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AUTHOR’S PREFACE TO THE
FIRST EDITION?®

Amplissima et pulcherrima scientia figurarum. At quam est inepte sortita
nomen Geometrize |—N1coD. FrRISCHLINUS, Dialog. I.

Perspectivee methodus, qua nec inter inventas nec inter inventu possibiles ulla
compendiosior esse videtur . . . —B. PascaL, Lit. ad Acad. Paris., 1654.

Da veniam scriptis, quorum non gloria nobis
Causa, sed utilitas officiumque fuit.—OvID, ex Pont., iii. 9. 55.

TH18 book is not intended for those whose high mission it
is to advance the progress of science; they would find in it
nothing new, neither as regards principles, nor as regards
methods. The propositions are all old; in fact, not a few of
them owe their origin to mathematicians of the most remote
antiquity. They may be traced back to Evcnip (285 B.c.), to
ArorrLontus of Perga (247 B.c.), to PAPPUS of Alexandria (4th
century after Christ); to DEsARGUES of Lyons (1593-1662);
to.PAscAL (1623-1662); to DE LA HIRE (1640-1718); to
NEWTON (1642-1727); to MACLAURIN (1698-1746); to J. H.
LAMBERT (1728-1777), &e. The theories and methods which
make of these propositions a homogeneous and harmonious
whole it is usual to call modern, because they have been dis-
covered or perfected by mathematicians of an age nearer to
ours, such as CARNOT, BRIANCHON, PONCELET, MOB1US, STEINER,
CHASLES, STAUDT, &ec.; whose works were published in the
earlier half of the present century.

Various names have been given to this subject of which we
are about to develop the fundamental principles. I prefer

* With the consent of the Author, only such part of the preface to the original
Ttalian edition (1872) is here reproduced as may be of interest to the English reader.
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not to adopt that of Higher Geometry (Géoméirie supéricure,
hohere Geometrie), because that to which the title ¢ higher’ at
one time seemed appropriate, may to-day have become very
elementary ; nor that of Modern Geomelry (neuere Geometrie),
which in like manner expresses a merely relative idea ; and is
moreover open to the objection that although the methods
may be regarded as modern, yet the matter is to a great extent
old. Nor does the title Geometry of position (Geometrie der Lage)
as used by STAUDT* seem to me a suitable one, since it
excludes the consideration of the metrical properties of figures.
I have chosen the name of Projective Geometry , as expressing
the true nature of the methods, which are based essentially on
central projection or perspective. And one reason which has
determined this choice is that the great PoNCELET, the chief
creator of the modern methods, gave to his immortal book
the title of Traité des propriétés projectives des figures (1822).

In developing the subject I have not followed exclusively
any one author, but have borrowed from all what seemed
useful for my purpose, that namely of writing a book which
should be thoroughly elementary, and accessible even to those
whose knowledge does not extend beyond the mere elements of
ordinary geometry. I might, after the manner of Stavpr,
have taken for granted no previous notions at all ; but in that
case my work would have become too extensive, and would
no longer have been suitable for students who have read the
usual elements of mathematics. Yet the whole of what such
students have probably read is not necessary in order to
understand my book ; it is sufficient that they should know
the chief propositions relating to the circle and to similar
triangles.

It is, I think, desirable that theoretical instruction in

* Equivalent to the Descriptive Geometry of CAYLEY (Sixth memoir on quantics,
Phil. Trans. of the Royal Society of London, 1859; p. go). The name Géométrie
de position as used by CARNOT corresponds to an idea quite different from that
which I wished to express in the title of my book. I leave out of consideration

other names, such as Géométrie segmentaire and Organische Geometrie, as referring
to ideas which are too limited, in my opinion.

1 See KiLeiN, Ucber die sogenannte nicht-Euklidische Geometrie (Gottinger
Nachrichten, Aug. 30, 1871).
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geometry should have the help afforded it by the practical
constructing and drawing of figures. I have accordingly laid
more stress on descriptive properties than on mefrical ones ; and
have followed rather the methods of the Geometrie der Lage of
STAUDT than those of the Géoméirie supérieure of CHASLES *.
It has not however been my wish entirely to exclude metrical
properties, for to do this would have been detrimental to
other practical objects of teaching t. I have therefore intro-
duced into the book the important notion of the antarmonic
ratio, which has enabled me, with the help of the few above-
mentioned propositions of the ordinary geometry, to establish
easily the most useful metrical properties, which are either
consequences of the projective properties, or are closely related
to them.

I have made use of central projection in order to establish
the idea of infinitely distant elements; and,following the example
of STEINER and of StauDT, I have placed the law of duality
quite at the beginning of the book, as being a logical fact
which arises immediately and naturally from the possibility
of constructing space by taking either the point or the plane as
element. The enunciations and proofs which correspond to
one another by virtue of this law have often been placed in
parallel columns; occasionally however this arrangement has
been departed from, in order to give to students the oppor-
tunity of practising themselves in deducing from a theorem
its correlative. Professor REYE remarks, with justice, in the
preface to his book, that Geometry affords nothing so stirring
to a beginner, nothing so likely to stimulate him to original
work, as the principle of duality; and for this reason it is
very important to make him acquainted with it as soon
as possible, and to accustom him to employ it with con-
fidence.

The masterly treatises of PONCELET, STEINER, CHASLES, and

* Cf. REYE, Geometrie der Lage (Hannover, 1866; 2nd edition, 1877), p. xi of
the preface.

+ Of. ZicH, Die hihere Geomelrie in ihrer Anwendung auf Kegelschnitte und
Flichen zweiter Ordnung (Stuttgart, 1857), preface.
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StAUDT * are those to which I must acknowledge myself most
indebted ; not only hecause all who devote themselves to
Geometry commence with the study of these works, but also
because I have taken from them, besides the substance of
the methods, the proofs of many theorems and the solutions of
many problems. But along with these I have had occasion
also to consult the works of AroLLONIUS, PAPPUS, DESARGUES,
DeE 1A Hire, NEwTON, MACLAURIN, Lausert, CARNOT,
Briaxcuon, MOB1us, BELLAVITIS, &c.; and tho later ones of
Zecu, GasgIN, WiTzscHEL, TOWNSEND, REYE, PoUDRA,
FIEDLER, &ec.

In order not to increase the difficulties, already very con-
siderable, of my undertaking, I have relioved myself from the
responsibility of quoting in all cases the sources from which
I have drawn, or the original discoverers of the various pro-
positions or theories. I trust then that I may be excused if
sometimes the source quoted is not the original one 1, or if
occasionally the reference is found to be wanting entirely.
In giving references, my desire has been chiefly to call the
attention of the student to the names of the great geometers
and the titles of their works, which have become classical.
The association with certain great theorems of the illustrious
names of EucLip, AroLLoNIUS, PAPPUS, DESARGUES, PASCAL,
Nrwrox, Caryot, &e. will not be without advantage in assist-
ing the mind to retain the results themselves, and in exciting
that scientific curiosity which so often contributes to enlarge
our knowledge. .

Another object which I have had in view in giving refer-
ences is to correct the first impressions of those to whom the
name Projective Geometry has a suspicious air of novelty. Such

* PoNCELET, Traité des proprictés projectives des figures (Paris, 1822). STEINER,
Systematische Entwickelung der Abhingighkeit geomctrischer Gestalten von einander,
de. (Berlin, 1832). CHASLES, Traité de G éomctrie supérieure (Paris, 1852) ; Traité
des sections coniques (Paris, 1865). STAUDT, Geometrie der Lage (Niwnberg, 1847).

1 In quoting an author I have almost always cited such of his treatises as are
of considerable extent and generally known, although his discoveries may have
been originally announced elsewhere. For example, the rescarches of CHASLES in
the theory of conics date from a period in most cases anterior to the year 1830;
those of STAUDT began in 1831 ; &ec.
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persons I desire to convince that the subjects are to a great
extent of venerable antiquity, matured in the minds of the
greatest thinkers, and now reduced to that form of extreme
simplicity which GERGONNE considered as the mark of perfection
in a scientific theory*. In my analysis I shall follow the
order in which the various subjects are arranged in the book.

The conception of elements lying at an infinite distance is due
to the celebrated mathematician DESARGUES ; who more than
two centuries ago explicitly considered parallel straight lines
as meeting in an infinitely distant point t, and parallel planes
as passing through the same straight line at an infinite
distance f.

The same idea was thrown into full light and made
generally known by PoNCELET, who, starting from the postu-
lates of the Euclidian Geometry, arrived at the conclusion
that the points in space which lie at an infinite distance must
be regarded as all lying in the same plane §.

Desarcurs || and NEwTox 9 considered the asymptotes
of the hyperbola as tangents whose points of contact lie at an
infinite distance.

The name /lomology is due to PoxcErEr. Homology, with
reference to plane figures, is found in some of the earlier
treatises on perspective, for example in LAMBERT ** or per-
haps even in DESARGUES 1, who enunciated and proved the
theorem eoncerning triangles and quadrilaterals in perspective
or homology. This theorem, for the particular case of two
triangles (Art. 17), is however really of much older date, as it

* ¢On ne peut se flatter d’avoir le dernier mot d’une théorie, tant gu’on ne
peut pas lexpliquer en peu de paroles b un passant dans la rue’ (cf. CHASLES,
Apergu historique, p. 115).

t uvres de DESARGUES, réunies et analysées par M. Pounra (Paris, 1864),
tome i. Brouillon-projet d'une atteinte aux événements des rencontres d’un cone -
avee un plan (1639), pp. 104, 105, 205.

1 Loe. cit., pp. 105, 106.

§ Traité des propriétés projectives des figures (Paris, 1822), Arts. 96, 580.

I Loe. eit., p. 210. }

I Philosophiae naturalis principia mathematica (1686), lib. i. prop. 27,
scholium.

** Freie Perspective, 2nd edition (Zurich, 1774).

T4 Loc. cit., pp. 413-416.
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is substantially identical with a celebrated porism of EucLip
(Art. 114), which has been handed down to us by Pappus*.
Homological figures in space were first studied by PONCELET {.

The law of duality, as an independent principle, was enun-
ciated by GERGONNE I ; as a consequence of the theory of
reciprocal polars (under the name principe de réciprocité polaire)
it is due to PONCELET §.

The geometric forms (range of points, flat pencil) are found,
the names excepted, in DESARGUES and the later geometers.
STEINER || has defined them in a more explicit manner than
any previous writer.

The complete quadrilateral was considered by CArnotT ¥ ;
the idea was extended by STEINER** to polygons of any
number of sides and to figures in space.

Harmonic section was known to geometers of the most
remote antiquity; the fundamental properties of it are to be
found for example in ArorroNIUS 1. DELA HIRE [T gave the
construction of the fourth element of a harmonic system by
means of the harmonie property of the quadrilateral, 7.e. by
help of the ruler only.

From 1832 the construction of projective forms was taught
by STEINER §§.

The complete theory of the anharmonic: ratios is due to
Mosrus ||||, but before him EvcLip, Paprus 99, DESARGUES ¥*¥*,
and BriancHoN 111 had demonstrated the fundamental pro-
position of Art. 63. DESARGUES 11 was the author of the theory

* CHASLES, Les trois livres de porismes d’ Euclide, &c. (Par’is, 1860), p. 102.
+ Loe. cit., pp. 369 sqq.

1 Annales de Mathématiques, vol. xvi. (Montpellier, 1826), p. 209.

§ Ibid., vol. viii. (Montpellier, 1818), p. 201.

|| Systematische Entwickelung, pp. xiii, xiv. Collected Works, vol. i. p. 237.
q De la corrélation des figures de Géométrie (Paris, 1801), p. 122.

** Loc. cit., pp. 72, 235; §§ 19, 55.

++ Conicorum lib. i. 34, 36, 37, 38.

13 Sectiones conicae (Parisiis, 1685), 1. 20.

§§ Loc. cit., p. 9I.

lll Der barycentrische Calcul (Leipzig, 1827), chap. v.

19 Mathematicae Collectiones, vii. 129.

*** Loc. cil., p. 425.

t1 Mémoire sur les lignes du second ordre (Paris, 1817), p. 7.

111 Loc. cit., pp. 119, 147, 171, 176,
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of nvolution, of which a few particular cases were already
known to the Greek geometers *.

The generation of conics by means of two projective forms
was set forth, forty years ago, by STEINER and by CHASLES ;
it is based on two fundamental theorems (Arts. 149, 150)
from which the whole theory of these important curves can
be deduced. The same method of generation includes the
organic description of NEwTON { and various theorems of
MACGLAURIN,

But the projectivity of the pencils formed by joining two
fixed points on a conic to a variable point on the same had
already been proved, in other words, by AroLLoNIUS 1.

When only sixteen years old (in 1640) PASCAL discovered
his celebrated theorem of the wmystic hevagram §, and in 1806
BriaxcuoN deduced the correlative theorem (Art. 153) by
means of the theory of pole and polar.

The properties of the quadrilateral formed by four tangents
to a conic and of the quadrangle formed by their points of
contact are to be found in the Latin appendix (De linea-
rum geometricarum proprietatibus generalibus fractatus) to the
Algebra of MACLAURIN, a posthumous work (London, 1748).
He deduced from these properties methods for the con-
struction of a conic by points or by tangents in several cases
where five elements (points or tangents) are given. This
problem, in its full generality, was solved at a later date by
Briaxcuox.

The idea of considering two projective ranges of points on
the same conic was explicitly set forth by BELLAVITIS ||.

To CarxoT § we owe a celebrated theorem (Art. 385) con-
cerning the segments which a conic determines on the sides of

* Pareus, Mathematicae Collectiones, lib. vii. props. 37-56, 127, 128, 130-133.

4+ Loe. cit., lib. i. lemma xxi,

1 Conicorum lib. iii, 54, 55, 56. I owe this remark to Prof. ZEuTHEN (1885).

§ Letter of LEIBNITZ fo M. PERIER in the Fuvres de B. Pascal (Bossur’s
edition, vol. v. p. 459).

Il Saggio di geometria derivata (Nuovi Saggi dell’ Accademia di Padova, vol. iv.
1838), p. 270, note.

9 Géométrie de position (Paris, 1803), Art. 379.
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a triangle. Of this theorem also certain particular cases were
known long before *.

In the Freie Perspective of LAMBERT we meet with elegant
constructions for the solution of several problems of the first
and second degrees by means of the ruler, assuming however
that certain elements arc given; but the possibility of solving
all problems of the second degree by means of the ruler and
a fixed circle was made clear by PONCELET ; afterwards STEINER,
in a most valuable little book, showed the manner of practically
carrying this out (Arts. 238 sqq.).

The theory of pole and polar was already contained, under
various names, in the works already quoted of DESARYUES |
and De 1A HIre}; it was perfected by MoNGE§, BRIAN-
cHON ||, and PoNCELET. The last-mentioned geometer derived
from it the theory of polar reciprocation, which is essentially
the same thing as the law of duality, called by him the ‘ prin-
cipe de réciprocité polaire.’

The principal properties of conjugate diameters were ex-
pounded by APOLLONIUS in books ii and vii of his work on
the Conics.

And lastly, the fundamental theorems concerning foci are to
be found in book iii of ArorLLoNIUS, in book vii of Papprus,
and in book viii of Dt A HIRE.

Those who desire to acquire a more extended and detailed
knowledge of the progress of Geometry from its beginnings
until the year 1830 (which is sufficient for what is contained
in this book) have only to read that classical work, the dper¢u
historique of CHASLES.

* APOLLONIUS, Conicorwm lib. iii, 16-23. IESARGUES, loc. cif., p. 202. DE
LA HiRE, loc. cit., book v, props. 10, 12. NEWTON, Enumeratio linearum tertii
ordinis (Opticks, London, 1704), p. 142.

+ Loe. cit., pp. 164, 186, 190 sqq.

t Loc. cit., i. 21-28; ii. 23-30.

§ Géométrie descriptive (Paris, 1795), Art. 40.

|| Journal de U Ecole Polytechnique, cahier xiii. (Paris, 1806).
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IN April last year, when I was in Edinburgh on the occasion
of the celebration of the tercentenary festival of the University
there, Professor SYLVESTER did me the honour of saying that in
his opinion a translation of my book on the Elements of Projec-
tive Geometry might be useful to students at the English Uni-
versities as an introduction to the modern geometrical methods.
The same favourable judgement was shown to me by other
mathematicians, especially in Oxford, which place I visited in
the followmo‘ month of May at the invitation of Professor SyL-
VESTER. There Professor PrICE proposed to me that I should
assist in an English translation of my book, to be carried out
by Mr. C. LEUDESDORF, Fellow of Pembroke College, and to be
published by the Clarendon Press. I accepted the proposal
with pleasure, and for this reason. In my opinion the English
excel in the art of writing text-books for mathematical teach-
ing; as regards the clear exposition of theories and the
abundance of excellent examples, carefully selected, very few
books exist in other countries which can compete with those
of SALMON and many other distinguished English authors that
could be named. I felt it therefore to be a great honour that
my book should be considered by such competent judges
worthy to be introduced into their colleges.

Unless I am mistaken, the preference given to my Flements
over the many treatises on modern geometry published on the
Continent is to be attributed to the circumstance that in it I
have striven, to the best of my ability, to imitate the English
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models. My intention was not to produce a book of high
theories which should be of interest to the advanced mathe-
matician, but to construct an elementary text-book of modest
dimensions, intelligible to a student whose knowledge need not
extend further than the first books of Euclid. I aimed there-
fore at simplicity and clearness of exposition; and I was
careful to supply an abundance of examples of a kind suitable
to encourage the beginner, to make him seize the spirit of the
methods, and to render him capable of employing them.

My book has, I think, done some service in Italy by helping
to spread a knowledge of projective geometry; and I am
encouraged to believe that it has not been unproductive of
results even elsewhere, since I have had the honour of seeing
it translated into French and into German.

If the present edition be compared with the preceding ones,
it will be seen that the book has been considerably enlarged
and amended. All the improvements which are to be found
in the French and the German editions have been incor-
porated ; a new Chapter, on Foci, has been added ; and every
Chapter has received modifications, additions, and elucidations,
due in part to myself, and in part to the translator.

In conclusion, I beg leave to express my thanks to the
eminent mathematician, the Savilian Professor of Geometry,
who advised this translation; to the Delegates of the
Clarendon Press, who undertook its publication; and to
Mr. Leudesdorf, who has executed it with scrupulous
fidelity.

L.'CREMONA.

Rome, May 1885.
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ELEMENTS OF PROJECTIVE GEOMETRY,

CHAPTER L

DEFINITIONS.

1. By a figure is meant any assemblage of points, straight
lines, and planes; the straight lines and planes are all to be
considered as extending to infinity, without regard to the
limited portions of space which are enclosed by them. By
the word #riangle, for example, is to be understood a system
consisting of three points and three straight lines connecting
these points two and two ; a fefrakedron is a system consisting
of four planes and the four points in which these planes inter-
sect three and three, &e.

In order to secure uniformity of notation, we shall always denote
points by the capital letters 4, B, C, ..., straight lines by the small
lettersa, b, ¢, ..., planes by the Greck lettersa, 8, v, ... . Moreover,
AB will denote that part of the straight line joining 4 and B which
is comprised between the points 4 and B; Aa will denote the plane
which passes through the point 4 and the straight line a; aa the
point common to the straight line a and the plane a; a8 the straight
line formed by the intersection of the planes a, 8; 4BC the plane of
the three points 4, B, C'; aBy the point common to the three planes
a,B,y; a.BC the point common to the plane a and the straight line
BC; A.Bythe plane passing through the point 4 and the straight
line By ; a.Bc the straight line common to the plane a and the plane
Be; A.Bc the straight line joining the point 4 to the point Be, &e.
The notation a.BC = 4’ we shall use to express that the point common
tolfche plane a and the straight line BC coincides with the “point 4”;

B
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u = ABC will express that the straight line » contains the points
4,B,C, &c.

2. To project from a fized point S (the centre of projection) a
figure (4BCD..., aled ...) composed of points and straight
lines, is to construct the straight lines or projecting rays
84,88 ,8C, 8D, ... and the planes (projecting planes)
Sa, 86,8 ,8d,.... We thus obtain a new figure composed of
straight lines and planes which all pass through the centre S.

8. To cut by a fiwed plane o (transversal plane) a figure
(afyd, ... abed ...) made up of planes and straight lines, is to

construct the straight lines or fraces oa,of, oy, ... and the
points or /races oa , ob , oc,.... By this means we obtain a new

figure composed of straight lines and points lying in the
plane o.

4. To project from a fived straight line s (the axis) a figure
ABCD ...composed of points, is to construct the planes s4, sB,
sC, ... . The figure thus obtained is composed of planes which
all pass through the axis 5.

5. 1o cut by a fixed straight line s (a transversal) a figure aBy? ...
composed of planes,is to construct the points sa, s3, sy, .... In
this way a new figure is obtained, composed of points all lying
on the fixed transversal s.

6. If a figure is composed of straight lines «,0,c, ... which all
pass through a fixed point or centre S, it can be projected from
a straight line or axis s passing through § ; the result is a figure
composed of planes sa, s, sc, ... .

7. Ifa figure is composed of straight linesa, 4, ¢, ... all lying
in a fixed plane, it may be cut by a straight line (transversal)
s lying in the same plane; the figure which results is formed
by the points sa,sb, sc, ... *. il

* The operations of projecting and cutting (projection and section) are the two
fundamental ones of the Projective Geometry.



CHAPTER 1II.

CENTRAL PROJECTION ; FIGURES IN PERSPECTIVE.

8. CONSIDER a plane figure made up of points 4, B,C, ... and
straight lines 4B, AC, ..., BC, ... . Project these from a centre
§ not lying in the plane (¢) of the figure, and cut the rays’
84, 8B, 8C, ... and the planes S4B, 84C, ... ,SBC, ... by a trans-
versal plane ¢’ (Fig. 1). The traces on the plane ¢’ of the
projecting rays and planes will
form a second figure, a picture
of the first. When we carry
out the two operations by which
this second figure is derived
from the first, we are said o
project from a centre (or vertex) 8
a given figure o upon a plane of
projection o', The new figure
o’ is called the perspective image
or the central projection of the
original one. Of course, if the second figure be projected
back from the centre § upon the plane o, the first figure will
be formed again ; i.e. the first figure is the projection of the
second from the centre § wpon the picture-plane o. The two
figures o and ¢’ are said to be ix perspective position, or simply
in perspective.

9. If 47, B, C’, ... are the traces of the rays 84,88, 8C, ... on
the plane o/, we may say that to the points 4, B, C, ... of the
first figure correspond the points A’, B’, C’, ... of the second,
with the condition that two corresponding points always lie
on a straight line passing through §. 1f the point 4 describe
a straight line « in the plane o, the ray S4 will describe a
plane Sz ; and therefore 4’ will deseribe a straight line o', the
intersection of the planes Sz and ¢”. The straight lines 2 and «,

B 2

Fig. 1.
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in which the planes ¢ and ¢” are cut by any the same project-
ing plane, may thus be called corresponding lines. It follows
from this that to the straight lines 45,40, ..., BC,... correspond
the straight lines A’B’, 4°C’, ..., B’C’, ... and that to all
straight lines which pass through a given point 4 of the plane o
correspond straight lines which pass through the corresponding
point A4’ of the plane ¢”.

10. If the point 4 describe a curve in the plane o, the
corresponding point 4’ will desceribe another curve in the
plane o', which may be said to correspond to the first curve.
Tangents to the two curves at corresponding points are clearly
corresponding straight lines ; and again, the two curves are cut
by corresponding straight lines in corresponding points. Two
corresponding curves are therefore of the same degree *,

11. The two figures may equally well be generated by the
simultaneous motion of a pair of corresponding straight lines
a,d. If arevolve about a fixed point A, then " will always
pass through the corresponding point 4”.

Similarly, if « envelop a curve, then «” will envelop the
The lines @ and &/, in corresponding
positions, touch the two curves at
j corresponding points; and again, to
the tangents to the first curve from

corresponding curve.

Fig. 2.

apoint 4 correspond the tangents to
the second from the corresponding
point 4”. Two corresponding curves
are therefore of the same class .

12. Consider two straight lines
a and &' which correspond to one
another in the figures o, ¢ (Fig. 2).
Every ray drawn through § in
their plane meets them in two
points, say 4 and 4’, which cor-
respond to one another. If the ray

change its positicn and revolve round &, the points 4 and A
change their positions simultaneously; when the ray is about to

* The degree of a curve is the greatest number of points in which it can be cut

by any arbitrary plane.

In the case of a plane curve, it is the greatest number

of points in which it can be cut by any straight line in the plane.
+ The class of a plane curve is the greatest number of tangents which can be

drawn to it from any arbitrary point in the plane.
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become parallel to @, the point 4” approaches I’ (the point
where &’ is cut by the straight line drawn through § parallel to
) and the point 4 moves away indefinitely. In order that the
property that to one point of ¢’ corresponds one point of «
may hold universally, we say that the line ¢ has a point at
infinity 1, with which the point 4 coincides when 4’ coincides
with ', viz. when the ray, turning about §, becomes parallel
to @. The straight line ¢ has only one point at infinity, it
being assumed that we can draw through § only one ray
parallel to a*.

The point I/, the image of the point at infinity 7, is called
the vanishing point of a’.

Similarly, the straight line " has a point J’ at infinity,
which corresponds to the point J where ¢ is cut by the ray
drawn through § parallel to o’

Two parallel straight lines have the same point at infinity.
All straight lines which are parallel to a given straight line
must be considered as having a common point of intersection
at infinity.

Two straight lines lying in the same plane always intersect
in a point (finite or infinitely distant).

18. If now the straight line @ takes all possible positions in
the plane o, the corresponding straight line ¢” will always be
determined by the intersection of the planes ¢’ and Sz. As «
moves, the ray S/ traces out a plane = parallel to ¢ and the
point I’ describes the straight line wo’, which we may denote
by ¢’.  This straight line ¢’ is then such that to any point lying
on it corresponds a point at infinity in the plane o, which point
belongs also to the plane .

We assume that the locus of these points at infinity in the
plane ¢ is a straight line ¢ because it may be considered as
the intersection of the planes = and ¢. But this locus must
correspond to the straight line ¢/ in the plane ¢’; thus the law
that to every straightline in the plane ¢’ corresponds a straight
line in the plane ¢ holds without exception.

The plane ¢ has only one straight line at infinity, because
through the point § only one plane parallel to ¢ can be drawn.
The straight line ¢’, the image of the straight line at infinity,
is called the vanishing line of o’. It is parallel to od’.

* This is one of the fundamental hypotheses of the Euclidian Geometry.
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In the same way, the plane ¢” has a straight line at infinity
which eorresponds to the intersection of the plane o with the
plane %" drawn through § parallel to o

Two parallel planes have the same straight line at infinity
in common. All planes parallel to a given plane must be
considered as passing through a fixed straight line at infinity.

If a straight line is parallel to a plane, the straight line at
infinity in the plane passes through the point at infinity on
the line. If two straight lines are parallel, they meet in the
same point the straight line at infinity in their plane.

Two planes always cut one another in a straight line (finite
or infinitely distant).

A straight line and a plane (not containing the line) always
intersect in a point (finite or infinitely distant).

Three planes which do not contain the same straight line
have always a common point (finite or infinitely distant).

14. TueoREM. [ftwo plane figures ABC ..., A’B’C’..., (Fig. 1)
lying in different planes o and o, are in perspective, i.e. if' the rays
Ad’, BB, CC’,... meet in a point O, then the corresponding straight
lines AB and A’B’, AC and A°C’, ..., BC and B’C’,... will cut
one another in points lying on the same straight line, viz. the inter-
section of the planes of the two figures.

It is to be shown that if M is a point lying on the
straight line o¢’, and if a straight line 4, lying in the plane o,
passes through 1/, then the corresponding straight line o’ will
also pass through J/. But this is evidently the case, since the
two straight lines @ and ¢” are the intersections of the same
projecting plane with the two planes o and ¢/, and conse-
quently the three straight lines o¢’, @, and «” meet in a point,
viz. that common to the three planes. The straight line
oo’ is the locus of the points which correspond to themselves
in the two figures.

The vanishing line " in the plane o’ is parallel to the straight
line o¢’, since /" and the corresponding straight line 4, which
lies entirely at an infinite distance in the plane o, must inter-
sect one another on oo’. Similarly, the vanishing line j of
the plane ¢ is parallel to oo’

If each of the figures is a triangle, the theorem reads as
follows : —

If two triangles 4 BC and 4’B’C’, lying respectively in the
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planes ¢ and o/, are such that the straight lines 44°, BB, CC’
meet in a point §, then the three pairs of corresponding
sides, BC and B'C’, CA and ('A’, AB and 4’B, intersect in
points lying on the straight line ¢o”.

15. Conversely, if to the points A, B, C, .., and to the straight
lines AB, dC,.., BC,...of a plane figure o correspond severally
the points A’y B, C',. . and the straight lines A'B', 4'C’,.., B'C’,..
of another plane figure o' *, in such a way that the corresponding
lines AB and A'B’, AC and A'C’,..., BC and B'C,... meet in
points Lying on the line of intersection (ao’), of the planes ¢ and o,
then the two figures are in perspective.

For if § be the point which is common to the three
planes 4B . A'B, AC.A'C’, BC.B(, the three edges
Ad’, BB, CC’ of the trihedral angle formed by the same
planes will meet in 8. Similarly, the three planes 4. 47,
AD . A'D, BD.B'D meet in a point which is common to the
edges 44’ BB, DIV, and this point is again §, since the two
straight lines 44’, BB’ suffice to determine it. Therefore all
the straight lines 4d4’, BB, CC’, DI'... pass through the
same point §; that is, the two given figures are in perspective,
and § is their centre of projection.

If each of the figures is a triangle, we have the theorem:
If two triangles 4BC and A’B’C’, lying respectively in the
planes o and o, are such that the sides BC and B'C’, C4
and 0’4", AB and A’B’ intersect one another two and two
in points lying on the straight line o¢’, then the straight lines
A4’, BB, CC’ meet in a point 8.

18. THEOREM. If two triangles 4,B,C, and A B,C,, lying in the
same plane, are sich that the straight lines A Az, B B,, C,C, meet
in the same point O, then the three points of intersection of the sides
B.C, and B,C,, Cid, and C,d,, 4,B, and A4,B, lic on a straight
line. (Fig. 3.)

Through the point O which is common to the straight
lines 4,4,, B, B,, C,C,, draw any straight line outside the plane
o, and in this straight line take two points §; and §,. Project
the triangle 111])’101 from §; and the triangle 4,B,C, from &,.
The points 4,, 4,, 0, §,, §, lie in the same plane; therefore
8,4, and §,4, meet one another (in 4 suppose); similarly
8,B, and 8,8, (in B suppose) and §C; and 8,0, (in C suppose).

* The planes ¢ and 0" are to be regarded as distinct from each other.
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Thus the triangle 4BC is in perspective both with 4, B,C, and
with 4,B,C, The straight lines BC, B,C,, B,C, intersect in
pairs and therefore meet in one and the same point 4 *,
Similarly Cd, Ci4;, and 4,C; meet in a point B,, and 4B,
B4, and 4,B, in a point
C, The three points A,
By, C, lie on the straight
line which is common to
the planes o and ABC.
The theorem is therefore
proved.

17. Conversely, If' two
triangles 4,5, C; and A4,B,C,,
lying in the same plane, are
such that the sides B,C, and
B,C,, C4, and Cyd,, 4,8,
and A4,B, cut one another in
pairs in lhree collinear points Ay By, C,, then the straight lines
dd,, B\B,, C,C,, which join corresponding angular points, will
pass through one and the same point O. (Fig. 3.)

Through the straight line 4,B,C, draw another plane,
and project, from an arbitrary centre S, the triangle 4, B,C,
upon this plane. If 4BC be the projection, the straight lines BC,
B,C, will cut one another in the point 4,, through which B,C,
will also pass; similarly 4C will pass through 5, and 4B
through C,. The straight lines 44,, BB,, CC, intersect in
pairs, without however all three lying in #4e same plane ;
they will therefore all meet in one point S,. The straight
lines 8,8, and 4,4, lie in the same plane, since §,4, and 8,4,
intersect in 4 ; therefore S8, meets the three' straight lines
4,4,, B\B,, C,C,, i.e. 4,4,, B,B,, C;C, all meet in one point O,
viz. that which is common to the plane o and the straight
line §,§,+.

* BC is the intersection of the planes S, B, C, and S,B,C,, which do not coin-
cide; o that the straight lines BC, B,C,, and B,(, do not all three lie in one
plane., The three planes BC . B,Cy, BC. B,C;, and B, C,. B,C; (or ¢) intersect
in the same point 4.

+ PoONCELET, Prop ictis projectives des figures (Paris, 1822), Art. 168, The
theorems of Arte, 11 and 12 are due to DesarGUES (Euvres, ed. Poudra, vol. i.
b 413).



CHAPTER III
HOMOLOGY.

18. CoONSIDER a plane o and another plane ¢’, in which latter
lies any given figure made up of points and straight lines.
Take two points S, and §, lying outside the given planes,
and project from each of them as centre the given figure ¢’ on
to the plane o. In this way two new figures (o; and o, say)
will be formed, which lie in the plane e, and which are the
projections of one and the same figure ¢’ upon one and the
same plane o, but from different centres of projection. Let
two points 4; and 4,, or two straight lines ¢, and a,, in the
figures o, and o, be said to correspond to each other when
they are the images of one and the same point 4" or of
one and the same straight line o’ of the figure ¢’. We have
thus two figures o, and o, lying in the same plane o, and
so related that to the points 4, B, C, ... and the lines
4By, 4,Cy,..., B0y, ..., of the one correspond the points
Ay, By, Cy, ... and the lines 4,B,, 4,C,, ..., B,C,, ..., of the other.
Since any two corresponding straight lines of ¢’ and o intersect
in a point lying on the straight line ¢o’, and again any two
corresponding straight lines of ¢’ and ¢, intersect in a point
lying on the same straight line oo/, it follows that three
corresponding straight lines of o, o, and ¢, meet in one
and the same point, which is determined as the intersection
of the straight line of ¢” with the straight line oo”. That is
to say, two corresponding straight lines of the figures o; and
7, always intersect on a fixed straight line, the trace of ¢’ on o
If moreover 4, and 4, are a pair of corresponding points of o,
and o,, the rays §,4,, 8,4, have a point 4" in common, and
therefore lie in the same plane: consequently 4,4, and §,8,
intersect in a point O. Thus we arrive at the property that
every straight line, such as 4,d4,, which connects a pair of
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corresponding points of the figures o; and o, passes through
a fixed point O, which is the intersection of §,§, and o.
From this we conclude that two figures o, and o, which
are the projections of one and the same figure on one and
the same plane, but from different centres of projection,
possess all the properties of figures in perspective (Art. 8)
although they lie in the same plane. To the points and the
straight lines of the first correspond, each to each, the points
and the straight lines of the second figure ; two corresponding
points always lie on a ray passing through a fixed point O;
and two corresponding straight lines always intersect on a
fixed straight line s. Such figures are said to be 4omological,
or in homology 5 O is termed the centre of homology, and s the
azis of homology*. They may also be said to be in plane
perspective; O being called the centre of perspective, and s the
axis of perspective,

19. THEOREM. In the plane o are given two figures oy and o,
which are suck that to the points 4, , By, C; ,...and to the straight
lines 4, B, , 4,0y, ..., B,C,, ... of the one correspond, each to
each, the points Ay, By, C,, ... and the straight lines 4,B,, 4,C,,
cens ByCyy oo of the other. If the points of intersection of corre-
sponding straight lines lie on a fixed straight line, then the straight
lines whick join corresponding points will all pass through a fixed
point O.

Let 4, and 4,,B, and B,,C, and C, be three pairs
of corresponding points; they form two triangles 4,5,C, and
A,B,C, whose corresponding sides B,C; and B,C,, (14, and
C,4,,4,B, and 4,B, intersect in three collinear points. By
the theorem of Art. 17 the rays 4,4,, B B,, C,C, will there-
fore meet in the same point O; but two rays 4,4, and BB,
suffice to determine this point; in whatever way then the
third pair of points C,, C, may be chosen, the ray C,C, will
always pass through O.

The figures o, , o, are therefore in homology, O being the
centre, and s the axis, of homology.

Corollary.—1t follows that if two figures lying either in the same
or in different planes are in perspective, and if the plane of one
of the figures be made to turn round the axis of perspective,
then corresponding straight lines 4,4,, B\B,, &c., will always be

* PONCELET, Propriétés projectives, Arts. 297 seqq.
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concurrent ; z.e. the two figures will remain always in perspective.
The centre of perspective will of course change its position ; it will be
seen further on (Art. 22) that it describes a certain circle.

20. THEOREM. If to the straight lines a, b, e, ... and to the
points ab, ac, ..., be, ..., of a figure correspond severally the
straight lines o, ¥, ¢,... and the points oa'l/, a'c,..., V¢, ...
of another coplanar figure, so that the pairs of corresponding points
ab and &V, ac and a'd, be and V¢, ... are collinear with a
fixed point O; then the corresponding straight lines a and o,
b and Uy ¢ and &, will intersect in points whick lie on a straight
line. '

Let a and o/, 0 and ¥, ¢ and ¢ be three pairs of corre-
sponding straight lines; since by hypothesis the straight lines
which join the corresponding vertices of the triangles abe,a’t’e
all meet in a point O, it follows (Art. 16) that the correspond-
ing sides @ and &/, & and &, ¢ and ¢ intersect in three points
lying on a straight line. But two points ad’, 40/, suffice to
determine this straight line; it remains therefore the same if
instead of ¢ and ¢ any other two corresponding rays are
considered. Two corresponding straight lines therefore always
intersect on a fixed straight line, which we may call s; thus
the given figures are in homology, O being the centre, and s
the axis, of homology.

21. Consider two homological figures o; and ¢, lying in
the plane o; let O be their centre, s their axis of homology.
Through the point O and outside the plane ¢ draw any
straight line, and on this take a point §,, from which as
centre project the figure o, upon a new plane ¢ drawn in any
way through s. In this manner we construct in the plane ¢” a
figure 4’B’C’... which is in perspective with the given one
o, =4,8,C, .... If we consider two points 4" and 4, of the
figures o’ and o,, which are derived from one and the same
point A, of oy, as corresponding to each other, then to every
point or straight line of " corresponds a single point or straight
line of o,, and wvice versa; and every pair of corresponding
straight lines, such as 4’B’ and 4,B,, intersect on a fixed
straight line oo’ or 5. Consequently (Art. 15) the figures o’
and ¢, are in perspective, and the rays 4’4,, B’B,, ... all
pass through a fixed point §,. Moreover every ray 4’4,
meets the straight line 08, since the points 4’, 4, lie on the
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sides 8,4,, Od, of the triangle 04,8,. The rays 4’4,, B'B,, ...
do not all lie in the same plane, because the points 4,, B,, ...
lie arbitrarily in the plane o ; the point 8, therefore lies on
the straight line OS,.

From this we conclude that two homological figures may
be regarded, in an infinite number of ways, as the projections,
from two distinet points, of one and the same figure; this
figure lying in a plane passing through the axis of homology,
and the two points being collinear with the centre of homology.

22. Consider two figures in perspective, lying in the planes
7, o’ respectively (or two figures in plane perspective in the
same plane o) ; let O (Fig. 4) be the centre and s the axis of
perspective, and let ;j and
i’ be the vanishing lines of
the two figures. If J and
I’ are points lying on these
vanishing lines, the points
J” and 1 which correspond
to cach of them respec-

Fig. 4. tively in the other figure

will be at infinity on the

rays OJ, OI’ respectively. Further, the two corresponding

straight lines 7J, /’J” must meet in some point on s; there are

consequently an infinite number of parallelograms having one

vertex at O, the opposite one on s, and the other two vertices
on j and ¢’ respectively.

Now, supposing the two figures to keep their positions in
their planes unaltered, let the plane ¢” be made to turn round
oo’ or s. Every pair of corresponding straight lines must
always meet on s; consequently the two fighres will always
remain in perspective (Arts. 15, 19), and the point O will
describe some curve in space.

In order to determine this curve, consider any one of the
above-mentioned parallelograms OJS§I’. It remains always
a parallelogram, and the length of /'S is invariable ; therefore
also OJ is of constant length. The locus of the centre of
perspective O is therefore a circle whose centre lies on the
vanishing line 7 and whose plane is perpendicular to this line
and therefore to the axis of perspective s *.

* Mosius, Barycentrische Caleul (Leipzig, 1827), § 230 (note, p. 326).
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28. (1) Given the centre O and the axis s of homology, and two
corresponding points A and A’ (collinear with 0); to construct the
JSigure homological with a given figure.

Take a second point B of the given figure (Fig. 5). To obtain the
corresponding point B’, we notice that the ray BB’ must pass through
O and that the straight lines 4B, 4’B’ which correspond to one
another must intersect on s; thus B’ will be the point where OB
meets the straight line joining 4” to the intersection of 4B with s*.
In the same way we can construct any number of pairs of correspond-
ing points; in order to draw the

straight line #” which corresponds J/Q i
to a given straight line =, we have A
only to find the point B’ which B
corresponds to a peint B lying on ¢ I < 4
the line #, and to join the points 5 VAV AR S - .
B’ and rs. B

In order to find the point 7’ W~ 5
(the vanishing point) which corre- M
sponds to the infinitely distant Fig. 5.

point 7 on a given straight line (a ray O, for example, drawn from
0), we repeat the construction just given for the point B”; i.e. we join
another point 4 of the first figure to the point at infinity 7 on OF
(that is, we draw AT parallel to OI), and then join 4’ to the point
where A7 meets s, and produce the joining line to cut O in 7’.
Then 17 is the required point.

All points analogous to I’ (i.e. those which correspond to the points
at infinity in the given figure) fall on a
straight line ¢, parallel to s; ¢ is the
vanishing line of the second figure. If, in
the preceding construction, we interchange
the points 4 and 4’+, we shall obtain a

3§

point J (a vanishing point) lying on the o4

vanishing line j of the first figure. b 2\ A
(2) Suppose that instead of two corre- NS

sponding points 4, 4” there are given (Fig. 6) ¢ \a'

&

two corresponding straight lines a , a.
Fig. 6.

These will of course intersect on s; and
every ray passing through O will cut them in two corresponding

* This construction shows that if B lies upon 8, then B’ will coincide with B ;
i. e. that every point of s is its own correspondent.

t Otherwise: Draw through A’ any straight line J'4’, then through 4 and
the intersection of J'4’ with s draw a straight line J4, and through O draw 0J’
parallel to 4'J".  Then the intersection of 0J” and J4 is the vanishing point J,

and a straight line j drawn through J parallel to s is the vanishing line of the
first figure.



14 HOMOLOGY. (23

points 4, A”. In order to obtain the straight line " which corre-
sponds to any straight line b in the first figure, we have only to join
the point &s to the point of intersection of o’ with the ray passing
through O and ab *,

(3) The data of the problem may also be the centre O, the axis s, and
) ) the vanishing line j of the first figure (Fig. 7).

J .\ In this case, if a straight line e of the first

/ figure cuts j in J and s in P, the point
A\____ '__,,———”'“ J’ corresponding to J will be collinear with
A + / J and O and at an infinite distance from O.
! > And as the straight line a’ corresponding to

@ \ a must pass both through J” and through 2,

5 4 ¢ it is the parallel drawn through 2> to 0J.
= To find the point A’ corresponding to a
ig. 7. . 2 :
given point 4, we must draw the straight
line a’ which corresponds to a straight line a drawn arbitrarily
through 4 ; the intersection of a’ with O4 is the required point A’.

(4) Assuming a knowledge of the constructions just given, let
again O be the centre, s the axis, of homology, and j the vanishing
line of the first figure,

In the first figure let a circle C' be given (Figs. 8, 9, 10); to this
circle will correspond in the second figure a curve ¢’ which we can
construct by determining, according to the method above, the points
and straight lines which correspond to the points and tangents of C.

Two corresponding points will always be collinear with O, and two
corresponding chords (¢.e. straight lines MN, M’N’, where M and M,
N and N7, are two pairs of corresponding points) will always intersect on
s; as a particular case two corresponding tangents m and m’ (i.e. tan-
gents at corresponding points M and M’) will meet in a point lying on s.

Tt follows clearly from this that the curve €'/ possesses, in common
with the circle, the two following properties :

(1) Every straight line in its plane either cuts it in two points, or
is a tangent to it, or has no point in common with it.

(2) Through any point in the plane can be drawn either two
tangents to the curve, or ouly one (if the point is on the curve),

cr none.

Since two homological figures can be considered as arising from the
superposition of two figures in perspective lying in different planes
(Art. 22), the curve C” is simply the plane section of an oblique cone
on a cireular base ; i.e. the cone which ts formed by the straight lines
which run from any point in space to all points of a circle.

* Tt follows from this that if « passes through O, then @’ will coincide with a ;
i. . every straight line passing through O corresponds to itself.
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For this reason the curve C”is called a conic section or simply a
conic; thus the curve which is homological with a circle is a conic.

The points on the straight line j correspond to the points at
infinity in the second figure. Now the circle ¢’ may cut j in two

Fig. 8.

points J, J, (Fig. 8), or it may touch jin a single point J (Fig. g),
or it may have no point in common with j (Fig. 10).

In the first case (Fig. 8) the curve ¢’ will have two points J//, J,’, at
an infinite distance, sitnated in the direction of the straight lines 0.J,
0J, To the two straight lines which touch the circle in J, and J,
will correspond two straight lines (parallel respectively to 0J, and
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0.J,) which must be considered as tangents to the curve €7 at its
points at infinity J', J,. These two tangents, whose points of
contact lie at infinity, are called asymptotes of the curve C’; the
curve itself is called a Ayperbola.

In the second case (Fig. 9) the curve C” has a single point J” at
infinity ; this must be regarded as the point of contact of the straight
line at infinity j°, which is the tangent to C’ corresponding to the

Fig. 10

tangent j at the point J of the circle. This curve C is called a
parabola.

Fig. 11,

In the third case (Fig. 10) the curve has no point at iufinity; it is
called an ellipse.
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In the same way it may be shown that if in the first figure a conic
C is given, the corresponding curve €’ in the second figure will be a
conic also.

(5). The centre of homology is a point which corresponds to itself,
and every ray which passes through it corresponds to itself. If then
a curve (' pass through O, the corresponding curve ¢’ will also pass
through O, and the two curves will have a common tangent at this
point. Fig. 11 shows the case where one of the curves is taken to be
a circle, and the axis of homology s and the point 4 corresponding to
the point 4” of the circle are supposed to be given.

Similarly, every point on the axis of homology corresponds to
itself. If then a curve belonging to the first figure touch s at a
certain point, the corresponding curve in the second figure will touch
s at the same point. In Fig. 12 is shown a circle which is to be
transformed homologically by means of its tangents; moreover it is

Fig. 12.

supposed that the axis of homology touches the circle, that the centre
of homology is any given point, and that the straight line a of the
second figure is given which corresponds to the tangent o’ of the
circle.

(6). Two particular cases may be noticed:

(1) The axis of homology s may lie altogether at infinity ; then two
corresponding straight lines are always parallel, or, what amounts to
the same thing, two corresponding angles are always equal. In this

[o]
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case the two figures are said to be similar and similarly placed, or
homothetic *, and the point O is called the centre of similitude.

Let 3, M, and M,, M, be two pairs of corresponding points
of two homothetic figures, so that M M/, M, M, meet in O, while
M M, MM, are parallel. By similar triangles

OM,: OM)=0M,:0M)= M M,: M/M/,
so that the ratio OM : OM’ is constant for all pairs of corresponding
potnts M and M’. This constant ratio is called the ratio of similitude
of the two figures.

The tangents at two corresponding points 37, M{” must meet on the
axis of homology s, i.e. they are parallel to one another. If then the
tangent at M pass through O, it must coincide with the tangent at
M. Tt follows that if the two figures are such that common tangents
can be drawn to them, every common tangent passes through a centre
of similitude.

Take two points C, €/ collinear with O and such that

oc oM
oc’ — oM’
Then if C3, C’2’ be joined, they will evidently be parallel, and
CM : OM’=ratio of similitude. Therefore if } lie on a circle, centre
C and radius p, M will lie on another circle whose centre is ¢’ and
whose radius p’ is such that p: p’=ratio of similitude. In two homo-

thetic figures then to a circle always corresponds a circle. Further,
if CC” be again divided at (, so that
0'C:0'C’ = 0C: 00" = p: p/ = ratio of similitude,

it is clear that O” will be a second centre of similitude for the two
circles. It can be proved in a similar manner that any two central
conics (see Chap. XXI) which are homothetic, and for which a point
O is the centre of similitude, have a second centre of similitude 0’;
and that 0, 0" are collinear with the centres C, C’ of the two conics,
and divide the segment C'C” internally and externally in the ratio of
similitude. If the conics have real common tangents, O and ¢/ will
be the points of intersection of these taken in pairs—the two external
tangents together, and the two internal tangents together.

(2) The point O, on the other hand, may lie at an infinite distance;
then the straight lines which join pairs of corresponding points are
parallel to a fixed direction. In this case the figures have been termed
homological by affinity t, the straight line s being termed the awxis of

= ratio of similitude.

* Homothetic figures may be regarded as sections of a pyramid or a cone made
by parallel planes; s, the line of intersection of the two planes, lies at an infinite
distance. This is the case in Art. 8 if ¢ and ¢’ are parallel planes.

+ EULER, Introductio ... ii. cap. 18; MOBIUS, Baryc. Calcul, § 144 et seqq.
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affinity *.  To a point at infinity corresponds in this case a point at
infinity, and the straight line at infinity corresponds to itself. Tt
follows from this that to an ellipse corresponds an ellipse, to a hyper-
bola a hyperbola, to a parabola a parabola, to a parallelogram a
parallelogram.

* If two figures are so related, they may be regarded as plane sections of a
prism or of a cylinder. This is the case in Art. 8 if the centre S of projection ix
infinitely distant. The projection is then called parallel projection. 1In the
particular case where the parallels S4 , SB, § C, ... are perpendicular to the plane
of projection it is called orthogonal projection.



CHAPTER 1V.

HOMOLOGICAL FIGURES IN SPACE.

24. Suprose a figure to be given which is made up of points,
planes, and straight lines lying in any manner in space; the relief-
perspective * of this is constructed in the following manner. A point
O in space 1is taken as centre of perspective or homology ; a plane of
homology = is taken, every point of which is to be its own image ;
and in addition to these is taken a point 4” which is to be the image
of a point 4 of the given figure, so that 44" passes through 0. Let
now B be any other point ; in order to obtain its image B’, the plane
OAB is drawn, and we then proceed in this plane as if we had to
construct two homological figures, taking O as the centre and the
intersection of the planes 04 B and = as the axis of homology, and 4, 4”
as two corresponding points. The point B will be the intersection of
OB with the straight line passing through 4’ and the point where the
straight line AB cuts the plane = (Art. 23, Fig. 4). Let C be a third
point ; its image O/ will be the point of intersection of OC with
A’D or with B’E (in =), where D and E are the points in which
the plane = is met by 4 C, BC respectively.

This method will yield, for every point of the given figure, the
corresponding point of the image, and two corresponding points will
always lie on a straight line passing through O. Every plane o
passing through O cuts the two solid figures (the given one and its
image) in two homological figures, for which O is the centre, and the
straight line om the axis, of homology. It follows from this that to
every straight line of the given figure corresponds a straight line in
the image, and that two corresponding straight lines lie always in a
plane passing through O and meet each other in a point lying on the
plane 7.

Further: to every plane a, belonging to the given figure, and not
passing through O, will correspond a plane o’ in the image. For to the
straight lines a, b, ¢,...of the plane a correspond severally the straight

* This problem may present itself in the construction of bas-reliefs and of
theatre decorations (PONCELET, Prop. proj. 584; PoUDRa, Perspective-relirf,
Paris, 1860).
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lines o/, &, ¢, ...; and to the points ab, ac,..., be, ... the points a’t/, a’¢,
. Ve, ... In other words, the straight lines «, ¥/, ¢/, ... are such
that they intersect in pairs, but do not all meet in the same point;
they lie therefore in the same plane o’ *. Two corresponding planes
a, o’ intersect on the plane 7; for all the points and all the straight
lines of this last plane correspond to themselves, and therefore the
straight line o’z coincides with the straight line am.

The two planes a, ’ evidently contain two figures in perspective
(like the planes o, ¢/ of Arts. 12 and 14).

