essential {o the theory
of transformation. escape the eye of the observer. _

12. A pmre 2lgebra is one in which every letier is connected by some
indissoluble relation with every other letter.

13. When the letters of an algebra can be separated into two groups, which
are mutuzlly independent. it is a2 mized algchra. It is mixed even when there
are letters eommon to the two groups. provided those which are not common to
the two groups are mutually independent. Were an algebra employed for the
sirmultaneous discnssion of distinet classes of phenomena. such as those of sound
znd light, and were the peenliar units of each class to have their appropriate
letters, but were there no recognized dependence of the phenomena upon each
other. so that the phenomena of each class might have been submitted to
independent research, the one algebra would be actually a mixture of two
algebras, one appropriate to sound, the other to light.

It may be farther observed that when, in such a case as this, the component
algebras are identical in form, they are reduced to the case of one algebra with
two diverse interpretations.
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The Yocabulary.

14. Letters which are not appropriated to the alphabet of the alzebra *
may be used in any convenient sense. But it is well to employ the small letters
for expressions of common algebra. and the eapital letters for those of the algebra
under discussion.

There must, however, be exceptions to this notation; thus the letter D will
denote the derivative of an expression to which it is applied, and £ the summa-
tion of cognate expressions, and other exceptions will be mentioned as they
occur. Greek letters will generally be reserved for angular and functional
notation.

15. The three symbols J, O, and G will be adopted with the signification

J=—1

© = the ratio of circumference io diameter of circle = 3.1415926536
G = the base of Naperian logarithms = 2.7182818285,

which gives the mysterious formula
J7 = 69 =4810477381.

16. All the signs of common algebra will be adopted; but any signification
will be permitted them which is not inconsistent with their use in common
algebra ; so that, if by any process an expression to which they refer is reduced
to one of common algebra, they must resume their ordinary signification.

17. The sign =, which is called that of equality. is used in its ordinary sense
to denote that the two expressions which it separates are the same whole,
although they represent different combinations of parts.

18. The signs > and < which are those of inequality, and denote * more
than ™ or “less than ” in quantity. will be used to denote the relations of a whole
to its part, so that the symbol which denotes the part shall be at the vertex of
the angle, and that which denotes the whole at its opening. This involves the
proposition that the smaller of the quantities is included in the class expressed
by the larger. Thus

B4 or A>B

denotes that 4 is a whole of which B is a part, so that all Bis 4.+

* See $9.
t The formula in the text implies. also. that some 4 is not B. [CL & P.)
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If the usual algebra had originated in qualitative, instead of quantitative,
investigations, the use of the symbols might easily have been reversed; for it
seems that all conceptions involved in 4 must also be involved in B, so that B
is more than A in the sense that it involves more ideas.

The combined expression

B>0<A

denotes that there are quantities expressed by C which belong to the class A
and also to the class B. It implies, therefore, that some B is 4 and that some 4 is
B.* The intermediate ¢ might be omitted if this were the only proposition
intended to be expressed, and we might write

B> < A,

In like manner the combined expression

BLCO>A

denotes that there is a class which includes both A and B,} which proposition
might be written

B<L>A4.

19. A vertical mark drawn through either of the preceding signs reverses its

signification. Thus
v 4l

denotes that B and 4 are essentially different wholes;
AP B or BL A

denotes that all B is not 4, so that if they have only quantitative relations,
they must bear to each other the relation of

A= B or A< B.

20. The sign 4 is called plus in common algebra and denotes addition. Tt
may be retained with the same name, and the process which it indicates may be
called addition. In the simplest cases it expresses a mere mixture, in which

* This, of course, supposes that C does not vanish. [C. S. P.]
t The universe will be such a class unless A4 or B is the universe. [C. S. P.]

1The general interpretation is rather that either A and B are ideutical or that some B is not A.
[C.S. P.]
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the elements preserve their mutual independence. If the elements cannot be
mixed without mutual action and a consequent change of constitution, the mere
union is still expressed by the sign of addition, although some other symbol is
required to express the character of the mixture as a peculiar compound having
properties different from its elements. It is obvious from the simplicity of the
union recognized in this sign, that the order of the admixture of the elements
cannot affect it; so that it may be assumed that

A+B=B+ 4
and
(A+B)+O’=A+(B+O)=A.+B+C’.

