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EDITORS PREFACE.

OUR attention was first attracted to Sundara Row s Geomet

rical Exercises in Paper Folding by a reference in Klein s Vor-

lesungen iiber ausgezucihlte Fragen der Elementargeometrie.

An examination of the book, obtained after many vexatious delays,

convinced us of its undoubted merits and of its probable value to

American teachers and students of geometry. Accordingly we

sought permission of the author to bring out an edition in this

country, wnich permission was most generously granted.

The purpose of the book is so fully set forth in the author s

introduction that we need only to say that it is sure to prove of

interest to every wide-awake teacher of geometry from the graded

school to the college. The methods are so novel and the results

so easily reached that they cannot fail to awaken enthusiasm.

Our work as editors in this revision has been confined to some

slight modifications of the proofs, some additions in the way of

references, and the insertion of a considerable number of half-tone

reproductions of actual photographs instead of the line-drawings

of the original.

W. W. BEMAN.

D. E. SMITH.
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INTRODUCTION.

THE idea of this book was suggested to me by

Kindergarten Gift No. VIII. Paper-folding. The

gift consists of two hundred variously colored squares

of paper, a folder, and diagrams and instructions for

folding. The paper is colored and glazed on one side.

The paper may, however, be of self-color, alike on

both sides. In fact, any paper of moderate thickness

will answer the purpose, but colored paper shows the

creases better, and is more attractive. The kinder

garten gift is sold by any dealers in school supplies ;

but colored paper of both sorts can be had from sta

tionery dealers. Any sheet of paper can be cut into

a square as explained in the opening articles of this

book, but it is neat and convenient to have the squares

ready cut.

2. These txercises do not require mathematical

instruments, the only things necessary being a pen

knife and scraps of paper, the latter being used for

setting off equal lengths. The squares are themselves

simple substitutes for a straight edge and a T square.

3. In paper-folding several important geometric

processes can be effected much more easily than with
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a pair of compasses and ruler, the only instruments

the use of which is sanctioned in Euclidean geom

etry ;
for example, to divide straight lines and angles

into two or more equal parts, to draw perpendiculars

and parallels to straight lines. It is, however, not

possible in paper-folding to describe a circle, but a

number of points on a circle, as well as other curves,

may be obtained by other methods. These exercises

do not consist merely of drawing geometric figures

involving straight lines in the ordinary way, and fold

ing upon them, but they require an intelligent appli

cation of the simple processes peculiarly adapted to

paper-folding. This will be apparent at the very com

mencement of this book.

4. The use of the kindergarten gifts not only affords

interesting occupations to boys and girls, but also

prepares their minds for the appreciation of science

and art. Conversely the teaching of science and art

later on can be made interesting and based upon

proper foundations by reference to kindergarten occu

pations. This is particularly the case with geometry,

which forms the basis of every science and art. The

teaching of plane geometry in schools can be made

very interesting by the free use of the kindergarten

gifts. It would be perfectly legitimate to require pu

pils to fold the diagrams with paper. This would

give them neat and accurate figures, and impress the

truth of the propositions forcibly on their minds. It

would not be necessary to take any statement on trust.
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But what is now realised by the imagination and ideal

isation of clumsy figures can be seen in the concrete.

A fallacy like the following would be impossible.

5. To prove that every triangle is isosceles. Let

ABC, Fig. 1, be any triangle. Bisect AB in Z, and

through Z draw ZO perpendicular to AB. Bisect the

angle ACB by CO.
*

A 2 B
Fig. i.

(1) If CO and ZO do not meet, they are parallel.

Therefore CO is at right angles to AB. Therefore

AC^BC.

(2) If CO and ZO do meet, let them meet in O.

Draw OX perpendicular to BC and OY perpendicular

to AC. Join OA
y OB. By Euclid I, 26 (B. and S.,

88, cor. 7)* the triangles YOC and XOC are con-

* These references are to Beman and Smith s New Plane and Solid Geom

etry, Boston, Ginn & Co., 1899.
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gruent; also by Euclid I, 47 and I, 8 (B. and S.,

156 and 79) the triangles AOY and BOX are con

gruent. Therefore

AY+ YC=BX+XC,
i.e., AC^BC.

Fig. 2 shows by paper- folding that, whatever tri

angle be taken, CO and ZO cannot meet within the

triangle.

Fig. 2.

O is the mid-point of the arc A OB of the circle

which circumscribes the triangle ABC.

6. Paper-folding is not quite foreign to us. Fold

ing paper squares into natural objects a boat, double
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boat, ink bottle, cup-plate, etc., is well known, as

also the cutting of paper in symmetric forms for pur

poses of decoration. In writing Sanskrit and Mah-

rati, the paper is folded vertically or horizontally to

keep the lines and columns straight. In copying let

ters in public offices an even margin is secured by fold

ing the paper vertically. Rectangular pieces of paper

folded double have generally been used for writing,

and before the introduction of machine-cut letter pa

per and envelopes of various sizes, sheets of convenient

size were cut by folding and tearing larger sheets, and

the second half of the paper was folded into an envel

ope inclosing the first half. This latter process saved

paper and had the obvious advantage of securing the

post marks on the paper written upon. Paper-folding

has been resorted to in teaching the Xlth Book of

Euclid, which deals with figures of three dimensions.*

But it has seldom been used in respect of plane fig

ures.

7. I have attempted not to write a complete trea

tise or text-book on geometry, but to show how reg

ular polygons, circles and other curves can be folded

or pricked on paper. I have taken the opportunity to

introduce to the reader some well known problems of

ancient and modern geometry, and to show how alge

bra and trigonometry may be advantageously applied

to geometry, so as to elucidate each of the subjects

which are usually kept in separate pigeon-holes.

* See especially Beman and Smith s New Plane and Solid Geometry, p. 287.
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8. The first nine chapters deal with the folding of

the regular polygons treated in the first four books of

Euclid, and of the nonagon. The paper square of the

kindergarten has been taken as the foundation, and

the other regular polygons have been worked out

thereon. Chapter I shows how the fundamental square

is to be cut and how it can be folded into equal right-

angled isosceles triangles and squares. Chapter II

deals with the equilateral triangle described on one of

the sides of the square. Chapter III is devoted to

the Pythagorean theorem (B. and S., 156) and the

propositions of the second book of Euclid and certain

puzzles connected therewith. It is also shown how a

right-angled triangle with a given altitude can be de

scribed on a given base. This is tantamount to find

ing points on a circle with a given diameter.

9. Chapter X deals with the arithmetic, geometric,

and harmonic progressions and the summation of cer

tain arithmetic series. In treating of the progressions,

lines whose lengths form a progressive series are ob

tained. A rectangular piece of paper chequered into

squares exemplifies an arithmetic series. For the geo

metric the properties of the right-angled triangle, that

the altitude from the right angle is a mean propor

tional between the segments of the hypotenuse (B.

and S., 270), and that either side is a mean propor

tional between its projection on the hypotenuse and

the hypotenuse, are made use of. In this connexion

the Delian problem of duplicating a cube has been
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explained.* In treating of harmonic progression, the

fact that the bisectors of an interior and correspond

ing exterior angle of a triangle divide the opposite

side in the ratio of the other sides of the triangle (B.

and S., 249) has been used. This affords an inter

esting method of graphically explaining systems in

involution. The sums of the natural numbers and of

their cubes have been obtained graphically, and the

sums of certain other series have been deduced there

from.

10. Chapter XI deals with the general theory of

regular polygons, and the calculation of the numerical

value of 7t. The propositions in this chapter are very

interesting.

11. Chapter XII explains certain general princi

ples, which have been made use of in the preceding

chapters, congruence, symmetry, and similarity of

figures, concurrence of straight lines, and collinearity

of points are touched upon.

12. Chapters XIII and XIV deal with the conic

sections and other interesting curves. As regards

the circle, its harmonic properties among others are

treated. The theories of inversion and co-axial circles

are also explained. As regards other curves it is

shown how they can be marked on paper by paper-

folding. The history of some of the curves is given,

and it is shown how they were utilised in the solution

*See Beman and Smith s translation of Klein s Famous Problems ofEle

mentary Geometry, Boston, 1897; also their translation of Fink s History of
Mathematics, Chicago, The Open Court Pub. Co., 1900.
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of the classical problems, to find two geometric means

between two given lines, and to trisect a given recti

lineal angle. Although the investigation of the prop

erties of the curves involves a knowledge of advanced

mathematics, their genesis is easily understood and is

interesting.

13. I have sought not only to aid the teaching of

geometry in schools and colleges, but also to afford

mathematical recreation to young and old, in an at

tractive and cheap form. &quot;Old boys&quot;
like mysell

may find the book useful to revive their old lessons,

and to have a peep into modern developments which,

although very interesting and instructive, have been

ignored by university teachers.

T. SUNDARA Row.

MADRAS, INDIA, 1893.



I. THE SQUARE.

1. The upper side of a piece of paper lying flat

upon a table is a plane surface, and so is the lower

side which is in contact with the table.

2. The two surfaces are separated by the material

of the paper. The material being very thin, the other

sides of the paper do not present appreciably broad

surfaces, and the edges of the paper are practically

lines. The two surfaces though distinct are insepa

rable from each other.

3. Look at the irregularly shaped piece of paper

shown in Fig. 3, and at this page which is rectangu

lar. Let us try and shape the former paper like the

latter.

4 Place the irregularly shaped piece of paper

upon the table, and fold it flat upon itself. Let X X
be the crease thus formed. It is straight. Now pass

a knife along the fold und separate the smaller piece.

We thus obtain one straight edge.

5. Fold the paper again as before along BY, so

that the edge X X is doubled upon itself. Unfolding

the paper, we see that the crease ^Kis at right angles

to the edge X X. It is evident by superposition that



GEOMETRIC EXERCISES

the angle YBX equals the angle XBY, and that each

of these angles equals an angle of the page. Now pass

Fig. 3-

a knife as before along the second fold and remove

the smaller piece.
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6. Repeat the above process and obtain the edges

CD and DA. It is evident by superposition that the

angles at A, B, C, &amp;gt;,

are right angles, equal to one

another, and that the sides BC, CD are respectively

Fig. 4 .

equal to DA, AB. This piece of paper (Fig. 3) is

similar in shape to the page.

7. It can be made equal in size to the page by

taking a larger piece of paper and measuring off AB
and BC equal to the sides of the latter.
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8. A figure like this is called a rectangle. By

superposition it is proved that (1) the four angles are

right angles and all equal, (2) the four sides are not

all equal. (3) but the two long sides are equal, and so

also are the two short sides.

9. Now take a rectangular piece of paper, A B CD,

and fold it obliquely so that one of the short sides, CD,

Fig. 5-

falls upon one of the longer sides, DA ,
as in Fig. 4.

Then fold and remove the portion A B BA which

overlaps. Unfolding the sheet, we find that ABCD
is now square, i. e.

,
its four angles are right angles,

and all its sides are equal.

10. The crease which passes through a pair of th&
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opposite corners B, D, is a diagonal of the square.

One other diagonal is obtained by folding the square

through the other pair of corners as in Fig. 5.

n. We see that the diagonals are at right angles

to each other, and that they bisect each other.

12. The point of intersection of the diagonals is

called the center of the square.

Fig. 6.

13. Each diagonal divides the square into two con

gruent right-angled isosceles triangles, whose vertices

are at opposite corners.

14. The two diagonals together divide the square

into four congruent right-angled isosceles triangles,

whose vertices are at the center of the square.
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15. Now fold again, as in Fig. 6, laying one side

of the square upon its opposite side. We get a crease

which passes through the center of the square. It is

at right angles to the other sides and (1) bisects them;

(2) it is also parallel to the first two sides
; (3) it is

itself bisected at the center
; (4) it divides the square

Fig. 7.

into two congruent rectangles, which are, therefore,

each half of it; (5) each of these rectangles is equal

to one of the triangles into which either diagonal

divides the square.

16. Let us fold the square again, laying the re

maining two sides one upon the other. The crease
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now obtained and the one referred to in 15 divide

the square into four congruent squares.

17. Folding again through the corners of the

smaller squares which are at the centers of the sides

of the larger square, we obtain a square which is in

scribed in the latter. (Fig. 7.)

Fig. 8.

18. This square is half the larger square, and has

the same center.

19. By joining the mid-points of the sides of the

inner square, we obtain a square which is one-fourth

of the original square (Fig. 8). By repeating the pro

cess, we can obtain any number of squares which are

to one another as
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1 l 1 JL i L : L
&quot;2* &quot;4&quot; ~8~ 16

etc or
&quot;2&quot; 2^ jp 24

*

Each square is half of the next larger square,

i. e., the four triangles cut from each square are to

gether equal to half of it. The sums of all these tri

angles increased to any number cannot exceed the

original square, and they must eventually absorb the

whole of it.

Therefore -f ^ + ^ + etc - to infinity = 1.

20. The center of the square is the center of its

circumscribed and inscribed circles. The latter circle

touches the sides at their mid-points, as these are

nearer to the center than any other points on the

sides.

21. Any crease through the center of the square

divides it into two trapezoids which are congruent. A
second crease through the center at right angles to

the first divides the square into four congruent quadri

laterals, of which two opposite angles are right angles.

The quadrilaterals are concyclic, i. e., the vertices of

each lie in a circumference.



II. THE EQUILATERAL TRIANGLE.

22. Now take this square piece of paper (Fig. 9),

and fold it double, laying two opposite edges one upon

the other. We obtain a crease which passes through

Fig. 9.

the mid-points of the remaining sides and is at right

angles to those sides. Take any point on this line,

fold through it and the two corners of the square which



io GEOMETRIC EXERCISES

are on each side of it. We thus get isosceles triangles

standing on a side of the square.

23. The middle line divides the isosceles triangle

into two congruent right-angled triangles.

24. The vertical angle is bisected.

25. If we so take the point on the middle line, that

Fig. io.

its distances from two corners of the square are equal

to a side of it, we shall obtain an equilateral triangle

(Fig. 10). This point is easily determined by turning

the base AB through one end of it, over AA
,
until the

other end, B, rests upon the middle line, as at C.

