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PREFATORY NOTE.

RONALD WILLIAM HENRY TURNBULL HUDSON would have

been twenty-nine years old in July of this year; educated at

St Paul s School, London, and at St John s College, Cambridge,

he obtained the highest honours in the public examinations of the

University, in 1898, 1899, 1900
;
was elected a Fellow of St John s

College in 1900
;
became a Lecturer in Mathematics at University

College, Liverpool, in 1902; was D.Sc. in the University of London

in 1903
;
and died, as the result of a fall while climbing in Wales,

in the early autumn of 1904.

This book was then in course of printing, and the writer had

himself corrected proofs of the earlier sheets, assisted in this

work by Mr T. J. I A. Bromwich, Professor of Mathematics in

Queen s College, Galway, and by Mr H. Bateman, of Trinity

College, Cambridge ;
for the remaining portion Mr Bateman and

myself are responsible ;
we have followed the author s manuscript

unaltered throughout ;
and gratefully acknowledge the care given

to the matter by the University Press.

Attentive readers can judge what devotion, what acumen,

went to the making of a book of such strength and breadth;

a book whose brevity grows upon one with study. To those who

knew the writer it will be a reminder of the enthusiasm and

a3
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VI PREFATORY NOTE

brilliance which compelled their admiration, as the loyalty of his

nature compelled their regard. A many-sided theory such as that

of this volume is generally to be won only by the work of many
lives

;
one who held so firmly the faith that the time is well spent

could ill be spared.

H. F. BAKER.

27 March 1905.
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CHAPTER I.

RUMMER S CONFIGURATION.

1. DESM1C TETRAHEDRA.

The eight corners of a cube form a very simple configuration ;

yet by joining alternate corners by the diagonals of the faces we

get two tetrahedra such that each edge of one meets two opposite

edges of the other, and the figure possesses all the projective

features of the most general pair of tetrahedra having this

property.
Take an arbitrary tetrahedron of reference XYZT, and any

point S whose homogeneous coordinates are #, y, z, t. Draw three

lines through this point to meet the pairs of opposite edges, and

on each line take the harmonic conjugate of S with respect to

the intercept between the edges ;
in this way three new points

P, Q, R are obtained, making in all the set of four

P, ( x, -y, -z, t
),

Q, (-x, y, -z, t ),

R&amp;gt; (~ &amp;gt; -y, z&amp;gt;
* X

S, ( x, y, z, t
).

Then PQR8 and XYZT are a pair of tetrahedra possessing the

above property, for PS and QR meet both XT and YZ, and so on
;

they are the most general pair, for the preceding harmonic con

struction is deduced from the fact that, by hypothesis, any face of

one tetrahedron cuts the other in a complete quadrilateral whose

diagonals are the edges in that face. When one tetrahedron is

given the other is determined by any one of its corners. Tetra

hedra so related are said to be desmic and to belong to a desmic

system.

H. 1



RUMMER S CONFIGURATION [CH. i

These two tetrahedra possess further the remarkable property
of being in fourfold perspective] for the lines PT, QZ, RY, SX
are concurrent in

( x, y, z, t), and so on. Thus there are four

centres of perspective

P, (-x, y, z, t
),

Q , ( x, -y, z, t ),

R
, ( , y, -z, t ),

S
, ( x, y, z, -t

),

and we see that the points P , Q ,
R are obtained from S in the

same way as P, Q, R were obtained from S, that is, by changing
the signs of two coordinates

;
hence the tetrahedra P QRS and

XYZT belong to the same desmic system.
It has just been shown that the twelve corners of the three

tetrahedra PQRS, P Q R S
,
XYZT lie by threes on sixteen lines,

and from this it follows that each pair of tetrahedra is in fourfold

perspective. Now the property of being in fourfold perspective

is an equally good definition of desmic tetrahedra and all the other

properties can be deduced from this. We are thus led to include

three tetrahedra in every desmic system.

None of the project!ve features of the figure are lost by taking

X, Y, Z to be the infinite ends of a frame of rectangular axes

FIG. 1.

meeting in an origin T, and by supposing that x y z\ then

P, Q, R become the images of $ in the axes, and P
, Q , R, S

become the images of S in the planes of reference and in the

origin respectively. We have, in fact, the corners of a cube, and

the diagonals of the faces are the edges of the regular tetrahedra

PQRS and P QRS . The figure is one that is easily conceived,

and its desmic properties are readily discerned by geometrical
intuition. Sets of parallel edges of the cube show the tetrahedra

in three perspective aspects, and the diagonals show that the
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centre is also a centre of perspective. Of the intersections of

the edges, six are the centres of the faces of the cube and are

the corners of a regular octahedron. The remaining six are at

infinity.

It is interesting to notice that these twelve points of inter

section are the corners of another desmic system of tetrahedra

formed with the same eighteen edges ;
in the figure the three new

tetrahedra are infinite and wedge-shaped, each being formed by
two opposite faces of the cube and the planes containing their

parallel diagonals.

Since the figure is defined by intersecting lines, it is self-

reciprocal, and to every point-theorem there is a corresponding

plane-theorem ;
in particular, the faces of any two tetrahedra can

be paired in four ways so that the lines of intersection lie in a

face -of the third tetrahedron. The geometrical properties of the

figure are deducible from the identity

(a-b - c + d)(- a + b -c + d)( a b + c

= IQabcd,

in which the letters may be regarded as current coordinates of

either a plane or a point.

The two following results may be taken as examples.

The twelve centres of similitude of four spheres are the corners of a

desmic system.

If three tetrahedra belong by pairs to different desmic systems, the re

maining tetrahedra of the three systems belong to another system.

Desmic systems were first investigated by Stephanos* and are so named
because the three tetrahedra belonging to one system are members of a pencil

(faisceau, deo-pos} of quartic surfaces. The general surface of the pencil has

twelve nodes and is the subject of a memoir by Humbert t ;
its equation may

be written in the symmetrical form

X (x*P+yW) + fi (ft
2 +^2

) -f- v (zW+xY)= 0,

where

and the three tetrahedra are

the sum of the left sides being identically zero. For further details and
references see a paper by Schroeter J ;

an application to Spherical Trigono

metry is given by Study .

* Darboux Bulletin (1879), ser. 2, in, 424.

t Liouville (1891), ser. 4, vn, 353.

J Crelle (1892), cix, 341.

Mathematical Papers, Chicago Congress (1893), p. 382.

12
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2. THE GROUP OF REFLEXIONS.

A group of operations is a set of operations such that the

resultant of any number taken in any order is an operation of the

set*; in particular the repetition of a single operation any number

of times is equivalent to some member of the group.

The fact that by successive reflexions in the axes only a finite

number of points are obtained from one arbitrary point shows

that the operations of reflecting belong to a group. Considered

algebraically the operations consist in changing the signs of two

of the coordinates. Let the symbol A denote the operation of

changing the signs of y, z, and therefore of changing 8 into P.

The repetition of the operation A changes P back into 8 again,,

and this is expressed by the symbolic equation

A*=I.

Here 1 denotes the identical operation, which does not alter the

position of the point to which it is applied ;
we infer that it must

be included in every group to which A belongs. Similarly let the

operation B change the signs of z, x, and C those of x, y. Then

B2 = 1 and (7
2 = 1. Further, if B and C are performed successively

in either order the result is the same as when y and z, but not
x&amp;gt;

are changed in sign ;
this is expressed by the symbolic equations

BC=CB = A.

In other words, B and C are permutable and their product is A.

These equations, with others deduced by symmetry, are sufficient

to show that the four operations

1, A, B, G

form a group, for any combination of them can be reduced to one

of themselves. The multiplication table

is a convenient way of representing the equations

A* = B*=C2 =l,

BC=CB = A, CA=AC = B, AB = BA = C.

* For a complete definition and fuller explanations see Burnside s Theory of

Groups, Chap. n.
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It may happen that some of the members of a group form a

group by themselves. In this case the smaller group is called a

subgroup of the larger. For example (1, A} is a subgroup of

(1, A, B, (7); (1, B) and (1, C) are also subgroups.
When two permutable groups are given, a third group can be

obtained by combining the members of one with the members of

the other in all possible ways, and is called the product of the first

two groups. For example, the group of reflexions is the product
of any two of its subgroups. The order of the product group, that

is, the number of its members, is the product of the orders of the

first two groups.

3. THE 166 CONFIGURATION.

In space of three dimensions a point or a plane may be repre
sented by four symbols a, /3, 7, 8 used homogeneously. The
condition of incidence of two elements (a, {3, 7, 8) and (a , /3 , 7 ,

8 )

of different kinds may be taken to be ,

On account of the perfect reciprocity between point and plane in

protective geometry, every theorem that will be proved has its

correlative theorem : it will not be necessary to state the second

result in every case.

It is immediately verifiable that the plane

( V A % s )

contains the six points

( 8, w, 8, a Y

and this is the foundation of the configuration ;
the preceding six

incidences are true for all values of the symbols, and we may
therefore substitute the members of any of the last six rows for

a, /5, 7, 8 respectively and so obtain other sets of incidences. It will

be found that only sixteen different points and sixteen different

planes can be obtained in this way, and this is due to the fact that

the operations of permuting and sign-changing involved in these

substitutions belong to a group. In order to explain the formation

of this group we must introduce symbols for its members.
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4 THE GROUP OF SIXTEEN OPERATIONS.

Let A denote the operation of interchanging a, $ and at the

same time ft, 7, each letter carrying its sign with it
; similarly B

interchanges ft with & and 7 with a, and C interchanges 7 with 8

and a. with /3. Further let A denote the operation of changing
the signs of ft, 7, B those of 7, a, and G those of a, ft. Then
A

,
B

,
C belong to the group of reflexions which has already been

considered, and it is easily seen that A, B, C satisfy symbolic

equations of precisely the same form; in other words (1, A, B, C)
and (1, A ,

B
,
C ) are two groups having similar multiplication

tables. Since change of order is independent of change of sign,

all the members of one group are permutable with those of the

other, for example AB = B A, and consequently the groups them
selves are said to be permutable.

By combining the members of these two permutable groups
in all possible ways we obtain a set of sixteen operations which

evidently form a group containing (1, A, B, C) and (1, A ,
B

,
C )

as subgroups. All the sixteen planes of the configuration are

obtained by operating on any one of them, say (a, ft, 7, 8), with

the members of the group, and the six points lying in each plane
are obtained by operating on the set given in 3 with the corre

sponding member of the group ; for, the condition of incidence is

unaffected when the same operation is performed on point and

plane. We may clearly use the symbol of operation to denote the

point or plane obtained from (a, ft, 7, 8) by that operation, thus

(1) denotes (a, ft, 7, 8) and (AB ) denotes (8, 7, ft, a), and so

on
;
we have seen that the plane (1) or (a, ft, 7, 8) contains the

points

(AB \ (AG \ (BG \ (BA \ (GA ), (GB
f

),

and we deduce that the plane (A}, or (8, 7, ft, a), contains the

points

(B \ (G ), (CG \ (GA ), (BA ), (BB \

and so on.

The group of sixteen operations, which will be referred to

simply as the group, contains many subgroups. Any two opera
tions and their product form, with the identical operation, a sub

group: two examples are (1, AB, BC
, GA} and (1, AC , BA, GB \

Further the group can be arranged in many ways as the product
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of two subgroups; one arrangement arises from the definition

and another from the two preceding subgroups. These are shown

by the multiplication tables

I A B C f 11 AC BA CB

AA AB AC AB A CC ! B
BA BE EC EC C B AA
CA CB CC CA BE A C

It is an easy exercise to verify the following table :

order of subgroup = 2, 4, 8,

number of subgroups = 15, 35, 15.

5. THE INCIDENCE DIAGRAM.

We have thus found the coordinates of sixteen points and

sixteen planes such that six points lie in each plane and six

planes pass through each point. The most general 16 6 con

figuration, which is defined by these properties, can be reduced

to the preceding form by a proper choice of coordinates.

The whole scheme can be exhibited very compactly by the

following artifice. Since the subgroups (1, A, B, C) and

(1, A, B ,
C

} obey the same laws, they may be represented

by the same symbols : the members of the two subgroups will

be distinguished by the position they occupy in a compound

symbol. Every member of the product group will be represented

by a two-letter symbol in which the first letter will represent

a member of (1, A, B, C) and the second a member of (1, A, B\ C ).

The operations of each of these subgroups will be denoted by

d, a, b, c,

so that in either position d represents the identical operation.

The multiplication table

d a b c

which is fundamental for this representation, applies to both the

first and the second letters in a compound symbol, and the table
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showing the product of the two subgroups (1, AB ,
BC f

,
CA f

) and

(1, AC , BA\ CB ) takes the form

dd ac ba cb

ab

be

ca

da cc bd

cd db aa

bb ad dc

The sixteen symbols, which in the first instance denote

operations, can, as is explained above, be used to denote both

points and planes ;
it will be found that no confusion arises from

this, but that, on the contrary, the duality of the configuration
is clearly brought out by this nomenclature. Now any row is

obtained from any other row by one of the operations ab, be, ca,

and any column from any other column by one of the operations

ac, ba, cb. Since the plane (dd) contains the points represented

by the other symbols in the same row and column, it follows that

the six elements incident with any element are given by the row
and column containing that element.

This property of the table is not lost if the rows are permuted
in any manner, and also the columns. This, as well as the group

property, shows that all the elements are of equal importance
in the configuration, although the notation isolates (dd), or

(a, ft, 7, 8). To bring this out more clearly the symbols in the

table will frequently be replaced by dots, and then we shall have

an incidence diagram which will be of great use for indicating

O X O O X O

. o o x

at a glance relations among the elements of the configuration.

Thus, for example, in the first diagram the plane x contains the

six points o, and the second diagram shows that any two planes

have two points in common.

6. LINEAR CONSTRUCTION FROM SIX ARBITRARY PLANES.

By means of the incidence diagram it is easy to prove that

the 16 6 configuration can be linearly constructed from six arbitrary

planes, and also, reciprocally, from six arbitrary points. It is

convenient to use two diagrams, one for planes and the other for
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points; each is an incidence diagram for the elements contained

in it, and two elements, one from each diagram, are incident

if they lie on corresponding rows, or columns, but not both.

o o o

o o

o o

o o

Let the first diagram represent any six planes; the positions of

the crosses make no suppositions as to the linear dependence of the

planes, for the diagram does not indicate that more than three

planes pass through the same point. It is required to fill in the

remaining ten places, if possible, so as to complete the incidence

diagram and obtain a 16 6 configuration. The noughts in the

second diagram represent ten of the twenty points of concurrence

of the six planes, taken by threes : for example, the three crosses

in the first row determine the last nought of the first row. Now

every row and column in the second diagram, taken together, con

tain enough noughts to determine a plane of the configuration ;
in

this way the remaining ten planes are found and the first diagram

may be completed.
Hence a 16 6 configuration can be constructed from six arbitrary

planes in at least one way, and therefore involves eighteen arbitrary

constants. Now the system considered in 3 contains the three

ratios a : /3 : 7 : S and fifteen constants implied in the choice of

a particular set of homogeneous coordinates. We infer that the

general configuration can be represented in this way.

We shall now investigate the preceding process of constructing

the configuration in greater detail, and prove that six given planes

determine twelve configurations.

Let five planes in general position be denoted by 1, 2, 3, 4, 5,

their lines of intersection by two-figure symbols and their common

points by three-figure symbols. There are twelve different cyclical

arrangements of the planes and each gives a skew pentagon formed

by the intersections of the planes taken in order. Thus corre

sponding to the arrangement

123451
there is a pentagon with sides

12 23 34 45 51

and corners

123 234 345 451 512 P.
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Each side contains, besides two corners of the pentagon, one
other point of the system, where it meets the opposite plane,

making the set

124 235 341 452 513 Q,

and these, when arranged in the order

135 352 524 241 413 F,
are the corners of the pentagon corresponding to the cyclical

arrangement of planes 13524. The relation between the

pentagons P and F is mutual, and so the twelve pentagons
can be divided into six pairs, the members of each pair being

mutually inscribed and circumscribed.

We next prove that the pentagons whose corners are P and Q,

taken in the order given, are so related that when they are

projected from any point on to any plane, five intersections of

pairs of sides are collinear. Giving the projections the same
names as the points and lines in space, we see that the sets

of points
341 123 513

and 512 452 235

are collinear, lying on 13 and 25 respectively. Therefore, by
Pascal s theorem, the intersections of

(513, 512), or 51, and (235, 341)

(512, 123), or 12, and (341, 452)

(123, 235), or 23, and (452, 513)

are collinear, and similarly for the other pairs of sides. Hence
the theorem is proved.

Two skew pentagons, which are so related that the five lines

from any point to meet pairs of corresponding sides are coplanar,

are said to be in lineal position ;
we have now proved that the

twelve pentagons formed by the intersections of five planes taken

in different orders can be arranged in six pairs such that if the

corners of one pentagon are taken alternately a new pentagon
is formed which is in lineal position with the other member of the

pair. In this way we get twelve pairs of pentagons in lineal

position.

Conversely, instead of projecting from an arbitrary point,

take any sixth plane 6
;

its intersections with the lines 12 and

(134, 245), 23 and (245, 351) determine two lines meeting in a

point which must be collinear with the points where 6 cuts 34
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and (351, 412), and so on. Thus we have a property of any six

planes 1, 2, 3, 4, 5, 6, namely that the five planes

I, (612, 134, 245)

II, (623, 245, 351)

III, (634, 351, 412)

IV, (645, 412, 523)

V, (651, 523, 134)

have a common point lying in the plane 6. This is one of the

results which were proved above from the diagrams ;
when the

names of the planes and points are inserted, the preceding theorem

is made evident from the diagrams

Planes Points

1241 245 134 612 412

5 . - IV 523 645

3-111 351 - 634

II V 6 651 623

Of the twenty points of concurrence of the six planes only ten

are used in the second diagram and no two involve all six planes.
Each plane occurs five times arid the scheme is based on isolating

one, 6, and arranging the rest in a certain cyclical order 12345.

Any of the other planes may be isolated and the rest arranged
in appropriate order so as to lead to the same configuration, thus

1, 35624

2, 41635

3, 52641

4, 13652

5, 24613

the rule being to substitute 6 in 12345 in place of the isolated

figure and to interchange the two figures not adjacent to it in the

cyclical order.

Hence when six planes are arbitrarily given, a 16 6 configuration
is determined when one is isolated and the rest arranged in

cyclical order. The twelve different orders of these five planes
lead to twelve distinct configurations, and since it is immaterial

which of the six planes is isolated in the first instance, only twelve

different configurations can be obtained from them.

Six points can be chosen out of the sixteen so that no three lie in a plane
of the configuration in many ways ;

the diagrams are of two types :
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(1) four points form a rectangle and the others lie on different rows and

columns,

(2) three points lie in a row and the others on different rows and the same
columns.

Only one half of the configuration can be linearly constructed from a

hexad of type (1).

Of the 720 ways of permuting the names of the points of type (2), sets of

sixty lead to the same ten planes and only twelve differently named configur
ations can be obtained.

The fact that twelve 166 configurations can be linearly constructed from

six given points was first proved by Weber*, so that the 192 different sets of

six points in one configuration are called Weber hexads. The subject is

treated synthetically by Reyet and Schroeter J who introduces pentagons in

lineal position. Geiser examines in greater detail the groups of ten planes
determined by six points and exhibits the configuration in an incidence

diagram.

7. SITUATION OF COPLANAR POINTS.

Let the diagram represent points, so that A,B, C, A ,
B

,
G

lie in one plane. EFBC and EFB C are seen to be plane

quadrangles and therefore EF, BC ,
and B C meet in the common

point P of these three planes. Similarly FD, CA
,
C A are con

current in Q and DE, ABf

,
A B in K Hence the plane ABC

A B C -

D &amp;gt; A
. E B

F C f

cuts the sides of the triangle DEF in points P, Q, R which

are the intersections of opposite sides of the hexagon AB CA BC .

Since P, Q, R are collinear, it follows from Pascal s theorem that

the hexagon is inscribed in a conic.

Since the six points in any one plane can be changed into the

points in any other plane by a linear transformation belonging
to the group, it follows that the protective situation of the points

on every conic is the same.

* Crelle (1878), LXXXIV, 332.

t Crelle (1879), LXXXVI, 209.

J Crelle (1887), c, 231.

Vierteljalirschrift der naturforschenden Gesellschaft in Zurich (1896), Jahrgang

41, Teil n, p. 24.
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The duality of the configuration shows that the six planes

through any point touch a quadric cone and the situation of the

lines of contact is projectively equivalent to that of the six points
on a conic.

Further, the twisted cubic curve determined by the six points
ABCDEF is projected from D into a conic in the plane ABG
passing through ABCQR. The pencil A[BCQR] is the same as

A[BCC B \ showing that the ranges BCG B on the conic and

BCFE on the cubic have the same cross ratio. Similarly the

other ranges of four points may be compared.
From their position in the diagram we see that ABCDEF

are six points from which the whole configuration can be linearly

constructed
;
and it has just been proved that their situation on

the twisted cubic through them is projectively equivalent to that

of the points ABCA B C on the conic through them. The same is

true of all the Weber hexads and all the conies, and three inde

pendent cross ratios of the six parameters which give the positions
of the six points on any conic may be taken to be the absolute

invariants of the configuration, being unaltered by any linear

transformation of coordinates.



CHAPTER II.

THE QUARTIC SURFACE.

8. THE QUARTIC SURFACE WITH SIXTEEN NODES.

Every surface can be regarded either as a locus of points or as

an envelope of planes. It is convenient to give preponderance to

the former view, so that the order of a surface is one of its most

distinguishing features. Carrying this idea further, it is natural

to classify surfaces of given order by the point singularities which

they may possess. A singular point is one in the neighbourhood
of which the surface ceases to be approximately flat; there may
be a locus of such points, giving a singular line, or the singular

points may be isolated. Among surfaces of the second order the

former case is illustrated by a pair of planes, and the latter by
a cone.

The surface usually known by the name of its first investi

gator, Kummer*, belongs to those surfaces of the fourth order

which have isolated singularities. The only kind of point singu

larity which will in general be considered is that of a node,

characterised geometrically by the fact that the tangent lines at it

generate a quadric cone instead of a plane, and algebraically by
the absence of terms of the first degree from the equation in point
coordinates when the node is taken as origin.

The reciprocal singularity, which will occur with equal fre

quency, is that of a trope, or singular tangent plane. It is cut

by consecutive tangent planes in lines which envelope a conic

instead of forming, as usual, a plane pencil at the point of con

tact. The plane therefore touches the surface all along a conic

instead of at a single point. The conic of contact of a trope will

sometimes be called a singular conic of the surface.

The number of nodes which a surface of order n can have is

limited by its class. The points of contact of tangent planes

* Ernst Eduard Kummer, Professor of Mathematics at Berlin, 1856 ; born 1810,

died 1893. See Berliner Monatsberichte, (1864), pp. 246, 495 ; (1865), p. 288. Berlin.

Akad. Abhandl. (1866), p. 1. -
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through any two points A and B lie on the polar surfaces of A
and B, which are of order n 1, and hence the number of them
is n (n I)

2
. But by considering a penultimate form of surface

it appears that two of these points coincide with every node
;

hence the formula for the class is n(n I)
2

2S, where S is the

number of nodes. Putting n = 4&amp;gt; we get 36 28 for the class,

showing that 8 cannot be greater than 16, for if the class were 2

the surface would be a quadric.
That a quartic surface can actually have as many as sixteen

nodes will be proved in 10 by constructing its equation. Assum

ing this for the present, we proceed to deduce some of the

properties of this configuration of nodes from the elementary
geometry of the surface.

At any node there is a quadric cone of tangent lines which is

touched by the enveloping cone from the node along six gene
rators, namely those tangent lines at the node which have four-

point contact with the surface, and are found by equating to

zero the terms of degrees 2 and 3 in the equation referred to

the node as origin. The enveloping cone is of order 6. It has

nodal lines passing through the fifteen other nodes, for a node on

a surface is a node on its apparent contour. But if a sextic cone

has fifteen nodal lines, it must break up into six planes. Hence
the enveloping cone from any node consists of six planes touching
the quadric tangent cone at the node and containing the remain

ing fifteen nodes on their lines of intersection. Since any one

plane is cut by five others, six nodes lie on each plane. Consider

the section of the surface by one of these planes; every line drawn
in this plane through the node is a tangent line and meets the

surface in one point distinct from the node, namely its point of

contact. Hence the section must be a conic passing through
six nodes, that is, the plane touches the surface all along a conic,

and is therefore a trope. The complete section of the surface

by a trope is a conic counted twice
;

since this passes through
six nodes, the trope must touch the six quadric tangent cones

along generators which are tangents to the singular conic.

We thus see that if a quartic surface has sixteen nodes, they
are situated by sixes in tropes each of which touches the surface

along a conic. Since six tropes pass through each node their

number is also 16. The nodes and tropes form a 166 configuration
like that considered in 3 and is of the most general character.

When the singularities are given the surface is unique, for sixteen

conies on it are given.
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9. NOMENCLATURE FOR THE NODES AND TROPES.

Although the names given to the points and planes in 5 are

suitable for a symmetrical treatment of the configuration and for

exhibiting the interchanges that take place under the operations
of the group, yet it is often desirable to isolate a particular

element, or a particular set of six elements. This is done in

the following way.
One node is called and the six tropes through it are 1, 2, 3,

4, 5, 6. The two-figure symbols 12, 13... 56 denote the fifteen

nodes other than lying on the intersections of these planes. We
have to find how these nodes are arranged on the remaining ten

tropes.

When two triangles circumscribe a conic, their six corners lie

on a conic, and a corresponding theorem is true for a cone. Since

the six tropes through touch the tangent quadric cone to the

surface at 0, it follows that the six nodes

13, 35, 51, 24, 46, 62

lie on a quadric cone whose vertex is 0. By partitioning the six

figures 1, 2, 3, 4, 5, 6 into two sets of three in all possible ways
we get ten different cones, and in general, no other cones with

vertices at contain sets of six nodes. Now the six nodes in any
one of ten tropes are projected from by a quadric cone. Accord

ingly, the preceding six lie on a trope which may be called

(135 . 246), or simply 135, or 246.

Thus we have two nomenclatures for the sixteen elements of

a 16 6 configuration ;
in the first a single element is isolated and

the remaining fifteen are named after the combinations of six

figures taken two at a time : in the second, six elements either

concurrent tropes or coplanar nodes are named by single figures

and the remaining ten by the partitions of these six into two sets

of three. The two nomenclatures may be used simultaneously,

one for the nodes, and the other for the tropes of the same con

figuration, as above, and then we have the following types of

incidences :

is incident with 1, 2, 3, 4, 5, 6,

12 2, 1, 123, 124, 125, 126,

1 0, 12, 13, 14, 15, 16,

123 23, 31, 12, 56, 64, 45.
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All these incidences are clearly indicated in a pair of square

diagrams representing points and planes respectively. An element

of one diagram is incident with the elements of the other diagram

lying in the same row and the same column, but not both. The

pair of diagrams can be constructed in ten essentially different

ways, corresponding to the different partitions of six figures into

two threes, one of which is the following,

i|| 2 4 6 46 62 24

i m iff m 35 12 14 16

3 m m m 51 32 34 36

5 m m m 13 52 54 56

10. THE EQUATION OF THE SURFACE.

With homogeneous coordinates x, y, z, t let the node be

(0, 0, 0, 1), then the equation must have the form

where
&amp;lt;f&amp;gt;

8 is homogeneous and of degree s in x, y, z.

The quadric tangent cone at is

&amp;lt;fc

= 0,

and the enveloping sextic cone from is

which must break up into six planes. Both of these equations
are known when the nodes are given. Further, if one of the tropes

not passing through is taken to be t = 0, the equation

&amp;lt;/&amp;gt;

4
=

represents the repeated conic passing through the nodes in that

trope, and hence &amp;lt; 4 is known when the nodes are given, except as

to a numerical factor.

Choose the coordinates so that

(j)2
= f- xz.

It is convenient to represent any generator of the cone
&amp;lt;/&amp;gt;

2
= in

terms of a parameter u by the equations

x = yju = zju
1
.

Let kl} &2 ,
ks ,

k4 ,
k5 ,

k6 be the values of u giving the lines of

contact of the six tropes concurrent in
;
then their equations are

xs = k8*x
- 2ksy + z = 0, (5

= 1,2, 3, 4, 5, 6)

H. 2
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and we must have the identity

fa
2 -

fafa
= X#id?2 #3#4ff5#6,

where X is an undetermined constant.

We shall take = to be the plane (123.456) and then

fa
= ^2

2 where
i/r2

= is the conic in t = passing through the

nodes 23, 31, 12, 56, 64, 45. It is convenient to represent any

point in the plane t = by the parameters u, v of the two tangents
from it to the conic y

2 = xz. Thus we write

x = %y/(u + v)
=

zjuv,

then ks
2x 2ksy + z x (u ks) (v ks),

and the node 12 is given by u = fa, v = fa or by u = fa, v = fa.

Consider now the equation

(u fa) (u
-

fa) (u
- ks) (v fa) (v kB) (v fa)

-(v- fa) (v
-

fa) (v
-

fa) (u fa) (u
-

fa) (u
-

fa)
= 0.

After division by u v it becomes symmetric in u and v, the

highest term being wV, and is therefore the equation of a conic

expressed in terms of the new coordinates u, v. It is obviously

satisfied by the six points

(u, v)
=

(fa, fa), (fa, fa), (fa, fa), (fa, fa), (fa, fa), (fa, fa),

and hence is the conic fa = 0- Introduce the abbreviations

us
= u-ks ,

vs
= v-ks ,

then fa = 2y

where
//,

is an undetermined constant
;
further

4&amp;lt;/&amp;gt;
2
= x* (u v)

2
,

and $3
2

so that

and since this expression must be the square of a symmetric
function of u and v we must have \ = 4/u

2
,
which gives

#~3

$3
=

/* (UiU2Us VtV5V6 + V^VzUtUsUe).

On substituting these values of
(/&amp;gt;

2 ,
&amp;lt;f)

s ,
^&amp;gt;4

= ^2
2 in the equation of

the surface we find

fat
=

fa Jfa
2

fafa,

(u
-

V)
2

t/0) +
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In this parametric representation of the surface with given
nodes there is apparently an arbitrary constant p, but it will be

noticed that the only data that have been used are one node

and the six tropes through it. The actual position of any other

node determines the value of
/u,.

There is no loss of generality in

taking p = 1, and determining the signs of the radicals so that

the coordinates of any point on the general sixteen-nodal quartic
can be expressed in terms of two parameters u, v by the equations*

zj-x
= uv,

tjx
= (u v

and the last expression is one of ten similar forms corresponding
to the ten tropes which do not contain the node x = y z = 0.

If the equations of the sixteen tropes are

#!
= 0, etc.

;
#123

=
#45,5

= 0, etc.,

we may write, omitting a factor of proportionality,

xs
= usvs , (s

=
1, 2, 3, 4, 5, 6)

(u v) V#123
= U^zU^V^V^e +

and so on. Then it is easy to verify that

(k.2
- k3) Vtf!^ + (ka

-
&j) *Jx.2x3U +

and

(#! K4) \K.2 fC3 )
V #235#236 + (AJ2 #4) \^3 *l) ^^315^316

+ (h - k,) (&!
- A?2) */4faOfa = 0,

which are two of the many irrational forms in which the equation
of the surface can be expressed.

11. THE SHAPE OF THE SURFACE.

It has been shown that the six tropes through any node cut

any other trope in two triangles whose corners are nodes. Hence
if the six nodes in any plane are partitioned into three pairs,

there is another trope through each pair, and these three tropes
meet in a point which is not a node. The four planes are the

faces of a tetrahedron f and contain singular conies intersecting

by pairs on its edges. The quadric which can be drawn through
two of these conies and one of the remaining two nodes cuts each

*
Darboux, Comptes Eendus (1881), xcn, 1493.

t Named after Gropel.

22
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of the other two conies in five points and therefore contains them

entirely. Thus the four singular conies lie on a quadric.
Let ordinary tetrahedral coordinates be used and let the

quadric be
&amp;lt;/&amp;gt;

= 0, then the quartic surface referred to this tetra

hedron of tropes must be

xyzt
=

k(f&amp;gt;

2
,

where the value of k depends on the coefficients in &amp;lt;. When
k = we have the four faces of the tetrahedron, and when k is

small, which is the case most easily realised, the surface lies near

the faces. There is a distinction, important from a metrical point
of view, between the cases when k is positive and negative. In

the former case the product xyzt is positive and the point (x, y, z, t)

lies either within the tetrahedron or in one of the wedge-shaped

regions opposite the edges. Fig. 2 shows the region for which

FIG. 2. FIG. 3. FIG. 4.

a?, y, z, t are all positive, and fig. 3 shows the region obtained from

it by the substitution

x jx
= y jy

= - z \z
= - t jt,

and indicates that the two wedge-shaped pieces should be taken

together as being continuous at infinity and forming one &quot;

tetra

hedron.&quot; Again fig. 4 shows the effect of the substitution

and gives a &quot; tetrahedron
&quot;

of which one corner is separated from

the other three by the plane at infinity. Hence when k is nega
tive the sheets of Rummer s surface lie in the regions opposite
the corners and the faces.
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In order to realise conveniently the shape of the surface we

suppose the tetrahedron to be regular and the quadric &amp;lt;

= to be

a concentric sphere *. The sphere cuts the edges in twelve nodes

lying by sixes on four circles in the faces. They lie by fours on
twelve other planes which intersect by sixes in the corners of

a similarly situated regular tetrahedron. We thus have sixteen

nodes and sixteen tropes. First let the sphere be smaller than

the circumsphere of the tetrahedron, then the second tetrahedron

is situated inside the first and we have the case k &amp;gt; 0.

The four circles on the surface of the sphere &amp;lt;

= determine

four triangles joined by six lunes. Fig. 5 is an orthogonal pro-

FIG. 5.

jection and shows one of these circles completely and parts of the

other three. The twelve remaining conies are hyperbolas and six

of these are drawn, of which three appear as straight lines. Only
three nodes of the inner tetrahedron are shown.

Two nodes which are adjacent on one conic are adjacent on one

other and belong to the same piece of the surface. The frontis-

*
If = 2 + 7/

2 + z2+ 2 + /x (xt + yt + zt + yz + zx + xy), k maybe found from the

conditions for a node, and the quartic surface is

The radius r of = 0, the circum-radius R, and
fj.

are connected by
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piece, of which fig. 5 is a partial skeleton*, shows that the surface

consists of a central four-cornered or tetrahedral piece attached

by four other tetrahedral pieces, meeting the sphere &amp;lt;

= in tri

angles, to six infinite wedge-shaped pieces, each of which contains

two nodes and meets the sphere in a lune; those pieces which

contain different branches of the same hyperbola may, by ex

tending the notion of continuity, be paired so as to form three

tetrahedral pieces each of which, like the central piece, has one

node in common with each of the other four pieces.

As the sphere increases and approaches the circumsphere the

surface approaches the four faces of the tetrahedron, the various

portions of it remaining within the tetrahedron or in the regions

beyond the edges. When the sphere still further increases, the

quartic surface, after passing through the degenerate stage of four

planes, appears in the other regions into which space is divided

by the planes of the tetrahedron, namely the regions beyond the

corners and beyond the faces. The four last nodes now form a

regular tetrahedron outside the first.

Fig. 6 shows that the four circles divide the surface of the

sphere into four smaller triangles (three are shown), four larger

FIG. 6.

* Models of the sixteen conies passing by sixes through sixteen points are easily

made out of coiled steel wire, beginning with the four circles. They have the

advantage over plaster models that the surface is transparent and does not hide

alternate arcs of conies.
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triangles (one is shown), and six quadrangles. On each of the

smaller triangles stands a tetrahedral piece attached at one node

to an infinite conical piece ;
on each of the larger triangles stands

an infinite piece containing three nodes which must be regarded as

continuous at infinity with the opposite conical piece.

These two forms of Rummer s surface are equivalent from a

descriptive point of view, and differ only in their relation to the

plane at infinity. In both cases there are two sets of four tetra

hedral pieces, each piece of one set being attached by a node to

each piece of the other set.



CHAPTER III.

THE ORTHOGONAL MATRIX OF LINEAR FORMS.

12. PRELIMINARY ACCOUNT OF MATRICES.

A matrix* is simply a set of independent elements arranged in

a rectangular array. In the abstract theory it is usual to indicate

the row and column to which each element belongs by suffixes :

thus we denote the element lying in the rth row and the 5th

column of a matrix a by ars and write

a = (ar8).

In what follows we shall be concerned solely with square

matrices, namely matrices which have the same number of rows

as columns. This number is the order of the matrix.

Associated with every matrix a is its conjugate matrix a,

obtained by interchanging rows and columns : thus

a = (ars) implies ars
= asr .

The addition of matrices of the same order is effected by adding

corresponding elements : thus

a + b = c implies ars + brs = crs .

The product of two matrices a and b of the same order /i is a

third matrix c denned by

crt = 2ars bst (r, t = i, 2, ... ri),
s=l

so that c has the same order as a and b. These n? equations are

all written at once in the form

c ab.

* For a completer account see Baker s Abelian Functions, p. 666, where numerous

references are given.
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The rule for forming the product of two matrices resembles the

rule for multiplying two determinants, but it is important to notice

that the rows of the first factor are taken with the columns of the

second factor. From the definition it follows that the multiplica
tion of matrices is associative, for if ab = c and bd = e,

(cd)pq
= 2S cpsdsq

= 2s2r apr brsdsq
= 2r aw 2g brs dsq

= 2r apr erq
=

(ae)pq ,

so that cd = abd = ae
;

but ab and ba are in general different matrices and the multipli
cation is not commutative.

The unit matrix E is defined by the equation

Ea = a

in which a is arbitrary; accordingly all the elements of JE sue zeros

except those in the leading diagonal, which are unities. It then

follows that aE a and EE = E. For these reasons E may often

be replaced by 1, or omitted.

Let A rs be the minor or cofactor of ars in
|

a the determinant

of a, then

%r A rsars
= a

|

= 2S A rsars ,
and 2rA rs art

= = 2r A sratr ,
if s t.

Hence A r8 / \

a is the srth element of a matrix which, when mul

tiplied into a, gives E. It is called the inverse matrix and is

written a&quot;
1
,
so that we have

a~*a = E = aa~l
.

When
|

a
\ ^ 0, either of these equations may be taken as the

definition of the inverse matrix, for the n elements of any row
of the first factor are given by n linear equations for which the

determinant of coefficients is a
\

. A matrix whose determinant

vanishes has no inverse.

The following results are consequences of the definitions and

may easily be verified by means of them. If

c = ab,

then the conjugate matrix c = ba,

the inverse matrix c~l = b~1 a~1

,

and the determinant
|

c \a\ b\.

A row letter x used in connection with matrices of order n is a

symbol for n elements (xlt ...,a?n ).
Then ax is interpreted to mean

n elements of which the first is 2als#s ,
and xa means n elements

of which the first is S#sasl ;
hence x may be regarded in ax as a
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rectangular matrix of one column, and in oca as a matrix of one

row. Accordingly, if y is another row or column,

ccay
= 22 scrargys

= 22 yKasrxr = yax.

The notation of matrices is in the first instance a device

whereby suffixes and signs of summation may be omitted
;

in

order to interpret a product of several matrices by supplying the

suffixes, adjacent suffixes belonging to different letters must be

the same, and the summations are with respect to them. But,

further, the laws of operation are so framed that the system
becomes a calculus, and we are able to manipulate matrices

almost like single algebraical quantities. The chief use of

matrices in this book is to obtain easily and to express clearly

and shortly a great number of algebraic identities.

13. ORTHOGONAL MATRICES.

An orthogonal matrix is defined as one which is the inverse of

its conjugate ;
thus a is orthogonal if

aa, = E.

This condition is satisfied by the matrix of order 3 whose elements

are the direction cosines of three mutually perpendicular lines,

whence the name. The condition, when worked out, implies that

the sum of the squares of the elements in any row is 1 and the

sum of the products of corresponding elements in any two rows is 0.

Since

aa = a~laaa a~lEa = a~la = E,

it follows that the conjugate matrix is also orthogonal, and that

the same conditions hold for the columns as for the rows. Thus
from the equations

2 aps
2 = 1

, 2S apsaqs
=

we have deduced

2s ov
2 =l, 2s asp

a
sg
=Q.

Further, if the rows are permuted in any manner, and also the

columns, the new matrix is orthogonal.

If a and b are both orthogonal and c is their product we have

aa = E, bb = E, c = ab, c = ba,

whence it follows that

cc = abba = aEa = aa = E.

Therefore the product of two orthogonal matrices is an orthogonal
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matrix. Further, since aa = E, therefore a
| |

a
|

=
|

i
|

= 1
;
but

a =
|

a
,
therefore \a

= 1. Hence the determinant of an

orthogonal matrix is + 1. The theorem that complementary two-

rowed subdeterminants of a four-rowed orthogonal matrix are

numerically equal will be useful, and can easily be extended

and generalised.

Ct/11 ^12 ^13

Oja 22

.0

^23

1

If a = (ars), a = (ars)
= a

Oj

1 J

and on equating the determinants of both sides

a 43

or an a22
- a12a21

= - a34a43).

Since by permuting the rows and columns any pair of com

plementary subdeterminants can be brought into the position of

any other pair, the theorem is proved.

14. CONNECTION BETWEEN MATRICES AND QUATERNIONS.

The theory of four-rowed orthogonal matrices is intimately
connected with quaternions. Introducing the complex units i,j, k

defined solely by the equations

we have associated with every quaternion

q
= ix+jy + kz + t

a conjugate quaternion

q
= ix jy kz + t,

obtained by reversing the vector part. Then the product qq
f

is

scalar,

qq = tf + y2 + z* + t
2
.

The multiplication of quaternions is associative but not com
mutative. It is easy to prove from the definitions that the

conjugate of a product is the product of the conjugates taken

in the reverse order: in symbols, if

r = pq
then the conjugate / = q p .
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It follows that rr = pqqp =p (qq )p = (pp ) (qq
r

), because qq
is scalar.

This result when worked out in detail leads to an interesting
theorem in matrices. Let

p = m +jfi -f
/cry + S,

r=pq = , -7, , y,-M

+j( 7&amp;gt; S,-, /3$&amp;gt;, y, z, t)

+ k (-0, a, S, 7 5 a?, y, 3, t)

+ (-,-&- 7, $&amp;gt;, y, M).
Now rr=pp .qq\ hence the sum of the squares of these four

linear forms is (a
2

-f p2 + 7
2 + S2

) (a?
2 + y

2 + ^2 + 1
2

).
Since this is

true for all values of x, y, z, t, it follows that if a2 + /3
2 + ^

2 + S2 =
1,

the matrix

3-7 /3

7 8-a
-/3 a 3

- a -/3_7
is orthogonal. Again, on arranging r differently,

r = i (a, /3, 7, B 5 *, z,-y t x)

+ j(ct, /3,y, S^-z, t, x,y)

+ k(a, p, 7, 8$ y,-ar, ,
^ )

-f (a, A 7, SJ-^-y,-*, ),

whence, by similar reasoning, the matrix

t z y x

z t x y

y x t z

_x yz t_

is orthogonal if a2 + y
2 + 2 + tf = 1.

15. THE SIXTEEN LINEAR FORMS.

Instead of using a set of four symbols (a, /3, 7, 8) to denote a

point or plane, we now supply current coordinates
(a?, y, #, t) and

use a linear form, which, when equated to zero, gives the equation
of the point or plane. Thus we write

(dd) = (a, ft 7, S 5 a, y,*,*),

and so on, obtaining sixteen forms which are linear and homo-
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geneous in each set of symbols (a, /?, 7, 8) and (x, y, z, t). We
recall that the first letter of a two-letter symbol such as be denotes

a permutation and the second denotes a change of sign; in deducing
the form (be) from (dd) the first operation is performed upon

(a, /3, 7, 8) and the second upon (x, y, z, t) ,
with this convention

the coefficient of t in every form has a positive sign. The same

result is obtained when the compound operation is performed upon

(x, y, z, t), thus

(be)
=

(a, /3, 7, 8 $ 2-, t,-x,- y).

These forms are connected by a remarkable set of algebraic

identities, and the geometrical interpretations of them lead to

important theorems concerning the configuration. Before pro

ceeding to develop these identities it is convenient to give the

whole set of forms; they may be written down as the elements of

a matrix which is the product of a matrix of coefficients and a

matrix of coordinates. Thus from the definitions we have

(eta) (ab) (ac) (ad)

(ba) (bb) (be) (bd)

(ca) (cb) (cc) (cd)

.(da) (db) (dc) (dd).

7 a

7 8 a. ft -y y-y y
z z z z

t t it.
a 8 7

P 7 8.

where it may be noticed that the rows of the first factor are

obtained from (a, /3, 7, 8) by the permutations a, b, c, d, and the

columns of the second factor are obtained from (x, y, z, t) by the

changes of sign denoted by a, b, c, d.

The sixteen forms are obtained from one of them (dd) by the

group of sixteen operations which may now be regarded as linear

transformations of the coordinates x, y, z, t. It is important to

know the effect of these transformations on any other form; it is

easy to see that any two forms are interchanged, except possibly
as to sign, by the transformation whose symbol is the product of

the symbols of the forms. If the product of the operations pq and

p q is
p&quot;q&quot;

then the form (pq) is changed by the transformation

p q into +
(p&quot;q ) t

and the lower sign must be taken if (p q) is one

of the six forms

(ab), (ac), (be), (ba), (ca), (cb),

in which the coefficient of 8 has a minus sign.

The linear identities which exist among the sixteen forms have

already been indicated, for they correspond to sets of four coplanar

points. We infer that a set of six forms can be selected in sixteen

different ways such that any four of the set are linearly connected.



30 ORTHOGONAL MATRIX OF LINEAR FORMS [CH. Ill

It is sufficient to find the coefficients in the relations connecting
one set of six forms, for then all the other relations can be deduced

by operating on (x, y, z, t) with the transformations of the group.