21. The sign — is called minus in common algebra, and denotes subtraction.
Retaining the same name, the process is to be regarded as the reverse of
addition ; so that if an expression is first added and then subtracted, or the
reverse, it disappears from the result; or, in algebraic phrase, it is canceled. This
gives the equations

A+B—B=A—B+B=4A
and 2
B—B=0.

The sign minus is called the negative sign in ordinary algebra, and any term
preceded by it may be united with it, and the combination may be called a
negative term. This use will be adopted into all the algebras, with the provision
that the derivation of the word negative must not transmit its interpretation.

22. The sign X may be adopted from ordinary algebra with the name of
the sign of multiplication, but without reference to the meaning of the process.
The result of multiplication is to be called the product. The terms which are
combined by the sign of multiplication may be called factors ; the factor which
precedes the sign being distinguished as the sultiplier, and that which follows it
being the multiplicand. The words multiplier, multiplicand, and produet, may
also be conveniently replaced by the terms adopted by Hamilton, of facient,
Jaciend, and factum. Thus the equation of the product is

multiplier X multiplicand = product; or facient X faciend = factum.

When letters are used, the sign of multiplication can be omitted as in ordinary
algebra. :
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23. When an expression used as a factor in certain combinations gives a
product which vanishes, it may be called in those combinations a nilfactor.
Where as the multiplier it produces vanishing products it is nilfacient, but where
it is the multiplicand of such a product it is nilfuciend.

24. When an expression used as a factor in certain combinations over-
powers the other factors and is itself the product, it may be called an idemfactor.
When in the production of such a result it is the multiplier, it is idemfacient,
but when it is the multiplicand it is idemfaciend. '

25. When an expression raised to the square or any higher power vanishes,
it may be called nilpotent ; but when, raised to a square or higher power, it gives
itself as the result, it may be called idempotent.

The defining equation of nilpotent and idempotent expressions are respec-
tively A"=10, and A"= A; but with reference to idempotent expressions, it
will always be assumed that they are of the form

AV =4 |
unless it be otherwise distinctly stated.

26. Division is the reverse of multiplication, by which its results are verified.
1t is the process for obtaining one of the factors of a given product when the .
other factor is given. It is important to distinguish the position of the given
factor, whether it is facient or faciend. This can be readily indicated by com-
bining the sign of multiplication, and placing it before or after the given
factor just as it stands in the product. Thus when the multiplier is the given
factor, the correct equation of division is

quotient = diriiea.
divisor X

and the equation of verification is
divisor X quotient = dividend.
But when the multiplicand is the given factor, the equation of division 1s

o dividend
! ~ x divisor
and the equation of verification is
quotient X divisor = dividend.

27. Exponents may be introduced just as in ordinary algebra, and they
may even be permitted to assume the forms of the algebra under discussion.
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There seems to be no necessary restriction to giving them even a wider range
and introducing into one algebra the exponents from another. Other signs will
be defined when they are needed.

The definition of the fundamental operations is an essential part of the
vocabulary, but as it is subject to the rules of grammar which may be adopted,
1t must be reserved for special investigation in the different algebras.

The Grammar.

28. Quantity enters as a form of thought into every inference. Tt is
always implied in the syllogism. It may not, however, be the direct object of
inquiry ; so that there may be logical and chemical algebras into which it only
entérs accidentally, agreeably to § 1. But where it is recognized, it should be
received in its most general form and in all its variety. The algebra is
otherwise unnecessarily restricted, and cannot enjoy the benefit of the most
fruitful forms of philosophical discussion. But while it is thus introduced as a
part of the formal algebra, it is subject to every degree and kind of limitation in
its interpretation.