26. Fold the equilateral triangle by laying each
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of the sides upon the base. We thus obtain the

three altitudes of the triangle, viz.: AA
,
BB

, CC,

(Fig. 11).

27. Each of the altitudes divides the triangle into

two congruent right-angled triangles.

28. They bisect the sides at right angles.

Fig. ix.

29. They pass through a common point.

30. Let the altitudes AA and CC meet in O.

Draw BO and produce it to meet AC in B . BB
will now be proved to be the third altitude. From

the triangles C OA and COA
, OC =OA . From

triangles OC B and A OB, ^OBC ^^A BO. Again

from triangles ABB and CB B, /_AB B= /_BB C,
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i. e., each of them is a right angle. That is, BOB is

an altitude of the equilateral triangle ABC. It also

bisects AC in B .

31. It can be proved as above that OA, OB, and

OC are equal, and that OA
,
OB

,
and OC are also

equal.

32. Circles can therefore be described with O as a

center and passing respectively through A, B, and C

and through A ,
B

,
and C . The latter circle touches

the sides of the triangle.

33. The equilateral triangle ABC is divided into

six congruent right-angled triangles which have one

set of their equal angles at O, and into three congru

ent, symmetric, concyclic quadrilaterals.

34. The triangle A OC is double the triangle A OC;

therefore, AO= 2OA . Similarly, BO=r-2OL and

CO= 2OC . Hence the radius of the circumscribed

circle of triangle ABC is twice the radius of the in

scribed circle.

35. The right angle A, of the square, is trisected

by the straight lines AO, AC. Angle BAC=^\ of a

right angle. The angles C A O and OAB are each i

of a right angle. Similarly with the angles at B and C.

36. The six angles at O are each of a right angle.

37. Fold through A B
,
B C

,
and CA (Fig. 12).

Then A B C is an equilateral triangle. It is a fourth

of the triangle ABC.

38. A B
,
B C

,
C A are each parallel to AB, BC,

CA, and halves of them.
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39. ACA B is a rhombus. So are C BA B and

CB C A .

40. A B
,
B C

,
C A bisect the corresponding alti

tudes.

41. CC

= 0.866....

Fig. 12.

42. The A ABC= rectangle of AC and CC ,
i. e.

X \V* AB = IVZ-AB? = 0.433 ....X^2
-

43. The angles of the triangle AC C are in the

ratio of 1:2:3, and its sides are in the ratio of 1/1

: 1/3 : 1/4 .



III. SQUARES AND RECTANGLES.

44. Fold the given square as in Fig. 13. This

affords the well-known proof of the Pythagorean the-

Fig. 13.

orem. FGH being a right-angled triangle, the square

on FH equals the sum of the squares on FG and GH.

uFA + u DB= n FC.

It is easily proved that FC is a square, and that



PAPER FOLDING 15

the triangles FGH, HBC, KDC, and FEK are con

gruent.

If the triangles FGH and HBC are cut off from

the squares FA and DB, and placed upon the other

two triangles, the square FHCK is made up.

IiAB= a, GA=b, and FH=c, then a2
-f 6*= c*.

Fig. 14.

45. Fold the given square as in Fig. 14. Here the

rectangles AF, BG, Cff, and DE are congruent, as

also the triangles of which they are composed. EFGH
is a square as also KLMN.

Let AK=a, KB= b, and NK= c,

then a*+ # =^2, j. e . uKLMN.
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Now square ABCD overlaps the square KLMN
by the four triangles AKN, BLK, CML, and DNM.

But these four triangles are together equal to two

of the rectangles, i. e., to lab.

Therefore (a -f )
2= a 2 + P -f 2ab.

46. EF=a b, auidnFGJ?=(a fi)*.

The square EFGHis less than the square KLMN
by the four triangles FNKt GKL, HLM, and EMN.

But these four triangles make up two of the rect

angles, i. e., Zab.

Fig. 15.

47. The square ABCD overlaps the square EFGH
by the four rectangles AF, BG, Clf, and DE.

48. In Fig. 15, the square ABCD= (a-\- )
2

,
and
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the square EFGH(a &amp;lt;)

2
. Also square AKGN

= square ELCM = a 2
. Square KBLF = square

T ft

Squares ABCD and EFGH are together equal to

the latter four squares put together, or to twice the

square AKGN and twice the square KBLF, that is,

(a + )
2
-f (a )

2= 2a2
4- 2^2

.

D O N C

Fig. 16.

49. In Fig. 16 the rectangle PL is equal to (a-\-ft

( -*).
Because the rectangle EK = FM, therefore rect

angle PL = square PK square AE, i. e., (a-\-

50. If squares be described about the diagonal of

a given square, the right angle at one corner being

common to them, the lines which join this corner with

the mid-points of the opposite sides of the given
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square bisect the corresponding sides of all the inner

squares. (Fig. 17.) For the angles which these lines

make with the diagonal are equal, and their magni

tude is constant for all squares, as may be seen by

Fig. 17.

superposition. Therefore the mid-points of the sides

of the inner squares must lie on these lines.

51. ABCD being the given square piece of paper

(Fig. 18), it is required to obtain by folding, the point

^Tin AB, such that the rectangle AB-XB is equal to

the square on AX,

Double BC upon itself and take its mid-point E.

Fold through E and A.

Lay EB upon EA and fold so as to get EF, and

G such that EG= EB.

Take AX=AG.
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Then rectangle AB-XB^AX*.

Complete the rectangle BCHX and the square

AXKL.
Let Xffcut EA in M. Take FY=FB.
Then F =FG=FY=XM m& XM=\AX.

Fig. 18.

Now, because BY is bisected in F and produced

to A,

Y+FY *= AF i, by 49&amp;gt;

^(92+^C2
, by 44.

.-. AB-AY=AG1
J

But ^^ 2=
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AY=XB.

AB is said to be divided in X in median section.*

Also

i. e., AB is also divided in Y in median section.

52. A circle can be described with F as a center,

its circumference passing through B, G, and K It

will touch .ZL4 at G, because FG is the shortest dis

tance from F to the line EGA.

53. Since

subtracting BK we have

rectangle XKNY= square CHKP,
i. e., ^.AT-KA^^F2

,

i. e., AX is divided in Kin median section.

Similarly j#Fis divided in X in median section.

54.

CD-CP

55. Rectangles Bff and YD being each=AB-XBy

rectangle ^F+ square CK=AX^= AB- XB.

56. Hence rectangle JfY= rectangle j^A&quot;, i. e.,

57. Hence rectangle ^AT=AX-XBBX*.

* The term &quot;

golden section&quot; is also used. See Beman and Smith s New
Plane and Solid Geometry, p. 196.



IN PAPER FOLDING 21

58. Let AB= a, XB= x.

Then (a x^= ax, by 51.

0a + **=:3&amp;lt;i#, by 54;

and #= .(3 1/5).

.-. a *= 4- (1/5 1) = * X 0.6180. .

a

... (^_jc)
2= ^(3 1/5) = ^ 2 X 0.3819.

z

The rect. BPKX

= a2
(1/5 2)= a2 X 0.2360

~
4

59. In the language of proportion

AB : ^^T=^^: Xff..

The straight line AB is said to be divided &quot;in ex

treme and mean ratio.&quot;

60. Let AB be divided in X in median section.

Complete the rectangle CBXH (Fig. 19). Bisect the

rectangle by the line MNO. Find the point N by

laying XA over X so that A falls on MO, and fold

through XN, NB, and 7V^. Then BAN is an isos-
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celes triangle having its anglesABN and BNA double

the angle NAB.
AX=XN=NB

Fig. 19.
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.-. AN=AB
=

\ of a right angle.

61. The right angle at A can be divided into five

equal parts as in Fig. 20. Here N is found as in

60. Then fold^^
&amp;lt;2;

bisect QAB by folding,

p Q &amp;lt;~

Fig. 20.

fold over the diagonal AC and thus get the point

Q ,
/&quot;

62. To describe a right-angled triangle, given the

hypotenuse AB, and the altitude.

Fold EF (Fig. 21) parallel to AB at the distance

of the given altitude.

Take G the middle point of AB. Find Hby fold

ing GB through G so that B may fall on EF.
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Fold through H and A, G, and B.

AHB is the triangle required.

Fig. 21.

63. ABCD (Fig. 22) is a rectangle. It is required

to find a square equal to it in area.

Q P

R O B

Fig. 22.

M

Mark Q

Find
&amp;lt;9,

the middle point of AM, by folding.
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Fold OM, keeping O fixed and letting M fall on

line BC, thus finding P, the vertex of the right-angled

triangle AMP.
Describe on PB the square BPQR.
The square is equal to the given rectangle.

For . BP= QP, and the angles are equal, triangle

BMP is evidently congruent to triangle QSP.

.-. QS=BM=AD.

.
-

. triangles DA T and QSP are congruent.

.-. PC=SR and triangles RSA and CPT are con

gruent.

.-. rnABCD can be cut into three parts which

can be fitted together to form the square RBPQ.

Fig. 23.

64. Take four equal squares and cut each of them

into two pieces through the middle point of one of the

sides and an opposite corner. Take also another
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equal square. The eight pieces can be arranged round

the square so as to form a^complete square, as in Fig.

23, the arrangement being a very interesting puzzle.

The fifth square may evidently be cut like the

others, thus complicating the puzzle.

65. Similar puzzles can be made by cutting the

squares through one corner and the trisection points

of the opposite side, as in Fig. 24.

Fig. 24.

66. If the nearer point is taken 10 squares are re

quired, as in Fig. 24; if the remoter point is taken 13

squares are required, as in Fig. 25.

67. The puzzles mentioned in 65, 66, are based

upon the formulas

12 -I- 3
2= 10

22
-f 32 = 13.
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The process may be continued, but the number of

squares will become inconveniently large.

68. Consider again Fig. 13 in 44. If the four

triangles at the corners of the given square are re

moved, one square is left. If the two rectangles FK
and KG are removed, two squares in juxtaposition

are left.

Pi*. 25.

69. The given square may be cut into pieces which

can be arranged into two squares. There are various

ways of doing this. Fig. 23, in 65, suggests the

following elegant method : The required pieces are

(1) the square in the center, and (2) the four con

gruent symmetric quadrilaterals at the corners, to

gether with the four triangles. In this figure the lines

from the mid-points of the sides pass through the cor-
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ners of the given square, and the central square is

one fifth of it. The magnitude of the inner square

can be varied by taking other points on the sides in

stead of the corners.

70. The given square can be divided as follows

(Fig. 26) into three equal squares :

Take G= hali the diagonal of the square.

Fig. 26.

Fold through C and G.

Fold BM perpendicular to CG.

Take MP, CN, and NL each = BM.

Fold PH, NK, LF at right angles to CG, as in

Fig. 26.
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Take NK=BM, and fold KE at right angles to

NK.

Then the pieces 1, 4, and 6, 3 and 5, and 2 and 7

form three equal squares.

Now CGi= ?&amp;gt;BG
i
,

and from the triangles GBC and CMB

BM_BG
~BC~~~CG }

Letting BC=a, we have

-

1/3



IV. THE PENTAGON.

71. To cat off a regular pentagon from the square

ABCD.
Divide BA in X in median section and take M

the mid-point of AX.

D c

A M X N S

Fig. 27.

Then AB-AX=XB1
,
and AM=MX.

Take BN=AM or MX.

Lay off NP and J/^ equal to MN, so that /* and

R may lie on BC and ^4Z&amp;gt; respectively.
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Lay off RQ and PQ=MR and NP.

MNPQR is the pentagon required.

In Fig. 19, p. 22, AN, which is equal to AB, has

the point JV on the perpendicular MO. If A be moved

on ^4.Z? over the distance MB
,
then it is evident that

.A7 will be moved on to BC, and J^f to Jf.

Therefore, in Fig. 27, NR= AB. Similarly MP=
Ab RP is also equal to AB and parallel to it.

/ RMA = | of a rt. / .

. . /NMR= f of a rt / .

Similarly /PNM= f of a rt. / .

From triangles MNR and QRP, /NMR= RQP
= of art. /.

The three angles at J/, TV, and Q of the pentagon

being each equal to of a right angle, the remain

ing two angles are together equal to -^
2- of a right

angle, and they are equal. Therefore each of them

is | of a right angle.

Therefore all the angles of the pentagon are equal.

The pentagon is also equilateral by construction.

72. The baseMN of the pentagon is equal to XB,

\ e., to^?- (l/5 1)=^X0.6180.... 58.

The greatest breadth of the pentagon is AB.

73. If/ be the altitude,
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8

215

0.9510. . . . =AB cos

Fig. 28.

74. if J? be the radius of the circumscribed circ)e,

x= AB = ZAS
2cosl8 T/io + 21/5

o



IN PAPER FOLDING 33

75. If r be the radius of the inscribed circle, then

from Fig. 28 it is evident that

20

0.4253....

76. The area of the pentagon is 5r X i the base of

the pentagon, i. e.,

10

77. In Fig. 27 let PR be divided by MQ and

in . and F.

Then -.- MN= l.(i/5 1) ... 72
a

and cos 36= -

--^-l)

cos 36 5 _|_
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-2)... (2)
RF=MN.
RF: RE=RE : F(by 51) .................... (3)

1/5 1:3 1/5= 3 1/5 : 2 (1/5 2) ........... (4)

By 76 the area of the pentagon

i 1/25 + 101/5,

snce = V 5

2

. . the area of the inner pentagon

= EF* -

l

1/25+ 101/5

1=^^2
-(1/5 2)

2 ~.- I/ 25 + 101 5 .

The larger pentagon divided by the smaller

= 2 : (7 3l/5)
= 1 : 0.145898.. ..

78. If in Fig. 27, angles (^^ and LFQ are made

equal to ERQ or FQP, K, L being points on the sides

QR and QP respectively, then EFLQK will be a reg

ular pentagon congruent to the inner pentagon. Pen

tagons can be similarly described on the remaining

sides of the inner pentagon. The resulting figure

consisting of six pentagons is very interesting.



V. THE HEXAGON.

79. To cut off a regular hexagon from a given

square.

Fig. 29.

Fold through the mid-points of the opposite sides,

and obtain the lines A OB and COD.