25. In every plane o passing through O lies a vanishing line 7/,
which is the image of the point at infinity in the same plane. "The
vanishing lines of the planes o, ¢, have a common point, which is the
image of the point at infinity on the line ¢,0,. The vanishing lines
of all the planes o are therefore such as to cut each other in pairs;
and as they do not pass all through the same point (since the planes
through O do not pass all through the same straight line), they must
lie in one and the same plane ¢’

This plane ¢/, which may be called the wanishing plane, is parallel
to the plane =, since all the vanishing lines of the planes o are
parallel to the same plane m. The vanishing plane ¢’ is thus the
locus of the straight lines which correspond to the straight lines at
infinity in all the planes of space, and is consequently also the locus
of the points which correspond to the points at infinity in all the
straight lines of space: for the line at infinity in any plane a is the
same thing as the line at infinity in the plane through O parallel to
a; s0 also the point at infinity on any straight line a coincides with
the point at infinity on the straight line drawn through O parallel
to a.

26. The infinitely distant points of all space are then such that
their images are the points of one and the same plane ¢’ (the vanishing
plane). It is therefore natural to consider all the infinitely distant
points in space as lying in one and the same plane ¢ (the plane at
infinity) of which the plane ¢’ is the image .

The idea of the plane at infinity being granted, the point at infinity
on any straight line @ is simply the point a¢, and the straight line at
infinity in any plane a is the straight line a¢. Two straight lines are
parallel if they intersect in a point of the plane ¢; two planes are
parallel if their line of intersection lies in the plane ¢, &e.

* Since ¢’ cuts both ¢’ and b’ without passing through the point @'/, therefore
¢’ has two points in common with the plane a't’, and consequently lies entirely in
the plane «'l’. And similarly for the other straight lines.

+ PoxceLET, Prop. proj. 580.
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GEOMETRIC FORMS.

27. A range or row of pointsis a figure 4, B, C, ... composed
of points lying on a straight line (which is called the Jase of
the range) ; such is, for example, the figure resulting from the
operations of Art. 5 or Art. 7.

An azial pencil is a figure a, 3, y, ... composed of planes all
passing through the same straight line (the awis of the pencil);
such is the figure resulting from the operations of Art. 4 or
Art. 6.

A flat pencil is a figare a, b, c, ... composed of straight lines
lying all in the same plane and radiating from a given point
(the centre or verlex of the pencil); such would be the figure
obtained by applying the operation of Art. 2 to a range, or
that of Art. 3 to an axial pencil.

A sheaf (sheaf of planes, sheaf of lines) is a figure made up of
planes or straight lines, all of which pass through a given
point (the centre of the sheaf); like that which results from
the operation of Art. 2.

A plane figure (plane of points, plane of lines) is a figure which
consists of points or straight lines all of which lie in the same
plane; such is the figure resulting from the operation of
Art. 3.

28. The first three figures can be derived one from the other
by a projection or a section*.

From a range 4, B, C,...is derived an axial peneil
s(d, B,C,...) by projecting the range from an axis s (Art. 4)
and a flat pencil O(4, B, C,...) by projecting it from a centre

* The series of planes s4,sB,sC, ...; of rays 04 ,0B,00C, ...; of points sa,
B, #7,...; and of straight lines ga, B, o7, ... will be denoted by & 4,8,0,..),
0(4,B,0C,....),8(@,B,7,...,),and ¢ (a, B ,7,...) respectively. To denote the

series of points 4, B, C,... the symbols 4, B,(, ... and ABC ... will be used
inditfer ently.
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O (Art.2). From an axial pencil a, 3, y,...is derived a range
s{a,B,7,...) by cutting the pencil by a transversal line ¢
(Art. 5); and a flat pencil o (a, 3, y,...) by cutting it by a
transversal plane o (Art. 3). From a flat pencila, 0, ¢,...is
derived a range o (2, 4, ¢,...) by cutting it by a transversal
plane ¢ (Art. 3); and an axial pencil O (2, 6, ¢,...) by pro-
jecting it from a centre O (Art. 2).

29. In a similar manner the last two figures of Art. 27 can
be derived one from the other by help of one of the operations
of Art. 2 or Art. 3; in fact, if we project from a centre O a
plane of points or lines we obtain a sheaf of lines or planes ;
and reciprocally, if we cut a sheaf of lines or planes by a
transversal plane we obtain a plane of points or lines. Two
plane figures in perspective (Art. 12) are two sections of the
same sheaf.

30. The elements or constituents of the range are the points ;
those of the axial pencil, the planes ; those of the flat pencil,
the straight lines or rays.

In the plane figure either the points or the straight lines
may be regarded as the elements. If the points are considered
as the elements, the straight lines of the figure are so many
ranges ; if, on the other hand, the straight lines or rays are
considered as the elements, the points of the figure are the
centres of so many flat pencils.

The plane of points (i.e. the plane figure in which the ele-
ments are points) contains therefore an infinite number of
ranges*, and the plane of lines (i.e. the plane figure in which
the elements are lines t) contains an infinite number of flat
pencils.

In the sheaf either the planes, or the straight lines or rays,
may be regarded as the elements. If we take the planes as
elements, the rays of the sheaf are the axes of so many
axial pencils; if, on the other hand, the rays are considered
as the elements, the planes of the sheaf are so many flat
pencils.

The sheaf contains therefore an infinite number of axial

* One of these ranges has all its points at an infinite distance; each of the
others has only one point at infinity.

+ The straight line at infinity belongs to an infinite number of flat pencils, each
of which has its centre at infinity, and consequently all its rays parallel.
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pencils or an infinite number of flat pencils, according as its
planes or its straight lines are regarded as its elements.

81. Space may also be considered as a geometrical figure,
whose elements are either points or planes.

Taking the points as elements, the straight lines of space.
are so many ranges, and the planes of space so many planes of
points. If, on the other hand, the planes are considered as
elements, the straight lines of space are the axes of so many
axial pencils, and points of space are the centres of so many
sheaves of planes.

Space contains therefore an infinite number of planes of
points* or an infinite number of sheaves of planes {, according
as we take the point or the plane as the element in order to
construct it.

32. The first three figures, viz. the range, the axial pencil,
and the flat pencil, which possess the property that each can
be derived from the other by help of one of the operations of
Aits. 2, 3,..., are included together under one name, and are
termed the one-dimensional geometric prime~forms.

The fourth and fifth figures, viz. the sheaf of planes or lines
and the plane of points or lines, which may in like manner be
derived one from the other by means of one of the operations
of Arts. 2, 3,..., and which moreover possess the property of
including in themselves an infinite number of one-dimensional
prime-forms, are likewise classed together under one title, as
the two-dimensional geometric prime-forms.

Lastly, space, which includes in itself an infinite number of
two-dimensional prime-forms,is considered as constituting the
three-dimensional geometric prime-form.

There are accordingly six geometric prime-forms ; three of
one dimension, two of two dimensions, and one of three
dimensions I.

Note.—With reference to the use of the word dimension in the
preceding Article, it is clear, from what has been said in Art. 28,
that we are justified in considering the range, the flat pencil, and
the axial pencil, as of the same dimensions, since to every point in

* One of them lies entirely at infinity.

+ Among these, there are an infinite number which have their centre at an
infinite distance, and whose rays are consequently parallel.

+ v. STAUDT, Geomelrie der Lage (Niirnberg, 1847), Arts, 26, 28.
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the first corresponds one ray in the second and one plane in the
third. The number of elements in each of these forms is infinite,
but it is the same in all three.

Similarly we conclude from Art. 29 that we are justified in con-
sidering the plane figure as of the same dimensions with the sheaf.

But the plane of points (lines) contaius (Art. 30) an infinite number
of ranges (flat pencils); and each of these ranges (flat pencils) itself
contains an infinite number of points (rays). Thus the plane figure
contains a number of points (lines) which is an infinity of the second
order compared with the infinity of points in a range, or of rays in a
flat pencil; and must therefore be considered as of two dimensions if
the range and flat pencil are taken to be of one dimension.

So too the sheaf of planes (or lines) contains (Art. 30) an infinite
number of axial pencils (or of flat pencils), and each of these itself
contains an infinite number of planes (or of rays). Therefore also
the sheaf of planes or lines must be of double the dimensions of the -
axial pencil or the flat peneil.

Again, space, considered as made up of points, contains an infinite
number of planes of points, and considered as made up of planes, it
contains an infinite number of sheaves of planes. Space thus contains
an infinite number of forms of two dimensions, which latter, again,
contain each an infinite number of forms of one dimension. Space
must accordingly be regarded as of three dimensions.

We may put the matter thus:

Forms of one dimension are those which contain a simple infinity
() of elements;

Forms of two dimensions are those which contain a double infinity
(0% of elements;

Forms of three dimensions are those which contain a triple infinity
(o0 %) of elements.
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CHAPTER VL
THE PRINCIPLE OF DUALITY ¥,

33. GEOMETRY (speaking gemerally) studies the generation
and the properties of figures lying (1)in space of three dimen-
sions, (2) in a plane, (3) in a sheaf. In each case, any figure
considered is simply an assemblage of elements; or, what
amounts to the same thing, it is the aggregate of the elements
with which a moving or variable element coincides in its
successive positions. The moving element which generates the
figures may be, in the first case, the point or the plane; in the
second case the point or the straight line; in the third case
the plane or the straight line. There are therefore always
two correlative or reciprocal methods by which figures may be
generated and their properties deduced, and it is in this
that geometric Duality consists. By this duality is meant the
co-existence of figures (and consequently of their properties
also) in pairs; two such co-existing (correlative or reciprocal)
figures having the same genesis and only differing from one
another in the nature of the generating element.

In the Geometry of space the range and the axial peneil, the
plane of points and the sheaf of planes, the plane of lines and
the sheaf of lines, are correlative forms. The'flat pencil is a
form which is correlative to itself.

In the Geometry of the plane the range and the flat pencil
are correlative forms.

In the Geometry of the sheaf the axial pencil and the flat
pencil are correlative forms.

The Geometry of the plane and the Geometry of the sheaf,
considered in three-dimensional space, are correlative to each
other.

34. The following are examples of correlative propositions

* v, STAUDT, Geom. der Lage, Art. 66,



34)

in the Geometry of space.

THE PRINCIPLE OF DUALITY. 7

Two correlative propositions are

deduced one from the other by interchanging the elements

point and plane.

1. Two points 4 , B determine
a straight line (viz. the straight
line 4B which passes through the
given points) which contains an
infinite number of other points.

2. A straight line ¢ and a point
B (not lying on the line) deter-
mine a plane, viz. the plane ¢ B
which connects the line with the
point.

3. Three points 4, B, (' which
are not collinear determine a
plane, viz. the plane ABC which
passes through the three points.

4. Two straight lines which
cut one another lie in the same
plane.

5. Given four points 4, B, C,
D; if the straight lines 4B, CD
meet, the four points will lie in
a plane, and consequently the
straight lines BC and AD, C4
and BD will also meet two and
two.

6. Given any number of straight
lines; if each meets all the others,
while the lines do not all pass
through a point, then they must
lie all in the same plane (and
constitute a plane of lines)*.

1. Two planes a, 83 determine a
straight line (viz. the straight line
aB, the intersection of the given
planes), through which pass an
infinite number of other planes.

2. A straight line ¢ and a plane
B (not passing through the line)
determine a point, viz. the point
af where the line cuts the plane.

3. Three planes a,8,y which
do not pass through the same line
determine a point, viz. the point
aBy where the three planes meet
each other.

4. Two straight lines which lie
in the same plane intersect in a
point.

5. Given four planesa,,y,8;
if the straight lines a8,y meet,
the four planes will meet in
a point, and consequently the
straight lines By and a8, ya and
88, will also meet two and two.

6. Given any number of straight
lines; if each meets all the others,
while the lines do not all lie in
the same plane, then they must
pass all through the same point
(and constitute a sheaf of lines)+t.

7. The following problem admits of two correlative solutions :
‘Given a plane a and a point 4 in it, to draw through 4 a straight
line lying in the plane a which shall cut a given straight line » which
does not lie in « and does not pass through 4.

* See note to Art, 20.

+ For let @, b, ¢, ... be the straight lines; as ab, ac, be ave three planes distinct
from each other, the common point must be the intersection of the straight lines

a, b; C3NYelehe
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Join 4 to the point ra.

8. Problem. Through a given
point 4 to draw a straight line
to cut each of two given straight
lines b and ¢ (which do not lie in
the same plane and do not pass

Construct the line of inter-
section of the plane a with the
plave 74.

8. Problem. In a given plane
a, to draw a straight line to cut
each of two given straight lines b
and ¢ (which do not meet and do
not lie in the plane a).

through 4).

Solution. Construct the line
of intersection of the planes Ab,
Aec.

Solution.
the point ac.

Join the point ab to

35. In the Geometry of Space, the figure correlative to a triangle
(system of three points) is a trihedral angle (system of three planes);
the vertex, the faces, and the edges of the latter are correlative to
the plane, the vertices, and the sides respectively of the triangle;
thus the theorem correlative to that of Arts. 15 and 17 will be the
following :

If two trihkedral angles '8y, ’B"” " are such that the edges B’y
and B"y", y'd and y’a”, /B’ and o’B” lie in three planes ay, By, v,
which pass through the same straight line, then the straight lines
dd”, 8’8", ¥y will lie in the same plane.

The proof is the same as that of Arts. 15 and 17, if the elements
point and plane are interchanged. If, for example, the two trihedral
angles have different vertices S’, S (Art. 15), then the points where
the pairs of edges intersect are the vertices of a triangle whose sides
are o’d’, 8’8", y'y”; these latter straight lines lie therefoxe in the
same plane (that of the triangle).

So also the proof for the case where the two trihedral angles have
the same vertex S will be correlative to that for the analogous case of
two triangles 4’ B’C’ and A” B” " which lie in the same plane (Art.
17). The theorem may also be established by projeéting from a point
S the figure corresponding to the theorem of Art. 16.

The proof of the theorem correlative to that of Arts. 14 and 16 is
left as an exercise for the student. It may be enunciated as follows:

If two trikedral angles o8y, a’8"y” are such that the straight lines
dad’, B /8’ ', 'y lie in the same plane, then the pairs of edges 'y and
87y, v d and y'd”, o' B and «’B" determine three planes which pass
all through the same stmc’ght line.

36. In the Geometry of the plane, two correlative propo-
sitions are deduced one from the other by interchanging the
words point and line, as in the following examples:
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1. Two points 4, B determine
a straight line, viz. the line 4.B.

2. Four points 4, B, €, D (Fig.
13), no three of which are col-
linear, form a figure called a
complete quadrangle®. The four

points are called the wertices, and
the six straight lines joining them
in pairs are called the sides of
the quadrangle.

Two sides which do not meet
in a vertex are termed opposite ;
there are accordingly three pairs
of opposite sides, BC and 4D,
C4 and BD, AB and CD. The

A

A
B
D
A c
B
D c
B
D c
Fig. 135.
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1. Two straight lines «, b de-
termine a point, viz. the point
ab.

2. Four straight lines a,b,¢,d
(Fig. 14), no three of which are
concurrent, form a figure called
complete quadiilateral™. The four

Fig. 14.

straight lines are called the sides
of the quadrilateral, and the six
points in which the sides cut one
another two and two are called
the vertzces.

Two vertices which do not lie
on the same side are termed
oppostte ; there are accordingly
three pairs of opposite vertices, be
and ad, ca and bd, ab and cd.

Fig. 16.

The straight lines e, f, g which
join pairs of opposite vertices are

points E, ¥, @ in which the oppo-
site sides intersect in pairs are

* The complete quadrangle has also been called a tetrastigm, and the complete
quadrilateral a tetragram. TowNSEND, Modern Geometry, ch. vii,
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termed the diagonal points; and
the triangle /G is termed the
diagonal triangle of the complete
quadrangle. The complete quad-
rangle includes three simple
quadrangles, viz. ACBD, ABCD,
and 4 BDC (Fig. 15).

3. And so, in general :

A complete polygon (complete
n-gon, or m-point*) is a system
of m points or wvertices, with the
olp=t) straight lines or sides

which join them two and two.

(36

called the diagonals; and the
triangle efy is termed the diagonal
triangle of the complete quadri-
lateral. The complete quadri-
lateral includes three simple
quadrilaterals, viz. acbd, adcb, and
acbd (Fig. 16).

A complete multilateral (or
n-sidet) is a system of n straight

. . . n(n—1
lines or sides, with the —-L——)

2
points or wertices in which they
intersect ome another two and
two.

4. The theorems of Arts. 16 and 17 are correlative each to the

other.

5. Theorem. If two complete
quadrangles ABCD, A’B'C'D’
are such that five pairs of sides
AB and A’B’, BC and B’C’, CA
and 0’47, AD and 4’D’, BD and
B'D’ cut one another in five
points lying on a straight line s,
then the remaining pair CD and
C’D’ will also intersect one an-
other on s (Fig. 17).

Fig. 17.

Since the triangles ABC,
A’B'C’ are by bhypothesis in

* Or polystigm ; TowNSEND, loe. cit.
potysirg )

Theorem. If two complete
quadrilaterals abed, a'l'¢'d” are
such that five pairs of vertices
ab and a’V’, be and V¢, ca and
dd', ad and o'd’, bd and U'd
lie upon five straight lines which
meet in a point S, then the re-
maining pair ¢d and ¢’d” will also
lie on a straight line through S

(Fig. 18).

Fig. 18.
Since the triangles (tri-
laterals) abe, ab'¢’ are by

+ Or polygram.
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perspective  (Arts. 17, 18),
the straight lines AA’, BB,
CC’ will meet in one point

S. 8o too the triangles 4BD,
A’B'D’ are in perspective ; there-
fore DD’ also will pass through
S, the point common to 44’/
and BB. Tt follows that the
triangles BC'D, B’C’ D’ are also in
perspective : therefore C'D and
C’D’ meet in a point on the
straight line s, which is deter-
mined by the point of intersec-
tion of BC and B'C’ and by that
of BD and B’D’*,
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hypothesis in perspective (Art.
18), the points aa’, b, o
will lie on one straight line s.
So too the triangles abd, a’t’d’ are
in perspective; therefore the point
dd’ lies on the straight line s
which passes through the points
aa’, b'. It follows that the
triangles (trilaterals) bed, b'¢’d’
are also in perspective ; therefore
ed and ¢’d’ lie on a straight line
through the point S, which is
determined by the straight lines

(be) (B'¢’) and (bd) (V'd') *.

U 37. In the Geometry of space the following are correlative :

A complete n-gon (in a plane).

A complete multilateral of n
sides, or m-side (in a plane).

A complete nflat (in a sheaf);
t.e. a figure made up of » planes
(or faces) which all pass through
the same point (or wertex), toge-

ther with the n_(nz;r) edges in

which these planes intersect two
and two.

A complete n-edge (in a sheaf);
i.e. a figure made up of » straight
lines radiating from a common
point (or wertex), together with

2

planes (or fuces)

which pass through these straight
lines taken in pairs,

Thus the following theorems are correlative, in the Geometry of
space, to the two theorems above (Art. 36, No. 5), which latter
are themselves correlative to each other in the Geometry of the

plane.

If two complete four-flats in a
sheaf (be their vertices coincident
or not) afByd, «’3'y’8 are such
that five pairs of corresponding

If two complete four-edges in a
sheaf (be their vertices coincident
or not) abed, a’t/c’d’ are such that
five pairs of corresponding faces

* These two theorems hold good equally when the two quadrangles or quadri-
laterals lie in different planes; in fact, the proofs are the same as the above, word

for word,
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edges lie in five planes which cut one another in five straight
pass all through the same straight  lines which lie all in one plane o,
line s, then the sixth pair of corre-  then the line of intersection of
sponding edges will lie also in a  the sixth pair of corresponding
plane passing through s. faces will lie also in the plane o.

The proofs of these theorems are left as an exercise to the student.
They only differ from those of the theorems No. 5, Art. 36 in the
substitution for each other of the elements point and plane ; and just
as theorems 5, Art. 36 follow from those of Arts. 15 and 16, so the
theorems enunciated above follow from those of Art. 35. When
the two four-flats have the same vertex O, the theorem on the left-
hand side may also be established by projecting from the point O
(Art. 2) the figure corresponding to the right-hand theorem of
No. 5, Art. 36. And in this case we may by the same method
deduce the theorem on the right-hand side above from that on the
left-hand of No. 5, Art. 36.

38. In the Geometry of the sheaf, two correlative theorems are-
derived one from the other by interchanging the elements plane and
straight line. Just as the Geometry of the sheaf is correlative to
that of the plane, with regard to three-dimensional space, so one
of the Gleometries is derived from the other by the interchange of
the elements point and plane. The Geometry of the sheaf may also
be derived from that of the plane by the operation of projection from
a centre (Art. 2).

From the Geometry of the sheaf may be derived that of spherical
figures, by cutting the sheaf by a spheie passing through the centre
of the sheaf.



CHAPTER VIL

PROJECTIVE GEOMETRIC FORMS.

39. By means of projection from a centre we obtain from
a range a flat pencil, from a flat pencil an axial pencil, from a
plane of points or lines a sheaf of lines or planes. Con-
versely, by the operation of section by a transversal plane
we obtain from a flat pencil a range, from an axial pencil a
flat pencil, from a sheaf a plane figure. The two operations,
projection from a point and section by a transversal plane,
may accordingly be regarded as complementary to each other;
and we may say that if one geometric form has been derived
from another by means of one of these operations, we can con-
versely, by means of the complementary operation, derive the
second form from the first. And similarly for the operations:
projection from an axis and section by a transversal line.

Suppose now that by means of a series of operations, each of
which is either a projection or a section, a form f, has been
derived from a given form £}, then another form f; from f;,, and
so on, until by #—1 such operations the form f, has been
arrived at. Conversely, we may return from /£, to /; by means
of another series of z—1 operations which are complementary
respectively to the last, last but one, last but two, &e. of the
operations by which we have passed from f; to f,. The series
of operations which leads from f; to f;, and the series which
leads from f, to f;, may be called complementary, and the
operations of the one series are complementary respectively to
those of the other, taken in the reverse order.

In the above the geometric forms are supposed to lie in
space (Art. 31). If we confine ourselves to plane Geometry, the
complementary operations reduce to projection from a centre and

D
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section by a (ransversal line. In the Geometry of the sheaf,
seetion by a plane and projection from an axis are comple-
mentary operations.

40. Two geometric prime forms of the same dimensions
are said to be projectively related, or simply projective, when one
can be derived from the other by any finite number of projec-
tions and sections (Arts. 2, 3,... 7).

For example, let a range » be given; project it from a
centre O, thus obtaining a flat pencil ; project this flat pencil
from another centre O, by which means an axial pencil with
00’ as axis is produced ; cut this axial pencil by a straight
line #,, thus obtaining a range of points lying on u,; project
this range from an axis, and cut the resulting axial pencil by a
plane, by which means a flat pencil is produced, and so on ; then
any two of the one-dimensional geometric forms which have
been obtained in this manner are projective according to
definition.

When we say that a form 4, B, C, D, ... is projective with
another form 4’, B’, C’, I’, ... we mean that, by help of the
same series of operations, each of which is either a projection
or a section, 4’ is derived from 4, B’ from B, ¢’ from C, &e.
The elements 4 and 4’, B and B’, C and C’, ... are termed
corresponding elements™.

For example, a plane figure is said to be projective with
another plane figure, when from the points 4, B, C, ... and from
the straight lines 4B, AC..., BC, ... of the one are derived
the points 4, B/, C’, ... and the straight lines 4’ B, A4 C ...
B’ C’, ... of the other, by means of a finite number of projections
and sections. )

In two projective plane figures, to a range in the one cor-
responds in the other a range which is projective with the
first range ; and to a flat pencil in the one figure corresponds
in the other a flat pencil which is projective with the first
pencil.

41. From what has been said above it is easy to see
that two geometric forms which are each projective with

* Two projective forms are termed komographic when the elements of which
they are constituted are of the same kind; 4.e. when the elements of both are
points, or lines, or planes. Tt will be seen later on (Art. 67) that this definition of
homography is equivalent to that given by CHASLES (Géomctrie supérieure, Axt. 99)-
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a third are projective with one another. For if we first go
through the operations which lead from the first form to the
third, and then go through those which lead from the third to
the second, we shall have passed from the first form to the
second.

42. Geometric forms in perspective.

The following forms are said to be in perspective :

D AN
A

A B’ o D’ $§ $
Fig. 19. Fig. zo.
(=4 9 D

s

Two ranges (Fig. 19), if they are sections of the same flat
pencil (Art. 12).

Two flat pencils (Fig. 20), if they projeet, from different
centres, one and the same range; or if they are sections of
the same axial pencil.

[Vote.—If we project a range w = A BC ... from two different centres
0 and O not lying in the same plane with it, we obtain two flat
pencils in perspective. These pencils, again, may be regarded as
sections of the same axial pencil made by the transversal planes Ou,
Ou’; the axial pencil namely which is composed of the planes 00’4,
00’B, 0070, ..., and which has for axis the straight line 00’. This
is the general case of two flat pencils in perspective ; they have not the
same centre and they lie in different planes ; at the same time, they
project the same range and are sections of the same axial pencil.
There are two exceptional cases: (1). If we project the row » from
two centres O and O’ lying in the same plane with u, then the
two resulting flat pencils lie in the same plane and are consequently
no longer sections of an axial pencil; (2). If an axial pencil is cut by
two transversal planes which pass through a common point O on the
axis, we obtain two flat pencils which have the same centre 0, and
which consequently no longer project the same range. |

Two axial pencils, if they project, from two different centres,
the same flat pencil. ‘

A range and a flat pencil, a range and an arial pencil, or a Slat
pencil and an axial pencil, if the first is a section of the
second.

D2
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Two plane figures, if they are plane sections of the same
sheaf.

Two sheaves, if they project, from two different centres, the
same plane figure.

A plane figure and a sheaf,if the former is a section of the
latter.

From the definition of Art. 40 it follows at once that two
(one-dimensional) forms which are in perspective are also pro-
jectively related ; but two projective forms are not in general
in perspective position.

43. Two figures in homology are merely two projective
plane figures superposed one upon the other, in a particular
position ; for by Art. 21 two homological figures may always
be regarded (and this in an infinite number of ways) as pro-
jections of one and the same third figure.

If two projective plane figures are superpesed one upon the
other in such a manner that the straight line connecting any
pair of corresponding points may pass through a fixed point ;
or, again, in such a manner that any pair of corresponding
straight lines may intersect on a fixed straight line; then the
two figures are in homology (Arts. 19, 20).

In two homolegical figures, two corresponding ranges are in
perspective (and therefore of course are projectively related);
and the same is the case with regard to two corresponding
pencils,

44, THEOREM. Two one-dimensional geometric forms, eack con-
sisting of three elements, are always projective.

To prove this, we notice in the first place that it is
enough to consider the case of two ranges 4BC, 4’B’C’; for,
if one of the given forms is a pencil, flat or axial, we may
substitute for it one of its sections by a transversal.

(1) If the two straight lines ABC, A’B’C’ lie in different
planes, join 44’, BB’, CC’, and cut these straight lines
by a transversal s* Then the two given forms are seen
to be simply two sections of the axial pencil sdd’, sBB’,
sCC’,

(2) If the two straight lines lie in the same plane (Fig. 21),
join 44’,and take on this straight line any two points, 8, 8”3

* To do this, we have only to draw through any point of 44" a straight line
which meets BB’ and CC’ (Prob. 8, Art. 31).
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draw 85,88’ to cut in B”, and SC, 8’C’ to cut in C”, and join
B"”C”, cutting 88" in 4”. Then 4'B'C’ may be derived from

S

A
/
]
~7
s'

Fig. 21. Fig. 22.

ABC by two projections, viz. we first project 4BC from §
into 4”B”C”, and then A”B”C” from S’ into 4’B’C'.

(3) In the case where the two points 4 and 4’ coincide (Fig.
22), the two given forms are directly in perspective ; the centre
of perspective is the point where BB” and CC’ intersect.

(4) Ifthe twosets of points 4 BC,4"B’C" lie on thesame straight
line (Fig. 23),1it is only necessary
to project one of them 4'5’C’ on s
to another straight line 4,B,C,
(from any centre O); then let
any two centres § and S; be
taken (as in Fig. 21) on 44,
and let the straight line 4”7 B"”C”
be constructed in the manner
already shown in case (2). Then
A'B’C" may be derived from
ABC by three projections, viz.
we first projeet ABC from § Fig. 23.
into 4”B”C”, then A” B”C” from
S, into 4,B,C, ,and lastly 4,B,C, from O into 4’B’C".

(5) If 4 coincides with 4, and B with B’, we may make
use of a centre S and two transversals s, ,s, drawn through 4
in the plane S4BCC’. 1If the triad 4BC be projected from §
upon s, (giving 4,B,C)), and the triad 4"B’C" be projected
from § upon s, (giving 4,B,C;); then the triads 4,5,C; and
A4,B,0, will be in perspective, because 4, coincides with 4, (in
the point 44").

In every case, then, it has been shown that the triads
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ABC ,A’B’C’ can be derived from each other by a finite
number of projections and sections; therefore by Art. 40
they are projective.

As a particular case, 4BC must be projective with BAC, for
example. In order actually to project one of these triads into
the other, take (Fig. 24) any two points Z and N collinear
with C. Join 4L, BN, meeting
in K, and BL, AN, meeting in
M. Then BAC can be derived
from ABC by first projecting
ABC from K into LNC, and then
LNC from M into BAC.

In order to project ABC into
BC4, we might first project

Fig. 24. ABC into BAC, and then BAC
into BOA.

45. THEOREM. Auny one-dimensional geometric jform, consisting
of four elements, is projective with any of the forms derived from it
by interchanging the elements in pairs. For instance, ABCD is
projective with BADC.

Let 4,B5,C,D be four given points (Fig. 25), and let

EFGD beaprojection of these points

A B D c from a centre 1/ on a straight line

TN DF passing through D. If AF,CM

P meet in &, then JNGC will be a

\ projection of EFGD) from centre 4

A\ and B4ADC a projection of WNGC

from centre Z#; therefore (Arts.

40, 41) the form BADC is pro-

jective with 4BCD. In a similar manner it'can be shown
that CDAB and DCBA are projective with 4 BCD *.

From this it follows for example that if a flat pencil abed is
projective with a range ABCD, then it is projective also with
BADC,with CDAB,and with DCBA; i.e.if two geometric forms,
each consisting of four elements, are projectively related, then the
elements of the one can be made to correspond respectively to the
elements of the other in four different ways. i

Fig. 25.

* Staupt, Geometrie der Lage, Art. 59.



CHAPTER VIII.

HARMONIC FORMS.

48. TurorEM™.

Given three points 4, B, C on
a straight line s; if a complete
quadrangle (KLMN) be con-
structed (in any plane through s)
in such a manner that two oppo-
site sides (KL, MN) meet in 4,
twootheropposite sides (XN, ML)
meet in B, and the fifth side (L)
passes through C, then the sixth
side (KM) will cut the straight
line s in a point D which is de-
termined by the three given
points ; <.e. it does not change its
position, in whatever manner the
arbitrary elements of the quad-
rangle are made to vary (Fig. 26).

Given in a plane three straight
lines a, b, ¢ which meet in a point
S; if a complete quadrilateral
(Almn) be constructed in such a
manner that two opposite vertices
(k7 , mn) lie on a, two other oppo-
site vertices (kn , ml) lie on b, and
the fifth vertex (n/) lies on e,
then the sixth vertex (&m) will
lie on a straight line d which
passes through 8, and which is
determinate ; ¢.e. it does not
change its position, in whatever
manner the arbitrary elements of
the quadrilateral are made to

vary (Fig. 27).

For if a second complete
quadrangle (K”Z’M’N’) be con-

complete
quadrilateral (£’1"m’n’) be con-

For if a second

% Sraupr, loc. cit., Art. 93.
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structed (either in the same plane,
or in any other plane through s),
which satisfies the prescribed con-
ditions, then the two quadrangles
will have five pairs of correspond-
ing sides which meet on the given
straight line ; therefore the sixth
pair will also meet on the same
line (Art. 36, No. 5, left).

From this it follows that if the
first quadrangle be kept fixed
while the second is made to vary
in every possible way, the point
D will remain fixed; which
proves the theorem.

The four points ABCD are
called harmonic, or we may say
that the group or the geometric
Jorm constituted by these four
points is a karmonic one, or that
ABCD form a harmonic range.
Or again : Four points ABCD of
a straight line, taken in this order,
are called harmonic, if it is pos-
stble to construct a complete quad-
rangle such that two opposite sides
puss through A, two other opposite
sides through DB, the fifth side
through C, and the sixth through D.
1t follows from the preceding theo-
rem that when such a quadrangle
exists, 7.e. when the form 4BCD
is harmonie, it is possible to con-
struct an infinite number of other
quadrangles satisfying the same
conditions. It further follows that,
given three points ABC of a
range (and also the order in which
they are to be taken), the fourth
point D, which makes with them
a harmonic form, is determinate
and wunique, and is found by the
construction of oue of the quad-
rangles (see below, Art. 58).

l46

structed which satisfies the pre-
scribed conditions, then the two
quadrilaterals will have five pairs
of corresponding vertices collinear
respectively with the given point ;
therefore the sixth pair will also
lie in a straight line passing
through the same point (Art. 36,
No. 5, right).

From this it follows that if the
first quadrilateral be kept fixed
while the second is made to vary
in every possible way, the straight .
line d will remain fixed; which
proves the theorem.

The four straight lines or rays
abed are called harmonic, or we
may say that the group or the
geometric  form constituted by
these four lines is a harmonic
one, or that abed form a karmonic
pencil.  Or again: Four rays
abed of a pencil, taken in this
order, are called harmonic, if it is
possible to construct a complete
quadrilateral such that two oppo-
site wvertices lie on a, two other
opposite wvertices on b, the fifth
vertex on ¢, and the siwth on d. It
follows from the preceding theo-
rem that when such a quadri-
lateral exists, ¢.e. when the form
abed is harmonic, it is possible
to construct an infinite number
of other quadrilaterals satisfying
the same conditions. It further
follows that given three rays abc
of a pencil (and also the order in
which they are to be taken), the
fourth ray d, which makes with
them a harmonic form, is deter-
minate and unigue, and is found
by the construction of one of the
quadrilaterals (see below, Art.58).
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47. If from any point 8 the harmonic range ABCD be projected
upon any other straight line, its projection A’B’C’ D’ will also be a
harmonic range (Fig. 28).

Imagine two planes drawn one through each of the straight
lines 4B, A’B’, and suppose that in the first of these planes
is constructed a complete quadrangle
of which two opposite sides meet in
4, two other opposite sides meet in B,
and a fifth side passes through C;
then the sixth side will pass through
D (Art. 46), since by hypothesis 4 BCD
is a harmonic range. Now project
this quadrangle from the point § on to the second plane ; then
a new quadrangle is obtained of which two opposite sides
meet in 4’, two other opposite sides meet in B’, and whose
fifth and sixth sides pass respectively through €’ and 1’;
therefore 4’B’C’D’ is a harmonic range. _

48. An examination of Fig. 27 will show that the harmonie
pencil aled is cut by any transversal whatever in a har-
monic range. For let § be the centre of the pencil and = be
any transversal; in « take any point R; join Z to D by the
straight line # and to B by the straight line /; and join 4 to
kb or P by the straight line ». As aled is a harmonic pencil
and five vertices of the complete quadrilateral £Zmn lie on a, 4,
and d, the sixth vertex /z or @ must lie on the fourth ray e.
Then from the complete quadrangle PQRS it is clear that
4BCD is a harmonic range.

Conversely, if the harmonic range 48CD (Fig. 27) be given,
and any centre whatever of projection § be taken, then the
four projecting rays 8 (4, B, C, D) will form a harmonic
pencil.

For draw through 4 any straight line to cut SB in P and
8C in @, and join BQ, cutting 48 in R. The quadrangle PQRS
is such that two opposite sides meet in 4, two other opposite
sides in B, and the fifth side passes through C; consequently
the sixth side must pass through D (Art. 46, left), since by
hypothesis the range 4BCD is harmonic. But then we have
a complete quadrilateral A/maz which has two opposite vertices
4 and R lying on 84, two other opposite vertices 5 and £ on
8B, a fifth vertex @ on SC, and the sixth ) on 8D ; therefore

D B ¢ A

Fig. 28.
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(Art. 46, right) the four straight lines which project the range
ABCD from § are harmonic. We may therefore enunciate the
following proposition :

A harmonic pencil is cut by any transversal whatever in a
harmonic range ; and, conversely, the rays whick project a harmonic
range from any centre whatever form a harmonic pencil.

Corollary. In two homological figures, to a range of four harmonic
points corresponds a range of four harmonic points; and to a pencil
of four harmonic rays corresponds a pencil of four harmonic rays.

49. The theorem on the right in Art. 46 is correlative to
that on the left in the same Article. In this latter theorem
all the quadrangles are supposed to lie in the same plane ; but
from the preceding considerations it is clear that the theorem
is still true and may be proved in the same manner, if the
quadrangles are drawn in different planes.

Considering accordingly this latter theorem (Art. 46, left)
as a proposition in the Geometry of space, the theorem corre-
lative to it will be the following :

If three planes a , B,y all pass through one straight line s, and if
a complete four-flat (see Art. 37) xhuv be constructed, of which two
opposite edges kX, uv lie in the plane a, two other opposite edges kv , A
lie in the plane B, and the edge v lies in the planey ; then the sixth
edge kp will always lie in a fived plane § (passing through s), whick
does not change, in whatever manner the arbitrary elements of the
Jour-flat be made to vary.

For if we construct (taking either the same vertex or any
other lying on s) another complete four-flat which satisfies the
prescribed conditions, the two four-flats will have five pairs of
corresponding edges lying in planes which all pass through
the same straight line ¢; therefore (Art. 37, left) the sixth pair
also will lie in a plane which passes through s. The four
planes, a, 3, y,d are termed Zarmonic planes; or we may
say that the group or the geomefric form constituted by
them is Aarmonic; or again that they form a /larmonic (axial)
pencil.

50. If a complete four-flat xAur be cut by any plane not
passing through the vertex of the pencil, a complete quadri-
lateral is obtained ; and the same transversal plane cuts the
planes a, 8, v, d in four rays of a flat pencil of which the first
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two rays contain each a pair of vertices of the quadrilateral
while the other two pass each through one of the remaining
vertices. Consequently (Art. 46, right) an axial pencil of four
harmonic planes is cut by any transversal plane in a flat pencil
of four harmonic rays.

Similarly, if the harmonic axial pencil of four planes
a, B, y,d is cut by any transversal line in four points 4, B, C, D,
these form a harmonic range. For if through the transversal
line a plane be drawn, it will cut the planes a, 8, y, 8 in four
straight lines @, 6, ¢, d. This group of straight lines is har-
monie, by what has just been proved; but 4BCD is a section
of the flat pencil a, d,¢,d; consequently (Art. 48) the four
points 4 , B, C, D are harmonic. Conversely, if four points
forming a harmonic range be projected from an axis, or if four
rays forming a harmonic pencil be projected from a point, the
resulting axial pencil is harmonie.

51. If then we include under the title of Zarmonic form the
group of four harmonic points (the harmonic range), the group
of four harmonic rays (the harmonic flat pencil), and the
group of four harmonic planes (the harmonic axial pencil), we
may enunciate the theorem :

Livery projection or section of a harmonic form is itself a harmonic
Jorm : or,

Every form whick is projective with a harmonic form is itself
harmondie.

Conversely, two harmonic forms are always projective with one
another.

To prove this proposition, it is enough to consider two
groups each of four harmonic points; for if one of the forms
were a pencil we should obtain four harmonic points on
cutting it by a transversal. Let then 4BCD, 4’B’C"D’ be two
harmonic ranges, and project 4BC into 4’5’C” in the manner
explained in Art. 44; the same operations (projections and
sections) which serve to derive 4’B’C’ from 4BC will give for
D a point D, ; from which it follows that the range 4’B°C"D,
will be harmonie, since the range ABCD is harmonic. But
A’B’C’ D’ are also four harmonic points, by hypothesis; there-
fore D, must coincide with 7/, since the three points 4°B’C’
determine uniquely the fourth point which forms with them a
harmonic range (Art. 46, left).
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We may add here a consequence of the definitions given in
Arts. 49 and 50:

The form whick is correlative to a harmonic jform is itself
harmonie.

52. Ifa, 0, c,d are rays of a pencil (Fig. 28), then a and ¢
are said to be separated by ¢ and d, when a straight line pass-
ing through the centre of the pencil, and rotating so as to
come into coincidence with each of the rays in turn, cannot
pass from a to & without coinciding with one and only one of
the two other rays ¢ and ¢*. The same definition applies to
the case of four planes of a pencil, and to that of four points of
a range (Fig. 26); only it must be granted that we may pass
from a point 4 to a point B in two different ways, either by
describing the finite segment 4.5 or the infinite segment which
begins at 4, passes through the point at infinity, and ends at 2.

This definition premised, the follow-
i = B ing property may be enunciated as at
e B<+—  once evident: Four elements of a one-
dimensional geometric form (i.e. four
points of a range, four rays of a
pencil, &ec.) can always be so divided into two pairs that
one pair is separated by the other, and this ean be done in
one way only. In Fig. 26, for example, the two pairs which
separate one another are 48, CD; and if 4’8°C’D’ is a form
projective with 4BCD, the pair 4'B’ will be separated by the
pair C'D’; for the operations of projection and section do not
change the relative position of the elements.

53. Let now 4BCD (Fig. 30) be four harmonic points, 7.c. four
points obtained by the construction of Art. 46, left. This
allows us to draw in an infinite number of ways a complete
quadrangle of which 4 and B are two diagonal points
(Art. 36, No. 2, left), while the other two opposite sides pass
through C and 2. It is only necessary to state this con-
struction in order to see that the two points 4 and B are
precisely similar in their relation to the system, and that the
same is true with regard to C and 2. It follows from this
that if ABCD is a harmonic range, then BACD , ABDC, BADC,
which are obtained by permuting the letters 4 and B or C
and 2, or both at the same time, are harmonic ranges also.

* @ and &, ¢ and d, may also be termed alternate pairs of rays.

Fig. 29.
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Consequently (Art. 51) the harmonic range 4BCD for example
is projective with BACD,i.e. we can pass from one range to the
other by a finite number of projections and sections. In fact
if the range 4BCD be projected from K on CQ, we obtain the
range LNCQ, which when projected from 3/ on 4B gives
BACD.

A [ B b
Fig. 30.

54. If 4, B, C, D are four harmonic points, then 4 and B are
necessarily separated by C and D.

For if (Fig. 30) the group 4BCD be projected on the straight
line KM, first from the centre Z and then from the centre WV,
the projections are KM QD and MKQD respectively. Now, as
already stated in Art. 52, the operations of projection and
section do not change the relative position of the elements of
the group. If therefore K and @ were separated by M and 2,
then also 3/ and @ must be separated by K and 2; which is
impossible. The only possible arrangement is that X and
M should be separated by @ and D, and therefore 4 and B
separated by C and D.

55. Let the straight lines 4@, BQ be drawn (Fig. 31), the
former meeting M5B in U
and NB in §, while the — %
latter meets KZ in 7' and
MN in 7. The complete
quadrangle Z7'Q Uhas two
opposite sides meeting in
4, two other opposite sides
meeting in B, and a fifth
side (L or LN) passes Fig. 31.
through.C; therefore the sixth side UZ will pass through 2)(Art.
46). In like manner the sixth side 7§of the complete quadrangle
NV QS must pass through 7, and the sixth sides of the com-
plete quadrangles KSQ7, MUQV through C. We have thus a
quadrangle S7UV two of whose opposite sides meet in C, two
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other opposite sides in 2, while the fifth and sixth sides pass
respectively through 4 and B. This shows that the relation
to which the points € and D are subject (Art. 53) is the same
as the relation to which the points 4 and B are subject; or,
in other words, that the pair 4 , 5 may be interchanged
with the pair €, D. Accordingly, if 458CD is a harmonie
range, then not only the ranges BACD , ABDC , BADC, but
also CDAB , DCAB , CDBA , DCBA are harmonie *,

The points 4 and B are termed conjugate points, as also are
C and D. Or either pair are said to be karmonic conjugates
with respect to the other. The points 4 and B are said to be
harinonically separated by the points € and J), or the points C
and 2 to be harmonically separated by 4 and B. We may
also say that the segment 45 is divided harmonically by the
segment CJ), or that the segment CJ) is divided harmonically
by 4B. If two points 4 and B (Fig. 30) are separated har-
monically by the points € and D in which the straight line
AB is cut by two straight lines QC and @), we may also say
that the segment 4B is divided harmonically by the straight
lines QC, QD, or by the point C and the straight line Q0, &ec.;
and that the straight lines QC, QD are separated harmonically
by the points 4, B; &e.

Analogous properties and expressions exist in the case of
four harmonie rays or four harmonic planes.

[Note—In future, whenever mention is made of the harmonic
system A BCD, it is always to be understood that 4 and B, ¢'and D, are
conjugate pairs; it being at the same time remembered that (Art. 54)
A4 and B, € and D, are necessarily alternate pairs of points.]

56. The following theorem is another copsequence of the
proposition of Art. 46, left: '

In a complete quadrilateral, each
diagonal is divided harmonically by
the other twot.

Let 4 and 47, B and B, C
and €’ be the pairs of opposite
vertices of a complete quadri-

Fig. 32. lateral (Fig. 32), and let the
diagonal 44’ be cut by the other diagonals BB"and CC” in £

* REYE, Geometrie der Lage (Hanover, 1866), vol. i. p. 34.
+ CARNOT, Géométrie de position (Paris, 1803), Art. 225.




=

58] HARMONIC FORMS. 47

and £ respectively. Consider now the complete quadrangle
BB’CC’; one pair of its opposite sides meet in 4, another
such pair in 4’, a fifth side passes through F, the sixth
through #. The points 4, 4" are therefore harmonically
separated by # and E. Similarly a consideration of the two
complete quadrangles CC’44” and 44’BB’ will show that
B, B’ are harmonically separated by F and D ; and C, € by
D and £.

57. In the complete quadrangle BB’CC” the diagonal points
are 4, A’,and D; also since the range BB’FD is harmonie, so
too is the pencil of four rays which project it from 4 (Art. 48);
therefore :

In a complete quadrangle, any two sides which meet in a diagonal
point are divided harmonically by the two other diagonal points.

This theorem is however merely the correlative (in accord-
ance with the principle of Duality in plane Geometry) of that
proved in the preceding Article.

58. The theorems of Art. 46 can be at once applied to the
solution, by means of the ruler only, of the following pro-
blems :

Given three points of a har- Given three rays of a har-

monic range, to find the fourth. monic penctl, to construct the
Jfourth.
Solution. Let 4, B, C (Fig. Solution. Let a, b, ¢ (Fig.

33) be the given points (lying
on a given straight line) and let

Fig. 33.
4 and B be conjugate to each
other, Draw any two straight
lines through 4, and a third
through C to cut these in Z and

34) be the given rays (lying in
one plane and passing through a

Fig. 34.
given centre S), and let o and &

be conjugate to each other.
Through any point @ lying on ¢
draw any two straight lines to
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N respectively. Join BL cutting cut @ in 4 and R, and b in P
AN in M, and BN cutting AL in  and B, respectively. Join 4 B and
K ; then if KM be joined it will P ; these will cut in a point D,
cut the given straight line in the the line joining which to S is the
required point 2, conjugate to required ray d, conjugate to c.
C*

59. In the problem of Art. 58, left, let C' lie midway between A
and B. We can, in the solution, so arrange the arbitrary elements
that the points A" and A shall move off
to infinity ; to effect this we must con-
struct (Fig. 35) a parallelogram 4 LBN
on AB as diagonal ; then since the other
diagonal LN passes through C, the point
D will lie at infinity.

If, conversely, the points 4 , B, D are

Fig. 35. given, of which the third point D lies

at infinity, we may again construct a

parallelogram ALBN on AP as diagonal ; then the fourth point C,
the conjugate of D), must be the point where LN meets the given
straight line : that is, it must be the middle point of 4 B. Therefore :

If in @ harmonic range ABCD
the point C lies midway between the
two conjugates A and B, then the fourth
point D lies at an infinite distance;
and conversely, if one of the points D
lles at infinity, its conjugate C is the
point midway between the two others,
4 and B.

60. In the problem of Art. 58,

Fig. 36. right, let ¢ be the bisector of the

angle between ¢ and b (Fig. 36). If

© be taken at infinity on ¢, the segments 4B, PR become equal to

one another and lie Detween the parallels

ﬁJ/ d AP, BR; consequently the ray d will be

- perpendicular to ¢, 7.e. given a harmonic

pencil of four rays, abed; <f one of

2 - them ¢ bisect the anyle between the two

b conjugates a and b, the fourth ray d

Fig. 37. will be at right angles to c.

Conversely: ¢f tn a harmonic pencil abed

(Fig. 37) two conjugate rays c , d are at right angles, then they are the

bisectors, internal and external, of the angle between the other two rays
a, b

* DE LA HIRE, Sectiones Conicae (Parisiis, 1685), 1ib. i, prop. 20.
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For if the pencil be cut by a transversal 4B drawn parallel to d,
the section 4BCD will be a harmonic range (Art. 48); and as /)
lies at infinity, ¢' must lie midway between 4 and B (Art. 59); conse-
quently, if S be the centre of the pencil, 4.SB is an isosceles triangle
and SO the bisector of its vertical angle,



CHAPTER IX.
ANHARMONIC RATIOS.

61. GEOMETRICAL propositions divide themselves into two
classes. Those of the one class are either immediately con-
cerned with the magnitude of figures, as Eue. I. 47, or they
involve more or less directly the idea of quantity or measure-
ment, as e.g. Eue. I 12.  Such propositions are called metrical.
The other class of propositions relate merely to the position
of the figures with which they deal, and the idea of quantity
does not enter into them at all. Such propositions are called
descriptive. Most of the propositions in Euclid’s Elements are
metrical, and it is not easy to find among them an example of
a purely descriptive theorem. Prop. 2, Book XI, may serve
as an instance of one. Projective Geometry on the other
hand, dealing with projective properties (i.e. such as are not
altered by projection), is chiefly concerned with descriptive
properties of figures. In fact, since the magnitude of a geo-
metric figure is altered by projection, metrical properties are
as a rule not projective. But there is one important class of
metrical properties (anharmonic properties) which are pro-
jective, and the discussion of which therefore finds a place in
the Projective Geometry. To these we proceed; but it is
neeessary first to establish certain fundamental notions.

62. Consider a straight line; a point may move along it in
two different directions, one of which is opposite to the other.
Let it be agreed to call one of these the positive direction, and
the other the negative direction. Let 4 and B be two points
on the straight line; and let it be further agreed to represent
by the expression 4B the length of the segment comprised
between 4 and B, taken as a positive or as a negative number
of units according as the direction is positive or negative in
which a point must move in order to describe the segment;



62] ANHARMONIC RATIOS. 51

this point starting from 4 (the first letter of the expression
4B) and ending at B.

In consequence of this convention, which is termed the rule
of signs, the two expressions 4B, B4 are quantities which are
equal in magnitude but opposite in sign, so that B4 = — AB, or

AdB+B4=0. . . . . . . . (1)

Now let 4, B, C be three points lying on a straight line.

If C lies between 4 and B (Fig. 38 a),

(a>A c B
B (o) A
(@) * oc
G B A
(C) (o} A B
B A ¢
Fig. 38.
we have AB = AC+CB;
whence —CB—A4C+ 4B = 0,
or BC+CAd+AB = 0.
Again, if B lies between 4 and C (Fig. 38 4),
_ AC = AB+ BC
whence BC—A4AC+ 4B = 0,
or BC+CA+ 4B = 0.
Lastly, if 4 lies between B and C (Fig. 38 ¢),
CB=CAd+A4B;
whence —CB+CA+ 4B =0,
or BC+CA+ 4B = o.

Accordingly :

If 4, B, Care three collinear points, then whatever their relative
positions may be, the identity

BCO+CAd+dB=0 . . . . . . (2)

always holds good.

From this identity may be deduced an expression for the
distance between two points 4 and B in terms of the distances

E 2
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of these points from an origin O chosen arbitrarily on the
straight line which joins them.

For since O4+AB+ B0 =0,
edB=0B—-04;. . . . . . . (3)
or again, AB = 40+ OB *,

The results (1) and (2) may be extended ; they are in fact
particular cases of the following general proposition:

If Ay, d,,... 4, be n collinear points, then

A g+ dydg+ .o+ 4, A, + 4,4, =0,
the truth of which follows at once from (3), since the expres-
sion on the left hand is equal to
(04, — 04)) +(043— 0dy)+ ... + (04, — 04,),
which vanishes.

Another useful result is that if 4, B, C, D be four collinear
points,

BC.4AD+CA.BD+4B.CD = 0.