The free introduction of quantity into an algebra does not even involve the
reception of its unit as one of the independent units of the algebra. But it is
probable that without such a unit, no algebra is adapted to useful investigation.
It is so admitted into quaternions, and its admission seems to have misled some
philosophers into the opinion that quaternions is a triple and not a quadruple
algebra. This will he the more evident from the form in which quaternions
first present themselves in the present investigation, and in which the unit of
quantity is not distinctly recognizable without a transmutation of the form.*®

29. The introduction of quantity into an algebra naturally carries with it,
not only the notation of ordinary algebra, but likewise many of the rules to
which it is subject. Thus, when a quantity is a factor of a product, it has the

* Hamilton’s total exclusion of the imaginary of ordinary algebra from the calculus as well as from
the interpretation of quaternions will not probably be accepted in the future development of this
algebra. It evinces the resources of his genius that he was able to accomplish his investigations under
these trammels. But like the restrictions of the ancient geometry, they are inconsistent with the
generalizations and broad philosophy of modern science. With the restoration of the ordinary imaginary,
quaternions becomes Hamilton’s biquaternions. From this pointof view, all the algebras of this research
would be called bi-algebras. But with the ordinary imaginary is involved a vast power of research, and
the distinction of names should correspond ; and the algebra which loses it should have its restricted
nature indicated by such a name as that of a semi-algebra.
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same influence whether it be facient or faciend, so that with the notation of
§ 14, there is the equation
do=wead,
and in such a product, the quantity « may be called the coefficient.
In like manner, terms which only differ in their coefficients, may be added
by adding their coefficients ; thus,

(a £ b)A=ad + bA = Aa+ Ab= A(a £ b).

30. The exceeding simplicity of the conception of an equation involves the

identity of the equations
A= B and B=A4

and the substitution of B for 4 in every expression, so that

MA 0= M¢MB 30,

or that, the members of an equation may be mutually transposed or simultancously
increased or decreased or multiplied or divided by equal expressions.

31. How far the principle of §16 limits the extent within which the
ordinary symbols may be used, cannot easily be decided. But it suggests limi-
tations which may be adopted during the present discussion, and leave an ample
field for curious investigation.

The distributive principle of multiplication may be adopted; namely, the
principle that the product of an algebraic sum of factors into or by a common
factor, is equal to the corresponding algebraic sum of the individual products of
the various factors into or by the common factor; and it is expressed by the
equations
. (A:i:B)C’:ABK:%: BO.
U4 3= B)==10d =08/

32. The associative principle of multiplication may be adopted ; namely, that
the product of successive multiplications is not affected by the order in which the
multiplications are performed, provided there is no change in the relative position
of the factors; and it is expressed by the equations

ABC = (4B)0 = A(BC).

This is quite an important limitation, and the algebras which are subject to it
will be called associative,
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33. The principle that the value of a product is not affected by the relative
position of the factors is called the commutative principle, and is expressed by the
equation

AB= BA.

This principle is not adopted in the present investigation.

34. An algebra in which every expression is reducible to the form of an
algebraic sum of terms, each of which consists of a single letter with a quanti-
tative coefficient, is called a linear algebra.* Such are all the algebras of the
present investigation.

35. Wherever there is a limited number of independent conceptions, a
linear algebra may be adopted. For a combination which was not reduciblé’ to
such an algebraic sum as those of linear algebra, would be to that extent
independent of the original conceptions, and would be an independent conception
additional to those which were assumed to constitute the elements of the
algebra.

36. An algebra in which there can be complete interchange of its indepen-
dent units, without changing the formulae of combination, is a completely
symmetrical algebra ; and one in which there may be a partial interchange of its
units is partially symmetrical. But the term symmetrical should not be applied,
unless the interchange is more extensive than that involved in the distributive
and commutative principles. An algebra in which the interchange is effected in
a certain order which returns into itself is a eyelic algebra.

Thus, quaternions is a cyclic algebra, because in any of its fundamental
equations, such as

rt=—1
Yy=—jgn==k
k= —1

there can be an interchange of the letters in the order ¢, J, &k, i, each letter
being changed into that which follows it. The double algebra in which

P=lg =
JF=J, Ji=j

*1In the various algebras of De Morgan’s ‘‘ Triple Algebra,” the distributive, associative and com-
mutative principles were all adopted, and they were all linear. [De Morgan’s algebras are ‘‘semi-
algebras.” See Cambridge Phil. Trans., viii, 241.] [C. S. =]
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18 eyclic because the letters arve interchangeable in the order ¢, y, 7. But neither
of these algebras is commutative.

