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PKEFACE.

THE matter of the present work has, with some varia

tions, been in manuscript for a number of years, and has

formed the subject of an annual course of lectures to

mathematical students by whom the subject has been

well received as one of the most interesting in the earlier

part of a mathematical course.

I have been induced to present the work to the public,

partly, by receiving from a number of Educationists

inquiries as to what work on Solid Geometry I would

recommend as a sequel to my Plane Geometry, and partly,

from the high estimate that I have formed of the value

of the study of synthetic solid geometry as a means of

mental discipline.

To me it seems to exercise not only the purely intel

lectual powers in the development of its theorems, but

also the imagination in the mental building-up of the

necessary spatial figures, and the eye and the hand in

their representations.

In this work the subject is carried somewhat farther

than is customary in those works in which the subject

of solid geometry is appended to that of plane geometry,

v
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PREFACE.

but the extensions thus made are fairly within the scope
of an elementary work, and are highly interesting and

important in themselves as forming valuable aids to the

right understanding of the more transcendental methods.
It appears to me that it is a prevalent custom to lay

too little stress on synthetic methods as soon as plane

geometry is passed, and to hurry the student too rapidly
into the analytic methods. If mathematical knowledge
is all that is required, this may possibly be an advan

tageous course; but if mental culture is, as it should

be, the chief end in a university education, this custom

ary usage is not the best one.

I have found it convenient to divide the work into

four parts, each of which is further divided into sec

tions.

The first part deals with a consideration of the descrip
tive properties of lines and planes in space, of the poly-

hedra, and of the cone, the cylinder, and the sphere.

Here I would feel like apologising for the introduction

of a new term, were it not that I believe that its intro

duction will be fully justified by a careful perusal of

the work.

Legendre, in his notes to his geometry, proposed to

use the word corner (coin) for the figure formed by
the meeting of two planes, and he considered that the

different polyhedral angles should receive special names
as being geometrical figures of different species. Without
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discussing this idea, I have employed the word corner

to denote a solid or polyhedral angle of not less than

three faces, while I have retained the expression dihedral

angle in its usual sense. If a dihedral angle be cut by

a plane, this cutting plane necessarily cuts through both

faces, and the figure of intersection is a plane angle.

Whereas, if any polyhedral angle be cut by a plane

which intersects all its faces, the figure of section is not

a simple angle, but a polygon. Thus the plane angle and

the dihedral have this in common, that they can both

be measured by the same kind of angular unit, while

the affinities of the polyhedral angle are with the

polygon.

Moreover, the trihedral angle is a geometrical func

tion of three plane angles and three dihedral angles,

neither of which exists without the other, and every

polyhedral angle is a geometrical function or combina

tion of plane and dihedral angles, and these form its

elements. Hence I have used the term i three-faced

corner 7 for trihedral angle, and generally n-faced

corner for ?i-hedral angle. This nomenclature is very

convenient
;
but if any Teacher prefers the older forms,

he can readily make the necessary change in language.

The rectangular parallelepiped should certainly be

supplied with some convenient name. I have adopted

the term cuboid, as proposed by Mr. Hayward, as being

both convenient and suggestive.
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The second part of the work deals with areal rela

tions, that is, the relations among the areas of squares

and rectangles on characteristic line-segments of the

prominent spatial figures.

The majority of the results, besides being highly inter

esting in themselves, form data for subsequent higher

work.

The third part is devoted to stereometry and planimetry.

In this are developed the principal rules and formulae

for the measurement of volumes and surfaces of the

more prominent spatial figures which admit of such

measurement, and a special section is given to the con

sideration of volumes and surfaces generated by moving

areas and lines, and to the development of the theorems

of Pappus or Guldinus.

The fourth and last part begins with an explanation

of the principles of conical or perspective projection.

By the application of these principles in projecting a

circle into a cone and cutting the cone by a plane, the

student is introduced to the conic, and is led to under

stand its meaning, and the relations of the various conies

to one another.

The more common properties of the conies are then

easily obtained through a study of the curve as a plane

section of a circular cone. The latter half of this part

is given to spheric geometry. The spheric figure (tri

angle and polygon) is considered as the section of a
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corner by a sphere whose centre is at the apex of the

corner. The study of spheric figures is thus brought

into line with the study of the corner or solid angle,

and the leading properties of the spheric triangle are

thus most easily and directly obtained.

The whole work is presented to the younger mathe

matical reader in the hope that it may prove worthy of

his careful attention.

At the close of the work there is a large collection of

miscellaneous exercises, many of which, being connected

with the subjects of inversion and of polar reciproca

tion in space, are highly suggestive.

I have to acknowledge my indebtedness to Mr. W. R.

Sills for assistance in reading the proof-sheets.

N. F. D.

QUEEN S COLLEGE,
Oct. 1, 1893.
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SOLID OE SPATIAL GEOMETEY,

PART I.

DESCRIPTIVE GEOMETRY.

1. Solid or Spatial Geometry, or the Geometry of

Space, deals with the properties and relations of figures

not confined to one plane (P. Art. 19) -

1

The elements of spatial figures are the point, the line,

the curve, the plane, and the curved surface. The first

four of these are defined in plane geometry (P. Arts. 12,

14, 17) ;
but we repeat here the definition of the plane,

as upon that definition several corollaries and other

definitions depend.

Def. A plane is a surface such that the join of any
two arbitrary points in it lies wholly in the surface and

coincides with it.

Cor. 1. A line cannot lie partly within a plane and

partly without it. For the part within the plane must

have at least two points in the plane, and must there

fore coincide with the plane throughout its whole extent.

1 References marked Rare to the Author s Geometry of the point,

line, and circle in the plane.

1



^ SOLID OR SPATIAL GEOMETRY.

Cor. 2. A line not coincident with a given plane
meets the plane at only one point.

2. A plane is not necessarily limited in extent
; or, in

other words, a plane extends to infinity in all its direc
tions. For the plane must be coextensive with every
coincident line.

Every, plant; thus theoretically divides all space into
two parts, one lying upon each side of the plane/ The
use of .planes thus considered is common in spherical
astronomy.

3. In plane geometry the geometric figure is drawn
upon the plane of the paper, which properly represents
the plane upon which the figure is supposed to lie. In

spatial geometry, however, we have only one plane, that
of the paper, to stand for and represent all the planes
which may be involved in any spatial figure. This is

an unavoidable source of confusion to beginners, as the

pictured figures in spatial geometry are not representa
tions of the real figures in the same sense as in plane
geometry.
Thus equal line-segments and equal angles in a spatial

figure will not, in general, appear as equal segments or

equal angles in the pictured representation. So, also,

squares and circles in space will not, in general, appear
as squares and circles on our single available plane, that
of the paper. Properly constructed models simplify
matters to a very great extent, and should be employed
whenever available. The construction of proper models

is, however, always difficult, and often impracticable,
and for several reasons they cannot serve all the pur
poses of a diagram. And hence beginners should ac-
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custom themselves to reading and interpreting spatial

diagrams. These diagrams can be considered only as

an aid to building up the figure in the imagination, and

facility in reasoning from such diagrams will depend

very largely upon the readiness with which the reasoner

can make this imaginary construction. The student is

accordingly advised to give some care and patience to

the constructing of spatial diagrams.

To represent a plane we usually represent a rectangular

segment of the plane, and this generally appears in the

diagram as some form of parallelogram.



SECTION 1.

THE LINE AND THE PLANE.

4. Theorem. Two planes which coincide in part coin
cide altogether.

Proof. The part throughout which the planes coincide
must be part of a plane, and must therefore admit of an
indefinite number of arbitrary points being taken within
it, of which no three are in line. These points taken
two and two determine an indefinite number of arbitrary
lines which coincide in part with both planes. And the

planes thus coinciding (Art. 1. Cor. 1) along an indefinite
number of arbitrary lines, coincide altogether, and form
virtually but one plane.

Def. An indefinite number of lines can lie in one plane.
The totality of these is called a plane of lines, although
the lines, having only one dimension, do not make up
any portion of the plane in which they lie.

5. Theorem. The figure of intersection of two planes
is a line.

Proof. Let U and V be two \
planes, and let A and B be any \ A

two points in their figure of in- /
tersection. Join A, B by a line. L

^^

Then, since A and B are two

points in U, the join AB lies wholly in U (Art. 1. Def.).
4



THE LINE AND THE PLANE. O

For a similar reason the join AB lies wholly in V.

Hence it is common to the planes, and is their figure of

intersection; and thus the figure of intersection is a

line.

Cor. 1. Any number of planes may have one com

mon line. For if they pass through the same two points,

A and B, they have the join of A and B as a common

line.

Def. A group of planes having one common line is

an axial pencil, and the line is the axis. In contra

distinction to this the pencil of lines in a common plane

(P. Art. 203. Def.) is called a fiat pencil

Cor. 2. As the line of section of two planes cannot

return into itself and form a closed plane figure, so two

planes cannot form a closed spatial figure.

6. Theorem. Through any three points not in line,

1. One plane can pass.

2. Only one plane can pass.

A
t -B, C are any three points not in line.

1. One plane can pass through

A, B, and C.

Proof. Let the plane contain

ing A and B be rotated about

the join of A and B.

In a complete revolution this plane passes through

every point in space, and therefore in some position, U,

it passes through C.
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2. Only one plane can pass through A, B, and C.

Proof. Take D, E, any points in the joins AC and
BC respectively. Then D and E and their join lie in

U, and in every plane through A, B, and C. Therefore

every plane through A, B, and C coincides with U, and
forms with U virtually but one plane.

Cor. 1. Any three points not in line determine a

single plane.

Def. Any number of elements so disposed as to lie

in one and the same plane are said to be complanar or

coplanar. Thus all the parts of a figure in plane geom
etry are complanar.

Cor. 2. Two intersecting lines are complanar and
determine one plane.

For, taking a point in each line, and the point of inter

section, we have three points not in line, and the plane

through these is the plane of the lines.

Cor. 3. Parallel lines are complanar.
For they have a common point at infinity (P. Art.

220. Def.).

7. Generation of a plane.
^ L

L andMare any two lines

intersecting in C, and N is

a third line intersecting L
in B, and M in A. Then

L, M, N&re complanar.

1. When L and M are fixed and N is variable, N
generates a plane.

Therefore, a plane is generated by a variable line

which is guided by two intersecting fixed lines.
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Def. The variable line N is called the generator, and

the fixed guiding lines are directors.

2. Let C go to infinity, and L and M become parallel.

Therefore, a plane is generated by a variable line

guided by two fixed parallel lines.

3. Let the point A remain fixed, while B moves

along L.

Then, a plane is generated by a variable line which

passes through a fixed point and is guided by a fixed line.

4. Let the point A go to infinity ;
i.e. let the genera

tor N, fixed in direction only, be guided by the fixed

line L.

Then, a plane is generated by a variable line having
a fixed direction and guided by a fixed line.

8. Theorem. At the point of intersection of any two

lines a third line can be perpendicular to both.

AB and CD are lines intersecting in 0. Then some

line OP is perpendicular to

both AB and CD.

Proof. Let OP be J_ to AB,
and let it revolve about AB as

an axis, being fixed, until it _

comes into the plane of AB and

CD at OE and at OF. Then

AB, CD, EF are complanar.

(hyp.)

Similarly

and ZDOFis &amp;gt;a~|.
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Therefore, in revolving OP from the position OE to

the position OF the Z DOP changes from less than a

right angle at DOE to greater than a right angle at DOF;
and hence at some intermediate position OP is J_ OD.

Cor. If AB is _1_ to CD, and OP is _L to both,

we have three lines mutually perpendicular to each

other.

Def. 1. Three concurrent lines mutually perpendicu

lar to one another are called the three rectangular axes

of space, and their planes are the rectangular co-ordi

nate planes of space. These three lines admit of length

measures in three directions, each perpendicular to the

other two. Hence, space is said to be of three dimen

sion, or to contain three dimensions, and it is frequently

spoken of as tri-dimensional space, in contradistinction

to the two-dimensional space of a single plane, or of

plane geometry.

Def. 2. A line lying in a particular plane is a planar

line of that plane ;
and when only one plane is under

consideration, a planar line will mean a line in that

plane.

Def. 3. When OP is perpendicular to both AB and

CD, it is perpendicular to the plane which these lines

determine (Art. 6. Cor. 2).

OP is then a normal to the plane, and is the foot

of the normal.

Also, the plane is a normal plane to the line OP.

9. Theorem. A normal to a plane is perpendicular to

every planar line through the foot of the normal.
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OP is J_ to OA and OB, and OC is any line through

complanar with OA and OB. Then
OP is J_ to OC.

Proof. Take OA= OB= any con

venient length. Join AB, cutting
OC in 0, and join PA, PB, PC.
The right-angled triangles POA

and POB are congruent, and there

fore PA = P. Hence the A ^PB
and ^405 are each isosceles, and PC and OC are lines

from the vertices to the common base AB.

.-. PB2 - PC 2 = BC CA = OB2 - OC2

, (P. Art. 174.)
and . . PB2 - OB2 = PC2- OC 2

.

But POB being a 1, (hyp.)
PB2 - OB2 = OP 2 = PC2 - OC 2

.

. . ZPOCisal.

Cor. 1. If is fixed while OA revolves about OP as

an axis, OA generates a plane to which OP is a normal.

Def. A line is perpendicular to a line which it does

not meet when a plane containing one of the lines can
have the other as a normal.

Cor. 2. A normal to a plane is perpendicular to every
line in the plane, and all normals to the same plane are

parallel to one another.

Cor. 3. From any point without or within a plane, only
one normal can be drawn to the plane.

10. Theorem. Of the line-segments from a point with
out a plane to the plane :

1. The shortest is along the normal through the point.
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2. The feet of equcJ segments are equally distant from

the foot of the normal, and conversely.

3. Of unequal segments,

the longer lies further from

the normal than the shorter

does, and conversely.

P is any point, and PO is

normal to the plane U, not

passing through P. A, B, C
are points in U.

1. PO is &amp;lt; PA, A being any point in U other than 0.

Proof. Z POA is a 1
; (Art. 9. Cor. 2.)

.-. Z PAO is acute, and PO&amp;lt;PA , (P. Art. 62.)

and the normal segment PO is the shortest segment from

P to the plane U.

2. PA=PB; then OA = OB.

Proof. The right-angled triangles POA and POB have

their hypothenuses equal, and the side PO in common.

They are therefore congruent (P. Art. 65), and OA = OB.

Conversely, if OA = OB, the congruence of the same

triangles gives PA = PB.

3. PC is &amp;gt;PA;
then 00 is

&amp;gt;
OA.

For the two triangles POA, POC, being each right-

angled, give
p(72 = po2+OC2 .

and

But PC&amp;gt;PA; . . OC&amp;gt;OA.

And conversely, if OC&amp;gt; OA, then PC&amp;gt;PA.
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Cor. When PA = PB, OA = OB. Therefore, if PA
is of constant length and variable in position, the foot A
describes a circle having as centre and OA as radius.

The generation of this circle from a fixed point, P, by a

line segment, PA, of constant length, is similar to that

of the circle in plane geometry (P. Art. 92), except that

in the present case the fixed point is not in the plane of

the circle.

Def. 1. The circle described on 17with the vector PA,
and from the fixed point P, has a relation to the cone, to

be considered hereafter, and we shall accordingly call it

a cone circle to the vertex P.

Evidently any circle may be considered as a cone

circle, and when so considered, it has an indefinite num

ber of vertices, all lying upon the line which passes

through its centre and is normal to its plane.

Def. 2. The distance of a point from a plane is the

length of normal intercepted between the point and the

plane.

11. Def. 1. The projection of a point on a plane is

the foot of the normal from the point to the plane, and

the projection of a line-segment on a plane is the join

of the projections of its end-points upon the plane.

It follows, then, that the projection of a line upon a

plane which it meets is the planar line which passes

through the point where the given line meets the plane,

and through the foot of the normal, drawn from any point

on the given line to the plane.

Def. 2. The angle between a given line and its pro

jection upon a plane is taken to be the angle between

the given line and the plane.
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Def. 3. The angle between two non-complanar lines

is the angle between two intersecting lines respectively

parallel to the given lines.

12. Theorem. The angle between a line and its pro

jection on a plane is less than the angle between the

given line and any planar
line not parallel to the pro

jection.

The line PO meets the

plane U in 0; ON is the

projection of OP on U; OA
is a line through 0, parallel

to the planar line L, which is not parallel to the pro

jection ON.

Then Z PON is
&amp;lt;
Z POA.

Proof. From P draw PN perpendicular to ON. PN
is normal to the plane U (Art. 11. Def. 1).

Take OA = ON and join PA and AN.

Since Z PNA = 1, PA is
&amp;gt;

PN.

And in the triangles POA and PON, PO is common,

OA = ON, and PA
&amp;gt; PN;

.-. Z POA is
&amp;gt;
Z PON. (P. Art. G7.)

And as L is any planar line not parallel to ON, the

Z PON, between PO and its projection on U, is less

than that between PO and any line in the plane, not

parallel to ON.

Cor. 1. Since two intersecting lines make with one

another two angles which are supplementary (P. Art.
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39), we may say more accurately that the angles, between

a line and its projection upon a plane, are the least and

the greatest of all the angles made by the given line

with lines lying in the plane.

Cor. 2. Since 0, P, N are complanar (Art. 6), and

Z.PNO is a 1, the Z OPN is the complement of the

/. PON. Therefore the angle between a line and a plane
is the complement of the angle between the line and a

normal to the plane.

Cor. 3. Let OB be a planar line J_ to OP.
Since PN is normal to U, OB is JL to PN (Art. 9.

Cor. 2) ;
and hence OB, being _L to OP and PN, is _L to ON.

Therefore planar lines which are perpendicular to any
line that meets their plane are also perpendicular to the

projection of that line upon the plane.

13. Def. A line is parallel to a plane when it meets

that plane at infinity.

Cor. Any plane through one of two parallel lines is

parallel to the other line.

For if L and M be two parallel lines, and the plane U
contains L and not M, it can meet M only where L meets
M. But L and M meet at infinity (P. Art. 220) ;

there

fore M meets U at infinity, or is parallel to U.

SPATIAL CONSTRUCTION.

14. In making constructions in space we assume the

ability :

1. To draw through any given point a line parallel to

a given line.
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ON. PN is the normal

2. To pass a plane through any given point or line.

3. To make a plane construction, according to the

principles of plane geometry, upon any assumed or deter
mined plane.

Ex. 1. Problem. From a given point without a plane
to draw a normal to the plane.

Let P be the point, and U
be the plane.

Con. Draw any line OB in

C7, and from P draw PO _L to

OB (P. Art. 120).
In CT draw ON _L to OB-,

and from P draw PN J_ to

required.

For OB is, by construction, J_ to both OP and ON,
and therefore to the plane of these lines, and hence to

PN, which lies in this plane (Art. 9. Cor. 2).
Therefore PN is _L to OB and to O^V, and is conse

quently normal to U.

Ex. 2. Problem. To draw a common perpendicular to

two non-com planar lines.

Let L, M be the two non-

complanar lines.

Con. In M take any point,

A, and through A draw the

line ^parallel to L (Art. 14. 1).M and N determine a plane,

U, which is parallel to L.

From any point B in L draw BC normal to U (Ex. 1).

Then, as L is parallel to U, BC is _L to L.
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Draw CD parallel to L to meet M in D, and from D
draw DE J_ to L.

Then DE is i. to both L and JK) or is their common

perpendicular.
For DE is _L to L by construction, and being thus

parallel to CB, EC is a rectangle, and ED is normal to

U, and therefore _L to M.

Cor. Since CD can meet Jtf&quot; in only one point, only

one common perpendicular can be drawn to two noii-

complanar lines.

EXERCISES A.

1. How many planes at least determine one line ?

2. How many lines at most are determined by 3 planes ? by

6 planes ? by n planes ?

3. How many planes at most are determined by 4 points ? by

8 points ? by n points ?

4. Draw a normal to a plane from a point in the plane.

5. Through one of two non-complanar lines, to pass a plane to

be parallel with the other line.

6. Show that the common perpendicular to two non-complanar

lines is the shortest segment from one line to the other.

7. From a given point in one of two non-complanar lines, to

draw a segment of given length to meet the other. The solutions

are two, one, or none. Distinguish these cases.

8. Given two non-complanar lines, to draw a segment from

one to the other so as to be perpendicular to one of them.

9. Given two non-complanar lines, to draw a segment from

one to the other so as to make equal angles with each. Show that

this angle may vary from a right angle to the complement of one-

half the angle between the given lines.
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10. PO meets the plane U (Fig. of Art. 12) at an angle of 30,
and PN is normal to U. OA is a planar line making the angle
POA = 60. Show that cos AON = I V3.

11. PO meets Vat an angle a, and ON is the projection of OP
on U. OA is a planar line making the angle POA =

/3. Show

that cos

12. Through the point, where a given line meets a plane, to

draw a planar line to make a given angle with the given line.

Examine the limits of possibility.



SECTION 2.

Two PLANES DIHEDRAL ANGLE PLANE
SECTIONS.

15. Def. Parallel planes are such as meet only at

infinity, i.e. which do not meet at any finite point.

Cor. 1. Planes which have a common normal are

parallel. For if the planes meet at any finite point,

two perpendiculars can be drawn from that point to the

same common normal, one in each plane. But this is

impossible (P. Art. 61).

Cor. 2. Planes which are not parallel intersect in a

line not at infinity. This line is common to the two

planes, and is the common line of the planes.

When two planes are parallel, their common line is at

infinity.

16. U and V are two

planes having AB as their

common line.

From any point, P, in

AB draw PC in U and

PD in V, each perpendic
ular to AB.
The angle CPD is defined as the angle between the

planes U and V. Therefore :

17
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Def. 1. The angle between two planes is the angle
between two lines, one in each plane, and both perpendic
ular to the common line of the planes.
AB is normal to the plane of PC and PD, and is

therefore perpendicular to CTand DX (Art. 9. Cor. 2).
Hence, if CY be _L to PD, and DX to PC, CY is

normal to F, and DX is normal to U.

And these normals, being complanar, intersect in some
point, E, and the angle CED is the supplement of the

angle CPD. Hence, if we consider CY and DX in the
same sense, i.e. from distal extremity to foot, or vice

versa, the angle CED is the angle between the normals
to the planes, and therefore :

Def. 2. The angle between two planes is the supple
ment of the angle between normals to the planes.
When CP is perpendicular to PD, the planes are per

pendicular to one another, and CP is normal to F, and
DP to U. Hence :

Def. 3. Two planes are perpendicular to one another
when one of them contains a normal to the other.

17. Def. When PC is perpendicular to PD, and
each is perpendicular to AB, the three planes U, F, and
the plane of PCD are mutually perpendicular to one
another. These planes are then called the rectangular
co-ordinate planes of space, and the common point, P,
is the origin.

If we assume the positions of these three planes, and
therefore the position of the origin, the position of any
point in space can be determined by giving its distances

from these planes, each distance being affected with a
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proper algebraic sign. This is the fundamental principle

in analytic geometry of three dimensions.

18. If PQ be any line in U, and PR be any line in F,

meeting the common line AB, in the same point, P, PQ
and PR are complanar (Art. 6. Cor. 2) ;

and if W denote

their plane, PQ is the common line of U and W, PR
is the common line of W and V, and AB is the common
line of Fand U, and these three lines are concurrent

at P.

Therefore, three planes, no two of which are parallel,

and which do not form an axial pencil, determine one

point, and this point is the point of concurrence of the

three common lines of the planes taken in twos.

This point is at infinity when the three common lines

are all parallel.

Cor. Three planes cannot form a closed figure. For

the planes determine, at most, three concurrent lines,

which, meeting in one common point, can never meet

in any other points.

19. Def. When a spatial figure, S, is cut by a plane,

U, the combination of elements common to S and 7form

upon U a plane figure, which is called the plane section of

S by U, or simply the section of S by U.

This definition suggests to us a relation existing be

tween plane and spatial geometry.
Plane geometry may be aptly described as a plane

section of spatial geometry. The plane upon which the

figures of plane geometry lie (P. Art. 11) is the plane

of section, and the figures themselves may be considered

as sections of spatial figures,
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From this connection we may be led to expect that

relations existing among plane figures are only particular

cases of more general relations existing among spatial

figures. And hence we naturally look for many analogies

amongst the results of plane and of spatial geometry.

Some of these have appeared already, and others will

present themselves in the sequel. And it is worthy of

note how often the number two of plane geometry be

comes three in spatial geometry. Thus two points deter

mine one line, while three points determine one plane ;

two lines in the plane determine one point, while it

requires three planes to determine one point.

20. The following theorems are self-evident :

1. The section of a line is a point.

2. The section of a plane is a line.

Hence spatial figures composed of lines and planes

give, in section, plane figures composed of points and

lines.

Def. Sections made by parallel planes are parallel

sections.

21. Theorem. Parallel sections of a plane are parallel

lines.

Proof. If 17 and U1 be parallel planes which cut the

plane W, the common lines UlFand U Wboth lie in W,

arid as U and V meet only at infinity (Art. 15), these

common lines meet only at infinity and are parallel.

Cor. 1. The section of a system of parallel planes is

a system of parallel lines.
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Cor. 2. The section of an axial pencil is a set of

parallel lines when the section-plane is parallel to the

axis
;
in other cases it is a flat pencil.

22. Theorem. Parallel sec

tions of two intersecting planes

contain the same angle.

U and V are intersecting

planes, and W and X are two

parallel planes of section, the

sections being the lines BA,

BC, ED, arid EF.

Then

and

AB is parallel to DE,

BC is parallel to EF.

(Art. 21.)

Def. If W be normal to the common line of the

planes U and V, the section is called a right section.

Hence, the angle between two planes is the angle be

tween the two lines which form the right section of the

planes.

A system of any number of planes admits of a right

section when all the common lines of the planes are

parallel. In every case, the term &quot;

right section &quot; must

have reference to some particular line or set of parallel

lines.
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DIHEDRAL ANGLE.

23. When we cut two intersecting planes, U and F,

by a third plane, X, we get (Fig. of Art. 22),

1. A point E, the vertex of the angle DEF;
2. The lines ED and EF, forming the arms of the

angle DEF.

Now, 1st, to the plane angle DEF corresponds the

dihedral angle between the planes U and V\ and, 2d,

to the vertex E of the plane angle corresponds the com
mon line, BE, of the two planes, this line being called

the edge of the dihedral angle ; and, 3d, to the arms ED
and EF of the plane angle correspond the planes U and

V, called the faces of the dihedral angle.

Thus in section a dihedral angle becomes a plane angle,

the faces become arms, and the edge becomes the vertex.

If the section be a right section, the plane angle and

the dihedral angle have the same measure. And as a

plane angle is generated by rotating a line about a point

in the line taken as a pole (P. Art. 32), so a dihedral angle

is generated by the revolution of a plane about any line

in the plane, taken as an axis. ,-

The angular measurements are thus the same for plane

and dihedral angles.

24. Def. The plane which is normal (Art. 9. Del 3)

to the join of two given points at its middle point, is the

right-bisector plane of the join of the points.

Cor. Since a line-segment has only one middle point,

and a plane has only one normal at any given point, it
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follows that a given line-segment has only one right-

bisector plane.

A section through the segment gives the segment and

its right-bisector,
of plane geometry.

25. Theorem. Every point upon the right-bisector

plane of a segment is equally distant from the end points

of the segment.
Let AB be a given segment,

and let U be the right-bisector

plane of the segment, passing

through its middle point 0, and

let P be any point on U. Then

P is equidistant from A and B.

Proof. Since A, B, and P are

complanar, let the plane W pass

through these points. In the section by W we have

the segment AB and its right-bisector CP; and hence

PA = PB (P. Art. 53).

It will be here noticed that the proof is obtained

immediately by reducing the theorem to depend upon
the corresponding one in plane geometry.

In like manner we readily prove the converse :

Every point equidistant from the end points of a given

line-segment is upon the right-bisector plane of the seg
ment.

Cor. From this it appears that the locus of a point
which is equidistant from two fixed points is the right-

bisector plane of the join of the points.

26. Def. The planes which pass through the edge of

a dihedral angle and make equal angles with its faces

are the bisectors of the dihedral angle.
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The proofs of the following theorems may be obtained
at once by making them to depend upon the correspond
ing theorems in plane geometry.

1. The two bisectors of a dihedral angle are perpen
dicular to one another.

For proof, make a right section of the dihedral angle
and apply (P. Art. 45).

2. Any point upon a bisector of a dihedral angle is

equally distant from the faces of the angle.
For proof, make a right section through the point and

apply (P. Art. 68).

3. Any point equidistant from the faces of a dihedral

angle is on one of the bisectors of the angle.
Proof as in 2.

27. Theorem. Any two lines are divided similarly

(P. Art. 201. Def.) by a system
of parallel planes. , / I

L and M are two lines cut / V 1 /
by the parallel planes U, V, and / A

&quot;&quot;&quot; A /
W. Then L andMare similarly / 1 \

divided. / / \
\

j

Proof. A, B, C and A 1

,
B

,

C are corresponding points of

section of the two lines. Through
A draw the line N parallel to T r r

L, and let it meet the planes at / N\ I

A, P, and Q.

Then L and N being complanar (Art. 6. Cor. 4),

AA is II to PB 1

is II to QC -,

.-. A B = AP, and B C = PQ.

HI/
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But ACQ is a triangle, and BP is parallel to CQ-,

.-. AB: BC=AP: PQ = A B : B C .

Or the lines L and M are similarly divided.

Cor. 1. The parallel planes of a system divide all

lines similarly.

Cor. 2. The segments of parallel lines intercepted
between the same two parallel planes are equal.

28. Theorem. If three concurrent non-complanar lines

be divided similarly in relation to the point of concur

rence, the triplets of corresponding points determine a

system of parallel planes.

L, M, N are three non-com-

planar lines concurrent at 0,

and are divided at A, B, (7, ,

A
,
B

,
C

, ,
and

A&quot;, B&quot;,
C&quot; ...,

so that

OA : AB : BC= OA : A B : B C
= OA&quot; : A&quot;B&quot; : B&quot;C&quot;.

Then the planes determined
\_

by AA A&quot;
f
BB

B&quot;,
CC

C&quot;, etc.,

are parallel.

Proof. AA is II to BB is II to CC
,

and A A&quot; is II to BB&quot; is II to CC&quot;. (P. Art. 202. Cor.)

Let OP be normal to the plane AA A&quot;. Then OP is

_L to AA and AA&quot; (Art. 9. Cor. 2), and therefore to BB
and BB&quot;, and to CC and CC&quot;.
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Hence OP is normal to the planes BB B&quot; and CC
C&quot;,

and the three planes AA A&quot;,
BB

B&quot;,
CC C&quot; are accord

ingly parallel (Art. 15. Cor. 1).

Cor. 1. Since AA is II to BB
,
and AA&quot; is II to

BB&quot;,

etc., the A AA
A&quot;,

BB
B&quot;,

and CC C&quot; are similar. But
the concurrent lines L, M, N determine three planes
whose common point is 0; therefore parallel sections

of three non-parallel planes are similar triangles.

Cor. 2. Since any polygon may be divided into triangles,
and similar polygons into similar triangles similarly

placed (P. Art. 206), it follows that :

Parallel sections of any number of planes having a

common point are similar polygons.

29. Def. Four non-complanar lines which intersect

two and two in four points, form a skew-
}
or a gauche-, or a

spatial quadrilateral.

The sides of the skew quadrilateral and its two diag
onals are six lines connecting four points in space, and
form the six edges of a figure, to be described hereafter,

called the Tetrahedron.
,

The skew quadrilateral is a plane quadrilateral with

one vertex, and the sides forming it raised out of the

plane.

30. Theorem. The joins of the middle points of the

opposite sides of a skew quadrilateral bisect one another.

ABCD is a skew quadrilateral, AB and BC lying in

a plane different from the plane of CD and DA. AC
and BD are the diagonals.
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E, F, G, H are middle points of the sides upon which

they lie. Then EG and FH bisect one another.

Proof. EF and GH are

both parallel to AC, and

equal to half AC (P. Art.

202); they are therefore equal

and parallel to one another.

Therefore EFGH is a par

allelogram, and its diagonals

EG and FH bisect one an

other (P. Art. 81. 3).

Cor. 1. Let I and J be the middle points of the

diagonals AC and BD.

Then ACBD is a skew quadrilateral, and the joins of

middle points of opposite sides are FH and IJ.

Therefore FH and IJ bisect one another
;
and hence

IJ, and EG mutually bisect each other.

Cor. 2. A, B, C, D are four points in space, and AB,

AC, AD, BC, BD, and CD are their six connectors.

Therefore if four points in space be connected two and

two by six line-segments, the joins of the middle points

of these connectors taken in opposite pairs are concurrent,

and mutually bisect one another.

EXERCISES B.

1. Draw a line equally inclined to two intersecting planes. Is

the problem definite or indefinite ?

2. If [/&quot;and F be two planes, and U contains a normal to F,

show that F contains a normal to U.
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3. Two lines may be drawn, one on each of two intersecting
planes, so as to make an angle with one another of any magnitude
from zero to a straight angle.

4. If three concurrent non-complanar parallel lines be divided

homographically, the planes determined by the triplets of corre

sponding points, all pass through a common line. When is this

line at infinity ?

5. If the sides of a skew quadrilateral are equal, the diagonals
are perpendicular to one another.

6. What theorem is obtained from 30 by bringing D to the

plane of ABC?

7. Draw the shortest path from one point to another so as to

touch a given plane in its course, both points being upon the same
side of the plane.

8. Show that a skew quadrilateral cannot have four right angles.
How many can it have ?

9. A, B, (7, D are four non-complanar points. Show that the
locus of a point which is equidistant from A and B, and also equi
distant from C and

Z&amp;gt;,
is a line perpendicular to both AB and CD.

10. If A, B, C, D, E, F be any 6 points in space, a point can be
found which is equidistant from A and B, equidistant from C and
D, and equidistant from E and F.



SECTION 3.

SHEAF OF LINES AND PLANES SOLID ANGLE OR

CORNER.

31. Def. Three or more non-complanar lines meeting
in a point form a sheaf of lines, and three or more planes

passing through a common point form a sheaf of planes.

The common point is in each case called the centre of

the sheaf.

