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PREFACE. MATH

TrE matter of the present work has, with some varia-
tions, been in manuscript for a number of years, and has
formed the subject of an annual course of lectures to
mathematical students by whom the subject has been
well received as one of the most interesting in the earlier
part of a mathematical course.

T have been induced to present the work to the public,
partly, by receiving from a number of Educationists
inquiries as to what work on Solid Geometry I would
recommend as a sequel to my Plane Geometry, and partly,
from the high estimate that I have formed of the value
of the study of synthetic solid geometry as a means of
mental discipline.

To me it seems to exercise not only the purely intel-
lectual powers in the development of its theorems, but
also the imagination in the mental building-up of the
necessary spatial figures, and the eye and the hand in
their representations.

Tn this work the subject is carried somewhat farther
than is customary in those works in which the subject
of solid geometry is appended to that of plane geometry,
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vi PREFACE.

but the extensions thus made are fairly within the scope
of an elementary work, and are highly interesting and
important in themselves as forming valuable aids to the
right understanding of the more transcendental methods.

1t appears to me that it is a prevalent custom to lay
too little stress on synthetic methods as soon as plane
geometry is passed, and to hurry the student too rapidly
into the analytic methods. If mathematical knowledge
is all that is required, this may possibly be an advan-
tageous course; but if mental culture is, as it should
be, the chief end in a university education, this custom-
ary usage is not the best one.

I have found it convenient to divide the work into
four parts, each of which is further divided into sec-
tions.

The first part deals with a consideration of the deserip-
tive properties of lines and planes in space, of the poly-
hedra, and of the cone, the cylinder, and the sphere.

Here I would feel like apologising for the introduction
of a new term, were it not that I believe that its intro-
duction will be fully justified by a careful perusal of
the work.

Legendre, in his notes to his geometry, proposed to
use the word ‘corner’ (coin) for the figure formed by
the meeting of two planes, and he considered that the
different polyhedral angles should receive special names
as being geometrical figures of different species. Without
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discussing this idea, I have employed the word ¢ corner’
to denote a solid or polyhedral angle of not less than
three faces, while I have retained the expression ‘dihedral
angle’ in its usual sense. If a dihedral angle be cut by
a plane, this cutting plane necessarily cuts through both
faces, and the figure of intersection is a plane angle.
Whereas, if any polyhedral angle be cut by a plane
which intersects all its faces, the figure of section is not
a simple angle, but a polygon. Thus the plane angle and
the dihedral have this in common, that they can both
be measured by the same kind of angular unit, while
the affinities of the polyhedral angle are with the
polygon.

Moreover, the trihedral angle is a geometrical func-
tion of three plane angles and three dihedral angles,
neither of which exists without the other, and every
polyhedral angle is a geometrical function or combina-
tion of plane and dihedral angles, and these form its
elements. Hence I have used the term ¢three-faced
corner’ for ‘trihedral angle, and generally ¢n-faced
corner’ for ‘n-hedral angle.” This nomenclature is very
convenient; but if any Teacher prefers the older forms,
he can readily make the necessary change in language.

The rectangular parallelepiped should certainly be
supplied with some convenient name. I have adopted
the term ¢cuboid,” as proposed by Mr. Hayward, as being
both convenient and suggestive.
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The second part of the work deals with areal rela-
tions, that is, the relations among the areas of squares
and rectangles on characteristic line-segments of the
prominent spatial figures.

The majority of the results, besides being highly inter-
esting in themselves, form data for subsequent higher
work.

The third part is devoted to stereometry and planimetry.
In this are developed the prineipal rules and formulwe
for the measurement of volumes and surfaces of the
more prominent spatial figures which admit of such
measurement, and a special section is given to the con-
sideration of volumes and surfaces generated by moving
areas and lines, and to the development of the theorems
of Pappus or Guldinus.

The fourth and last part begins with an explanation
of the principles of conical or perspective projection.
By the application of these principles in projecting a
circle into a cone and cutting the cone by a plane, the
student is introduced to the conic, and is-led to under-
stand its meaning, and the relations of the various conics
to one another.

The more common properties of the conics are then
easily obtained through a study of the curve as a plane
section of a circular cone. The latter half of this part
is given to spheric geometry. The spheric figure (tri-
angle and polygon) is considered as the section of a



PREFACE. ix

corner by a sphere whose centre is at the apex of the
corner. The study of spheric figures is thus brought
into line with the study of the corner or solid angle,
and the leading properties of the spheric triangle are
thus most easily and directly obtained.

The whole work is presented to the younger mathe-
matical reader in the hope that it may prove worthy of
his careful attention.

At the close of the work there is a large collection of
miscellaneous exercises, many of which, being connected
with the subjects of inversion and of polar reciproca-
tion in space, are highly suggestive.

I have to acknowledge my indebtedness to Mr. W. R.
Sills for assistance in reading the proof-sheets.

N. F. D.

QUEEN’s COLLEGE,
Oct. 1, 1893.
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SOLID OR SPATIAL GEOMETRY.
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DESCRIPTIVE GEOMETRY.

1. Solid or Spatial Geometry, or the Geometry of
Space, deals with the properties and relations of figures
not confined to one plane (Y. Art. 19).

The elements of spatial figures are the point, the line,
the curve, the plane, and the curved surface. The first
four of these are defined in plane geometry (P. Arts. 12,
14, 17); but we repeat here the definition of the plane,
as upon that definition several corollaries and other
definitions depend.

Def. A plane is a surface such that the join of any
two arbitrary points in it lies wholly in the surface and
coincides with it.

Cor. 1. A line cannot lie partly within a plane and
partly without it. For the part within the plane must
have at least two points in the plane, and must there-
fore coincide with the plane throughout its whole extent.

1 References marked P.are to the Author’s ¢ Geometry of the point,
line, and circle in the plane.

1



2 SOLID OR SPATIAL GEOMETRY.

Cor. 2. A line not coincident with a given plane
meets the plane at only one point.

2. A plane is not necessarily limited in extent ; or, in
other words, a plane extends to infinity in all its direc-
tions. For the plane must be coextensive with every
coincident line.

Every. planc thus theoretically divides all space into
two part'é, one lying upon each side of the plane.” The
use: of .planes thus considered is common in spherical
astronomy.

3. In plane geometry the geometric figure is drawn
upon the plane of the paper, which properly represents
the plane upon which the figure is supposed to lie. In
spatial geometry, however, we have only one plane, that
of the paper, to stand for and represent all the planes
which may be involved in any spatial figure. This is
an unavoidable source of confusion to beginners, as the
pictured figures in spatial geometry are not representa-
tions of the real figures in the same sense as in plane
geometry.

Thus equal line-segments and equal angles in a spatial
figure will not, in general, appear as equal segments or
equal angles in the pictured representation. So, also,
squares and cireles in space will not, in general, appear
as squares and circles on our single available plane, that
of the paper. Properly constructed models simplify
matters to a very great extent, and should be employed
whenever available. The construction of proper models
is, however, always difficult, and often impracticable,
and for several reasons they cannot serve all the pur-
poses of a diagram. And hence beginners should ac-
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custom themselves to reading and interpreting spatial
diagrams. These diagrams can be considered only as
an aid to building up the figure in the imagination, and
facility in reasoning from such diagrams will depend
very largely upon the readiness with which the reasoner
can make this imaginary construction. The student is
accordingly advised to give some care and patience to
the constructing of spatial diagrams.

To represent a plane we usually represent a rectangular
segment of the plane, and this generally appears in the
diagram as some form of parallelogram.



SECTION 1.
THE LINE AND THE PLANE,

4. Theorem. Two planes which coincide in part coin-
cide altogether.

Proof. The part throughout which the planes coincide
must be part of a plane, and must therefore admit of an
indefinite number of arbitrary points being taken within
it, of which no three are in line. These points taken
two and two determine an indefinite number of arbitrary
lines which coincide in part with both planes. And the
planes thus coinciding (Art. 1. Cor. 1) along an indefinite
number of arbitrary lines, coincide altogether, and form
virtually but one plane.

Def. An indefinite number of lines can lie in one plane.
The totality of these is called a plane of lines, although
the lines, having only one dimension, do not make up
any portion of the plane in which they lie.

5. Theorem. The figure of intersection of two planes
is a line.

Proof. Let U and V be two
planes, and let 4 and B be any v
two points in their figure of in- -
tersection. Join A, B by a line. 4
Then, since A and B are two

points in U, the join AB lies wholly in U (Art. 1. Def.).
4



THE LINE AND THE PLANE. 5

For a similar reason the join AB lies wholly in V.
Hence it is common to the planes, and is their figure of
intersection; and thus the figure of intersection is a
line.

Cor. 1. Any number of planes may have one com-
mon line. For if they pass through the same two points,
A and B, they have the join of 4 and B as a common
line.

Def. A group of planes having one common line is
an axial pencil, and the line is the axis. In contra-
distinetion to this the pencil of lines in a common plane
(P. Art. 203. Det.) is called a flat pencil.

Cor. 2. As the line of section of two planes cannot
return into itself and form a closed plane figure, so two
planes cannot form a closed spatial figure.

6. Theorem. Through any three points not in line,
1. One plane can pass.
2. Only one plane can pass.

A, B, € are any three points not in line.

1. One plane can pass through
A, B, and C.

A B
Proof. Let the plane contain- \ ;E
ing A and B be rotated about b N

the join of 4 and B.

In a complete revolution this plane passes through
every point in space, and therefore in some position, U,
it passes through C.
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2. Only one plane can pass through A4, B, and C.
Proof. Take D, E, any points in the joins AC and
. BC respectively. Then D and E and their join lie in
U, and in every plane through 4, B, and C. Therefore
every plane through 4, B, and C coincides with U, and
forms with U virtually but one plane.

Cor.1. Any three points not in line determine a
single plane.

Def.  Any number of elements so disposed as to lie
in one and the same plane are said to be complanar or
coplanar. Thus all the parts of a figure in plane geom-
etry are complanar.

Cor. 2. Two intersecting lines are complanar and
determine one plane.

For, taking a point in each line, and the point of inter-
section, we have three points not in line, and the plane
through these is the plane of the lines.

Cor. 3. Parallel lines are complanar.

For they have a common point at infinity (P. Art.
220. Def.).

7. Generation of a plane.

Land Mare any two lines
intersecting in C, and N is
a third line intersecting L
in B, and M in 4. Then
L, M, N are complanar.

1. When I, and M are fixed and N is variable, N
generates a plane.

Therefore, a plane is generated by a variable line
which is guided by two intersecting fixed lines.
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Def. The variable line N is called the generator, and
the fixed guiding lines are directors.

2. Let C go to infinity, and L and M become parallel.

Therefore, a plane is generated by a variable line
guided by two fixed parallel lines.

3. Let the point A remain fixed, while B moves
along L.

Then, a plane is generated by a variable line which
passes through a fixed point and is guided by a fixed line.

4. Let the point 4 go to infinity; ¢.e. let the genera-
tor N, fixed in direction only, be guided by the fixed
line L.

Then, a plane is generated by a variable line having
a fixed direction and guided by a fixed line.

8. Theorem. At the point of intersection of any two
lines a third line can be perpendicular to both.

AB and CD are lines intersecting in O. Then some
line OP is perpendicular to

both AB and CD. P
Proof. Let OPbe L to 4B, N3
and let it revolve about AB as N 8
an axis, O being fixed, until it ™
comes into the plane of 4ABand © ° L °
CD at OE and at OF. Then £ ™
AB, CD, EF are complanar.
L AOE=/Z AOP="1; (hyp.)
~ ZDOEis<a’.

Similarly £ BOF = Z BOP="1;
and - LDOFis > a’l.
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Therefore, in revolving OP from the position OF to
the position OF the Z DOP changes from less than a
right angle at DOE to greater than a right angle at DOF;
and hence at some intermediate position OP is L. OD.

Cor. If AB is L to CD, and OP is L to both,
we have three lines mutually perpendicular to each
other. ’

Def. 1. Three concurrent lines mutually perpendicu-
lar to one another are called the three rectangular axes
of space, and their planes are the rectangular co-ordi-
nate planes of space. These three lines admnit of length
measures in three directions, each perpendicular to the
other two. Hence, space is said to be of three dimen-
sions, or to contain three dimensions, and it is frequently
spoken of as tri-dimensional space, in contradistinetion
to the two-dimensional space of a single plane, or of
plane geometry.

Def. 2. A line lying in a particular plane is a planar
line of that plane; and when only one plane is under
consideration, a planar line will mean a line in that
plane.

Def. 3. When OP is perpendicular to both 4B and
CD, it is perpendicular to the plane which these lines
determine (Art. 6. Cor. 2).

OP is then a normal to the plane, and O is the foot
of the normal.

Also, the plane is a normal plane to the line OP.

9. Theorem. A normal to a plane is perpendicular to
every planar line through the foot of the normal.
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OP is L to 04 and OB, and OC is any line through O
complanar with O4 and OB. Then
OPis Lto OC. R

Proof. Take O.4= OB= any con-
venient length. Join 4B, cutting
0Cin C, and join P4, PB, PC. A
The right-angled triangles POA o©
and POB are congruent, and there-
fore PA = PB. Hence the A APB
and AOB arc_each isosceles, and PC and OC are lines
from the vertices to the common base AB.

. PB'— PC*= BC- (A= OB'— 0C% (P. Art. 174.)

B

and -~ PB*— OB*= PC*— 0C-*
But POB being a 1, (hyp.)
PB'— OB*= OP?= PC*— OC>
s £LPOCis an.

Cor. 1. 1If Ois fixed while 04 revolves about OP as
an axis, OA4 generates a plane to which OP is a normal.

Def. A line is perpendicular to a line which it does
not meet when a plane containing one of the lines can
have the other as a normal.

Cor. 2. A normal to a plane is perpendicular to every
line in the plane, and all normals to the same plane are
parallel to one another.

Cor. 3. From any point without or within a plane, only
one normal can be drawn to the plane.

10. Theorem. Of the line-segments from a point with-
out a plane to the plane: —
1. The shortest is along the normal through the point.
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2. The feet of equzl segments are equally distant from
the foot of the normal, and conversely.
3. Of unequal segments,
the longer lies further from
the normal than the shorter
does, and conversely.

P is any point, and PO is
normal to the plane U, not o
passing through P. 4, B, C A "%

are points in U.
1. PO is < PA, A being any point in U other than O.
Proof. £ZPOAisatl; (Art. 9. Cor. 2.)
.. Z PAO is acute, and PO < PA; (P. Art. 62.)
and the normal segment PO is the shortest segment from
P to the plane U.

2. PA= PB; then 04 = 0B.

Proof. 'The right-angled triangles POAand POB have
their hypothenuses equal, and the side PO in common.
They are therefore congruent (P. Art. 65), and 04 = OB.

Conversely, if 04 = OB, the congruence of the same
triangles gives PA = PB.

3. PCis > PA; then 0Cis > 0OA.

Tor the two triangles POA, POC, being each right-
angled, give

[

PC*=PO*+ 00%;

and PA2=PO* 4 04%;
. PO — PA2= 00— 04
But PC>PA; .. 00> 0A4.

And conversely, if OC > 04, then PC> rA4.
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Cor. When PA= PB, 04 = OB. Therefore, if P4
is of constant length and variable in position, the foot 4
describes a circle having O as centre and O4 as radius.
The generation of this circle from a fixed point, P, by a
line segment, P4, of constant length, is similar to that
of the circle in plane geometry (P. Art. 92), except that
in the present case the fixed point is not in the plane of
the circle.

Def. 1. The circle described on U with the vector P4,
and from the fixed point P, has a relation to the cone, to
be considered hereafter, and we shall accordingly call it
a cone circle to the vertex P.

Evidently any circle may be considered as a cone
circle, and when so considered, it has an indefinite num-
ber of vertices, all lying upon the line which passes
through its centre and is normal to its plane.

Def. 2. The distance of a point from a plane is the
length of normal intercepted between the point and the
plane.

11. Def. 1. The projection of a point on a plane is
the foot of the normal from the point to the plane, and
the projection of a line-segment on a plane is the join
of the projections of its end-points upon the plane.

It follows, then, that the projection of a line upon a
plane which it meets is the planar line which passes
through the point where the given line meets the plane,
and through the foot of the normal, drawn from any point
on the given line to the plane.

Def. 2. The angle between a given line and its pro-
jection upon a plane is taken to be the angle between
the given line and the plane.
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Def. 3. The angle between two non-complanar lines
is the angle between two intersecting lines respectively
parallel to the given lines.

12. Theorem. The angle between a line and its pro-

jection on a plane is less than the angle between the
P

line not parallel to the pro- A\

jection.

The line PO meets the \ u

N

projection of OF on U; 04

is a line through O, parallel

jection ON. -

Then Z PONis < £ POA.
is normal to the plane U (Art. 11. Def. 1).

Take 04 = ON and join A and AN.

And in the triangles POA and PON, PO is common,

0A = ON, and PA> PN;'

And as L is any planar line not parallel to O, the
£ PON, between PO and its projection on U, is less
parallel to ON.

Cor. 1. Since two intersecting lines make with one

given line and any planar
plane U in O; ON is the
to the planar line I, which is not parallel to the pro-
Proof. From P draw PN perpendicular to ON. PN
Since £ PNA =", PAis > PN.
. L P0OA4is > £ PON. (P. Art. 67.)
than that between PO and any line in the plane, not
another two angles which are supplementary (P. Art.
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39), we may say more accurately that the angles, between
a line and its projection upon a plane, are the least and
the greatest of all the angles made by the given line
with lines lying in the plane.

Cor. 2. Since 0, P, N are complanar (Art. 6), and
Z PNO is a 71, the Z OPN is the complement of the
Z PON. Therefore the angle between a line and a plane
is the complement of the angle between the line and a
normal to the plane.

Cor. 3. Let OB be a planar line L to OP.

Since PN is normal to U, OB is L to PN (Art. 9.
Cor. 2) ; and hence OB, being | to OP and PX,is L to ON.

Therefore planar lines which are perpendicular to any
line that meets their plane are also perpendicular to the
projection of that line upon the plane.

13. Def. A line is parallel to a plane when it meets
that plane at infinity.

Cor. Any plane through one of two parallel lines is
parallel to the other line.

For if I and M be two parallel lines, and the plane U
contains I, and not 2, it can meet M only where L meets
M. But L and M meet at infinity (P. Art. 220) ; there-
fore M meets U at infinity, or is parallel to U.

SPATIAL CONSTRUCTION.
14. In making constructions in space we assume the
ability :

1. To draw through any given point a line parallel to
a given line.
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2. To pass a plane through any given point or line.

3. To make a plane construction, according to the
principles of plane geometry, upon any assumed or deter-
mined plane.

Ex. 1. Problem. ¥rom a given point without a plane
to draw a normal to the plane.

Let P be the point, and U ?
be the plane.

CUon. Draw any line OB in
U, and from P draw 0 L to
OB (P. Art. 120).

In U draw ON L to OB;
and from P draw PN L to ON. PN is the normal
required.

For OB is, by construction, 1 to both OP and ON,
and therefore to the plane of these lines, and hence to
PN, which lies in this plane (Art. 9. Cor. 2).

Therefore PN is L to OB and to ON, and is conse-
quently normal to U.

Ex. 2. Problem. To draw a common perpendicular to
two non-complanar lines.

Let L, M be the two non-
complanar lines.

Con. 1In M take any point,
A, and through A draw the
line V parallel to L (Art. 14.1).

M and N determine a plane,
U, which is parallel to LI.
From any point B in L draw BC normal to U (Ex. 1).
Then, as L is parallel to U, BC'is L to L.
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Draw CD parallel to L to meet M in D, and from D
draw DE 1 to L.

Then DE is L to both L and M, or is their common
perpendicular.

For DE is L to L by construction, and being thus
parallel to CB, EC is a rectangle, and ED is normal to
U, and therefore L to M.

Cor. Since CD can meet M in only one point, only
one common perpendicular can be drawn to two non-
complanar lines.

EXERCISES A.

1. How many planes at least determine one line ?

2. How many lines at most are determined by 3 planes ? by
6 planes ? by n planes ?

3. How many planes at most are determined by 4 points ? by
8 points ? by n points ?

4. Draw a normal to a plane from a point in the plane.

5. Through one of two non-complanar lines, to pass a plane to
be parallel with the other line.

6. Show that the common perpendicular to two non-complanar
lines is the shortest segment from one line to the other.

7. From a given point in one of two non-complanar lines, to
draw a segment of given length to meet the other. The solutions
are two, one, or none. Distinguish these cases.

8. Given two non-complaﬁar lines, to draw a segment from
one to the other so as to be perpendicular to one of them.

9. Given two non-complanar lines, to draw a segment from
one to the other so as to make equal angles with each. Show that
this angle may vary from a right angle to the complement of one-
half the angle between the given lines.
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10. PO meets the plane U (Fig. of Art. 12) at an angle of 30°,
and PN is normal to U. OA is a planar line making the angle
POA =60° Show that cos AON =1 V3,

11. PO meets U at an angle a, and ON is the projection of OP
on U. OA is a planar line making the angle POA =g. Show
cos B
that cos AON = SOk

12. Through the point, where a given line meets a plane, to
draw a planar line to make a given angle with the given line.

Examine the limits of possibility.



SECTION 2.

Two PrLANES — DIHEDRAL ANGLE — PLANE
SECTIONS.

15. Def. Parallel planes are such as meet only at
infinity, i.e. which do not meet at any finite point.

Cor. 1. Planes which have a common normal are
parallel. For if the planes meet at any finite point,
two perpendiculars can be drawn from that point to the
same common normal, one in each plane. But this is
impossible (P. Art. 61).

Cor. 2. Planes which are not parallel intersect in a
line not at infinity. This line is common to the two
planes, and is the common line of the planes.

When two planes are parallel, their common line is at
infinity.

16. U and V are two v ¢
planes having ABas their </
common line. A G 5

From any point, P, in -
AB draw PCin U and
PD in V, each perpendic-
ular to 4B.

The angle CPD is defined as the angle between the
planes Uand V. Therefore:

17

~
~~
~..
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Def: 1. The angle between two planes is the angle
between two lines, one in each plane, and both perpendic-
ular to the common line of the planes.