On both sides of AO and OB describe equilateral

triangles ( 25), AOE, AHO; BFO and BOG.
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Draw EF and HG.

AHGBFE is a regular hexagon.

It is unnecessary to give the proof.

The greatest breadth of the hexagon is AB.

80. The altitude of the hexagon is

= 0.866....

Fig. 30.

81. If R be the radius of the circumscribed circle,

R=\AB.

82. If r be the radius of the inscribed circle,

r= - AB= 433 X AB.
4
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83. The area of the hexagon is 6 times the area of

the triangle HGO,

, =6.^-1^.
= 3T/ 3

-.4^2^0.6495 X^^2
-

8

Also the hexagon = J -42? CD.

= 14 times the equilateral triangle on AB.

Fig. 31-

84. Fig. -30 is an example of ornamental folding

into equilateral triangles and hexagons.

85. A hexagon is formed from an equilateral tri

angle by folding the three corners to the center.

The side of the hexagon is i of the side of the

equilateral triangle.
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The area of the hexagon = f of the equilateral

triangle.

86. The hexagon can be divided into equal regular

hexagons and equilateral triangles as in Fig. 31 by

folding through the points of trisection of the sides.



VI. THE OCTAGON.

87. To cut off a regular octagon from a given square.

Obtain the inscribed square by joining the mid

points A, B, C, D of the sides of the given square.

Fig. 32.

Bisect the angles which the sides of the inscribed

square make with the sides of the other. Let the bi

secting lines meet in E, F, G, and H.
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AEBFCGDH is a regular octagon.

The triangles AEB, BFC, CGD, and DHA are

congruent isosceles triangles. The octagon is there

fore equilateral.

The angles at the vertices, E, F, G, H of the same

four triangles are each one right angle and a half,

since the angles at the base are each one-fourth of a

right angle.

Therefore the angles of the octagon at A, B, C,

and D are each one right angle and a half.

Thus the octagon is equiangular.

The greatest breadth of the octagon is the side of

the given square, a.

88. If R be the radius of the circumscribed circle,

and a be the side of the original square,

*-f
89. The angle subtended at the center by each of

the sides is half a right angle.

90. Draw the radius OE and let it cut AB in K
(Fig. 33).

Then AK= OK= = -=r.
V 2 2 V 2

KE=OA-OK= a
-

2] 2

Now from triangle AEK,



IN PAPER FOLDING 4 1

= 4-- (4-21/2)

= --.(2-1/2).

=- 1/2-1/2.

91. The altitude of the octagon is CE (Fig. 33).

But C 2=AC 2

=*- (2_ 1/2 )
= (2 + 1/2)

A
Fig. 33-

a / 7^&quot;

2

92. The area of the octagon is eight times the tri

angle AOE and
o

CL d d
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93. A regular octagon may also be obtained by

dividing the angles of the given square into four equal

parts.

2__Y

Fig. 34-

It is easily seen that EZ= WZ= a, the side of the

square.

= WK;XE

.(21/1).
Now

.-.

Also

a 21/2.

XZ (1XE

a. tf(2 1/2).



IN PAPER FOLDING

Again OZ=

= ~(6-4v/2 + 2)

=
&amp;lt;z

2
(2 1/2&quot;).

HK=KZHZ

= a -

(1/2 1/2 ) -(1/2 1)

7i/2

and HA= ~ 1/20 141/2.
A

94. The area of the octagon is eight times the

area of the triangle HOA,

1/2

(6 4i/2)

2 4)

= 2 - 1/2 -(1/2 -I)
2

.
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95. This octagon : the octagon in 92

= (2 1/2 )2 : 1 or 2 : (j/2 + I)
2

;

and their bases are to one another as

1/2&quot;: i/2&quot;+ 1.



VII. THE NONAGON.

96. Any angle can be trisected fairly accurately by

paper folding, and in this way we may construct ap

proximately the regular nonagon.

Fig. 35-

Obtain the three equal angles at the center of an

equilateral triangle. ( 25.)
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For convenience of folding, cut out the three

angles, A OF, FOC, and COA.
Trisect each of the angles as in Fig. 35, and make

each of the arms = OA.

97. Each of the angles of a nonagon is -^
4- of a

right angle = 140.

The angle subtended by each side at the center is

J of a right angle or 40.

Half this angle is \ of the angle of the nonagon.

98. OA = %a, where a is the side of the square ;
it

is also the radius of the circumscribed circle, R.

The radius of the inscribed circle =Jt . cos 20

= %a cos 20

= *
X 0. 9396926

= aX 0.4698463.

The area of the nonagon is 9 times the area of

the triangle AOL

= f 7?2 - sin 40

,= --X 0.6427876
o

= a*X 0.723136.



VIII. THE DECAGON AND THE DODECAGON

99. Figs. 36, 37 show how a regular decagon, and

a regular dodecagon, may be obtained from a penta

gon and hexagon respectively.

Fig. 36.

The main part of the process is to obtain the

angles at the center.

In Fig. 36, the radius of the inscribed circle of

the pentagon is taken for the radius of the circum

scribed circle of the decagon, in order to keep it

within the square.
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ioo. A regular decagon may also be obtained as

follows :

Obtain X, Y, (Fig. 38), as in 51, dividing AB in

median section.

Take M the mid-point of AB.

Fold XC, MO, YD at right angles to AB.

Take O in MO such that YO= AY, or YO= XB.

Fig. 37-

Let YO, and XO produced meet XC, and YD in C
and D respectively.

Divide the angles XOC and DOY into four equal

parts by HOE, KOF, and LOG.

Take Off&quot;, OK, OL, OE, OF, and OG equal to

&amp;lt;9For OK
Join X, H, K, L, C, D, E, F, G, and Y, in order.
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As in 60,

/ YOX=l of a rt. / =36.

49

Fig. 38.

By bisecting the sides and joining the points thus

determined with the center, the perigon is divided

into sixteen equal parts. A 16-gon is therefore easily

constructed, and so for a 32-gon, and in general a.

regular 2*-gon.



IX. THE PENTEDECAGON.

101. Fig. 39 shows how the pentedecagon is OD-

tained from the pentagon.

Let ABODE be the pentagon and O its center

Draw OA, OB, OC, OD, and OE. Produce DO
to meet AB in K.

Take OF=$ of OD.

Fold GFH 2,\. right angles to OF. Make OG=
OH= OD.
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Then GDH. is an equilateral triangle, and the

angles DOG and HOD are each 120.

But angle DOA is 144; therefore angle GOA is

24.

That is, the angle EOA, which is 72, is trisected

by OG.

Bisect the angle EOG by OL, meeting EA in Z,

and let OG cut EA in M; then

OL= OM.

In OA and &amp;lt;9^ take OP and
&amp;lt;9&amp;lt;2 equal to OL or

Then PM, ML, and
Z&amp;lt;2

are three sides of the

pentedecagon.

Treating similarly the angles A OB, BOC, COD,
and DOE, we obtain the remaining sides of the pente

decagon.



X. SERIES.

ARITHMETIC SERIES.

IO2. Fig. 40 illustrates an arithmetic series. The

horizontal lines to the left of the diagonal, including

the upper and lower edges, form an arithmetic series.

Fig. 40.

The initial line being a, and d the common difference,

the series is a, a-\- d, a-\-2d, a -\- 3//, etc.

103. The portions of the horizontal lines to the

right of the diagonal also form an arithmetic series,
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but they are in reverse order and decrease with a

common difference.

104. In general, if / be the last term, and s the

sum of the series, the above diagram graphically

proves the formula

105. If a and c are two alternate terms, the middle

term is

106. To insert n means between a and /, the ver

tical line has to be folded into n-\- 1 equal parts. The

common difference will be

I- a

107. Considering the reverse series and interchan

ging a and /, the series becomes

a, a d, a 2d . . . . /.

The terms will &quot;be positive so long as a
&amp;gt;( !)&amp;lt;/,

and thereafter they will be zero or negative.

GEOMETRIC SERIES.

108. In a right-angled triangle, the perpendicular

from the vertex on the hypotenuse is a geometric mean
between the segments of the hypotenuse. Hence, if

two alternate or consecutive terms of a geometric

series are given in length, the series can be deter-
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mined as in Fig. 41. Here OPi, OP2 ,
OP3 ,

and OP$ form a geometric series, the common rate

being OPi : OP2 .

P3

Fig. 41.

If OP\ be the unit of length, the series consists of

the natural powers of the common rate.

109. Representing the series by #, ar, ar2
,
....

These lines also form a geometric series with the

common rate r.

no. The terms can also be reversed, in which case

the common rate will be a proper fraction. If OP&

be the unit, OP is the common rate. The sum of

the series to infinity is
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in. In the manner described in 108, one geo

metric mean can be found between two given lines,

and by continuing the process, 3, 7, 15, etc., means

can be found. In general, 2&quot; 1 means can be found,

n being any positive integer.

112. It is not possible to find two geometric means

between two given lines, merely by folding through

known points. It can, however, be accomplished in

the following manner : In Fig. 41, OP\ and OP being

given, it is required to find P% and Ps . Take two rect

angular pieces of paper and so arrange them, that their

outer edges pass through P\ and P^ and two corners

lie on the straight lines OP* and OP* in such a way
that the other edges ending in those corners coincide.

The positions of the corners determine
OP&amp;lt;i and OP*.

113. This process gives the cube root of a given

number, for if OP\ is the unit, the series is 1, r, r2
,
r3

.

114. There is a very interesting legend in connec

tion with this problem.* &quot;The Athenians when suf

fering from the great plague of eruptive typhoid fever

in 430 B. C., consulted the oracle at Delos as to how

they could stop it. Apollo replied that they must

double the size of his altar which was in the form of a

cube. Nothing seemed more easy, and a new altar

was constructed having each of its edges double that

of the old one. The god, not unnaturally indignant,

*But see Beman and Smith s translation of Fink s History of Mathe
matics, p. 82, 207.
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made the pestilence worse than before. A fresh dep

utation was accordingly sent to Delos, whom he in

formed that it was useless to trifle with him, as he

must have his altar exactly doubled. Suspecting a

mystery, they applied to the geometricians. Plato,

the most illustrious of them, declined the task, but

referred them to Euclid, who had made a special

study of the problem.&quot; (Euclid s name is an inter

polation for that of Hippocrates.) Hippocrates re

duced the question to that of finding two geometric

means between two straight lines, one of which is

twice as long as the other. If a, x, y and 2a be the

terms of the series, xs = 2a^. He did not, however,

succeed in rinding the means. Menaechmus, a pupil

of PJato, who lived between 375 and 325 B. C., gave

the following three equations :

*

a : x= x : y y : 2a.

From this relation we obtain the following three

equations :

x2= ay (1)

y
2 = 2ax (2)

xy= 2a* (3)

(1) and (2) are equations of parabolas and (3) is

the equation of a rectangular hyperbola. Equations

(1) and (2) as well as (1) and (3) give x* = 2a*. The

problem was solved by taking the intersection () of

the two parabolas (1) and (2), and the intersection (/?)

of the parabola (1) with the rectangular hyperbola (3).

*Ibid., p. 207.
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HARMONIC SERIES.

115. Fold any lines AR, PB, as in Fig. 42, P be

ing on AR, and B on the edge of the paper. Fold

again so that AP and PR may both coincide with PB.

Let PX, PY be the creases thus obtained, X and Y

being on AB.

Then the points A, X, B, Y form an harmonic

range. That is, AB is divided internally in X and

externally in Fso that

AX: XB= AY: BY.

It is evident, that every line cutting PA, PX, PB,

and PYvti\\ be divided harmonically.

R

A X B Y
Fig. 42.

116. Having given A, B, and X, to find Y: fold any

line XPand mark ^corresponding to B. Fold AKPR,
and BP. Bisect the angle BPR by PY by folding

through P so that /l# and PR coincide.

Because XP bisects the angle APB,
.-.AX: XB= AP: BP,

= AY: BY.
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117. AX: XB= AY: BY
orAYXY: XYBY=AY: BY.

Thus, AY, XY, and BY, are an harmonic series,

and XY is the harmonic mean between AY and BY.

Similarly AB is the harmonic mean between AX
and A Y.

118. If BY and XYbe given, to find the third term

AY, we have only to describe any right-angled tri

angle on XYas the hypotenuse and make angle APX
= angle XPB.

119. Let AX a, AB= b, and AY=c.

a -j- c

or, ab -\- bc=.%ac

ab b
or, ^ ~o 7 = T-

a

When a= fr, c= b.

When b= 2a, c=&.

Therefore when X is the middle point of AB, Y is

at an infinite distance to the right of B. Y approaches

B as X approaches it, and ultimately the three points

coincide.

As X moves from the middle of AB to the left, Y

moves from an infinite distance on the left towards A y

and ultimately X, A, and Y coincide.

120. If E be the middle point of AB,

for all positions of Jfand Y with reference to A or B.
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Each of the two systems of pairs of points X and

Y is called a system in involution, the point E being

called the center and A or B the focus of the system.

The two systems together may be regarded as one

system.

121. AX and AY being given, B can be found as

follows :

Produce XA and take AC=XA.
Take D the middle point of A Y.

Take CE=DA or AE= DC.

F

C A X B D Y

Fig. 43-

Fold through A so that AF may be at right angles

to CA Y.

Find F such that DF=DC.
Fold through EF and obtain FB, such that FB is

at right angles to EF.

CD is the arithmetic mean between AX and A Y.

AF is the geometric mean between AX and A Y.

AFis also the geometric mean between CD or AE
and AB.

Therefore AB is the harmonic mean between AX
and A Y.

122. The following is a very simple method of

finding the harmonic mean between two given lines.
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Take AB, CD on the edges of the square equal to

the given lines. Fold the diagonals AD, ^Cand the

sides AC, BD of the trapezoid ACDB. Fold through

E, the point of intersection of the diagonals, so that

PEG may be at right angles to the other sides of the

square or parallel to AB and CD. Let EEG cut AC
A B

For

Fig. 44.

and BD in F and G. Then EG is the harmonic mean

between AB and CD.