The lines and planes which form a sheaf pass through
the centre and extend indefinitely outwards from it, but

usually we have to consider only those portions which

lie upon one side of the centre, and the centre is then

commonly called the vertex or apex of the figure.

In a sheaf of lines the determined planes form a sheaf

of planes, and in a sheaf of planes the determined lines

f rm a sheaf of lines. So that practically a sheaf of

lines and a sheaf of planes are only the same figure

differently viewed.

Cor. From Article 27 it follows that the lines of a

sheaf are similarly divided by a system of parallel planes.

And from Article 28 it follows that if a sheaf of three

lines has its lines similarly divided with reference to

the centre, the triplets of corresponding points deter

mine a set of parallel planes.

32. A non-central section of a sheaf of lines and the

determined planes is a set of points with their determined

29
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lines
;
and the non-central section of a sheaf of planes

and the determined lines is a set of lines with their

determined points.

Thus the reciprocity between a sheaf of lines and a

sheaf of planes is analogous to that between a set of

points and a set of lines in plane geometry.

33. Def. If the points in the section of a sheaf of

lines be so disposed as to form the vertices of a polygon
without re-entrant angles, and only those planes of the

sheaf be considered, which, in the section, form the

sides of the polygon, the combination of lines and

planes in the sheaf forms a solid angle, or a polyhedral

angle, or a corner.

L, M, N, Kis a sheaf of four lines with centre 0. Let

the sheaf be cut by the plane U, giving in section the

points A, B, C, D correspond

ing to L, M, N, K, respectively.

If the polygon ABCD is with

out re-entrant angles, the figure

formed by the lines L, M, N,

K. and the portions of deter

mined planes, LOM, MON,
NOK, KOL, intercepted be

tween these lines, is a solid

angle, or a corner.

is the vertex of the corner, L, M, N, K, forming
the edges or axes of the dihedral angles are its edges ;

the planes LOM, MON, NOK, and KOL are its faces
;

and the angles LOM, MON, NOK, and KOL are its

face-angles.

The term corner or solid angle does not involve any
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particular length of line, or extent of plane, or magni
tude of angle. It involves the existence of a number

of lines forming edges, with the same number of planes

limited by these lines and forming faces, and all meeting

at a common point to form a vertex.

34. A corner may have any number of faces greater

than three, and the same number of edges. The one

figured in the preceding article is a four-faced corner,

or a tetrahedral angle.

A section of a three-faced corner is a triangle; and

as the triangle is the most important of all polygons, so

the three-faced corner, or trihedral angle, is the most

important of all corners.

A corner will be indicated by writing its vertex

followed by a point, and then the letters indicating

points upon its several edges.

Thus the symbol ABCD denotes the four-faced

corner as figured in the preceding article.
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PROPERTIES OF TRIHEDRAL ANGLES, OR THREE-
FACED CORNERS.

35. Theorem. In any three-faced corner the sum of

any two face angles is greater than the third.

- ABC is the three-faced corner.

Proof. If the face angles are all

equal to one another, the truth of the

theorem is evident. If they are une

qual, let the angle LON be
&amp;gt; than

LOM.
In the plane of L and N draw OK,

making the angle LOK= LOM, and on
M and K take OB= OD = any conven
ient length, and let A be any point on L, other than 0.
Let the plane of ABD cut N in C.

Then AAOB = AAOD. (P. Art. 52.)

.-. AD = AB, and Z ADB = Z ABD.

.-. Z CDB is
&amp;gt;
Z CBD, and CB is

&amp;gt; CD, (P. Art. 62. 2.)

But in the A BOG and DOC, BO = DO by construc

tion, OC is common, and BC
&amp;gt; CD.

. . Z BOG is
&amp;gt;
Z DOC, (P. Art. 67.)

and v Z AOB = Z AOD by construction,

Or BOC is
&amp;gt;
Z AOC.
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36. Problem. To find the locus of a point equidistant

from the three edges of a three-faced corner.

is the vertex, and L, M, N the edges of the three-

faced corner.

Let P be a point on the required

locus, and PA, PB, PC be perpendic

ulars upon the edges L, M, and N
respectively.

In the right-angled triangles POA,
POB, POC, PO is a common hy-

pothenuse, and PA = PB = PC by

hypothesis.

Therefore the triangles are congruent, and OA = OB
= OC. And the circle through A, B, C is a cone circle

with and P as two vertices.

Therefore OP passes through the centre of this circle

and is normal to its plane.

Hence the construction : take OA = OB = OC and join

with the centre of the circle through A, B, and (7;

this join is the locus required.

Def. The locus just found is a line equally inclined

to the three edges, and is an isoclinal line to the edges.

A plane normal to this line is also equally inclined to

the edges and is an isoclinal plane to the edges.

Cor. Since the edges may be considered as indefinite

lines extending through the vertex and forming a sheaf

of three, the three measures OA, OB, OC may each be

taken in two opposite directions, or we can have eight

variations of sign in all. But four of these are the other

four reversed.

Therefore three lines forming a sheaf have four iso

clinal lines and four isoclinal planes through the centre.
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37. Def. Corners are equal when they can be super

imposed so as to form virtually but one corner. In this

superposition the vertices coincide, and the edges coincide

in pairs, one from each corner.

38. Theorem. Two three-faced corners are equal when
the face angles of the one are respectively equal to the

face angles of the other, and they are disposed in the

same order about the vertices. - LMN and - L MN
are two three-faced corners having Z LOM Z L OM

,

^MON=^M N
,
ZNOL = ZN L

,
and having

these disposed in the same order about the vertices
;

i.e.

so that the order of magnitude of the angles is according

to the same species of rotation for each. Then the

corners are equal.

Proof. Take OA=OB=OC= O A = O B = O
C&quot;,
A

and A being on corresponding edges, etc.

The A AOB = AA O B
,
and AB = A B .

Similarly, BC = B C
,
and CA = C A,

and the A ABC = AAB C .

Therefore when AB C is superimposed on ABC, the

centres of their circumcircles

coincide, and the normals to

the planes of these circles at

their centres coincide, and

hence the vertices of the

corners, lying on these nor

mals, coincide (Art. 36), and

the two corners, coinciding in

all their parts, form virtually

but one corner.
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39. Two triangles may be congruent and yet not be

superposable until one of them is turned over in the plane.

This operation, which is possible and allowable in plane

geometry, is not always practicable in spatial geometry.

Suppose the two three-faced corners of the previous
article to be so placed that the triangles ABC and

A B C lie in one plane, and and are upon the same

side of this plane. Then the triangles are directly

superposable and the corners are superposable and equal.

But if the triangles ABC and A B C be in the same

plane and be directly superposable while and are

upon opposite sides of the plane, or if and be upon
the same side of the plane while the triangles are not

superposable until one of them is turned over in the

plane, then the two corners, although having correspond

ing parts respectively equal, are not superposable, and

are not, therefore, equal according to definition.

A little consideration will show that in the non-super-

posable case, the face angles are disposed in opposite
orders about the vertices of the two corners.

Def. Two three-faced corners having corresponding

parts respectively equal but not being superposable are

said to be equal by symmetry, or to be symmetrical
1 to

each other.

Symmetrical figures are related to each other in the

same manner as an object and its image in a plane

mirror, or as the right and the left hand; and they

1 The term conjugate and opposable have both been employed to

express the condition here described. But it is obvious that the well-

known term symmetrical expresses exactly what is meant, and can

not therefore be profitably superseded by any other word.
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might be called right-handed and left-handed figures if

there were any means of distinguishing between which
should be called right-handed, and which left-handed.
In certain parts of crystallography the means of distin

guishing is apparent, and this terminology is employed.
Two superposable figures can be in perspective with

respect to a centre at infinity, while two symmetrical fig
ures can be in perspective with respect to a centre which
is the middle point of the joins of corresponding parts.

Cor. It is readily seen that two n-faced corners may
be superposable and equal, and also that they may be

symmetrical and not superposable.
But where there are more than three faces, new possi

bilities arise, for the face angles may be equal in number
and respectively equal in magnitude, and yet the corners

may be neither equal nor symmetrical.

40. Theorem. Of two dihedral angles of a three-

faced corner and the opposite face angles,
1. The greater face angle is opposite the greater

dihedral angle ;

2. The greater dihedral angle is opposite the greater
face angle. o

- LMN is a three-faced cor

ner having as vertex, and L,

M, N&s edges.

From A, any point in L,
draw AB _L to M and AC _L to

Nj and from B and C draw, in

the plane MN, perpendiculars M

to M and N respectively, and let these perpendiculars
meet in D. Join OD.
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The angles ABD and ACD are respectively the meas

ures of the dihedral angles whose edges are M and N
(Art. 16. Def . 1) . The A ADB and ADC are right-angled

at D and have AD as a common side, the triangles ABO
and AGO are right-angled at B and C, and have AO as a

common hypothenuse, and the A DOB and DOC are

right-angled at B and (7, and have OD as a common

hypothenuse.

1. LetZABDbe&amp;gt;Z^lCD; thenZ ^100 is
&amp;gt;
Z .4 OS.

Proo/. Since Z ABD is
&amp;gt;
Z

therefore, Z .4D is
&amp;lt;
Z (L4Z), and BD is

&amp;lt; CD ;

and .-. BO is
&amp;gt; 00, and AC is

&amp;gt; ^45,

and .-. Z .400 is
&amp;gt;
Z JOS.

2. This, which is the converse of 1, follows from the

law of Identity (P. Art. 7).

Cor 1. If a three-faced corner has two dihedral angles

equal, it has two face angles equal ;
and conversely, if

it has two face angles equal, it has two dihedral angles

equal.

Cor. 2. A three-faced corner with three equal dihe

dral angles has three equal face angles, and conversely.

Cor. 3. If A, B, C denote the dihedral angles, and

a, 6, c denote the opposite face angles, the order of mag
nitude is the same for A, B, O, and a, 6, c.

It will be noticed that in this theorem and its corol

laries the relations between the dihedral angles and face

angles are analogous to those between the angles and

sides of a plane triangle.
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Def. A three-faced corner with its edges mutually
perpendicular to one another is a rectangular corner or
a right corner. It has all its dihedral angles right angles,
and all its face angles right angles.

41. Problem. Being given the face angles of a three-

faced corner, to construct plane angles which shall have
the same measures as the dihedral angles.

LMN is the given three-faced corner. To draw a

plane angle which shall have the same measure as the
dihedral angle whose edge is L.

Constr. Through A, any point in L, draw a plane
normal to L, and cutting M and Nm B and C.

CD (2)

In (2) take O A = OA, and through A draw a line,

K, perpendicular to O A . Draw O B
, making the

Z A B = ^AOB, and O
C&quot;, making the angle A O C

= ZAOC. Also, draw O B&quot; = O B and making the

Z C O B&quot; = COB. Join C B&quot;.

The A DA C constructed with B A
,
AC

,
and C B&quot;

as sides, has the angle CA D equal in measure to the

dihedral angle whose edge is L.
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Proof. Since L is normal to the plane of AE and AC,
the Z BAC measures the dihedral angle at L (Art. 16.

Def. 1). And in the construction O B = OB and O C =
00, and hence A B AB and A C = AC

,
and also we

have made B&quot;C congruent with OBC.
Hence the A DA C is congruent with BAC, and the

/. DA C measures the dihedral angle at L.

Similarly, the other dihedral angle may be found.

Cor. 1. Since in the foregoing construction only one

triangle is possible with the given elements, the dihedral

angles of a three-faced corner are completely given when
the face angles are given ;

and hence the measures of the

dihedral angles are expressible in terms of those of

the face angles.

Cor. 2. A three-faced corner is given when its face

angles and their order with respect to the vertex are

given.

In n-faced corners where n is greater than 3, the giving
of the face angles does not determine the dihedral angles,

and does not therefore determine the form of the corner.

We have the analogue of this in plane geometry, where

the giving of the sides of a polygon, with more than

three sides, does not determine the form of the polygon.
In general, corners of more than three faces are not

of much importance unless they are regular.

Def. A regular corner has all its face angles equal
and all its dihedral angles equal.

42. Theorem. In any corner the sum of the face

angles is less than a circumangle.
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Proof. Let the corner have n faces. Cut it by a plane,
and we have, as section, a polygon of n sides, the sum
of whose internal angles is 2 (n 2) ~]s.

Denote, in general, a basal angle of one of the result

ing triangular faces by B, and a face angle by F.

At each vertex of the polygonal section, three faces

meet to form a three-faced corner, viz. the section itself

and two faces of the original corner.

.-. 2B is
&amp;gt;

the sum of the internal angles of the

section, t.6.
&amp;gt;2 (n-2) Is. (Art. 35.)

But 2B + 2F=2n-[s.

.-. 2F is &amp;lt; 41s.

Or the sum of the face angles is less than a circumangle.

43. Let - ABC be a three-faced corner, and let PS
be normal to the plane AOB, PR normal to the plane
COA, and PQ normal to the

plane BOG.
The angle QPR is the sup

plement of the dihedral angle
at OC, EPS is the supple
ment of the dihedral angle at

OA, and SPQ is the supple
ment of the dihedral angle at

OB (Art. 16. Def. 2).
B

Therefore P QRS is a three-faced corner in which

the face angles are supplementary to the dihedral angles

of - ABC.

Also, since OB is normal to the plane SPQ, etc., the

face angles of - ABC are supplementary to the dihe

dral angles of P- QRS.
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Similar reasoning will apply to a corner of any number

of faces.

Def. Corners so related that the dihedral angles in

the one are supplementary to the face angles in the other

are called reciprocal corners.

Cor. 1. Employing the notation of Art. 40. Cor. 3,

for one of the corners, and the letters accented for the

other, we have

A + a = B + b = C + c = .

= A + a = B +b = C + c=..-=21s.

Now, in any corner a + b + c + --- is
&amp;lt; 41s; (Art. 42)

and A + B+C+~-+a + b + c + -.=2n-\s,

where n denotes the number of faces.

.-. A+B+C+ is
&amp;gt; (2n-4)ls.

That is, the sum of the dihedral angles of any corner

is greater than the difference between twice as many

right angles as the figure has faces, and a circumangle.

Cor. 2. Making n = 3, we see that the sum of the

dihedral angles of a three-faced corner is greater than

two right angles and less than six right angles.

44. Problem. Given the dihedral angles of a three-

faced corner, to construct the face angles.

Constr. Take the supplements of the given dihedral

angles, and considering these as face angles, construct

the corresponding dihedral angles by Art. 41. The sup

plements of these latter angles are the required face

angles.

This construction is evident from the preceding article.
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Cor. 1. It is readily seen that only one set of face

angles can be obtained when a set of dihedral angles is

given ;
so that when the dihedral angles of a three-faced

corner are given, the face angles are given also
;
and the

face angles can be expressed in terms of the dihedral

angles.

Cor. 2. A three-faced corner is given when the dihe
dral angles, and their order, are given.
To construct a three-faced corner when its face angles

are given is analogous to constructing a triangle when
its sides are given ;

and to construct the corner when its

dihedral angles are given is analogous to constructing
the triangle when its angles are given. And this latter

is a definite problem with respect to the corner, but an
indefinite one with respect to the triangle.

45. Problem. To find the locus of a point equidistant
from three given points not in line.

Let A, B, C be the points, and let U be the right-
bisector plane of AB, and V be the right-bisector plane
of AC (Art. 24 Def.).

Every point equidistant from A and B is on U (Art.
25. conv.), and every point equidistant fyom A and is

on F. And the required locus is the common line of U
and V. But this line evidently passes through the cir-

cumcentre of the triangle AEG and is normal to its plane.
Hence the locus of a point equidistant from three given

points, not in line, is the axis of vertices of the circum-

circle of the three points considered as a cone-circle.

Cor. The three right-bisector planes, of the joins of

three points, taken two and two, form an axial pencil.
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46. Problem. To find a point equidistant from four

given points which are not complanar, and no three of

which are in line.

Let A, B, 0, D be the four points, and let PO be the

locus of a point equidistant from

A, B, and G. Join D, the fourth

point, to any one of the other

three, as C, and draw the right-

bisector plane, X, of CD.

As D is not complanar with

A, B, and 0, the plane X is not \ ^
parallel to PO, and therefore *

A 1 / x

meets POat some point 0. But .
Q

is equidistant from A, B, and

0, and it is also equidistant from C and D.

Therefore is equidistant from A, B, C, and D.

Cor. 1. The line OP is the common line to three

bisector planes, namely, those of AB, BC, and CA (Art.

45. Cor.), and X is a fourth plane which goes through

the point 0. The two remaining bisector planes, those

of AD and CD, must pass through the same point 0.

Therefore the six right-bisector planes of the joins of

four non-complanar points, of which no three are in line,

pass through a common point and form a sheaf of planes.

Cor. 2. The four points can be combined to form four

different triangles, and the lines, such as PO, which pass

through their circuincentres and are normal to their

planes, all pass through and form a sheaf of lines.

Cor. 3. As the line PO can meet the plane X in only

one point, there can be only one point equidistant from

A, B, C, and D.
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EXERCISES C.

1. Any face angle of a three-faced corner is greater than the
difference between the other two.

2. Show how to construct a corner symmetrical with a given
corner.

3. Show that the three bisectors of the dihedral angles of a
three-faced corner have a common line, and that this line is an
isoclinal to the three faces.

4. There are four isoclinal lines through the vertex to the three
faces of a three-faced corner.

5. In the figure (2) of Art. 41 denote O A by p.

Then A D = A B = p tan c
;
O B&quot; = O B = psecc;

A C =ptan&; O C = psecb ,

and

&amp;lt;7 Z&amp;gt;

2 = C B&quot;
2 = DA * + A C 2 - 2 DA . A C cos A (P. Art. 217.)

= O C 2 + O B&quot;* -2 O C - O B&quot; cos a.

. : substituting, and dividing by ^2
,

tan2 c + tan2 b 2 tan c tan b cos A
= sec2 c + sec2 6 2 sec c sec b cos a,

whence by reduction and dividing by cos b cos c,

cos a = cos b cos c + sin b sin c cos A
;

or, cos A = (cos a cos b cos c) /sin 6 sin c
;

which expresses a dihedral angle in terms of the face angles.

6. Express a face angle in terms of the dihedral angles.

(Employ the property of the reciprocal corner.)

7. If the face angles of a three-faced corner are each 60, show
that the cosine of a dihedral angle is }.

8. In 46 where is the locus if A, B, C are in line ?

9. In 47 where is the point if the four points be complanar ?

where if three points be in line ?
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POLYHEDEA.

47. Def. A spatial figure formed of four or more

planes so disposed as to completely enclose a portion of

space is a polyhedron. It is analogous to the polygon in

plane geometry, and its plane section is always some

form of polygon.
The faces of the polyhedron are those portions of

planes which are concerned in forming the closed figure,

but for generality the term is sometimes extended to

outlying parts of these planes.

The adjacent faces meet by twos to form edges, and

the edges are concurrent in groups of three or more to

form corners.

When a polyhedron is such that no line can meet more

than two of its faces, it is convex.

48. Theorem. In any polyhedron the sum of the num
ber of faces and the number of corners is greater by two

than the number of edges.

Proof. Any polyhedron may be supposed to be built

up by beginning with one face, and to it adding a second

face, and then a third, and so on until the figure is

completed.

Denote, in general, the number of corners by (7, the

number of faces by F, and the number of edges by E.

45
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1. Let us start with a single face, U. The number of

edges is the same as the number of corners, and we have

one face. Therefore the equation C+F=E+ 1 is satisfied.

2. To 7 add the face F&quot;. In so doing

V loses one of its edges, BC, and two

of its corners, B and (7, by union with

similar parts of U. So that in adding

V we increase F by 1, and we increase

E by one more than the increase of C;

and hence the equation C+F=E+1 \
w

is still satisfied.

3. To U and F add W. This new face loses two of

its edges, DC and CG, and three of its corners, D, C, and

G. Here again we add one face and one more edge than

corner, so that &amp;lt;7+.F=J + lis still satisfied.

4. It is readily seen that in adding any face whatever,

that face loses one more corner than edge by union with

other faces, until we come to the last face necessary to

complete the polyhedron.

This face loses all its edges and all its corners, so that

by adding this face we increase the number of faces by

1 without interfering with the numbers of edges or cor

ners. And hence in the completed polyhedron we have

C+F=E+2.
This beautiful theorem is usually attributed to Euler,

and is known as Euler s theorem on Polyhedra, but it

appears to have been known before his time.
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CLASSIFICATION OF POLYHEDRA.

49. Polyhedra may be classified as follows :

1. Tetrahedron.

2. Parallelepiped, Cuboid, Cube.

3. Pyramid, Frustum of Pyramid.

4. Prism, Truncated Prism.

5. Prismatoid, Prismoid.

6. The five Regular Polyhedra.

7. A number of Semi-regular Derived Polyhedra.

This classification is not exhaustive, and its divisions

are not mutually exclusive. It includes, however, all the

polyhedra usually met with.

Polyhedra are not equally important in any sense, and

only a few can be said to be important in a descriptive

sense.

THE TETRAHEDRON.

50. The three planes which form a three-faced corner,

and any fourth plane, not through the vertex, which cuts

them all, form the closed figure

called a Tetrahedron.

The tetrahedron ABCD has

four triangular faces, four

three-faced corners, and hence

four vertices and six edges,

i.e. the six joins of four non-

complanar points no three of

which are in line.

Def. Any face of the tetra

hedron may be taken as the base of the figure. The
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three edges which bound the base are then called basal

edges, and the other three are lateral edges.
The joins of the middle points of opposite edges are

diameters. There are thus three diameters, EG, FH,
and IJ.

51. Theorem. The diameters of a tetrahedron bisect

one another.

Proof. ABCD is a skew quadrilateral, and BD and
AC are its diagonals.

But the joins of the middle points of opposite sides of

a skew quadrilateral bisect one another (30).

Therefore EG, FH, and // bisect one another.

Def. 1. The point of concurrence of the diameters is

the centre of the tetrahedron. And a section through the

centre parallel to a pair of opposite edges is a middle

section, as EFGH.

Cor. There are three middle sections, and these pass

through the middle points of the six edges taken in

groups of four.

The middle sections are evidently parallelograms, and

they intersect by twos along the three diameters.

Def. 2. A median of a tetrahedron is the join of a

vertex with the centroid (P. Art. 85. Def. 2) of the

opposite face.

There are thus four medians, one to each face.

52. Theorem, The medians of a tetrahedron pass

through the centre, and are divided at that point so that

the part lying between the centre and a face is one-

fourth of the whole median to that face.
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In the tetrahedron ABCD, I is the middle point of

BC, and J of AD, and IJ is thus

a diameter.

IP is one-third of IA, and P is

thus the centroid of the face

ABC (P. Art. 85), and DP is

the median to the face ABC.

Evidently DP and IJ are corn-

planar, and intersect in some

point 0. Then is the centre.

Proof. Draw JQ II to DP to meet ZA in Q.

Then, as J is the middle point of AD, so Q is the

middle point of AP (P. Art. 84. Cor. 2).

And v QP=PI and OP is II to JQ, is the middle

point of JIj and is therefore the centre (P. Art. 84.

Cor. 2). Hence the medians pass through the centre.

Again, PO = - QJ, and QJ= PD.

NOTE. A face of a polyhedron is a segment of a plane, and is

in form triangular, rectangular, etc. But in order to avoid such

uncouth words as parallelogramic we shall speak of these faces as

being triangles, rectangles, parallelograms, etc., although not using

these terms strictly as denned in plane geometry. This usage will

shorten language and cannot possibly lead to confusion.
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THE PARALLELEPIPED.

53. Def. The parallelepiped has six faces, of which
each pair of opposite ones are parallel planes.
The contraction ppd. will be frequently used for the

word parallelepiped.
7

Since parallel planes cut any other plane in parallel
lines (Art. 21), and since the planes AC and A C are

parallel and cut the paral
lel planes AD and A D, it

follows that AB, CD, A B ,

and CD are all parallel.

Similarly, AD, BC, A D
,

and B C are parallel, and
AC

,
A C, BD

,
and B D

are parallel.

Thus the faces of a ppd.
are parallelograms congruent in opposite pairs, and the
twelve edges are in parallel sets of four in each set.

The corners, which are eight in number, are each

three-faced, and the three edges which meet at any one
vertex give the directions of all the edges,, and these are

therefore called direction edges.

Cor. 1. As the Z BAD = Z B A D
,
the Z DAC =

Z D A C, and the Z BAG = Z B A C, the corners having
their vertices at A and A contain face angles which are

respectively equal, but these are disposed in opposite
orders about the vertices.

The same is true for any other pair of opposite cor

ners.
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Therefore, opposite corners of a parallelepiped are

symmetrical.

Cor. Considering three-faced corners composed of the

same face angles as being of the same variety, there are

at most only four varieties of corner in any parallelepiped.

These will be called representative corners.

54. By considering the forms of representative corners,

all ppds. may be divided into two classes, the acute and

the obtuse.

A denoting any angle, let A denote its supplement.
Let A, B, C, all acute or all obtuse, be the three face

angles at one corner of a ppd.
Then the representative cor

ners are easily seen to be ABC,
ABC

,
ABC

,
and ABC.

(1) If A, B, C are acute,

A, B, C are obtuse.

Therefore, if a parallelepiped

has one corner formed of acute face angles, the other rep
resentative corners contain one acute and two obtuse

face angles, each.

This is an acute parallelled.

(2) If A, B, C are obtuse, A ,
B

,
C are acute.

Therefore, if a parallelepiped has one representative
corner composed of obtuse face angles, the other repre
sentative corners have, each, one obtuse and two acute

face angles.

This is an obtuse parallelepiped.

It thus appears that no one ppd. can contain all the

kinds of corners belonging to ppds.
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55. Def. The join of opposite vertices in a ppd. is

a diagonal. These are four in number, viz. AA
,
BB

,

CO
,
and DD (Fig. of 53).

Since AD is II to BO, is II to D A and equal to it,

AD A D is a parallelogram, and its diagonals bisect one
another. Hence AA and DD bisect one another

;
and

similarly, AA and BB bisect one another, etc.

Therefore, all the diagonals of a ppd. pass through
a common point, and are bisected at that point.
The common point of the diagonals is the centre.

56. Theorem. Every line-segment passing through
the centre of a parallelepiped, and having its end-points

upon the figure, is bisected at the centre.

Proof. PQ (Fig. 53) is a line-segment passing through
the centre, 0, and having its end-points P, Q in- the face

AC and AC respectively.
Join AP and A Q. Then AP and A Q are complanar,

since PQ passes through 0; and the plane of APand
A Q cuts the parallel faces AC and AC in parallel lines

(Art. 21. Cor. 1).
II to^L Q.

Also, AO = AO, and ZAOP= ZA OQ,

and ZOAP=ZOA Q.

.-. AAOP=AA OQ,

and OP=OQ.

Cor. The centre of a ppd. is the centre of every cen

tral section.
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57. As a parallelepiped has three direction edges, three

sections may be made normal to each of these edges

respectively. These sections will be forms of the paral

lelogram.

Def. 1. If none of the sections are rectangles, the

ppd. is triclinic, and none of its angles, whether face or

dihedral, are right angles.

2. If one section is a rectangle, the ppd. is diclinic,

and four dihedral angles, whose edges are parallel, are

right angles.

3. If two sections are rectangles, the ppd. is mono-

clinic, and two sets of four dihedral angles are right

angles.

4. If the three sections are rectangles, all the faces

are rectangles, and all the dihedral angles are right

angles, afid all the corners are right corners (Art. 40.

Def.). The figure is then a cuboid. 1

Cor. In the cuboid all the diagonals are equal, and

the direction lines are mutually perpendicular to one

another.

Def. 2. A cuboid with its edges equal is a cube. The

faces of the cube are squares.

The analogues of the ppd., the cuboid, and the cube,

are in plane geometry the parallelogram, the rectangle,

and the square.

1 This term was proposed by Mr. Hayward. Before the appearance
of Mr. Hayward s work I used the term orthopiped for a rectangular

parallelepiped. But cuboid is evidently a better and a more convenient

term.
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THE PYRAMID.

58. Def. 1. When a corner of any number of faces

is cut by a plane which cuts all the faces, the closed

figure so formed is called a pyramid.
The cutting plane is the base, and the planes which

form the corner are faces of the pyramid. The edges
which bound the base are basal edges, and those which

belong to the corner are lateral edges. The vertex of the

corner is the vertex or apex of the pyramid.

Def. 2. Pyramids are classified into triangular, square,

etc., according to the character of the base. A triangular

pyramid is a tetrahedron.

59. Def. If a pyramid be cut by a plane parallel to

its base, the portion lying between the base and this cut

ting plane is called a, frustum of a pyramid.
The frustum has thus two bases, a lower and an upper,

or a major base and a minor base.

From Art. 28. Cor. 2, it follows that the two bases of

the frustum of a pyramid are similar polygons.

THE PRISM.

60. When the vertex of a pyramid goes to infinity in

a direction normal to the base, the lateral edges become

parallel lines, and the resulting figure is not a closed

figure. But under like circumstances the frustum be

comes a closed figure with two congruent bases, and is

called a prism.
If one edge of a prism is normal to a base, all the

edges are normal, and the lateral faces are rectangles.

This is called a right prism.
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And if one of the lateral edges is inclined to the base,

they are all inclined at the same angle. This is an

oblique prism.

Prisms are usually named from the character of the

right section. Thus a right rectangular prism is a cuboid,
and a parallelepiped may be a right prism or an oblique

prism, depending upon its kind (Art. 57).

THE REGULAR POLYHEDRA.

61. Def. A regular polyhedron is one in which all

the faces are regular polygons of the same number of

sides, and all the corners are formed by the same number
of faces.

This implies that all the edges are equal, that all the

face-angles are equal, and that all the dihedral angles
are equal.

On account of the perfect symmetry of the figure, it

must have a definite centre equally distant from each

face and equally distant from each vertex. The normal
at the centre of each face passes through the centre of

the figure, and the line from a vertex to the centre is an
isoclinal to the edges of that vertex and to the faces of

that vertex.

One of the regular polyhedra is familiarly known as

the cube.

62. Theorem. There cannot be more than five regular

polyhedra.

Proof. The least number of faces which can form a
corner is three, and these must not be complanar. There
fore the three face-angles must together be less than a
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circumangle, or a face-angle must be less than four-

thirds of a right angle (Art. 42).
The only regular polygons having their internal angles

less than J of a right angle are (P. Art. 133. Cor.) the

equilateral triangle, the square, and the regular penta

gon; and these alone can form the face of a regular

polyhedron.
Equilateral Triangle.

A corner may be formed of 3, 4, or 5 equilateral tri

angles, and may therefore be three-, four-, or five-faced.

1. The three-faced corner gives the regular tetrahedron,

with 4 faces, 4 corners, and 6 edges.

2. The four-faced corner gives the regular octahedron,

with 8 faces, 6 corners, and 12 edges.

3. The five-faced corner gives the regular icosahedron,

with 20 faces, 12 corners, and 30 edges.

Square.

Only one corner, a three-faced, can be formed by squares.

4. This gives the cube, with 6 faces, 8 corners, and 12

edges.

Regular Pentagon.

Only one corner, a three-faced one, can be formed.

5. This gives the regular dodecahedron, with 12 faces,

20 corners, and 30 edges.

These are the five regular polyhedra.

63. Euler s theorem, Art. 48, gives

Now the numbers denoted by F and C are evidently

interchangeable, while E remains the same. That is,
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if we have a given polyhedron, we can form another

polyhedron in which the number of corners is the same

as the number of faces in the given polyhedron, and the

number of faces is the same as that of the corners in

the first polyhedron, while the number of edges remains

the same in both.

These polyhedra may be called reciprocals of each

other, as either may be formed from the other by a sort

of reciprocation, the changing of points into planes, and

planes into points.

If a point be taken in each face of any polyhedron,

preferably the centre where there is one, and these

points be joined in every way, provided we join only

points which lie on adjacent faces, the joins form the

edges of a polyhedron which is reciprocal to the original

polyhedron.
If the new polyhedron be treated in the same way,

we obtain a third polyhedron, which is reciprocal to the

second, and is accordingly of the same species as the

first.

64. Applying the principles of the preceding article

to the regular polyhedra, we readily see that the octa

hedron is the reciprocal of the cube, and the dodeca

hedron is the reciprocal of the icosahedron.

The tetrahedron, having the number of its faces and

vertices the same, gives another tetrahedron by recipro
cation

;
or the tetrahedron is self-reciprocal.

65. Interesting models of all the polyhedra may be

made by drawing proper figures on cardboard
;

then

cutting out the entire piece, and cutting half-way through
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the remaining lines. The piece of cardboard may now

be folded along these lines to form the intended figure,

and the edges be fastened together with glue.

The figure drawn on the cardboard is called a net.

The net for an obtuse parallelepiped is given in the

diagram. The faces are denoted by U, V, and TT, those

having the same letter being opposite, and therefore con

gruent parallelograms. The edges which come together

are denoted by the same small letter. Those having

the same letter attached must, of course, be the same

in length. The three obtuse angles concerned are

denoted by A, B, and C. All the other angles are then

known.

If the angle C were acute, as indicated by the dotted

lines, the ppd. would be acute. And the same results

would be obtained by making either A or B acute.

As the net is drawn, the ppd. will be triclinic. If the

U faces be rectangles, the ppd. will be diclinic
;

if both

U and Fare rectangles, it will be monoclinic; and if all
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the faces be rectangles, the figure will be the cuboid;

and if all squares, the cube.

The accompanying diagrams give nets for the regular

polyhedra other than the cube.

Nets for prisms and pyramids and frusta need no

description.
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EXERCISES D.

1. The faces of a polyhedron are 3 squares and 2 triangles.

Find the number of edges and of corners and classify the figure.

2. If an w-hedron has all its faces triangles, the number of its

corners is (n + 4).

3. If P, Q, 7?, S be the centroids of a tetrahedron, the recipro

cal having P, Q, R, S as vertices has the same centre as the original.

Also the diameters and medians of the two tetrahedra coincide,

except in length.

4. In the regular tetrahedron the diameters are perpendicular
to one another.

5. If the diameters of a tetrahedron terminate in the centres

of the faces of a cube, then the edges are diagonals of the faces.

Thence show how the cube may be transformed into a regular

tetrahedron.