37. When an algebra can be veduced to a form in which all the letters ave
expressed as powers of some one of thew, it may be called a potential algcbra.
It the powers are all squares, it may be called guadratic ; if they are cubes, it

S

may be called ewdic ; and similarly in other cases.

Linear Assoctative Algebdra.

88, AU the cxpressions of an algebra are distributive, whencver the distributive
priaciple extends to all the letters of the alphabet. ’
For it is obvious that in the equation

E+NDE+ )=k F )+ 0+ N
each letter can be multiplied by an integer, which gives the form
(af 4 ) ek + d) = acik + dbyk + adil + by,

in which @, &, ¢ and d are integers. The integers can have the ratios of any
four real numbers, so that by simple division they can be reduced to such real
numbers,  Other stmilar equations can also be formed by writing fora and &, &
and 3,, or for e and d, ¢, and ¢y, or by making both these substitutions simulta-
neously, 1T then the two first of these new equations are multiplied by J and
the last by — 1; the sum of the four equations will be the same as that which -
would be obtained by substituting for a, 6, ¢ and d, a4+ Jay, d+ by, e+ Jo
andd +Jd,.  Hence a, b, ¢ and d may be any numbers, real or imaginary, and n
general whatever mixtures A, B, € snd D may represent of the original
units under the form of an algebraic sum of the letters ¢, j, &, &, we shall
have

(A4 B)(C+ D)= AC+ BC+ AD + BD,

which is the complete expression of the distributive principle.
39, An algebra is assoctative whenever the associative principle extends to all the
letters of vis alphabe.
For if A= X(a) =@ + ay + ak + &o
B= X{(b)=+ by + ok + &
C=2X(c) =l + o) + ok + &



Prmrer: Linear Associative Alyebra. 13

it is obvious that AB = X (abyy)
BC = X (bey1y)
(AB)C = X (abyeyyk) = A(BCO)= ABC

which is the general expression of the associative principle.

40. In every linear associative algebra, there is at least one idempotent or one
nilpotent expression.

Take any combination of letters at will and denote it by A. Its square
is generally independent of A, and its cube may also be independent of 4
and 4* But the number of powers of A that are independent of A4 and of
each other, cannot exceed the number of letters of the alphabet; so that there
must be some least power of 4 whieh is dependent upon the inferior powers.
The mutual dependence of the powers of A may be expressed in the form of an
equation of which the first member is an algebraic sum, such as

‘\;ﬂt ((l"l ‘1]“"‘ = 0 B

All the terms of this equation that involve the square and higher powers of 4
may be combined and expressed as B4, so that B is itself an algebraic sum of
powers of A4, and the equation may be written

BA+adA=(B+a)4=0.
It is easy to deduce from this equation successively

(B4raq dt= .0
B+a)B = 0
B\' _ B
<_ a,) cs le
so that —-—-f is an idempotent expression. But if «¢; vanishes, this expression
1
becomes infinite, and instead of it we have the equation
B=0
so that B is a nilpotent expression.

41. When there is an idempotent expression in a linear associative algebra, it
an be assumed as one of the independent units, and be represented by one of
the letters of the alphabet ; and it may be called the basts.

The remaining units can be so selected as to be separable into four distinet groups.

With veference to the basis, the units of the first group are idemfactors ; those of
the second group are idemfaciend and nilfacient ; those of the third group are idem-
Jacient and nilfaciend ; and those of the fourth group are nilfactors.
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First. The possibility of the selection of all the remaining units as idem-
faciend or nilfaciend is easily established. For if ¢ is the idempotent base, its
definition gives

o a=a I8
The product by the basis of another expression such as A may be represented
by B, so that "

iA=25,
which gives 5
iIB=#A=44A=B

i(4d— B)=1t4d—iB=B—B=0,

whence it appears that B is idemfaciend and A — B is nilfaciend. In other
words, 4 is divided into two parts, of which one is idemfaciend and the other is
nilfaciend ; but either of these parts may be wanting, so as to leave A wholly
idemfaciend or wholly nilfaciend. '

Secondly. The still farther subdivision of these portions into idemfacient and
nilfacient is easily shown to be possible by this same method, with the mere
reversal of the relative position of the factors. Hence are obtained the required
four groups.