16. QUADRATIC RELATIONS.

Another important series of relations is obtained when we have

shown that the sixteen linear forms, with proper signs, can be

arranged as the elements of an orthogonal matrix. After making

slight changes in the results of 14, and under the hypotheses
that a2 + /3

2 + y- + 82 = 1, #2 + y- + z* + t
2 =

1, which are of no im

portance since the coordinates are used homogeneously, we find

that the matrices

a 8 -Y $~

7

-u a

CL

S-7_

and

x t z y

y z t x

z y x t

_t xy z_

are orthogonal, and therefore their product is orthogonal. Now
the rows of the first are obtained from a, (3, 7, S by the operations

dd, ab, be, ca, and the columns of the second are obtained from

x, y, z, t by operations on these letters analogous to dd, ac, ba, cb,

and so the product has the same appearance as the multiplication
table of these subgroups (p. 8) except as to the signs of some of its

elements. The sign of each linear form in the product is the same

as that of t, and so the product matrix

aZ+Py+ yz+ dt, 8x yy+ pz+ at, yx by-az+ $t, -px + ay-8z+ yt

8xyy+pz-at, ax py
-
yz + dt, fix+ ay dz yt, yx+ 8y+ az+ pt

yx+ dy-az-pt, Px+ ay+ dz+ yt,
- ax+Py-yz+ 8t, -8x+yy+pz-at

is written

(dd) (ac) (ba) (cb)

-(ab) (da)-(cc) (bd)

-(be) (cd) (db)-(aa)

L-(ca)-(bb) (ad) (dc)}

and the linear forms occupy the same positions as the corresponding
elements in the incidence diagram (p. 8). Hence in order to find

a set of six, between any four of which a linear identity exists, we
have to exclude from a row and a column the element common to

both.

Many interesting geometrical theorems of fundamental import
ance for the configuration follow from the algebraic identities
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implied by the statement that this matrix is orthogonal. Write

the matrix in the form

Y Y Y Y* 1 * 2 ^3 * 4

T T T T_-tl -t 2 *1 * 4-

then, taking any column, we have

J^2 _|_ p _|_ ^2 _[_ ^ =
(a

2 + 2
_|_ yj

.

showing that the four planes X, F, ^, T are the faces of a tetra

hedron self-polar with respect to the quadric #2 + y* 4- 22 + 2
2 =

0,

and correlatively the four points X, F, Z, T are the corners of a

self-polar tetrahedron which is, in fact, the same. Since a similar

result follows from taking any row or column, out of the points
and planes of the configuration eight tetrahedra* can be formed

which are self-polar with respect to the quadric #2 + y- + zz + 1
2 = 0.

On subtracting the relations derived from the first row and
column we get

showing that the squares of the equations of six coplanar points
are linearly connected, and therefore that the six points lie on a

conic^. Correlatively six concurrent planes of the configuration
touch a quadric cone.

Next, taking two columns we have identities such as

showing that each of the tetrahedra

(X.Y^^ and (X2 Y2Z.2T2)

is inscribed in and circumscribed about the other
;

so also the

tetrahedra

(X.7AT,) and (X^Z^),
(X.Y^T,) and (X.Y&T,),

(Z.F.Z.Z O and (X^ZiTJ,
are similarly related. Further, the equations

represent the same quadric surface, and so the lines (X1 YJ (Z2 F2)

(ZlTl ) (Z2TZ), shown in the first diagram, are generators of one

* Named after Rosenhain.

t Paul Serret, Geometric de Direction, p. 132.
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system, and (X^) (X^) (Z,T2) (Z^\ shown in the second dia

gram, are generators of the other system of this quadric.

ii : : x : :

Another set of bilinear relations arises from the fact that

complementary two-rowed subdeterminants of an orthogonal four-

rowed matrix are equal (p. 27). Hence, for example,

Xl YZ X2Yl
= Z3T4 Z Ts ,

from which similar conclusions can be drawn.

Sets of eight associated points are represented by the bilinear

relations of these two kinds
;
there are twelve of the former

and eighteen of the latter, making thirty sets in all, and of the

quadrics through any one set, four are plane-pairs, being planes of

the configuration.

17. THE TEN FUNDAMENTAL QUADRICS.

On substituting x = a, y = ft, z = 7, t = 3, six of the linear forms

vanish, namely, (ab) (ac) (be) (ba) (ca) (cb), and the other ten become

quadric functions of a, ft, 7, 8 which will be indicated by square

brackets, thus [dd]
= a2 + ft

2 + 7
2 + S2

. These functions, equated to

zero, represent the fundamental quadric surfaces, which play an

important part in relation to the 16 6 configuration. After sub

stitution, the orthogonal matrix of linear forms becomes a matrix

of quadric functions

[dd]

[da]-[cc] [bd]

[cd] [db]-[aa]
L 0-[bb] [ad] [dc]]

which is also orthogonal. Expressing this differently*, we have

the result that an orthogonal three-rowed matrix is obtained when
all the elements of the matrix

Ta2 -
/3

2 - 7
2 + S2

, 2a/3
- 27S, 2 /a + 2

- 2z/3

are divided by a2 + ft
2 + 7

2 + S2
.

*
Bodrigues, Liouville (1840), v, 405

; Darboux, Comptes Rendus (1881), xcn, 685.
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These quadric surfaces are unchanged by the operations of the

group, for every linear form is unchanged, except possibly as to

sign, when the same operation is performed on both sets of

symbols a, /3, 7, 8, and x, y, z, t. It is on this fact that their

importance chiefly depends.
The ten polars of any point are planes of the 166 configuration

which is determined by that point, namely, those ten planes which

do not pass through it
;
for (a, /3, y, 8) is any point, -and its polar

plane with respect to (e.g.) the quadric

is the plane

, (aa)
=

(S,
-

7,
-

/3, a $ x, y, z, t)
= 0,

and so on.

Hence the quadrics play fundamental and symmetrical parts
in the configuration. In our nomenclature [dd] has the peculiarity
that pole and polar with respect to it have the same name, but

this is only a convention and not essential. There is an incidence

diagram and an orthogonal matrix of linear forms corresponding
to each quadric, but some of the forms must have imaginary
coefficients. There is a corresponding rearrangement of the ratios

of the quadric functions to form a three-rowed orthogonal matrix.

If each of the fundamental quadric functions of a, /3, y, 8 is multiplied by
the same function of #, y, z, t,

the sum of the ten products is

The ten quadrics are the only invariants of the second degree under the

group of sixteen linear transformations.

Each of the ten quadrics corresponds to a partition of the operations

ab, ac, 6c, ba, ca, cb into two sets of three. The product of each set is the

same, and gives the symbol for the quadric.

If the product of the operations p 1 ql
and p2 q2

is psq3 the point (ft ft) and
the plane (p^q^) are pole and polar with respect to the quadric [^3^3], and the

four points (ft ft), (^2^2)? (^3^3)) (&amp;lt;&$)
are the corners of a tetrahedron self-

polar with respect to [dd].

18. THE SIX FUNDAMENTAL COMPLEXES.

The six linear forms which vanish when x = a, y = ft, z = y, t = 8,

are linear combinations of the six two-rowed determinants formed

from the array
/a /3 y B

\x y z

H. 3
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and these are the Pliicker coordinates of the line joining the

points (a, ft 7, 8) and (x, y, z, i). Write

Pu = at x, p.24
=

fit
-

By, pu = jt 8z,

p23
= (3z

-
yy, p3l

= ryx- a.z, pl2
= ay- fix.

Then

(ab) = (8, 7, ft a $ - x, y,-z, t) = pu - p23 ,

(ac)
=

(8, 7, ft a. $ -
as,
-

y, z,t) = pu +pa ,

(be)
=

(7, 8, a, IB $ -
x,
-

y, . z,t) = p*-pn ,

(ba)
=

(7, 3, a, /3 $ a?,
-

y,
-

*, * )
= p24 + PSL ,

(ca)
=

(/3, a, 8, 7 5 x,-y,-z,t) =p^ -pl2 ,

(cb)
=

(ft a, 3, 7 $ -
x, y,-z,t) =p34 +pw .

On equating these to zero we get six fundamental linear com

plexes, and the null-planes of (a, ft 7, 8) are those six planes of

the configuration which pass through it. In the next chapter will

be found a detailed account of this system of complexes. As their

name implies, they are of fundamental importance in the theory of

the 166 configuration, and are unchanged when the same operation
of the group is performed upon (a, ft 7, 8) and (x, y, z, t).

It is to be noticed that the ten quadrics and six complexes are

determined by the coordinates alone, and that then the points of

the configuration are the ten poles and six null-points of an

arbitrary plane, and the planes of the configuration are the polars

and null-planes of any one of its points.

The coefficients in the linear identities connecting these six forms are the

fundamental quadric functions of a, /3, y, 8 : we easily find, in particular,

[dd] (ab} = [da] (ac)
-

[cc] (ba) + [bd] (cb),

[dd] (be)
=

[cd] (ac) + [db] (ba)
-

[act] (cb),

[dd] (ca)
= -

[bb] (ac) + [act] (ba) + [dc] (cb),

and the identity

(6)2+ (be)* + (ca)*
=

(ac)* + (ba)*+ (cb)*

shows once more that the nine quadrics on the right, when divided by [dd],

are the elements of an orthogonal matrix.

19. IRRATIONAL EQUATIONS OF RUMMER S SURFACE.

Corresponding to any identical relation among the planes of

the configuration of the form
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and any three constants \, p, v satisfying

= 0,

the four equations

\
=

represent the same quartic surface, having the eight planes
Zl
=

. . . T4
= for tropes and the eight points of the configura

tion in which they meet by fours for nodes. From the way in

which the elements of the configuration are interchanged by the

group we see that there are eight transformations of x
} y, z, t

which leave this surface unaltered. If we choose X : p : v so that
the surface pass through an additional point of the configuration,
it will then necessarily pass through all the remaining points, and
must therefore coincide with the Kummer surface associated with
the configuration.

Suppose that (a, /3, 7, 8) is not one of the points through which
the surface passes for arbitrary values of X : //, : v and let the result

of substituting (a, ft, 7, S) for (x, y, z, t) be indicated by square
brackets; further suppose that [Zi]

= ~
[TJ. Then the surface

will pass through (a, /3, 7, S) if

agreeing with \ + /ji + v = in virtue of the relations among the

fundamental quadrics.

Hence Kummer s surface can be written in the form

and seven other forms can be deduced from this by the group of

linear transformations which leave the surface unaltered. This

set of eight equations is connected with two complementary groups
of eight associated points, and so the total number of equations is

15 . 8 = 120. One equation of each set is included in the system
of fifteen equations formed by the following rule. Multiply each

linear form by the corresponding quadric, that is, its value at

(a, /3, 7, 8), and put the square root of the product in place of the

linear form in the orthogonal matrix; then the quadratic relations,

not identities, among the elements of the matrix so formed, which

32
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are satisfied when it is orthogonal, are equations of Kummer s

surface.

In order to express these equations in the notation of 10, we arrange the

sixteen expressions a!
1
...a;123 ...

1 multiplied by suitable constants, in an ortho

gonal matrix, and then compare the elements with the linear forms. Let

=
(*
- ^) (Is

- *
2 ) (k

- *
3) (k

- *
4) (k

-
k,} (k

- *
6),

further let

^ -2__ x, -2C123 C456

then

123

l35

b3 5346 b362 fc3

^5 ^546 ^562 ^524 _

&amp;lt;^4 &amp;lt;^5 &amp;lt;^6 all the elements are real. Furtheris orthogonal, and if
x

&amp;lt;

the matrix

V5i
o

is also orthogonal, showing that c136 ,
etc. correspond to fundamental

quadrics^.

Cf. Math. Annalen, Staude, xxiv, 281; Klein, xxvn, 431; Bolza, xxx, 478.



CHAPTER IV.

LINE GEOMETRY.

20. POLAR LINES.

It is from the point of view of line geometry that the Kummer

configuration receives its most natural and symmetrical develop

ment, for the complete reciprocity exhibited by the configuration

indicates that its properties are based on a system of geometry in

which the line is taken to be the fundamental element.

A line is capable of satisfying four conditions (though some

conditions must be reckoned as two-fold and some three-fold), a

fact which may be expressed by saying that there are oo
4
lines in

space. A complex consists of the oo 3 lines satisfying one condition,

and is algebraic if on adding any three-fold condition the lines are

reduced to a finite number. If the three-fold condition is that of

belonging to a given plane pencil, this finite number is called the

degree of the complex.
In this chapter only linear complexes will be considered,

namely those in which only one line passes through a given point

and at the same time lies in a given plane. It follows from this

definition that all the lines belonging to a linear complex which

pass through a given point lie in a plane, its null-plane, and all

the lines in a given plane pass through a point, its null-point.

From these facts all the properties of the familiar null-system can

be deduced.

The chief property that will be used is that of polar lines*.

We regard a linear complex as establishing a correlation between

null-point and null-plane and an involutory correspondence be

tween polar lines. Introducing a symbol S to denote the corre

spondence we may write

* In works on Statics these are called conjugate lines (Kouth), and reciprocal

lines (Minchin).
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P being any point and TT its null-plane, and the symbol 1 denoting
the identical transformation. Let P be any other point and IT

its null-plane, then if x is the line PP and y the line TTTT we may
write

and x, y are by definition polar lines.

21. APOLAR COMPLEXES.

In general two such correspondences S, T are not commutative
;

when they are, that is when

the complexes will be said to be apolar* and ST or TS may be

taken to be the symbol of an involutory point-point and plane-

plane linear transformation or collineation^ ;
for any plane TT has

two null-points P = S(TT) and Q = T( r

jr), and

TS (P) = TS* (TT)
= T (TT)

= Q,

so that when ST = TS the correspondence between P and Q is

involutory. The line PQ is a common ray of the two complexes
and the transformation ST or TS determines an involution on it.

Let x and y be any pair of polar lines with respect to the first

complex, then

and the transformation T does not destroy the relation of polarity
with respect to the first complex. Farther, if x is a ray of the

second complex,

and y is also a ray. The relation between apolar complexes is

* The customary terms for this relationship are in involution (Klein) and

reciprocal (Ball) ;
the former is awkward and the latter suggests a false analogy.

Two quantics are apolar when their transvectant of highest index vanishes identi

cally, and this can be interpreted for complexes of any degree.

t Any two lines determine such a collineation ;

&quot;

geschaart-iiivolutorisches

System,&quot; Reye, Geometrie der Lage, n, 17; &quot;systeme involutif gauche,&quot; Reye-

Chemin, Geometrie der Position, 145; &quot;windschiefe Involution,&quot; Sturm, Linien-

geometrie, i, 70, 115.
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therefore such that the polars with respect to one complex of the

rays of the other are also rays of the other.

The assemblage of co
2

rays common to two complexes is called

a congruence ;
there are two common polar lines called its direct

rices, which meet every ray. In the present case the directrices

satisfy the relation

() -?(}
whence TS (x) = x,

and the common polar lines correspond to themselves in the

transformation ST or TS, and therefore cut any common ray in

the double points of the involution on it. Hence any two cor

responding lines and the two directrices form a set of four

harmonic generators of a regulus.

An important property of apolar complexes is that they lead

to finite groups of transformations
;
that is, the repetition of the

operation of taking the null-point (or null-plane) of a plane (or

point) leads to a finite number of points and planes. Thus in the

case of two complexes if Si and S2 are the correlations determined

by them, they determine a group of collineations containing two

members 1 and $j$2 ,
so that an arbitrary point or plane gives rise

to a figure of two points and two planes.

22. GROUPS OF THREE AND FOUR APOLAR COMPLEXES.

Three mutually apolar complexes determine three correlations

Si t $2, $3, which give rise to three collineations,

forming a group (1, T1} T2 ,
T3 ) whose multiplication table is

77 fji rn
1 *3 -* 3

T, i

T,

T,

similar to that of 2. Hence an arbitrary point P gives rise to

three concurrent planes Si(P), S2 (P), S(P) and three points

T, (P), TV (P), T3 (P) lying on their lines of intersection. Since

the plane containing 2\(P), T2 (P), T3 (P) is the null-plane of each
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in the corresponding complex. We have therefore altogether four

points and four planes forming a tetrahedron such that any three

faces are the null-planes of their common corner and any three

corners are the null-points of the face containing them in the

three complexes.
The rays common to the three complexes are the generators of

a regulus and the three pairs of directrices of the three congruences

belong to the complementary regulus. Hence the points P and

SiSa (P) being harmonically separated by the directrices of the

congruence ($i$2 ) are conjugate points with respect to the quadric
on which these reguli lie

;
it follows that the tetrahedron is self-

polar.

Four mutually apolar complexes give four correlations

Si, $2 , $3, $4 ,
and an arbitrary point gives rise to points and

planes which may be denoted by the symbols of the corresponding
transformations. Thus from an arbitrary point 1 we derive

four planes Slt S2 ,
S3 ,

84 ,

six points $xS2 ,
SlSs . . .

,

four planes 81 82S3 ...,

and one point $j$2$3$4 ,

making eight points and eight planes altogether. If we arrange

the points thus

1 $2$3 $3$! 81S2

81SZS3S4 8l ^4 8-284 83S4

the first row contains the corners of a tetrahedron whose faces are

OjOgjSi Si S2 Ss

and each of these planes contains one of the points in the second

row, which is its null-point in the complex $4 . Thus the con

figuration can be regarded in four ways as a pair of circumscribed

and inscribed tetrahedra.

23. SIX APOLAR COMPLEXES.

The existence of six mutually apolar complexes* depends on

the well-known fact that the condition of being in involution with

a given complex is a one-fold condition. Hence we may take

the first complex arbitrarily, the second from the oo 4

complexes

*
Klein, Math. Annalen (1870), n, 198; Sturm, Liniengeometrie (1892), i, 234

Koenigs, La Geometrie Eeglee (1895), p. 92; Ball, Theory of Screws (1900), p. 33.
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apolar to the first and so on, the last being uniquely determined

by the preceding five.

Assuming such a set, we may denote the complexes by the

symbols 1, 2, 3, 4, 5, 6. Taken in pairs they determine fifteen

congruences (12), etc., and taken in threes they determine twenty

reguli (123), etc. We shall first examine the relations of special

lines connected with these complexes, and afterwards consider

configurations derived from an arbitrary point, line, or plane by
means of the associated transformations.

Any four of the complexes, say 1, 2, 3, 4, have two common

rays ; since, by the hypothesis of apolarity, the polar of either of

these with respect to 5 or 6 must belong to 1, 2, 3 and 4, it must

be the other common ray. Hence these lines, being a common

pair of polar lines with respect to 5 and 6, are the directrices of

the congruence (56).

The directrices of (12) and (13) do not meet, for they belong
to the regulus (456) ;

and since the latter pair are rays of 2 and

polar lines with respect to 1, they correspond in the collineation

determined by (12) and therefore separate the former pair har

monically (p. 39). In other words, the four directrices of (12)

and (13) cut the generators of (123) in harmonic ranges. Similar

reasoning shows that any two pairs of the directrices (12), (23),

(31) are harmonically conjugate.

The directrices of (12) cut those of (34) and hence the

directrices of (12), (34), (56) are the edges of a tetrahedron.

There are fifteen of these fundamental tetrahedra, which may
be denoted by the symbols (12, 34, 56), etc.

24. TEN FUNDAMENTAL QUADRICS.

Since the directrices (12), (23), (31) are rays of 4, 5, 6, it follows

that the reguli (123), (456) lie on the same quadric, which may be

called (123, 456). These are the ten fundamental quadrics.

The quadrics (123, 456) and (124, 356) intersect in the rays

common to 1, 2, 3, 4, and in those common to 3, 4, 5, 6. Hence

they have the quadrilateral of directrices (56), (12) common. It

follows that the directrices (34), being the diagonals of the quadri

lateral, are a pair of polar lines with respect to both quadrics.

Thus any two fundamental quadrics have contact at four points,

which are corners of a fundamental tetrahedron, and at each of

the sixty corners three pairs of quadrics have contact.
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The tetrahedron (14, 25, 36) is self-polar with respect to the

quadric (123, 456). Hence of the fifteen tetrahedra nine are

inscribed in any one of the ten quadrics, and the remaining six

are self-polar, and of the ten quadrics six are circumscribed about

any one tetrahedron which is self-polar with respect to the re

maining four.

Each of the four quadrics

(123, 456)

(126,453)

(153, 246)

(156, 243)

with respect to which (14, 25, 36) is self-polar, is its own reciprocal

with respect to each of the other three
;
for the first is completely

determined by the four directrices (12) and (13) whose polars with

respect to the second quadric are the same four lines.

25. KLEIN S 6015 CONFIGURATION.

The fifteen fundamental tetrahedra have thirty edges ;
each

edge is common to three tetrahedra, thus a directrix of (12) is

common to (12, 34, 56), (12, 35, 46), (12, 45, 36). Of the sixty

corners, six lie on each edge and, as has been shown, are arranged
as three pairs forming three harmonic ranges. So also of the

sixty faces, six pass through an edge and the pair belonging to

one tetrahedron are harmonically conjugate with respect to the

pair belonging to either of the other two tetrahedra having the

same edge. In each face are three edges, each containing six

corners, giving fifteen corners in that face, and similarly fifteen

faces pass through one corner.

We may distinguish the directrices of the congruence (12) by
the symbols 12 and 21, and make the convention that sets of

three lines obtained by an even number of interchanges of figures

from 12, 34, 56 shall be coplanar. Then those obtained by an odd

number of interchanges will be concurrent. Thus, for example,

the rows
12 34 56

46 25 13

35 61 24

are coplanar and the columns concurrent. Hence the three planes

intersect in the line of collinearity of the three points. An even
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number of interchanges applied to the symbols common to two

rows and two columns leaves the rows coplanar and the columns

concurrent as before, thus the table of lines

21 43 56

64 52 13

35 61 24

possesses properties similar to those of the former table, and so on.

Hence four pairs of corners, one from each of the tetrahedra

(12, 46, 35) and (34, 25, 16), are collinear with the point 56, 13, 24,

and the same is true for the other corners of (56, 13, 42) so that

the two former tetrahedra are in fourfold perspective. Hence the

three tetrahedra represented by the columns of the table belong
to a desmic system (1) and the rows represent the other desmic

system which is formed with the same edges.

Again the following three sets of lines are similarly related,

12 34 56 12 34 56 12 34 56

46 15 32 54 16 32 54 26 13

35 26 14 36 52 14 36 15 24

showing that there are four desmic systems containing the same

one tetrahedron (12, 34, 56). Hence through any one corner of

the configuration pass sixteen lines containing two other corners,

and in each face lie sixteen lines through which pass two other

faces. From the desmic properties it follows that the assemblage
of these lines is the same in each case, and this number is

60 . 16/3 = 320.

It is possible in six different ways, corresponding to the six

pairs of different cyclical arrangements of five figures ( 6), to

select a set of five tetrahedra including all thirty directrices among
their edges ; consequently no two tetrahedra of the same set have

a common edge. One such set occupies the first column of the

following table* :

*
Bichmond, Quarterly Journal, xxxiv, 124.
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and the members of any one set are distinguished by two-letter

symbols having one letter common. Two tetrahedra such as (ab)
and (ac) from the same set belong to a desmic system of which

the third member is (be), not belonging to the same set. Thus
we have twenty desmic systems corresponding to the combinations

of the six letters a, b, c, d, e,f three at a time. Further, three

tetrahedra such as (ab) (cd) (ef) have two edges common.

26. RUMMER S 16 6 CONFIGURATION.

We now turn to configurations containing arbitrary elements.

Using the symbols 1, 2, 3, 4, 5, 6 to represent the permutable
correlations determined by the six complexes, we obtain from any

point P the points

12P, 13P... 1234P, 1235P... 123456P.

Call the last point Q, then 12Q = 3456P and the points are

P, 12P, 13P... 56P,

Q, 12Q, 13Q... 56Q.

Now it was proved in the case of three complexes that the points

P, 23P, 31P, 12P form a tetrahedron self-polar with respect to the

quadric (123) ; similarly the tetrahedron Q, 56Q, 64Q, 45Q is self-

polar with respect to the quadric (456). But these quadrics are

the same, and, further, it was proved in the case of four complexes
that the plane 23P, 31P, 12P contains the point 1234P, or 56Q.

Similarly this plane contains also 64Q and 45 Q, so that the two

tetrahedra have a common face, and therefore P and Q coincide

with the pole of this face with respect to the quadric (123, 456).

We have therefore derived from an arbitrary point a configura
tion consisting of sixteen points and sixteen planes, which is, in

fact, Rummer s 166 configuration. The planes consist of the six

null-planes and ten polar planes of P. That the six points in the

polar plane with respect to (123, 456) lie on a conic follows from

the fact that the triangles 12, 23, 31 and 45, 56, 64 are self-polar

with respect to the section by their common plane.

This method leads to the same nomenclature as was used in

9. An arbitrary point has six null-planes 1, 2, 3, 4, 5, 6 named
after the corresponding complexes. The null-points of these planes

lie on their common lines, and are the remaining fifteen points,

named 12... 56. The remaining ten planes are the polars of

with respect to the fundamental quadrics, and accordingly receive
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the same names. The nomenclature is thus interpreted by re

garding the name of each element as the symbol of operation

deriving it from an arbitrary point 0. The symbol itself must

therefore denote the identical operation and the other operations

1, 2, 3, 4, 5, 6 obey the laws expressed symbolically by
- 11 = 22 = 33 = 44 = 55 = 66 = 123456.

The diagram (p. 17)

46 62 24

35 12 14 16

51 32 34 36

13 52 54 56

showing which points are coplanar is now seen to be also a multi

plication table for the sub-groups (0, 35, 51, 13) and (0, 46, 62, 24)
each of four collineations. The corresponding diagram for planes

may be written down from the known laws of incidence, and is

135 2 4 6

1 146 162 124

3 346 362 324

5 546 562 524

but we see that it can be obtained from the former by operating
on each element with 135*.

27. LINE COORDINATES.

The ideas and methods hitherto employed in the present

chapter are purely geometrical, and there is no doubt that every
theorem can be deduced in this way ;

but in many cases the proofs

are artificial and tedious and an analytical method is more direct

and throws more light on the true lines of reasoning.
The theory of apolar linear complexes may be investigated

with exceptional elegance by means of line coordinates^. With

generalised coordinates a?
a , x%, a?3 ,

#4 ,
#5 ,

xs let &&amp;gt;(V)
= be the

* For detailed elaboration of these configurations the following references may
be consulted: Caporali, Memorie Lincei (1878), ser. 3, n, 3; Stephanos, Darboux
Bulletin (1879), ser. 2, in, 424; Hess, Nova Acta, Halle (1891), LV, 96; Martinetti,

Eendiconti Palermo (1902), xvi, 196.

f It is assumed that the reader is acquainted with the subject-matter of the first

two chapters of Prof. Jessop s Treatise on the Line Complex. See also Koenigs,
La Geometric Eeglee.
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quadratic relation among them and let 1 (a) = be the con
dition that the linear complex ^asxs

= may be special ;
then the

matrices of the coefficients in o&amp;gt; and H are inverse*. The com

plexes ^asxs
= and ^bsxs

= are apolar if

2as80 (b)/db,
= 0.

When the two complexes are taken to be the coordinate complexes
#! = and #2

= 0, the condition for apolarity becomes

32n (a^dajdaz = 0,

in other words, the term in a^a2 must be absent from 1 (a). Hence
the problem of finding six mutually apolar complexes is the same
as that of expressing the quadratic form 11 (a) as the sum of six

squares. We shall suppose that this has been done
;
then the

quadratic form w (x) is at the same time reduced to the sum of

six squares, and by taking suitable multiples of the coordinates we
can make

6&amp;gt; (X)
- H (x)

= X* + X* + X* + X? + X* + X*.

By using these coordinates calculations are much simplified, though
the meaning of general results is liable to become obscured through
the identity of o&amp;gt; and H. A particular example of these co

ordinates is

x2
=pu + p2S ,

x4
= p24 -f p31 ,

xe
= pu +p12 ,

where it will be noticed that all the coordinate complexes are real,

but three of the coordinates are imaginary. On referring to 16

we see that the coordinate complexes are the fundamental com

plexes employed in the construction of the 16 6 configuration.

The lines (xl) x2 ,
xs ,

#4 ,
xS) x6 ) and (- xlt %2 ,

xz ,
#4 ,

a?5 ,
x9 ) are

polar with respect to the complex xl
= 0. Hence the transforma

tion of lines associated with each complex consists in changing
the sign of the corresponding coordinate. Taking only the first

three complexes, a line (x) gives rise to a set of eight lines

( #i&amp;gt; ^2&amp;gt; i ^i d?4t # #) In order to deal with points and

planes we must suppose (x) to describe a sheaf of lines through a

point P, then (xl ,
x2 ,

xs , x, x5 ,
x6 } describes a plane field S1 (P) )

the null-plane ofP in the first complexf, and ( x1} x2 ,
x3 ,

a?4 ,
x5) XG )

describes a sheaf whose vertex is S2S1 (P) or TS (P), and so on.

This method expresses the operations of the group (1, Tlt T2 ,
T3 )

in a form which brings out clearly the comparison with the group
of reflexions ( 2).

* A simple example in matrix notation. t Compare 22.
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28. FUNDAMENTAL QUADRICS.

The condition of intersection of two lines (y) and (z) being

y\Z\ + 2/2^2 + 2/3^3 + 2/4^4 + 2/5^5 + 2/6^6
=

it is evident that the lines

(yi, 2/2, 2/3. o, o, o), (0, o, o, *4 ,
*

B&amp;gt;

*6 )

intersect
;

this proves that the lines common to ^ = 0^ = 0^ =
and those common to x = x5

= XQ
= are the two systems of

generators of the same quadric surface (123, 456). The general

tangent line to this surface is a ray of the plane pencil determined

by two intersecting generators and has coordinates

\Vl, ^2/2, ^2/3, /^4 , fJLZ6 , fJLZQ

where y? + y? + y.f
= = z? + z? + z&amp;lt;?.

Hence any tangent (as) satisfies the equivalent equations

x* + x* + x? = 0, x? + x + x* = 0,

either of which is the line equation of the quadric (123, 456).

The equation x? + x&amp;lt;? + x^ = implies that the three poles of

any plane with respect to the three complexes x^ = 0, x2
= 0, %3

=
form a triangle self-polar with respect to the section of the quadric

(123, 456) ; for, if we substitute for the xs bilinear expressions in

terms of the coordinates of two planes and regard one of these

planes as fixed, xl
= 0, #2

= 0, #3
= become the tangential equa

tions of three points and oc-f + x + x = that of a conic with

respect to which these points are mutually conjugate.
In a similar way the equation

x? + oc? + oc* + x? + #5
2 + xl =

shows that the six poles of any plane lie on a conic, for it expresses
that the squares of the tangential equations of these points are

linearly connected, which is a necessary and sufficient condition

&amp;lt;P. 31).

In terms of real coordinates ^ =pu PM, z.2 =pu +P&, etc., the

equation may be written

z* + z* + z* = z* + z? + z&amp;lt;?,

showing that the triangle of poles 246 is obtained from the triangle

135 by a transformation which maybe regarded as a rigid rotation

in an &quot;

elliptic
&quot;

plane. From this we infer that the points 135

occur alternately with the points 246 on the conic. If the quadric

(135, 246) is regarded as the &quot;

absolute&quot; of an elliptic space,
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(Si, 8 &amp;gt;

2s) and (z2 , 4 , 6 ) are the two Clifford parallels through a
corner of the tetrahedron of reference to any line*.

It is easily seen, by eliminating one set of point coordinates

from the bilinear expressions for xs in terms of two points, that

any four line coordinates are connected by a linear relation in

which the coefficients are quadratic in point coordinates
;
let one

such relation be

$234^1 + $134^2 + Ql24#3 + $123^4 = 0,

then the equation Q123
= evidently represents the regulus of rays

common to xl
= #2

=
#&quot;3

= 0- Similarly we have relations

$235^1 + Ql3B#2 + Ql253 + 123^5 = 0,

$236^1 + 136^2 + Ql26#3 + $123^6 = 0.

Then the equation 5&amp;lt;xf
? = Q, in which a^, #2 ,

#3 are regarded as

arbitrary, shows that the coefficients of #1} x2 ,
x

?j
in the preceding

relations, when divided by iQlsa ,
form an orthogonal matrix ( 17).

29. FUNDAMENTAL TETRAHEDRA.

Rays common to the four complexes x^ = 0, #2
= 0, xs

= 0, %4
=

satisfy
#i

2 + ^2
2 = 0.

There are therefore two common rays

(1, i, 0, 0, 0, 0) and (1,
-

1, 0, 0, 0, 0),

which are seen to be polar lines with respect to both of the com

plexes xl
= 0, x^ = 0, and are therefore the directrices of the

congruence (12). Similarly the coordinates of all the other

directrices may be found.

The edges of the tetrahedron (12, 34, 56) have line equations

#! + ix2 =0, #3 + l#4
= 0, 5 + IXt

= 0.

If this tetrahedron is real and is taken for reference the equation
of any edge is expressed by the vanishing of the corresponding
Pliicker line coordinate. By taking suitable multiples of the point
coordinates we may arrange that

XL = pu + psl ,
x6
= p34 + pl2 ,

so that the particular example of p. 46 is really of general signifi

cance. In this way the Pliicker coordinates of all the directrices

*
Whitehead, Universal Algebra, p. 405.
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may be found and thence their intersections, forming the points
of Klein s configuration.

There are two tetrahedra (12, 35, 46) and (12, 36, 45) which

have the edges (12) in common with the tetrahedron (12, 34, 56)

of reference, and it has been proved ( 23) that the corners on a

common edge form three harmonic ranges. It is easily found

that the corners of (12, 35, 46) are (1, 0, 0, i), (0, 1, i, 0), and

those of (12, 36, 45) are (1, 0, 0, 1), (0, 1, 1, 0). In this way,

by taking different pairs of opposite edges of reference, six tetra

hedra are found. The remaining eight form with (12, 34, 56) four

desmic systems, and it is therefore sufficient to give one corner in

each system ( 1). These points are (1, 1, 1, 1), (1, i, i, 1), (i, 1, i, 1),

(i, i, 1,1), and the corners of any tetrahedron are obtained from

these by changing the signs of an odd or even number of co

ordinates. For example (13, 25, 46) is ( i, 1, i, 1), (i, 1, i, 1),

(i, 1, -, 1), (i, M.-l).

Klein s configuration can be constructed from a single tetra

hedron as follows, and the process verifies that the number of

arbitrary constants is the same as for six apolar complexes,

namely 5 + 4 + 3 + 2 + 1 + = 15.

We recall the fact that if u = and v = are the equations of

any two points then the general pair of harmonic conjugates is

given by u2
~\?v

2 = 0, and the condition that another pair,

w2

yu,V=0, may be harmonically conjugate with the preceding

pair is X2 + p?
= 0.

Take one tetrahedron arbitrarily for reference (twelve con

stants). Three of those which have two edges in common with it

are in the first instance

(a, 0, 0, +
1)| ( 0, 6, 0, + 1)) (0, 0, c, 1)

(0, a
, 1, 0)J ( 1, 0, V, )j (c , 1, 0, )

and the new constants must be chosen so that the edges intersect.

The points (\a, \ of, \
f

, X) and (//, fib, ^ b , //,)
can by proper choice of

X, X , JJL, /ju

f

be made the same if aa =
b/b ,

and so on
;
thus a =

b/c,

b =
c/a, c = a/b. By taking new multiples of the coordinates and

thereby absorbing three arbitrary constants we may put a=b=cI,
and then a = b = c = 1. The preceding three tetrahedra are now

(1, 0, 0, 1)1 ( 0, 1, 0,
1)| (0, 0, 1, 1)

(0, 1, 1, )} ( 1, 0, 1, )} (1, 1,0, )

H. 4
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and the remaining three having pairs of edges in common with

the tetrahedron of reference are

(1, 0, 0, i)) ( 0, I, 0,
i)\ (0, 0, 1, i)}

(0, 1, i
y )l ( i, 0, 1, )J (1, i, 0,

The rest of the configuration is now completely determined by
the intersections of the edges of these seven tetrahedra.

The fifteen tetrahedra play symmetrical parts in the configuration and

each belongs to four desmic systems. It is possible to represent five tetra

hedra by products each of four linear factors, such that the ten differences of

these products are also products of four factors and represent the remaining
tetrahedra of the system. In this way the two-letter nomenclature of p. 43

may be derived. See the second example on p. 3.



CHAPTER V.

THE QUADRATIC COMPLEX AND CONGRUENCE,

30. OUTLINE OF THE GEOMETRICAL THEORY.

We have seen in the preceding chapter how the configuration
of nodes and tropes of a Kummer surface arises naturally in

elementary line geometry from the consideration of a set of apolar
linear complexes. It will now be shown how the surface itself

occurs as the singular surface of a quadratic complex of general

character, which is self-polar with respect to each of the former set.

In the present section the leading ideas in the theory of quad
ratic complexes are presented in outline, and the reader is referred

to existing treatises for proofs and fuller accounts*. The geo
metrical method will be followed up to a certain point, after

which it is more advantageous to adopt the treatment by co

ordinates.

The rays of a quadratic complex which pass through any given

point generate a quadric cone. At a singular point this cone has

a double line and therefore breaks into two plane pencils. Cor-

relatively, the rays which lie in any given plane envelope a conic

which in the case of a singular plane has a double tangent and

therefore degenerates into two points. Each of these points, being
the vertex of a pencil of rays, is a singular point, and similarly
each of the planes at a singular point is a singular plane and

contains one other singular point. A singular ray is a ray of the

complex characterised by the fact that all the tangent linear

complexes are special, and is the double line of the complex cone

at a singular point and also the double tangent of the complex
curve in a singular plane.

*
Jessop, The Line Complex, Chs. vi and xvn; Sturm, Liniengeometrie, in, 1.

42
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Thus at a singular point P the complex cone consists of two

planes TT^ 7r2 intersecting in a singular ray x. The complex conies

in all planes through x touch x at P except for one plane TT in which

the complex conic consists of two points P1} P2 on as. This plane
TT is the common tangent plane of all the complex cones whose

vertices are points on x, except when the vertex is P, in which

case the tangent plane through x is indeterminate.

A fundamental theorem states that the locus of singular points
P is the same as the envelope of singular planes TT and is a quartic
surface. The proof of this is instantaneous when coordinates are

used, and follows geometrically from another fundamental theorem

that the four singular points on any line have the same cross ratio

as the four singular planes through it.

We have then a singular surface ^&amp;gt; of the fourth order and

fourth class
;
x is a tangent line at P and meets &amp;lt;J&amp;gt; in the

remaining two singular points Pl5 P2 on it. The four tangent

planes through x are TT repeated and TT^ ?r2 . The complex rays

in TT form two pencils whose vertices are P1 and P2 ;
no line of

the tangent pencil (P, TT) is a ray except the singular ray x
t

unless Pj or P2 coincides with P; then x meets &amp;lt;&amp;gt; in three

consecutive points and is therefore an inflexional tangent. In

this case one of the planes TTI or irz coincides with TT, and all the

tangent lines at P are rays.

Associated with the quadratic complex C there is one set of

six linear complexes, mutually apolar. The polars of every ray

of C with respect to these complexes belong to C and hence G

may be termed self-polar* with respect to them. By their means

we are able to group together certain singular points and planes ;

for the singular surface, being determined by the rays of the

complex, must be invariant under the transformations determined

by the linear complexes : in other words, all the points and planes

obtained from any one singular point or plane by the correlations

of the six apolar complexes are also singular points and planes.

In future we shall denote the singular surface by &amp;lt;l&amp;gt;. Any

point P of &amp;lt;t&amp;gt; gives rise to a 166 configuration inscribed in and

circumscribed about
4&amp;gt;,

and the corresponding tangent plane TT

gives rise to another. Each of these configurations is inscribed in

the other. The quartic section by the plane TT contains its six

* The term apolar might also be used, for if the equation of the quadratic

complex is suitably modified by means of the identical quadratic relation among
the line coordinates, the transvectant formed from it and any one of the linear

complexes vanishes identically.
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null-points Plt Pz ,
P3 ,

P4 ,
P6 ,

P6 as well as the point of contact

P which is a double point of the section. The line PPr belongs
to the rth linear complex, and the null-plane of P in this complex
is the tangent plane at Pr . Since this plane passes through P,

PPr is a bilangent, touching &amp;lt;3&amp;gt; at P and Pr . Hence the bitangents
are rays of the fundamental complexes and form six congruences of

the second order and class.

31. OUTLINE OF THE ALGEBRAICAL THEORY.

The simplicity of the algebraical treatment depends on the

simultaneous reduction of the fundamental relation satisfied by
the coordinates of any line and of the given quadratic complex to

canonical forms*. These are taken to be

x* + x? + x* + x? + x* + xl = (1),

k^ + k^x* + &3#3
2 + &4#4

2 + k5x* + k6 x&amp;lt;?

=
(2).

Then the coordinate complexes xs
= are the six fundamental

complexes with respect to which (2) is self-polar ;
the line trans

formations associated with them are effected by changing the

signs of the coordinates, and it is obvious that (2) is unaltered by
this procedure.

At a singular ray the tangent linear complex is special : then

ksxs must &quot;be the coordinates of a line and therefore

k?x* + k?x? + k3
2xs

* + k?x? + k,?x* + k*x? = (3).

When (1), (2), (3) are satisfied the lines (x) and (kx) determine a

singular point and a singular plane of the complex ; they also

determine a plane pencil of lines

ys
= ksxs

- pxs

satisfying the equations

2 (k,
-

yu)-
1

y* = 0, S (k,
-

/,)~
2

ys
* = 0.

Hence (y) is a singular ray of the complex obtained from (2) by

replacing ks by (ks /j,)~
l

,
and the corresponding singular point and

singular plane are determined by (y) and (k /J,)~
l

y and are

therefore the same as before.

We have thus found a singly infinite system of complexes

^(ks-^^ =
(4),

which have the same singular points and planes, and are therefore

* First adopted by Klein, in his Inauguraldissertation (Bonn, 1868) ;
Math.

Annalen, xxnr, 539.
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termed cosingular. The original complex (2) is the member of

this system which corresponds to /n
= oo .

By differentiating (2) we obtain ^ksxsdxs which is the

condition that the pencil (x, kx) may have an envelope. Hence
the locus of singular points is the same as the envelope of singular

planes and is the singular surface &amp;lt;J&amp;gt;. Every tangent line of &amp;lt; is

expressible in the form (kx) ^ (x), (x) being a singular ray of

(2), and is a singular ray of the cosingular complex whose co

efficients are (ks /u.)~
1
. Hence the plane pencils of tangent lines

to &amp;lt;1&amp;gt; are protectively related to each other and to the cosingular

family in such a way that corresponding lines are singular rays
of the same complex.

To determine the order of 4&amp;gt; we consider the singular points
on any line (y). Since these points are the same for all the

members of the cosingular family, we may select one which con

tains (y) and suppose its coefficients to be ks . At each singular

point on (y} there is a plane pencil of rays (\x + ^y] containing

(y) and the singular ray. The conditions for the line (x) are

^x8ys
=

0, ^ksxsys
= 0, 2ksxs

* = 0,

determining a ruled surface of degree four which consists of four

pencils whose vertices are the singular points on (y) and whose

planes are the singular planes through (y) ;
hence &amp;lt;3&amp;gt; is of the

fourth order and fourth class.

The four generators of this degenerate scroll which meet any
line (z) belong to a regulus determined by the equations

^xsys
= 0, ?.ksxsys

=
0, ^xszs

=
0,

and therefore cut their two common transversals (y) and (z) pro-

jectively. Whence follows the important theorem that the cross

ratio of the singular points on any line is equal to the cross ratio

of the singular planes through it.

It will be observed that the proof of this theorem is independent
of the existence of

&amp;lt;l&amp;gt;,

and it may be used to prove that the locus

of singular points is the same as the envelope of singular planes.

For, if two out of four elements coincide, their cross ratio vanishes,

and conversely if the cross ratio vanishes, at least two elements

coincide. Hence the locus and the envelope have the same

tangent lines and therefore coincide. It is important to notice

that when the cross ratio vanishes the coincidences among the

points and planes need not completely correspond, and there may
exist lines which do not bear reciprocal relations to the singular

surface.
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32. ELLIPTIC COORDINATES.

When (x) is any line, 2#S
2=0 and the equation %(ks /i)~

1^s
2=

gives four values of
//,, namely the parameters of the cosingular com

plexes which contain (x). This equation is of great importance in

determining the relation of (x) to
&amp;lt;I&amp;gt;;

its roots are called the elliptic

coordinates of the line.

Let (x) cut &amp;lt;I&amp;gt; in P1? P2 ,
P3 ,

P4 ,
and let the tangent planes

through (x) touch &amp;lt;I&amp;gt; at A, B, C, D, respectively. The lines

APi, AP2 ,
APS ,

AP4 belong to the tangent pencil at A and are

respectively singular rays of four cosingular complexes whose

parameters are ^1} yn2 , /%, ^4 , say. The rays of the first of these

complexes which lie in the singular plane Pi^LP4 form two pencils

one of which has its vertex at P1 and therefore contains (x) ;
hence

(x) is a ray of each of the complexes and
yu-j, /u,2 , fa, fa ar^ its

elliptic coordinates. We have seen that the lines APS of the

tangent pencil at A are protectively related to the parameters

yu,s and hence the same is true of the points Ps and the lines

projecting them from B, C, D. Now four points can be pro-

jectively related to themselves in only four ways, and further

AP and BPl cannot be singular rays of the same complex if (x) is

not a tangent to &amp;lt;l&amp;gt; at P^ thus if we suppose that AP1} BP2 ,
CP3 ,

DP4 are corresponding tangent lines and singular rays of the

same complex, the four sets of singular rays must be

APlt BP,, CPS , DP, in complex ^,

AP,, BPlt CP4 ,
DP9 fr,

APS ,
BP4 ,

CPlt DP. ^,

APt, BPS ,
CP&amp;gt;2) DP, ^

By a reciprocal course of reasoning the four singular planes
cut the tangent plane at Pj in singular rays of the complexes

f^D /&quot;-a) A^J A*4? and for the tangent planes at P2 ,
P3 ,

P4 the com

plexes are permuted without altering the cross ratios of their

parameters. Hence the pencil of tangent planes through (x) is

project!vely related to the elliptic coordinates of (as) in any one of

four equivalent orders.