6. If AA
,
BB

,
CO

,
and DD are diagonals of a cuboid, show

that the middle points of AB, BC, CA
,
A B

,
B C ,

and C A are

complanar.
Find the form of the section through these points.

7. The join of A with the middle point of AB, and the join of

C&quot; with the middle point of BC, divide each other into parts

which are as 2 to 1 (Ex. 6).

8. The centres of the adjacent faces of a ppd. ^re joined. What
closed figure is formed ? Describe its characteristics.



SECTION 5.

THE CONE, THE CYLINDER, AND THE SPHERE.

66, The three figures here mentioned are the simplest

spatial figures having curved surfaces, and they are fre

quently spoken of as the three round bodies.

The cone and the cylinder can be generated by the

motion of a straight line, and they are consequently

called ruled surfaces.

The sphere is not a ruled surface, but a surface of

double curvature.

Def. A surface which can be generated by the revolu

tion of a plane figure about an axial line in its plane, is

a surface of revolution.

The sphere is a surface of revolution.

The cone and the cylinder may or may not be surfaces

of revolution.

Solid geometry furnishes other interesting examples

of ruled surfaces besides the cone and cylinder, and of

surfaces of revolution besides the sphere. As examples

of the first we have the common conoid, the hyperboloid

of one sheet, and the elliptic paraboloid; and of the

second, the oblate spheroid, the prolate spheroid, and the

anchor ring.
THE CONE.

67. Def. 1. In general, a variable line which passes

through a fixed point and is guided by a fixed plane

61
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curve, not complanar with the point, generates a cone, or

has a cone as its locus.

is a fixed point, and APB is a fixed curve not com
planar with the point. The
variable line L passes through

0, and meets the curve APB.
Then L generates a cone.

Cor. Since L is unlimited

in length, the cone extends in

definitely outwards upon both

sides of 0, and is not a closed

figure.

Def. 2. is the centre of

the cone, and the two parts
into which it divides the cone

are called the two nappes or

sheets of the cone.

The fixed curve APB is the director, and the line L is

the generator of the cone.

Any line which coincides with the generator in any of

its positions is called a generating line.

Thus every line passing through and lying on the

conical surface is a generating line.

68. The director may be any form of curve. If it

becomes a line, the cone degrades into a plane (Art. 7. 3) ;

and if the director becomes a point, the cone becomes the

line through that point and the centre.

Thus the line and the plane may be looked upon as

limiting forms of the cone.
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69. When the director is a circle, and the centre is

a vertex to that circle as a cone-circle (Art. 10. Def. 1),

the cone is a right circular cone, and the line through

the centre of the circle and the centre of the cone is the

axis of the cone.

The circular cone is a figure of revolution, and is the

most important of all cones.

The word cone as hereafter employed will mean a

right circular cone, unless otherwise qualified.

70. Let C (Fig. of 67) be the centre of the circular

director APB. Then CP is constant, and CO is con

stant, and OCP is a &quot;I . Therefore the Z POC is constant.

This angle is the semi-vertical angle of the cone.

Hence a circular cone is generated by a line which

revolves about a fixed axial line while meeting the latter

in a fixed point and at a fixed angle.

Cor. 1. Every section of a circular cone, normal to

the axis, is a circle.

Cor. 2. Every section of a circular cone, through the

axis, is two lines intersecting at a fixed angle the vertical

angle of the cone.

Cor. 3. Every section of a circular cone through the

centre is two lines
;
for the plane meets the cone along

two generating lines.

Cor. 4. Any point on the axis of a circular cone is

equidistant from the surface on all sides, and the axis is

thus an isoclinal line to the surface.

71. Theorem. Only two generating lines of a cone are

complanar.
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Proof. Since the generating lines all pass through 0,
any two of them are complanar.

Let any two particular generating lines meet the
director circle in A and P. The plane of these lines
meets the plane of the circle in a line (5), and as a line
can meet a circle in only two points (P. Art. 94), the
plane of OA and OP has only two points coincident with
the circle, and therefore only two generating lines lie in
this plane.

72. Theorem. A line which is not a generating line
can meet a cone in only two points.

Proof. Let M be the line, not passing through 0; and
let the plane U pass through 0, and contain M. If U
cuts the cone, it contains two generating lines; and since
it contains M, the two generating lines are complanar
with M

t
and meet it in two points, and in only two

points ;
and these points are common to M and to the

cone.

Therefore, the line M can meet the cone in two, and in

only two, points.

73. If the two points in which a line M, which is not
a generating line, meets a cone become coincident, the
line becomes a tangent line to the cone, and has one point
only, a double point (P. Art. 109. Def. 2) in common
with the cone.

The plane determined by a tangent line and the generat
ing line through its point of contact is a tangent plane
to the cone, and touches the cone along this generating
line, which, as it represents the union of two lines, is a
double line.
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Cor. 1. Evidently all tangent planes to a cone pass

through the centre and form a sheaf of planes.

Cor. 2. All tangent planes to a cone intersect one

another in lines which pass through the centre and form

a sheaf of lines.

74. Def. A line through the centre perpendicular to

a generating line of a cone generates a second cone, which

is the reciprocal of the first.

When the vertical angle of the cone is a right angle,

these two cones become coincident, and form but one

cone.

THE CYLINDER.

75. When the centre of a cone goes to infinity in the

direction of the axis, and the director curve remains

finite, the cone becomes a cylinder, and the axis of the

cone becomes the axis of the cylinder. Hence :

Def. 1. A cylinder is the locus of a line which keeps

a fixed direction and meets a fixed plane curve which is

not complanar with the line.

Def. 2. A circular cylinder is generated by one of a

pair of parallel lines while revolving at a fixed distance

about the other parallel as a fixed axial line. The fixed

line is the axis of the cylinder.

Cor. 1. The cylinder, as defined, is not a closed figure.

Cor. 2. A line can meet a circular cylinder twice, and

only twice.

Cor. 3. Sections of a circular cylinder normal to the

axis are equal circles.
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THE SPHERE.

76. Def. A sphere is the locus of a semicircle which
revolves about its limiting centre line as an axial line.
BAD is a semicircle, and AB

is its limiting diameter. When
ADB revolves about AB as an

axis, the semicircle generates a

sphere of which OD is a radius.

Cor. 1. All the radii of a

sphere are equal to one another.

Therefore,

Def. A sphere is a surface

every point on which is equi
distant from a fixed point within called the centre.

Cor. 2. The sphere is a closed figure, so that to pass
from without the sphere to within, or from within to

without, it is necessary to cross the surface.

Cor. 3. A point is within a sphere, on the sphere, or
without it, according as its distance from the centre is

less than, equal to, or greater than the radius of the

sphere.

Cor. 4. Two spheres which have the same centre and
the same radius coincide in all their parts and form

virtually but one sphere.

77. Theorem. Every plane section of a sphere is a
circle.

Let DEP be the plane section and P be any point on
it (Fig. of 76).
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Then, being the centre of the sphere, OP is constant,

and P lies in the plane of section.

Therefore (Art. 10. Cor.) the section is a circle.

Def. The section by a plane through the centre of

the sphere is the largest circle producible, and is called

a great circle of the sphere. All other sections are small

circles.

Cor. A great circle of a sphere has its centre coinci

dent with that of the sphere ;
and the generating semi

circle of the sphere is one-half of one of its great

circles.

78. Theorem. A line can meet a sphere in two, and

in only two, points.

Proof. If a line meets a sphere, any plane containing

the line gives in section a circle cutting the line
;
and as

the circle cuts the line twice, and twice only, so a line

can meet the sphere in two, and in only two, points.

Def. A line which meets a sphere is a secant line, and

the part within the sphere is a chord.

A secant through the centre is a centre line, and its

chord is a diameter.

A plane which cuts a sphere is a secant plane, and

when it passes through the centre it is a diametral plane.

79. Theorem. The join of the centre of a sphere with

the middle point of a chord is perpendicular to the

chord.

Let DE be a chord whose middle point is C (Fig. of

76) ;
then OC is _L
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The plane of and DE gives in section a circle with
DE as chord, and as centre. And C being the middle
point of the chord, OO is _L DE (P. Art. 96. 4).

Cor. 1. Diameters of the same small circle bisect one

another, and being chords of the sphere, the join of the
centre of a small circle with the centre of the sphere is

normal to the plane of the small circle, i.e. to the plane
of section.

The converse of this is evidently true.

Cor. 2. Lines through the centres of small circles

and respectively normal to their planes meet at the
centre of the sphere.

Cor. 3. The plane normal to any chord at its middle

point contains the centre of the sphere.
For this plane is the right-bisector plane of the chord,

and therefore contains every point equidistant from the
end points of the chord. But the centre of the sphere
is equidistant from the end points of the chord.

80. Problem. To find the centre of a given sphere.

1st Solution. Draw, on the sphere, two small circles

whose planes are not parallel, and draw normals to the

planes of these circles at their centres.

These normals meet at the centre of the sphere (Art.
79. Cor. 2).

2d Solution. Draw any three non-parallel chords and
their right-bisector planes.

These planes have the centre as their common point

(Art. 79. Cor. 3).

Cor. 1. In the first solution, if the planes of the

circles are parallel, the normals also are parallel ;
and
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as they pass through the same point, the centre of the

sphere, they are coincident (P. Art. 70. Ax.).

Therefore the centres of parallel sections of a sphere
lie upon a centre line normal to the planes of section,

and are therefore collinear.

Cor. 2. In the second solution, if the chords are

parallel, so also are their right-bisector planes ;
and as

these planes are concurrent, they are also coincident.

Therefore, the middle points of parallel chords in a

sphere are complanar, and lie upon a diametral plane
normal to the chords.

81. When the two points in which a line meets a

sphere become coincident, the line becomes a tangent
line to the sphere and touches the sphere in a double

point.

Hence, for a sphere to touch a given line at a given

point is equivalent to two conditions.

82. Theorem. A tangent line to a sphere is perpen
dicular to the radius to the point of contact, and con

versely.

Proof. The plane determined by the tangent line and

the radius to the point of contact gives in section a circle

with its tangent line and radius, and as the same angle is

involved, the truth of the theorem follows (P. Art. 110).

Def. An indefinite number of perpendiculars may be

drawn to a radius at its extremity ;
these are all tangent

lines, and they all lie in a plane to which the radius is

normal.

This plane is a tangent plane to the sphere.
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Cor. A tangent plane is normal to the radius to the

point of contact.

83. Theorem. Through any four non-complanar points,

of which no three are in line, one, and only one, sphere

can pass.

Proof. It is shown in Art. 46. Cor. 3, that one, and

only one, point is equidistant from four given non-com-

planar points, no three of which are in line.

If this point be taken as centre, and its distance from

any one of the given points be taken as radius, the sphere

so determined passes through the four given points.

Cor. 1. Four non-complanar points, no three of which

are in line, determine one sphere.

Cor. 2. Spheres which coincide in four non-complanar

points coincide altogether.

Def. Four or more points so situated that a sphere

can pass through them are conspheric, and when these

points form the vertices of a figure, the figure is inscribed

in the sphere, and the sphere circumscribes
(

the figure.

When a sphere has all the sides of a skew polygon as

tangent lines, the sphere is inscribed to the polygon, and

the polygon is circumscribed to the sphere.

With a polyhedron it is different. For a sphere may
have the edges as tangent lines, or the faces as tangent

planes, but not both.

The sphere having the edges as tangent lines is the

tangent sphere to the edges, and the one having the faces

as tangent planes is the tangent sphere to the faces.
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Cor. 3. A regular polyhedron, on account of its com

plete symmetry, has all its vertices conspheric, all its

edges tangent lines to a sphere, and all its faces tangent

planes to a sphere, and these three spheres have the same

centre.

84. The vertices of a skew quadrilateral are neces

sarily conspheric ;
for from the definition (29) they are

four non-complanar points, no three of which are in line.

Let A, B, C, D be the vertices taken in order, and let

the sides AB, BC, CD, and DA be considered as lines

of indefinite length.

Cor. 1. Let A and B become coincident. Then AB
becomes a tangent line to the sphere.

Therefore, a sphere can touch a given line at a given

point, and pass through any two other points whose join

is not complanar with the given line.

Cor. 2. Let A, B, and G become coincident. Then
the lines AB and BC become two tangent lines inter

secting on the sphere at B, and these determine a tan

gent plane.

Therefore, a sphere can touch a plane at a given point
and pass through any one other point which does not lie

in the plane.

As four points properly situated are necessary to

determine a sphere, touching a plane at a given point is

equal to three conditions, and the point of contact is

thus a triple point.

Cor. 3. Let A and B become coincident at one point,

and C and D become coincident at another. Then the
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line AB becomes a tangent line at one point, and the

line CD a tangent line at another, and these two tangents

are not complanar.

Therefore, a sphere may touch two non-complanar
lines at any two given points, one in each line.

85. Theorem. The figure of intersection of two spheres

is a circle, and the common centre line of the spheres

passes through the centre of the circle and is normal to

its plane.

Proof. Let and be the centres of the spheres,

and P be a point on their figure of

intersection PQR. Then OP, and

O Pj and 00 are constant for all

positions of P. Therefore, P lies

on a cone-circle to which and

are vertices, and hence 00 passes

through the centre, O, of the circle,

and is normal to its plane.

Cor. 1. OP and O P being given, OP decreases as 00

increases, and vice versa. When OPO is a right angle,

the tangent planes to the two spheres are perpendicular

to one another, and the spheres intersect orthogonally.

Cor. 2. When P comes to C, the circle PQR becomes

a point upon the line 00 .

Therefore, when two spheres touch, they do so at a

single point, and the common centre line passes through

the point of contact.

86. APBR is a sphere with as centre and any

point without the sphere. O P is a tangent line from
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O
, touching the sphere at P. PQR is the small circle

through P, whose plane is normal to 00 .

1. 00 and OP are constants, and

Z OPO is a right angle, since O P
is a tangent (Art. 82). Therefore

O P is constant, and P always lies

on the small circle PQR, which is

a cone-circle to and as vertices.

Therefore all tangent lines from

a given point to a sphere are equal.

2. O P is the generator of a cir

cular cone which touches the sphere

along the small circle PQR, and is the centre or ver

tex of the cone.

Def. The cone of which O P is the generator is the

tangent cone for the point .

The circle PQR is the circle of contact, and its plane
is the polar plane of the point with respect to the

sphere ;
and the point is the pole of the plane.

3. When comes to A, the tangent cone and the

polar plane of unite to form the tangent plane at A
;

hence a tangent plane is a double plane representing the

limiting form of the tangent cone, and the limiting posi

tion of the polar plane as the pole comes to the sphere.

Evidently, then, a tangent plane is the polar plane to

its point of contact.

87. Problem. To find the locus of a point equidistant
from three planes, no two of which are parallel, and

which do not form an axial pencil ;
i.e. from three planes

which form a sheaf.
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Let ABC, ACD, ADB be the planes having A as their

common point.

Let the internal and external bisecting planes of the

dihedral angle whose edge is

AB be denoted by ab and AB
respectively, and similarly for

the other dihedral angles.

Also, let A
i
denote the com

mon line of ab and ac. Then,
as every point on ab is equidis

tant from the planes ABC and

ABD, and every point on ac

is equidistant from the planes

ACB and ACD, every point

on the intersection of ab and ac, that is, on A
{,

is equi

distant from the three given planes.

The line A
t
is thus inclined to all the planes at the

same angle, and it will be called the internal isoclinal

line to the planes.

Again, every point on AB is equidistant^from the

planes ABC and ABD, and every point on AC is equi

distant from the planes ACB and ACD.

Therefore, every point on the common line of AB and

AC, that is on the line Ad ,
is equidistant from the three

planes, and A d is an external isoclinal line to the planes.

Similarly, Ab and Ac are external isoclinals to the same

three planes.

Therefore, the required locus consists of the four

isoclinal lines to the planes. These isoclinals pass

through A, the common point, and form the centre

locus of a sphere which touches the three concurrent

planes.
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Cor. Each isoclinal line is the common line to three

bisector planes which form an axial pencil, viz. :

A
i
of ab, ac, ad

;
Ab of ab, A C, AD ;

Ac
of ac, AB, AD-, and Ad of ad, AB, AC.

88. Problem. To find the centre of a sphere which

shall touch four planes so situated as to form a tetra

hedron.

Employing the notation of Art. 87, we have four iso

clinal lines to three of the planes, at each vertex of the

tetrahedron, or 16 in all. These are A
{,
B

{,
C

{,
D

t
as

internal ones, and Ab ,
Ac ,

Ad ,
Ba ,

Bc ,
Bd ,

Ca,
Cb,

Cd,
Da,

Db) Dc, as external ones.

Denote the planes opposite A, B, C
}
D by a, /?, y, 8,

respectively.

Then A
i

is the locus of a point equidistant from

/3, y, 8
;
and BI from a, y, 8. Therefore, a point equidis

tant from y and 8 lies upon both A
i
and B

f ,
and hence

these lines intersect, and Ct
and D

t pass through the

point of intersection.

Hence (1) A
{,
B C D meet to give one point

required.

Similarly, each of the following groups of four lines

gives a point equidistant from the four planes :

(2) A Ba,
Ca,
Da ; (3) B,, A b ,

Cb ,
Db ;

(4) &amp;lt;7 A e,
Be,

Dc ;
and (5) Dt,

Ad,
Bd,

Cd .

Again, Ab is the locus of a point equidistant from

j3, y, 8, and Ba from a, y, 8.

Therefore, Ab and Ba intersect in a point equidistant

from a, (3, y, 8, and Cd and Dc pass through this point.
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Hence these lines meet in groups of four to give three

points equidistant from the four planes ; namely,

(6) A BM Cd, A; (7) Aa Ca ,
Bd,

Z&amp;gt;6 ; (8) Ad,
Da ,

B
c ,
Cb .

Thus eight spheres, in all, can be found, each of which
shall touch four planes so situated as to form a tetra

hedron.

EXERCISES E.

1. If the director figure in the generation of a cone (61) is a

polygon, what figure is formed ?

2. Show that the cone is a limiting case of an w-faced corner,
and explain how.

3. If the radius of a sphere is the generator of a circular cone,
the figure of intersection of the sphere and cone is a circle.

4. The centre locus of a sphere which touches a plane at a given
point is a normal to the plane at the given point.

5. What is the centre locus of a sphere which touches a line at

a given point ? which touches two parallel lines ? which touches
two intersecting lines ? which touches two intersecting planes ?



PART II.

AREAL RELATIONS INVOLVING LINE-SEGMENTS

ABOUT SPATIAL FIGURES.

89. The theorem in plane geometry that the square

on the hypothenuse of a right-angled triangle is equal to

the sum of the squares on the sides, the theorem that

the rectangle on the parts of a secant line between a

point and a circle is equal to the square on the tangent

from the point to the circle, and others of this nature,

express areal relations, involving line-segments of plane

figures.

Many important relations of a similar nature exist

among the line-segments connected with spatial figures.

These we propose to consider in this part of the work.
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SECTION 1.

THE SKEW QUADRILATERAL AND THE

POLYHEDRON.

90. Theorem. In a skew quadrilateral the sum of the

squares on the sides is greater than the sum of the

squares on the diagonals, by
four times the square on the

join of the middle points of

the diagonals.

Proof. ABCD is a skew

quadrilateral, and AC and

ED are its diagonals, having

/ and J as their middle

points.

DI is median to A CDA, and BI is median to A CBA.

.-. CD2+DA2+CB2+BA2=2(CI
2+DI2+CI2+BI2

);

or, SAB2 = 4 C7 2 + 2 Z&amp;gt;/

2 + 2

But // is median to the A DIB
;

or 2AB2 = 4 CI 2 + 4 BJ2 + 4 IJ2

= CM2 + BD2 + 4 7J2
. Q. E. D.

This important theorem is true of all quadrilaterals,

whether plain or skew (P. Art. 173).
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91. For the tetrahedron let us adopt the following
notation : Taking ABC as the base and D as the vertex,
denote the lateral edges DA, DB, DC by a, b, and c

respectively, and the basal edges BC, CA, AB by a
lf

6lt and G! respectively. Then a and aA are opposite

edges, etc.

Theorem. In any tetrahedron four times the sum of
the squares on the diameters is equal to the sum of the

squares on the edges.

Proof. The skew quadrilateral with its diagonals
forms the tetrahedron.

The results of Art. 90 give :

4 IJ2 = a 1 + c
2 + i

2 + GI
- V - bf, (Fig. of 90. )

4EG2 = a2 + b2 + !

2 + b,
2 - c

2 - cx

2
.

Therefore, by addition,

or, denoting, in general, a diameter by d and an edge

Cor. In the regular tetrahedron, all the diameters

being equal, and all the edges being equal, gives,

So that if the diameter is equal to the side of a square,
the edge is equal to the diagonal of the square (P. Art.
180. Cor.).
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92. Theorem. In any tetrahedron, nine times the square
on a median is equal to the dif

ference between three times the

sum of the squares on the con

terminous edges and the sum of

the squares on the remaining

edges.

Proof. In the tetrahedron

D-ABC, P is the centroid of

ABC. Then DP is the median

to the face ABC.
Bisect AP in Q. And AQ=QP=PI=
DQ is median to the A ADP;

.-. AD2 + DP 2 = 2AQ2 + 2DQ2
. (P. Art. 173.)

Also, DP is median in the A

And eliminating DQ2 between these relations, we

obtain

3DP 2 = AD2 + 2DI2 - \AI\
But v AI is median in the A ABC, and DI is median

in the A BCD,

.-. 2 AI 2 = AB 2 + AC 2 - 2 BP = cf + V -
Jc^,

and 2 DI 2 = DB2 + DC 2 -2BI 2 = b
2 + c

2 -
1- a,

2
;

whence 3DP 2 = a2 + b
2 + c

2 -
(a,

2 + b? + tf),

or 9DP 2 = 3 Sa2 - laf. Q. E. D.

93. Theorem. In any tetrahedron, nine times the sum

of the squares on the medians is equal to four times the

sum of the squares on the edges.
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Proof. Let m^ w2,
w3,

m4 denote the medians.

Then from 86,

D as vertex, 9 m* = 3 a2 + 3 6
2 + 3 c

2 a 2
b

2
c

2

;

A as vertex, 9m2
2 = 3 a2 + 3 b

2 + 3 ca

2
a^ b

2
c
2

;

5 as vertex, 9m3
2 = 3 c^

2
4- 3 6

2 +3 c:

2 cr 6^ c
2

;

C as vertex, 9m4
2 = 3 ax

2 + 3 6^ -r 3 c
2 - a2 - 6

2 -
c^.

Whence by addition, and denoting.a median in general

by m and an edge in general by e, we have

9 Swi
2 = 4 ^e2

. Q E. D.

Cor. 1. In the regular tetrahedron 9 2m2 = 36m2

,
and

Cor. 2. The median in a regular tetrahedron is the

same as the perpendicular from the vertex to the base,

and denoting it by p, we have

Cor. 3. Denoting a dihedral angle of the regular

tetrahedron by E,

sin E = DP/DI= %eV 6 -*- i eV 3 = IV 2 -

And cos ^ = J.

94. In the regular tetrahedron we have the circum

scribed sphere, the tangent sphere to the edges, and the

inscribed sphere. Denoting the radii of these by E, p,

and r respectively,

R = OD = IP = \e V6, (Art. 52.)

p =0/ =id = ieV 2
&amp;gt; (Art. 91. Cor.)
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THE PARALLELEPIPED.

95. Denote the direction edges by a, b, c, and an edge
in general by e, and a diagonal in general by d.

Theorem. The sum of the

squares on the diagonals
is equal to the sum of the A -

squares on the edges.

Proof. Since the faces

are all parallelograms, and

AB is II to B A
,
AC to

C A
, etc.,

AA 12 + BB 2 = AB2 + BA 2 + A B 2 + B A2
.

Similarly,

CC12 + DD 2 = CD2 + DC12 + CD 2 + D C*.

Whence, by addition,

Stf = AB2 + CD2 + A B 2 + CD 2 + BA 2

And BA 2 + CD 2 = BC 2 + CA * + AD 12 + D B2

;

and B A2 + C D2 = DA2 + AC12 + C B 12 + B D2
.

.-. 2d 2 = 2e2
. Q.E. D.

Cor. 1. As the edges are separable into three groups
of four equal edges each (Art. 53),

Cor. 2. In the cuboid the diagonals are all equal, and

d2 = a2 + b
2 + c

2
.

Cor. 3. In the cube a = b = c
;
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96. Problem. To find a diagonal of a given parallele

piped by a plane construction.

In Fig. (1), let AO BC be the given ppd., and AA be

the diagonal required.

Analysis. Draw A P, BQ, CR, perpendiculars on AO,

produced if necessary.

P, Q, R are the projections, on AO, of A
, B, and C.

The projection of the middle point of OA is the same

point as the projection of the middle of EC, i.e. it is the

middle point of RQ.

.-. OP=OR+OQ.

Construction. In Fig. (2) construct the faces AB,

AC, and OA
, disposed as in the figure.

Draw CR, BQ _L on AO, produced if necessary.
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Take OP=OR+ OQ, and draw PT J_ to AO.
With as centre and OA as radius, describe a circle

cutting PT in T. Join AT.

AT is the required diagonal.

Proof. OR is the same for both figures, and so also

is OQ, and therefore OP; and AO being the same in

both, AP is the same in both.

Also, 077
of Fig. (2) is made equal to OA of (1).

.-. A OPT of (2) = AOP4 of (l),andPT=P4 .

Hence A APT of (2)
= A APA of (1),

and AT of (2) = AA of (1).

In like manner any other diagonal can be constructed.

Cor. Let the face angles about the vertex A be all

acute, and the figure is an acute ppd. (Art. 54).
Denote

Z BAG by A, Z CA O by ,
and Z ^ by /x.

Then, Fig. (2),

Z ^0(7i = A, Z COP=n, Z 50P= y.

Now,

= ^1P 2 + PT 2 = (40 + OP)
2 + OA 2 - OP 2

= A02 +2AO- OP+OA 2

OR)
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But,

OA 12 = W + c
2 + 2 be cos A, (P. Art. 217. )

OQ = b cos v, OR = c cos
/A.

.-. ^T72 = AA 2 = a2
-f b

2 + c
2 + 2 be cos X + 2 ca cos /,

+ 2a& cos v.

And this expresses the square on the longest diagonal,
i.e. the one extending between the vertices having three

acute face angles.

The other diagonals are given by making two angles
obtuse in every possible way. They are :

a2 + b
2 + c

2
-f 2 be cos A 2 ca cos /x 2 aft cos v,

a? + b
2

-{- c
2 2 be cos X -f 2 ca cos ^ 2ab cos v,

a2 + 6
2 + c

2 2 6c cos A 2 ca cos
/x, + 2 a6 cos i/.

For the diagonals of an obtuse ppd. it is only neces

sary to change throughout the algebraic sign of every
cosine term.

REMARK. In making constructions like the foregoing care must
be exercised that every measured segment is taken in its proper

sense, or with its proper sign.

By taking the face angles about A f

all acute, the per

pendiculars A P, BQ, CR, all fall to the right of 0.

Under a different arrangement of angles, some or all

of these might have fallen to the left of 0. In any case

if M is the middle point of QR, OP is to be taken equal
to 2 OM, whatever the sign may be.

97. Let 0-ABC be a cuboid, and OP be a diagonal.
Then OP 2 = OA2 + OB2 + OC 2

(Art. 95. Cor. 2).
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c

But if OX, OY, OZ, the direction lines of the cuboid,
meeting in 0, be taken as the

three rectangular axes of space \

(Art. 8. Def. 1), OA is the pro

jection of OP on OX, OB is the

projection of OP on OY, and OC,
of OP on OZ.

Therefore, the square on any
line-segment is equal to the sum
of the squares of the projections
of the segment on any three

mutually perpendicular lines.

98. Denoting OA by a, OB by b, and 00 by c; also
Z POA by a, Z POB by ft Z POC by y, we have

cos = =
OP 2 a2

-

with the symmetrical expressions for cos2

/? and cos2

y.

Def. The angles a, ft y are direction angles of the

line OP, and determine the direction of OP relatively to

the three axes. The cosines of these angles are the

direction cosines of OP.

These angles are interdependent, and the result of this

theorem shows that the sum of the squares of their

cosines is unity.

Cor. The position of a point, P, in space is known

relatively to the origin 0, and the axes OX, OY, OZ,
when we are given OP, and the angles which OP makes



THE OCTAHEDRON. 87

with the axes
;
or when we are given the length of the

projections of OP upon the axes. For the projections

are the direction edges of a cuboid of which OP is the

diagonal.

This is the fundamental principle entering into

analytic spatial geometry.

THE OCTAHEDRON.

99. The octahedron may assume a variety of forms,

but we shall confine ourselves to those in which the

point of intersection of the axis is the middle point of

each axis, or the centre of the figure.

In general the octahedron is the reciprocal of the

parallelepiped, formed by joining the centres of adjacent

faces.

The three joins of the centres of opposite faces of the

ppd. in pairs are the axes of the octahedron, and hence

from the nature of a ppd. (Art.

37) the octahedron may be

triclinic, diclinic, monoclinic,

right or regular; the right

octahedron coming from the

cuboid, and the regular from

the cube.

100. Theorem. In any oc

tahedron, the sum of the

squares on the twelve edges

is equal to twice the sum of

the squares on the three diameters AA, BB }
and CC .
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Proof. The section along any two diameters, being a

parallelogram, gives

AA2 + BB 2 = AB2 + BA 2 + AB 2
-f B A\

BB 2 + CC 2 = BC 2 + CB 2 +B C 2 + CB2

,

CC12 + AA2 = AC 2 + &amp;lt;7^1

2 + AC12 + C ^l
2
.

Whence, by addition,

2(AA2 + ^^ 2 + CC 2

)
= 2M2 = 2e2

.

Cor. If the octahedron is regular, all the edges are

equal and all the diameters are equal, and therefore

and the section ACA C is a square.

THE REGULAR DODECAHEDRON.

101. Let AE, AB, and AG be the three edges which
meet to form the corner of a regular dodecahedron. Let

Q be the centre of the face ADB, and be the centre of

the circumscribed sphere.
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Since all the faces are congruent, BEG is an equi

lateral triangle, and OA passes through its centroid P, and

is normal to the plane of the triangle (Art. 79. Cor. 1).

Z ABE= 36, and BE =2BH=2AB cos 36 = 2e cos 36.

Then, BP= \BE - V3 = l eV3 cos 36 -

Also, .
- BPA = 1 ,

AP 2 = AB2 -BP 2

,

or AP 2 =e2

(l- cos 2

36).

But if AA be a diameter of the circumsphere, ABA
is a

&quot;1,
since B is on the sphere.

.-. AA -AP=AB2

(Art. P. 169) ;

or 2R.AP=#.

Whence, R = -

Or R= -y&quot; - = ex 1.401258-.

4V sin 6 sin 66

Again, we have,

-0.25J

= exl.309016...,

and r

But

cos 54
2 sin36

c

e x 1.113516
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EXERCISES F.

1. Two opposite edges of a tetrahedron are perpendicular to
one another when of the remaining edges the sums of the squares
upon opposite edges, taken in pairs, are equal.

2. What does the theorem of Art. 91 become when the four
vertices of the tetrahedron become complanar ?

3. What does the theorem of Art. 92 become when D comes to
the centroid of the triangle ABC?

4. Show that the tangent of the angle made by an edge of a
regular tetrahedron with one of the faces is ^/2.

5. In the cube, P is the middle point of AB, and 8 is the
middle point of A B&amp;gt;

;
show that the acute angle of the section

through Q, D, Sis cos 1

6. In the cube, DK is _L from D upon the diagonal BB ; show
that DK= i e V6

;
and that CK = e.

7. In the cube, the join of the middle point of AB with B
,

and the join of the middle point of AD with D
,
divide each other

into parts which are as 2 : 1.

8. The angle between two diagonals of a cube is cos- 1
1.

9. In the cube, the angle between a diagonal and a face is

cos- 1 .

10. In the cuboid, the angle subtended at . the centre by the
middle points of two conterminous edges is

cos- 1 a2
/ V(a2 + ft

2
) (a

2 + c2),

with variations in the letters for the different cases.

11. In the cuboid, the angle between diagonals is

cos- 1
(a

2 - b2 - c2)/(a
2 + b2 + c2 ),

with symmetrical variations.
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12. In the cuboid, the _L from a vertex upon a diagonal is

c* I Va2 + &2 4- c2
,

with symmetrical variations.

13. In an octahedron, there may be, at most, six different

lengths of edges.

14. If the semi-diameters of an octahedron be a, 6, c, and

Z (6c) = A, /. (ca) = n, and Z (aft)
= v,

then the squares of the edges are

02 + 52 2 6 cos
i&amp;gt;,

62 + c2 2&ccos\, c2 + a2 2 ca cos /A.

15. In a right octahedron, the cosines of the dihedral angles are

62c2 + c2a2 - a262
,

c2a2 + a262 - 62c2 , a262 + 62c2 - c2a2
,

each divided by a-b2 + 62c2 + c2a2
.

16. In a regular octahedron, the perpendicular from the centre

upon a face is % e A/6.

17. In a regular otcahedron, the cosine of a dihedral angle

is

18. The section through the middle points of AC ,
AB 1

,
B C,

CA ,
A B, and B C is a hexagon with opposite sides parallel, and

is regular if the octahedron is regular.

19. A section of an octahedron parallel to any face is a hexagon.

20. The radius of the tangent sphere to the edges of a regular

octahedron is \ e.

21. The squares of the radii of the three spheres of a regular

octahedron are in harmonic proportion.

22. In a regular dodecahedron,

^=1(^15 + V3 )-
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23. In a regular dodecahedron,

40 /

and o =

24. In a regular dodecahedron, if Z&amp;gt; be the dihedral angle,

sin =

25. In the regular dodecahedron show that 11JJJ2 exceeds 15r2

by 3e2
.

26. In the icosahedron, B

27. In the icosahedron if D be the dihedral angle,

cos D = ^5, or sin D = f .

28. A sphere touches one face of a regular tetrahedron exter

nally, and the three others internally. Show that its radius is

\p\ and that the distance from the further vertex at which it

touches the three faces is
-

,/3.o

29. If a regular cube and octahedron be circumscribed to the

same sphere, their vertices are conspheric.