This again follows from (3), since the left-hand side

=(DC—DB)AD+...+...
= 0.

Many other relations of a similar kind between segments
might be proved, but they are not necessary for our purpose.
We will give only one more, viz.

If 4,B,C, 0 le any four collinear points, then

04*. BC+ O0DB%.CA+0C* . AB= —BC.CA . AD.

For by (3) the left-hand side is equal to

(04%2— 0C*) BC +(05*— 0C*) Cd
= C4(04+ OC)BC+ CB(0OB+ 00)CA
= BC.C4(04—0B)
= —BC.CA.A4B. !

It may be noticed that this last theorem is true even if O do
not lie on the straight line 4BC, but be any point whatever.
For if a perpendicular O be let fall on 4 BC,

04*, BC+ 052, CAd+ 0C*. AB
= (0072+ 0’4 BC+ ...+ ...
= 0’4* . BC+ 0'B*. CA+ 0'C%. 4B
+ 007 (BC+CA4+ AD)
= —BC.CA. AD,
by what has just been proved.
63. Consider now Fig. 39, which represents the projection

* MoBIUS, Barycentrische Caleul, § 1.
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63]
from a centre § of the points of a straight line @ on to another

straight line o”; let us examine the relation which exists
between the lengths of two corresponding segments 4B, 4'B’.

From the similar triangles S4J , 4'SI”
JA:JS:: I'S: I'd’ ;%

so from the similar triangles 8BJ , B’SI’,
CJIB:JS:: I'S: B’
o Jd . I'A’=JB . I'B'=JS . I'S;
i.e. the rectangle J4.1’4” has a constant value for all pairs

of corresponding points 4 and 4’.
If the constant J§.1’S be denoted by % we have

r 4 k rnr & 0
1I'4 = 7k I'B' = 7B’
therefore by subtraction,
£(J4—JB)

e e

But I'B'—~I'A’=A4"B’,and JA—JB=BAd= —AB;

—k
rnr_
A’B —_——JA.JB'AB'

If we consider four points 4, B, C, D (Fig. 40) of the
straight line @ and their four projections, 4°, B’, C’, D’, we

obtain, in a similar manner,
* We suppose that in all equations involving segments the rule of signs is

observed. See MuBIUS, Barye. Calcul, § 1; TOWNSEND, Modern Geometry,

chapter v,
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—k

AC =m'.AC,

B’C’———é - BC,
~—JB.JC T

rn’ —k

S T e

' —k

G 5

whence by division
A’C" A’D"  AC AD
B'C""B'D’ T BC'BD’

This last equation, which has been proved for the case of
projection from a centre S, holds also for the case where
ABCD and 4’B’C’D’ are the intersections of two transversal
lines s and &’ (not lying in the same plane) with four planes
a, 3,y ,0 which all pass through one straight line #; in other
words, when ’B’C’D’ is a projection of 4ABCD made from an
axis # (Art. 4). For let the four planes a«,s3,y,d be cut in
A7, B”, C”, D" respectively by a straight line s” which meets
s and ¢. The straight lines 44”, BB”, CC”, DD” are the
intersections of the planes a, 3, ,38 respectively by the plane
ss”, and therefore meet in a point §; that namely in which
the plane ss” is cut by the axis ». Soalso 4’4”, B’B”, C'C”,
D’'D” are four straight lines lying in the plane &'s” and
meeting in a point §” of the axis # (that namely in which the
plane &'s” is cut by the axis ). Therefore 4”B”C”D” is a
projection of ABCL from centre § and a projection 4'B'C’ 1)’
from centre §; so that P

A47C” A"D”  AC 4D  A'C" A'D

570" 3D T BOBD~ BC B
AC 4D
BC BD
is called the ankarmonic ratio of the four collinear points
A4,8,C, . The result obtained above may therefore be
expressed as follows:

The anharmonic ratio of four collinear points is unallered by any
projection whatever ¥,

The number

* Parpus, Mathematicae Collectiones, book vii. prop. 129 (ed. Hultsch, Berlin,
1877, vol. ii. p. 871).
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Or again:

If two ranges, each of four poiuts, are projective, they have the
same ankarmonic ratio, or, as we may say, are equianharmonic *.

64. Dividing one by the other the expressions for 4’C” and
B’C’, we have A

4'C°  AC AT

B'C'T BC BI
In this equation the right-hand member is the anharmonic
ratio of the four points 4, B, C,J; consequently the left-hand
member must be the anharmonic ratio of 47, B/, C’, J”; thus
the anharmonic ratio of four points A’y B’, C’, J’, of whick the last
lies at infinity, is merely the simple ratio A’C": B'C".

This may also be seen by observing that if 4" and B’
remain fixed while 2" moves off to infinity on the line 4’7,
then

A'D’

B'D’
limiting value of —A’C—’ il,Df, = 40

° BCBLY T B

Similarly, on the same supposition,
AI-DI ) A’C _ _BIC'/ )
B O T AC
i.e. the anharmonic ratio of the four points A’y B', D’, C’, of whick
the third lies at infinity, is equal to the simple ratio B'C”: A'C".,

65. From this results the solution of the following

ProBLEM.— Given three collinear points A , B, C to find a fouith
D so that the ankarmonic ratio of the range ABCD may be a
wumber N given in sign and magnitude (Fig. 41).

Solution.—Draw any transversal through C, and take on
it two points 4, B” such that the
ratio CA’: CB’ is equal to A: 1, the
given value of the anharmonic >
ratio; the two points 4" and 5’ : B
lying on the same or on opposite
sides of C according as A is positive
or negative. Join 44’, BB’, meeting
in §; the straight line through S parallel to 4’5" will cut 472
in the point D required 1. For if 2’ be the point at infinity on

=il g

limiting value of

limiting value of

A C b B

B
Fig. 41.

* TowNSEND, Modern Geometry, Art. 278.
+ CHASLES, Géométrie supérieure (Paris, 1852), p. 10.
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A'B’, and we consider 4BCD as a projection of 4’B’C’'D’
(¢’ coincides with C) from the centre §, then the anharmonic
ratio of 4BCD is equal to that of 4’B’C’1)’, that is, to the
simple ratio 4'C": B’C’ or A
The above is simply the graphical solution of the equation
a0 A _
BC BD 7
4D _ 4C
BD=Bo" A=p,
or in other words of the problem :

Given two points A and B, to find a point D collinear with them
such that the ratio of the segments AD, BD to one another may be
equal to a number given in sign and magnitude.

As only one such point Z can be found, the proposed
problem admits of only one solution; this is also clear
from the construction given, since only one line can be drawn
through § parallel to 45, Consequently there cannot be
two different points 2 and 2, such that 4BCD and ABCD,
have the same anharmonic ratio. Or:

If the groups ABCD, ABCD, are equiankarmonic, the point D,
st coincide with D.

86. TurorEM. (Converse to that of Art. 63.) If two ranges
ABCD, A’B'C"D’, each of four points, are equiankarmonic, they are
projective with one another.

For (by Art. 44) we can always pass from the triad
ABC to the triad 4’B’C’ by a finite number of projections or
sections ; let D be the point which these operations give as
corresponding to J. Then the anharmonic ratio of 4’B’C’ D"
will he equal to that of 4BCD, and consequently to that of
A’B’C’D’; whence it follows that 2” coincides with 2)’, and that
the ranges ABCD , A’B’C’D’ are projective with one another.

67. It follows then from Arts. 63 and 66 that the necessary
and sufficient condition that two ranges 4BCD , 4’B’C’'D’,
consisting each of four points, should be projective, is the
cquality (in sign and magnitude) of their anharmonic ratios.

The anharmonic ratio of four points 4BCD is denoted by
the symbol (4BCD)*; accordingly the projectivity of two
forms ABCD and A'IYC’T) is expressed by the equation

(AdBCD)y=(d"B'C’D’).
* Momivs, Barycentrische Caleul, § 183.

or
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From what has been proved it is seen that if two pencils
each consisting of four rays or four planes are cut by any two
transversals in ABCD and A’B’C’D’ respectively, the equation
(ABCD)=(4’B’C’D’) is the necessary and sufficient condition
that the two pencils should be projective with one another.

The ankarmonic ratio of a pencil of four rays a,b,c,d or
Jour planes a,B,vy,d may now be defined as the constant
anharmonic ratio of the four points in which the four elements
of the pencil are cut by any transversal, and may be denoted
by (abed) or (aByd).

This done, we can enunciate the general theorem :

If two one-dimensional geometric forms, consisting each of four
elements, are projective, they are equiankarmonic ; and if they are
equianharmonic, they are projective.

68. Since two harmonic forms are always projectively
related (Art. 51), the preceding theorem leads to the con-
clusion that the anharmonie ratio of four harmonic elements
is a constant number. For if ABCD is a harmonic system,
BACD is also a harmonic system (Art. 53), and the two
systems ACBD and BCAD are projectively related*; thus
(4CBD) = (BCAD),

AB AD _ Bd _BD .

b CB'CD~ €4 °CD’
whence —A—O—Q = —1

BC " BD ’
i.e. (4BCD) = —1;

therefore the anlarmonic ratio of four harmonic elements is equal
to — 1.

69. The equation (ABCD) =—1, or
AC  AD
B—a-}-ﬁlj:o,. © o 0 o o o ¢ (1)
which expresses that the range 48CD is harmonic, may be put into
two other remarkable forms.
Since 4D = CD—CA (Art. 62) and BD = CD— (B, the equation
(1) gives
CA(CD—CB)+CB(CD—-C4) =0,
1 1 1
—=3(—=4 -=): - 2
¢p=*(ga * o3 )

* In Fig. 30 ACBD may be projected (from K on NC) into LCN@Q; and then
LCNQ may be projected (from M on 4 D) into BCA D,
+ Mosivs, loc. eit., p. 269,

or
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7.e. CD is the harmonic mean between C'4 and CB; a formula which
determines the point ) when 4 , B, (' are given.
Again, if O is the middle point of the segment C0), so that we have
0D = C0O =—00C, then
AC=00-04; AD =0D—-04 =—(0C+04);
BC = 0C—-0B8; BD =—(0C+0DB).
Substituting these values in (1) or in
A4C  BC _
it Bp=
0C—04 _0B—-0C

o,

e have OC+04 ~ 0B+0C°

00 _ 0B

04~ oc’ .
or 00*=04.0B, . . . . . . . (3)

i.e. half the segment OD is a mean proportional between the distances
of A and B from the middle point of CD.
The equation (3) shows that the segments O4 and OB must have
the same sign, and that O therefore can never lie between 4 and B.
If now a circle be drawn to pass
/ﬂ through 4 and B (Fig. 42), O will lie
—4 G LI n outside the circle, and OC will be the
‘K length of the tangent from O to it*
w (Eue. III. 37). The circle on C'D as
diameter will therefore cut the first
circle (and all circles through 4 and B)
orthogonally. Conversely, if two circles cut each other orthogonally,
they will cut any diameter of one of them in two pairs of barmonic
points t.

Fig. 42.

70. The same formula (3) gives
the solution of the following pro-
blem : o

Given two collinear segments AB
and A’B’; to determine another
segment C'D which shall divide each
of them harmonically (Figs. 43,44)-

Take any point & not lying on
the common base 4B’, and draw the circles GAB , GA’B’ meeting

* If through a point O any chord be drawn to cut a circle in P and Q, the
rectangle OP . OQ is called the power of the point with regard to the circle.
STEINER, Crelle’s Journal, vol i. (Berlin, 1826); Collected Works, vol. i. p. 22.
We may then say that OC? is the power of the point O with regard to the circle
in Fig. 42.

1 PONCELET, Propr. proj. Art. 79.
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again in /1. Join GH *, and produce it to cut the axisin 0. Then
from the first circle
04 .0B = 0G . OH (Eue. III. 36),
and from the second
04’.0B’= 0G . 01/;
s 04.0B=04".0B".
O is therefore the middle point of the segment required; the
points € and D will be the
intersections with the axis

of a circle described from / =
the centre O with radius ci 0} -
equal to the length of the \‘

tangent from O to either of
the circles GAB, G’A’B’. o

The problem admits of a
real solution when the point
O falls outside both the
segments AB, A’B’, and consequently outside both the ecircles GA B,
(A’B’ (Figs. 43, 44). There is no real solution when the segments
AB, A’B’ overlap (Fig. 45); in this case O lies within both segments,

71. Let ABCD be a harmonic
range, and let 4 and B (a pair of
conjugates) approach indefinitely near
to one another and ultimately coin-
cide. If C lie at an infinite distance,
then D must coincide with 4 and B,
siuce it must lie midway between these
two points (Art. 59). If C lie at a
finite distance, and assume any position not coinciding with that of 4
or B, then equation (2) of Art. 69 gives CD=0CA=CDB, i.e. D coincides
with 4 and B.

Again, let 4 and ¢ (two non-conjugate points) coincide, and B
(the conjugate of A) lie at an infinite distance. In this case 4 must
lie midway between C and D, so that D will coincide with 4 and C.
If B lie at a finite distance, and assume any position not coinciding
with that of 4 or C, then equation (1) of Art. 69 gives 4D = 0, 4.e.
the point D) coincides with 4 and €. So that:

If, of four points forming a harmonic range, any two coincide, one
of the other two points will also coincide with them, and the fourth
is indeterminate.

72. The theorem of Art. 45 leads to the following result: given
four elements 4 , B, C', D of a one-dimensional geometric form, the

Fig. 44.

* GH is the radical axis of the two circles, and all points on it are of equal
power with regard to the circles.



€0 ANHARMONIC RATIOS. (72

anharmonic ratios (4 BCD), (BADC), (CDAB), (DCBA) are all equal
to one another.

L Four elements of such a form can be permuted in twenty-four
different ways, so as to form the twenty-four different groups

ABCD , BADC , CDAB , DCBA ,
ABDC |, BACD , DCAB , CDBA ,
ACBD , CADB , BDAC , DBCA ,
ACDB , CABD , DBAC , BDCA ,
ADBC , DACB , BCAD , CBDA ,
ADCB |, DABC , CBAD , BCDA ,

here arranged in six lines of four each. The four groups in each
line are projective with one another (Art. 45), and have therefore
the same anharmonic ratio. In order to determine the anharmonic
ratios of all the twenty-four groups, it is only necessary to consider
ong group in each line; for example, the six groups in the first
column. These six groups are so related to each other that when
any one of them is known the other five can be at once determined.

II. Consider the two groups 4 BCD and ABDC, which are derived
one from the other by interchanging the last two elements. Their
anharmonie ratios

AC 4D
(4BCD) or B0 ED
and (4BDC) or sz : %—g
are one the reciprocal of the other; thus
ABODY(4BDCY=1.. . . . . . . (1)
Similarly, (4CBDy(4CDBy=1,. . . . . . . (2
and (DB O R =N N o)

III. Now if 4, B, C, D are four collinear points, it has been seen

(Art. 62) that the identical relation !
EC.AD+CA.BD+A4AB.CD =0

always holds. Dividing by BC . 4 D, we have
AC.BD AB.CD
BC.ap T CB. AD =
AC AD AB AD
BB TR CD T

1

or

1,

that is (Arts. 63, 67),

(ABOD)+(4CBDY=1. . . . . . . (4)
Similarly, (4BDC)+(4DBC)=1, . . . . . . (5)
and (ACDB)4+(4DCB)y=1. . . . . . . (6)
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IV. If X denote the anharmonic ratio of the group ABCD, t.e. if

(4BCD) = A,
the formula (1) gives (4BDC) = )l\, -
and (4) gives (ACBD) = 1—A;
then by (2) (A0DB) = l_ix
1 A

and finally, by (3) or (5)
1 %
(4ppe) ="=L.

V. The six anharmonic ratios may also be expressed in terms of
the angle of intersection 8 of the circles described on the segments
AB, CD as diameters ; it being supposed that 4 and B are separated
by €' and D. It will be found that

(4dBCD) = —-tanzg, (4dBDC) = —cot? g ;
(4CBD) = seczg, (4CDB) = cos"’g,

(ADCB)= sinl,  (ADBO)=cosect3.

VI. If in the group 4BCD two points 4 and B coincide, then
AC = BC, AD = BD, and therefore
(ABCD) = (AACD) = ilg
But if A = 1, the other anharmonic ratios become
(dCADY=1—1=0, and (ACDA) = ;
thus when of four elements two coincide, the anharmonic ratios have
the values 1, 0, co.

If (4BCD) = —1, i.e. if the range 4 BCD is harmonic, the formulae

of (IV) give
(40BD) =2 and (A4CDB)=1};
so that when the anharmonic ratio of four points has the value 2 or
1, these points, taken in another order, form a harmonic range.

VII. Conversely, the anharmonic ratio of a range 4 BCD, none of
whose points lies at infinity, cannot have any of the values 0, 1, o,
without some two of its points coinciding.

o AC AD

For if in (IV) A =0, ZC° BD
vanish ; 7.e. either 4 coincides with C, or B with D.

= 0, and either AC or BD must

* MoB1Us, loc. cit., p. 249.
4 CaSEY, On Cyclides and Sphero-quartics (PLil, Trans. 1871), p. 704.
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IfA=1,(4CBD) = 1—x =0, so that either 4 coincides with B,
or C with D, 1

And if A =, (4BDC) = x = 0, so that either 4 coincides with
D, or B with C.

VIIL By considering the expressions given for the six anharmonic
ratios in (IV) it is clear that whatever be the relative positions of the
points 4 , B, C', D, two of the ratios (and their two reciprocals) are
always positive and a third (and its reciprocal) negative ; and thus we
see that the anharmonic ratios of four points no two of which coincide
may have all values positive or negative except +1, 0, or co.

78. From the theorems of Arts. 63 and 66, which express
the necessary and suflicient condition that two ranges, each
consisting of four elements, should be projectively related, we
conclude that

If two geometric forms of one dimension are projective, then any
two corresponding groups of four elements are equianharmonic *.

As a particular case, to any four harmonic elements of

b the one form correspond four
harmonic clements of the other
(Art. 51).

74. Let 4, 4" and B, B’ be any
two pairs of corresponding points
of two projective ranges (Fig.
46); let I be the point at infinity
belonging to the first range, and 1’ the point corresponding
to it in the second range; similarly let J’ be the point at
infinity belonging to the second range, and J its corre-
spondent in the first range. By Art. 73

(ABI]) = (4’"B'I"T'); ¥
(BATI) = (A'B’I"]") (Art. 72);
from which, since 7 and J” lie at infinity,
BJ: A = A’1": B']” (Art. 64),
and JAd . I'd'=J B.I'D;
i.e. the product JA.I'A" has a constant value for all pairs of
corresponding points .

[This proposition has already been proved in Art. 63 for

the particular case of two ranges in perspective.]

Fig. 46.

* STEINER, Systematische Entwickelung .. (Berlin, 1832), p. 33, § 10; Collected
Works, ed. Weierstrass (Berlin, 1881), vol. i. p. 262.
+ STEINER, loc. cit., p. 40, § 12; Collected Works, vol. i. p. 267.
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75. In two homological figures, four collinear points or
four concurrent straight lines of the one figure form a group
which is equianharmonic with that consisting of the points or
lines corresponding to them in the other figure (Art. 73). Let
O be the centre of homology, #/ and M’ any pair of corre-
sponding points in the two figures, N and N’ another pair of
corresponding points lying on the ray OMM’, and X the
point in which this ray meets the axis of homology. Since
the points OMNX , OM’N'X correspond severally to one
another,

(OXMN) = (OXM'N’),
OM _ON _OM’ ON’ .
o MX  NX ~ WX NX’
oM OM"  ON ON’
MX M'X~ NX NX
and consequently the anharmonic ratio (OXJ/M’)is constant
for all pairs of corresponding points A/ and M’ taken on a ray
OX passing through the centre of homology.

Next let L and L’ be another pair of corresponding points,
and Y the point in which the ray OLZL’ cuts the axis of
homology. Since the straight lines ZJ/, L’M’ must meet in
some point Z of the axis XY, it follows that OYLL’ is a pro-
jection of OXMM’ from Z as centre, and therefore

(OYLIL') = (OXMM');
consequently the anharmonic ratio (OXMAI") is constant for
all pairs of corresponding points in the plane.

Consider now a pair of corresponding straight lines ¢ and
@', the axis of homology s, and the ray o joining the centre of
homology O to the point «a’. The pencil osaa” is cut by
every straight line through O in a range of four points
analogous to OXMA'; consequently the anharmonic ratio
(0sad’) is constant for all pairs of corresponding straight
lines ¢ and &/, and is equal to the anharmonic ratio
(OXMII).

This anharmonic ratio is called the coefficient or parameter
of the homology. It is clear that two figures in homology
can be constructed when, in addition to the centre and axis,
we are given the parameter of the homology.

76. When the parameter of the homology is equal to — 1,
all ranges and pencils similar to OXM M, osaa’, are harmonic.
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In this case the homology is called Zarmonic* or involutorial,
and two corlesponding points (or lines) correspond to one
another doubly ; that is to say, every point (or line) has the
same correspondent whether it be regarded as belonging to
the first or the second figure. (See below, Arts. 122, 123.)

Harmonic homology presents two cases which deserve special
notice : (1) when the centre of homology is at an infinite distance, in
the direction perpendicular to the axis of homology; (2) when the
axis of homology is at an infinite distance. In the first case we have
what is called symmetry with respect to an axis; the axis of homology
(in this case called also the axis of symmetry) bisects orthogonally
the straight line joining any pair of corresponding points, and bisects
also the angle included by any pair of corresponding straight lines.
The second case is called symmetry with respect to a centre. The
centre of homology (in this case called also the centre of symmetry)
bisects the distance between any pair of corresponding points, and
two corresponding straight lines are always parallel. In each of
these two cases the two figures are equal and similar (congruent)t;
oppositely equal in the first case, and directly equal in the second.

77. Considering again the general case of two homological
figures, let @, 4 ,m ,n be four rays of a pencil in the first
figure, and o, %", w/, n’ the straight lines corresponding to
them in the second. Then

(mnah) = (w'nw V).

Now let an arbitrary transversal be drawn to cut maab in
MNAB, and draw the corresponding (or another) transversal
to cut w'n'a’l’ in M’N’A’B’; then

(MNAB) = (M'N'A'B’),
MA MN'A” NdA N'A g
o MB ' M'B~ NB'N'B
MA M4’
B W'
straight lines a/ (and a’/’), and not at all on the straight line
m (or m').

The ratio Md:NA is equal to that of the distances of the
points M, N from the straight line ¢, which distances we may
denote by (I, a), (V,a); thus

* BELLAVITIS, Saggio di Geometria derivata (Nuovi Saggi of the Academy of
Padua, vol. iv. 1838), § 50.

+ Two figures are said to be congruent when the one may be superposed upon
the other so as exactly to coincide with it.

Consequently, the ratio depends only on the
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(M,a) (M) _

(L, 1) (M’ 7) = constant,

that is to say *

In two homological figures (or, move generally, in two projectively
related figures) the ratio of the distances of a variable point M from
two fized straight lines a | b in the first figure bears a constant ratio
to the analogous ratio of the distances of the corresponding poini
M from the corresponding straight lines ' | Y in the other figure.

Suppose 4 to pass through the centre of homology O; then
M and M’ are collinear with O and # coincides with 4, so that

(M, 0): (M, V)= OM: OM’;
and therefore
OM (11, a)

o' (0, ) = constant.
If N and N are another pair of corresponding points, we
have then
OM (M, a) (N, a)
oM " (M, a) OV’ (N, )’
Now suppose the straight line &’ to move away indefinitely ;
then « becomes the vanishing line in the first figure ; the ratio
(M',a)

will in the limit become equal to unity, and thus

V', @)
oM ON .
0]!["(2,[ )= oV (&, a)
= constant ;

in other words 1 :

In two komological figures, the ratio of the distances of any polnt
in the first figure from the centre of homology and from the vanishing
line respectively, varies directly as the distance of the correspondiny
point in the second figure from the centre of homology.

* CHASLES, Gdométrie supérieure, Art. 512,
+ CHASLES, Sections coniques, Art. 267.



CHAPTER X.
CONSTRUCTION OF PROJECTIVE FORMS.

78. LET ABC and 4’B’C’ be two triads of corresponding
elements of two projective forms of one dimension (Fig. 47),
and imagine any series of operations (of projection and section)
by which we may have
passed from ABC to
A’'B’C’. Then whatever
this series be*, it will
also lead from any other
element 2 of the first
form to the element 2’
which corresponds to it
in the second. For if D
could give, as the result
of these operations, an
clement D" different from 1), then the anharmonic ratios
(ABCD) and (4'B'C’D") would be equal; but by hypothesis
(ABCD) = (4’'B'C'D’); therefore (4'B’C'D’) = (4’B’'C’D"),
which is impossible unless 2” coincide with 2’ (Art. 65).

79. THEOREM (converse to that of Art. 73):

Given two forms of one dimension ; if to the elements A4,B,C, D, ...
of the one correspond respectively the elements A B0 D ..
of the other in such a manner that any four elements of the first form
are equianharmonic with the four corresponding elements of the second,
then the two forms are projective.

For every series of operations (of projection or section),
which leads from the triad 4BC to the triad 4’B’C’, leads at
the same time from the element D to another element /)" such
that (ABCD) = (4’B'C’D"). But (4BCD)=(4'B'C'D’) by
hypothesis ; therefore (4"5’C’D’) = (4 ’B'C’D”), and D” must
coincide with D’ (Art, 65). And since the same conclusion is

* In Fig. 47 the series of operationsis: a projection from S, a section by «”,
a projection from &', and a section by «’.
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true for any other pair whatever of corresponding elements, it
follows that the two forms are projective (Art. 40).

80. From Art. 78 the following may be deduced as a par-
ticular case:

If among the elements of two projective forms of one dimension
there are two corresponding triads ABC and A'B’C’ which are in
perspective, then the two forms themselves are in perspective,

(1). If, for-example, the forms are two ranges ABCD ... and
A’B’C’D’...; then if the three straight lines A4’, BB’, CC’
meet in a point &, the other analogous lines DD, ... will all
pass through § (Figs. 19, 40).

Suppose, as a particular case, that the points 4, 4" coincide
(Fig. 22), so that the two ranges have a pair of corresponding
points 4 and 4" united in the point of intersection of their
bases¥. The triads 4BC, 4’B’C’ are in perspective, their centre
of perspective being the point where BB’ and CC’ meet ;
accordingly :

1If two projective ranges have a self-corresponding point, they are in
perspective.

Conversely it is evident that Zwo ranges which are in pers
spective have always a self-corresponding point.

(2). Again, if the two forms are two flat pencils ated ... and
a’t/¢’d’... lying in the same plane; then if the three points
ad’, U/, cc’ lie on one straight line s, the analogous points dd’...
will all lie on the same straight line (Fig. 20). If the line s
lie altogether at infinity, we have the following property :

I, in two projective flat pencils,
three pairs of corresponding rays
are parallel to one another, then
every pair of corresponding rays are
parallel to one another,

The hypothesis is satisfied
in the particular case where the
rays « and a’ coincide (Fig. 48),
so that the two pencils have a self-corresponding ray in the
straight line which joins their centres ; then s is the straight
line joining 46" and ¢¢’. Accordingly:

* In the case of two projective forms we shall in future employ the term
self-corresponding to denote an element which is such that it coincides with its
correspondent ; thus 4 or 4’ above may be called a self-corresponding point of the
two ranges.

F 2
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When two projective flat pencils (lying in the same plane) have a
self-corresponding ray, they are in perspective.

Conversely, two coplanar flat pencils which are in perspective
have always a self-corresponding ray.

(3). If one of the systems is a range ABCD ... and the other
a flat pencil aled ... (Fig. 28), the hypothesis amounts to
assuming that the rays a , &, ¢ pass respectively through the
points 4, B, C; then we conclude that also 4, ... will pass
through 2, ... &e.

81. Two ranges may be superposed one upon the other, so as
to lie upon the same straight line or base, in which case they
may be said to be collinear. For example, if two pencils (in
the same plane) § = abe ... and 0 = o't .., (Fig. 49) are cut
by the same transversal, they will
determine upon it two ranges
ABC ..., 4’B’C’ ... which will be
projectively related if the two
pencils are so. The question arises
2 whether there exist in this case

any self-corresponding points, 7.c.
whether two corresponding points of the two ranges coineide
in any point of the transversal.

If, for instance, the transversal s be drawn so as to pass
through the points aa’ and 4, then 4 will coincide with 47,

s and 3 with B’; in this case
consequently there are fwo
self-corresponding points.

Again, if a range u be
projected (Fig. 50) from two
centres § and O (lying in
the same plane with u),
two flat pencils abe ... and
2’V ... will be formed, which
have a pair of corresponding rays a, @’ united in the line SO.
And if a transversal s be drawn through the point in which
this line cuts #, we shall obtain two projective ranges ABC...,
A’B’C’ ... lying on a common base s, and such that they have
oue self-corresponding point 44". '

And lastly, we shall see hereafter (Art. 109) that it is possible

Fig. 49.

Fig. s0.
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for two collinear projective ranges to be such as to have zo
self-corresponding point.

So also two flat pencils (in the same plane) may have a
common centre, in which case they may be termed concentric ;
such pencils are formed when two different ranges are pro-
jected from the same centre (Fig. 51). And two axial pencils
may have a common axis ; such pencils
are formed when we project two dif-
ferent ranges from the same axis, or
the same flat pencil from different
centres. Again, if two sheaves are cut
by the same plane, two plane figures
are obtained ; if, on the other hand,
two plane figures are projected from
the same centre, two concentric sheaves are formed. In all
these cases the forms in question may be said to be superposed
one upon the other; and the investigation of their se//-
corresponding elements, when the two forms are projectively
related, is of great importance. The complete investigation
will be given later on, in Chapter XVIII; at present we can
only prove the following Theorem.

82. THEOREM. Two superposed projective * (one-dimensional)
Jorms either have at most two self-corresponding elements, or else
every element coincides with its correspondent.

For if there could be three self-corresponding elements
A4, B, C suppose ; then if D and D’ are any other pair of cor-
responding points, we should have (Art. 73) (A BCD)=(4BCD’),
and consequently (Art. 65) D would coincide with D’. Unless
then the two forms are identical, they cannot have more than
two self-corresponding elements.

83. THEOREM (converse to that of Art.53). If a one-dimen-
sional form consisting of four elements 4 ,B,C, Dis projective with
a second form deduced from it by interchanging two of the elements
(e.9. BACD), then the form will be a harmonic one, and the two
interchanged elements will be conjugate to eack other.

First Proof. If (4BCD) = (BACD), then (Art. 72. IV)A =

. A?=1, and since we cannot take A = + 1 (Art. 72. VI
we must have A = — 1, 7. e. the form is a harmonic one.
Second Progf. Suppose, for example, that 4, B, C, D are four

Fig. 51.

b

1y

= o>
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collinear points (Fig. 52). Let K, ,Q,D be a projection of
these points on any straight line through 2, made from an
arbitrary centre L. Since ABCD is projective with KW QD
and also (by hyp.) with BACD, the forms KM QD and BACD
are projective with one another.
And they have a self-corre-
sponding point J); consequently
they are in perspective (Art. 80),
and KB, M4, QC will meet in
one point N. But this being
the case, we have a complete
quadrangle KZMN, of which one pair of opposite sides meet
in 4, another such pair in B, while the fifth and sixth sides
pass respectively through C and D. Accordingly (Art. 46)
ABCD is a harmonic range.

84. Let there be given two projectively related geometric
forms of one dimension. Any series of operations which suf-
fices to derive three elements of the one from the three corre-
sponding elements of the other will enable us to pass from
the one form to the other (Art. 78); and any two given triads
of elements are always projective, i.e. can be derived one from
the other by means of a certain number of projections and
sections. Hence we conclude that :

Given three pairs of corresponding elements of twe projective forms
of one dimension, any number of other pairs of corresponding elements
can be constructed.

We proceed to illustrate this by two examples, taking
(1) two ranges and (2) two flat pencils; the forms being
in each case supposed to lie in one plane. o

c B
Fig. 52.

Given (Fig. 53) three pairs of
corresponding points 4 and 4’,
B and B’, (' and C’, of the pro-
jective ranges w and w'; to con-
struct these ranges.

We proceed as in Art. 44. On
the straight line which joins any
two of the corresponding points,
say A and 47, take two arbitrary
points & and $’. Join SB, S’B’
cutting one another in B”, and
SC', S’C” cutting one another in

Given (Fig. 54) three pairs
of corresponding rays a and o,
b and V', ¢ and ¢, of the projec-
tive pencils U and U’; to con-
struct these pencils.

Through the point of inter-
section of any two of the cor-
responding rays, say « and o/,
draw two arbitrary transversals
sand ¢, Join the points sb and
s't’ by the straight line ”, and
the points sc¢ and s'¢” by the
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C”; join B”C”, and let it cut
AA4’in A”. The operations which
enable us to pass from ABC to
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straight line ¢”’; and let a’ be the
straight line joining the points
b”¢” and aa’. The operations

Fig. 54.

A’B’C’ are: 1. a projection from
S; 2. a section by »” (the line on
which lie the points 47, B”, C”);
3. a projection from S’; 4. a
section by «’. The same opera-
tions lead from any other given
point D on u to the correspond-
ing point D’ on «/, so that the
rays D and S’D’ must intersect
in a point D’ of the fixed straight
line w”.

In this manner a range
u//: A//BIIC/ID/I.
is obtained which is in perspec-
tive both with » and with «".

which enable us to pass from abe
to ab’¢’ are: 1.a section by s;
2. a projection from the point
U” where o/, b, ¢/ meet; 3. a
section by s’; 4. a projection
from U’. The same operations
lead from any other given ray d
of the pencil U to the correspond-
ing ray d’ of the pencil U’; so that
the points sd and ¢’d’ must lie on
a straight line d” which passes
through the fixed point U”.

In this manner a pencil

U”Ea,’b’,‘;//d,/. ..

is obtained which is in perspec-
tive both with U and with U”.

In the preceding construction (left), D is any arbitrary point on .
If D be taken to be the point at infinity on w, then (Fig. 53) SD
will be parallel to »; in order therefore to find the point on o’
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which corresponds to the point at infinity on w, draw S77 parallel to
% to cut »” in I”; then join S’I”, which will cut « in the required

point 7’.

Similarly, if the ray through S’ parallel to %’ cuts »” in

J”, and SJ” be joined, this will cut u in J, the point on % which
corresponds to the point at infinity on «’.

If D be taken at P, the point
where % and «” meet, then D"
also coincides with P, and the
point P’ on «  corresponding to
the point 2 on % is found as the
intersection of S’P with «”.

Similarly, if ' be the point of
intersection of % and w«”, the
point on = corresponding to Q'
on v’ is @, where SQ’ cuts u.

85. The only condition to
which the centres S and S’ are
subject is that they are to lie
upon the straight line which joins
a pair of corresponding points;
in other respects their position is
arbitrary, 'We may then for in-
stance take S at 4’ and S” at 4
(Fig. 55). Then the ray S’P co-
incides with w, and P’is accord-
ingly the point of intersection of
w and «’. So too the ray SQ’
coincides with », and @ also lies
at the point wu’,

If then we take the points 4’
and 4 as the centres S and 8
respectively, the straight line «”
will cut the bases % and u’ re-
spectively in P and ', the points
which correspond to the point
un’ regarded in the first instance
as the point P’ of the line «’ and
in the second instance as the
point @ of the line u.

Now in the construction of
the preceding Art., the straight
line «” was found at the locus of

In the preceding construction
(right), d is any arbitrary ray
passing through U. If it be taken
to be p, the line joining U to U”,
then the corresponding ray p’ of
the pencil U’ is the line joining
the point U’ to the point s'p.

Similarly, if ¢/ be the ray
U'U” of the pencil U’, the ray ¢
corresponding to it in the pencil
U is that which joins the points
U and sq’.

The only condition to which
the transversals s and s’ are sub-
ject is that they are to pass
through the point of intersection
of a pair of corresponding rays ;
in other respects their position is
arbitrary. We may then for in-
stance take o’ for s and & for &
(Fig. 56). Then the point s’p
coincides with U, and p’ is ac-
cordingly the straight line UU”.
So too the point sg” coincides
with U’, and ¢ also must be the
straight line UU”,

If then we take the rays o’
and @ as the transversals s and
s’ respectively, the point U’ will
be the intersection of the rays p
and ¢" which correspond to the
straight line UU’, regarded in
the first instance as the ray p’ of
the pencil U’, and in the second
instance as the ray ¢ of the
pencil U.

Now in the construction of the
preceding Art., the point U was
found as the centre of perspective
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the points of intersection of pairs
of corresponding rays of the
pencils in perspective
S (ABCD..) and 8’ (4’B’C’D"..).
The straight line " obtained by
the construction of the present Art.
is in like manner the locus of the
points of intersection of pairs of
corresponding rays of the pencils
A’ (ABCD.)and 4 (A’B'C’'D".)),
i.e. the locus of the points in
which the pairs of lines 4’B and
AB’, A’C and AC’, 4A’D and
AD’, ... intersect.

Fig. 55.

If in place of 4’ and 4 any
other pair of points B” and B, or
¢’ and C, ... be taken as centres
of the auxiliary pencils S and S/,
the straight line «” must still
cut the two bases # and v/ in the
points P and @’ ; ¢.e. the straight
line #” remains the same.

If then ABC ... MN ... and
A’B’C" ... M’N’ ... are two pro-
jective ranges (in the same plane),
every pair of straight lines such
as MN’ and M’N intersect in
points lying on a fixed straight
line. This straight line passes
through those points which cor-

PROJECTIVE FORMS. 73

of the ranges in perspective
s(abed .. .) and & (a’b'cd’ .. .).

The point U” obtained by the
construction of the present Art.
is in like manner the centre of
perspective of the ranges
o (abed...)and a (a’V'c'd ...),

i.e. the point in which the lines
joining the pairs of corresponding
points a’b and aé’, a’c and ac/,
a’d and ad/, ... meet.

Fig. 56.

If in place of &’ and a any
other pair of rays " and b, or ¢’
and ¢, ... be taken as transversals,
the point U” must still be the
intersection of p and ¢”; 7.e. the
point U” remains the same.

If then abc ... and
a’t’e ... m'n ... are two projec-
tive pencils (in the same plane)
every straight line which joins a
pair of points such as mn’ and
m’n passes through a fixed point.
This point is the intersection of
those rays which correspond in

mn ...
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respond in each range to the
point of intersection of their bases
when regarded as a point of the
other range.

86. If the two ranges » and w’
are in perspective (Fig. 57) the
points P and @’ will coincide
with the point O in which the
bases % and %’ meet; and since
the straight line which is the
locus of the points (4.B’, 4’B),
(4C’, 4°C), (4D’, 4’D), ... and
the straight line which is the
locus of the points (BA’, B’4),
(BC’, B'C), (BD’, B’D), ... have
two points in common, viz. O and
(4B’, A’B), these straight lines
must coincide altogether. This
being so, AA’BB’ is a com-
plete quadrangle, whose diagonal
points are O, § (the point where
AA4’, BB, ... meet), and M (the
point of intersection of 4B’ and
A'B) ; consequently (Art. 57) the
straight lines % and « are har-
monic conjugates with regard to
the straight lines «” and 0S. If
therefore two transversals « and
w cut a flat pencil (a,b,¢,...)in the
points (4, 47),(B, B’),(C, (") ...,
then the points of intersection of
the pairs of straight lines 4 2’ and
A’B, AC” and A'C , BC’ and
B0, ... lie on one and the same
straight line «”, which passes
through the point wu’; and the
straight line joining ww’ to the
centre of the pencil is the har-
monic conjugate of «” with re-
spect to « and o/,

From this follows the solution
of the problem :

To draw the straight line con-
necting a given point M with the

(86

each pencil to the straight line
Joining the centres of the pencils
when regarded as a ray of the
other pencil.

If the two pencils U and U’
are in perspective (Fig. 59) the
rays p and ¢’ will coincide with
the straight line U'U’”; and since
through the point of intersection
of the rays (ab’, a'b), (ad’, a’c),
(ad’, a’d), ... and through the
point of intersection of the rays
(b, Va), (b, Ve), (bd’, Vd), ...
pass two different straight lines,
viz. UU’ and (ab/, a’b), these
points must coincide. This being
s0, aa’bd’ is a complete quadri-
lateral, whose diagonals are U1,
s (the straight line on which
aa/, b, ... intersect), and m (the
straight line which joing @b’ and
a’b); consequently (Art. 56) the
points U and U’ are harmonic
conjugates with regard to U’/ and
the point in which s meets U U".
If therefore a range be projected
from two points U and U’ by the
rays (a,a’), (b,8"),(c,¢’) ..., then
the straight lines which join the
pairs of points (al’, a’b), (ac’, a’c),
(b, ¥e), ... meet in one and the
same point U/, which lies on the
line UU”; and the point where
the straight line U U’ cuts the base
of the range is the harmonic con-
Jjugate of U with respect to U
and U,

From this follows the solution
of the problem :

To construct the point where a
given straight line m would be in-
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inaccessible point of intersection of
two given straight lines w and ',
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tersected by a straight line (UU’)
which cannot be drawn, but which
18 determined by its passing
through two given points U and

Through M (Figs. 57 and 58)
draw two straight lines to cut
in 4 and B, and " in B’ and 4’

Fig. 58.

respectively ; join 4/, BB’ meet-
ing in S. Through S draw any
straight line to cut » in ¢ and
»’ in C’, and join BC’, B’C,
intersecting in . The straight
line joining M and N will be the
line «”” required.

Onm (Fig. 59) take two points,
and join them to U by the
straight lines a and b, and to U’

by the straight lines & and a’;
let s be the straight line joining
the points of intersection of a , ¢’
and b, 5. On s take any other
point and join it to U, U’ by the
straight lines ¢, ¢/ respectively.
The straight line n which joins
the points b¢” and b’c will cut m
in the point U”’ required.

If the straight lines » and «” are parallel to one another (Fig. 58)
the preceding construction gives the solution of the problem: given
two parallel straight lines, to draw through a given point a straight
line parallel to them, making use of the ruler only.

+ 87. If in the- theorem of the
preceding article the flat pencil

If in the theorem of the pre-
ceding article the range consist
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consist of only three rays, the
theorem may be enunciated as
follows, with reference to the
three pairs of points 44, BF,
ce’:

If a hexagon (six-point)
AB’C A’BC’ (Fig. 60) has its ver-
tices of odd order (1st, 3rd,and 5th)

Fig. 6o.

on one straight line , and its ver-
tices of even order (2nd, 4th, and
6th) on another straight line 4/,
then the three pai,rs of opposite
sides (4B’ and ABY, B’C and
BC’, 04’ and C’4) meet in three
points lying on one and the same
straight line »” *.

of only three points, the theorem
may be enunciated as follows
with reference to the three pairs
of rays ad’, bb’, c¢’:

If a hexagon (six-side) ab’ca’bc’
(Fig. 61) be such that its sides of
odd order (1st, 3rd, and gth)

Fig. 61.

meet in one point U, and its sides
of even order (2nd, 4th, and
6th) meet in another point U’
then the three straight lines
which join the pairs of opposite
vertices (ab’ and a’b, b’c and bc/,
ca’ and ¢’a) pass through one and
the same point U”.

88. Returning to the con-
struction of Art. 84 (left), let the

Returning to the construction
of Art. 84 (right), let the straight

* Pappus, loe. cit., Book vii. prop. 139.
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centre S be taken at the point
where 44’ meets BB’, and the
centre S at the point where 44’
meets CC” (Fig. 62). Then since
SB, 8’B’ meet in B’, and SC,
S’C’ in O, therefore B’C is the
straight line «”. Consequently
any other pair of corresponding
points D and D’ are constructed
by observing that the straight
lines 8D, S’ D’ must meet on B’C.

From a consideration of the
figure SS’CDD’B] which is a
hexagon, we derive the theorem :

In a hexagon, of which two
sides are segments of the bases of
two projective ranges, and the four
others are the straight lines con-
necting four pairs of correspond-
ing points, the straight lines which
join the three pairs of opposite
vertices are concurrent.

89. If in the problem of Art.
84 (left) the three straight lines
Ad’, BB, CC’ passed through the
same point S (if, for example, 4
and 4’ coincided), then the two
ranges would be in perspective ;
we should therefore only have to
draw rays through .S in order to
obtain any number of pairs of cor-
responding points (Fig. 19).
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line joining the points ad’, ¢¢’ be
taken as the transversal s, and
that joining the points ada’, 50’
as the transversal s (Fig. 63).
Then since the line joining the
points sb , '’ is b, and the line
joining the points sc, ¢’ is ¢,
therefore b¢’ is the point U”.
Consequently any other pair of
corresponding rays d and d’ are
constructed by observing that the
points sd , §'d’ must be collinear
with b¢’.

From a consideration of the
figure ss’edd’b, which is a hexa-
gon (six - side) we derive the
theorem :

In a hexagon, of which two ver-
tices are the centres of two pro-
Jective pencils, and the four others
are the points of intersection of
four pairs of corresponding rays,
the three points in which the pairs
of oppostte sides meet one another
are collinear.

If the three points ad’, bV, ec’
in Art. 84 (vight) lay on the
same straight line s (if, for ex-
ample, ¢ and a’ coincided), then
the two pencils would be in per-
spective ; we should therefore
only have to connect the two
centres of the pencils with every
point of s in order to obtain any
number of pairs of corresponding
rays (Fig. 20).

90. If the two ranges u and u’ (Art. 84, left) are superposed one
upon the other, i.e. if the six given points A4’BB’CC’ lie on the
same straight line (Fig. 64), we first project «’ from an arbitrary
centre S’ on an arbitrary straight line w,, and then proceed to make
the construction for the case of the ranges w=(4B(...) and
w,= (4,B,C; ...), i.e. to construct with regard to the pairs of points

(44)), (BB),(CC)) in the way shown in Art. 84.

A vpair of corre-

sponding points D and D, of the ranges » and w, having beén found,
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the ray S’D; determines upon »’ the point D’ which corresponds
to .

The construction is simpler in the case where two corresponding
points 4 and 4’ coincide (Fig. 65).
When this is so, if w, he drawn
through 4, the range u, will be in per-
spective with « ; thus, after having
projected »” upon u, from an arbi-
trary centre S, if .S be the point
where BB’ and CC; meet, it is
only necessary further to project u
from S upon u,, and then w, from
S’ upon <.

The two collinear ranges w and
«” have in general two self-corre-
sponding points ; one at 44’, and
a second at the point of inter-
section of their common base line

Fig. 64.

with the straight line 8.7,

Ifthen 5" passes through the point uu,, the two ranges » and u’
have only ome self-corresponding point. If it were desired to con-
struct upon a given straight line two collinear ranges having
A and 4 for a pair of corresponding points, and a single self-corre-
sponding point at M (Fig. 66), we should procced as follows. Take

Fig. 65. Fig. 66.

any point S/, and draw any straight line , through 3 ; project 4” from
S’ on u, ; join the point 4, so found to 4, and let 44, meet S"M in S.
Then to find the point on / which corresponds to any point B on u,
project B from S into B,, and then B, from S into B’; this last is
the point required.

If the two pencils U, U” (Art. 84, right) are concentric, ¢.e. if the
six rays aa’bb’cc’ pass all through one point, we first cut a’d’¢’ by
a transversal and then project the points of intersection from an
arbitrary centre U,. If abc, are the projecting rays, we have then
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only to consider the non-concentric pencils U and U,=(a,b,c,). Or
we may cut abc by a transversal in the points 4 BC, and a’¥’c” by
another transversal in 4’B°C”, and then proceed with the two ranges
ABC ..., A’B’C’ ... in the manner explained above.

The figures corresponding to these constructions are not given;
the student is left to draw them for himself. He will see that in
these cases also the constructions admit of considerable simplification
if, among the given rays, there be one which is self-corresponding ; if,
for example, a and o’ coalesce and form a single ray, &e.

791, Consider two projective (homographic) plane figures = and
a’; as has already been seen (Art. 40), any two corresponding straight
lines are the bases of two projective ranges, and any two correspond-
ing points are the centres of two projective pencils.

If the two figures have three self-corresponding points lying in a
straight line, this straight line s will correspond to itself; for it will
contain two projective ranges which have three self-corresponding
points, and every point of the straight line s will therefore (Art. 82)
be a self-corresponding point. Consequently every pair of corresponding
straight lines of 7 and #” will meet in some point on s, and therefore
the two figures are in perspective (or in homology in the case where
they are coplanar).

92. If two projective plane figures which are coplanar have three
self-corresponding rays all meeting in a point O, this point will be
the centre of two corresponding (and therefore projective) pencils
which have three self-corresponding rays; therefore (Art. 82) every
ray through O will be a self-corresponding one. Hence it follows
that every pair of corresponding points will be collinear with O;
therefore the two figures are in homology.

93. If two projective plane figures which are coplanar have four
self-corresponding points A , B, C, D, no three of wlich are collinear,
then will every point coincide with its correspondent.

For the straight lines 4B, AC, AD, BC, BD, CD are all self-
corresponding ; therefore the points of intersection of 45 and CD,
AC and BD, BC and 4 D, i.e. the diagonal points of the quadrangle
ABCD, are all self-corresponding. Since the three points 4 , B, and
(4B) (OD) are self-corresponding, every point on the straight line
A B coincides with its correspondent ; and the same may be proved true
for the other five sides of the quadrangle. If now a straight line be
drawn arbitrarily in the plane, there w’ill be six points on it which
are self-corresponding, those namely in which it is cut by the six
sides of the quadrangle; and therefore every point on the straight
line is a self-corresponding one ; which proves the proposition.

In a similar manner it may be shown that if two coplanar pro-
Jjective figures have four self-corresponding straight lines a, b, ¢, d,
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Jorming a complete quadrilateral (i.e. such that no three of them are con-
current), then every straight line will coincide with its correspondent.

94. TueorEM. Two plane quadrangles ABCD , A’B’C’D’ are
always projective.

(1). Suppose the two quadrangles to lie in different planes = , .
Join 44’, and on it take an arbitrary point § (different from 4’), and
through A4 draw an arbitrary plane #”” (distinct from #); then from
S as centre project A”,B’,C’, D’ upon " and let 4”7, B”, C”, D"
be their respective projections (4" therefore coinciding with 4).

In the plane 7 join 4B, CD, and let them meet in £; so too in
the plane @ join A”B”, C”’D”, and let these meet in £”/, The
straight lines ABE , A”B”E” lie in one plane since they meet each
other in the point 4 = 4”; therefore BB” and EZE” will meet one
another in some point S

Now let a new plane #”” (distinct from =) be drawn through the
straight line 4 BE, and let the points 4”7, B, C”’, D”, K" be pro-
jected from S, as centre upon =””/. Let 4™, B, C"’, D", E"”
be their respective projections, where 4", B"’, E”” are collinear and
coincide with 4, B, £ respectively, and C””, D", E’” are collinear
also, since their correspondents C”/, D", E” are collinear. The straight
lines CDE , C’”D’”E’” lie in one plane since they meet each other
in the point £ = E”; therefore CC”” and DD”” will meet one
another in some point S,. If now the points 4”7, B”/, 0”7, D" be
projected from S, as centre upon the plane m, their projections will
evidently be 4 , B, U, D.

The quadrangle 4 BCD may therefore be derived from the quad-
rangle 4’B’C’D’ by first projecting the latter from S as centre upon
the plane #”/, then projecting the new quadrangle so formed in the
plane #” from S, upon =/, and lastly projecting the quadrangle so
formed in the plane #”” from S, upon = ; that is to say, by means
of three projections and three sections .

(2). The case of two quadrangles lying in the same plane reduces
to the preceding one, if we begin by projecting one of the quadrangles
upon another plane.

(3). If the two quadrangles (lying in different planes) have a pair
of their vertices coincident, say D and D', then two projections will
suffice to enable us to pass from the one to the other; or, what
amounts to the same thing, a third quadrangle can be constructed
which is in perspective with each of the given omnes ABCD,
A’B’C’'D".

For let there be drawn through D two straight lines s and &', one
in each of the planes; let s cut the sides of the triangle 4BC in

* GRASSMANY, Die stereometrischen Gleichungen dritten Grades und dic dadurch
erzeugten Oberflichen ; Crelle’s Journal, vol. 49. § 4 (Berlin, 1855).
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L, M, N respectively, and let ¢ cut the sides of the triangle 4’B’C” in
L', M’, N respectively. Then in the plane ss’ the straight lines LL’,
MM’y NN will form a triangle which is in perspective at once with
ABC and with 4’B’(",

(4). If the quadrangles (still supposed to lie in different planes)
have two pairs of their vertices O =C’, D= D’ coincident, then if
the straight lines 44’, BB’ meet one another the quadrangles will be
directly in perspective, the point of intersection O of 4 A’ and BB’
being the centre of projection; so that we can pass at once from the
one quadrangle to the other by one projection from 0. If 44’, BB’
are not in the same plane, so that they do not meet one another, then
through CD let an arbitrary plane »”/ be drawn, and in it let the
straight line be drawn which meets 4B and 4’B’. If in this straight
line two arbitrary points 4”7, B” be taken, then 4” B” C” D" will be
a quadrangle which is in perspective at once with ABCD and with
A’B'C"D’.