Since /z1} //,2 , //,3 , /u4 are the roots of

S (k,
-

y^)-
1

x? = 0,

we must have for all values of
/LI
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where

/(/*)
= fa

- b) (p
- k) (fi

-
k,) (p - k.) (p

- k66

and C=2ks &amp;lt;K/.

On multiplying by /* ks and then putting fj,
= k8 we obtain the

line coordinates in terms of the elliptic coordinates in the form

X? = C(ks -fJLl ) (ks
-

fr) (ks
-

fr) (ks
- pj/f (ks ).

33. CONJUGATE SETS.

We see that there is not a one-one correspondence between

the singular points on a line and the singular planes through it
;

but on the other hand, the three different partitions into two pairs

correspond. Thus if we denote the four tangent planes by their

points of contact A, B, G, D we see that the partitions of points

P1P4 ,
P2P3 P2P4 ,

P3P, P3P4 , AP2

correspond to the partitions of planes

AD, BC BD, CA CD, AB,

and the elements of each set may be permuted provided the cross

ratio remain unchanged.

Any pair of points, such as P-^P^ and either of the corresponding

pairs of planes, such as BC, are said to form a conjugate set*.

When any two points P]P4 are given a pair of planes forming
with them a conjugate set may be constructed by selecting any

one, for example /z 2 ,
of the four complexes which contain PaP4 ;

the cone of rays through Px breaks into two planes of which one,

B, contains PiP4 ,
and similarly the plane C forms part of the

complex cone at P4 ,
and these two planes complete the set. By

taking all four complexes in turn only two different pairs of

planes are obtained; for example, the plane pencils (Plf C) and

(P4 , B) belong to the same complex //,3
.

Conversely, the planes and vertices of any two plane pencils

belonging to the same complex and having a common ray form a

conjugate set. For let P and P be the vertices, which must

be singular points, and let A, A be the points of contact of the

plane pencils at P, P respectively with the singular surface, so

that AP and A P are singular rays of the same complex ;
it

follows, by comparison with the preceding work, that AP and A P
must be singular rays of another of the complexes containing PP

7

.

*
Klein, Math. Annalen, xxvn, 107.
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The four points in which any line cuts 4&amp;gt; are determined by a

biquadratic equation, and the four tangent planes through the

same line by another equation. The relation between these

equations is that the cross ratios of the roots are equal. This

condition implies that the ratios of the roots of the reducing
cubic are the same for both equations, and hence that if one

biquadratic is expressed as the product of two quadratic

factors, the other biquadratic can be similarly separated into

two factors by rational means. Hence when three elements

of a conjugate set are given the determination of the fourth

depends upon finding the second root of a quadratic equation of

which one root is given, and can therefore be effected by rational

processes.

34. KLEIN S TETRAHEDRA.

With reference to a particular complex (X) of the cosingular

family let the singular ray of the tangent pencil at the point A
cut &amp;lt;E&amp;gt; in A l and A z so that A l) A z ,

and A repeated are the four

singular points on this ray. Similarly let BB^^ CG-^C^, DAA
be the singular rays at B, C, D respectively. The lines A^g,
A 2PS ,

etc. are rays of the complex, and hence the eight points
A l ...Dz lie on the complex cones at each of Pl5 P2 ,

P3 ,
P4 . Since

Ps is a singular point the complex cone at Ps breaks up into two

planes each of which contains four of the eight associated points.

If the parameter X is taken equal to /*,, the complex contains

APi as a singular ray; then BP2 ,
CP3 ,

DP4 are also singular rays

and we may suppose that A 2 , B2 ,
(72 , A coincide with P

3 ,
P2 ,

P3 ,
P4

respectively. One of the planes into which the complex cone at

P! breaks up is A 1P2P3P4 and so the other must be P1B1 C1D1 ;

similarly A 1P2C1D1 ,
A 1B1PSD1 ,

and A 1B1
C1P4 are planes of rays

at P2 ,
P3 ,

P4 respectively. Returning to the original complex we

see that it is possible to name the eight associated points so that

A 1 B.2 C2D2 and A 2B1 C1D1 are the planes of rays at Plf and so on.

We may express this by saying that the table

A, B, C\ A
A 2 B2 C2 A
P P P Pf\ * 1 * ^4

is an incidence diagram, that is, the five points in a row and a
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column, but not in both, are coplanar. Each of the tetrahedra

A 1B1 C1D1 and A 2B2C2D2 is inscribed in the other, and the four

lines joining corresponding vertices, and the four lines of intersec

tion of corresponding faces, have a common transversal P1P2P3P4 .

From what has been proved it follows that P1A 1P2B2 is a

twisted quadrilateral of rays of (X) which are four edges of a

tetrahedron, inscribed in
&amp;lt;,

whose faces touch &amp;lt;I&amp;gt;. Two adjacent
sides of this quadrilateral determine one of the complex planes at

their common point, so that the ends of any side and the two

faces through that side form a conjugate set; for example, the pair
of points P li

A l is conjugate to the pair of planes P1A 1P2 ,
P1A 1B2 .

Now Pj [yljPa] is a pencil of rays of
(/ctj),

so that by the property
of conjugacy it follows that A 1 [P1B2]

is a pencil of rays of the

same complex (y^) and in particular A 1 B.2 belongs to (y^). Hence
P1A 1BZP2 is a quadrilateral of rays of (^) and similarly P2A 1B2P1

is a quadrilateral of rays of
(ju,2),

and every edge of the tetrahedron

is a common ray of two of the three complexes (A,), (/u^), (yu-.2).

Such a tetrahedron may be constructed by taking any three

points on a tangent plane section and completing the three con

jugate sets determined by this plane and pairs of points; the

three new tangent planes meet on the surface. We see in this

way that a given surface has oo 5 inscribed and circumscribed

tetrahedra *.

35. RELATIONS OF LINES TO O.

We shall now consider the various equalities that can exist

among the elliptic coordinates of a line, and its corresponding
relations to &amp;lt;l&amp;gt;.

The elliptic coordinates are the roots of the equation in
fju

^ (ks
-

y*)-
1

X,? =

and are uniquely determined by the line (a?) ;
but conversely, an

arbitrary set of roots determines thirty-two lines, polars of each

other with respect to the fundamental complexes. In what follows,

the line (a?) means any one of these.

If two roots are equal to X, then

S(fe-X)-
1 ^s

2 = and 2 (k,
- X)~

2
xf = 0,

and (a?) is a singular ray of the complex (X) and is a tangent to &amp;lt;.

Put xs
= (ks X)ys ,

then (y) is a singular ray of %ksxs
2 = 0. The

*
&quot;Ausgezeichnete Tetraeder,&quot; Klein, Math. Annalen, xxvn, 110.
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elliptic coordinates of x are the roots of

2(k,-\y*(k8
-

fjL)-
1

y8
* =

or 0*-X)*S(fc.-/LO-
1

y;
=

or (p
-

X)
2

(jj,
-

fa) (/u-
-

fa)
=

where fa and /^2 depend only on (y). As X varies we get all the

tangents of a plane pencil, fa and fa remaining constant
; among

these tangents are six special ones given by X = ks . Taking X = fa

we deduce from the preceding equations

This shows that the line is a bitangent, for the null-plane of the

point of contact and the null-point of the tangent plane in the

linear complex x = are a plane and point of &amp;lt;I&amp;gt; by the invariant

property of
&amp;lt;l&amp;gt;,

and all four elements are incident with (a?). We
infer that as fa and fa vary, the tangent lines for which \ = k

1
are

bitangents ;
it is easy to prove that all the bitangents generate in

this way six congruences of the second order and class.

Three roots can be equal only if X = /AJ or fa. Now we have

seen that fa and fa are the same for all the lines of a tangent

pencil, and hence the whole pencil belongs to the cosingular com

plexes whose parameters are fa and /u 2 ;
but this can be the case

only when the singular ray is an inflexional tangent (p. 52). Thus,

when (as) is a singular ray of 2ksxs
2 = Q and ^, fa are the roots of

&-p)~*4l

we have proved that (kx)^ (x) and (kx)fa (x) are the inflexional

tangents at the point of contact, and the elliptic coordinates of

these lines are
(/JLI) fa, /j,lt fa) and (fa, fa, fa, fa) respectively.

If two pairs of roots are equal, say fa = fa and fa = fa, then,

omitting a factor of proportionality,

and xs , (ks fa)~
l xs , (ks fa)-

l xs are the coordinates of three

mutually intersecting lines. Every line which meets all three

has line coordinates of the form

(aks
2
4- bks + c) {/ (kg)}-*

and consequently has two pairs of equal elliptic coordinates and

touches 4&amp;gt;. Hence if the three lines are concurrent their common

point is a node of &amp;lt;1&amp;gt; and if they are coplanar their plane is a trope.

There are thirty-two cases obtained by taking all possible combina-
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tions of signs for the radicals, showing that &amp;lt;1&amp;gt; possesses sixteen

nodes and sixteen tropes. The identity of the singular surface

with Rummer s surface is thus completely established. It is

worth noticing that for a line through a node one pair of points
coincide and two pairs of planes, and for a line in a trope two

pairs of points coincide and one pair of planes : in both cases two

pairs of elliptic coordinates are equal ; but, on the other hand, in

the case of a proper bitangent two pairs of points and two pairs of

planes coincide while only two elliptic coordinates are equal.

If four roots are equal, then

*.=(*,- &amp;gt;.){/ &)}-*
Either (x) passes through a node and three points and four

tangent planes coincide, so that (x) is a generator of the tangent
cone at the node

;
or (x) lies in a trope and four points and three

planes coincide, so that (x) touches the singular conic. Hence the

tangent lines at a node and the tangents to a singular conic are

projectively related to the tangents at an ordinary point, corre

sponding lines being singular rays of the same complex.

36. ASYMPTOTIC CURVES.

,We have seen that if (x) is a singular ray of 2&s#s
2 = the

inflexional tangents of the pencil (kx) //, (x) are given by the

quadratic in
//,

2(jfet -/t)-ir. = 0.

If the roots are /^ and
yu,2

the elliptic coordinates of the inflexional

tangents are (/^, /^ /^ /u,2) and (^, /*2 , //2 , yu2). ^ and
//,2 may be

regarded as parameters associated with a point on the surface
&amp;lt;I&amp;gt;,

and the equation of any curve on the surface may be expressed

by a single relation between these parameters.
We shall now prove the remarkable theorem that the asym

ptotic curves are given by

yHi
= const, or ^2

= const.

An inflexional tangent at P can be regarded as a tangent to

the surface at two consecutive points P, P . It is a ray of the

cosingular complex which has for a singular ray the other in

flexional tangent at P. Hence the tangent pencil at P contains a

ray P P of this complex which is not singular; therefore one of

the inflexional tangents at P is a singular ray, and by continuity
it must be the one which is not nearly coincident with P P.

Hence at different points of the same asymptotic curve the other
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inflexional tangents (not touching the curve) are singular rays of

the same cosingular complex.
On account of the importance of this theorem we give an

analytical proof.

If we want to find the value of
djj,j /d/j^ along the curve whose

tangent is (y), where ys
=

(ks //,)
xs ,

we must express the condition

in elliptic coordinates that (y) may intersect its consecutive position.

The condition is

2&amp;lt;fyt*=0

or ^ {(ks fji)
dxs xs dfji}

2

or 2 (ks
-

fjif dx* = 0,

and on substituting (ks ^) (ks /j^) // (ks) for x? this becomes

2 (
-

k l dtf + Zd^dp, + ^? drf = 0,
s

Ql -

Now along an asymptotic curve //,
= ^ and then this differential

equation can be integrated and gives

/ji2
= const.

Similarly when
/&amp;gt;6

=
/ii2 , /^

= const. Hence along every asymptotic
curve the parameter of the other inflexional tangent is constant.

We have seen that every bitangent has two of its elliptic co

ordinates equal to one of the k8 ;
the remaining two are parameters

of the inflexional tangents at either point of contact. Hence the

points of an asymptotic curve can be joined in pairs by bitangents.

As /^2 varies the line

xs
=

(k,
- h) (ks

-^ (ks
-^ {f (ks)}~*

describes a scroll each generator of which touches &amp;lt;& at two points

on the asymptotic curve associated with
/JLI

.

The equation ^asxs
= 0, when rationalised, is of degree 8 in

/z-2 ,

showing that the scroll is o degree 8. The complete intersection

with the quartic surface consists of the asymptotic curve repeated,

which is therefore of order 16.

Two asymptotic curves cut at points where one touches the

scroll of bitangents circumscribing
&amp;lt;

along the other, that is at

thirty-two points beside the nodes. These points are obtained

from any one point by drawing successive bitangents and are

derived from a point or its tangent plane by an even or odd

number of correlations.
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When
yLtj
=

/j^, the inflexional tangents coincide. All the elliptic

coordinates are equal and the line is either a generator of a nodal

cone or a tangent of a singular conic. The cusp locus for asym
ptotic curves reduces to the sixteen nodes, and their envelope is

the sixteen conies which form the parabolic curve. Each trope is

a stationary osculating plane of the asymptotic curves so that the

sixteen points of intersection with a trope are accounted for by
two at each node and four at the point of contact. The parameter
of this point, regarded as belonging to the singular conic, is the

same as the parameter of the asymptotic curve.

37. PRINCIPAL ASYMPTOTIC CURVES.

Among the asymptotic curves are six principal asymptotic
curves corresponding to /^ = k^ The inflexional tangents of the

surface which are not tangents of the curve have parameters
k, ki} k{, //,

and therefore belong to one of the six systems of

bitangents, and hence have four-point contact. These curves

pass once through the nodes and touch the singular conies

there. The coordinates of a tangent having four-point contact

are given by

and the rationalised equation of intersection with a given line

is of degree 8 in
//,.

Hence the four-point contact tangents

corresponding to any principal asymptotic curve generate a scroll

of degree 8 touching 4&amp;gt; all along an octavic curve.

The principal asymptotic curves occur as repeated curves in

the family just as the fundamental linear complexes occur repeated
in the family of cosingular complexes, and this accounts for the

lowering of degree *.

On putting two elliptic coordinates equal to ^ and ka respec

tively, the line coordinates x
l
and #2 vanish, and so the various

combinations of sign give only eight lines. Hence two principal

asymptotic curves cut in eight points, besides the nodes, where

they touch singular conies. At any common point both inflex

ional tangents have four-point contact, and the whole pencil of

tangents belongs to the congruence (12). Hence the eight com
mon points lie by fours on the directrices of (12), which are so

related that the tangent planes through each touch at the points

*
Compare the occurrence of a straight line among the projections of a given

conic, and of a parabola among the harmonograms x= cos (t
-

a), y = cos 2t.



36-39] THE QUADRATIC CONGRUENCE 63

on the other. Pairs of directrices are the only lines having this

property*.

8 38. THE CONGRUENCE OF SECOND ORDER AND CLASS.
3

We have seen that every bitangent of ^&amp;gt; belongs to one of

six congruences, of which one is

x, = 0, (k,
-

ki)-*ag + (&8
-

Aa)-
1

*?.
8 + (k,

- kj-*xt
+ (k5

- h)-1
,* + (ke

- kj-
1

,*
= 0.

Conversely, every ray of this congruence is a bitangent of
&amp;lt;E&amp;gt;,

for

one elliptic coordinate /^ is equal to ^ and the others must satisfy

I (k8
-

fr) (ks
-

fr) (k,
-
fr)lf (,) = 0,

s = 2

or (&!
-

/z2) (&!
- ^3) (k\

-
fr)

= 0,

so that a second elliptic coordinate must be equal to kt .

&amp;lt;& is therefore the focal surface of this congruence and we
infer that the general Kummer surface is the focal surface of six

congruences, which may be called confocal, and that the six

linear complexes containing them are mutually apolar. We shall

see presently that the six quadratic complexes, each of which is

to a certain extent arbitrary, may be taken to be cosingular.

The preceding congruence is of a general character, for every

(2, 2) congruence is contained in a linear complex, which may be

taken for one of the coordinates in an apolar system unless the

linear complex is special ; then, in order to reduce the general

congruence to the preceding form we have to reduce two quad
ratic forms in the remaining five coordinates simultaneously to

sums of squares.

Thus the theory of the focal surface of a congruence is made
to depend on the previously developed theory of the singular
surface of a complex. In the following section is given a short

independent account.

39. SINGULARITIES OF THE CONGRUENCE.

The equations of the congruence being x^ = 0, Sxg a?
s = 0,

through every point in space pass two distinct rays, the inter

sections of the plane

ft-.O,
and the cone

X4^4
2 + X5#5

2 + X6#6
2 = 0.

* For further particulars concerning asymptotic curves the following references

may be consulted: Klein, Math. Annalen,v, 278, xxni, 579; Reye, Crelle, xcvn, 242;

Salmon-Fiedler, Geometric des Raumes, n, 491.
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The focal surface is the locus of points through which the two

rays coincide. We have to prove that it is of the fourth order
and class and possesses sixteen nodes at the singular points of

the congruence.

Coincidence arises from a special situation of this plane and
cone and can occur only when

(1) the plane and cone touch,

(2) the cone has a double line and the plane passes through it,

(3) the cone breaks into the plane and another plane.

Case (1) occurs twice on each ray (x) of the congruence, for if

(y) is a consecutive ray,

y = 0, ^\Bx8ys
=

0,

so that (x) and (y) are common rays of all the complexes whose
coefficients are

for different values of
yu,.

Now two rays of a linear congruence
do not intersect except on the directrices; these are the lines

whose coordinates are the preceding set of coefficients when

^ + 2V*.8 = 0.

Let them be called (f) and (f); then the two consecutive rays

through the point (a?, f ) pass through consecutive points of ({*)

and therefore lie in the plane (x, f ) ; similarly the null-plane
of the point (x, f ) in the complex x^ = contains (f ). Let

(x + dx) be any consecutive ray; then

da^ = 0, ^\sxsdxs
=

0,

whence ^sdxs
=

0, 2f/cfcp,
= 0,

which prove that the pencils (x} f), (x, % ) have envelopes. These

are the focal surface
&amp;lt;3&amp;gt;,

and we have seen that (x) touches it at two

points and meets it at no others. Hence the surface is of the

fourth order, and reciprocal reasoning shows that it is also of the

fourth class.

Case (2) arises when (x) is a singular ray of the quadratic

complex so that

2xfX*0.
Let A be the singular surface of the complex

X2^2
2 + A3 tf3

2 + X4#4
2 + X5^5

2 + X6 a?6
2 = 0,

then the pencil (as, \x) of tangent lines of A belongs to the
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complex X-L
= 0, and the singular ray (x) counts as two inter

sections of the null-plane with the complex cone at the point

(x, \x). Hence A and &amp;lt; touch at this point. Since SXS
2#S

2 = 0,

the lines (f ), (f) coincide and (x) has four-point contact with &amp;lt;1&amp;gt;.

In order that case (3) may arise, every line of the pencil (#, \x)
must be a ray of the quadratic complex and hence (x) must be an

inflexional tangent of A. These rays are given by the equations

and are sixteen in number. The fact that every line of the

pencil (x, \x) is a bitangent of &amp;lt;& shows that their plane is a

trope. These sixteen pencils form a 166 configuration of nodes

and tropes of
&amp;lt;E&amp;gt;,

and the complete identity of &amp;lt;3&amp;gt; with a Kummer
surface is established.

40. RELATION BETWEEN &amp;lt;&amp;gt; AND A.

We have seen that at every common point of &amp;lt;E&amp;gt; and A the

two tangent planes coincide and the singular ray is a tangent

having four-point contact with &amp;lt;E&amp;gt;. Hence the two surfaces

touch along a principal asymptotic curve of &amp;lt;I&amp;gt;. Since the oscu

lating plane of the curve coincides with the tangent plane of the

surface, the curve must be also asymptotic on A : being an

octavic, it is a principal asymptotic curve of A : and, counted twice,

is the complete intersection of the two surfaces. Thus the relation

between the surfaces is mutual
;
the nodes of each lie on the other

and the tropes of each touch the other.

By comparing the equations

2\,a?,
a = and 2 (ks

-
k,)~

l xs
* = 0,

we see that &amp;lt;E&amp;gt; is the singular surface of the quadratic complex
x2-^2

2 +V1^2 + x4-^4
2 + xrW + x6-^6

2 = o.

Since A is the singular surface of

X2#2
2 + X3^3

2 + X4#4
2 + \5x* + X6^6

2 = 0,

we see again that the relation is mutual.

The addition of the same number to all the \s changes the first

complex into another of the same cosingular family and so does

not affect O. Hence for different values of X1? the singular surfaces

of the complexes

X^j2 + X2#2
2 + X3^3

2 + X4#4
2 + X5^5

2 + X6^6
2 =

touch each other and 4&amp;gt; along the same curve, which passes

through all their nodes.

H. 5
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41. CONFOCAL CONGRUENCES.

Consider more generally the relation between the singular
surface S of a quadratic complex -ksxs

2 = and the focal surface

F of the intersection of the same complex with a linear complex
zl
= not self-polar with it.

Every singular tangent pencil of F forms part of a degenerate

complex cone and hence has its vertex on S and its plane tangent
to 8 at some other point. Hence the 16 6 configuration of nodes

and tropes ofF is inscribed in and circumscribed about 8. Again
the complex cone at a node of 8 consists of a repeated plane and

so the node lies on F] reciprocally the tropes of S touch F.

At any common point P of S and F the null-plane of P must

contain the singular ray, which is a ray of the congruence and

therefore a bitangent of F, touching at P and Q. The null-plane

of Q touches F at the other focal point P and the complex
cone of Q along the singular ray QP. Hence it is the tangent

plane to 8 at P
(&quot;TT&quot;

of p. 52). Therefore S and F touch at

all their common points and the curve of contact is an octavic

passing through the nodes and touching the tropes of both surfaces.

Any trope of F meets this curve of contact in eight points

lying on a conic; six of these are nodes N^, N2 ,
NS) JV4 ,

N5 ,
NG

of F and the remaining two coincide at a point where the trope

touches 8. The null-point of this plane is a singular point of

the congruence and a node on F
t say Nlf All the lines through N^

in the trope are rays of the congruence, and ON^ being a tangent

to 8 at 0, is a singular ray of the complex. Now F is the singular

surface of a complex for which zl
= is one of six fundamental

linear complexes, and its equation may be taken to be

X^2 + \*Zf + \8*8
a + X4^ + MB* + *e*6

S = 0.

If we had started with the linear complex 2
= and that quad

ratic complex of the cosingular family 2 (k8
-

X)&quot;

1^2 = which has

ON* for a singular ray, N2 being the null-point of the trope for

#2
= 0, the singular surface and the curve of contact would be the

same as before, and the tangent plane at determines the remain

ing fifteen planes of a circumscribed 16C configuration which are

the tropes of F, so that the focal surface would be unaltered.

Hence when a congruence is given as the intersection of a

quadratic and a linear complex, it is in general possible to find

five other cosingular quadratic complexes and five other mutually

apolar linear complexes so that, taken in pairs, they form, in all,

six confocal congruences.
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The parameters of the cosingular complexes are project!vely

related to the positions of the nodes on a conic of F, that is, to

the coefficients Xg ,
so that F, the singular surface of SXS S

2 =
0, is

the focal surface of the six congruences

Zi
= 0, 2S (k,

- X;)-
1 X* = 0, (l

=
1, . . . 6)

and by symmetry S, the singular surface of 2&g#s
2 = 0, is the focal

surface of the six congruences

^ = 0, 2,(X,-A?i)-
1V =

0,

and it is easy by comparing these with the equations

Oi = 0, 2(Ar,-Ari)-
1

a?.
a =

0,

to deduce that the two sets of coordinates x and z are connected

by the orthogonal transformation

where rs
2

(kr
- \sYf (kr) f (\8)

= -/(X.) &amp;lt;/&amp;gt; (&,.)

k,)(6
-

k,)(6
-

k&amp;lt;)(6

- ks)(6
- ke ),

We can now see how when F is given S can be constructed

geometrically in oo 6

ways. At any point P of F draw the tangent

plane and in it draw any conic through P cutting the section

again in six points. A partition of these into two triangles

determines the bases of two of Klein s tetrahedra having a common
vertex

;
in this way ten more points and fifteen more planes are

found which complete the configuration of nodes and tropes of S.

For different values of ax
the singular surfaces of the complexes

touch the focal surface of the congruence given by this equation and ^=
along the same octavic curve, and for ten values of a

x
the discriminating

sextic has a pair of equal roots, and the corresponding singular surface has a

pair of coincident nodes in each trope and therefore a nodal

52



CHAPTER VI.

PLUCKER S COMPLEX SURFACE.

42. TETRAHEDRAL COMPLEXES.

Pllicker devotes the greater part of his Neue Geometric des

Raumes to the study of the surface named after him, with the in

tention of making clearer the arrangement of rays in a quadratic

complex. The surface is the focal surface of a special congruence
contained in the complex, and is therefore the locus of complex
conies in planes through a line and at the same time the envelope
of cones with vertices on that line. It is a degenerate form of

Kummer surface due to two of the linear complexes with respect
to which the quadratic complex is self-polar becoming special

and coinciding, and is the singular surface of a quadratic complex
with six double lines*.

We have seen that every congruence of the second order and

class is contained in one linear complex and many quadratic com

plexes. It is natural at the beginning of the investigation to

choose the simplest complex, and we have the theorem that every

general quadratic congruence is contained in forty tetrahedral com

plexes. To prove this we recall that the singular and focal surfaces

touch along an octavic curve passing through their thirty-two nodes;
if then the singular surface is four planes, the curve of contact must

be four conies intersecting in four nodes. These sets of planes
form &quot;Rosenhain tetrahedra/ of which there are eighty f. Now the

linear complex containing the congruence is one of the fundamental

complexes for the focal surface and we must reject those Rosenhain

tetrahedra of which four edges are rays of this fundamental com

plex, for in that case the focal surface is easily shown to be a

repeated quadric. Now any Rosenhain tetrahedron, such as

*
Sturm, in, 355.

f See Chap. vn. (p. 78).
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0, 23, 31, 12, has its edges belonging by fours to three funda

mental complexes 1, 2, 3 so that by rejecting those whose edges

belong to a particular one the number of available tetrahedra

is reduced to forty.

We therefore start with a tetrahedral complex and select the

rays cutting a given line. We shall take the singular surface of

the complex for tetrahedron of reference and use current point
coordinates xlt a?2 ,

xs ,
x4 and plane coordinates ul} u^ y

u3 ,
u4 and line

coordinates

pi-2
= qu = xiy*

-
x*yi

= u3v4
- u4v3

etc. The following abbreviations are useful :

ft
= 2S

&amp;lt;?M

XS , Vi ^8pisUs ,

so that ft
- = are the planes through a line and the corners of

reference, and vf
= are the points where the line cuts the faces

of reference
; they are, in this case, the singular planes through a

line and the singular points on it. Again ^ are the coordinates of

the plane through (p) and (x), and t^ are the coordinates of the

point where (p) cuts (u).

43. EQUATIONS OF THE COMPLEX AND THE COMPLEX SURFACE.

Let the equation of the complex be

apup* + bp24p3l + cps,pl2
= 0,

which on account of the relation

^14^23 + ^24^3! + ^34^12
=

where a = b c, /3
= c-a, y = a-b,

and therefore a. + /3 + 7 = 0.

The complex may be represented by an equation in mixed

point and plane coordinates, as Plucker shows (p. 164). For the

rays (p) in any plane (u) satisfy

^1^14 + ^2^24 + ^3^34
=

0,

whence a^/pa + J3ujpn + yu3/p12
=

0,

showing that the plane

f4 = ^23^1 + ^31^2 + ^12^3
=

touches the cone

;3
= 0,

and therefore the rays in the plane

14X4 =
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touch the section of this cone. The last two equations give the

complex curve enveloped by the rays in any plane (u). If on

the other hand we regard (x) as a fixed point and the us as current

plane coordinates the equations give the complex cone of rays

through (#), as may be proved by exactly correlative reasoning.
Hence the two equations completely represent the complex ;

the

former can be replaced by the alternative forms

(in which the signs of the radicals are ambiguous), so that the want

of symmetry is only apparent.

To find the equation of the complex surface in point coordinates

we require the locus of the conic section

= 0,

= 0,

as the plane turns round a given line. As we shall not have further

need for current line coordinates we shall take this line to be (p)
or (q) and then the plane through it and any point (x) is

f &amp;gt;i + f2^2 + fs ffa + ?4X = 0,

where f/^S^t*^/. Hence if (at
1

) is any point on the conic section,

fiM =
fa /^a

= f3

7

A*3
= ?4 /M4 ,

and the locus of the conic is

Va^ + V/5^o A-2 + V7f3^3
= 0,

an equation which is equivalent to three others of similar form in

virtue of the identities a + /3 + 7 = and Sfs#g
= 0.

Next, to find the equation in plane coordinates we require the

envelope of the cone

2%2 -f \7#3w3
= 0, ^,xsUg = 0,

as the point (x) moves along the line (p). Since the coordinates

of the point where (p) cuts (u) are t^, the equation required is

obtained by replacing Xi by vi} and accordingly is

=
0,

or three other equivalent forms.

From these equations it is evident that (p) is a nodal line, that

#* = 0, %i are singular planes and ^ =
0, Vi = are singular

points of the surface.



43-44] SINGULARITIES OF THE SURFACE 71

44. SINGULARITIES OF THE SURFACE.

We must next examine the sections through (p), the nodal

line. Each consists of (p) counted twice and a complex conic

= 0.

Regarded as a point locus this conic degenerates into a repeated
line for four positions of the plane (u), namely those passing

through the corners of reference. Thus, putting u^ = 0, u2
= q12 ,

^3= #13) 2*4
= ^u &amp;gt;

we see that the plane

f1
= ^12^2 + ?13#3 + #14#4

=

touches the surface all along the line in which it meets the plane

/3g12#2
-
yql3x3

= 0.

This line, which is called a torsal line*, lies entirely on the

surface
;
the singularity is of a tangential nature and consists in

the fact that the tangent plane does not change as the point of

contact moves along the line, as in the case of a generator of a

torse or developable. The plane fx
= 0, which is called a pinch

plane, is a trope in which the conic of contact has broken into two

lines, the nodal and torsal lines.

Regarded as an envelope the degenerate conic is touched by

planes (u) satisfying

and consists of the two points (1, 0, 0, 0) and (0, 7/512, /3/qw ,
&amp;lt;z/qu)

which are both nodes. These points are the vertices of pencils of

rays of the complex in the singular plane = and correspond to

the points A lA 2 of 34.

Thus in addition to the point singularities on the nodal line

we have eight nodes lying by pairs on the four torsal lines;

they are

A, (1, 0, 0, 0) A, ( 0, y/qw , /3/ql3 , a/qu)

B, (0, 1, 0, 0) B2 (y/qnt 0, /g23 , /3/q24)

C, (0, 0, 1, 0) C, (/?, a/qv, 0, 7/^34)

A(0, 0, 0, 1) A(/?4i,/3/942 , 7/?, )

Correlatively there are four points on (p) for which the complex
cone degenerates. Regarded as an envelope, the cone with vertex (#)

=

* Pliicker names this a singular line. See Sturm, n, 201; Cayley, vi, 334.



72 PLUCKER S COMPLEX SURFACE [CH. vi

is a repeated line when x^ = ;
then #2

= Pu, %a = p, #4 = Pu and

the repeated line has plane equations

0Pi*U*
~
VP^UB = 0,

vi = Puu 2 + plsu3 + pu u, = 0.

This line, which is called a cuspidal axis*, is a singularity of

exactly reciprocal character to that of a torsal line
; every plane

through it is a tangent plane to the surface at the same point
vl
=

0, and every plane through i^ cuts the surface in a section

having a cusp there. Hence vlf ... i/4 maybe called cuspidal points.

They correspond to the points P1} P2 ,
P3 ,

P4 of p. 55. They are

also called pinch points, because the two sheets of the surface

touch each other there.

Regarded as a line locus the cone at v breaks into a pair of

planes joining the lines

#1 (@PI*XS + 7^13^2)
= 0, #4 =

to the point Uj or (0, pl2 , pwy pu ) ; they are both tropes and inter

sect in the cuspidal axis which has point equations

#1 = 0, 7#2/p12 + $2?8/Pl3 + &amp;lt;*t/pu = 0.

In addition therefore to the four torsal planes through (p)
there are eight tropes intersecting by pairs in the four cuspidal

axes
;

their coordinates are obtained from those of the nodes

A! ... D2 by changing prs into qrs . If we use the same letters to

denote the points and planes, all the incidences can be exhibited at

once in the table

A, B, C, A
A, B2 C9 A

in which a row and a column, excluding their common member,
contain the names of four coplanar points and four concurrent

planes. This is the configuration of mutually inscribed tetrahedra

which has already been described in

45. THE POLAR LINE.

The locus of the poles of the nodal line (p) with respect to

complex curves in planes through (p) is a straight line, for it must

lie on the polar plane of (p) with respect to every complex cone

whose vertex is on (p). This polar line\ cuts each torsal line and

* Pliicker names this line a singular axis. See Cayley, vi, 123
; Sturm, Linien-

geometrie, m, 5; Math. Ann. iv, 249; Zeuthen, Math. Ann. iv, 1.

f Sturm, in, 1
; Klein, Math. Ann. vn, 208.

Weiler names this the adjoint line, Math. Ann. vn, 170.
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is harmonically conjugate to (p) with respect to the two nodes on

it; reciprocally, both lines cut each cuspidal axis and determine

with it planes harmonically conjugate with respect to the two

tropes through it.

The complex surface is the singular surface of a quadratic

complex for which two fundamental complexes are special and

coincide
;
for considering the situation of nodes on the eight tropes

we see that two coincide at the intersection with the nodal line,

which is the directrix of the special complex. It is easy to prove
that the other four fundamental complexes are, using Prs for

current coordinates,

(Pu/Pu + Pa/P*) + ft (Pv/Pu + P*/Pl) + 7 (P/P + Pvjfr*)
= 0,

When the nodal line is at infinity the polar line becomes the

locus of centres of parallel conic sections. Models of the surface

in this case are described by Cayley, Collected Papers, vii, 298.

The singular surface of the quadratic complex
If If If I- If If If If

^2_^6 2
i

KZ~ ^6 2i /

li_5 &amp;lt;r 2_i_l5_^_6 2_fk
k k k k k k k k

~

is the tetrahedron 0, 24, 46, 62.

The surface is unicursal, and the coordinates are expressible in terms of

parameters X, \i as follows

_(b-c}(c-d)(a-b}
M4+ /iV4

The nodal line, polar line and three nodes, no two of which lie on the

same torsal line, determine the remaining singularities.

46. SHAPE OF THE SURFACE.

A special form of the configuration of two mutually inscribed

tetrahedra consists of the corners of two rectangles placed in planes

perpendicular to the line joining their centres, the sides of one

being parallel to the sides of the other. These are the nodes of a

Plticker surface possessing two planes of symmetry but otherwise

exhibiting the features of the general case. The diagonals of the

rectangles are the torsal lines and in this case intersect by pairs on

the nodal line, which is here an axis of symmetry. In fig. 7 four

of the conies through the nodes are ellipses, touching each other

by pairs at the extreme pinch points on the nodal line
;
the other

four are hyperbolas, touching each other by pairs at the other two

pinch points.
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Now since the pinch points are points on the nodal line at

which the two tangent planes coincide they divide it into segments

through which real and imaginary sheets of the surface pass alter

nately. Since the torsal lines are real both of the segments with

real sheets are here finite. Such a segment is the common edge
of two finite wedge-shaped pieces of the surface, the angle of the

FIG. 7.

wedge varying from zero at the pinch points to the acute angle
between the torsal lines. Each wedge contains two nodes, and the

section of a pair of wedges by a plane through the nodal line is an

ellipse. As this plane turns round the nodal line the elliptic

section narrows until it becomes indefinitely thin and coincides

with a finite portion of a torsal line terminated by the two nodes

on it
;
as the plane continues to turn, the section immediately

becomes a thin hyperbola, terminated by the same two nodes,

which widens and remains hyperbolic until another torsal line is

reached. Thus two nodes which are joined by two arcs of ellipses

belong to an infinite piece of the surface, and there are four such

pieces.



CHAPTER VII.

SETS OF NODES.

47. GROUP-SETS.

On account of their importance in subsequent applications,

various sets of points and planes of Rummer s configuration must

be studied in detail The terms node and trope will be used for

convenience, and indicate the relation of the elements to the

Kummer surface determined by them.

The 16 6 configuration is transformed into itself by fifteen

collineations which together with identity form the group of

sixteen members upon which the whole theory depends. These

collineations have been expressed algebraically as simple linear

transformations of point coordinates : geometrically each is effected

by means of two opposite edges of a fundamental tetrahedron, any

point being transformed into its harmonic conjugate with respect

to the directrices of a fundamental congruence. To each collinea-

tion of the group corresponds a node and a trope represented by
the same two-letter symbol, and it will appear that those sets of

elements are most important which correspond to subgroups.

Such a set is invariant for the subgroup and is changed by the

other collineations into other sets each of which is invariant for the

same subgroup. This set of different sets is here called a group-

set and contains the whole configuration. The sets of a group-set

are equivalent in the sense that they have the same projective

relations to the configuration.

The incidence diagram ( 5) is of great use in representing

these sets of elements and in facilitating their enumeration, and

is accordingly preferred to symbols. The effect of any collineation

upon the diagram is simply to interchange two rows and at the
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same time the other two rows, or to interchange two columns and
also the other two columns, or to make these changes simul

taneously. If the names of the collineations are written in the

diagram, the symbol which after these changes is in the first row

and column is the name of the corresponding collineation.

48. COMPARISON OF NOTATIONS.

For the general symmetrical treatment of the configuration in

relation to the group of collineations the two-letter symbols are

the most convenient, and agree with the notation subsequently
used for thetafunctions. If preferred, Humbert s algorithm* may
be used : it has the advantage of showing more clearly the position
of each symbol in the incidence diagram. The two tables are given
here for comparison :

It is, however, often convenient to isolate a particular element

which is named 0, and the remaining fifteen are 12, 13, ...56.

Finally, it may be necessary to distinguish the six elements which

are incident with a particular element from the remaining ten
;

the former are named 1, 2, 3, 4, 5, 6 and the latter by the partitions

of these figures into two sets of three : of a pair of sets it is suf

ficient to name only one. These two nomenclatures are based

upon the construction of the configuration from six apolar com

plexes and may be appropriately exhibited in two complementary

diagrams (p. 45)

of which one represents nodes and the other tropes, but there is

no essential geometrical correspondence between the elements in

corresponding situations.

In these two systems the figures 1, 2, 3, 4, 5, 6 represent per-

mutable operations which, repeated, produce identity, denoted here

by 0; further 123456 = 0, so that every compound operation can be

*
Liouville, ser. 4, ix, 55.
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reduced to one containing three or fewer figures. By the product
of symbols is meant the symbol of the product of operations.

A set of elements, expressed in the last notation, is called odd

or even according to the number of single figure symbols, that is,

the number of elements incident with a given element. If the

parity is independent of a particular given element, it is an

important feature of the set and has an essential geometrical

significance.

49. PAIRS AND OCTADS.

There are fifteen subgroups of two members each. Any one of

these corresponds to a pair of nodes of which one is (dd) and gives

rise to a group-set of eight pairs, of which examples are given in

the diagrams

nn xx
IN xx

One pair of nodes possesses no special features in relation to

the configuration as distinguished from another pair. Two nodes lie

in two tropes, and are joined by one of the 120 Kummer lines.

The pair is invariant under a subgroup of two members, namely

identity and the collineation represented by the product of their

symbols. The diagrams show that of the eight pairs of a group-

set four are odd and four even, and, further, the partition into two

sets of four pairs is invariant under the group. The four odd pairs

form an odd octad arid the four even pairs form an even octad
;

these two octads together make up a group-set, and are said to be

associated. Hence there are fifteen couples of associated octads,

one in each couple being odd and the other even.

An octad is represented in the diagram by two rows, or two

columns, or two complementary rectangles, and thus corresponds

to a bilinear identity among the sixteen linear forms (p. 31). It

is noteworthy that the terms of the identity indicate the pairs of

the octad. An octad of eight nodes is a group of eight associated

points lying on four pairs of planes forming an octad of tropes.

The eight Kummer lines of a group-set cut a pair of directrices and

determine on each three involutions whose double points are the corners of

the three fundamental tetrahedra having that directrix for an edge.

The eight nodes of an octad can be joined by four Kummer lines in seven

ways, and in six of these ways the lines belong to a regulus.
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Two pairs from a group-set form a tetrad
;

if they are taken

from different octads the tetrad is odd, and named after Rosenhain:

if the pairs are taken from the same octad the tetrad is even and

named after Gopel. In both cases the product of the four symbols
is identity. These properties are sufficient to define the two kinds

of tetrad and will be found to agree with the geometrical definitions

given in the next two sections.

50. EIGHTY ROSENHAIN ODD TETRADS.

These are tetrahedra whose corners are nodes and whose faces

are tropes. Two of the nodes can be chosen arbitrarily, the third

must lie in one of the two tropes containing them both, and then

the fourth is determined. There are two types of diagram, in (1)

the points lie in a line and represent the corners and faces of the

same tetrahedron
;
in (2) the points lie in two lines and represent

the corners of one tetrahedron and the faces of another
;
the faces

of the first and the corners of the second are represented by the

other points in the same two lines. The rows and columns give

eight tetrads of type (1) and each of the six pairs of rows and

six pairs of columns give six tetrads of type (2), making eighty

in all.

In symbols, type (1) is represented by

135, 1, 3, 5 or by 0, 35, 51, 13

and this shows how a Rosenhain tetrad is constructed. The nodes

in any one trope are partitioned into two triangles 1, 3, 5 and

2, 4, 6 : the other tropes through the sides of these triangles all

pass through the point 135 . 246 which is the common corner of

two tetrahedra having a common face. We infer that there are

sixteen sets of ten tetrahedra having a common face.

All the tetrahedra of type (1) are self-polar with respect to one

of the fundamental quadrics (p. 31). Since there are ten quadrics

playing symmetrical parts in the configuration, we obtain in this

way ten sets of eight tetrahedra, making, once more, eighty in all.

The Rosenhain tetrads are sufficiently characterised by the

properties of being odd and invariant for at least one collineation.

From the latter property it follows that the product of the symbols
of a tetrad is identity and thence that the collineation which inter-
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changes any two corners interchanges the other two at the same

time. Hence each tetrad is invariant for a subgroup of four

members and there are four tetrads in a group-set. Each set of

eight which are self-polar with respect to the same quadric con

tains two group-sets : for example the four rows represent the

tetrads of one group-set and the four columns those of another.

The faces of a Rosenhain tetrahedron contain all sixteen nodes, from

which it follows that the four singular conies in the faces do not lie on a

quadric surface.

51. SIXTY GOPEL EVEN TETRADS.

These are tetrahedra of nodes whose faces are not tropes, or

tetrahedra of tropes whose corners are not nodes. There are two

types of diagram according as the four points (1) form a rectangle
or (2) lie on different rows and columns.

. . ...

(1).

&quot;

(2)

Each tetrad can be divided in three ways into two pairs

belonging to the same octad, and each of the thirty octads

contains six tetrads, giving sixty tetrads in all.

The Gopel tetrads are sufficiently characterised by the proper
ties of being even and invariant for at least one collineation. As
in the case of odd tetrads, each is invariant for a subgroup and

there are four tetrads in a group-set. Examples are

and

A typical representation in two-figure symbols is 0, 12, 34, 56

and we associate a group-set with a partition of six figures into

three pairs. In order to construct a Gopel tetrahedron having a

given trope for one face, we join the nodes in that trope in pairs

by three lines
;
the other tropes through these lines complete the

tetrahedron. Hence fifteen tetrads have one element common.

The tetrahedron 0, 12, 34, 56 of either nodes or tropes and the fundamental

tetrahedron (12, 34, 56) belong to a desmic system. By taking the latter for

reference it is easily seen that the third member of the system together with

those obtained in a similar way from the other tetrahedra of the same group-
set form a 166 configuration. Further the faces of a group-set of Gopel
tetrahedra of nodes form another 16

6 configuration.

The four singular conies in a Gopel tetrahedron of tropes lie on a quadric.
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52. ODD AND EVEN HEXADS.

A set of six symbols whose product is identity is necessarily

derived, in many ways, from two tetrads having a common element,

after excluding that element. Hence an odd hexad of this kind is

derived from an odd and an even tetrad, and is found to be a set

of six elements from which the whole configuration can be linearly

constructed ( 6), and is named after Weber.

odd tetrad even tetrad odd hexad

A Weber hexad is not invariant for any collineation and hence

a group-set contains sixteen hexads. The total number of hexads

is 192.

The only other hexads of special interest are the Rosenhain

hexads of coplanar nodes, or concurrent tropes. Every trope con

tains either two or six nodes of such a hexad, which is therefore

even. The product of the symbols is identity, but this property is

possessed also by other sets of six points. A Rosenhain hexad is

not invariant for any collineation, and there is only one group-set.



CHAPTEE VIII.

EQUATIONS OF KUMMER S SURFACE.

53. THE EQUATION REFERRED TO A FUNDAMENTAL TETRAHEDRON,

Taking a fundamental tetrahedron for reference* we write

down the most general quartic equation which is unchanged by
the operations of the group of 4, that is by changing the signs of

two coordinates or by the permutations of (xyzt) into (yxtz),

(ztosy} or (tzyx). All the terms which are derived from any one

term by these operations must have the same coefficient, and so

the equation must have the form

+ A (xH
2 + 2/V) + B (ft

2 + z*xz

} + C (zH
2 + a?y*)

= 0.

Now make the point (a, /3, 7, S) a node : this gives four con

ditions which determine A, B, C, D in the forms

^ ^

- a2

/3
2

)

and on eliminating a, /3, 7, 8 there results the single condition

among the coefficients

4 _ A 2 - B* - C2 + ABC + D2 = 0.

Making use of the fundamental quadrics, we can write

_
(aS

-
7) (aS 4- /37) [aa] [ad]

[dc]~
[aa] [ad] [66] [bd] [cc] [cd]

~
[dd]*

* The equation is worked out from an irrational form by Cayley, Coll. Papers,

x, 161; Crelle, LXXXIII, 215, and is given also by Borchardt, Crelle, LXXXIII, 239.