30. If a regular dodecahedron and icosahedron be circumscribed

to the same sphere, their vertices are conspheric.



SECTION 2.

THE SPHERE.

102. Def. If P be any point, and a line through P
meets a given sphere in A and B, the rectangle PA PB
is called the power of the point P with respect to the

given sphere.

Cor. A point is without a sphere, on the sphere, or

within it, according as the power of the point with

respect to the sphere is positive, zero, or negative.

103. The power of a fixed point with respect to a

given sphere is independent of the direction of the line

whose segments form the rectangle which measures the

power.

Proof. Let the line through P meet the sphere in

A and B. Since P, A, B are in line, P, A, B, O are

complanar, being the centre of the sphere.

The section by this plane is a great circle, with a

secant line through P cutting the circle in A and

B. And PA - PB is constant in value for this circle

(P. Art. 176). And since all great circles have the same

centre and equal radii, PA - PB is constant for every

great circle, and therefore for the sphere.

Cor. If A and B become coincident, the secant line

becomes a tangent, and the rectangle PA PB becomes

the square on the tangent.

93
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Therefore, the power of an external point with respect

to a given sphere is the square on the tangent from the

point to the sphere; and all tangents from the same

point to the same sphere are equal.

104. S and S f are two circles with centres A and

B and radical axis L
(P. Art. 178).

Let the whole system
revolve about the com

mon centre-line AB as

an axis, while retaining

the fixed relations of the

several parts.

The circles describe

spheres, and the radical

axis, L, describes a plane

normal to AB.
Also PE - PD = PE PD remains true for the spheres.

And since P may be any point on the plane described by

L, the power of P with respect to each sphere is the

same.

Def. The locus of a point of which the power is the

same with respect to two given spheres is the radical

plane of the spheres.

Cor. 1. Evidently, the radical plane of two spheres

is normal to the join of their centres, and divides the

distance between the centres so that the difference of

the squares on the two parts is equal to the difference

of the squares on the conterminous radii.
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Cor. 2. The tangents to two spheres, from any point

on their radical plane, are equal.

Cor. 3. The plane of the circle of intersection of two

spheres is their radical plane.

105. Let Su #2, 8& S* be four spheres, and let U12

denote the radical plane of Si and 8% etc.

The four spheres have the six radical planes, U\% U^
Uu, Ux, UK, and r/34 .

A point whose power with respect to Si and S2 is the

same is on the plane t/i2,
and a point whose power with

respect to Si and S3 is the same is on the plane C713.

Therefore, a point whose power with respect to Si, S%
and $3 is the same is on the common line of t/i2 and C/i3,

and is evidently on the plane U&.

Therefore, the radical planes of three spheres have a

common line, and from any point on this line tangents

to the spheres are equal.

We shall call this line the radical line of the three

spheres. In a section through the centres of the spheres,

this line gives the radical centre of the three resulting

great circles.

Cor. 1. The radical line of three spheres is normal to

the plane through their centres.

Cor. 2. The six radical planes to four spheres inter

sect by threes to form four axial pencils.

The axes of these pencils may be denoted by Lm,
i124,

Lmt and 234; Lm being the common line to U&, U^ and

UK.

Cor. 3. The line i123 meets the plane Uu in one point

only, and it evidently meets (724 and (734 in the same point.



96 SOLID OR SPATIAL GEOMETRY.

Therefore, there is, in general, one point from which

tangents to four given spheres are equal ;
or of which

the power is the same with respect to four given spheres.
This is the radical centre of the four spheres.

EXERCISES G.

1. Two secants are drawn through the same point, P, within a

sphere, and meet the sphere in A, B, and C, D respectively. Then
PA - PB = PC - PD.

2. If a, b be the parts into which the plane of a small circle

divides the diameter through its centre, the area of the small circle

is irab.

3. If three spheres intersect two and two, the planes of the

small circles of intersection form an axial pencil.

4. If four spheres intersect two and two, the planes of the

circles of intersection pass through a common point.

5. Where is the radical centre of four spheres whose centres

are complanar ?

6. Under what condition will four spheres have a line of radical

centres ?

(The spheres are then coaxal.)

7. The tangent cones, common to three spheres taken two and

two, have their vertices collinear.

8. The tangent cones, common to four spheres taken two and

two, have their vertices complanar. ,-

9. If P and Q be two points in the line Z, and U and V inter

secting in M be the polar planes of P and Q with respect to a

sphere, then every plane through M is polar to some point in L
;

and L and M are perpendicular to each other.

10. Any rectilinear figure has a corresponding rectilinear figure

such that every side in the first figure has a side perpendicular to it

in the second.



PART III.

STEREOMETRY AND PLANIMETRY; OR THE MEAS
UREMENT OF VOLUMES AND SURFACES.

106. A closed spatial figure includes within its boun

daries a portion of space separated from all other parts of

space. This portion of space considered with respect to

extent, and not with respect to form, is called the volume

of the closed figure.

As our primary ideas of a spatial figure were probably
derived from concrete objects such as blocks of wood or

stone, the volume of a spatial figure is also called its

solid contents, and the figure itself is called a solid. Hence
the name Solid Geometry.

Also considering a closed spatial figure as a surface,

which after the manner of a closed vessel might be filled

with a liquid, the volume is sometimes called the capacity

of the figure.

The measuring of volumes, or solid contents, or capaci
ties is called Stereometry.

Def. Equal spatial figures are those which have equal

volumes, and therefore congruent figures, when having

volumes, are necessarily equal.
97



SECTION 1.

POLYHEDRA.

107. Theorem. Two cuboids with congruent bases

have their volumes proportional to their altitudes.

B-ACD and F-EGII
are two cuboids having
their bases congruent. Then
vol. B ACD : vol. F- EGH
= BD : FH.

Proof. If this propor
tion is not true, let

vol. B ACD : vol. F- EGH = BD : FI,

where FI is different in length from FH-, and first let

FI be less than FH. As a general case let BD and FH
be incommensurable.

Take some u.L (P. Art. 150. 3) less than IH which
will measure BD, and divide BD and FH into parts

equal to this u.L One point of division, at least, must
fall at some point, J, between / and H.

Through all the points of division pass planes parallel
to the bases. These divide the cuboids B-ACD and
F - EGJ into congruent and therefore equal cuboids.

.-. vol. B ACD : vol. F&amp;gt; EGJ = BD : FJ
and vol. B-ACD: vol. F-EGII=BD: FI (hyp.).

.-. vol. F- EGJ: vol. F- EGH=FJ: FI.



POLYHEDRA. 99

But vol. F EGJ &amp;lt;
vol. F - EGH-,

.-. FJis&amp;lt;FI;

which is not true.

Hence FI cannot be less than FH. And in like manner

it is shown that FI cannot be greater than FH; and

as FI has some value, it must be equal to FH-, and

therefore

vol. B - ACD : vol. F - EGH= BD : FH.

Cor. Cuboids which have two dimensions in each re

spectively equal have their volumes proportional to their

third dimensions; or, more generally, a cuboid with con

stant base has its volume varying as its altitude.

108. Theorem. Two cuboids are to one another as the

continued product of their three dimensions.

Let X, Y denote two cuboids whose dimensions are

respectively abc, and a b c .

Then X: Y= abc : a b c .

Proof. Let Pbe a cuboid whose dimensions are a, 6, c
,

and Q be a cuboid whose dimensions are a, &
,
c .

Then X and P have the face ab the same, and P and

Q have the face ac the same, and Q and Y have the

face b c the same.

.-. X : P = c : c
, (Art. 107. Cor. 1.)

P:Q = b:b
,

Q : Y= a : a .

Whence, by compounding the three proportions,

X: Y= abc: a b c .
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Cor. 1. A generalised statement of the theorem is,

the volume of a cuboid varies as the continued product

of its three dimensions.

Cor. 2. When the cuboids are similar, their homologous

edges are proportional, and if a
,
b

,
c be homologous to

a, 6, c,

abc a3 b3
c
3

a b c a 3 b 3 c 3

Therefore, two similar cuboids are to one another as

the cubes upon two homologous line-segments.

Or, the volume of a cuboid of constant form varies as

that of the cube on any one of its line-segments.

109. In measuring volumes we take as a unit the

volume of the cube whose edge is the unit-length. This

volume is the unit-volume, and it will be denoted by u.v.

The three units of extension are thus interconnected,

so that the giving of any one of them gives all.

Thus if a cube has its edge taken as the u.l, the area

of one of its faces is the u.a., and its volume is the u.v.

If the edge of a cube be n unit-lengths, each of its

faces contains w2
unit-areas, and its volume contains n3

unit-volumes (comp. P. Art. 151).

110. Theorem. The number of u.vls in a cuboid is

the continued product of the numbers of u.Ls in its three

direction edges, or its three dimensions.

Proof. Let X, Y be the cuboids having their three

direction edges expressed by a, 6, c and a
,
b

,
c .

Then X : Y= abc : a b c . (Art. 108.)
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Now let a = b = c = one u.L Then Y contains one

u.v. And hence :

The number of u.v.s in X=the number of u.Ls in

a x the number of u.ls in b x the number of u.ls in c.

This result is generally expressed by saying that the

volume of a cuboid is the product of its, thre? : djn&amp;gt;en-

sions, an expression of which the full meaning
;

id given

above. ;
t ), f

;:&amp;gt;&quot;{ }

Cor. If a, 6, c be the three direction edges of a cu

boid, ab denotes the area of the face whose edges are

a and b, and c is the altitude to that face taken as

base.

Therefore, the volume of a cuboid is the product of

the area of its base multiplied by its altitude.

111. The product form of three quantitative symbols,

where the symbols denote line-segments, is to be inter

preted as the volume of the cuboid having for its three

direction edges the line-segments denoted by these

symbols.
Hence such expressions as abc, (a + 6)a&, etc., denote

volumes of cuboids in geometry, and are consequently

said to be of three dimensions even in algebra.

This exhausts the geometry of space as we know it,

for space has, for us at least, only three dimensions.

112. Expressions such as abed, or a2
6
2

,
or a?bc, etc.,

are, in algebra, said to be of four dimensions
;
but when

the letters are line-symbols, no interpretation is possible

in real geometry.

They may be then said to belong to a hypothetical

or imaginary something, which to us can have no real
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existence, but which is spoken of as geometry of four

dimensions, or as space of four dimensions.

In using the symbols and forms of algebra to deduce

geometric relations, expressions of four or of higher
dimensions may occur as intermediate steps in some

transformation, but never as final results.

The associative law in algebra which tells us that

d fro, ab c, b ac are equal, tells us in geometry that the

measure of the volume of a cuboid is independent of

which face is taken as a base.

The expression a~b is the cuboid having the square on

side a as base and b as altitude, or the cuboid having the

rectangle ab as base and a as altitude
;
and these are the

same cuboid differently viewed.

The forms Va&c, Va2

6, etc., are not geometrically

interpretable ;
but ^/abcd is an area.

The form ^/abc denotes a line-segment, the edge of

the cube whose volume is equal to the cuboid whose

dimensions are a, b, c.

PARALLELEPIPED.

113. Theorem. A parallelepiped is equal to the cuboid

which has its base and altitude respectively equal to

those of the parallelepiped.

We prove this theorem by showing that any parallele

piped can be transformed, without chahge of volume,

into a cuboid having a base and altitude equal to those

of the ppd. Let A A BD be a triclinic ppd.

Cut it by a plane, EFG, normal to the direction edgeAA .

This section is a parallelogram, and BFE, CGF, FEA\
etc., are &quot;Is.
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On AA produced take A E =AE}
and through E pass

the plane E F G II to EFG.

Then the corners A - BDE and A - B D E are evi

dently congruent, since they are composed of equal face

angles disposed in the same

order. And if the figure

A BGE be so placed that

A coincides with A
,
AD

with A D
,
and AB with

A B
,
this figure will co

incide completely with

A -B G E
,
and the ppd.

AC is transformed to the

monoclinic ppd. EG
,
without change of volume, and

the base EH is equal to the base AD ,
and the altitude

remains unchanged.

Again, by passing a plane normal to the direction edge

EH of the monoclinic ppd. we transform it into a cuboid

in which the volume is unchanged, and the base and

altitude are unchanged.

Therefore any ppd. can be transformed, without change

of volume, into a cuboid having its base and altitude

equal to those of the ppd.

Therefore a ppd. is equal to the cuboid having its

base and altitude equal to those of the ppd.

NOTE. If the ppd. is such that it is impossible to cut it by the

plane EFG, normal to AA ,
then EFG may be any plane less

inclined to AA than the face ABC is. We thus transform the

ppd. into another triclinic ppd. less oblique than the original ;
a

second section may now be made normal to a direction edge ;
or

if not a second, a third, etc.
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Cor. 1. The volume of a parallelepiped is the product

of the area of its base by its altitude.

Cor. 2. Similar ppds. are to each other as the cubes

on homologous line-segments.

Cor. 3. A ppd. of constant form varies as the cube on

any of its line-segments.

PRISM.

114. If a cuboid or a monoclinic ppd. be divided into

two triangular prisms by a plane passing through a pair

of opposite edges, which are normal to a face, the

prisms so formed are congruent, and therefore equal.

But if a plane be passed through opposite edges of a tri-

clinic ppd., the two prisms formed are, in general, not

congruent, but symmetrical, and they cannot therefore

be shown to be equal by superposition. We proceed to

show that they are, however, equal.

115. Theorem. The two triangular prisms into which

a parallelepiped is divided by a plane through a pair of

opposite edges, are equal.

Let A BDA be a tri-

clinic ppd. A, A ,
C

,
C

are complanar, and their

plane divides the ppd.

into the triangular prisms

A -BOA and C ADC .

These prisms are not

congruent. But, as in Art.

113, transforming the triclinic ppd. into the monoclinic

ppd. E FHE
,
we transform, without change of volume,
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the prism A-BCA into E-FGE
,
and C ADC1 into

O EHG . And these new prisms, being right prisms

from the monoclinic ppd., are congruent, and therefore

equal, and each is one-half the monoclinic ppd.

Therefore, the original prisms A ECA and E FGE
are equal, and each is one-half the triclinic ppd.

Cor. 1. Since the right section EFGH is double the

right section EGH, it follows that the volume of a prism

is the area of a right section multiplied by the length

of a lateral edge.

Cor. 2. Taking ABCD as the base of the ppd., and

ACD as the base of the prism C-ADC ,
these figures

have the same altitude.

Therefore (Art. 113. Cor. 1), the volume of a prism is

the area of the base multiplied by the altitude.

Cor. 3. As all prisms may be divided into triangular

prisms, Cors. 1 and 2 are true for all prisms.

116. We have two expressions for the volume of a

prism :

1st, vol. = area of rt. section x lateral edge.

2d, vol. = area of the base x altitude.

area of rt. section _ altitude

area of base lateral edge

But if AA be the lateral edge, and AP be the alti

tude, AP -T- AA 1

is the cosine of the angle between the

lateral edge and the altitude.

But, as the altitude is normal to the base, and the

lateral edge is normal to a right section, this is the
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angle between a right section and the plane of the base.

Calling this the angle of obliquity of the prism, we have :

The area of a right section of a prism is equal to the

area of an oblique section multiplied by the cosine of

the angle of obliquity.

OF LAMINAE.

117. To fix our ideas, let AETN be a trapezoid with

ET I! to AN. Divide its side AE into any number of

equal parts, and through the points of division, B, C, D,

etc., draw lines II to AN.
On these lines and the bases

^L/VandET construct the series

of internal rectangles BP, CQ,

DR, ES, and the series of

external rectangles Aa, Bb, Cc,

Dd--.

The area of the trapezoid

evidently lies between the sum of the external rectan

gles and the sum of the internal rectangles.

Now, any external rectangle as Cc is congruent with

an internal rectangle below it, CQ ; except that the

lowest external rectangle has no corresponding and con

gruent internal one, and the uppermost internal rectan

gle has no congruent external one.

Let E denote the sum of the external rectangles, and

/ denote the sum of the internal ones. Then

E - I=OAa-nES.
.-. the difference between the sum of the external

rectangles and the sum of the internal rectangles is less
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than the lowermost external rectangle ;
and this is true

however many rectangles be formed.

But the lowermost rectangle can be made as small as

we please, by making its altitude sufficiently small
;

i.e.

by making the number of parts into which we divide

AE sufficiently great. And hence the area of the trap-

ezoid is the limit of the sum of either series of rectan

gles as the number of rectangles is indefinitely increased.

118. Now, let AETN be a vertical section of a frus

tum of a pyramid (Art. 59), in which AN and ET are

sections of the bases. Divide AE into any number of

equal parts, and through the points of division pass

planes parallel to the bases.

On the figures of section construct a series of inscribed

prisms, BP, CQ, DR, ES --, and a series of circum

scribed prisms, Aa, Bb, Cc, Dd-&quot;.

The volume of the frustum lies between the sum of

the internal prisms and the sum of the external prisms.

But any external prism, except the lowermost, has a

congruent internal prism below it, and any internal

prism, except the uppermost, has a congruent external

prism above it.

Hence if E denotes the sum of the external prisms,

and I of the internal prisms,

E 1= prism Aa prism ES

= vol. of lowermost external prism

vol. of the uppermost internal prism.

And this is true, however many equal parts AE, is

divided into.
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Therefore, the volume of the frustum differs from the

sum of either series of prisms, by less than the volumes

of the series of prisms differ from each other
;
that is,

by a quantity less than the lowermost external prism ;

and this difference may be made as small as we please

by dividing AE into a sufficiently large number of parts.

Hence, the volume of the frustum is the limit of that

of either series of prisms, when the number of prisms
is indefinitely increased.

Cor. This theorem is exceedingly important, for the

least consideration will show that nothing in the inves

tigation requires that AE, or any edge, should be a

straight line, and hence that the theorem holds true

when the boundary of the figure, between the parallel

bases, is composed partly or wholly of curved surfaces
;

also that the theorem is true when one or both bases

reduce to lines or points.

119. Def. When a spatial figure is cut by two indef

initely near parallel planes, the prism, having one of

the sections as base, and the distance between the planes

as altitude, is called a lamina of the spatial figure.

When two figures are confined between the same two

parallel planes, the laminae determined by two indefinitely

near planes, parallel to the confining planes, are corre

sponding lamince.

Usually the planes which determine a lamina are

supposed to be infinitely near, so that a lamina is one of

the prisms of the preceding article, taken at its limit.

Cor. 1. From Art. 118, it appears that two figures

which have all corresponding laminoe equal are them-
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selves equal; and two figures which have all corre

sponding laminae in the same ratio are themselves in

that ratio, the one to the other.

Cor. 2. Since corresponding laminge have the same

altitude, their volumes are proportional to their bases
;

and hence corresponding laminae are equal when corre

sponding sections are equal ;
and corresponding laminae

are in the same proportion to one another as are the cor

responding sections.

THE PYRAMID.

120. Theorem. Pyramids are equal whose bases are

equal and whose altitudes are equal.

Proof. Let the trian

gular pyramids, D ABO
and H- EFG, have their

bases equal, and also their

altitudes equal, and let

them be so placed that

their bases are compla-

nar, and their vertices are

upon the same side of this

plane. Then D and H lie

in a plane parallel to the

plane of the bases.

Let abc and efg be corresponding sections.

Then (Art. 28. Cor. 2)

A abc ^ A ABC, and A efg ^ A EFG.

But (P. Art. 218. 2), A abc : A ABC = atf : AB2
.
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And since DA and DB are cut by parallel planes, AB
is II ab.

.: ab2
: AB2 = Da2

: DA2
.

And (Art. 27) Da : DA = He : HE
;

.-. ab2
: AB2 = Da2

: DA2 = He2
: HE2 = ef

2
: EF2

,

or A abc : A ABC = A efg : A EFG.

But A ABC= A EFG
, (hyp.)

. \ A abc = A e/(/.

And as corresponding laminae are equal, the volumes
of the pyramids are equal (Art. 119. Cor. 1).

And since all pyramids may be divided into triangu
lar pyramids,

Therefore, any two pyramids are equal whose bases are

equal and whose altitudes are equal.

Cor. Two frustums of pyramids which have their

two bases respectively equal and their altitudes equal
are themselves equal.

121. Theorem. A triangular prism can be divided into

three equal pyramids.

Proof. A BCD is a triangular prism. Pass a plane

through the points A, C, and E, and another plane through

&amp;lt;7, D, and E.

The prism is divided into three equal pyramids.
For C FDE and E - CAB have their bases DEF and

ABC equal, and their altitudes the same as that of the

prism. These pyramids are therefore equal (Art. 120).

Also the pyramids C ADE and C ABE have their
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bases ADE and ABE equal (P. Art. 141. Cor. 1), and

have their vertices coincident.

Therefore they have the same

altitude and are equal.

And the prism is thus divided

into three equal pyramids.

Cor. 1. As each triangular pyr
amid is one-third of the corre

sponding triangular prism, and as

every prism can be divided into

triangular prisms ;

Therefore every pyramid is one-third of the prism

having the same base and altitude as the pyramid.

Cor. 2. If B denotes the area of the base of a pyramid,
and h denotes its altitude,

vol. of pyramid = 1 liB.

Cor. 3. Pyramids with equal bases are to one another

as their altitudes, and pyramids with equal altitudes are

as their bases.

122. Theorem. The frustum of a triangular pyramid

may be divided into three

pyramids, two of which have

the bases of the frustum as

their bases, and the altitude

of the frustum as their alti

tude, and the third of which

is a mean proportional between

the first two.

ABCDEF is a triangular

frustum.
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The plane through A, E, F cuts off the pyramid
A DEF, whose base DEF is the upper base of the

frustum.

From the remaining figure the plane through Ay E, C
cuts off the pyramid E ABC, whose base ABC is the

lower base of the frustum.

We have left the pyramid E - AFC.
Join BF and CD.

The pyramids B AEC and F&amp;gt; AEC having the com

mon base AEC are as their altitudes, and the altitudes

are as PB to PF, or BC to EF.

.-. B AEC:F AEC==BC:EF.

Again, the pyramids C-AEF (which is the same as

F-AEC) and D-AEF having the common base AEF
are to one another as CQ is to QD, or AC to DF.

But, since the bases are similar (Art. 28. Cor. 2),

BC : EF= AC : DF.

Or the pyramid F- AEC, or C-AEF, is a mean propor

tional between the pyramids E - ABC and A DEF.

Cor. If B and B denote the bases of the frustum,

and h the altitude,

vol. of E-ABC=$hB, vol. of A-DEF=\liB\
and .-. vol. of F- AEC=$hVBB .

The volume of the frustum is accordingly :

vol. = i/i
j
B 4- B +V5B }.

123. The volume of the frustum may also be found as

follows :

Let be the vertex of the pyramid from which the
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frustum is formed, and let OP be the altitude of the

pyramid. Also let OP be the altitude of the pyramid

DEF, which is removed in forming the frustum. Then,

The frustum = pyr. 0-ABC - pyr. 0-DEF,

and OP-OP = h.

Since any area may be expressed as a square, let

b
2 = B or the base ABC, and b

2 = B or the base DEF.

Then OP:OP =OA:OD = AB:DE = b: b
,

and OP- OP : OP= b-b :b.

... OP(b-b )
= bh.

bh

and

.-. OP=

frust. =

and OP = b h

b-b

b-b

Cor. The volume of a frustum of a pyramid is the

sum of the two bases and a mean proportional between

the bases, multiplied by one-third
F

of the altitude.

124. Def. A triangular prism
with non-parallel bases is called a

truncated triangular prism, or a

wedge.

Let ABC, DEF be the bases of

the wedge, of which ABC is nor

mal to the lateral edges.

Through D pass a plane II to

ABC and draw AP _1_ to BC.



114 SOLID OR SPATIAL GEOMETRY.

The wedge = the prism A -BCD + the pyramid
D-EFGH. But the prism = A ABC x AD; and the

pyramid
&quot;

x trapezoid EH,

.-. vol. of wedge = 1AABC(AD + BE + OF).

^

Or if e
lt

e2, e3 denote the edges, and B the area of a

right section,

vol. =

125. Theorem. If a tetrahedron be cut by a plane
which bisects two edges and passes through an opposite
vertex, the volume of the tetra

hedron is equal to four-thirds of

the prism having the section as

base, and the perpendicular from

any other vertex on the plane of

section as altitude.

A BCD is a tetrahedron, and
E and F are middle points of

AB and AC respectively.
AP is perpendicular upon the

plane EFD.
Then :-EFis II to BC, and bisects AB, EF is one-half

BC, and AAEF= \AABC (P. Art. 21$. 2).
The pyramids having these triangles as bases have D

as a common vertex;

.-. tetrahedron A - BCD = 4 tetr. A DEF

Q. E. D.
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PRISMATOID AND ALLIED FORMS.

126. Def. A polyhedron with two parallel polygonal

bases, and all its lateral faces plane rectilinear figures,

and all its lateral edges the joins of vertices of opposite

bases, is &prismatoid.

This definition includes the prism, pyramid, and frus

tum of a pyramid as special cases, and is more general

than any of these.

When none of the faces are triangles, the figure is the

frustum of a pyramid, or a prismoid, according as the

lateral edges are, or are not, concurrent when produced.

127. ABCD and EFG are parallel bases of a prisma-

toid, and AEB, EBF, FBC, CFG, etc., are triangular

faces, which, in the figure given, are seven in number.

G

B

If n denotes the number of sides in one base, and n

in the other, it is readily seen that the number of faces

cannot be greater than n + n .
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But if an edge of one base be connected by lateral

edges with a parallel edge of the other base, two trian

gular faces become a quadrangular face, and the whole

number of faces is reduced by one. Thus, if EF were

parallel to AB, the edges AE, EB, and BF would be

complanar, and the two triangular faces AEB and BEF
would become one quadrangular face, AEFB.

If two other edges of the bases become parallel, a like

reduction may take place, and the whole number of faces

be reduced by two.

And finally, if the bases have the same number of

sides, and each edge in one base be connected with a

parallel edge in the other, all the faces become quadran

gular, and the figure becomes a frustum of a pyramid or

a prismoid, according as the edges, when produced, are

or are not concurrent.

Even with the same bases, however, the general appear

ance of the figure will vary with the different ways of

connecting the vertices of the bases by the lateral edges.

128. Def. Take H, I, J, etc., middle points of the

lateral edges, AE, BE, BF, etc., respectively.

Since HI is parallel to AB (P. Art. 84 Cor. 2. 2) and

His parallel to EF, and JKto BO, etc., it follows that

H, I, J, etc., lie in a plane which bisects all the lateral

edges, and is parallel to the bases. The section by this

plane is called the middle section. .-

The middle section contains, at most, n + n sides,

there being always as many sides as there are faces in

the prismatoid.

The middle section may contain re-entrant angles,

although no such angles are found in either base
;
and
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it will frequently have such angles when the bases are

polygons of different species, or when their vertices are

connected in some particular order.

Cor. The middle section bisects the altitude.

129. Volume of the prismatoid. Take P, any point in

the plane of the middle section, and join it to A, D,

E, H, and N. Denote the altitude of the prismatoid by h.

G

N

A

Then, P -ADE is a tetrahedron, and PNH is a section

through a vertex, P, and the middle points, H and N,
of two ppposite edges.

.-. vol. of P - ADE = | h x A PNH. (Art. 125.)

Similarly, by joining P to all the remaining vertices,

.B, C, F, etc., and to the remaining middle points, /, J, K,

etc., we have,

Sum of all the tetrahedra of which P - ADE is the

type = | h x (the sum of the A of which PNH is the

type), or

1 (P ADE) = | hi (A PNH).
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But S (A PNH) = the area of the middle section, and

denoting the area of the middle section by M,

Now, after removing all these tetrahedra, we have left

two pyramids having P as a common vertex, and the

bases of the prismatoid as their respective bases. The

altitude of these prisms being 1/1 (Art. 128. Cor.), their

volumes are hB and %hB ,
where B and B are the

areas of the bases of the prismatoid.

.-. vol. of prismatoid = (B + B + 4M).
b

Cor. The prismatoid is equal to four pyramids, two

having the bases of the prismatoid as their bases and half

the altitude of the prismatoid as their altitude, and two

having the middle section as their bases and the altitude

of the prismatoid as their altitude.

Cor. The formula of the present article is known as

the prismoidal formula. On account of its extremely

wide range of applicability it is the most important of

all formulae connected with the determination of the

volumes of the more prominent spatial figures.

The following examples are some illustrations of its

application.

(a) Prism. Here the two bases and the middle sec

tion are all congruent.

Hence, vol. = - (B+B + 4 JB) = KB. (Art. 115. Cor. 2.)
6

(b) Pyramid. The upper base vanishes, and the mid

dle section is one-fourth the lower base.
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.-. vol. = - (B + + B) = i hB. (Art. 121. Cor. 2.)

(c) Frustum of a pyramid.

Let B, B be the bases, and M be the middle section.

And since any area may be expressed as a square, let

B = b
2

,
B = b

2

,
and M= m\

Then 2 m = b + b .

(Art. 122. Cor.)
3

(d) Tetrahedron, in terms of a middle section (Art.

51. Def. 1) and the length of the common perpendicular

to the edges parallel to the section.

In this case, which has an important subsequent appli

cation, both bases vanish, and we have

vol.=fOf.

REGULAR POLYHEDRA.

130. A regular polyhedron of n faces is divisible into

n congruent pyramids whose bases are the several faces

of the polyhedron, and whose altitude is the radius of

the in-sphere to the polyhedron,
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Hence, if n be the number of faces, B be the area of

a face, and r be the radius of the in-sphere, we have

vol. = 2jBr.
3

(a) Kegular Tetrahedron.

Cor. As the expression for the volume may be writ

ten - -
)

therefore the cube on the side of a square

whose diagonal is the edge of a regular tetrahedron is

three times the tetrahedron.

(6) Regular Octahedron.

Cor. This volume may be written i
(e-y/2)

3
.

Therefore, the cube on the diagonal of a square whose

side is the edge of a regular octahedron is six times the

octahedron.

(c) Regular Dodecahedron. .-

By the methods of plane geometry, we find the area

of a regular pentagon with side e to be

5=4
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Kegular Icosahedron.

EXERCISES H.

1. If a plane parallel to the bases, and midway between them,
be passed through the prism of Art. 121, compare the areas of the

sections of the three pyramids.

2. Apply the conditions of Ex. 1 to Art. 122.

3. A plane of section passes through the middle points of the

parallel edges of a wedge, one of whose bases is a right section

(Art. 124). Find the area of the section.

4. If ev ev e3 be the three parallel edges of a wedge, show that

Ke
i + e2 + 63) is the distance between the centroids of the bases.

5. Apply the prismoidal formula to find the volume of a wedge.

6. A prismoid has both bases parallelograms with angle 6, and

the sides are a, 6 for the one, and a
, b for the other. Find its

volume, its altitude being h.

7. Show that the cube on the side of a square whose diagonal is

the edge of a regular octahedron is three-fourths of the octahedron.
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8. If a regular tetrahedron and a regular octahedron have the

same edge, the octahedron is four times the tetrahedron.

9. AA
,
BB

, CC ,
DD , being diagonals of a cube, show that

the plane through DBC cuts off a pyramid whose volume is one-

sixth that of the cube.

10. The direction edges of a cuboid are a, b, c, and a plane

passes through the three distal extremities of these. Show that

the area of the section is jVa &amp;gt;262 + 62c2 + c*a2
.

11. AA
,
BB

, etc., are the diagonals of a ppd. Show that a

plane through DBC cuts off a pyramid which is one-sixth the ppd.

12. The direction edges of a ppd. are a, &, e, and the angles

between them are Z (&c)= X, Z (ca)= /&quot;, Z(ab) = v. Then the

vol. is

abc V{1 - cos2 X - cos2 /x
- cos2 v + 2 cos X cos n cos v}.

OA, OB, OC are the direction edges;

Z COB = X, Z COA =
/*, /.AOB = v.

Let CP be normal to the plane of A OB,
and PQ, PR be _Ls upon OA and 0.

vol. of ppd. = OA OB sin v CP.

(P. Art. 215.)

OQPR are concyclic, and OP is a diameter

of the circumcircle
;

OP = (P. Art. 228.)

and

But

and

CP =

vol. =

4-
sin vsin2

sin2 &quot;

-

= OQ* + 07?2 - 20Q- OR cos p

= c2 cos2 /*, and OR* = c2 cos2 X.
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Whence, by substitution,

vol. = abc l

13. Show from the character of the result in Ex. 12 that if in

any ppd. X, /*, v are all acute, all vertices except the one opposite

have one acute and two obtuse angles, etc.

14. With the vertices of a ppd. as centres, equal spheres are

described to cut the ppd. Then the volume removed by all the

spheres is equal to that of one of the spheres.

15. Show that space may be wholly divided up into regular

octahedrons and tetrahedrons, and that there will be twice as many

of the latter as of the former.

1 The area of a parallelogram whose sides are a, b and angle

6 is ab sin0, or ab^/(l
- cos2

0), and the volume of the ppd. is

a&cV(l - cos2 * - cos2
/*
-

etc.). On account of the analogy in

form, the expression 1 cos2 \ cos2 ^ etc. is sometimes called

the square of the sine of the solid angle O- ABC, and it usually

appears in the matrix form

1 cos A cos
/j.

cos A. 1 cos v

COS
/JL

COS V 1

The analogy, however, is one of form only, as there are no func

tions of solid angles really corresponding to the sine, cosine, tan

gent, etc., of plane angles.



SECTION 2.

CONE, CYLINDER, SPHERE.

THE CONE.

131. The cone of Art. 67 is not a closed figure, and

consequently does not admit of measurement for volume.
But if the cone be cut by a plane which does not pass
through the centre, and which makes, with the axis, an

angle greater than the vertical angle, a closed figure is

formed by the conical surface and the plane. It is this

closed figure that is called a cone in relation to stere

ometry.
The centre of the cone is, in this relation, called the

apex or vertex, and that portion of the section plane
which forms a part of the enclosing figure is the base of

the cone.

The word cone/ whenever having reference to stereo-

metrical relations, will mean this figure.

132. As the director curve may be of any form, and
as the plane of section may assume different relative

directions, the variations in the cone are unlimited.

If the cone be circular, and the plane of section be

perpendicular to the axis, the figure is the right circular

cone
;
and this is the most important of all the cones.

The base is a circle, and the axis of the cone passes

through the centre of the circle.