AB is normal to the plane of PC and PD, and is
therefore perpendicular to €'Y and DX (Art. 9. Cor. 2).

Hence, if CY be L to PD, and DX to PC, CY is
normal to ¥, and DX is normal to U

And these normals, being complanar, intersect in some
point, E, and the angle CED is the supplement of the
angle CPD. Hence, if we consider CY and DX in the
same sense, i.e. from distal extremity to foot, or wice
versa, the angle CED is the angle between the normals
to the planes, and therefore :

Def. 2. The angle between two planes is the supple-
ment of the angle between normals to the planes.

When CPis perpendicular to PD, the planes are per-
pendicular to one another, and CP is normal to V, and
DP to U. Hence:

Def. 3. Two planes are perpendicular to one another
when one of them contains a normal to the other.

17. Def. When PC is perpendicular to PD, and
each is perpendicular to AB, the three planes U, V, and
the plane of PCD are mutually perpendicular to one
another. These planes are then called the rectangular
co-ordinate planes of space, and the common point, P,
is the origin.

If we assume the positions of these three planes, and
therefore the position of the origin, the position of any
point in space can be determined by giving its distances
from these planes, each distance being affected with a
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proper algebraic sign. This is the fundamental principle
in analytic geometry of three dimensions.

18. If PQ be any line in U, and PR be any line in ¥,
meeting the common line AB, in the same point, P, PQ
and PR are complanar (Art. 6. Cor. 2); and if W denote
their plane, PQ is the common line of U and W, PR
is the common line of Wand ¥V, and 4B is the common
line of Vand U, and these three lines are concurrent
at P.

Therefore, three planes, no two of which are parallel,
and which do not form an axial pencil, determine one
point, and this point is the point of concurrence of the
three common lines of the planes taken in twos.

This point is at infinity when the three common lines
are all parallel.

Cor. Three planes cannot form a closed figure. For
the planes determine, at most, three concurrent lines,
which, meeting in one common point, can never meet
in any other points.

19. Def. When a spatial figure, S, is cut by a plane,
U, the combination of elements common to Sand U form
upon U a plane figure, which is called the plane section of
S by U, or simply the section of S by U.

This definition suggests to us a relation existing be-
tween plane and spatial geometry.

Plane geometry may be aptly described as a plane
section of spatial geometry. The plane upon which the
figures of plane geometry lie (P. Art. 11) is the plane
of section, and the figures themselves may be considered
as sections of spatial figures.
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From this connection we may be led to expect that
relations existing among plane figures are only particular
cases of more general relations existing among spatial
figures. And hence we naturally look for many analogies
amongst the results of plane and of spatial geometry.

Some of these have appeared already, and others will
present themselves in the sequel. And it is worthy of
note how often the number two of plane geometry be-
comes three in spatial geometry. Thus two points deter-
mine one line, while three points determine one plane;
two lines in the plane determine one point, while it
requires three planes to determine one point.

20. The following theorems are self-evident:

1. The section of a line is a point.
2. The section of a plane is a line.

Hence spatial figures composed of lines and planes
give, in section, plane figures composed of points and
lines.

Def. Sections made by parallel planes are parallel
sections.

21. Theorem. Parallel sections of a plane are parallel
lines.

Proof. If Uand U’ be parallel planes which cut the
plane W, the common lines UW and U'W both liein W,
and as Uand U’ meet only at infinity (Art. 15), these
common lines meet only at infinity and are parallel.

Cor. 1. The section of a system of parallel planes is
a system of parallel lines.
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Cor. 2. The section of an axial pencil is a set of
parallel lines when the section-plane is parallel to the
axis; in other cases it is a flat pencil.

22. Theorem.  Parallel sec- ,
tions of two intersecting planes A D

contain the same angle. ‘
U and V are intersecting
planes, and W and X are two

parallel planes of section, the \K‘

sections being the lines BA, C 3
BC, ED, and EF. .

Then AB is parallel to DE, (Art. 21.)
and BC is parallel to EF.

. L ABC=Z DEF.

Def. If W be normal to the common line of the
planes U and V, the section is called a right section.
Hence, the angle between two planes is the angle be-
tween the two lines which form the right section of the
planes.

A system of any number of planes admits of a right
section when all the common lines of the planes are
parallel. In every case, the term “right section” must
have reference to some particular line or set of parallel
lines.
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23. When we cut two intersecting planes, U and ¥,
by a third plane, X, we get (Iig. of Art. 22),
1. A point E, the vertex of the angle DET;

2. The lines ED and EF, forming the arms of the
angle DEF.

Now, 1st, to the plane angle DEF corresponds the
dihedral angle between the planes U and V; and, 2d,
to the vertex E of the plane angle corresponds the com-
mon line, BE, of the two planes, this line being called
the edge of the dihedral angle; and, 3d, to the arms ED
and EF of the plane angle correspond the planes U and
V, called the faces of the dihedral angle.

Thus in section a dihedral angle becomes a plane angle,
the faces become arns, and the edge becomes the vertex.

If the section be a right section, the plane angle and
the dihedral angle have the same measure. And as a
plane angle is generated by rotating a line about a point
in the line taken as a pole (P. Art. 32), so a dihedral angle
is generated by the revolution of a plane about any line
in the plane, taken as an axis. o

The angular measurements are thus the same for plane
and dihedral angles.

24. Def. The plane which is normal (Art. 9. Def. 3)
to the join of two given points at its middle point, is the
right-bisector plane of the join of the points.

Cor. Since a line-segment has only one middle point,
and a plane has only one normal at any given point, it
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follows that a given line-segment has only one right-
bisector plane.

A section through the segment gives the segment and
its right-bisector, of plane geometry.

25. Theorem. FEvery point upon the right-bisector
plane of a segment is equally distant from the end points
of the segment.

Let AB be a given segment, p
and let U be the right-bisector
plane of the segment, passing

through its middle point C, and A c B
let P be any point on U. Then |
P is equidistant from 4 and B. u E

Proof. Since A, B, and P are
complanar, let the plane W pass
through these points. In the section by W we have
the segment AB and its right-bisector CP; and hence
PA=PB (P, Art. 53).

It will be here noticed that the proof is obtained
immediately by reducing the theorem to depend upon
the corresponding one in plane geometry.

In like manner we readily prove the converse:

Every point equidistant from the end points of a given
line-segment is upon the right-bisector plane of the seg-
ment.

Cor. TFrom this it appears that the locus of a point
which is equidistant from two fixed points is the right-
bisector plane of the join of the points.

26. Def. The planes which pass through the edge of
a dihedral angle and make equal angles with its faces
are the bisectors of the dihedral angle.
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The proofs of the following theorems may be obtained
at once by making them to depend upon the correspond-
ing theorems in plane geometry.

1. The two bisectors of a dihedral angle are perpen-
dicular to one another.

For proof, make a right section of the dihedral angle
and apply (P. Art. 45).

2. Any point upon a bisector of a dihedral angle is
equally distant from the faces of the angle.

For proof, make a right section through the point and
apply (P. Art. 68).

3. Any point equidistant from the faces of a dihedral
angle is on one of the bisectors of the angle.

Proof as in 2.

27. Theorem. Any two lines are divided similarly
(P. Art. 201. Def.) by a system
of parallel planes.

L and M are two lines cut
by the parallel planes U, V; and /

W. Then Land Maresimilarly \
divided. I » /
Proof. A4, B, C and A4, B, v P
C' are corresponding points of / \
section of the twolines. Through / RN I /
“ 2_

A draw the line N parallel to \
L, and let it meet the planes at " / N\ Lo
4, P, and Q.
Then L and N being complanar (Art. 6. Cor. 4),
AA'is Il to PB'is Il to QC';
. A'B'= AP, and B'C' = PQ.
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But ACQ is a triangle, and BP is parallel to CQ;
.. AB: BC=AP: PQ=A'B : B'("
Or the lines L and M are similarly divided.

Cor. 1. The parallel planes of a system divide all
lines similarly.

Cor. 2. The segments of parallel lines intercepted
between the same two parallel planes are equal.

28. Theorem. If three concurrent non-complanar lines
be divided similarly in relation to the point of concur-
rence, the triplets of corresponding points determine a
system of parallel planes.

L, M, N are three non-com-
planar lines concurrent at O,
and are divided at 4, B, C, ---,
A4, B, ', ..., and A", B", ("...,
so that
04:4B: BC= 04': A'B': B'C'

=04": 4"B": B"(".

Then the planes determined |/

by A4'A", BB'B", CC'C", etc., | N
are parallel. M =

Proof. AA'is |l to BB is Il to CC",
and AA"is i to BB" is llto CC".  (P. Art.202.Cor.)

Let OP be normal to the plane 4A4'4". Then OP is
L todA4"and AA" (Art. 9. Cor. 2), and therefore to BB
and BB", and to CC' and CC".
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Hence OP is normal to the planes BB'B" and CC'(",
and the three planes AA4'4", BB'B", CC'C" are accord-
ingly parallel (Art. 15. Cor. 1).

Cor. 1. Since AA'is Il to BB, and 44" is || to BB",
ete.,, the A A4A4'A", BB'B", and CC'C" are similar. DBut
the concurrent lines L, M, N determine three planes
whose common point is O; therefore parallel sections
of three non-parallel planes are similar triangles.

Cor. 2. Since any polygon may be divided into triangles,
and similar polygons into similar triangles similarly
placed (P. Art. 206), it follows that :

Parallel sections of any number of planes having a
common point are similar polygons.

29. Def. Four non-complanar lines which intersect
two and two in four points, form a skew-, or a gauche-, or a
spatial quadrilateral.

The sides of the skew quadrilateral and its two diag-
onals are six lines connecting four points in space, and
form the six edges of a figure, to be described hereafter,
called the Tetrahedron. .

The skew quadrilateral is a plane quadrilateral with
one vertex, and the sides forming it raised out of the
plane.

30. Theorem. The joins of the middle points of the
opposite sides of a skew quadrilateral bisect one another.

ABCD is a skew quadrilateral, AB and BC lying in
a plane different from the plane of CD and DA. AC
and BD are the diagonals.
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E, F, @, H are middle points of the sides upon which
they lie. Then EG and FI bisect one another.

Proof. EF and GH are
both parallel to AC, and
equal to half AC (P. Art.
202); they are therefore equal
and parallel to one another.

Therefore EFGH is a par-
allelogram, and its diagonals =
E@ and FH bisect one an-
other (P. Art. 81. 3).

COor.1. Tet I and J be the middle points of the
diagonals 4C and BD.

Then ACBD is a skew quadrilateral, and the joins of
middle points of opposite sides are F'H and I1J.

Therefore FH and IJ bisect one another; and hence .
FH, IJ, and EG mutually bisect each other.

Cor. 2. A, B, C, D are four points in space, and AB,
AC, AD, BC, BD, and OD are their six connectors.

Therefore if four points in space be connected two and
two by six line-segments, the joins of the middle points
of these connectors taken in opposite pairs are concurrent,
and mutually bisect one another.

EXERCISES B.

1. Draw a line equally inclined to two intersecting planes. Is
the problem definite or indefinite ?

2. If U and ¥V be two planes, and U contains a normal to ¥,
show that ¥ contains a normal to U.
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3. Two lines may be drawn, one on each of two intersecting
planes, so as to make an angle with one another of any magnitude
from zero to a straight angle.

4. If three concurrent non-complanar parallel lines be divided
homographically, the planes determined by the triplets of corre-
sponding points, all pass through a common line. When is this
line at infinity ?

5. If the sides of a skew quadrilateral are equal, the diagonals
are perpendicular to one another.

6. What theorem is obtained from 30 by bringing D to the
plane of ABC?

7. Draw the shortest path from one point to another so as to
touch a given plane in its course, both points being upon the same
side of the plane.

8. Show that a skew quadrilateral cannot have four right angles.
How many can it have ?

9. 4, B, C, D are four non-complanar points. Show that the
locus of a point which is equidistant from 4 and B, and also equi-
distant from C and D, is a line perpendicular to both AB and CD.

10. If 4, B, C, D, E, F be any 6 points in space, a point can be
found which is equidistant from A4 and B, equidistant from €' and
D, and equidistant from E and F.



SECTION 3.

SHEATF OF LINES AND PLANES — SOoLID ANGLE OR
CORNER.

31. Def. Three or more non-complanar lines meeting
in a point form a sheaf of lines, and three or more planes
passing through a common point form a sheaf of planes.
The common point is in each case called the centre of
the sheaf.

The lines and planes which form a sheaf pass through
the centre and extend indefinitely outwards from it, but
usually we have to consider only those portions which
lie upon one side of the centre, and the centre is then
commonly called the vertex or apex of the figure.

In a sheaf of lines the determined planes form a sheaf
of planes, and in a sheaf of planes the determined lines
f rm a sheaf of lines. So that practically a sheaf of
lines and a sheaf of planes are only the same figure
differently viewed.

Cor. From Article 27 it follows that the lines of a
sheaf are similarly divided by a system of parallel planes.

And from Article 28 it follows that if a sheaf of three
lines has its lines similarly divided with reference to
the centre, the triplets of corresponding points deter-
mine a set of parallel planes.

32. A non-central section of a sheaf of lines and the
determined planes is a set of points with their determined
29
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lines; and the non-central section of a sheaf of planes
and the determined lines is a set of lines with their
determined points.

Thus the reciprocity between a sheaf of lines and a
sheaf of planes is analogous to that between a set of
points and a set of lines in plane geometry.

33. Def. 1If the points in the section of a sheaf of
lines be so disposed as to form the vertices of a polygon
without re-entrant angles, and only those planes of the
sheaf be considered, which, in the section, form the
sides of the polygon, the combination of lines and
planes in the sheaf forms a solid angle, or a polyhedral
angle, or a corner.

L, M, N, K is a sheaf of four lines with centre 0. Let
the sheaf be cut by the plane U, giving in section the
points 4, B, €, D correspond-
ing to L, M, N, If, respectively.
If the polygon ABCD is with-
outre-entrantangles, the figure
formed by the lines I, M, N,
I, and the portions of deter-
mined planes, LOM, MON,
NOK, KOL, intercepted be-
tween these lines, is a solid
angle, or a corner.

O is the vertex of the corner, I, M, N, K, forming
the edges or axes of the dihedral angles are its edges;
the planes LOM, MON, NOK, and WOL are its faces;
and the angles LOM, MON, NOI, and KOL are its
face-angles.

The term corner or solid angle does not involve any

(o]
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particular length of line, or extent of plane, or magni-
tude of angle. It involves the existence of a number
of lines forming edges, with the same number of planes
limited by these lines and forming faces, and all meeting
at a common point to form a vertex.

34. A corner may have any number of faces greater
than three, and the same number of edges. The one
figured in the preceding article is a four-faced corner,
or a tetrahedral angle. ) '

A section of a three-faced corner is a triangle; and
as the triangle is the most important of all polygons, so
the three-faced corner, or trikedral angle, is the most
important of all corners.

A corner will be indicated by writing its vertex
followed by a point, and then the letters indicating
points upon its several edges.

Thus the symbol O.ABCD denotes the four-faced
corner as figured in the preceding article.
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PROPERTIES OF TRIHEDRAL AXNGLES, or THREE-
FACED CORNERS.

35. Theorem. In any three-faced corner the sum of
any two face angles is greater than the third.

O - ABC is the three-faced corner.

Proof. If the face angles are all
equal to one another, the truth of the
theorem is evident. If they are une-
qual, let the angle LON be > than
LOM.

In the plane of L and N draw OK,
making the angle LOK = LOM, and on
M and K take OB = OD = any conven-
lent length, and let A be any point on I, other than O.
Let the plane of ABD cut Nin C.

Then AAOB=AAO0D. (P. Art. 52.)
v AD = AB, and £ ADB = / ABD.
-+ £ ODBis > Z0BD, and CBis > CD, (P. Art. 62. 2))

But in the A BOC and DOC, BO = DO by construc-
tion, OC is common, and BC > OD.

~ £LBOCis > £ DOC, (P. Art. 67.)
and -+ £ AOB=Z AOD by construction,

“ LAOB+ £ BOCis > £ A0D + £ DOC.
Or L AOB+ £ BOCis > £ A0C.
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36. Problem. To find the locus of a point equidistant
from the three edges of a three-faced corner.

O is the vertex, and I, M, N the edges of the three-
faced corner.

Let P be a point on the required
locus, and P4, PB, PC be perpendic-
ulars upon the edges L, M, and N
respectively.

In the right-angled triangles POA,
POB, POC, PO is a common hy-
pothenuse, and PA=PB=PC by
hypothesis.

Therefore the triangles are congruent, and 04 = OB
= 0C. And the circle through A, B, C is a cone circle
with O and P as two vertices.

Therefore OP passes through the centre of this circle
and is normal to its plane.

Hence the construction: take 0.4 = OB = OC and join
O with the centre of the circle through A, B, and C;
this join is the locus required.

Def. The locus just found is a line equally inclined
to the three edges, and is an ésoclinal line to the edges.
A plane normal to this line is also equally inclined to
the edges and is an isoclinal plane to the edges.

Cor. Since the edges may be considered as indefinite
lines extending through the vertex and forming a sheaf
of three, the three measures 04, OB, OC may each be
taken in two opposite directions, or we can have eight
variations of sign in all. But four of these are the other
four reversed.

Therefore three lines forming a sheaf have four iso-
clinal lines and four isoclinal planes through the centre.
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37. Def. Corners are equal when they can be super-
imposed so as to form virtually but one corner. In this
superposition the vertices coincide, and the edges coincide
in pairs, one from each corner.

38. Theorem. Two three-faced corners are equal when
the face angles of the one are respectively equal to the
face angles of the other, and they are disposed in the
same order about the vertices. O-LMXN and O'- L' M'N'
are two three-faced corners having Z LOM =2 L'0O'M',
L MON=ZLMON', £ NOL=ZN'O'L', and having
these disposed in the same order about the vertices; ¢.e.
so that the order of magnitude of the angles is according
to the same species of rotation for each. Then the
corners are equal.

Proof. Take OA=0B=0C=0'A'=0'B'=0'C, 4
and A4' being on corresponding edges, ete.

The AAOB=AA'0'B, and AB= A"
Similarly, BC=DB'C", and Cd = C'4/,
and the AABC=AA'BC'.

Therefore when A'B'(" is superimposed on ABC, the
centres of their circumecireles
coincide, and the normals to
the planes of these circles at
their centres coincide, and
hence the vertices of the
corners, lying on these nor-
mals, coineide (Art. 36), and
the two corners, coinciding in
all their parts, form virtually
but one corner.
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39. Two triangles may be congruent and yet not be
superposable until one of them is turned over in the plane.
This operation, which is possible and allowable in plane
geometry, is not always practicable in spatial geometry.

Suppose the two three-faced corners of the previous
article to be so placed that the triangles ABC and
A'B'C' lie in one plane, and O and O' are upon the same
side of this plane. Then the triangles are directly
superposable and the corners are superposable and equal.

But if the triangles ABC and A'B'C' be in the same
plane and be directly superposable while O and O' are
upon opposite sides of the plane, or if O and O' be upon
the same side of the plane while the triangles are not
superposable until one of them is turned over in the
plane, then the two corners, although having correspond-
ing parts respectively equal, are not superposable, and
are not, therefore, equal according to definition.

A little consideration will show that in the non-super-
posable case, the face angles are disposed in opposite
orders about the vertices of the two corners.

Def. Two three-faced corners having corresponding
parts respectively equal but not being superposable are
said to be equal by symmetry, or to be symmetrical® to
each other.

Symmetrical figures are related to each other in the
same manner as an object and its image in a plane
mirror, or as the right and the left hand; and they

1The term conjugate and opposable have both been employed to
express the condition here described. But it is obvious that the well-
known term symmetrical expresses exactly what is meant, and can-
not therefore be profitably superseded by any other word.
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might be called right-handed and left-handed figures if
there were any means of distinguishing between which
should be called right-handed, and which left-handed.
In certain parts of erystallography the means of distin-
guishing is apparent, and this terminology is employed.

Two superposable figures can be in perspective with
respect to a centre at infinity, while two symmetrical fig-
ures can be in perspective with respect to a centre which
is the middle point of the joins of corresponding parts.

Cor. Tt is readily seen that two n-faced corners may
be superposable and equal, and also that they may be
symmetrical and not superposable.

But where there are more than three faces, new possi-
bilities arise, for the face angles may be equal in number
and respectively equal in magnitude, and yet the corners
may be neither equal nor symmetrical.

40. Theorem. Of two dihedral angles of a three-
faced corner and the opposite face angles,

1. The greater face angle is opposite the  greater
dihedral angle;

2. The greater dihedral angle is opposite the greater
face angle.

O . LMN is a three-faced cor-
ner having O as vertex, and I,
M, N as edges.

From A4, any point in I,
draw AB 1 to M and AC L to
N, and from B and C draw, in
the plane MN, perpendiculars
to M and N respectively, and let these perpendiculars
meet in D.  Join OD.
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The angles ABD and ACD are respectively the meas-
ures of the dihedral angles whose edges are M and N
(Art. 16. Def. 1). The A ADBand ADC are right-angled
at D and have 4D as a common side, the triangles 4BO
and ACO are right-angled at B and C, and have A0 as a
common hypothenuse, and the A DOB and DOC are
right-angled at B and C, and have OD as a common
hypothenuse.

1. Tet £ ABDVe > £ ACD; thenZ AOCis > £ AOB.
Proof. Since £ ABD is > £ ACD,

therefore, - £ BADis < £ CAD, and BD is <OD;
and .. BOis > CO,and ACis > AB,
and - £A400is > Z AOB.

2. This, which is the converse of 1, follows from the
law of Identity (P. Art. 7).

Cor 1. If a three-faced corner has two dihedral angles
equal, it has two face angles equal; and conversely, if
it has two face angles equal, it has two dihedral angles
equal.

Cor. 2. A three-faced corner with three equal dihe-
dral angles has three equal face angles, and conversely.

Cor. 3. If A, B, C denote the dihedral angles, and
a, b, ¢ denote the opposite face angles, the order of mag-
nitude is the same for 4, B, C, and a, b, c.