H. 6
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In order to express the coefficients in terms of the kg we require
the connection* between these numbers and a, /3, 7, S. If the

tetrahedron of reference is the fundamental tetrahedron (12, 34,

56), the six numbers

A/l A/2 *^3 *^4 A/5 /t/ g

are projectively related to the parameters of the nodes

(ab) (ac) (be) (ba) (ca) (cb)

lying on the section of the surface (p. 35)

*J[cd] [db] (dd) (cb) + J[bb] [ad] (ab) (bd) + J[da\ [cc] (ca) (dc)
=

by the plane (dd) = 0,

and may therefore be taken equal to the values of

(ca) _ [bb] [ad] (ab)

(bd)

~
[da] [cc] (dc)

at the nodes : these values are

[bb] [ad] [dd] [bb] [ad] [dd]

[da] [cc] [aa] [cc] [da] [aa]
*

and their cross ratios are equal to the cross ratios of the corre

sponding ks . Owing to the identical relations among the quadrics,

this is only one among many ways in which the cross ratios of the

ks can be expressed. In particular we have

(k3 -k5)(k6 -k4) = [dd] [da] = 2-A
(ks -k4)(k6 -k5)~[aa][ad]~ 4

whence
A (ks + k4) (k5

7
2 (ks

- h) (k5
- k6

B (k5 + k6) (k, + A?2)

2 (k5 -k6)(kl -k2)

G _ (k, + k2) (ks +
2 KI

and we see that the vanishing of one of these coefficients is the

condition for four nodes to form a harmonic range on the singular

conic through them.

Lastly it may easily be verified that

(ki k2) (ks A?4 ) (fc5 KQ)

when it is noticed that the vanishing of the numerator is the

*
Of. Bolza, Math. Ann. xxx, 478.
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condition for the three pairs (k^), (k3k4), (k5k6) to form an involu

tion. Thus all the coefficients in the quartic equation are expressed
in terms of the coefficients of the quadratic complex of which the

surface is the singular surface*.

The equation may be written as the sum of the squares of the fundamental

quadrics multiplied by coefficients of which a typical one is

the summation extends to twenty products and the positive sign is taken if

the product of the symbols 123, po-r, 135 according to the laws

= 11=22 = 33= 44= 55 = 66-123456,

is a three-figure symbol t.

54. THE EQUATION REFERRED TO A ROSENHAIN TETRAHEDRON.

Take the linear forms belonging to any Rosenhain tetradj for

new coordinates, for example, those in the first column of the

orthogonal matrix (p. 30),

The equation must be invariant for the operations represented

by these symbols, but these transform the preceding coordinates

into

dd

ab

be

i, xs ,

respectively, showing that the terms x?x and xx have the same

coefficient, and that the term x-^x^x^ gives rise to the expression

and so on. From the fact that all the corners of reference are

nodes and all the faces tropes, we are able to write the equation in

the form

or

xl -f wx^
*
Rohn, Math. Ann. xvm, 142.

t Study, Leipziger Berichte (1892), XLVIII, 122.

J Cayley, Coll. Papers, vn, 126; Crelle, LXXIII, 292.

62
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This equation may be deduced from the fact that Rummer s

surface is the focal surface of the congruence of rays common to a

tetrahedral complex and a linear complex. Using the notation of

Chap, vi, we take the tetrahedral complex to be given by

equivalent to only one equation since

and the linear complex to be

where now the qrs are any constants, not the coordinates of a line

as in the case of Plucker s surface. Further we use the abbrevia

tions %i
= ^qisxs . Then the complex curve in the plane 2wt-a?$

=
is its intersection with the cone

-0.

If Ui = ^qiSXg then (V) is the null-point of the plane, and the

two rays of the congruence through (# ) are the two tangents from

(of) to the complex curve. If (as )
is on the focal surface, these two

rays coincide and (# ) must lie on the conic. Hence the equation
of the focal surface is

Before expanding this, it is convenient to make a slight change
in the coordinates, replacing x-^jx^ by x^q^q^/x^q^q^ and so on,

which has the effect of making the coefficients in the linear com

plex equal by pairs. We therefore write

and then the equation

VSf^+ V/3?2^2 + V7 ^3
= o

gives, on expansion, the former equation, provided

u=la, v = m/3, w = ny,

s = tfcr1

(7
-

/3) + v2
fi~

l

(a.
-

7) + w2
^-

1

(0
-

a).

The same surface is obtained when a : : y are replaced by any
other ratios satisfying the last preceding equation and
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Regarding these as trilinear equations of a plane cubic and
a straight line, we see that there are three solutions oL

1 :ftl :ylf

2 : A : 72 ,
and a3 : /33 : 73 and it is easy to prove that

_^_ +
a

j

^2

=0
ai 2 &&

and two similar equations, and

Each of these fractions may be equated to 1 since only the

ratios u : v : w are important, and then s can be put in the sym
metrical form

+ (7i
~ a

i) (72
-

2) (73
-

)

I- (a,-A) (a,- ft) (a,- A).

The corresponding sets of numbers (Zx , m^ %), (L ra2,
n2), (Is,ms,n3 )

may be regarded as the direction cosines of three mutually ortho

gonal lines, and Kummer s surface can be written in three equivalent
forms of which one is

A tetrahedron is a degenerate form of Kummer surface in

which the nodes on each conic have coincided by pairs. Hence
the set of six con focal congruences (p. 66), in which the quadratic

complexes are cosingular and tetrahedral, reduces to three. It is

immediately verified that the three linear complexes

k u + ** + mi &amp;gt;

24 + 3l + ni 34 + w =

are apolar, and are fundamental complexes for the surface. The
others are

Pu = PK , ^24
=

Psi , Pu = Pia &amp;gt;

and one fundamental quadric is

so that the tangential equation has exactly the same form as the

point equation.

The equation referred to a Gopel tetrad of tropes is (cf. p. 21 footnote)

[#
2+y2+z2+t2+ 2p (xt +yz) + 2q (yt+ zx)+ 2r (zt +xy}J= IQsxyzt,

where s=p2+ q
2+r2

2pqr 1.
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55. NODAL QUARTIC SURFACES.

The equation of Rummer s surface has frequently appeared in

the irrational form

VW -f \l~yy + V^7 =
0,

where x = 0, . . . / = 0, are six planes. When these planes are

arbitrary, the preceding equation evidently represents a quartic
surface having six tropes and fourteen nodes, namely

(asyz\ (xyz), (xy z), (xyz}, (xy z }, (x yz }, (x y z}, (xy z \

yy = zz
)

zz = XX j xx =
yy

Conversely, the general fourteen-nodal surface can be expressed
in this way. To prove this we notice that the sextic enveloping
cone from each node must have thirteen double lines and hence

must break up in one of the two following ways

3&amp;gt;
1 1 1, 2211,

where 3X denotes a cubic cone having one double line, and so on.

Let m be the number of nodes of the first kind
;
then since each

trope contains six nodes, the number of tropes is (m 4- 28)/6, that

is 5, 6, or 7. We take x = 0, y = 0, z = to be tropes meeting in a

node of the first kind, and the quadric cone of tangents there to be

A = y? + f + z2 -
2yz

- Zzx - 2xy = 0.

Then if f = is any plane not passing through this node, the surface

has an equation of the form

Since the enveloping cone breaks up in the assumed way,

where /a is a constant and 9 = is a nodal cubic cone touching
A = along three generators.

The nodal line on 6 = may be taken arbitrarily, say

F=0, Z=0,
then 6 = has to satisfy six conditions and can contain only three

arbitrary constants. It is sufficiently general to take

= (x-y-z)YZ- yZ*
- zY*,

for this satisfies all the conditions and contains implicitly three

arbitrary constants, since Y and Z may be replaced by any linear

functions of them. Introduce X where

then
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The thirteen nodes other than x = y = z = lie on the lines

y = = z, z = =
a?, x = =

y,

lying by sixes on the three cones

yZ + zY=0, zX + xZ=0, xY + yX = 0.

Now there are at least two singular conies not passing through
the first node and so we may take f = to be the trope containing
the nodes on the first of these cones

;
then we must have

and we may put X=l since the absolute value of f is un

determined. Then

leading to
//,
= 4 and

B = yZ(x-y-\-z)-zY(x + y-z).

The equation of the surface is thus completely determined to be

(#
2 + 1/

2 + z2 -
2yz

-
&amp;lt;Lzx

-
2xy) f

2

+ 2 {yZ(x-y + z)-zY(x + y-z)} f+ (yZ+zT^ = 0.

By introducing new linear expressions

i/
= f-z, r=f+r,

this equation becomes the rationalised form of

making evident the remaining tropes rj
=

0, f= 0.

For this surface* to acquire a fifteenth node, the cubic cone

must break up into a plane and a quadric cone, intersecting in

lines passing through the fourteenth and fifteenth nodes. The

cubic cone

with a nodal line =
77
=

f,

contains as part of itself the plane

* For the equation of a thirteen-nodal surface which acquires additional nodes

when one, two, or three constants are made to vanish see Kummer, Bert. Abh.

(1866), p. 114, and Cayley, Coll. Papers, vn, 293.
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where I + m + n = 0,

provided that, in consequence of these last two equations,

mnx + nly -f Imz = 0.

Hence an identical relation of the form

mnx + nly -f Imz 4- k (If 4- mrj 4- n%) =

must exist. Now the quartic equation is unaltered if x, y, 2, f, 77, f

are replaced by px, qy, rz, qrg, rprj, pq respectively, p, q, r being

arbitrary. Hence the preceding linear identity may have the

more general form

mnpx + nlqy 4- Imrz 4- klqrt; + kmrpr] + knpq = 0,

and, on writing it with undetermined coefficients

ax + by + cz + af + fty + 7? = 0,

the conditions become

aa = b/3 = cy,

There is of course one other linear identical relation among the

six planes and the coefficients in this may be arbitrary. By what

precedes, one of the new tropes is ax + by + cz = 0, as may easily

be verified directly, and similarly the three other new tropes are

a +% + GZ = ax + /^? + cz = 0, ax + by+y% = 0, passing through
the new node ax af, by = fty, cz = 7^.

For a sixteenth node to appear a second linear factor must

separate out from the cubic 0, distinct from the former, but

vanishing for the values f = TJ
=

f. Exactly similar reasoning leads

to a second identity of the form*

a x + Vy + c z + a. Z + p
f

&amp;lt;r

1 + &amp;lt;/f

= 0,

where a a = b j3 = c y ,

and, as before, four new tropes appear, whose equations are

a x + %+c ^O, a^+6
/

y+c
/

^=0, a x-}- (3 &amp;lt;ri
+ c z = Q, a

/

#+ &
/

y+7
/

f=0,

passing through the sixteenth node a x = a f, IIy fi rj, c z = y .

In the notation of p. 85, writing #/ = 12 13 (n^ m^x* + ^#4)

etc. the two relations are

Za^! + m2x2 + n 2x2 + l^-Xi + m^x* + n 2

~lx3 0.

Ir
1

! + mr1
* + nB

~ l
a;3

= 0.

Jessop, Quarterly Journal, xxxi, 354.



CHAPTER IX.

SPECIAL FORMS OF RUMMER S SURFACE.

56. THE TETRAHEDROID.

We have seen in preceding chapters how the general 16 6

configuration depends upon six apolar complexes, and when

these are given, is completely determined by a single element.

Special configurations arise in two ways, either by specialising

the linear complexes, as in the case of Pllicker s surface, or

by specialising the position of one of the elements. With the

former case we are not here concerned* and confine our attention

to the case when the set of apolar complexes is general, and con

sider the consequences of taking one node or trope of the surface

in particular positions.

With respect to a single fundamental tetrahedron particular

positions of a point are in a face, on an edge, or at a corner. If

this tetrahedron is taken for reference, these three cases correspond
to the vanishing of one, two, or three of the coordinates (a, /3, 7, 5)

of one node.

We recall that the nodes and tropes are named after the

operations which deduce them from (a, /3, 7, S), and their equations
are obtained by equating to zero the sixteen linear forms (p. 29)

The general case of a node lying in a face of a fundamental

tetrahedron is given by 8 = 0, and then we see that the nodes

(aa),

(ba),

(ca),

(da),

(ab),

(bb),

(cb),

(db),

(ac),

(be),

(cc),

(dc),

(ad)

(bd)

(cd)

(dd)

lie in x = 0,

See an exhaustive paper by Weiler, Math. Ann. vn, 145.
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and the tropes pass by fours through the corners of reference.

These sets of nodes are called Gopel tetrads, being corners of

tetrahedra whose faces are not tropes, and the four groups make
up a group-set, being either unchanged or interchanged by the

group of sixteen operations. Thus, when 8 = 0, four tetrahedra

belonging to a group-set become plane.
This special kind of Kummer surface is called a Tetrahedroid*;

it is characterised geometrically by the fact that the section by
each of the faces of a certain tetrahedron is two conies, intersecting
in four nodes.

The four tropes through any one corner intersect in six lines

which, since they contain pairs of nodes, must lie in the faces.

Hence each trope cuts three faces of the tetrahedron in three con

current lines containing pairs of nodes
;
therefore the six nodes on

any singular conic belong to an involution in which the chords

joining corresponding points pass through a fundamental corner.

This is characteristic of a tetrahedroid, that the six coefficients ks

in the complex of which it is the singular surface form three pairs
of an involution. If the tetrahedron is (12, 34, 56), it is easy to

see that the pairs of coefficients are k^kz ,
k3 k4 ,

k5k6 .

Since the sides of the quadrangle of nodes in any face pass

through the corners, these form the common self-polar triangle of

the two conies into which the section breaks up. From this fact

it is easy to construct the equation of the surface, for it must be

of the form

F (x
2

, f, z2
,

t
2

) + \xyzt = 0,

and after equating any coordinate to zero, F must break into

factors. Under these conditions the equation represents a surface

which touches each of the planes of reference at four points ;
if

one of these is a node A, must be zero and then the other fifteen

points of contact are nodes also. The conditions for F show that

the equation may be written in the form

h g I

h / m y
2

g f n z2

I m n t
2

x2 f z* t
2

By replacing (fmn)*x, (gnl)*y t (hlm)*z, (fgh)$t by new coordi-

*
Cayley, Coll. Papers, i, 302

; Liouville (1846), xi, 291.

=0.
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nates a?, y, z, t and putting a = (/0* = (0)*, 7 = (^w)*, this takes

the form

7
2 & a.

2 x2 =0,

7
2 a2

y8
2

y
2

ft
2 a2

7
2

,2r
2

a2
/3

2

7
2

i
2

x2

y
2 z2

t
2

or on expansion

a2
(a

4 -
/3

4 -
7

4
)

which is what the general equation (p. 81) becomes when 8 = 0.

In order to exhibit the conies in the planes of reference put

(a
4 -

/3
4 - 7

4

)//3
2
7

2 =
(fi + v)l*tlwt

etc. and replace x2

by x2

\i/jiv, y
2

by

y
2
Vz/X, z2

by 22
\/\fjL ;

then the equation becomes

X) y
2 + (X + At) 2

2

}
+ ^

4 = 0,

and finally on putting X = a~2
, /A

= 6~2
,

z^ = c~2
, ^ = 1, we get

the ordinary equation of the wave surface

(x
2 + 2/

2 + -s
2

) (a
2^2 + fry

2 + c
2^2

)

-
{a

2

(b
2 + c-) a? + 62

(c
2 + a2

) y
2 + c

2

(a
2 + b2

) z
2

}
+ a2 b2

c
2 = 0.

The two points of contact of a common tangent of the conies in a face of

the tetrahedron lie on the same singular conic and are the double points of

the involution of nodes on that conic.

If a given linear complex is apolar to the complex of polar lines of its

rays with respect to a variable quadric having a fixed self-polar tetrahedron,
the envelope of the quadric is a tetrahedroid. If the given complex is

special, the variable quadric touches eight fixed lines and the tetrahedroid

degenerates into a repeated quadric.
The intersections of corresponding surfaces in an involution of quadrics

inscribed in a common developable generate a tetrahedroid.

When the determining node is taken on an edge of a fundamental tetra

hedron, the surface becomes a scroll of which a typical equation is *

a/3 (Fa
2 -

/3
2
) O2

Z
2
-4-3/V) + a/3 (a

2 - F/3
2
) (y

2
t
2 +zz

x?) + 2 (a
4 -

/3
4
) xyzt

= 0.

57. MULTIPLE TETRAHEDROIDS.

Double tetrahedroid.

The trope, from which all the remaining singularities are

obtained, passes through one corner of each of two fundamental

tetrahedra. These must not belong to the same desmic system,
else a third corner would be collinear with the other two and so

lie in the trope. Hence the two tetrahedra have two edges
*
Rohn, Math. Ann. xvm, 156.
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common, and without loss of generality we may take the corners

(0, 0, 0, 1) and (0, 1,
-

1, 0).

This gives 8 = and /3
=

7, and the equation of the tetrahedroid

becomes*

As in the case of the single tetrahedroid, when a trope contains

a fundamental corner it cuts the three concurrent faces in lines

joining pairs of nodes. The corner is therefore a centre of per

spective for two triangles formed by the six nodes in the trope.

In the present case the two corners lie one on each of the common

edges of the two tetrahedra, and the line joining them lies in a

face of each and therefore joins two nodes. Hence in the case of

a double tetrahedroid every trope passes through two fundamental

corners which are collinear with two nodes, and a second trope

passes through the same two corners.

The arrangement of nodes on any
conic is prqjectively equivalent to

that shown in
fig. 8, and the funda

mental sextic n (k ks ) may be

linearly transformed into the form

Ak5 + Bk? + Ck. Corresponding to

the arbitrary numbering of the

figure the two tetrahedra are

(14, 25, 36) and (12, 36, 45) having
the edges (36) common, and the triangles 153, 246 are in two-fold

perspective, and so also are the triangles 156, 243. By an

imaginary projection we may take 3 and 6 to be the circular

points at infinity and then 24 and 15 become diameters.

Triple tetrahedroid.

Each trope passes through three fundamental corners. If

these are collinear, it is sufficient to make the trope pass through
a corner of each of two desmic tetrahedra, for example (0, 0, 0, 1)

and (1, 1, 1, 1) so that

= and a + /3-7=0.
Then the equation of the surface is

*
Rohn, Leipziger Berichte (1884), xxxvi, 10.
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The collinearity of the three centres of perspective shows that

they are the three points on a Pascal line.

Projecting them to infinity and the conic

into a circle we have fig. 9, and the

fundamental sextic may be taken to be

of the form Ak6 + Bk* -4- G. The tetrahedra

corresponding to the figure are (12 ; 36, 45),

(34, 25, 16), (56, 14, 23), of the same

d.esmic system and the triangles 135, 246

are in threefold perspective.
FIG. 9.

Quadruple tetrahedroid.

Any three corners which are not collinear are necessarily

coplanar with a fourth, for of any three tetrahedra two belong

to a desmic system or else all three have two common edges.

Start with one tetrahedron (14, 25, 36) and

take two others each having two edges in

common with it, for example (12, 36, 45)

and (23, 14, 56); these two belong to a

desmic system of which the third member
is (34, 16, 25). It is sufficiently general
to take the three corners to be

(0,0,0,1), (0,1, -1,0), (1,0, -1,0),

and then 8 = 0, a = ft
=

7,

and the equation is

The figure of coplanar nodes is projected into a regular hexagon
and the triangles 135, 246 formed by alternate corners are in

fourfold perspective. The fundamental sextic when linearly trans

formed into its simplest form is k6 + 1.

Sextuple tetrahedroid*.

It can be shown that the case of only five coplanar corners

does not arise, but that there exist planes passing through six

corners, and that the tetrahedra to which they belong are a set

having pairs of edges in common with the same tetrahedron. For

example the plane

*
Segre, Leipziger Berichte (1884), xxxvi, 132.
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contains the corners

(*, 0, 0, 1), (0, 1, -1, 0), (0, 1, 0, -1), (i, 0, 1, 0), (0, 0, 1, -1), (i, 1, 0, 0)

of the tetrahedra

(12, 35, 46), (12, 36, 45), (34, 16, 25), (34, 15, 26), (56, 14, 23), (56, 13, 24),

so we take a = i, /3
= y=B = l. Then the equation of the

surface is

a?
4 + 7/

4 + z* + tf + kixyzt = 0.

The nodes in the trope ix + y + z + t = are

and if they are denoted by 1, 2, 3, 4, 5, 6 respectively, the names

of the tetrahedra show the six ways in which the lines joining
them are concurrent. The six corners lie by threes on four lines

and the corresponding tetrahedra belong to four desmic systems.

The pairs of nodes 12, 34, 56 lie on the three diagonals of this

quadrilateral.

By replacing ix by x we obtain a real equation

representing a surface with four real nodes. The canonical form

of the fundamental sextic is k (k
4 -

1), and six coplanar nodes

may be projected into the corners of a square together with

the circular points at infinity.

The whole configuration of nodes is projected from a corner of reference

into sixteen points lying by fours on twelve lines *.

58. BATTAGLINI S HARMONIC COMPLEX.

The tetrahedroid is a special form of Rummer s surface due to

the fact that the six coefficients in the quadratic complex

=

belong to an involution f. If the fundamental tetrahedron to

which the surface is specially related is (12, 34, 56) the condition

for involution is

= 0.

*
Kantor, American Journal, xix, 86.

f Sturm, Liniengeometrie, in, 328; Battaglini, Giornale di Matematiche, vi and

vii
; Schur, Mathematische Annalen, xxi, 515.
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By ma.king a suitable linear transformation of the ks , thereby

producing another complex of the same cosingular family, we may
arrange that

&! + k2
= 0, ks 4 k4

= 0, ks + k6
= 0,

so that the complex has the form

k, (x*
-
x*) 4- k& (x*

-
x?) 4- k, (x? - x*) = 0,

or, in Pllicker s coordinates,

b (pj + ^23
2

) + ks (pj + ju3i
2

) + k5 (p34
2 + p^) = 0,

and is distinguished, in this notation, by the absence of product
terms.

This complex consists of all the lines cutting two quadrics

harmonically, for, using point coordinates x1} xz ,
xs ,

a?4 ,
and taking

the quadrics to be

a^2 + a2#2
2
4- 3^3

2 + ^4^4
2 = 0,

&!#!* + 62 ^2
2
4- ?-&amp;gt;3^3

2
4- &4^4

2 =
0,

the condition for a line (p) to cut them in two pairs of harmonically

conjugate points is

2(ar bs + asbr) pr8
*= 0,

and by a slight change of coordinates this can be reduced to the

preceding form.

Since the line equation of the quadric

is 2 (ar 4- \br) (as + \bs) pri? = 0,

it follows that two quadrics of the pencil obtained by varying X

touch any given line. If their parameters are X and A/ and the

line is a ray, the equation of the complex expresses the condition

X + X = 0.

Singular rays belong to the tetrahedral complex

S (a 1 a4 62 63 + e&aag&A) ^14^23
= 0,

and it is easily proved that when this condition is satisfied, all the

polar lines of (p) with respect to the pencil of quadrics intersect

and generate a cone of rays of this tetrahedral complex. The two

polar lines of a singular ray (p) with respect to the two quadrics
which touch it pass through the points of contact and lie in the

tangent planes, which must coincide since the two polar lines

intersect. Hence the congruence of singular rays consists of all

the generators of the developables circumscribing the pairs of

quadrics
2as#g

2 4 \2bsxs
2 =

for different values of X.
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When the complex is given, there is an infinite number of

pairs of quadrics that may be used to define it. Let the complex
be written

2A rspri? = 0,

where A rs
= ar bs + asbr .

Let A = aia2asa4 ,

then = asa4A lz 4-

and A 34 (a^)2

(a^) 4 ^i2A = 0.

Write 4A = cr
2
,
then

Similarly 2J. 12a3a4
=

(1
- Vl - o-A 12Au)

and so on, giving the ratios of the as in terms of an arbitrary

parameter a. When they are found, the bs are uniquely
determined.

The quartic intersection of the quadrics A, 2as#s
2 = 0, and

B, 2&g#
2 =

0, lies on the singular surface, for the complex cone

at any point of it breaks up into the two tangent planes. Again
the intersection of A and the reciprocal of A with respect to B
lies on the singular surface, for the polar plane of any point of it

with respect to B cuts A in two straight lines and the complex
cone consists of the planes through them. The quadric surface

0, Scs^v
2 = 0, where

cs = as + /Jibs*/as ,

passes through this second quartic for all values of
yit,

and one

value of
yu,

exists for which C is one of a pair of quadrics which

can define the complex. If = b-^b^b^ b4^as/bs this value of
fj,

is

/&amp;lt;H)

and we find

_ ^.12^13^14 ,

a,

(

TiA
whence 2^134^ = 2J. 12a3 a4

say, and 2J. 12 c3 c4
= &quot;

(1 + Vl a-A^A^),

so that C corresponds to the same value of the parameter o- but to

a different arrangement of the signs of the radicals.

In a similar way the quadric D, ^.ds xs
2 = 0, where

ck = &! + V/&i = A l2A l3Au/bl} etc.

cuts B in a quartic curve lying on the singular surface.
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The harmonic complex can be denned in a reciprocal manner

as the assemblage of lines from which the tangent planes to two

quadrics form two harmonically conjugate pairs. Taking the twa

tangential equations to be

the complex is

On putting as
= cs

~l

, /38
= ds

~l this becomes the same as before :

accordingly the quadrics C and D can be used to define the

complex tangentially.

The harmonic complex includes among its rays all the generators of

the quadrics in terms of which it is denned : and conversely if a quadratic

complex contains both sets of generators of a quadric it must be

harmonic..

The complexes 2J. 12p12
2
=0, 2.4 34

~ 1

jt912
2= 0, have the same singular surface,

and are the only harmonic complexes in the cosingular family.

The series of surfaces 2a8)n^8
2= 0, 2&gjU .r8

2=
0, where, for every n,

a
s, n + l

=
&8, na l, n 2, na3, n 4, n ^s, n/, n+ (

2
S&amp;gt; /&, n)

6
lf n 62 , n &3, n ^4, n 2 s, n/^, n

Ok= ^,n +-r^n 5 say,
8,n

terminates after six members if

4 2 A 2 i A 2 A 2_i_ J 2 A 2
^14 yl

23 +^24 ^31 +^34 ^12
&amp;lt;

2lA 2iA 3l
A

3^A l2
~2A3iA l2

AuA 23
- 2AuA 2sA 24A 3l

= 0.

Express this result in terms of the invariants of the first two surfaces.

A common tangent plane of the two quadrics S
l

\S2
= is a singular

plane of the complex of lines cutting ^= 0, $2
= harmonically. The singular

ray joins the points of contact, and cuts the singular surface on S
l -{-/j.S2

=
&amp;gt;

if S
i -fj.S.2

= Q is the third surface of the pencil which touches the plane.

The singular surface of the complex 2^1 12p 12
2= is generated by the inter

section of the surfaces

where X and p are connected by a certain homographic relation.

n.
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59. LIMITING FORMS.

[CH. IX

When one node lies on a fundamental quadric the quartic

degenerates into that quadric, repeated ; for, since the quadric
is invariant for the group of linear transformations which derive

the nodes from any one of them, in this case all the nodes and

therefore all the singular conies lie on a surface of the second

order. This also follows easily from the equation of the surface,

(cf. p. 35), for when a = the rationalised form reduces to

Since the polar plane of a node is a trope containing six other

nodes, here each trope is a tangent plane to the quadric and con

tains seven nodes, the additional one being at the point of contact.

Hence the nodes are at the intersections of four generators of one

system with four of the other system.
When one node is very near the fundamental quadric, the

whole quartic surface lies near the quadric, and consists of thin

pieces joined together at the nodes. We may suppose the quartic

to be derived from the quadric by each point of the latter separ

ating into two, which may be real and distinct, or conjugate

imaginaries. It is evident that the tropes touch the thin pieces

of surface near their edges, just as, in two dimensions, a bitangent
touches a thin branch of a curve near the points where it is folded

on itself. If we regard the points of the quartic as determined by
one node and varying continuously with it, we may distinguish, on

the quadric, regions of points which are just going to separate into

real and into imaginary pairs of points of the quartic ;
these regions

are bounded by the singular conies, and so we have the figure

Q

FIG. 11.
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in which either the shaded or the unshaded portions may be

considered as the real surface. By regarding the generators as

closed curves we see that the surface consists of eight four-

cornered pieces, and that each of four A, B, (7, D is attached to

each of the other four P, Q, R, 8 at one node.

The general Kummer surface can be obtained from a degenerate
surface of this kind by a continuous variation of its points, without

passing through any other degenerate form
;
for the nodes can be

varied so as to avoid the edges of the fundamental tetrahedra.

For this reason the limiting form has an important bearing on the

topology of the general surface. In particular, the incidences of

nodes and tropes remain the same during the variation, except
that in the limiting form there is an extra node in each trope,

namely the point of contact. Hence the preceding figure, which is

an actual representation of the limiting surface, is also an incidence

diagram for the general surface*. Conversely, the rows and

columns of the diagram of incidences can be regarded as generators
of a quadric which is a limiting form of Rummer s surface.

Let the fundamental quadric be (135, 246) ;
the directrices

(13) (35) (51) are generators of one system and (24) (46) (62) are

generators of the other system. One node, 0, may be taken arbi

trarily on the surface; then the two generators through together
with their harmonic conjugates with respect to the pairs of direc

trices are the eight generators whose intersections give the nodes.

If the harmonic conjugates are named after the directrices, and if

the intersection of 13 and 24 is called 56, and so on, we have, as

on p. 17, the incidence diagram

46 62 24

35 12 14 16

51 32 34 36

13 52 54 56.

*
Rohn, Math. Ann. xv, 339; Klein, Evamton Lectures (1893), p. 29.

72



CHAPTER X.

THE WAVE SURFACE.

60. DEFINITION OF THE SURFACE.

The Wave surface is a special form of the Tetrahedroid, and the

latter is derived by a general linear transformation from the former,

so that the two surfaces have the same projective features. In

addition, the Wave surface possesses metrical properties of great

interest, and is probably the best known example of Rummer s

surface on account of its connection with the physical world*.

The specialisation is that the tetrahedron whose faces contain

the nodes by fours is a rectangular frame of reference, one face

being the plane at infinity and one of the conies in that face being
the imaginary circle at infinity. From this it follows that one of

the two conies in each of the other faces is a circle.

The details of the transformation from the general Tetrahedroid

are given on p. 91 and the equation of the Wave surface is obtained

in the form

O2 + f + z2

) (a?a? + fry
2

- a2

(b
2 + c

2
)
0? - tf (c

2 + a2

) y
2 - c

2

(a
2 + &2

) z2 + a2b2
c
2 = 0,

which is equivalent to

where r2 = #2
4- y

z + z*.

It is convenient to take this equation as a starting point and

to deduce properties of the surface from it. If r is regarded as a

constant, the equation represents the cone which is reciprocal to

the cone

Fresnel, (Euvres Completes, n, 261 ; Preston, Theory of Light, p. 260.
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passing through the intersection of the sphere

a? + y* + 2* rz

and the ellipsoid ar^ot? + 6~2
?/

2 + c~2^2 = 1 .

Hence points on the Wave surface are obtained by taking any
central section of the ellipsoid and measuring lengths equal to the

semi-axes along the perpendicular at the centre, in both directions.

If we suppose that a &amp;gt; b &amp;gt; c, all the points of the surface are at

finite distances from the origin varying from c to a.

61. APSIDAL SURFACES.

Let Q be any point of a surface S and let OM be the per

pendicular from any point on the tangent plane at Q. Draw

QT and OR at right angles to the plane QOM-, then Q is an apse

/Q

FIG. 12.

of the section by the plane ROQ with respect to the point 0, for

the tangent line QT is perpendicular to OQ. If OQ is erected

perpendicular to ROQ and of length equal to the apsidal radius

OQ, the locus of Q is called the apsidal surface S .

A sphere with centre and radius OQ cuts 8 in a curve to

which QT is the tangent at Q ;
this curve is projected from by a

cone having ROQ for a tangent plane. Hence as OQ describes

this cone, OQ describes the reciprocal cone which cuts the sphere
in a curve lying on the apsidal surface S . We thus have a

method of generating $ by means of spherical curves corre

sponding to spherical sections of S, and the relation between the

surfaces is mutual. From this it follows that Q is an apse of

the section of S by Q OR, and hence the tangent plane at Q is

perpendicular to Q
f

OQ.
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The apsidal surface S may also be regarded as the focal surface

of a congruence of circles having a common centre 0; for the circle

whose axis and radius is OQ touches S at Q
f

. Corresponding to a

point of S near Q in the plane QOQ there is a circle touching 8
near Q . From this it is easily seen that the tangent plane at Q
is obtained by rotating the tangent plane at Q through a right

angle about OR.

The fact that the relation between the tangent planes is

independent of the curvatures shows that each of two apsidal

surfaces is derived from the other by a contact transformation*.
This may easily be verified from the equations which define Q

x z
4- y

2 + z* = x* + 2/

2
-+

2
,

x x + y y + z z = 0,

(y z - yz }^ + (z x - zx ) ^
-

(x y
-
xy )

= 0.

The perpendicular from Q on OM is of length OM ;
whence it

follows that the apsidal of the tangent plane MQT is a cylinder

whose axis is OM and radius OM, touching 8 at Q .

The relation between two apsidal surfaces is unaltered by

reciprocation. In
fig. 12, Om .OQ = Oq. OM= Om. OQ = Oq . OM ,

and Om is the perpendicular on the tangent plane at the point q

on the reciprocal surface
;

it is evident that the triangle qOm may
be displaced into the position q Omf by rotation through a right

angle in its plane.

S C2. SINGULARITIES OF THE WAVE SURFACE.
o

Since the Wave surface is the apsidal of an ellipsoid with

respect to its centre, many of its properties may be deduced in an

elementary manner from those of the ellipsoid. In
fig. 12, Q and

R are apses of a central section and the perpendicular at meets

the wave surface at points Q and R such that OQ OQ and

OR = OR, and at the images of these points in 0. As the plane

QOR varies, the points Q and R describe different sheets which

meet only when OQ= OR, that is, when the central section of the

ellipsoid is a circle. In this case every point on the section is an

apse and there are an infinite number of tangent planes at Q

*
Lie-Scheffers, Beruhrungstransformationen.
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which is therefore a node. Hence the two sheets are connected at

four nodes lying on the perpendiculars to the circular sections of

the ellipsoid : their coordinates are

c (a
a _

tf)t (tf
_

&amp;lt;*y-* t 0, a (V
- c^ (a

2 -

Reciprocally, the curve of contact with the ellipsoid of a cir

cumscribing circular cylinder gives on the apsidal surface a curve

at every point of which the tangent plane is the same.

The reciprocal singularities may be obtained by considering
the reciprocal ellipsoid ;

and we infer that there are four real tropes

(a
2 - 62

)* as (b
2 - c

2

)* z = b(a
2 - c

2

)i

It is easy to verify that the curves of contact are circles.

The section by the plane as = consists of the two conies

(f + z2 - a2

) (fry + c
2^2 - 62

c
2

)
= 0,

namely a circle of radius a surrounding an ellipse of semi-axes

b and c. The section by y = Q is

O2 + x2 - fr
2

) (c
2 2 + a2 ^2 - c

2a2

)
= 0,

a circle of radius b and an ellipse, intersecting in the four nodes.

The section by z = is

O2 + ?/
2 - c

2

) (a
2^2 + fry

- a2 62

)
= 0,

a circle of radius c surrounded by an ellipse ;
and lastly, the plane

at infinity cuts the surface in the two imaginary conies

O2 + if + 2

) (
2#2 + &y + c

2^2
)
= o.

The symmetry with respect to the planes of reference is evident

from the fact that only squares of the coordinates occur in the

equation. By drawing quadrants of the preceding conies, an idea

of the shape of the surface may be obtained. Fig. 13 shows one
node and the trace of one trope.

The shape may be more completely realised by tracing the

series of sphero-conics cut out by concentric spheres. The pro

jection of the intersection with a sphere of radius r upon the

plane z = is

a2 -c2 & - c2

which is a hyperbola for the outer sheet (a &amp;gt; r &amp;gt; b), and an ellipse
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for the inner sheet
(b&amp;gt;r&amp;gt;c). Again, projecting on the plane

y = we get the family of ellipses

a2 -r2 r2 -tf

having for envelope the four lines

FIG. 13.

63. PARAMETRIC REPRESENTATION.

It is convenient* to replace a2

by a, 62

by b, and c
2

by c. Let

P, (f, rj, f),
be the end of the diameter of the ellipsoid conjugate to

QOR (p. 101), then if OQ 2 = X and OR2 =
/j,,\ and //,

are the para
meters of the confocals through P and we have

(a
-

b) (a
-

c)
2 = a (a

-
\) (a

-
/*),

(b -c)(b-a)^ = b(b- X) (b
-

n),

(c a) (c b) f
2 = c (c X) (c //,).

If P, ^u ^2 are the central perpendiculars on the tangent planes
-at P to the ellipsoid and the two confocals,

= abc,

= (a
-

/*) (6
-

IL) (c
- /4

Darboux, Comptes Rendus, xcvn, 1039; Cayley, xin, 238.
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The point Q of the wave surface is obtained by measuring a

length X* in the direction

p%/a, prj/b, p/c,

and is therefore given by

(a b)(a c) sc- = bcpr
1

(a \)(a //,),

(b -c)(b- a) f = cap
1

(b -\)(b- /A),

(c
-

a) (c
-

b)
2 = abfjr

1

(c
-

\) (c
-

/*),

expressing the coordinates of any point in terms of two parameters
X and

//,. Conversely the parameters are expressed in terms of the

coordinates by
x* + f + 2 = X,

a&2 + by
2 + cz2 = abcjjr

1
.

In order to express oc, y and z as uniform functions we must

replace X and /* by elliptic functions of new parameters p and q*.
For the outer sheet

so we take

then x = b* sn (p, k) dn (q, kj,

y = a* en (p, k) en (q, k^,

z = c$ dn (p, k) sn (q, k^).

For the inner sheet

a&amp;gt;fjb&amp;gt;b&amp;gt;\&amp;gt;c,

and so, in order to have real parameters p , q ,
we define the elliptic

functions by
, , b c , , T , x \ c
k 2 =

, sn- ( , k )
=

T

a c b c

and then

# = c* dn (p, k ) sn (^ , &/),

y = c^ en (/, ^) en (5 , A?/),

z = b*su (p, k ) dn (5 , A-/).

*
Appell et Lacour, Fonctions Elliptiques, p. 167; Weber, Vierteljahrsschrift der

Naturf. Ges. in Zurich (1896), XLI, 82.
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64. TANGENT PLANES.

Let ON2 = v so that v* is the central perpendicular on the

tangent plane to the Wave surface at (x, y, z). Now the tangent
plane at Q is parallel to POR and the plane QOR is parallel to the

tangent plane at P, whence by similar triangles

(X
- v)/v

= QM*/OM* = p*jp\

or abcv-l

fjr
l

(X
-

v) (X
-

//,)
= (a

-
X) (b

-
X) (c

-
X),

giving v in terms of the parameters X and
yit.

The direction cosines of OQ are those of the normal at P to the

confocal X, namely

hence the direction cosines of OM are

v^p1 g/a (a
-

X), v^p^/b (b
-

X), ^X^ f/c (c
-

X).

Those of OR are

and since OJf is at right angles to OR and OM, its direction

cosines are

or
- 6 + Cfi + 6c)

6c (X yLt)

The equation of the tangent plane is taken to be

Ix + my + nz= 1,

and then P + m2 + ri* = v~l

,

and bc-\l = x Xz - -

- c + CLJJL + ca),

a6
(/it
-

X) ?i = ^ (X/A
- a + 6/z + ab),

giving the coordinates of any tangent plane in terms of X and /a.

The tangent plane may also be determined indirectly as follows.

The intercept on the normal at any point Q of an ellipsoid between

Q and the plane of symmetry perpendicular to the axis OA is

OA 2

/OM. After rotation through a right angle about OR we have

fig. 14 in which OG is the projection of the axis OA upon the

plane Q OM and Q G is the normal at Q to the Wave surface, and

GQ .OM =OA\
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Complete the parallelogram OQ GH: then the circle on Q H
as diameter passes through M and has its centre on OG and cuts

Q

FIG. 14.

Thisthe plane x = at the ends of a chord perpendicular to OG.

chord is bisected at and of length 2 (M O . OH)? = 204.

Hence the sphere through the circular section in the plane

x = and any point of the Wave surface passes also through the

projection of the centre on the tangent plane. Similarly two other

spheres pass through the same two points and the circles in the

other planes of reference. This theorem* gives a method of con

structing the tangent plane at any point and the point of contact

of a given plane.

If the equation of the tangent plane is

Ix + my 4- nz = 1

and v? is the length of the central perpendicular, the foot is

(Iv, mv, nv). Hence the equation of the first of the three

spheres is

Iv (a? -f 2/

2
-I- z2

a) = (v
-

a) x,

and this gives the relation between tangent plane and point of

contact in the form

Iv x mv y
v-b~&quot;\^

nv

\ a vb A 6 v c A, c

from which the expressions for I, m, n in terms of A, and
//, may be

deduced by means of the formulae already obtained. On substi

tution for x, y, z in the tangent plane, the tangential equation of

the surface is obtained in the form

13 m* n*

v a vb vc
Niven, Quarterly Journal (1868), ix, 22.
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Let the second root of this equation, regarded as a quadratic in

v, be u
t
then ifi is the central perpendicular on the parallel tangent

plane and we have

(a -b)(a- c) l* = (a- u) (a
-

v) v~\

(b -c)(b- a) m2 = (b- u) (b
-

v) v~
l

,

(c a) (c b)n
2 =

(c u) (c v) v~l

,

u = bcl2 + cam2 + abn2
.

65. THE FOUR PARAMETERS.

The complete theory of the Wave surface depends on the

employment of four parameters X, /*, u, v connected by two

independent relations. The fact that two apsidal surfaces remain

apsidal after reciprocation shows that from any formula we may
obtain another by replacing

by / m n or1 b~* c~ l v~l u~l

/n~
l \~l

respectively. We have already proved that

abcv~l

pr
l

(X v) (X
-

//,)
= (a

-
X) (b

-
X) (c

-
X),

whence we deduce

v (v X) (v u) = (v a) (v b) (v c),

and from these

(0
-

a) (6
-

b) (0
-

c) + abcv-1^ (6
-

v) (6
-

/*)
= 6 (6

-
X) (6 - u)

for all values of 6. By giving special values, other, but not

independent, results can be obtained, in particular

(fji a) (IJL
-

b) (fM c)
=

fju (fjL X) (p u),

and (u a) (u b) (u c)
= abcv~l

jjr
l

(u v) (u p),

and bcv~i

fji~
l

(a v) (a /A) (a X) (a u).

Further, the differentials of the four parameters are connected by
the two relations included in

abcv~^ijL~
2

{v (0 v) d/ui + //, (0 JJL) dv] (0 u) d\ + (0 X) du.

Notice how X and u play symmetrical parts in these formulae,

as also do ^ and v. For the inner sheet

7
^ A6

b&amp;gt; &amp;gt; c, a&amp;gt;^
&amp;gt;b;

v u

and for the outer sheet

it

a&amp;gt;\&amp;gt;b, b&amp;gt;
&amp;gt;c,

a&amp;gt;v&amp;gt; ac/(a + c b).u ^
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66. CURVATURE.

Let L, Mj N be the direction cosines of the normal at (a, y, z\
then a principal radius and direction of curvature are given by

dx dy dz= = = =

Now from the formulae already obtained

= xdx + ydy + zdz,

= axdx + bydy 4- czdz
y

v? Lx + My + Nzt

= Ldx + Mdy + Ndz,

since the direction of curvature is in the tangent plane, whence by
differentiation

^v~^dv = xdL + ydM + zdN.

It remains only to express ^axdL in terms of the four para
meters. Now

(a 6) (a
-

c) Z2 = (a u) (a v),

2dL du dv
whence f =

1 .

L u a v a

Again it is easily proved that

(a b)(a c) Lx = v% (a X) (a u) = bcfj,~
l v~* (a ^) (a v).

Hence 2%ascdL = 2Sa (Las) dL/L
\ a.u a du

a b.a c u a

be a a.v a dv

TT
Hence* p ,

dv V*du

giving the differential equation of the lines of curvature in the

form

VfjL
2d\du = abcd/judv.

When expressed in terms of X and v only this takes the form

X - a \ - b X - c \\ , ,

. H---r + - ---- d\dv
v a v b v c v/

(v a) (v b) (v c)

=

* The first expression for p is the analogue of the formula rdrjdp for plane
curves.
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and since the first equation is symmetrical in X and u, it follows

that X may be replaced by u in the last equation. The equation

giving the radii of curvature is obtained by substituting

d\/dv = v*p.

The coefficients have geometrical interpretations, for if JVj is the

intercept on the normal by the plane x = 0,

JVj = xjlv?
= v* (X

-
a)/(v

-
a).

Hence p
2 -

(N, +N2 +NS
-

Xtr*) p + N.N.N.v^ = 0.

If /(X) = (X-a)(X-6)(X-c),

/ (X)// (X) = (X
-

a)-* + (X
-

b)-
1 + (X

-
c)-\

the differential equation of lines of curvature can be written in

the form

d\* - {(x
- v)f (v)/f(v) + 3 - \/v} d\dv + dv*f (\)/f(v)

= 0.

This has been integrated when f is quadratic but not when, as in

the general case, / is cubic*.

b c ca ab
showing that the intersections of the normal with the planes of reference

and perpendicular central plane form a range of constant cross ratio.

The line element is given by

AM dX2
,

alcd^
4:ds2= ---h -o, . .

A V fJ^(ufJi)

67. ASYMPTOTIC LINES.

The differential equation of asymptotic lines is

dxdl + dydm + dzdn = 0,

d\ adp / du dv^A, / \ ap \ / u v \
or zlx r--1

-.
--

-,) (- --i--- = 0;
\X a u(fji a)J \u a v aj

, ,
7 (X

-
a) (u a) be (^ -a)(v- a)

further Ix =
;
--^--(

= \- ^--(
.

(a b)(a c) pv (a o)(a c)

The coefficients of d\du and dfidv are 0, and the equation

reduces to

jjb(^-u) d\dv + v (v X) dfidu = 0.