EE __ CE
AB ~~

CB
EG __ FE __ EB_
CD

~~
CD

~~
~C~B

CE EB_
CB H

&quot;

CB
~

1 1 1 _2_
~AB + CD

~ =

~FE
~~~

~EG

EE
_
EF

AB CD
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123. The line HK connecting the mid-points of AC

and BD is the arithmetic mean between AB and CD.

124. To find the geometric mean, take HL in HK
= FG. Fold ZJ/at right angles to HK. Take O the

mid-point of HK and findM in LM so that OM^OH.
HM\s the geometric mean between ^^ and CD as well

as between FG and ZfA&quot;. The geometric mean between

two quantities is thus seen to be the geometric mean

between their arithmetic mean and harmonic mean.

Fig. 45-

SUMMATION OF CERTAIN SERIES.

125. To sum the series

1 + 3 + 5.... + (2 1).

Divide the given square into a number of equal

squares as in Fig. 45. Here we have 49 squares, but

the number may be increased as we please.
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The number of squares will evidently be a square

number, the square of the number of divisions of the

sides of the given square.

Let each of the small squares be considered as the

unit; the figure formed \yy A -\- O -\- a being called a

gnomon.

The numbers of unit squares in each of the gno

mons AOa, BOb, etc., are respectively 3, 5, 7, 9,

11, 13.

Therefore the sum of the series 1, 3, 5, 7, 9, 11,

13 is 72
.

Generally, 1 + 3 + 5 -f . . . . -f (2 1)= ;/
2

.

Fig. 46.

126. To find the sum of the cubes of the first n

natural numbers.

Fold the square into 49 equal squares as in the
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preceding article, and letter the gnomons. Fill up the

squares with numbers as in the multiplication table.

The number in the initial square is 1 = I 3
.

The sums of the numbers in the gnomons Aa, Bb,

etc., are 2 + 4-f 2= 23
,
33

,
43

,
53

,
63

,
and 7 3

.

The sum of the numbers in the first horizontal

row is the sum of the first seven natural numbers.

Let us call it s.

Then the sums of the numbers in rows a, b, c, d,

etc., are

2s, 3s, 4s, 5j, 6s, and Is.

Therefore the sum of all the numbers is

s(l + 2 + 3 + 4 + 5 + 6 + 7) = s*.

Therefore, the sum of the cubes of the first seven

natural numbers is equal to the square of the sum of

those numbers.

Generally, I 3 + 23
-f 33 ____ -f ;z

3

For [( + I)]
2

[( !)]*
=--

(&amp;gt;

2
-f ) (&amp;gt;

2
)2=

Putting = 1, 2, 3 .... in order, we have

4-l 3 = (l-2)2_ (0-1)2



64 GEOME TRIG EXERCISES

Adding we have

4.5
1

/*
3= [( + I)]

2

2

127- If * be the sum of the first n natural numbers,

128. To sum the series

1-2 + 2-3 + 3-4. ... + ( !)-.

In Fig. 46, the numbers in the diagonal commen

cing from 1, are the squares of the natural numbers

in order.

The numbers in one gnomon can be subtracted

from the corresponding numbers in the succeeding

gnomon. By this process we obtain

+ 2[( !) + ( 2) + ( 3).... +1]
=*+ ( 1)2+ .2[; + 2.. ..+(*!)]

1 4. 3(n l)n.

Now .
3

(;? 1)
3 = 1 -f- 3( 1),

93 p^! 3 . 9-1

Hence, by addition,
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Therefore

129. To find the sum of the squares of the first n

natural numbers.

1-2 + 2-3.. .. + (_!)
= 2 2 2 + 32 3.. .. + ^ 2 a

= 12 _|_ 22 + 32 ____ + rc
2

(1 4- 2 -f 3 ____ -f n)

Therefore

130. To sum the series

12_|_32_|_ 52 ^ (2 I)
2

.

8_
c _i

)
s ==:W2 + (_!) + (.!), by 128,

= (2 1)
2 -(^ !)-,

. . by putting n= 1, 2, 3, ....

13_o3=z i2__o.l

23 Pr=3 2 1-2

33 2 3= 52 2-3
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Adding, we have

n* = I 2
4. 32 + 52

. . . . -{- (2 I)
2

[1-2 -f 2-34-3-4.. .. + (_ !)],



XI. POLYGONS.

I3lt Find O the center of a square by folding its

diameters. Bisect the right angles at the center,

then the half right angles, and so on. Then we

obtain 2&quot; equal angles around the center, and the

magnitude of each of the angles is ^ of a right angle,

being a positive integer. Mark off equal lengths on

each of the lines which radiate from the center. If

the extremities of the radii are joined successively,

we get regular polygons of 2&quot; sides.

132. Let us find the perimeters and areas of these

polygons. In Fig. 47 let OA and OA\ be two radii

at right angles to each other. Let the radii OA^
OA S ,

OA 4 , etc., divide the right angle A\OA into 2,

4, 8 .... parts. Draw AA\, AA-2 ,
AA 3 .... cutting the

radii OA-2 , OA^ OA at B\, B-2 ,
B3 respectively,

at right angles. Then B\, B^ 3 . . . . are the mid

points of the respective chords. Then AA\, AA&amp;lt;t,

AA B , AA^, . . .are the sides of the inscribed polygons

of 2 2
,
2 3

,
2 4 sides respectively, and OB^ OB*

are the respective apothems.

Let OA = R,

a
(2&quot;) represent the side of the inscribed polygon
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of 2&quot; sides, (2&quot;)
the corresponding apothem, /(2&quot;)

its

perimeter, and
.4(2&quot;)

its area.

For the square,

/ (22)= ^-22- 1/2;

Fig. 47-

For the octagon,

in the two triangles and

OA

A,

or AAv= (1)
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2 1/2

6g

(2)

= 1*1/2+1/2 ...(3)

2 3
)
= J perimeter X apothem

1/2 -

Similarly for the polygon of 16 sides,

2*)= *-2 4 -1/2 1/2 + 1/2;

^(2
4
)
= ^2- 22-1/2 1/2;

and tor the polygon of 32 sides,

2 5
)
= ^-2 5 - 1/2

The general law is thus clear.

Also ^2==-
As the number of sides is increased indefinitely
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the apothem evidently approaches its limit, the ra

dius. Thus the limit of

2 + I/ 2 + 1/2.. ..is 2;

for if jc represent the limit, #= 1/2 -J- #, a quadratic

which gives x= 2, or 1; the latter value is, of

course, inadmissible.

133. If perpendiculars are drawn to the radii at

their extremities, we get regular polygons circum

scribing the circle and also the polygons described as

in the preceding article, and of the same number of

sides.

C_ F E__ _G D

In Fig. 48, let AE be a side of the inscribed poly

gon and FG a side of the circumscribed polygon.

Then from the triangles FIE and EIO,

OE FE

.-. FG= R AE
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The values of AE and Of being known by the

previous article, FG is found by substitution.

The areas of the two polygons are to one another

as FG1
: AE 1

,
i. e., as & : Of*.

134. In the preceding articles it has been shown

how regular polygons can be obtained of 2 2
,
2 3

. . . .2*

sides. And if a polygon of m sides be given, it is easy

to obtain polygons of 2&quot;-m sides.

135. In Fig. 48, AB and CD are respectively the

sides of the inscribed and circumscribed polygons of

n sides. Take E the mid point of CD and draw AE,

BE. AE and BE are the sides of the inscribed poly

gon of 2n sides.

Fold AF, BG at right angles to A C and BD, meet

ing CD in Fand G.

Then FG is a side of the circumscribed polygon

of 2n sides.

Draw OF, OG and OE.

Let
/&amp;gt;,

P be the perimeters of the inscribed and

circumscribed polygons respectively of n sides, and

A, B their areas, and /, P the perimeters of the in

scribed and circumscribed polygons respectively of 2n

sides, and A
,
B their areas.

Then

p = n-AB, P=n-CD, p = 2n-AE, P = 2n-FG.

Because OF bisects / COE, and AB is parallel

to CD,

CJ^__CO__ CO _ CD
FE

~~
~OE

~~
~AO

&quot;
~
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CE _CD+AB
~EE

~ AB
4n-C n-CD+n-AB

EE n-AJ3

2P_P+p

or

. . P =

Again, from the similar triangles EIE and AffE,

ET^ _ EE
~Aff~ AJE

or A 2 =.2.

or p = V P p.

Now,

The triangles A Off and AOE are of the same alti

tude, AH,
OH__

&AOE
=~

~OE

Similarly,

_OA~
~OC

Again because AB
|| CD,

A A Off A AOE

Now to find B . Because the triangles COE and
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FOE have the same altitude, and OF bisects the

angle EOC,
&COE CE OC+OE
&FOE~ FE
and OE = OA,

OE

,__ _

OA
~~

Off
~ &AOH

&COE &AOE+
&AOH

From this equation we easily obtain . IT .

y B A

136. Given the radius R and apothem r of a reg

ular polygon, to find the radius R and apothem r of

a regular polygon of the same perimeter but of double

the number of sides.

Let AB be a side of the first polygon, O its center,

OA the radius of the circumscribed circle, and OD
the apothem. On OD produced take OC=OA or

OB. Draw AC, BC. Fold OA and OB perpen-
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dicular to AC and BC respectively, thus fixing the

points A ,
B . Draw A B cutting OC in D . Then

the chord A B is h^f of AB, and the angle B OA is

half of BOA. OA and OH are respectively the ra

dius R and apothem r of the second polygon.

Now OH is the arithmetic mean between OC and

OD, and OA is the mean proportional between OC
and OD .

137. Now, take on
&amp;lt;9C,

OE=OA and draw ^ ^.

Then A H being less than ^ C, and / D A C being

bisected by A E,

ED is less than \CH , i. e., less than \CD
.. R\ r\ is less than \{R *&quot;)

As the number of sides is increased, the polygon

approaches the circle of the same perimeter, and R
and r approach the radius of the circle.

That is,

= the diameter of the circle = .

7t

Also,

_/?]== Rr\ or R _- =-f?\

and ~ = -^, and so on.

Multiplying both sides,

- -

*

- - tne radius of the circle = -.
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138. The radius of the circle lies between Rn and

rnJ the sides of the polygon being 4-2&quot; in number;

2 2
and TT lies between and - -. The numerical value

rn Rn

of n can therefore be calculated to any required de

gree of accuracy by taking a sufficiently large number

of sides.

The following are the values of the radii and ap-

othems of the regular polygons of 4, 8, 16.... 2048

sides.

4-gon, r= 0-500000 R= r\/^= -707107

8-gon, n= -603553 RI = 0-653281

2048-gon, r&amp;lt;&amp;gt;

= 0-636620 ^9= 0-636620.

139. If R&quot; be the radius of a regular isoperimetric

polygon of 4^ sides

_2 _

or in general

T~\ ^^
140. The radii R\, R^. .... successively diminish, ^

and the ratio -77-12 less than unity and equal to the

cosine of a certain angle a.

RZ \l + cos a a

^=
\ 2--= cos

2-



76 GEOMETRIC EXERCISES

R i,\ , of.

multiplying together the different ratios, we get

J^
jt+l =J?i Cosa- cos cos

The limit of cos or-cos
?

. . . . cos
,
when = oo,

O ^

is --
,
a result known as Euler s Formula.

141. It was demonstrated by Karl Friedrich Gauss*

(1777-1855) that besides the regular polygons of
2&quot;,

3-2&quot;, 5-2&quot;,
15 -2&quot; sides, the only regular polygons

which can be constructed by elementary geometry

are those the number of whose sides is represented

by the product of 2&quot; and one or more different num

bers of the form
2&quot;*-f-l. We shall show here how

polygons of 5 and 17 sides can be described.

The following theorems are required :f

(1) If (7 and Z&amp;gt; are two points on a semi-circum

ference ACDB, and if C be symmetric to C with re

spect to the diameter AB, and R the radius of the

circle,

.

AC-BC=R-CC ............. iii.

(2) Let the circumference of a circle be divided

into an odd number of equal parts, and let AO be the

*Beman and Smith s translation of Fink s History of Mathematics, p.

245; see also their translation of Klein s Famous Problems of Elementary

Geometry , pp. 16, 24, and their New Plane and Solid Geometry, p., 212.

t These theorems may be found demonstrated in Catalan s Theortmes et

Problemes de Geomttrie Elementaire.
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diameter through one of the points of section A and

the mid-point O of the opposite arc. Let the points

of section on each side of the diameter be named A\,

At, A s . . . .A n ,
and A i, A 2 ,

A 3 . . . .A n beginning next

to A.

Then OAi OA* OA 3 ____ OA n= Rn ...... iv.
n

and OAi - OA^ OA .... OA = R*.

142. It is evident that if the chord OA n is deter

mined, the angle A nOA is found and it has only to be

divided into 2&quot; equal parts, to obtain the other chords.

i&amp;lt;&amp;lt;.
Let us first take the pentagon.

By theorem iv,

By theorem i,

R(OA l OA 2)=
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1),

and t?^ 2= (i/5 1).

Hence the following construction.

Take the diameter ^C6&amp;gt;, and draw the tangent

AF. Take D the mid-point of the radius OC and

On OC as diameter describe the circle AE CE.

Join FD cutting the inner circle in E and .

Then FE =OA, and FE= OA 2 .

144. Let us now consider the polygon of seven

teen sides.

Here*

Az OA OA 6
- OA -OAr OA %= R*.

and O

By theorems i. and ii.

OA l
- OA =

Suppose

*The principal steps are given. For a full exposition see Catalan s Thto-

rtmes et Probltmes de Gtomttrie Elententaire. The treatment is given in full

in Beman and Smith s translation of Klein s Famous Problems ofElementary

Geometry, chap. iv.
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Then MN=R* and PQ= R*.

Again by substituting the values of M, IV, P and

Q in the formulas

MN=R\ PQ=R^

and applying theorems i. and ii. we get

(M N)~ (P Q^)
= R.

ALSO by substituting the values of M, N, P and Q in

the above formula and applying theorems i. and ii.

we get

(M N} (P Q} = 4^2
.

Hence MN, P Q, J/, N, P and Q are deter

mined.

Again

Hence OA S is determined.

145. By solving the equations we get

M N= ^R (1 -f 1/17).

P Q= R( 1 + 1/17).

OA 8
= IR\_ 1+1/17 + 1/34 2i/17

2 iXl7+3i/17+ 1/170 26 V 11 4 |/34+2v
/
17 ]

= J7?[ 1 + /I7 + 1/34 21/17

+ 31/17 1/170 + 38J/17],
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146. The geometric construction is as follows :

Let BA be the diameter of the given circle ; O its

center. Bisect OA in C. Draw AD at right angles to

OA and take AD= AB. Draw CD. Take E and E
in CD and on each side of C so that C= CE = CA.

Fig. 51.

Bisect ^Z&amp;gt; in G and .
&amp;gt; in G . Draw Z&amp;gt;^ per

pendicular to CD and take DF= OA.

Draw FG and /r
.

Take H in 7^7 and H in ^ produced so that

GH=EG and .# == G D.

Then it is evident that
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also

FH = P, .- (FH DE
)
FH=DF* =&.

Again in DF take A such that FK=FH.
Draw KL perpendicular to DF and take L in KL

such that FL is perpendicular to DL.

Then FL* =DF-FK=RN.
Again draw J7W perpendicular to FH and take

HN= FL. Draw NM perpendicular to NH . Find

M in NM such that ZT J/ is perpendicular to FM.
Draw MF perpendicular to FH .

Then

FH FF =^ J/2

But FF



XII. GENERAL PRINCIPLES.

147. In the preceding pages we have adopted sev

eral processes, e. g., bisecting and trisecting finite

lines, bisecting rectilineal angles and dividing them

into other equal parts, drawing perpendiculars to a

given line, etc. Let us now examine the theory of

these processes.

148. The general principle is that of congruence.

Figures and straight lines are said to be congruent, if

they are identically equal, or equal in all respects.

In doubling a piece of paper upon itself, we ob

tain the straight edges of two planes coinciding with

each other. This line may also be regarded as the

intersection of two planes if we consider their posi

tion during the process of folding.

In dividing a finite straight line, or an angle into a

number of equal parts, we obtain a number of con

gruent parts. Equal lines or equal angles are con

gruent.

149. Let X X be a given finite line, divided into

any two parts by A . Take O the mid-point by doub

ling the line on itself. Then OA is half the difference
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between A X and X A . Fold X X over O, and take