It will be noticed that in this theorem and its corol-
laries the relations between the dihedral angles and face
angles are analogous to those between the angles and
sides of a plane triangle.
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Def. A three-faced corner with its edges mutually
perpendicular to one another is a rectangular corner or
a right corner. It has all its dihedral angles right angles,
and all its face angles right angles,

41. Problem. Being given the face angles of a three-
faced corner, to construct plane angles which shall have
the same measures as the dihedral angles.

O - LMN is the given three-faced corner. To draw a
plane angle which shall have the same measure as the
dihedral angle whose edge is L.

Constr. Through 4, any point in I, draw a plane
normal to L, and cutting M and N in B and C.

[¢] o’

A

D ot
¢} 2

In (2) take 0'A'= 04, and through A'draw a line,
I, perpendicular to O'A. Draw O'B', making the
£ A4'0'B'=Z AOB, and 0'C", making the angle A'0'C'
=2£40C. Also, draw O'B"=O0'B' and making the
ZC'0'B"=C00B. Join C'B".

The A DA'C' constructed with B'A', A'C', and C'B"
as sides, has the angle ("A'D equal in measure to the
dihedral angle whose edge is L.
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Proof. Since L is normal to the plane of AB and AC,
the £ BAC measures the dihedral angle at I (Art. 16.
Def. 1). And in the construction O'B'=0DB and 0'C' =
0C, and hence A'B'= AB and A'C'= AC; and also we
have made O'B"(' congruent with OBC.

Hence the A DA'C" is congruent with BAC, and the
£ DA'C' measures the dihedral angle at L.

Similarly, the other dihedral angle may be found.

Cor. 1. Since in the foregoing construction only one
triangle is possible with the given elements, the dihedral
angles of a three-faced corner are completely given when
the face angles are given; and hence the measures of the
dihedral angles are expressible in terms of those of
the face angles.

Cor. 2. A three-faced corner is given when its face
angles and their order with respect to the vertex are
given.

In n-faced corners where n is greater than 3, the giving
of the face angles does not determine the dihedral angles,
and does not therefore determine the form of the corner.
‘We have the analogue of this in plane geometry, where
the giving of the sides of a polygon, with more than
three sides, does not determine the form of the polygon.

In general, corners of more than three faces are not
of much importance unless they are regular.

Def. A regular corner has all its face angles equal
and all its dihedral angles equal.

42. Theorem. In any corner the sum of the face
angles is less than a circumangle.
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Proof.  Let the corner have n faces. Cut it by a plane,
and we have, as section, a polygon of n sides, the sum
of whose internal angles is 2 (R—2) Ts.

Denote, in general, a basal angle of one of the result-
ing triangular faces by B, and a face angle by F.

At each vertex of the polygonal section, three faces
meet to form a three-faced corner, viz. the section itself
and two faces of the original corner.

<. 3B is > the sum of the internal angles of the

section, Z.e. >2(n—2) s (Art. 35.)
But 3B+ 3F=2n"s.
- SFis <4 7s.

Or the sum of the face angles is less than a circumangle.

43. Let O .- ABC be a three-faced corner, and let PS
be normal to the plane AOB, PR normal to the plane
C04, and PQ normal to the
plane BOC.

The angle QPR is the sup-
plement of the dihedral angle
at OC, RPS is the supple-
ment of the dihedral angle at
04, and SPQ is the supple-
ment of the dihedral angle at
OB (Art. 16. Def. 2).

Therefore P- QRS is a three-faced corner in which
the face angles are supplementary to the dihedral angles
of O-4BC.

Also, since OB is normal to the plane SPQ, etc., the
face angles of O.ABC are supplementary to the dihe-
dral angles of P. QRS.

o




RECIPROCAL CORNERS. 41

Similar reasoning will apply to a corner of any number
of faces.

Def. Corners so related that the dihedral angles in
the one are supplementary to the face angles in the other
are called reciprocal corners.

Cor. 1. Employing the notation of Art. 40. Cor. 3,
for one of the corners, and the letters accented for the
other, we have

A+a =B+b=C+c=--
=A'+a=B+b=0+c=--=2"7s.
Now, in any corner a'+b'+¢'+-+ is <47s; (Art. 42)
and A+B+C+ o Fd +0 ++ - =2nTs,
where n denotes the number of faces.
o A+ B O+ is > (2n—4)7s.
That is, the sum of the dihedral angles of any corner

is greater than the difference between twice as many
right angles as the figure has faces, and a eircumangle.

Cor. 2. Making n=3, we see that the sum of the
dihedral angles of a three-faced corner is greater than
two right angles and less than six right angles.

44. Problem. Given the dihedral angles of a three-
faced corner, to construct the face angles.

Constr. Take the supplements of the given dihedral
angles, and considering these as face angles, construct
the corresponding dihedral angles by Art. 41. The sup-
plements of these latter angles are the required face
angles.

This construction is evident from the preceding article.



42 SOLID OR SPATIAL GEOMETRY.

Cor. 1. Tt is readily seen that only one set of face
angles can be obtained when a set of dihedral angles is
given; so that when the dihedral angles of a three-faced
corner are given, the face angles are given also ; ; and the
face angles can be expressed in terms of the dihedral
angles.

Cor. 2. A three-faced corner is given when the dihe-
dral angles, and their order, are given.

To construct a three-faced corner when its face angles
are given is analogous to constructing a triangle when
its sides are given; and to construct the corner when its
dihedral angles are given is analogous to construeting
the triangle when its angles are given. And this latter
is a definite problem with respect to the corner, but an
indefinite one with respect to the triangle.

45. Problem. To find the locus of a point equidistant
from three given points not in line.

Let A4, B, C be the points, and let U be the right-
bisector plane of 4B, and V be the right-bisector plane
of AC (Art. 24. Def.).

Every point equidistant from 4 and Bis on U (Art.
25. conv.), and every point equidistant from A and C is
on V. And the required locus is the common line of U
and V. But this line evidently passes through the cir-
cumcentre of the triangle ABC and is normal to its plane.

Hence the locus of a point equidistant from three given
points, not in line, is the axis of vertices of the circum-
circle of the three points considered as a cone-circle.

Cor. The three right-bisector planes, of the joins of
three points, taken two and two, form an axial pencil.
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46. Problem. To find a point equidistant from four
given points which are not complanar, and no three of
which are in line.

Let 4, B, C, D be the four points, and let PO be the
locus of a point equidistant from
A, B,and C. Join D, the fourth
point, to any one of the other

three, as C, and draw the right- ... ™
bisector plane, X, of CD. o TR
As D is not complanar with e X 74?\
A, B, and C, the plane X is not . ™ T

parallel to PO, and therefore <, Ve
meets PO at some point 0. But L ¢
O is equidistant from 4, B, and

O, and it is also equidistant from C and D.

Therefore O is equidistant from A4, B, C, and D.

Cor. 1. The line OP is the common line to three
bisector planes, namely, those of AB, BC, and CA (Art.
45. Cor.), and X is a fourth plane which goes through
the point O. The two remaining bisector planes, those
of AD and CD, must pass through the same point O.

Therefore the six right-bisector planes of the joins of
four non-complanar points, of which no three are in line,
pass through a common point and form a sheaf of planes.

B

Cor. 2. The four points can be combined to form four
different triangles, and the lines, such as PO, which pass
through their circumeentres and are normal to their
planes, all pass through O and form a sheaf of lines.

Cor. 3. As the line PO can meet the plane X in only
one point, there can be only one point equidistant from
A, B, C, and D.
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EXERCISES C.

1. Any face angle of a three-faced corner is greater than the
difference between the other two.

2. Show how to construct a corner symmetrical with a given
corner.

3. Show that the three bisectors of the dihedral angles of a
three-faced corner have a common line, and that this line is an
isoclinal to the three faces.

4. There are four isoclinal lines through the vertex to the three
faces of a three-faced corner.
5. In the figure (2) of Art. 41 denote O’ A’ by p.
Then A'D=A'B'=ptanc; O'B" = O'B' =psecc;
ArQr =ptanb; O'C' =psecbh;
and
CD*=('B"=DA? 4 A'C"? —2DA"- A'C'cos A (P, Art. 217.)
=0'C? 4+ O'B"2—20C . 0B cos a.
.*. substituting, and dividing by p?,
tanZe¢ 4 tanZzd — 2tanc- tan b cos A
=sec2c + sec?b — 2secc . sec b cos a,
whence by reduction and dividing by cos b cos ¢,
cosa = cos bcosc+ sinbsine cos 4 ;
or, cos A = (cosa —cosbcosc)/sinbsine;
which expresses a dihedral angle in terms of the fé'ce angles.
6. Express a face angle in terms of the dihedral angles.
(Employ the property of the reciprocal corner.)

7. 1If the face angles of a three-faced corner are each 60°, show
that the cosine of a dihedral angle is }.

8. In 46 where is the locus if A, I, C are in line ?

9. In47 where is the point O if the four points be complanar ?
where if three points be in line ?



SECTION 4.
POLYHEDRA.

47. Def. A spatial figure formed of four or more
planes so disposed as to completely enclose a portion of
space is a polyhedron. It is analogous to the polygon in
plane geometry, and its plane section is always some
form of polygon.

The faces of the polyhedron are those portions of
planes which are concerned in forming the closed figure,
but for generality the term is sometimes extended to
outlying parts of these planes.

The adjacent faces meet by twos to form edges, and
the edges are concurrent in groups of three or more to
form corners.

‘When a polyhedron is such that no line can meet more
than two of its faces, it is convex.

48. Theorem. In any polyhedron the sum of the num-
ber of faces and the number of corners is greater by two
than the number of edges.

Proof. Any polyhedron may be supposed to be built
up by beginning with one face, and to it adding a second
face, and then a third, and so on until the figure is
completed.

Denote, in general, the number of corners by C, the
number of faces by F, and the number of edges by E.

45
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1. Let us start with a single face, U. The number of
edges is the same as the number of corners, and we have
one face. Therefore the equation C+ I’ = E 4 1is satisfied.

2. To U add the face V. In so doing
V loses one of its edges, BC, and two
of its corners, B and C, by union with
similar parts of U. So that in adding
V we increase F by 1, and we increase
E by one more than the increase of C;
and hence the equation C+ F=E 41
is still satisfied.

3. To U and V add W. This new face loses two of
its edges, DC and C@, and three of its corners, D, C, and
@. Here again we add one face and one more edge than
corner, so that O+ F = FE + 1 is still satisfied.

4. Tt is readily seen that in adding any face whatever,
that face loses one more corner than edge by union with
other faces, until we come to the last face necessary to
complete the polyhedron.

This face loses all its edges and all its corners, so that
by adding this face we increase the number of faces by
1 without interfering with the numbers of edges or cor-
ners. And hence in the completed polyhedron we have

C+F=E+2
This beautiful theorem is usually attributed to Euler,

and is known as Euler’s theorem on Polyhedra, but it
appears to have been known before his time.
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CLASSIFICATION OF POLYHEDRA.

49. Polyhedra may be classified as follows:

. Tetrahedron.

. Parallelepiped, Cuboid, Cube.

Pyramid, Frustum of Pyramid.

. Prism, Truncated Prism.

. Prismatoid, Prismoid.

. The five Regular Polyhedra.

. A number of Semi-regular Derived Polyhedra.

= N N

This classification is not exhaustive, and its divisions
are not mutually exclusive. It includes, however, all the
polyhedra usually met with.

Polyhedra are not equally important in any sense, and
only a few can be said to be important in a deseriptive
sense.

THE TETRAHEDRON.

50. The three planes which form a three-faced corner,
and any fourth plane, not through the vertex, which cuts
them all, form the closed figure
called a Tetrahedron.

The tetrahedron ABCD has
four triangular faces, four
three-faced corners,and hence
four vertices and six edges,
i.e. the six joins of four non-
complanar points no three of
which are in line.

Def. Any face of the tetra-
hedron may be taken as the base of the figure. The
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three edges which bound the base are then called basal
edges, and the other three are lateral edges.

The joins of the middle points of opposite edges are
diameters. There are thus three diameters, EG, FII,
and IJ.

51. Theorem. The diameters of a tetrahedron bisect
one another.

Proof. ABCD is a skew quadrilateral, and BD and
AC are its diagonals.

But the joins of the middle points of opposite sides of
a skew quadrilateral bisect one another (30).

Therefore EG, FH, and 1J bisect one another.

Def. 1. The point of concurrence of the diameters is
the centre of the tetrahedron. And a section through the
centre parallel to a pair of opposite edges is a middle
section, as EFG H.

Cor. There are three middle sections, and these pass
through the middle points of the six edges taken in
groups of four.

The middle sections are evidently parallelograms, and
they intersect by twos along the three diameters.

Def. 2. A median of a tetrahedron is the join of a
vertex with the centroid (P. Art. 85. Def. 2) of the
opposite face.

There are thus four medians, one to each face.

52. Theorem. The medians of a tetrahedron pass
through the centre, and ave divided at that point so that
the part lying between the centre and a face is one-
fourth of the whole median to that face.
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In the tetrahedron ABCD, I is the middle point of
BC, and J of AD, and IJ is thus
a diameter.

IP is one-third of 74, and P is
thus the centroid of the face
ABC (P. Art. 85), and DP is
the median to the face ABC.

Evidently DP and IJ are com-
planar, and intersect in some
point O. Then O is the centre.

Proof. Draw JQ Il to DP to meet I4 in Q.
Then, as J is the middle point of AD, so @ is the
middle point of AP (P. Art. 84. Cor. 2).

s AQ=QP=PI=1 AL

And +.- QP =PI and OP is Il to JQ, O is the middle
point of JI, and is therefore the centre (P. Art. 84.
Cor. 2). Hence the medians pass through the centre.

Again, PO=1 QJ,and QJ =14 PD.
o e PO = 711~ PD.

Notr. — A face of a polyhedron is a segment of a plane, and is
in form triangular, rectangular, etc. But in order to avoid such
uncouth words as parallelogramic we shall speak of these faces as
being triangles, rectangles, parallelograms, etc., although not using
these terms strictly as defined in plane geometry. This usage will
shorten language and cannot possibly lead to confusion.
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THE PARALLELEPIPED.

93. Def. The parallelepiped has six faces, of which
each pair of opposite ones are parallel planes.

The contraction ppd. will be frequently used for the
word ¢ parallelepiped.’

Since parallel planes cut any other plane in parallel
lines (Art. 21), and since the planes AC and A'C" are
parallel and cut the paral-
lel planes AD' and A'D, it ¢
follows that 4B, CD, A'B, " AW
and C'D' are all parallel. [~
Similarly, 4D, BC, A'D',
and B'C" are parallel, and | ™~ ,

AC', A'C, BD', and B'D J? A
are parallel. & ;

Thus the faces of a ppd.
are parallelograms congruent in opposite pairs, and the
twelve edges are in parallel sets of four in each set.

The corners, which are eight in number, are each
three-faced, and the three edges which meet at any one
vertex give the directions of all the edges, and these are
therefore called direction edges.

Cor. 1. As the L BAD =/ B'A'D', the £ DAC' =
£ D'A4'C, and the Z BAC' = £ B'A'C, the corners having
their vertices at 4 and A’ contain face angles which are
respectively equal, but these are disposed in opposite
orders about the vertices.

The same is true for any other pair of opposite cor-
ners.
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Therefore, opposite corners of a parallelepiped are
symmetrical.

Cor. Considering three-faced corners composed of the
same face angles as being of the same variety, there are
at most only four varieties of corner in any parallelepiped,

These will be called representative corners.

54. By considering the forms of representative corners,
all ppds. may be divided into two classes, the acute and
the obtuse.

A denoting any angle, let A’ denote its supplement.

Let 4, B, C, all acute or all obtuse, be the three face
angles at one corner of a ppd.

Then the representative cor-
ners are easily seen to be ABC,
AB'C', A'B(C', and A'B'C.

(1) It 4, B, C are acute,
A', B, C" are obtuse.

Therefore, if a parallelepiped
has one corner formed of acute face angles, the other rep-
resentative corners contain one acute and two obtuse
face angles, each.

This is an acute parallelepiped.

(2) If A4, B, C are obtuse, 4, B', (" are acute.

Therefore, if a parallelepiped has one representative
corner composed of obtuse face angles, the other repre-
sentative corners have, each, one obtuse and two acute
face angles.

This is an obtuse parallelepiped.

It thus appears that no one ppd. can contain all the
kinds of corners belonging to ppds.
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95. Def. The join of opposite vertices in a ppd. is
a diagonal. These are four in number, viz. AA4', BB/,
CC', and DD' (Fig. of 53).

Since AD is Il to BC,is Il to D'A' and equal to it,
AD'A'D is a parallelogram, and its diagonals bisect one
another. Hence 4A'and DD' bisect one another; and
similarly, 44’ and BB' bisect one another, ete.

Therefore, all the diagonals of a ppd. pass through
a common point, and are bisected at that point.

The common point of the diagonals is the centre.

96. Theorem. Every line-segment passing through
the centre of a parallelepiped, and having its end-points
upon the figure, is bisected at the centre.

Proof. P (Fig. 53) is a line-segment passing through
the centre, O, and having its end-points P, @ in- the face
AC and A'C' respectively.

Join AP and A'Q. Then AP and A'(Q) are complanar,
since PQ passes through O; and the plane of AP and
A'Q cuts the parallel faces AC and A'C' in parallel lines
(Art. 21. Cor. 1).

w APis I to A'Q.
Also, AO0=A4'0, and ZAOP= £ A'0Q,
and L0AP= 2 0A4'Q.
o AAOP=AA'00,
and or = 0Q.

Cor. The centre of a ppd. is the centre of every cen-
tral section.
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57. Asa parallelepiped has three direction edges, three
sections may be made normal to each of these edges
respectively. These sections will be forms of the paral-
lelogram.

Def. 1. If none of the sections are rectangles, the
ppd. is triclinic, and none of its angles, whether face or
dihedral, are right angles. :

2. If one section is a rectangle, the ppd. is diclinic,
and four dihedral angles, whose edges are parallel, are
right angles.

3. If two sections are rectangles, the ppd. is mono-
clinic, and two sets of four dihedral angles are right
angles.

4. If the three sections are rectangles, all the faces
are rectangles, and all the dihedral angles are right
angles, and all the corners are right corners (Art. 40.
Def.). The figure is then a cuboid.!

Cor. In the cuboid all the diagonals are equal, and
the direction lines are mutually perpendicular to one
another.

Def. 2. A cuboid with its edges equal is a cube. The
faces of the cube are squares.

The analogues of the ppd., the cuboid, and the cube,
are in plane geometry the parallelogram, the rectangle,
and the square.

1 This term was proposed by Mr. Hayward. Before the appearance
of Mr. Hayward’s work I used the term orthopiped for a rectangular
parallelepiped. But cuboid is evidently a better and a more convenient
term.
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THE PYRAMID.

58. Def. 1. When a corner of any number of faces
is cut by a plane which cuts all the faces, the closed
figure so formed is called a pyramid.

The cutting plane is the base, and the planes which
form the corner are faces of the pyramid. The edges
which bound the base are basal edges, and those which
belong to the corner are lateral edges. The vertex of the
corner is the vertex or apex of the pyramid.

Def. 2. Pyramids are classified into triangular, square,
ete., according to the character of the base. A triangular
pyramid is a tetrahedron.

59. Def. 1If a pyramid be cut by a plane parallel to
its base, the portion lying between the base and this cut-
ting plane is called a frustum of a pyramid.

The frustum has thus two bases, a lower and an upper,
or a major base and a minor base.

From Art. 28. Cor. 2, it follows that the two bases of
the frustum of a pyramid are similar polygons.

THE PRrIsM.

60. When the vertex of a pyramid gdes to infinity in
a direction normal to the base, the lateral edges become
parallel lines, and the resulting figure is not a closed
figure. But under like circumstances the frustum be-
comes a closed figure with two congruent bases, and is
called a prism.

If one edge of a prism is normal to a base, all the
edges are normal, and the lateral faces are rectangles.
This is called a right prism.
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And if one of the lateral edges is inclined to the base,
they are all inclined at the same angle. This is an
oblique prism.

Prisms are usually named from the character of the
right section. Thus a right rectangular prism is a cuboid,
and a parallelepiped may be a right prism or an oblique
prism, depending upon its kind (Art. 57).

THE REGULAR POLYHEDRA.

61. Def. A regular polyhedron is one in which all
the faces are regular polygons of the same number of
sides, and all the corners are formed by the same number
of faces.

This implies that all the edges are equal, that all the
face-angles are equal, and that all the dihedral angles
are equal.

On account of the perfect symmetry of the figure, it
must have a definite centre equally distant from each
face and equally distant from each vertex. The normal
at the centre of each face passes through the centre of
the figure, and the line from a vertex to the centre is an
isoclinal to the edges of that vertex and to the faces of
that vertex.

One of the regular polyhedra is familiarly known as
the cube.

62. Theorem. There cannot be more than five regular
polyhedra.

Proof.  The least number of faces which can form a
corner is three, and these must not be complanar. There-
fore the three face-angles must together be less than a
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circumangle, or a face-angle must be less than four-
thirds of a right angle (Art. 42).

The only regular polygons having their internal angles
less than % of a right angle are (P. Art. 133. Cor.) the
equilateral triangle, the square, and the regular penta-
gon; and these alone can form the face of a regular
polyhedron.

Equilateral Triangle.

A corner may be formed of 3, 4, or 5 equilateral tri-
angles, and may therefore be three-, four-, or five-faced.

1. The three-faced corner gives the regular tetrahedron,
with 4 faces, 4 corners, and 6 edges.

2. The four-faced corner gives the regular octahedron,
with 8 faces, 6 corners, and 12 edges.

3. The five-faced corner gives the regular icosahedron,
with 20 faces, 12 corners, and 30 edges.

Square.

Only one corner, a three-faced, can be formed by squares.

4. This gives the cube, with 6 faces, 8 corners, and 12
edges.

Reqular Pentagon.

Only one corner, a three-faced one, can be formed.

5. This gives the regular dodecahedron, with 12 faces,
20 corners, and 30 edges.

These are the five regular polyhedra.