This equation is unaltered if X, /^, u, v are replaced by

tr1

, u~\ /A-
1

,
X&quot;

1
,

respectively, illustrating the fact that asymptotic lines are re

ciprocated into asymptotic lines.

*
Darboux, Comptes Eendus, xcn, 446; xcvn, 1133.
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When expressed in terms of u and X only, this equation takes

the form_du?__ __dX2_
(u -a)(u- b) (u- c)

~
(X
-

a) (\
-

b) (X
-

c)

To integrate we use the theorem that if three points (x-^y-^), (x2y2),

(#3y3 ),
of the curve

are collinear, then

^i/2/i + dactlyt + cfo?3/y3
= 0.

Hence the equation

=

expresses that the points (u, /(u)) and (X, /(X)) are collinear

with a fixed point (XyO on the curve. If the equation of their

line is

y = mx + n,

then

(x a) (x b) (x c) (mx + rif = (x x^} (x u) (x X) ;

and (ma + n)
2 = (xl -a) (a- u) (a

-
X).

The required integral is obtained by eliminating m and n; a^ is

the constant of integration : instead of it we introduce

a = (b
-

c) (xl
-

a),

so that a + /3 + 7 = 0,

and then the integral is*

&quot;

/(6-
V 6-

This is the same as

*Jalx + *Jftmy + Vyrc^ = 0,

which, again, is the point-plane equation of a tetrahedral complex

(p. 69). The inference is that at each point of an asymptotic
curve the complex cone of a certain tetrahedral complex touches

the surface. By varying the constant of the complex all the

asymptotic lines are obtained.

In terms of
//,
and v the equation is

(a
-

fjL)(b- fj,) (c -~u)
~

(a
-

v) (b
-

v) (c-v)
*
Darboux, Theorie des Surfaces, i, 143.



112 THE WAVE SURFACE [CH. X

As in the general Kummer surface, the asymptotic curves have
an envelope consisting of the singular conies, and a cusp locus

which reduces to isolated nodes. Hence the elliptic and hyper
bolic regions of the Wave surface are separated by the circles of

contact of the four tropes and the four nodes. It is easy to see on

which side of these boundaries the curves lie and that the hyper
bolic regions consist of four detached portions, each bounded by
one circle and one node (fig. 13, p. 104). A complete asymptotic
curve consists of four branches, one in each portion, and each

branch touches the circle at one point and has a cusp at the node.

There are two elliptic regions, namely the entire inner sheet,

and the outer sheet bounded by the four circles.

68. PAINVIN S COMPLEX.

The quadratic complex of which the wave surface is the

singular surface is Painvin s complex* of lines through which

the tangent planes to a quadric are at right angles (cf. the

generation of the harmonic complex, p. 97, 58).

Let the quadric be

then the complex, with current line coordinates I, m, n, I
,
m

,
n

,
is

(/3 + 7) l
z + (7 + ) m2 + (a + ) n* = I

2 + m* + n\

The complex cone of rays through any point is the director

cone of the enveloping cone of tangents to the quadric : the latter

referred to its own axes has equation

x&amp;gt;j\
+ f//ji + z&amp;gt;\v

= 0,

where X, p, v are the parameters of the confocals through the

point. Hence the complex cone is

(fi + v) x* + (v + X) y
2 + (X + /A)

2 =

referred to its axes. For a singular point this must break into

two planes, which can happen only if

O + i;)(i/ + X) (X + p) = 0.

Now if (xt y, z) is the singular point, X, p, v are the roots of the

equation in X,

a-X -X 7-X
whence X + //, + v = a 4- $ 4- 7 - #2 -

y
2 - z*.

*
Painvin, Nouvelles Annales (1872), n, 49; Sturm, Liniengeometrie, in, 35.
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The condition for a singular point shows that X + ^ + v is a

root and hence the equation of the singular surface is

_

x2 + ?/
2 + & - 3 - 7 a? + y

1 + z* - 7 - a x* + y
2 + z- - a -

In order to make this agree with the former notation for the wave

surface we must put

a = P + 7, 6 = 7 + a, c = a + {3.

Thus we find that the wave surface may be generated by lines

of curvature on confocal quadrics, being the intersections of con-

focals whose parameters are equal and opposite. Taking X + v =
we have the parametric expression of the wave surface in the form

(7
-

a) (7
-

13) z* = (7
* - X2

) (7
-

p).

It is easy to see that the curves
//,
= const., X = const., are the same

as those which in the former notation were X = const., /it
= const.

The singular line at a singular point is the line of intersection

of the two singular planes

(//-
-
X) x

1 + (X + JJL)
z 1 =

referred to the three normals to confocals. Hence it is the normal

to the confocal /a and tangent to the line X = const.

These two planes touch a sphere whose centre is at the origin and whose

radius is independent of /**.

Having considered the rays through any point we next consider

the rays lying in any plane TT. Let any ray cut the section of the

director sphere by TT in P and Q. Then the planes through P and

Q perpendicular to PQ must touch the ellipsoid. It is easy to

deduce from this that PQ touches a conic confocal with the pro

jection of the ellipsoid on the plane TT.

Hence as a plane moves parallel to itself the complex curves

are confocal conies. It is a singular plane when it touches the

wave surface and then the rays in it pass through the foci. When
the plane touches the outer sheet it contains one real ray, the

minor axis, which is singular. When the plane touches the inner

sheet the major axis is the singular ray and cuts the outer sheet

at the foci.

*
Boklen, Zeitschrift fur Math, xxvn, 160.

H. 8
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Prove that the plane joining PQ to the pole of TT touches a confocal whose

parameter is minus that of the confocal touched by IT.

The quadratic complex being
2
1
2+ b2m2 + c2n2=

I&quot;

2+m 2+ n&quot;

2

we see that the fundamental complexes are given by

ia?x2
= al- il j $x4

= bm im j &amp;lt;^X
Q
=- en - in }

and are pairs of conjugate imaginaries. The coefficients k8 in the complex are

also conjugate in pairs if we take

k\
=

2
=

ia, 3
= &4= 16, k

b
=

6
= ic.

The coordinates of any tangent line of the Wave surface are given (p. 58) by

p.*V
2-

(ks
~ X

)
2
(*.

-
MI) (^ - /*)// (^)

where ^ t
and

/z.2
are the parameters of the asymptotic lines through the point

of contact
;
this gives

p (al+ il
}
=

(ia
-
X) V(P-ca)(u- A

i1)(a-/5
etc.

From the relations connecting line coordinates (I, m, n, I
,
m

,
n } with

point coordinates, it is easy to deduce

2 (a
2 - v2

) (6
2 - c2

) (a
2+^ (a

2 + /z 2
2
)*+ (6

2 - c2
) (c

2 - a2
) (a

2 - 62
)
=

and *1P+-l)(-ty(+*rf(*+if
where j/

2=^2+y2+ 2
,

giving the connection between X, /z, /z^ /n2
.

It is easy to verify them as integrals of the equation of asymptotic lines.



CHAPTER XL

REALITY AND TOPOLOGY.

69. REALITY OF THE COMPLEXES.

In this chapter we examine and distinguish the different kinds

of Kummer s surface which have sixteen distinct nodes and are

given by real equations, the surface itself not being necessarily
real*. We are not here concerned with degenerate cases in which

the nodes coincide f.

The equation is completely determined by six apolar com

plexes and one arbitrary node. Since the equation is to be real,

all imaginaries must occur in pairs and the primary classification

is according to the number of complexes which are real. We
arrange them in three pairs 12, 34, 56 and consider in turn the

cases when three, two, one, or none of these pairs are real. In

all cases three congruences are real and their directrices form a

real fundamental tetrahedron 12 . 34 . 56 which will be taken for

reference. Then by taking suitable real multiples of the point
coordinates it can be arranged that in the four cases respectively

X1
= =- -

Xi = pu - -pw , x., =p,+ -psl , x5 =pu - p12 ,

ix.2
=

i*pu + i-*p.2S ,
i%4

=p24c +psl , ixQ
=

p.^ + &amp;gt;12 ,

III
Xl= ~ = ~ ~ = ~

x = pu + -p31 , xs = 134 -f

x^ = - -t = * - ~* = *

ix,

*
Eohn, Math. Ann. XYIII, 99, may be consulted for a more detailed account.

t See an exhaustive paper by Weiler, Math. Ann. vn, 145.

82
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so that in all cases S#s
2 =

4t2pup.x = 0. When the multiples of

the point coordinates are not restricted to be real, all the cases can

be reduced to the first by the substitutions

T w vi *&amp;gt; f
-L.

I//, U) &y V)nv Vi ?/ i % ? i
it/,

fc- (I
}

6 J Z
} i,

III. ix, $y, $z, t,

IV. x, y, z
t

it.

The following table shows which of the directrices, tetrahedra,

and quadrics are real in the four cases.

The surface is the singular surface of a family of quadratic

complexes

(k,
- X)~W + (fe

- X)~W + (k,
-
X)-

1^2 + (k.
-
X)-

1^2

+ (k,
- X)-X2 + (k9

- X)-W = 0;

it is not necessary that this complex should be real for even one

value of X, but only that the conjugate imaginary complex should

be included in the family, for then the singular surface, having the

same relation to two conjugate imaginary complexes, must have a

real equation.

Let
fji
be the parameter of the latter complex, then by means

of the relation S# 2 = the equations of the two complexes can be

written&quot;

ILLVg -
i v^

^ x&quot; = and 2i s
Ks X Kg

Since the singular surface is unaltered when the same linear

transformation is performed on all the kS) we shall replace

by ks ,
and then a sufficient condition that the equation of the

singular surface may be real is that the complexes

^ksx^ = 0, 2A?rW =
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be conjugate imaginaries. Put ks
= rfd**j then in case I we must

have

rs e-* = prs

-l e~ ie

(s
= 1, 2, 3, 4, 5, 6)

where p is a factor of proportionality, whence

,*. 2 ^.2 2 *, 2 A-. 2 v, 2
.-,

FI r2 r3 / 4 / 5 rj p,

showing that
/o

is real and positive, and that the points repre

senting kg in the plane of the complex variable reie lie on a circle.

In case II OL\ and x.2 are conjugate and we must have

rse-
ie

* = prs

-
l e~ie

s (s
= 3, 4, 5, 6)

whence i\r2
= r/ = r r5

2 = ?*6
2 = p

and ^ = #2,

showing that the points kjc2 are inverse with respect to the circle

on which ksk4k5 k& lie.

Similarly in case III

n2 = ?*2
2 = r3r4

= ry-6
=

p,

showing that ^3^4 and k5k6 are two pairs of inverse points with

respect to a circle on which 1c-Jcz lie. In these three cases p is

necessarily positive, but in case IV p may be either positive or

negative ;
if p is positive

01 02 , 03 = 04 , 05 = 06

and the six points ks form three pairs of inverse points ;
if p

negative

is

01 02 = 03 04
~

0.5
= 7T

and the point &2s-i is obtained from &M by an inversion followed by
a reflexion in the origin.

When p is positive it is convenient to effect a linear substitution

on the complex variable so as to transform the circle into the real

axis; then in cases I, II, III and the first subcase of IV the

coefficients ks may be taken to be either real or pairs of conjugate

imaginaries according to the reality of the corresponding com

plexes. In the second subcase of IV no further simplification is

possible.
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70. SIX REAL FUNDAMENTAL COMPLEXES.

The different kinds of surface included in case I are distin

guished by the order of magnitude of the six coefficients ks . These

quantities are the parameters of the six nodes on any singular

conic, and their order of magnitude determines the cyclical order

in which the nodes follow each other consecutively.

The order of klt k3 , fc, among themselves is immaterial, since a

permutation of odd suffixes is equivalent to the choice of a new

real fundamental tetrahedron of reference; similarly for &2 ,
&4 ,

&6 ,

so that the only permutations which are essentially distinct are

123456, 123465, 126453.

I a. Sixteen real nodes.

We begin by investigating the shape of the surface when

A*j &amp;gt; k2 &amp;gt; ks &amp;gt; &4 &amp;gt; k5
&amp;gt; AV

The pencil of tangents at any point (fi1) yu,2) of the surface is

given (p. 58) by

&amp;lt;/&quot; to*)
=

&amp;lt;&amp;gt; to-
-

/*i) to-
-

where

/ O) =
(fJL
- AO O - k2) (fJL

-
fe) (fl

- k4) (fJL
- k5

and c is a factor of proportionality.

For a real line w/ is alternately positive and negative and so

also is / (k8) for s = 1, 2, 3, 4, 5, 6 so that all the left sides have the

.same sign. Hence /^ and
//.2

are either conjugate imaginaries, or

are real and lie between the same two consecutive kg . In the

former case the inflexional tangents X = ^ and X =
//,2

are imaginary
and the point is elliptic ;

in the latter case the inflexional tangents
are real and the point is hyperbolic. The boundaries of elliptic

and hyperbolic regions are given by /^ = /x 2 ,
that is by the singular

conies and nodes. Now if (x) is a real line, so also all the lines

obtained from it by changing the signs of the coordinates are real;

since it is possible to have ^ =
yu,2

it follows that there are sixteen

real nodes and sixteen real tropes.

The region described by a point whose parameters ^ arid /x2

take all real values between kg and ks+l is a connected portion of

the surface bounded by two arcs of conies terminated by nodes

whose parameters on either of them are ks and ks+l (for the same

collineation which interchanges two nodes interchanges also the

two conies through them both). Each pair of consecutive coeffi

cients ks ,
kg+l gives eight hyperbolic segments and hence there are
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forty-eight in all
;
of the thirty-two points having the same para

meters
fjLl} /ji.2 ,

four lie on each of eight segments.
Consider the course of any one asymptotic curve /^

= const,

over one segment. It has a cusp at each node and touches each

conic once at points given by ^2 = ^1- The extreme values of /^,

give the points where the curve crosses the two principal asym
ptotic curves /m

= ks and
yu,
= ks+1 ;

at each of these points the

curve has an apparent inflexion because the tangent to it has four-

point contact with the surface. The figure shows two consecutive

nodes on two conies with the three points whose parameters are

ks , fji,
ks+l indicated on each of them. As ^ varies from ks to ks+l

the asymptotic curve
//, sweeps out the whole segment twice and

the two branches of the curve coincide in the case of the principal

asymptotic curves. The latter meet in a point which is on one of

the directrices of the congruence xs 0, # s+1
=

0, and is a point
where both inflexional tangents have four-point contact.

FIG. 15.

The elliptic region of the surface is given by

p l
=

fj, + ijjf, p z
= p ip,

fjb
and

//, being real, and the complete boundary by

// = 0,
- ce &amp;lt; /z &amp;lt; + oc .

For any value of /z the line given by

x^fW) = Vc (k,
-

p) (ks
-

X)

either lies in a trope or passes through a node, and as /z passes

through any one of the six values ks ,
one coordinate changes sign

and accordingly the line passes from one state to the other. Hence

as
fjb

takes all possible values the variable point of contact describes

three arcs of conies joining three nodes and forming the boundary
of an elliptic triangle ;

at the same time the points of contact of

the lines obtained from (x) by changing the signs of the coordinates

describe the boundaries of other elliptic triangles so that the

iiumber of them is thirty-two. The two nodes on each side of any
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one elliptic triangle are interchanged either by one of the col-

lineations 12, 34, 56 or else by one of 23, 45, 61. Hence the nodes

of the Gopel tetrad 0, 12, 34, 56 are the corners of a tetrahedral

portion of the surface (p. 22) having four elliptic triangles for faces

and six hyperbolic segments for edges. Each pair of opposite

hyperbolic segments is cut by an edge of the fundamental tetra

hedron 12 . 34 . 56 of which one corner is surrounded by the

tetrahedral piece. The remaining three tetrads of the group-set

containing 0, 12, 34, 56 give other tetrahedral pieces surrounding
the other three corners of the tetrahedron 12 . 34 . 56, and divided

into elliptic and hyperbolic regions in a similar way. Again, four

other tetrahedral pieces have for corners the Gopel tetrads of the

group-set containing 0, 23, 45, 61.

Thus the whole surface consists of eight pieces containing forty-

eight hyperbolic segments and thirty-two elliptic triangles ;
each

piece is attached at its nodes to each of four other pieces. This is

clearly shown in the frontispiece where thirteen nodes are actually

visible and portions of the conies joining them.

I b. Two hyperbolic sheets.

In this subcase the order of the ks is given by the inequalities

&! &amp;gt; &2 &amp;gt; &3 &amp;gt; &4 &amp;gt; &6 &amp;gt; &5 .

As before, thirty-two tangents are given by

&amp;lt;/&quot; (&,)
= c (ks

-
fr) (ks

-
/i.2) (lc,

-
X)

2

but now the signs of the left sides are +,+,+,+,,, when the

lines are real, so that /^ and
yu-.2

cannot be imaginary, and the

surface has everywhere negative curvature.

The real values ^ yu,2
must satisfy the inequalities implied by

the cyclical order

(Uj , KI, K2 ,
Ks ,

K4} [A 2 i fej, K5) fa

so that it is impossible to have ^ =
/*,, and all the nodes and tropes

are imaginary.
There are only four real principal asymptotic curves, namely

those whose parameters are k1} &4 ,
k6 ,

ks . As
yu,2

varies from /c, to A
(5

the corresponding asymptotic curve sweeps out a connected region
of the surface, which, since the envelope of asymptotic curves is

imaginary, must be a sheet without a boundary like a hyperboloid
of one sheet. Along any one curve /^ varies from k5 through in

finity to &u giving the intersections with another family of asym

ptotic curves covering the same sheet. By continuously varying
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yLtx
and

fji.2
it is possible to change the signs of all the coordinates

of a tangent line except x% and #3. Hence of thirty-two associated

points sixteen lie on one sheet, and we conclude that the whole

surface consists of two infinite hyperbolic sheets. These are cut in

real points by the directrices (14), (16), (54), (56) and the corre

sponding collineations transform each sheet into itself. The re

maining five real pairs of directrices do not meet the surface in real

points ;
and of the corresponding collineations, (12), (52), (43), (63)

change the sign of xzxz and hence interchange the sheets, while

(23) transforms each sheet into itself. Any ray of the congruence

(23) cuts each sheet in two points forming a harmonic range with

the points where the ray meets the directrices. Hence these direc

trices are separated by both sheets, just as a line is separated from

its polar with respect to a hyperboloid of one sheet which does not

cut it.

I c. Imaginary surface.

In the third subcase

&! &amp;gt; k2 &amp;gt; k
fi

&amp;gt; k4 &amp;gt; k5 &amp;gt; ks

and the signs of xs
2/ (k^) are +, +, , -f, +, ,

for s = 1, 2, 3, 4, 5, 6

respectively showing that ^ and ^2 must be separated by k$ and k$

and by no other of the ks ,
which is impossible. Hence the surface

has no real tangents and is therefore altogether imaginary.

71. EQUATIONS OF SURFACES I a, I 6, I C.

The equation of Kummer s surface with sixteen nodes (a, $,7,8)

etc. referred to a fundamental tetrahedron is (pp. 81, 82)

4 + V + A (&& + y
z

z-) + B (ft
3 + z2

x*)

+ C (zH* + tff) +Dxyzt = 0,

whe 9 A -

_

9 _ ry-

and I) - /37S (2
- 4) (2

- 5) (2
- C) (3

2 + a2 + /3
J + 7

2

)~
2

A 12 \^3 H~
&quot;&quot;4 *^5 ^e) ~J~ ^3^4 (f^5~\~f^e

&quot; I *^2/ ~T ^5 ^6 \^l i~ *^2 ^3 &quot;- 4/
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If a, ft, y, & are real, all the nodes are real, and we have the

equation I a. If any of the ratios a : ft : 7 : B are imaginary, all the

nodes are imaginary and the equation represents I b or I c. To
obtain I b we have simply to interchange k5 and k6 in the co

efficients, which has the effect of changing the signs of A, B and

D : accordingly the equation I b is

#4 + y
4 + 4 + t* - A

(x&amp;gt;t

2 + fsP)
- B (yH- + z&quot;x*}

+ C O2 V + #Y)
- Dxyzt = 0.

This can also be obtained from la either by replacing a, ff, 7, 8

by ioi, iff, 7, 8 respectively or by replacing x, y, z, t by ix, iy, z, t,

and it is then obvious that all the nodes are imaginary. The

equation I c can be obtained from I a by interchanging ks and k6)

and from I b by the real linear transformation which interchanges
#3 and x5 . But it is interesting to notice that the preceding

equation after the coefficients are expressed in terms of OL, ff, 7, B

is typical of both I b and I c according to the sign of 2 C. For to

every real point (x, y, z, t) on Ib correspond a pair of imaginary

points (ix, iy, z, t) and ( ix, iy, z
y t} on la lying on a real ray of

the congruence (56). Now certain rays of this congruence cut I a

in four real points (for example lines joining two nodes), and the

passage to imaginary intersections can take place only through

positions in which two coincide, that is, intersections of the surface

with the directrices (56). Now the line x = 0, y = cuts I a where

z* + V+ Cz-t~ =

and all the intersections are real if C&amp;lt; 2 and all are imaginary if

C &amp;gt; 2, so that these inequalities are necessary and sufficient to

distinguish I b and I c.

72. FOUR REAL AND TWO IMAGINARY COMPLEXES.

In case II &2 and kz are conjugate imaginaries and the shape

depends upon the cyclical order of ks ,
k4 ,

k-
,
k6 which may be of

two essentially different kinds, according as the odd suffixes are

separated by the even suffixes or not.

II a. Eight real nodes*.

Consider first the case when

* A figure of this surface is given in the Catalog mathematischer Modelle, Halle

(1903), p. 92, of Martin Schilling, from whom models of Kummer surfaces with

sixteen, eight, and four real nodes may be obtained.
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Any tangent line is given by

^f (h) = c (ks
-

to) (ks
-

to) (^ ~^
and for a real line x^f(k\) and a\?f (k^ are conjugate imaginaries

while, for s = 3, 4, 5, 6, x?f (k^ is positive. Hence ^ and /i2 may
be real or conjugate imaginaries ;

if real, they must lie between

the same pair of consecutive ks taken in cyclical order. The

hyperbolic segments are of the same nature as in la, but their

number is only thirty-two and there are only four real principal

asymptotic curves
/j,
= k3 ,

k4 ,
ks or A 6 .

Since for a real line x and x.2 are conjugate imaginaries, only

sixteen out of a group of thirty-two lines are real. Hence there

are only eight real nodes and eight real tropes, namely 0, 12, 34,

56, 35, 36, 45, 46.

At points of an elliptic segment, ^ and
fji.2

have the form

jj, ip, ,
and the complete boundary is described when //

= and

/j,
takes all real values. As /m varies the point of contact

(/LI, JJL)

of the pencil of tangents (//,, /u,, X, X) describes an arc of a conic

and remains at a node, alternately ;
after

/j,
has made the complete

cycle of real values x^ and x.2 recover their original values but

MS, #4, #5, #6 have all changed their signs. The pencil of tangents
returns to its original position only after

yLt
has taken every real

value twice and then the point of contact has described four arcs

and passed through four nodes. Hence the elliptic segments have

four sides and four corners each.

The collineations which interchange the nodes at the ends of a

side are either 34 and 56 or 45 and 63. Hence the nodes 0, 34,

12, 56 taken in this order are the corners of two elliptic segments,

being joined consecutively by hyperbolic segments ;
so also are the

nodes of the one other real tetrad of the same group-set, namely
35, 54, 46, 36. Similarly the tetrads of nodes 0, 45, 12, 63 and

35, 43, 46, 65 are connected by elliptic segments. Each tetrad

forms a four-cornered piece of the surface having two elliptic faces

and four hyperbolic edges. Each of one group-set is attached at

two nodes to each of the other group-set.
Consider the degenerate case when one node is taken on

the quadric 123.456. Of the harmonic conjugates of the real

generators through with respect to the six pairs of direc

trices lying on the surface and named after them, only (12) of

one system and (45) (56) (64) of the other system are real, since

the correlations associated with x
l
= 0, and x.2

=
0, separately, trans

form a real line into an imaginary one. Hence the nodes in this
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degenerate case lie at the intersections of two and four generators,
and this gives a diagram of their relative situation in the general
case.

8-t 35

FIG. 16.

As in case I each piece is cut in pairs of points by three

directrices; there is this difference to I a that each elliptic segment
contains a point where the two inflexional tangents have four-

point contact, but are imaginary. These points lie by fours on

the directrices (12).

II b. One hyperbolic sheet.

Consider next the case when

The tangents (/^, /^2 , X, X) are real only if the signs of

(kg //q) (ks fji.2 ) are +, +, , ,
or the opposite, for s = 3, 4, 5, 6

respectively. The cyclical order of magnitude must therefore be

Ml ^3 4 l*&quot;l *t *9 f^l&amp;gt;

and it is impossible for ^ and /z2 to be equal, or to be conjugate

imaginaries, whence there are no real nodes. The surface is real,

and everywhere hyperbolic ;
there are four real principal asym

ptotic curves, and the discussion is the same as in 16 except that

there is only one real sheet
;

for of thirty-two associated points

only sixteen are real, corresponding to the different signs of #3 ,
a?4 ,

x5 ,
#8 ,

and these can be reached by continuous variation of the

elliptic coordinates filt ^ 2 ,
and accordingly lie on the same sheet.

Equations of II a and II b.

The case when two fundamental complexes are imaginary can

be obtained from the case when all are real by the substitution of

(x, $y, $z, t) for
(as, y, z, t).

If at the same time we substitute

(a, $/3, 1*7, 8) for (2, 13, 7, B) in the equation I a we obtain the

equation II a representing a surface having nodes at the points

(, P, % S), (i/3, a, S, iy), (i% S, a, i&\ (S, 7, & a),



72-73] FOUR REAL AND TWO IMAGINARY COMPLEXES 125

and twelve others obtained from these by changing the signs of

pairs of coordinates. If a, /3, 7, S are real, eight of these nodes

are real.

The substitution of (ias, iy, z, t) for (x, y, z, t) in II a has the

effect of interchanging k- and k6 ,
and hence produces 116. It is

evident that all the nodes are imaginary. By reasoning similar to

that employed in the case of I b it may be deduced that II b is a

real surface from the fact that the directrix x = 0, y = cuts II a in

two real points.

73. TWO REAL AND FOUR IMAGINARY COMPLEXES.

III. In this case two pairs of complexes are imaginary. There

is here no subdivision as the question of order of magnitude does

not arise. The condition for a real tangent is that (^ fa) (^ fa)

and (k.2 fa) (k.2 fa) must be of the same sign ;
hence fa and fa

may be imaginary, but if real do not occur alternately with k^ and &2

and so may be equal. Of thirty-two associated points only eight
are real since the signs of conjugate imaginary line coordinates

must be changed simultaneously. There are therefore four real

nodes and four real tropes. Two singular conies cut in two nodes

whose parameters are A?x and kZ) terminating two hyperbolic seg

ments, and the other two conies cut in the other two nodes, so that

there are four hyperbolic segments altogether. There are two

elliptic segments, each bounded by four arcs of conies and four

nodes. The complete surface consists of two pieces each con

taining two hyperbolic and one elliptic segment, and attached to

each other at the four nodes.

Consider the degenerate case when one real node is taken on

the quadric 134 . 256. The imaginary directrices (34) belong to

one regulus and (56) to the other. The surface is represented in

the figure

12

FIG. 17.

showing that there are two pieces attached to each other at four

nodes.
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The equation of III is obtained from I a by substituting

(we, ity, $z, t) for (x, y, z, t) and (m, tf/3, 1*7, 8) for (, A 7, 8). The
four real nodes are (a, ft 7, S), (a,

- ft - 7, S), (- a, ft - 7, 8),

( a, ft 7, 8), forming a Gopel tetrad.

74. SIX IMAGINARY COMPLEXES.

IVa. Four nodes, two real sheets.

Lastly we consider the case when the three pairs of complexes
are imaginary. There are two subcases. In IVa k^, k3 k4 ,

k5 k$

are pairs of conjugate imaginaries. For a real tangent the line

coordinates must be pairs of conjugate imaginaries, and this is

the case when the elliptic coordinates /^//o are real or conjugate

imaginary. If one (x) of thirty-two associated lines is real

then eight are, namely those obtained from (xlt x2 ,x3) #4* #5, ^
e)
and

(&ji, i%2 ,ixB , ix, ix5 ,
iac6 ) by changing the signs of pairs of con

jugate imaginary coordinates. Since it is possible to have ^ =
/m.2 ,

there are four real nodes and four real tropes, and these are not

incident since the parameters of the six nodes on a conic are all

imaginary. A hyperbolic segment is funnel-shaped, bounded by
one whole conic and one node. Each asymptotic curve consists of

four branches one in each hyperbolic segment having a cusp at the

node and touching the conic boundary. There are no principal

asymptotic curves. There are two elliptic segments, one bounded

by the four conies and the other by the four nodes. The wave

surface is an example of this case.

IV b. Four nodes, no real sheets.

In the second subcase IV b the coefficients ks have the form

7\eidi
, rf^e* ,

rs e
i93

,
r.rl e ie3

,
r5 e

i6s
,

r5

~ l
ei0s

,

and if one of thirty- two associated lines is real, then eight are.

There are no real pencils of tangents to the surface but the line

(\, X, fji, fji)
is real provided X and

/a&quot;

1 are conjugate imaginaries,

and this line either passes through a node or lies in a trope.

Hence there are four real nodes and four real tropes, but the

surface is imaginary.
As in preceding cases the topology can be inferred from the

degenerate case of a repeated quadric.

The equations of IVa and IV b can be obtained by means of

the imaginary linear transformation already given. The four real

nodes form a Gopel tetrad.



CHAPTER XII.

GEOMETRY OF FOUR DIMENSIONS.

75. LINEAR MANIFOLDS.

By geometry of four dimensions is to be understood a method

of reasoning about sets of numbers and equations, in which the

principles of elementary algebra are clothed in a language

analogous to that of ordinary geometry. Although we cannot

bring our intuition to bear directly upon four-dimensional con

figurations we can do so indirectly by creating an artificial intuition

based on analogy. Many theorems in algebra are readily extended

from three variables to four and the new theorems are expressed

by an extension of ordinary geometrical nomenclature. Thus

when we have learned the laws of extension we can reason

in the new nomenclature without being able to attach an actual

geometrical significance to the terms used.

A set of five coordinates xlt #2 ,
xs ,

x4t x-a ,
used homogeneously,

is called a point (x). It may be determined by four independent
linear equations.

Two points (x) and (y) determine a single infinitude of points

(\x -f py) called a line. Three points (x) (y} and (z) determine

the GO 2

points (\x + py + vz) of a plane provided (z) is not

determined by (x) and (?/), that is, if the three points are not

collinear. Similarly four points determine the oo 3

points of a

space provided they are linearly independent, that is, if they
do not lie in a plane. On eliminating X, p, v, p from the five

equations
ws \xs + fjLys + vzs + pt8 (s

= l, 2, 3, 4, 5)

we obtain a single relation linear in the coordinates wS) so that

a space consists of all the points whose coordinates satisfy one

linear equation. The line, plane, and space are linear manifolds
of one, two, and three dimensions respectively.

The following table gives the number of equations and points

required for the determination of the various elements :
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As in three dimensions, so here an intersection means a common

point or set of points, that is a common solution or set of solutions

of certain equations. By adding the numbers in the middle

column of the preceding table we can construct the following
table of intersections, all the elements being supposed to have

general positions.

Lastly, it is important to realise the manifold of smallest di

mensions which contains two given manifolds in general position :

this is shown in the following table which is constructed by

adding the numbers in the last column of the first table.
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The meaning of projection, like that of intersection, may be

extended to space of higher dimensions. If A, B, C are manifolds,

to project B from A on to C means to construct the smallest

manifold containing both A and B and then find its intersection

with C. Thus if A is a point and C a space the projection of B
has the same dimensions as B\ so too if A is a line and C a

plane*.

76. CONSTRUCTION OF THE 15 6 CONFIGURATION FROM
SIX POINTS IN FOUR DIMENSIONS

-j*.

We now proceed to show that the general 166 configuration
in ordinary space can be obtained by the operations of section

and projection from the figure of six points in space of four

dimensions.

Let the points be called 1, 2, 3, 4, 5, 6. They determine

fifteen lines which may be called 12, ..., and twenty planes 123 ...,

and fifteen spaces 1234.... The line 12 cuts the opposite space
3456 in a diagonal point P12 . These fifteen diagonal points lie by
threes on fifteen lines, for P12 ,

P34 ,
P56 lie in each of the spaces

3456, 1256, 12:34, and any three spaces have a line in common.
These are called transversal lines and may be denoted by
(12.34.56), etc. Thus the line (12.34.56) contains the points

Pi2, P34, P56 . Again the three lines (12.34.56), (12.35.46),

(12 .45. 36) meet in the point PI2 and are contained in the same

space 3456.

Corresponding to a partition of the six&quot; points into two sets

of three, e.g. 123.456, we get nine diagonal points

P P P-LU -* 25 -*36

P P P-* 26 -* 34 r 15

which are seen to lie upon six transversal lines corresponding
to the rows and columns of the scheme. Hence the space
determined by any four of these points which are linearly in

dependent contains the remaining points and is called a cardinal

space and denoted by (123 . 456). It follows that the six

transversals are three generators of one system and three

generators of the other system of a quadric surface lying in

*
Veronese-Schepp, Grundzilge der Geometric von mehreren Dimensionen.

f Richmond, Quarterly Journal, xxxi, 125
; xxxiv, 117.

H. 9
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the cardinal space. There are ten cardinal spaces and the

fifteen transversal lines lie by sixes on ten quadrics contained

in them.

Consider now the three-dimensional figure obtained by catting
the transversal lines by an arbitrary space. A cardinal space is

cut in a plane and the six transversal lines in it in six points

lying on a conic. We have therefore a 15 6 configuration of fifteen

points lying by sixes on ten conies. This is the configuration
of nodes and tropes of a general fifteen-nodal quartic surface, and

we shall see presently that this surface is the section by an

arbitrary space of a certain quartic variety or curved threefold

in space of four dimensions. Further, when the section is by
a tangent space, one more node appears and we have the general
Kummer surface.

77. ANALYTICAL METHODS.

In space of four dimensions a point is represented by five

homogeneous coordinates, but it is convenient to use six, %1} x2 ,

x3 , #4, #6 ,
x6 connected by the relation

Xl + Xz + Xs + #4 + X5 + Xt = 0.

The equation of any space is

=

which is unaltered when the same quantity is added to the

coefficients. To fix their values we assume

HI + u2 + us + u4 + u5 + ue
= 0.

The coordinates may be so chosen that the equations of the

point 1 are ?^ = in space coordinates and #2
= #3

= #4
= #5

= #6

in point coordinates, and similarly for the other points.
Hence the space 3456 has coordinates (1,-1, 0, 0, 0, 0) and

equation .^ = %2 ;
from this it may easily be proved that the

diagonal point P12 is

the transversal line (12 . 34 . 56) is

u l + u,2
= U3 + Ui = us + us

= Q;

and the cardinal space (123 . 456) is
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An arbitrary space

! xl + a.2x.2 + asxs + a4#4 + a5 a?5 + a6#6
=

cuts the transversal line (12 . 34 . 56) where

(X + 2) tfj + ( 3 + a4) a?3 + ( 5 + a6) #6
=

so that the equation of the point of intersection can be expressed
in the equivalent forms

! + a.2 as + a4

In this way we have a symmetrical expression of the 15 6 con

figuration.

78. THE 16 CONFIGURATION.

It is possible in six ways to select a group of five transversal

lines which contain all the diagonal points and of which no three

belong to the same cardinal space ;
in fact these groups cor

respond to the six pairs of cyclical arrangements of five figures,

or to the six pairs of mutually inscribed pentagons whose edges
are the intersections of five planes (p. 10). Thus, corresponding
to 23456 or 24635 we have the group of transversal lines

12.36.45

13.42.56

14.53.62

15.64.23

16.25.34.

We proceed to prove that when 2a-/ = the five points of

intersection of these lines with the space 2as#s
= are coplanar.

The plane containing the first three points is determined by the

three tangential equations

u 2 + u4 u 9 + u5 u4 + U-L us + u3

a + a2 as + as az + a4 as + as a4 + a^ as + a3

Now in consequence of Sas
=

0, 2}a/ = 0, we have

(! + a2) (02 -f a4) (a4 + a^ + (as + a6) ( 6 + a5) (as + a3)
=

whence, by the preceding equations,

0i + u-z) O&amp;lt;2
+ w4) (u4 + Hi) + (u s + u6) (u 6 + u s) (u- + us )

=

leading to 2w,
3 =

0, and the symmetry of this result shows that

the plane through the first three points passes through the other

two. Hence when the single condition 2a 3 = is satisfied, the

92
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configuration of fifteen diagonal points contains six sets of five

coplanar points ;
in addition to the ten sets of six points each on

a conic.

One of the last six planes is the intersection of the two spaces

Sdyfti = 0, &quot;ZugXg
= 0, the us being given by the preceding equations.

It is evident that those equations are still satisfied if the us are

replaced by us + \as ,
X being arbitrary. It follows that ^usas

z =
0,

showing that the six new planes meet in the point of which this is

the tangential or space equation, so that this point completes, with

the fifteen, the Rummer configuration of sixteen points and

sixteen planes*.

79. GENERAL THEORY OF VARIETIES.
o

The name variety is here given to the threefold locus of oo 3

points which satisfy a single relation. The simplest variety is

when the relation is linear and then the special name space is

used, as an abbreviation for linear threefold space.

Let the equation of a variety in four non-homogeneous co

ordinates be

/(*&amp;gt;,*.*)-(&amp;gt;,

then in the neighbourhood of any point (x, y , /, t ) of it, a first

approximation is given by

(x
- x} df/dx + (y

-
y ) df/dy + (z- /) ?//8/ + (t

-
if) df/dt

= 0,

which, by analogy, is called the tangent space at the point

(x, y, /, t
).

Change the coordinates so that the origin is the point

considered, and t = is the tangent space ; then, on expanding

/ in a series of homogeneous polynomials, the equation of the

variety is

and it is seen at once that the section by the tangent space t=
is an ordinary surface in that space having a node at the origin.

If x, y ,
# are any small quantities of the first order, (a? , y , /, 0}

is, to this order, a near point on the variety and the tangent

space is

xdfjdx + ydfjdy + ztfjfiz + t = 0,

small quantities of the second order being omitted. This cuts the

space t = in the polar plane of the point (x, y ,
z

r

) with respect

* Similar analytical treatment can be applied to the theories of lines on a cubic

surface, bitangents of a plane quartic, and Pascal s figure. See Richmond, Camb*.

Phil. Trans, xv, 267. Cremona, Math. Ann. xin, 301.
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to the cone f2 (x, y, z, 0) = 0. Thus all the GO 2

planes which lie

in a tangent space and pass through the point of contact may
be called tangent planes and cut the variety in a curve having
a double point. A finite number of tangent spaces, equal to the

class of the variety, pass through an arbitrarily given plane, and

in the case of a tangent plane, two of the tangent spaces
coincide.

The points in which any line xjx = yjy
=

zjz
=

tjt cuts the

variety are given by the equation in k

f(kx, fa/, kz ,kt )
= 0.

The degree of this equation is the order of the variety and is

equal to the order of any space section. One root is
zero^ and

a second is zero if t = 0. Hence all the oo 2 lines in a tangent

space which pass through the point of contact may be called

tangent lines. Of these, oo x have three-point contact and are the

generators of a quadric cone /2
= 0, t = 0, and of these six have

four-point contact, being the intersections of the two cones

*=0, f,(x, y, z, 0)=0, f9 (x t y, z, 0) = 0.

All these theorems can be reciprocated. If the general

equation of a space is

Ix + my 4- nz +p + qt
=

a single equation

&amp;lt;/&amp;gt;
(I, m, n, p,q) = Q

may be regarded as the tangential equation of a variety in space
coordinates I : m : n : p : q. It is unnecessary to repeat all the

theorems. The equation of the point of contact of the tangent

space (I , m, n
, p, q )

is

+m d()dm + nddn + d(&amp;gt;/d
+ dd = 0.

A singular point of a variety is one at which the tangent space
is indefinite. The conditions that (#, y, z, t) may be a singular

point of/=() are

Thus if the origin is a singular point the equation has the

form

The section by every space through the origin is a surface having
a node, oo 2 lines through the origin have three-point contact.

A locus of oo :

singular points is a singular line. Let the
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tangent to this line be as = y = z = 0. Then we must have df2/dt =
and the variety is

0=/2 (a?, y, z)+fz (x, y, z, t) + ....

The section by Ix + my + nz = () is a surface for which the nodal

cone at the origin breaks into two planes.
A singular tangent space is one whose point of contact is

indefinite. Taking this to be t = 0, and the general equation
of a plane to be

Ix -f my + nz + 1 +p =

the tangential equation of the variety must be

=
2 (I, m,n,p) + fa+....

The first approximation, instead of being linear and giving
a single point of contact, is now quadratic,

0o (7, m, n, p) = 0,

and represents a quadric surface. We may say that the singular

tangent space has contact at all the points of a quadric surface.

We therefore infer that this surface appears repeated in the

complete section by the tangent space.

80. SPACE SECTIONS OF A CERTAIN QUARTIC VARIETY.

Returning to the six homogeneous space coordinates us con

nected by the relation

U-L + u^ + u3 + 1*4 + us + u6
= Q

consider the variety of the third class whose tangential equation is

MI
S + u.2

s + us
3 + u4

s + us
* + M6

8 = 0.

In consequence of ^u8
= this can be written in the form

(u 2 + u3) (u3 + MJ) (MJ + M2) + (u& + ^^6) (ue + u4) (u4 -f u6)
=

and in nine other similar forms. This equation is satisfied by

ttj + U 2
=

0, U5 + U6
=

0,

that is to say, by every space containing the transversal line

(12 . 34 . 56). Hence the oo 2

spaces through this line are all

tangent spaces, and of them oo 1 have a given point of it for point
of contact. On taking an arbitrary space section we get a point
on a surface at which there are oo 1

tangent planes ;
hence the

point is a node on the section. Thus we see that the section

of the variety by an arbitrary space is a surface having fifteen

nodes, the sections of the transversal lines
;

these have been
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shown to lie by sixes on ten conies, the sections of the cardinal

spaces.

It follows immediately from the general theory that the point
of contact of a tangent space 2t (usxs)

= Q has coordinates whose

differences are proportional to uf u/, etc. Hence the only

singular tangent spaces are given by

which have ten possible solutions of which one is

or the cardinal space (123.456). Hence each cardinal space
touches the variety at all the points of a quadric surface, and

in the arbitrary space section we get a plane touching the fifteen-

nodal surface along a conic containing six nodes. We recognise

that the section must be a quartic surface with fifteen nodes and

ten tropes.

By taking a tangent space for the space of section we get
a new node at the point of contact. The section is now a

Kummer surface and therefore six new tropes must appear.

Now in a tangent space (u) to a variety there are six planes

through the point of contact such that four consecutive spaces

through them are tangent spaces. In the present case the

variety is of class three and so every space (u + \v) through any
one of these six planes is a tangent space. The conditions are

2w3 = 0, 2w2v = 0, 2iw2 = 0, 2fl3 = and show that the point of

contact of (u + \v) lies in (u) and therefore in the plane. This

plane has therefore x x

points of contact with the section, and

in this way the additional tropes are accounted for.

The point equation of the variety Sw
3 = can be written in

a great many ways. One is

{0i
~

xtf
~

0*3 + ^4
~ a? - a*)

8

}

4 + {(^3
- a?4)

a - fe + *? - k
-

a?*)
8

}*

+ {(a?8
- ^6)

2 - (X 4- x.2 -x.,- x^\ * =

in which no use is made of the linear relation which connects the

xs . There are fifteen equations of this type. It may be written

where a? = 0.../ = are the equations of six cardinal spaces and

the identical relation connecting them is

x + y + z + x +y +z = Q .................. (1).
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From the point equation of the greater variety it is evident

that the cardinal spaces are singular tangent spaces. The general

tangent space is

where (a? a? )* + (y*ytf + (z*ztf = 0.

Equations (1) and (2) are of the same kind as those of 55

which must connect the six tropes of a fourteen -nodal quartic
surface in order that two additional nodes may appear. The

present chapter gives an interpretation of those equations by
means of space of higher dimensions.

By starting with the reciprocal variety and proceeding by

reciprocal processes we shall arrive at reciprocal results. On
account of the duality of Rummer s surface we reach it again by
this method. Thus instead of taking a space section of the

quartic variety, we may take the reciprocal cubic variety and the

enveloping cone from any point. Thus any space section of

this cone is a surface having ten nodes and fifteen tropes, the

reciprocal of the fifteen-nodal quartic surface. When the vertex

of the cone is on the variety, the section is a Rummer surface.



CHAPTER XIII.

ALGEBRAIC CURVES ON THE SURFACE.

81. GEOMETRY ON A SURFACE.

In preceding chapters Rummer s surface has been considered

as a figure in space of three dimensions, mainly in relation to

various systems of points, lines, and planes. The surface has

been treated as a whole, being uniquely determined by its singu

larities, and these form a configuration which is conveniently
studied first and independently. Now, however, we must turn

our attention to the surface as a two-dimensional field of geometry,
and consider the curves which can be traced upon it. Here a

further subdivision of the subject arises according as we investi

gate the curves in the neighbourhood of a particular point, or

treat them in their entirety, the former branch is especially
devoted to transcendental curves and those defined by differential

equations : the latter to algebraic curves.

An important step is made in the theory of an algebraic
surface when the coordinates are expressed as uniform functions

of two parameters, for we are then able to transfer theorems in

plane geometry to the surface. Every curve on the surface has an

equation, expressing a relation between these parameters. The

properties of a surface depend largely upon the kind of function

which must be employed in the parametric expression, and a

detailed study of these functions is therefore necessary.

But there is another method of investigating algebraic curves

based upon their characteristic property of cutting every algebraic

surface in a finite number of points; for a surface of sufficiently

high order can always be found to contain the whole of such

a curve, and the curve may therefore be defined as the part
common to several surfaces. In this way a curve is defined by
several equations taken together, which have the advantage of
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being algebraic. The chief difficulty in the theory is that in

general two equations do not suffice, for a given curve may not be

the complete intersection of any two surfaces; the simplest example
of this is the twisted cubic. It is possible, however, to arrange
that two surfaces may pass through the curve and cut again in

straight lines only, as in Cayley s representation by means of a

cone and a monoid*. The given curve is projected from the

point x = y = z=Q by a cone f(x, y, 2) = 0, the vertex being
chosen so that not an infinite number of chords pass through it.