A in OX corresponding to A . Then AA is the differ

ence between A X and Jf ^ and it is bisected in O.

I 1 1 1 1

X A O A X
Fig. 52-

As -4 is taken nearer O, A O diminishes, and at the

same time A A diminishes at twice the rate. This

property is made use of in finding the mid-point of a

line by means of the compasses.

150. The above observations apply also to an

angle. The line of bisection is found easily by the

compasses by taking the point of intersection cf two

circles.

151. In the line X X, segments to the right of

may be considered positive and segments, to the

eft of O may be considered negative. That is, a

point moving from O to A moves positively, and a

point moving in the opposite direction OA moves

negatively.
AX=OXOA.
OA = OX A X

,

both members of the equation being negative.*

152. If OA, one arm of an angle A OP, be fixed and

OP be considered to revolve round O, the angles

which it makes with OA are of different magnitudes.

*See Beman and Smith s New Plane and Solid Geometry, p. 56.
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All such angles formed by OP revolving in the direc

tion opposite to that of the hands of a watch are re

garded positive. The angles formed by OP revolving

in an opposite direction are regarded negative.*

153. After one revolution, OP coincides with OA.

Then the angle described is called a perigon, which

evidently equals four right angles. When OP has

completed half the revolution, it is in a line with

OAB. Then the angle described is called a straight

angle, which evidently equals two right angles. f

When OP has completed quarter of a revolution, it is

perpendicular to OA. All right angles are equal in

magnitude. So are all straight angles and all peri-

gons.

154. Two lines at right angles to each other form

four congruent quadrants. Two lines otherwise in

clined form four angles, of which those vertically op

posite are congruent.

155. The position of a point in a plane is deter

mined by its distance from each of two lines taken as

above. The distance from one line is measured par

allel to the other. In analytic geometry the proper

ties of plane figures are investigated by this method.

The two lines are called axes
;
the distances of the

point from the axes are called co-ordinates, and the

intersection of the axes is called the origin. This

* See Beman and Smith s New Plane and Solid Geometry, p. 56.

t/*.,p. 5-
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method was invented by Descartes in 1637 A. D.* It

has greatly helped modern research.

156. If X X, YY be two axes intersecting at O,

distances measured in the direction of OX, i. e., to

the right of O are positive, while distances measured

to the left of O are negative. Similarly with reference

to YY ,
distances measured in the direction of 6&amp;gt;Fare

positive, while distances measured in the direction of

OY are negative.

157. Axial symmetry is defined thus : If two fig

ures in the same plane can be made to coincide by

turning the one about a fixed line in the plane through

a straight angle, the two figures are said to be sym

metric with regard to that line as axis of symmetry. f

158. Central symmetry is thus defined : If two fig

ures in the same plane can be made to coincide by

turning the one about a fixed point in that plane

through a straight angle, the two figures are said to

be symmetric with regard to that point as center of

symmetry. J

In the first case the revolution is outside the given

plane, while in the second it is in the same plane.

If in the above two cases, the two figures are halves

of one figure, the whole figure is said to be symmetric

with regard to the axis or center these are called axis

or center of symmetry or simply axis or center.

*Beman and Smith s translation of Fink s History ofMathematics, p. 230.

t Beman and Smith s New Plane and Solid Geometry, p. 26.

t/.,p. 183.
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159. Now, in the quadrant XOVmake a triangle

PQR. Obtain its image in the quadrant VOX by

folding on the axis YY and pricking through the

paper at the vertices. Again obtain images of the two

triangles in the fourth and third quadrants. It is seen

that the triangles in adjacent quadrants posses axial

Fig- 53-

symmetry, while the triangles in alternate quadrants

possess central symmetry.

160. Regular polygons of an odd number of sides

possess axial symmetry, and regular polygons of an

even number of sides possess central symmetry as

well.
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161. If a figure has two axes of symmetry at right

angles to each other, the point of intersection of the

axes is a center of symmetry. This obtains in reg

ular polygons of an even number of sides and certain

curves, such as the circle, ellipse, hyperbola, and the

lemniscate ; regular polygons of an odd number of

Fig. 54-

sides may have more axes than one, but no two of

them will be at right angles to each other. If a sheet

of paper is folded double and cut, we obtain a piece

which has axial symmetry, and if it is cut fourfold, we

obtain a piece which has central symmetry as well, as

in Fig. 54.
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162. Parallelograms have a center of symmetry.

A quadrilateral of the form of a kite, or a trapezium

with two opposite sides equal and equally inclined to

either of the remaining sides, has an axis of sym

metry.

163. The position of a point in a plane is also de

termined by its distance from a fixed point and the

inclination of the line joining the two points to a fixed

line drawn through the fixed point.

If OA be the fixed line and P the given point, the

length OP and /_AOP, determine the position of P.

FiR. 55-

O is called the pole, OA the prime-vector, OP the

radius vector, and /_AOP the vectorial angle. OP
and ^_AOP are called polar co-ordinates of P.

164. The image of a figure symmetric to the axis

OA may be obtained by folding through the axis OA.

The radii vectores of corresponding points are equally

inclined to the axis.

165. Let ABC be a triangle. Produce the sides

CA, AB, BC to
Z&amp;gt;, E, F respectively. Suppose a

person to stand at A with face towards D and then to
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proceed from A to B, B to C, and C to A. Then he

successively describes the angles DAB, EBC, FCD.

Having come to his original position A, he has corn-

Fig. 56.

pleted a perigon, i. e.
,
four right angles. We may

therefore infer that the three exterior angles are to

gether equal to four right angles.

The same inference applies to any convex polygon.

161. Suppose the man to stand at A with his face

towards C, then to turn in the direction of AB and

proceed along AB, BC, and CA.

In this case, the man completes a straight angle,

i. e., two right angles. He successively turns through

the angles CAB, EBC, and FCA. Therefore /_EBF

+ Z FCA -f / CAB (neg. angle) = a straight angle.

This property is made use of in turning engines

on the railway. An engine standing upon DA with

its head towards A is driven on to CF, with its head

towards F. The motion is then reversed and it goes

backwards to EB. Then it moves forward along BA
on to AD. The engine has successively described
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the angles ACB, CBA, and BAG. Therefore the

three interior angles of a triangle are together equal

to two right angles.

167. The property that the three interior angles of

a triangle are together equal to two right angles is

illustrated as follows by paper folding.

Fold CC perpendicular to AB. Bisect CB in N
t

and AC in M. Fold NA ,
MB perpendicular to AB,

meeting BC and AC m A and B . Draw A C
,
B C .

By folding the corners on NA
t
MB and A B

,
we

find that the angles A, B, C of the triangle are equal

to the angles B C A, BC A
,
and A CB respectively,

which together make up two right angles.

168. Take any line ABC, Draw perpendiculars

to ABC at the points A, B, and C. Take points

Z&amp;gt;, E, F m the respective perpendiculars equidistant
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from their feet. Then it is easily seen by superposi

tion and proved by equal triangles that DE is equal

to AB and perpendicular to AD and BE, and that

EF is equal to BC and perpendicular to BE and CF.

Now AB (=DE} is the shortest distance between the

lines AD and BE, and it is constant. Therefore AD

Fig. 58.

and BE can never meet, i. e., they are parallel. Hence

lines which are perpendicular to the same line are

parallel.

The two angles BAD and EBA are together equal

to two right angles. If we suppose the lines AD and

BE to move inwards about A and B, they will meet

and the interior angles will be less than two right

angles. They will not meet if produced backwards.

This is embodied in the much abused twelfth postulate

of Euclid s Elements.*

169. If AGffbe any line cutting BE in G and CF
in H, then

*For historical sketch see Beman and Smith s translation of Fink s

History of Mathematics, p. 270.
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/ GAD= the alternate /_AGB,

. each is the complement of /_BAG; and

/_HGE the interior and opposite / GAD.

. . they are each = / A GB.

Also the two angles GAD and EGA are together

equal to two right angles.

170. Take a line AX and mark off on it, from A,

equal segments AB, BC, CD, DE.. ..Erect perpen

diculars to AE at B, C, D, E. . . . Let a line AF cut

the perpendiculars in B
, C ,

D
,
E . . . . Then AB

,

B C
,
CD , D E .. . .are all equal.

A B C D E F

Fig. 59-

If AB, BC, CD, DE be unequal, then

AB:BC=AB :B C
BC: CD=B C\ CD

,
and so on.

171. If ABCDE. . . . be a polygon, similar polygons

may be obtained as follows.

Take any point O within the polygon, and draw

OA, OB, OC,....

Take any point A in OA and draw A B
,
B C ,

C D, parallel to AB, BC, CD respectively.
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Then the polygon A B CD will be similar to

ABCD . . . . The polygons so described around a com

mon point are in perspective. The point O may also

lie outside the polygon. It is called the center of per

spective.

172. To divide a given line into 2, 3, 4, 5. . . .equal

parts. Let AB be the given line. Draw AC, BD

at right angles to AB on opposite sides and make

AC=BD. Draw CD cutting AB in P*. Then

Now produce AC and take CE=EF= FG . . . .

^AC or BD. Draw DE, DF, DG ____ cutting AB
in PS, -A, A, ....

Then from similar triangles,
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.-. P9.B: AB=BD: AF
= 1 :3.

Similarly

and so on.

If AB= \,

P -A=
3-. 4,

*( + *)

But APi -\- P2P3 + ^A -f is ultimately == AB.

Or

1 1
_

1

2&quot;

&quot;&quot;

&quot;3

=
2~- 3

1 1 1

n n-\-\ n(n-\- 1)

Adding

F2 + ^3 + &quot;- +
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J_
-&quot;1

&quot;&quot;
*&quot;

The limit of 1-- when n is co is 1.

173. The following simple contrivance may be

used for dividing a line into a number of equal parts.

Take a rectangular piece of paper, and mark off n

equal segments on each or one of two adjacent sides.

Fold through the points of section so as to obtain

perpendiculars to the sides. Mark the points of sec

tion and the corners 0, 1, 2, ...... Suppose it is re

quired to divide the edge of another piece of paper

AB into n equal parts. Now place AB so that A or

B may lie on 0, and B or A on the perpendicular

through n.

In this case AB must be greater than ON. But

the smaller side of the rectangle may be used for

smaller lines.

The points where AB crosses the perpendiculars

are the required points of section.

174. Center of mean position. If a line AB con

tains (m 4- ) equal parts, and it is divided at C so

that AC contains m of these parts and CB contains n

of them
;
then if from the points A, C, B perpendicu

lars AD, CF, BE be let fall on any line,

m-BE -f n-AZ&amp;gt;= (m -f ) CF.

Now, draw BGH parallel to ED cutting CFin G
and AD in H. Suppose through the points of divi

sion AB lines are drawn parallel to BH. These lines
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will divide AH into (m-{-ri) equal parts and CG into

n equal parts.

and since DH and BE are each = GF,

Hence, by addition

n-l -f Z&amp;gt; + m-BE= (m + )

^4Z&amp;gt; + 0* .# (/ -f ) CF.

C is called the center of mean position, or the

mean center of A and B for t.he system of multiples

m and n.

The principle can be extended to any number of

points, not in a line. Then if P represent the feet of

the perpendiculars on any line from A, B, C, etc., if

a, b, c ...be the corresponding multiples, and if M
be the mean center

c-CP....

If the multiples are all equal to a, we get

a(AP+BP+CP+.. ..}=na-MP
n being the number of points.

175. The center of mean position of a number of

points with equal multiples is obtained thus. Bisect

the line joining any two points A, B in G, join G to a

third point C and divide GC in 71 so that GH=\GC\
join If to a fourth point D and divide HD in K so that

HK=\HD and so on: the last point found will be

the center of mean position of the system of points.
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176. The notion of mean center or center of mean

position is derived from Statics, because a system of

material points having their weights denoted by a, b,

c . . . . , and placed at A, B, C . . . . would balance about

the mean center M, if free to rotate about M under

the action of gravity.

The mean center has therefore a close relation to

the center of gravity of Statics.

177. The mean center of three points not in a line,

is the point of intersection of the medians of the tri

angle formed by joining the three points. This is also

the center of gravity or mass center of a thin tri

angular plate of uniform density.

178. If M is the mean center of the points A, B,

C, etc., for the corresponding multiples a, b, c, etc.,

and if P is any other point, then

= a AM* + b BM* + c- CM 2 + . . . .

Hence in any regular polygon, if O is the in-center

or circum-center and P is any point

4- BP* + ....= OA* + OB^ + ....+ OP 2

Now
AB^

Similarly
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Adding

179. The sum of the squares of the lines joining

the mean center with the points of the system is a

minimum.

If J/be the mean center and P any other point

not belonging to the system,

2P^=2MA 2+2PM *, (where 2 stands for &quot;the

sum of all expressions of the
type&quot;).

.. 2PA 2 is the minimum when PAf=Q, i. e.,

when P is the mean center.

180. Properties relating to concurrence of lines

and collinearity of points can be tested by paper fold

ing.* Some instances are given below:

(1) The medians of a triangle are concurrent. The

common point is called the centroid.

(2) The altitudes of a triangle are concurrent

The common point is called the orthocenter.

(3) The perpendicular bisectors of the sides of a

triangle are concurrent. The common point is called

the circum-center.

(4) The bisectors of the angles of a triangle are

concurrent. The common point is called the in-center.

(5) Let ABCD be a parallelogram and P any

point. Through P draw GT and EF parallel to BC

*For treatment of certain of these properties see Beman and Smith s

Neiu Plane and Solid Geometry, pp. 84, 182.