63. Euler’s theorem, Art. 48, gives

Now the numbers denoted by F and C are evidently
interchangeable, while E remains the same. That is,
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if we have a given polyhedron, we can form another
polyhedron in which the number of corners is the same
as the number of faces in the given polyhedron, and the
number of faces is the same as that of the corners in
the first polyhedron, while the number of edges remains
the same in both.

These polyhedra may be called reciprocals of each
other, as either may be formed from the other by a sort
of reciprocation, the changing of points into planes, and
planes into points.

If a point be taken in each face of any polyhedron,
preferably the centre where there is one, and these
points be joined in every way, provided we join only
points which lie on adjacent faces, the joins form the
edges of a polyhedron which is reciprocal to the original
polyhedron.

If the new polyhedron be treated in the same way,
we obtain a third polyhedron, which is reciprocal to the
second, and is accordingly of the same species as the
first.

64. Applying the principles of the preceding article
to the regular polyhedra, we readily see that the octa-
hedron is the reciprocal of the cube, and the dodeca-
hedron is the reciprocal of the icosahedron.

The tetrahedron, having the number of its faces and
vertices the same, gives another tetrahedron by recipro-
cation; or the tetrahedron is self-reciprocal.

65. Interesting models of all the polyhedra may be
made by drawing proper figures on cardboard; then
cutting out the entire piece, and cutting half-way through
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the remaining lines. The piece of cardboard may now
be folded along these lines to form the intended figure,
and the edges be fastened together with glue.

The figure drawn on the cardboard is called a net.

The net for an obtuse parallelepiped is given in the
diagram. The faces are denoted by U, V, and W, those

having the same letter being opposite, and therefore con-
gruent parallelograms. The edges which come together
are denoted by the same small letter. Those having
the same letter attached must, of course, be the same
in length. The three obtuse angles "concerned are
denoted by 4, B, and C. All the other angles are then
known.

If the angle C were acute, as indicated by the dotted
lines, the ppd. would be acute. And the same results
would be obtained by making either A or B acute.

As the net is drawn, the ppd. will be triclinie. If the
U faces be rectangles, the ppd. will be diclinic; if both
U and V are rectangles, it will be monoclinic; and if all



NETS. 59

the faces be rectangles, the figure will be the cuboid ;
and if all squares, the cube.

The accompanying diagrams give nets for the regular
polyhedra other than the cube.

/\
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Nets for prisms and pyramids and frusta need no
description.
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EXERCISES D.

1. The faces of a polyhedron are 3 squares and 2 triangles.
Find the number of edges and of corners and classify the figure.

2. If an n-hedron has all its faces triangles, the number of its
corners is } (n + 4).

3. If P, , R, S be the centroids of a tetrahedron, the recipro-
cal having P, @, R, § as vertices has the same centre as the original.
Also the diameters and medians of the two tetrahedra coincide,
except in length.

4. In the regular tetrahedron the diameters are perpendicular
to one another.

5. If the diameters of a tetrahedron terminate in the centres
of the faces of a cube, then the edges are diagonals of the faces.
Thence show how the cube may be transformed into a regular
tetrahedron.

6. If AA!, BB', CC', and DD’ are diagonals of a cuboid, show
that the middle points of 4B, BC, CA', A'B', B'C’, and ("4 are
complanar.

Find the form of the section through these points.

7. The join of A' with the middle point of AB, and the join of
¢! with the middle point of BC, divide each other into parts
which are as 2 to 1 (Ex. 6).

8. The centres of the adjacent faces of a ppd. dre joined. What
closed figure is formed ? Describe its characteristics.



SECTION 5.
Tare CoNE, THE CYLINDER, AND THE SPHERE.

66. The three figures here mentioned are the simplest
spatial figures having curved surfaces, and they are fre-
quently spoken of as the three round bodies.

The cone and the cylinder can be generated by the
motion of a straight line, and they are consequently
called ruled surfaces.

The sphere is not a ruled surface, but a surface of
double curvature.

Def. A surface which can be generated by the revolu-
tion of a plane figure about an axial line in its plane, is
a surface of revolution.

The sphere is a surface of revolution.

The cone and the cylinder may or may not be surfaces
of revolution.

Solid geometry furnishes other interesting examples
of ruled surfaces besides the cone and cylinder, and of
surfaces of revolution besides the sphere. As examples
of the first we have the common conoid, the hyperboloid
of one sheet, and the elliptic paraboloid; and of the
second, the oblate spheroid, the prolate spheroid, and the
anchor ring.

THE CONE.

67. Def. 1. In general, a variable line which passes
through a fixed point and is guided by a fixed plane
61
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curve, not complanar with the point, generates a cone, or
has a cone as its locus.

O is a fixed point, and APB is a fixed curve not com-
planar with the point. The
variable line L passes through
O, and meets the curve APD.
Then L generates a cone.

Cor. Since L is unlimited
in length, the cone extends in-
definitely outwards upon both
sides of O, and is not a closed
figure.

Def. 2. O is the centre of
the cone, and the two parts
into which it divides the cone
are called the two nappes or
sheets of the cone.

The fixed curve APB is the director, and the line I is
the generator of the cone.

Any line which coincides with the generator in any of
its positions is called a generating line.

Thus every line passing through O and-1ying on the
conical surface is a generating line.

68. The director may be any form of curve. If it
becomes a line, the cone degrades into a plane (Art. 7. 3);
and if the director becomes a point, the cone becomes the
line through that point and the centre.

Thus the line and the plane may be looked upon as
limiting forms of the cone.
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69. When the director is a circle, and the centre O is
a vertex to that circle as a cone-circle (Art. 10. Def. 1),
the cone is a right circular cone, and the line through
the centre of the circle and the centre of the cone is the
axis of the cone.

The circular cone is a figure of revolution, and is the
most important of all cones.

The word ‘cone’ as hereafter employed will mean a
right circular cone, unless otherwise qualified.

70. TLet C (Fig. of 67) be the centre of the circular
director APB. Then CP is constant, and CO is con-
stant,and OCPisa 1. Therefore the £ POC is constant.
This angle is the semi-vertical angle of the cone.

Hence a circular cone is generated by a line which
revolves about a fixed axial line while meeting the latter
in a fixed point and at a fixed angle.

Cor.1. Every section of a circular cone, normal to
the axis, is a circle.

Cor. 2. Every section of a circular cone, through the
axis, is two lines intersecting at a fixed angle the vertical
angle of the cone.

Cor. 3. TEvery section of a circular cone through the
centre is two lines; for the plane meets the cone along
two generating lines.

Cor. 4. Any point on the axis of a circular cone is
equidistant from the surface on all sides, and the axis is
thus an isoclinal line to the surface.

71. Theorem. Only two generating lines of a cone are
complanar.
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Proof. Since the generating lines all pass through 0O,
any two of them are complanar.

Let any two particular generating lines meet the
director circle in A and P. The plane of these lines
meets the plane of the circle in a line (), and as a line
can meet a circle in only two points (P. Art. 94), the
plane of 04 and OP has only two points coincident with
the circle, and therefore only two generating lines lie in
this plane.

72. Theorem. A line which is not a generating line
can meet a cone in only two points.

Proof.  Let M be the line, not passing through O; and
let the plane U pass through O, and contain M, If U
cuts the cone, it contains two generating lines; and since
it contains M, the two generating lines are complanar
with M, and meet it in two points, and in only two
points; and these points are common to M and to the
cone.

Therefore, the line M can meet the cone in two, and in
only two, points.

73. If the two points in which a line M, which is not
a generating line, meets a cone become colncident, the
line becomes a tangent line to the cone, and has one point
only, a double point (P. Art. 109. Def. 2) in common
with the cone.

The plane determined by a tangent line and the generat-
ing line through its point of contact is a tangent plane
to the cone, and touches the cone along this generating
line, which, as it represents the union of two lines, is a
double line.
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Cor. 1. Evidently all tangent planes to a cone pass
through the centre and form a sheaf of planes.

Cor. 2. All tangent planes to a cone intersect one
another in lines which pass through the centre and form
a sheaf of lines.

74. Def. A line through the centre perpendicular to
a generating line of a cone generates a second cone, which
is the reciprocal of the first.

When the vertical angle of the cone is a right angle,
these two cones become coincident, and form but one
cone.

Tor CYLINDER.

75. When the centre of a cone goes to infinity in the
direction of the axis, and the director curve remains
finite, the cone becomes a cylinder, and the axis of the
cone becomes the axis of the cylinder. Hence:

Def. 1. A cylinder is the locus of a line which keeps
a fixed direction and meets a fixed plane curve which is
not complanar with the line.

Def. 2. A circular cylinder is generated by one of a
pair of parallel lines while revolving at a fixed distance
about the other parallel as a fixed axial line. The fixed
line is the axis of the eylinder.

Cor. 1. The cylinder, as defined, is not a closed figure.

Cor. 2. A line can meet a circular cylinder twice, and
only twice.

Cor. 3. Sections of a circular cylinder normal to the
axis are equal cireles.
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THE SPHERE.

76. Def. A sphere is the locus of a semicircle which
revolves about its limiting centre line as an axial line.

BAD is a semicircle, and AB
is its limiting diameter. When
ADB revolves about AB as an
axis, the semicircle generates a
sphere of which OD is a radius.

Cor. 1. All the radii of a
sphere are equal to one another.
Therefore,

Def. A sphere is a surface
every point on which is equi-
distant from a fixed point within called the centre,

B

Cor. 2. The sphere is a closed figure, so that to pass
from without the sphere to within, or from within to
without, it is necessary to cross the surface.

Cor. 3. A point is within a sphere, on the sphere, or
without it, according as its distance from the centre is
less than, equal to, or greater than the radius of the
sphere.

Cor. 4. Two spheres which have the same centre and
the same radius coincide in all their parts and form
virtually but one sphere.

77. Theorem. Every plane section of a sphere is a
circle.

Let DEP be the plane section and P be any point on
it (¥ig. of 76).
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Then, O being the centre of the sphere, O is constant,
and P lies in the plane of section.
Therefore (Art. 10. Cor.) the section is a circle.

Def. The section by a plane through the centre of
the sphere is the largest circle producible, and is called
a great circle of the sphere. All other sections are small
circles.

Cor. A great circle of a sphere has its centre coinci-
dent with that of the sphere; and the gemerating semi-
circle of the sphere is one-half of one of its great
circles.

78. Theorem. A line can meet a sphere in two, and
in only two, points.

Proof. If aline meets a sphere, any plane containing
the line gives in section a circle cutting the line; and as
the circle cuts the line twice, and twice only, so a line
can meet the sphere in two, and in only two, points.

Def. A line which meets a sphere is a secant line, and
the part within the sphere is a chord.

A secant through the centre is a centre line, and its
chord is a diameter.

A plane which cuts a sphere is a secant plane, and
when it passes through the centre it is a diametral plane.

79. Theorem. The join of the centre of a sphere with
the middle point of a chord is perpendicular to the
chord.

Let DE be a chord whose middle point is €' (Fig. of
76); then OCis L DE,
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The plane of O and DE gives in section a circle with
DE as chord, and O as centre. And ¢ being the middle
point of the chord, OC'is L DE (P. Art. 96. 4).

Cor. 1. Diameters of the same small circle bisect one
another, and being chords of the sphere, the join of the
centre of a small circle with the centre of the sphere is
normal to the plane of the small circle, i.e. to the plane
of section.

The converse of this is evidently true.

Cor. 2. Lines through the centres of small circles
and respectively normal to their planes meet at the
centre of the sphere.

Cor. 3. The plane normal to any chord at its middle
point contains the centre of the sphere.

For this plane is the right-bisector plane of the chord,
and therefore contains every point equidistant from the
end points of the chord. But the centre of the sphere
is equidistant from the end points of the chord.

80. Problem. To find the centre of a given sphere.

1st Solution. Draw, on the sphere, two small circles
whose planes are not parallel, and draw normals to the
planes of these cireles at their centres. +!

These normals meet at the centre of the sphere (Art.
79. Cor. 2).

2d Solution. Draw any three non-parallel chords and
their right-bisector planes.

These planes have the centre as their common point
(Art. 79. Cor. 3).

Cor. 1. In the first solution, if the planes of the
circles are parallel, the normals also are parallel; and
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as they pass through the same point, the centre of the
sphere, they are coincident (P. Art. 70. Ax.).

Therefore the centres of parallel sections of a sphere
lie upon a centre line normal to the planes of section,
and are therefore collinear.

Cor. 2. In the second solution, if the chords are
paralle], so also are their right-bisector planes; and as
these planes are concurrent, they are also coincident.

Therefore, the middle points of parallel chords in a
sphere are complanar, and lie upon a diametral plane
normal to the chords.

81. When the two points in which a line meets a
sphere become coincident, the line becomes a tangent
line to the sphere and touches the sphere in a double
point.

Hence, for a sphere to touch a given line at a given
point is equivalent to two conditions.

82. Theorem. A tangent line to a sphere is perpen-
dicular to the radius to the point of contact, and con-
versely.

Proof. The plane determined by the tangent line and
the radius to the point of contact gives in section a circle
with its tangent line and radius, and as the same angle is
involved, the truth of the theorem follows (P. Art. 110).

Def.  An indefinite number of perpendiculars may be
drawn to a radius at its extremity ; these are all tangent
lines, and they all lie in a plane to which the radius is
normal.

This plane is a tangent plane to the sphere.
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Cor. A tangent plane is normal to the radius to the
point of contact.

83. Theorem. Through any four non-complanar points,
of which no three are in line, one, and only one, sphere
can pass.

Proof. It is shown in Art. 46. Cor. 3, that one, and
only one, point is equidistant from four given non-com-
planar points, no three of which are in line.

If this point be taken as centre, and its distance from
any one of the given points be taken as radius, the sphere
so determined passes through the four given points.

Cor. 1. Four non-complanar points, no three of which
are in line, determine one sphere.

Cor. 2. Spheres which coincide in four non-complanar
points coincide altogether.

Def. TFour or more points so situated that a sphere
can pass through them are conspheric, and when these
points form the vertices of a figure, the figure is inscribed
in the sphere, and the sphere circumseribes the figure.

When a sphere has all the sides of a skew polygon as
tangent lines, the sphere is inscribed to the polygon, and
the polygon is circumscribed to the sphere.

With a polyhedron it is different. For a sphere may
have the edges as tangent lines, or the faces as tangent
planes, but not both.

The sphere having the edges as tangent lines is the
tangent sphere to the edges, and the one having the faces
as tangent planes is the tangent sphere to the faces.
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Cor. 3. A regular polyhedron, on account of its com-
plete symmetry, has all its vertices conspherie, all its
edges tangent lines to a sphere, and all its faces tangent
planes to a sphere, and these three spheres have the same
centre,

84. The vertices of a skew quadrilateral are neces-
sarily conspheric; for from the definition (29) they are
four non-complanar points, no three of which are in line.

Let 4, B, C, D be the vertices taken in order, and let
the sides AB, BC, OD, and DA be considered as lines
of indefinite length.

Cor.1. Let A and B become coincident. Then AB
becomes a tangent line to the sphere.

Therefore, a sphere can touch a given line at a given
point, and pass through any two other points whose join
is not complanar with the given line.

Cor. 2. Let A, B, and C become coincident. Then
the lines AB and BC become two tangent lines inter-
secting on the sphere at B, and these determine a tan-
gent plane.

Therefore, a sphere can touch a plane at a given point
and pass through any one other point which does not lie
in the plane.

As four points properly situated are necessary to
determine a sphere, touching a plane at a given point is
equal to three conditions, and the point of contact is
thus a triple point.

Cor. 3. Let A and B become coincident at one point,
and C and D become coincident at another. Then the
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line AB becomes a tangent line at one point, and the
line CD a tangent line at another, and these two tangents
are not complanar.

Therefore, a sphere may touch two non-complanar
lines at any two given points, one in each line.

85. Theorem. The figure of intersection of two spheres
is a circle, and the common centre line of the spheres
passes through the centre of the circle and is normal to
its plane.

Proof. Let O and O' be the centres of the spheres,
and P be a point on their figure of
intersection I’QR. Then OP, and
0'P, and 0O0O' are constant for all
positions of P. Therefore, P lies
on a cone-circle to which O and O'
are vertices, and hence OO' passes Q  /r
through the centre, €, of the circle,
and is normal to its plane.

Cor. 1. OP and O'P being given, CP decreases as 00’
increases, and wice versa. When OP0' is a right angle,
the tangent planes to the two spheres are perpendicular
to one another, and the spheres intersect orthogonally.

Cor. 2. When P comes to C, the circle QR becomes
a point upon the line 00"

Therefore, when two spheres touch, they do so at a
single point, and the common centre line passes through
the point of contact.

86. APBR is a sphere with O as centre and O' any
point without the sphere. O'P is a tangent line from
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0/, touching the sphere at P. PQR is the small circle
through P, whose plane is normal to QO'.

1. 0O0'and OP are constants, and
Z OPO'is aright angle, since O'P
is a tangent (Art. 82). Therefore
O'P is constant, and P always lies
on the small circle PQR, which is
a cone-cirele to O and O'as vertices.

Therefore all tangent lines from
a given point to a sphere are equal.

2. O'Pis the generator of a cir-
cular cone which touches the sphere
along the small circle PQR, and O'is the centre or ver-
tex of the cone.

Def. The cone of which O'P is the generator is the
tangent cone for the point O'.

The circle PQR is the circle of contact, and its plane
is the polar plane of the point O' with respect to the
sphere; and the point O'is the pole of the plane,

3. When O' comes to 4, the tangent cone and the
polar plane of O' unite to form the tangent plane at A4;
hence a tangent plane is a double plane representing the
limiting form of the tangent cone, and the limiting posi-
tion of the polar plane as the pole comes to the sphere.

Evidently, then, a tangent plane is the polar plane to
its point of contact.

87. Problem. To find the locus of a point equidistant
from three planes, no two of which are parallel, and
which do not form an axial pencil ; i.e. from three planes
which form a sheaf.
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Let ABC, ACD, ADB be the planes having A4 as their
common point.

Let the internal and external bisecting planes of the
dihedral angle whose edge is
AB be denoted by ab and 4B
respectively, and similarly for
the other dihedral angles.

Also, let 4; denote the com-
mon line of ab and ac. Then,
as every point on ab is equidis-
tant from the planes ABCand
ABD, and every point on ac
is equidistant from the planes
ACB and ACD, every point
on the intersection of ab and ac, that is, on 4, is equi-
distant from the three given planes.

The line 4, is thus inclined to all the planes at the
same angle, and it will be called the internal isoclinal
line to the planes.

Again, every point on AB is equidistant from the
planes ABC and ABD, and every point on AC is equi-
distant from the planes ACB and ACD.

Therefore, every point on the common line of AB and
AC, that is on the line A, is equidistant from the three
planes, and 4, is an external isoclinal line to the planes.

Similarly, 4, and 4, are external isoclinals to the same
three planes.

Therefore, the required locus comsists of the four
isoclinal lines to the planes. These isoclinals pass
through A, the common point, and form the centre
locus of a sphere which touches the three concurrent

planes.

D
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Cor. ZEach isoclinal line is the common line to three
bisector planes which form an axial pencil, viz. :

A, of ab, ac, ad; A, of ab, AC, AD;
A, of ac, AB, AD; and A, of ad, AB, AC.

88. Problem. To find the centre of a sphere which
shall touch four planes so situated as to form a tetra-
hedron.

Employing the notation of Art. 87, we have four iso-
clinal lines to three of the planes, at each vertex of the
tetrahedron, or 16 in all. These are 4, B, C, D; as
internal ones, and 4,, A,, A, B,, B, B, C, C, C, D,
D,, D, as external ones.

Denote the planes opposite 4, B, C, D by a, B, v, &,
respectively.

Then 4, is the locus of a point equidistant from
B, v, 8; and B; from a, y, 8. Therefore, a point equidis-
tant from y and & lies upon both 4, and B,, and hence
these lines intersect, and C; and D, pass through the
point of intersection.

Hence (1) A, B, C, D, meet to give one point
required.

Similarly, each of the following groups of four lines
gives a point equidistant from the four planes:

(2) 4y B, Cyy Dy (3) By 4y, G, D
4) C, A, B, D5 and (3) Dy, Az By Cy
Again, 4, is the locus of a point equidistant from
B, v, & and B, from g, vy, 8.

Therefore, 4, and B, intersect in a point equidistant
from o, B, y, &, and C; and D, pass through this point.
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Hence these lines meet in groups of four to give three
points equidistant from the four planes ; namely,

(6) A, B, O, D,; (7) A, C, B, Dy; (8) Ay D, B, G,

Thus eight spheres, in all, can be found, each of which
shall touch four planes so situated as to form a tetra-
hedron.

EXERCISES E.

1. If the director figure in the generation of a cone (61) is a
polygon, what figure is formed ?

2. Show that the cone is a limiting case of an n-faced corner,
and explain how.

3. If the radius of a sphere is the generator of a circular cone,
the figure of intersection of the sphere and cone is a circle.

4. The centre locus of a sphere which touches a plane at a given
point is a normal to the plane at the given point.

5. What is the centre locus of a sphere which touches a line at
a given point ? which touches two parallel lines ? which touches
two intersecting lines ? which touches two intersecting planes ?
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AREAL RELATIONS INVOLVING LINE-SEGMENTS
ABOUT SPATIAL FIGURES.

89. The theorem in plane geometry that the square
on the hypothenuse of a right-angled triangle is equal to
the sum of the squares on the sides, the theorem that
the rectangle on the parts of a secant line between a
point and a circle is equal to the square on the tangent
from the point to the cirele, and others of this nature,
express areal relations, involving line-segments of plane
figures.

Many important relations of a similar nature exist
among the line-segments connected with spatial figures.
These we propose to consider in this part of the work.

"



SECTION 1.

THE SKEW QUADRILATERAL AND THE
POLYHEDRON.

90. Theorem. In a skew quadrilateral the sum of the
squares on the sides is greater than the sum of the
squares on the diagonals, by
four times the square on the
join of the middle points of
the diagonals.

Proof. ABCD is a skew
quadrilateral, and AC and
BD are its diagonals, having
I and J as their middle
points.