95. From the theorem just proved it follows that two projective
plane figures  and #’ can be constructed when we are given two
corresponding quadrangles ABCD, A’B’(’D’; for the operations
(projections and sections) which serve to derive A’B’C’D’ from
ABCD will lead from any point or straight line whatever of = to the
corresponding point or straight line of #’; and wice versa.

Or, again, it may be supposed that two corresponding quadrilaterals
are given. For if in these two corresponding pairs of opposite ver-
tices be taken, we have thus two corresponding quadrangles; and the
operations (projections and sections) which enable us to derive
one of these quadrangles from the other will also derive the one
quadrilateral from the other.

96. Two plane figures may also be made projective in another
mauner; leaving out of consideration the relative position of the
planes in which they lie, we may operate on each of the figuies
separately *. Suppose that we are given, as corresponding to oue
another, two complete quadrilaterals abed, o’b’c’d’. We begin by
constructing, on each pair of corresponding sides, such as a and «/,
the projective ranges which are determined by the three pairs of
corresponding points ab and a’d’, ac and ¢/, ad and a’d’. This
done, to every point of any of the four straight lines a,b,c,d will
correspond a determinate point of the corresponding line in the
other figure.

(1). Now let in the first figure a transversal m be drawn to cut
a,b,c,din 4 ,B,C, D respectively; then the points 4/, B, ¢’, D’
which correspond to these in the second figure will in like manner lie
on a straight line m’.

* Sraupt, Geom. der Lage, Art. 130.
G
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For, considering the triangle abe, cut by the transversals d and m,
the product of the three anharmonic ratios

a (bedm) , b (cadm) , ¢ (abdm)
is equal to +1 (Art. 140); but these anharmonic ratios are equal
respectively to the following:
aVedy. d, Vdadd). B, J@vd).C”,
so that the product of these last three is also equal to + 1. And
therefore, since the points @’d’, b’d’, ¢’d’ are collinear, the points
47, B’, €7 are also collinear (Art. 140).

By considering in the same manner the triangle abd, cut by the
transversals ¢ and m, it can be shown that A’, B/, D’ are collinear;
it follows then that the four points 4’, B/, ¢/, D’ all lie on the
same straight line »/, the correspondent of .

This proof holds good also when m passes through one of the
vertices of the quadrilateral abed; if for example m pass through
ed, the anharmonic ratios ¢(abdm), d(abem) will each be equal to +1;
the reasoning, however, remains unaltered.

Thus every pair of corresponding vertices of the quadrilaterals
abed , a't'c’d’ (for example cd and ¢’d’) become the centres of two
projective pencils, in which to ¢, d, (ed)(ab) correspond ¢/, d’, (¢'d’)(a’D’)
respectively, and to any ray cutting @ , b in two points P,  cor-
responds a ray cutting a’, ¥’ in the two corresponding points P/, @’.

(2). The two ranges ABCD , A’B’C’D’ in which the sides of the
quadrilaterals abed , a’b’c’d’ are respectively cut by two corresponding
straight lines m , m/ are projective.

For, considering the triangle bem, cut by the transversals ¢ and d,
the product of the anharmonic ratios of the three ranges

be , B, ba , bd

C,ch,ca,cd

B,C,4,D
is equal to +1. And considering in like manner in the other plane
the triangle &’¢m/, cut by the transversals o’ and d’, the product of
the anharmonic ratios of the three ranges

Ve, B, Va, Vd

L, dd, dd

Lo, 4, D
is also equal to 4 1. But the range in which b is cut by the pencil
emad is equianharmonic with the range in which 4" is cut by the
pencil ¢'m’a’d”; i.e. the ranges

be , B , ba , bd

Ve, B Vo, bd

are equianharmonic; and for a similar reason the ranges
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C, cb, ca, cd
c’, v, dd, dd

are equianharmonic. Therefore the ranges

B,C,4,D

B’,C’, 4’, D’
will be equianharmonic and therefore projective; whence it follows
that the projective ranges m and m’ are determined by means of
the pairs of corresponding points lying on @ and o’, b and ¥,
¢ and ¢’

(8). If the straight line m turn round a fixed point 2, then m’
also will revolve round a fixed point.

For by hypothesis the points 4 and B, in which m cuts @ and b,
describe two ranges in perspective whose self-corresponding point is
ab. Similarly the points 4’, B’ describe two ranges, which, being
respectively projective with the ranges on a, b, are projective with
one another; and which are further seen to be in perspective,
since they have a self-corresponding point o/%. Consequently the
straight line m’ will always pass through a fixed point 3, the
correspondent of 2/ ; and will therefore trace out a pencil. The
pencils generated by m and m/ are projective, since the ranges
are projective in which they are cut by a pair of corresponding
sides of the quadrilaterals, e.g. by @ and . To the rays of the
pencil M which pass respectively through the vertices ab, ac , ad,
be, bd , cd of the quadrilateral abed correspond the rays of the pencil
M’ which pass respectively through the vertices a/¥/, a/c’, a’d’, V¢,
Vd’, ¢d of the quadrilateral a’t/c’d’,

This reasoning holds good also when the point 3/, round which
m turns, lies upon one of the sides of the quadrilateral, on ¢ for
example ; because we still obtain two ranges in perspective upon two
of the other sides. Since ¢ is now a ray of the pencil ¥, ¢’ will be

the corresponding ray of the pencil 3”; that is to say, M’ will lie on
¢’. If M be taken at one of the vertices, as ¢d, then M’ will coincide
with ¢/d’, &c.

(4). Now suppose the pencil I/ to be cut by a transversal %, and the
pencil 2 to be cut by the corresponding straight line »’. While the
point mn describes the range n, the corresponding point m/n’ will
describe the range »’; and these two ranges will be projective since
they are sections of two projective pencils. When the point mn falls
on one of the sides of the quadrilateral abed, the point m'n” will fall
on the corresponding side of the quadrilateral a’d’c’d’ ; therefore the
two projective ranges are the same as those which it has already
been shown may be obtained by starting from the pairs of correspond-
ing points on « and a’, b and ¥, ¢ and ¢,

G 2



84 CONSTRUCTION OF PROJECTIVE FORMS. (97

In this manner the two planes become related to one another in
such a way that there corresponds uniquely to every point in the one a
point in the other, to every straight line a straight line, to every
range a projective range, to every pencil a projective pencil. The
two figures thus obtained are the same as those which can be obtained,
as explained above (Art. 95) by means of successive projections and
sections, so arranged as to lead from the quadrilateral abed to the
quadrilateral a’t’¢’d’. For the two figures «/ derived from = by
means of these two processes have four self-corresponding straight
lines o, ', ¢/, d’ forming a quadrilateral, and therefore (Art. 93)
every element (point or straight line) of the one must coincide with
the corresponding element in the other; 7. e. the two figures must be
identical.

97. THEOREM. Any two projective plane figures (the straight lines
at infinity in which are not corresponding lines) can be superposed
one upon the other so as to become homological.

Let ¢, j” be the vanishing lines of the two figures—s.e. the
straight lines in each which correspond respectively to the straight
line at infinity in the other. In the first place let one of the figures
be superposed upon the other in such a manner that 7 and j/ may be
parallel to one another. Since to any point A/ on ¢ corresponds a
point at infinity in the second figure, to the peneil of straight lines
in the first figure which meet in A/ corresponds in the second figure
a pencil of parallel rays. Through M draw the straight line m
parallel to these rays; then m will be parallel to its correspondent m/.
Similarly let a second point IV be taken on 7 and through I let the
straight line » be drawn which is parallel to its correspondent #’;
let m and » meet in S, and m’ and »’ in S’. If through S a straight
line / be drawn parallel to i, its correspondent 2’ will pass through S’
and will also be parallel to ¢, since the point at infinity on ¢ corre-
sponds to itself. The corresponding pencils,Sand S’ are therefore such
that three rays 7, m , n of the one are severally parallel to the three
corresponding rays ¥, m/, n" of the other; and consequently (see
below, Art. 104) the two pencils are equal. Now let one of the planes
be made to slide upon the other, without rotation, until S’ comes
into coincidence with §; then the two pencils will become concentric;
and since they are equal, every ray of the one will coincide with the
ray corresponding to it in the other. This being the case, every
pair of corresponding points will be collinear with S, and the two
figures will be homological, S being the centre of homology.

98. Suppose that in a plane = is given a quadrangle 4 BCD, and
in a second plane »” a quadrilateral o’6’¢’d’. By means of construc-
tions analogous to those explained in Arts. 94-96, the points and
straight lines of the one plane can be put into unique correspondence
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with those of the other, so that to any range in the first plane cor-
responds in the second plane a pencil projective with the said range,
and to any pencil in the first plane corresponds in the second plane a
range projective with the said pencil. Two plane figures related to
one another in this manner are called correlative or reciprocal.



CHAPTER XL
PARTICULAR CASES AND EXERCISES.

99. Two ranges are said to be similar, when to the points
4,B,C,D,...of the one correspond the points 4’, B/, C’, D', ...
of the other, in such a way that the ratio of any two corre-
sponding segments 4B and 4’B", 4Cand A’C’, ... is a constant.

If this constant is unify, the ranges are said to be equal.

Two similar ranges are projective, every anharmonic ratio
such as (4BCD) being equal to the corresponding ratio
(d’B'C’D’).  For suppose the
bases of the two ranges to lie
in the same plane (Fig. 67)
and let their point of inter-
section be denoted by P’ when
considered as a point be-
longing to «” and by @ when

Fig. 67. considered as a point belong-

ing to . Let 4,4’ be any

pair of corresponding points; P that point of # which corre-

sponds to #’, and @’ that point of #” which corresponds to .
Draw 44" parallel to «’, and 4’4" parallel to «.

The triangles PQQ’, PAA4” have the angles at Q and A
equal and the sides about these equal angles proportionals,
since by hypothesis

PQ P4 PA

PrQ" T P4’ 447
Therefore the triangles are similar, and the angles Q2@ and
APA” are equal; and consequently the points P, Q’, 4” are
collinear. If then the range ABC...be projected upon PQ’,
by straight lines drawn parallel to #’, we shall obtain the
range A” B” C”... ; and from this last, by projecting it upon
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« by straight lines drawn parallel to », the range 4" B’ C’ ...
may be derived.

If PQ=P’Q’, i.e if the straight line PQ" makes equal
angles with the bases of the given ranges, the ranges are
equal.

To the point at infinity of # corresponds the point at infinity
of .

100. Conversely, if' lhe points at infinity I and I’ of two
projective ranges w and W correspond to each other, the ranges
will be similar. For if (Fig. 67) « be projected from I”, and #
from 7 (as in Art. 85, left), two pencils of parallel rays will be
formed, corresponding pairs of which intersect upon a fixed
straight line »”. The segments 4” B” of «” will be propor-
tional to the segments 4B of » and also to the segments 4" B’
“of #/; consequently the segments 4B of # will be proportional
to the segments 4’8" of «’.

Otherwise: if dAA’, BB’, CC’ are three pairs of corre-
sponding points, and 7, I” the points at infinity, we have (by
Art. 73)

(4BCI) = (4’B’C'T");
or (by Art. 64), since 7 and I’ are infinitely distant,
40 4'C’
BCc~ BC”
an equation which shows that corresponding segments are
proportional to one another.

Examples. If a flat pencil whose centre lies at a finite distance
be cut by two parallel straight lines, two similar ranges of points will
be obtained.

Any two sections of a flat pencil composed of parallel rays are
similar ranges.

In these two examples the ranges are not only projective, but also
in perspective : in the first case the self-corresponding point lies at
infinity ; in the second case it lies (in general) at a finite distance.

101. Two flat pencils, whose centres lie at infinity, are pro-
jective and are called similar, when a section of the one is
similar to a section of the other. When this is the case any
other two sections of the pencils will also be similar to one
another.

102. From the equality of the anharmonic ratios we con-
clude that two equal ranges are projective (Art. 79), and that
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conversely two projective ranges are equal (Art. 73), when the
corresponding segments which are bounded by the points of
two corresponding triads 4BC and 4’B’C’ are equal ; i.c. when
A’B’=AB, 4’C'=4C, (and consequently B’C '=BC).

Ezamples. If a flat pencil consisting of parallel rays be cut by
two transversals which are equally inclined to the direction of the
rays, two directly equal ranges of points will be obtained *.

If a flat pencil of non-parallel rays be cut by two transversals
which are parallel to one another, and equidistant from the centre of
the pencil, two oppositely equal ranges will be obtained *.

103. Two similar ranges lying on the same base, and which have one
self-corresponding point XV at infinity, have also a second such point
M, which is in general at a finite distance. If AA’, BB’ are two
Pairs of corresponding points,

MA: MA’=A4B: A’B’=a constant.

To find 2/ therefore it is only necessary to divide the segment 4.4’
into two parts M4, MA’ which bear to one another a given ratio.

This ratio MA : MA’ is equal (Art. 64) to the anharmonic ratio
(AA’MN). If its value is — 1, the points AA’MN are harmonie
(Art. 68), 7.e. M is the middle point of 44/, and similarly also that of
every other corresponding segment BB’,...; in other words, the two
ranges, which in this case are oppositely equal, are composed of pairs
of points which lie on opposite sides of a fixed point M, and at equal
distances from it.

But if the constant ratio is equal to + 1, 7.e. if 4 and MA’ ave
equal in sign and magnitude, the point A will lie at infinity. For
since (AA’MN)=1, ... (NMA’A)=1 (Art. 45); consequently the
points A/ and & coincide.

It follows also from the construction of Art. 90 (Fig. 66) that fwo

ranges on the same base, which have

s 5 a single self-corresponding point lying
at infinity, are directly equal.
Yor if in Fig. 66 the point M
A B/
L N\

move off to infinity, the straight lines
&S’ and 4,8, become parallel to the
A B given straight line » or »” on which
Fig. 68. the ranges lie (Fig. 68), and as

the triangles S4,B, and 8’4,B, lie

upon the same base and between the same parallels, the segments

* Imagine a moving point P to trace out a range ATC... and its correspondent
P’ to trace out simultaneously the equal range A'B’C’.... Then if P and P’
move in the same direction, the two ranges are said to be directly equal; if P
and P’ move in opposite directions, the ranges are said to be oppositely equal.
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which they intercept upon any parallel to the base are equal; thus
AB=A'D| or two corresponding segments are equal; consequently
AA’=BB, .. the segment bounded by a pair of corresponding points
18 of constant length. We may therefore suppose the two ranges to
have been generated by a segment given in sign and magnitude,
which moves along a given straight line; the one extremity 4 of
the segment describes the one range, and the other extremity A4’
describes the other range.

Conversely it is evident that if a segment 44’, given in sign and
magnitude, slide along a given straight line, its extremities 4 and 4’
will describe two directly equal (and consequently projective) ranges,
which have a single self-corresponding point, lying at an infinite
distance.

104. Two flat pencils are said to be equal/ when to the
elements of the one correspond the elements of the other in
such a way that the angle included between any two rays
of the first pencil is equal in sign and magnitude to the angle
included between the two corresponding rays of the second.

It is evident that two such pencils can always be cut by
two transversals in such a way that the resulting ranges are
equal; but two equal ranges arve always projective ; therefore
also two equal flat pencils are always projective.

Conversely, two projective flat pencils abed ... and &0'c'd’ ... will
be equal if three rays abe of the one make with cach other angles
whick are equal respectively to those which the three corresponding
rays make with each other.

This theorem may be proved by cutting the two pencils
by two transversals in such a way that the sections ABC
and 4’B’C’ of the groups of rays abe and «’/c’ may be equal.
The projective ranges so formed will be equal (Art. 102); con-
sequently also the other corresponding angles a# and &’d’,... of
the given pencils must be equal to one another.

105. Since two equal forms (ranges or flat pencils) are
always projective with one another, it follows that if a range
or a flat pencil be placed in a different position in space,
without altering the relative position of its elements, the form
in its new position will be projective with regard to the same
form in its original position.

106. Consider two equal pencils abed...and o’¥¢'d’... in the
same plane or in parallel planes; and suppose a ray of the
one pencil to revolve about the centre and to describe the
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pencil; then the corresponding ray of the other pencil will
describe that other pencil, by revolving about its centre.
This revolution may take place in the same direction as
that of the first ray, or it may be in the opposite direction ;
in the first case the pencils are said to be directly equal, and in
the second case to be oppositely equal to one another.

In the first case the angles ad’, 00/, ¢, ... are evidently all
equal, in sign as well as in magnitude ; consequently a pair
of corresponding rays are either always parallel or never
parallel.

In the second case two corresponding angles are equal in
magnitude, but of opposite signs. If then one of the pencils
be shifted parallel to itself until its centre coincides with that
of the other pencil, the two pencils, now concentric, will still
be projective (Art. 105) and will evidently have a pair of
corresponding rays united in each of the bisectors (internal
and external) of the angle included between two correspond-
ing rays a and o’. It follows that these rays are also the
bisectors of the angle included between any other pair of
corresponding rays. If the first pencil be now replaced in its
original position, so that the two pencils are no longer con-
centric, we see that there are in each pencil two rays, each of
which is parallel to its correspondent in the other pencil ; and these
two rays are at right angles to eack other, since they are parallel
to the bisectors of the angle between any pair of correspond-
ing rays.

107. If two flat pencils abed...and a'V'c'd ... are projective, and
if'the angles ad’, b, cc” included by three pairs of corresponding rays
are equal in magnitude and of the same sign, then'the angle dd’
wcluded by any other pair of corresponding rays will have the same
sign and maguitude.

For if we shift the first pencil parallel to itself until it
becomes concentric with the second, and then turn it about the
common centre through the angle ad’, the rays «, 0, ¢ will coin-
cide with the rays o/, ¢, ¢’ respectively. The two pencils, which
are still projective (Art. 105), have then three self-correspond-
ing rays; consequently (Art. 82) every other ray will coincide
with its correspondent. If now the first pencil be moved back
into its original position, the angle dd” will be equal to aa’.

108. As the angles aa’, 60’, cc’,...of two directly equal



109] PARTICULAR CASES AND EXERCISES. 91

pencils are equal to one another, such pencils, when concentric
and lying in the same plane, may be generated by the rotation
of a constant angle ea” round its vertex O, supposed fixed ; the
one arm a traces out the one pencil, while the other arm o’
traces out the other penecil. ‘

Conversely, if an angle of constant magnitude turn round
its vertex, its arms will trace out two (directly) equal and
therefore projective pencils. Evidently these pencils have no
self-corresponding rays.

A transversal cutting these two pencils determines on
itself two collinear ranges having no self-corresponding points.

What has been said in Arts. 104-108 with respect to two pencils
in a plane might be repeated without any alteration for the case of
two axial pencils in space.

109. (1). Let ABC ..., A’B’C’... be two projective ranges lying
upon the same base, and let them, by means of the pencils abe...,
a’b’¢’..., be projected from different points U,U’. Let ¢, j be those
rays passing through U, U’ respectively, which are parallel to the
given base, and let ¢/, j be the rays corresponding to them. The
points I’, J in which these last two rays cut the given base will then
be those points which correspond to the point at infinity (Z or J”) of
the base, according as that point is regarded as belonging to the
range ABC ... or to the range A’B’C’... .

The fact that the two corresponding groups of points are pro-
jectively related gives an equation between the anharmonic ratios,
from which we deduce (as in Art. 74)

J4 .74’ =JB.I'’B =aconstant; . . . . (1)
i.e. the product J4 . 174’ is constant for every pair of points 4, 4”.

Let O be the middle point of the segment JI’, and O’ the point
corresponding to O regarded as a point belonging to the first range.

Since the equation (1) holds for every pair of corresponding points,
and therefore also for O and 0/, we have

JA.r'a'=Jo.ro, . . . . . . (2
or (04—0J) (04’—=0I')y+0J (00’ —O0I'y = o;
or since 0l'= —0J,
04 .04’—0I (04—04’+00')y=0. . . . . (8)

Let us now enquire whether there are in this case any self-
corresponding points. If such a point exist, let it be denoted by Z';
then replacing both 4 and 4’ in (3) by %, we have

OE*=0I".00. . . . . . . . (4
We conclude that when OI’. 00’ is positive, i.e. when O does nct
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lie between 7” and , there are two self-corresponding points £ and
F, lying at equal distances on opposite sides of O, and dividing the
segment 7’0’ harmonically (Art. 69).

When O lies between 7’ and 0’, there are no such points.

When O coincides with O, there is only one such point, viz. the
point O itself,

(2). Imagine each of the given ranges to be generated by a point
moving always in one direction*. If the one range is described in
the order 4 BC, the other range will be described in the order A’B’C”;
this order may be the same as the first, or may be opposite to it.

If the order of ABC is opposite to that of 4’B’C’, the same will be
the case with regard to the order of 7J4 and that of 7’7’4’ and again
with regard to the finite segment J4 and the infinite segment J’4’;
t.e. the finite segments J4 and 1’4’ have the same sign. In con-
sequence therefore of equation (2), JO and 1’0’ have the same sign ;
so that O does not fall between 7’ and O (Fig. 69 a); there are there-
fore two self-corresponding points. And these will lie outside the
finite segment JI’, since O is a mean proportional between 01 and
00’.

If the order of A BC is the same as that of A’B’(’, we arrive in a

similar manner at the con-

of ¥ 2 2 = ' +  clusion that J4 and I’4’,
bl 3 o u and again JO and I’0’, have
&z or ug opposite signs. In this case
Fig. 69. then, self-corresponding points

exist if O does not lie be-
tween 7’ and O’; that is, if 0’ lies between O and I’ (Fig. 69 b). And
these will lie within the segment JJ/, since OX is a mean proportiongl
between 01’ and 00".

(3). Suppose that there are two self-corresponding points £ and
F (Fig. 70); draw through Z any straight line, on which take two
points S, 8’; and project one of
the ranges from S and the

N other from §”. The two pencils

//i//‘.\%n\/’ which result are in perspective,
T e *]Ef‘n.—\’L—‘ since they have a self-corre-
/ sponding ray S£S’; accordingly

/

~ /
T \‘/ the corresponding rays S4 and
e S'4’, SB and 8'B’, ... SF and
Fig. 7o. S’F’ will intersect in points

lying on a straight line u”
which passes through F.
Let £” be the point where this straight line »” meets SS”. Then
* STEINER, loc. cit., p. 61. § 16, II.  Collected Works, vol. i. p. 280.
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EFAA" and EFBB’ are the projections of £E”SS’ from the centres
A” and B" respectively; therefore EFAA’ and EFBB’ are projective
with one another; thus the anharmonic ratio of the system consisting
of any two corresponding points together with the two self-corre-
sponding points is constant.

In other words: two projective forms which are superposed one wpon
the other, and which have two self-corresponding elements, are composed
of pairs of elements which give with two fixed ones a constant anhar-
monic ratio*,

(4). Next suppose that there are mo self-corresponding points; so
that O lies between O’ and 77 (Fig. 71). Draw from O a straight line
OU at right angles to the given base and make QU the geometric
mean between 1”0 and 00’ ; thus I’U(’ will be a right angle.

Again, draw through U the straight line 7UJ’ parallel to the given
base ; then the angle /U7” will be equal to JUJ’, and the angle
0UO’ will be equal to OI’U and

therefore to 7UI’. Thus in the ¥ v L

two projective pencils which pro- //7"if*\\

ject the two given ranges from U, e 7 | \ \\\

the sngles 7UL, JUJ', OU0" %@l \w S

included by three pairs of cor-
responding rays are all equal; Fig. 71.
consequently (Art. 107) the angles

AUA’, BUB’, ... ave also all equal to them and to one another, and
are all measured in the same direction +.

Thus: two collinear ranges which have no self-corresponding points
can always be regarded as gemerated by the intersection of their base
line with the arms of an angle of constant magnitude which revolves,
always in the same direction, about its vertex.

110. We have seen (Art. 84) the general solution of the problem :
Given three pairs of corresponding elements of two projective one-
dimensional forms, to construct any desired number of pairs; or, in
other words, to construct the element of the one form which corre-
sponds to a given element of the other. The solution of the following
particular cases is left as an exercise to the student :

1. Suppose the two forms to be two ranges » and u’ which lie on
different bases; and let the given pairs of elements be

(@ Pand P/, Qand Q'}, 4 and 4’;

* The above construction gives the solution of the problem: Given two pairs
A, A and B, B’ of corresponding points, and one of the self-corresponding points
E, to find the other self-corresponding point.

+ CrAsLES, loc. cit., p. 119.

1P, P,Q,Q,I,I',J,J have the same meaning as in Art. 84 ; 4 , B,... are
any given points,
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(b) Pand P/, 4and 4’, Band B’;
(¢) ZTandI’, JandJ’, Pand P’
(d) ZandI’, JandJ’, dand 4’;
() Zand I/, Pand P/, Qand Q’;
(f) Zand 7/, Pand P/, Aand 4’;
(g ZandI’, A andd’, Band B

2. Solve problems (d) and (g), supposing the ranges to be collinear.

3. Solve the problems correlative to (a) and (b) when the two given
forms are two non-concentric pencils.

4. Suppose one of the pencils to have its centre at infinity.

5. Suppose both the pencils to have their centres at infinity.

111. He may also prove for himself the following proposition :

If the three vertices A , A’, A” of a variable triangle slide respectively
on three fixed straight lines u, v/, w”’ which meet in a point, while two
of its sides A’A”, A” A turn respectively round two fixed points O and
O, then will also the third side A4” always pass through a fixed point
0", collinear with O and O'.

It is only necessary to show that the points 4, 4’, 4” in moving
describe three ranges which are two and two in perspective, Or the
theorem of Art. 16 may be applied to two positions of the variable
triangle.

This proposition proved, the following corollary may be at once
deduced :

If the four vertices 4, 4’, 4”7, A" of a variable quadrangle slide re-
spectively wpon four fixed straight lines
which all pass through the same point O,
while thiee of its sides AA’, A’A”, A7 A"
turn respectively round three fixed points
C’y B, B, then will the fourth side
A4 and the diagonals AA”, 4’4"
pass respectively through three other fixed
points C", C”, B”, which are deter-
mined by the three former ones. The six
Sixed points are the vertices of a complete
quadrilateral, i.e. they lie three by three
on four straight lines (Fig. 72).

In a similar manner may be deduced the analogous corollary
relating to a polygon of n vertices.

112. TuroreM. If a triangle O, 0,0, circumseribes another triangle
U, U,U,, there exist an infinite number of triangles each of which is
circumscribed about the former and inscribed in the latter (Fig. 73).

The two pencils

0,(07,U,,U,..)and 0,(U,,U,,U,...)

Fig. 72.
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obtained by projecting the range U, U3 ... from O, and from O,, are
evidently in perspective. Similarly the pencils

0,(U,, U,, Uy ...) and 0,(U,, U,, U, ...)

obtained by projecting the range U, U, ... from 0, and from O,, are
in perspective. Therefore the pencils

0.(0,, U,,U;...) and 0,(U,, U,, U, ...)

are projective (Art. 41); but the rays 0,U, and 0,U, coincide;
therefore (Art. 62) the pencils are in perspective, and their corre-
sponding rays intersect in pairs on U, U,.

There are then three pencils O,, 0,, O,, 02

which are two and two in perspective; U
corresponding rays of the first and
second, second and third, third and first,
intersecting in pairs on the straight lines A,
U,0,, U,U,, UU, respectively. This o) o8

shows that every triad of corresponding

rays will form a triangle which is cir-

cumscribed about the triangle 0,0,0,, Ay

and inscribed in the triangle U, U, U,*. Fig. 73.

113. TuroreM. A4 wariable straight
line turning about a fixed point U cuts two fixed straight lines u and
' in A and A’ respectively ; if S, S’ are two fiwed points collinear
with wy’, and SA4 , 8”4’ be joined, the locus of thetr point of intersection
M will be a straight line .

To prove this, we observe that the points 4 and A4/ trace out
two ranges in perspective with one another, and that consequently the
pencils generated by the moving rays S4 ,.S74” are in perspective
(Arts. 41, 80).

The demonstration of the correlative theorem is proposed as an
exercise to the student.

114. TaroreM. U, S, 8 are three collinear points; a transversal
turning about U cuts two fixed straight lines w and v’ in A and A’
respectively ; if SA , 8’4" be joined, their point of intersection M will
describe a straight line passing through the point wu’}.

The proof is analogous to that of the preceding theorem.

The proposition just stated may also be enunciated as follows:

If the three sides of a variable triangle AA’M turn respectively about
three fixed collinear points U, S, S’, while two of its wertices 4 , 4’

Us
0,

* STEINER, loc. cif., p. 85. § 23, II.  Collected Works, vol. i. p. z97.

T Pareus, loc. cit., book VII, props. 123, 139, 141, 143; CHasLES, loe. cit.,
PP- 241, 242.

1 CHasLEs, loc. cit., p. 242.
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slide respectively wupon two fived straight lines w , o/, then will the
third vertex M also describe a straight line *.

In a like manner may be demonstrated the more general theorem :

If a polygon of n sides displaces itself in such a manner that each of
its sides passes through one of n fiwed collinear points, while n— 1
of its vertices slide each on one of n—1 fived straight lines, then will
also the remaining vertew, and the point of intersection of any two
non-consecutive sides, describe straight lines t.

The correlative proposition is indicated in Art. 85,

115. PROBLEM. (liven a parallelogram ABCD and a point P in its
plane, to draw through P a parallel to a given straight line EF also
lying in the plane, making use of the ruler only.

First Solution.—Let E and F (Fig. 74) be the points where the
given straight line is cut by 4B and
4D respectively. On AC take any
point K ; join EK, meeting CD in
G, and FK, meeting BC in 1.

The triangles AEF | CGI are
homological (Art. 18), since AC, £,
FH meet in the same point A; and

Fig. 74. the axis of homology is the straight

line at infinity, since the sides

AE , AF of the first triangle are parallel respectively to the cor-

responding sides C'G, CH of the second. Therefore also the remaining
sides £# and G/ are parallel to one another 1.

The problem is thus reduced to one already solved (Art. 86), viz.
given two parallel straight lines £# and G/, to draw through a
given point P a parallel to them.

Second Solution §.—Produce (Fig. 75) the sides 4B, BC, CD, DA

Q P and a diagonal AC of the
given parallelogram to meet
the given straight line EZ in
K, F, G, I, I respectively, and
join £P, GP. Through 7 draw
any straight line cutting £P in
A’ and GP in (7, and join HA’,
FC’; if these meet in @, then
will Q) be the required straight
line.

For if B’ denote the point where ZI” cuts F(Q, and D’ the point

Fig. 75.

* This is one of Euclid’s porisms. See Pappus, loe. cit., preface to book VII.
4 This is one of the porisms of PAPPUS; loc. cit., preface to book VIL.

I PoNCELET, Propriétis projectives, Art, 198.

§ LAMBERT, Freie Perspective (Zirich, 1774), vol. ii. p. 169,
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where G'P cuts HQ, the parallelograms ABCD and A’B’C’D’ are
homological, ZF being the axis of homology. The point P corre-
sponds to the point of intersection of 4 B and CD, and the point @
to that of BC and 4.D; therefore PQ corresponds to the line at in-
finity in the first figure; accordingly it is the vanishing line of the
second figure, and consequently P is parallel to £F (Art. 18).

118. ProBLEM. Given a circle and its centre; to draw a perpen-
dicular to a given straight line, making use of the ruler only.

Draw two diameters AC', BD of the circle (¥Fig. 76); the figure
ABCD is then a rectangle. Accordingly, if any point X be taken on
the circumference, then by means of the last
. proposition (Art. 115) a parallel XL can be E F
drawn to the given straight line ZF. If
the point L where this parallel again meets
the circumference be joined to the other
extremity M of the diameter through XA,
then evidently LM will be perpendicular
to KL, and therefore also to the given
straight line.

117. ProBLEM. Given a segment AC and
its point of bisection B, to divide BC into n equal parts, making use
of the ruler only.

Construct a quadrilateral ULDXN (Fig. 77) of which one pair of
opposite sides DL , NU meet in 4, the other pair ZU , DN in C, and
of which one diagonal DU passes through B; the other diagonal LNV
will be parallel to AC (Art. 59), and will be bisected in 3 by DU.

Fig. 76.

Now construct a second quadrilateral VA/EZO which satisfies the

same conditions as the first, and which moreover has A for an

extremity and &V for middle point of that diagonal which is parallel

to A4C. To do this it is only necessary to join AM and BN, meeting

in Z, and to join CZ; this last will cut ZV produced in a point O
H
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such that NO=MN=LM. Now construct a third quadrilateral
analogous to the first two, and which has & for an extremity and O
for middle point of that diagonal which is parallel to AC. If P is
the other extremity of this diagonal, then OP=NO=MN=LJM.
Proceed in a similar manner, until the number of the equal segments
LM, MN, NO, OP,...1s equal to n.

If PQ is the segment last obtained, join ZB, meeting QC' in Z;
the straight lines which join Z to the points A, ¥, 0, P, ... will
divide BC into n equal parts®,

118. The following problems, to be solved by aid of the ruler only,
are left as exercises to the student : '

Given two parallel straight lines A5 and w; to bisect the seg-
ment 4B (Art. 59).

Given a segment 45 and its point of bisection C'; to draw through
a given point a parallel to 4 B (Art. 59).

Given a circle and its centre; to bisect a given angle (Art. 60).

Given two adjacent equal angles 40C, COB; to draw a straight
line through O at right angles to OC' (Art, 60).

119. TurorREM. [f two triangles ABC, A’B’C’, lying in different
planes o , o/, are in perspective, and if the plane of one of them be made
to turn round oo’, then the point O in which the rays A4’, BB’, CC’
meet will change its position, and will describe a circle lying in a
plane perpendicular to the line oo’ +.

Let D, E, I (Fig. 78) be the points of the straight line oo’
in which the pairs of corresponding sides BC and B’C”, C4 and C’4’,4 B
and 475’ meet respectively (Art. 18). First consider the planes of the
triangles to have any given definite posi-
tion, and let O be the centre of projec-
tion for that position. Through O draw
0G , OIl , OK parallel respectively to the
sides of the triangle A’B’C’; as these
parallels lie in the same plane (parallel
to ¢’) they will meet the plane o in three
points G, I, K of the line no.

Now suppose the plane o together
with the triangle 4’B’C”’ to turn round
the line oo’. The range BCD@ is in perspective with the range
B'C’'DG’ (where G denotes the point at infinity on B’C”); there-
fore the anharmonic ratio (BCD@) is equal to the anharmonic ratio
(B’0’DQ’), i.e. to the simple ratio B’D: C’D (Art. 64), which is

Fig. 8.

* These and other problems, to be solved by aid of the ruler only, will be found
in the work of LAMBERT quoted above.

1 CHASLES, loc. cit., Arts. 368, 369, This proposition has already been proved
by a different method in Art. 22, )



120] PARTICULAR CASES AND EXERCISES, 99

constant. Since then B, C, D are fixed points, ¢ must also be a
fixed and invariable point (Art. 65). From the similar triangles
0BG, B’ BD
0G:B’D::BG: BD,
B’D . BG

i.e. OG is constant, The point O therefore moves on a sphere whose
centre is ¢ and whose radius is the constant value just found for 0G.

In a similar manner it may be shown that O moves upon each of
two other spheres having their centres at Z7 and X respectively.

Since then the point O must lie simultaneously on several spheres,
its locus must be a circle, whose plane is perpendicular to the line
of centres of the spheres, aud whose centre lies upon this same line.

This line GHK is the line of intersection of the planes 7 and o
and is consequently parallel to oo’ (since = and o’ are parallel planes) ;
it is the vanishing line of the figure o, regarded as the perspective
image of the figure ¢/ (Art. 13).

120. TuroreM. Two concentric projective pencils lying in the same
plane, which have no self-corresponding rays, may be regarded as the
perspective tmage of two directly equal pencils *,

Let O be the common centre of the two pencils. Cut them by a
transversal s, thus forming two collinear projective ranges ABC ...
and 4’B’C” ... which have no self-corresponding points. Draw through
s any plane o”; we can determine in this plane (Art. 109) a point U/
such that the segments 447, BB’, CC’, ... subtend at it a constant
angle; thus if the two ranges be projected from U as centre, two
directly equal pencils will be obtained. Now let the eye be placed at
any point of the straight line OU, and let the given pencils be pro-
jected from this point as centre on to the plane o’. In this way two
new pencils will be formed ; and these are precisely the two directly
equal pencils mentioned in the enunciation.

* CHasLES, loc, cit., Art, 180.



CHAPTER XII.
INVOLUTION.

121. CoNSIDER two projective flat pencils (Fig. 79) having a
common centre O; let them be cut in corresponding points by
the transversals z and «/, thus giving two projective ranges
ABC...and A’B’C’...; and let " be
the straight line on which the pairs
of lines 45" and 4’B, ... (Art. 85, left)
intersect. Through O draw any ray
(not a self-corresponding ray); it will
cut # and «’ in two non-corresponding
. points 4 and B’ and will meet «” in

Fig. 79- a point of the line 4”B. To the ray 04
of the first pencil corresponds accordingly the ray 04" of the
second, and to the ray OB’ of the second pencil corresponds
the ray OB of the first. In other words, to the ray O4 or OB’
correspond two different rays 04", OB according as the first
ray is regarded as belonging to the first pencil or to the
second. For the line 4’8 must cut 4B’ on #”, and cannot
pass through O so long as this point does not lig on #»”. We
see then that

In two superposed projective forms* (of one dimension) there
correspond, in general, to any given element two different elements,
according as the given element is regarded as one belonging to the
Jirst or to the second form.

We say in general, because in what precedes it has been
assumed that O does not lie upon «”.

* We say two forms, because the reasoning which we have made use of in the
case of two concentric flat pencils may equally well be applied in the case of two
collinear ranges, and of two axial pencils having a common axis. The same result
may be arrived at by cutting the two flat pencils by a transversal, and by pro-
jecting them from a point lying outside their plane.
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122. But in the case where O lies upon #” (Fig. 80), if a
ray be drawn through O to cut » and «’ in 4 and B’ respec-
tively, then will also 4B pass through O; in other words, to
the ray 04 or OB’ corresponds
the same ray 04’ or OB.
This property may be expressed
by saying that ¢ke ftwo rays
correspond doubly to one another;
or we may say that ke fwo rays
are conjugate to one another.

Now suppose, reciprocally,
that two concentric projective Fig. So.
flat pencils have a pair of rays
which correspond doubly to one another. Cut the pencils
by two transversals # and «/, and let 4 and B’ denote the
points where these transversals intersect ome of the given
rays; then 4 and B will denote the points where they
intersect the other given ray. The straight line «”, the
locus of the points of intersection of the pairs of lines such
as MN’, M’N, formed by joining crosswise any two pairs of
corresponding points of the ranges « , «’ (Art. 85), will pass
through O, since the lines 4B’, 4’B meet in that point. If
now there be drawn through O any other ray, cutting the
transversals say in C and 2, then will C’D also pass through
0, i.e. the rays OCD’ and ODC’ also correspond doubly to
each other. We conclude that

When two superposed projective forms of one dimension are such
that any ome element has the same correspondent, to whichever
Sorm it be regarded as belonging, then every element possesses this
property. »

123. This particular case of two superposed projective forms
of one dimension is called Involution®. We speak of an
involution of points, of rays, or of planes, according as the
elements are points of a range, rays of a flat pencil, or planes
of an axial pencil.

In an involution, then, the elements are conjugate to one
another in pairs; i.e. each element has its conjugate. To
whichever of the two forms a given element be considered to

* DESARGUES, Brouillon projet d'une atteinte aux événements des rencontres d'un
cone avec un plan (Paris, 1639): edition PotDrA (Paris, 1864), vol. i. p. 119.
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belong, the element which corresponds to it is the same, viz.
its conjugate. It follows from this that it is not necessary to
regard the two forms as distinet, but that an involution may be
considered as a set of elements whick are conjugate to one another in
pairs.

When 447, BB’, CC’,... are said to form an involution, it is
to be understood that 4 and 4", Band B’,Cand C’, ... are pairs
of conjugate elements; moreover, any element and its con-
jugate may be interchanged, so that 44’ BB’ CC’ ... and
A4 BB C’C ... are projective forms.

124. Since an involution is only a particular case of two
superposed projective forms, every section and every projection of
an involution gives another involution *.

Two conjugate elements of the given involution give rise to
two conjugate elements of the new involution. It follows
(Art. 18) that the figure homological with an involution is
also an involution.

125. When two collinear projective ranges form an involu-
tion, there corresponds to each point (and consequently also to
the point at infinity 7 or J’) a single point (I” or J); i.e. the
two vanishing points coincide in a single point. Let this point,
the conjugate of the point at infinity, be denoted by O. The
equation (1) of Art. 109 then becomes

04 . 04’ = constant.

In other words, an involution of points consists of pairs of
points 4, 4" which possess the property that the rectangle
contained by their distances from a fixed point O, lying on
the base, is constant 1. This point O is called the centre of the
involution.

The self-corresponding elements of two forms in involution
are called the double elements of the involution. In the case of
the involution of points 44, BB’,... we have

04 .04’ = OB . OB’ = ... = constant.

If this constant is positive,i.e. if O does not lie between two
conjugate points, there are two double points £ and F, such
that

O0F2=0I?=04.04’ = 0B OB’ = ey

* DESARGUES, loc. cit., p. 147.
4 Ibid., pp. 112, 119.
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O therefore lies midway between & and F, and the segment
EF divides harmonically each of the segments 44’, BB, ...
(Art. 69. [3]). Accordingly:

If an involution has two double elements, these separate far-
monically any pair of conjugate elements ; or: An involution is made
up of pairs of elements which are harmonically conjugate with regard
to two fiwed elements.

If, on the other hand, the constant is negative, ¢.e. if O falls
between two conjugate points, there are no double points. In
this case there are two conjugate points situated at equal
distances from O and on opposite sides of it, such that
OF = — OF/, and

Ok*=0F'*= — OF.OF = — 04.04’.

If the constant is zero, there is only one double point O;
but in this case there is no involution properly so called.
For since the rectangle O4 . O4’ vanishes, one out of every
pair of conjugate points must eoincide with O.

126. The proposition that if an involution has two double
elements, these separate harmonically any pair of conjugate
elements, may also be proved thus:

Let £ and I be the double elements, 4 and 4’ any pair of
conjugate elements ; since the systems EFAA’, EFA’A are pro-
Jjective, therefore (Art. 83) each of them is harmonic.

The following is a third proof.

Consider #44’...and E4’4 ... as two projective ranges, and
project them respectively from two points § and §” collinear
with Z (Fig. 81). The projecting pencils S(Z4A’...) and
8’ (EA’4 ...)are in perspective (since
they have a self-corresponding ray
in S§’E); therefore the straight line %\
which joins the point of intersection A /E/¥ ¥
of 84 and 8’4’ to that of S4” and V
8’4 will contain the points of inter-
section of all pairs of corresponding
rays, and will consequently meet
the common base of the two ranges at the second double
point F. But from the figure we see that we have now a
complete quadrilateral, one diagonal of which, 44’ is cut by

the other two in £ and F; consequently (Art. 56) EFA4"is a
harmonic range.

Fig. 81.
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The proposition itself is a particular case of that proved in
Art. 109 (3). From this we conclude that the pairs of elements
(points of a range, rays or planes of a pencil) which, with two
fixed elements, give a constant anharmonic ratio, form two
superposed projective forms, which become an involution in the
case where the anharmonic ratio has the value — 1 (Art. 68).

127. dn involution is determined by two pairs of comjugate
elements.

Forlet 4,4 and B, B be the given pairs. If any element C
be taken, its conjugate is determinate, and can be found as in
Art. 84, by constructing so that the form 4’4 B’C’ shall be
projective with 44’BC. We then say that the siz elements
Ad’, BB', CC’ are in involution ; i.e. they are three pairs of an
involution.

Suppose that the involution with which we have to deal is
an involution of points. Take any point @ (Fig. 82) outside
the base, and describe circles round G44” and GBB’; if I is
the second point in which these circles meet, join GH, and let
it cut the base in 0. Since G744’ lie on a circle,

0GQ.0H=04.04";
and since G/I/BLB’ lie on a circle,
0G.O0H = OB .0B’;
04.04’= OB .O0PB".
O is therefore the centre of the involution determined by the

Fig. 82.

pairs of points 4, 4" and B, B’. If any other circle be drawn
through G and 1/, and cut the base in C and C’, we have
0G.0H = 0C. 0C;
. 00.00"= 04.04’= 0B . 0B,
and C, €’ are therefore a pair of conjugate points of the invo-
Iution. In other words, the circle which passes through two
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conjugate points C, C” or D, D’ and through one of the points
G, H always passes through the other. Accordingly:

The pairs of conjugate points of the involution are the points of
intersection of the lase with a series of circles passing through the
points G and H.

128. From what precedes it is evident that if the involution
has double points, these will be the points of contact of the
base with the two circles which can be drawn to pass through
G and If and to touch the base. It has already been seen
(Art. 125) that these points are harmonically conjugate with
regard to 4 and 4, and also
with regard to B and 5’. Con-
sequently (Art. 70) the involution
has double points when one of the
pairs AA’, BB’ lies entirely within
or entirely without the other, i.e.
when the segments AA’ and BB’
do not overlap (Fig. 82); and the
wmvolution kas no double points
when one pair is alternate to the other, i.e. when the segments A4’
and BB’ overlap (Fig. 83)%*.

In the first case, the involution (as already seen) consists of
an infinite number of pairs of points which are harmonically
conjugate with regard to a pair of fixed points.

In the second case, on the other hand, the involution is
traced out on the base by
the arms of a right angle
which revolves about its
vertex. For since (Fig.
84) the segments 44" and
BB’ overlap, the ecircles
described on 44’ and BB’
respectively as diameters
will intersect in two points
G and /I which lie symmetrically with regard to the base;
G H being perpendicular to the base, which bisects it at O,
the centre of the involution. It follows that

Fig. 83.

Fig. 84.

* An involution of the kind which has double points is often called a kyperbolic
involution ; one of the kind which has no double points being called an elliptic
involution.
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0G*=0II*=40.04’=B0.0L’,

and that all other circles passing through G and # and
cutting the base in the other pairs CC’, DD, .., of the involu-
tion will have their centres also on the base, and will have
CC, DU, ... as diameters. If then we project any of the
segments 44, BB, CC’, ... from G (or H) as centre, we shall
obtain in each case a right angle 4Gd4’, BGB’, CGC’, ...
(or ALY, B, CIIC’, ...).

We conclude that when an involution of points 447, BB’,...
has no double points, i.e. when the rectangle O4. 04’ is equal
to a negative constant—/4% each of the segments 44’ BF,...
subtends a right angle at every point on the circumference of
a circle of radius Z, whose centre is at O and whose plane is
perpendicular to the base of the involution.

This last proposition is a particular case of that of Art. 109 (4).
If then an angle of constant magnitude revolve in its plane about its
vertex, its arms will determine on a fixed transversal two projective
ranges, which are in involution in the case where the angle is a right
angle.

129. Consider an involution of parallel rays; these meet in a point
at infinity, and the straight line at infinity is a ray of the involution,
The ray conjugate to it contains the centre of the involution of points
which would be obtained by cutting the pencil by any transversal ; it
may therefore be called the central ray of the given involution. If,
reciprocally, we project an involution of points by means of parallel
rays, these rays will form a new involution, whose central ray passes
through the centre of the given involution.

When one involution is derived from another involution by means
of projections or sections (Art. 124), the double elements of the first
always give rise to the double elements of the second.

180. Since in an involution any group of elements is projective with
the group of conjugate elements, it follows that if any four points of
the involution be taken, their anharmonic ratio will be equal to that
of their four conjugates. In the involution A4/, BB/, CC”,... the
groups of points 4 BA’C” and 4’ B’AC, for example, will be projective;;
therefore

447 407 4’4 A’C
BB A B0
whence
AB’.BCO’. 04’ +4’B. B’C.C"4d=o.
Conversely, if this relation hold among the segments determined by
six collinear points 44/BB’C(”, these will be three conjugate pairs of
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For the given relation shows that the anharmonic

ratios (4BA4’C’) and (4’B’AC) are equal to one another; the groups

ABA’C” and A’B’AC are therefore projective.

But 4 and A’ corre-

spond doubly to each other; therefore (Art. 122) 44/, BB/, CC’ are
three conjugate pairs of an involution.

131. TuroreEM. e three pairs
of oppostte sides of a complete
quadrangle are cut by any trans-
versal tn tlhree pairs of conjugate
potnts of an involution *.

Let QRST (Fig. 85) be a
complete quadrangle, of which the
pairs of opposite sides R7 and
QS, ST and QR, QT and RS are
cut by any transversal in 4 and
4%, B and B/, C and (¢’ respec-

Fig. 85.

tively. If P is the point of
intersection of @S and R7, then
ATPR is a projection of 404’8’
from @ as centre, and ATPR is
also a projection of 4 BA’C’ from
S as centre ; therefore the group
A0 A’B’isprojective with 4 BA’(”,
and therefore (Art. 45) with
A’C’AB. And since 4 and 4’
correspond doubly to one another
in the projective groups ACA’B’

CorRRELATIVE TurorEM. The
straight lihes which connect any
point with the three pairs of oppo-
site vertices of a complete quadri-
lateral are three pairs of conjugate
rays of an tnvolution.

Let grst (Fig. 86) be a com-
plete quadrilateral, of which the
pairs of opposite vertices 7¢ and g¢s,
st and gr, ¢t and rs are projected
from any centre by the rays a and
a’yb and ¥, ¢ and ¢ respectively.

Fig. 86.

Let p be the straight line which
joins the points gs and 7¢ The
pencils atpr and aca’d’ are in per-
spective (their corresponding rays
intersect in pairs on ¢) ; similarly
atpr and aba’c’ are in perspec-
tive (their corresponding rays
intersect in pairs on s). The
pencil atpr is therefore of course
projective with each of the
pencils aca’d and aba’c’, and

* DEBARGUES, loc. cit., p. 171.
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and 4’C"4 B, it follows (Art. 122)
that 447, BB’, CC’ are three con-
jugate pairs of an involution.

The theorem just proved may
also be stated in the following
form :

If a complete quadrangle move
in such a way that five of its sides
pass each through one of five fixed
collinear points, then its sixth
side will also pass through a fixed
point collinear with the other five,
and forming an tnvolution with
them.

INVOLUTION.
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therefore aca’d’ is projective with
aba’c’ or (Art. 45) with a’c’ab.
And since ¢ and «  correspond
doubly to one another in the
pencils aca’d’ and a’c’ab, it follows
(Art. 122) that ad’, b, cc’ are
three pairs of conjugate rays of
an involution.

The theorem just proved may
also be stated in the following
form :

If a complete quadrilateral
move in such a way that five of its
vertices slide each on one of five
Jixed concurrent straight lines, then
its siwth vertex will also move on a
Sixed straight line, concurrent with
the other five, and forming an in-
volution with them.

132. By combining the preceding theorem (left) with that of Art,

130, we see that

If a transversal be cut by the three pairs of opposite sides of a com-

plete quadrangle in A and A’ B and B, C and (" respectively, these
determine wpon it segments which are connected by the relation
AB’. BC’. CA’+A’B.B’C. (’4 = o*.

133. In the theorem of Art. 131 (right) let U and U’, V and V’,
W and W7 denote respectively the opposite vertices ¢ and gs, st and
gr, qt and rs of the quadrilateral qrst, and let 44’, BB’, CC’ denote
respectively the points of intersection of the rays aa’, b¥, c¢’ with an
arbitrary transversal. With the help of Art. 124 the following
proposition may be enunciated :

If the three pairs UU’, VV', WW' of opposite vertices of a complete
quadrilateral be projected from any centre upon any straight line, the
six points Ad’, BB/, CC’ so obtained will form an {nvolution.

Suppose now, as a particular case of this, that the centre of pro-
jection @ is taken at one of the two points of intersection of the circles
described on U U’, V'V’ respectively as diameters. Then 4G4 and
BGB are right angles, and therefore also (Art. 128) CG(’ is a right
angle ; therefore the circle on WI¥’ as diameter will also pass through
G. Hence the three circles which have for diameters the three
diagonals of a complete quadrilateral pass all through the same two

* Parpus, loc, cit., book VII. prop. 130.
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The centres of

these circles lie in a straight line; hence
The middle points of the three diagonals of a complete quadrilateral

are collinear ™.