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and AB respectively. Then the diagonals EG, HF,

and the line DB are concurrent.

(6) If two similar unequal rectineal figures are so

placed that their corresponding sides are parallel, then

the joins of corresponding corners are concurrent.

The common point is called the center of similarity.

(7) If two triangles are so placed that their corners

are two and two on concurrent lines, then their corre

sponding sides intersect collinearly. This is known

as Desargues s theorem. The two triangles are said

to be in perspective. The point of concurrence and

line of collinearity are respectively called the center

and axis of perspective.

(8) The middle points of the diagonals of a com

plete quadrilateral are collinear.

(9) If from any point on the circumference of the

circum-circle of a triangle, perpendiculars are dropped

on its sides, produced when necessary, the feet of

these perpendiculars are collinear. This line is called

Simson s line.

Simson s line bisects the join of the orthocenter

and the point from which the perpendiculars are

drawn.

(10) In any triangle the orthocenter, circum-center,

and centroid are collinear.

The mid-point of the join of the orthocenter and

circum-center is the center of the nine-points circle, so

called because it passes through the feet of the alti

tudes and medians of the triangle and the mid-point
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of that part of each altitude which lies between the

orthocenter and vertex.

The center of the nine-points circle is twice as far

from the orthocenter as from the centroid. This is

known as Poncelet s theorem.

(11) If A, B, C, D, E, F, are any six points on a

circle which are joined successively in any order, then

the intersections of the first and fourth, of the second

and fifth, and of the third and sixth of these joins pro

duced when necessary) are collinear. This is known

as Pascal s theorem.

(12) The joins of the vertices of a triangle with the

points of contact of the in-circle are concurrent. The

same property holds for the ex- circles.

(13) The internal bisectors of two angles of a tri

angle, and the external bisector of the third angle in

tersect the opposite sides collinearly.

(14) The external bisectors of the angles of a tri

angle intersect the opposite sides collinearly.

(15) If any point be joined to the vertices of a

triangle, the lines drawn through the point perpen

dicular to those joins intersect the opposite sides of

the triangle collinearly.

(16) If on an axis of symmetry of the congruent

triangles ABC, A fi C a point O be taken A O, B O,

and CO intersect the sides BC, CA and AB collin

early.

(17) The points of intersection of pairs of tangents

to a circle at the extremities of chords which pass
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through a given point are collinear. This line is called

the polar of the given point with respect to the circle.

(18) The isogonal conjugates of three concurrent

lines AX, BX, CX with respect to the three angles of

a triangle ABC are concurrent. (Two lines AX, AY
are said to be isogonal conjugates with respect to an

angle BAC, when they make equal angles with its

bisector.)

(19) If in a triangle ABC, the lines AA\ BB , CC
drawn from each of the angles to the opposite sides

are concurrent, their isotomic conjugates with respect

to the corresponding sides are also concurrent. (The
lines AA

,
A A&quot; are said to be isotomic conjugates,

with respect to the side BC of the triangle ABC, when

the intercepts BA and CA&quot; are equal.)

(20) The three symmedians of a triangle are con

current. (The isogonal conjugate of a median AM oi

a triangle is called a symmedian.)



XIII. THE CONIC SECTIONS.

SECTION I. THE CIRCLE.

181. A piece of paper can be folded in numerous

ways through a common point. Points on each of the

lines so taken as to be equidistant from the common

point will lie on the circumference of a circle, of which

the common point is the center. The circle is the

locus of points equidistant from a fixed point, the

centre.

182. Any number of concentric circles can be

drawn. They cannot meet each other.

183. The center may be considered as the limit of

concentric circles described round it as center, the

radius being indefinitely diminished.

184. Circles with equal radii are congruent and

equal.

185. The curvature of a circle is uniform through

out the circumference. A circle can therefore be made

to slide along itself by being turned about its center.

Any figure connected with the circle may be turned

about the center of the circle without changing its re

lation to the circle.
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186. A straight line can cross a circle in only two

points.

187. Every diameter is bisected at the center of

the circle. It is equal in length to two radii. All

rjiameters, like the radii, are equal.

188. The center of a circle is its center of sym

metry, the extremities of any diameter being corre

sponding points.

189. Every diameter is an axis of symmetry of the

circle, and conversely.

190. The propositions of 188, 189 are true for

systems of concentric circles.

191. Every diameter divides the circle into two

equal halves called semicircles.

192. Two diameters at right angles to each other

divide the circle into four equal parts called quadrants.

193. By bisecting the right angles contained by

the diameters, then the half right angles, and so on,

we obtain 2 n
equal sectors of the circle. The angle

4.

between the radii of each sector is - of a right angle
27T 7t

Of .

2* 2-i-

194. As shown in the preceding chapters, the right

angle can be divided also into 3, 5, 9, 10, 12, 15 and

17 equal parts. And each of the parts thus obtained

can be subdivided into 2&quot; equal parts.
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195. A circle can be inscribed in a regular polygon,

and a circle can also be circumscribed round it. The

former circle will touch the sides at their mid-points.

196. Equal arcs subtend equal angles at the cen

ter; and conversely. This can be proved by super

position. If a circle be folded upon a diameter, the

two semicircles coincide. Every point in one semi-

circumference has a corresponding point in the other,

below it.

197. Any two radii are the sides of an isosceles tri

angle, and the chord which joins their extremities is

the base of the triangle.

198. A radius which bisects the angle between two

radii is perpendicular to the base chord and also bi

sects it.

199. Given one fixed diameter, any number of

pairs of radii may be drawn, the two radii of each set

being equally inclined to the diameter on each side of

it. The chords joining the extremities of each pair of

radii are at right angles to the diameter. The chords

are all parallel to one another.

200. The same diameter bisects all the chords as

well as arcs standing upon the chords, i. e., the locus

of the mid-points of a system of parallel chords is a

diameter.

201. The perpendicular bisectors of all chords of a

circle pass through the center.
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202. Equal chords are equidistant from the center.

203. The extremities of two radii which are equally

inclined to a diameter on each side of it, are equi

distant from every point in the diameter. Hence, any

number of circles can be described passing through

the two points. In other words, the locus of the cen

ters of circles passing through two given points is the

straight line which bisects at right angles the join of

the points.

204. Let CC be a chord perpendicular to the ra

dius OA. Then the angles AOCand AOC are equal.

Suppose both move on the circumference towards A
with the same velocity, then the chord CC is always

parallel to itself and perpendicular to OA. Ultimately

the points C, A and C coincide at A, and CA C is

perpendicular to OA. A is the last point common to

the chord and the circumference. CAC produced

becomes ultimately a tangent to the circle.

205. The tangent is perpendicular to the diameter

through the point of contact; and conversely.

206. If two chords of a circle are parallel, the arcs

joining their extremities towards the same parts are

equal. So are the arcs joining the extremities of either

chord with the diagonally opposite extremities of the

other and passing through the remaining extremities.

This is easily seen by folding on the diameter perpen

dicular to the parallel chords.



io6 GEOMETRIC EXERCISES

207. The two chords and the joins of their extrem

ities towards the same parts form a trapezoid which

has an axis of symmetry, viz., the diameter perpen

dicular to the parallel chords. The diagonals of the

trapezoid intersect on the diameter. It is evident by

folding that the angles between each of the parallel

chords and each diagonal of the trapezoid are equal.

Also the angles upon the other equal arcs are equal.

208. The angle subtended at the center of a circle

by any arc is double the angle subtended by it at the

circumference.

Fig. 61. Fig. 62. Fig- 63.

An inscribed angle equals half the central angle

standing on the same arc.

Given

A VB an inscribed angle, and AOB the central angle

on the same arc.AB.

To prove that / A VB= *- / A OB.

Proof.

1. Suppose VO drawn through center O, and pro

duced to meet the circumference at X.
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Then

2. And XOB= /.XVB + Z VBO,

3. .-. /_XVB= \_
4. Similarly / A VX= \i_AOX (each=zero in Fig. 62),

and .-. LAVB= tAOB.

The proof holds for all three figures, point A hav

ing moved to X (Fig. 62), and then through X (Fig.

63).*

209. The angle at the center being constant, the

angles subtended by an arc at all points of the cir

cumference are equal.

210. The angle in a semicircle is a right angle.

211. If AB be a diameter of a circle, and DC a

chord at right angles to it, \\\tn.ACBD is a quadri

lateral of which AB is an axis of symmetry. The

angles BCA and ADB being each a right angle, the

remaining two angles DBC and CAD are together

equal to a straight angle. If A and B be any other

points on the arcs DAC and CBD respectively, the

/_CAD=-/_ CA Dand /_DBC=Z.DB C, and ^CA D
-\-DB C = a straight angle. Therefore, also, /_B CA

+ / A DB == a straight angle.

Conversely, if a quadrilateral has two of its oppo

site angles together equal to two right angles, it is

inscriptible in a circle.

*The above figures and proof are from Beman and Smith s New Plane

and Solid Geometry, p. 129.
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212. The angle between the tangent to a circle and

a chord which passes through the point of contact is

equal to the angle at the circumference standing upon
that chord and having its vertex on the side of it op

posite to that on which the first angle lies.

Let AC be a tangent to the circle at A and AB a

chord. Take O the center of the circle and draw OA,

OB. Draw OD perpendicular to AB.

Then ^_BAC^=L AOD= % / BOA.

213. Perpendiculars to diameters at their extremi

ties touch the circle at these extremities. (See Fig. 64).

The line joining the center and the point of intersection
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of two tangents bisects the angles between the two

tangents and between the two radii. It also bisects

the join of the points of contact. The tangents are

equal.

This is seen by folding through the center and

the point of intersection of the tangents.

Let AC, AB be two tangents and ADEOF the

line through the intersection of the tangents A and

the center O, cutting the circle in D and F and BC
in E.

Then AC or AB is the geometric mean of AD and

AF\ AE is the harmonic mean; andAO the arith

metic mean.

AD-AF_ 2AD- AF
~OA~

~
AD-^AF

Similarly, if any other chord through A be ob

tained cutting the circle in P and R and BC in Q,

then AQ is the harmonic mean and AC the geometric

mean between AP and AR.

214. Fold a right-angled triangle OCB and CA
the perpendicular on the hypotenuse. Take D in AB
such that OD= OC (Fig. 65).

Then O
and OA : OC=OC: OB,

OA : OD=OD\ OB.
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A circle can be described with O as center and

OC or OD as radius.

The points A and B are inverses of each other

with reference to the center of inversion O and the

circle of inversion CDE.

Fig. 65.

Hence when the center is taken as the origin, the

foot of the ordinate of a point on a circle has for its

mverse the point of intersection of the tangent and

the axis taken.

215. Fold FBG perpendicular to OB. Then the

line FBG is called the polar of point A with reference

to the polar circle CDE and polar center O
;
and A is

called the pole of FBG. Conversely B is the pole of
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CA and CA is the polar of B with reference to the

same circle.

216. Produce OC to meet FBG in F, and fold AH
perpendicular to OC.

Then F and Zf are inverse points.

AJfis the polar of 7% and the perpendicular at F
to &amp;lt;9^ is the polar of H.

217. The points A, B, F, H, are concyclic.

That is, two points and their inverses are con-

cyclic ;
and conversely.

Now take another point G on FBG. Draw OG,

and fold AK perpendicular to OG. Then K and G
are inverse points with reference to the circle CDE.

218. The points F, J3, G are collinear, while their

polars pass through A.

Hence, the polars of collinear points are concur

rent.

219. Points so situated that each lies on the polar

of the other are called conjugate points, and lines so

related that each passes through the pole of the other

are called conjugate lines.

A and F are conjugate points, so are A and B, A
and G.

The point of intersection of the polars of two

points is the pole of the join of the points.

220. As A moves towards D, B also moves up to it.

Finally A and B coincide and FBG is the tangent at B.
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Hence the polar of any point on the circle is the

tangent at that point.

221. As A moves back to O, B moves forward to

infinity. The polar of the center of inversion or the

polar center is the line at infinity.

222. The angle between the polars of two points

is equal to the angle subtended by these points at the

polar center.

223. The circle described with B as a center and

BC as a radius cuts the circle CDE orthogonally.

224. Bisect AB in L and fold LN perpendicular

to AB. Then all circles passing through A and B
will have their centers on this line. These circles cut

the circle CDE orthogonally. The circles circum

scribing the quadrilaterals ABFH and ABGK are

such circles. AF and AG are diameters of the re

spective circles. Hence if two circles cut orthogon

ally the extremities of any diameter of either are con

jugate points with respect to the other.

225. The points O, A, //and K are concyclic. H,

A, K being inverses of points on the line FBG, the

inverse of a line is a circle through the center of in

version and the pole of the given line, these points

being the extremities of a diameter
;
and conversely.

226. If DO produced cuts the circle CDE in D
,

D and D are harmonic conjugates of A and B. Sim-
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ilarly, if any line through B cuts AC in A and the