DI is median to A CDA, and BI is median to A CBA.
.. CD*+DA+CB*+ BA*=2 (CI*+ DI’+ CI*+ BI*);
or, SAB =4 CI’+2 DI’ + 2 BI:.
But 1J is median to the A DIB;
- 2DI2+2BI?=4BJ*+ 4 1J%;
or, SAB?=4CI*+4 BJ*+41J*
= 0A4% + BD? +4 LJ~ Q.E. D.

This important theorem is true of all quadrilaterals,
whether plain or skew (P. Art. 173).
78
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91. For the tetrahedron let us adopt the following
notation: Taking ABC as the base and D as the vertex,
denote the lateral edges DA, DB, DC by @, b, and ¢
respectively, and the basal edges BC, 04, AB by a,
by, and ¢, respectively. Then @ and @, are opposite
edges, etc.

Theorem. In any tetrahedron four times the sum of
the squares on the diameters is equal to the sum of the
squares on the edges.

Proof. The skew quadrilateral with its diagonals
forms the tetrahedron.
The results of Art. 90 give:

41 =a" 4+ a’+ ¢ — b — b (Fig. of 90.)
AFH*=0"4+ 4+ b+ — a*—al
4EGF=a*4+0"+ a4 07— —ck

Therefore, by addition,
4(IJ*+FII*+ EQY) = a* 4+ b* + ¢ + a’ + b2+ ¢
or, denoting, in general, a diameter by d and an edge

by e,
430% = S

Cor. 1In the regular tetrahedron, all the diameters
being equal, and all the edges being equal, gives,
Sd*=3d’ and Se*=6¢?;
L e=2d%
So that if the diameter is equal to the side of a square,

the edge is equal to the diagonal of the square (P. Art.
180. Cor.).
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92. Theorem. Inany tetrahedron,nine timesthesquare
on a median is equal to the dif-
ference between three times the
sum of the squares on the con-
terminous edges and the sum of
the squares on the remaining
edges.

Proof. In the tetrahedron af
D-ABC, P is the centroid of
ABC. Then DP is the median
to the face ABC.

Bisect APin Q. And AQ=QP=PI=1A4L

D@ is median to the A ADP;

o ADP+ DPP=2A4Q° 4+ 2D (P. Art. 173.)

Also, DP is median in the A QDI

o DQ*+ DI’ =2QP*+2DP2

And eliminating D@* between these relations, we
obtain

SDP*=AD*+2DI*— 2 AT
But .- AIis median in the A ABC, and DI is median
in the A BCD,

e 241 = AB?+ AC? -2 BIP=¢* + b — L a),
and 2DI?=DB+ DC*—2BI*=0"+ ¢ — L a;
whence 3DP?= a4+ b*+ ¢ — L(a+ b2+ ¢f),
or 9DP?=33a%— Sa Q.E.D.
93. Theorem. In any tetrahedron, nine times the sum

of the squares on the medians is equal to four times the
sum of the squares on the edges.



THE SKEW QUADRILATERAL. 81

Proof. Let my, my, my m, denote the medians.

Then from 86,

D as vertex, 9m?=3a> 43V +3¢* —a’—b’—c’;

A as vertex, 9m,2=3a? +3b%+ 3¢ —a’—b —c*

B as vertex, 9mg?=3a?+ 30" 43¢ —a? —b?—c

C as vertex, 9m2=3a?+43b2+3¢® —a® =V —c?

Whence by addition, and denoting a median in general
by m and an edge in general by e, we have

9 3m? =436 Q. E.D.

Cor.1. In the regular tetrahedron 93m’=36m’ and

43e? = 24¢*;
wom?=}el

Cor. 2. The median in a regular tetrahedron is the
same as the perpendicular from the vertex to the base,
and denoting it by p, we have

p=%e~/6.

Cor. 3. Denoting a dihedral angle of the regular

tetrahedron by E,
sin E=DP/DI=1Le~/6 +}te~/3=%-/2.
And cos E=1.

94. In the regular tetrahedron we have the circum-
seribed sphere, the tangent sphere to the edges, and the
inscribed sphere. Denoting the radii of these by R, p,
and r respectively,

R=0D=3%p=1%e~/6, (Art. 52.)
p=0I =1d=1e~/2, (Art. 91. Cor.)
r=OP=}p=rse~/6;

Rt:p?:17=9:3:1
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THE PARALLELEPIPED.

95. Denote the direction edges by @, b, ¢, and an edge
in general by e, and a diagonal in general by d.

Theorem. The sum of the D ¢
squares on the diagonals A"
is equal to the sum of the A‘
squares on the edges.

Proof. Since the faces | ™~—~—],
are all parallelograms, and J? A
AB is || to B'A', AC to
C'4!, ete., <

AA” 4 BB?= AB*+ BA" + A'B" 4 B' 4%

Similarly,

CC*+ DD"=CD*+ DC"* + C'D"*+ D'C*

Whence, by addition,

S = AB* 4 CD*+ A'B” 4 C'D?+ BA"
+ D'C* + B'A*+ DC™

And BA"+ CD"=BC*+ CA*+ A'D* + D'B;
and B'A*+ ("D = DA*+ AC* 4 C'B* + B'IA

% P =48 Q.E.D.

Cor. 1. As the edges are separable into three groups
of four equal edges each (Art. 53),

SA2=4(a® + U + ).
Cor. 2. In the cuboid the diagonals are all equal, and
A=+ 0+
Cor. 3. In the cube a =b=c;
oo dP=3e
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96. Problem. To find a diagonal of a given parallele-
piped by a plane construction.

In Fig. (1), let A0'BC be the given ppd., and AA' be
the diagonal required.

>

Analysis. Draw A'P, BQ, CR, perpendiculars on A0,
produced if necessary.

P, Q, R are the projections, on A0, of A', B, and C.
The projection of the middle point of 0A'is the same

point as the projection of the middle of BC, i.e. it is the
middle point of RQ.

. OP=OR+ 0Q.

Construction. In Fig. (2) construct the faces 4B,
AC, and 04!, disposed as in the figure.

Draw OR, BQ L on A0, produced if necessary.
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Take OP= OR 4 0Q, and draw PT L to AO.
With O as centre and 0A' as radius, describe a circle
cutting PT in 7. Join A7T.

AT is the required diagonal.
Proof. OR is the same for both figures, and so also

iIs 0Q, and therefore OP; and A0 being the same in
both, AP is the same in both.

Also, OT of Fig. (2) is made equal to 04’ of (1).
< A OPTof (2) =4 OP4'of (1),and PT = PA".
Hence A APT of (2) = A APA' of (1),
and AT of (2)= 44" of (1).
In like mﬁnner any other diagonal can be constructed.
Cor. Let the face angles about the vertex A'be all

acute, and the figure is an acute ppd. (Art. 54).
Denote

£ BA'Cby A, £ CA'O' by v, and £ 0'A'B by p.
Then, Fig. (2), ,
L BOC,=X\ £L00P=p, ZBOP =v.
Now,

AT? = AP+ PT?= (A0 + OP): + 0A” —OP?
=A0"4+240-OP+ 04"
=at+2a (0Q + OR) + 04"
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But,
04”7 =b*+ 2+ 2 bccos A, (P. Art. 217.)
0Q =bcosv, OR =ccosp.
v AT = AA” = + ¥ 4 * + 2 be cos A + 2 ca cos
+ 2 ab cos .
And this expresses the square on the longest diagonal,
i.e. the one extending between the vertices having three
acute face angles. :

The other diagonals are given by making two angles
obtuse in every possible way. They are:

a?+ U+ 4+ 2bccos A — 2 ca cos u — 2 ab cos v,
a’ 4 b* 4 ¢ — 2 be cos A + 2 ca cos u — 2 ab cos v,
a?+ b4 c*—2bccosA —2cacospu+ 2 abcos v

For the diagonals of an obtuse ppd. it is only neces-
sary to change throughout the algebraic sign of every
cosine term.

Remark. Inmaking constructions like the foregoing care must
be exercised that every measured segment is taken in its proper
sense, or with its proper sign.

By taking the face angles about A’ all acute, the per-
pendiculars A'P, BQ, CR, all fall to the right of O.
Under a different arrangement of angles, some or all
of these might have fallen to the left of 0. In any case
if M is the middle point of QR, OP is to be taken equal
to 2 OM, whatever the sign may be.

97. Let O-ABC be a cuboid, and OP be a diagonal.
Then OP*= 0A4*+ OB*+ OC? (Art. 95. Cor. 2).
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But if OX, 0Y, 0Z, the direction lines of the cuboid,
meeting in O, be taken as the
three rectangular axes of space
(Art. 8. Def. 1), 04 is the pro-
jection of OP on OX, OB is the
projection of OP on 07, and OC,
of OP on OZ.

Therefore, the square on any
line-segment is equal to the sum
of the squares of the projections
of the segment on any three
mutually perpendicular lines.

98. Denoting 04 by a, OB by b, and OC by ¢; also
£ P04 by e, £POB by B, £POC by y, we have
04* _ a?

OP*  a*+ b4 ¢?

cosla =

with the symmetrical expressions for cos?8 and cos?y.
. cos*a 4 cos? B+ cos?y=1.

Def. The angles «, B, y are direction angles of the
line OP, and determine the direction of OP relatively to
the three axes. The cosines of these angles are the
direction cosines of OP.

These angles are interdependent, and the result of this
theorem shows that the sum of the squares of their
cosines is unity.

Cor. The position of a point, P, in space is known
relatively to the origin O, and the axes OX, 0Y, 0Z,
when we are given OF, and the angles which OP makes
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with the axes; or when we are given the length of the
projections of OP upon the axes. For the projections
are the direction edges of a cuboid of which OF is the
diagonal.

This is the fundamental principle entering into
analytic spatial geometry.

TuE OCTAHEDRON.

99. The octahedron may assume a variety of forms,
but we shall confine ourselves to those in which the
point of intersection of the axis is the middle point of
each axis, or the centre of the figure.

In general the octahedron is the reciprocal of the
parallelepiped, formed by joining the centres of adjacent
faces.

The three joins of the centres of opposite faces of the
ppd. in pairs are the axes of the octahedron, and hence
from the nature of a ppd. (Art.

37) the octahedron may be A

triclinic, diclinie, monoclinie,

right or regular; the right

octahedron coming from the

cuboid, and the regular from Av g’
the cube. &

100. Theorem. In any oc-
tahedron, the sum of the
squares on the twelve edges
is equal to twice the sum of
the squares on the three diameters 44', BB, and CC'.

G

A
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Proof. The section along any two diameters, being a
parallelogram, gives

AA”+ BB” = AB® + BA"” + A'B” 4 B' 42,

BB* 4 (0C” =BC"+ C'B*+B'C* + OB,

OC" AA”=AC*4- CA” + A'C" 4 C' 42
Whence, by addition,

2(AA” 4 BB" + C(C") = 23d* = Se.

Cor. 1If the octahedron is regular, all the edges are
equal and all the diameters are equal, and therefore

&= 2é%
and the section ACA'C’ is a square.

THE REGULAR DODECAHEDRON.

101. Let AE, AB, and AG be the three edges which
meet to form the corner of a regular dodecahedron. Let

Q be the centre of the face ADB, and O be the centre of
the circumseribed sphere.
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Sinee all the faces are congruent, BEG is an equi-
lateral triangle, and OA passes through its centroid P, and
is normal to the plane of the triangle (Art. 79. Cor. 1).

£ ABE=36° and BE =2 BH=2 AB cos 36°=2¢ cos 36°.
Then, BP=1BE.~/3=%e~/3 cos 36°.
Also, -+ BPA=", AP’= AB*— BP?,
or AP?= ¢*(1 — 4 cos? 36°).
But if AA4' be a diameter of the circumsphere, ABA'
is a 71, since B is on the sphere.
o AA' - AP = AB? (Art. P. 169%)
or 2R-AP=¢.

te+/3
Wh == 2 .
ence, R =y o 36]

= e-\/ij——,_= e X 1.401258'“
4~/ sin 6° - sin 66°
Again, we have,
p =/ (B — }AE) = /(R — 1 &%),
» p=e+/§1.401258" — 0.25}
=e x 1.309016 .-,

Or

and r=+/{RB*— AQ*.
But AQ=1ABsec BAQ
1 e
=1le. =1,
28" 05545 ? 5in 36°
—— 1
Vor= 1.401258° — ————
! e\/{ % — 36

=e x 1.113516-...
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EXERCISES F.

1. Two opposite edges of a tetrahedron are perpendicular to
one another when of the remaining edges the sums of the squares
upon opposite edges, taken in pairs, are equal.

2. What does the theorem of Art. 91 become when the four
vertices of the tetrahedron become complanar ?

3. What does the theorem of Art. 92 become when D comes to
the centroid of the triangle ABC'?

4. Show that the tangent of the angle made by an edge of a
regular tetrahedron with one of the faces is V2.

5. In the cube, P is the middle point of AR, and S is the
middle point of A’B’; show that the acute angle of the section
through @, D, Sis cos-11,/10.

6. In the cube, DK is | from Dupon the diagonal BB’ ; show
that DK =} eV6; and that CK = e.

7. In the cube, the join of the middle point of AB with B,
and the join of the middle point of AD with D', divide each other
into parts which are as 2: 1.

8. The angle between two diagonals of a cube is cos-! +

9. In the cube, the angle between a diagonal and a face is

COS'lL-
V3
10. In the cuboid, the angle subtended at«the centre by the
middle points of two conterminous edges is

cos~la? / V(a? + b2)(a? + c?),
with variations in the letters for the different cases.
11. In the cuboid, the angle between diagonals is
cos7 (a2 — b2 — ¢?) / (a% + b2 + ¢2),

with symmetrical variations.
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12. In the cuboid, the L from a vertex upon a diagonal is

aViE+ & /Va + b+ ¢4

with symmetrical variations.

13. In an octahedron, there may be, at most, six different
lengths of edges.

14. If the semi-diameters of an octahedron be @, b, ¢, and
Z(be)=N, Z(ca)=p, and £ (ab)=v,
then the squares of the edges are
a4 b2+ 2abcosy, b4 ¢+ 2bccos\, ¢4 a? £+ 2cacosp.
15. In a right octahedron, the cosines of the dihedral angles are
b2t + c2a? — a?b?, c2a? + a?b? — b2, a?b? + b%? — c%a?,
each divided by a2b? 4 b2 + c?at

16. In a regular octahedron, the perpendicular from the centre
upon a face is 1 e V6.

17. In a regular otcahedron, the cosine of a dihedral angle
is — 1.

18. The section through the middle points of AC', AB', B'C,
CA', A'B, and B'C is a hexagon with opposite sides parallel, and
is regular if the octahedron is regular.

19. A section of an octahedron parallel to any face is a hexagon.

20. The radius of the tangent sphere to the edges of a regular
octahedron is }e.

21. The squares of the radii of the three spheres of a regular
octahedron are in harmonic proportion.

22. In a regular dodecahedron,

R =§(\/15+\/3).
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23. In a regular dodecahedron,
_ 25 4+ 11 /51 .
r= e\/ { T} /

and p=§(3+\/5)-

24. In a regular dodecahedron, if D be the dihedral angle,
sin D = 2./5.

25. In the regular dodecahedron show that 11 R? exceeds 1522
by 3e2.

26. In the icosahedron, R = e\/(%é) g

p= e\/(3_+83/_5); and » = (’\/<7—+2?T\/—§>

27. In the icosahedron if D be the dihedral angle,
cosD =1./5, orsinD = 2.

28. A sphere touches one face of a regular tetrahedron exter-
nally, and the three others internally. Show that its radius is
ip; and that the distance from the further vertex at which it

touches the three faces is 5\/3.
o

29. If a regular cube and octahedron be circumscribed to the
same sphere, their vertices are conspheric.

30. If aregular dodecahedron and icosaliedron be circumscribed
to the same sphere, their vertices are conspheric.

t
v



SECTION 2.
THE SPHERE.

102. Def. If P be any point, and a line through P
meets a given sphere in A4 and B, the rectangle PA - PB
is called the power of the point P with respect to the
given sphere.

Cor. A point is without a sphere, on the sphere, or
within it, according as the power of the point with
respect to the sphere is positive, zero, or negative.

103. The power of a fixed point with respect to a
given sphere is independent of the direction of the line
whose segments form the rectangle which measures the
power,

Proof. Let the line through P meet the sphere in
A and B. Since P, A, B are in line, P, 4, B, O are
complanar, O being the centre of the sphere.

The section by this plane is a great circle, with a
secant line through P cutting the circle in 4 and
B. And PA.PB is constant in value for this circle
(P. Art. 176). And since all great circles have the same
centre and equal radii, P4.PB is constant for every
great cirele, and therefore for the sphere.

Cor. 1If A and B become coincident, the secant line
becomes a tangent, and the rectangle PA4. PB becomes
the square on the tangent.

93
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Therefore, the power of an external point with respect
to a given sphere is the square on the tangent from the
point to the sphere; and all tangents from the same
point to the same sphere are equal.

104. S and S' are two circles with centres 4 and

B and radical axis L
(P. Art. 178).

Let the whole system P
revolve about the com- &
mon centre-line AB as £’
an axis, while retaining
the fixed relations of the p c

B
several parts. A o
The circles describe §
s

spheres, and the radical
axis, I, describes a plane
normal to AB.

Also PE . PD = PE'. PD' remains true for the spheres.
And since P may be any point on the plane described by
L, the power of P with respect to each sphere is the
same.

Def. The locus of a point of which the power is the
same with respect to two given spheres is the radical
plane of the spheres.

Cor. 1. Evidently, the radical plane of two spheres
is nmormal to the join of their centres, and divides the
distance between the centres so that the difference of
the squares on the two parts is equal to the difference
of the squares on the conterminous radii.
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Cor. 2. The tangents to two spheres, from any point
on their radical plane, are equal.

Cor. 3. 'The plane of the circle of intersection of two
spheres is their radical plane.

105. TLet S, S, S; S, be four spheres, and let Uy,
denote the radical plane of S, and S,, ete.

The four spheres have the six radical planes, Uy, U,
Uiy Uy Uy and Uy

A point whose power with respect to S, and S, is the
same is on the plane U, and a point whose power with
respect to S, and S; is the same is on the plane U
Therefore, a point whose power with respeet to S, S,
and S, is the same is on the common line of Uy; and Uy,
and is evidently on the plane Uy,

Therefore, the radical planes of three spheres have a
common line, and from any point on this line tangents
to the spheres are equal.

We shall call this line the radical line of the three
spheres. In asection through the centres of the spheres,
this line gives the radical centre of the three resulting
great cireles.

Cor. 1. The radical line of three spheres is normal to
the plane through their centres.

Cor. 2. 'The six radical planes to four spheres inter-
sect by threes to form four axial pencils.

The axes of these pencils may be denoted by L, Lig,
L, and Ly,; Lis being the common line to Uy, Uy, and
Us. .

Cor. 3. The line L, meets the plane U, in one point
only, and it evidently meets Uy and Uy, in the same point.
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Therefore, there is, in general, one point from which
tangents to four given spheres are equal; or of which
the power is the same with respect to four given spheres.
This is the radical centre of the four spheres.

EXERCISES G.

1. Two secants are drawn through the same point, P, within a
sphere, and meet the sphere in 4, B, and C, D respectively. Then
PdA.PB=PC.-PD.

2. If @, b be the parts into which the plane of a small circle
divides the diameter through its centre, the area of the small circle
is wab.

3. If three spheres intersect two and two, the planes of the
small circles of intersection form an axial pencil.

4. If four spheres intersect two and two, the planes of the
circles of intersection pass through a common point.

5. Where is the radical centre of four spheres whose centres
are complanar ?

6. Under what condition will four spheres have a line of radical
centres ?
(The spheres are then coaxal.)

7. The tangent cones, common to three spheres taken two and
two, have their vertices collinear.

8. The tangent cones, common to four spheres taken two and
two, have their vertices complanar. o

9. If Pand @ be two points in the line L, and U and V inter-
secting in M be the polar planes of P> and  with respect to a
sphere, then every plane through M is polar to some point in L;
and L and M are perpendicular to each other.

10. Any rectilinear figure has a corresponding rectilinear figure
such that every side in the first figure has a side perpendicular to it
in the second.
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STEREOMETRY AND PLANIMETRY; OR THE MEAS-
UREMENT OF VOLUMES AND SURFACES.

106. A closed spatial figure includes within its boun-
daries a portion of space separated from all other parts of
space. This portion of space considered with respect to
extent, and not with respect to form, is called the volume
of the closed figure.

As our primary ideas of a spatial figure were probably
derived from concrete objects such as blocks of wood or
stone, the volume of a spatial figure is also called its
solid contents, and the figure itself is called a solid. Hence
the name Solid Geometry.

Also considering a closed spatial figure as a surface,
which after the manner of a closed vessel might be filled
with a liquid, the volume is sometimes called the capacity
of the figure.

The measuring of volumes, or solid contents, or capaci-
ties is called Stereometry.

Def. Equal spatial figures are those which have equal
volumes, and therefore congruent figures, when having
volumes, are necessarily equal.

97



SECTION 1.
POLYHEDRA.

107. Theorem. Two cuboids with congruent bases
have their volumes proportional to their altitudes.
B-ACD and F.-EGH

are two cuboids having K
their bases congruent. Then ) f
vol. B- ACD: vol. F- EGH 1
= BD: FH. 1’

Proof. If this propor- ' = 1 G
tion is not true, let A B E F

vol. B- ACD:vol. F- EGH = BD: FI,
where FIis different in length from FI[; and first let
F1I be less than FH. As a general case let BD and FII
be incommensurable.

Take some w.l. (P. Art. 150. 3) less than I/ which
will measure BD, and divide BD and FH into parts
equal to this «.l. One point of division, at least, must
fall at some point, .J, between I and . '

Through all the points of division pass planes parallel
to the bases. These divide the cuboids B- ACD and
F. EGJ into congruent and therefore equal cuboids.

. vol. B- ACD :vol. F- EG.J = BD : F.J
and vol. B- ACD:vol. - EGH = BD: FI (hyp.).
v vol. F- EGJ:vol. F- EQH=F.J: FI.
98
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But vol. F- EGJ < vol. F- EGH,;

o FJis< FI;
which is not true.

Hence FI cannot be less than FH. And in like manner
it is shown that FI cannot be greater than FH; and
as FI has some value, it must be equal to FH; and
therefore

vol. B- ACD :vol. F- EGH= BD: FH.