134. The proposition of Art.
131 (left) leads immediately to the

Construction for the sixth point
C’ of an involution of which five
points 4 , 4°, B, B, C are given.

For draw through C (Fig 85)
an arbitrary straight line, on
which take any two points @ and
T, and join AT, BT, 47Q, B'Q;
if AT, B’Q meet in R, and B7,
4’Q in S, the straight line RS
will cut the base of the involu-
tion in the required point €.

The proposition of Art. 131
(right) leads immediately to the

Construction for the sixth ray
¢ of an involution of which five
rays a,a’,b, b, c are given.

For take on ¢ (Fig. 86) an arbi-
trary point, through which draw
any two straight lines ¢ and ¢,
and join the point ta to ¢¥’, and
the point tb to ga’; if the joining
lines be called =, s respectively,
then the straight line connecting
the centre of the pencil with the
point rs is the required ray ¢’

If, in the preceding problem (left), the point (' lies at infinity, its

conjugate is the centre O of the involution.
the centre of an involution of which two
pairs AA’, BB’ of conjugate points are
given, we construct (Fig. 87) a complete
quadrangle QS7'R of which one pair of
opposite sides pass respectively through 4
and 4, another such pair through B and 5/,
and which has a fifth side parallel to the
base ; the sixth side will then pass through

the centre O.

In order then to find

The sixth point ¢/ which, together with

five given points 44’BB’C, forms an involution, is completely deter-
mined by the construction; there is only one point ¢’ which possesses
the property on which the construction depends (Art. 127). This
may be otherwise seen by regarding C” as given by the equation
(44’BC)=(4"4B°C") between anharmonic ratios; for it is known
(Art. 65) that there is only one point ¢ which satisfies this equation.

135. The theorem converse to that of Art. 131 is the fol-
lowing :

If a transversal cut the sides of a triangle RSQ (Fig. 85) in
three points A’, B’, C" whick, when taken together with three other
points 4, B, C lying on the same transversal, form three conjugate

* CHASLES, loc. cit., Arts. 344, 345 ; Gavuss, Collected Works, vol. iv. p. 391,
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pairs of an involution, then the three straight lines RA ,SB, QC meet
in the same point.

To prove it, let R4 , §B meet in 7, and let 7'¢ meet the
transversal in C,. Applying the theorem of Art. 131 (left) to
the quadrangle QRS7, we have

(44’BC,) = (4’4AB’C").
But by hypothesis

(44’BC)y = (4’4B’C");

(44’BC,) = (44’BC);
consequently (Art. 54) C, coincides with C, i.e. QC passes
through 7.

The correlative theorem is:

If a point 8 be joined to the vertices of a triangle rsq (Fig. 86) by
three rays &, V', ¢ which, when taken together with three other rays
a,b,c passing also through 8, form three conjugate pairs of an
involution, then the points ra , qb , se lie on the same straight line t.

136. Take again the figure of the complete quadrangle
QRST whose three pairs of opposite sides are cut by a trans-
versal in 4 and 4/, B and B’,C and C’. Let (Fig. 83) §Q and
R7 meet in I/, QR and 87 in §’, RS and QT in Q.

Fig. 88.

Consider the triangle RSQ; on each of its sides we have a
group of four points, viz.
SQR’A4’, QRS'B’, RSQ’C’.
The projections of these from 7" on the transversal are
BCAA’, CABE’, ABCC".

The product of the anharmonic ratios of these last three
groups is
B4 BA'\ ,CB CB’\ AC AC’
((,A CA’) ( CAB /) (BO ]J’U')
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or CA’. AB’. BC’
T BA.CB"ACT
which (Art. 130) is equal to — 1. Therefore :

If any transversal meet the sides of a triangle, and if moreover from
any point as centre each vertex be projected upon the side opposite to i,
the groups of four points thusobtained on each of the sides of the triangle
will be such that the product of their ankarmonic ratios is equal to — 1.

Conversely, if three pairs of points R'A’y S'B’, Q'C' be taken,
one on each of the sides of a triangle RSQ, such that the product of
the anharmonic ratios (SQR'A’),(QRS'B'), (RSQ'C’) is equal to—1 ;
then, if the straight lines RR’, 88’, QQ’ are concurrent, the points
A’y B', C" will be collinear ; and conversely, if the points A’, B’, C’
are collinear, the straight lines RR’, 88, QQ’ will be concurrent.

137. Suppose now the transversal to lie altogether at
infinity ; then the anharmonic ratios (SQR’4’), (QRS’B’), and
(ISQ’C’) become (Art. 64) respectively equal to SR’ : QR’,
Q8" : RS, and BQ’: SQ’; so that the preceding proposition
reduces to the following *:

If the straight lines connecting the three vertices of a triangle
BSQ with any given point T meet the respectively opposite sides
in B/, 8§, Q', the segments which they determine on the sides will be
connected by the relation

SR, Q8" . RQ" .
QR RS 5@ = T
and conversely:

If on the sides 8Q , QR , RS respectively of a triangle RSQ
points R, 8’, Q" be taken suck that the above relation holds, then
will the straight lines RR’, 88', QQ’ meet in one point T

138. Repeating this last theorem for two points 7 and 7,
we obtain the following :

If the two sets of three straight lines which connect the vertices of
a triangle RSQ with any two given points T’ and T meet the
respectively opposite sides in B, 8, Q" and R”, 8", Q"' , then will
the product of the ankarmonic ratios (SQR'R”), (QRS’S”), and
(RSQ’Q”) be equal to +1.

[For each of the expressions

SR’.QS".RQ"  SR”.QS8”.RQ”
QR’.RS.8Q" ° QR”.RS”.8Q"

* CEvA’s theorem. See his book, De Iineis rectis se invicem secantibus statica

constructio (Mediolani, 1678), i. 2. Cf. MoBIvS, Barye. Cale. § 198,
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is equal to — 1; and the required result follows on dividing
one of them by the other.]

139. Considering again the triangle QRS (Fig. 88), and
taking the transversal to be entirely arbitrary, let ST, Q7' be
taken so as to be parallel to @I, IS respectively. Then the
figure QRST becomes a parallelogram; the points 8" and @’
pass to infinity, and R’ (being the point of intersection of the
diagonals @S, RT) becomes the middle point of §¢. Conse-
quently (Art. 64) the anharmonic ratios (SQ£’A’), (QRS’B’),
(B8Q’C’)become equal respectively to—(Q4": S4”),(RB": QB’),
and (8C": RC’). Thus*:

If a transversal cut the sides of a triangle RSQ in A", B”, C’
respectively, it determines upon them segments which are connected
by the relation

QA4A".RB’.S5C" _
S4’.QB’. RC" ™
and conversely :

If on the sides 8Q , QR , RS respectively of a triangle points
A", B, C be taken suck that the above relation holds, then will
t/&sse three points be collinear.

140. Repeating the last theorem of the preceding Article for
two transversals, we obtain the following :

If the sides of a triangle RSQ are cut by two transversals in
A’, B, C" and in A” , B”, C” respectively, the product of the
anharmonic ratios (SQA’A”), (QRB'B”), and (RSC’'C”) will le
equal to + 1.

[For each of the expressions

Q4’. RB’. 8C’ QA”. RB”.8C”

SA’. QB . RC* ° S4”.QB”.RC"
is equal to 1; dividing one by the other, the required result
follows.]

Reciprocally, if on the sides of a triangle RSQ three pairs of
points 4’4", B'B”, C'C” be taken such that the product of the
anharmonic ratios (8QA4°4”), (QRB’B”), (RSC'C") may be equal to
+ 13 then, if the points A, B, C’ are collinear, the points 4”, B”, c”
will a]so be collinear, and if the lines RA', SB’, QC” are concurrent,
the lines RA” ,SB”, QC" will also be concurrent.

141. It has been shown (Art. 122) that if two projective ranges

* Theorem of MENELAUS ; Sphaerica, iii. 1. Cf. MBIUS, loc. cit.
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(4BC...)and (4’B’C’...), lying in the same plane, are projected from
the point of intersection of a pair of lines such as 4B’ and 4’B, AC’
and 4°C, ... or BC’and B’C..., the projecting rays form an involution.
The theorems correlative to this are as follows:

Given two projective, but not concentric, flat pencils (abe...) and
(a’¥’¢...) lying in the same plane; if they be cut by the straight line
which joins a pair of points such as ab” and a’b, ac” and a’c,... or be’
and Yc..., the points so obtained form an involution.

Given two projective axial pencils (aBy...) and (a’8y...) whose
axes meet one another; if they be cut by the plane which is deter-
mined by passing through a pair of lines such as ¢8’ and /B, ay” and
d'y,... or By’ and 8’y..., the rays so obtained form an involution.

Given two projective flat pencils (abe...) and (a’d’¢’...) which are
concentric, but lie in different planes; if they be projected from the
point of intersection of a pair of planes such as ab” and &b, ac’ and
a’c..., or b’ and ¥’c..., the projecting planes form an involution.

142. Particular Cases. All points of a straight line which lie in
pairs at equal distances on opposite sides of a fixed point on the line,
form an involution, since every pair is divided harmonically by the
fixed point and the point at infinity.

Conversely, if the point at infinity is one of the double points of an
involution of points, then the other double point bisects the distance
between any point and its conjugate. If in such an involution the
segments 4 A4’, BB’ formed by any two pairs of conjugate points have
a common middle point, then will this point bisect also the segment
CC’ formed by any other pair of conjugates.

All rectilineal angles which have a common vertex, lie in the same
plane, and have the same fixed straight line as a bisector, form an in-
volution, since the arms of every angle are harmonically conjugate
with regard to the common bisector and the ray perpendicular to it
through the common vertex.

Conversely, if the double rays of a pencil in involution include a
right angle, then any ray and its conjugate make equal angles with
either of the double rays. If in such an involution the angles included
by two pairs of conjugate rays aa’ and 60" have common bisectors,
these will be the bisectors also of the angle included by any other pair
of conjugate rays cc’.

All dihedral angles which have a common edge and which have the
same fixed plane as a bisector, form an involution; for the faces of
every angle are harmonically conjugate with regard to the fixed plane
and the plane drawn perpendicular to it through the common edge.

Conversely, if the double planes of an axial peneil in involution are
at right angles to one another, then any plane and its conjugate make
equal angles with either of the double planes.

I



\ CHAPTER XIII.
PROJECTIVE FORMS IN RELATION TO THE CIRCLE.

143. Consiper (Fig. 89) two directly equal pencils abed ...
and a't’¢'d’... in a plane, having their centres at O and 0’
respectively. The angle contained by a pair of corresponding
rays aa’,bl/,ec’,... is constant (Art. 106); the locus of the inter-
section of pairs of corresponding rays
is therefore (Eue. IIL. 21) a circle
passing through O and O’. The
tangent to this circle at O makes
with 00’ an angle equal to any of
the angles 040’, OBO’, 0C0’, &e.;
but this is just the angle which 0’0
considered as a ray of the second
pencil should make with the ray
corresponding to it in the first pencil ;
therefore to 0’0 or ¢ considered as
a ray of the second pencil corresponds in the first pencil the
tangent ¢ to the circle at O.

Tmagine the circumference of the circle to be described by a
moving point 4 ; the rays 40, 40’ or a, &’ will trace out the
two pencils. As A approaches O, the ray 40 will approach
00’ or ¢ and the ray 40 will approach ¢; and in the limit
when 4 is indefinitely near to O, the ray 40 will coincide with
g or the tangent at 0. This agrees with the definition of the
tangent at O, as the straight line which joins two indefinitely
near points of the cireumference.

Similarly, to the ray 00’ or p considered as belonging to the
first pencil corresponds the ray p’ of the second pencil, the
tangent to the circle at 0”.

144. Conversely, if any number of points 4, B, C, D,... on a
circle be joined to two points O and O’ lying on the same

Fig. 8.
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circle, the pencils O (4, B, C, D,...) and 0’ (4, B,C, D,...) so
formed will be directly equal, since the angle 408 is equal to
A0’B, 40C to 40°C,... BOC to BO’C, &c. But two equal
pencils are always projective with one another (Art. 104). If
then the points 4, B, C, ... remain fixed, while the centre of
the pencil moves and assumes different positions on the eir-
cumference of the circle, the pencils so formed are all equal to
one another, and consequently all projective with one another.
The tangent at O is by definition the straight line which joins
O to the point indefinitely near to it on the cirele. It follows
that in the projective pencils 0 (4, B,C,...)and 0’(4, B, C,...),
the ray of the first which corresponds to the ray 0’0 of the
second is the tangent at O.

145. It has been seen (Art. 73) that in two projective forms
four harmonic elements of the one correspond to four harmonic
elements of the other. If then the four rays O(4, B, C, 1)
form a harmonic pencil, the same is the case with regard to
the four rays 0’ (4, B, C, D), whatever be the position of the
point O’ on the circle. By taking O’ indefinitely near to A,
we see that the pencil composed of the tangent at 4 and
the chords 4B, AC, 4D will also be harmonic; so again the
pencil composed of the chord B4, the tangent at B, and the
chords BC, BD will be harmonie, &c. -

When this is the case, tke four points A, B, C, D of the circle
are said to be harmonic¥.

146. The tangenis to a circle
determine wpon any pair of fized
tangents two ranges which are
projective with one another.

Let M (Fig. 9o) be the
centre of the circle, PQ and
P’Q’ a pair of fixed tangents,
and 44’ a variable tangent.
The part 44’ of the variable
tangent intercepted between
the fixed tangents subtends
a constant angle at M ; for if @, P’, T are the points of
contact of the tangents respectively,

* STEINER, loc, cit., p. 157, § 43; Collected Works, vol. i. p. 345.
I2
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angle AMA’'= AMT+TMA’
=4 QMT+3TMP’
=} QMP’*,

Accordingly, as the tangent 44’ moves, the rays MA, MA’
will generate two projective pencils (Art. 108), and the points
A, 4’ will trace out two projective ranges.

Since the angle 4MA4’ is equal to the half of QMP’, it is
equal to either of the angles QM Q’, PMP’ (denoting by P and
Q' the same point, according as it is regarded as belonging to
the first or to the second tangent). Consequently @ and @’,
P and P’ are pairs of corresponding points of the two pro-
jective ranges; i.e. the points of contact of the two fixed
tangents correspond respectively to the point of intersection
of the tangents.

Tmagine the circle to be generated, as an envelope, by the
motion of the variable tangent ; the points 4, 4" will trace out
the two projective ranges. As the variable tangent approaches
the position P@Q, the point A4’ approaches @', and 4 ap-
proaches the point which corresponds to @, viz. @; and in the
limit when the variable tangent is indefinitely near to P@), the
point 4 will be indefinitely near to @ or the point of contact
of the tangent PQ. The point of contact of a tangent must
therefore be regarded as the point of intersection of the
tangent with an indefinitely near tangent.

147. The preceding proposition shows that four tangents
a,b,e,d to a circle are cut by a fifth in four points 4, B, C, D
whose anharmonic ratio is constant whatever be the position
of the fifth tangent.

This tangent may be taken indefinitely neat to one of the
four fixed tangents, to a for example ; in this case 4 will be
the point of contact of , and B, C, D the points of intersection
ab, ac, ad respectively.

As a particular case, if ,8, ¢, d meet the tangent PQ in four
harmonic points, they will meet every tangent in four har-
monic points. The group constituted by the point of contact
of a and the points of intersection ab, ac, ad will also be har-
monic. In this case, the four tangents a, b, ¢, d are said to be
harmonic .

* PONCELET, Propr. proj., Art. 462.
+ STEINER, loc. cit., p. 157, § 43; Collected Works, vol. i. p. 345.
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148. The range determined upon any given tangent to a circle by
any number of fized tangents is projective with the pencil formed by
Joining their points of contuct to any arbitrary point on the circle.

Let 4, B, C,... X (Fig. 91) be points on the circle, and
a, b, ¢,... » the tangents at these points respectively. If the
points 4/, B’, C’,... in
which the tangent « is cut
by the tangents «, 4, ¢, ...
be joined to the centre of
the circle, the joining lines
will be perpendicular re-
spectively to the chords
X4, XB, XC, ... and will
therefore (Art. 108) form
a pencil equal to the pencil X (4, B, C, ...). The range 4’B'C"...
is therefore projective with the pencil X (4, B, C,...).

COROLLARY. If four points on a circle are harmonic, then the
tangents also at these points are harmonic ; and conversely.

For if, in what precedes, X (4BCD) is a harmonic penecil,
A’B’C’D’ will be a harmonic range ; and conversely.

Fig. gr1.



CHAPTER XIV.
PROJECTIVE FORMS IN RELATION TO THE CONIC SECTIONS.

149. LET the figures be constructed which are homological
with those of Arts. 144, 146, 148. To the points and tangents
of the cirele will correspond the points and tangents of a conic
section (Art. 23). A tangent to a conic is therefore a straight
line which meets the curve in two points which are inde-
finitely near to one another; a point on the curve is the
point of intersection of two tangents which are indefinitely
near to one another. To two equal and therefore projective
pencils will correspond two projective pencils, and to two
projective ranges will correspond two projective ranges ; for
two pencils or ranges which correspond to one another in two
homological figures are in perspective. We deduce therefore
the following propositions :

(1). If any number of points A, B, C, D, ... on @ conic are joined
to two fixed points O and O lying on the same conic (Fig. 92), the
pencils O(4, B, C, D,...) and
0'(4, B, C, D, ...) so formed
are projective with one another.
To the ray 00" of the first
pencil corresponds the tangent at
0, and to the ray 0’0 of the
second  pencil  corresponds  the
tangent at O. '

(2). dny number of tangents a,b,c,d, ... to a conic determine on a
pair of fized tangents o and o’ (Fig. 93) two projective ranges. To
the point 00" or Q of the first range corresponds the point of contact
Q' of o, and to the same point o’o or P’ of the second range corre-
sponds the point of contact P of o*,

Fig. g2.

* STEINER, loc. cit., p. 136, § 38 ; Collected Works, vol. i, pp. 332, 333-
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(3). The range whick a variable tangent toa conic determines upon
a fized tangent is projective with the pencil formed by joining the

Fig. 93.

point of contact of the variable tangent to any fixed point of the
conic. (Fig. 94.)

150. We proceed now to the theorems converse to those
of Art. 149. The proofs here
given are due to M. Ed. Dewulf.

L. If two (non-concentric) pencils
lying in the same plane are pro-
Jective with one another (but not
in perspective), the locus of the
points of intersection of pairs of
corresponding rays is a comic
passing through the centres of the
two pencils; and the tangents to
the locus at these points are the rays which correspond in the two
penctls respectively tothe straight line which joins the two centres.

Let O and 4 (Fig. 95) be the respective centres of the two
pencils, and let OM, and 4M,, OM, and 4M,, OM;and AM,,...
be pairs of corresponding rays. The locus of the points 1/,
M,, M,,... will pass through O, since this point is the inter-
section of the ray 40 of the pencil 4 with the corresponding
ray of the pencil O. Similarly 4 will be a point on the
locus.

Fig. 94.
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Let o be that ray of the pencil O which corresponds to the
ray 40 of the pencil 4. Describe & circle touching o at 0O,

Fig. 95.

and let this circle cut 04 in 4’, and OM,, OM,, OM,, ... in the
points My, M, M/, ... respectively.

The pencils O(3," M, M;...) and 4’ (M," M, BI/...) are
directly equal to one another; and since by hypothesis the
pencil O (M M, M, ...) or O (M, M, M,...) is projective
with the pencil 4 (M, M, M;...), therefore the pencils
A (M) M) M/..) and 4 (M; M, M,...) are projective.
But they are in perspective, since the ray 4’0 in the one
corresponds to the ray 40 in the other (Art. 80); therefore
pairs of corresponding rays will intersect in points S, §,,
83, ... lying on a straight line s. In order, then, to find that
point of the locus which lies on any given ray = of the pencil
4, it is only necessary to produce 7 to meet s in S, to join S4’
cutting the circle in 3/’, and to join OM’; this last line will
cut 7 in the required point 7. But this construction is pre-
cisely the same as that employed in Art. 23 (Fig. 11) in order
to draw the curve homological with a circle, having given the
axis ¢ and centre O of homology, and a pair of corresponding
points 4 and 4’. The locus of the points M is therefore a
conic section.

IL. If two (non-collinear) ranges lying in the same plane are pro-
Jeetive with one another (but not in perspective), the envelope of the
straight lines joining pairs of corresponding points isa conic, i. e. the
straight lines all touch a conic. This conic touches the bases of the
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two ranges at the points whick correspond in these respectively to the
point of intersection of their bases.

Let s and §' (Fig. 96) be the bases of the two ranges, and
let 4 and 4’, B and B’, Cand (', ... be pairs of corresponding

& \ 'sll

Fig. 96.

points. The curve enveloped by the straight lines 44’, BB’,
CC’,... will touch s, since this is the straight line joining the
point ss’ or § of the second range with the corresponding
point 8 of the first. Similarly, s will be a tangent to the
envelope. ‘

Describe a circle touching s at §, and draw to it tangents
a’, 4", ¢”,...8" from the points 4, B, C,... 8 respectively. The
tangents a”, ”, ¢”, ... will determine on ¢’ a range which is
projective with s and therefore also with s. But the point §”
corresponds to itself in the two ranges ¢ and ¢”; these are
therefore in perspective (Art. 80), and the straight lines 4” 4’,
B” B, ¢” (’,... will meet in one point 0. In order then to
draw a tangent to the envelope from any given point M lying
on the line s, it is only necessary to draw from 3/ a tangent =
to the circle, meeting s in M”, and to join OM”; thislast line
will cut §" in that point 3’ of the range s’ which corresponds
to the point M of the range s, and MM’ will be the required
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tangent to the envelope. But this construction is precisely
the same as that made use of in Art. 23 (Fig. 12) in order to
draw the curve homological with a circle, taking a given tan-
gent to the circle as axis of homology, any given point O as
centre of homology, and ¢, s” as a pair of corresponding
straight lines. The envelope of the lines M’ is therefore a
conic section.

The theorems (I) and (IT) of the present Article are correlative
(Art. 33), sinee the figure formed by the points of intersection
of corresponding rays of two projective pencils is correlative
to that formed by the straight lines joining corresponding
points of two projective ranges. Thus in two figures whick are
correlative to one another (according to the law of duality in a
plane), to points lying on a conic in one correspond tangents to a
conic in the other.

151. Having regard to Arts. 73 and 79, the propositions of
Arts. 149, 150 may be enunciated as follows :

The ankarmonic ratio of the four straight lines whick connect
Sfour fized points on a conic with a variable point on the same is
constant. .

The ankarmonic ratio of the four points in whick four fixed tan-
gents to a conic are cut by a variable tangent to the same is
constant *.

The anharmonic ratio of four points A, B, C, D lying on a conic is
the anharmonic ratio of the pencil O (4, B, C, D) formed by joining
them to any point O on the conic. Zhe anharmonic ratio of four
tangents a, b, ¢, d to a comic is that of the four points o(a, b, ¢, d),
where o is an arbitrary tangent to the conic.

If this anharmonic ratio is equal to — 1, the group of four points
or tangents is termed harmonic.

The ankarmonic ratio of four tangents o a conic is equal to that
of their points of contactt.

Consequently the tangents at four harmonic points are harmonic,
and vice versa.

The locus of a point such that the rays joining it to four given
points ABCD form a pencil having a given anharmonic ratio is a
conic passing through the given points.

* STEINER, loc. cit., p. 156, § 43 ; Collected Works, vol. i. p. 344.
+ CHASLES, Géométrie Supérieure, Art. 663.
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The tangent to the locus at one of these points, at 4 for
example, is the straight line which forms with 4B, 4C, 4D a
pencil whose anharmonic ratio is equal to the given one.

Tke curve enveloped by a straight line which is cut by four given
straight lines in four points whose anharmonic ratio is given is a
conic toucking the given straight lines.

The point of contact of one of these straight lines, ¢ for
example, forms with the points aé, ac, ad a range whose anhar-
monic ratio is equal to the given one *.

152. Through five given points
0,0,4,B,C in a plane (Fig. 92),
no three of which lie in a straight
line, a conic can be described.
For we have only to construct the
two projective pencils which have
their centres at two of the given
points, O and O’ for example, and
in which three pairs of corre-
sponding rays 04 and 0’4, OB
and O0’B, OC and 0’C intersect
in the three other points. Any
other pair 0D and O’D of corre-
sponding rays will give a new
point D of the curve.

To construct the tangent at any
one of the given points, at O for
example, we have only to deter-
mine that ray of the pencil O
which corresponds to the ray 070
of the pencil 0.

Through five given points only
one conic can be drawn; for if
there could be two such, they
would have an infinite number of
other points in common (the
intersections of all the pairs of
corresponding rays of the pro-
jective pencils); which is impos-
sible.

Given  five straight lines
0,0, a,b,cin a plane (Fig. 93),
no three of which meet in a point,
a contc can be described to touch
them. For we have only to con-
struct the two projective ranges
which are determined upon two of
the given lines, o and o for ex-
ample, by the three others a, b, ¢,
and of which three pairs of cor-
responding points oa and o'a, 0b
and 00, oc and o’c are given.
The straight line d which joins
any other pair of corresponding
points of the two ranges will be a
new tangent to the curve.

To construct the point of con-
tact of any one of the given
straight lines, that of o for ex-
ample, we have only to determine
that point of the range o which
corresponds to the point 0’0 of the
range o’

Only one conic can be drawn to
touch five given straight lines;
for if there could be two such,
they would have an infinite num-
ber of common tangents (all the
straight lines which join pairs of
corresponding points of the pro-
jective ranges); which is im-
possible.

* STEINER, loc. cit., pp. 156, 157, § 43; Collected Works, vol. i. pp. 344, 343-
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From this we see also that:

Through four given points can
be drawn an infinite number of
conics; and two such conics have
no common points beyond these
four.

PROJECTIVE FORMS IN RELATION

[153

There can be drawn an infinite
number of conics to touch four
given straight lines ; and two such
conics have no common tangents
beyond these four.

153. The theorems of Art. 88 may now be enunciated in the

following manner :

If a hexagon ab’ca’dd’ is circum-
scribed to a conic (Figs. 97 and 61),
the straight lines p, q, r which join
the three pairs of opposite vertices
are concurrent.

This is known as BRIANCHON’S
theorem *.

Ifa hexagon AB’CA’BC’ isin-
seribed in a conic (Figs.98 and 60),
the three pairs of opposite sides
intersect one another n three
collinear points P, Q, R.

This is known as PaAscavr’s
theorem +.

These results are of such importance in the theory of conics
that they deserve independent proofs.

The ranges a (ba’d’c’) and
¢ (ba’t’c’y are projective (Art.
149) ; the pencils formed by join-
ing them to the points (ba’), (bc’)
respectively are therefore projec-
tive. If the line joining (ac’), (a’b)
be denoted by 4, and that joining

The pencils 4 (BA’B’C’) and
C (BA’B’C’) are projective (Art.
149); the ranges in which they
cut BA’, BC’ respectively are
therefore projective. If AC’, A’B
cut in 7 and BC’/, A’C in K,
ranges in question are (BA’RI)

(b¢'), (a’c) by %, the pencils in and (BKPC’). Since they have

* This theorem was published for the first time by BRIANCHON in 1806, and
repeated in his Mémoire sur les lignes du second ordre (Paris, 1817 p. 34).

+ This theorem was given in PascAL’s Essai sur les Coniques, a small work of
six pages 8vo., published in 1640, when its author was only sixteen years old.
1t was republished in the Euvres de Pascal (The Mague, 1779), and again
by H. WEISSENBORY, in the preface to his book Die Projection in der Ebene
(Berlin, 1862).



154) TO THE CONIC SECTIONS. 125
question are (ba'rh) and (bkpc’). the point B in common, they are
Since they have the ray b in com- in perspective ; therefore 4’K, RF,
mon, they are in perspective; JHC’are concurrent, that is P, Q),
therefore (a’%), (rp), (hc’) are col- R are collinear.

linear, that is p, ¢, » are con-

current.

154. Pascal’s theorem has reference to six points of a conie,
Brianchon’s theorem to six tangents ; these six points or tan-
gents may be chosen arbitrarily from among all the points on
the curve and all the tangents to it. Now a conic is deter-
mined by five points or five tangents; in other words, five
points or five tangents may be chosen at will from among all
the points or lines of the plane, but as soon as these five
elements have been fixed, the conic is determined. Pascal’s
theorem then expresses the condition which six points on a
plane must satisfy if they lie on a conic; and Brianchon’s
theorem expresses similarly the condition which six straight
lines lying in a plane must satisfy if they are all tangents to
a conic. And the condition in each case is both necessary
and suflicient.

That it is necessary is seen from the theorems themselves.
For six points on a conic, taken in any order, may be re-
garded as the vertices of an inseribed hexagon *; but since
Pascal’s theorem is true for every inscribed hexagon, the three
pairs of opposite sides must meet in three collinear points in
whatever order the six points be taken.

The condition is also sufficient. For suppose (Fig. ¢8) that
the hexagon 4B’CA’BC’, formed by taking the six points in a
certain order, possesses the property that the pairs of opposite
sides BC” and B’C, CA’ and C’4, AB’ and 4’ B intersect in three
collinear points P, @, £ Through the five points 4B’CA’B
one conic (and one only) can be drawn; if X be the point
where this conic cuts 4C” again, then 4B°C4’BX is an in-
seribed hexagon, and its pairs of opposite sides B’C and BX,
X4 (or C’4) and C4’, 4’B and 4B’ will meet in three collinear
points. But the second and third of these points are @ and

* It is perhaps hardly necessary to remind the reader that the hexagons to
which Pascal’s and Brianchon’s theorems refer are not hexagons in Euclid’s sense
—i. e. they are not necessarily convex (non-reentrant) figures.
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R ; therefore BX must meet B’C at the point of intersection of
B’C and QR, i.c. at P. Both BC’and BX thus pass through
P, and they must therefore coincide. Since then the point X
lies not only on AC’ but also on BC’, it must coincide with
the point C” itself.

The condition is therefore sufficient; and it has already
been shown to be necessary.

By taking the six points in all the different orders possible,
sixty* simple hexagons can be made. From the reasoning
above, it follows that if any one of these hexagons possesses
the property that its three pairs of opposite sides intersect in
three collinear points, the six points will lie on a conic, and
consequently all the other hexagons will possess the same
property .

By analogous considerations having reference to Brianchon’s
theorem, properties correlative to those just established may
be shown to be true of a system of six straight lines 1.

155. Consider the two triangles which are formed, one by
the first, third, and fifth sides, the other by the second, fourth,
and sixth sides, of the inscribed hexagon 4B’C 4’BC’ (Fig. 98).
Let BC" and B’C,CA" and C’A, AB"and A’B be taken as corre-
sponding sides of the triangles. By Pascal’s theorem these
sides intersect in pairs in three collinear points; and there-
fore (Art. 17) the two triangles are homological. Pascal’s
theorem may therefore be enunciated as follows:

If two triangles are in homology, the points of intersection of the
sides of the one with the non-corresponding sides of the other lie
on a conic.

Similarly, in a circumseribed hexagon a¥’ca’tc” (Fig. 97) let
the vertices of even order and those of odd order respectively
be regarded as the angular points of two triangles, and let
be’ and &'c, ca’ and ¢‘a, al’ and o'l be taken to be corresponding
vertices. By Brianchon’s theorem these vertices lie two and
two on three straight lines which meet in a point; therefore

* In general, a complete n-gon includes in itself 3 (n—1) (n—2)...1 simple
n-gons.

+ STEINER, loc. cit., p. 311, § 60, No. 54 ; Collected Works, vol. i. p. 450.

1 A system of six points on a conic thus determines sixty different lines such as
PQR in Fig. 98, or Pascal lines as they have been called. So too a system of six
tangents to a conic determines sixty different Brianchon points.
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(Art. 16) the two triangles are homological. Brianchon’s
theorem may therefore be enunciated as follows:

If two triangles are in homology, the straight lines joining the
angular points of the one to the nbn-correqponding angular points
of the other all touch a conic.

The two theorems may be included under the one enunciation:

If two triamgles are in homology, the points of interseclion of the
sides of the one with the non-corresponding sides of the other lie on
a conic, and the straight lines joining the angular poinis of the one
to the non-corresponding angular points of the otkher all touch another
conic *,

158. Returning to Fig. 98, let the points 4, B, C, 4’, B be
regarded as fixed, and C” as variable; Pascal’s theorem may
then be presented in the following form :

If a triangle C’PQ move in suck a way that its sides PQ, QC’,
C’P turn round three fiwved points R, A, B respectively, while two
of its vertices P, Q slide along two fixzed straight lines CB’, CA’
respectively, then the remaining vertex C” will deseribe a conic which
passes through the following five points, viz. the two given points A
and B, the point of intersection C of the given straight lines, the
point of intersection B’ of the straight lines AR and CB’, and the
point of intersection A of the straight lines BER and CA’ .

So also Brianchon’s theorem may be expressed in the
following form :

If a triangle ¢ pq (Fig. 99) move in such a way that its vertices
79, 9¢, p slide along three fiwed straight lines r, a, b respectively,
while two of its sides p,q turn round two fived
points b, ca’ respectively, then the remaining
side ¢ will envelope a conic whick touches the
Jollowing five straight lines, viz. the two given
straight lines @ and b, the straight line ¢ whick
Joins the fixed points, the straight line ¥ whick
Joins the points ar and clf, and the straight
line &’ which joins the points br and ca’.

157. (1). If in the theorems of Art. 152
(right) one of the tangents is supposed
to lie at infinity, the conic becomes a
parabola (Art. 23). Thus a parabola is determined by four tangents,

Fig. 99.

* MoBius, loc. cit., Art, 278,
1 This theorem was given by MACLAURIN, in 1721 ; cf. Pkil. Trans. of the Royal
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or (Art. 152, right) only one parabola can be drawn to touck four given
straight lines ; and no two parallel tangents can be drawn to a parabola.

(2). If the same supposition is made in theorem (2) of Art.
149, it is seen that the points at infinity on the two tangents
o and o are corresponding points of the projective ranges
determined on these tangents; for the straight line which
joins them is a tangent to the curve. It follows (Art. 100)
that

The tangents to a parabola meet two fixed tangents to the same in
points forming two similar ranges; or

Two fixed tangents to a parabola are cut proportionally by the
other tangents*.

(3). Let 4 and 4’, B and B’, C and C’,... be the points in
which the various tangents to the parabola meet the two
fixed tangents (Fig. 100), and let 2 and @ be the respective
points of contact of the latter. The point of intersection of

Fig. 100.

the two fixed tangents will be denoted by @ or P’ aceording
as it is regarded as a point of the first or of the second tan-
gent. We have then

£ NN DNSNSTCUNNNNE S S
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(4). Conversely, given two straight lines in a plane, on whick lie
two similar ranges (whick are not in perspective), the straight lines

connecting pairs of corresponding points will envelope a parabola whick

Society of London for 1735, and CHASLES, Apergu historique sur Uorigine et le
deéveloppement des méthodes en Géometrie (Brussels, 1837 ; second edition, Paris,
1875). If B lies at infinity, the theorem becomes identical with lemma 2o,
book i. of NEWTON’S Principia.

* APoLLONTI PERGAEI Conicorum lib, iii, 41.
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touches the given straight lines at the points whick correspond in
the two ranges respectively to their point of intersection.

For the points at infinity on the given straight lines being
corresponding points (Art. 99), the straight line which joins
them will be a tangent to the envelope ; thus the envelope is
a conic (Art. 150 (IL.)) which has the line at infinity for a
tangent, <. e. it is a parabola.

158. In theorem I of Art. 150 (Fig. 95) suppose that the
point 4 lies at infinity, or, in other words, that the pencil 4
consists of parallel rays. Tothe straight line O4, considered as
a ray a’ of the pencil O (viz. that ray which is parallel to the
rays of the other pencil), corresponds that ray « of the pencil
4 which is the tangent at the point 4. This ray 2 may be at
a finite, or it may be at an infinite distance.

In the first case (Fig. 101) the straight line at infinity is
a ray j of the pencil 4, and to it corresponds in the pencil O
arayj different from o’ and consequently not passing through
d; the conic will therefore be a hyperbola (Art. 23) having
A(= ad’) and jj’ for its points at infinity ; the straight line «
is one asymptote and j” is parallel to the other.

My

Fig. 101. Fig. 102,

In the second case (Fig. 102) the line at infinity is the
tangent at 4 to the conic, which is therefore a parabola.

159. If in this same theorem of Art. 150 the points 4 and
O are supposed both to lie at infinity (Fig. 103), the two pro-
Jective pencils will each consist of parallel rays; and since
the conic which these pencils generate must pass through 4
and O it is a hyperbola (Art. 23). The asymptotes of the
hyperbola are the tangents to the curve at its infinitely distant
points * ; they will therefore be the rays « and o of the first

* DESARGUES, loc. cit., p. 210; NEWTON, Principia, lib. i. prop. 27, Scholium.
K
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and second pencil which correspond to the straight line at
infinity considered as a ray of the second and first pencil
respectively.

By the general theorem of Art.
149, the asymptotes of a hyperbola
are cut by the other tangents in
points forming two projective ranges,
in which the points of contact
(which are in this case at infinity)
correspond respectively to the point
of intersection @ of the asymptotes.
The equation of Arts. 74 and 109 (1),
Fig. 103. viz.

JM . I’ M’ = constant
becomes therefore in this case

QMM . QM = constant,
M and M’ being the points of intersection of any tangent
with the asymptotes. We conclude therefore that

The segments whickh are determined by any tangent to a hyperbola
on the two asymptotes (measured from the point of intersection of
the asymptotes), are such that the rectangle conlained by them is
constant.

This may be stated in a different form as follows :

The triangle formed by any tangent to a hyperbola and the
asymptotes has a constant area*.

160. Again, let the theorem of Art. 149 be applied to the
case of two fixed parallel tangents which are cut by a variable
tangent in 4/ and 3/°. In the projective ranges thus generated
the points which correspond respectively to the infinitely
distant point of intersection of the two fixed tangents are
their points of contact ; if these be denoted by J and I, we
have by Art. 74 the equation

JM .I' M’ = constant.

Therefore, the segments whick a variable tangent to a conic cuts off
Srom two fixed parallel tangents (measured from the points of contact
of these latter) are such that the rectangle contained by them 13
constantt.

* AroLLonIus, loc. cit., iii. 43.
+ Ibid., iii. 42.
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CONSTRUCTIONS AND EXERCISES.

161. BY help of Pascal’s and Brianchon’s theorems may be

solved the following problems:

Given five tangents a, V', ¢, @,
b, to a conic, to draw from any
given point H, lying on one of
these tangents a, another tangent
to the curve (Fig. 104).

Fig. 104,

If ¢/ be the required tangent,
ab’ca’dc’ is a hexagon to which
Brianchon’s theorem applies. Let
7 be the diagonal connecting one
pair ab’ and a’b of opposite ver-
tices, and let ¢ be the diagonal
connecting another such pair ca’
and ¢’a (where ¢’a is the given
point /1) ; then the diagonal which
connects the remaining pair b¢
and ¥c must pass through the
point gr. If then p be the straight

@iven five points A, B’, C, A’
B on a conic, to find the point of
intersection of the curve with any
gtven straight line r drawn through
one of these points 4 (Fig. 105).

Fig. 105.

If ¢’ be the required point,
AB’CA’BC’ is a hexagon to
which Pascal’s theorem applies.
Let R be the point of intersection
of one pair 4B"and A’B of oppo-
site sides, and let @ be the point
of intersection of another such
pair C4’ and 7; then QR must
pass through the point of inter-
section of the remaining pair
BC” and B’C. If then PB be
joined, it will cut the given

K 2
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line joining the points ¢r and %,
the straight line which joins pb
to the given point X is the re-
quired tangent.

By assuming different positions
for the point Z, all lying on one
of the given tangents, and repeat-
ing in each case the above con-
struction, any desired number of
tangents to the conic may be
drawn.

Brianchon’s theorem therefore
serves to construct, by means of its
tangents, the conic which is deter-
mined by five given tangents *.

AND EXERCISES. {162

straight line = in the required
point C”.

By assuming different positions
for the given straight line 7, all
passing through one of the given
points on the conic, and repeating
in each case the above construc-
tion, any desired number of points
on the conic may be found.

Pascal’s theorem therefore serves
to construct, by means of its
points, the conic which is deter-
mined by five given points t.

162. Particular cases of the problem of Art. 161 (right).

1. Suppose the point B to lie at infinity ; the problem then

becomes the following :

Given four points A, B’, C, A’ on a kyperbola and the direction
of one asymptote, to find the second point of intersection C’ of the
enrve with a given straight line r drawn through A (Fig. 106).

Solution.

to m; this

Fig. 106.

This is deduced from that of

the general problem by taking the point
B to lie at infinity in the given direction.
We draw through 4’ a straight line = in
this direction ; if then 4B’ meets » in R,
and 4’C meets 7 in Q. we join @R meeting
B’C in P, and draw through P a parallel

parallel will cut » in the re-

quired point C”.
II. Suppose the point 4 to lie at in-
finity ; the problem is then:

Given four points B’ C, A’, B on a kyper-
bola and the direction of one asymptote, to find the point of inter-
section of the curve with a given straight line r drawn parallel to

this asymptote (Fig. 107).

Solution. Draw through B’

a straight line parallel to the

given direction. If this line meet 4’5 in R, and if 4°C meetr

% BRIANCHON, loc. cit., p. 38; PONCELET, loc. cif., Art, 209.
+ Newrox, Principia, prop. 22; MACLAURLYN, De linearum geometricarum pro-
prietatibus genevalibus (London, 1748), § 44.
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in @, join QF cutting B’C in P. Then if BP be joined, it
will cut 7 in the required point C”.

III. Suppose the two points 4”and B both to lie at infinity.
The problem then becomes :

Given three points A, B’, C on a Iyperbola and the directions of
both asymptotes, to find the second point of intersection of the curve
with a given straight line r drawn through A (Fig. 108).

Fig. 107, Fig. 108.

Solution. Through the point @, where the given straight
line 7 meets a straight line drawn through C palallel to the
direction of the first asymptote, draw a parallel to 4B’. Let
P be the point where this parallel cuts 5°C; then a parallel
through P to the second asymptote will cut » in the required
point C”.

IV. If the two points 4 and B’ both lie at infinity, the
problem is:

Given three points C, A', B of a hyperbola and the directions of
both asymptotes, to find the point of
intersection of the curve with a given
straight line r drawn parallel to one of
the asymptotes (Fig. 109).

Solution. Through @, the point of
intersection of » and C4’, draw a
parallel to 4’B; let P be the point
where this parallel meets the straight
line drawn through C parallel to the
other asymptote. Then if BP be
joined, it will cut » in the required point C”.

V. If, lastly, the points B’, C, 4’, B are finite and the
straight line 4C’ lies at infinity, the problem becomes the
following :
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Given four points B', C, A’, B of a kyperbola and the direction
of one asymplote, to find the direction of the other asymptote
(Fig. 110).

Solution. Through the point R, in which 4’8 meets the
straight line drawn through
B’ in the given direction,
draw a parallel to C4”; let
P be the point where this
parallel cuts B’C. Then if
BP be joined, it will be
parallel to the required di-
rection.

It will be a useful exercise
for the student to deduce the constructions for these particular
cases from the general construction ; in order to do this it is
only necessary to remember that to join a finite point to a
point lying at infinity in a given direction we merely draw
through the former point a parallel to the given direction.

163. Particular cases of the problem of Art. 161 (left).

I. Suppose the point ac¢” to lie at infinity ; then the problem
becomes the following:

Given five tangents a, ¥, c, d’, b to a conic, to draw the tangent
which is parallel to one of them, to a, for example (Fig. 111).

Solution. Draw through the point a’c a straight line ¢
parallel to «; join a4’ and a’f
by the straight line 7, and join
the points ¢r and ¢ by the
straight line p. Then if through-
the point p a parallel be drawn
to a, it will be the required
tangent.

From a given point in the
plane of a conic two tangents
at most can be drawn to the
curve (Art. 23); so that from a point lying on a given tangent
only one other tangent can be drawn. If then the conic is a
parabola, it cannot have a pair of parallel tangents. (This
has already been seen in Art. 157 (1).)

II. Suppose the straight line ¢ to lie at infinity; the
problem is then:

Fig. 110.

Fig. 111.
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Given four tangents a, V', ¢, d’ to a parabola, to draw from a given
point I lying on one of them, a, another tangent to the curve (Fig:
112).

Solution. Through the point
at/ draw a straight line 7
parallel to «”; join the points
H and «’c by the straight line
g, and the points ¢r and e by
the straight line p. The straight
line drawn through I/ parallel
to p will be the required tan-
gent.

III. If the straight line @
lies at infinity, we have the problem:

Given four tangents V', ¢, &, b to a paralola, to draw the tangent
which is parallel to a given straight line (Fig. 113).

Solution. Through «’6 draw
the straight line » parallel to
¥, and through a’c draw the
straight line ¢ parallel to the
given direction; join the
points ¢r, &c by the straight
line p. The straight line
through p6 parallel to the
given direction is the tangent
required.

IV. If in problem II the point I/ assume different positions
on a, or if in IIT the given straight line assume different
directions, we arrive at the solution of the problem :

To construct by means of ils tangents the parabola whick is deter-
mined by four given tangents.

Fig. 112,

Fig. 113.



CHAPTER XVIL

DEDUCTIONS FROM THE THEOREMS OF PASCAL
AND BRIANCHON.

164. WE have already given some propositions and con-
structions (Arts. 161-163) which follow immediately from the
theorems of Pascal and Brianchon, by supposing some of
the elements to pass to infinity. Other corollaries may be
deduced by assuming two of the six points or six tangents to
approach indefinitely near to one another *.

If 4B’CA’BC’ are six points on a conic, Pascal’s theorem
asserts that the pencils 4 (4'B’CC") and B(4’B’CC’), for
example, are projective with one another. To the ray 4B of
the first pencil corresponds in the second the tangent at B, so
that we may say that the group of four lines

AA’, AB’, AC, AB
is projective with the group
B4’ BB, BC, tangent at B.

But this amounts evidently to saying that the point C’, which
was at first taken to have any arbitrary position on the curve,
has come to be indefiritely near to
the point B. Instead then of the
inscribed hexagon we have now the
figure made up of the inscribed
pentagon A4 B’CA’B and the tan-
gent 4 at the vertex B (Fig. 114);
and Pascal’s theorem becomes the
following :

If a pentagon is inscribed in a conic,
the points of intersection R, Q of two
pairs of non-consecutive sides (AB’ and A’ B, AB and CA’), and the

Fig. r14.

* CARNOT, loc. cit., pp. 455, 456.
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point P where the fifth side (B’C) meets the tangent at the opposite
vertex (B), are collinear.

This corollary may also be deduced from the construction (Art. 84,
right) for two projective pencils. Three pairs of corresponding rays
are here given, viz. 44’ and BA’, AC and BC, AB’ and BB’. We
cut the two pencils by the transversals C4’, CB’ respectively; if R
be the point of intersection of 4’B and 4B’, then any pair of corre-
sponding rays of the two pencils must cut the transversals C'4’, CB’
respectively in two points which are collinear with R. In order
then to obtain that ray of the second pencil which corresponds to
A B, viz. the tangent at B, we join R to the point of intersection Q of
C4’ and AB, and join QR meeting CB’ in P; then BP is the
required ray b. But this construction agrees exactly with the corol-
lary enunciated above.

165. By help of this corollary the two following problems can be
solved :

(1). Given five points A, B, C, 4’, B of a conze, to draw the tangent
at one of them B (¥Fig. 114).

Solution. Join @), the point of intersection of 4B and 04’ , to R,
the point of intersection of 4B” and A’B; if P is the point where
QR meets B’C, then BP will be the required tangent *,

Particular cases.

Given four points of a hyperbola and the direction of one asymptote,
to draw the tangent at one of the given points. (This is obtained
by taking one of the points 4, B’, €', 4’ to lie at infinity.)

Given four points of a hyperbola and the direction of one asymptote,
to draw that asymptote. (B at infinity.) Bl

Given three points of a hyperbola and the directions of both
asymptotes, to draw the tangent at one of the given points. (Two of
the four points 4, B/, C', 4’ at infinity.) ~ - ¢/

Given three points of a hyperbola and the directions of both
asymptotes, to draw one of the asymptotes. (B and one of the other
points at infinity.) 2. ¢’ L <@

(2). Given four points A, B, A’, C of a conic and the tangent at
one of them B, to construct the conic by points ; for example, to find
the point of the curve which lies on a given straight line r drawn
through A (Fig. 114).

Solution. Let R be the point where A4’B meets », and @ the
point where 4 B meets C4’; and let QE cut the given tangent in P.
The point B’ where C'P cuts the given straight line » will be the one
required.

By supposing one or more of the elements of the figure to lie at

* MACLAURIN, loc. cit., § 40.
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infinity, e.g. one of the points 4, 47, C'; or two of these points; or
the point 4 and the line r; or the point B; or the point B and one
of the other points; or the point B and the given tangent ; we obtain
the following particular cases :

To construct by points a hyperbola, having given

three points of the curve, the tangent at one of these points, and
the direction of one asymptote;
or: two points, the tangent at one of them, and the directions of
both asymptotes;
or: three points and an asymptote;
or: two points, one asymptote, and the direction of the other
asymptote.

Given three points of a hyperbola, the tangent at one of them,
and the direction of an asymptote, to find the direction of the other
asymptote.

To construct by points a parabola, having given three points of
the curve (lying at a finite distance) and the direction of the point at
infinity on it. B-C / Y/

166. Returning to the hexagon 4 B’C A’ BC’ inscribed in a

r conic, let not only C” be taken in-
definitely near to B, but also C
indefinitely near to B’. The figure
will then be that of an inscribed
quadrangle 4B’4'B together with the
tangents at B and B’ (Fig. 115), and
Pascal’s theorem becomes the follow-
ing:

If a quadrangle s inscribed in a
conic, the points of intersection of the
two pairs of opposite sides, and the point
of intersection of the langents at a pair
of opposite wvertices, are three collinear
Fig. 115. points.

This property coincides with one already obtained elsewhere (Art.
85, right). For considering the projective pencils of which B4 and B’4,
B4’ and B’A’, ... are corresponding rays, it is seen that the straight
line which joins the point of intersection @ of BA and B’4’ to the
point of intersection & of B’4 and BA’ must pass through the point
of intersection P of the rays which correspond in the two pencils
respectively to the straight line joining their céntres B and B’.

167. By help of the foregoing corollary the following problems can
be solved :
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(1). Given four points A, B’, 47, B of a conic and the tangent BP
at one of them B, to draw the tangent at another of the points B’
(Fig. 1135).

Solution. Let AB and A’B’ meet in @, and 4B’ and 4’B in R;
and let QR meet the given tangent in P. Then B’P will be the
required tangent*.

By supposing one of the given points, or the given tangent, to
lie at infinity, the solutions of the following particular cases are
obtained : Por)atadn-e

To draw the tangent at a given point of a parabela, having given
in addition two other points on the curve, the tangent at one of them,
and the direction of one asymptote; or, one other point, the tangent
at this, and the directions of ‘both asymptotes; or, one other point,
one asymptote, and the direction of the other asymptote.

To draw the asymptote of a hyperbola when its direction is known,
having given in addition three points on the curve and the tangent at
one of them; or, two points on the curve, the tangent at one of them,
and the direction of the second asymptote; or, two points on the
curve and the second asymptote.

To draw the tangent at a given point of a parabola, having given
two other finite points on the curve, and the direction of the point at
infinity on it.

(2). To construct a conic by points, having given three points A, B, B’
on the curve and the tangents BP, B’P at two of them; t.e. to
determine, for example, the point A’ in which an arbitrary straight
line » drawn through B is cut by the conic (Fig. 116).

Solution. Join the point of intersection P of the given tangents
to the point R where r cuts AB’; and let
PR cut ABin Q. If B’Q be joined, it will
cut 7 in the required point 4.

By supposing one of the points 4, B, B’
or one of the lines BP, B’P, r to lie at
infinity, we shall obtain the solutions of
the following particular cases:

To construct by points a hyperbola,
having given two points on the curve, the
tangents at these, and the direction of one
asymptote ; or, one point on the curve,
the tangent there, one asymptote and the
direction of the second asymptote; or, one point on the curve and
both asymptotes.

To construct by points a parabola, having given two points on the

Fig. 116.