circle CDE in d and d k

,
then ^/ and */ are harmonic

conjugates of A and B.

227. Fold any line LM=LB= LA, and J/6&amp;gt; per

pendicular to LM meeting AB produced in O .

Then the circle described with center O and ra

dius O Mcuts orthogonally the circle described with

center L and radius LM.

Now OL 2 = O* + L 2
,

and &amp;lt;9 Z 2= O M* ZJ/ 2
.

.-. ZTVis the radical axis of the circles O (OC}
and O (O M).

By taking other points in the semicircle AMB and

repeating the same construction as above, we get two

infinite systems of circles co-axial with O(OC} and

O\O M), viz., one system on each side of the radical

axis, LN. The point circle of each system is a point,

A or B, which may be regarded as an infinitely small

circle.

The two infinite systems of circles are to be re

garded as one co-axial system, the circles of which

range from infinitely large to infinitely small the

radical .axis being the infinitely large circle, and the

limiting points the infinitely small. This system of

co-axial circles is called the limiting point species.

If two circles cut each other their common chord

is their radical axis. Therefore all circles passing
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through A and B are co-axial. This system of co

axial circles is called the common point species.

228. Take two lines OAB and OPQ. From two

points A and B in OAB draw AP, BQ perpendicular

to OPQ. Then circles described with A and B as

centers and AP and BQ as radii will touch the line

OPQ at P and Q.

Then OA-.OB= AP:BQ.
This holds whether the perpendiculars are towards

the same or opposite parts. The tangent is in one

case direct, and in the other transverse.

In the first case, O is outside AB, and in the sec

ond it is between A and B. In the former it is called

the external center of similitude and in the latter the

internal centre of similitude of the two circles.

229. The line joining the extremities of two par

allel radii of the two circles passes through their ex

ternal center of similitude, if the radii are in the same

direction, and through their internal center, if they

are drawn in opposite directions.

230. The two radii of one circle drawn to its points

of intersection with any line passing through either

center of similitude, are respectively parallel to the

two radii of the other circle drawn to its intersections

with the same line.

231. All secants passing through a center of simil

itude of two circles are cut in the same ratio by the

circles.
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232.. If
B\&amp;gt; D\ t

and B^ D&amp;lt;t
be the points of inter

section, B\, 2, and D\, DI being corresponding

points,

= OD l
- OBi=

Hence the inverse of a circle, not through the cen

ter of inversion is a circle.

Fig. 66.

The center of inversion is the center of similitude

of the original circle and its inverse.

The original circle, its inverse, and the circle of

inversion are co-axial.

233. The method of inversion is one of the most

important in the range of Geometry. It was discov

ered jointly by Doctors Stubbs and Ingram, Fellows

of Trinity College, Dublin, about 1842. It was em

ployed by Sir William Thomson in giving geometric

proof of some of the most difficult propositions in the

mathematical theory of electricity.

SECTION II. THE PARABOLA.

234. A parabola is the curve traced by a point

which moves in a plane in such a manner that its dis-
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tance from a given point is always equal to its dis

tance from a given straight line.

235. Fig. 67 shows how a parabola can be marked

on paper. The edge of the square MN is the direct

rix, O the vertex, and F the focus. Fold through OX
and obtain the axis. Divide the upper half of the

Fig. 67.

square into a number of sections by lines parallel to

the axis. These lines meet the directrix in a number

of points. Fold by laying each of these points on the

focus and mark the point where the corresponding

horizontal line is cut. The points thus obtained lie

on a parabola. The folding gives also the tangent to

the curve at the point.
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236. FL which is at right angles to OX is called

the semi-latus rectum.

237. When points on the upper half of the curve

have been obtained, corresponding points on the lower

half are obtained by doubling the paper on the axis

and pricking through them.

238. When the axis and the tangent at the vertex

are taken as the axes of co-ordinates, and the vertex

as origin, the equation of the parabola becomes

j&amp;gt;

2= 4:ax or

Y

The parabola may be denned as the curve traced

by a point which moves in one plane in such a manner

that the square of its distance from a given straight

line varies as its distance from another straight line
;

or the ordinate is the mean proportional between the
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abscissa, and the latus rectum which is equal to 4- OF.

Hence the following construction.

Take OT in FO produced = 4 OF.

Bisect TN m M.

Take Q in OYsuch that MQ=MN=MT.
Fold through Q so that QP may be at right angles

to OY.

Let P be the point where QP meets the ordinate

of N.

Then P is a point on the curve.

239. The subnormal^ 2 OF and FPFG=FT .

These properties suggest the following construc

tion.

Take ^Vany point on the axis.

On the side of N remote from the vertex take

Fold NP perpendicular to OG and find P in NP
such that FP= FG.

Then P is a point on the curve.

A circle can be described with F as center and FG,

FP and FT as radii.

The double ordinate of the circle is also the double

ordinate of the parabola, i. e., P describes a parabola

as Amoves along the axis.

240. Take any pointN between O and F (Fig. 69).

Fold RN P at right angles to OF.

Take R so that OR= OF.

Fold ^/^perpendicular to OR, N being on the axis.
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Fold NP perpendicular to the axis.

Now, in OX take OT=OW.
Take P in RN so that FP= FT.

Fold through P F cutting NP in P.

Then P and .P are points on the curv

N /F N

Fig. 69.

241. Ar and N coincide when PFP is the latus

rectum.

As N recedes from F to O, 7^ moves forward from

infinity.

At the same time, Amoves toward O, and T (OT =
moves in the opposite direction toward infinity.

242. To find the area of a parabola bounded by

the axis and an ordinate.

Complete the rectangle ONPK. Let OK be di-
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vided into n equal portions of which suppose Om to

contain r and mn to be the (r -f- 1) *. Draw mp, nq at

right angles to OK meeting the curve in p, q, and pn

at right angles to nq. The curvilinear area OPK is

the limit of the sum of the series of rectangles con

structed as mn on the portions corresponding to mn.

But mi/ : I INKpm mn : PK- OK,

and, by the properties of the parabola,

pm\PK=Om*\ OK*

and mn : OK= 1 : n.

. . pm mn\PK OK= r* : ;z
3

.

rl
. . ipn= x en A^-

w

Hence the sum of the series of rectangles

p _|_ 22 -f- 32 + ( I)
2

( 1)(2 1)

1-2-3-w3

=
-J

of nn^VA in the limit, i. e., when is oo.

. . The curvilinear area OPK=^ of cZi^VA ,
and the

parabolic area ^^TV^^f of I \NK.

243. The same line of proof applies when any

diameter and an ordinate are taken as the boundaries

of the parabolic area.
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SECTION III. THE ELLIPSE.

244. An ellipse is the curve traced by a point which

moves in a plane in such a manner that its distance

from a given point is in a constant ratio of less in

equality to its distance from a given straight line.

Let Fbe the focus, OYthe directrix, and XX the

perpendicular to OY through F. Let FA \AObe the

Fig. 70.

constant ratio, FA being less than AO. A is a point

on the curve called the vertex.

As in 116, find A in XX such that

FA :A O=FA :AO.

Then A is another point on the curve, being a

second vertex.

Double the line AA on itself and obtain its middle

point C, called the center, and mark F and O corre

sponding to F and O. Fold through O so that O Y1
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may be at right angles to XX . Then F* is the sec

ond focus and O Y the second directrix.

By folding AA ,
obtain the perpendicular through C.

FA :AO=FA -. A O
= FA-\-FA :AO + A O
=AA : OO
= CA : CO.

Take points B and B in the perpendicular through

C and on opposite sides of it, such that FB and FB
are each equal to CA. Then B and B are points on

the curve.

AA is called the major axis, and BB the minor

axis.

245. To find other points on the curve, take any

point E in the directrix, and fold through E and A,

and through E and A . Fold again through E and F
and mark the point P where FA cuts EA produced.

Fold through PF and P on EA . Then P and P are

points on the curve.

Fold through P and P so that KPL and K L P
are perpendicular to the directrix, K and K being on

the directrix and L and L on EL.

FL bisects the angle A FP,

.-. tLFP= LPLF and

FP\PK=PL\PK
=FA : AO.

And
FP -.PK =P L -.PK
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=FA :AO.

If EO= FO, FP is at right angles to FO, and

FP=FP . PP is the latus rectum.

246. When a number of points on the left half of

the curve are found, corresponding points on the other

half can be marked by doubling the paper on the

minor axis and pricking through them.

247. An ellipse may also be defined as follows :

If a point P move in such a manner that /W2

\AN-NA is a constant ratio, PN being the distance

of P from the line joining two fixed points A, A ,
and

N being between A and A
,
the locus of P is an ellipse

of which AA is an axis.

248. In the circle,

In the ellipse PN 2
: AN-NA is a constant ratio.

This ratio may be less or greater than unity. In

the former case APA is obtuse, and the curve lies

within the auxiliary circle described on AA as diam

eter. In the latter case, / APA is acute and the curve

is outside the circle. In the first case AA is the

major, and in the second it is the minor axis.

249. The above definition corresponds to the equa

tion

when the vertex is the origin.
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250. AN*NA is equal to the square on the ordi-

nate QN of the auxiliary circle, and PN : QN=
BC-.AC.

251. Fig. 71 shows how the points can be deter

mined when the constant ratio is less than unity.

Thus, lay off CD=-AC, the semi-major axis. Through

E any point of ^Cdraw DE and produce it to meet

Q

the auxiliary circle in Q. Draw JB E and produce it

to meet the ordinate QN in P. Then is PN: QN
&C\DC=BC\AC. The same process is appli

cable when the ratio is greater than unity. When

points in one quadrant are found, corresponding points

in other quadrants can be easily marked.

252. If P and P are the extremities of two conju

gate diameters of an ellipse and the ordinates MP
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and M P meet the auxiliary circle in Q and Q ,
the

angle QCQ is a right angle.

Now take a rectangular piece of card or paper and

mark on two adjacent edges beginning with the com

mon corner lengths equal to the minor and major

axes. By turning the card round C mark correspond

ing points on the outer and inner auxiliary circles.

Let Q, R and Q ,
R r

be the points in one position.

Fold the ordinates QM and QM , and RP and R P t

perpendiculars to the ordinates. Then P and P are

points on the curve.

Fig. 72.

253. Points on the curve may also be easily deter

mined by the application of the following property of

the conic sections.

The focal distance of a point on a conic is equal
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to the length of the ordinate produced to meet the

tangent at the end of the latus rectum.

254. Let A and A be any two points. Draw AA
and produce the line both ways. From any point D
in A A produced draw DR perpendicular to AD. Take

any point R in DR and draw RA and RA . Fold AP
perpendicular to AR, meeting RA in P. For different

positions of R in DR, the locus of P is an ellipse, of

which AA is the major axis.

Fig. 73-

Fold PN perpendicular to AA .

Now, because PN is parallel to RD,

PN:A N=RD:A D.

Again, from the triangles, APN and DAR,

PN\AN=AD\ RD.

.-. PN* .AN A N=AD\A D, a constant ratio,

less than unity, and it is evident from the construc

tion that jVmust lie between A and A .

SECTION IV. THE HYPERBOLA.

255. An hyperbola is the curve traced by a point

which moves in a plane in such a manner that its
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distance from a given point is in a constant ratio of

greater inequality to its distance from a given straight

line.

256. The construction is the same as for the el

lipse, but the position of the parts is different. As

explained in 119, X, A lies on the left side of the

directrix. Each directrix lies between A and A
,
and

the foci lie without these points. The curve con

sists of two branches which are open on one side.

The branches lie entirely within two vertical angles

formed by two straight lines passing through the cen

ter which are called the asymptotes. These are tan

gents to the curve at infinity.

257. The hyperbola can be defined thus : If a point

P move in such a manner that PN^ : AN -NA is a

constant ratio, PN being the distance of P from the

line joining two fixed points A and A
,
and TV not

being between A and A
,
the locus of P is an hyper

bola, of which AA is the transverse axis.

This corresponds to the equation

where the origin is at the right-hand vertex of the

hyperbola.

Fig. 74 shows how points on the curve may be

found by the application of this formula.

Let C be the center and A the vertex of the curve.
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CA = CA = CA = a.

Fold CD any line through C and make C&amp;gt;= CA.

Fold DN perpendicular to CD. Fold NQ perpen

dicular to CA and make NQ=DN. Fold Q A&quot; cut

ting CA in S. Fold ^ S cutting (Win P.

Fig. 74-

Then /&amp;gt; is a point on the curve.

For, since DN is tangent to the circle on the

diameter A A

DN* = AN- (2CA + AN),
or since QN=DN,
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QN A&quot;C

Squaring, ^
_=_

,

or y
2 =

2 (2ax + x2
).

If QN=b then ^ is the focus and CD is one of

the asymptotes. If we complete the rectangle on

AC and BC the asymptote is a diagonal of the rect

angle.

258. The hyperbola can also be described by the

property referred to in 253.

259. An hyperbola is said to be equilateral when

the transverse and conjugate axes are equal. Here

a= fr, and the equation becomes

In this case the construction is simpler as the ordi-

nate of the hyperbola is itself the geometric mean be

tween AN and A N, and is therefore equal to the tan

gent from TVto the circle described on AA as diameter.

260. The polar equation to the rectangular hyper

bola, when the center is the origin and one of the axes

the initial line, is

r2 cos 26= a2

or r2=
-pj

a.
cos26

Let OX, OYbe the axes; divide the right angle

VOX into a number of equal parts. Let XOA, A OB
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be two of the equal angles. Fold XB at right angles

to OX. Produce BO and take OF= OX. Fold OG
perpendicular to BF and find G in OG such that FGB
is a right angle. Take OA = OG. Then A is a point

on the curve.