The basis itself may be regarded as belonging to the first group.

42. Any algebraic sum of the letters of a group is an expression which
belongs to the same group, and may be called factorially homogeneous.

43. The product of two factorially homogencous expressions, which does not
vanish, is itself factorially homogencous, and is faciend name is the same as that
of its facient, while its facient name is the same as that of its faciend.

Thus, if A and B are, each of them, factorially homogeneous, they satisfy
the equations

i(4AB)= (i4)B,
(AB)i = A(Bi),

which shows that the nature of the product as a faciend is the same as that of
the facient A, and its nature as a facient is the same as that of the faciend B.

44. Hence, no product which does not vanish can be commutative unless both its
Jactors belong to the same group.
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45. Every product vanishes, of which the facient is idemfucient while the faciend
is milfaciend ; or of which the facient is nilfucient while the faciend is idemfaciend.
For in either case this product involves the equation

AB=(4i)B=A(iB)=0.

46. The combination of the propositions of §§ 43 and 45 is expressed in the
following form of a multiplication table. In this table, each factor is expressed
by two letters, of which the first denotes its name as a faciend and the second as
a facient. The two letters are d and », of which d stands for idem and n for nil.
The facient is written in the left hand column of the table and the faciend in the
upper line. The character of the product, when it does not vanish, is denoted
by the combination of letters, or when it must vanish, by the zero, which is
written upon the same line with the facient and in a column under the faciend.

dd dn  nd | nn

dd dd dn 0 0
|
|
dn 0 0 dd |

dn

nd | nd | nn 0 0

nn 0 0 nd | nn

)

47. It is apparent from the inspection of this table, that every expression
which belongs to the second or third group is nilpotent.

48. It is apparent that all commutative products which do not wvanish are
restricted to the first and fourth groups.

49. Tt is apparent that every continuous product which does not vanish, has
the same faciend name as its first facient, and the same facient name as its last
faciend.

50. Since the products of the units of a group remain in the group, they
cannot serve as the bond for uniting different groups, which are the necessary
conditions of a pure algebra. Neither can the first and fourth groups be con-
nected by direct multiplication, because the products vanish. 7T%e Jirst and fourth
groups, therefore, require for their indissoluble union into @ pure algebra that there
should be units in each of the other two groups.
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51. In an algebra which has more than two independent units, it cannot
happen that all the units except the base belong to the second or to the third group.
For in this case, each unit taken with the base would constitute a double algebra,
and there could be no bond of connection to prevent their separation into
distinct algebras.

52. The units of the fourth group are subject to independent discussion, as if they
constituted an algebra of themselves. There must be in this group an idempotent
or a nilpotent unit. -If there is an idempotent unit, it can be adopted as the
basis of this group, through which the group can be subdivided into subsidiary
groups.

The idempotent unit of the fourth group can even be made the basis of the
whole algebra, and the first, second and third groups will respectively become
the fourth, third and second groups for the new basis.

53. When the first group comprises any units except the basis, there 1s besides
the basis another idempotent expression, or there is a nilpotent expression. By a
process similar to that of § 40 and a similar argument, it may be shown that for
any expression A, which belongs to the first group, there is some least power
which can be expressed by means of the basis and the inferior powers in the
form of an algebraic sum. This condition may be expressed by the equation

Sa(a,d™) + b= 0.
If then 4 is determined by the ordinary algebraic equation
S (@ k™) 4+ b= O,-
A= A—u

and if

is substituted for 4, an equation is obtained between the powers of 4, from
which an idempotent expression, B, or else a nilpotent expression, can be
deduced precisely as in §40.*

54. When there is a second idempotent unit in the first group, the basis can be
changed so as to free the first group from this second idempotent unit.