* MACLAURIN, loe. ctt., § 38.
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curve, the tangent at one of them, and the direction of the point at
infinity on the curve,

168. The tangents at the other vertices 4 and A’ of the
quadrangle 4 B4’ B’ (Fig. 116) will also intersect on the straight
line joining the points (4B, 4"B’) and (4B’, 4’B). Hence the
theorem of Art. 166 may be enunciated in the following, its
complete form :

If a quadrangle is inscribed in a conic, the poinis of intersection
of the two pairs of opposite sides, and the points of intersection of
the tangents at the two pairs of opposite vertices, are four collinear
points.

If two opposite vertices of the quadrangle be taken to lie at
infinity, this becomes the following :

If on a chord of a hyperbola, as diagonal, a parallelogram be
constructed so as to have its sides parallel to the asymptotes, the
other diagonal will pass through the point of intersection of the
asymptotes.

169. THEOREM. The complete quadrilateral formed by jfour
tangents to a conic, and the complete quadrangle formed by their four
points of contact, have the same diagonal triangle.

In the last two figures write C, D, F, G in place of

Fig. 117.

A4’, B", R, Q respectively. In the inscribed quadrangle 4BCD
(Fig. 117) the point of intersection of the tangents at 4 and C,



170} OF PASCAL AND BRIANCHON. 141

that of the tangents at B and 7, the point of intersection of the
sides 40, BC, and that of the sides 4B, CD all lie on one straight
line Z/@. If the same points 4, B, C, D are taken in a different
order, two other inscribed quadrangles 4CDB and ACBD are
obtained, to each of which the theorem of Art. 168 may be
applied. Taking the quadrangle ACDB, it is seen that the
point of intersection of the tangents at 4 and D), that of the
tangents at C and B, the point of intersection of the sides
AB, CD, and that of the sides 4C, BD all lie on one straight
line F'G. So too the quadrangle ACBD gives four points
lying on one straight line £F'; viz. the points of intersection
of the tangents at 4 and B, of the tangents at ¢ and D, of the
sides 40D, CB, and of the sides AC, BD*.

The three straight lines ZG, GF, FE thus obtained are the
sides of the diagonal triangle ZFG (Art. 36, [2]) of the complete
quadrangle whose vertices are the points 4, B, C,D; and
since the same straight lines contain also the points in which
intersect two and two the tangents a, 6, ¢, d at these points,
they are also the diagonals of the complete quadrilateral
formed by these four tangents., The theorem is therefore
proved.

170. In the complete quadrilateral adcd the diagonal f,
whose extremities are the points «c, i, cuts the other two
diagonals g and ¢ in % and @ respectively ; these two points
are therefore harmonically conjugate with regard to ac and d
(Art. 56). The correlative theorem is: The two opposite sides
of the complete quadrangle 4 BCD which meet in 7 are har-
monically conjugate with regard to the straight lines which
connect / with the two other diagonal points #and G (Art. 57).
Summing up the preceding, we may enunciate the following
proposition (Fig. 117):

If at the vertices of a (simple) quadrangle ABCD, inscribed in a
conic, tangents a,b,c,d be drawn, so as to form a (simple) quadri-
lateral circumscribed to the conic, then this quadrilateral possesses the
Jollowing properties with regard to the quadrangle: (1) the diagonals
of the two pass through one point (F) and form a harmonic pencil ;
(2) the points of intersection of the pairs of opposite sides of the two
lie on one straight line (EG) and jform a harmonic range; (3) the

* MACLAURIN, loe. cit., § 50; CaARNOT, loc. cit., pp. 453, 454-
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diagonals of the quadrilateral pass through the points of intersection
of the pairs of opposite sides of the quadrangle *.

171. By help of the theorem of Art. 169, when we are given four
tangents a, b, ¢, d to a conic and the point of contact 4 of one of
them, we can at once find the points of contact of the three others;
and when we are given four points 4, B, ¢, D on a conic and the
tangent a at one of them, we can draw the tangents at the three
other points t.

Solution. Draw the diagonal
triangle EFG of the complete
quadrilateral abed; then 4@,
AF, AE will cut b, ¢, d respec-
tively in the required points of
contact B, C, D.

Draw the diagonal triangle
EFG of the complete quadrangle
ABCD; then the straight lines
joining ag, af, ae to B, C, D re-
spectively will be the required
tangents.

172. The theorem of Art. 169 may be enunciated with re-
gard to the (simple) quadrilateral formed by the four straight
lines a, 4, ¢, d ; it then takes the following form, under which
it is seen to be already included in the theorem of Art. 170§ :

In a quadrilateral circumscribed to a conic, the straight lines
whick join the points of contact of the pairs of opposite sides pass
through the point of intersection of the diagonals (Fig. 118).

This property coincides with one already proved with regard

to two projective ranges (Art. 85, left). For
b consider the projective ranges on a and ¢ as
bases, in which ab and ¢b, ad and ed,... are

corresponding points; the straight lines which
connect the pairs of points ab and ed, ¢b and

'v ad respectively, must intersect on the straight

line which connects the points corresponding
a in the two ranges respectively to ac; but this
is the straight line joining the points of contact

d ofaande. -

If the conic is a hyperbola, and we consider
the quadrilateral which is formed by the asymp-
totes and any pair of tangents, the foregoing
theorem expresses that the diagonals of such a quadrilateral are
parallel to the chord which joins the points of contact of the two
tangents §.

Fig. 118.

* CHASLES, Sections coniques, Art. 121,

4+ MacravRriy, loc. cit., §§ 38, 39.

I NEwroN, loc. cit., Cor. ii. to lemma xxiv.
§ APOLLONIUS, loc. cit., iii. 44.

-
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173. The theorem of Art. 172 gives the solution of the problem :

To construct a conte by tangents, having given three tangents a, b, ¢
and the points of contact A and C of two of them; to draw, for
example, through a given point H lying on @ a second tangent to the
curve (Fig. 118).

Solution. Join the point ab to the point of intersection of 4C and
H (be); the joining line will meet ¢ in a point which when joined to
H gives the required tangent d.

If one of the points 4, €' or one of the given tangents be supposed
to lie at infinity, the solution of the following particular cases is
obtained :

To coustruct by tangents a hyperbola, having given one asymptote,
two tangents to the curve, and the point of contact of one of them;
or, both asymptotes and one tangent.

To construct by tangents a parabola, having given the point at
infinity on the curve, two tangents, and the point of contact of one of
them ; or, two tangents and the points of contact of both., =

Given four tangents to a conic and the point of contact of one of
them, to find the points of contact of the others.

174. If in Pascal’s theorem the points 4/, B’, C’ be taken to
lie indefinitely near to 4, B, C
respectively, the figure becomes
that of an inscribed triangle
ABC together with the tangents
at its vertices (Fig. 119); and
the theorem reduces to the
following :

In a triangle inscribed in a conic,
the tangents at the vertices meet the
respectively opposite sides in three
collinear points.

175. This gives the solution of the problem :

Given three poinis A, B, C of a conic and the tangents at two of
them A and B, to draw the tangent at the third point C (Fig. 119).

Solution. Let P, @ be the points where the given tangents at
4, B cut BC, CA respectively; if PQ cut 4B in R, then CR is the
tangent required.

The following are particular cases :

Given two points on a hyperbola, the tangents at these points,
and the direction of one asymptote, to construct the asymptote
itself.

Given one asymptote of a hyperbola, one point on the curve, the
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tangent at this point, and the direction of the second asymptote, to
construct this second asymptote.

Given both asymptotes of a hyperbola and one point on the curve,
to draw the tangent at this point.

(From the solution of this problem, it follows that the segment
determined on any tangent by the asymptotes is bisected at the point
of contact.) '

Given two points on a parabola, the direction of the point at
infinity on the curve, and the tangent at one of the given points, to
draw the tangent at the other given point.

176. The inseribed triangle 4BC and the triangle DEF
formed by the tangents (Fig. 119) possess the property that
their respective sides BC and EF, C4 and FD, AB and DE
intersect in pairs in three collinear points. The triangles are
therefore homological, and consequently (Art. 18) the straight
lines 40, BE, CF which connect their respective vertices pass
through one point O. Thus we have the proposition:

In a triangle circumseribed lo a conic, the straight lines whick join

the vertices to the points of contact of the respectively opposite sides
are concurrent.

177. By help of this proposition the following problem can be
solved :

Given three tangents to a conic and the points of contact of two of
them, to determine the point of contact of the third.

Solution. Let DEF (Fig. 119) be the triangle formed by the
three tangents, and let 4, B be the points of contact of ZF, D re-
spectively. If 4D and BE intersect in O, then FO will cut the
tangent DX in the required point of contact C.

Particular cases. ,

Given one asymptote of a hyperbola, two tangents, and the point
of contact of one of them, to determine the point of contact of the
other. '

Given both asymptotes of a hyperbola, and one tangent, to deter-
mine the point of contact of the latter.

Given two tangents to a parabola and their points of contact, to
determine the direction of the point at infinity on the curve.

Given two tangents to a parabola, the point of contact of one of
them, and the direction of the point at infinity on the curve, to deter-
mine the point of contact of the other given tangent.

178. As a particular case of the theorem of Art. 176, consider a
parabola and the circumscribing triangle formed by the tangents at
any two points 4, B, and the straight line at infinity, which is also
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a tangent. If the tangents at 4 and B meet in C' (Fig. 120), the
straight line joining C to the middle point D of the chord 4 B will be
parallel to the direction in
which lies the point at infinity a4 - M D B
on the curve, A
Again, if any point M be
taken on AB, and parallels
MP , MQ be drawn to BC , AC
respectively to meet AC , BC
in P, Q; and if MR be drawn c
parallel to DC to meet PQ in Fig. 120.
B ; then PQ will be a tangent
to the parabola, and Z its point of contact.

179. Just as from Pascal’s theorem a series of special
theorems have been derived, relating to the inseribed pen-
tagon, quadrangle, and triangle, so also from Brianchon’s
theorem can be deduced a series of correlative theorems
relating to the circumscribed pentagon, quadrilateral, and
triangle.

Suppose e.g. that two of the six tangents «,?’, ¢, a’, 4, ¢ which
form the circumscribed hexagon (Art. 153, left), 4 and ¢ for
example, lie indefinitely near to one another. Since a tangent
intersects a tangent indefinitely
near to it in its point of contact
(Arts. 146, 149), the hexagon will
be replaced by the figure made up
of the circumscribed pentagon
alf ca’l together with the point of
contact of the side 4 (Fig. 121).
Brianchon’s theorem will then become the following:

If a pentagon is circumseribed to a conic, the two diagonals whick
connect any two pairs of opposite vertices, and the straight line join-
ing the fifth vertew to the point of contact of the opposite side, meet
in the same point.

Fig. 121.

This theorem expresses a property of projective ranges which has
already (Art. 85, left) been noticed.

For consider the two projective ranges determined by the other
tangents on a and b as bases. Three pairs of corresponding points
are given, riz. those determined by «’, ¥, and ¢. Project the first
range from the point ca’ and the second from cb’; this gives two
pencils in perspective of which corresponding pairs of rays intersect

L
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on the straight line » which joins the points ab’, ba’. In order
then to obtain that point of the-second range which corresponds to
the point ab of the first, viz. the point of contact of the tangent b, we
draw the straight line ¢ which joins the points ca’ and ab, and then
the straight line p which joins ¢’ and ¢r; then pb is the point
required. But this construction agrees exactly with the theorem in
question.
180. By means of the property of the circumscribed pentagon
just established the following problems can be solved:
(1). Given five tangents to a conic, to determine the point of contact
of any one of them ™.
. Particular case. Given four tangents to a parabola, to determine
their points of contact, and also the direction of the point at infinity
on the curve.

 (2). To construct by tangents a conic, having given four tangents
and the point of contact of one of them.

Particular cases.

To construct by tangents a hyperbola of which three tangents and
one asymptote are given.

To construct by tangents a parabola, having given three tangents
and the direction of the point at infinity on the curve; or three
tangents and the point of contact of one of them.

181. The corollaries of Brianchon’s theorem which relate to the
circumscrihed quadrilateral and triangle have already been given
(they are the propositions of Arts. 172 and 176); they are correlative
to the theorems of Arts. 166 and 174, just as those of Arts. 164 and
179 are correlative to one another.

It will be a very useful exercise for the student to solve for himself
the problems enunciated in the present chapter: the constructions all
depend upon two fundamental ones, correlative to one another, and
following immediately from Pascal's and Brianchon’s theorems.

182. The corollaries to the theorems of Pascal and Brianchon show
that just as a conic is uniquely determined by five points or five
tangents, so also it is uniquely determined by four points and the
tangent at one of them, by four tangents and the point of contact of
one of them, by three points and the tangents at two of them, or
by three tangents and the points of contact of two of them. It
follows that

(1). An infinite number of conics can be drawn to pass through
three given points and to touch a given straight line at one of these
points; or to pass through two given points and to touch at them
two given straight lines; but no two of these conics can have another
point in common.

* MACLAURIN, loc. cit., § 41.
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(2). An infinite number of conics can be drawn to touch a given
straight line at a given point, and to touch two other given straight
lines; or to touch two given straight lines at two given points; but
no two of these conics can have another tangent in common.

If then two conics touch a given straight line at the same point
(t.e. if the conics touch one another at this point), they cannot have
in addition more than two common tangents or two common points ;
and if two conics touch two given straight lines at two given points
(4.e. if two conics touch one another at two points) they cannot have
any other common point or tangent.

Thus if two conics touch a straight line @ at a point 4, this point
is equivalent to two points of intersection, and the straight line a is
equivalent to two common tangents,



CHAPTER XVIL

DESARGUES’ THEOREM.

183. THEOREM. Any transversal
whatever meets a conic and the op-
posite sides of an inscribed quad-
rangle in three conjugate pairs of
points of an involution.

This is known as DESARGUES’
theorem *,

Let QRST (Fig. 122) be a
quadrangle inscribed in a conic,

Fig. 122.

and let s be any transversal cut-
ting the conic in P and 2/, and
the sides Q7', RS, QI2, T'S of the

CoRrRELATIVE THEOREM. The
tangents from an arbitrary point to
a conic and the straight lines which
Join the same point to the opposite
wvertices of any circumscribed quad-
rilateral form three conjugate pairs
of rays of an involution.

Let grst (Fig. 123) be a quad-
rilateral circumscribed about a

Fig. 123.

conic; from any point § let
tangents p, p’ be drawn to the
conic, and let the straight lines

* DESARGUES, loc. cit., pp. 171, 176,
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quadrangle in 4, 4’, B, B’ re-
spectively.

The two pencils which join
the points P, R, P’, T of the
conic to @ and § respectively are
projective with one another (Art.
149), and the same is therefore
true of the groups of points in
which these pencils are cut by
the transversal. That is, the
group of points PBP’A is pro-
jective with the group PA’P’B’,
and therefore (Art. 45) with
P’B’P4A’; consequently (Art.
123) the three pairs of points

PP’/ A4’ BB’
are in involution.

184. This theorem, like that
of Pascal (Art. 153, right), enables
us to construct by points a conic
of which five points P, Q , 2, S, T
are given. For if (Fig. 122) an
arbitrary transversal s be drawn
through P, cutting @7, RS, QR,
7'S in 4, A’, B, B’ respectively;
and if (as in Art. 134) the point
P’ be found, conjugate to P in
the involution determined by the
pairs of points 4, 4’ and B, B’;
then will P’ be another point on
the conic to be constructed.

185. The pair of points C', €’
in which the transversal cuts the
diagonals @S and RZT of the
inscribed quadrangle belong also
(Art. 131, left) to the involution
determined by the points 4, 4’
and B, B’.

Moreover, since the points
A, 4’ and B, B’ suffice to deter-
mine the involution, the points
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a,a’, b, b’ be drawn which join
S to the vertices ¢¢, rs, gr, ts of
the quadrilateral respectively.

The two groups of points in
which ¢ and s are cut by the
tangents p, r, p’, ¢t are pro-
jective with one another (Art.
149), and the same is therefore
true of the pencils formed by
joining these points to S. That
is, the group of rays pbp’a is
projective with the group pa’p’?’,
and therefore (Art. 45) with
p’b’pa’; consequently (Art. 123)
the three pairs of rays

pp’, aa’, bb’

are in involution.

This theorem, like that of
Brianchon (Art. 153, left), en-
ables us to construct by tangents
a conic of which five tangents
p>9q9,7,8,t are given. For if
(Fig. 123) an arbitrary point §
be taken on p, and this point be
joined to the points g¢t, rs, ¢r, ts
respectively by the raysa,a’, b, ¥’;
and if (Art. 134) the ray p’ be
constructed, conjugate to p in the
involution determined by the pairs
of rays @, a” and b, b’; then will
p” be another tangent to the conic
to be constructed.

The pair of rays ¢, ¢/ which
connect S with the points of
intersection ¢s and #¢ of the
opposite sides of the circum-
scribed quadrilateral belong also
(Art. 131, right) to the involu-
tion determined by the rays a, a’
and b, b’.

Moreover, since the rays a, o’
and b, b’ suffice to determine the
involution, the rays p, p” are a
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P, P’ are a conjugate pair of
this involution for every conic,
whatever be its nature, which
circumscribes the quadravgle
QRST.

Thus :

Any transversal meets the conies
circumscribed about a given quad-
rangle in pairs of points forming
an involution.

If the involution has double
points, each of these is equivalent
to two points of intersection P
and P’ lying indefinitely near to
one another; and will therefore
be the point of contact of the
transversal with some conic cir-
cumseribing the quadrangle.

There are therefore either two
conics which pass through four
given points @, B, S, 7 and
touch a given straight line s
(not passing through any of the
given points), or there is no
conic which satisfies these con-
ditions.

186. If, from among the six
points A4’, BB’, PP’ of an
involution, five are given, the
sixth is determined (Art. 134). If
then in Fig. 122 it is supposed
that the conic is given, and that
the quadrangle varies in such a
way that the points 4, 4’, B
remain fixed, then also the point
B’ will remain invariable; con-
sequently :

If a variable quadrangle move
in such a way as to remain
always tnscribed in a given conic,
while three of its sides turn each
round one of three fixed collinear
points, then the fourth side will
turn round a fourth fixed point,

DESARGUES  THEOREM.
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conjugate pair of this involution
for every conic, whatever be its
nature, which is inscribed in the
quadrilateral grst.

Thus:

The pairs of tangents drawn
Jrom any point to the conics
inscribed in a given quadrilateral
JSorm an involution.

If the involution has double
rays, each of these is equivalent
to two tangents p and p’ lying
indefinitely near to one another;
and will therefore be the tangent
at S to some conic inscribed in
the quadrilateral.

There are therefore either two
conics which touch four given
straight lines ¢, r, s, ¢ and pass
through a given point S (not
lying on any of the given lines),
or there is no conic which satis-
fies these conditions,

If, from among the six rays
ad/y bb’, pp’ of an involution,
five are given, the sixth is deter-
mined (Art. 134). If then in
Fig. 123 it is supposed that the
conic is given, and that the
quadrilateral varies in such a
way that the rays a, a’, b remain
fixed, then also the ray &’ will
remain invariable ; consequently :

If a variable quadrilateral move
i such a way as to remain always
ctreumseribed fo a given conic,
while three of its wertices slide
each along one of three fixed con-
current straight Ulines, then the
Sfourth wertex will slide along a
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collinear with the three given fourth fixed straight line, concur-
ones. rent with the three given ones.

187. The theorem of the preceding Art. (left) may be ex-
tended to the case of any inscribed polygon having an even
number of sides. Suppose such a polygon to have 2z sides,
and to move in such a way that 2#2—1 of these pass respec-
tively through as many fixed points all lying on a straight
line s (Fig. 124). Draw the
diagonals connecting the
first of its vertices with the
4th, 6t 8th . 2 (p—1)h
vertex, thus dividing the
polygon into » — 1 simple
quadrangles. In the first
of these quadrangles the first
three sides (which are the
first three sides of the polygon) pass respectively through
three fixed points ons; therefore also the fourth side (whichis
the first diagonal of the polygon) will pass through a fixed point
on s. In the second quadrangle the first three sides (the first
diagonal and the fourth and fifth side of the polygon) pass
respectively through three fixed points on s; therefore the
fourth side (the second diagonal of the polygon) will pass
through a fixed point on s. Continuing in the same manner,
we arrive at the last quadrangle and find that the fourth side
of this (¢ e. the 2" side of the polygon) passes through a
fixed point on s. We may therefore enunciate the general
theorem :

If a variable polygon of an even number of sides move in suckh a
way as to remain always inscribed in a given conic, while all its sides
but one pass respectively through as many fived points lying on a
straight line, then the last side also will pass through a fized point
collinear with the others*.

If tangents can be drawn to the conic from the fixed point
round which the last side turns, and if each of these tangents
is considered as a position of the last side, the two vertices
which lie on this side will coincide and the polygon will have
only 22—1 vertices. The point of contact of each of the two

* PoNCELET, loc. cit., Art. 513.
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tangents will therefore be one position of one of the vertices
of a polygon of 272—1 sides inscribed in the conic so that its
sides pass respectively through the 22—1 given collinear
points.

188 The solution of the correlative theorem is left as an
exercise to the student: the enunciation is as follows :

If a variable polygon of an even number (2 n) of sides moves so as to
remain always circumscribed to a given conic, while all its vertices
but one slide along as many fived
straight lines radiating from a centre,
then the last vertew also will slide
along a fived straight line passing
through the same centre (Fig.
125).

If the straight line on which
this last vertex slides cut the
conic in two points, and if the
tangents at these be drawn, each
of them will be one position of
a side of a polygon of 22— 1
sides ecircumscribed about the
conic so that its vertices lie each
on one of the 272 — 1 given con-

Fig. 125.

current straight lines.

189. If in Fig. 122 it be sup-
posed that the points S and 7' lie
indefinitely near to one another on
the conic, or in other words that
ST is the tangent at S, then the
quadrangle QRST reduces to the
ingeribed triangle QRS and the
tangent at S (Fig. 126), so that
Desargues’ theorem becomes the
following :

If a triangle QRS is inscribed
in a conic, and if a transversal s
meet two of its sides in A and A7,
the third side and the tangent at
the op; osite vertex in B and B,
and the conic itself in P and I,

If in Fig. 123 the tangents
s and ¢ be supposed to lie indefi-
nitely near to one another, so that
st becomes the point of contact of
the tangent s, then the quadri-
lateral grst reduces to the circum-
seribed triangle grs and the point
of contact of s (Fig. 127), so that
the theorem correlative to that of
Desargues becomes the following :

If a triangle qrs ts circum-
scribed about a conic, and if from
any point S there be drawn the
straight lines a, a’ to two of its
wvertices, the straight lines b, b" to
the third vertex and the point of
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these three patrs of points are in
tnvolution..

190. This theorem gives a
solution of the problem : Géven five

Fig. 126.

points P, P’,Q, R, S on a conic,
to draw the tangent at any one of
them S.

Forif 4, 4’, B(Fig. 126) are the
points in which the straight line
PP’ cuts the straight lines Q.5, SR,
R@Q respectively, we construct (as
in Art. 134) the point B’ conjugate
to B in the involution determined
by the two pairs of points 4, 4’
and P, P’; then B’S will be the
required tangent.

191. If in Fig. 126 it be now
supposed in addition that the
points @ and R also lie inde-
finitely near to one another on
the conic, ¢.e. that QR is the
tangent at ), then the inscribed
quadrangle QST is replaced by
the two tangents at @ and S and
their chord of contact QS counted
twice (Fig. 128).

Since the straight lines Q7
RS now coincide, 4 and 4’ will
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contact of the opposite side, and
the tangents p, p’ to the conic,
then these three pairs of rays are
in tnvolution.

This theorem gives a solution of
the problem : Given five tangents

Fig. 127.

P, P’ q, 7,8 to a conic, to find the
point of contact of any one of
them s.

Yor if a, a’, b (Fig. 127) are the
rays joining the point pp’ to the
points g¢s, sr, rq respectively, we
construct (as in Art. 134) the ray
b’ conjugate to b in the involu-
tion determined by the two pairs
of rays a,a’ and p, p; then ¥'s
will be the required point of con-
tact.

If in Fig. 127 it be now sup-
posed in addition that the tan-
gents ¢ and r lie indefinitely near
to one another, 7.e. that gr is the
point of contact of the tangent g,
then the circumscribed quadri-
lateral ¢rst is replaced by the
points of contact of the tangents
q and- s and the point of intersec-
tion ¢s of these tangents counted
twice (Fig. 129).

Since the points ¢f, rs now
coincide in a single point g¢s, the
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also coincide in one point, which
is consequently one of the double
points of the involution deter-
mined by the pairs of conjugate

Fig. 128.

points P, P’ and B, B’. In this
case, then, Desargues’ theorem
becomes the following :

If a transversal cut two tan-
gents to a conic in B and B’, their
chord of contact in A, and the
conic ttself in P and P’, then the
point A is a double point of the
tnwvolution determined by the pairs
of points P, P’ and B, B’.

Or, differently stated:

If a variable conic pass through
two given points P and P’ and
touch two given straight lines, the
chord which joins the points of
contact of these two straight lines
will always pass through « fiwed
point on PP’

If the tangents QU, SU vary
at the same time with the conic,
while the points P, P’, B, B’ re-
main fixed, the chord of contact
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rays @ and @’ will also coincide
in a single ray a, which is conse-
quently one of the double rays of
the involution determined by the

Fig. 129.

pairs of conjugate rays p, p” and
b,¥. The theorem correlative to
that of Desargues then becomes
the following :

If a given point S be joined to
two points on a conic by the
straight lines b, b/, and to the
point of intersection of the tan-
gents at these points by the stratght
line a; and if from the same
point S there be drawn the two tan-
gents p, p’ to the conic; then a is
a double ray of the tnvolution de-
termined by the pairs of rays p , p’
and b, b'.

Or, differently stated :

If a variable conmic touch two
given straight lines p and p’ and
pass through two given points, the
tangents at these two points will
always intersect on a straight line
passing through pp/.

If the points of contact of ¢ and
@ vary at the same time with the
conic, while the straight lines
P, Py b, ¥ remain fixed, the point
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@S must still always pass through
one or other of the double points
of the involution determined by
the pairs of points P, P’ and B, B’.
If then four collinear points P, 7/,
B, B’ are given and any conic is
drawn through P and P’, and
then the pairs of tangents from
B and B’ to this conic; then if
each tangent from B is taken to-
gether with each tangent from
B’ four chords of contact will be
obtained, which intersect one
another two and two in the double
pointsof the involution determined
by P, P’ and B, B’ *,

192. From the theorem of the
last Article . (left) is derived a
solution of the problem: Given
Jour points P, P’, Q, S on a conic
and the tangent at one of them @,
to draw the tangent at any other
of the given points S (Fig. 128).

For if A4, B are the points in
which PP’ cuts QS and the given
tangent respectively, and we con-
struct the point 5/ conjugate to
B in the involution determined
by the pair of points P, P’ and
the double point 4; then the
straight line SB’ will be the tan-
gent required.

DESARGUES’ THEOREM.

155

of intersection ¢8 must still always
lie on one or other of the double
rays of the involution determined
by the pairs of rays p,p and b,?’.
If then four concurrent straight
lines p, p’, b, &’ are given and any
conic is drawn touching p and p/,
and then the two pairs of tan-
gents to this conic at the points
where it is cut by & and ¥’;
then if the tangents at the two
points on b are combined with
the tangents at the two points on
v, each with each, four points of
intersection will be obtained,
which lie two and two on the
double rays of the involution de-
termined by p, p’ and b,¥.

From the theorem of the last
Article (right) is derived a solu-
tion of the problem: Given four
tangents p, p’, q , 8 to a conic and
the point of contact of one of them
g, to determine the point of contact
of any other of the given tangents
s (Fig. 129).

For if @ ,b are the rays which
connect pp’ with ¢s and with the
given point of contact respec-
tively, and we construct the ray
¥ conjugate to b in the involu-
tion determined by the pair of
rays p,p’ and the double ray a;
then 0" will be the required
point of contact.

193. Consider again the theorem of Art. 191; and suppose that
the conic is a hyperbola, and that its asymptotes are the tangents

given (Fig. 130).

The chord of contact @S lies in this case entirely

at infinity; so that the involution (PP’, BB’,...) has one double
point at infinity, and therefore (Arts. 59, 125) the other double point

* BRIANCHON, loe. cit., pp. 20, 2I.
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is the common point of bisection of the segments PP/, BB/,... We

conclude that :

If « hyperbola and its asymptotes be cut by a transversal, the seg-
ments intercepted by the curve and by the asymptotes respectively have

the same middle point.

Fig. 130.

From this it follows that

PB = B’P’ and PB’ = BP’*,
which gives a rule for the construction of a hyperbola when the two
asymptotes and a point on the curve are given t.

194. Consider once more the
theorem of Art. 191 (left), and
suppose now that the points P
and P’ are indefinitely near to one
another, i.e. let the transversal
be a tangent to the conic (Fig.
131). Its point of contact P will

U

Fig. 131.

be the second double point of the
involution determined by the pair
of points B, B’ and the double
point 4 ; consequently (Art. 125)
P and A are harmonic conjugates

.

+ Ibid,, ii. 4.

Consider once more the theorem
of Art. 191 (right), and suppose
now that the tangents p and p’ lie
indefinitely mear to one another,
i.e. let the point S lie on the
conic itself (Fig. 132). The tan-
gent to the conic at S will be the

Fig. 132.

second double ray of the involu-
tion determined by the pair of
rays b, and the double ray a;
consequently (Art. 125) p and a
are harmonic conjugates with

* APOLLONTUS, loc. cit., ii. 8, 16.
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with regard to B and B’; and
we conclude that :

In a triangle UBB’ circum-
scribed to a conic, any side BB’
18 divided harmonically by its
point of contact P and the point
where it meets the chord QS joining
the points of contact of the other
two sides.

195. From 4 a second tangent
can be drawn to the conic; let its
point of contact be O. Since the
four points P, 4,5, B’, which have
been shown to be harmonic, are
respectively the point of contact
of the tangent 4B, and the three
points where this tangent cuts
three other tangents 04, @B, SB’
respectively, it follows that the
tangents 4B, 04, QB, 8B’ will
be cut by every other tangent in
four harmonic points (Art. 149);
t.e. they are four harmonic tan-
gents (Art. 151). And since the
chord of contact @S of the con-
jugate tangents @B, SB’ passes
through A the point of intersec-
tion of the tangents at P and O,
we have the theorem :

If the chord of contact of one
pair of tangents to a conic pass
through the point of intersection of
another pair of tangents, then each
pair is harmonically conjugate
with regard to the other.

And conversely :

If four tangenis to a conic are
harmonic, the chord of contact of
each pair of conjugate tangents
passes through the point of inter-
section of the other pair.
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regard to b and ¥ ; and we con-
clude that :

In a triangle ubl’ inscribed in
a conic, any two sides b and b
are harmonic conjugates with re-
gard to the tangent p at the vertex
in which they meet and the straight
line joining this vertex to the point
of tntersection of the tangents q
and s al the other two vertices.

The straight line @ cuts the
conic in a second point; let the
tangent at this be 0. Since the
four rays p,a,b,b’, which have
been shown to be harmonic, are
respectively the tangent at S, and
the straight lines which join S to
three other points on the conic
(the points of contact of o, ¢, and
s) it follows that the straight
lines connecting these four points
with any other point on the conic
will form a harmonic peneil (Art.
149); 4.e. the four points are
harmonic (Art. 151). And since
the point of intersection of the
tangents ¢ and s lies on the chord
of contact of the tangents p and o,
we have the theorem :

If the point of intersection of
the tangents at one pair of points
on a conic lie on the chord join-
ing another such pair of points,
then each pair is harmonically
conjugate with regard to the other.

And conversely :

If four points on a conic are
harmonic, the point of intersection
of the tangents at each pair of con-
Jugate points lies on the chord
Jjoining the other pair.

198. These two correlative propositions can be combined into one
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by virtue of the property already established (Arts. 148, 149) that
the tangents at four harmonic points on a conic are themselves har-
monic, and conversely. We may then enunciate as follows :

If a pair of tangents to a conic meet in a point lying on the chord
of contact of another pair, then also the second pair will meet in a
point lying on the chord of contact of the first ; and the four tangents
(and likewise their points of contact) will form a harmonic system *,

Thus in Fig. 131 QS passes through 4, the point of intersection of
P4 and 04, and similarly OP passes through U, the point of inter-
section of @B and SB’; and the pencil U (QSPA) is harmonic, and
likewise the pencil 4 (OPQU).

In Fig. 132 the point gs lies on a, the chord of contact of 0 and p,
and similarly the point op lies on the straight line % which joins the
points of contact of ¢ and s; and the range w (gsap) is harmonie, and
the range a (opgu) also.

197. Example. Suppose the conic to be a hyperbola (Fig. 133).
Its asymptotes are a pair of tangents whose
chord of contact @S is the straight line at
infinity ; consequently the chord joining the
points of contact of a pair of parallel tangents
will pass through the point of intersection U
of the asymptotes; and conversely, if through
U a transversal be drawn, the tangents at the
points P and O, where it cuts the curve, will

Fig. 133. be parallel. The point U will lie midway

between P and O, since in general UVPO

(Fig. 131) is a harmonic range, and in this case V lies at in-
finity.

Any tangent to the curve cuts the asymptotes in two points B and
B’ which are harmonically conjugate with regard to the point of con-
tact 7 and the point where the tangent meets the chord of contact of
the asymptotes; but this last lies at infinity; therefore P is the
middle point of BB’. Thus

The part of a tangent to a hyperbola which is intercepted between
the asymptotes is bisected at its point of contact t.

This proposition is a particular case of that of Art. 193.

198. TuroreEM Y. If a quadrangle is inscribed in a conic, the
rectangle contained by the distances of amy point on the curve from

* DE 1A HiRg, loc. cit., book i. prop. 30. STEINER, loc. cit., p. 159, § 43}
Collected Works, vol. i. p. 346.

+ APOLLONIUS, loc. cit., ii. 319.

+ To this CHASLES has given the name of PAPPUS’ theorem, since it corresponds
to the celebrated ¢problema ad quatuor lineas’ of this ancient geometer. Cf.
Apergu historique, pp. 37, 338.
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ome pair of opposite sides 18 to the rectangle contained by its distances
from the other pair in a constant ratio.

In Fig. 122, the pairs of points P and P/, 4 and 4/, B and B’
being, by Desargues’ theorem, in involution, the anharmonic ratios
(PP’AB) and (P'PA’B’) are equal to one another, or

rd .rp _r4’ ry
P4 P’BT P4’ T PB”
PB’ P4’

=P P

But PA: P’4 is equal to the ratio of the distances (measured in
any the same direction) of the points 2 and P’ from the straight line

QT, and the other ratios in the foregoing equation may be interpreted
similarly ; we have therefore

4 B _B) (4)
@y " @y =@y ay’
o (4) . (4) _ (4 . (&Y
(B) - (B) "~ (B) - (B)"
where (4), (4'), (B), (B’) denote the distances of the point P from
the sides Q7', RS, QR, ST respectively of the inscribed quadrangle
QRST, and (4Y, (4’), (BY, (B’) denote similarly the distances of
the point P’ from these sides respectively. (These distances may be
measured either perpendicularly or obliquely, so long as they are all
measured parallel to one another.) The ratio
(4) (4)
(B) (8)
is therefore constant for all points P on the conic; which proves the
theorem.

199. TuroREM. If a quadrilateral is circumscribed about a conic,
the rectangle contained by the distances of one pair of opposite wvertices
Jfrom any tangent is to the rectangle contained by the distances of the
other pair from the sume tangent in a constant ratio ™.

In Fig. 123 let the vertices ¢r, ¢t, st, sr of the circumscribed
quadrilateral grst be denoted by R, 1', 1\, R, respectively; let the
points where the tangents p, p’ meet the side ¢ be called P, P’
respectively t, and let the points where these same tangents meet the
side s be called P,, P/ respectively. Since by the theorem corre-
lative to that of Desargues, the pairs of rays p and p/, ¢ and o,
b and ¥, are in involution, the anharmonic ratios (bapp’) and
(¥’a’p’p) are equal to one another. Hence by theorem (2) of
Art. 149,

* CHASLES, Sections coniques, Art, 26.
+ P’ is not shown in the figure.
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(RTPP’) = (T, R P/ P)
= (R, T,P,P/) by Art. 45;
kP RP' _RP RP/
TR TP TP TP
RP.7T\P, RP'.T.P/
TP .RP,~ TP . R P/

But ZP: TP is equal to the ratio of the distances (measured in
any the same direction) of the points R and 7' from the straight line
P; soalso TP, : R, P, is the ratio of the distances of the points 7'
and R, from the same straight line p. The foregoing equation
therefore expresses that the ratio

RP . TP,

P . R P,
is constant for every tangent p to the conic; which proves the
theorem.

whence



CHAPTER XVIIIL

SELF-CORRESPONDING ELEMENTS AND DOUBLE ELEMENTS.

200. CONSIDER two projective flat pencils, coneentric or non-
concentric. Through their common centre or through their
two centres O and O’ draw a conic or a circle, and let this
cut the rays of the first pencil in 4, B, C, ... and those of the
second in 4, B’, C’,.... Project these two series of points
from two new points O, O,” (or from the same point) lying
on the conic; the two projecting pencils O, (4BC...) and
0,(4’B’C’...) are by Art. 149 projective with the two given
pencils O(4BC...)and 0’(4’B’C’... ) respectively; and are
therefore projective with one another.

The two series of points ABC ... and A’B’C’... are said to form
two projective ranges on the conic*.

L. Now project these two ranges (Fig. 134) from two of their
corresponding points, say from 4" and 4. The projecting
pencils

4’ (4,B,C,...) and 4(4’,B’,C’,...)

will be projective with one another ; and since they have the
self-corresponding ray 44, they are
in perspective. Corresponding pairs
of rays will therefore (Art. 80) inter-
sect on a fixed straight line, so that
AB’ and 4’B, AC” and A4’C, AD’ and
4’D...,will meet on one straight line s.
If any point be taken on s, the straight
lines joining it to 4 and 4’ will cut
the conic again in another pair of corresponding points of
the ranges 4BCD ... and 4’B’C’D’....

* BELLAVITIS, Saggio di Geometria derivata (Nuovi Saggi dell’ Accademia di
Padova, vol. iv. 1838, p. 270, note)-

M
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If instead of 4” and 4 any other pair of corresponding
points had been taken as centres of projection, say B’ and B,
the same straight line s would have been arrived at. For
since 4B’CA’BC’ is a hexagon inscribed in a conie, it follows
by Pascal’s theorem that the point of intersection of B’C and
BC” must lie on the straight line which joins the point of
intersection of 4’B and 4B’ to that of 4’C and 4C” (Art. 153,
right).

II. Any point A in which the conic and the straight line s
intersect is a self-corresponding point of the two ranges
ABC.,.and A’B’C’.... Forif M, 3’ be corresponding points

Fig. 135. Fig. 136.

of the two ranges, it has been seen that 4’M, 4M’ must
intersect on ¢; if then M lie on s, M’ must coincide with M ;
i.e. a pair of corresponding points of the two ranges are
united at J.

The two ranges will therefore have two self-corresponding points,
or only one, or none at all, according as
the straight line s cuts the conic in two
points (Fig. 135), touckesit (Fig. 136), or.
does not cut it (Fig. 137).

III. From what precedes it is clear
that two projective ranges of points on
a conic are determined by three pairs of
corresponding points A and A’y B and B’,
C and C’. For in order to find other
pairs of corresponding points, and the
self-corresponding points (when such
exist), we have only to construet the
straight line s which passes through the points of intersection
of the three pairs of opposite sides of the hexagon 4B’C4’BC’
(Figs. 98, 134, 135). The self-corresponding points will then

Fig. 137.
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be the points where s cuts the conic, and any number of pairs
of corresponding points can be constructed by help of the
property that any pair D and D’ are such that the lines 4’0
and 4D’ (or B’D and BD’, or C’D and CD’) intersect on s *.

201. Instead of projective ranges of points on a conic we may
consider projective series of tungents to the same. Let o, o’ be two
projective ranges of points (either collinear or lying on different straight
lines as bases). Describe a conic to touch o and o/, and draw to this
conic, from each pair of corresponding points 4 and 4/, B and B’,
C and (", ... the tangents a and ¢/, b and ¥, ¢ and ¢/, ... . If now
these two series of tangents are cut by two other tangents o, and o/,
two new ranges of poiuts will be obtained, which are projective with
the given ranges respectively (Art. 149), and are therefore projective
with one another.

Two series of tangents to a conic are said to be projective with one
another when they are cut by any other tangent to the curve in two
projective ranges.

I. Suppose the first series of tangents to be cut by the tangent a’,
and the second by the tangent a. The two projective ranges so
formed are in perspective, since they have the self-corresponding
point aa’; the straight lines which join the pairs of corresponding
points b and a¥/, ¢’c and ac’, ... will therefore pass through one
point S.  This point does not change if another pair of tangents
0’ and b are taken as transversals; for by Brianchon's theorem the
straight lines which join the three pairs of opposite vertices a’b and
ab/, o’c and ac’, ¥'c and b¢’ of the circumscribed hexagon al’c a'be’
must meet in a point (Art. 153, left).

IL. If the point S is such that tangents can be drawn from it to
the conic, each of them will be a self-corresponding line of the two
projective series of tangents abe ... and a’d’¢’ ... .

[The proof of this is analogous to that of the corresponding property
of two projective ranges of points on a conic (Art. 200, 1I).]

ITI. Two projective series of tangents to a conic are determined
by three pairs of corresponding lines ¢ and o/, b and ¥, ¢ and ¢
For in order to find other pairs of corresponding lines, and the self-
corresponding lines (when such exist), we have only to construct the
point of intersection S of the diagonals which join two and two the
opposite vertices of the circumscribed hexagon abd’ca’be’. The self-
corresponding lines will be the tangents from .S to the conic, and any
pair of corresponding lines d and d” may be constructed by means of
the property that the points ¢’d and ad’ (or ¥'d and bd’, or ¢’d and
ed’, .. .) are collinear with 8.

* STEINER, loc. cif., p. 174, § 40, iii.; Collected Works, vol. i. p. 357.
M 2



164 SELF-CORRESPONDING ELEMENTS {201

IV. A range of points 4, B, C, ... on a conic and a series of tangents
a, b, c, ... to the same are said to be projective with one another,
when the pencil formed by joining 4, B, C, ... to any point on the
conic is projective with the range determined by a, b, ¢, ... on any
tangent to the conic.

A range of points 4, B, C, ... on a conic, or a series of tangents
a, b, ¢, ... to the same, is said to be projective with a range of points
on a straight line, or a peneil (flat or axial), when this last-mentioned
range or pencil is projective with the pencil formed by joining
ABC ... to any point on the conic or with the range determined by
a, b, c, ... on any tangent to the conic.

V. These definitions premised, we may now include under the
title of one-dimensional geometric form mnot only the range of
collinear points, the flat pencil, and the axial pencil, but also
the range of points on a conic and the series of tangents to a
conic * ; and with regard to these we may enunciate the general
theorem: 7Two one-dimensional forms which are each projective
with a third (also of one dimension) are projective with one another
(cf. Art. 41).

VI. From these definitions it follows also that theorem (3) of
Art. 149 may be enunciated in the following manner:

Any series of tangents to a conic is projective with the range formed
by their points of contact.

VIL Let 4, B, C, ... and 4’, B’, ¢/, ... be two projective ranges of
points on a conic, and let «, b, c, ... and @/, v, ¢, ... be the tangents
at these points. The series of tangents a, b, ¢, ... and o/, ¥, ¢/, ...
are projective with the series of points of contact 4, B, C, ... and
A/, B’, (', ... respectively, and are therefore projective with one
another. Let s be the straight line on which the pairs of straight lines
such as AB’ and A’B, AC’ and 4’C, BC” and B’C ... intersect ; and
let S be the point in which meet the straight lines joining pairs of
points such as ab” and a’b, ac’ and o’c, be” and b’c, ... . If s cuts the
conic in two points / and &, these must be the self-corresponding
points of the ranges ABC ... and 4’B’C” ...; the tangents m and n
at M and N respectively must therefore be the self-corresponding
lines of the projective series abc...and a’4’c’...; consequently the
straight lines m and » will meet in S.

VIII. From the foregoing it follows that for the consideration of a

* The introduction of these new one-dimnensional forms enables us now to add
to the operations previously made use of (section by a transversal straight line
and projection by straight lines radiating from a point) two others, viz. section of
a flat pencil by a conic passing through the centre of the pencil, and projection of
a range of collinear points by means of the tangents to a conic which touches the
base of the range.
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series of tangents can always be substituted that of their points of
contact, and wvice versa.

202. Instead of considering any two projective pencils as
in Art. 200, take an involution of straight lines radiating
from a point 0. Suppose these to be cut by a conic passing
through O in the pairs of points 4 and 4, B and B’, C and
C’, ..., and let these points be joined to any other point O, on
the conic. Since by hypothesis (Arts. 122, 123) the pencils
0(44’BC...) and O(d4’4B’C’...) are projective with one
another, the pencils O, (44’BC ... ) and O,(4’AB'C’...) are
so too (Art. 149); and therefore the rays issuing from O,
form an involution also. In this case we say that #4e fwo
projective ranges of points ABC ... and A’B’C’... on the conic form
an involution ; or that there is on the conic an involution formed by
the pairs of conjugate points A4’, BB, CC’, ... *.

I. Similarly, if there is given an involution of points on a straight
line o and if from the pairs of conjugate points there be drawn
tangents @ and «’, b and ¥, ¢ and ¢/, ... to a conic touching o, these
will be cut by any other tangent to the conic in an involution of
points; in this case we say that aa’, bV, ¢c, ... form an involution of
tangents to the conic (cf. Art. 201).

IT. If several pairs of tangents ae’, b, ¢c’...to a conic form
an involution, their points of contact 44’, BB’, CC’, ... form an
involution also, and conversely (Art. 201, VI).

208. Of the six points 4, B’, C, 4, B,C” on a conic
considered in Art. 200, let C” lie indefinitely near to 4, and
C indefinitely near to 4. The projective ranges (4BC... ) or
(4B4’...) and (4’B’C’...) or (4’B’4...) will then form an
involution (44’, BB’,...) and the inscribed hexagon is replaced
by the figure made up of the inscribed quadrangle 4B°4’B and
the tangents at the opposite vertices 4 and 4’ (Figs. 115, 138).
We conclude that

An iwvolution of points on a conic is determined by two pairs
Ad’, BB’

I In order to find other pairs of conjugate points, it is only
necessary to construct the straight line s which joins the point
of intersection of 48" and 4’8 to that of 48 and 4’B’; i.e. to

* Stavpr, Beitrdge zur Geometrie der Lage (Niirnberg, 1856-57-60), Arts. 7o
sqq.



166 SELF-CORRESPONDING ELEMENTS [203

draw the straight line joining the points of intersection of the
pairs of opposite sides of the inscribed quadrangle 4B’4’B.
The points where s cuts the conic
are the double points. Pairs of
conjugate points will be construeted
by remembering that any pair C
and C’ are such that the straight
lines 4C and 4’C” (or AC" and 4’C,
or BC and B’C’, or B’C and BC’)
intersect on s.

II. The tangents at a pair of
conjugate points, such as A and 4,
B and B, ... likewise intersect on
the straight line s (Art. 166).

III. Since the pairs of sides BC
and B’C’, CA and C’4d’, AB and
A’B’ of the triangles 4BC, 4’B’C’
intersect in three points lying on
a straight line s, the triangles are homological (Art. 17)%*, and
the straight lines 44, B, CC’" will meet in one point §. But
Ad” and BB’ suffice to determine this point ; accordingly:

dAny pair of conjugate points of the involution are collinear with a
Jized point § ; or

EBvery straight line drawn through 8 to cut the conic determines
on it a pair of conjugate points of the involution.

IV. It has been seen that if s cuts the conic in two points
M and N, these are the double points of the involution. The
tangents at J/ and NV will therefore meet in 8. .+

V. Conversely, the pairs of points in which a conic is cut by
the rays of a pemcil whose centre S does not lie on the curve form
an involution.

For if 4 and 4’, BB and B’ are the points of intersection
of the curve with two of the rays, these two pairs 44’
and BB’ determine an involution such that the straight
line joining any pair of corresponding points always passes
through a fixed point, viz. 8. If the involution has double
points, these are the intersections of the comic with the

Fig. 138.

* The triangles A’BC and AB'C’, AB'C and 4'BC’, ABC' and 4'B’C are
likewise homological in pairs.
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straight line s which joins the point of intersection of 4B and
A’B’ to that ofad B’ and A’B.

VI. If from different points of a straight line s pairs of tangents
aand o', b and ¥, ¢ and ¢/, ... be drawn to the conic, these form an
involution. For if 4 and 4/, B and B/, €' and C’, ... are the points of
contact of the tangents @ and a’, b and ¥/, ¢ and ¢/, ... respectively, and
S is the point of intersection of the chords 44’ and BB’, then in the
involution determined by the pairs 4, 4” and B, B’ the straight line
joining any other pair of conjugate points will pass through S. The
point ¢ and its conjugate lie therefore on a straight line passing
through S, and the tangents at these points must meet on the
straight line joining the points e’ and b¥/, 7.e. on s; the conjugate
of C' is therefore /. This shows that 4 and 4/, B and B’, C'and C’
form a range of points in involution, and that consequently @ and «’,
b and ¥/, ¢ and ¢’ form a series.of tangents in involution.

VIL. If M and N are the double points of an involution
A4’, BB', C(C’, ... of points on a conic, it has been seen that
AB, A’B’; MN are three concurrent straight lines (the same is
the case with regard to 4B/, 4’B, MN). In consequence then of
theorem V, above, we conclude that :

If A4’ and BB’ are two pairs of conjugate elements of an tnvolu-
tion, and MN the double elements, then MN, AB, and A'B’ (and
similarly MN, AB’, and A’B) are three pairs of conjugate elements
of another involution.

VIII. The straight line s cuts the conic (see below, Art.
254) when the point § lies outside the conic (Fig. 138), that is,

Fig. 139.

when the arcs 44’ and BB’ do not overlap one another; when
these arcs overlap, the point § lies within the conic and the
straight line s does not cut the latter (Fig. 139). We therefore
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arrive again at the property already proved in Art. 128, viz.
that

An involution has two double elements when any two pairs of
conjugate elements are such that they do not overlap ; and it has no
double elements when they are such that they do overlap.

In no case can an involution, properly so called, have only
one double element. For if s were a tangent to the conic,
S would be its point of contact, and of every pair of conjugate
points one would coincide with § (ef. Art. 125).

204. If (JNAB...) and (MNA’B’...) are two projective
ranges of points on a conic, M and N will be the self-corre-
sponding points, and the straight line /N will pass through
the point of intersection of 4B and
A’B (Art. 200). Now let B’ be sup-
posed to lie indefinitely near to 4
and similarly B to 4’, so that the
straight lines 48" and 4’B become
in the limit the tangents at 4 and
A4’ respectively (Fig. 140). Since now
MNAA" and MNA’A are groups of
corresponding points of two projective

Fig. 140. ranges, the two pencils mnaa’ and

mna’e formed by joining them to any

point O on the conic will be projective; and therefore mzaa’

is a harmonic pencil (Art. 83). We thus arrive again at the
second theorem of Art. 195 (right); viz.

If four points M,N,d, A" on a conic are harmonic, the tangents
at one pair of conjugate points, say A and A’, intersect on the chord
MN joining the other pair ; ‘

and its correlative (Art. 195, left),

If four tangents to a conic are harmonic, the point of intersection
of one pair of conjugates lies on the chord of contact of the other
pair.

From the former of these it follows that if through the
point of intersection § of the tangents at J/ and N straight
lines be drawn cutting the conic in 4 and 4, B and 5’, C and
(”,... respectively, any of these pairs of points will be har-
monically conjugate with regard to M and N. The tangents
at 4 and 4’, B and B’, C and (', ... will therefore intersect in
pairs on the straight line MN.
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In other words:

If from any point there be drawn to a conic two fangents and
a secant, the two points of contact and
the two points of intersection form a
harmonic system.

The points (44"), (BB’), (CC’), ...
form an involution of which M and
N are the double points (Art. 203, N
III, IV). We therefore arrive again
at the property of an involution
that if it has two double elements these are separated harmoni-
cally by any pair of conjugate elements (Art. 125).

M S

Fig. 141.

205. Suppose now that the conic is a circle (Fig. 141). From the

similar triangles S4, SMA’,

AM : MA’:: SM: S4’,
and from the similar triangles S4NV, SNA’

AN : NA':: SN : S47;

j—?\g = :—::—f\l[’ (since SM = SN),
or AM . A’N=AN.4A'M.
But by Ptolemy’s theorem (Euc. vi. D),

AL MN =AM . A’N +AN . A"M.
If then M, ¥, 4, A’ are four harmonic points on a circle,
YAA . MN = AM. A’N=AN. A'M.