124
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A right circular cone is generated by a right-angled

triangle while revolving about one of the sides as an axis.

The other side then generates the base (Art. 9. Cor. 1),

and the hypothenuse generates the convex surface.

133. The cone may be looked upon as the limiting form
of a right regular pyramid, when the number of sides in

the base is indefinitely increased, and the length of each

side is correspondingly diminished.

But the volume of any pyramid is one-third of its

altitude multiplied by the area of its base
;

Therefore, the volume of a cone is one-third of its

altitude multiplied by the area of its base.

Cor. If the base be circular and its radius be r, its

area is Trr
2
. And if h be the altitude of the cone, the

VOl. = 1 TT^k.

134. The frustum of a cone is the limit of the frus

tum of a pyramid, and its volume is therefore

But if r and r be the radii of the bases,

B = Trr
2
,
B = Trr

2

,
and

.-. vol. = i Trh (r
2 + r 2 + rr

).

THE CYLINDER.

135. When the cylinder of Art. 75 is cut by two parallel

planes which cut completely through the surface, a closed

figure is formed, which is the cylinder of stereometry.
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When the planes are perpendicular to the axis of the

cylinder, the figure is a right cylinder. Otherwise it is

an oblique cylinder.

136. It is obvious, from the definitions, that the

cylinder is the limiting form of the prism, when the

number of sides in the base is indefinitely increased and

the lengths of each side correspondingly diminished.

Hence the measure of a cylinder is the area of the

base multiplied by the altitude (Art. 115. Cor. 2).

Cor. If the cylinder be circular and right, and r be

the diameter of the base,

VOl. = TTJ^/i,

where h is the altitude.

THE SPHERE.

137. ABCD is a tetrahedron in which the edge AB
is equal and perpendicular to the edge CD, and KJ,

joining the middle points of these edges, is the common

perpendicular to them.
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Also, K EQTis a sphere having its diameter

We shall prove that corresponding laminae of the tet

rahedron and of the sphere are in a constant ratio, by
proving that corresponding sections are in a constant

ratio.

Proof. Let parallel planes pass through AB and CD.
Then KJ is a common normal to these planes, and if the

sphere be placed between the planes with K J parallel

to KJ, the planes will touch the sphere at K 1 and at J .

Let the sphere and tetrahedron be relatively so placed,
and let EG and RQT be corresponding sections of the

figures (Art. 119).

Then EFGH is a rectangle, and QRT is a circle, and

KP = K P .

Now KP= AE = EH
KJ AD DC

and PJ= DF EF
KJ DB AB

. . by multiplication

KP-PJ= EF. EH= PEG
KJ 2 AB2 AB2

Also, denoting the radius of the sphere by ?*,

K P P J&amp;lt; = P R2

= 1 7T P R2

= l QQRT
K J 12 K J 12

TT KJ2 ~TT* 4^

Therefore -.- KP . PJ= K P . P J
,

AB2
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Hence the corresponding sections of the tetrahedron

and of the sphere are in a constant ratio
;
and the vol

umes of the tetrahedron and the sphere are in the same

ratio.

Cor. 1. The tetr. : the sphere = AB2
:

But the tetr. = fKJ x mid. sec. (Art. 130. d.)

.-. vol. of sphere =
%-n-r\

Cor. 2. The expression for the volume of a sphere

may be written % 2r Trr
2
.

But 2r is a diameter of the sphere, and Trr
2
is the area

of a great circle. Therefore, 2 r Trr
2
is the volume of the

right circular cylinder which circumscribes the sphere.

Hence a sphere is two-thirds of its right circumscribing

cylinder.

138. As the prismoidal formula applies to any portion

of the tetrahedron confined between planes, each parallel

to AB and CD, and since laminae of the sphere hold a

constant relation to corresponding laminae of the tetra

hedron, it follows that the prismoidal formula applies to

any portion of the sphere limited between parallel planes.

Thus, applying the formula to the whole sphere, we

have

B = Q, B = 0, M= Trr
2
,
and h = 2 r.

.-. vol. = (0 + + 4Trr2) = f Trr
3

.

6
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139. Def. A portion of a sphere enclosed between

two parallel planes is usually called a zone of the sphere ;

but if one of the planes is a

tangent plane, the zone be

comes a segment of the sphere.

140. Volume of a zone.

Let a sphere be cut by par- X-

allel planes, given in section,

in the diagram, by AB and A

CD-, and let XY denote in

section the plane which is parallel to the cutting planes,

and half way between them.

The data usually furnished from which to find the

volume of the zone, are the radii CD and AB of the two

bases, and the length of their common normal AC
}
or the

altitude of the zone. Hence we suppose AB, AC, and

CD to be the known quantities.

We have, being the centre of the sphere,

OA2 + AB2 = OC 2 + CD2 = OX 2 + XY2
,

since each expression is the square on the radius of the

sphere.
.-. OA2 + AB2 = (OA + 2AX) 2 +CD2

Hence
AB2 = AX2 + CD2 + OA. AX

= AX 2 + XY2 + 2 OA . AX.

.-. 4 OA - AX=AB2 - CD2 - 4AX2

= 2AB2 -2XY2 -2AX2
;

and hence
2XY2 = AB 2 + CD2 + 2AX2

.
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Now, 7T- XT2
is the area of the middle section,

and TT ABr and TT CD2 are the areas of the bases,

and 2AX is the altitude of .the zone
;

.-. vol. = 7

Or, denoting the radii of the bases by r and r
,
and the

altitude by h,

Cor. If r = 0, the zone becomes a segment, and its

volume is % irh (3 r
2
-f 7r) .

141. The expression for the volume of the zone may
be transformed as follows:

Draw DE _L to AB.

3AB2 + 3 CD2 + AC2= 2(AB
2 + CD2 + .-LB . CD)

and ^TT AC(AB2 +
is the volume of the frustum of the cone which has the
same bases and altitude as the zone.

And AC being the projection of BD on 0(7, if we
denote the angle between BD and AC by ft,

AC=BDcos(3.

= sphere on BD as diameter x cos
/?.

Therefore, the zone exceeds the inscribed conical frus

tum by the sphere on the slant height as diameter

multiplied by the cosine of the semi-vertical angle of

the cone.
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EXERCISES I.

1. Compare the volume of a sphere (1) with that of the circum

scribed cube
; (2) with that of the inscribed cube.

2. Compare the volume of the sphere with that of the circum

scribed regular tetrahedron.

3. A cone circumscribes a sphere and has its slant height equal

to the diameter of its base. Show that vol. of cone : vol. of sphere
= 9:4.

4. If in Ex. 3 a plane passes through the circle of contact, the

vol. of cone removed is f the vol. of sphere removed.

5. A cylinder of radius a passes centrically through a sphere

of radius r. Show that the volume removed from the sphere is

| Trr3 (1
- cos3

0), where sin 6 = -
.

6. A circular cone with semi-vertical angle a has its vertex at

the centre of a sphere of radius r. Show that the volume common
to the cone and sphere is | Trr3 (1 cos a).

7. A right circular cone has its vertex lengthened out into a

linear edge equal and parallel to a diameter of the base. Show
that the volume is one-half that of the circumscribing cylinder.

(The resulting figure is known as the common conoid.)

8. A cone whose semi-vertical angle is 45 has the diameter of

a sphere as its axis, and its vertex on the sphere. Show that one-

fourth of the sphere lies without the cone.

9. The cone of Ex. 8 has its semi-vertical angle equal to a;

then the part of the sphere lying without the cone is

i Trr3 (1 + cos 2 a)
2

.
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142. In this section we propose, under three heads, A,
B, and C, to explain and illustrate some special methods
of measuring volumes, by applying these methods to the

cone, cylinder, sphere, and some other spatial figures.

A. SPATIAL FIGURES GENERATED BY THE MOTION
OF A PLANE FIGURE.

143. When a variable plane figure moves so that a

fixed point lying in its plane describes a line or curve

not complanar with it, the plane figure describes or

generates a spatial figure.

The plane figure is then the generator, and the line

or curve is the path of the particular point which de

scribes it.

The case as here stated is too general for use, especially
in elementary geometry or by elementary methods. We
therefore subject the elements of the description to

certain conditions, usually as follows.

(1) The generator is a closed plane curve, being in

variable in form, while being either variable or constant

in dimensions.

(2) The path is a line normal to the plane of the

generator. This line will be called the axis.

(3) The generator preserves its orientation, i.e. any
fixed line of the generator is invariable in direction

;
or

132
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any fixed point in the generator describes a line or curve

complanar with the axis. This line or curve, whose

form depends upon the nature of the variation of the

generator, is a guide to the motion of the generator, and

forms the director.

Thus if the nature of the variation of the generator
is given, the director is also given ;

and if the director

is given, the nature of the variation is given.

144. Let PQR be a variable circle, whose centre, (7,

moves along the fixed line AB normal to the plane of

the circle. AB is the axis.

M P,

D E O F

\

(1) Let P, any point on the circle, be guided by the

fixed director line L, which meets AB in Z&amp;gt;.

Then, evidently the generating circle describes a cone

having D as vertex and AB as axis.

The radius CP is in a constant ratio to DC.
Hence a variable circle, whose centre moves on a fixed

line normal to its plane, and whose radius varies as the

distance of the centre from a fixed point in the line,

describes a cone.
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(2) If the generating figure in case (1) were a polygon,

the figure generated would be a right pyramid.

(3) Let P move on the line M parallel to AB.

The circle describes a cylinder, and a polygonal genera

tor describes a prism.

(4) Let P be guided by the circle, Z, to which AB
is a centre line, and EF a diameter.

The circle PQR then generates a sphere whose diam

eter is EF.

If be the centre of the director circle, it is evident

that OP 2 + CO2 = OP2 = constant.

Therefore, a variable circle, whose centre moves on

a line normal to its plane, and whose radius so varies

that the sum of the squares on the radius and on the

distance of the centre of the circle from a fixed point in

the line is constant, generates a sphere.

(5) If the generator in case (4) were a polygon, the

figure generated would be a polygonal groin; the most

common groin is the square one.

In a similar manner many other figures may be gener

ated, such as the oblate spheroid, the prolate spheroid,

the hyperboloid, the paraboloid, the ellipsoid, etc.

145. Consider a number of equidistant points along

the axis. Let the generator at these points be taken as

bases of prisms or cylinders whose altitudes are the dis

tances between consecutive points.

We have then a series of prisms or cylinders, of equal

altitude, inscribed in or circumscribed about the spatial

figure, as the case may be.
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But (Art. 118) the volume of the spatial figure is the

limit of either series of prisms or cylinders, when their

number is indefinitely increased and their altitudes cor

respondingly diminished.

Hence if we can obtain an expression for the total

volume of any number of such elementary prisms or

cylinders, we can deduce the expression for the volume

of the spatial figure, by imposing the condition that

the number of elementary prisms or cylinders shall be

infinite.

In carrying out this operation we assume the two fol

lowing relations, which are proved in almost any work

on algebra :

(A) 1 + 2 +3 +. + n = itt2 + iN,
;

(B) l2 + 22 + 32 +---+n2 = in3 + in2 + i7i,

where n denotes any positive integer, and the series

extends from 1 to n.

146. Let X be a closed plane figure, which remains

invariable in form while varying its dimensions.

Let a given point P be

guided by the line AH, and

let a point Q move on AC.
Then X describes a spatial

figure, a cone or pyramid,

having some position of the

generator at B, as above.

Let X denote the area of

the variable figure, X, at any stage in its variation, and

let B denote the area of CDE, the final stage of X.
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Then X: B = PQ2
: HC2

. (P. Art. 218. 5.)

And from similar triangles, APQ and AHC,

PQ2:HC2=AP2:AH 2
.

.. .AH2

Denote AH by h, and let AH be divided into n equal

parts, and let AP be m of these parts.

Then

and

But the elemental cylinder, or prism, on X as base has

- AH, or -, as its altitude, and therefore its volume is

n n

This expresses the volume of any element, a particular

one being got by giving a particular value to m. m = 1

gives the first element, lying next A; m = 2 gives the

second, etc., and m = n gives the last, lying next H.

The sum of these elements is

2 (Art. 145. B.)
3 2n 6 n2

)

This holds true for all integral values of n. When
we go to the limit by making n infinite, the fractions
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and become
2 n 6 n2

zero, and the sum of the elements

becomes the volume of the spatial figure (Art. 145).

. . volume =
J-
Bh.

As B may have any closed form whatever, this ex

presses the volume of any species of cone or pyramid
which forms a closed spatial figure.

147. Let the generating figure, X, of constant form,

but variable in dimensions, be

guided by the axis OA, and by
the circular quadrant CQA as a

director, being the centre of

the quadrant.

Let CDE be the generator in

the position in which lies in

its plane, and let S denote the

area of CED, and X denote the

area of the generator in any

position.

Then, since PQ is _L to OA,

PQ2 = OQ2 - OP2 = OC2 - OP 2
.

But X: S = PQ2
: OC2

; (P. Art. 218. 5.)

PQ? OP2

Now, denote OA by r and divide it into n equal parts,

and let OP be m of these parts.

Then =-r, and OC=r.
n
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The elemental cylinder having X as base has - for

altitude, and its volume is therefore

The sum of these is

M+1 + l+...n terms I2 + 22 + -~n2

\
T&amp;gt; &amp;lt; ^ r

{ n n3
)

at the limit, when n becomes infinite.

And the volume generated while moving over the

whole diameter is

The value of this expression for volume depends upon

the value of S.

1. If S is a circle, its area is Tr?*
2
,
and the figure gener

ated is the sphere.

.-. vol. of a sphere = f irr\

2. If S is a square, and the middle point of its side is

at O, the area is 4^, and the figure is the common groin,

and its ,-

vol. = | r3
;

since the groin extends only from to A.

3. If S is a regular hexagon with a vertex at C, we

have a hexagonal groin, and its volume is
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148. By varying the form of the generator, and also

of the director curve, a great variety of spatial figures

may be described.

1. With a circle as director and an ellipse as generator,

QR being the major axis, we get the oblate spheroid; and

with QR as minor axis, the prolate spheroid.

2. With an ellipse as director, and major axis as axis,

and an ellipse as generator, we get the ellipsoid ;
with

circle as generator we get the prolate spheroid.

3. With parabola as director, and a circle as generator,

we get the paraboloid of revolution ;
and with ellipse as

generator we get the elliptic paraboloid.

EXERCISES J.

The axes of an ellipse being a and 5, its area is irab.

1. Show that the volume of a prolate spheroid is nab*, where

a&amp;gt;b.

2. Show that the volume of an oblate spheroid is 7r
2
6, where

a&amp;gt;b.

3. In the figure of Art. 147, if CQA were a quadrant of an

ellipse, and OA = a and OC = b, then 2? +^ = 1. Hence

find the volume of an ellipsoid when the axes of the generating

ellipse are b and c at the position S.

4. In Art. 146, if PQ2 = c AP, where c is a constant, show that

the volume described is one-half that of the circumscribing cylinder.

5. OC is an axial line cut by a curve in and C, and PM is a

perpendicular from a point P on the curve to the axis OC. If

PM - a(OM- OC - OJ/ 2
), show that the volume described by the

curve in a revolution about the axis is ^ of that of the circum

scribing cylinder between and C.
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B. FIGURES OF REVOLUTION.

149. When a plane figure revolves about an axial line

lying in its plane, the plane figure generates a spatial
figure bounded wholly or partly by curved surfaces,
and called, from its mode of generation, a figure of
revolution.

Under the same circumstances the area of the plane
figure generates a volume of revolution, i.e. the volume
of the figure of revolution.

The area of a plane figure may be considered as
the limit of the sum of a set of elements, composed of
inscribed rectangles with equal but indefinitely small
altitudes.

In revolution, these elements of area describe or

generate elements of volume, whose sum has for its

limit the volume of the gen
erated spatial figure.

150. Let AC be a rectangle,
Q

and let it revolve about the
A

axial line PR, parallel to AD.
The volume generated by the

rectangle AC is the difference

between the volumes generated by PC and by PD.

But the vol. by PC= TT PB2
. BC,

and the vol. by PD = TT - PA2

BC:,

/. the vol. by AC=ir- BC(PB- - PA2

)

= TT . BC(PA + PB) (PB - PA).
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If Q be the middle point of AB, PQ is the distance of

the centre of the rectangle from the axis of revolution,

.-. vol. by AC= 27r - PQ - BC - AB,

area of AC x the circumference of the circle traced

by the centre of AC.

Therefore, the volume described by a rectangle in one

revolution about an axial line parallel to its side, and

which does not cross the rectangle, is the area of the

rectangle multiplied by the length of the path of its

centre.

Cor. 1. When the axial line passes through the cen

tre of the rectangle, the length of path described by that

centre is zero, and hence the volume described is zero.

From this it appears that if a revolving plane figure

is crossed by the axis of revolution, the parts of the

figure lying upon opposite sides of the axis generate

volumes which must be taken in opposite senses, or with

opposite signs.

Cor. 2. From the figure we have 2 PQ = 2 PA -f AB ;

and hence 2-n- PQ = 2&amp;gt;r
- PA + TT &amp;gt; AB.

But when AC is an elemental rectangle, and we go to

the limit by indefinitely diminishing AB, PQ has for

its limit either PA or PB, these being finally the same.

Hence, if the elemental rectangle AC is to be taken at

the limit, PA may be taken for PQ.

151. Volume of a cone of revolution. The rectangle

AC revolves about AB as an axis.
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The triangle ACB generates a cone of revolution
;
the

rectangle generates a cyl

inder; and the triangle

ACD describes that part of

the cylinder which remains

after the cone is removed.

OnAC take P, Q, any near

points, which at the limit

become coincident, and draw

PR, QS, perpendicular to AB, and PT, Q F, perpendicular
to AD.
Then PS, being an elemental rectangle of the triangle

ACB, generates an element of the cone; and PF, in

like manner, generates an element of the portion of the

cylinder which remains after removal of the cone.

But vol. of element by PS = TT - PR2 PE.

And vol. of element by PF= ir(PR + FR)PT PF.

And from similar triangles PRA and QEP,

PR _ QE PR _ PF
~EA~~EP

&amp;gt;

f PT~P#
element by PS _ PR
element by PF PR + FR

And this relation being true for any, and therefore for

every, pair of corresponding elements, is true for their

sums.

But at the limit, when Q comes to P, PR and FR
become the same.

.-. the limit of

Or,

K2 (elements by PF) 2

cone by ABC : figure by ACD = 1:2.
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Whence it follows that the cone is one-third of the

cylinder.

REMARK. In the foregoing investigation we might, according

to Cor. 2 of Art. 150, have taken the element described by P Fas
being tr 2 PR PT PF, since the element is finally to be taken at

its limit.

The quadrant DPA,

T V

152. Volume of a sphere,

and its circumscribed square

DBAC, revolve about CA as

an axis.

The quadrant generates a

semisphere, and the square

generates the right circum

scribed cylinder.

On the arc DA take P and

Q, any near points which at

the limit approach to coinci

dence.

Draw PR, QS, perpendicu

lars to CD, and PT, QV, per

pendiculars to DB. Produce

DC, making CG = DC.

The rectangle PS, being an

element of the circle, describes

an element of the sphere, and the rectangle PV for

similar reasons describes an element of that part of the

cylinder which lies without the sphere.

The volume of the element described by PS is, at its

limit when Q comes to P, 2* - CR - PR - RS
;
and the

volume of the element described by P~Fis, at its limit,
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. at it.
element by P;S ^^ft.fis. CR

&quot;

element by PV PT PF CR + CD

But the ADPR and POR being similar,

PR = PIt = GR = CR + CD
PT RD PR~ PR

And the A PEQ and PRC being similar at the limit

when Q approaches P,

RS = PE= PE = PR
PF~ PF~E~ CR

.-. at It., element by PS = 2 x element by PV.

And this being true for each, and therefore every pair
of corresponding elements, is true for their sums.

Therefore the volume generated by the quadrant is

twice the volume generated by the figure DPAB.
Or the volume of a sphere is two-thirds that of the

circumscribing right cylinder.

Cor. 1. If r be the radius of the sphere, the volume of

the circumscribing cylinder is 7rr
2

-2r; and hence the

volume of the sphere is f ?rr
3

.

Cor. 2. From the foregoing investigation it follows

that wherever Q is taken on the arc, with CA as axis,

the volume generated by the segment of the circle,

DSQP, is two-thirds the volume generated by the rec

tangle Dsqv.

153. Volume generated by an isosceles triangle revolv

ing about an axis which passes through the vertex but

does not cross the triangle.
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The isosceles A OPQ, with PQ as base, revolves about

the axis OD passing

through the vertex 0.

Let PQ meet ODmD,
and draw the altitude

OR, and project P, R, Q,

on OD at A, C, and B.

Also draw QE parallel

to OD.

and hence, A PEQ ^ A ORD.

Therefore, OD - PE = OR PQ ;

also, APEQ^AOCR,
and PQ.CR=OR-EQ;

.-. OD-CR.PE = OR 2 EQ = OR2
- AB.

Now, the vol. described by A OPQ = vol. of cone by
OPA -f vol. of cone by DPA vol. of cone by OQB

vol. of cone by DQB,
= ir- OD(PA2 -QB2

)
= ITT. OD . 2 CR - PE
= f TT- OR2 -AB.

Therefore, the volume described, in one revolution, by
an isosceles triangle revolving about a line through its

vertex, and lying without it, is the continued product
of the projection of the base of the triangle upon the axis,

the area of the square on the altitude, and the constant f ?r.

154. Let equidistant points A, B, (7, etc., be taken in

the arc of a circle of which is the centre and OL is

a centre line not crossing the arc.

The A AOB, BOC, ..., are all isosceles and congruent.
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The volume described by these triangles in revolving
about OL as axis, p being the common apothem, is

f &amp;gt;

2
7r(pr. of AB on OL + pr. of BC on OL + ...).

But at the limit when the number of points A, B, C ...

is indefinitely increased, and the distance between them
is correspondingly diminished, the generating figure be

comes the sector of a circle, p becomes the radius, and

the sum of the projections of the bases of the triangles

is the projection of the arc, and the figure generated is

a sector of a sphere.

Therefore, the volume of a sector of a sphere = f Trr
2 x

pr. of the generating arc on the axis.

Cor. If the generating arc forms a semicircle, its

projection on the axis is 2r, and the figure generated
is a sphere. ^ voL of a gphere = 4^

EXERCISES K.

1. Solve Ex. 6 of Set I., by the principle of 153.

2. AX is an axial line, and PM is a perpendicular to this

line from a point P on a curve which starts from A. If PM2

= c.4J/, where c is a constant, show that the volume described by
one revolution about AX, is one-half that of the circumscribing

cylinder.

3. The volumes of the circumscribing cylinder, the sphere, and

the cone with the same base and altitude as the cylinder, are as

the numbers 3, 2, and 1.

4. The volumes of the cylinder circumscribing a semisphere,

the semisphere, and the cone with base and altitude of the cylin

der, are as the numbers 3, 2, 1.

5. A plane cuts a sphere, and its circumscribed cylinder parallel

to the base
;
then twice the volume of the segment is equal to the

intercepted volume of the cylinder and twice the volume of the

sphere on the altitude of the segment as diameter.
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C. THEOREM OF PAPPUS OR GULDINUS FOR

VOLUMES.

155. The mean centre of a system of complanar points

for a system of multiples is defined (P. Art. 240) as the

point of intersection of two lines, L and M, for which

$(a.AL)=0, and S(a--43f) = 0;

where A is a representative point, AL and AM represen

tative perpendiculars from A to L and M respectively,

and a a representative weight or number.

Also (P. Art. 241), if be the mean centre of the

system, and L be any line complanar with the system,

We have to deal here with the mean centre of the

area of a figure, and later on with the mean centre of

the perimeter of a figure.

156. When a plane figure has an axis of symmetry,
the mean centre of the figure lies on this axis.

For every point in the area upon one side of the axis

of symmetry there is a point upon the other side exactly

corresponding in every respect. So that if L be the

axis of symmetry and A^ A2 be corresponding points,

we have A^L + A2L = 0. And since the whole area is

represented by pairs of such corresponding elements,

S(a - AL) 0, or L passes through the mean centre.

Cor. 1. When a figure has two axes of symmetry, the

mean centre of area is the point of intersection of the

axes.
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This is the case with the square, the rectangle, the

rhombus, all regular polygons, the circle, and some other

figures.

157. If the area of a figure be supposed to be made

up of elemental squares, the centres of these squares,

being their mean centre of area, will represent the points,

A, -B, C, etc., in a system of points, and the areas of the

several squares will represent the weights.

But since the squares are all equal, the weights are

all equal, and may be left out of consideration. With

this understanding we have for the mean centre of area,

= 0, where L passes through this centre; and

= n OL, where is the mean centre, L is any

line not passing through 0, and n is the number of

elements under consideration.

158. Theorem. The join of the mean centres of two

systems passes through the mean centre of the system

composed of the two taken together.

This theorem is almost self-evident.

For if 2(a
f

- A L) = and 2
(a&quot; A&quot;L)

= denote the

two systems, and L is the join of their mean centres, we

have at once

which is of the type 2 (a- AL) = 0.

Cor. If any number of systems have their mean

centres collinear, the mean centre of the system com

posed of all taken together lies on the line of collinearity.

159. Theorem. The mean centre of a parallelogram is

its geometric centre, i.e. the intersection of its diagonals.
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Let ABCD and EFGH be two congruent parallelo

grams, superposable with E on A, F on J3, G on (7, and

H on D. Their mean centres of area are then coinci

dent. But the parallelograms are also superposable with

E on (7, F 011 D, G on A, and H on B
;
and their mean

centres of area are again coincident.

Hence the mean centre of each is the geometric centre.

Cor. In like manner it may be shown that when any

figure has a geometric centre, that centre is also the

mean centre of its area.

160. Mean centre of the area of a triangle. Let BD
be a median to the triangle ABC. Draw EF and GH
two near lines each parallel to AC, and draw El, FJ

parallel to BD.
The parallelogram EJis an element

of the area of the triangle, and the

sum of the areas of these elements,

when taken at the limit, is the area

of the triangle.

But as BD bisects EF and IJ, it

passes through the mean centres of all

the elements of which EJ is a type.

Therefore J(
Art. 158), the centre of area of the triangle

lies on BD; and as it lies on both of the other medians,

the centre of area of a triangle is its centroid.

Def. On account of the foregoing, we shall call the

mean centre of area of any figure its centroid.

161. Theorem. The orthogonal projection of the mean

centre of any complanar system is the mean centre of

the projection of the system for the same multiples.
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Let A, B, C, be the elements in the plane U, and

A
,
B

,
C1

,
be their projections on the plane F Take

L, any line in U, through the mean centre 0, and let L 1

and be the projection of L and on F

Then 2(a AL) = 0. (P. Art. 240.)

But J., BL, CL, etc., are all parallel, and A L
,
B L

,

C L
, etc., are all parallel. Therefore, the

Z. (AL . ^ .L )
= /. (BL .

)
= etc.,

and hence

A L B L

or

and passes through the mean centre of the projected

system. And as this is true for all directions of L and

L in their respective planes, is the mean centre of

the projected system ;
or the projection of the mean

centre of the system in U is the mean centre of the pro

jected system in F

162. Def. Let us call, in general, a figure of the type

of the cylinder or prism, but with non-parallel bases, a

cylindroid.

Suppose a system of near equidistant planes parallel

to the axis to cut the cylindroid. These divide it into

laminae parallel to the axis. Now suppose a second set

of planes, parallel to the axis, to cut the first system at

right angles, and to have the distance between consecu

tive planes the same as in the first system.
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These planes divide the cylindroid into elementary

prisms on square bases. These form the prismatic ele

ments of the figure, and the sum of theis volumes, at the

limit, as their bases are indefinitely diminished and their

number is correspondingly increased, is the volume of

the cylindroid.

163. AGB is a cylindroid having the base ABH nor

mal to the axis, and the base CGD oblique to the axis.

Let PQ be a prismatic element,

the area of whose base is
/?,

and let

the line CD be taken parallel to the

common line of the planes of the

bases, and let AB be the orthogonal

projection of CD on the lower base.

Draw QFI. to AB, and FE nor

mal to the base ABH. Then FE H

is parallel to QP, and meets CD in

some point E. Draw EE _L to PQ.
Join EP. Then EP is _L to CD, and ERQF is a rect

angle, and EF= QR.
The volume of the prismatic element PQ, is

And since the bases of all the prismatic elements have

the same area, and EF is constant, the sum of the

volumes is

But ^(^)EFis, at the limit, the volume of the cylin

der HK, whose base is ABH, and altitude EF.

In order that this may be equal to the cylindroid, we

must have 2(/? PR)= ;
and as every element PR is in
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a constant ratio to the corresponding element EP, and

/? is constant, we must have ^(EP) = 0.

Or CD must pass through the centroid of the upper
base, CGD, of the cylindroid; and (Art. 161) AB
passes through the centroid of the lower base.

Hence, however the directions of the planes of section

which give the bases may vary, provided they do not

meet within the limits of the cylindroid, the volume
remains unchanged, while the distance between the

centroids of the bases remains the same.

Cor. The volume of a cylindroid is the area of a right

section multiplied by the distance between the centroids

of the bases.

164. Let the plane figure X, invariable in form and

dimensions, move from a position AB to another posi

tion CD, in such a manner that its

direction of motion, whether follow- B

ing a line or a curve, is always K,

normal to its plane. \*Q
Take two near positions of X as

at GH and JK, and consider these

as bases of a cyliudroid forming an element of the figure

generated by the motion of X. If P and Q be the

centroids of the bases, the volume of the elementary

cylindroid, GK, is X PQ, where X is the area of the

generating figure.

And at the limit, when P approaches indefinitely to Q,

the sum of the cylindroids is the generated spatial figure,

and the sum of the elements PQ is the path of the

centroid of X.
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Therefore, when a plane figure, invariable in form and

dimensions, moves in a path which is at every instant

normal to the plane of the figure, the whole volume

described is the area of the figure multiplied by the

length of path moved over by the centroid of the figure.

This is the statement of the theorem as first given by

Pappus (about 300), and afterwards reproduced by
Guldinus (1577-1643), and usually called after his name.

Cor. When a plane figure revolves about a complanar

axis, the direction of motion of the centroid is at all

times necessarily normal to the plane of the figure, and

the volume described in one revolution is the area of the

plane figure multiplied by the circumference traced by
its centroid.

Ex. A circle revolves about a complanar line lying

without it
;
the figure generated is called an anchor ring.

To find its volume.

Let r be the radius of the generating circle, and R be

the distance of its centre from the axis. Then

vol. =2

EXERCISES L.

1. Find the position of the centroid of a semicircle.

2. The circle which generates an anchor ring is divided by a

diameter parallel to the axis
; compare the volume described by

the outer and the inner half of the circle.

3. A semicircle revolves about its limiting diameter. Any
segment whose chord is parallel to the axial line describes a

volume equal to that of a sphere on the chord of the segment as

diameter.
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4. The distance from the centre of a circle to the centroid of

any segment, is
,
where c is the half chord of the segment, and

3 S
S is its area.

5. The distance of the centroid of a segment from its chord is

2c_3_^
3 S 2v

where c is the chord of half the arc, and v is the versed sine of

the arc (P. Art. 176. Cor. 1).

6. An arc of a circle revolves about its chord
;
the volume

generated is

^-{4c^-3(c2
-&amp;lt;y

2)}
ov

The figure generated is called a circular spindle.

7. The centroid of a semicircle is at the distance from the

centre of the circle.

8. A semicircle revolves about a tangent at its middle point.

The volume described is

9. A square with side s revolves about a line through one

vertex, making an angle with a side, and not crossing the square.

The volume described is 7rs3(sm + cos 0).

10. A plane cuts through a right circular cylinder so as to cut

one base only. The volume of the portion removed is

*{feP-(r-)};
v ,-

where h is the height of the convex part, r is the radius of the

cylinder, and v, c, and S denote the versed sine, semichord, and

area of the segment of the base.

This figure is called an unyula of a right circular cylinder.



SECTION 4

PLANIMETRY THE MEASUREMENT OF THE AREAS

OF SURFACES, OR SUPERFICIES.

165. When a spatial figure is bounded by plane faces

only, the area of its surface is the sum of the areas of

its faces.

For such figures no special method is required outside

of the processes of plane geometry.

The area of a curved surface is usually derived from

that of a polyhedron by going to the limit, and suppos

ing the number of polyhedral faces to be indefinitely

increased while the size of each face is correspondingly

diminished.

In some curved surfaces, however, we may suppose

the surface to be brought to coincide with a plane by a

sort of unrolling of the surface without stretching or

distorting it in any of its parts. Such surfaces are said

to be developable ; and when the surface is brought to

coincide with a plane, it is said to be developed on the

plane.

Thus a sheet of paper may be rolled into a cone or a

cylinder, but it cannot be bent into a sphere.

The cylinder and the cone are accordingly developable

surfaces, while the sphere is not.

It is readily seen that none but ruled surfaces can be

developable. Ruled surfaces are not, however, all devel-

155
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opable, and those which are not so are called skew sur
faces.

166. Development of the conical surface.
Let be the centre of a circular cone, and L be a

generating line.

On L take any point, P, and through P draw the
cone-circle APE with as vertex.

With any point, Q, as centre, and QD = OP as radius,
describe an arc, DE, equal in length to the circumfer
ence of the circle APB.
The figure QDE, a sector of a circle, is the develop

ment of the conical surface lying between the centre
and the cone-circle APB.

It must be remarked that the construction here given
is theoretical only, since we have no method in elemen
tary geometry of constructing an arc of one circle equal
in length to a given arc of another circle, when the
circles have different and incommensurable radii. This

difficulty will not, however, vitiate any application to be
made of this principle.
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167. Area of surface of right circular cone.

For the closed cone - APB it is evident that the

area
%
of the curved surface is equal to the area of its

development, i.e. of the circular sector QDE, and this

is one-half the length of the arc DE multiplied by the

radius QD.
But the arc DE is equal in length to the circle APB,

and the radius QD is equal to OP.

Therefore, denoting the circumference of the base by

C, and the slant height, AO or BO, by S,

curved surface = i- OS.

168. Frustum of a right circular cone.

Drawing a second cone-circle, apb, to the vertex 0,

and the development Qde, we have for the frustum,

area = sector QDE sector Qde.