Fig. 75-

Now, the angles XOA and AOB being each 0,

OB=
COS 26

And O4 2=OG^= a

COS29**&quot;

261. The points of trisection of a series of conter

minous circular arcs lie on branches of two hyperbolas

of which the eccentricity is 2. This theorem affords

a means of trisecting an angle.*

* See Taylor s Ancient and Modern Geometry of Conies, examples 308, 390

with footnote.



XIV. MISCELLANEOUS CURVES.

262. I propose in this, the last chapter, to give

hints for tracing certain wall-known curves.

THE CISSOID.*

263. This word means ivy-shaped curve. It is de

nned as follows: Let OQA (Fig. 76) be a semicircle

on the fixed diameter OA, and let QM, RN be two

ordinates of the semicircle equidistant from the cen

ter. Draw OR cutting QM in P. Then the locus

of P is the cissoid.

If OA=2a, the equation to the curve is

/(2a x)=x*.

Now, let PR cut the perpendicular from C in D
and draw AP cutting CD in E.

RN:CD= ON: OC=AM~AC=PM:EC,
.-. RN-,PM=CD:CE.
But RN\ PM=ON\ OM=ON: AN^ON* : NR*

If CF be the geometric mean between CD and CE,

*See Beman and Smith s translation of Klein s Famous Problems ofEle

mentary Geometry, p. 44.
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CD:CF=OC:CD

132

. . CD and CF are the two geometric means be

tween OC and CE.

M C N F A

Fig. 76.

264. The cissoid was invented by Diocles (second

century B. C.) to find two geometric means between

two lines in the manner described above. OC and

CE being given, the point P was determined by the

aid of the curve, and hence the point D.

265. If PD and DR are each equal to OQ, then

the angle AOQ is trisected by OP.



IN PAPER FOLDING. 133

Draw QR. Then QR is parallel to OA, and

THE CONCHOID OR MUSSEL-SHAPED CURVE.*

266. This curve was invented by

150 B. C.). Let O be a

fixed point, a its dis-

tance from a fixed line,

DM, and let a pencil of

rays through O cut DM.

On each of these rays

lay off, each way from its

intersection with DM, a

segment b. The locus

of the points thus deter

mined is the conchoid.

According as b
&amp;gt;, =,

or
&amp;lt;#,

the origin is a

node, a cusp, or a con

jugate point. The fig-

ure| represents the case

when b
&amp;gt;

a.

Nicomedes (c.

Fig. 77-

267. This curve also

was employed for finding

two geometric means, and for the trisection of an angle.

*See Beman and Smith s translation of Klein s Famous Problems of Elt-

mentary Geometry, p. 40.

tFrom Beman and Smith s translation of Klein s Famous Problems of
Elementary Geometry, p. 46.
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Let OA be the longer of the two lines of which

two geometric means are required.

Bisect OA in B\ with O as a center and OB as a

radius describe a circle. Place a chord BC in the

circle equal to the shorter of the given lines. Draw

AC and produce AC and BC to D and E, two points

collinear with O and such that DE OB, or BA.

Fig. 78.

Then ED and CE are the two mean proportionals

required.

Let OE cut the circles in E and G.

By Menelaus s Theorem,*

BC-ED OA=CE - OD -BA

... BC OA=CE-OD
BC _ OD
~CE

~~
OA

BE OD+ OA GE
CE

~

OA OA

See Beman and Smith s New Plane and Solid Geometry, p. 240.
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But GE EF=BE -EC.

.-. GE -OD=

.-. OA -OD=

The position of E is found by the aid of the con

choid of which AD is the asymptote, O the focus, and

DE the constant intercept.

268. The trisection of the angle is thus effected.

In Fig. 77, let &amp;lt;

= / MOV, the angle to be trisected.

On OM lay off OM=b, any arbitrary length. With

M as a center and a radius b describe a circle, and

through M perpendicular to the axis of X with origin

O draw a vertical line representing the asymptote of

the conchoid to be constructed. Construct the con

choid. Connect O with A, the intersection of the circle

and the conchoid. Then is / AOY one third of
&amp;lt;p.*

THE WITCH.

269. If OQA (Fig. 79) be a semicircle and NQ an

ordinate of it, and NP be taken a fourth proportional

to ON, OA and (M7
,
then the locus of P is the witch.

Fold AM at right angles to OA.

Fold through O, Q, and M.

Complete the rectangle NAMP.

PN\ QN=OM: OQ
= OA\ON.

&quot;-Beman and Smith s translation of Klein s Famous Problems ofElemen

tary Geometry, p. 46.
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Therefore P is a point on the curve.

Its equation is,

Fig- 79-

This curve was proposed by a lady, Maria Gaetana

Agnesi, Professor of Mathematics at Bologna.

THE CUBICAL PARABOLA.

270. The equation to this curve is a*y= x*.

Let OX and OYbe the rectangular axes, OA=a,
and OX=x.

In the axis OY take OB= x.

Draw BA and draw AC at right angles to AB cut

ting the axis O Kin C.
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Draw CX, and draw XYat right angles to CX.

Complete the rectangle XOY.

P is a point on the curve.

Fig. 80.

THE HARMONIC CURVE OR CURVE OF SINES.

271. This is the curve in which a musical string

vibrates when sounded. The ordinates are propor

tional to the sines of angles which are the same frac

tions of four right angles that the corresponding ab

scissas are of some given length.

Let AB (Fig. 81) be the given length. Produce BA
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to C and fold AD perpendicular to AB. Divide the

right angle DAC into a number of equal parts, say,

four. Mark on each radius a length equal to the am

plitude of the vibration, ACAP=AQ=AR= AD.

From points/
1

, Q, R fold perpendiculars to A C;

then PP , QQ ,
RR

,
and DA are proportional to the

sines of the angles PAC, QAC, RAC, DAC.

Now, bisect AB in E and divide AE and EB into

twice the number of equal parts chosen for the right

C ? Q S T U V

angle. Draw the successive ordinates SS ,
TT

, UU\
VV, etc., equal to PP, QQ ,

RR
, DA, etc. Then

S, T, U, V are points on the curve, and V is the

highest point on it. By folding on VV and pricking

through S, T, U, V, we get corresponding points on

the portion of the curve VE. The portion of the

curve corresponding to EB is equal to A VE but lies

on the opposite side of AB. The length from A to E
is half a wave length, which will be repeated from E
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to B on the other side of AB. E is a point of inflec

tion on the curve, the radius of curvature there be

coming infinite.

THE OVALS OF CASSINI.

272. When a point moves in a plane so that the

product of its distances from two fixed points in the

plane is constant, it traces out one of Cassini s ovals.

The fixed points are called the foci. The equation of

X MA A

B

Fig. 82.

the curve is rr =k?, where r and r are the distances

of any point on the curve from the foci and k is a con

stant.

Let F and F be the foci. Fold through F and

jF&quot;. Bisect FF in C, and fold BCB perpendicular to

FF . Find points B and B such that FB and FBf

are each =k. Then B and B are evidently points on

the curve.
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Fold FK perpendicular to FF and make FK=k,
and on FF take CA and CA each equal to CK. Then

A and A are points on the curve.

For CA* =CK*= CF* -f

Produce FA and take AT=FK. In A T take a

point J/and draw MK. Fold A ^/ perpendicular to

MK meeting FA in J/ .

Then FM-FM =&.

With the center F and radius FM, and with the

center F and radius FM
,
describe two arcs cutting

each other in P. Then P is a point on the curve.

When a number of points between A and B are

found, corresponding points in the other quadrants

can be marked by paper folding.

When FF =V*k and rr = \k* the curve as

sumes the form of a lemniscate. ( 279.)

When FF is greater than V 2k, the curve consists

of two distinct ovals, one about each focus.

THE LOGARITHMIC CURVE.

273. The equation to this curve \sy= a*.

The ordinate at the origin is unity.

If the abscissa increases arithmetically, the ordi

nate increases geometrically.

The values of y for integral values of x can be ob

tained by the process given in 108.
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The curve extends to infinity in the angular space

XOY.

If x be negative y= and approaches zero as x
ax

increases numerically. The negative side of the axis

OX is therefore an asymptote to the curve.

THE COMMON CATENARY.

274. The catenary is the form assumed by a heavy

inextensible string freely suspended from two points

and hanging under the action of gravity.

The equation of the curve is

the axis of y being a vertical line through the lowest

point of the curve, and the axis of x a horizontal line

in the plane of the string at a distance c below the

lowest point ;
c is the parameter of the curve, and e

the base of the natural system of logarithms.

When x= c = C
-e^-

when x 2c, y= (fi -f- e~
2

~)
and so on,

275. From the equation

,=(&amp;lt;*--,-

e can be determined graphically.
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I/}-
2 f2 is found by taking the geometric mean be

tween y -j- c and jv r.

THE CARDIOID OR HEART-SHAPED CURVE.

276. From a fixed point O on a circle of radius a

draw a pencil of lines and take off on each ray, meas

ured both ways from the circumference, a segment

equal to 2a. The ends of these lines lie on a cardioid.

Fig. 83.

The equation to the curve is r= 0(1 -f cos #)

The origin is a cusp on the curve. The cardioid

is the inverse of the parabola with reference to its

focus as center of inversion.

THE LIMACON.

277. From a fixed point on a circle, draw a num

ber of chords, and take off a constant length on each

of these lines measured both ways from the circum

ference of the circle.
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If the constant length is equal to the diameter of

the circle, the curve is a cardioid.

If it be greater than the diameter, the curve is

altogether outside the circle.

If it be less than the diameter, a portion of the

curve lies inside the circle in the form of a loop.

If the constant length is exactly half the diameter,

the curve is called the trisectrix, since by its aid any

angle can be trisected.

The equation is r= acos6-\- b.

The first sort of liir^on is the inverse of an ellipse ;

and the second sort is the inverse of an hyperbola,

with reference to a focus as a center. The loop is the

inverse of the branch about the other focus.

278. The trisectrix is applied as follows :

Let AOB be the given angle. Take OA, OB equal

to the radius of the circle. Describe a circle with the

center O and radius OA or OB. Produce AO in-
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definitely beyond the circle. Apply the trisectrix so

that O may correspond to the center of the circle and

OB the axis of the loop. Let the outer curve cut AO
produced in C. Draw BC cutting the circle in D,

Draw OD.

Fig. 85.

Then ^ACB is \ of

For CD
/_CJ3O

/_ODB

THE LEMNISCATE OF BERNOULLI.

279. The polar equation to the curve is

r2= a2 cos26.

Let O be the origin, and OA=a.
Produce AO, and draw OD at right angles to OA

Take the angle A OP=8 and A OB =--26.

Draw AB perpendicular to OB.

In AO produced take OC=^OB.
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Find D in OD such that CDA is a right angle.

Take OP= OD.

P is a point on the curve.

145

=OB-OA

= a2 cos 2 6.

As stated above, this curve is a particular case of

the ovals of Cassini.

Fie. 86.

It is the inverse of the rectangular hyperbola, with

reference to its center as center of inversion, and also

its pedal with respect to the center.

The area of the curve is a 1
.

THE CYCLOID.

280. The cycloid is the path described by a point

on the circumference of a circle which is supposed to

roll upon a fixed straight line.

Let A and A be the positions of the generating

point when in contact with the fixed line after one
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complete revolution of the circle. Then AA is equal

to the circumference of the circle.

The circumference of a circle may be obtained in

length in this way. Wrap a strip of paper round a

circular object, e. g., the cylinder in Kindergarten

gift No. JI., and mark off two coincident points. Un
fold the paper and fold through the points. Then the

straignt line between the two points is equal to the

circumference corresponding to the diameter of the

cylinder.

By proportion, the circumference corresponding

to any diameter can be found and vice versa.

A D G A

Fig. 87.

Bisect AA in D and draw DB at right angles to

AA
, and equal to the diameter of the generating

circle.

Then A, A and B are points on the curve.

Find O the middle point of BD.

Fold a number of radii of the generating circle

through O dividing the semi-circumference to the

right into equal arcs, say, four.

Divide AD into the same number of equal parts.
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Through the ends of the diameters fold lines at

right angles to BD.

Let EFP be one of these lines, F being the end of

a radius, and let G be the corresponding point of sec

tion of AD, commencing from D. Mark off FP equal

to GA or to the length of arc BF.

Then P is a point on the curve.

Other points corresponding to other points of sec

tion of AD may be marked in the same way.

The curve is symmetric to the axis BD and corre

sponding points on the other half of the curve can be

marked by folding on BD.

The length of the curve is 4 times BD and its area

3 times the area of the generating circle.

THE TROCHOID.

281. If as in the cycloid, a circle rolls along a

straight line, any point in the plane of the circle but

not on its circumference traces out the curve called a

trochoid.

THE EPICYCLOID.

282. An epicycloid is the path described by a point

on the circumference of a circle which rolls on the

circumference of another fixed circle touching it on

the outside.

THE HYPOCYCLOID.

283. If the rolling circle touches the inside of the

fixed circle, the curve traced by a point on the cir

cumference of the former is a hypocycloid.
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When the radius of the rolling circle is a sub-

multiple of the fixed circle, the circumference of the

latter has to be divided in the same ratio.

These sections being divided into a number of

equal parts, the position of the center of the rolling

circle and of the generating point corresponding to

each point of section of the fixed circle can be found

by dividing the circumference of the rolling circle into

the same number of equal parts.

THE QUADRATRIX.*

284. Let OACB be a square. If the radius OA of

a circle rotate uniformly round the center O from the

position OA through a right angle to OB and if in the

same time a straight line drawn perpendicular to OB
move uniformly parallel to itself from the position

OA to BC
;
the locus of their intersection will be the

quadratrix.

This curve was invented by Hippias of Elis (420

B. C.) for the multisection of an angle.

If P and P are points on the curve, the angles

A OP and A OP are to one another as the ordinates

of the respective points.

THE SPIRAL OF ARCHIMEDES.

285. If the line OA revolve uniformly round O as

center, while point P moves uniformly from O along

OA, then the point P will describe the spiral of Archi

medes.

* Beman and Smith s translation of Klein s Famous Problems of Elemen-

tary Geometry, p. 57.
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