Cor. Cuboids which have two dimensions in each re-
spectively equal have their volumes proportional to their
third dimensions; or, more generally, a cuboid with con-
stant base has its volume varying as its altitude.

108. Theorem. Two cuboids are to one another as the
continued product of their three dimensions.

Let X, Y denote two cuboids whose dimensions are
respectively abe, and a'b'c’.

Then X: Y=abc:a'd'c.

Proof. Let Pbe a cuboid whose dimensions are ¢, b, ¢/,
and @ be a cuboid whose dimensions are a, o', ¢'.

Then X and P have the face ab the same, and P and
@ have the face ac' the same, and @ and Y have the
face b'c' the same.

b X IP=68 @ (Art. 107. Cor. 1.)
P:Q=0:0,
Q:Y=a:d.

‘Whence, by compounding the three proportions,
X: Y=abc:a'd'd.
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Cor.1. A generalised statement of the theorem is,
the volume of a cuboid varies as the continued product
of its three dimensions.

Cor. 2. When the cuboids are similar, their homologous
edges are proportional, and if a', ¥/, ¢' be homologous to
a, b, c, :
abe _at 1 _&
a'b'e! Tah bls— e

Therefore, two similar cuboids are to one another as
the cubes upon two homologous line-segments.

Or, the volume of a cuboid of constant form varies as
that of the cube on any one of its line-segments.

109. In measuring volumes we take as a unit the
volume of the cube whose edge is the unit-length. This
volume is the unit-volume, and it will be denoted by u.v.

The three units of extension are thus interconnected,
so that the giving of any one of them gives all.

Thus if a cube has its edge taken as the w.l, the area
of one of its faces is the w.a., and its volume is the u.v.

If the edge of a cube be n unit-lengths, each of its
faces contains n? unit-areas, and its volume contains »®
unit-volumes (comp. P. Art. 151).

110. Theorem. The number of w.ws in a cuboid is
the continued product of the numbers of w.ls in its three
direction edges, or its three dimensions.

Proof. Let X, Y be the cuboids having their three
direction edges expressed by a, b, ¢ and &', V', ¢'.

Then X:Y=abc:a'b'c (Art. 108.)
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Now let o' =b'=c¢'=one u.l. Then Y contains one
wv. And hence:

The number of w.v.s in X =the number of w.ls in
@ X the number of w.ls in b X the number of w.ls in c.

This result is generally expressed by saying that the
volume of a cuboid is the product of it three ounen—
sions, an expression of which the full meamng is given
above. o SR

Cor. If a, b, cbe the three direction edges of a cu-
boid, ab denotes the area of the face whose edges are
a and b, and ¢ is the altitude to that face taken as
base.

Therefore, the volume of a cuboid is the product of
the area of its base multiplied by its altitude.

111. The product form of three quantitative symbols,
where the symbols denote line-segments, is to be inter-
preted as the volume of the cuboid having for its three
direction edges the line-segments denoted by these
symbols.

Hence such expressions as abe, (a + b)ab, ete., denote
volumes of cuboids in geometry, and are consequently
said to be of three dimensions even in algebra.

This exhausts the geometry of space as we know it,
for space has, for us at least, only three dimensions.

112. Expressions such as abed, or a’? or a’be, ete.,
are, in algebra, said to be of four dimensions; but when
the letters are line-symbols, no interpretation is possible
in real geometry.

They may be then said to belong to a hypothetical
or imaginary something, which to us can have no real
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existence, but which is spoken of as geometry of four
dimensions, or as space of four dimensions.

In using the symbols and forms of algebra to deduce
geometric relations, expressions of four or of higher
dimensions may occur as intermediate steps in some
transfosmation, but never as final results.

The associative law in algebra which tells us that
w-be, ab-e, Y- ac are equal, tells us in geometry that the
measure of the volume of a cuboid is independent of
which face is taken as a base.

The expression ¢’ is the cuboid having the square on
side @ as base and b as altitude, or the cuboid having the
rectangle ab as base and « as altitude; and these are the
same cuboid differently viewed.

The forms Vabe, Va%, etc., are not geometrically
interpretable ; but Vabed is an area.

The form Vabe denotes a line-segment, the edge of
the cube whose volume is equal to the cuboid whose
dimensions are a, b, c.

PARALLELEPIPED.

113. Theorem. A parallelepiped is equal to the cuboid
which has its base and altitude respectively equal to
those of the parallelepiped.

We prove this theorem by showing that any parallele-
piped can be transformed, without ch’mge of volume,
into a cuboid having a base and altitude equal to those
of the ppd. Let 4. A'BD be a triclinic ppd.

Cut it by a plane, EF(G, normal to the direction edge 44"

This section is a parallelogram, and BFE, CGF, FEA',
ete., are Ts.
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On AA' produced take A'E'=AE, and through E' pass
the plane E'F'G" |l to EFG.

Then the corners A.BDE and A'-B'D'E' are evi-
dently congruent, since they are composed of equal face

angles disposed in the same
order. And if the figure

A . BGE be so placed that
A coincides with 4', 4D A E
with A'D', and AB with
A'B', this figure will co-
incide completely with
A'- BG'E', and the ppd.
ACQ" is transformed to the
monoelinic ppd. EG', without change of volume; and
the base EH'is equal to the base AD', and the altitude

’

c

G ¢ a
;

// ]
4 i
/ J
/ /
B/ / f
T 4 1
] i
H /7
} ’
H !
i /
I H 7 W
4 ;
7 7
g ; /D !
I 4 1
'V // !
} , ¥
f

E A’ E

/
/
H
H

remains unchanged.
Again, by passing a plane normal to the direction edge

EH of the monoclinic ppd. we transform it into a cuboid
in which the volume is unchanged, and the base and
altitude are unchanged.

Therefore any ppd. can be transformed, without change
of volume, into a cuboid having its base and altitude
equal to those of the ppd.

Therefore a ppd. is equal to the cuboid having its

base and altitude equal to those of the ppd.

Nore.—If the ppd. is such that it is impossible to cut it by the
plane EFG, normal to AA', then EFG may be any plane less
inclined to AA' than the face ABC is. We thus transform the
ppd. into another triclinic ppd. less oblique than the original; a
second section may now be made normal to a direction edge; or

if not a second, a third, ete.
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Cor. 1. The volume of a parallelepiped is the product
of the area of its base by its altitude.

Cor. 2. Similar ppds. are to each other as the cubes
on homologous line-segments.

Cor. 3. A ppd. of constant form varies as the cube on
any of its line-segments.

PRrismMm.

114. If a cuboid or a monoclinic ppd. be divided into
two triangular prisms by a plane passing through a pair
of opposite edges, which are normal to a face, the
prisms so formed are congruent, and therefore equal.
But if a plane be passed through opposite edges of a tri-
clinic ppd., the two prisms formed are, in general, not
congruent, but symmetrical, and they cannot therefore
be shown to be equal by superposition. We proceed to
show that they are, however, equal.

115. Theorem. The two triangular prisms into which
a parallelepiped is divided by a plane through a pair of
opposite edges, are equal.

Let A-BDA be a tri- o ’ (
clinic ppd. 4, 4', ¢, C [ / /
B ’/ F, '.’ / ,"

are complanar, and their
plane divides the ppd.
into the triangular prisms
A.BCA'and C- ADC'. /
These prisms are not 4 — 4
congruent. But, as in Art.
113, transforming the triclinic ppd. into the monoclinic
ppd. E - FIE', we transform, without change of volume,

’
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the prism 4.BCA' into E-FGE', and C-ADC" into
G- EHG'. And these new prisms, being right prisms
from the monoclinic ppd., are congruent, and therefore
equal, and each is one-half the monoclinic ppd.

Therefore, the original prisms 4. BCA' and E - FGE'
are equal, and each is one-half the triclinic ppd.

Cor. 1. Since the right section EFGI is double the
right section E G, it follows that the volume of a prism
is the area of a right section multiplied by the length
of a lateral edge.

Cor. 2. Taking ABCD as the base of the ppd., and
ACD as the base of the prism C.4DC', these figures
have the same altitude.

Therefore (Art. 113. Cor. 1), the volume of a prism is
the area of the base multiplied by the altitude.

Cor. 3. As all prisms may be divided into triangular
prisms, Cors. 1 and 2 are true for all prisms.

116. We have two expressions for the volume of a
prism:

1st, vol. = area of rt. section x lateral edge.
2d, vol. = area of the base x altitude.
. area of rt. section _  altitude
area of base lateral edge

But if 4A4' be the lateral edge, and AP be the alti-
tude, AP -+ AA'is the cosine of the angle between the
lateral edge and the altitude.

But, as the altitude is normal to the base, and the
lateral edge is normal to a right section, this is the
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angle between a right section and the plane of the base.
Calling this the angle of obliquity of the prism, we have:

The area of a right section of a prism is equal to the
area of an oblique section multiplied by the cosine of
the angle of obliquity.

OF LAMINE.

117. To fix our ideas, let AETN be a trapezoid with
ET |l to AN. Divide its side AE into any number of
equal parts, and through the points of division, B, C, D,
ete., draw lines Il to AN.

= -
On these lines and the bases /l a

ANand E T construct the series Lz L€

of internal rectangles BP, CQ, c b

DR, ES, -.- and the series of R

external rectangles Aa, Bb, Ce, > o ¢

Dd... i :

A PN

The area of the trapezoid
evidently lies between the sum of the external rectan-
gles and the sum of the internal rectangles.

Now, any external rectangle as C¢ is congruent with
an internal rectangle below it, CQ; except that the
lowest external rectangle has no corresponding and con-
gruent internal one, and the uppermost internal rectan-
gle has no congruent external one.

Let E denote the sum of the external ‘rectangles, and
I denote the sum of the internal ones. Then

E—-I=04e—CJES.

.. the difference between the sum of the external
rectangles and the sum of the internal rectangles is less
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than the lowermost external rectangle; and this is true
however many rectangles be formed.

But the lowermost rectangle can be made as small as
we please, by making its altitude sufficiently small; i.e.
by making the number of parts into which we divide
AE sufficiently great. And hence the area of the trap-
ezoid is the limit of the sum of either series of rectan-
gles as the number of rectangles is indefinitely increased.

-118. Now, let AETN be a vertical section of a frus-
tum of a pyramid (Art. 59), in which AN and ET are
sections of the bases. Divide AE into any number of
equal parts, and through the points of division pass
planes parallel to the bases.

On the figures of section construct a series of inscribed
prisms, BP, CQ, DR, ES---, and a series of circum-
scribed prisms, da, Bb, Ce, Dd---.

The volume of the frustum lies between the sum of
the internal prisms and the sum of the external prisms.

But any external prism, except the lowermost, has a
congruent internal prism below it, and any internal
prism, except the uppermost, has a congruent external
prism above it.

Hence if E denotes the sum of the external prisms,
and I of the internal prisms,

E — I=prism da — prism ES
= vol. of lowermost external prism
—vol. of the uppermost internal prism.

And this is true, however many equal parts AE. is
divided into.
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Therefore, the volume of the frustum differs from the
sum of either series of prisms, by less than the volumes
of the series of prisms differ from each other; that is,
by a quantity less than the lowermost external prism;
and this difference may be made as small as we please
by dividing AE into a sufficiently large number of parts.

Hence, the volume of the frustum is the limit of that
of either series of prisms, when the number of prisms
is indefinitely increased.

Cor. This theorem is exceedingly important, for the
least consideration will show that nothing in the inves-
tigation requires that AEK, or any edge, should be a
straight line, and hence that the theorem holds true
when the boundary of the figure, between the parallel
bases, is composed partly or wholly of curved surfaces;
also that the theorem is true when omne or both bases
reduce to lines or points.

119. Def. When a spatial figure is cut by two indef-
initely near parallel planes, the prism, having one of
the sections as base, and the distance between the planes
as altitude, is called a lamina of the spatial figure.

When two figures are confined between the same two
parallel planes, the laminae determined by two indefinitely
near planes, parallel to the confining planes, are corre-
sponding lamince. ,

Usually the planes which determine a lamina are
supposed to be infinitely near, so that a lamina is one of
the prisms of the preceding article, taken at its limit.

Cor. 1. From Art. 118, it appears that two figures
which have all corresponding lamine equal are them-
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selves equal; and two figures which have all corre-
sponding lamine in the same ratio are themselves in
that ratio, the one to the other.

Cor. 2. Since corresponding lamine have the same
altitude, their volumes are proportional to their bases;
and hence corresponding lamine are equal when corre-
sponding sections are equal; and corresponding laminge
are in the same proportion to one another as are the cor-
responding sections.

TaE PYRAMID.

120. Theorem. Pyramids are equal whose bases are
equal and whose altitudes are equal.

Proof. Let the trian- ~ "
gular pyramids, D . ABC
and H. EFG, have their
bases equal, and also their
altitudes equal, and let
them be so placed that a
their bases are compla-
nar, and their vertices are
upon the same side of this
plane. Then D and H lie E
in a plane parallel to the 8 H
plane of the bases.

Let abe and efy be corresponding sections.

Then (Art. 28. Cor. 2)
Aabc = A ABC, and A efy = A EFG.
But (P. Art. 218. 2), Aabc: A ABC=ab’: AB

>
o
o
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And since DA and DB are cut by parallel planes, AB

is Il ab.
“oab?: AB*= Da?: DA

And (Art. 27) Da: DA = He: HE;
v ab: AR = Da*: DA*= He*: HE*= ef*: EF?,

or Aabe: A ABC=Aefy: AN EFG.
But A ABC =N EFG; (hyp.)
‘ oo A abe = A efy.

And as corresponding laminz are equal, the volumes
of the pyramids are equal (Art. 119. Cor. 1).

And since all pyramids may be divided into triangu-
lar pyramids,

Therefore, any two pyramids are equal whose bases are
equal and whose altitudes are equal.

Cor. Two frustums of pyramids which have their
two bases respectively equal and their altitudes equal
are themselves equal.

121. Theorem. A triangular prism can be divided into
three equal pyramids.

Proof. A-BCD is a triangular prism. Pass a plane
through the points 4, €, and E, and another plane through
C, D, and E. o

The prisin is divided into three equal pyramids.

For C- FDE and E - CAB have their bases DEF and
ABC equal, and their altitudes the same as that of the
prism. These pyramids are therefore equal (Art. 120).

Also the pyramids €'+ ADE and (' - ABE have their
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bases ADE and ABE equal (P. Art. 141. Cor. 1), and
have their vertices coincident.
Therefore they have the same
altitude and are equal. D e

And the prism is thus divided %
into three equal pyramids. s

S E

Cor. 1. As each triangular pyr-
amid is one-third of the corre- Y/
sponding triangular prism, and as
every prism can be divided into
triangular prisms;

Therefore every pyramid is one-third of the prism
having the same base and altitude as the pyramid.

Cor. 2. If Bdenotes the area of the base of a pyramid,
and i denotes its altitude,

vol. of pyramid =} LB.
Cor. 3. Pyramids with equal bases are to one another

as their altitudes, and pyramids with equal altitudes are
as their bases.

122. Theorem. The frustum of a triangular pyramid
may be divided into three
pyramids, two of which have
the bases of the frustum as
their bases, and the altitude
of the frustum as their alti-
tude, and the third of which
is amean proportional between
the first two. ;

ABCDEF is a triangular i
frustum.
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The plane through 4, E, F cuts off the pyramid
A - DEF, whose base DEF is the upper base of the
frustum.

From the remaining figure the plane through 4, E, C
cuts off the pyramid E . ABC, whose base ABC is the
lower base of the frustum.

‘We have left the pyramid E - AFC.

Join BF and CD.

The pyramids B - AEC and F. AEC having the com-
mon base AEC are as their altitudes, and the altitudes
are as PB to PF, or BC to EF.

o B-AEC: F.-AEC= BC: EI

Again, the pyramids C- AEF (which is the same as
F.AEC) and D.AEF having the common base AEF
are to one another as CQ is to QD, or AC to DF.

But, since the bases are similar (Art. 28. Cor. 2),

BC: EF= AC: DF.

oo BAAEC: F-AEC=F-AEC: D- AEF.

Or the pyramid F- AEC, or C- AEF, is a mean propor-
tional between the pyramids E. ABC and 4- DEF.

Cor. If Band B' denote the bases of the frustum,
and % the altitude,
vol. of E.ABC= }hB, vol. of A-DEF= LB,
and .. vol. of F. AEC=1hVBB.
The volume of the frustum is aceordingly :
vol. =1 {B+ B' ++VBDB'}.
123. The volume of the frustum may also be found as

follows:
Let O be the vertex of the pyramid from which the
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frustum is formed, and let OP be the altitude of the
pyramid. Also let OF' be the altitude of the pyramid
0. DEF, which is removed in forming the frustum. Then,

The frustum = pyr. O- ABC — pyr. O- DEF,
and OP — OP' =h.

Since any area may be expressed as a square, let
b2 = B or the base ABC, and " = B' or the base DEF.

Then OP:0P'=0A:0D=AB: DE=10:10/,
and OP—OP :0P=0b—"b:0.

s OP(b—1b')= bh.
. bh b'h o
o’ 0P=m, a.nd OP’=b__b"
and frust. =1 OP-»*— L OP' - b"

b—0
=11(B+ B'+VBB)).
Cor. The volume of a frustum of a pyramid is the

sum of the two bases and a mean proportional between
the bases, multiplied by one-third

1 h<b3_ bB)_ Lh(b2+ b2 +bb')
=1 =%h

of the altitude. i
124. Def. A triangular prism

with non-parallel bases is called a 5 E

truncated triangular prism, or a H

wedge. G

Let ABC, DEF be the bases of
the wedge, of which ABC is nor-
mal to the lateral edges.

Through D pass a plane Il to A= ©

ABC and draw AP L to BC. B P
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The wedge = the prism A4.BCD + the pyramid
D-EFGH. But the prism = A ABC x ADj; and the
B =14P x trapezoid EH,
=4}AABC(BE+ CF—24D);
" vol. of wedge = 1A ABC(AD + BE + CF).

Or if e, e, e; denote the edges, and B the area of a
right section,

vol. =1 B(e; + e, + e,).

125. Theorem. If a tetrahedron be cut by a plane
which bisects two edges and passes through an opposite
vertex, the volume of the tetra-
hedron is equal to four-thirds of
the prism having the section as
base, and the perpendicular from
any other vertex on the plane of

section as altitude. I T——>o

A-BCD is a tetrahedron, and V
L and F are middle points of ‘
ADB and AC respectively. B

AP is perpendicular upon the
plane EFD.

Then .- EF is || to BC, and bisects 4B, EF is one-half
BC, and AAEF=1AABC (P. Art. 218 2).

The pyramids having these triangles as bases have D
as a common vertex;

... tetrahedron 4. BCD =4 tetr. A.- DEF
=4A4P-ADEF. Q. E.D.
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PRrisMATOID AND ALLIED FORMS.

126. Def. A polyhedron with two parallel polygonal
bases, and all its lateral faces plane rectilinear figures,
and all its lateral edges the joins of vertices of opposite
bases, is a prismatoid.

This definition includes the prism, pyramid, and frus-
tum of a pyramid as special cases, and is more general
than any of these.

When none of the faces are triangles, the figure is the
frustum of a pyramid, or a prismoid, according as the
lateral edges are, or are not, concurrent when produced.

127. ABCD and EFG are parallel bases of a prisma-
toid, and AEB, EBF, FBC, CF@, etc., are triangular
faces, which, in the figure given, are seven in number,

If n denotes the number of sides in one base, and ='
in the other, it is readily seen that the number of faces
cannot be greater than n + n'.
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But if an edge of one base be connected by lateral
edges with a parallel edge of the other base, two trian-
gular faces become a quadrangular face, and the whole
number of faces is reduced by one. Thus, if EF were
parallel to AB, the edges AHK, EB, and BF would be
complanar, and the two triangular faces AEB and BEF
would become one quadrangular face, AEFD.

If two other edges of the bases become parallel, a like
reduction may take place, and the whole number of faces
be reduced by two.

And finally, if the bases have the same number of
sides, and each edge in one base be connected with a
parallel edge in the other, all the faces become quadran-.
gular, and the figure becomes a frustum of a pyramid or
a prismoid, according as the edges, when produced, are
or are not concurrent.

Even with the same bases, however, the general appear-
ance of the figure will vary with the different ways of
connecting the vertices of the bases by the lateral edges.

128. Def. Take II, I, .J, etc.,, middle points of the
lateral edges, AE, BE, BF, etc., respectively.

Since HI is parallel to AB (P. Art. 84. Cor. 2. 2) and
17 is parallel to EF, and JK to BC, ete., it follows that
I, I, J, etc., lie in a plane which bisects all the lateral
edges, and is parallel to the bases. The section by this
plane is called the middle section. o

The middle section contains, at most, n+ 2' sides,
there being always as many sides as there are faces in
the prismatoid.

The middle section may contain re-entrant angles,
although no such angles are found in either base; and
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it will frequently have such angles when the bases are
polygons of different species, or when their vertices are
connected in some particular order.

Cor. The middle section bisects the altitude.
129. Volume of the prismatoid. Take P, any point in

the plane of the middle section, and join it to 4, D,
E, H,and N. Denote the altitude of the prismatoid by A.

Then, P. ADE is a tetrahedron, and PNH is a section
through a vertex, P, and the middle points, H and X,
of two ppposite edges.

" vol. of P- ADE = 3h x A PNH. (Art. 125.)

Similarly, by joining P to all the remaining vertices,
B, C, F, etc., and to the remaining middle points, I, J, K,
ete., we have,

Sum of all the tetrahedra of which P.ADE is the
type =% % x (the sum of the A of which PNH is the

type), or
S (P-ADE) =313 (A PNH).
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But 3 (A PNH) = the area of the middle section, and
denoting the area of the middle section by M,

S (P-ADE)=}hM.

Now, after removing all these tetrahedra, we have left
two pyramids having P as a common vertex, and the
bases of the prismatoid as their respective bases. The
altitude of these prisms being 1 & (Art. 128. Cor.), their
volumes are 1hB and 1B, where B and B' are the
areas of the bases of the prismatoid.

- vol. of prismatoid = % (B+B'+4M).