Thus if 7 is the basis, and if j is the second idempotent unit of the first
group, the basis can be changed to

* The equation in A may have no algebraic solution, in which case the new idempotent or nilpotent
would not be a direct algebraic function of ¢ and 4. [C.S. P.]
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wW=1—J;

and with this new basis, j passes from the first to the fourth group. For
First, the new basis is idempotent, since '

B=(i—jf=P— 2+ =i—j=i;
and secondly, the idempotent unit j passes into the fourth group, since

== sy =it=—i=0,
Ja=jli—g)=si—5"=5j—j=0.

55. With the preceding change of basis, expressions may pass from idemfacient
to nilfacient, or from idemfaciend to nilfaciend, but not the reverse.

For first, if A is nilfacient with reference to the original basis, it is also, by
§ 45, nilfacient with reference to the new basis; or if it is nilfaciend with
reference to the original basis, it is nilfaciend with reference to the new basis.

Secondly, all expressions which are idemfacient with reference to the
original basis, can, by the process of § 41, be separated into two portions with
reference to the new basis, of which portions one is idemfacient and the
other is nilfacient ; so that the idemfacient portion remains idemfacient, and the
remainder passes from being idemfacient to being nilfacient. The same process
may be applied to the faciends with similar conclusions.

56. It is evident, then, that each group™ can be reduced so as not to contain
more than one idempotent unit, which will be its basis. In the groups which
bear to the basis the relations of second and third groups, there are only
nilpotent expressions.

57. In a group or an algebra which has no idempotent expression, all the
expressions are nilpotent.

Take any expression of this group or algebra and denote it by A. If no
power of A vanished, there must be, as shown in § 40, some equation between

the powers of 4 of the form
3 By A = ),

in which «; must vanish, or else there would be an idempotent expression as is
shown in § 40, which is contrary to the present hypothesis. If then m, denote

* That is, the first group as well as each of the subsidiary groups of ¢52. [C. S. P.]
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the exponent of the least power of A that entered into this equation, and m, + A
the exponent of the highest power that occurred in it, the whole number of
terms of the equation would be, at most, » + 1. If, now, the equation were
multiplied successively by 4 and by each of its powers as high as that of which
the exponent is (m,— 1) %, this highest exponent would denote the number of
new equations which would be thus obtained. If, moreover,

B=4",
then the highest power of A introduced into these equations would be

my—Dh+my+h — Am (h+1) — Br+1
A B GE:

The whole number of powers of 4 contained in the equations would be meh + 1,
and 4 1 of these would always be integral powers of B; and there would
remain (m,— 1)A in number which were not integral powers of B. There
would be, therefore, equations enough to eliminate all the powers of A that
were not integral powers of B and still leave an equation between the integral
powers of B; and this would generally include the first power of B. From
this equation, an idempotent expression could be obtained by the process of § 40,
which is contrary to the hypothesis of the proposition.

Therefore it cannot be the case that there is any equation such as that here
assumed ; and therefore there can be no expression which is not nilpotent. The
few cases of peculiar doubt can readily be solved as they occur; but they
always must involve the possibility of an equation between fewer powers of B
than those in the equation in A4.*

58. When an expression is nilpotent, all its powers which do not vamish are
mutually independent.

Let A be the nilpotent expression, of which the »™ power is the highest
which does not vanish. There cannot be any equation between these powers
of the form

B AR s 0,

*In saying that the equation in B will generally include the first power of B, he intends to waive
the question of whether this always happens. For, he reasons, if this is not the case then the equation
in B is o be treated just as the equation in A has been treated, and such repetitions of the process must
ultimately produce an equation from which either an idempotent expression could be found, or else 4
would be proved nilpotent. [C. S. P.}
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For if m, were the exponent of the lowest power of A in this equation, the
multiplication of the equation by the (n— m,)™ power of A reduces it to

am"A":O, amo=0,

that is, the m ™ power of A disappears from the equation, or there is no least
power of A in the equation, or, more definitely, there is no such equation.

59. In a group or an algebra which contains no idempotent cxpression, any
expression may be selected as the basis; but one s preferable which has the
greatest number of powers which do not vanish. All the powers of the basis which
do not vanish may be adopted as independent units and represented by the
letters of the alphabet.