Then arbitrary values of x : y : z determine one value of the re

maining coordinate, which must therefore be given by an equation
of the form

representing a monoid surface. The complete intersection consists

of the given curve and any lines which may be common to the

conesf= 0, ^ = 0, ^ = 0.

The theory of algebraic curves on the general Kummer surface

is simplified by the remarkable theorem that a surface can be

found to touch Rummers surface all along any given algebraic

curve lying thereon and have no further intersection with the surface^

the curve, counted twice, is the complete intersection of two surfaces

and can therefore be represented by the equation of the tangent
surface alone. When the Kummer surface is not perfectly general
it may happen that curves exist on it for which the theorem is

not true.

82. ALGEBRAIC CURVES ON KUMMER S SURFACE.

Let the equation of Kummer s surface Q be written as in 10

in the form

&amp;lt;/&amp;gt;

2
2 + 203 &amp;lt; +

c/&amp;gt;

4
= 0,

so that the point x = y = z = is a node at which the tangent
cone is &amp;lt; 2

= 0. Any curve on the surface can be represented
as the intersection of a cone

/O, y t z}
=

and a monoid t% (x, y, z)
=

ty (x, y, z)

after excluding the lines common to/= 0, % = 0, ^r
= 0. If/ were

a general polynomial in its arguments the curve of intersection

with &amp;lt;J&amp;gt; would have the special property of cutting each generator

* Collected Papers, v, 7.
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of the cone twice, and the monoid representation would fail. It is

required to find what special form / must have in order that the

complete intersection may break up into two, projections of each

other from the node.

On solving the quadratic for t we find

&amp;lt; + &amp;lt;&amp;gt;

=

so that, in the language of two dimensions,f is a curve upon

which V0.;
2

&amp;lt; 2
&amp;lt;/&amp;gt;4

has a rational value in terms of the point

coordinates, namely 0-&amp;gt;^/%
+ 0s ;

and the problem of finding all

the algebraic curves on the surface is the same as of finding all

plane curves /= having the preceding property*. A necessary

and sufficient condition is that/ must be & factor of an expression

of the form F2
6r

2

(03
2

2 4), where F and G are homogeneous

polynomials in x,y,z] but this does not define the form of/ with

sufficient precision. Now 3
2

2 4 is the product of six linear

factors #! #2 #3 #4 #5 #6 ;
let X be the product of some of these

factors and Y the product of the rest, then /must be a factor of

an expression of the form F2X - H*Y.

Since the sextic 3
2

2 4
= is a hexagram circumscribing

the conic (&amp;gt;.2
=
y

2 xz=Q, we adopt a new system of coordinates

having special reference to this conic and substitute 1, %(u + v), uv,

for x. y, z respectively. Then (p. 18),

xs
= (u ks) (v ks )

and $.? 0204 = n#s
= n (u kg) (v ks)

= II say.

Let U be the product of six of the twelve factors of II involving all

the six ks and let V be the product of the remaining factors, so

that [/becomes Fwhen u and vare interchanged ;
further let P be

any polynomial in u and v and let Q be what P becomes when
u and v are interchanged. Then the equation

is integral and symmetric in u, v, and therefore represents a plane

algebraic curve upon which V Z/Thas the value (P2U+ Q*V)/2PQ &amp;gt;

and this value, being symmetric in u, v, is rational in x, y, z.

It is a remarkable theorem, and one not easy to prove directly,

that every curve upon which \lx^x^ x.A x x5 xs is rational is ex

pressible exactly in one of these two forms, that is, without

*
Hudson, Math. Gazette, July, 1904, p. 56.
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extraneous factors, provided &lf k2 ,
k3) &4 ,

ks ,
k6 are perfectly general.

Expressing this differently, none of the curves

u v

is reducible except into curves whose equations have one or other

of these two forms. At present we assume this theorem in order

to be able to enunciate subsequent propositions with complete

generality. It can however be verified for the curves of the

different orders taken in turn.

The equation P2U Q2F =
represents two curves on the

surface which are distinguished by the pairs of equations

In what follows the equation of the surface will be understood to

be given in a definite irrational form, and then a single equation
P \/U + Q *JV = determines a single curve on the surface.

We have next to show that the equation of any curve can be

expressed in terms of products (with repetitions) of the sixteen

radicals *Jxs , *Jxrst , where, as on p. 19,

xs
= (u

- ks ) (v
- ks]

= usvs (s=I, 2, 3, 4, 5, 6),

# = ^ =

This is evident for the symmetrical equation
The expression is not unique on account of numerous identities

among the radicals, of which an example is

The case of the equation P \/U + Q /y/F=0 may be illustrated by
an example. Let

U UflflsViVsVe ,
V = VjU2UsU4U5U6 ,

then

u-v)Z (k,
- ks) x&fr* = -

(k,
- k3) (k3

-
k&amp;lt;) (k4 -k

234

(u v) 2 (fc ks) k NO.

=
(&a k3) (ks k4) (&4 k.2) (u VU+ v \/ V),

and so on, whence the general pair of terms in P
&amp;gt;JU+ Q\JV can

be found.
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83. THE 0-EQUATION OF A CURVE.

With the assumption made at the end of 82 it has been

shown that, when the equation of the general Kummer surface 0&amp;gt;

is given in an irrational form with a definite sign to the radical,

every algebraic curve on 4&amp;gt; is expressible by an equation of

the form

A! \/Pi + A2 \7p2 + . . .
= 0,

where ps is a product of some of the sixteen linear forms here

denoted by xgt xrst ,
and \s is numerical*. We shall generally use

(*) to denote the left side of this equation, so that = %\sps .

is distinguished by the following three properties.

From the nature of the coordinates used, B must be homo

geneous in the linear forms. The number of factors in any pro

duct ps is called the order of
,
or of the equation.

After substitution for the radicals in terms of u and v every
term of the equation takes the form P\/U + Q\/V, U and V being
the same for all the terms. If the equation is of the first kind,

formerly written F\/X + G\/Y= 0, U and V are symmetric in

u and v and hence ps contains an even number of factors of the

type xrst ;
if the equation is of the second kind U becomes V when

u and v are interchanged, and ps contains an odd number of factors

of the type xrst . Accordingly is distinguished by its parity,

being even or odd. The parity of a product and of an equation is

thus defined in reference to a particular set of six elements

#u #2&amp;gt; ^3) ^?4&amp;gt; %5, #6- As a ru le it is not the same for all the sixteen

sets, that is, it is not an invariant property under the group of

sixteen collineations, and accordingly does not imply any essential

geometrical distinction. It is, however, an important feature

when it is invariant, as for instance when the factors of a product
form a Gopel tetrad such as x-^x^x^x^ which is even, or a Rosen-

hain tetrad such as a?^ #3*123 which is odd (see pp. 78, 79). It

is customary in estimating parity to count the number of factors

of the type xs instead of xrst , leading to a different result when the

order is odd.

Thirdly, we have to consider the property that after substi

tution in terms of u and v every term of (8) involves the same pair

of radicals &amp;lt;v/?7and *JV. Now one of the radicals in the case of

*
It would involve no assumption and might therefore be more satisfactory to

start with equations of this kind and show that they represent algebraic curves.

But we could not be sure of dealing with every curve in this way. To complete the

theory transcendental methods are required (cf. 104, below).
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V^IM is the same as in \f,x\x2x3 \/ii^u^u^u^u^i^ from which it follows,

both for even and for odd equations, that if in the terms of

every factor of type x
rist be replaced by the corresponding product

xrxsxt ,
all the terms will contain one of two irrationalities whose

product is \lx^x^xzx^x5x6 . This gives an important rule for finding

which products may be associated in the same equation ;
it may

be expressed in another way. The suffixes of the sixteen linear

forms are the symbols of dualistic transformations obtaining the

tropes from one node
;
the laws of compounding these transforma

tions are simply that every two are permu table and that

11 = 22 - 33 = 44 = 55 = 66 = 123456 = identity.

Accordingly we have the rule that if the operations represented

by the suffixes of the factors in any term of @ are compounded,
the resulting operation is the same for every term. The symbol
of this operation is called the characteristic of the product, and

of
,
and of the equation = 0. Of the sixteen characteristics

there is one which is distinguished from the rest, namely the

symbol of identity, dd, or 0. The remaining fifteen characteristics

may be treated alike and will be denoted by two-letter or two-

figure symbols. It will be necessary to speak of the parity of

a characteristic a/3, and by this is meant the parity of xa$. An

equation of order n and characteristic a/3 is written

()
0=0.
a/3

When the order, parity, and characteristic are given the

equation is said to belong to a certain family.. In order to con

struct the general equation of a given family we pick out from

among the sixteen radicals all possible products having the given

order, parity, and characteristic, retain only those which are

linearly independent on the surface, and combine these linearly

with undetermined coefficients.

84. GENERAL THEOREMS ON CURVES.

&quot;Let p lt p2 ... be all possible products of n of the sixteen linear

forms satisfying the conditions of having given parity and charac

teristic; we consider the family of curves represented by the

equation of order n

= \! i + ^2 2 + . . . = 0.
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Let = and = be the equations of two curves of the

family. The product is rational except for terms of the form

(XjXo + A.2V) ^P\P-2\ but if we replace the coordinates by their

expressions in terms of u and v the irrational part of ^fpip-2 is the

same as ^ix^x^x^x^x^x^ which is rational and integral on the

surface &amp;lt;t&amp;gt;. Hence the equation = can be rationalised by
means of the equation &amp;lt;l&amp;gt;

=
0, and then represents an algebraic

surface of order n cutting
&amp;lt; in the curves = 0, % =

only.

Hence we have the theorem :

Any two curves of the same family form the complete inter

section ivith a surface of order n.

By making the two curves coincide we infer :

Every curve is the curve of contact and sole intersection with a

tangent surface of order n.

The equation of the tangent surface is B2 = 0, after rational

ising by means of &amp;lt;3&amp;gt;

= 0. This is of order n and therefore the

complete intersection is of order 4&amp;gt;n
;
hence

Every curve is of even order 2n.

A 2m-ic curve meets a 2n-ic curve where it meets the

?i-ic surface tangent along the latter. The 2mn intersections of

curve and surface all lie on &amp;lt;J&amp;gt; and are contacts except at nodes.

Hence any two curves of orders 2m and 2n intersect at an even

number, 2p, of nodes and at mnp other points.

Let Sl
= 0, S.2 = be the surfaces of order n, tangent along two

curves
&amp;lt;B)j

=
0, O 2

= of the same family, and let S = be the

surface of the same order containing both curves
; then, in virtue

of 3&amp;gt;
=

0,

! =$, 2
2 = &, f&amp;gt;t

= s,

whence S^ = S2 in virtue of 4&amp;gt;
= 0, and therefore we have the

identity

G Q being a surface of order 2n 4, touching Sl and $2 along
the remaining intersections with 8. From this identity many
remarkable results can be deduced.

The first two theorems of this section are particular cases of

the following :

Every equation of even order, even, and of zero characteristic

is rational on the surface and represents a complete intersection.
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For, from the first two qualifications it follows that the number
of factors of type \fx^ in any term is even

;
hence the irrationality

is the same as, when this factor is replaced by ^x-^x^ or by
V#4#5#6 .

But every product of V#i V^e which has zero charac

teristic is either rational or is ^xlx^xtx4acBx9 which is rational

on &amp;lt;I&amp;gt;.

From this theorem is deduced another which greatly facilitates

the study of curves on the surface, namely :

Every curve and not more than four singular conies together

form a complete intersection.

For, if (B) = is the equation of any curve, it can be rationalised

by finding a product p of the same parity and characteristic whose

order has the same parity as that of
;

then & \/p
= is an

equation of even order, even, and of zero characteristic and there

fore, by the preceding theorem, is rational on &amp;lt;l&amp;gt; and represents an

algebraic surface cutting &amp;lt;S&amp;gt; in the curve (*) = and the singular
conies in the tropes p = 0. We shall show in the next section,

by examining all the different cases that arise, that p need not

contain more than four factors.

Thus when a family of curves is given by the equation

&amp;lt;H)EE2Xs VpS
=

the first step in the investigation is to find a product p of least

order such that, in virtue of 4&amp;gt;
=

0, \!pps
= PS ,

a rational integral

function of the coordinates : then the family of curves is cut out

by the family of surfaces

X1P1 + X 2P2 + ...=0

having for base curves the singular conies in the tropes p = 0.

The curves therefore form a linear system whose dimension is one

less than the number of linearly independent P8) after making
use of &amp;lt;E&amp;gt;

= 0.

The surface \SPS
= passes through all the nodes in the

planes p = 0, and, for general values of \s , through no others.

Since the tangent cone at a node is of the second order, the

complete intersection passes an even number of times through
a node and hence the curve = passes through only the nodes

common to an odd number of the tropes p = 0. Thus all the

curves of a family pass through the same nodes, which are the only
base points of the linear system.
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85. CLASSIFICATION OF FAMILIES OF CURVES.

We shall now examine all the different kinds of equations and
the least products which are required to rationalise them, and
shall show that the number of factors in this product does not

exceed four.

When the order is given, there are thirty-two different families,

for with each of the sixteen characteristics the equation may be

even or odd. We shall find that families of even order are of

three distinct kinds and those of odd order are of only two distinct

kinds.

First let the order n be even and the characteristic zero. If
(n) is even it has been proved to be rational on

&amp;lt;I&amp;gt;,

and the curves

are the complete intersections with surfaces of order \n, and have

no base points, and in general pass through no nodes.

If () is odd the factors of p form an odd or Rosenhain tetrad,

for example x^x^x^xlWt and then \Jp represents the complete
intersection with a surface of order \n -f 2 passing through four

conies. Since an odd number of the planes p =
pass through

each node, the curves of the family pass through all the nodes.

If the characteristic is not zero it determines two associated

octads : each consists of four pairs, giving four even and four odd

products of order two and the same characteristic. Ba^ may be

rationalised by means of any one of the four products of the same

parity, and then we have surfaces of order \n -f 1 passing through
two conies. These two conies have two common nodes and the

remaining nodes on them form an octad and are the base points
of the system.

Secondly let the order be odd. In this case all sixteen

characteristics may be treated alike but a difference arises ac

cording as a and xa$ have the same parity or not. If they
are both even or both odd, a/3\/#a/3

= is rational on 3&amp;gt; and

represents the complete intersection with a family of surfaces of

order J (n + 1) passing through one conic. The six nodes on this

conic are the base points of the system of curves.

If a and acap have opposite parity, the factors of the product

p are three linear forms which with #
a/3

make up a Rosenhain

tetrad. Then since pxap is odd and has zero characteristic it

follows that p and x^ have opposite parity, and &ap\/p
= Q is

rational, and represents the complete intersection with a family of

surfaces of order (n + 3) passing through three conies. One
H. 10
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node is common to all three, they intersect again by pairs in

three nodes, and pass singly through nine others. The curves

therefore pass through ten nodes obtained by excluding six co-

planar nodes from the whole configuration.

We can exhibit these results clearly in a table showing the

typical rationalising factors for the various equations and the

number of nodes through which the curves of each family pass.

We take x^x^x^x^ for a typical Rosenhain tetrad and suppose
that XQ is even and xV2 is odd.

odd

V X 16

10

10

86. LINEAR SYSTEMS OF CURVES.

Each of the families of curves on Rummer s surface is a system
of curves determined entirely by their order and base points,

and is therefore a complete linear system*. Now there are three

important numbers connected with every linear system, namely
its dimension, which is less by one than the number of linearly

independent curves, its degree, which is the number of variable

intersections of two curves, and the deficiency of the general curve

of the system. All of these are unaltered by any birational

transformation. We proceed to determine the first two by

elementary methods.

The dimension of each system of curves is found by con

sidering the number of conditions imposed on the corresponding

family of surfaces at the base curves. In order that an m-ic

surface may pass through a given conic it must be made to pass

through 2m + 1 points of it, from which it easily follows that the

* See Castelnuovo et Enriques, Math. Ann. XLVIII, 241
;

Picard et Simart,

Fonctions algebriques de deux variables.
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numbers of conditions for an m-ic surface to pass through one,

two, three or four conies of a Rosenhain tetrad are given by the

following table.

If in all cases the curves are of order 2n we get the following
table which completes the preceding by giving the number of base

nodes for the system of curves, so that the number of conditions

in all cases may be expressed by the formula

tn + % (t
2 + s).

Again so far as intersection with &amp;lt;f&amp;gt; is concerned the equation

Sm =
is equivalent to 8m + Sm_, &amp;lt;&

= 0,

where $m_ 4 is an arbitrary polynomial of degree m 4. Hence by
102
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properly choosing $m_4 the number of arbitrary coefficients in the

equation may be reduced to

J (m + 1) (m + 2) (m + 3)
- (m - 3) (m - 2) (m - 1)

= 2w2 + 2.

In this put m = ^ (n 4- ),
subtract 1 for homogeneity, subtract

also the preceding number of conditions, and we find for the

dimension of the linear system of curves

We notice incidentally that the number of linearly independent

a0
&amp;lt;n)

&amp;gt;

both even and odd, of any given characteristic, is n2
,
for if

an even tt^
(w) vanishes at 2s nodes, then an odd Ba^

(w) vanishes at

the remaining 16 2s nodes.

Next to find the degree of the system we recall that each

curve is the curve of contact of a surface of order n, and any other

curve of the system cuts this surface at 2s nodes and touches it at

all the remaining points of meeting; hence the number of variable

intersections is

The deficiency of a curve in space may be defined in various

ways. It is possible in many ways to draw through the curve two

surfaces of sufficiently high orders
/z,

and v, which will intersect

again in one or more other curves. The surfaces of order
//, + v 4

passing through the residual intersection are called adjoint to the

given curve, and although their definition leaves them to a great
extent arbitrary, yet they cut the curve in a definite linear series

of groups of points. If p is the deficiency of the curve, each

of these groups consists of 2p 2 points of which p 1 may be

arbitrarily chosen. This series is called the canonical series. In

the present case we put ^ = 4, v = ^ (n + 1) ;
the residual inter

section consists of the t conies and the adjoint surfaces are the

surfaces of the family. Hence the curves of the system cut any
one of them in groups belonging to the canonical series, and on

equating the two expressions for the number of points in each

group

or p = 1 + $ (n
2 -

6-),

so that in this case the deficiency is equal to the dimension.



CHAPTER XIV.

CURVES OF DIFFERENT ORDERS.

87. QUARTIC CURVES.

After the sixteen singular conies, which are easily seen to

illustrate the theorems and formulae of the preceding chapter,

the simplest curves on the general Kummer surface are quartics,

represented by equations of order two.

Taking first the characteristic to be zero, the equation, if even,

represents the complete intersection with a surface of order one.

We have then the family of plane sections, of which only four are

linearly independent. In attempting to form an equation of zero

characteristic we see from the multiplication table of the group
that the two factors of each term must be equal, and the product
is simply one of the sixteen linear forms. This shows that the

equation cannot be odd, and therefore no quartic passes through
all sixteen nodes.

Corresponding to any other characteristic there are two families

of curves passing through complementary octads of nodes. Each

family includes four pairs of conies and is cut out by a pencil of

quadrics containing any one of the four pairs. The curves of the

same family have no variable intersections since only one passes

through an arbitrary point.

The curve cuts each trope of one octad at four nodes and each

trope of the (complementary) octad at two nodes and therefore

touches the latter at one point. Hence also the inscribed quadric

touches each trope of an octad.

Two curves of associated families do not pass through any
common nodes. Hence one touches the quadric inscribed along

the other in four points, and the curves have four variable inter-
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sections. The two inscribed quadrics touch in four points and

therefore cut in four generators.

Let $! = 0, $2
= be the quadrics inscribed along two curves of

the same family, and let S be the quadric containing both

curves; then the equation of Rummer s surface can be written in

the form

SA-S 2 = o,

which is the envelope of the quadric

This surface touches &amp;lt;E&amp;gt; along any curve of the family.

If two fixed quadrics A, B have quadruple contact with a variable quadric

C passing through a fixed point, the envelope of C is a Kummer surface.

[Humbert, Rendiconti di Circolo Matematico di Palermo, xi, 1.]

At a common point of two quartics of associated families the two tangents
are conjugate directions on the surface. [Darboux, Comptes Rendus, xcn,

p. 1493.]

Two curves of families with different characteristics pass

through the tetrad of nodes common to two octads. Hence of

the eight intersections of one with the quadric inscribed along
the other, four are at these nodes and the rest are at two points

of contact. In this case there are two variable intersections and

the inscribed quadrics touch at two points. From the incidence

diagram we see that if two octads have a common tetrad, the two

remaining tetrads together form an octad; accordingly a third

family exists such that three curves, one from each family, cut by

pairs in three tetrads of nodes. The three inscribed quadrics have

double contact with each other. We shall now prove that the

nature of the intersections of these quadrics depends upon whether

the tetrads are even or odd.

It is necessary to form the equation of a family with given

characteristic, say 12. Possible terms are

from one octad, and

from the associated octad. But since the equation of the surface

is expressible as a linear relation between any three terms from

each set of four, only two out of each set are linearly inde

pendent.
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88. QUARTICS THROUGH THE SAME EVEN TETRAD.

Select any four linear forms x, y, z, t forming an even or Gopel
t x . .

y * -

tetrad, as in the diagram (cf. p. 79); then the quartics

pass through the four nodes represented by the same symbols as

x, y, z, t, forming an even tetrad.

We know that ^xyzt is rational on
&amp;lt;l&amp;gt;,

so that the equation of

&amp;lt;i&amp;gt; may be expressed in the form

xyzt = (
2
,

and = is a quadric containing four conies. The equations of

the inscribed quadrics are obtained, by squaring and rationalising,

in the forms

A=ast +
2Xc/&amp;gt;

+ \2

(/2
= 0,

B =
ijt + 2/j,(j&amp;gt;

+ p?zx = 0,

whence
yu,
A \B = (//,# \y) (t \pz\

showing that the complete intersection of A and B lies in two

planes, and is therefore two conies.

There is a third family of quartics passing through the same

four nodes, namely
*Jzt + v \/xy 0,

and the corresponding inscribed quadric is

Then vE - pC = (vy
-
pz) (t

-
fjuvx)

\C-vA =
(\z

-
vx) (t

-
v\y}

/jiA \B =
(fjioc A,?/) (t \IJLZ),

and the quadrics B = Q, (7=0 touch at two points on the line

vy IJLZ
=

0|

t - pvx = Oj

In this way we get three lines joining the pairs of points of

contact of A, B, C, and they meet in the point

O!/\
=

yjfJU
=

Z\V
=

t/\/JLV .

each line cuts two opposite edges of the tetrahedron xyzt
= 0.



152 CURVES OF DIFFERENT ORDERS [CH. XIV

The product

(V5 + X Vyz) (*Jyt -f p *Jzx) (^Jzt + z^ \lscy)

is rational on
&amp;lt;,

whence we infer that a cubic surface S = can

be found such that

where G is a quadric. Evidently A and (7 touch along a conic

lying on S; in fact

6r =
4&amp;gt;/j,vA (t + IJLVX v\y X//,z)

2

=
4&amp;gt;v\B (t pvx + v\y \fj,z)

2

=
4t\/jiC (t fjivx v\y + Xyu-2)

2
.

Hence A, B, C are all circumscribed about the same quadric
and the three conies of contact and the three quartics (of contact

with
&amp;lt;X&amp;gt;)

lie on a cubic surface.

The planes of contact of A and B with G intersect in the line

joining the points of contact of A with B, proving once more that

the three lines are concurrent.

Conversely, the three lines through an arbitrary point (X, /A, v,

\fjiv) cutting pairs of opposite edges of an even tetrahedron of

tropes, cut &amp;lt;& in twelve points which include the six points of

contact with a quadric 6r; the remaining six points are points
of contact of a quadric G obtained from G by changing the signs
of X, p, v. If A

,
B

,
G

,
are obtained from A, B, C in the same

way, so that

then Q-G f = 4ifjLv(A-A )
=

4X&amp;lt;/&amp;gt;,

and the pairs of quadrics G and G
,
A and A

,
etc. intersect in

quartics lying on &amp;lt;E&amp;gt;.

Changing the signs of p and v merely permutes the quadrics

so as to form the two sets AB C
,
A EG. The points of contact of

A and B, A and B are collinear with (X, /*, v, \^v), and so on.

In this way we obtain four points of concurrence forming a tetra

hedron desmic with the tetrahedron of reference.

Thus a Gopel tetrahedron of tropes and any desmic tetrahedron

determine six quadrics having twenty-four points of contact lying

by fours on the six edges of the latter tetrahedron. The quadrics
can be arranged in three pairs, each pair determining a pencil

which includes the quadric passing through the conies of the

Gopel tetrahedron. The eight sets of three quadrics, one from

each pair, are circumscribed to eight quadrics, and the twenty-four
conies of contact lie in the faces of the desmic tetrahedron.
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89. QUARTICS THROUGH THE SAME ODD TETRAD.

Consider now families of quartics passing through the same

odd or Rosenhain tetrad of nodes (p. 78).

The last three rows in the diagram of incidences taken in

pairs determine three octads of tropes and three families of

quartics ;

y y
z z

any two of the octads contain a common Rosenhain tetrad of

nodes through which the corresponding families pass. Now since

each family is of only one dimension we may take the equations
to be

*Jyz + X VT/V = 0,

*Jzx + IJL
\lz x =

0,

\/xy + v Jx y = 0.

Further *Jxx*
,
^yy , *Tz3 are linearly connected in virtue of

&amp;lt;E&amp;gt;

= 0, and we may take the irrational equation of the sur

face to be

V^7 + \/yy 4- *Jzz = 0.

Then, by squaring and rationalising, the three inscribed quadrics
are

A =
yz + A, (xx yy zz

C =
(x vy) (y vx

f

) + vzz = 0.

Hence B and G contain the line

X VV ILZ 0)
I

jj,y + vz JJLVX
=

Oj

and have no other common generator. Hence the remaining
intersection is a cubic curve. Evidently the three common

generators lie in the plane

\x -f py + vz = IJLVX + v\y + \/JLZ .

Since the line common to B and G must touch ^&amp;gt; where it

meets it, the two variable points of intersection of the quartics are

the points of contact of a bitangent to &amp;lt;.
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As before, the product

(*Jyz + A, Vy/) (\/zx + ^ \/z x ) (v xy + i/ \/xy
r

)

is rational on
&amp;lt;1&amp;gt;,

and therefore the three quartics form the complete
intersection with a cubic surface S, and the three quadrics are

circumscribed about a quadric G in consequence of the identity

Since S contains the curves (A, &amp;lt;&amp;gt;), (B, &amp;lt;E&amp;gt;),

it touches &amp;lt;&amp;gt; at

their points of intersection. Hence the common generator of A
and B is a bitangent of the cubic surface S and therefore lies

entirely on it. Since the three lines common to (AB), (BC), (GA)
lie on S, they must also lie on G which therefore consists of their

plane repeated.

Since through any point of &amp;lt;l&amp;gt; six bitangents can be drawn, and

there are thirty octads, it follows that five quartics from different

families cut in the same two points. It is easy to see that the

five characteristics together with the zero characteristic make up
a set representing six coplanar nodes.

90. SEXTICS THROUGH SIX NODES.

There are thirty-two families of sextic curves on the surface,

two for each characteristic. They are of two kinds : sixteen are

cut out by surfaces of order \(n + 1),
=

2, passing through a conic,

and the other sixteen are cut out by surfaces of order ^ (n 4- 3),
= 3,

passing through three concurrent conies.

Taking a family of the first kind, the quadric is subjected to

five conditions in containing a given conic, and there remain five

arbitrary coefficients. Hence the family contains five linearly

independent curves.

The sextic meets one trope at six nodes and every one of

the fifteen others at two nodes and two points of contact. The
inscribed cubic surface cuts the one trope in a plane cubic passing

through the six nodes, and every other trope in a conic and the

line joining the two points of contact.

Two quadrics through the same conic cut again in another

conic
;
hence two sextics of the same family have six variable

intersections lying on a conic. The corresponding inscribed cubic

surfaces touch at these six coplanar points and therefore the plane

cuts them in the same cubic curve.

Among the quadrics cutting out the family there are fifteen

containing the four conies of a Gopel tetrad, for when one conic is
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given, three others can be found in fifteen ways to complete a

Gopel tetrad, and all four lie on the same quadric. Hence fifteen

sextics of the family break up into three conies, and in each case

the inscribed cubic surface breaks up into the three tropes con

taining the conies. By the last paragraph these three conies cut

any sextic of the family in six coplanar points, other than the six

common nodes, and the three lines in which this plane cuts the

three tropes lie also on the inscribed cubic surface, which has thus

been shown to contain fifteen lines, one in each of fifteen tropes,

lying by threes in fifteen tritangent planes.

If Sl
=

0, $2
= 0, are the cubics inscribed along two sextics of

the same family, and 8 = is the cubic containing both, we have

the identity

where G is a quadric. Now we have seen that $j and S2 touch

one another at the six variable intersections of the sextics and

therefore also touch S and &amp;lt;E&amp;gt;. Hence S contains the common

plane cubic section of $j and $
2&amp;gt;

and G must be this plane

repeated.

We proceed to demonstrate these theorems analytically.

Let x, y, z, t, be a Gopel tetrad of linear forms; then, since xyzt
is an even product of characteristic zero, the five products xyz, xH,

y
2
t, zH, t

3 are linearly independent and of the same order, charac

teristic and parity. The equation of the family of sextics passing

through the six nodes in the trope t = is

v xyz + (ax + by + cz + dt) \/t
= 0.

Write the equation of Kummer s surface in the form

&amp;lt;E&amp;gt;

=
xyzt &amp;lt;/&amp;gt;

2 =

so that
(j&amp;gt;

= is the quadric containing the tetrad of conies. Then
the linear system of oc 4

quadrics cutting out the family is repre
sented by the equation

$ + (ax + by + cz + dt) t = 0.

By squaring and rationalising using &amp;lt;I&amp;gt;

= we find the inscribed

cubic to be

Si = xyz + 2 (ax + by + cz + dt)
&amp;lt;f&amp;gt;

+ (ax + by + cz + dt)
2
1 = 0.

Obviously one tritangent plane is

ax+by+ cz+ dt= 0.

Another sextic of the family is

\l~3cyz + (a x + Vy + cz + d t) *Jt
= 0,



156 CURVES OF DIFFERENT ORDERS [CH. XIV

and the common points lie on the curve

(a afx + b - ~b y 4- c - c z 4- d~ d t) \/t
=

consisting of a conic and a plane section of &amp;lt;f&amp;gt;.

Write for abbreviation

HI = ax + ~by + cz + dt

u2
= afx 4- b y 4- c z + d t,

then $! = xyz 4 2^0 4- u^t

$2
=
xyz 4- 2u2

&amp;lt;f&amp;gt;

+ w2
2

$ = xyz 4- (MI + i 2)
&amp;lt;/&amp;gt;

4- ^1^2 ,

whence S^ - S2 = (^ - u2)
2

(xyzt
- $

2

)

and Sl -S =
(ul

- u2) (0 4- u^ t)

showing that the three cubics have a common curve in the plane
U1
= U2 .

Two sextics from different families cut in two nodes and eight
other points. We may take their equations to be

\/yzt 4- uv \jx = 0,

\/xzt + w2 \ly
= 0.

They both lie on the quartic surface obtained by rationalising

V zt
(&quot;Jyzt 4- u^ijx) (*Jxzt + u2 Jy) 0,

that is, on zt ($ 4- u\x + u^y) + u^uz
&amp;lt;p

= 0.

If in particular we take u^
= u 2 = u, the points of intersection

lie on the two quadrics

(f&amp;gt;

4. ux = 0,

&amp;lt;/&amp;gt;

+ wy = 0,

cutting in two conies in the planes u (x y)
= 0. The conic in

x y = cuts &amp;lt;E&amp;gt; in the two common nodes and four other common

points. The conic in u = lies on = 0, and cuts &amp;lt; in four pairs

of points on the four conies in xyzt = 0. Hence the remaining
four common points are the points of contact of the lines u = = z,

and u = = t with &amp;lt;E&amp;gt;.

We are thus led to consider the four sextics

a. \/yzt + u*Jx = 0,

/3 *Jlztx + u*Jy = 0,

7 \/txy + u\/z = 0,

u^t = 0,
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cut out by four quadrics, one through each conic of a Gopel tetrad,

and the same plane section of the quadric containing the four

conies. They pass by threes through the pairs of points u = 0,

x = 0,
&amp;lt;/&amp;gt;

= 0, etc., and the remaining twenty-four intersections lie

by fours on the six concurrent planes

91. SEXTICS THROUGH TEN NODES.

The sextics of a family of the second kind are cut out by cubic

surfaces passing through three concurrent conies. The number of

conditions for the cubic is sixteen, leaving four linearly inde

pendent surfaces.

The sextic passes through the ten nodes not lying on the trope

which completes the Rosenhain tetrad, and therefore has three

contacts with this plane and one contact with every other trope.

The same is true of the inscribed cubic which therefore contains

three lines lying in one trope.

Two curves of the same family cut at ten nodes and at four

other points. The two inscribed cubics Slt S.2) and the cubic S

containing both curves, all touch ^E&amp;gt; at the same four points, and

further we have the identity

where G is a quadric. This shows that the twenty-seven common

points of the three cubics are singular points on 6r&amp;lt;E&amp;gt;
= 0. Now

the four contacts count for sixteen intersections and ten more are

at ten nodes of &amp;lt;!&amp;gt;

;
there remains one not lying on O which must

be a node on G. Hence G is a cone circumscribing $ and $2 along
the residual cubic intersections with S.

Again points common to S, G, &amp;lt;E&amp;gt; are singular points on

S^ = 0. These include the four points of contact of $x and S2

with
4&amp;gt;,

each counted four times, and four more on each sextic

which are therefore nodes on $j and $2 .

Since the inscribed cubic has .four nodes the lines joining them
lie entirely on it and therefore touch &amp;lt;1&amp;gt; where they cut the sextic

of contact. Hence the four nodes are the corners of a tetrahedron

inscribed in
4&amp;gt;,

whose edges touch &amp;lt;&. The six edges are torsal

lines on the nodal cubic surface and the six pinch planes cut the

surface in three lines cutting the pairs of non-intersecting torsal

lines and lying in a tritangent plane. The cubic possesses only
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one tritangent plane beside those containing the nodes, and in the

present case this has been shown to be one of the tropes of 4&amp;gt;*.

In order to construct the nodes of an inscribed cubic surface

we have only to take any three points on one conic of &amp;lt;3&amp;gt; and draw

the six tangent planes through pairs of them. These planes meet

by threes in the four points required. Thus an inscribed tetra

hedron whose edges touch &amp;lt;J&amp;gt; can be constructed in oo 3

ways~f*.

S 92. OCTAVIC CURVES THROUGH EIGHT NODES.o

There are thirty-two families of three different kinds. The
first is the family of complete intersections with quadric surfaces,

and is of no particular interest. It is represented by an even

equation of order four and zero characteristic, containing ten

terms.

Corresponding to each of the thirty octads is a family of

octavics cut out by cubic surfaces passing through any one of the

four pairs of conies containing the octad. There are eight terms

in the equation. Four linearly independent curves of the family
are given by a pair of conies and any plane section

;
let xt = and

yz = be two pairs of planes containing the octad, then the

equation of the family can be written in the form

(ax + by + cz + dt) v xt + (ax + b y + c z -f d t) ^lyz
= 0,

or u \/xt + v \lyz
= 0.

Evidently the four points in which the line u = = v meets &amp;lt;& lie

on this curve, so that the line is a quadruple secant.

The octavic passes through an octad of nodes and therefore

meets each of an octad of tropes at four nodes and two contacts,

and each trope of the associated octad at two nodes and three

contacts. The inscribed quartic surface has eight tropes of &amp;lt;l&amp;gt; for

tritangent planes.

The planes xyzt
= form a Gopel tetrahedron of tropes and so

the equation of &amp;lt;I&amp;gt; may be taken to be

xyzt
=

&amp;lt;/&amp;gt;

2

and then the inscribed quartic is

u?xt 4-
2uv&amp;lt;f&amp;gt;

+ v*yz
=

having the quadruple secant for a double line
;
there is a pencil of

quartics

xyzt
-

&amp;lt;

2 + X (u?xt + 2uv&amp;lt;f&amp;gt;
+ v*yz)

=

* These theorems are easily proved by taking the tetrahedron of nodes for

reference. t Humbert, Liouville, ser. 4, ix, 103.



91-93] OCTAVIC CURVES THROUGH EIGHT NODES 159

all touching &amp;lt;3&amp;gt; along the same curve. By writing this equation in

the form

(yz + \u2

) (xz + Au2

) -(&amp;lt;/&amp;gt;- \uvf =

we see that the surface has eight nodes, common to three quadrics ;

for X = oo the nodes coincide by pairs, at the pinch points on the

nodal line u = = v.

The fact that the inscribed quartics have eight nodes on the

octavic curve of contact can be inferred from the identity

for each of the twelve common points of contact of S1} S2) &amp;lt;J&amp;gt; is

counted four times among the points common to S, G, &amp;lt;I&amp;gt;, leaving

sixteen singular points of S2 + G&amp;lt;&
= to be divided between

S, and S,.

93. OCTAVIC CURVES THROUGH SIXTEEN NODES.

The remaining family is represented by an odd equation of

order four and zero characteristic, and the curves are cut out by

quartic surfaces through an odd tetrad of conies. The surfaces

must be made to pass through the four corners of the tetrad

and six more points on each conic, making twenty-eight con

ditions
;
now a quartic surface contains thirty-five terms, but for

purposes of intersection these terms are connected by one linear

relation (
I&amp;gt;
= 0. Hence the family contains six linearly inde

pendent curves. We have already had examples of these curves

in the principal asymptotic curves (p. 62) and in the curves of

contact of inscribed Kummer surfaces (p. 66).

Two curves of the family cut in eight points other than nodes;

at these points the inscribed quartics touch. The identity

shows that the sixty-four points common to Si, S2 ,
S are singular

points on G3&amp;gt;
= 0. Of these, thirty-two are accounted for by the

intersections of the octavic curves and sixteen are at the nodes

of
&amp;lt;&amp;gt;;

hence the remaining sixteen are nodes of G, which is

therefore a Kummer surface. Similar reasoning shows that Si

and $2 have also sixteen nodes each. Hence the quartics touching
a given Kummer surface along an octavic curve passing through
all the nodes, are also Kummer surfaces. Of these inscribed

quartic surfaces ten have double lines and are Pllicker surfaces

(p. 68). Hence the octavic has ten quadruple secants.



CHAPTER XV.

WEDDLE S SURFACE.

94. BIRATIONAL TRANSFORMATION OF SURFACES.

Let P, Q, R, S be any four homogeneous polynomials in

x, y, z, t, of the same degree. The equations

X/P = Y/Q = Z/R = T/S

establish a correspondence between two spaces: to any point

(x, y, z, t) of one space corresponds one point (X, Y, Z, T) of the

other, and to the latter correspond the n variable points common
to the three surfaces

A special case occurs when n = 1. The correspondence is then

unique and therefore rational both ways, and the equations con

stitute a rational transformation between two spaces*.

If (x, y, z, t) describes a surface

f(x, y, z, t)
= 0,

the corresponding point (X, Y, Z, T) describes a surface

F(X, Y,Z,T) =

into which/ is transformed. The plane sections

aX + bY+cZ+dT=0
correspond to the linear system of curves cut out on f by the

family of surfaces

aP + bQ + cR + dS = 0.

In general those curves of this system which pass through an

assigned point do not all pass through another point : accordingly

to a point (X, Y, Z, T) on F determined by three planes corre

sponds on f the unique point common to the three corresponding

curves of the linear system. In other words the correspondence
*

Cayley, vn, 189.
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between the two surfaces is unique, and therefore by means of

the equation /= the equations of transformation can be solved

for x, y, z, t rationally in terms of X, Y, Z, T. For fchis reason

the transformation between the two surfaces is called birational.

If a simple point of / is a multiple base point, we have

approximately

and the denominators can be expressed as rational m-ic poly
nomials in y/x\ hence the base point is transformed into a

rational m-ic curve. More generally, if the point has multiplicity

m on /, the corresponding curve is of order mm . For example,
a node on / at which the tangent cone is expressible para-

metrically in the form x = yjO = z/0
2

is transformed into a rational

2m-ic curve. An important exceptional case is when the cones

Pm = 0, Qm = 0, Rm = Q, Sm = have a common generator; taking
this to be x = 0, y = 0, we find that after substitution the highest

power of is ^2m
~1

,
and in this case the node is transformed into

a rational (2m l)-ic curve. Thus, for example, a node through
which all the surfaces of the family pass is in general transformed

into a conic, but if it lies on a simple base curve it is trans

formed into a straight line.

Next consider a simple curve on f which is a simple base

curve for the family of surfaces. At any point of it, the tangent
line being x = Q = y )

P1} Qlt Rlf /Sfj are linear in x and y only,

and for near points on /, yfx has one value, so that the ratios

PI : Qi : HI : Sl are definite. There is therefore a unique corre

sponding point on F, and its locus represents the base curve. More

generally, if a m-ple base curve is m -ple on /, yjx has m values

giving m points on F lying on a rational m-ic. The locus of

these points is a simple curve on F corresponding to the multiple
curve on/

If only oo 2 surfaces of the family pass through a simple curve

on/, we may take three of them to be P, Q, R: then the whole

curve is transformed into the single point X= Y=Z=0. The

multiplicity of this point is equal to the number of ratios

X : Y : Z satisfying

corresponding to points (x, y, z) in the neighbourhood of the

curve, and this is equal to the number of points in which

the curve cuts the residual intersection of /= with

aP + bQ + cR = 0.

H. 11
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The transformation depends on the linear system of curves

and not on the particular surfaces cutting them out, for these

may be modified by means of the equation f 0. The degree
or number of variable intersections of two curves of the system
is equal to the number of intersections of two plane sections of

the new surface, that is, its order, and further, for the trans

formation to be possible the dimension or multiplicity of the

system must be at least three.

Let the points oc y = z = 0, X = Y = Z=0 correspond on

the two surfaces / and F. Put t = l, T=l, and let P, Q, R, 8
be expanded in series of homogeneous polynomials in cc, y, z, of

degrees indicated by suffixes, thus

R = R 1 + R 2 + . . .,

flf -.&+&+&+..
since (0, 0, 0) is not supposed to be a base point. From this it

is obvious that the tangent cone at a multiple point on / is

linearly transformed by the equations

into the tangent cone at the corresponding point on F, so that

corresponding points have the same multiplicity.

Next, let (0, 0, 0) be a simple base point, so that $ = 0. We
now have approximately

and by means of the equation of the tangent plane to f the four

denominators can be expressed as linear functions of x and y.

Hence to the pencil of tangent lines to / correspond the points

of a straight line on F, that is, a rational curve of order 1, as

was shown before.

95. TRANSFORMATION OF RUMMER S SURFACE.

Among the birational transformations of a given surface the

most useful are those in which the order of the new surface is

as low as possible, and also the order of the surfaces employed
in the transformation. We require a linear system of curves

having as many intersections as possible at base points : so we

shall consider only those systems which are contained in the
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families of curves already investigated, the number of variable

intersections being further diminished by fixed multiple base

points*.

The base points of the system may be of three kinds, ac

cording as they are at base nodes of the family, or at other nodes,

or at ordinary points. In the first case, if the curve be cut out

by a surface passing through 2t 1 concurrent (t
=

1, 2, 3) conies

and having a (X + )-ple point, the multiplicity of the point on

the curve will be 2X + 1. To find the number of coincident

intersections of two such curves we employ the principle of

continuity, and vary the two surfaces until each tangent cone

breaks up into planes ;
t 1 of these planes may be supposed

to contain the tangent lines to 2 2 conies, and may be thrown

off. We are left with X + 1 planes through the node of which one

passes through the tangent line to a conic. Hence the number
of coincident intersections of the two curves is

2X2 + 2X + 1,

and the consequent reduction of degree is 2X(X + 1).

In the second case, the curve must have a point of even

multiplicity 2/&amp;lt;t,

the surface cutting it out having a /Lt-ple point.

The number of coincident intersections of two curves of the

system is the number of coincident intersections of three cones

of orders
JJL, JJL, 2, that is, 2//,

2
,
and this is the corresponding re

duction of degree. Thirdly, a z/-ple point at an ordinary point

gives v*- coincident intersections.

Now if the curves of the family are of order 2n and pass

through 2s base nodes, the degree of the family is n2 s (p. 148) ;

hence the degree of the new system is

2s 16 - 2s

N=n*-s-2 (2X
2 + 2X)

- 2 2//,
2 -

2i&amp;gt;

2
,

2s 16 -2s

so that 2N = 2n2 - 2 (2X + I)
2 - 2 (2/x)

2 - 22z/
2

.

A birational transformation of Rummer s surface is effected

by means of four linearly independent curves of this system, and

is therefore possible only if the dimension is sufficiently great.

It is necessary to determine the number of conditions that curves

of a given family may have assigned singularities. In the first

case, since the 2s base nodes may be treated alike, we require
the number of conditions that the curve cut out on Kummer s

surface 4&amp;gt;
= 0, by a surface F=Q, may have a (2X + l)-ple point

*
Cf. Humbert, Liouville, ser. 4, ix, 449, who obtains the same results by trans

cendental methods. See also Hutchinson, Amer. Bull, vn, 211.

112
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at a node on a conic through which F passes. Take this node

for origin and the tangent to the conic for axis of z. If F has

a &-ple point the number of conditions for a (& + l)-ple point is

since the term z^ is absent. Hence when F is arbitrary, subject

only to the condition of passing through the conic, the number

of conditions for a (X + l)-ple point is

But as far as the curve of intersection is concerned the surface

F= may be replaced by F+ G&amp;lt;&
=

0, and the arbitrary coeffi

cients in of the terms of order ^ X 2 may be used to satisfy

of these conditions. We are left with X(X-fl) conditions among
the coefficients in F alone.