Cor. The prismatoid is equal to four pyramids, two
having the bases of the prismatoid as their bases and half
the altitude of the prismatoid as their altitude, and two
having the middle section as their bases and the altitude
of the prismatoid as their altitude.

Cor. The formula of the present article is known as
the prismoidal formula. On account of its extremely
wide range of applicability it is the most important of
all formule connected with the determination of the
volumes of the more prominent spatial figures.

The following examples are some illustrations of its
application.

(a) Prism. Here the two bases and the middle sec-
tion are all congruent. '

Hence, vol. = % (B+B+4B) =hB. (Art.115.Cor.2.)

(b) Pyramid. The upper base vanishes, and the mid-
dle section is one-fourth the lower base.
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. vol. = % (B4+0+B)=}iB. (At 121. Cor. 2.)

(¢) Frustum of a pyramid.

Let B, B' be the bases, and M_be the middle section.
And since any area may be expressed as a square, let
B=10% B'=10" and M =m?

Then 2m=>b4+0b".
o AmP =4 M=0"+0"+20b
=B+ B + 2V BB.

%(B+B’+4}[)E%(2B+21§'+2\/BB’)
=§(B+B'+\/ﬁ). (Art. 122, Cor.)

(d) Tetrahedron, in terms of a middle section (Art.
51. Def. 1) and the length of the common perpendicular
to the edges parallel to the section.

In this case, which has an important subsequent appli-
cation, both bases vanish, and we have

vol. = 2 M.

REGULAR POLYHEDRA.

130. A regular polyhedron of n faces is divisible into
n congruent pyramids whose bases are the several faces
of the polyhedron, and whose altitude is the radius of
the in-sphere to the polyhedron,
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Hence, if n be the number of faces, B be the area of
a face, and r be the radius of the in-sphere, we have

1. ="Br
VO 3 %

(a) Regular Tetrahedron.
2
B=i-\/3, r=iye~/6, and n=4.

VOl.:é.g?\/g._llge\/(;
3 4

= T‘f 83 -\/2.
Cor. As the expression for the volume may be writ-
3
ten% (é) , therefore the cube on the side of a square

whose diagonal is the edge of a regular tetrahedron is
three times the tetrahedron.

(b) Regular Octahedron.
B=1e'/3, r=1%}e/6 n=_8.
covol=8.1.1.6./18=1e"/2.
Cor. This volume may be written 1 (e~/2)>%
Therefore, the cube on the diagonal of a square whose

side is the edge of a regular octahedron is six times the
octahedron.

(¢) Regular Dodecahedron. o

By the methods of plane geometry, we find the area
of a regular pentagon with side e to be

B=75;e2\/<§f &g)
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Also, r=\/<25+11 5>, n=12.

40
R 3+\/5_25+11\/5}
..vol._5e\/{5_\/5 0
=§(15+7\/5).

(d) Regular Icosahedron.

.V01.=29-§—3 T+3+/5 5
3 4 8

=5 (34 /D).

EXERCISES H.

1. If a plane parallel to the bases, and midway between them,
be passed through the prism of Art. 121, compare the areas of the
sections of the three pyramids.

2. Apply the conditions of Ex. 1 to Art. 122.

3. A plane of section passes through the middle points of the
parallel edges of a wedge, one of whose bases is a right section
(Art. 124). Find the area of the section.

4. If ¢,, e,, e, be the three parallel edges of a wedge, show that
(e, + e, + €;) is the distance between the centroids of the bases.

5. Apply the prismoidal formula to find the volume of a wedge.

6. A prismoid has both bases parallelograms with angle 6, and
the sides are a, b for the one, and o/, b’ for the other. Find its
volume, its altitude being A.

7. Show that the cube on the side of a square whose diagonal is
the edge of a regular octahedron is three-fourths of the octahedron.
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8. If a regular tetrahedron and a regular octahedron have the
same edge, the octahedron is four times the tetrahedron.

9. AA', BB, C(C'", DD, being diagonals of a cube, show that
the plane through DBC' cuts off a pyramid whose volume is one-
sixth that of the cube.

10. The direction edges of a cuboid are @, b, ¢, and a plane
passes through the three distal extremities of these. Show that
the area of the section is }Va2b? 4 b2 + cla2

11. A4/, BB', etc., are the diagonals of a ppd. Show that a
plane through DB(’ cuts off a pyramid which is one-sixth the ppd.

12. The direction edges of a ppd. are a, b, ¢, and the angles
between them are Z (be)= N, £ (ca)= u, £Z(ab)=v». Then the
vol. is

abe /{1 — cos?X — cos?u — cos?y + 2 €os A COS 4 COS »}.
0A, OB, OC are the direction edges;
LCOB=X\,£C0A=p, LZAOB = ».

Let C'P be normal to the plane of AOB,
and P@, PR be Lsupon O4 and OB.

vol. of ppd. = OA . OBsinv. CP.
(P. Art. 215.) o

OQPR are concyclic, and OP is a diameter
of the circumcircle ;

.. op=2L (P. Art. 228.)
sin v
= 2__Q_IB_2)=___1_ '2 in2y — R2 .
and CP_\/(OO' . Siny\/('c sinZ» — QR?) ;

.+ vol. = ab \/(c?sin?v — QR?).
But QR2=0Q*+ OR?—20Q - ORcosv;

and 0Q? = c2cos? i, and OR? = c2cos? A,
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Whence, by substitution,

vol. = abc /{1 — cos?\ — c0s?u — cos?v + 2cos A €os p cos ¥ 1!

13. Show from the character of the result in Ex. 12 that if in
any ppd. A, u, v are all acute, all vertices except the one opposite
0 have one acute and two obtuse angles, ete.

14. With the vertices of a ppd. as centres, equal spheres are
described to cut the ppd. Then the volume removed by all the
spheres is equal to that of one of the spheres.

15. Show that space may be wholly divided up into regular
octahedrons and tetrahedrons, and that there will be twice as many
of the latter as of the former.

1 The area of a parallelogram whose sides are o, b and angle
8 is ab sing, or ab./(1 — cos?6), and the volume of the ppd. is
abe+/(1 — cos?A — cos?u — ete.).  On account of the analogy in
form, the expression 1 — cos2A — cos?u — ete. is sometimes called
the square of the sine of the solid angle 0. ABC, and it usually
appears in the matrix form

1 COSA COSu |
COS A 1 cosy
cospu COSw 1
The analogy, however, is one of form only, as there are no func-

tions of solid angles really corresponding to the sine, cosine, tan-
gent, etc., of plane angles.



SECTION 2.
CoNE, CYLINDER, SPHERE.

Tae CoxEe.

131. The cone of Art. 67 is not a closed figure, and
consequently does not admit of measurement for volume,
But if the cone be cut by a plane which does not pass
through the centre, and which makes, with the axis, an
angle greater than the vertical angle, a closed figure is
formed by the conical surface and the plane. It is this
closed figure that is called a cone in relation to stere-
ometry.

The centre of the cone is, in this relation, called the
apex or vertex, and that portion of the section plane
which forms a part of the enclosing figure is the base of
the cone.

.~ The word ‘cone,” whenever having reference to stereo-
metrical relations, will mean this figure.

132. As the director curve may be of any form, and
as the plane of section may assume different relative
directions, the variations in the cone are unlimited.

If the cone be circular, and the plane of section be
perpendicular to the axis, the figure is the right eircular
cone; and this is the most important of all the cones.

The base is a circle, and the axis of the cone passes
through the centre of the cirele.

124
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A right circular cone is generated by a right-angled
triangle while revolving about one of the sides as an axis.
The other side then generates the base (Art. 9. Cor. 1),
and the hypothenuse generates the convex surface.

133. The cone may be looked upon as the limiting form
of a right regular pyramid, when the number of sides in
the base is indefinitely increased, and the length of each
side is correspondingly diminished.

But the volume of any pyramid is one-third of its
altitude multiplied by the area of its base;

Therefore, the volume of a cone is one-third of its
altitude multiplied by the area of its base.

Cor. If the base be circular and its radius be r, its
area is #7%  And if % be the altitude of the cone, the

vol. = L=,
134. The frustum of a cone is the limit of the frus-
tum of a pyramid, and its volume is therefore
+h (B+ B + VBB).
But if » and ' be the radii of the bases,
B = 7r1’2, B = 71'7"2, and Vﬁ: wrrl
ovol=Lah (P 472 4 ).

THE CYLINDER.

135. When the cylinder of Art. 75 is cut by two parallel
planes which cut completely through the surface, a closed
figure is formed, which is the cylinder of stereometry.
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When the planes are perpendicular to the axis of the
cylinder, the figure is a right cylinder. Otherwise it is
an oblique cylinder.

136. It is obvious, from the definitions, that the
cylinder is the limiting form of the prism, when the
number of sides in the base is indefinitely increased and
the lengths of each side correspondingly diminished.

Hence the measure of a cylinder is the area of the
base multiplied by the altitude (Art. 115. Cor. 2).

Cor. If the cylinder be circular and right, and r be
the diameter of the base,

vol. = m?h,
where £ is the altitude.

THE SPHERE.

137. ABCD is a tetrahedron in which the edge AB
is equal and perpendicular to the edge CD, and IJ,

o

joining the middle points of these edges, is the common
perpendicular to them.
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Also, K'RQT is a sphere having its diameter
K'J = KJ.

We shall prove that corresponding laminae of the tet-
rahedron and of the sphere are in a constant ratio, by
proving that corresponding sections are in a constant
ratio.

Proof. Let parallel planes pass through AB and CD.
Then K.J is a common normal to these planes, and if the
sphere be placed between the planes with K'J' parallel
to K.J, the planes will touch the sphere at K' and at J'.

Let the sphere and tetrahedron be relatively so placed,
and let EG and RQT be corresponding sections of the
figures (Art. 119).

Then EFGIH is a rectangle, and QRT is a circle, and
KP=K'P. ol i

H
Now KT AD= DO
and I
KJ DB AB’
. by multiplication
KP.-PJ_EF-EH_[JEG
KJ* —  AB AR

Also, denoting the radius of the sphere by 7,
K'P.-PJ _ PR _1x-PR _10OQRT .

K'J? T KJ? x KJ2 o« 47
Therefore - KP.PJ=K'P'. P'J,

OEG _ AB

OQRT ™ 4xr?

= a constant.



128 SOLID OR SPATIAL GEOMETRY.

Hence the corresponding sections of the tetrahedron
and of the sphere are in a constant ratio; and the vol-
umes of the tetrahedron and the sphere are in the same
ratio.

Cor. 1. 'The tetr. : the sphere = AB?: 477

But the tetr. =2 KJ X mid. sec. (Art. 130. d.)
=1r.-AB%
- vol. of sphere = 47

Cor. 2. The expression for the volume of a sphere
may be written %.2r.x%

But 27 is a diameter of the sphere, and =* is the area
of a great circle. Therefore, 27 . #2? is the volume of the
right circular cylinder which circumscribes the sphere.

Hence a sphere is two-thirds of its right eircumseribing
cylinder.

138. As the prismoidal formula applies to any portion
of the tetrahedron confined between planes, each parallel
to AB and CD, and since lamine of the sphere hold a
constant relation to corresponding laminae of the tetra-
hedron, it follows that the prismoidal formula applies to
any portion of the sphere limited between parallel planes.

Thus, applying the formula to the whole sphere, we
have

B=0, B'=0, M==r% and h =27.

.. vol. = %’ (0404 4mr) = 4 s,



THE SPHERE. 129

139. Def. A portion of a sphere enclosed between
two parallel planes is usually called a zone of the sphere;
but if one of the planes is a

tangent plane, the zone be- L
comes a segment of the sphere.

140. Volume of a zone. /[; ‘ 3
Let a sphere be cut by par- = Ny
allel planes, given in section, / ﬁ‘\B
in the diagram, by AB and A £
CD; and let XY denote in °

section the plane which is parallel to the cutting planes,
and half way between them.

The data usually furnished from which to find the
volume of the zone, are the radii 0D and AB of the two
bases, and the length of their common normal AC, or the
altitude of the zone. Hence we suppose 4B, AC, and
CD to be the known quantities.

We have, O being the centre of the sphere,

04’4+ AB'= 0C*4- CD*= 0X*4- XY?

since each expression is the square on the radius of the

sphere.
o 02+ ABP= (044 2AX)2 4 CD?

=(044 AX)*+ XY=
Hence
AB*=4AX?+ CD*+40A4.4AX
=AX?+ XY?4204.-4X.
404 - AX=AB*— CD*—4 AX?
=2A4AB*—-2XY?*—-24X?%
and hence ’

2XY?’=AB*+ CD*+24X>
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Now, =- XY is the area of the middle section,
and 7 AB® and = - CD* are the areas of the bases,
and 2 AX is the altitude of the zone;
ovolo =} AC {8 AB 4+ 30D + ACY.
Or, denoting the radii of the bases by  and +/, and the
altitude by 2,
vol. = 1 oh {322+ 3¢ + 13},

Cor. If r=0, the zone becomes a segment, and its
volume is L xh (37°+ 1?).

141. The expression for the volume of the zone may
be transformed as follows:
Draw DE 1 to AB. -
BAB* +3CD*+ AC*=2(AB* 4 CD*+ AB. CD)
+ (4B — CD)* + AC?%;
and }m AC(AB+ CD* 4+ AB. CD)
is the volume of the frustum of the cone which has the
same bases and altitude as the zone.

And AC being the projection of BD on OC, if we
denote the angle between BD and AC by B,

AC = BDcos .
cogw AC-BD*=Lx. BD’cos ,
= sphere on BD as diameter x cos 8.

Therefore, the zone exceeds the inseribed conical frus-
tum by the sphere on the slant height as diameter
multiplied by the cosine of the semi-vertical angle of
the cone.
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EXERCISES I

1. Compare the volume of a sphere (1) with that of the circum-
scribed cube; (2) with that of the inscribed cube.

2. Compare the volume of the sphere with that of the circum-
scribed regular tetrahedron.

8. A cone circumscribes a sphere and has its slant height equal
to the diameter of its base. Show that vol. of cone : vol. of sphere
=9:4.

4. If in Ex. 3 a plane passes through the circle of contact, the
vol. of cone removed is § the vol. of sphere removed.

5. A cylinder of radius a passes centrically through a sphere
of radius r. Show that the volume removed from the sphere is

4 w13 (1 — cos® ), where sin 6 = g.

6. A circular cone with semi-vertical angle o has its vertex at
the centre of a sphere of radius . Show that the volume common
to the cone and sphere is 2 773 (1 — cos a).

7. A right circular cone has its vertex lengthened out into a
linear edge equal and parallel to a diameter of the base. Show
that the volume is one-half that of the circumscribing cylinder.
(The resulting figure is known as the common conoid.)

8. A cone whose semi-vertical angle is 45° has the diameter of
a sphere as its axis, and its vertex on the sphere. Show that one-
fourth of the sphere lies without the cone.

9. The cone of Ex. 8 has its semi-vertical angle equal to «;
then the part of the sphere lying without the cone is

373 (1 + cos2a)?,
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142. In this section we propose, under three heads, A,
B, and (), to explain and illustrate some special methods
of measuring volumes, by applying these methods to the
cone, cylinder, sphere, and some other spatial figures.

A. SPATIAL FIGURES GENERATED BY THE MOTION
OF A PLANE FIGURE.

143. When a variable plane figure moves so that a
fixed point lying in its plane describes a line or curve
not complanar with it, the plane figure describes or
generates a spatial figure.

The plane figure is then the generator, and the line
or curve is the path of the particular point which de-
seribes it.

The case as here stated is too general for use, especially
in elementary geometry or by elementary methods. We
therefore subject the elements of the description to
certain conditions, usually as follows.

(1) The generator is a closed plane curve, being in-
variable in form, while being either variable or constant
in dimensions. v

(2) The path is a line normal to the plane of the
generator. This line will be called the axis.

(3) The generator preserves its orientation, i.e. any
fixed line of the generator is invariable in direction; or

132
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any fixed point in the generator describes a line or curve
complanar with the axis. This line or curve, whose
form depends upon the nature of the variation of the
generator, is a guide to the motion of the generator, and
forms the director.

Thus if the nature of the variation of the generator
is given, the director is also given; and if the director
is given, the nature of the variation is given.

144. Let PQR be a variable circle, whose centre, C,
moves along the fixed line AB normal to the plane of
the circle. AB is the axis.

(1) Let P, any point on the circle, be guided by the
fixed director line L, which meets AB in D.

Then, evidently the generating circle describes a cone
having D as vertex and 4B as axis.

The radius CP is in a constant ratio to DC.

Hence a variable circle, whose centre moves on a fixed
line normal to its plane, and whose radius varies as the
distance of the centre from a fixed point in the line,
describes a cone.
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(2) If the generating figure in case (1) were a polygon,
the figure generated would be a right pyramid.

(3) Let P move on the line M parallel to AB.
The circle describes a cylinder, and a polygonal genera-
tor describes a prism.

(4) Let P be guided by the circle, Z, to which 4B
is a centre line, and EF a diameter.

The circle PQR then generates a sphere whose diam-
eter is EF.

If O Dbe the centre of the director circle, it is evident
that CP?+ CO® = OP?= constant.

Therefore, a variable circle, whose centre moves on
a line normal to its plane, and whose radius so varies
that the sum of the squares on the radius and on the
distance of the centre of the circle from a fixed point in
the line is constant, generates a sphere.

(5) If the generator in case (4) were a polygon, the
figure generated would be a polygonal groin; the most
common groin is the square one.

In a similar manner many other figures may be gener-
ated, such as the oblate spheroid, the prolate spheroid,
the hyperboloid, the paraboloid, the ellipsoid, ete.

145. Consider a number of equidistant points along
the axis. Let the generator at these points be taken as
bases of prisms or cylinders whose altitudes are the dis-
tances between consecutive points.

We have then a series of prisms or cylinders, of equal
altitude, inseribed in or circumseribed about the spatial
figure, as the case may be.
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But (Art. 118) the volume of the spatial figure is the
limit of either series of prisms or cylinders, when their
number is indefinitely increased and their altitudes cor-
respondingly diminished.

Hence if we can obtain an expression for the total
volume of any number of such elementary prisms or
cylinders, we can deduce the expression for the volume
of the spatial figure, by imposing the condition that
the number of elementary prisms or cylinders shall be
infinite.

In carrying out this operation we assume the two fol-
lowing relations, which are proved in almost any work
on algebra:

(4) 14243 +-+4n=13n+1n;
(B) P22+ 3+ - f=ind 4 P+ §n,

where n denotes any positive integer, and the series
extends from 1 to n.

146. Let X be a closed plane figure, which remains
invariable in form while varying its dimensions.

Let a given point P be
guided by the line AH, and
let a point @ move on AC.

Then X describes a spatial ,
figure, a cone or pyramid,
having some position of the
generator at B, as above.

Let X denote the area of
the variable figure, X, at any stage in its variation, and
let B denote the area of CDE, the final stage of X.
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Then X:B=P@:HC. (P. Art. 218.5.)
And from similar triangles, 4PQ and AHC,
PQ*: HC* = AP?: AH.

. Xx=4P p
AH?
Denote AH by h, and let AH be divided into n equal
parts, and let AP be m of these parts.

Then Aar=". 410,
and S X = Tli: - B.
W

But the elemental cylinder, or prism, on X as base has
E-AH, or ’_L, as its altitude, and therefore its volume is
n n

2
BL- ™,
,n3

This expresses the volume of any element, a particular
one being got by giving a particular value to m. m=1
gives the first element, lying next 4; m =2 gives the
second, etc., and m = n gives the last, lying next II.

The sum of these elements is

Bh{12+22+32+---+n?}

Ny

1,1 1
= Sdh= = kg Art. 145. B.
Bh{3+2n+6n2} (G )

This holds true for all integral values of n. When
we. go to the limit by making » infinite, the fractions
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L and i become zero, and the sum of the elements
2n 6n?

becomes the volume of the spatial figure (Art. 145).
.*. volume = } Bh.

As B may have any closed form whatever, this ex-
presses the volume of any species of cone or pyramid
which forms a closed spatial figure.

147. Let the generating figure, X, of constant form,
but variable in dimensions, be
guided by the axis 04, and by
the circular quadrant CQ4 as a
director, O being the centre of
the quadrant.

Let CDE be the generator in
the position in which O lies in

its plane, and let .S denote the *
area of CED, and X denote the
area of the generator in any 5
position. (i
Then, since PQ is L to 04,
PQ*=0Q*— OP*= 0C*— OP~
But X:8=PQ: 00% (P. Art. 218. 5.)
PQ? op?
x=1%. 5=5-9L ..

Now, denote OA4 by » and divide it into n equal parts,
and let OP be m of these parts.

Then OP="r, and OC=r.
n

W X=8-T 8,
W
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The elemental cylinder having X as base has T for
altitude, and its volume is therefore "

The sum of these is

TS{1+1+1+u-nterms_lg-}-?’—i—-nnz}

n n®
=rs{1_l_i__1_}

=3rS
at the limit, when » becomes infinite.

And the volume generated while moving over the

whole diameter is
vol. = £rS.

The value of this expression for volume depends upon
the value of 8.

1. If Sis a circle, its area is =% and the figure gener-
ated is the sphere.

.. vol. of a sphere =4 m".
2. If §is a square, and the middle point of its side is

at C, the area is 47% and the figure is the common groin,

and its o
vol. = § 7%;

since the groin extends only from O to A.

3. If S is a regular hexagon with a vertex at C, we
have a hexagonal groin, and its volume is 7°~/3.
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148. By varying the form of the generator, and also
of the director curve, a great variety of spatial figures
may be described.

1. With a cirele as director and an ellipse as generator,
QR being the major axis, we get the oblate spheroid; and
with QR as minor axis, the prolate spheroid.

2. With an ellipse as director, and major axis as axis,
and an ellipse as generator, we get the ellipsoid ; with
circle as generator we get the prolate spheroid.

3. With parabola as director, and a circle as generator,
we get the paraboloid of revolution; and with ellipse as
generator we get the elliptic paraboloid.

EXERCISES J.

The axes of an ellipse being a and b, its area is wab.