A nilpotent group or algebra may be said to be of the same order with the number
of powers of its basis that do not vanish, provided the basis is selected by the
preceding principle. Thus, if the squares of all its expressions vanish, it is of
the first order ; if the cubes all vanish and not all the squares, it is of the second
order, and so on.

60. It is obvious that in a nilpotent group whose order equals the number
of letters which it contains, all the letters except the basis may be taken as the
successive powers of the basts.

61. In a nilpotent group, every expression, such as A, has some least
power that is nilfacient with reference to any other expression, such as B, and
which corresponds to what may be called the facient order of B relatwely to
A ; and in the same way, there is some least power of 4 which is nilfaciend with
reference to B, and which corresponds to the faciend order of B relatively to A.
When the facient and faciend orders are treated of irrespective of any especial
reference, they must be referred to the base.

The facient order of a product which does not vanish, vs not higher than that of
its facient ; and the faciend order is not higher than that of its Jaciend.

62. After the selection of the basis of a nilpotent group, some one from
among the expressions which are independent of the basis may be selected by the
same method by which the basis was itself selected, which, together with all its
powers that are independent of the basis, may be adopted as new letters ; and again,
from the independent expressions which remain, new letters may be selected by the
same process, and so on until the alphabet is completed. In making these selections,
regard should be had to the factorial orders of the products.
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63. In every nilpotent group, the facient order of any letter which is indepen-
dent of the basis can be assumed to be as low as the number of letters which are
wndependent of the basis.

Thus, if the number of letters which are independent of the basis is denoted
by 7', and if n is the order of the group (and for the present purpose it is suffi-
cient to regard ' as being less than n), it is evident that any expression, 4, with
its successive products by the powers of the basis ¢, as high as the 2 and the
powers of the basis which do not vanish, cannot all be independent of one
another; so that there must be an equation of the form ‘

2 i + Z,bimA =0,
1 0
Accordingly, it is easy to see that there is always a value of A, of the form

A= A—3 "
which will give i
4, =0,
which corresponds to the condition of this section.

There s a similar condition which holds in every selection of a new letter by the
method of the preceding section.

64. In a nilpotent group, the order of which s less by unity than the number of
letters, the letter which is independent of the basis and its powers may be so selected
that its product into the basis shall be equal to the highest power of the basis which
does not vanish, and that its square shall cither vanish or shall also be equal to the
lighest power of the basis that does not vanish. Thus, if the basis is ¢, and if the
order of the algebra is n, and if j is the remaining letter, it is obvious, from § 63,
that j might have been assumed such that

="
which gives

Ji= i =0;
and therefore, = b

Jr=ar 4+ by,
O=gi* = Gi* =i =38,
Jr= o

FH = gt = =g
P
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so that if A ( ) ;, 7__<a’"—1

s,

) =3
we have
Ji =14 =Ji,
and 7; and 7, can be substituted for ¢ and j, which conforms to the proposition
enunciated.
It must be observed, however, that the analysis needs correction when the
group is of the second order.

65. In a nilpotent group of the ﬁrst order, the sign of a product is merely
reversed by changing the order of its factors. Thus, if

=B = (A B =
it follows by development, that

(A+ BP=A*+ AB+ BA+ B'=AB+ BA=0
BA=—AB,

which is the proposition enunciated.
66. In general, in any nilpotent group of the n'™ order, if (A4°, B‘) denotes the
sum of all possible products of the form

Ap B AP BU AR ., .

in which
208, S =i,
and if
s+t=n+1,
it will be found that
£ B=0,
For since (A +aB)y"+t1 =0

whatever be the value of «, the multiplier of each power of « must vanish, which

gives the proposed equation
G B =)

67. In the first group of an algebra, having an idempotent basts, all the expres-
sions except the basis may be assumed to be nilpotent. For, by the same argument

as that of §53, any equation between an expression and its successive powers
and the basis must involve an equation between another expression which is
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easily defined and its successive powers without including the basis. But it
follows from the argument of §57, that such an equation indicates a corres-
ponding idempotent expression ; whereas it is here assumed that, in accordance -
with §56, each group has been brought to a form which does not contain any
other idempotent expression than the basis. It must be, therefore, that all the
other expressions are nilpotent.