Or, denoting the circumference of apb by c,

2area= OP- C Op - c.

But OP = Pp + Op ;
and ^?= -;

Op c

Pp_C-c
(P. Art. 195. 1.)

Op c

and 2 area = Pp C + Op(C-c),

or area of surface ^Pp (C +c).

169. In the cylinder, 0, and therefore Q, goes to infin

ity, and QD and QE become parallel.

Hence DE and de become equal and parallel lines, and

the development DdeE is a rectangle.
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Or, if h be the height of the cylinder, and r be the

radius of the base,

convex surface = 2 -n-rh.

170. Area of the surface of a sphere.

Let AB be a quadrant of a circle which generates a

semisphere by revolving about

OB as an axis.

Take two near points on the

curve, P and Q, which at the

limit come into coincidence, and

draw the chord PQ. This chord

describes the convex surface of

a frustum of a cone, and the area

of the surface is
o p r q e

PQ (2 TT - Pp + 2 TT Qg), (Art. 168.)

where Pp and Qq are _Ls upon 05.

Take 72, the middle point of PQ, and draw Rr _L to OS
and join 720, and also draw QS _L to Pp.

Then the surface described by PQ is

27T-PQ. Rr.

And on account of the similar A PQS and 0/2r, the

surface described by PQ is

27T-

And the convex surface described by a system of chords,

forming the sides of a regular polygon, is
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But at the limit when P comes to Q, the apothem, OR,

becomes the radius, and the polygon becomes the circle
;

and the surface described by any arc, PQ, is

2irr x proj. of the arc on the axis.

Now, 2 TT? is the circumference traced by D, a point

on the circumscribed rectangle ACBO, and the projection

of the arc is equal to DE
;

Therefore, the convex surface described by the arc PQ
is equal to the convex surface described by DE.

Hence, if a sphere and its circumscribed right cylinder

be cut by two planes parallel to the bases of the cylinder,

the area of the curved surface intercepted between the

planes is the same for the sphere as for the cylinder.

Cor. The area of the surface of a sphere is equal to

that of the curved surface of its circumscribed right

cylinder.

Therefore, the area of the surface of a sphere is

or four times the area of a great circle.

171. We may consider a sphere as circumscribing a

conspheric polyhedron with an indefinite number of very

small faces. Considering these faces as bases of pyra

mids having their vertices in common at the centre of

the sphere, the sum of these pyramids at the limit, when

the number is indefinitely increased, and the size of each

base is correspondingly diminished, is the volume of

the sphere, and the sum of their bases is the surface

of the sphere.
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But each pyramid is Bh, and their sum is

Or writing S for 2B, and r for h,

where V is the volume of the sphere, and S is the area
of the surface.

THEOREM OF PAPPUS OR GULDINUS FOR
SURFACES.

172. For convenience we shall call the mean centre
of the perimeter of a plane figure its centre offigure.
The general theorems respecting the mean centre as

developed in Arts. 158 and 160 apply to the centre of

figure in the same manner as to the centre of area.

173. Two equal line-segments, AB and CD, are con

gruent whether A is placed on (7, and B on Z), or A on D,
and B on C, and hence the centre of figure of a line-

segment is its middle point.

Then, in any rectilinear figure which has an axis of

symmetry, the sides exist in congruent pairs which are

symmetrically disposed upon opposite sides of the axis

of symmetry.
And hence if A and A denote the middle points of

two sides forming a symmetrical pair, .47,= A L, or

AL -f- A L = ;
where L is the axis of symmetry.

Therefore, 2 (AL) = ;
or L passes through the cen

tre of figure.

Hence, when a rectilinear figure has an axis of sym
metry, the centre of figure lies upon that axis.



THEOREM OF PAPPUS. 161

Cor. When a rectilinear figure has two axes of sym

metry, their point of intersection is the centre of

figure.

174. Let AGB be a cylindroid having the base ABH
normal to the axis, and the base CGD oblique to it.

Suppose the convex surface to be

divided in very narrow strips of

equal width throughout, and paral

lel to the axis of the cylindroid and

equal in width to one another
;
and

let b denote the breadth of one of

these elements of surface, and let

/ST denote the line along the middle H

of the strips. Then ST is normal

to the base ABH.
Let CD be parallel to the common line of the planes

of the bases, and let AB be the projection of CD on the

lower base. Draw TF J_ to AB and FE _L to CD. Also

draw EV- to ST, and join ES.

Then, EVTF is a rectangle, and VT= EF.

The area of the element represented by ST is

&. ST, orb.EF+b&amp;gt;SV.

And the sum of these elements, of which the one

represented by $T is the type, is,

But EFis constant, and S(&) is the circumference of

the base ABH.
Therefore 2(b EF) is the convex surface of the

cylinder, or prism, whose base is ABH, and whose alti-
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tude is EF. And that this may be equal to the whole

convex surface we must have 2,(b
- SV) = 0.

But as all the elements have the same width, b is

constant, and /S V : SE is constant
;

or, CD passes through the centre of figure of the upper
base

;
and hence AB passes through the centre of figure

of the lower base.

Therefore, the area of the convex surface of a cylin-

droid is the circumference of a right section multiplied

by the distance between the centres of figure of the

bases.

175. Let the plane figure X, invariable in form and

dimensions, move with centre of figure on the path

OPQR, and so that the direction

of the path is at all points normal

to the plane of the figure, and let

GH and JK be two near positions,

which at the limit come into coin

cidence.

The surface of the elementary cylindroid GK is the

circumference of X x PQ ;
and the area of the surface

of the figure generated by the motion of X is

S(PQ) X circum. of X.

But 2(PQ) is the path OPQR--, and circumference of

X is constant.

Therefore, the area of the surface described by a plane

figure, invariable in form and magnitude, which moves

so that its direction of motion is at each point normal to
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its plane, is the circumference of the generating figure

multiplied by the length of path described by its centre

of figure.

Cor. When a plane figure revolves about a complanar

line as axis, the direction of motion is necessarily normal

to the plane of the figure, and the surface described has

for its area the circumference of the figure multiplied by
the circumference traced by its centre of figure.

Ex. To find the surface of an anchor ring. The

centre of figure is the centre of the generating circle,

and the circumference traced is 2irR.

.-. area of surface = 2-n-r 2-n-K = kit*Rr.

176. The two theorems which go under the name of

Guldin s theorems, but which were discovered by Pappus,

express relations of the highest importance in mathe

matics both pure and applied. They enable us to find

the centroid of a generating figure when the volume of

the generated figure is known, or the centre of figure of

a generating figure when the area of the surface of the

generated figure is known, and vice versa.

Thus knowing the volume of a sphere, we can readily

find the centroid of a semicircle, and knowing the sur

face of a sphere enables us to find the centre of figure

of a semicircular arc.

EXERCISES M.

1. The circle describing an anchor ring is divided by a diameter

parallel to the axis. Show that the difference between the sur

faces described by the outer and the inner part is eight times the

area of the generating circle.
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2. The convex surface of a cone is wrs
;
and the entire surface

is irr (r + s) ;
where s is the slant height, and r is the radius of

the base.

3. The entire surface of a conical frustum is

4. The areas of the surfaces of the regular polyhedra are

as follows :

Tetrahedron, e2 ^/3; Cube, 6e2
; Octahedron, e~2^/3; Dodeca

hedron, e215v/

(l + IV5 ) 5 Icosahedron, e 2
5V3.

5. The distance between the centre of a circle and the centre

of figure of any arc of the circle is =^-i where I is the length of

the arc, and c and r denote as usual.

6. The area of the surface of a circular spindle is

v

7. The convex surface of an ungula of a right circular cylinder is

!
(2 cr + r - v -

1) . See Ex. 10. K.
v



PART IV.

PROJECTIONS AND SECTIONS.

SECTION 1.

PERSPECTIVE PROJECTION.

177. Def. Let P be a variable point on a plane figure

X; let be a fixed point not complanar with X; and

let L be the line OP.

When P describes the figure X, L describes the per

spective projection of X in space, or the spatial projec

tion of X, and is the centre of the projection.

If the spatial projection be cut by a plane V, the

figure of section is a plane figure called the perspective

projection of X on V for the centre 0.

When goes to infinity, L has a fixed direction, and

is parallel to a fixed line for all positions of P, and the

projection becomes parallel projection.

If the direction of at infinity is normal to F, the

projection on V becomes orthogonal or orthographic pro

jection, which is thus a special case of perspective pro

jection.

If the direction of at infinity is perpendicular to

165
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the plane of X, but oblique to
&quot;F,

the projection may be

called the ant-orthogonal projection of X on V.

In what follows in this section, projection will mean

projection with finite unless otherwise stated, and the

projection will mean the figure of section.

178. We observe that in a way projection and section

are reciprocal processes, as by projecting a plane figure

we get a spatial one, and by cutting the spatial one by
a plane we return to a plane figure.

And this passing from one plane figure to another

through a spatial figure may be repeated as often as we

please.

179. Since the generator L is unlimited, the spatial

figure extends to infinity on both sides of the centre, and

admits of section on either side or section on both sides

by the same plane, examples of which will occur here

after.

180. The following theorems are fundamental :

1. A line projects into a line.

For the spatial projection of a line is a plane, and

every plane section of a plane is a line.

2. The point of intersection of two lines projects into

the point of intersection of the projections of the lines.

Hence the projection of a plane rectilinear figure is a

plane rectilinear figure having the same number of sides

and vertices as the projected figure.

3. A curve projects into a curve, and a tangent to the

curve into a tangent to its projection.
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For the coincident points common to the curve and
the tangent become coincident points common to the

curve and the tangent in the projection.

On account of its character, perspective projection is

also called conical projection.

181. Let be a centre of projection, and let 7 and V
be two planes, neither of which contains 0, and whose
common line is AB.

Through pass a plane parallel to F, and let it meet
Uin I. Then / is parallel to AB. Take P, any point
in J, and let OP be the axis of an axial pencil. The
section of this pencil by 7 is the flat pencil P - QRS, ;

and since OP meets V at infinity, the section of the

axial pencil by F is a set of parallels, QQ ,
RR

,
SS 1

,

etc.,
...

(Art. 21. Cor. 2).
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Hence the flat pencil on 7 with vertex at P projects
into a parallel system on F, and the direction of the

system is that of the axis OP.

Def. P is the vanishing point on U for the parallel

system on F, or it is a vanishing point for F, i.e. for

some system of parallels on F; and /, which is the locus

of vanishing points for different systems of parallels on

V, is the vanishing line on
7&quot;,

or the vanishing line for V.

Similarly, by passing a plane through parallel to U,

we obtain the line J, 011 F, as the vanishing line for U.

Thus either plane may be taken indifferently as the

plane of the figure, and the other plane becomes the

plane of the projection, or the plane of section. The

operation of projection is thus completely reversible.

Cor. 1. Any point is projected to infinity by taking
the plane of section parallel to the join of that point

with the centre of projection.

Cor. 2. Any line is projected to infinity by taking

the plane of section such that the given line may be the

vanishing line for that plane.

Cor. 3. If P goes to infinity along I, OP becomes

parallel to AB. But the flat pencil whose vertex is at

infinity is a set of parallels.

Therefore, lines parallel to the common line of the

planes project into lines having the same direction, i.e.

into a set of parallels.

Cor. 4. If the planes fjand Fare parallel, the figure

and its projection are similar (Art. 28. Cor. 2), and

parallel lines project into parallel lines.
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182. Application. To prove that the middle points of

the three diagonals of a tetragram are collinear.

ABCD is a tetragram, and

AC, BD, EF are its three

diagonals.

Let BD and FE produced
meet in S

}
and project S to

infinity in the direction BD.
Then BD and FE become

parallel, and AC is a me
dian to the new triangle

AEF (P. Ex. 11, p. 170),
and P, Q, and R are points on this median, and are

therefore collinear.

But by projection a line can come only from a line.

Therefore, P, Q, R, are always collinear.

183. Theorem. Anhar-

monic relations are un

changed by projection.

Let ABCD be a range
on the plane U, and let

A B CD be its projection
on V from the centre 0.

ABCD, A B CD
,
and

lie in one plane, and the theorem is reduced to that of a

flat pencil.

But 0\ABCD\ = OlA B CD
l. (P. Art. 304. Cor. 3.)

.-.
{ABCD} = \

A B CD
}.

Or the anharmonic ratio of ABCD is unchanged by
projection.
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Cor. 1. Any given range can be considered as having
come from some other range having the same anharmonic
ratio

;
and any range and its projection are homographic.

Cor. 2. If ABCD be a harmonic range, and D be

projected to infinity, the projection of B bisects the join
of the projections of A and C.

184. Application. To show that a diagonal of a tetra-

gram is divided harmonically by the other diagonals.
In the figure of Art. 182, project the diagonal EF to

infinity (Art. 181. Cor. 2), E going in the direction AD,
and F in the direction AB.
Then ABCD becomes a parallelogram, and is the

middle point of the diagonals, and therefore the middle

point of AC. But since O goes to infinity, AOCG is a

harmonic range.

Therefore, AOCG is always a harmonic range. Similar

proofs may be obtained for the other diagonals.

185. Theorem. Any angle less than a straight angle

may be projected into any required angle less than a

straight angle.

Let APC be the given angle lying in the plane U, and
let A and C be the points where its arms meet the

plane of projection V.

With AC as chord describe on Fa segment of a circle

ABC which shall contain the required angle, and through

B) any point on this segment, draw BP. The centre of

projection is at any point on the line BP, as at 0.

For the planes BPA and BPC contain the given angle
APC on U, and the required angle ABC on V.
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Cor. 1. Since B is any point on a circle, and is

any point on the line BP, lies on the surface of a

cone whose centre is P, and ^ %

of which OPB is a gener- v*-i

ating line, and the circle

ABC the director curve.

Cor. 2. Let / be any
line in U.

Through I draw any

plane, W, and take F par

allel to W. From any point

on W, I is projected to in

finity on V. But W cuts

the cone in a curve, QOR,
and any point in this curve

lies at the same time upon
the surface of the cone and upon the plane W.

Therefore, from any point in this curve the Z APC is

projected into a given angle ABC, and any line I is

projected to infinity.

Hence any number of points can be found all lying on

the plane section of a cone, from which as centre a given

angle of a plane figure may be projected into a required

angle, and a given line of the same figure be projected

to infinity.

186. Any quadrilateral may be projected into a rect

angle.

For if we project the external diagonal to infinity, and

an angle of the quadrilateral into a right angle, the

figure becomes a parallelogram with one right angle,

i.e. a rectangle.



172 SOLID OR SPATIAL GEOMETRY.

187. Theorem. Any line-segment may be so projected
that any point on the line of the segment may become
the middle point of the projection.

1. Let the point divide the segment internally.
Let AB be a given segment and C be an internal point

in it. Take D, the harmonic conjugate to C (P. Art.

309), and taking any
point as centre of pro

jection, join OD, and

project the range upon a

line, L, parallel to OD.
Then since D goes to

infinity, C&quot; bisects the seg
ment A B .

2. Let the point D
divide the segment exter

nally. Take (7, a har

monic conjugate to the

given point Z&amp;gt;,
and join

ing 0(7, project the range

upon any line M parallel

to OC.
*

1

Then, since C goes to infinity, D&quot; bisects the segment
A&quot;B&quot;.

In this projection we notice that no part of the pro

jected segment lies between A&quot; and B&quot; in the finite, but

that the projection of the line-segment AB extends from
A&quot; upwards to C&quot; at infinity, and thence returns, from

below, to B&quot;.

We have thus reversed the segments of the original

line, so that the finite part ACB extends through infill-
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ity, and the infinite part BDA becomes finite
;
and thus

D&quot; represents the external point of bisection of AB, that

is, the point at infinity, projected into the finite. We
have thus a graphic illustration of the theorem that the

point at infinity on any line-segment is the external

point of bisection of the segment.

Cor. 1. A circle may be so projected that any point
within it may become the centre of the curve of pro

jection.

Let C be the given point in the circle, and let ACB
be a diameter, and ECF a chord perpendicular to this

diameter.

On any plane parallel to ECF project the segment
ACB so that C&quot; may be the centre of A B

, by 1.

In this case no part of the circle goes to infinity, and

the projection is a closed curve.

Cor. 2. A circle may be so projected that any point
without it may become the centre of the figure of pro

jection.

Apply the principle involved in 2.

In this case the circle becomes two curves which

extend to infinity in opposite directions, and which do

not meet one another. The diameter AB projects into

a common axis to the two curves, and the projection of

the given point bisects the part of the common axis

intercepted between the curves.

EXERCISES N.

1. Show that a tetragram may be projected into a rectangle.

2. A given line may be projected to infinity, and two given

angles be projected into required angles.
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3. ABC is a triangle, and DE is parallel to AC, D being on
BC, and E on AE. CE and AD intersect in 0. Then BO is

a median; and if SO meets DE in P and AC in $, BPOQ is

a harmonic range.

4. ABC is a triangle, and AD, BE and (IF are parallel, D
being on BC, F on .45, and E on AC. Show that

AEr :#C = ,4F. BD-.BF-CD.

5. A chord of a circle is projected to infinity. Show that the

pole of the chord becomes the point of intersection of tangents
which touch the projection at infinity.



SECTION 2.

PLANE SECTIONS.

188. The definition of a plane section, and some

general facts with regard to it, are given in an earlier

portion of this work (see Arts. 19 et seq.).

Evidently the plane section of any polyhedron is a

polygon, and the plane section of a sphere is a circle.

Such sections offer no distinctive features other than

what belong in general to polygons and circles.

But when we make plane sections of the cone or

cylinder, we are introduced to curved figures which are

not circles, and with which we have not hitherto become

acquainted.

These we propose to consider.

PLANE SECTIONS OF THE CIRCULAR CONE.

189. The spatial projection of a circle, from a centre

of projection for which the circle is a cone-circle, is a cir

cular cone. The section of this cone by a plane, variable

in direction, is a variable curve, which, in passing through
several distinctive phases in its variation, constitutes a

class of plane curves which are known as conic sections,

or simply conies.

Hence a circle may be projected into any conic
;
and

conversely, any conic can be projected into a circle.

And thus any conic may be projected into any other

conic.

175
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CLASSIFICATION OF CONICS.

190. Let be the centre of the circular cone AKB,
L being a generating line, and let V denote a plane of

section passing through any
point Q. Then,

1. When V is normal to

the axis of the cone, the sec

tion is a circle, DCQ, or C.

Now, let a tangent to the

circle, (7, at Q be drawn in

the plane V, and let the

plane revolve about this tan

gent line as an axis. Then,

2. When V makes with

the axis of the cone an angle
less than a right angle, and

greater than the semivertical

angle of the cone, the section

is an Ellipse, E.

In this case the section-

plane, V, cuts completely

through one nappe of the cone, and does not meet the

other nappe. Hence the ellipse consists of a single

closed curve, as represented by the figure E.

3. When V makes with the axis of the cone an angle

equal to the semivertical angle of the cone, the section is

a Parabola, P.

In this case V is parallel to a single generating line,

and cuts only one nappe of the cone, but does not cut

through it, and thus the curve extends indefinitely out

wards in one direction.
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The parabola is consequently a single curve, but not a

closed curve.

4. When V makes with the axis an angle less than the

semivertical angle of the cone, the section is a Hyperbola.

In this case V is parallel to two generating lines

which make a finite angle with one another, and cuts

into both nappes of the cone, but does not cut through
either.

Therefore, the hyperbola, H, consists of two curves, or

rather two branches extending infinitely outwards in

opposite directions, and separated from one another by a

finite interspace, QQ .

191. Degraded forms. All the conies may take what

are called degraded forms
;
that is, forms which they

assume as limiting forms, under the sequence of varia

tion, but which are not visible curves.

1. Suppose that while the different directions of the

section plane, which give the several conies, remain the

same, the section plane moves up to 0.

Then, (a) The circle and ellipse reduce to a point

called a point-circle and a point-ellipse respectively. Of

course there is no final distinction between a point-circle

and a point-ellipse, but their names indicate their origin.

(b) The plane of the parabola becomes a tangent

plane to the cone, and touches the cone along two coinci

dent lines; and thus the parabola degrades into two

coincident lines.

(c) The plane of the hyperbola gives in section two

generating lines which make a finite angle with one



178 SOLID OR SPATIAL GEOMETIiY.

another, and the hyperbola thus degrades into a pair of

intersecting lines.

Hence a pair of intersecting lines is frequently called

a rectilinear hyperbola.

Let V be the plane which gives the hyperbola H, H
(Fig. 190), and let V be parallel to Fand pass through 0.

V gives in section the rectilinear hyperbola which cor

responds to H, H; and if we draw OT to the middle

point of QQ ,
and by parallel projection in the direction

TO, we project the hyperbola //, H upon the plane V,
we have, on that plane, a hyperbola and its correspond

ing rectilinear hyperbola. The two lines which form

the latter are then called the asymptotes of the former.

2. If 6r remains fixed while Q moves up to 0, the

ellipse becomes a double line-segment, and is called a

line-ellipse.

192. From the generation of the various conies, as

now explained, we deduce

1. That the circle is a special form of the ellipse, and

that properties of the circle are special cases of more

general properties belonging to the ellipse. And as only

one direction of the plane of section, relatively to the

axis of the cone, can give the circle, the circle has only

one form, or all circles are similar to one another.

2. That the parabola stands intermediate between the

ellipse and the hyperbola, and is the form through which

one of these curves passes into the other. Also, since

only one direction of the plane of section relatively to

the axis of the cone can give the parabola, the curve has

only one form, and all parabolas are similar to one another.
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3. That both the ellipse and the hyperbola are varia

ble in form, the ellipse varying from the circle at the

one limit to the parabola at the other, and the hyperbola

varying from the parabola at the one limit to the form

of two coincident lines at the other.

4. That all the conies have many properties in common.

COMMON PROPERTIES OF CONICS.

193. As a line can meet a circular cone but twice (72),

so a line can meet a conic section in two and only two

points. When these two points become coincident, the

line becomes a tangent line, and the point of contact is

a double point.

The conies constitute a distinct class of curves. Being
the simplest curves that it is possible to have, they are

called curves of the first order.

All curves not conies belong to a higher order, and

cannot be obtained as sections of a circular cone by a

plane, nor as sections of any cone, one of whose sections

is a conic.

Curves are classified according to the number of times

they may be met by a line under the most favourable cir

cumstances, and all curves other than conies can be met

by a line in more than two points, either real or imag

inary.

Cor. A tangent to a conic lies completely without the

conic, except at the point of contact.

194. Z is a sphere, and - PFG is a tangent cone

touching the sphere in the small circle BEG.
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Denote the plane of BEG by U, and let V be a

plane of section of the cone, touching the sphere in S,
and meeting U in the p
line DH.

Let Wdenote the plane

containing the axis of the

cone and being normal

to DH. Then W is per

pendicular to both U
and F.

AQP is the conic

formed by F, and P is

any point on this conic.

BD is a centre line of

the circle BEC, and is

the common line of U
and W, and SA is the common line of W and F

This latter line, SA, is the principal axis of the conic,

or simply the axis, and it is perpendicular to DH.
The conic is evidently symmetrical about the axis SA,

or the principal axis.

Draw PHA. to ZXHTand PM parallel to DH.

Then, P, M, D, H are complanar, all lying in F, and
MH is a rectangle, and therefore PH= MD.

Join PS and PO, and pass a plane through P, par
allel to U, giving the circular section GPF, and meeting
W along the line GF.

Then BEC and GPF being cone-circles with as

vertex,

OP=OF, and 0#= 0(7;

CF=EP=SP. (Art. 86. 1.)
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Similarly, SA = CA.

But, from similar triangles CAD and FAM,

CF:MD=CA:AD,
or SP:PH=SA:AD.

But the^ ratio SA : AD is independent of the position

of P on the conic, and remains constant while P moves

along the conic.

Therefore, denoting this constant by e, we have

SP
PH

= e = a constant.

Hence a conic, considered as the locus of a variable

point, may be defined as follows :

A conic is the locus of a point which, being confined

to one plane, so moves that its distance from a fixed

point ($) is in a constant ratio (e) to its distance from

a fixed line (DH), all being complanar.
This definition is usually adopted in analytical conies,

and it is sufficiently general to include every conic.

Def. The point S is the focus, and the line DH is the

directrix. A is the vertex of the conic, and the constant

e is the eccentricity.

PM is an ordinate to the principal axis, and PS is the

focal distance of the point P.

195. Let the accompanying figure represent the sec

tion by the plane W.

A second sphere, Z\ may be drawn, to touch the cone

and the plane V at S . Then BC and B C representing
the sections of the circles of contact, the planes of these
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circles are parallel, and they cut the plane V in parallel

lines represented in section at D and D . Hence the

conic has two foci, S and S
,
two vertices, A and A\ and

two parallel directrices represented in section by D
and D .

The figure as here drawn applies particularly to the

ellipse, but it may serve as a type for all the other conies.

U

In the parabola one vertex, focus, and directrix are at

infinity.

In the hyperbola the second focus is given by the

point of contact of the sphere Z&quot;.

Thus in the ellipse the curve lies between the direc

trices, while in the hyperbola the directrices lie between

the vertices of the two branches of the curve.
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196. In the figure of Art. 195, considered as a plane

figure, Z is the incircle, and Z is an excircle of the

triangle AOA . Therefore, AS = A S (P. Art. 135.

Ex. 1) ;
so that both foci are similarly situated with

respect to the corresponding vertices.

Also, drawing A T parallel to CA,

A S = A B = A T=AS = AC.

Therefore, the triangles D A T and DAC are con

gruent, and A D = AD
;
or the directrices are similarly

situated with respect to the corresponding foci and

vertices.

Hence it follows that the same curve may be drawn

from either vertex with the corresponding focus and

directrix, and therefore that a line drawn at right angles

to the principal axis, and bisecting the distance between

the foci, is an axis of symmetry of the curve.

And as the principal axis is also an axis of symmetry,
a conic has, in general, two axes of symmetry bisecting

one another at right angles. These are called the axes

of the conic.

In the parabola one axis is at infinity.

197. The character of the conic is determined by the

value of its eccentricity.

In the figure to Art. 194,

e = SA : AD = CA : AD.

1. Let AD be infinite. Then e = 0, and the plane V
is parallel to the plane U, and the conic is a circle.

Therefore, the eccentricity of a circle is zero.

In this case both spheres touch V at the centre of the
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circular section, and the foci of the circle become coinci

dent at the centre of the circle.

2. Let AD= CA. Then e = 1
;
and the triangle CAD

being isosceles,

Therefore, AD is parallel to OB, and the conic is a

parabola.

Hence the eccentricity of the parabola is unity. In

this case a second sphere cannot be drawn in any finite

position so as to satisfy the conditions for a focus.

3. When AD is
&amp;lt;

GO and
&amp;gt; CA, the value of e lies

between zero and unity. The /.ACD is
&amp;gt;

the /.ADC,
and the plane V, being inclined to the axis of the cone

at an angle greater than the semivertical angle of the

cone, cuts through one nappe and gives the ellipse.

4. When AD is
&amp;lt; AC and&amp;gt;0, e lies between unity

and infinity ;
the angle ADC is greater than ACD, and

the plane V, being inclined to the axis of the cone at an

angle less than the semivertical angle of the cone, cuts

into both nappes and gives the hyperbola.

198. When the centre of a circular cone goes to

infinity, the cone becomes a cylinder, and the only possi

ble plane sections are the

circle, the ellipse, and two

parallel lines representing

the parabola and hyperbola.

The ellipse, including the

circle as a particular case,

is the most important of

the conic sections, and we propose to develop some of its
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more prominent properties, through its relationship to

the circular cylinder.

Let ADB be one-half of the right section of a circular

cylinder, and let AEB be the corresponding half of an

oblique section of the same cylinder. Then ADB is a

semicircle with AB as diameter, and AEB is one-half

of an ellipse.

From
&amp;lt;7,

the centre of both the circle and the ellipse,
draw CD and CE perpendicular to AB, the former in the

plane of the circle, and the latter in that of the ellipse.
Then ED is a segment of a generating line of the cylinder.
On the ellipse take any point P, and draw PQ parallel

to ED, and QG parallel to DC.
The&ECD and PGQ are similar, and CD=CQ =

the radius of the cylinder, and CD is
&amp;gt; GQ.

Therefore, ED is
&amp;gt; PQ.

But CE2=CD2+DE2=CQ2+DE2

,
and this is

&amp;gt;CQ

2+
PQ2

.

Whence CE is
&amp;gt;

CP.

Or, CE is the longest segment from C to the ellipse,
and is the semia&is-major of the ellipse.

In like manner it may be shown that CP is
&amp;gt; CA ;

or that CA is the shortest segment from the centre to

the ellipse, and is the semiaxis-minor of the ellipse.

These axes are perpendicular to one another.

199. On account of the similar triangles, PGQ and
EDC (Fig. of 198),

PG:GQ=EC:CD.
But EC : CD is constant for a constant direction of the

plane of oblique section.

.*. PG \GQ = & constant.



186 SOLID OR SPATIAL GEOMETRY.

Hence the following construction for an ellipse ;

is a quadrant of a circle with cen

tre C, and GQ is a chord J_ to AC.
Take GP, a constant multiple of

GQ. The locus of P is an ellipse

whose semiaxis-minor is AC.

Again, draw PH J_ to CE and
let CQ meet HP in E.

Then, from similar triangles

EPQ and CGQ,
RP= PQ.
GC~ GQ
EH PG

AQD

And PH is a constant part of EH, hence the the

orem

If on a chord of a circle, perpendicular to a fixed

diameter, a point be taken so as to divide the chord in a

constant ratio, the locus of the point is an ellipse, and

the fixed diameter is the major or the minor axis of the

ellipse, according as the point divides the chord inter

nally or externally.

Def. The circles which have the major and minor axes

of the ellipse as their diameters are the major and minor

auxiliary circles to the ellipse.

200. In the figure of Art. 198, let AEB be a semicircle

with AB as diameter and C as centre, and let CE be

perpendicular to AB.

Project orthogonally on any plane, F, passing through
AB. Then GQ = GP cos PGQ, and as PGQ is a con-
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stant angle, GQ is in a constant ratio to GP and is less

than GP.

Hence Q lies on an ellipse of which AB is the major
axis.

Therefore, the orthogonal projection of the circle on

any plane not parallel to its own is an ellipse.

This result also follows directly from the statements

of Art. 190, since, in general, the perspective projection

of a circle on any plane which cuts through one nappe is

an ellipse. But in the case of perspective projection the

same diameter of the circle does not project into an axis

of the ellipse.

201. Conjugate diameters. Let ADBE be a right

section of a circular cylinder, by the plane U, and let

adbe be an oblique section by the plane F . Also let AB
and DE be perpendicular diam

eters of the circle, and FG be a

chord parallel to AB.
Now let the whole figure on

7 be projected ant-orthogonally

(Art. 177) on F
Then c is the centre of the

ellipse and ab and de, the pro

jections of AB and DE, are a

pair of conjugate diameters of

the ellipse,

And FG is bisected at H. Whence, from the nature

of parallel projection, fg is bisected at 7i,
and is parallel

to ab.

Therefore, de bisects all chords parallel to ab
;
and in

like manner ab bisects all chords parallel to de.
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Hence, when two diameters are conjugate, each bisects

all chords parallel to the other.

Cor. 1. Conjugate diameters are such that each is

parallel to the tangents at the extremities of the other.

Cor. 2. Conjugate diameters in the ellipse are the

parallel projections of orthogonal diameters in that circle

whose projection gives the ellipse.

Manifestly an indefinite number of pairs of conjugate
diameters may be found, and each diameter has one, and

only one, conjugate.

Cor. 3. When the plane V is parallel to AB or DE,
ab and de are perpendicular to one another, and become

the principal diameters of the ellipse.

202. Since Aa, Bb, etc., are generating lines of the

cylinder, they are lines of contact of tangent planes

(Art. 73). Let four tangent planes to the cylinder touch

it at Aa, Bb, Del, and Ee. The section of these by U is

a square, whose sides are parallel to AB and DE; and

this section remains constant in area however AB and

DE may be drawn, provided they are diameters which

intersect orthogonally.

The section of the tangent planes by V is a parallelo

gram whose sides are parallel to ab and de.

Now (Art. 116), the area of the square,is equal to that

of the parallelogram multiplied by the cosine of the

angle between U and F.

Therefore, the area of the parallelogram is unaffected

by any change in the position of V, which does not

change the inclination of that plane to the axis of the
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cylinder ;
that is, which does not change the form of the

ellipse.

Hence, in any given ellipse the parallelogram formed

by tangents at the extremities of conjugate diameters,

or the parallelogram on a pair of conjugate diameters

taken in both length and direction, is constant.

Cor. If a and b denote the semiaxes, and a and b

denote a pair of conjugate semidiameters, and be the

angle between them,
a b sin =ab.

203. Let APQB be a semicircle on a plane, U, and

let CP and CQ be radii at right angles to one another.

Let the whole be projected

orthogonally upon a plane, F,

passing through AB, and in

clined to U at a fixed angle, 0.

And let CP
, CQ be the pro- A&quot;

jections of CP and CQ respec

tively.

Then (Art. 201. Cor. 2), AP Q B is a semiellipse, and

CP and CQ are a pair of semi-conjugate diameters.

Draw PE and QF _L to AB, and join PE and Q F.

Then P E and Q F are J_ to AB
;
and since PCQ is a right

angle, CF= EP, and EC = QF. Also, PP = EP sin 0,

and QQ = FQ sin = CE sin 0.

And OP 2 + CQ 2 = CE2 + EP2 - PP 2

+ CF2 + FQ2 - QQ2

= 2 CP2 - (EP
2 + FQ2

) sin2

= OP2

(2- sin 2

0)

= a constant.
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Therefore, the sum of the squares on a pair of con

jugate diameters of an ellipse is constant.

Cor, Denoting the parts as in Art. 202. Cor.,

a 2 + b
12 = a2 + b\

The results of Arts. 202 and 203 are known as the

theorems of Apollonius.

204. Let V be a plane, cutting a circular cone so as

to give an ellipse, and let P be any point on the ellipse.

P is a point on the cone.