1. Show that the volume of a prolate spheroid is wab?, where
a>b.

2. Show that the volume of an oblate spheroid is wa?b, where
a>b.

3. In the figure of Art. 147, if CQA were a quadrant of an

q _ _ PO2, OP? _
ellipse, and O0A =@ and OC =D, then £E+ od= " Hence

find the volume of an ellipsoid when the axes of the generating
ellipse are b and ¢ at the position S.

4, In Art. 146, if PQ? = c- AP, where ¢ is a constant, show that
the volume described is one-half that of the circumscribing cylinder.

5. OC is an axial line cut by a curve in O and C, and PM is a
perpendicular from a point P on the curve to the axis OC. If
PM = a(OM- OC — OM?), show that the volume described by the
curve in a revolution about the axis is % of that of the circum-
scribing cylinder between O and C.
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B. FIGURrRES oF REVOLUTION.

149. When a plane figure revolves about an axial line
lying in its plane, the plane figure generates a spatial
figure bounded wholly or partly by curved surfaces,
and called, from its mode of generation, « figure of
revolution.

Under the same circumstances the area of the plane
figure generates a volume of revolution, i.e. the volume
of the figure of revolution.

The area of a plane figure may be considered as
the limit of the sum of a set of elements, composed of
inseribed rectangles with equal but indefinitely small
altitudes.

In revolution, these elements of area describe or
generate elements of volume, whose sum has for its
limit the volume of the gen-

erated spatial figure. B[_h’c
150. Let AC be a rectangle, 2
and let it revolve about the A 0
axial line PR, parallel to AD.
The volume generated by the = <

rectangle AC is the difference
between the volumes generated by PC and by PD.

But  the vol. by PO ==~ PB*. BC,

and the vol. by PD==. PA*. BC;
" the vol. by AC'=r . BO(PB — PAY)

== BO(PA+ PB)(PB— PA).
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If @ be the middle point of 4B, PQ is the distance of
the centre of the rectangle from the axis of revolution,

and PB4+ PA=2 PQ;
.. vol. by A0 =2#.PQ - BC- AB,

= area of AC x the circumference of the circle traced
by the centre of AC.

Therefore, the volume described by a rectangle in one
revolution about an axial line parallel to its side, and
which does not cross the rectangle, is the area of the
rectangle multiplied by the length of the path of its
centre,

Cor. 1. When the axial line passes through the cen-
tre of the rectangle, the length of path described by that
centre is zero, and hence the volume described is zero.

From this it appears that if a revolving plane figure
is crossed by the axis of revolution, the parts of the
figure lying upon opposite sides of the axis generate
volumes which must be taken in opposite senses, or with
opposite signs.

Cor. 2. From the figure we have 2 PQ=2PA 4 AB;
and hence 27 . PQ=2w . PA+ = - AB.

But when AC is an elemental rectangle, and we go to
the limit by indefinitely diminishing 4B, PQ has for
its limit either P4 or PB, these being finally the same.
Hence, if the elemental rectangle AC is to be taken at
the limit, P4 may be taken for PQ.

151. Volume of a cone of revolution. The rectangle
AC revolves about 4B as an axis.
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The triangle ACB generates a cone of revolution ; the
rectangle generates a cyl- o c
inder; and the triangle
ACD describes that part of
the cylinder which remains v
after the cone is removed. T <—E

On ACtake P, ), any near
points, which at the limit
become coincident, and draw
PR, Q8S, perpendicular to AB, and PT, QV, perpendicular
to AD.

Then PS, being an elemental rectangle of the triangle
ACB, generates an element of the cone; and PV, in
like manner, generates an element of the portion of the
cylinder which remains after removal of the cone.

But vol. of element by PS==. PR*. PE.

And vol. of element by PV = = (PR + FR)PT- PF.

And from similar triangles PRA and QEP,
PR_QE  PR_PF

RAEP  PT PE
. element by PS _ PR
" element by PV~ PR+ FR
And this relation being true for any, and therefore for
every, pair of corresponding elements, is true for their
sums.
But at the limit, when @ comes to P; PR and FR
become the same.

.. the limit o

R S B

¢ 2(elements by PS) _
3 (elements by PV) 2

Or, cone by ABC': figure by ACD=1:2.
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143

Whenece it follows that the cone is one-third of the

cylinder.

ReMark. In the foregoing investigation we might, according
to Cor. 2 of Art. 150, have taken the element described by PV as
being = - 2 PR - PT- PF, since the element is finally to be taken at

its limit.

152. Volume of a sphere.

and its circumseribed square
DBAC, revolve about CA as
an axis.

The quadrant generates a
semisphere, and the square
generates the right circum-
scribed cylinder.

On the arc DA take P and
@, any near points which at
the limit approach to coinci-
dence.

Draw PR, QS, perpendicu-
lars to CD, and PT, QV, per-
pendiculars to DB. Produce
DC, making CG = DC.

The rectangle PS, being an
element of the circle, describes

The quadrant DPA,

3
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an element of the sphere, and the rectangle PV for
similar reasons describes an element of that part of the
cylinder which lies without the sphere.

The volume of the element described by PS is, at its
limit when @ comes to P, 2« CR.PR-RS; and the
volume of the element described by PV is, at its limit,

=(COR + CD) - PT- PF.
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element by S _ 2 PR RS . Cr
" elementby PV PT PF CR+CD
But the ADPR and PGR being similar,
PR _PR_GR_CR+ 0D

PT RD PR PR

And the A PE(Q and PRC being similar at the limit
when @ approaches P,

BS_PE_ PE _ PR

PFTPF EQ CR
~ at 1t., element by S =2 x element by PV,

Natilt

And this being true for each, and therefore every pair
of corresponding elements, is true for their sums.

Therefore the volume generated by the quadrant is
twice the volume generated by the figure DPAB.

Or the volume of a sphere is two-thirds that of the
circumscribing right eylinder.

Cor. 1. If r be the radius of the sphere, the volume of
the circumscribing cylinder is #72. 27; and hence the
volume of the sphere is %7

Cor. 2. From the foregoing investigation it follows
that wherever @ is taken on the are, with C4A as axis,
the volume generated by the segment of the circle,
DSQP, is two-thirds the volume generatéd by the rec-
tangle DSQV.

153. Volume generated by an isosceles triangle revoly-
ing about an axis which passes through the vertex but
does not cross the triangle.
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The isosceles A OPQ, with P@ as base, revolves about
the axis OD passing
through the vertex O.

Let PQ meet OD in D,

and draw the altitude Q

OR, and project P, R, Q,

on OD at 4, C, and B. T

Also draw QE parallel ‘
to OD. e e

The £ APD=/ ROD,

and hence, APEQ= AORD.
Therefore, OD.PE=O0R-PQ;

also, A PEQ=AOCR,

and PQ.-CR=O0R-EQ;

.. OD.CR-PE=0R*- EQ=O0OR?. AB.
Now, the vol. described by A OP@ = vol. of cone by

OPA + vol. of cone by DPA—vol. of cone by OQB
—vol. of cone by D@B,
=1lx-0D(PAL—QB)=%tx-0D.-2CR.PE
= 1_2;'47 . OR2 H AB.

Therefore, the volume described, in one revolution, by
an isosceles triangle revolving about a line through its
vertex, and lying without it, is the continued product
of the projection of the base of the triangle upon the axis,
the area of the square on the altitude, and the constant % .

154. Tet equidistant points 4, B, C, ete., be taken in
the arc of a cirele of which O is the centre and OL is
a centre line not crossing the are.

The A .40B, BOC, ...,are all isosceles and congruent.
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The volume described by these triangles in revolving
about OL as axis, p being the common apothem, is

2 p*x (pr. of ABon OL 4 pr. of BC on OL+...).

But at the limit when the number of points A, B, C ...
is indefinitely increased, and the distance between them
is correspondingly diminished, the generating figure be-
comes the sector of a circle, p becomes the radius, and
the sum of the projections of the bases of the triangles
is the projection of the arc, and the figure generated is
a sector of a sphere.

Therefore, the volume of a sector of a sphere = 2 m?* x
pr. of the generating arc on the axis.

Cor. If the generating arc forms a semicircle, its
projection on the axis is 2, and the figure generated

is a sphere. . 0] of a sphere = 4 =%,

EXERCISES K.

1. Solve Ex. 6 of Set L., by the principle of 153.

2. AX is an axial line, and PM is a perpendicular to this
line from a point P on a curve which starts from 4. If PM?
= cAM, where ¢ is a constant, show that the volume described by
one revolution about AX, is one-half that of the circumscribing
cylinder.

3. The volumes of the circumseribing cylinder, the sphere, and
the ‘cone with the same base and altitude as the cylinder, are as
the numbers 3, 2, and 1. .

4. The volumes of the cylinder circumscribing a semisphere,
the semisphere, and the cone with base and altitude of the cylin-
der, are as the numbers 3, 2, 1.

5. A plane cuts a sphere, and its circumscribed cylinder parallel
to the base; then twice the volume of the segment is equal to the
intercepted volume of the cylinder and twice the volume of the
sphere on the altitude of the segment as diameter.
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C. THEOREM OF PAPPUS OR GULDINUS FOR
VOLUMES.

155. The mean centre of a system of complanar points
for a system of multiples is defined (P. Art. 240) as the
point of intersection of two lines, L and M, for which

S(a- AL)y= 0, and 2(a- AM)=0;

where A is a representative point, AL and AM represen-
tative perpendiculars from 4 to L and M respectively,
and @ a representative weight or number.

Also (P. Art. 241), if O be the mean centre of the
system, and L be any line complanar with the system,

S(a- AL)=3(a) OL.

We have to deal here with the mean centre of the
area of a figure, and later on with the mean centre of
the perimeter of a figure.

156. When a plane figure has an axis of symmetry,
the mean centre of the figure lies on this axis.

For every point in the area upon one side of the axis
of symmetry there is a point upon the other side exactly
corresponding in every respect. So that if I be the
axis of symmetry and 4, A4, be corresponding points,
we have AL + A,L=0. And since the whole area is
represented by pairs of such corresponding elements,
3(a- AL)=0, or L passes through the mean centre.

Cor. 1. 'When a figure has two axes of symmetry, the
mean centre of area is the point of intersection of the
axes.
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This is the case with the square, the rectangle, the
rhombus, all regular polygons, the circle, and some other
figures.

157. If the area of a figure be supposed to be made
up of elemental squares, the centres of these squares,
being their mean centre of area, will represent the points,
A, B, C, ete., in a system of points, and the areas of the
several squares will represent the weights.

But since the squares are all equal, the weights are
all equal, and may be left out of consideration. With
this understanding we have for the mean centre of area,
S(AL)=0, where L passes through this centre; and
S(AL)=n- OL, where O is the mean centre, L is any
line not passing through O, and n is the number of
elements under consideration.

158. Theorem. The join of the mean centres of two
systems passes through the mean centre of the system
composed of the two taken together.

This theorem is almost self-evident.

For if S(a'- A'L)=0 and 3(a"- A"L)=0 denote the
two systems, and L is the join of their mean centres, we
have at once

S(a' - AL+ a"- A"L)=0;
which is of the type S(a - AL)=0.

Cor. If any number of systems’have their mean
centres collinear, the mean centre of the system com-
posed of all taken together lies on the line of collinearity.

159. Theorem. The mean centre of a parallelogram is
its geometric centre, i.e. the intersection of its diagonals.
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Let ABCD and EFGH be two congruent parallelo-
grams, superposable with E on 4, F on B, G on C, and
I on D. Their mean centres of area are then coinci-
dent. But the parallelograms are also superposable with
EBEon 0, Fon D, Gon A, and H on B; and their mean
centres of area are again coincident.

Hence the mean centre of each is the geometric centre.

Cor. In like manner it may be shown that when any
figure has a geometric centre, that centre is also the
mean centre of its area.

160. Mean centre of the area of a triangle. Let BD
be a median to the triangle ABC. Draw EF and GII
two near lines each parallel to AC, and draw EI, FJ
parallel to BD. B

The parallelogram EJ is anelement
of the area of the triangle, and the
sum of the areas of these elements,
when taken at the limit, is the area
of the triangle. G H

But as BD bisects EF and ILJ, it !
passes through the mean centres of all
the elements of which E.J is a type. A L

Therefore { Art. 158), the centre of area of the triangle
lies on BD; and as it lies on both of the other medians,
the centre of area of a triangle is its centroid.

[+

Def. On account of the foregoing, we shall call the
mean centre of area of any figure its centroid.

161. Theorem. The orthogonal projection of the mean
centre of any complanar system is the mean centre of
the projection of the system for the same multiples.
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Let A, B, C, -.- be the elements in the plane U, and
A, B, (!, ... be their projections on the plane V. Take
L, any line in U, through the mean centre O, and let I/
and O' be the projection of L and O on V.

Then S(a. AL)=0. (P. Art. 240.)

But AL, BL, CL, etc., are all parallel, and A'L!, B'L/,
C'L!, ete., are all parallel. Therefore, the

Z(AL- A'L"Y= £ (BL- B'L')= ete,
and hence
AL  BL _

S =p, 5ay ;
. S(a- AL)=0=p3(a- A'L"),
or S(e- A'LY=0;

and L' passes through the mean centre of the projected
system. And as this is true for all directions of L and
I/ in their respective planes, O' is the mean centre of
the projected system; or the projection of the mean
centre of the system in U is the mean centre of the pro-
jected system in V.

162. Def. Let us call, in general, a figure of the type
of the cylinder or prism, but with non-parallel bases, a
cylindroid.

Suppose a system of near equidistant planes parallel
to the axis to cut the cylindroid. These divide it into
lamina parallel to the axis. Now suppose a second set
of planes, parallel to the axis, to cut the first system at
right angles, and to have the distance between consecu-
tive planes the same as in the first system.
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These planes divide the ecylindroid into elementary
prisms on square bases. These form the prismatic ele-
ments of the figure, and the sum of theix volumes, at the
limit, as their bases are indefinitely diminished and their
number is correspondingly increased, is the volume of
the eylindroid.

163. AGB is a cylindroid having the base ABH nor-
mal to the axis, and the base CGD oblique to the axis.

Let P be a prismatic element,
the area of whose base is (8, and let
the line CD be taken parallel to the
common line of the planes of the
bases, and let AB be the orthogonal
projection of CD on the lower base.

Draw QF L to AB, and I'E nor-
mal to the base ABH. Then FE
is parallel to QP, and meets CD in
some point E. Draw ER L to PQ. A
Join EP. Then EP is L to CD,and ERQF is a rect-
angle, and EF = QR.

The volume of the prismatic element PQ is

B-PQ=B-PR+pB-RQ=pB-PR+B-EF.

And since the bases of all the prismatic elements have
the same area, and EF is constant, the sum of the
volumes is

(8- PR)+ 3(B) EF.
But 3(B) EF is, at the limit, the volume of the cylin-
der K, whose base is ABH, and altitude EF.
In order that this may be equal to the cylindroid, we
must have 3(8 . PR)=0; and as every element PR is in
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a constant ratio to the corresponding element EP, and
B is constant, we must have S(EP)=0.

Or OD must pass through the centroid of the upper
base, CGD, of the cylindroid; and (Art. 161) AB
passes through the centroid of the lower base.

Hence, however the directions of the planes of section
which give the bases may vary, provided they do not
meet within the limits of the cylindroid, the volume
remains unchanged, while the distance between the
centroids of the bases remains the same.

Cor. The volume of a cylindroid is the area of a right
section multiplied by the distance between the centroids
of the bases.

164. Let the plane figure X, invariable in form and
dimensions, move from a position 4B to another posi-
tion CD, in such a manner that its
direction of motion, whether follow- 5
ing a line or a curve, is always
normal to its plane.

Take two near positions of X as o
at GH and JK, and consider these
as bases of a cylindroid forming an element of the figure
generated by the motion of X. If P and @ be the
centroids of the bases, the volume of the elementary
cylindroid, G X, is X . PQ, where X is the area of the
generating figure.

And at the limit, when P approaches indefinitely to Q,
the sum of the cylindroids is the generated spatial figure,
and the sum of the elements PQ is the path of the
centroid of X.
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Therefore, when a plane figure, invariable in form and
dimensions, moves in a path which is at every instant
normal to the plane of the figure, the whole volume
described is the area of the figure multiplied by the
length of path moved over by the centroid of the figure.

This is the statement of the theorem as first given by
Pappus (about 300), and afterwards reproduced by
Guldinus (1577-1643), and usually called after his name.

Cor. When a plane figure revolves about a complanar
axis, the direction of motion of the centroid is at all
times necessarily normal to the plane of the figure, and
the volume described in one revolution is the area of the
plane figure multiplied by the circumference traced by
its centroid.

Exz. A circle revolves about a complanar line lying
without it ; the figure generated is called an anchor ring.
To find its volume.

Let » be the radius of the generating circle, and B be
the distance of its centre from the axis. Then

vol. =27 R - m? = 22*’R.

EXERCISES L.

1. Find the position of the centroid of a semicircle.

2. The circle which generates an anchor ring is divided by a
diameter parallel to the axis; compare the volume described by
the outer and the inner half of the circle.

8. A semicircle revolves about its limiting diameter. Any
segment whose chord is parallel to the axial line describes a
volume equal to that of a sphere on the chord of the segment as
diameter.
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4. The distance from the centre of a circle to the centroid of
any segment, is %%, where ¢ is the half chord of the segment, and
S is its area.

5. The distance of the centroid of a segment from its chord is
2ic8 ¢f?
3S 2v

where ¢/ is the chord of half the arc, and v is the versed sine of
the arc (P. Art. 176. Cor. 1).

6. An arc of a circle revolves about its chord; the volume

generated is -
3_2;{4 3y — 3(c2 —v?) St

The figure generated is called a circular spindle.

7. The centroid of a semicircle is at the distance ;_r_ from the

centre of the circle. ”

8. A semicircle revolves about a tangent at its middle point.
The volume described is

3BT — 4).

9. A square with side s revolves about a line through one
vertex, making an angle 8 with a side, and not crossing the square.
The volume described is ws?(sin  + cos 8).

10. A plane cuts through a right circular cylinder so as to cut
one base only. The volume of the portion removed is

biye— ()8}
v v
where & is the height of the convex part, » is the radius of the
eylinder, and v, ¢, and S denote the versed sine, semichord, and
area of the segment of the base.

This figure is called an ungula of a right circular cylinder.



SECTION 4.

PLANIMETRY — THE MEASUREMENT OF THE AREAS
OF SURFACES, OR SUPERFICIES.

165. When a spatial figure is bounded by plane faces
only, the area of its surface is the sum of the areas of
its faces.

Tor such figures no special method is required outside
of the processes of plane geometry.

The area of a curved surface is usually derived from
that of a polyhedron by going to the limit, and suppos-
ing the number of polyhedral faces to be indefinitely
increased while the size of each face is correspondingly
diminished.

In some curved surfaces, however, we may suppose
the surface to be brought to coincide with a plane by a
sort of unrolling of the surface without stretching or
distorting it in any of its parts. Such surfaces are said
to be developable ; and when the surface is brought to
coincide with a plane, it is said to be developed on the
plane.

Thus a sheet of paper may be rolled into a cone or a
cylinder, but it cannot be bent into a sphere.

The cylinder and the cone are accordingly developable
surfaces, while the sphere is not.

It is readily seen that none but ruled surfaces can be
developable. Ruled surfaces are not, however, all devel-

1565
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opable, and those which are not so are called skew sur-
faces.

166. Development of the conical surface.

Let O be the centre of a circular cone, and L be a
generating line. -

On L take any point, P, and through P draw the
cone-circle 4PB with O as vertex.

(o]

A B
:

With any point, (), as centre, and QD = OP as radius,
describe an are, DE, equal in length to the eircumfer-
ence of the circle APB.

The figure QDE, a sector of a circle, is the develop-
ment of the conical surface lying between the centre O
and the cone-circle APB.

It must be remarked that the construction here given
is theoretical only, since we have no method in elemen-
tary geometry of constructing an are of one circle equal
in length to a given arc of another circle, when the
circles have different and incommensurable radii. This
difficulty will not, however, vitiate any application to be
made of this principle.
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167. Avea of surface of right circular cone.

For the closed cone O-APB it is evident that the
area_of the curved surface is equal to the area of its
development, i.e. of the cireular sector QDE, and this
is one-half the length of the arc DE multiplied by the
radius QD.

But the arc DE is equal in length to the circle APB,
and the radius @D is equal to OP.

Therefore, denoting the circumference of the base by
C, and the slant height, 40 or BO, by S,

curved surface = 1 CS.
168. Frustum of a right circular cone.

Drawing a second cone-circle, apd, to the vertex O,
and the development (de, we have for the frustum,

area = sector QDE — sector Qde.
Or, denoting the circumference of apd by ¢,

2 area= OP-C—Op-c.

But OP=Pp + Op; and or_ g;
Op ¢
Pp_C—c
R P. Art. 195. 1.
Op ¢’ (P Ar )
and 2area=Pp- C+4 Op(C— o),
or area of surface =} Pp (C + ¢).

169. In the cylinder, O, and therefore @, goes to infin-
ity, and @D and QE become parallel.

Hence DE and de become equal and parallel lines, and
the development DdeE is a rectangle.
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Or, if & be the height of the cylinder, and » be the
radius of the base,

convex surface = 2 =rh.

170. Area of the surface of a sphere.

Let AB be a quadrant of a circle which generates a
semisphere by revolving about
OB as an axis.

Take two near points on the
curve, P and @, which at the
limit come into coincidence, and
draw the chord PQ. This chord
describes the convex surface of
a frustum of a cone,and the area
of the surface is

1PQ2r-Pp+2x-Qqg),  (Art. 168.)

A D E c

Plq

o DT Q B

where Pp and Qg are Ls upon OB.

Take R, the middle point of PQ, and draw Rr L to OB
and join RO, and also draw @S L to Pp.
Then the surface described by PQ is

2w+ PQ- Rr.

And on account of the similar A PQS and ORr, the
surface described by PQ is

27+ OR-pq.

1
'

And the convex surface described by a system of chords,
forming the sides of a regular polygon, is

27 OR -3 (pg).



PLANIMETRY. 159

But at the limit when P comes to @, the apothem, OR,
becomes the radius, and the polygon becomes the circle<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>