208. The properties established in Art. 200 and the following
Articles lead at once to the solution of the important problem :

To construct the self-corresponding elements of two superposed pro-
Jective forms, and the double elements of an involution.

L Let two concentric projective pencils be given, which are deter-
mined by three pairs of corresponding rays
(Fig. 142); it is required to construct therr 0
self-corresponding rays. j

Through the common centre O deseribe
any circle, cutting the three given pairs
of rays in 4 and 4, B and B’, C and C’
respectively. Let AB’, A’B meet in R,
and 407, 4’C in @ ; if the straight line QR
cut the circle in two points M and %,
then OM, ON will be the required self- Fig, 142.
corresponding rays.
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L Let 4 and A%, B and B, ' and ¢’ (Fig. 143) be three pairs
of corresponding points of two collinear ranges; it is required to
construct the self-corresponding points.

Fig. 143.

Describe any circle touching the common base o of the two ranges,
and to this circle draw from the given points the tangents a and o’,
band ¥, ¢ and ¢’. Let 7 be the straight line which joins the points
ab/, a’b, and ¢ that which joins the points ac, a’c. If the point qr
lies outside the circle and from it the tangents m and » be drawn to
the circle, then the points om, on in which these meet the base will
be the required self-corresponding points of the two ranges.

G M

Otherwise (Fig. 144):
Draw any circle whatever in the plane and take on it any point
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0. From O project the given points upon the circumference of the
circle, and let 4, and 4/, B, and B/, C, and C) be the projec-
tions of 4 and 4’, BB and B’, C' and C” respectively. Join 4,5/, 4B,
meeting in R, and 4,0/, 4/C,
meeting in @ (or B,C}/, B/C, meet-
ing in ). If the straight line PQX2
cut the circle in two points A/, &V,
and these be projected from the
point O back upon the given base o,
then their projections M , NV will
be the required self-corresponding
points of the given ranges *.

III. In (I) let ¢he two pencils
be in involution (Fig. 145), and let
it be required to find the double rays.

Two pairs of conjugate rays suffice now to determine the pen-
cils. Draw through the centre O any circle cutting the given
rays in 4 and 4, B and B’ respectively. Let 4B, A’B meet in
B, and 4B, A’B’ in Q; if the straight line QR cut the circle in
two points M and &, then 03, ON will be the required double rays
of the involution.

IV. Let 4 and 4’, B and B’ be two given pairs of conjugates of an

Fig. 146.

involution of points on a straight line; it is required to find the
double points (Fig. 146).

Draw any circle in the plane and take on it any point 0. From
O project the given points upon the circumference of the circle, and
let A4, and 4/, B, and B/ be the projections of 4 and 47, B and B’
respectively. Let 4,8/, 4/B, meet in &, and 4,B,, 4/B/in Q. If
QR cuts the circle in M, , NV,, and these poiuts be projected from O
back upon the given straight line, then their projections M , N will
be the required double points.

* STEINER, loc. cif., pp. 68 and 174, §§ 17 and 46; Collected Works, vol. i.
pp- 285, 356.
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Otherwise :
Describe a circle touching the base 4B... (Fig. 147), and draw to
this circle from the points 4 and 47, B and B’, the tangents a and o,

A MA

Fig. 147.

b and ¥, respectively. Let » be the straight line which joins the
points ab’, a’b, and ¢ that which joins the points ab, a’?’. If the point
qr lies outside the circle, the tangents m and # from this point to the
circle will cut the base line of the involution in the required double
points.

207. THEOREM. 4 pencil in involution is either such that every
ray is at right angles to its conjugate, or else it contains one and
only one pair of conjugate rays including a right angle.

Consider again Art. 206, III ; if the point of intersection §
of the straight lines 44’, BB’, ... is the centre of the circle
(Fig. 148) then 44’, BB’, ... are all diameters, and therefore

Fig. 148. Fig. 149.

each ray O4, OB, ... will be at right angles to its conjugate
04’, OB’,... In this case then the involution is formed by a
series of right angles which have their common vertex at O.



4
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But if § is not the centre of the circle (Fig. 149), draw
the diameter through it; if C and € are the extremities of
this diameter, the rays O0C, OC’ will include a right angle.
But these will be the only pair of conjugate rays which
possess this property, since through § only one diameter can
be drawn.

208. This proposition is only a particular case of the
following one:

Two superposed involutions (or such as are contained in the same
one-dimensional form) have always a pair of conjugate elements in
common, except in the case where the involutions have double
elements and the double elements of the one overlap those of the other.

Take two involutions of rays having a common centre O,
and let a circle drawn through O cut the pairs of con-
Jjugate rays of the first involution in the pairs of points
(44’, BB’,...)and those of the second in (GG’, HIT,...). Let
§ be the point of intersection of 44’, BB’.... and 7 that of
GG, HH’,.... If the straight line 87" cut the circle in two
points Z and Z’, these will be a conjugate pair of each involu-
tion, since they are collinear with § and with 7' also. Let us
now examine in what cases §7' will cut the circle.

Fig. 150. Fig. 151.

In the first place, it will certainly do so if one at least of the
points 8, 7 lies within the circle (Art. 203, VIII), i.e. if one at
least of the involutions has no double elements (Figs. 150, 151).

Secondly, if both the points §, 7 lie outside the circle, 7. e. if
both the involutions have double elements, then the straight
line 87 may or may not cut the circle. If O, ON are the
double elements of the first involution, OU, OV those of the
second, the rays OF, OF" must be harmonically conjugate both
with regard to OM, ON and with regard to OU, O7; but (Art.
70) in order that there should exist a pair of elements which
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are at the same time harmonically conjugate with regard to
each of the two pairs 03/, ON and OU, OV, it is necessary and
sufficient that these two pairs should not overlap. If then
these pairs do not overlap, 7 will cut the circle (Fig. 152);

Fig. 152. Fig. 153.

whereas if they do overlap, S7' will not cut the circle (Fig.
153). The two involutions have therefore a common pair of
conjugate elements in all cases except this last, viz. when they
both have double elements and these overlap.

[In Figs. 150, 151 and 152, are shown cases of two involutions
having a common pair of conjugate elements # and E’; Fig. 153
on the other hand illustrates the case where no such pair exists.]

209. The preceding problem, viz. that of determining the common
pair of conjugate elements of two involutions superposed one upon
the other, depends upon the following, viz. to determine (in a range,
in a pencil, or on a conic) a pair of elements which are harmonically
conjugate with regard to each of two given pairs. This problem has
already been solved, for the case of a range, in Art. 70 ; the following
is another solution :

Suppose that we have to deal with a range of points lying on a
straight line. Take any circle and a point O on it, and project the
given points from O upon the circumference ; let &/, N and U, V be
their projections (Fig. 152). Let the tangents at M and &V to the
circle meet in S, and the tangents at U and V in 7. If the pair MN
dces mot overlap the pair UV, then ST will cut the circle in two
points £ and E’, which when projected back from O upon the given
straight line will give the points required.

210. The double points of the involution determined by the pairs
A4, A" and B, B’ are the common pair of conjugate elements of two
other involutions; one of these is determined by the pairs 4, D
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and A4’, B’, the other by the pairs 4, B’ and 4’, B (Art. 2083,
VIL)

From this follows a construction jfor the double points of an
tnwolution of collinear points which is determined by the pairs A , A’
and B, B’. Take any point G outside the base of the involution
and describe the circles GAB, GA’B’; they will meet in another
point, say in /7, Similarly let & be the second point of intersection
of the circles GAB’, GA’B. Every circle passing through @ and #
meets the base in a pair of conjugate points of the involution 4 B, 4’B”
(Art. 127); so too every circle passing through @ and X gives a pair
of conjugate points of the involution 4B/, 4’B. If then the circle
GHK be described and it meet the base, the two points of intersection
will be the double elements of the involution 447, BB’*.

211. It follows from the foregoing that the determination of the
self-corresponding points of two projective ranges ABC ... and
A’B’C” ... on a conic (and consequently of the self-corresponding
points of any two superposed projective forms) reduces to the con-
struction of the straight line s on which intersect the pairs of
straight lines AB” and 4’B, AC’ and 4’C, BC’ and B'C, .... Simi-
larly the determination of the double points of an involution 44’
BB, ... depends on the construction of the straight line s on which
intersect the pairs of straight lines 4B and 4’B’, AB’ and A’B, ...
or the pairs of tangents at 4 and 4/, B and B’, ... .

Conversely, if any straight line s (which does not touch the conic)
is given, an involution of points on the conic is thereby determined ;
for it is only necessary to draw, from different points of s, pairs of
tangents to the conic, and the points of contact will be pairs of
conjugate points of an involution.

But, on the other hand, in order that two projective ranges of
points ABC ... and 4’B’C’ ... may be determined, there must be
given, in addition to the straight line s, a pair of conjugate points 4
and 4" also ; then the straight lines joining 4 and 4’ to any point
on s will cut the conic in a pair of corresponding points B” and B.

Two projective ranges of points determine an involution; for they
determine the straight line s, which determines the involution. If
the two ranges have two self-corresponding points, these will also be
the double points of the involution.

* CHASLES, (Géométrie supérieure, Art. 263.



CHAPTER XIX.

PROBLEMS OF THE SECOND DEGREE.

212. PROBLEM. Given five points
0,0, A,B,C on a conic, to
determine the points of intersection
of the curve with a given straight
line s.

Solution. Join any two of
the points O, O’ to each of the
others 4, B, ¢ (¥ig. 154); the

Fig. 154.

pencils O (4, B, C, ...) and
0’ (4, B, 0, ...) will be projective,
and will cut the transversal s
in points forming two collinear
projective ranges.

A point M which corresponds
to itself in these two ranges will

ProBLEM. Given five tangents
0,0,a,b,c to a conie, to draw
a pair of tangents to the curve
from « given point S.

Consider the points where two
of the tangents o, o’ are met by
the others a, b, ¢ (Fig. 155); the

Fig. 155.

ranges o (a, b, ¢, ...) and
o (a,b,ec,...) will be projective,
and if projected from S as centre
will give two concentric projec-
tive pencils.

Any ray m which corresponds
to itself in these two pencils will
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also be a point on the conic, since
a pair of corresponding rays of
the two pencils must meet in 2.
The points of intersection of the
conic with the straight line s are
therefore found as the self-corre-
sponding points of the two colli-
near ranges which are determined
on s by the three pairs of corre-
sponding rays O4 and 0’4, OB
and O’B, OC and O’C. There
may be two such self-correspond-
ing points, or only one, or none
at all ; consequently the straight
line s may cut the conic in two
points, or it may touch it,or it may
uot meet it at all. The construction
of the self-corresponding points
themselves may be effected by
either of the methods explained
in Art. 206, II.

213. In a similar manner the
problem may be solved if there
be given four points O, 0/, 4, B
on a conic and the tangent o at
one of them O; or three points
0,0, 4 and the tangents o and
o’ at two of them O and 0’. In
the first case the two pencils are
determined by the three pairs of
rays o and 0’0, 04 and 0'd,
OB and O'B; and in the second
case by the three pairs o and
0’0, 00’ and o, 04 and O'A.

If however there be given five
tangents, or four tangents and
the point of contact of one of
them, or three tangents and the
points of contact of two of
them, we may begin by first con-
structing such of the points of
contact of the tangents as are not
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also be a tangent to the conic,
since a pair of corresponding
points of the two ranges o and o
must lie on 2. The tangents
from § to the conic are therefore
found as the self-corresponding
rays of the two concentric pencils
which are determined by the rays
joining S to the three pairs of
corresponding points oz and o,
ob and o’b, oc and o’c. There
may be two such self-correspond-
ing rays, or only one, or none at
all; consequently there can either
be drawn from the point S two
tangents to the conic, or S is a
point on the conie, or else from S
no tangent at all can be drawn.
The construction of the self-
corresponding rays themselves
may be effected by the method
explained in Art. 206, L.

In a similar manner the pro-
blem may be solved if there be
given four tangents o, ¢/, a, b to
a conic and the point of contact O
of one of them o; or three tan-
gents o, o/, a and the points of
contact O and 0’ of two of them
o and o. In the former case
the three pairs of points which
determine the two ranges are
0 and oo, oa and o’a, ob and
0'b; in the latter case they are
0 and oo, 0o’ and 0’, oa and
oa.

If however there be given five
points on the conic, or four points
and the tangent at one of them,
or three points and the tangents
at two of them, we may begin by
first constructing such of the
tangents at the points as are
not already given (Arts. 165,
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already given (Arts. 180, 171, 171, 175); the problem will then
177); the problemwill then reduce  reduce to one of the cases given
to one of the cases given above. above.

214, In the construction given in Art. 212 (left) suppose that the
conic is a hyperbola and that the given
straight line ¢ is one of the asymptotes
(Fig. 156). The collinear projective ranges
determined on s by the pencils O(4, B, C, ...)
and 0(4,B,C,...) will have in this case
one self-corresponding point, and this (being
the point of contact of the hyperbola and
f the asymptote) will lie at an infinite dis-
Fig. 156. tance. But in two collinear ranges whose
self-corresponding points coincide in a single
one at infinity, the segment intercepted between any pair of corre-
sponding points is of constant length (Art. 103). We therefore
conclude that
If from two fized points O and O’ on a hyperbola there be drawn
two rays to cut one another on the curve, the segment PP’ which these
intercept on either of the asymptotes 1s of constant length *.

0]l P/

Fig. 157.

215. If in Art. 212 (left) the straight line s be taken to lie at
infinity, the problem becomes the following :

Given five points 0, 0', 4, B, C on a conic, to determine the points
at infinity on it (Fig. 157).

* BRIANCHON, loc. cit., p. 36.
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Consider again the projective pencils O (4, B, C,...) and
0'(4,B,0,...), which determine on the straight line at infinity s two
collinear ranges whose self-corresponding points are the required
points at infinity on the conic. Since each of these self-corresponding
points must lie not only at the intersection of a pair of corresponding
rays of the two pencils but also on the line at infinity s, the corre-
sponding rays which meet in such a point must be parallel to one
another ; the problem therefore reduces to the determination of the
pairs of corresponding rays of the two pencils which are parallel to
cne another.

In order then to solve the problem we draw through O the parallels
04’, 0B, 00’ to 0’4, O'B, (’C respectively, and then construct
(Art. 206, I) the self-corresponding rays of the two concentric
pencils which are determined by the three corresponding pairs 04
and 0A’, OB and OB’, OC and OC’. If there are two self-corre-
sponding rays OM and ON, the conic determined by the five given
points is a hyperbola whose points at infinity lie in the directions
OM, ON; i.e whose asymptotes are parallel to OM and ON
respectively.

If there is only one self-corresponding ray OJ, the conic deter-
mined by the five given points is a parabola whose point at infinity
lies in the direction OM.

If there is no self-corresponding ray, the conic determined by the
five given points is an ellipse, since it does not cut the straight line
at infinity.

If in the first case (Fig. 157) it is desired to construct the asymp-
totes themselves of the hyperbola, we consider this latter as determined
by the two points at infinity and three other points, say 4, B, and
C'; in other words, we regard the hyperbola as generated by the two
projective pencils, one of which consists of rays all parallel to 04/,
and the other of rays all parallel to OV, and which are such that one
pair of corresponding rays meet in 4, a second pair in B, and a
third pair in C. The rays which correspond in the two pencils
respectively to the straight line at infinity (the line joining the
centres of the pencils) will be the asymptotes required.

Let then a, b, ¢ (Fig. 157) be the rays parallel to O which pass
through 4, B, C respectively, and let a’, ¥, ¢’ be the rays parallel
to ON which pass through the same points respectively. Join the
points ab’ and ’b and the points b¢” and &’c, and let X be the point
of intersection of the joining lines; the straight lines drawn through
K parallel to OM and ON will be the required asymptotes.

216. PrOBLEM. Gliven five points A, B, C, D, E on a conic, to
draw the tangents from a given point S to the conic.

This problem also can be made to depend on that of Art. 212

N 2
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(left), by making use of the properties of the involution (Art. 203)
obtained by cutting the conic by transversals drawn through S.

Join S4 , 8B (Fig. 158); these
straight lines will cut the conic
again in two new points 4’ and B/,
which can be determined (making
use of the ruler only, and without
drawing the curve) by means of
Pascal’'s theorem (Art. 161, right).
(In the figure the points 4’ and
B’ have been constructed by means
of the hexagons ADCBEA’ and
BECADB’ respectively). Now

Fig. 158. let the point of intersection of 4B

and A’B’ be joined to that of 4B’

and 4’B; the joining line s will pass through the points of contact of

the tangents from .S (Art. 203). The problem therefore reduces to

that of determining the points of intersection of the conic and the
straight line s (Art. 212, left).

217. The problem, 7o find the points of intersection of a given
straight line s and a conic which is
determined by five given langents,
may similarly be made to depend
on that of Art. 212 (right), by
making a construction (Fig. 159)
analogous to the foregoing one.

And the problem, 7o draw
through a given point a straight
line which shall divide a given
triangle into two parts having to
one another a given ratio, may be
solved by reducing it to the follow-
ing construction: To draw from
the given point a tangent to a
hyperbola of which the asymptotes and a tangent are known.

These are left as exercises to the student.

Fig. 159.

218. ProBLEM. 70 construct To construct a conic which shall
« conic which shall pass through touch four given straight lines
four given points Q@ , R ,8,T, q,r,s,t,and shall pass through
and shall touch a given straight a given point S which does not lie
line s which does not pass through —on any of the given lines.
any of the given points.

Solution. Let 4 , 4’, B, B Let a,a’,b,b be the rays
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be the points where the sides
QT , RS, QR , ST respectively
of the quadrangle QRST cut
the straight line s (Fig. 160).
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joining the point S to the vertices
gt , rs, qr, st respectively of the
quadrilateral grst (Fig. 161).
Construct the double rays (if

Fig. 160.

Construct the double points (if
such exist) of the involution de-
termined by the pairs of points
A and A’, B and B'.

If there are two double points
M and W, each of them will be
(Art. 185, left) the point of con-
tact with s of some conic cir-
cumscribed about the quadrangle
QRST. Each of the conics
QRESTM, QRSTN therefore gives
a solution of the problem; and
these conics can be constructed
by points by help of Pascal’s
theorem (Art. 161, right).

If however there are no double
points, there is no conic which
satisfies the conditions of the
problem.

Fig. 161.

such exist) of the involution de-
termined by the pairs of rays
a and a’, b and ¥,

If there are two double rays
m and n, each of them will be
(Art. 185, right) a tangent at
S to some conic inscribed in
the quadrilateral grst. Each of
the conics grstm, grsin therefore
gives a solution of the problem ;
and these conics can be con-
structed by tangents by help of
Brianchon’s theorem (Art. 161,
left).

If however there are no double
rays, there is mno conic which
satisfies the conditions of the
problem.

219. If in the foregoing Art. (left) the straight line s be taken to
lie at infinity, the problem becomes the following :

To construct a parabola which shall pass through fowr given points
Q,R,S, T

To solve it, take any point O (Fig. 162), and through it draw
the rays a, o’, b, &’ parallel respectively to the straight lines
QT , RS, QR ,ST; and construct the double rays (if such exist)
of the involution determined by the pairs of rays e and o/, b and ¥’.
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Each of these double rays will determine the direction in which lies
the point at infinity on a parabola passing through the four given
points; the problem therefore reduces to
the last problem of Art. 165. If however
the involution has no double rays, no
parabola can be found which satisfies the
conditions of the problem.

Through four given points therefore can
be drawn either two parabolas or none;
in the first case the other conics which
pass through the given points are ellipses
and hyperbolas; in the second case they
are all hyperbolas. The first case occurs
when each of the four points lies outside
the triangle formed by the other three
(7.e. when the quadrangle formed by the four points is non-reentrant);
the second case when one of the four points lies within the triangle
formed by the other three (i.e. when the quadrangle formed by the
four points is reentrant).

220. If in Art. 218 (right) one of the straight lines ¢, r, s, ¢ lies
at infinity, the problem becomes the following :

To construct a parabola which shall touch three given straight lines
and shall pass through a given point.

To construct a conic which
shall touch three given straight

221. ProsrLeM. 7o construct
a conic which shall pass through

three given points P, P', P" and
shall touch two given straight lines
g and s, neither of which passes
through any of the given points.
Solution. This depends on the
theorem of Art. 191 (left). Join
PP’, and consider it as a trans-
versal which cuts the conic in
P and P/, and the pair of tan-
gents ¢ and s in the two points
B and B’ (Fig. 163). If 4 and 4,
are the double points of the in-
volution determined by the two
pairs of points P and P/, Band I/,
the chord of contact of the conic
and the tangents ¢ and s must
pass through one of these points,
by the theorem quoted above.

lines p, p', p” and shall pass
through two given points Q and S,
neither of which lies on any of the
given straight lines.

The solution 'depends on the
theorem of Art. 191 (right). Con-
sider pp” as a point from which
the tangents p and p’ bave been
drawn to the conic, and the rays
b and &’ to the two points @
and S (Fig. 164). If @ and q, are
the double rays of the involution
determined by the two pairs of
rays p and p, b and &/, the point
of intersection of the tangents at
@ and S to the conic must lie on
one of these rays, by the theorem
quoted above. Repeat the same
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Repeat the same reasoning for
the case of the transversal PP”,
which cuts ¢ and s in D and D”;

Fig. 163.

if ¢ and C, are the double points
of the involution determined by
the two pairs of points P and P”,
D and D”, the chord of contact
must similarly pass through
C or C,. The problem admits
therefore of four solutions; wviz.
when the two involutions
(PP’, BB’) and (PP”, DD")
both have double points, there
are four conics which satisfy the
given conditions. If the double
points are 4, 4, and C, O,
respectively, the chords of con-
tact of the four conics and the
tangents ¢ and ¢ are 40, 4,C,
AC,,and 4,C,. Of each of these
conics five points are known, viz.
P, P/, P”, and the two points
of intersection of 4C (or of 4,C,
or AC,, or 4,C,, as the case may
be) with ¢ and s; they can ac-
cordingly be constructed by points
by means of Pascal’s theorem
(Art. 161, right).
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reasoning for the case of the point

pp”, from which are drawn the

rays d and d” to the points

Q and S; if ¢ and ¢, are the
double rays of the involution de-
termined by the two pairs of rays
p and p”, d and d”, the point of
intersection of the tangents must
similarly lie on ¢ or ¢,. The
problem admits therefore of four
solutions; viz. when the two in-
volutions ( pp’, 08’) and ( pp”, dd”)
both have double rays, there are
four conics which satisfy the given
conditions. If the double rays are
a,a, and ¢, ¢ respectively, the
points of intersection of the
tangents at @ and S to the four
conics are ae, a,¢, ac,, and ac,.
Of each of these conics five
tangents are known, viz. p, p’, p”,
and the two straight lines which
join ac (or a,c, or ac,, or a,c,, as
the case may be) to @ and §;
they can accordingly be con-
structed by tangents by means of
Brianchon’s theorem (Art. 161,
left).
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222. ProBLEM. Zlo construct a polygon whose vertices shall lie on
given straight lines (each on each), and whose sides shall pass through
given points (each through each *).

Solution. For the sake of simplicity suppose that it is required
to construct a quadrilateral, whose vertices 1,2, 3,4 shall lie
respectively on four given straight lines s,,s,,s,,s,, and whose
sides 12, 23, 34, 41 shall pass respectively through four given points
Sizs Sos + Sse» Sy (Fig. 165). The method and reasoning will be the

Fig. 165.

same as for a polygon of any number of sides. Take any points
4,, B, Cy,... on s, and project them from S;, as centre upon s,; and
let 4,, B,, C,,... be their projections. Project 4,, B,, C,, ... from
Sy, as centre upon s;, and let 4,, B,, C,,... be their projections.
Project 4,, By, C,,... from Sy, as centre upon s,,and let 4, , B,, C,,..
be their projections. Finally project 4,, B,, C,,... from S, as centre
upon s, and let 4, B, C, ... be their projections. ’

The points S, , Sy , Sy , Sy, are the centres of four projectively
related pencils ; for the first and second are in perspective (since
their pairs of corresponding rays A4, 4,, B, B,,... and 4,4,, B, B,, ...
intersect on s,), the second and third are in perspective (pairs of
corresponding rays intersect on s;), and similarly the third and fourth
are in perspective (pairs of corresponding rays intersect on s,). Con-
sequently (Art. 150) pairs of corresponding rays of the first and
fourth pencils (such as 4,4, and 4,4) will intersect on a conic; or
in other words the locus of the first vertex of the variable quadri-
lateral whose second, third, and fourth vertices (4,, d;, 4,) slide
respectively on three given straight lines (s,, s, s,) and whose sides
(4,4,,4,4,,4,4,, A, 4) pass respectively through four given points,

* PONCELET, loc, cit., p. 345.
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is a conic*. This conic passes through the points S,, S, the
centres of the pencils which generate it; in order therefore to deter-
mine it, three other points on it must be known; the intersections
of the three pairs of corresponding rays 4,4, and 4,4, BB, and B, B,
C,C, and C,C will suffice. It is then only necessary further to con-
struct (Art. 212) the points of intersection A and I of the straight
line s, with the conic determined by these five points; either M or &
can then be taken as the first vertex of the required quadrilateral.

This construction may be looked at from another point of view. The
broken lines 4,4,4,4,4 , B,B,B.B,B, and C,C,C,C,C may be regarded
as the results of so many attempts made to construct the required quad-
rilateral ; these attempts however give polygons which are not closed,
for A does not in general coincide with 4,, nor B with B,, nor
Cwith C,. These attempts and all other conceivable ones which might
similarly be made, but which it is not necessary to perform, give on
the straight line s, two ranges 4,B,C,... and 4ABC...; one being
traced out by the first vertex and the other by the last vertex of the
open polygon. These ranges are projective with one another, since
the second has been derived from the first by means of projections
from S,,, Sy, S5, Sy as centres, and sections by the transversals
Sy, 83, 8,, §,. BHach of the self-corresponding points therefore of the
two ranges will give a solution of the problem ; for, if the first vertex
of the polygon be taken there, the last vertex will also fall on the
same point, and the polygon will be closed.

In the following examples also the method remains the same
whatever be the number of sides of
the polygon which it is required to
construct.

223. ProBLEM. To inscribe in a
givent conic a polygon whose sides
pass respectively through given points.

Solution. Suppose that it is re-
quired to inscribe in the conic a
triangle whose sides pass respectively
through three given points S,,.S5,, S,
(Fig. 166). Let us make three trials. Take then any three points
4, B, C on the conic; join them to .S, and let the joining lines
cut the conic again in 4,, B,, C}; join these points to S, and let

Fig. 166.

* This theorem, viz. that ¢if a simple polygon move in such a way that its
sides pass respectively through given points and all its vertices except one slide
respectively along given straight lines, then the remaining vertex will describe a
conie,’ is due to MACLAURIN (Phil. Trans., London, 1735). Cf. CHASLES, dpergu
historique, p. 150.

} i.e. either completely traced or determined by five given points.
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the joining lines cut the conic again in 4,, B,, C,; finally join
these points to .S, and let the joining lines cut the conic again
in 47, B, . Since the point finally arrived at, A’ or B or (',
does not in general coincide with the corresponding starting-point
A or B or C, we shall have, instead of an inscribed triangle as re-
quired by the problem, three polygons A4,4,4”, BB,B,B’, CC,C,0"
which are not closed. But since, by a series of projections from
S,, S,, S, in succession as centres, we have passed from the
range 4, B, C,... to the range 4,, B,, C,, ..., from this last to
A,, B,, Cy,..., and from this to A',B’, ¢, ..., it follows that the
range of points4, B, C, ..., with which we started is projective with
the range of points 47, B, C’, ..., with which we ended (Arts. 200, 201,
203). The problem would be solved if one of the points in the latter
range coincided with its correspondent in the former. If then the
two projective ranges A5C ... and A’ B’ ¢’ ... have self-corresponding
points, each of these may be taken as the first vertex of a triangle
which satisfies the given conditions. We have therefore only to
determine (Art. 200, IT) the straight line on which intersect the three
pairs of opposite sides of the inscribed hexagon AB'CA’B(’, and to con-
struct (Art. 212) the points of intersection M and X of this straight
Jine with the conic; each of them will give a solution of the problem*.

224. By a similar method may be solved the correlative problem :

To circumseribe about a given
conic (i.e. ome which 1is either
completely drawn or determined
by five tangents) a polygon whose
vertices lie respectively on given
straight lines.

Suppose that it is required to
circumscribe about the conic a
triangle whose:'vertices lie re-
spectively on the straight lines
8, ,8,8 (Fig. 167). Take any
point 4 on the conic and draw
the tangent a at it; from the
point where this tangent cuts
EH s, draw another tangent a, (let

Fig. 167. its point of contact be 4,); from

the point where a, cuts s, draw

a third tangent a, (let its point of contact be 4,); finally, from
the point where a, cuts s, draw the tangent o, and let its point
of contact be A’. The problem would be solved if the point 4’

¥ PONCELET, loc. cit., p. 352-
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coincided with 4, 7. e. if the tangents a” and a coincided with one
another. Suppose that other similar trials have been made, taking
other arbitrary points B, C, ... on the conic to begin with; then we
" shall arrive in succession at the ranges of points 4 , B, C, ...,
4,,B,C,...,4,,B,,0,,..., and 4’, B’, ¢’, ..., which are all
projectively related to one another. For the first range is projective
with the second (Art. 203), since the tangents at 4 and 4,, Band B,
C and O, ... always intersect on s, ; and for similar reasons the
second and third, and the third and fourth, are projective with one
another ; consequently (Art. 201) the same is true of the fourth and
the first. Since the problem would be solved if 4” coincided with 4,
or B’ with B, ..., each of the self-corresponding points of the pro-
jective ranges ABC ... and 4’B’C” ... may be taken as the point of
contact of the first side of a triangle which satisfies the given con-
ditions. We have therefore only to make three trials (Art. 200),
i.e. to take any three points 4, B, C on the conic and to derive
from them the corresponding points 4/, B’, C’; and then to con-
struct the points of intersection of the conic with the straight line
which joins the points of intersection of the three pairs of opposite
sides (the Pascal line) of the inscribed hexagon 4 B'CA4’BC"*,

225. The particular case of the problem of Art. 223 in which the
given points S, S,, ... lie all upon one straight line s must be con-
sidered separately. If the number of sides of the required polygon
is even, the theorem of Art. 187 may be applied ; in this case the
problem has either no solution at all, or it has an infinite number of
solutions. Suppose it required, for example, to inscribe in the conic
an octagon of which the first seven sides pass respectively through
the points S, S,, ... §;, then by the theorem just quoted the last side
will pass through a fixed point S on s: this point § is not arbitrary,
but its position is determined by those of the points S,, S,, ... S;.
If then the last of the given points .S, coincides with S, there are an
infinite number of octagons which satisfy the given conditions. But
if S, does not coincide with S, there is no solution.

If the number of sides of the required polygon is odd, the problem
becomes determinate. Suppose it is required to inscribe in the conic a
heptagon (Fig. 124) whose sides pass respectively through the given
collinear points S, S,, S;, ... S,. By the theorem of Art. 187 there
exist an infinite number of octagons whose first seven sides pass through
seven given collinear points and whose eighth side passes through
a fixed point S collinear with the others. If among these octagons
there is one such that its eighth side touches the conie, the problem
will be solved ; for this octagon, having two of its vertices indefinitely

* PoNCELET, loc. cit., p. 354.
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near to ome another, will reduce to an inscribed heptagon, whose
sides pass respectively through seven given points. If then tan-
gents can be drawn from the point S to the conic, the point of
contact of each of them will give a solution (Art. 187). According
therefore to the position of the point S with reference to the conic,
there will be two solutions, or only one, or none.

In Fig. 126 is shown the case of this problem where the polygon
to be inscribed is a triangle *.

The solution of the correlative problem, fo circumscribe about a
given conic a polygon whose vertices lie respectively on given rays of a
pencil, is left as an exercise to the student. This problem also is
either indeterminate or impossible if the polygon is one of an even
number of sides; it is determinate and of the second degree if the
polygon is one having an odd number of sides (Figs. 125, 127).

2268. LeMMA. If two conics cut one another in the points
A,B,C,C, and if from
A and B respectively two
straight lines AFF’, BGG’ be
drawn cutting the first conic
m F and @, and the second
in F’ and G, then the chords
FG , F'G’ will intersect in
a point H lying on the chord
CC’ (Fig. 168).

The transversal CC’ cuts
the first conic and the oppo-
site sides of the inscribed
quadrangle ABGF in six
points of an involution (Art.
183, left) ; and the same is true with regard to the second conic and
the inseribed quadrangle ABG’F’. But the two involutions must
coincide (Art. 127), since they have two pairs of conjugate points in
common, viz. the points ¢, ¢/ in which the transversal cuts both the
conics, and the points in which it cuts the pair of opposite sides
AFF’, BGG’, which belong to both quadrangles. The involutions
will therefore have every pair of conjugate points in common, and
therefore the transversal 0O’ will meet FG and F’G’ in the same
point H, the conjugate of the point in which it meets ABt.

227. The preceding lemma, which is merely a corollary of Desargues’
theorem, leads at once to the solution of the two following problems,
one of which is of the first, and the other of the second degree.

* Pareus, loc. cit., book vii, prop. 117.
+ This may also be proved very simply by applying Pascal’s theorem to each of
the hexagons AFGBCC’, AF'G'BCC’ in turn.
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I. ProBLEM. Given three of the points of intersection 4 ,B,C of
two conics, and in addition two other points D, E of the first, and two
other points F, G of the second, to determine the fourth point of inter-
section of the two conics (Fig. 168).

Take two of the given points of intersection 4 and B, and join
AF, BG. These straight lines will cut the first conic again in points
F’, G' respectively which can be determined by the method of Art.
161 (right). Join F&, F'@’, and let them meet in Z. By the fore-
going lemma /A will lie on the chord joining the other two points of
intersection of the conics. This chord will therefore be HC, and
it remains only to determine the point C/ where H(C cuts either of
the conics; €’ will be the required fourth point of intersection of the
conics.

II. ProBLEM. Given two of the points of intersection, A , B, of two
conics, and in addition the three points D, K, N of the first and the
three points I, G, M of the second, to determine the other two points
of intersection of the conics (Fig. 168).

Join A7 and B@, and let them meet the first conic againin 77/, ¢
respectively; join #G, /@, and let them meet in AH. * The point
will lie on the chord joining the two required points. Again, join
AM, and let it meet the first conic again in M’; join GM ,G’M’, and
let these meet in K ; then the point A also will lie on the same
chord. The required points therefore lie on HK, and the problem
reduces to the determination (Art. 212) of the points of intersection
(', €’ of the conics with HK *,

228. The solution just given of problem II holds good equally when
the points 4 and B lie indefinitely near to one another, <. e. when the
two conics touch a given straight line at the same given point.

In this case two conics are given which touch one another at a
point 4, and the straight line KX is constructed which joins their
remaining points of intersection ' and C’. If HK passes through
4, one of the points C or ¢ must coincide with 4, since a conic
cannot cut a straight line in three points., When this is the case,
three of the four points of intersection of the conics lie indefinitely
near to one another, and may be said to coincide in the point 4 ;
and the conics are said to osculate at the point 4. The construction
gives a point H of the chord which joins A to the fourth point of
intersection C of the conics. It may happen that this chord coin-
cides with the tangent at 4 ; in this case 4 represents four coincident
points of intersection of the two conics (or rather, four such points
lying indefinitely near to one another).

* GASKIN, The geometrical construction of a conic section, &e. (Cambridge, 1852),
pp- 26, 40.
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229. Let now the lemma of Art. 226 be applied to the case of a
conic and a circle touching it at a point 4. At 4 draw the normal
to the conic (the perpendicular to the tangent at 4), and let it cut
the conic again in F and the circle again in #’. On 4F as diameter
describe a circle; this circle, which touches the conic at 4 and cuts
it at 7, will cut it again at another point & such that 4GQF is a right
angle. Join AG and let @ be the point where it cuts the first
circle. Join F@, F'G"; by the lemma they will intersect on the
chord HK ; but they are parallel to one another, since 4@’F” also is
a right angle. Thus for any circle whatever which touches the conic
at A, the chord of intersection IHK with the conic has a constant
direction, viz. that parallel to FG.

If HK passes through 4, the conic and the circle osculate at this
point. If then a parallel through A to FG cut the conic again in
C, the circle which touches the conic at 4 and cuts it at C will be
the osculating circle (circle of curvature) at 4 *.

[In the particular case where 4 is a vertex (Art. 297) of the conic,
F will be the other vertex, F@ the tangent at #, AC the tangent at 4,
and C will coincide with 4. It is seen then that the osculating circle
at a vertex of a conic has not only three but four indefinitely near
points in common with the conic. ]

Conversely, the conic can be constructed which passes through
three given points 4, P, @ and has a given circle for its osculating
circle at one of these points A.

For join AP, AQ, and let them cut the given circle in P/, @’
respectively; and join PQ, P/Q’, meeting in U. If AU be joined and
cut the circle again in C, the required conic will pass through C. It
is therefore determined by the four points 4, P, @, C and the tangent
at 4 (which is the same as the tangent to the circle there).

230. The proposition correlative to the lemma of Art. 226 may be
enunciated as follows: ‘

If a and b are a pair of common tangents to two conics, and if from
two points taken on « and b respectively the tangents f, g be drawn to
the first conic and the tangents f', g’ to the second, then the points fg and
g’ will be collinear with the point of intersection of the second pair of
common tangents to the conics.

This proposition enables us to solve the problems which are corre-
lative to I and IT of Art. 227 ; wiz. given three (or two) of the com-
mon tangents to two conics, and in addition two (or three) tangents
to the first and two (or three) tangents to the second, to determine
the remaining common tangent (or the two remaining common tan-
gents) to the conics.

231. PROBLEM. Gliven eleven points 4,B8,C,D,E; A, B,,C,, D\, E; P;

* PONCELET, loc. cit., Arts. 334-337.
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to construct by points the conic which passes through P and through the
four points of intersection of the two conics which are determined by the
ponts A, B,C,D,Eand A,,B,,C,,D,, E, respectively. The conics
are supposed not to be traced, nor are their points of intersection given™.

Solution. Draw through P any transversal, and construct (Art.
212, left) the points M and M’ in which it cuts the conic ABCDE
and the points & and N’ in which it cuts the conic 4,B,C,D,E,.
Since these two conics and the required one all pass through the same
four points, Desargues’ theorem may be applied to them. If therefore
(Art. 134, left) the point P’ be constructed, conjugate to P in the
involution determined by the pairs of points M and M’, N and N/,
this point P’ will lie on the required conic. By causing the trans-
versal to turn about the point P, other points on the required conic
may be obtained.

232. ProBLEM. (iven ten points A,B,C,D,E; 4,,B,,C,,D,, E,
and a straight line s; to construct a conic which shall touch s and
shall pass through the four points of intersection of the two conics
which are determined by the points 4,B,C,D, K and 4,,B;,C,, D,, E,
respectively. The conics are supposed mot to be traced, nor are their
points of intersection given.

Solution. Construct (Art. 212) the points of intersection M and M’
of s with the conic ABCDE, and the points of intersection N and
N’ of s with the conic 4,B,C,D,E,, and then (Art. 134) the double
points of the involution determined by the two pairs of points
M and M’, N and N’. If P is one of these double points, it will be
the point of contact (Art. 185) of s with a conic drawn through the
four points of intersection of the conics ABCDE and A,B,C,D,E,
to touch s. The problem thus reduces to that of the preceding
Article.

233. The correlative constructions give the solutions of the corre-
lative problems: wiz. to construct a conic which passes through a given
point (or which touches a given straight line), and which is inscribed
in the quadrilateral formed by the four common tangents to two
conics; the conics being supposed each to be determined by five given
tangents, but not to be completely traced ; and their four common
tangents being supposed not to be given.

234. ProBLEM. Through a given point S to draw a straight line
which shall be cut by four given straight lines a,b,c,d in four points
having a given anharmonic ratio.

Solution. 1t has been seen (Art. 151) that the straight lines
which are cut by four given straight lines in four points having a
given anharmonic ratio are all tangents to one and the same conic

* PoNCELET, loc. cit., Art. 389.
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touching the given straight lines; and that if 4, B, C are the points
where d cuts a, b, ¢ respectively, and D is the point of contact of d,
the anharmonic ratio (4BCD) is equal to that of the four points in
which the straight lines a@,b,c¢,d are cut by any other tangent to
the conic. Accordingly, if on the straight line d that point D be
constructed (Art. 65) which gives with the points

ad(=4) , bd (=B) , cd(=0)

an anharmonic ratio (4BCD) equal to the given one, and if then the
straight lines be constructed (Art. 213, right) which pass through S
and touch the conic determined by the four tangents a,b,c¢,d and
the point of contact D of d, each of these straight lines will give a
solution of the proposed problem.

If one of the straight lines @,b,¢,d lie at infinity, the problem
becomes the following :

Given three straight lines a ,b, ¢ and a point S, todraw through S
a straight line such that the segment intercepted on it between a and b
may be to that intercepled on it between a and ¢ in a given ratio.

To solve this, construct on the straight line @ that point 4 which
is so related to the points ab(=B) and ac(=C) that the ratio
AB: AC has the given value ; and draw from S the tangents to the
parabola which is determined by the tangents a,b,¢ and the point
of contact 4 of a.

The correlative construction gives the solution of the following
problem: On a given straight line s to find a point such that the
rays joining it to four given points 4 , B, 0, D form a pencil having
a given anharmonic ratio.

235. ProBLEM. Given two projective ranges of points lying on the
straight lines w ,w’ respectively ; to find two corresponding segments
MP, M’P’ such that the angles MOP, M’0’ P’ which they subtend at
two fixed points O, O respectively may be given in sign and mag-

ttude.

Solution. Take on o’ two points A’ and D’ such that the angle
A’0’D’ may be equal to the second of the given angles; let 4 and D
be the points on u which correspond respectively to 4” and D’, and
let A, be a point on u such that the angle 4,0D is equal to the first
of the given angles. The problem would evidently be solved if 04,
coincided with 04, since in this case the angles 40D and 4’0’D’
would be equal to the given angles respectively. If the rays
0’4’,04 ,0’D’, 0D, 04, be made to vary simultaneously, they will
trace out pencils which are projectively related. For those traced
out by 0’A’ and O’D’ respectively are projective, and similarly
those traced out by 04, and OD respectively, since the angles 4’0’D’
and 4,0D are constant (Art, 108); and the pencils traced out by
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04 and 0’ A’ respectively, and by OD , O/ D’ respectively, are pro-
jective since the given ranges on w and «’ are so. Consequently the
pencils generated by OA and OA, respectively are projective, and
their self-corresponding rays give the solutions of the problem. If
three trials be made of a similar kind to the foregoing ome, three
pairs of corresponding rays O4 and 04,, OB and OB,, OC and 0C,
will be obtained ; let the self-corresponding rays of the concentric
projective pencils determined by these three pairs be constructed
(Art. 206, I). If one of these self-corresponding rays meets v in M,
and if the point P be taken on w such that the angle J/OP is equal to
the first of the given ones, and if then on %/ the points 3/, P’ be found
which correspond to M, P respectively, the angle M 0’ P’ will be
equal to the second of the given angles, and the problem will be solved.

236. ProBLEM. Given two projective ranges of points 4 , B, C,...
and A7, B, (", ... lying on the straight lines w and u’ respectively, to
JSind two corresponding segments which shall be equal, tn sign and
magnitude, to two given segments.

Solution. Take on «’ a segment 4’1’ equal to the second of the
given ones, and let 4D be the segment on u» which corresponds to
4'D’.  Take on u the point 4, such that 4,D is equal to the first of
the given segments; then the problem would be solved if 4, coincided
with 4. If the points 4, 4/, D', D, 4, be made to vary simulta-
neously, the ranges traced out by 4 and A’ respectively will be projec-
tive with one another, as also those traced out by D and D’ respectively
(by reason of the projective relation existing between ABC...and
A’B’C’...); and the ranges traced out by 4 and D respectively, and
similarly those traced out by A” and D’ respectively, will be projective
with one another, since they are generated by segments of constant
length sliding along straight lines (Art. 103). Consequently also the
ranges traced out by 4 and A4, are projectively related, and their self-
corresponding poiuts give the solutions of the problem. It is there-
fore only necessary to obtain three pairs of corresponding points
4 and 4’, B and B/, C and C’, by making three trials, and then to
construct the self-corresponding points of the ranges determined by
these three pairs (Art. 206, II).

287. The student cannot have failed to remark that the method
employed in the solution of the preceding problems has been in all
cases substantially the same. This method is general, uniform, and
direct ; and it may be applied in a more or less simple manner to all
problems of the second degree, Z.e. to all questions which when treated
algebraically would depend on a quadratic equation. It consists in
making three trials, which give three pairs of corresponding elements
of two superposed projective forms; the self-corresponding elements
of these systems give the solutions of the problem. This method is

[0}
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precisely analogous to that known in Arithmetic as the ‘rule of false
position,” and it has on that account been termed a geomstric method
of fulse position *.

238. Problems of the second degree (and those which are reducible
to such) are solved, like all those occurring in elementary Geometry,
by means of the ruler and compasses only, that is to say by means of
the intersections of straight lines and circlest. But again, the solu-
tion of any such preblem can be made to depend on the determination
of the self-corresponding elements of two superposed projective forms,
which determination depends (Art. 206) on the construction of
the self-corresponding points of two projective ranges lying on a
circle whose position and size is entirely arbitrary. It follows
that a single circle, described once for all, will enable us to solve all
problems of the second degree which can be proposed with reference
to any given elements lying in one plane (the plane in which the
circle is drawn)}. This circle once described, any such problem will
reduce to that of constructing three pairs of points of the two pro-
jective systems whose self-corresponding elements give the solution of
the problem. This done, we proceed to transfer to the circumference
of the circle, by means of projections and sections, these three pairs of
points. This will give three pairs of points on the circle ; taking these
as the pairs of opposite vertices of an inscribed hexagon, we have only
further to draw the straight line which joins the points of intersection
of the three pairs of opposite sides (the Pascal line) of this hexagon.

It is hardly necessary to remark that instead of the solution of such
a problem being made to depend on the
common elements of two superposed pro-
jective forms, it may always be reduced to
the determination of the double elements
of an involution (Art. 211).

The following Articles (239 to 249)
contain examples of problems solved by
Fig. 169. means of the method just explained.

239. ProBLEM. Given (Fig. 169) two
projective ranges of points lying on the straight lines u and w’ respectively,
and two other projective ranges of points lying on the straight lines v

* CHASLES, Géom. sup., p. 212.

+ A problem is said to be of the first degree when it can be solved with help of
the ruler only, 4. e. by the intersections of straight lines. See LAMBERT, loc. cit.,
p- 161 ; BRIANCHON, loc. cit., p. 6; PoxceLET, loc. cit., p. 76.

+ PoNCELET, loc. cit., p. 187 ; STEINER, Die geometrischen Constructionen aus-
gefiihrt mittelst der geraden Linie und eines festen Kreises (Berlin, 1833), p. 673
Collected Works, vol. i, pp. 461-522; STAUDT, Geometrie der Lage (Nirnberg,

1847), § 23.
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and o respectively ; it is required to draw through a given point O two
straight lines s and &, which shall cut w and v’ in a pair of corre-
sponding points and also v and v in a pair of corresponding points.

Through O draw any straight line cutting «’, v/ in 4”, P’ respectively;
let 4 be the point on w which corresponds to 4’, and let P be the
point on » which corresponds to /. The problem would be solved if
the straight lines 04 and OP coincided with one another. If these
straight lines be made to change their positions simultaneously, they
will trace out two concentric projective pencils (determined by three
trials of a similar kind to the one just made); and the self-corre-
sponding rays of these pencils will give the solutions of the problem.

240. In the preceding problem the straight lines % and «’ might
be taken to coincide, and similarly v and /. If all four straight
lines coincided with one another, the problem would become the
following :

Given two projective ranges u, w and two other projective ranges
v, v all lying on one straight line, to find a pair of points which shall
correspond to one another when regarded as points of the ranges w , w
respectively, and likewise when regarded as points of the ranges v, v/
respectively.

241. PROBLEM. Between two given straight lines w and u, to place
a segment such that it shall subtend given angles at two given points

0 and S (Fig. 170).

Fig. 170.

Draw any ray S4 to meet » in 4 ; draw S4, to meet %, in 4, so
that 484, may be equal to the second of the given angles; join 04,
and draw 04’ to meet w in 4’ so that 4’04, may be equal to the
first of the given angles. Then the problem would be solved if 04
coincided with O4’”. Three trials of a similar kind to the one just made
will give three pairs of corresponding rays (04 and 04/, OB and OB/,
OC and OC’) of the two projective pencils which would be traced out
by causing O4 and 04’ to change their positions simultaneously ;
the self-corresponding rays OM and ON of these pencils will give the
solutions (MM, and NN)) of the problem.

02
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242. ProBLEM. Gliven two projective ranges uw and w’; ifa pair of
corresponding points A and A’ of these ranges be taken, it is required
to find another pair of corresponding points M and M’ such that the
ratio of the length of the segment AM to that of the segment A" M’ may
be equal to a given number A.

Let 4 and 47, B and B/, and (” be three pairs of corresponding
points of the two ranges. On u take two new points B”, €/ such that
AB”=NA’B’ and AC”"=A.A’C". The points 4,B"”,C” determine
a range which is similar (Art. 99) to the range 4”, B/, ¢/,... and
therefore projective with 4, B,C,.... The collinear ranges
4,B”,0”,...and 4,B,C,...have already one self-corresponding
point in A4 ; their other self-corresponding point A/ (Art. 90) will
give the solution of the problem, since AM =AM"’=A. 4’3’. 'This
problem is therefore of the first degree.

243, ProBreM. Given two collinear projective ranges ABC ... and
A’B'C’ ..., to find a pair of corresponding points M and M’ such
that the segment MM’ shall be bisected at a given point O.

Take three points 4”7, B”, (" such that Ois the middle point of each
of the segments 44”, BB”,(C”; the points A”, B, C" determine
a range which is equal to the range ABC ..., and therefore projective
with the range 4’B’C” ... . Construct the self-corresponding points of
the collinear projective ranges A’B’C’ ...and A”B”C” ...; if M’ or
M” is one of them, then M3’ will have its middle point at O, and
will be a segment such as is required.

244, ProBLEM. Given a straight line and two points K, I on it ;
to determine on the straight line two points M and M’ such that the
segment MM’ may be equal in length to a given segment, and the
anharmonic ratio (EFMM’) equal to a given number.

Take on the given straight line any three points 4, B,C; then
find on it three points 4’, B’, ¢ such that the anharmouic ratios
(EFAA’),(EFBB') , (EFCC’) may each be equal to the given number;
and again three points 4", B”,0” such that the segments A4A”, BB,
CC” may each be equal in length to the given segment. The ranges
ABC ... and A’B’C’ ... will be projectively related (Arts. 79, 109), and
the same will be the case with regard to the ranges 4BC...and
A”B”C” ... (Art. 103); therefore A'B'C’...and 4”B”C”... will be
projective with one another. If these ranges have self-corresponding
points, and if M’ or M” is one of them, the segment 3/}’ and the
anharmonic ratio (£FMM’) will have the given values, and the
problem is solved.

245. ProprLEM. 7o inscribe in a given triangle PQL a rectangle
of given area (Fig. 171).

Suppose MSTU to be the rectangle required; if MS’ be drawn
parallel to PR, a parallelogram MSPS’ will be formed which is equal
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in area to the rectangle; so that for the given problem may be
substituted the following equivalent one :

To find on the base QR of a given triangle PQR a point M sush that
if MS, M8’ be drawn parallel
to the sides PQ, PR to meet
PR, PQin S, S respectively,
the rectangle contained by PS
and PS’ shall be equal to a
given square k.

Take any point 4 on QZ,
draw 4D parallel to PQ to
meet PR in D, and take on
PQ a point D’ such that Fig. 171.
the rectangle contained by
PD and PD’ may be equal to 42; then draw D’A’ parallel to PR to
meet QF in A”. If the points 4 and 4’ coincided with one another,
the problem would be solved.

Now let the points 4 , D, D’, 4’ be made to vary simultaneously ;
they will trace out ranges which are all projective with one another.
For since D is the projection of 4 made from the point at infinity on
PQ, and A’ the projection of D’ made from the point at infinity on
PR, the first and second ranges are in perspective, and the third and
fourth likewise. But the second and third ranges are projective with
one another, since the relation PD.PD’=%" shows (Art. 74) that the
points D and D’, in moving simultaneously, describe two projective
ranges such that the point P, regarded as belonging to either range,
corresponds to the point at infinity regarded as belonging to the other*.