In the second case, the terms of order ^ /JL
1 in F 4- G3&amp;gt;

must disappear at a node of
&amp;lt;,

and for this the terms of G of

order
&amp;lt; /A 3 may be used, leaving

i/*(/4 + !)(/* + 2) -(/*- 2) (/* -!)/* = /*&amp;gt;

conditions among the coefficients in F alone.

In the third case, the terms of order
&amp;lt;

v 1 in F + G3&amp;gt; must

disappear at a simple point of
&amp;lt;E&amp;gt;,

and for this the terms of G
of order ^ v 2 may be used

;
the number of conditions for F

is therefore

!( + !)(*, + 2) -1&amp;lt;&amp;gt;-1&amp;gt;&amp;lt;&amp;gt;
+ 1X =ii/(* + l).

Now (p. 148) the dimension of the family is 1 + J(w
2 s

)&amp;gt;

an&amp;lt;^

therefore the dimension of the new linear system determined by
the preceding three kinds of base points is

D = 1 + 1
(71
2_ 8)

_ | X (\ + 1)-
6

sV - 2^0 + 1).

Hence N -W = - 2 + 2v.

Now for the transformation to be possible we must have

and therefore N 5 4 + ^v.
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96. QUARTIC SURFACES INTO WHICH RUMMER S SURFACE

CAN BE TRANSFORMED.

The last result shows that when N = 4, %v = 0, and therefore

every v = 0, that is, for a birational transformation (of Kummer s

surface) into another quartic surface, all the base points must be

at nodes*. Further, the multiplicities at the base points must

be (p. 163) so chosen that

2s 16 - 2s

2(2X + 1)
2 + 2 (2^)

2 = 2?i
2 -

8,

and then the dimension of the system is exactly 3, so that in this

case the linear system of curves by which the transformation is

effected is complete, for it is determined entirely by its base points.

We now attempt to satisfy this equation for different values

of n and s, that is, we have to express Zn2 8 as the sum of 2s

odd squares and 16 2s even squares.

Taking n = 2 we must have s = 0, /a
= 0, and we get the

general linear transformation.

Taking n = 3, s = 3 the only possible way is

1 + 1 + 1 + 1 + 1 + 1+4 = 10,

and the transformation is effected by sextic curves passing

through six coplanar nodes and having a double point at one

other node
;

these are cut out by quadrics through one conic

and a seventh node. This is projectively equivalent to in

version f.

Next, taking n = 3, s = 5, 2 (n
2 -

4) = 10. The only way is

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 10,

and the transformation is effected by sextic curves passing

through ten nodes and cut out by cubic surfaces through three

concurrent conies. This leads to the surface which is considered

in the next section. It may be remarked that this is the only
case in which the family of curves receives no additional base

points, for the condition for this is

2s = 2
(?2

2 -
4),

or ?i
2 = s + 4,

* This theorem follows at once from the fact that the rational curve into which

a base point, not at a node, is transformed, lies on an &quot;adjoint&quot; surface of order

tf-4,

t Nother, Math. Ann. in, 557; Cayley, Proc. London Math. Soc. in, 170; Coll.

Papers, vii, 230.
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and since s can have only the values 0, 1, 3, 4, 5, 8, the only
admissible value is 5=5, giving n = 3.

Any two of the cubic surfaces cut in three conies and a

variable cubic curve passing through the point of concurrence
of the conies. This curve cuts each conic in two other points and
therefore of its nine intersections with a third cubic surface, eight
are on the base curves, leaving one variable intersection.

This is a particular case of the lineo-linear transformation

considered by Cayley (Coll. Papers, vn, 236) and Nother (Math.
Ann. in, 517).

97. WEDDLE S SURFACE*.

We now consider in detail the surface W into which Rummer s

surface &amp;lt;l&amp;gt; is transformed by means of sextic curves passing through
ten nodes (cf. p. 157). These will be termed even nodes (123 . 456),
etc. as distinguished from the remaining six 1, 2, 3, 4, 5, 6 which are

odd, and lie in the trope #
,
in the notation of pp. 16, 18, 140.

By the general theory of transformation, the six odd nodes, not

being base points, become nodes on the new surface W, while the

ten even nodes become straight lines.

The trope # meets every sextic of the family at three points
of contact. Hence the conic in %Q is transformed into a curve

which cuts every plane section of W in three points. Since it

passes through the six nodes of W it must be the unique cubic

curve determined by them.

Any other trope, a?12 ,
meets every sextic at four nodes and one

point of contact. Hence the conic in #12 is transformed into a

straight line joining the two nodes on W corresponding to the two

nodes common to # and #12 .

Through each of the ten even nodes (123.456) pass two sets

of three tropes x^, #31 ,
#12 and xm ,

xu ,
x45 ,

each of which forms with

XQ a Rosenhain tetrad. The two sets of three conies are reducible

sextics of the family and correspond to the plane sections of W
through the nodes 1, 2, 3 and 4, 5, 6 respectively. The node

(123.456) is transformed into a line which must lie on both of

these planes. Hence W contains the ten lines of intersection

of two planes containing all six nodes, and these lines correspond
to the ten even nodes of Rummer s surface.

*
First mentioned by T. Weddle, Camb. and Dubl. Math. Jour. (1850), v, 69, note.
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We have now established the following correspondence between

the two surfaces.

Rummer s surface

six odd nodes

ten even nodes

fifteen conies

one conic

sextic through even nodes

plane section

W
Weddle s surface

six nodes

ten lines in planes of three nodes

fifteen joins of nodes

cubic through nodes

plane section

sextic

Let p, q, r, s be four products of three linear forms #12 . . . such

that each completes with XQ a Rosenhain tetrad and such that

\fp, V&amp;lt;?&amp;gt;
Vr &amp;gt; Vs are linearly independent on &amp;lt;l&amp;gt;. Then the equations

of transformation may be taken to be (cf. p. 143)

For example if the matrix of linear forms (p. 29) is

# x y
x y

we may take

p xy z, q
= xyz, r = x y z, s = xyz.

The section of W by a quadric surface

F(X, Y,Z, T)=0

corresponds to the curve on &amp;lt;E&amp;gt; given by

an equation of order six, zero characteristic, and even, representing

a curve of order twelve, the complete intersection of a cubic

surface passing through the ten even nodes. If the quadric

F(X, F, Z, T) = passes through any of the nodes of W, the

cubic surface passes through the corresponding odd nodes of &amp;lt;.

Hence a quadric through all the six nodes of W corresponds to

a cubic through all the sixteen nodes of O, that is, to the polar

surface of any point, and therefore to a plane section of the

reciprocal surface. Now the reciprocal of a Kummer surface

&amp;lt;1&amp;gt; is another Kummer surface &amp;lt;3&amp;gt;

,
and so we have deduced a
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birational transformation between &amp;lt;3&amp;gt; and W by means of quadric
surfaces through the six nodes of W*.

In order to reverse this transformation we require the curves

on &amp;lt;3X corresponding to the sextics on
^&amp;gt;,

that is the reciprocals

of the developables circumscribed to 3&amp;gt; along a sextic. The en

veloping cone from any point touches 4&amp;gt; along a curve of order

twelve, passing through all the nodes and cutting any one of the

sextics, along which a cubic surface can be inscribed, inJ3.12 = 18

points. Of these ten are at nodes, leaving eight variable inter

sections. Hence the class of the developable is eight. Of the

tropes, XQ touches the sextic at three points and is therefore a

triple plane of the developable ; every other trope touches the

sextic once. Hence the corresponding curve on &amp;lt;X&amp;gt; is an octavic

which passes through all the nodes, and has a triple point at one

of them. This is the case of birational transformation when
ft = 4, s = 8; the number 2n2

8, = 24, must be expressed as the

sum of sixteen odd squares, and this can be done in only one way
1 + 1 + .. . + 1 + 9 = 24.

The surfaces cutting out these curves are quartics through a

Rosenhain tetrad of conies having a node at one of the nodes of
&amp;lt;I&amp;gt;,

other than a corner of the tetrahedron. It may easily be verified

that three surfaces of the system cut in only one arbitrary point.

We do not give an independent investigation but give re

ferences to the literature of the subject. We are concerned with

the surface as a birational transformation of Kuturner s surface,

and in this view all its properties may be deduced from known

properties of Rummer s surface. Attention must be called to the

correspondence between the sheaves of lines through the nodes

of W and the six quadratic congruences of bitangents on
&amp;lt;l&amp;gt;,

which

may be explained as follows.

Two quadrics through the six nodes of W cut in a quartic

curve which cuts W in sixteen points of which twelve are counted

at the nodes. The remaining four points correspond to the four

points of intersection of &amp;lt;E&amp;gt; with the line common to the planes

corresponding to the two quadrics. Since tangent planes to 3&amp;gt;

correspond to cones through the six nodes of W, a bitangent to &amp;lt;I&amp;gt;

corresponds to the intersection of two cones, each of which passes

through the vertex of the other. Their quartic intersection must

therefore break up into the line joining their vertices and a twisted

* For this transformation consult De Paolis, Memoire Lincei, ser. 4, i, 576
;

Rendiconti Lincei, ser. 4, vi, 3.
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cubic. Since the complete intersection passes through all the

nodes, the cubic must pass through five of them, and the straight

line through the sixth. Hence any two points on W collinear with

a node correspond to the points of contact of a bitangent to &amp;lt;l&amp;gt;.

The theorems already proved for bitangents can be at once carried

over, for example :

Complete quadrilaterals can be inscribed in W having two

opposite corners at nodes.

By successively projecting any point of W from the nodes,

on to W, and also the projections, a system of only 32 points is

obtained*.

98. EQUATION OF WEDDLE S SURFACE.

Let P = ^Prsxrxs
=

Q = 2Qr.^, =
(r, s =1,2, 3,4)

R = ^Rrsxrxs
= (Pr8

= Psr etc.)

S = ^Srsxrxs
=

be four linearly independent quadrics passing through six points ;

then every other quadric through the same points is obtained by

linearly combining these in the form

aP + bQ + cR + dS = 0.

Any surface

W(xl} x.2 , #3, #4)
=

is transformed, by taking P, Q, R, S as new point coordinates, into

a surface

V(P,Q,R,S) = 0.

To any point (P, Q, R, S) on ^P corresponds a point (xl ,
x2) #3 ,

#4)

or briefly (x) on W, and another point (x ), forming with (a?) and

the six base points a group of eight associated points. The locus

of (x} is another surface ir = 0, and there must be an identity
of the form

(P, Q,R,S)=WW
after both sides have been expressed in terms of a?1} #2 &amp;gt; %s&amp;gt;

xt-

The locus of a point (x) which coincides with the eighth
associated point (x) is the Jacobian surface

d(P,Q,R,S)J = ^-, i = U.

ao1; #2 ,
#3 ,

a?4)

*
Baker, Proc. Lond. Math. Soc., ser. 2, i, 247.
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Now J=0 is the quartic surface* which is the locus of the

vertices of cones passing through the six base points of the

family

for the conditions for a cone with vertex at (x1} x2 ,
#3 ,

#4) are

adP/dxs + bdQ/dxs + cdR/dxs + ddS/dxs
=

(s
= I, 2, 3, 4)

and on eliminating a, b, c, d we get J= 0, and from this it follows

at once that J contains the fifteen joins of the six points and the

ten lines of intersection of two planes containing all the points.

If W is the surface considered in the preceding section, J and W
intersect in twenty-five lines, and therefore coincide

;
and then

W, which passes through all points common to J and W, also

coincides with J. M* is then the surface &amp;lt;E&amp;gt; reciprocal to the

Kummer surface first considered and we have the important

identity -f

1

which admits of direct verification.

Let four of the base points be taken for tetrahedron of reference

and let the remaining two be (e^ eZ} es ,
e4) and (/i,/2,/3,./4). Then

the equation of Weddle s surface can be expressed in the con

venient formj:
=

/.

/3

X 6 /4

which is the same as ^e
fifs ^/xs

= Q where f=0 are the four

planes through the line e/and the corners of reference.

The values of a : b : c : d derived from the four equations

-(aP + bQ+ cR + dS)=*Q (s
= I, 2, 3, 4)

UXS

are the coordinates of a plane section of &amp;lt;!&amp;gt; which corresponds to

a cone of the family of quadrics, that is, of a tangent plane of

&amp;lt;J&amp;gt; . Hence the result of eliminating xlt x2 ,
#3 ,

x4 is to give the

*
Darboux, Bull, des Sciences math. (1870), i, 348; Caspary, ibid. (1887), xi,

222
; Hierholzer, Math. Ann. iv, 172.

t Proved otherwise by Schottky by a beautiful piece of reasoning, Crelle,

cv, 238.

t Caspary, Comptes Rendus, cxn, 1357. Hutchinson, Annals of Mathematics,

xi, 158.
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tangential equation of &amp;lt;&amp;gt;

,
which is the same as the equation of

the reciprocal surface &amp;lt;I&amp;gt; in point coordinates a, b, c, d. We
thus obtain the equation of Kummer s surface in the form of

a symmetrical four-rowed determinant each element of which is

linear in the coordinates. If the base points are taken as in

the last paragraph the elements of the leading diagonal are zeros,

and the equation has the form

z y x

z x y

y x z

x y z

which is the same as

Jxa! + */yjjf 4- *1zz = 0,

where the letters represent linear functions of the coordinates

a, b, c, d. In fact

etc. Making use of the fact that the points (e) and (/) are base

points we find that x, y, z, x, y ,
z are connected by the two

relations

+ e l e2 z + e^e^x + e2ey + e^z = 0,

which are of the kind required to make the general 14-nodal

surface have two additional nodes (p. 88).

Incidentally we notice that the Jacobian of four quadrics

having four, five, or six common points is birationally transformed

by means of these quadrics into a surface whose reciprocal is

a quartic surface having fourteen, fifteen, or sixteen nodes

respectively.

On solving the first three of the four equations

dx&

for a-j \ x^\ x^\ x^ we find

#x #2

Zxyz
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where $ = xx yy zz

x = - xx + yy
- zz

ty
= xx yy + zz

and the equation of Rummer s surface is expressible in the

equivalent forms

we observe that the denominators represent linearly independent
cubic surfaces containing the three concurrent conies in the tropes

a? = 0, y = 0, =
;

this agrees with the first method of trans

formation.

Again, on solving the same three equations for a : b : c : d we
find these coordinates proportional to cubic functions of xlt %2 ,

xS) #4

vanishing on the three lines x = 0, #1&2#3
= 0, and on a cubic curve

lying on Weddle s surface. Thus plane sections of Rummer s

surface correspond to sextic curves on Weddle s surface.

Caspary* gives the equation in terms of the tetrahedra whose corners are

the nodes A, B, C, D, E, F and any point P of the surface, namely

PABC. PAEF. PBFD . PCDE=PBCD . PCAE. PABF. PDEF.

Cayleyt gives the equation

3 (xp3+zpl
-

Zf] dF/dx+ (2zp.2
-

tp^) dF/dy+ (xp^
- %

+ 3

where F= Qxyzt

and the six nodes are given by

A parametric expression of the surface is

x : y : z : t= U+ V : vU+uV : v2
,

where U*=f(u\ F2
=/(;). (Richmond.)

* Darboux Bulletin, xv, 308.

t Coll. Papers, vn, 179.



CHAPTER XVI.

THETA FUNCTIONS.

99. UNIFORMISATION OF THE SURFACE.

It is shown in the second chapter (p. 19) how the coordinates

of any point on Kummer s surface may be expressed in terms of

two parameters, which we now call x and x
, by functions which are

algebraic, but not uniform, since they involve the radicals

V(a?
-

Id) (x
- &2) (x

- ks) (x k4) (a; ks) (x k6), .

and \/(x ki) (x kz) (x ks) (x
f

k4) (x k5) (x
f

ke).

In other words, the points of &amp;lt;l&amp;gt; are represented uniformly by pairs

of points on the curve

f=f(x) = (x- /O (x
- k2) (x

- k3) (x
-

k&amp;lt;) (x
- k-) (x

- &6),

that is, by four variables, x, y, x, y ,
connected by two relations.

If, then, we can express these four as uniform functions of two

parameters, the uniformisation of the surface will be effected.

This is done by means of the integrals fdx/y and jxdxjy,

which are finite when taken along any portion of the curve.

With arbitrary lower limits x
,
x

,
we put

rx rx

V!= dxjy + dx ly ,

J X J X

rx rx

V2
= xdxly+ x dx jy ,

J *o J aV

and then invert, that is, solve these equations for x and x. It can

be proved that x + x and xx are uniform periodic functions of

Vi and vz . The latter property is obvious since the integrals are

indeterminate to the extent of additive multiples of their values

when taken round the loops of the curve.
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The theta functions, in terms of which the solution of the

inversion problem may be expressed, arise in the attempt to

construct periodic functions of two arguments in the form of

doubly infinite series of exponentials. In the next section they
are shown to give a uniform parametric representation ;

at present
let the result of inversion be

If vl and 2 are connected by the relation

the second integrals disappear and we have

rx rx

v l
=

I dxjy, 2
=

xdxjy,
*

CCft
J #()

so that the elimination of x from these two equations leads to

&amp;lt;f&amp;gt; (vi, VZ)
= ^QJ an equation which is really independent of # .

Thus the coordinates of any point on the sextic y^ f(x) can

be expressed in the form

3(&amp;gt; 0(j) vd)

#! and 2 being connected by

Now any quartic curve with one node can be transformed

birationally into a sextic of this kind, and the ks are projectively

related to the tangents from the node. Since the six bitangents

through any point of the singular surface of a quadratic complex
are projectively related to the coefficients in the canonical equa
tion of the complex, it follows that all the tangent sections of

Rummer s surface can be transformed birationally into the same

sextic and therefore into one another, and can be uniformly

represented in terms of the same pair of integrals.

The chief use of this representation of plane curves lies in the

application of a particular case of Abel s theorem. Namely of the

result that the sum of integrals

2
( (ax+b)dxly
J X*

has a constant value when the summation is extended to all the

intersections of the sextic

f =/O) = (x
-

&!&amp;gt; (x
- k2) (x

- k3) (x
- k4) (x

- ks) (x
- k6)



99-100] UNIFORMISATION OF THE SURFACE 175

with a variable algebraic curve of given order. The same theorem

is true for any curve into which the sextic can be transformed

birationally. The proof is elementary and may be given here. In

the equation of the variable curve substitute f(x) for y
2 so as to

reduce it to the form

and let the symbol 8 refer to a change in its coefficients. The

intersections are given by

F(ff)5f-/f -0,

whence, on slightly varying the curve, the corresponding change
in each intersection is given by

F O) fa + 2&amp;lt;ty
- fZ^ty = 0,

which is the same as

fa/y= 2(&amp;lt;/&amp;gt;S^

-
&amp;lt;fy$)IF (x).

Now S (ctsc + b)((f)$ty tyScf)) /
F (%) vanishes when the summa

tion is extended over all the roots of F(x) = because the degree
in x of the numerator is at least two less than the degree of F(ac).

Hence

which proves the theorem.

100. DEFINITION OF THETA FUNCTIONS.

The functions which uniformise Rummer s surface are known
as theta functions*. We shall define them by their explicit

expressions, and deduce their chief properties from these alone.

One of the greatest advances made by Jacobi in the theory of

elliptic functions was the introduction of the singly infinite series

X exp (an
2 + Znu) as a uniform entire function possessing certain

periodic properties. It is convenient to modify this slightly and

write

(u)
= 2 exp (27rinu + Trim2

),

the summation extending over all positive and negative integer
values of n, and T being any complex constant whose imaginary

part is positive, to ensure convergence. There are three other

functions, ap, connected with this one and obtained from it by

* For information concerning these functions beyond what is required for the

present purpose, and for references to the original authorities, see Baker, Abelian

Functions (1896) ; Krazer, Lehrbuch der Thetafunktionen (1903).
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replacing n by n + Ja and u by u + ^j3, where a and ft may be

either or 1
;
the ratios of these single theta functions are elliptic

functions.

We can generalise 0(u) without altering its formal expression,

by interpreting the letters differently, n and u are now to be

row-letters (see p. 25) and r a symmetric square matrix, and

we then have a multiply infinite series and a function of several

arguments. In the case of a double theta function the general

exponent, written in full, is

2-Tn (%! + n zuz) 4- iri (r^n* -f 2r12 ft1n2 + T22 ?i2
2

),

and the summation is extended over all integer values of n^ and

nz . The condition for convergence is that the coefficient of i in

Tn^i
2 + ^Ti2 n1n 2 + r22 n 2

2 must be positive and not vanish for any
values of n^ and ?? 2 other than ?i 1

= ?? 2 =0.

With this 6 (u) are associated fifteen other functions #
a|3 (u),

obtained from 6(u) by replacing n^ ?? 2 , u^, u2 by Wj + -J^, n z + -J- 2 ,

MI + i&&amp;gt; ^2 + ift respectively, where 1} 2 , A, & are integers. It

is evident that these sixteen theta functions, being functions of

only two arguments, must be connected by a great many relations.

We proceed to find all these relations by elementary algebra and

to coordinate them systematically by bringing them into connec

tion with the orthogonal matrix considered in 16.

101. CHARACTERISTICS AND PERIODS.

By definition

6ai, (u)
= 2 exp {2-Tn (n + a) (u + J0) + THT (n + i) 2

} ,

in which r is a two-rowed symmetrical matrix,

Tn
(

\

r rT T

and all the other letters are row-letters, standing for pairs of

letters distinguished by suffixes 1 and 2. The summation is for

all integer values of % and ?? 2 ,
from oo to + oo . i and 2 are

integers which may be taken to be either or 1, since the integer

parts of Jet may be absorbed in n; ft and /32 are also integers, and

since the addition of even integers to $ can at most change the

sign of the function, it will generally be supposed that ft and ft

are either or 1. This being so, the matrix

fdl 2

is called the characteristic of the theta function, and will be indi

cated by the suffix a/3. In accordance with the usual matrix
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notation aft denotes 0ti& + ttl&)
and the parity of the function

depends on the value of this expression ;
for by taking a new pair

of summation letters n
,
= n a, we change the order of the

terms without altering the value of the function, since the series is

absolutely convergent ;
the general exponent is now

2iri (n +a)(-u- 1/3) + irir (n + J a)
2

,

from which it follows that

M- *) = (-)* ft* (&quot;&amp;gt;

A pair of quantities ra + fi, that is

is called a period on account of the periodic properties

@ap (u + TO) = ( )
5/J

exp ( 27riau - TnYa 2

) a/3 (u).

The first of these is easily verifiable
;

the second depends on

taking n + a for a new pair of summation integers ;
thus the

typical exponent on the left is

2iri (n + J a) (u + ra + %j3) + TTIT (n + \ a)
2

= 2-Tri (n + \ a) (u + i/3) + irir (n + Ja + a)
2 -

= 2iri (n
f + Ja) (u + J/3) + TTIT (?i

7 +
-|- a)

2 -

where n = n + a, and this is the typical exponent on the right.

There are sixteen different characteristics, since each of the

four elements crl5 2 , &, /32 , may be or 1. The one in which all

the elements are is called the zero characteristic. Corresponding
to these there are sixteen half periods ^ (rot. + 0), and no two

differ by a period. Any other half period differs by a period from

one of these, and is said to be congruent to it. There are therefore

only sixteen incongruent half periods. The effect of adding a

half period to the argument of a theta function is to change the

characteristic and multiply by a non-vanishing function. The
formula

^ (u + ^TCL + J/9)
= exp {- iria (u + ^/3 + %p + Jra)} &amp;lt;9a+

,^ (u)

is easily verified by comparing the exponents for the same values

of n, which are identical. We may say that the addition of half

periods interchanges the thetas except as to exponential factors.

Of the sixteen characteristics six are odd and ten are even.

Hence six thetas are odd functions and vanish for u = 0. By
adding the corresponding half periods to the arguments it follows

from the last formula that the theta with zero characteristic

H. 12
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vanishes for six half periods. Whence since the sum of two half

periods is a half period, every theta vanishes for six half periods.

There is a close connection between the squares of the sixteen

thetas and the sixteen linear forms considered in 15. Accord

ingly we adopt a notation for the characteristics which brings out

clearly the analogy. This is sufficiently indicated by the schemes

so that the six odd thetas are

The addition of characteristics is effected by the addition of

corresponding elements
;

after addition odd numbers are to be

replaced by 1 and even numbers by 0. Hence, from either of the

above schemes,

In other words, the symbols a, b, c, d, whether they stand for

a or for ft, obey the addition table

bed

which has a similar form to the multiplication table when a, b, c, d

denoted a group of operations (p. 7). The sixteen character

istics can therefore be arranged in the form of an addition table :

dd ac ba cb

ab

be

ca

da cc bd

cd db aa

bb ad dc
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It is evident that the half periods \ (rot. -4- /3) obey the same

laws of addition as the characteristics, and since dd vanishes when
u = ^ (TCI + b), etc., which are the half periods corresponding to the

other symbols in the same column and row as dd, it follows that

the same is true for any other 0, that is to say

if a/3 and of /3
f

lie on the same row or on the same column. Hence
what was before an incidence diagram becomes now a table of half

period zeros of the theta functions.

102. IDENTICAL RELATIONS AMONG THE DOUBLE
THETA FUNCTIONS*.

The general exponent in the product 6ap (u) 6ap (v} is

2iri (m + Ja) (u + J/3) + 2iri (w + | a) (v + i)
+ TTIT (m + Ja)

2 + TTIT (n + Ja)
2

= m (m 4- n + a) (u + v + /3) + iri (m n) (u v)

+ \nriT (m + n + a)
2 + ^TTIT (m n)

2
.

Now the pair of integers m, n can be of four different kinds

as regards parity, for the remainders when divided by 2 may be

a, b, c, or d respectively. Write

m + n = 2yit + a,

m n = 2v + a,

where a = a, b, c, or d. Then 6ap (u) da$ (v) may be arranged as

the sum of four series in one of which the general exponent is

2iri (/* + ^OL+^a)(u + v + l3)+ Ztri (v+%a)(u- v)

+ 27riT
(yu, + i a + J a)

2 + 2irir (v + J a)
2

.

Since the summation is now with respect to the independent

integers /JL
and v, this leads to the product of two theta functions

formed with periods 2r instead of r. If we write

@a (u)
= 2 exp {27rt (n + a) u + ^TTIT (n + Ja)

2

},

the terms in
a/3 (u) 6ap (v) for which a is the same can be summed

in the form

Hence giving a the values a, b, c, d and adding the results, we
find

ft* (u) Baft (v)
= 2 (-)*+=* 6a+s (M + v) &amp;lt;Bfe (M

-
t;)

*
Cf. Clifford, &quot;On the double theta-functions,&quot; Coll. Papers, p. 369; Baker,

Abelian Functions, p. 526.

122
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on rearranging the terms. By giving a and (3 the values a, b, c, d

we obtain a matrix of sixteen elements which is evidently the

product of the two matrices whose elements are

a+a (u v) (a, a = a, b, c, d),

and (-)? (u + v) (a, @ = a, b, c, d),

respectively. Written in full they are

c (u
-

v), Sd (u
-

v), a (u
-

v), 6 (u
-

v)

6 (u
-

v), a (u
-

v), d (u
-

v), c ( u
-

v)

a (U
~

V), b (U
-

V), c (U
-

V), d (U
-

V),

and
-

b (u + v),

-
c (u + v), + v), c (u + v\ @c (u + v)

and we recognise that they have the same form as the matrices

which were multiplied together to give the sixteen linear forms

(cf. pp. 29, 30). We infer that the sixteen products a)3 (u) #a/3 (v)

are connected by exactly the same relations as the linear forms

(a/3). In particular they can be arranged as the elements of an

orthogonal matrix

eac (U) ae (v), eba (u) eb

eda (u) eda (v\
- ecc (u) ec

cd (u) ecd (v\ edb (u) e

- ebb (u) ebb (v\ ead (u] oa

e ocb

bc ) ebc

) eca

eaa (u) eaa

edc (U) edc

From this, by giving v the values u and 0, nearly all the

relations among the sixteen functions
a/3 (u) can be deduced.

103. PARAMETRIC EXPRESSION OF RUMMER S SURFACE.

Firstly put v = u and

x = a (2u), y =
b (2u\ z =0c (2w), t = d (2M),

then 6\s (u) actually becomes the linear form denoted by (rs) in

which a, /3, 7, 8 have been replaced by a?
, y , z^ t respectively.

Hence the squares of the sixteen theta functions satisfy all the

identities which have been proved for the linear forms, and it is

unnecessary here to enumerate them in detail. Any four 6z
rs (u)

which have a common half period for a zero are linearly connected,

and all the quadratic relations which can be deduced from the
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linear forms are consequences of the statement that the sixteen

6\s (u) can be arranged as the elements of an orthogonal matrix.

Secondly put v =
;
this gives an orthogonal matrix

*f(0)0dd (tO, 0, 0,

o, eda (0) eda (v,),
- ecc (0) ecc (u\ ebd (o&amp;gt;

eM (

o, ecd (0) ecd (
U

),
edb (o) edb (u\

- eaa (0) eaa (

0,
- 6* (0) Obb (u\ 9ad (0) ad (u), Odc (0) 6dc (u)]

and the relations deduced from this show that all the irrational

equations of Rummer s surface ( 19) are identically satisfied after

the preceding substitution. Hence

are the coordinates of any point on a Kummer surface expressed as

uniform functions of two parameters u-^ and u%.

The parameters of the nodes are deduced by a comparison with

the algebraic representation. After substitution for the coordinates

the equation of any trope becomes

*()-0,
so that we may say that #

a)3 (u)
= is the equation of one of the

sixteen conies. Six of these equations are satisfied by each half

period, and accordingly the half periods are the parameters of

the nodes.

From their definitions, the functions to which the coordinates

x, y, z, t are equated are theta functions of the arguments 2u,

constructed with constants 2r instead of r. The characteristics

are ad, bd, cd, dd respectively, and are all even. Hence for all

four functions

0(-2M) = 0(2*0,

and from the periodic property

&amp;lt;B) (2w + 2ra + 2/3)
- exp (- 2-m a . 2u - 7ri2r^) (2w),

so that by the addition of a period ra + j3 to the arguments x, y, z,

and t acquire the same exponential factor. Thus the ratios of the

coordinates are quadruply periodic functions.

Every pair of values u^, u2 gives one point on the surface, but

by what has just been proved, all the values

+ u + period

give the same point. Additive periods will therefore be neglected,
and then every point on the surface has two pairs of parameters
(+ u) except the nodes which have only one.
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The addition of a half period to (u) permutes the sixteen

functions 2

a/3 (u), save for exponential factors, in the same way
as the group of operations of 4 permutes the sixteen linear

forms. Hence the collineations determined by the fundamental

complexes are effected by adding the different half periods to

the parameters.

104. THETA FUNCTIONS OF HIGHER ORDER.

A theta function of order r and characteristic (a/3) is denned

as a one- valued entire analytic function satisfying the equation

0^ (u + TOL 4- 0) = (-y#+V exp {- fair a (u + ^TOL)} 0^ (u).

Obviously when the order and characteristic are given, the sum
of any number of theta functions is another of the same kind.

Again, from this equation it follows that the product of any two

theta functions is another theta function, whose order and charac

teristic are obtained by adding those of its factors : thus

By repeating this process we find that the product of n of the

sixteen theta functions of order 1 is a theta function of order n,

whose characteristic is the sum of the n characteristics.

In consequence of the parametric expression of the surface,

the terms of the irrational equation of any curve upon the surface

become products of theta functions of the first order. The

number of factors in each term is the order, n, of the equation,

and the sum of the characteristics in any product is denoted by
the symbol (a/3), which was called the characteristic of the

equation.

Further an odd (or even) product of radicals contains, after

substitution, an odd (or even) number of odd thetas, and is there

fore an odd (or even) function of u
;
so that the former qualifica

tions of order, characteristic, and parity can now be taken to refer

to theta functions. It follows from the properties of the irrational

equation that

Every algebraic curve of order %n on the general Kummer

surface can be represented by an equation of the form

where is a theta function of order n and characteristic (a/3) and

either odd or even.
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The converse of this theorem is also true, namely that every

even or odd theta function, when equated to zero, represents an

algebraic curve on the surface. To prove this it is sufficient to

show* that the number of linearly independent ~ is equal to the

number of linearly independent curves belonging to the two

families of order r and characteristic (a/3), namely r2
.

From the defining equation it follows that

so that V (u) is simply periodic in u^ and in u2 independently,

the period being 2. Hence, by an extension of Fourier s theorem,

it is possible to expand in the form

0^ (u) = 224 nina
e*(w+w = 2A n e inu

, say.

On substituting in the preceding condition and equating coeffi

cients of eni (niUl+n*W2)
,
we find

A 0nin, _ A prriai^ K

so that only those terms occur for which n- a.^ and ?i2 2 are

both even. Further, on substituting in the condition,

r^W / f o - / , 1 -\1 /a&amp;lt;

r) / \

a,s
(u + ra )

= (~) exP I
2-Tnra (ti + f ra)j (H)

a/3 (tt),

and equating coefficients of e
7 ^ we find

a^inra. A __
g7rio/3

irirra? J _

expressing J. ni+2r , M2
and ^n,, 2+2r in terms of -4

niWa . Hence

-^ni+jw.na+at niay be chosen arbitrarily for s, t = ... r 1 and then

the remaining coefficients are determined. This proves that there

are not more than r2

linearly independent a^.
Since however

the equation of every curve leads to a theta function, the number

must be exactly r2
.

From this point the properties of theta functions of any order

may be deduced from the properties of the corresponding families

of curves. For example the number of even functions is Jr
2
,

J(r
2 + l), or ^(r

2

4) according to the nature of the order and

characteristic. Another example is Poincare s theorem f that the

equations for u l ,
u2

have 2rs common solutions. Consider first the case when v = v =
and the functions have definite parity. Then the equations

*
Baker, Abelian Functions, p. 452. f Reference, footnote p. 186 below.
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represent curves of orders 2r and 2s intersecting at 2p nodes and

rs p other points. Each of the latter gives two values of the

arguments and each of the nodes only one, additive periods being

always neglected. Hence the total number of solutions is

2 (rs p) + 2p = 2rs.

Again it follows at once from the definition that

ag&amp;lt;+)2 &amp;lt;-.&amp;gt;?* Oft

a theta function of order 2r, zero characteristic and of definite

parity if the functions on the left have also definite parity. Under
a similar hypothesis

and the 8rs common solutions of

e (2%) =
o, e* ()-o

must be evenly divided among the pairs of equations

(/\ A IU V ) \J)

105. SKETCH OF THE TRANSCENDENTAL THEORY.

The whole subject may be approached from an entirely different

point of view* by defining a liyperelliptic surface as one for which

the coordinates of any point are proportional to uniform quadruply

periodic functions of two parameters. It is then shown that the

coordinates may be equated to theta functions^, and on the basis

of certain fundamental propositions in transcendental analysis the

geometrical theory of the surface is built up.

The hyperelliptic equation of an algebraic curve C on

Rummer s surface &amp;lt;I&amp;gt; is obtained as follows. Let S = and S =

be two surfaces cutting
&amp;lt;&amp;gt; in the curve C, and in residual inter

sections having no common part. If the coordinates are replaced

by theta functions, 8/S becomes a uniform quadruply periodic

*
Humbert, &quot; Theorie generale des surfaces hyperelliptiques,&quot; Liouville, ser. 4,

ix, 29.

f Painleve, Comptes Rendus (1902), cxxxiv, 808. See Krazer, Lehrbuch der

Thetafunktionen, p. 126, and elsewhere for theorems and references.
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function of the parameters uit u2 and by a known theorem* can

be expressed in the form
(/&amp;gt;/$

where
&amp;lt;,

&amp;lt;/&amp;gt;

are uniform entire

functions not simultaneously vanishing except where S/S is inde

terminate, which is not the case along C. Then by another

theorem f $/&amp;lt;

= $
/&amp;lt;/&amp;gt;

= e (u] F (u), where F is a uniform entire

function possessing the periodic properties

F(u l ,
u2 + l)

=

F (! + rn ,
u.2 + T2l )

=

F (! + T12 , U., + T22)
=

By comparing the effects of adding periods in different orders we

easily find that

a, b, b
,

c ar-n, c ar12 ,
6r12 + cr22 b rn cV21

are integers. If we write c = arn + e, c =aT12 + e
,
the last result

gives
- b rn + (b- e ) r]2 + er22 + a (r^ T22

- r12
2
) +/= 0,

where f is another integer. A relation of this form among the

periods is called a singular relation
;
in general it is assumed that

no such relation exists, in which case all the integer coefficients

must vanish, and therefore a = c = b = 0, b = c and F becomes a

theta function of order b. Accordingly the equation of every

algebraic curve is obtained by equating a theta function to zero.

The converse proposition depends on the theorem that any three

quadruply periodic functions are connected by an algebraic re

lation
J.

This is the theorem which was required in Chap. xni. (p. 140)

to fill the gap in a continuous algebraic theory of curves

on the surface. A purely algebraical proof that the equation of

every algebraic curve can be written in a certain irrational form

when the constants ks upon which the surface depends are perfectly

general would probably be long and complicated, because the

relations which may hold among the ks for the theorem to fail are

of many different forms, as will be seen in Chap. xvm. On the

other hand the transcendental expressions of the same relations

have a perfectly definite form, only the integer coefficients in a

linear relation being variable, so that an appeal to function-

*
Poincare, Acta Math, n, 97.

t Appell, Liouville, ser. 4, vii, 183, 196.

J Krazer, p. 116.
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theory seems to be essential to the complete development of the

subject.

One other theorem* is of fundamental importance, namely
that two theta functions of orders m and n have 2mn common

zeros, additive periods being disregarded. Then the surface

obtained by equating the coordinates to theta functions, of the

second order and zero characteristic, can be identified as a quartic
surface with sixteen nodes, and other properties follow as already
obtained in a more elementary manner. The tetrahedron of

reference is here a fundamental tetrahedron.

By equating the coordinates to the squares of theta functions

of the first order forming a Gbpel tetrad and eliminating the

arguments, an equation of the surface referred to a Gopel tetrad

of tropes is obtained. This is the well-known Gopel s biquadratic

relation^ and corresponds to a rationalised form of

^1xx + *Jyy + V^7 = 0,

after z and z have been replaced by linear functions of

x, x, y, y .

Again, if we take any one of the sixteen thetas of the first order,

and equate the non-homogeneous coordinates to the negatives of

we obtain another parametric expression of Rummer s surface
J.

If the fundamental sextic in k is

by taking a new origin the equation of the surface can be written

in the symmetrical determinant form

-X Xj 2z -2y = 0.

The transcendental theory suggests two generalisations of

Kummer s surface. By interpreting the matrix notation differently

we can define theta functions of p variables i^ ... up with 22^

different characteristics. These may be arranged in
&quot;

Gopel

*
Krazer, p. 42. Poincare, Bull, de la Soc. Math., xi, 129.

t Gopel, Crelle (1847), xxxv, 291. This is the historical origin of the transcen

dental theory. Baker, Abelian Functions, pp. 338, 466.

Baker, Proc. Camb. Phil. Soc., ix, 513 and xn, 219.
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systems
&quot;

of 2p characteristics (*$,). With one of these systems
a p-fold in space of 2^ 1 dimensions is defined by

^ =
#V&amp;gt; f

- 1 *.--*X
a factor of proportionality being omitted. This p-fold possesses

many properties analogous to those of Kummer s surface*.

A generalisation in a different direction^ is suggested by the

hyperelliptic theta functions, for which the elements of the sym
metrical matrix r are connected by J (p 1) (p 2) relations,

and the absolute constants upon which the function depends are

the 2p 1 independent cross ratios of the roots of the funda

mental (2p 4- 2)-ic equation. Selecting any one of the 2~p thetas

there are ^p (p + 1) functions 9 2

log 6/du rdus (r, s, =1 . .. p) con

nected by \ p (p 1) relations. This set of relations represents a

p-fold in space of ^p (p + 1) dimensions.

*
Wirtinger, (for .p

=
3), Gottinger Nachrichten (1889), 474, and for the general

case Monatshefte fur Mathematik und Physik (1890), i, 113.

f Baker, Proc. Camb. Phil. Soc., ix, 521. See also Klein, Math. Ann., xxvm,
557.



CHAPTER XVII.

APPLICATIONS OF ABEL S THEOREM.

106. TANGENT SECTIONS.

The hyperelliptic representation of the surface consists in

equating the coordinates to theta functions of the second order

and zero characteristic. The number of these which are linearly

independent is 2 2
,
= 4, and so every equation of the form (2) =

represents a plane section, as in the theory of quartic curves.

From the definition of theta functions of higher order it

follows that

(-)* (+)-.*(&amp;gt;

In particular, using theta functions of the first order,

ft(--*v)4^(*-ff)
is a theta function of the second order and zero characteristic, with

arguments ult u2 \
hence the equation

a?(u-v)0ap(u+v) =

represents a plane section. At every point of the section there

are two pairs of parameters, (u ly u 2) and (- ult u2),
one of which

satisfies

aft (u-v) =
0,

and the other

&ap (u + v)
= 0,

so that either of these equations may be taken separately for the

equation of the curve. The advantage of this is that by means of

the equation

Mtt-)=o
a single pair of parameters (u) is associated with each point of the

curve, additive periods being neglected. Using x, y, z for non-
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homogeneous coordinates, in passing along the curve dujdx and

du2/dx are uniform quadruply periodic functions of u lt -u2 ,
and

therefore expressible rationally in terms of x, y, z*
; further,

M! and uz are finite, so that fdi^ and fdn2 are
&quot;

integrals of the first

kind
&quot;

for the curve. The number of such integrals is equal to

the deficiency of the curve, and so the plane section is of deficiency 2

at least.

The equations

have (p. 186) two common solutions, differing only in sign, and

therefore representing the same point. Since either solution

satisfies both of the equations

JL {0(u -v)0(u + v)}=0,
-
[0 (u -v)0 (u + v)}

= 0,
011/1 v

U&amp;lt;}

this point must be a double point on the curve. Hence the section

is by a tangent plane, and has a double point at the point of

contact.

In the equation of a tangent plane section it is indifferent

which of the sixteen thetas is used. Selecting that with zero

characteristic, we can easily find the coordinates of the plane.

In the identity (p. 179)

QO (u) (V)
= a (U

-
V) a (u + V) + 6 (U

-
V) b (U + V)

+ ec (u -v) c (u + v) + d (u
-

v) d (u + v),

replace u by u + v and v by u v
;
then

(u + v) (u-v) = a (20) a ( + 6 (2v) &amp;lt;B&amp;gt; 6 (2w)

so that the coordinates of the tangent plane are the same functions

of v as the point coordinates of u, and (v) may be regarded as the

parameters of the plane. This shows the self-polar nature of the

surface with respect to the fundamental quadric #2 + y
2 + z- + 1

2 0.

Similarly by selecting another theta it may be shown that the

surface is self-polar with respect to another quadric or a funda

mental complex. Incidentally we notice that if 0(uv) =
(),

(0 = odd), the line joining (u) and (v) is a ray of a fundamental

complex, and the curve of intersection with a fundamental quadric

is given by
)
= 0, (0 = even).

*
Krazer, p. 117.
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Let (u) be the point of contact of the plane (V), then

(u - v)
- 0, (u + v)

=
;

if (P) ?

= (P1? P2) is an odd period, the point (v + ^P) lies on the

plane (v), and is the point of contact of the plane (u + JP), which

contains the point (u). Hence the line joining (u) and (v + ^P)
is a bitangent, touching the surface at both points. Hence the six

bitangents through the double point of the section

(w -t;)
=

touch the surface again at the points

u = v + odd half period.

Univocal curves.

The tangent sections are the simplest case of univocal curves*

on the surface, so named because of the two pairs of parameters
of any point only one satisfies the equation of the curve. The

general univocal curve is represented by

where (u) is a theta function of order n and zero characteristic,

and (v) is any pair of constants. The other parameters of its

points satisfy

and since (n)
(u v)

(n)
( u v) is an even theta function of

order Zn and zero characteristic, the univocal curve is of order 4?i

and the complete intersection with an ?i-ic surface. There are n2

double points on the curve given by
e &amp;lt;&amp;gt;

(
u - v)

= o, e&amp;lt;
n)
(- u - v)

= o.

Thus the univocal curves occur among the ordinary curves on

the surface, and are distinguished by the corresponding theta-

function breaking into factors. If and are of the same order

and zero characteristic, consideration of the functions

(u-v) (-u-v)(-u-v) (u-v)
leads without further analysis to numerous geometrical theorems

of considerable interest.

107. COLLINEAR POINTS.

We have seen that u^ and u 2 are integrals of the first kind for

the curve

0(u-v) = 0,

* &quot; Courbes univoques,&quot; Humbert, Liouville, 4, ix, 154.



106-107] COLLINEAR POINTS 191

and so, by Abel s theorem, the sum of the parameters of four

collinear points is constant. If two of these points are at the

double point, their parameters have zero sum
;
hence if (u) and (u

r

)

are collinear with the double point

u + u = const.

Since u and u are indeterminate to the extent of additive periods,

this equation should be written

u + u = const, (mod. P).

By considering a bitangent we find that

u + u = 2v (mod. P),

which gives another interpretation of the parameters of the

tangent plane. This result may also be inferred from the fact

that if (u) is any point on the curve, so also is (u ),
= (2v u) ;

for this establishes an involution on the plane quartic, and it is

known that the only involution is that of points collinear with the

double point. Bitangents of the surface are deduced from this by

putting u = u, giving
u = v + JP,

the half period being subject to the condition

The four points of intersection of the two tangent sections (v)

and (v) are given by

6(u- v) (u + v) = 0,

and are the solutions of the four pairs of simultaneous equations

B(u-v) = W 9(u + v) = W
- {

(

0(u-v )
=

0\
(

Let (a) and (6) be the two solutions of (1), (a) and (b) of (2),

(c) and (d) of (3), (- c) and (- d) of (4). Then the four collinear

points on 6 (u v)
= have parameters (a), (b), (c), (d), and the

same points on 6(u- v) = have parameters (a), (b), (- c), (- d).

Hence any two tangent sections cut in four points, whose para
meters on the two curves are the same except for two changes
of sign.