Let Z be the sphere which touches Fat the focus S,
and Z be the sphere which touches Fat the focus S

;
also

let K denote the circle of contact of Z with the cone,
and K denote the circle of contact of Z .

Draw through P a generating line of the cone. This

line cuts Km k, and K in k
,
and at these points touches

the spheres Z and Z .

But K and K being cone circles to the vertex 0, kk
is constant for all positions of the generating line.

But Pk = PS and Pk = PS
, being tangents to the

spheres.
... flp+ PS &amp;gt; = a constant.

Therefore, in any given ellipse, the sum of the dis

tances of any point on the curve from the two foci is

constant.

205. The result of the preceding article furnishes a

convenient practical method of drawing an ellipse.

Over two pins placed at S and S put a loop of inex-

tensible thread, and keep it stretched by a pencil at P.

The locus of P is an ellipse of which S and S are

the foci.
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For the whole length of thread being constant, and

the part SS being constant, it follows that SP+PS is

constant.

Cor. By considering

the phase when P comes

to A or to B, we readily
^ ^ ^_^

see that SB+BS =AB, AS c s- B

and hence that the whole length of thread is 2AS
,
or

2BS.

206. Let PT be a tangent to the ellipse at P, and let

Q be any point, other than P, on this tangent. Then,

since the tangent has only one point in common with

the curve (Art. 193. Cor.), QS cuts the curve in some

point R.

Then, SQ + QS is&amp;gt;SR + BS 1

;

or SQ+QS is
&amp;gt;
SP + PS .

Hence SP+PS is the shortest route from S to S by

way of the line PT, and hence SP and S P are equally

inclined to PT.

Therefore, in any ellipse, the lines from the foci to

the point of contact of any tangent are equally inclined

to the tangent.

207. GQH is a circular cone
; APQB is an elliptic

section, and CPD and EQF are circular sections cutting

the elliptic section in the lines PM and QN.

CD and EF are diameters of the circles, and AB is the

axis of the ellipse, all lying in the plane W (Art. 194).

PM and QN are perpendicular to AB and to the lines

CD and EF respectively.
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Therefore CM - MD = PM2
,
and EN- NF=

But AAMD ~A ANF, and AENB~A CMB.
. . AM:MD = AN:NF-,

and MB : CM= NB : EN.

Therefore, by multiplication,

AM - MB : MD . CM= AN-NB-.NF-
EN&amp;gt;,

or AM- MB : PM* = AN-NB: QN2
.

In a similar manner it

is proved that a like rela

tion holds true for the

hyperbola. Therefore,
In the ellipse and the

hyperbola, if perpendicu
lars be drawn from points
on the figure to the prin

cipal axis, the squares
on these perpendiculars
are proportional to the

rectangles on the parts
into which each perpen-

G

dicular divides the prin

cipal axis.

Again, let A P N be a parabolic section. Then A N
is parallel to OG, and EM = GN 1

.

But from the similar A A M Faml A tf H,
AM :M F= A N : N H.

And 1 : EM = 1 : GN .

. . AM 1

: EM . M F= A N 1

: GN N H;
or A M : P M 2 =A N : QN 12

.
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Hence, in the parabola, the squares on perpendiculars

from points on the figure to the axis are proportional to

the parts of the axis intercepted between the vertex of

the parabola and the foot of each perpendicular.

Def. The perpendiculars of this article are called

ordinates to the principal axis, and the segments into

which they divide the axis are called abscissce. So that

in the ellipse and hyperbola the square on any ordinate

is in a constant ratio to the rectangle on its abscissae.

In the parabola, however, one abscissa is infinite, and

we have only the finite one to consider. Then, the square

on an ordinate is in a constant ratio to its abscissa.

EXERCISES O.

1. Show that the area of an ellipse is irab.

2. A right cylinder has its base an ellipse with axes a and &.

Show how to cut it by a plane so that the section may be a circle.

3. If P be a point on a hyperbola, of which 8 and F are foci,

then SP - PF - constant.

208. As the parabola is a limiting form of the ellipse

(Art. 192. 2), the fundamental properties of the parabola

may be obtained from those of the ellipse by supposing

that one focus of the ellipse goes to infinity, while the

other focus remains at a finite distance from the vertex.

We shall, however, obtain these relations by means of

the perspective projection of the circle.

In the accompanying diagram, the right-hand figure is

the projection of the left-hand one, and for the sake of

convenience in comparison, a point and its projection

are denoted by the same letter in both figures.
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In (I), BB is a tangent to the circle APB, touching
it at B, and BAK is a centre line. B PQ is any secant

line from B
,
and PT and QT are tangents meeting at T.

B V is a tangent from B touching the circle at K, and
TK is perpendicular to BA.
The circle is projected into a circular cone, and the

plane which gives the parabola in section touches the

circle at A and is parallel to the tangent BB ,
and BB

is projected to infinity.

T T
(I) (ID

In the projection (II), A becomes the vertex A of the

parabola, and BB goes to infinity (Art. 181. Cor. 2), and

hence the lines through B in (I) become a system of

parallels in the projection (II), and thus in (II) KAGao
is the axis of the parabola, and TF//oo is parallel to

the axis.

So, also, the lines through B in (I) project into a

system of parallels in (II); that is, QPB and KB
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become the parallels QPoo and Foo, or the tangent at

Fis parallel to PQ.
Now in (I) B is pole to FB, and therefore QHPB is

a harmonic range (P. Art. 311. 2).

Therefore, also, in (II), QHP& is a harmonic range,

and H is the middle point of QP.

Hence 1. In the parabola, any line parallel to the

axis is a diameter, and bisects all chords parallel to the

tangent (Fco) at its vertex. Thus PQ is bisected by
TVH.
The direction of the diameter conjugate to Fffoo is

given by PQ, but its position is at infinity.

Again, in (I), T is pole to PQ, and TVHB is a har

monic range (P. Art. 311. 2).

Therefore, in (II), TVHw is harmonic, and F bisects

TH. Hence:

2. In the parabola, tangents at the end-points of any
chord (PQ} meet upon the diameter to that chord (TH);
and the part of the diameter intercepted between the

chord and the point of meeting of the tangents is bisected

by the curve . TH is bisected at F
Again, in (I), TK\s the polar of G (P. Art. 267), and

hence KAGB is a harmonic range.

Therefore, in (II), KAGao is harmonic, and A bisects

KG. Hence :

3. In the parabola, if two tangents be drawn from

any point to the curve, and a perpendicular be drawn
from the same point to the axis, the part of the axis

intercepted between the foot of the perpendicular and
the chord of contact (PQ) is bisected by the vertex of

the curve. KG is bisected at A.
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209. Since the circle can be projected into any conic,

and anharmoiiic properties are projected without change,

all the properties of the circle which depend upon
anharmoiiic or harmonic relations are equally true for all

the conies.

Thus the theorems in plane geometry, given in Arts.

311, 312, 313, 314, and many of the following ones, are

true when we read conic for circle.

To enter any further into this subject is beyond the

scope of this work. The student who desires to pursue

this most interesting subject will find it fully developed

in Salmon s Conies, or Cremona s Projective Geometry,

or in Poncelet s great work, the Traite des proprietes

projective des figures.

EXERCISES P.

1. In the parabola, prove that the tangent at any point on the

curve makes equal angles with the axis and the line joining that

point to the focus.

2. P being a point on a parabola, if PM be drawn perpendicu

lar to the axis and PN perpendicular to the tangent at P, the part

MN intercepted on the axis is constant.

3. The tangent at the vertex of a parabola bisects the part

of any other tangent lying between the point of contact and the

axis.

4. The tangent at the vertex of a parabola, and the perpendicu

lar from the focus upon any other tangent, meet the latter tangent

at the same point.

5. In the projection of Art. 208, if TK (1) projects into the

directrix, then Cr will project into the focus.



SECTION 3.

SPHERIC GEOMETRY.

210. When a spatial figure is cut by a sphere, the

elements common to the. spatial figure and the sphere
form a figure which lies on the sphere in the same
manner as a plane figure lies upon its plane.

Such a figure is a spheric figure, as being confined to

a spherical surface, and the geometry of such figures is

called spheric geometry or spherical surface geometry.
On account of the uniform curvature of a sphere, a

spheric figure may be moved about upon the spherical
surface upon which it lies, without undergoing any neces

sary change in the relations of its parts, just as a plane

figure may be moved about over the plane surface upon
which it lies.

There are many analogies between spheric geometry
and plane geometry, and many of the theorems and of

the methods employed are more or less alike. But there

are also fundamental differences.

The prominent analogies will be exhibited in the

sequel.

211. It must be understood in the beginning that

spheric geometry does not deal with a comparison of

the properties or relations of figures drawn upon differ

ent spheres ;
its purpose is not this, but to investigate

197
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the properties which, belong to a figure in consequence of

Us lying upon a sphere.

Hence all spheric figures are supposed to lie on one

and the same sphere, just as all the figures in plane

geometry are supposed to lie on one and the same plane.

The radius of the particular sphere is altogether arbi

trary, and, except in the case of metrical theorems or

problems, the radius may be left out of the consideration.

The centre of the sphere will be referred to as the

centre.

212. Every section of a sphere by a plane is a circle,

and when the plane contains the centre of the sphere,

the section is the largest circle in this way obtainable,

and is called a great circle of the sphere.

It will appear hereafter that when a plane figure

involving the line has an analogue in spheric geometry,

the line is represented by the great circle. And as there

can be no straight line in connection with any spheric

figure, we shall, for the sake of the analogy, commonly

speak of a great circle as a spheric line. Then all other

circles are spheric circles.

Any limited part of a spheric line is a spheric arc, and

parts of other circles are circular arcs.

213. The spheric line, unlike a planar line, returns

into itself without passing to infinity.

Evidently the spheric line divides the whole spherical

surface into two congruent parts, just as the planar line

may be said to divide the whole plane into two congruent

parts. The parts of the plane, however, extend to infin

ity, while those of the spherical surface do not.
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We have here a fundamental distinction between plane
and spheric geometry, namely, that spheric geometry has

no infinity.

214. As any plane which gives in section a spheric

line must pass through the centre, any two points on the

sphere, not in line with the centre, determine, with the

centre, one plane, and therefore one spheric line.

Thus, like a planar line, a spheric line is determined

by any two points, provided they are not collinear with

the centre.

And through any two points not collinear with the

centre, one, and only one, spheric line can pass.

When two points are in line with the centre, the three

points determine only one line, a diameter of the sphere,

and through this any number of planes can pass, giving
in section the same number of spheric lines.

Now in plane geometry, any two points determine one

line, unless the points be at infinity. For in this latter

case, since all parallels of a system meet at infinity, two

points at infinity, in opposite directions, determine a

system of parallels.

We see, then, that for two points to be collinear with

the centre, in spheric geometry, is analogous to two

points at infinity in opposite directions, in plane geometry.
Thus spheric lines passing through a pair of opposite

points are analogous to parallel lines in plane geometry ;

and hence there is no theory ofparallels in spheric geometry
as in plane geometry.

Cor. Any number of points on a sphere, no two of

which are collinear with the centre, and no three of
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which are complanar with the centre, determine as many
spheric lines as there are groups of the points taken two

and two.

The corresponding theorem in plane geometry is, that

any number of points, no two of which are at infinity,

and no three of which are in line, determine as many
lines as there are groups of the points taken two and two.

215. The normal, through the centre, to the plane of

a great circle, meets the sphere in two opposite points

which are end-points of a diam

eter.

These points are poles of the

great circle
;
and in relation to

the poles the circle is called the

equator.

Thus every spheric line has

two poles, and any point on the

sphere, considered as a pole,

has an opposite pole, and an

equator.

Thus AB, in the figure, is normal to the plane EGFH,
and passes through the centre 0, and meets the sphere

at A and at B. Then A and B are poles of the spheric

line EGFH, and reciprocally EGFH is the equator to

the poles A and B.

Evidently the angle AOE, subtended at the centre

between a pole and any point on its equator, is a right

angle, and the spheric arc AE is one-fourth of a whole

circumference.

If a quadrant of a great circle has one extremity fixed

at A while the other moves over the surface of the
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sphere, the moving extremity will describe the great

circle or spheric line EGFH, which is the equator to the

point A as pole.

Hence the quadrant AE is the spheric radius of the

great circle described
;
or the spheric radius of a great

circle is a quadrant.

Cor. If any point P be taken in the quadrant AE,
when the quadrant moves over the surface having A
fixed, P will describe a circle P^Qupon the sphere. As

the arc AP, and therefore the chord AP, is constant, PRQ
is a cone-circle to A as vertex, and its plane is normal to

AB, and therefore parallel to the plane of EGFH.
And as A and B are points on the sphere from which

the spheric circle PRQ can be described by means of

constant arcs, AP or BP, these points are poles to the

circle PRQ, and the arc AP, as also BP, is its spheric

radius.

Thus every circle on a sphere has two spheric radii

which are supplementary to one another, and the poles

of any great circle are poles to all spheric circles whose

planes are parallel to that of the great circle.

SECTION OF Two PLANES.

216. The sphere which has its centre on the common
line of two intersecting planes has, in section by these

planes, two spheric lines which intersect in opposite

points, or at the end-points of a diameter.

Thus the two planes which have in common the line

AB (Fig. of 215) give by their intersection with the



202 SOLID OR SPATIAL GEOMETRY.

sphere the two spheric lines AEBF and AGBH, inter

secting in A and B, and mutually bisecting one another.

The angle between these spheric lines is equal in

measure to the dihedral angle between the planes which

give rise to the lines. But if EGFH be the equator to

A, EO and GO are each perpendicular to AB, and there

fore EGG measures the dihedral angle between the

planes, and hence also the angle between the spheric

lines.

But the angle EOG = (arc EG) + EO] and since EO
is supposed to be constant, our investigations being con

fined to one and the same sphere,

Therefore, the angle between two spheric lines is

proportional to the arc which they intercept upon the

equator to their points of intersection as poles.

Cor. 1. If, through A, tangents to the spheric lines

be drawn, AT to AEBF and in its plane, and AS to

AGBH and in its plane, the angle TAS is equal to EOG,
and is the angle between the spheric lines.

Therefore, the angle between two tangents drawn to

two spheric lines at their point of intersection is the

angle between the spheric lines.

Cor. 2. When the angle EOG is a right angle, OG is

normal to the plane of AEBF, and G is a pole to the

circle AEBF.
Therefore, two spheric lines are perpendicular to one

another when one of them passes through a pole of the

other
;
and in this case each passes through both poles of

the other.

217. The spheric figure AEBGA, formed by two

spheric lines between their points of intersection, is a
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lune. The points A and B are vertices of the lune, and

the angle between the spheric lines forming its sides is

the angle of the lune.

Evidently every lune is accompanied by an opposite

congruent lune, as AEBGA and AFBHA; and any two

spheric lines divide the whole spheric surface into four

lunes which are congruent in opposite pairs.

We have the analogous case in plane geometry, where

any two intersecting lines divide the whole plane into

four sections, which, although extending to infinity, may

properly be said to be congruent in opposite pairs.

It will be seen from this and other cases that the

analogy between plane and spheric geometry is descrip

tive rather than metrical in kind.

THREE PLANES SECTION OF THREE-FACED

CORNER OR TRIHEDRAL ANGLE SPHERIC TRI

ANGLE.

218. Just as a plane section of any corner is a plane

polygon with a side corresponding to and given by each

face of the corner, so the section of a corner by a sphere

with its centre at the vertex of the corner is a spheric

polygon, whose sides are parts of spheric lines, and the

number of whose sides is the same as that of the faces

forming the corner.

In spheric as in plane geometry the most important

polygon is the triangle.

In plane geometry three given lines can form but one

triangle, since they determine at most but three points.

But, as every spheric line meets every other spheric line
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in two points, three spheric lines, which are not concur

rent, determine six points, and these may combine in

threes to form eight spheric triangles.

Therefore, any three non-concurrent spheric lines divide

the surface of the sphere into eight triangles.

219. Let AHA G, BIB J, and CFC E be three non-

concurrent spheric lines. They meet in the six points

A, B, C, A ,
B

,
C

,
of which A is opposite A ,

B opposite
B

,
and C opposite C .

The eight determined triangles are

ABC, ABC ,
AB C, A BC,

A B C
,
A B C, ABC ,

AB C .

Since A is opposite A , etc., the arc AB = the arc A B .

Similarly, arc BC = arc B C and arc CA = arc C A .

Also, as ACCA and

ABA B determine two

planes, the angle at A is

equal to the angle at A\
and so also the angle at

B is equal to the angle at

B
,
and the angle at C to

the angle at C . And thus

the opposite triangles ABC
and A B C have all their

parts in the one respec

tively equal to the corre

sponding parts in the other.

E\

But the triangles are not

superposable. For taking the centre as a point of refer

ence, ABC and A B C are in opposite orders of rotation.
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In the case of plane triangles we could invert one of

them, or turn it over in the plane, and then superimpose

them; but this operation is clearly impossible in a

spheric figure. Spheric triangles related in this manner

are symmetrical, or conjugate, to one another, and they
are evidently produced by the sections of two symmetri
cal three-faced corners having a common vertex at the

centre (Art. 39).

The eight triangles are symmetrical or conjugate in

opposite pairs as follows :

ABC and A B C
,
ABC and A B C, AB C and A BC

,

ABC and AB C .

220. Let ABC (Fig. of 219) be a spheric triangle

formed by section of the three-faced corner ABC.
The angles at A, B, and C, whose measures are respec

tively those of the three dihedral angles of the corner,

are called the angles of the triangle, and are usually
denoted by A, B, C; and the arcs BC, CA, and AB are

called the sides of the triangle, and are denoted by a, b, c.

Here two views confront us.

If linear units are to be introduced, and arcs are to be

considered with respect to length, the length of the radius

of the sphere is involved, and our investigations are con

fined to some one sphere whose radius is known or deter-

minable with reference to the unit of measure employed.
On the other hand, if our operations and results are

to have no reference to the length of the radius, we must
take for the side of the spheric triangle, not the arc itself,

but its ratio to the radius.

This ratio is an angle, a face angle of the corner which
in section gives the spheric triangle.
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Spheric geometry then ceases to have any distinct

relation to the sphere, except in name, involves no rela

tion of length, and becomes a geometry of direction

only.

In what follows we shall not confine ourselves exclu

sively to either view, but shall adopt that which serves

our purpose at the time.

In the majority of applications, however, the second

one is the only view that can be adopted.
Thus in applying the results of spheric geometry to

the visible surface of the heavens, anything like a linear

unit is out of the question.

According to the second view, a spheric triangle con

sists of six parts, all angles.

Three alternate parts, called the angles of the triangle,

are respectively equal in measure to the dihedral angles

of a three-faced corner, and the remaining three, called

the sides of the triangle, are respectively equal to the

face angles of the same corner.

And thus all the relations which exist between the

dihedral angles and face angles of a three-faced corner,

exist also between the angles and sides of a spheric

triangle.

The adaptation to a triangle described on a given

sphere is easily effected
;

for it is only necessary to

express the sides in radians and then multiply the result

by the radius of the sphere.

221. In any three-faced comer the sum of two face

angles is greater than the third (Art. 35).

Therefore, the sum of two sides of a spheric trian

gle is greater than the third side
;
and the difference
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between any two sides of a spheric triangle is less than

the third side of the triangle.

222. Theorem. The shortest path from one point to

another, on the surface of a

sphere, is along the spheric line

through the points.

Let A and B be the points, and

C be any point on the spheric

join AB. With A and B as

poles describe circles PCD and

QCE to pass through C. Take P, any point on the circle

PCD, and draw the spheric arcs AP, and PB cutting the

circle QCE in Q.

Then APB is a spheric triangle, and

AP+PB&amp;gt;AB. (221)

Therefore, P lies without the circle QCE, and the

circles PCD and QCE touch at C.

Now let. ADEB be any path on the sphere from A to

B. Then the path from A to D may be brought to

extend from A to C by turning the circle PCD about

its centre A, until D conies to C. In a similar way, the

path from Bto E may be brought to extend from B to C.

But by this change the whole path is shortened by
the distance DE. That is, the path is shortened by

making it pass through C, a point on the spheric line

through A and B.

In like manner, each part of the path is shortened by

making it pass through some arbitrary point on the

spheric line AB.
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Hence the path is shortest when every point lies on
the spheric line from A to B.

Cor. 1. When two spheric circles touch, the spheric
line through their poles passes through their point of

contact.

Cor. 2. When two points on a sphere are in line with

the centre, an indefinite number of equal shortest paths

may be drawn from one point to the other.

223. In any three-faced corner, considering two face

angles and the opposite dihedral angles, the greater face

angle is opposite the greater dihedral angle; and con

versely, the greater dihedral angle is opposite the greater
face angle (Art. 40).

&quot;Hence in any spheric triangle, considering two sides

and the opposite angles, the greater side is opposite the

greater angle; and conversely, the greater angle is oppo
site the greater side.

Cor. 1. If a spheric triangle has two equal sides, it

has two equal angles ;
and conversely, if it has two equal

angles, it has two equal sides.

Cor. 2. The order of magnitude of A, B, C, the angles
of a spheric triangle, is the same as that of a, b, c, the

sides of the triangle.

Hence spheric triangles, like plane ones, are equi

lateral, and isosceles, and scalene.

224. When the three face angles of a three-faced cor

ner are given, the dihedral angles also are given (Art.

41. Cor. 2); and conversely, when the dihedral angles
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are given, the face angle also are given (Art. 44. Cor. 2).

Therefore,

1. When the sides of a spherjc triangle are given, the

angles also are given, and all the parts are known.

This case holds also for plane triangles.

2. When the three angles of a spheric triangle are

given, the sides also are given, and all the parts are

known.

This does not hold for plane triangles, and this funda

mental difference between spheric and plane geometry is

due to the fact that spheric geometry has no theory of

similar figures, a theory which plays so important a part

in plane geometry. Similarity requires an equality of

tensors, and therefore involves the consideration of linear

extension. But in a spheric triangle, where all the parts

are angles, there is no place for linear extension, and

hence no similarity exists beyond absolute equality.

Similar spheric triangles might be drawn upon spheres

of different radii, but the comparison of these, although

belonging to spatial geometry, does not belong to spheric

geometry (Art. 211).

225. In any corner the sum of the face angles is less

than a circumangle (Art. 42).

Hence the sum of the sides of a spheric triangle is

less than a circumangle; or if we introduce the radius,

is less than a circumference.

Cor. 1. When two sides of a spheric triangle become

straight angles, the third side vanishes and the figure

becomes a lime.

Cor. 2. When each side becomes a right angle, the
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planes forming the faces of the corner become the rec

tangular co-ordinate planes of space (Art. 8. Cor.), and
each angle becomes a right angle.

Hence a spheric triangle which has each side a right

angle has also each angle a right angle. Such a triangle
is a quadrantal triangle.

Cor. 3. If two sides of a spheric triangle be produced
to meet, a second triangle is formed which is said to be

co-lunar with the first. These two triangles have an

angle and the opposite side respectively equal, while the

remaining two sides in the one are supplementary to the

corresponding sides in the other, and the remaining

angles in the one are supplementary to the remaining

angles in the other.

Cor. 4. Any spheric triangle has three colunar

triangles.

226. The polar triangle. When the vertices of one

spheric triangle are poles to the sides of another spheric

triangle, the first triangle is said

to be polar to the second. And
the second triangle is also polar

to the first.

Let A 1

,
B

,
C be poles of a,

6, c respectively, and let a
,
6

,
c B

|

be the sides of the spheric tri

angle having A ,
B

,
C as ver

tices.

Since C is pole to AB, C O is _L to OB (Art. 215) ;

and since A is pole to BC, A O is _L to OB.

Therefore, OB is normal to the plane of OA and OC&quot;,
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and B is therefore pole to the spheric join of A C
;
that

is, to b .

Similarly, A is pole to a and C to c
;
and the spheric

triangle ABC is polar to A B C .

Hence when one spheric triangle has its vertices poles

to the sides of a second triangle, the vertices of the

second triangle are poles to the sides of the first, and the

two triangles are polar to each other.

Cor. 1. A quadraiital triangle is polar to itself.

Cor. 2. The points A ,
B

,
C determine eight triangles

(Art. 218), every one of which might be said to be polar

to ABC. Or more generally, A, B, C determine one

set of eight triangles, and A, B ,
C determine a second

set; and every triangle of one set has every triangle of

the other set as a polar triangle.

It is easily seen, however, that two triangles in either

set are conjugate (Art. 219), and the remaining six are

co-lunars of these. So that if we agree that the spheric

triangle formed from three given spheric lines is to be

considered as being the triangle (triangle or its conjugate),

each of whose sides are less than a straight angle or a

semi-circumference, then each spheric triangle has but

one polar triangle, (a triangle or its conjugate).

227. The spheric triangles ABC and A B C being

polar to one another, A O is normal to the plane of a,

and B O is normal to the plane of b. But the angle

between two planes is the supplement of the angle

between normals to the planes (Art. 16. Def. 2); and

the angle between the planes is the angle O, and the

angle between the normals is the side c .
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Or the sum of an angle of a spheric triangle and the

corresponding opposite side of the polar triangle is a

straight angle.

Cor. A+ a = B+b =C+c =A +a=B +b=C + c=7r.

228. From the preceding article,

A + B + C+ a + V + c = 3 TT.

But (Art. 225) a + & + c
&amp;gt; and&amp;lt; 2ir

;

. . A + B+Cis &amp;lt; STT and
&amp;gt;

TT.

That is, the sum of the angles of a spheric triangle is

variable, lying between the limits of two right angles

and six right angles. And hence, in every spheric tri

angle the sum of the angles exceeds two right angles.

The amount by which the sum of the three angles

exceeds a straight angle is called the spherical excess of

the triangle. If we denote it by E, we have

229. It has been shown (Art. 219) that conjugate

spheric triangles, although having all their corresponding

parts respectively equal, are not superposable, but corre

spond to one another after the manner of the right and

the left hand.

Hence in the determination of a spheric triangle from

its parts, there is always the kind of ambiguity which

results from not knowing whether a particular triangle

or its conjugate is the one required.

This ambiguity disappears in the case of an isosceles

spheric triangle, for this triangle is conjugate to itself.



SPHERIC TRIANGLE. 213

For the sake of simplicity, then, we shall agree in

what follows that a spheric triangle is given or deter

mined when we know the triangle or its conjugate.

230. A spheric triangle is given when the three sides

are given, or when the three angles are given.

This follows from Art. 41. Cor. 2, and Art. 224.

231. A spheric triangle is given when two sides and

the included angle are given.

Let ABC, A B C be two spheric triangles in which

Z C = Z- O, a = a, and b = b
;
and let the parts be dis

posed in the same order.

Place O on C and CA
along CA. Since b = 6,

A coincides with A. Also,

since Z C Z 0, the side

a will lie along the side

a, and as a = a, B will

coincide with B.

And as A and B determine only one spheric line, A Bi

coincides with AB, and the triangles coincide in all their

parts.

Therefore, the triangle ABC is given when two sides

and the included angle are given (see P. Art. 66).

232. A spheric triangle is given when two angles and

the included side are given.

Let A and B and the side c be given.

Then the sides a 1 and 6 and the included angle C is

given for the polar triangle, and therefore the polar

triangle is given (Art. 231).

Hence the original triangle is given.
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233. Let ABC be an isosceles spheric triangle with

CA = CB, and hence the Z A = Z B.

Draw the spheric line D CD to the middle point, D,
of the base AB. Then CD
is median to the base.

The triangles ACD and

BCD having AC and AD
respectively equal to BC and

BD, and the included angles
A and B equal, are conju

gate.

Therefore, Z CDA = Z CDB = ~|,

and Z ACD = Z BCD.

Hence the median to the base of an isosceles spheric

triangle is the right bisector of the base, and the bisector

of the vertical angle.

Hence, also, every point on the spheric line D CD is

equidistant from A and B, distance being measured along

a spheric line.

In the same manner as in plane geometry (P. Art. 54)

it is shown that every point equidistant from A and B,

and lying on the spheric surface, is on the right

bisector of the base AB, i.e. on the spheric line

D CD.

Cor. In spheric geometry the join of A and B is

either ADB or AD B; i.e. there are two joins whose sum

makes up the whole spheric line.

The bisector of one of these joins evidently bisects

the other also
;
as at Z) and D .
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234. Let P (Fig. of 233) be the pole of AB, arid let

C be any point, lying between P and the arc AB, on the

spheric line PD.

Then PA = PD, and PA is &amp;lt; PC + CA, (Art. 221.)

and /. CDis&amp;lt;CA.

And Z PAD = Z P.ZL4 = 1, and Z CAD is &amp;lt; 1.

Therefore, the least distance from C to the spheric line

AB is along the perpendicular CD.

Also, two equal spheric lines, CA and CB, can be

drawn from C to AB, and these lie upon opposite sides

of CD, and are equally inclined to it, and meet the line

AB at equal distances from the foot of the perpendicular.

235. From C draw any spheric line, CE, to meet AB,
and to cut PA at some point F between P and A.

Then, PE is&amp;lt;PF+ FE, (Art. 221.)

and CAis&amp;lt;CF+FA;

Therefore, adding, PE + CA&amp;lt; CE + PA.

But PE = PA;

.-. CA is &amp;lt; CE.

This holds true so long as CE intersects PA between

P and A. But as E recedes from A along the spheric

line AB, CE will continue to meet PA between P and

A until E comes to D
, opposite D.

Then if E be supposed to start from D and make a

complete circuit along the spheric line AB, CE, starting

from the value CD, will increase as DE increases, until
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E comes to D
,
when it has its maximum value. It then

decreases until E returns through B to D, at which

position CE has its minimum value.

Cor. 1. Since all spheric lines are of the same length,

or contain the same angle, the greatest and least spheric

arcs from a point on the sphere to any spheric line, AB,
are the parts of the spheric line perpendicular to AB,
which are intercepted between C and AB.

Cor. 2. If two equal spheric arcs be drawn from a

point on the sphere to a spheric line which is not its

equator, they are equally inclined to the longest spheric

arc from the given point to the given line, and lie upon

opposite sides of it.

236. As in a plane triangle, so in a spheric one, when

two sides and an angle opposite one of them are given,

the triangle may be ambiguous. Owing to the facts,

however, that any two spheric lines intersect in two

points, and that the sum of the angles of a spheric tri

angle is not a fixed quantity, the condition for ambiguity

is much more complex than in plane geometry.

Also, unlike a plane triangle, a spheric triangle may
be ambiguous when two angles and a side opposite one

of them are given.

THE AMBIGUOUS CASE.

237. In the following examination we assume that

the relative magnitudes of the parts given are such as

to determine a real triangle, so that we shall not be

concerned with conditions which lead to impossible or



THE AMBIGUOUS CASE. 217

vanishing triangles, although such conditions are easily

obtained.

For the given parts let us take the sides a and b and

the angle A, and let us consider the subject under three

cases, according as A is less, equal to, or greater than,

a right angle.

For a general diagram let AGD and AED be two

spheric lines at right angles, and let C be a pole of

AED. Through A and D draw the spheric line API),

making the angle CAP less than a right angle, and the

spheric line AQD, making the angle CAQ greater than

a right angle.

Take any point C between

A and (7, and any point C&quot;

between C and D.

Let the side b be measured

from A along the arc ACD,
and let the given angle A
be the angle at A. Then a

is drawn from some point

on the arc ACD to the arc

APD or AED or AQD,
according as A is less than a right angle, equal to a right

angle, or greater than a right angle. One such triangle

is represented at AC P, where a denotes the side C P.

CASE I. Let A = Z CAP, &amp;lt; f .

Then the shortest distance from a point on ACD to

the arc APD is perpendicular to APD (Art. 234), and

is therefore not along ACD.

1. Let b = AC
, &amp;lt; f ,

and let P be the foot of the

perpendicular from C .
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Two equal arcs can be drawn from C to APD, one on

each side of OP (Art. 234), and the triangle may be

ambiguous.
For a case of ambiguity, however, a must be

&amp;lt; C A,
i.e. &amp;lt;b.

. . A
&amp;lt; 1 ,

b
&amp;lt; f ,

a
&amp;lt; b is ambiguous.

2. IjQtb = AC=l, and let P be the foot of the per

pendicular from C.

Then evidently the case is ambiguous if a is less than

AC and greater than OP, and OP, being on the equator
to A, measures the angle A (Art. 216).

^&amp;gt; A
..

A&amp;lt;.%, b = f ,
a ^ , is ambiguous.

3. Let b =
.4(7&quot;, &amp;gt; f . Then the case will be ambiguous

if a
&amp;lt; C&quot;D.

.-. A&amp;lt;\, b
&amp;gt; I ,

a
&amp;lt; (TT 6) is ambiguous.

Cor. In all the foregoing cases it is readily seen that

the ambiguity disappears when the triangle becomes

right angled by a being drawn perpendicular to the arc

APD.

CASE II. Let A be the angle CAE=%.
Since C is a pole of AED, from any point on ACD,

two equal spheric arcs can be drawn to AED, one lying

on each side of AC and equally inclined to it (Art.

234). The two triangles thus formed would be conju

gate and not ambiguous (Art. 229). But if the point

&amp;lt;7 be taken, all spheric arcs from C to AED are equal,

and the triangle is indeterminate.

Therefore, with A=l there is no real ambiguity,

but when b &amp;lt; \ and a
&amp;gt; b, and also when b

&amp;gt; \ and
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a
-

&amp;gt; ^
7r _5) ?

two triangles are obtained which are conju

gate ;
and when b = f ,

the triangle is indeterminate.

CASE III. Let A be the angle CAQ&amp;gt;%. Since the

angle CAQ is greater than a right angle, the longest

spheric arc from any point on ACD to AQD is perpen

dicular to .AQD, and is therefore not along ACD.

1. Let b = AC
, &amp;lt;f ;

and let Q be the foot of the

perpendicular from C to AQD.
Then two equal spheric segments may be drawn from

C to the arc AQD, one on each side of C Q (Art. 235.

Cor. 2), and the triangle may be ambiguous. For a case

of ambiguity, however, C Q must be greater than C D,

or a&amp;gt; (TT b).

.-. A&amp;gt;1, b &amp;lt; f ,
a

&amp;gt; (TT 5) is ambiguous.

2. Let 6 = AC= I ;
then if Q be the foot of the per

pendicular from C, it is readily seen that the case will

be ambiguous if a is less than CQ and greater than CD.