68. No product of expressions in the first group of an algebra having an idem -
potent basis, contains a term which is a multiple of the basis.

For, assume the equation

AB=—uxi+ C,

in which 4, B and C are nilpotents of the orders m, n and p, respectively.
Then,
0 =A4A"t1B = —zA™ 4+ A™C
A0 =edh
) =A"EtL=uARCF =t ARRS = i f Ay

that is, the term — ¢ vanishes from the product 4B.

69. It follows, from the preceding section, that if the idempotent basis were
taken away from the first group of which it is the basis, the remaining letters of the
Jirst group would constitute by themselves a nilpotent algebra.

Conversely, any nilpotent algebra may be converted into an algebra with an
idempotent basis, by the simple annexation of a letter idemfaciend and idemfacient
with reference to every other.®

70. However incapable of interpretation the nilfactorial and nilpotent
expressions may appear, they are obviously an essential element of the calculus
of linear algebras. Unwillingness to accept them has retarded the progress of
discovery and the investigation of quantitative algebras. But the idempotent
basis seems to be equally essential to actual interpretation. The purely nilpotent
algebra may therefore be regarded as an ideal abstraction, which requires the
introduction of an idempotent basis, to give it any position in the real universe.
In the subsequent investigations, therefore, the purely nilpotent algebras must
be regarded as the first steps towards the discovery of algebras of a higher
degree resting upon an idempotent basis.

* That every such algebra must be a pure one is plain, because the algebra (a,) is so. [C. S. P.]
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71. Sufficient preparation is now made for the

INVESTIGATION OF SPECIAL ALGEBRAS.

The jfollowing notation will be adopted in these rescarches. Conformably with
§9, the letters of the alphabet will be denoted by ¢, j, %, 7, m and n. To
these letters will also be respectively assigned the numbers 1, 2, 3, 4, 5 and
6. Moreover, their coefficients in an algebraic sum will be denoted by the
letters a, b, ¢, d, e and f. Thus, the product of any two letters will be
expressed by an algebraic sum, and below each coefficient will be written in
order the numbers which are appropriate to the factors. Thus,

Jl=ayut +byjteuk+dyl+tem+tfun,
J=agt+bejtepktdyltey,m+ fon.

In the case of a square, only one number need be written below the coefficient,
thus

while

B=agitbjtehktdlt+em+fin.

The investigation simply consists in the determination of the values of the
coefficients, corresponding to every variety of linear algebra; and the resulting
products can be arranged in a tabular form which may be called the multipli-
cation-table of the algebra. Upon this table rests all the peculiarity of the
caleculus. In each of the algebras, it admits of many transformations, and much
corresponding speculation. The basis will be denoted by <.

72. The distinguishing of the successive cases by the introduction of
numbers will explain itself, and is an indispensable protection from omission
of important steps in the discussion.

SINGLE ALGEBRA.

Since in a single algebra there is only one independent unit, it requires no
distinguishing letter. It is also obvious that there can be no single algebra
which is not associative and commutative. Single algebra has, however, two

cases :
[1], when its unit is idempotent ;

[2]. when it is nilpotent.
[1]. The defining equation of this case is

PI= 9.
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This algebra may be called (a,) and its multiplication table is *

(ar) ¢

[2]. The defining equation of this case is
¢
This algebra may be called (3,) and its multiplication table is ¥t
(B

i 0

DouBLE ALGEBRA.
There are two cases of double algebra.:

[1], when it has an idempotent expression ;
[2], when it is nilpotent.
[1]. The defining equation of this case is
=y 8
By §§41 and 50, there are two cases:

[1%], when the other unit belongs to the first group ;
[12], when it is of the second group.

The hypothesis that the other unit belongs to the third group is a virtual
repetition of [12].
[1*]. The defining equations of this case are
= SUE="1"
It follows from §§67 and 69, that there is a double algebra derived from (&)
which may be called (a,), of which the multiplication table is {
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