If then (a), (/3), (7), (8) are the (pairs of) parameters of four

tangent planes through a line which cuts the surface in (a),
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( &) ( c), ( d) we may suppose that the four points have

parameters

(a) ( 6) ( c) (d) on the section 6 (u a) = 0,

(-a) (b) (-c) (d) 0(-M-) = 0,

(-a) (-b) (c) (d) 6(u- 7 )
= 0,

(a) (b) (c) (d} M 0(W -8) = 0.

Since the sum of the parameters of four collinear points on

B (u v) is 2y we have

a &-c + d=2a+P

a + b + c + d = 2S + P4 .

Substitute for a, /3, 7, 8 in the conditions of incidence

then
6&amp;gt;{i(

a + & + c _d)- JPS J =0, (s =i, 2, 3, 4)

implying that four theta functions vanish for the same point

^ (a + b + c d). But singular conies do not intersect except at

nodes, and so we infer that

Hence the conditions of collinearity of four points (+ a), ( b),

(c\(d) are that

c-d)

must all be zeros of the same theta function, that is, must repre

sent points lying on the same singular conic. Of course, in these

conditions, the signs of a, b, c, d may be changed.
If 2Q = P1 + P2 + P3 + P4 we find

, (mod. P)

and
-J- (- a + b + c + d) = (- a + /3 + 7 + 8) + JQ,

so that the conditions for collinear planes are of the same form.

By way of illustration we shall consider the intersections of

various kinds of lines with the surface. In the following, 6 stands

for any one of the sixteen theta functions.
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(1) Let a tangent line at ( u) meet the surface again at (+ a)

and (+ b). Put c = u, d u and the four arguments become

$(a-b) + M, i (a + b) ;

if however we put c = u, d = u the arguments become

This is practically the same case, since the sign of b is undeter

mined, and we have the conditions

for 15 2 , &u 62 , leaving one arbitrary. If a + 6 = 2v, then

showing that (v) is the tangent plane at (u), and contains (a)

and (6).

(2) For a bitangent touching at (u) and (v) there are two

cases. First put
a = b = u, c = d = v.

The conditions of collinearity are

6 (u} = 0, 6 (v)
= 0,

showing that the line is a chord of a singular conic. Secondly

put a = b = u, c = d = v: then the conditions of collinearity are

e (o)
=

o, e (u
-

v) = o, e (u + v)
=

o,

showing that (tt
-

v) and (w + v) are zeros of the same odd theta

function. This is the result already obtained.

(3) For an inflexional tangent put + a = + b = c = u. It

will be found that there is only one distinct case, so we take

a = b c = u, d = v. Then the conditions are

showing that + -^(u v) is the parameter a of the tangent plane

at u. Thus v = u 2a, and these are easily seen to be the points

where the tangent lines at the double point to the tangent section

cut the curve again.

(4) For a four-point contact tangent there are two cases

according as the parameters are taken to be u, u, u, u, or u, u, u, u.

In the former case the condition is

H. 13



194 APPLICATIONS OF ABEL S THEOREM [CH. XVII

and the line touches a conic. In the second case

0(0) = and 0(2w) = 0;

whence the locus of the points of contact is one of the six curves

where (a/3) is an odd characteristic. These are therefore the

equations of the principal asymptotic curves.

108. ASYMPTOTIC CURVES.

Let (u) be the point of contact of the plane (v), then

0(u + v)
= 0, 0(u-v) = 0,

and simultaneous increments are connected by

(u + v) (du, + dvj) + 6 (u + v) (du., + dv2)
= 0,

(u
-

v} (du,
-

dv,) + 0u (u
-

v) (du2
- dv2)

= 0,

where {l) and # (2) are the partial derivatives with respect to the

first and second arguments.
The inflexional tangents at the point (u) are the directions of

the two branches of the tangent section

(u v)
= 0.

One of these is given by

0w (u + v) dui + 6 (u + v) du 2
= 0.

Making use of this we find that either

0(u + v) t 0(u + v) =0,
!

0n(u-v), 0(u-v)
or dui = dv

and du2
= dv2

From the first alternative we deduce

(u
-

v) diiT. + (u
-

v) du2
= 0,

showing that the two inflexional tangents coincide and the locus

of u is either a cusp locus or an envelope of asymptotic curves :

the cusp locus consists of isolated points at the nodes, and the

envelope, which is the parabolic curve, consists of the sixteen

singular conies. If (u) is a general point of the surface we must

take the second alternative and find the integrated equation*

u = v + k.

*
Reichardt, Nova Acta Leopoldina (1886), L. Hutchinson, Amer. Bull. (1899),

v, 465.
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Hence the hyperelliptic equation of an asymptotic curve is

0(2t* -*)-(),

where the constant k satisfies

,

The sixteen points (k + ^P) are the points of contact of the curve

with the tropes.

The equation should be written

and it is easily verified that this product is an even theta function

of order 8 and zero characteristic, and therefore the asymptotic
curve is an

&quot;algebraic
curve of order 16 and the complete inter

section of a quartic surface passing through all the nodes. Thus
the asymptotic curves do not belong to the &amp;lt;c

singular
&quot;

family, for

these are given by the vanishing of an odd theta function.

The asymptotic curve has sixteen double points, beside the

cusps at the nodes, given by

these points are obtained from any one of them by the addition

of half-periods to its parameters, that is by the group of sixteen

collineations.

The equations

0(2u-k) = 0, 6(k) = 0,

regarded as equations for (k), have two solutions, the parameters
of the two asymptotic curves through any point (w) ;

if (k ) is one,

then (k )
= (2u k) is the other. Hence the curves, whose para

meters are (k) and (k ), cut in the points given by

2u = k + k
,

that is, in the sixteen points ^(k + k ) 4- JP. Since the equation
of the second curve may be taken in the form 6 (2u + k )

= 0, it

follows that the sixteen points J (k
- k ) + ^P are also on both

curves. The points \ (k + k ) and ^ (k k ) are the points of

contact of a bitangent, and so we have here the configuration of

thirty-two points obtained from one point by drawing a succession

of bitangents, and corresponding to the projections of any point on

Weddle s surface from the nodes.

For six special values of (k\ namely half-periods satisfying

6 (k)
= 0, the two factors of 6 (2u + k) d (2u

-
k) become essentially

132
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the same, and we get the six principal asymptotic curves of

order 8. We have

0*fi (u + TCI + y) = (-)+ exp (- ZTTIOU - iriroP) a/3 (u),

ap (2u + 2ra + 2/3)
= exp (- Siriau - 47nra2

) a/3 (2u\

and 6a ft (2u) is a theta function of order 4 and zero characteristic,

and of the same parity as
a/3 (u). Hence the principal asymptotic

curves belong to the family cut out by quartic surfaces through
four conies.

As an example of the application of Abel s theorem to curves on the

surface the following inay be given. If a 4n-ic curve passes through all the

nodes, any tangent plane cuts it in 4;i points, which together with the point
of contact lie on an infinite number of plane (?i+ l)-ics ;

each of the latter

cuts the tangent section again in two points collinear with the point of

contact. If the point of contact is on the 4n-ic the remaining -in - 2 inter

sections lie on a plane n-ic through the point of contact.

109. INSCRIBED CONFIGURATIONS.

The power of this method is well shown by the ease with

which certain inscribed and circumscribed configurations may be

constructed. Only a few examples are given here.

It must be remembered that in speaking of a point (u) of the

surface we mean the point whose parameters are (u ly u2) to

which any (pair of) periods may be added.

We have seen that the points (a), (6), (c), (d) are collinear

if the points (#), (y\ (z), (t) lie on the same conic, where

2z = a + b-c
2t = a + b + c - d,

and that then the four tangent planes through the line are

(a), (), (7), (), where

2a= a b c + d

2fi=-a+b-c+d
2y=-a-b + c + d

28= a + b + c + d]

thus x= d a = c+/8=6+7 = a + S

y = c + a = d
,

= a + 7 = b + S

2 = b + a. = a + ,3
= d y = c +8

t =a a=6 /3
= c
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showing all the incidences
;
for the condition that a plane (v) may

contain a point (u) is that (u v) be a point on a certain conic.

Klein s tetrahedra.

If now we suppose that (t) does not lie on the conic, but

is arbitrary, all the incidences still hold except those indicated

by the last line, so that the planes and points are the faces and

corners of a tetrahedron. These are Klein s
&quot;

principal tetrahedra
&quot;

( 34). #1, ?/i, ^i, tl} t,2 are arbitrary and so the number of tetra

hedra is oo
5
.

Instead of taking (#), (y), (z) arbitrarily on the conic 9 (u)
=

we might have taken (a), (b), (c) arbitrarily on the section

0(M -S) = 0;

then the equations c + a = 6-!-8 = ?/

6 + a = c + 8 = 2

show that the planes (a), (8) are
&quot;

conjugate
&quot;

to the points (b), (c),

for when a, 8, b are given c is uniquely determined and therefore

the corresponding point is rationally determined.

From the relations between the points and planes, having

regard to the fact that the signs are indeterminate, we see that

there is not a one-one correspondence between a, b, c, d and

a, /3, 7, 8 but the three partitions into two pairs correspond, giving
six conjugate sets, incident with the six edges of the principal
tetrahedron.

Expressed in terms of #, y, z, t, the points and planes are

2a = x+y+z+t 2a = x + y + z t

2b = x-y+z+t 2/3
= x-y + z-t

2c = x + y z + t 2y = x+yzt
2d= x+y + z-t 28= x + y + z + t

and a typical conjugate set is given by

where 8 is arbitrary and 6 (y)
= =

(z).

Rohns theorem.

The condition of incidence of point (u) and plane (v) being

6(tiv) =

we can write down the parameters of sixteen points of Rummer s

surface and sixteen tangent planes forming in themselves a 166
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configuration. Let (a), (b\ (c), (d), (e), (/) be any six points on

the conic

6 (u) = ;

then the plane ^(a + 6-f c + rf + e+/), =v

contains the six points

and these lie in the planes obtained from the first by changing the

signs of two of the parameters, and so on. The group of operations

is precisely the same as that which deduces thirty-two lines from

a given one in Klein coordinate*. The sum of the parameters
of the above six coplanar points is

4&amp;gt;v, showing that they lie on

a conic through the point of contact of their plane*.

Humbert s tetrahedra.

The parametric representation of Humbert s tetrahedra
[

(p. 158) is obtained in an equally simple manner by taking

any three points (x), (y), (z) on the conic

e (u)
= o.

The plane (y + z} contains the point (y) since the difference of the

parameters represents a point on the conic, and for a similar reason

contains (z). The second tangent plane through these two points
is (y z). The planes (x y), (y + z), (z x) meet in the point

( x + y + z), and so on
;
thus the six tangent planes through the

sides of the triangle (#), (y), (z) meet by threes in the points

(b)
= (x-y + z)

(c}= (x + y-z)

(d)= (x + y + z)

which are the corners of an inscribed tetrahedron. It remains to

be shown that the edges are tangent lines. Now the tangent

plane (y + z) contains the points (a) and (d), and since

the line joining them passes through the point of contact.

Similarly for the other edges.

* This is Bohn s first theorem, see Math. Ann., xv, 350. Generalisations and
extensions are suggested by Klein, Math. Ann., xxvn, 106, where the transcendental

representation is deduced directly from line coordinates without the introduction of

theta functions.

+ Humbert, Liouville, ser. 4, ix, 123, where generalisations are given.
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Since the configuration is determined by three arbitrary points
on a conic, the number of such tetrahedra is triply infinite. It can

be shown that no other inscribed tetrahedra have the property
that their edges are tangent lines.

The pairs of parameters (u) of points on a conic (u) = may
be taken to represent the points on a plane quartic curve with

one node, in such a way that points collinear with the node differ

only in the signs of their parameters. The points of contact of

the tangents from the node are represented by the half-periods

which are zeros of 6 (u). We may take a cubic curve in space and

establish a correspondence between its points and the pencil of

lines through the node of the plane quartic*. A group of three

points on the quartic determines three lines of the pencil and

three points of the cubic and therefore the plane joining them.

Consider the groups of three points cut out by conies through the

node and three fixed points of the quartic ; they depend on one

variable and hence the corresponding planes in space form a

developable. Since a given line through the node determines two

groups of the series, therefore two planes of the developable pass

through a given point, and the developable is a quadric cone.

This cone meets the cubic at points for which the two planes
of the developable coincide and which therefore correspond to the

tangents to the quartic from the node. Thus the cone passes

through six fixed points and the locus of the vertex is Weddle s

surface.

The group of points (#) (y) (z) on the quartic belongs to

a linear series if, by Abel s theorem, (x -\-y-\-z) has a constant

value. Since at the same time (x y z] has a constant value,

it follows that the groups (a?) ( y) (2), projections of the

former groups from the node, belong to another linear series.

These two series determine the same point on Weddle s surface,

which may be denoted by the pair of parameters (# + y + z) or by

(_ x y z}. By comparison with the parametric representation

of Humbert s tetrahedra we see that if AA
t
BB

,
CC are the

intersections of the quartic curve with any three lines through the

node, the corners of a Humbert s tetrahedron are represented by
the pairs of groups of points

ABC] A BC\ AB C] ABC }

A B C ] AB C } ABC }
A B C}

*
Wirtinger, Jahresbericht der Dcutschen Mathematiker Vereiniguny, iv, 97.



CHAPTER XVIII.

SINGULAR KUMMER SURFACES.

110. ELLIPTIC SURFACES.

We have seen in the case of the Wave surface that in con

sequence of a special situation of the nodes in each trope and

a corresponding relation among the coefficients ks of the quadratic

complex, the point coordinates may be expressed in terms of

elliptic functions. In the present section we seek the correspond

ing relation among the periods of the theta functions. Starting
with the more general problem of linearly transforming the

arguments of the theta functions into arguments of elliptic

functions, we find that the relation among the periods has a

certain definite form, and by examining the different relations

of this form we are led to a series of elliptic Kummer surfaces

of which the Wave surface is the first, and also to other singular
Kummer surfaces of which elliptic surfaces are particular cases.

Consider the general theta function (ult u2) of the first order

for which a general pair of periods is

U.2 T2ii + T2
.2 a.j + j3z

where a lt a2 , /3i, /32 are any integers. We seek the conditions that

it may be possible to take linear combinations of w x and u2 for new

arguments U, V so that 6 may be expressible in terms of elliptic

functions of U and other elliptic functions of V; that is, so that

may be doubly periodic in U alone and in V alone.

Assume U=glul +g2 u.2 ,

then the four periods of U must be linear combinations of the two
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periods O and H of the elliptic functions of U. Hence eight

integers msj m s can be found so that

g\ TII + #2T2 i
= wiin + m/n

whence, on eliminating gly g.2 , H, O ,

T T -JW WTll T2l &quot;i W*| v,

; T12 TOO m.2 mz

-i f\ /
1 m3 m3

1 w4 wi/

or, writing prs mrm s ms m t
.

,

JP23
T11 + (Psi + J924) T12 + J941 T22 + &amp;gt;43 (T] 2

2
TnToo.) + &amp;gt;12

= 0.

Hence a necessary condition is that the quantities

TH, T12 , Taa, T^-TnToo,

be connected by a linear relation with integer coefficients

ATU + ^T12 + GT& + D (TI./
- Tn T2o) + E= 0,

and from the identity pup.2 .

A + p.24_p31 + p.A,p^ =

we deduce B- 4tAC 4DE = (psl p.24)
2
,
= k-, say,

where k is an integer. Conversely, when B^ ^AC ^DE is the

square of a given integer k, the prs are uniquely determined in

terms of the coefficients in the linear relation, and from them the

integers ms ,
ms ,

with a certain degree of arbitrariness.

111. TRANSFORMATION OF THETA FUNCTIONS.

If we replace the four pairs of periods (rn ,
r21 ), (r12 , TOO),

(1, 0), (0, 1) by any four independent linear combinations, and

take new arguments, linear functions of i^ and u.2 ,
so that the new

periods are normal, that is, have the form (rn , TO/), (r^, TK ), (1, 0),

(0, 1) ;
then these new periods can be used to construct a new

theta function, provided Tr/ = r.21
f

.

Take aay sixteen integers, elements of four two-rowed matrices

a
&amp;gt; A 7i & aild form with them four pairs of periods

T10 I

w
T21 a 12 +

T2i 7l 1 + T
2&quot;2 7-21 + &J1 ,

T21 712 + Too 7,, +
or, in matrix notation, u

\

TO. + /9, T7 + 3.
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Next take new arguments
v = (r7 + S)&quot;

1 u

so as to reduce the last two pairs of periods to the normal form

1/I ON

U ij-

Then the first two pairs of periods are given by the columns of

the matrix

The condition for a transformation is that r must be a

symmetrical matrix; on equating it to its conjugate we have

(r7 + S)-
1

(TO. + 0) = (OLT + 0) (yr + S)~\

whence (ra + 0) (yr + 8) = (ry + 8) (dr + 0),

or r (ay yet) r + (/3y a) r + r (aS y/3) + /3S S/3 = 0,

which leads to a single relation of the form

ATU + #ria + CVa + D (r12
2 - rn T22) + # = 0,

the coefficients being integers. Now in the case of an ordinary
transformation* it is assumed that no relation of this form exists,

so that we must have

/3-S =

where by r is to be understood a numerical multiple of the unit

matrix. These represent five conditions for the sixteen integers.

The integer r is called the order of the transformation.

These equations can be written in another form which is often

useful. As they stand they express that

S 0\ f a - 0\ _ (r N

,7 a/V-7 S/ \0

each matrix having four rows
;
since the right side is a numerical

multiple of the unit matrix, the order of the factors on the left

may be reversed and we have

/ a -0\ /8 0\_(r 0\

V-7 I) W /

~
VO r)

which is equivalent to the equations

dS J3y
= r=Sct y0t

* As considered by Hermite, Comptes Rendus (1855), XL, 249. A reproduction
of this memoir is given by Cayley, Quarterly Journal, xxi, 142

;
Coll. Papers, xn,

358.
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112. THE INVARIANT.

When a relation of the form

Arn + r12 + OTOO + D (r12
2 - Tnr.2) + E =

exists, the corresponding theta functions are called singular. The

Kummer surface represented by them is also called singular, and

possesses geometrical features which are absent in the general

case. It is evident from what precedes that a singular theta-

function may allow a transformation which does not exist when

the periods are arbitrary ;
with such singular transformations we

are not here concerned*.

We have next to prove that the preceding relation is changed,

by any transformation, into another of the same form, and that

A, = Bz 4iAC 4&amp;gt;DE, is an invariant for linear transformations.

Consider first the elliptic case. Let the new periods of g^i^ + g^u^

be written in the form Ms l + Ms l
,
then

miH ) &i + (w4 fl

and so on
;
thus M} . . . M are integers given by

M M\ /
fm m m m\ a.

From this and from the relations satisfied by a, /9, 7, 8 we deduce

I

Now the new periods are connected by the relation

= 0,

Ma

M*

Mi
which may be expanded in the form

p [A ru
f + B r12 + C r,* + D (r12

/2 - T^) + E ]
=

0,

making allowance for a possible extraneous integer factor p. This

is a singular relation of the same form as before, and the new
invariant is

whence 7 = (pl3
= ?

i2A.

* See Humbert, &quot; Sur les fonctions abeliennes singulieres (deuxieme memoire),&quot;

Liouville, ser. 5, vi, 279.
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If ?&amp;lt;

= !, the inverse transformation is also linear, so that we
have in this case &amp;lt;7

2A = A
,
where cr^l; whence p=l=&amp;lt;j and

A = A, proving the invariance.

In the general singular case in which A is not a square, ms , m/,
not necessarily integers, can be found in many ways to express the

given singular relation in determinant form. The lines of the

preceding proof may then be followed and lead to the same two

properties of formal and numerical invariance.

It can be proved* that by a linear transformation the singular
relation can be reduced to one of the canonical forms

-
J (A - 1) TU + TM + TS = 0,

according to the parity of B. Both of these are included in the

form
Arn + Brl2 + Or2,

= 0,

from which it follows that the invariant is always positive ;
for

Aroo = (B
2 -

4&amp;gt;AC)
r2, + 4&amp;gt;A (Aru + Brv, + CT^)

and the coefficients of V 1 in the quadratic forms r(0, I)
2 and

r(2A, B)
2 are positive (p. 176).

Since the canonical forms involve the invariant alone, it follows

that any two singular relations with the same invariant can be

linearly transformed into each other. This important theorem

shows that in the elliptic case a linear transformation can be found

which reduces the singular relation to the form

&T]2 -1 = 0,

for this has invariant A = &2
. We shall suppose that this has been

done
;
then different elliptic surfaces are distinguished by different

values of the positive integer k.

113. PARAMETRIC CURVES.

The chief geometrical peculiarity of elliptic Kummer surfacesf

is the existence upon them of two families of curves, u
}
= const,

and u2
= const., which, since the coordinates of a point on any

one curve are expressible in terms of elliptic functions of one

parameter, are algebraic and of deficiency 1 .

*
Humbert, Liouville, ser. 5, v, 245.

t Humbert, Amer. Jour., xvr, 221.
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On elliptic surfaces, as on the general surface, the point

(al3 a2) is the same as the point ( + a2 + P1} + a z -f- P2), where

(Plt Pz) is any pair of periods; hence the curves

2
= a.2)

intersect in all the different points given by

HI= ai+Pi,

u-2
= a.2 + Qz ,

where (Ql} Q.2) is any pair of periods, and the ambiguous signs are

independent. These are the same as the points given by

Since (1,0) and (kr^ ,
krvl 1) are pairs of periods, whatever

integer k may be, and in the elliptic case when krl2 1 the latter

is (&Tn , 0), it follows that all the distinct points of intersection

are given by
u^ ax + mrn + nrK ,

2
=

2&amp;gt;

where ^ in ^ A; 1, Q^.n^k1. Hence there are 2k2 common

points.

We see that the coordinates are doubly periodic functions of

M! alone, the periods being 1 and kru ;
in fact if is a double

theta function of the second order and zero characteristic, and if in

the relation

u2 + T21 a! + r22 a, + / 2

= 6 (X, ?t2) exp {

- 4?n (a^^ -f a2 u2 ) 2-rri (rn ai
2 + Sr^aja, + T2.2

a2
2

)},

we put !
= ka, krn = rlf 2

= 0, /32
=

a,

we find

(-M! 4- TjS + fti, u2) (t^j, u2) exp ( ^kTriai^ SkTrira2

),

showing that is a single theta function of u l of order 2k. The

number of zeros* not differing by multiples of 1 and T X is 2k, and

a parameter curve ^^ = const, cuts one of the coordinate planes in

2k points, and is therefore of order 2k.

If a surface S of order k be made to pass through 2k- arbitrary

points of the curve u l
= a^ t

\i will contain it entirely, since its

deficiency is 1. If, further, S be made to pass through an

arbitrary point of u2
= a2 ,it will cut this curve in 2k2 + 1 points

*
Krazer, Lehrbuch der Thetafunktionen, p. 41.
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and therefore pass through it. Now 2&2 + 1 is exactly the number
of conditions which the complete intersection of Rummer s surface

with an undetermined k-ic surface can be made -to satisfy, and so

we have the theorem that the curves u = ax and u = a.2 form

together the complete intersection with a surface of order k.

Since the curve u2
=

2 was determined by a single point of it,

the parametric curves belong to two linear systems of dimension

1, and either system is cut out by A -ic surfaces through any curve

of the other system.

Analytical proofs of these theorems may be obtained by using

single theta functions defined by

^a0 (u, T) = 2 exp (27 (n + Jot) (n + \ 0) + irir (n + Jcc)
2

} ,

where all the letters represent single quantities and the summa
tion is for all integer values of n.

It may be shown directly, by rearranging the terms, that the

double theta functions to which the coordinates are equated may
be replaced by the expressions

exp
-

*
to {2i + (2i/! + ,) k~\ 2rn } *., [2u t + (2z/2 + aj Ar 1

,
2r22 },

where (alf a,)
=

(10), (11), (01), (00) in succession.

The two parametric curves w1
= a1 ,and w2

= a2 ,are given by
the equation

S-ii (kui
- ka1} krn ) ^u (ku^ + kalt krn )

^&quot;11 (buz ^2) ^1*22) ^-n (ku2 + A;a2 ,
^r22)

= 0.

The left side is a double theta function of order 2k and zero

characteristic, and therefore represents the complete intersection

with a surface of order k.

114. UNICURSAL CURVES.

The curves w 1
= a1 +JP1 and Wj = c^ + JPj are the same,

(jPj, P2) being any pair of periods. When ax is small the points

(tfi + JPi, M 2) an(i ( i + i^i wa) are near. Hence the curve

ul
= \Pl occurs repeated in the linear system and is therefore of

order k. Again the points (ax H- JP,, ^) and (- ax + JP15
- zt2 + P2)

are the same, so that at any point of the curve i^ = JPi the vari

able parameter u2 can have two values whose sum is P2 ;
the

coordinates are therefore proportional to even doubly periodic

functions of a new variable uz JP2 ,
and hence are rationally
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expressible in terms of one even elliptic function. Hence the

curves obtained by equating the parameters to half-periods are of
order k and unicursal.

When k is odd, there lie on the curve

the nodes associated with the characteristics

/! 2\
fa,

a.2\ /
! ,+ l\ / ! ,+ !

\A O/ V& I/ V&+ 1 y V&+1 1

for the first parameters of these nodes are either equal to the pre

ceding value of u, or differ from it by J (r]2 + 1), which is here equal
to the period (k + 1) r12 ,

on account of the singular relation. The
sum of these four characteristics is zero and the parity of their

product is odd: accordingly they belong to a Rosenhain tetrad.

Hence there are only four unicursal curves in the first family of

parameter curves, and each passes through a different Rosenhain

tetrad of nodes.

Similarly the curve

passes through the nodes associated with the characteristics

2\ /! 2\ /! + 1 a2 \ /i + 1 aa \

forming a Rosenhain tetrad, having one corner in common with

the preceding one. Hence the unicursal curves of the second

family pass through the tetrads of another group-set and one

curve of each family passes through each node. Since a unicursal

curve counted twice is a particular case of a parameter curve,

every intersection of two unicursal curves, except their common
node, counts as four common points of two parameter curves, the

node itself counting as two, so that the two unicursal curves cut in

one node and ^ (k* 1) other points.

A surface 8 of order (&+!) can be drawn through these

^(&
2 +l) common points and ^(& + l) arbitrary points on each

curve, for this makes ^ (k + 1 )
2 + 1 conditions. 8 then passes

through both curves. Now each curve meets the common face of

the two Rosenhain tetrahedra in three nodes and (k
-

3) points
of contact, so that 8 meets the conic in that face in k + 3 points,
and therefore contains it entirely. Hence two unicursal curves of

different systems, together with one conic, form the complete inter

section with a surface of order ^(k + 1).
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When k is even the curve

Wi = i(Tn ai+ Ti-2*2 + &)

passes through the nodes associated with the characteristics

/! 2\ /j 2\ /! O.A /! 2\

VO QJ VO l) (l l) U 07 .

forming a Gopel tetrad. Similarly the curve

wa
= HTai + TMa + &)

passes through the same nodes. There are four unicursal curves

in each system of parameter curves, and they intersect by pairs in

the nodes of four Gopel tetrads of a group-set. Two unicursal

curves through the same nodes cut again in ^k
2 2 points. A

surface of order %k can be drawn through &2 + 1 of these common

points and then contains both curves.

115. GEOMETRICAL INTERPRETATION OF THE SINGULAR

RELATION krV2
= 1.

Each pencil of parametric curves determines an involution on

each singular conic, that is. groups of k points depending linearly

on one variable, so that each group is determined by any one

point of the group. Four of these groups are cut out by unicursal

curves (counted twice), and are of a special character. Upon this

depends the situation of the six nodes on each conic and the

geometrical interpretation of the singular relation.

When k is even the four unicursal curves pass through Gopel
tetrads of nodes, forming a group-set, and three of the tetrads have

each two nodes in common with any trope, as is at once seen from

the diagram, in which the four tetrads and one set of coplanar

nodes are indicated.

Hence three groups of the involution consist of two nodes and

\ (k 2) points counted twice, and one group consists of %k points

counted twice. The other pencil of parametric curves determines

the same involution.

When k is odd the unicursal curves pass through Rosenhain

tetrads of which one contains three nodes of a given trope and the
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others one each. Hence one group of the involution consists of

three nodes and J (k 3) other points counted twice, and three

groups consist of one node and J(& 1) points counted twice

(pairs of coincident points). The other pencil of parameter curves

determines another involution in which the parts played by the

two sets of three nodes are interchanged.
To illustrate this, consider the case when k = 2.

The nodes on each conic form three pairs of an involution, and

therefore the chords joining them are concurrent. This has been

shown to be the condition for a tetrahedroid. There exist eight
unicursal curves of order 2, that is conies, intersecting by pairs in

four Gopel tetrads of nodes
;
these tetrads are therefore coplanar.

Three of these pairs of conies cut any singular conic in three pairs

of nodes
;
the remaining two conies touch the singular conic at the

double points of the involution to which the nodes belong.

There exist on the surface two pencils of elliptic quartic curves

(intersections of pairs of quadric surfaces), obtained by making one

parameter or the other constant. These results agree with what

has been proved before by other methods.

Next suppose & = 3.

Each pencil of parameter curves consists of sextics* cutting
each singular conic in groups of three points of an involution

including one group of three nodes, say 1, 3, 5. Now the chords

joining points of the same group touch a conic C, since two

pass through any point of the singular conic. C touches the sides

of the triangle 135, and since the two tangents to it from each

of the other three nodes 2, 4, 6, are coincident, C passes through
them. Hence a necessary geometrical condition for an elliptic

surface of invariant 9 is that a conic should pass through three

nodes and touch the lines joining the other three
;

it is easy to show

that this condition is sufficient. The corresponding relation

among the coefficients ks ,
or modular equation, is

!(**-,-*)-* =0, (r,s=l, 2, 3)

and the symmetry of this result, as well as the existence of the

other pencil of parametric curves, shows that another conic can be

circumscribed about 1, 3, 5, and inscribed in 2, 4, 6.

The group of nodes 1, 3, 5 of the first involution is cut out on

the singular conic by a twisted cubic passing through the re

maining node 135 of the Rosenhain tetrad determined by them.

This cubic is projected from the node 135 into the conic circum-

* Further properties are given by Humbert, Amer. Jour, xvi, 249.

H. 14
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scribing 1, 3, 5, and inscribed in 2, 4, 6. Similarly there is a

twisted cubic of the other system passing through the nodes

2, 4, 6, 246, and is projected from the last, which is the same as

135, into the conic C. The two cubics, taken together, form

a degenerate member of the ordinary family of sextics through six

nodes cut out by quadrics through one conic.

116. INTERMEDIARY FUNCTIONS.

Consider now Kummer s surface defined by theta functions in

the usual way, except that the periods are connected by a singular
relation whose invariant is not a square. They are characterised

geometrically by the breaking up of some of the ordinary curves

lying on the surface into curves of lower order which do not in

general exist.

The general transcendental theory shows that the hyperelliptic

equation of any curve is F (u)
= 0, where

is linear in uly u2 &amp;gt;

1. By multiplying F by the exponential of a

quadratic in ul} u2 , 1, and making the periodic conditions con

sistent we can arrange that

F(ul} u2 + 1)
= F(u) exp

F (Ui + Tn , ll-z + T21)

= F(u) exp {

- 2-n-i (ihi^i + ^12 + mru . u2) -f const.),

T12 ,
U2 + T22)

= F(u) exp {
27Ti (wa Wi + ?i22 + mr12 . u2) + const.

J,

where m, nU) n l2) n2l ,n^ are integers and the periods are connected

by the relation

^n Ti2 + (ni2 + fttTn ) r22
= w 21 ru + (??22 + mr12) r12 + integer.

In the ordinary case all the integer coefficients of

TH, T, 2 , T^, TU T22
- T12

2
,
and 1,

in this relation must be zero, and then F becomes a theta func

tion of order nll or ?? 22 ;
but when a singular relation exists,

the preceding relation may be made equivalent to it and then

functions different from theta functions can exist and have the

preceding properties. By a linear transformation it is possible

to make m = and reduce the singular relation to the form

W*lTn + (&amp;gt;2o
- nu) T12

-
?? 12 T22

=
0,
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which includes the two canonical forms for odd arid even in

variants.

Take new arguments (U) defined by

\n\ Ui = nuUi+nuUz ,

\n\ U2
= n 21 ul -\-n22u2 ,

where n \

= nnn^ - n 12n2l ;

in matrix notation the substitution is

|

n
j

U = nu.

The new periods are the elements of a matrix r which is de

fined by

and is symmetrical on account of the singular relation. Then

where

rn ,
U.2 + T21 )

= &amp;lt;&amp;gt;

( U) exp {

- 2iri
\ n\ 7i + const.},

&amp;lt;E&amp;gt; ( U, + r12 ,
U2 + r22)

=
3&amp;gt; ( U) exp {

- 2iri \n U2 + const.),

showing that constants cls c2 ,
can be found so that

&amp;lt;&(U)
is a

theta function of the arguments ( U c), of order
|

?i
|

and zero

characteristic. We shall take (c) to be a half-period.

The integer elements of the matrix (n) satisfy three in

equalities, as follows. Since the invariant of the singular
relation

&quot;21
Tn + (&amp;gt;

22
- nn ) r12

- n12r22
=

is positive, we have

(nn + ?? 22)
2 - 4

(ftu n22
-

7112^21) &amp;gt; 0.

Again, in order that the matrix r may be suitable for the con

struction of a theta function, if rrs
= TTS + irrs

&quot;

,

then
|T&quot;

&amp;gt; 0,

but |n|
1

|T&quot;|H&amp;gt;w&quot;l= n\\r&quot;\,

and
\r&quot;

&amp;gt; 0,

so that
|

n = nu n.22 n r2n2i &amp;gt; 0.

Lastly, |

n ru
&quot; = nn Tll

&quot; + nia r2l

&quot;

&amp;gt; 0,

and it may be proved by elementary considerations that this

inequality may be replaced by

nu + n,z &amp;gt; 0.

These three inequalities are implied by the single condition

2 vnnftji
-

?? 12n21 .

142
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117. SINGULAR CURVES.

Taking &amp;lt;E&amp;gt; (U ; r) to be a theta function with definite parity and

characteristic, we find that a family of singular curves exists whose

equation is F (u)
= where

F(u + ra + J3)
=

(
- )#+* F (u) exp {

- irian (2u + ra)},

and F is either even or odd.

This differs from the periodic property of a theta function by
the presence of the matrix (n) in place of a single integer. If

we assume an expansion

F(u)=elriau 2,A 8 eZirisu

the preceding relation gives -A
l+Mll&amp;gt;VHlia ,

and ^
Sl+n2l) *.2+n22

in terms

of A9lti^ whence it follows that the number of linearly inde

pendent functions F (u) having the same characteristic a@ and

matrix n is the area of the parallelogram whose corners, referred

to rectangular axes, are (0, 0), (/iu ,
w12), (n 2l ,

?i 22), (wu + n 21) nl2 + nw ),

that is, n .

The nodes through which the singular curve F (u)
=

passes

are given by the half-periods for which F vanishes. These are

seen from the periodic relation to be
-J (ra + ff) where

a/3 + 01/3 + an]3

has the opposite parity to F. Hence all the curves of one family

pass through the same nodes.

If the elements of the matrix

satisfy the condition

?in +

so also do the elements of

and the singular relations are the same in both cases.

By adding the exponents in the period relations we see that

the product of two intermediary functions, one from each family, is

a theta function of order nn + n Z2 and characteristic the sum of

those of its factors.

Hence the curve F(u) = is of order nn +n.22 and arises from

the breaking up of an ordinary curve of order 2 (nn + w 22).
The

base points of this ordinary family are divided among the two

singular curves which intersect in a certain number of other nodes
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It can be proved that the number of intersections of two

singular curves, distinguished by different matrices n and ri, is

J (Xi^s/ + &quot;22V - nlzn^ - w 21 w 12 ).

On putting ?^n
/ = nZ2

=
2, w12

= ?? 21
=

0&amp;gt;
the second curve becomes a

plane section, and we get the order nn + n 22 .

118. SINGULAR SURFACES WITH INVARIANT 5.

The existence of singular curves upon a singular surface of

invariant 5 depends upon the choice of four integers nn ,
?i12 ,

n2l , n^

satisfying

n + n = v4t fi ^ nn + 5 .n

The smallest values give the most interesting result and accord

ingly we take wn = w12
= w21

= 1, ?i22 =2. The corresponding

equation F(u) = represents a curve of order rin + ?i22 ,
= 3, and if

the characteristic is zero, it passes through the nodes ^ (TOL + ft)

where

has the opposite parity to ^P. Now it is easily found that the

congruence
(i + a 2) & + !&=() (mod. 2)

has ten solutions, and the congruence

(! + a) ft + iyS2
= 1 (mod. 2)

has six solutions
;
the latter are underlined in the diagram

dd ac ba cb

ab da cc bd

be cd db aa

ca bb ad dc

and are seen to form a Weber-hexad. The cubic cannot pass

through the ten nodes since five of them lie in the trope (ab), and

so must pass through the hexad. It is projected from the node

(aa) by a quadric cone passing through the intersections of the

tropes (cd), (dc), (bd), (db), (cb), (cd) taken consecutively and

therefore touching the remaining trope (be) which passes through
the node (aa). The fact that such a conic can be drawn is a

consequence of the singular relation, and it is easy to express the

conditions in terms of the constants of the surface.
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The values nn = 2, ?? 22 =1, n lz
= nzl

= -
1, give another cubic

passing through the nodes ^ (TO. + @) where

2a, ft - a,{32
-

a& + ,& = 1 (mod. 2)

or
(otj + a,)A + or2 ft

= 1 (mod. 2),

that is, the underlined hexad in the diagram

dd ac ba cb

ab da cc bd

be cd db aa

ca bb ad dc

Thus the two cubics taken together form a sextic of the family

passing through the six nodes in the trope (dd) ; they both pass

through the same three additional nodes (aa), (bb), (cc).

If a /3 is the characteristic of F (u) the singular curve in the

first case passes through the nodes (a/3) given by

iA + 2A + a/A + 2A + !A + !A + 2A = or 1,

or (a, + a2 + a/) (ft + A/) + (^ + a/) (A + ft )
= or 1,

so we have only to add the characteristic

A
to the solutions of the former congruence. Hence corresponding
to the matrix

there are sixteen cubics on the surface, forming a group-set; of

these six pass through each node. A similar result holds for the

cubics associated with the matrix

2 -r
-1 1

Since n = 1 each singular family contains only one curve.

119. SINGULAR SURFACES WITH INVARIANT 8.

The elements of the matrix (n) have to satisfy

4 (nu nK - w12wai ) + 8.

The smallest value of n is 2 giving nu + n^ = 4. We find there

fore singly infinite families of quartics, taking

7*12\ = /2 1

iij V2 2
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the singular relation has the canonical form

- 2rn + T^ - 0.

The singular family of characteristic aft passes through the nodes

(a/3) given by

a/3 + OL (3 -f an/3
= or 1 (mod. 2),

that is (! + &amp;lt;) (/32 + & ) + &amp;lt;*& + /& = or 1.

First take / - a/ - /3/
=

/3,/
-

;

the congruence a^ = 1

has one solution &! = /32
= 1, giving four nodes since ct.2 and /3j are

arbitrary. These nodes are

,0 u vo l) Vi U Vi

or (aa) (ba) (ab) (bb)

and form a Gopel tetrad. The alternative congruence

gives the remaining twelve nodes, which are inadmissible since

there are tropes containing six of them.

Hence there exists on this surface a singular family of quartics

passing through four nodes and depending on one parameter.
This parameter can be chosen to make the quartic pass through
an additional node which will then be a double point on the curve

since it is not a base node. By projecting from this node we get
a quadric cone passing through the four lines of intersection of

four tropes taken in order, and touching the remaining two. The

reciprocal property holds for the six nodes in any trope and

characterises the surface : a conic can be described through two

nodes to touch the sides of a quadrilateral formed by the other four.

By taking different values for 2 and /3/ we get three other

families of quartics passing through the remaining three tetrads of

the group-set. Again taking

(nn
n la\

(
2 -2\

U. J V-l 2 )

we find a family of quartics of characteristic a ft passing through
the nodes given by

CLiffi + 2 /32 4- i /3i + a2 /32 + 2& = or 1,

so that it is necessary only to interchange a and ft, a and ft .

Thus there is a second family of quartics through the nodes (aa),

(ab), (ba), (bb), and by the general theory any two curves, one

from each family, lie on a quadric.
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120. BIRATIONAL TRANSFORMATIONS OF RUMMER SURFACES

INTO THEMSELVES.

Examples of these are the fifteen collineations which with

identity make up the group of sixteen linear transformations upon
which the whole theory of the general Kummer surface depends.
Other transformations, not linear, are geometrically evident,

namely the sixteen projections of the surface upon itself from

the nodes, and the correlative transformations by means of tangent

planes collinear with a trope. The question was proposed by
Klein*, and answered by Humbert f, as to whether any other

such transformations exist.

A method is given in 96 for finding in succession all the

quartic surfaces into which the general Kummer surface can

be transformed birationally ; among these, for different orders

of the transformation, the surface itself occurs, as for example
when n = 6, s = 0. Two examples are pointed out by Hutchinson

j;

who refers the surface to a Gopel tetrad of nodes. The equation
has the form

A (x
2
tf + y

2z2

) + B (ft
2 + 22x2

) + C(z
2
t
2 + x~if) + Dxyzt

+ F(yt + zx) (zt + xy} + G (zt + xy) (xt + yz)

+ H (xt + yz) (yt + zx) =
and is unchanged by the transformation^

x x = y y = z z = t t,

so that by using different tetrads we obtain in this way an infinite

group of birational transformations. Again the equation of

Weddle s surface

|V-*,4%, es,fs
\

= (5-1,2,3, 4)

is unchanged by the same substitution. There are fifteen equations
of this form, referred to different tetrahedra of nodes, and we
obtain in this way another infinite group of transformations of

Kummer s surface since there is a one-one relation between the

two surfaces.

There exist special Kummer surfaces which admit other trans

formations than those indicated. We consider only the problem
of finding those surfaces which can be linearly transformed into

themselves|| otherwise than by the group of sixteen collineations.

*
Klein, Math. Ann. (1885), xxvir, 142.

t Humbert, Liouville (1893), ser. 4, ix, 465.

Hutchinson, Amer. Bull. (1901), vn, 211.

Showing that the six parameters of three nodes on a unicursal quartic are

those of six nodes on a conic, Humbert, Comptes Eendus (1901), cxxxni, 425.

|| Kantor, Amer. Jour. (1897), xix, 86.
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Suppose that such a transformation exists
;

it changes the nodes

on one conic into the nodes on the same or some other conic, and

by combining one of the sixteen collineations we may arrange
that the conic is the same. Conversely if the six nodes 1, 2, 3, 4, 5, 6

in the plane are protectively related to the same nodes in a

different order 1
,
2

,
3

,
4

,
5

,
6

,
then it is easily seen that a

linear transformation can be found which interchanges the Gopel
tetrahedra of tropes 0, 12, 34, 56 and 0, 1 2

,
3 4

,
5 6

,
and leaves

the surface unaltered. Thus the problem is reduced to finding
the conditions under which six points on a conic can be linearly

transformed into themselves*.

Now in a linear transformation of a conic into itself the chords

joining corresponding points touch another conic having double

contact at the self-corresponding points.

These conies may be projected into concentric circles and

then any cyclic permutation must represent a regular polygon
inscribed in one circle and circumscribed about the other; for

instance a cycle (12) means that the points 1 and 2 are the ends

of a diameter, and the inner circle has zero radius. Now any

permutation can be arranged as a set of cycles, the elements of

each cycle being permuted in cyclic order among themselves
;

in the present case there must not be more than two points

unchanged, and the remaining points must be the corners of

one or more regular polygons, the number of corners being the

same for different polygons. Under these restrictions the only

possible permutations are represented by the following six types :

*
Bolza, Amer. Jour., x, 47.
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The third column describes the projective nature of the

situation of coplanar nodes regarded as lying on a circle passing

through / and J the circular points at infinity. By comparison
with the results of 57 we identify the corresponding surface as

a tetrahedroid except in case V.

It is interesting to see how these surfaces arise in the theory
of the birational transformation of the hyperelliptic surface into

itself*. The general hyperelliptic surface is defined by equating
the coordinates to theta functions of the same order and zero

characteristic, and in general each point has a single pair of

parameters u1 ,
u.2 . Then du-^ and du2 are differentials &quot;of the first

kind
&quot;

for the surface and must be linearly transformed when the

surface undergoes a birational transformation. Thus we are led

to the special kind of transformation of theta functions known
as complex multiplication in which the new periods are the same

as the old, and in order to be uniquely reversible the transforma

tion must be of the first order. There are two cases, according
as the transformation is ordinary or singular (pp. 202, 203). In the

former case it can be shown that when the surface is not singular

the only transformations are given by

u-[ = u + const., u2
= u2 + const.,

and by w/ = Uj. + const., u2
= w2 4- const. ;

Rummer s surface is distinguished from the general hyperelliptic

surface by the fact that each point has two pairs of parameters

(tt 1}
u 2)

and (MI, w2),
and the preceding reasoning fails. In fact

the transformation

gives two distinct points (u + a) and ( u 4- a) corresponding to one

point (u) unless (a) is a half-period, in which case the trans

formation is one of the group of sixteen collineations. The

preceding equations do, however, express a one-one relation

between the points of the tangent sections (v) and (v + a),

where (v) is arbitrary, because each is a univocal curve (p. 190),

and this affords a proof that all tangent sections have the same

moduli.

When the hyperelliptic surface is singular it may admit

other birational transformations depending on ordinary trans

formations of theta functions. It can be shown that this depends

*
Humbert, Liouville, s^r. 5, vi, 367.
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on a linear transformation of the integrals jdxfy and fadxjy
where

7/2
=

(x - h) (x
- k2) (as

- ks) (x
- k4) (x

-
Jc5) (x

- &6),

and this again depends on a linear transformation of the sextic

into itself, leading to the same six sets of relations among the

constants, to each of which corresponds a certain type of singular

Kummer surface.
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