But CQ being on the equator to A measures the angle

A (216).

.-. -4&amp;gt;f, &=?, a
&amp;gt;5

is ambiguous.

3. 6 = ^10&quot;, &amp;gt; f . Then, if
Q&quot;

be the foot of the

perpendicular from
C&quot;,

the triangle will be ambiguous if

a lies between C&quot;Q&quot;
and C&quot;A.

.-. A&amp;gt;%, b
&amp;gt; f, a

&amp;gt;
6 is ambiguous.
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238. The results of the preceding article are collected
in the following table:

We see from the table that ambiguity occurs only
when A is not a right angle.

239. By making use of the polar triangle we can

readily investigate the cases of ambiguity when two

angles and a side opposite one of them are given. For
when a triangle is ambiguous, its polar is ambiguous, and
vice versa.

The table corresponding to that of the last article is

here given :
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240. Theorem. In any right-angled spheric triangle

the number of sides which are less than, equal to, or

greater than, a right angle is at least two.

In the figure of Art. 237, let A be a right angle.

1. If b = f ,
then a = f ,

and two sides are right angles.

2. Let b = AC
,
and let E be the pole of ACD. Then,

CE = f, and Cy is
&amp;lt; f, and C e is

&amp;gt; f. But, also, Afis
&amp;lt; f ,

and Ae is
&amp;gt; f .

And a and c are both less, or equal to, or greater

than, f.

3. Let b = AC&quot;. Then b
&amp;gt; f ;

and c&quot;e is
&amp;lt; f, and

C&quot;/is &amp;gt; f. But Ae is
&amp;gt; f, and Afis &amp;lt; f.

Therefore, when b &amp;lt; f ,
both a and c are less than,

equal to, or greater than, f .

When b = f ,
both a and b are equal to f .

When 6
&amp;gt; f ,

b and c are
&amp;gt; f ,

or a and c are = f ,
or

6 and a are
&amp;gt; f .

And the theorem is proved.

241. Theorem. The sum of two angles of a spheric

triangle, and the sum of the sides opposite these angles,

are both less than, equal to, or greater

than, a straight angle.

Let CDF be a lune, and let EF be

equator to C and D.

Through G, the middle point of EF,
draw the spheric line AB, meeting the

sides of the lune in A and B. Then
CAB is a spheric triangle.

It is evident that the triangles CAB
and DBA are congruent, and therefore

that Z CAB = Z DBA, and Z CBA = Z DAB, etc.
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Then 4LCAB + ^ CBA = &amp;lt;/ CAB -\- Z. BAD = TT,

and CA + CB = CA + AD = TT.

Therefore, if the sum of two angles is a straight angle,
so also is the sum of the two opposite sides.

Now take B
, any point between B and D, and draw

the spheric arc AB .

Then

Z ABB + Z A4B + ZBBM
&amp;gt;

TT
; (Art. 43. Cor. 2. )

and

Also, CA + CJ5 &amp;gt; CA + CB&amp;gt;TT.

Therefore, when the sum of two angles is greater than

a straight angle, the sum of the opposite sides is also

greater than a straight angle.

And since these sums decrease and increase together,

the theorem follows.

Hence (A + B) and (a + &) are both
&amp;gt; f, both

= f, or both
&amp;lt; f.

This relation is commonly expressed by saying that

%(A + B) and i(a + 6) are of the same affection.

EXERCISES Q.

1. The area of a spheric triangle is .EV2
,
where E is the spherical

excess.

2. The area of a spheric polygon is
{&quot;LA (n 2)7r}r

2
,
where

^A is the sum of the angles, and n is the number of sides.

3. The area of an equilateral spheric triangle is one-fourth that

of the surface of the sphere. Show that its angle is 120, and find

its side.
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4. AB is a spheric arc, and G is its middle point. The locus of

P, such that /.APC = /. BPC, is two spheric lines perpendicular

to one another. Prove this, and state its analogue in plane

geometry.

5. If the direction from A to B, two places on the earth, is

estimated along a spheric line, and in terms of the angle which this

line makes with the meridian of the first place, show that if A and

B have different latitudes and longitudes the direction from A to B
is not the opposite of the direction from B to A.

6. If a spheric triangle be formed by cutting a three-faced

corner by a sphere, the centre of the sphere being the vertex of the

corner, show (i.) that the isoclinal line to the edges of the corner

gives the centre of the circle circumscribing the spherical triangle ;

(ii.) That the isoclinal line to the faces gives the centre of the

inscribed circle of the triangle.

7. What are given by the external isoclinal lines to the corner ?

8. A spheric line is described by a quadrant which has one

extremity fixed (215) ;
what is the analogue in plane geometry ?
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MISCELLANEOUS EXERCISES.

1. Non-parallel lines do not necessarily intersect.

2. Two circles in space may pass within one another and have

two, one, or no points in common.

3. From the definition of a tangent (P. Art. 109) show that

the tangent to a circle lies in the plane of the circle.

4. A plane which is normal to the common line of two planes
is perpendicular to both planes.

5. If any number of planes meet in parallel lines, the normals
to these planes, from the same point, are complanar.

6. The sum of the normals from a point A to the planes U and
V is the same as that of the normals from B to the same planes.
Show that if P be any point in the line AB, the sum of the normals
from P to U and V is constant.

7. Show that Ex. 6 holds good for any number of planes, C7,

V, W, etc.

8. If the sum of the normals to the planes U and V be the

same for any three points, A, B and C, it is the same for every

point in the plane of ABC.

9. The right-bisector plane of the common perpendicular to two

lines bisects the join of any two points, one on each line.

10. A perpendicular is drawn to the base of a regular pyramid
and meets the faces, produced where necessary. Then, the sum of

the distances of the points of intersection from the base is constant.

11. Find in a given plane, a point equidistant from three given

points.

12. Determine on a given line the point which is equidistant

from any two given points.

13. The bisecting plane of a dihedral angle of a tetrahedron

divides the opposite edge into segments which are proportional to

the areas of adjacent faces.

14. The shortest chord through any point within a sphere is

normal to the diametral plane containing the point.
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15. If one intersection of a sphere by a cylinder is a circle, so

also is the other intersection.

16. If one intersection of a sphere by a cone is a circle, so also is

the other intersection.

17. The perpendiculars to the faces of a tetrahedron, at their

centroids, are concurrent.

18. The vertices of a cuboid are conspheric.

19. The edges of a given three-faced corner pass through three

fixed points. Show that its vertex is fixed.

20. The medians of a tetrahedron, taken in both length and

direction, form a quadrilateral.

21. In a three-faced corner the planes through the edges bisect

ing the dihedral angles form an axial pencil.

22. In a three-faced corner the planes through the bisectors of

the face-angles and perpendicular to the faces form an axial pencil.

How many such pencils in all ?

23. What is the locus of a point equidistant from two given

points ?

24. What is the locus of a point equidistant from two complanar
lines ?

25. What is the locus of a point equidistant from two given

planes ?

26. What is the locus of a point equidistant from three parallel

lines ?

27. A point is equidistant from a fixed line and a fixed plane ;

show that its locus is a ruled surface.

28. Through a given line pass a plane perpendicular to a given

plane.

29. Through a given point pass a plane normal to a given line.

29]. The locus of a point whose joins with two given points is

in a constant ratio is a sphere whose centre-line passes through the

given points.
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30. Given a plane and any three points, show that a point may
be found in the plane such that its joins with the given points shall

make equal angles with the plane.

31. Through a given point draw a line to intersect two given

non-complanar lines.

32. Through a given point, P, in a plane draw a planar line

which shall be at a given distance from a given point, Q. What
are the limits of possible solution ?

33. Draw a line from a point, P, to a plane, M, which shall be

parallel to the plane N, and of given length.

34. Given Z,, M, N, three non-complanar lines, draw a line to

intersect L and M and be perpendicular to JV. To be parallel

to N.

35. Through a given point to draw a line which shall meet a

given line and a given circle not complanar with the line.

36. Two points are upon opposite sides of a plane. Find the

point in the plane for which the difference of its distances from the

given points shall be a maximum.

37. In Ex. 36 find a point in the plane which shall be equidis

tant from the given points.

38. Cut a given four-faced corner by a plane so that the section

shall be a parallelogram.

39. L and 3/, two non-complanar lines, meet their common per

pendicular in A and B. If P be any point on L, and Q on Jf,

PQ* = AB2 + AP* + BQ2 - 2 AP - BQ cos 0,

where 6 is the angle between the lines L and M.

40. is the centre, e an edge, and A a vertex of a ppd., and P
is any point. Then, 2PA2 = 8 PO2 + \ Ze*.

41. is the eentroid, and a is a side of any triangle, and P is

any point in space. Then, 2PA* = 3 PO2 + $ Sa
2

.

42. is the centre, A is a vertex, and e is an edge of a tetrahe

dron, and P is any point. Then, 2PA2 = 4 PO2 + \ Se2
.
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43. From a fixed point three mutually perpendicular lines are

drawn to a fixed plane. Show that the sum of the squares of the

reciprocals of these lines is constant, being the square of the recip
rocal of the perpendicular from the point to the plane. (Compare
P. Ex. 32, p. 131.)

44. In any four-sided prism the sum of the squares on the

twelve edges is greater than the sum of the squares on the four

diagonals, by eight times the square on the join of the common
mid-points of the diagonals, taken in pairs.

45. What are the axes of symmetry of a cube? Of a cuboid?
Of a regular tetrahedron ?

46. Two spheres may have two, one, or no common tangent
cones. Distinguish the cases, and explain those where the spheres
have contact of the same and of opposite kinds.

47. Of four spheres, each one touches three others. Show that
their tangent planes, at the points of contact, form a sheaf of

planes.

48. The common tangent cones to three spheres, taken in twos,
have their centres in four collinear rows of three.

49. The common tangent cones to four spheres, taken in twos,
have their centres lying by sixes upon four planes.

50. Two circles in parallel planes are the intersections of the

planes by two different cones. Show that the centres of the cones
and the centres of the circles form a harmonic range.

51. The difference between two faces of a tetrahedron is less

than the sum of the other two.

52. Show that to bisect a pyramid by a plane parallel to the base

requires the solution of a cubic equation.

53. The cube having the diagonal of another cube for its edge
has 3 \/3 times the volume of the other.

54. One cube has its face equal to the surface of another cube.

Compare their volumes, and also their edges.
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55. If P be any point within a parallelepiped whose diagonals

are AA
,
BB

, etc., the pyramids

P ABCD + P A B C D 1 - | the ppd.

What if P be without ?

56. If a, 6, c, d be the four altitudes of a tetrahedron, and

a ,
&

,
c

,
d be the corresponding perpendiculars from any point to

the faces, show that

57. ABCD is a tetrahedron, and P is any point. If AP, BP,

etc., meet the faces in a, &, etc., then

Pa P6 PC P^ =1
^4a P.& Cc DeZ

58. Three mutually perpendicular lines pass through a fixed

point in a sphere. Show that the sum of the squares of the three

determined chords is constant.

59. In Ex. 58, the sum of the squares on the six segments into

which the chords are divided by the point, is constant.

60. A spherical shell six inches in diameter has the interior

cavity one-half the volume of the sphere. Find the thickness of

the shell.

61. Three equal spheres touching each other lie upon a table,

and a fourth equal sphere rests upon the three. How far is the

centre of the fourth from the table ?

62. In Ex. 61, the radius of the fourth sphere^
is n times that of

the others. What is the case when n = 1 fV3 ?

63. A sphere touches each of three mutually perpendicular con

current lines. Find the distance from the centre of the sphere to

the point of concurrence.

A cylinder of revolution whose section through the

axis is a square is an equilateral cylinder; and the cone

of revolution whose section through the axis is an equi

lateral triangle is an equilateral cone.
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64. If an equilateral cone and an equilateral cylinder be in

scribed in the same sphere,

(1) The surface of the cylinder is a mean proportional between

the surfaces of the sphere and cone
;

(2) The volume of the cylinder is a mean proportional between

the volumes of the sphere and cone.

65. If an equilateral cone and an equilateral cylinder be circum

scribed about the sphere,

(1) The surface of the cylinder is a mean proportional between

the surfaces of the sphere and cone
;

(2) The volume of the cylinder is a mean proportional between

the volumes of the sphere and cone.

If P, Q be points on a centre line of a sphere, such

that OP OQ = K2
)
where is the centre of the sphere

and R is the radius, the points P and Q are inverse

points with respect to the sphere. And when two

figures are such that every point in the one is the in

verse of a corresponding point in the other, the figures

are inverse to one another (P. Art. 260) .

66. The inverse of a line is a complanar circle through the centre

of inversion.

67. The inverse of a circle is a complanar circle, unless the first

circle passes through the centre of inversion.

68. The inverse of a sphere is a sphere, unless the first sphere

passes through the centre of inversion, when its inverse is a plane.

69. The inverse of a plane is a sphere through the centre of

inversion.

70. A sphere which passes through a pair of inverse points with

respect to another sphere cuts the other orthogonally.

71. A sphere which cuts two spheres orthogonally has its centre

on the radical plane of the two.
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72. A cube circumscribed to a sphere is inverted with respect to

the sphere. Show that the spheres produced pass by threes through

common points and cut one another orthogonally.

73. The locus of a point with respect to which two spheres can

be inverted into equal spheres is a sphere having a common radi

cal plane with the two.

74. The locus of a point with respect to which three spheres can

be inverted into equal spheres is a circle.

75. There are two points, real or imaginary, with respect to

which four spheres can be inverted into equal spheres.

76. What is the locus of a point from which two given spheres

subtend the same angle ?

77. What is the locus of a point from which three spheres sub

tend the same angle ?

78. The joins of the foci to any point on a hyperbola are equally

inclined to the tangent at that point.

79. If an ellipse and a hyperbola have the same foci, the curves

intersect orthogonally.

80. A sector of a circle revolves about a diameter parallel to the

chord of the sector. The volume described is f ?rr
3 sin 0, where 2

is the angle of the sector.

81. The volume of a segment of a sphere is

I irr 3 (2
- 3 cos

&amp;lt;/&amp;gt;

+ cos2 0},

where 2 is the angle subtended by the segment.

82. A plane figure, invariable in form and dimensions, moves

with its centre on a path which is inclined to its plane at a constant

angle, a. Show that the volume described is the area of the figure

x the length of path x sin a.

83. The generator of Art. 143 does not preserve its orientation,

but revolves about the path. Show that this does not affect the

volume described, if the centroid is confined to the path.
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84. A square, side s, moves with its centre on a circle, and its

plane perpendicular to the path, but revolves about the path as an

axis. Show that the volume described is 2 ?rrs2
,
if r

&amp;gt; | s A/2.

85. A spheric line is described by a quadrant rotating about one

of its end-points as a centre (Art. 215). What is the analogue in

plane geometry ?

A plane through one of two inverse points, normal to

the join of the points, is the polar plane to the other

point, and this latter point is the pole of the plane, with

respect to the sphere of inversion.

86. If the point P lies on the polar plane of $, then Q lies on

the polar plane of P.

87. The polar of a line is a line at right angles to the given line.

88. Explain how the process of Art. 63 is one of polar recipro

cation.

89. Show that the tetrahedron may be a polar reciprocal to

itself.

90. A sphere touches the twelve edges of a cube. What is the

polar reciprocal of the cube with reference to the sphere, and how

is it situated ?

91. The distances of any two points from a polar centre are pro

portional to the distances of each point from the polar plane of the

other.

92. The centre locus of a sphere which cuts two given spheres

orthogonally is their radical plane.

93. The centre locus of a sphere which cuts three spheres

orthogonally is their radical line.

94. All the spheres which cut two spheres orthogonally pass

through two fixed points.

95. All the spheres which cut three given spheres orthogonally

pass through three fixed points.
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96. A sphere which cuts four spheres orthogonally is fixed.

What exception ?

97. All the spheres, which have contact of like kind (P. Art.

291) with two given spheres, are cut orthogonally by one and the

same sphere.

98. All the spheres which have contact of like kind with three

given spheres are cut orthogonally by the same three spheres.

99. A line is cut harmonically by a point, a conic, and the polar

of the point with respect to the conic.

100. A line is cut harmonically by a point, a sphere, and the

polar plane of the point with respect to the sphere.

In crystals, whether formed in the laboratory or by

slow geological processes, we have examples of natural

polyhedra. These are forms derived from prisms or

parallelepipeds by transformations closely allied to polar

reciprocation, the replacement of corners or points by

planes. In crystallography the relative direction of the

plane which forms a face of the crystal is of primary

importance ;
its distance from the centre is only a sec

ondary consideration.

Through the centre of the cube let the three rectan

gular axes of space be drawn parallel to the direction

edges of the cube, and let them be denoted by X, Y and

Z. Every plane cuts these axes either at finite points

or at infinity, and hence every plane makes on these

axes three intercepts, which may be finite or infinite.

Denote the intercepts by x, y, z, where these letters

denote measures on the respective axes, but may be

equal or unequal in value. The giving of these inter

cepts determines the relative direction of the plane.

If a plane which forms a face of a crystal is parallel

to the face of the original cube, it is looked upon as a
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face of the cube, and if parallel to a face of the regular

derived octahedron, it is considered to be a face of the

octahedron, etc.

101. Show that the plane (at, ?/, ) is parallel to the plane (mx,

my, mz).

102. Show that the plane (, y, z) is parallel to the plane

_, &, 1
].

What inference do you draw as to the absolute values
z z ]

of the intercepts ?

103. Show that the plane (x, y, z) is parallel to the plane

(-x, -y,z}.

104. The planes (2, 1, 1) and (- , 1, 1) are perpendicular to

one another.

105. The planes (a, a, 6) and la, a,
- \ are perpendicular to

one another. *
J

106. Show that (1, oo
,
oo ) is a cubic face, and write the remain

ing faces of the cube.

In representing planes in this way, by three quantities

taken in one order of rotation, it is usual to employ the

reciprocals of the intercepts, as some of the final results

are simplified by this means. These will be called the

three parameters of the plane, and will be denoted by

h, ~k,
I in particular, and by any letter or quantity in

general.

107. Write the faces of the cube in the parametric notation.

108. Show that (1, 1, 1), or, in general (a, a, a), is a face of

the regular octahedron.

109. How does the plane (1, 1, 1) cut the cube ? And how does

(1, 0, 0) cut the octahedron ?

110. A plane with three equal parameters truncates a corner of

the cube. Describe what is meant by truncating a corner of a cube,

and compare the dihedral angles formed.
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111. A plane with two parameters equal, and the third zero,
truncates an edge of the cube. What is the character of this

truncation ? Compare the dihedral angles formed
;
what is their

value ?

112. Show that the plane (1, 0, 0) truncates the corner of the

octahedron
;
and that (1, 1, 0) truncates an edge of the octahedron.

113. A plane with three unequal parameters bevels a corner of

the cube. Describe the operation of beveling a corner of the cube.

114. The plane having two parameters equal and the third un

equal, all being finite, cuts the corner of the cube in a way which

will be called trunco-bevelment. Define this term.

115. By what change does a trunco-beveling plane of a corner

of a cube become a truncating plane of the edge ?

116. The cube admits of eight truncating planes to the corners.

Describe the figure formed, on the supposition that all these planes

are equidistant from the centre, and the faces of the cube are com

pletely cut away.

117. The cube admits of twelve truncating planes to the edges.

Describe the figure formed by these planes. (This is the rhombic

dodecahedron.)

118. To what figure does the plane (1, 1, 0) belong? The

plane (1, 0, 1) ?

119. How does the plane (a, a, 0) cut the octahedron ?

120. The cube admits of two beveling planes at each of its twelve

edges. Explain how, and describe the figure to which these faces

belong. (This is the tetra-hexahedron, or four-faced cube.)

121. To what figure do the planes (1, 2, 0) and (2, 1, 0) belong?

122. a. The cube admits of three trunco-bevejing planes at each

corner. How many faces has the figure to which these planes

belong ?

b. Show that these planes may be disposed in two different

ways, and describe the difference in the resulting modification of

the original corner. What relation does it hold to the octahedron ?

(This is the triakis-octahedron, or three-faced octahedron.)
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123. The cube admits of six beveling planes at each corner.

Write these planes, and give the character of the figure formed.

(This is the hexakis-octahedron, or six-faced octahedron.)

124. To what figures do the planes (1, 1, 2), (1, 1, 0), (1, 2, 3),

(1,2,2) belong?

Figures formed from the cube by putting in all the

possible planes given by varying the order of the param

eters in any one symbol, as (1, 2, 3), (2, 3, 1), (2, 1, 3),

etc., are called holohedral figures. Those formed by

putting in one-half the possible planes, in alternate posi

tions, are hemihedral figures.

125. One beveling plane is put in at each edge of a cube so as to

alternate the positions of these planes. Show that the resulting

figure will have pentagonal faces. (This is the pentagonal dodeca

hedron.)

126. Show that the tetrahedron is a hemihedral form derived

from the cube, and give its mode of derivation.

127. The cube admits of three beveling planes at each corner,

applied in alternate positions. Write these planes and show how

they are applied. (The figure is the pentagonal icosi-tetrahedron.)

128. The cube admits of six beveling planes at four corners alter

nate in position. Write these planes. (The figure is the hexa-

tetrahedron.

129. If p be the length of normal, from the origin, on the plane,

and a, /3, 7 be the direction angles of p (Art. 98), show that

cos a = hpj cos j3
= Icp, and cos 7 = lp.

130. Show that p = 1 / /i
2 + &2 + Z

2
.

131. Show that cos a = lif Vfr
2 + k2 + I

2
,
with symmetrical ex

pressions for cos |8 and cos 7.

132. If 6 be the angle between the normals to two planes,

cos0=pp (hh + kk + II }, where the accented letters refer to the

second plane.
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133. Show that

cos e = (hh
1 + kk&amp;gt;

134. The angle between the planes (1, 1, 1) and (1, 1, 1) is

cos -if

135. The angle between the planes (1, 0, 0) and (1, 1, 1) is

136. Find the cosine of a dihedral angle of the regular tetra

hedron.

137. Find the cosine of the dihedral angle of a regular octahe

dron.

138. Find the cosine of the angle between a face of the cube

and that of the octahedron.

139. The type plane (1, 2, 3) cuts the cube. Find the angle

between two adjacent planes, and also between one of these planes

and an adjacent face of the cube.

140. Find the angle between (1, 2, 3; and (1, 1, 1).

141. The edge made by the planes (a, 5, 0) and (6,
-

, 0) is

truncated by the plane (6 + a, b a, 0).

142. Determine the ratios of the intercepts of any plane which

bevels the edge of the rhombic dodecahedron.

143. The face of a pentagonal dodecahedron being (0, 1, a) with

necessary variations, show that for the regular figure a=(V5 l)

and thence show that the cosine of a dihedral angle of this figure

is
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ELEMENTARY SYNTHETIC GEOMETRY
OF THE

POINT, LINE, AND CIRCLE IN THE PLANE.

By NATHAN F. DUPUIS, M.A., F.R.C.S., Professor of Mathematics in

Queen s College, Kingston, Canada. 16mo. $1.10.

FROM THE AUTHOR S PREFACE.

&quot; The present work is a result of the author s experience in teaching

geometry to junior classes in the University for a series of years. It

is not an edition of Euclid s Elements, and has in fact little relation

to that celebrated ancient work except in the subject-matter.

&quot;An endeavor is made to connect geometry with algebraic forms

and symbols : (1) by an elementary study of the modes of representative

geometric ideas in the symbols of algebra ;
and (2) by determining the

consequent geometric interpretation which is to be given to each inter-

pretable algebraic form. ... In the earlier parts of the work Con

structive Geometry is separated from Descriptive Geometry, and short

descriptions are given of the more important geometric drawing instru

ments, having special reference to the geometric principle of their

actions Throughout the whole work modern terminology and

modern processes have been used with the greatest freedom, regard

being had in all cases to perspicuity. . . .

&quot; The whole intention in preparing the work has been to furnish the

student with the kind of geometric knowledge which may enable him

to take up most successfully the modern works on analytical geom

etry.&quot;

&quot; To this valuable work we previously directed special attention. The

whole intention of the work is to prepare the student to take up suc

cessfully the modern works on analytical geometry. It is safe to say

that a student will learn more of the science from this book in one

year than he can learn from the old-fashioned translations of a certain

ancient Greek treatise in two years. Every mathematical master

should study this book in order to learn the logical method of present

ing the subject to beginners.&quot; Canada Educational Journal.

MACMILLAN & CO.,
66 FIFTH AVENUE, NEW YORK.
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BY

NATHAN F. DUPUIS, M.A., F.K.S.C.,
:s in the University &amp;lt;

Canada.

i2mo. $1.10.

ProfeBSor of Pure Mathematics in the University of Queen s College, Kingston,
Canada.

FROM THE AUTHOR S PREFACE.

The whole covers pretty well the whole range of elementary algebraic
subjects, and in the treatment of these subjects fundamental principles
and clear ideas are considered as of more importance than mere mechan
ical processes. The treatment, especially in the higher parts, is not
exhaustive

;
but it is hoped that the treatment is sufficiently full to

enable the reader who has mastered the work as here presented, to take
up with profit special treatises upon the various subjects.
Much prominence is given to the formal laws of Algebra and to the

subject of factoring, and the theory of the solution of the quadratic and
other equations is deduced from the principles of factorization.

OPINIONS OF TEACHERS.

&quot;It approaches more nearly the ideal Algebra than any other text
book on the subject I am acquainted with. It is up to the time, and
lays stress on those points that are especially important.&quot; PROF. VV.

P. DURFBE, Hobart College, N.Y.

&quot;It is certainly well and clearly written, and I can see great advan
tage from the early use of the Sigma Notation, Synthetic Division, the

Graphical Determinants, and other features of the work. The topics
seem to me set in the proper proportion, and the examples a good selec

tion.&quot; PROF. E. P. THOMPSON, Westminster College, Pa.

&quot;

I regard this as a very valuable contribution to our educational
literature. The author has attempted to evolve, logically, and in all its

generality, the science of Algebra from a few elementary principles

(including that of the permanence of equivalent forms) ;
and in this I

think he has succeeded. I commend the work to all teachers of Algebra
as a science.&quot; PROF. C. H. JUDSON, Furman University, S.C.

MACM1LLAN & CO.,
66 FIFTH AVENUE, NEW YORK.



THE ELEMENTS OF SOLID GEOMETRY,

BY

ROBERT BALDWIN HAYWARD, M.A., F.R.S.,

Senior Mathematical Master in Harrow School ;

Late President of the Association for the Improvement of

Geometrical Teaching.

16mo, clotli, 75 cents.

FROM THE AUTHOR S PREFACE.

In composing the treatise here offered to the student of Elementary Geometry,

it has been the author s principal object to present the subject as a logically coherent

body of propositions obtained by the simplest lines of deduction from postulates

explicitly stated, and to extend its scope beyond the rather meagre range of the first

twenty-one propositions of Euclid s Eleventh Book, which has long been the cus

tomary limit of the young student s formal study of the subject. With this object

Mr Hayward has found it necessary to deviate considerably from Euclid s sequence

of propositions, and largely to modify his demonstrations. At the same time, as the

deviations will, he believes, be found to be in the direction of simplification, by

bringing the propositions nearer along the line of deduction to the fundamental postu

lates&quot; hi thinks the student who gets up the subject from this book will, even as

regards mere examination purposes, be at no disadvantage from not having studied

the text of Euclid as it appears in the usual editions. Mr. Hayward has prefixed to

his treatise a &quot;

Preliminary Discussion on the Postulates of Geometry, it being in

his opinion highly desirable that the student should at some point in his course

examine carefully into the fundamental assumptions of geometry and the logical

affiliation of its propositions. The book has been developed out of a Syllabus of

Solid Geometry submitted by the author to a Committee of the Association for the

Improvement of Geometrical Teaching, and received by that Committee with a con

siderable amount of favor.

The Scotsman says:
&quot;

It is admirably planned as an elementary book.&quot;

The Lyceum says:
&quot; Mr. Hayward has broken up new ground in his treatment

of his subject; he has departed from Euclid s sequence of propositions; he puts, for

instance, Intersections and Parallels in Section I. of the book, He often differs con

siderably from Euclid in his demonstrations, but the change is always an improve

ment. . . . The book is very complete, though it confines itself to the Elements;

it should be as popular as a work on the subject can be.&quot; . . ,

The Guardian says:
&quot; In effect the little book is a modification and extension of

the first twenty-one propositions of the eleventh book of Euclid. In many respects

the arrangements and methods are highly satisfactory. In a separate part which

discusses the fundamental assumptions that are made m geometry, some valuable

suggestions will be found.&quot;

MACMILLAN & CO., PUBLISHERS,

66 FIFTH AVENUE, NEW YORK.



Mathematical Works by Charles Smith, M.A.,
Master of Sidney Simsex College, Cambridge.

A TREATISE ON ALGEBRA. 12mo. $1.90. KEY,
$2.60.

&quot;Your Smith s Treatise on Algebra was used in our University
Classes last session, and with very great satisfaction. . . . The gen
eral adoption of these texts would mark an epoch in mathematical
teaching.&quot; Prof. W. B. SMITH, University of Missouri.

&quot;

Its style is clear and neat, it gives alternative proofs of most of the
fundamental theorems, and abounds in practical hints, among which
we may notice those on the resolution of expressions into factors and
the recognition of a series as a binomial expansion.&quot; Oxford Review.

AN ELEMENTARY TREATISE ON CONIC SECTIONS.
New Edition. 12mo. $1.60. KEY, $2.60.

&quot;We can hardly recall any mathematical text-book which in neat

ness, lucidity, and judgment displayed alike in choice of subjects and
of the methods of working, can compare with this. . . . We have no
hesitation in recommending it as the book to be put in the hands of the

beginner.&quot; Journal of Education.
&quot; The best elementary work on these curves that has come under our

notice.&quot; Academy.
&quot; A thoroughly excellent elementary treatise.&quot; Nature.

AN ELEMENTARY TREATISE ON SOLID GEOMETRY.
New Edition. 12mo. $2.50.

&quot;The best we can say for this text-book is that it is a worthy suc

cessor to the Conies previously noticed by us. ... Much credit is due
for the freshness of exposition and the skill with which the results are

laid before the student.&quot; Academy.

&quot;This book is calculated to supply a long-felt want. The plan of

the book is one which will recommend itself to most. The chapter on
surfaces of the Second Degree falls rather earlier than is usual, but

the care which has been bestowed upon it and the clear explanations

given remove any difficulties which might otherwise beset the compara
tively unprepared student in the study of the subject. The examples
are numerous and well selected.&quot; Educational Times.

MACMILLAN & CO.,
66 FIFTH AVENUE, NEW YORK.



ELEMENTARY ALGEBRA.

By CHARLES SMITH, M.A., Master of Sidney Sussex College, Cam

bridge. Second edition, revised and enlarged, pp. viii, 404. IGmo.

$1.10.

FROM THE AUTHOR S PREFACE.
&quot; The whole book has been thoroughly revised, and the early chapters

remodelled and simplified; the number of examples has been very

greatly increased ;
and chapters on Logarithms and Scales of Notation

have been added. It is hoped that the changes which have been made

will increase the usefulness of the work.&quot;

From Prof. J. P. NAYLOR, of Indiana University.

&quot;

I consider it, without exception, the best Elementary Algebra that

I have seen.&quot;

PRESS NOTICES.
&quot; The examples are numerous, well selected, and carefully arranged.

The volume has many good features in its pages, and beginners will

find the subject thoroughly placed before them, and the road through

the science made easy in no small degree.&quot;
Schoolmaster.

&quot;There is a logical clearness about his expositions and the order of

his chapters for which schoolboys and schoolmasters should be, and

will be, very grateful.&quot;
Educational Times.

&quot;

It is scientific in exposition, and is always very precise and sound.

Great pains have been taken with every detail of the work by a perfect

master of the subject.&quot;
School Board Chronicle.

&quot;This Elementary Algebra treats the subject up to the binomial

theorem for a positive integral exponent, and so far as it goes deserves

the highest commendation.&quot; Athenseum.

&quot; One could hardly desire a better beginning on the subject which it

treats than Mr. Charles Smith s Elementary Algebra. . . . The author

certainly has acquired- unless it &amp;lt;growed
-the knack of writing

text-books which are not only easily understood by the junior student,

but which also commend themselves to the admiration o

matured ones.&quot; Saturday Review.

MACMILLAN & CO.,
66 FIFTH AVENUE, NEW YORK.
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OF THE

POINT, RAY, AND CIRCLE

WILLIAM B. SMITH, Ph.D.,
Professor of Mathematics in Missouri State University.

Price, $1.1O.

This book is written primarily for students preparing for ad

mission to the freshman class of the Missouri State University,

and has already been thoroughly tested in the sub-freshman

department of that institution. It covers both in amount and

quality the geometrical instruction required for admission to any
of the higher universities.

From Prof. GEORGE BKUCE HALSTED, Ph.D. (Johns Hopkins),

Professor of Mathematics, University of Texas.

&quot;To the many of my fellow-teachers in America who have questioned
me in regard to the Non-Euclidean Geometry I would now wish to say pub
licly that Dr. Smith s conception of that profound advance in pure science is

entirely sound. . . . Dr. Smith has given us a book of which our country
can be proud. I think it the duty of every teacher of geometry to examine

it carefully.
1

From Principal JOHN M. COLAW, A.M., Monterey, Va.
&quot;

I cannot see any cogent reason for not introducing the methods of

Modern Geometry in text-books intended for first years of a college course.

How useful and instructive these methods are, is clearly brought to view in

Dr. Smith s admirable treatise. This treatise is in the right direction and is

one step in advancing a doctrine which is destined to reconstruct in great

measure the whole edifice of Geometry. I shall make provision for it in the

advanced class in this school next term.&quot;

From T. J. J. SEE, A.M., Ph.D., University of Chicago.
&quot;

I have examined the Modern Geometry of Prof. W*. B. Smith with great

interest, and find the treatment of the subject a most excellent one. . . .

The problems of geometry are treated in a logical and lucid style, and the

spirit of the work is thoroughly scientific. I am glad to commend it to my
colleagues in mathematics and to such of my students as desire an intro

duction to this subject.&quot;

MACMILLAN & CO,,
66 FIFTH AVENUE, NEW YORK.
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cents.
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