Three similar trials give three pairs of points similar to 4 and
A4’ if the self-corresponding points of the ranges determined by these
pairs be constructed, they will give the solutions of the problem.

Instead of taking the point 4 quite arbitrarily in the three trials,
any particular positions may be chosen for it, and by this means the
construction may often be simplified. This remark applies to all the
problems which we have discussed. With regard to the present one,
it is clear that if 4 be taken at infinity, its projection 2 will also lie
at infinity; consequently D’ will coincide with P, and therefore A’
with B. Again, if 4 be taken coincident with ), its projection D
will coincide with P, and consequently D’, and therefore also A’, will
pass off to infinity. 'We have thus two trials, neither of which requires

* If the two ranges be called  and #’, and the construction of Art. 85 (left)
be referred back to, it will be seen that the auxiliary range «” lies in this case
entirely at infinity. If then a pair of corresponding points D and D’ have been
found, and we wish to find the point E’ which corresponds to any other point B
of PR (=u), we have only to join D'E, and to draw DE’ parallel to D'E to
meet PQ (=) in E',
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any construction; the pairs which result from them are composed
respectively of the point at infinity and R, and of @ and the point at
infinity, If the pair given by the third trial be called B, B’, and if
4, A’ stand for any pair whatever, we have (Art. 74)

Q4. RA'=QB . BB,
and therefore, if J/ is a self-corresponding point,

QM .RM=QB .LRDB,
from which the self-corresponding points could be found. But it is
better in all cases to go back to the general construction of Art. 206.
In this case the three pairs of conjugate points of the two ranges
which are given are: B and B’; the point at infinity and Z; @ and
the point at infinity. Let then any circle be taken, and a point O on
its circumference; from O draw the straight lines OB, 0B’, OR, 0Q,
and a parallel to QR, and let these cut the circle again in B, B/, R,,Q,,
and 7 respectively *. Join the point of intersection of B, R, and B/ I
with that of B, / and B/ Q,; if the joining line cut the circle in
two points M, and N, the straight lines which join these to O will
meet Q& in the self-corresponding points M and &, and these give
the solutions of the problem.

246. ProBLEM. To construct a polygon, whose sides shall pass
respectively through given points, and all whose vertices except one shall
lie respectively on given straight lines ; and which shall be such that
the angle included by the sides which meet in the last vertex is equal to
a given angle.

Suppose, for example, that it is required to construct a triangle
LMN (Fig. 172) whose sides MN , NL , LM shall pass through the
given points O, V, U respectively,
and whose vertices I/, N shall lie
on the given straight lines «, v re-
spectively ; and which shall be such
that the angle MLYN is equal to a
given angle.

Through O draw any straight
line to cut % in 4 and v in B;
join BV, and through U draw the

Fig. 172. straight line UX making with BV

an angle equal to the given one.

Let UX meet » in 47; the problem would be solved if the point

4’ coincided with A. If the rays O4 , U4” be made to vary

simultaneously, they will determine on % two projective ranges ; the

solutions of the problem will be found by constructing the self-corre-
sponding points of these ranges.

* Of these points only I is marked in the figure.
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247. The following problem is included in the foregoing one:

A ray of light emanating from a given point O is reflected from n
given straight lines in succession; to determine the original direction
which the ray must have, in order that this may make with its direction
after the last reflexion a given angle.

Let o, ,,, ... u, be the given straight lines (Fig. 173). If the
ray OA, strike w, at 4,, then by the
law of reflexion the incident and re-
flected rays will make equal angles
with «,; but the incident ray passes
through the fixed point O; therefore the
reflected ray will always pass through
the point O, which is symmetrical to
O with regard to w,*. So again, if
the ray after one reflexion strikes «, at Fig. 173.

4,, it will be reflected according to

the same law ; consequently the ray after two reflexions will pass
through a fixed point O, which is symmetrical to O, with regard to
u,; and so on. The paths of the ray before reflexion, and after one,
two, ... n reflexions form therefore a polygon 04,4,4, ..., whose n+ 1
sides pass respectively through n+ 1 fixed points 0,0,, 0,, ... O,
and which is such that % of its vertices lie respectively on = given
straight lines w, , u,, ... u,; while the angle included by the sides
which meet in the last vertex is to be equal to a given angle. Thus
the problem reduces, as was stated, to that of Art. 246.

248. ProBLEM. 7o construct a polygon whose wertices shall lie
respectively on given straight lines, and whose sides shall subtend given
angles at given points respectively.

Suppose it required to construct a triangle whose vertices 1,2,3
shall lie on the given straight lines u,, u, , u, respectively, and whose
sides 23, 31, 12 shall subtend at
the given points §;,S;, S, respec-
tively the angles o, w,,®, which
are given in sign and magnitude
(Fig. 174). On u, take any point
A4; join AS;, and make the angle
AS,B equal to oy; let S;B cut u,
in B. Join BS,; make the angle
BS,C equal to o, and let S,C cut
ug in C. Join CS,; make the
angle CS,4’ equal to «,, and let

Fig. 174.
8,4’ cut u, in 4’. The problem would be solved if S,A4” coincided

* i e.a point O, such that OO, is bisected at right angles by ;.
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with S,4. If S,4 be made to turn about S,, the other rays
S, 8,B,8,B,8C, 8,0, and S,4” will change their positions simul-
taneously, and will trace out pencils which are all projectively
related. For the ranges traced out by S,4 and S,B respectively
will be projective (Art. 108) since the angle AS,B is constant; the
ranges traced out by S;B and S,B respectively are projective since
they are in perspective; and so on. The solutions of the problem will
therefore be given by the self-corresponding rays of the concentric
projective pencils which are generated by S,4 and S,4” respectively.

In the same manner is solved the more general problem in which
the straight lines joining S;,S;, ... to the vertices of the polygon are
no longer to include given angles, but are to be such that together
with pairs of given straight lines meeting in S, S,, ... respectively
they form at each of these points a pencil of four rays having a given
anharmonic ratio. If at each of the points the pencil is to be
harmonie, and the given straight lines such as to include a right
angle, the problem can be enunciated as follows (Art. 60) :

To construct a polygon whose vertices shall lie respectively on given
straight lines, and whose sides shall subtend at given points angles
whose bisectors are given.

249. The same method gives the solution of the problem :

To construct a polygon whose sides shall pass respectively through
given points, and which shall be such that the pairs of adjacent sides
divide given segments respectively in given anharmonic ratios *.

Particular cases of this problem may be obtained by supposing that
each pair of adjacent sides is to intercept on a given straight line a
segment given in magnitude and direction; or a segment which is
divided by a given point into two parts having a given ratio to one
another .

* That is to say, two adjacent sides are to cut a given straight line, on which
are two given points 4, B, in two other points C', D such that the anharmonic
ratio (4 BC D) may be equal to a given number.

+ CHASLES, Géom. sup., pp. 219-223 ; and TOWNSEND, Modern Geometry (Dublin,

1863), vol. ii. pp. 257-275.



CHAPTER XX

POLE AND POLAR.

250. LET any point S be taken in the plane of a conic
(Fig. 175), and through it let any number of transversals be
drawn to cut the conic in pairs of points 4 and 4’, 5 and B’,
Cand ¢,.... The tangentsa and «’, 4 and %’,c and ¢” at these
points will, by Arts. 203, 204, intersect in pairs on a fixed
straight line s, on which lie also the points of contact of the tan-
gents from § to the conic (when the
position of § is such that tangents
can be drawn). Further, the pairs of
chords 4B’ and 4’8, AC’ and 4°C,...
BC” and B’C,... AB and A4'B’,
AC and A4’C’,... BC and B’C’,...
will intersect on s. Another pro-
perty of the straight line ¢ may
be noticed. In the complete quad-
rangle 44’B1’, each of the straight
lines 44" and BB’ is divided har-
monically by the diagonal point S
and the point where it is cut by
the straight line s which joins the
other diagonal points (Art. 57);
consequently 4 and 4’ (and simi-
larly B and B’, C and (’,...) are harmonic conjugates with
regard to § and the point where 44" (or BB’, C(’,...) is cut
by s.

The straight line s determined in this manner by the point
§is called the polar of § with respect to the conic; and, re-
ciprocally, the point § is said to be the pole of the straight
line s.

The polar of a given point 8 is therefore at the same time : (1) the

Fig. 175.
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locus of the points of intersection of tangents to the conic at the pairs
of points where it is cut by any transversal through S ; (2) the locus
of the points of intersection of pairs of opposite sides of quadrangles
wnscribed in the conic suck that their diagonals meet in S ; (3) the
locus of points taken on any transversal through S such that they are
harmonically conjugate to 8 with regard to the pair of points in
which the transversal is cut by the conic ; (4) the chord of contact of
the tangents from S to the conic, when S has such a position that it
is possible to draw these* .

251. Reciprocally, any given straight line s determines a
point S, of which it is the polar. For let 4 and B (Fig. 176) be
any two points on the conic; the tangents « and / at these
points will cut s in two points from which can be drawn two
other tangents 2’ and 4" to the conic. Let 4’ and B’ be the
points of contact of these, and let 44, BB’ meet in S'; then
the polar of § will pass through the points ae’” and 44’, and
must therefore coincide with s.

If'then from any point on s a pair of tangents can be drawn to the
eonie, their chord of contact will pass through 8.

Fig. 176.

252. The complete quadrangle 44’ BB’ and the complete
quadrilateral aa’00” (Fig. 176) have the same diagonal

* ApoLLoNIUS, loc. cit., lib. vii. 37; DESARGUES, loc. cif., pp. 164 sqq.; DE La
HIRE, loc. cit., books i. and i,
1 (4) follows from (3) by what has been proved in Art. 71.
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triangle (Art. 169). The vertices of this triangle are §, the point
of intersection ' of 4B and 4’ B’,and the point of intersection
B of AB’and 4'B; its sides are s, the straight line £ joining the
points ab and a”4”,and the straight line e joining the points ad’
and @’6. Thus #f from any two points taken on the straight line s
pairs of tangents a and o', b and 0 be drawn to the conic, the
diagonals of the quadrilateral aba’b’ will pass through 8.

253. The straight lines @, ¢’, 6, 0’ (Fig. 177) form a quadri-
lateral circumscribed about the conie, one of whose diagonals is
s, and whose other two diagonals
meet in 8. L%us if from any point
on s a pair of tangents be drawn to
the conic, they will be harmonically
conjugate with regard to s and the
straight line joining the point to §
(Art. 56).

254. If then a conic is given,
every point in ils plane has its
polar and every straight line has its
pole®. The given conic, with
reference to which the pole and
polar are considered, may be Fig. 177.
called the auwiliary conic.

I. If a point in the plane of a conic is such that from it
two tangents can be drawn to the curve, it is said to lie
outside the conic, or to be an exfernal point; if it is such that
no tangent can be drawn, it is said to lie énside the conic, or
to be an infernal point. If then the pole lies outside the
conic (Art. 203, VIII) the polar cuts the curve, and it cuts
it at the points of contact of the tangents from the pole to the
conic 7.

If the pole lies inside the curve, the polar does not cut the
conic.

II. If a point on the conic itself be taken as pole and a
transversal be made to revolve round this point, one of its
points of intersection with the conic will always coincide with
the pole itself. Since then the polar is the locus of the points
where the tangents at these points of intersection meet, and

* DESARGUES, loc. cit., p. 1go,
+ See also Art. 250, (4).
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in this case one of the tangents is fixed, it follows that the
polar of a point on the conic is the tangent at this point; or
that if the pole is a point on the conic, the polar is the tangent at
this point.

III. Reciprocally, if every point of the polar lies outside the
conic, the pole lies inside the conmic; if the polar cuts the
conie, the pole is the point where the tangents at the two
points of intersection meet; and if the polar touches the conic,
the pole is its point of contact.

255. If two points are such that the first lies on the polar
of the second, then will also the secoud lie on the polar of the first.

Consider Fig. 176; let Z be taken as pole and let F be
a point lying on the polar of Z. If the straight line ZF cuts
the conie, it will cut it in two points which are harmoni-
cally conjugate with regard to # and ¥ (Art. 250 [3]);
consequently one of the points Z, /' will lie inside and the
other outside the conic, and by Art. 250 (3) again, if F be
taken as pole, 2/ will be a point on its polar.

If the straight line %I” does not cut the conie, the chord of
contact of the tangents from Z will pass through 7, since this
chord is the polar of #/; and therefore by Art. 250 (1) £ will
lie on the polar of 7.

The above proposition may also be expressed in the follow-
ing manner :

If a straight line f pass through the pole of another straight line
e, then will also e pass through the pole of f.

For let Z, F be the poles of ¢, f respectively; since by
hypothesis 7 lies on the polar of F, therefore. /” will lie on
the polar of /' that is to say, ¢ will pass through F, the pole
of f.

Two points such as Z and [/, which possess the property
that each lies on the polar of the other, are termed conjugate or
reciprocal points with respeet to the conic. And two straight
lines such as e and f; each of which passes through the pole of
the other, are termed conjugate or reciprocal lines with respect
to the conie.

The foregoing proposition may then be enunciated as
follows:

If two points are conjugate to one another with respect to a conic,
their polars also are conjugate to one another, and conversely.
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256. The same proposition can be put into yet another
form, viz.

Every point on the polar of a given point I kas for its polar a
straight line passing through L.

Every straight line passing through the pole of a given straight
line e has for its pole a point lying on e*.

In other words, if a variable pole F be supposed to describe
a given straight line ¢, the polar of /' will always pass through
a fixed point Z, the pole of the given line; and conversely, if
a straight line f revolve round a fixed point £, the pole of f
will describe a straight line ¢, the polar of the given point Z.

Or again : the pole of a given straight line e is the centre of the
pencil formed by the polars of all points on e ; and the polar of a
given point I is the locus of the poles of all straight lines passing

through I §.

257. PROBLEM. Given a point
S, to construct its polar with
respect to a given conze.

I. Let the conic be determined
by five points 4,8 ,C, D, &
(Fig. 178).

Fig. 178.

Join S4,SB, and find the
points 47, B’ where these cut the
conic again respectively (Art. 161,
right). The straight line s which
joins the point of intersection of
4B’ and A’B to that of 4B and

Given a straight line s, to con-
struct tls pole with respect to a
gtren conic.

I. Let the conic be determined
by five tangents a,b,¢,d ¢ (Fig.
179).

Fig. 179.

From the points sa , sb draw
the second tangents o/, &’ respec-
tively to the conic (Art. 161,
left). The point S in which the
diagonals of the quadrangle aba’d’
intersect one another will be

* DESARGUES, loe. ¢it., p. 19I.
+ PoNCELET, loc. cit., Art. 195.
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A’B’ will be the polar of the
given point (Art. 250 [2]).

II. Let the conic be determined
by five tangents a,b,c d,e
(Fig. 180).

POLE AND POLAR.

[258

the pole of the given straight
line.

II. Let the conic be deter-
mined by five points 4, B,C, D, E
(Fig. 181).

Fig. 180.

Through S draw two trans-
versals 4 and », and construct
their poles U and ¥V (as on the
right-hand side above); UV will
be the polar of S (Art. 256). To
simplify matters the transversal
» may be drawn through the
point ab; if then the second
tangent ¢’ be drawn to the conic
(Art. 161) from the point ue, U
will be the point of intersection
of the diagonals of the quadri-
lateral acbe’. So too if the
transversal v be drawn through
the point ac for example, and the
second tangent &’ be drawn to the
conic from the point vb, then V
will be the point of intersection
of the diagonals of the quadri-
lateral abeb’.

Fig. 181.

On s take two points U and
V, and construct their polars =
and v (as on the left-hand side
above) ; the point uw will be the
pole of s (Art. 256). To simplify
matters the point U may be taken
on the straight line 4B ; if then
UC be joined, and the second
point €7 in which it meets the
conic be constructed, » will be the
straight line joining the points of
intersection of the pairs of oppo-
site sides of the quadrangle
ACBC’. Bo too if V be taken on
the straight line AC for example,
and VB be joined, and its second
point of intersection B’ with the
conic be constructed, then v will
be the straight line joining the
points of intersection of the pairs
of opposite sides of the quadrangle
ABCB’.

258. Let Z and I (Fig. 182) be a pair of conjugate points
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and let G be the pole of ZF; then @ will be conjugate both to
E and to F, so that the three points Z, F, G are conjugate to one
another two and two. Every side therefore of the triangle
EF@G is the pole of the opposite vertex, and the three sides are
conjugate lines two and two.

A triangle such as EFG, in which each vertex is the pole
of the opposite side with regard to a given conic is called a
self-conjugate or self-polar triangle with regard to the conic.

259. To construct a triangle self-conjugate with regard to a given
conic.
One vertex £ (Fig. 182) may be taken arbitrarily ; construct its

Fig. 182.

polar, take on this polar any point F, and construct the polar of F.
This last will pass through E, since £ and F are conjugate points ;
if @ be the point where it cuts the polar of E, then % and G,
F and @, will be pairs of conjugate points; and therefore EF@ is a
self-conjugate triangle.

In other words : take any point Z and draw through it any two
transversals to cut the conic in 4 and D, B and C respectively; join
AC, BD, meeting in F, and AB, (D meeting in G ; then EFG is a
self-conjugate triangle.

Or again, one side ¢ may be taken arbitrarily, and its pole £ con-
structed ; if through Z any straight line f be drawn, and its pole
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(which will lie on e), be constructed and joined to the pole of e by the
straight line g, then efg will be a triangle such as is required ; for the
straight lines e, f, g are conjugate two and two.

Thus, after having taken the side e arbitrarily, we may proceed as
follows : take two points on ¢ and from them draw pairs of tangents
a and d, b and ¢, to the conic; join the points ac, bd by the straight
line f, and the points ab, ¢d by the straight line ¢; then will efg be
a self-conjugate triangle.

260. From what has been said above the following property
is evident:

The diagonal points of the complete quadrangle formed by any
JSour points on a conic are the vertices of a triangle whick is self~
conjugate with regard to the conic. And the diagonals of the
complete quadrilateral formed by any jfour langents to a conic
are the sides of a triangle whick is self-conjugate with regard to the
conic*,

Or, in other words:

The triangle whose vertices are the diagonal points of a complete
quadrangle is se(f-conjugale with regard to any conic circumscribing
the quadrangle. And the triangle whose sides are the diagonals of a
complete quadrilaleral is self-conjugate with regard to any conic
inscribed in the quadrilateral.

261. From the properties of the circumscribed quadrilateral and
the inscribed quadrangle (Arts. 166 to 172) it follows moreover
that:

If EFG (Fig. 182) is a triangle self-conjugate with regard to
a given conic, and ABC is a triangle inscribed in the conic,
such that two of its sides Cd4 , AB pass through two of the
vertices #, @ respectively of the other triangle, then will the re-
maining side BC pass through the remaining vertex Z, and every
side of the inscribed triangle will be divided harmonically by the
corresponding vertex of the self-conjugate triangle and the side which
joins the other two vertices of it.

The three straight lines £4 , FB,GC meet in one point D on the
conic ; the two triangles are therefore in perspective, and the three
pairs of corresponding sides FG and BC, GE and C4, EF and 4B,
will meet in three collinear points.

Hence it follows that a self-conjugate triangle ZFG and a point 4
of a conic determine an inscribed quadrangle 4 BCD, whose diagonal

* DESARGUES, loc. cit., p. 186.
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triangle is EFG. 'The points B, (', D are those in which the
straight lines AG, AF , AE cut the conic again.
The enunciation of the correlative property is left to the student *.

262. Of the three vertices of the triangle FFG, one always
lies ingide the conic, and the two others outside it. For if £
is an internal point, its polar does not cut the conic, and con-
sequently /' and G are both external to the conic. If, on the
other hand, Z is an external point, its polar cuts the conic, and
F and G are harmonic conjugates with regard to the two
points of intersection; of the two points I and G therefore,
one must be internal and the other external to the conic.

From this property and that of Art. 254, I, we conclude that
of the three sides of any self-conjugate triangle, two always
cut the curve, and the third does not.

263. (1). On every straight line there are an infinite number of
pairs of points which are conjugate to one another with respect to a
given conic, and these form an involution t.

(2). Through every point pass an infinite number of pairs of
straight lines which are conjugate to one another wiih respect to a
given conic, and these form an involution t.

(8). If a point describes a range, its polar with respect to a given
conic will trace out a pencil whick is projective with the given range.
And, conversely, if a straight line describes a pencil, its pole with
respect to a given conic will trace out a range whick is projective with
the given pencil 1.

To prove these theorems, consider Fig. 183, and suppose
in it the conic and the three points 4, B, G to be given.
Let the point C be supposed to move along the conic.
Then the rays 4C, BC will trace out two pencils which are
projective with one another (Art. 149 [1]); and therefore the
ranges in which these pencils cut the polar of @ will be pro-
jective also; that is to say, the conjugate points # and £ will
describe two collinear projective ranges. In these ranges the
points F and ¥ correspond to one another doubly, since the
polar of E passes through F, and the polar of F passes
through Z; consequently the ranges in question are in in-
volution.

From what has been said it follows also that the pairs of

* PONCELET, loc. cit., p. 104. + DESARGUES, loc. cif., pp. 192, 193.
1 Mosius, Barye. Cale., § 290.
P
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conjugate lines GF, GE in like manner form an involution,
and that the range of poles Z, F, ... is projective with the
pencil of polars GF, GE, ... .

264. If the straight line ZF cuts the conie, the two points of

Fig. 183.

intersection are the double points of the involution formed by
the pairs of conjugate poles. The centre of the involution lies
on the diameter which passes through the pole G of the given
straight line (Art. 290).

If the point @ is external to the conie, the tangents from G
to the conic are the double rays of the involution formed by
the pairs of conjugate polars.

Consequently (Art. 125):

A chord of a conic is harmonically divided by any pair of points
lying on it whick are conjugate with respect to the conic; and

The pair of tangents drawn from any point to a conmic are har-
monic conjugates with respect to any pair of straight lines meeting in
the given point whick are conjugate with respect to the conic.

If the point @ lies at infinity, the pairs of conjugate straight
lines form an involution of parallel rays, the central ray of
which is a diameter of the conic (Arts. 129, 276).

265. THEOREM. If two complete quadrangles have the same
diagonal points, their eight vertices lie either four and four on two
straight lines or else they all lie on a conic.

t
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Let ABCD and 4’B’C’D’ (Fig. 184) be two quadrangles
having the same diagonal points %, 7, G; so that
BC, 4D, B’C’, 4’D’ all meet in E,
C4,BD,C’'4",B’D" » B,
4B,CD,4’B,C’D" » G

(1). In the first place let the eight vertices be such that some
three of them are collinear. Suppose
for example that 4’ lies on 4B. Since
4B and 4’B’ meet in G, therefore
B’ also must lie on 4B; and since
the straight lines GZ, GF are har-
monically conjugate with regard both
to AB,CD and to 4’B’,C’D’, and
4B coincides with 4’B’, therefore also
CD coincides with €’Z’. Thus the
four points C, D, C’; D’ are collinear,
and the eight points 4,B,C, D, 4’, B’,C’, D’ lie four and four
on two straight lines.

(2).- But if this case be excluded, 4. e. if no three of the eight
vertices lie in a straight line,
then a conic can be drawn
throughany five of them. Let
a conic be drawn through
4,B,0,D,4’(Fig. 185); then
shall B’, C’, D’ lie on the
same conic. Forsinece #, F/, @
are the diagonal points of
the inscribed quadrangle
ABCD, @ is the pole of EF,
and therefore G and the
point where its polar EF meets the transversal GB’ 4’ are
harmonically conjugate with regard to the points where this
transversal cuts the conic. But one of these last points is
4’, therefore the other is B”; for since %, F, G are also the
diagonal points of the quadrangle 4’B’C’D’, the points 4’
and B’ are harmonically conjugate with regard to G and the
point where EF cuts 4’B’. In a similar manner it can be
shown that C” and 2’ also lie on the same conic. The eight
vertices 4,B,C, D, 4’, B’,C’, D’ therefore lie on a conic, and
the proposition is proved.

Fig. 184.

Fig. 18s.

P2
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Since the straight lines 48 and 4B’ meet in G, therefore
AA’ and BB’ as also AB” and 4’B, will meet on EF, the polar
of G. This property gives the means of constructing the
point B’ when the points 4,B,C, D, d” are given. The point
C’ will then be found as the point of intersection of 4’F and
B’E, and the point D’ as that of B’F, 4’E ,and C’G.

266. Suppose now that two conics are given which are
inscribed in the same quadrilateral. Let the four common
tangents which form this quadrilateral be @,/ , ¢, d, and let their
points of contact with the conies be 4, B, C, Dand 4’, B’, ¢, D’
respectively. By the theorem of Art. 169, the triangle formed
by the diagonals of the circumseribed quadrilateral afed has for
its vertices the diagonal points of the inscribed quadrangle
ABCD and also those of the inscribed quadrangle 4’B’C’D’;
thus ABCD and A’B’C’'D’ have the same diagonal points.
Accordingly, by the theorem of Art. 265, the eight points
A4,B,C,D, 4", B’,C", I’ lie either four and four on two straight
lines, or they lie all on a conic.

267. By writing, as usual, line for point, and point for line,
the propositions correlative to those of Arts. 265 and 266 can
be proved, viz.

If two complete quadrilaterals kave the same three diagonals, their
eight sides cither pass four and four through two points, or else they
all touck a conic.

If two conics intersect in four points, the eight tangents lo them
at these points either pass four and four through two points, or they
all touch a conic *.

268. If there be given the diagonal points %, ¥, G and one
vertex d of a quadrangle 4BCD,the quadrangle is completely
determined, and can be constructed. For D is that point on
AE which is harmonically conjugate to 4 with respect to #
and the point where F@ cuts 4F; so C is that point on 4F
which is harmonically conjugate to 4 with respect to /" and
the point where GE cuts AF; and B is that point on 4G
which is harmonically conjugate to 4 with respect to G and
the point where ZF cuts 4G.

But if there be given the diagonal points Z, F, G of a
quadrangle 4BCD and the conic with respect to which EFG
is a self-conjugate triangle, the quadrangle is not completely

* STAUDT, loc. cit., p. 293.
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determined. For we may take arbitrarily on the conic a point
4 as one vertex of the quadrangle 4BCD; then the other
vertices B, C, D are the second points of intersection of the
conic with the straight lines 4G', AF, AE respectively. Hence
it follows that :

Al conics with respect to whick a given triangle EFG is self-
conjugate, and which pass through a fized point A, pass also through
three other fized points B, C, D.

269. ProsLEM. 1o construct a conic passing through two given
points A and A’, and with respect to which a given triangle EFG
shall be self-conjugate.

Solution. Construct, in the manner just shown, the three points
B, C, D which form with 4 a complete quadrangle having Z, 7, and ¢
for its diagonal points. Five points 4, 4, B, €, D on the conic are
then known, and by means of Pascal’s theorem any number of other
points on it may be found. Or we may construct the three points
B’, C’, D" which form with 4’ a complete quadrangle having E, 7, and
@ for its diagonal points ; the eight points 4 , B, C', D, 4’, B/, ¢/, D’
will then all lie on the conic required.

270. Consider again the problem (Art. 218) of describing a conic
to touch four given straight lines a, b, ¢, d and to pass through a given
point S (Fig. 186). The diagonals
of the quadrilateral abed form a
triangle ZF@ which is self-conju-
gate with regard to the conic;
consequently, if the three points
P,Q,R be constructed which
together with § form a quadrangle
having %, F, and G for its diagonal
points, the three points so con-
structed will lie also on the
required conic. Now it may
happen that there is no conic Fig. 186.
which satisfies the problem, or
again there may be two conics which satisfy it (Art. 218, right);
in the second case, since the construction for the points P, @, R
is linear, the two conics will both pass through these points. Thus:

If two conics inscribed in the same quadrilateral abed pass through
the same point S, they will tntersect in three other points P, Q, K ; and
the triangle formed by the diagonals of the circumscribed quadrilateral
abed will coincide with that formed by the diagonal points of the
inscribed quadrangle PQRS.

In order to find a construction for the points P, @, R, consider




214 POLE AND POLAR. [271

the point P for example which lies on ES (Fig. 186). It is seen
that the segment SP must be divided harmonically by Z and its
polar F@ (Art. 250); but the diagonal (ab) (ed) which passes through
E is also divided harmonically, at £ and F. We have therefore
two harmonic ranges, which are of course projective (Art. 51) and
which are in perspective since they have a self-corresponding point at
E; therefore the straight lines P (ab), S (cd), and FG, which join the
other pairs of corresponding points, will meet in a point (Art. 80).
We must therefore join S to one extremity of one of the diagonals
passing through Z, for example to the point ed, and take the point
where the joining line meets F@. This point, when joined to the
other extremity ab of the diagonal, will give a straight line which
will meet £ in the required point P *.

271. The propositions and constructions correlative to those of
the last three Articles, and which will form useful exercises for the
student, are the following :

All condes with respect to which a given triangle is self-conjugate,
and which touch a fixed straight line, touch three other fived straight lines.

To construct a conic to touch two given straight lines, and with
respect to which a given triangle shall be self-conjugate.

If two conics circumseribing the same quadrangle have a common
tangent, they have three other common tangents.

T'o construct the three remaining common tangents to two conics
which pass through four given points and touch a given straight line
(Art. 218, left).

Fig. 187.

272. Let ABCD (Fig. 187) be a complete quadrilateral whose
diagonal points are %, F, and G. Let also

L and P be the points where F@ meets 4D and BC respectively.
Mand Q " ’ GE ,, BDand C4 i
Nand B " » EF ,, CDand 4B »

The six points so obtained are the vertices of a complete quad-
rilateral. For the triangle EFG is in perspective with each of the

* BRIANCHON, loc. cil., p. 45; MACLAURIN, De lin. Geom., § 43.
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triangles ABC, DCOB, CDA, BAD, the centres of perspective being
D, 4, B, C respectively ; whence it follows that the four triads of
points PQR, PMN, LQN, and LMR lie on four straight lines (the
axes of perspective).

These four axes form a quadrilateral whose diagonals ZP, MQ, NR
form the triangle EFG. Accordingly, a conic inscribed in the
quadrangle 4BCD and passing through Z will pass also through
N, P, and R (Art. 270); similarly a conic can be inscribed in
the quadrangle ABDC to pass through Z, M, N, and @; and
a conic can be inscribed in the quadrangle 4CBD to pass through
Q,P,M,and L.

It will be seen that for each of these conics the four tangents
shown in the figure (the four sides of the complete quadrangle 4 BCD)
are harmonic, and that the same will therefore be the case with
regard to their points of contact (Arts. 148, 204). For take one of
the sides of the quadrangle, for example 4B a consideration of the
complete quadrangle CDEF shows that this side is harmonically
divided in R and G. Now the points 4, B, G are the points of
intersection of the tangent 4B with the other three tangents, and 2
is the point of contact of 4B ; therefore the four tangents are cut by
any other tangent to the conic in four harmonic points *.

278. If ABCD is a parallelogram, the points £, G, M, Q pass off
to infinity, and LZNPR also becomes a parallelogram. Of the three
conics considered above the first will in this case be an ellipse which
touches the sides of the parallelogram ABCD at their middle points;
the second a hyperbola which touches the sides 4B and CD at their
middle points and has AC and BD for asymptotes; and the third a
hyperbola baving the same asymptotes and touching the sides 4D
and BC at their middle points.

274, From that corollary to Brianchon’s theorem which has
reference to a quadrilateral eircumseribed about a conic
(Art. 172) we have already, in Art. 173, deduced a method for
the construction of tangents to a conic when we are given
three tangents @, 5, c and the points of contact B, C of two
of them (Fig. 183). We take any point £ on BC and join it
to the points ab, ac by the straight lines ¢, f, respectively; if
the point in which g meets ¢ be joined to that in which / meets
5, the joining line 4 will be a tangent to the conic.

The four tangents a,%,¢,d form a complete quadrilateral
two of whose diagonals ¢ = (ab) (¢d) and f = (ac) (6d) intersect

* STEINER, loc. cif., p. 160, § 43, 4; Collected Works, vol i. p. 347; STAUDT,
Beitrdge zur Geometrie der Lage, Art. 329.
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in £ ; therefore also (Art. 172) the chords of contact 4D and
BC of the tangents @ and 4, & and ¢ respectively will intersect
in Z. The straight lines joining £ to the points a4 and ac,
being two of the diagonals of the quadrilateral aled, are con-
jugate lines with respect to the conic; consequently:

If a triangle abe is circumscribed about a conic, the straight lines
which join two of its vertices ab and ac to any point E on the polar
of the third vertex be are conjugate to one another with respect to the
conic.

And conversely:

If two straight lines (c and &) fouch a conie, any two conjugate
straight lines ( f and g) drawn from any point (E) on their chord of
contact will cut the two given tangents in points such that the
straight line (a) joining them touches the conie.

275. Let us now investigate the correlative property. Sup-
pose three points 4, B, C on a conic to be given, and the
tangents ¢, ¢ at two of these points (Fig. 183). If a straight
line ¢ drawn arbitrarily through the point éc cut 4B in ¢ and
AC in F; then if GC and FB be joined they will intersect in
a point D lying on the conic.

The four points 4,B,D,C form a complete quadrangle
two of whose diagonal points lie on e; therefore (Art. 166)
the point ¢ and the point of
intersection of the tangents at
4 and D will lie on e. The
points ¢ and 7, being two of the
diagonal points of the quadrila-
teral 4ABCD, are conjugate with
respecttothe conic; consequently

If a triangle ABC (Fig. 188) s
inscribed in a conic, the points F
and G in whick two of the sides are cut by any straight line drawn
through the pole S of the third side are conjugate to one another
with respect to the conie.

And conversely:

If two given points (B, C) on a conic be joined o two conjugate
points (G, F) whick are collinear with the pole (S) of the chord (BC)
Joining the given points, then the joining lines will intersect in a
point (A) lying on the conic.




CHAPTER XXI.
THE CENTRE AND DIAMETERS OF A CONIC.

276. LET an infinitely distant point be taken as pole, and

through it let a transversal be drawn (Fig. 189) to cut the
.conic in two points 4 and

4’. The segment 44’ will
be harmonically divided by
the pole and the point where
it is cut by the polar (Art.
250); this point will there-
fore be the middle point of : :
A4’ (Art. 59). That is to Fig. 189.
say:

If any number of parallel chords of a conic be drawn, the locus of
their middle points is a straight line ; and this straight line is the
polar of the point at infinity in whick the chords intersect *.

277. This straight line is termed the diameter of the chords
which it bisects. If the diameter meets the conic in two
points, these will be the points of contact of the tangents
drawn to the conic from the pole, 7.e. of those tangents which
are parallel to the bisected chords. If the tangents at the
extremities 4 and 4" of one of these chords be drawn, they will
meet in a point on the diameter. If 44’ and BB’ are two of
the bisected chords, the straight lines 4B and 4’B’, 4AB” and
A4’B will intersect in pairs on the diameter (Art. 250).

If, conversely, from a point on the diameter can be drawn
a pair of tangents 2 and ¢’ to the conic, their chord of contact
44" will be bisected by the diameter; and if through the
same point there be drawn the straight line which is har-
monically conjugate to the diameter with respect to the two

* AroLLoN1us, Conic., lib. i, 46, 47, 48; lib. ii. 5, 6, 7, 28-31, 34-37.



218 THE CENTRE AND DIAMETERS OF A CONIC. [278

tangents, this straight line will be parallel to the bisected
chords. If from two points on the diameter there be drawn
two pairs of tangents « and o, 4 and ¥/, the straight line join-
ing the points ab and o’4” and that joining the points o/ and
a’b will both be parallel to the bisected chords (Art. 252).

278. To each point at infinity, that is, to each pencil of
parallel rays, corresponds a diameter. The diameters all pass
through one point; for they are the polars of points lying on
one straight line, viz. the straight line at infinity; the point
in which the diameters intersect is the pole of the straight
line at infinity (Art. 256).

279. Since every parabola is touched by the straight line at
infinity, and the point of contact is the pole of this straight
line (Art. 254, II), it follows (Art. 278) that all diameters of a
parabola are parallel to one another (they all pass through the
point at infinity on the curve); and conversely, every straight
line which cuts a parabola at infinity is a diameter of the curve.

280. If S is any point from which a pair of tangents  and
o can be drawn to the conic (Fig. 189), the chord of contact
AA’, the polar of 8, will be bisected at & by the diameter
which passes through §; for § and the point at infinity on
A4’ are conjugate points with respect to the conic. If the
diameter cuts the curve in M and /', the tangents at these
points are parallel to 44’, and MM’ is divided harmonically
by the pole S and the polar 44 (Art. 250).

If then the conic is a parabola (Fig. 19o) the point 3/’ moves
off to infinity, and therefore 3 is the
middle point of the segment SZ; thus

ey The straight line which joins the middl
E g Joins the middle
///C;;\ point of a chord of a parabola to the pole
‘ S of the chord is bisected by the curve*.
‘ a 281. When the conic is not a parabola,
Fig. 190. the straight line at infinity is no longer

a tangent to the curve, and consequently
the pole of this straight line, or the point of intersection of the
diameters, is a point lying at a finite distance. Since any two
points on the conic which are collinear with the pole are
separated harmonically by the pole and the polar (Art.250), the
pole will lie midway between the two points on the curve

* ApoLLoN1us, loc. cit., lib. i. 35.
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when the polar lies at infinity. Every chord of the conic
therefore which passes through the pole of the straight line at
infinity is bisected at this point.

On account of this property the pole of the straight line at
infinity or the point in which all the diameters intersect is
called the centre of the conie.

282. Applying the properties of poles and polars in general
(Arts. 250—253) to the case of the
centre and the straight line at in-
finity, it is seen (Fig. 191) that:

If 4 and 4’ are any pair of points
on the conic collinear with the
centre, the tangents at 4 and 4*
are parallel.

If 4and 4’, Band B’ are any two
pairs of points on the conic which are collinear with the
centre, the pairs of chords 4B and 4’B’, AB’ and A’B are
parallel, so that the figure 4BA’B’ is a parallelogram.

If ¢ and ¢ are any pair of parallel tangents, their chord
of contact passes through the centre, as also does the straight
line lying midway between « and «” and parallel to both.

If @ and o, b and & are any two pairs of parallel tangents, the
straight line joining the points a6 and ¢’4"and that joining the
points o/’ and a4 both pass through the centre; in other
words, if aba’t’ is a parallelogram circumseribed to the conic,
its diagonals intersect in the centre.

283. If the conic is a hyperbola, the straight line at in-
finity cuts the curve; consequently the centre is a point
exterior to the curve (Art. 254, I) in which intersect the
tangents at the infinitely distant points, i.e. the asymptotes
(Fig. 197).

If the conic is an ellipse, the straight line at infinity does
not cut the curve; consequently the centre is a point inside
the curve (Figs. 191, 192).

284. Two diameters of a central conic (ellipse or hyper-
bola *) are termed conjugafe when they are conjugate straight

a A

Fig. 191.

* In the case of the parabola there are no pairs of conjugate diameters; for
since the centre lies at infinity, the diameter drawn parallel to the chords which
are bisected by a given diameter must coincide always with the straight line at
infinity.



220 THE CENTRE AND DIAMETERS OF A CONIC. (285

lines with respect to the conie, 7.e. when each passes through
the pole of the other (Art. 255).

Since the pole of a diameter is the point at infinity on any
of the chords which the diameter
bisects, it follows that the diameter
U conjugate to a given diameter & is
parallel to the chords bisected by &;
conversely, &’ bisects the chords which
are parallel to 6%,

Any two conjugate diameters form
with the straight line at infinity
a self-conjugate triangle (Art. 258), of which one vertex is
the centre of the conic and the other two are at infinity.

Since in a self-conjugate triangle two of the sides cut the
conic and the third side does not (Art. 262), and since the
straight line at infinity cuts a hyperbola but does not cut an
ellipse, it follows that of every two conjugate diameters of a
hyperbola one only cuts the curve, while an ellipse is cut by
all its diameters.

[N
€Y

Fig. 192.

285. PROBLEM. Given five points 4, B, C, D, E on a conic, to
determine its centre.

Solution. We have only to repeat the construction given in Art.
257, I1 (right), assuming the straight line s to lie in this case at
infinity. Draw through (' a parallel to 4 B, and determine the point C”
in which this parallel meets the conic again; draw also through B a
parallel to AC, and determine the point B’ in which this parallel
meets the conic again. The straight line « which joins the points of
intersection of the pairs of opposite sides of the quadrangle 4CBC,
and the straight line v which joins the points of intersection of the
pairs of opposite sides of the quadrangle ABCB’, will meet in the
required poiut O, which is the pole of the straight line at infinity
and therefore the centre of the conic t.

The straight lines » and v are the diameters conjugate respec-
tively to AB and AC; if through O there be drawn the straight
lines w/, v’ parallel to 4 B, AC respectively, then » and o, v and s
will be two pairs of conjugate diameters.

If the conic is determined by five tangents, its centre may be
found by a method which will be explained further on (Art. 319).

* APOLLONIUS, loc. cit., lib. ii. 20.
4 If % and v should be parallel, the conic is a parabola, whose diameters are
parallel to u and v.
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286. Four tangents to a conic form a complete quadrilateral
whose diagonals are the sides of a self-conjugate triangle
(Art. 260). Suppose the four tangents to be parallel in pairs
(Fig. 191); then one diagonal will pass to infinity, and
consequently the other two will be conjugate diameters
(Art. 284); thus:

T%e diagonals of any parallelogram circumseribed to a conic are
conjugate diameters.

The points of contact of the four tangents form a complete
quadrangle whose diagonal points are the vertices of the self-
conjugate triangle (Arts. 169, 260). In the case where the
four tangents are parallel in pairs one of these diagonal points
is the centre of the conic, and the other two lic at infinity.
That is to say, the six sides of the quadrangle are the sides
and diagonals of an inscribed parallelogram ; its sides are
parallel in pairs to the diagonals of the circumscribed paral-
lelogram, and its diagonals intersect in the centre of the
conie.

287. Conversely, let 4B4’B’ (Fig. 191) be any inscribed
parallelogram, and consider it as a complete quadrangle.
Since its three diagonal points must be the vertices of a
self-conjugate triangle, one of them will be the centre of
the conic, and the other two will be the points at infinity
on two conjugate diameters; thus:

In any parallelogram inscribed in a conic, the sides are parallel to
two conjugate diameters and the diagonals intersect in the centre.

Or again :

The chords whick join a variable point A on a conic to the ex-
tremities B and B’ of a fized diameter are always parallel to two
conjugate diamelers.

288. The following conclusions can be drawn at once from
Art. 286.

Any two parallel tangents (z and &’) are cut by any pair of
conjugate diameters in two pairs of points, the straight lines
connecting which give two other parallel tangents (4 and &°).

If from the extremities (4 and 4’) of any diameter straight
lines be drawn parallel to any two conjugate diameters, they
will meet in two points on the curve, and the chord joining
these will be a diameter.

Given any two parallel tangents « and ¢’ whose points of
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contact are 4 and 4’ respectively, and any third tangent & ; if
from A a parallel be drawn to the diameter passing through
a’b this parallel will meet the tangent & at its point of
contact B.

Given any two parallel tangents ¢ and ¢’ whose points of
contact are 4 and A’ respectively, and another point B on the
conic; the tangent at B will meet the tangent a in a point
lying on that diameter which is parallel to 4’B, and it will
meet the tangent & in a point lying on that diameter which is
parallel to 4B.

289. Suppose now that the conic is a circle (Fig. 193), i.e.
the locus of the vertex of a right angle
AMB whose arms 4M and BM turn round
fixed points 4 and B respectively. These
arms in moving generate two equal and
consequently projective pencils; therefore
the tangent at 4 will be the ray of the
first pencil which corresponds to the ray
BA of the second (Art. 143). The tangent
at 4 must therefore make a right angle with 54 ; and simi-
larly the tangent at B will be perpendicular to 4B. The
tangents at 4 and B are therefore parallel, and consequently
ADB is a diameter, and the middle point O of 4B is the centre
of the circle (Art. 282).

1. Since 4B is a diameter, the straight lines 4} and BM
will be parallel to a pair of conjugate diameters, whatever be
the position of 3/ (Art. 287); therefore:

Every pair of conjugate diameters of a circle are at right angles to
one another.

IL. Since the diagonals of any parallelogram circumseribed
about the circle are conjugate diameters, they will intersect
at right angles; thus any parallelogram whick circumscribes a
circle must be a rhombus.

IIL. In a rhombus, the distance between one pair of opposite
sides is equal to the distance between the other pair; thus by
allowing one pair of opposite sides of the circumscribed rhom-
bus to vary while the other pair remain fixed, we see that the
distance between two parallel tangents is constant. This
distance is the length of the straight line joining the points of
contact of the tangents, for this straight line, which is a
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diameter, cuts at right angles the conjugate diameter and the
tangents parallel to it; therefore all diameters of a circle are
equal in length.

IV. The diagonals of any inscribed parallelogram are
diameters ; but all diameters are equal in length ; therefore
any parallelogram inscribed in a circle must be a rectangle.

290. Returning to the general case where the conic is any
whatever (Fig. 189), let s be any straight line and § its pole.
All chords parallel to s will be bisected by the diameter
passing through §; for since § and the point at infinity on s
are conjugate points with respect to the conic, the polar of the
second point will pass through the first. We may also say that:

If a diameter pass through a fized point, the conjugate diameter
will be parallel to the polar of this point.

I. If the diameter passing through § cuts the conic in two
points M and M’, then MM’ is divided harmonically by the
pole § and the polar s*; thus if O is the middle point of M//’,
that is, the centre of the conic, and R the point where MM’ is
cut by the polar s, we have (Art. 69)

08.0R = OM?,

II. From this follows a counstruction jfor the semi-diameter
conjugate to a chord AA" of a conic, having given the exiremities
4 and A’ of the chord and three other points on the conic.
We determine (Art. 285) the centre O, and join it to the
middle point B of 44’; we then construct the tangent at
4 and take its point of intersection § with OR. If now a
point M be taken on OR such that O} is the mean propor-
tional between OF and OS, then OM will be the required
semi-diameter.

If O lie between 22 and §, so that OR and OS have opposite
signs, the diameter OR will not cut the conic; but in this case
also the length O}, the mean proportional between OR and
08, is called the magnitude of the semi-diameter conjugate to the
chord 44’.

An analogous definition can be given for the case of any
straight line (Art. 294).

III. If the conic is a circle, the perpendicularity of the
conjugate diameters in this case gives the theorem :

* AroLLox1US, loc. cit., i. 34, 36; ii. 29, 30.
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The polar of any point with respect to a circle is perpendicular to
the diameter whick passes through the pole.

291. From this last property can be derived a second de-
monstration of the very important theorem of Art. 263 (3), viz.

The range jformed by any nwmber of collinear points, and the
pencil formed by their polars with respect to any given conic, are two
projective forms.

Consider as poles the points 4, B, C, ... lying on a straight
line s (Fig. 194); the diameters O (4, B, C,...) obtained by
joining them to the centre O of
the conic will form a pencil
which is in perspective with the
ranged , B, C,.... Another pencil
will be formed by the polars
a,b,c,...of thepoints 4, ,C,...
since these polars all pass through
a point § (Art. 256), the pole of
s. If now the conic is a circle,
then by the property proved in Art. 290, IIT, the straight lines
0(4, B, C,...) are perpendicular respectivelytoa,b,c,...; and
the two pencils are in this case equal. The range of poles
A,B,C,...is therefore projective with the pencil of polars
a,b,e,... with regard to a circle.

This result may now be extended and shown to hold not
only for a circle but for any conie. For any given conic may
be regarded as the projection of a circle (Arts. 149, 150). In
the projection, to harmonic forms correspond harmonic forms
(Art. 51); consequently to a point and its polar with regard
to the conic will correspond a point and its polar with regard
to the circle, and to a range of poles and the pencil formed
by their polars with regard to the conic will correspond a
range of poles and the pencil formed by their polars with
regard to the circle. But it has been seen that this range and
pencil are projective in the case of the circle ; therefore the
same is true with regard to the range and pencil in the case
of the conic, and the theorem is proved.

Fig. 194.

292. TuroreM. A quadrangle is inscribed in a conic, and a point
is taken on the straight line which joins the points of intersection of the
pairs of opposite sides. If from this point be drawn the straight lines
connecting it with the two pairs of opposite vertices, and also a pair of
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tangents to the conic, these straight lines will be three conjugate pairs of
an involution.

Let ABCD be a simple quadrangle inscribed in a conic (Fig.
195); let the diagonals AC', BD meet in ¥, and the pairs of opposite
sides BC', AD and 4B,CD in E
and @ respectively; the points
E ,F, G will then be conjugate two
and two with respect to the conic
(Art. 259). Take any point [ on
E@ and join it to the vertices of
the quadrangle, and draw also the
tangents 7P, IQ) to the conic. The
two tangents are harmonically
separated by IZ,IF (Art. 264),
since these are conjugate straight
lines, /" being the pole of 7Z. But
the rays /L, IF are harmonically
conjugate also with regard to I4 , I('; for the diagonal 4C of the
complete quadrilateral formed by 4B, BC', CD, and D4 is divided
harmonically by the other two diagonals BD and ZG, and the two
pairs of rays in question are formed by joining 7 to the four
harmonic points on AC. For a similar reason the rays IZ , IF
are harmonically conjugate with regard to
IB,ID. The pair of tangents, the rays
14, IC, and the rays IB, ID are therefore
three conjugate pairs of an involution, of
which IE, IF are the double rays (Art. 125).

I. By virtue of the theorem correlative
to that of Desargues (Art. 183, right), a
conic can be inscribed in the quadrilateral
ABCD so as to touch the straight lines
IP and 7Q.

II. The theorem correlative to the one
proved above may be thus enunciated :

If a simple quadrilateral ABCD (Fig.
199) ?s circumscribed about a conic, and if
through the point of intersection of its diagonals any transversal be
drawn, this will cut the conic and the pairs of opposite sides 4B
and CD, BC and AD, in three pairs of conjugate points of an invo-
lution.

III. By virtue of Desargues’ theorem (Art. 183, left), a conic can
be described to pass through the four vertices of the quadrilateral and
through the two points where the conic is cut by the transversal *.

E

Fig. 195.

Fig. 196.

* CHABLES, Sections coniques, Arts. 122, 126.
Q
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293. The theory of conjugate points with regard to a conic gives
a solution of the problem :

To construct the points of intersection of a given straight line s with
a conic which is determined by five points or by five tangents.

Take on s any two points U and V, construct their polars « and v
(Art. 257), and let U’ and 7’ be the points where these meet s. If
the involution determined by the two pairs of reciprocal points U
and U’, V and V’, has two double points M and N, these will be the
required points of intersection of the conic with s. If U ’ and V'
should coincide, the conic touches s at the point in which they
coincide. If the involution has no double points, the conic does
not cut s *.

By a correlative method may be solved the problem : to draw from
a given point S a pair of tangents to a conic which is determined by
five tangents or by five points.

294. Let 4 and A4’ be a pair of points lying on a straight line s
which are conjugate with respect to the conic, and let O be the point
where s meets the diameter passing through its pole S (the diameter
bisecting chords parallel to s). Then O will be the centre of the
involution formed on s by the pairs of conjugate points such as 4
and 4, and therefore (Art. 125)

04 . 04’ = constant.

If s cuts the conic in two points 3/ and XV, these will be the double
points of the involution, and

04.04’=0M?*=ON?

If s does not cut the conic, the constant value of OA . 04’ will be
negative (Art. 125); in this case there exists a pair H and H’ of
conjugate points of the involution, or of conjugate points with regard
to the conic, such that O lies midway between them, and

04 .04’=0H .0ll'=—0H*=—-0H"".

The segment I’ has been called an ideal chord t of the conic,
just as MN in the first case is a real chord. Accepting this defini-
tion we may say that a diameter contains the middle points of all
chords, real and ideal, which are parallel to the conjugate diameter.

When two conics are said to have a real common chord MY, it is
meant that they both pass through the points A and ¥. When two
conics are said to have an ideal common chord Z//{’, this signifies
that I and H’ are conjugate points with regard to both conics, and
that the diameters of the two conics which pass through the
respective poles of I/H’ both pass through the middle point of
HH’.

* STAUDT, Geometrie der Lage, Art. 305.
+ PoNCELET, loc. cit., p. 29.
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295. A pencil of rays in involution has in general (Art. 207)
one pair of conjugate rays which include a right angle.
Therefore

Through a given point can always be drawn one pair of straight
lines whick are conjugate with respect to a given conic and which
include a right angle ; and these are the internal and external bisec-
tors of the angle made with one another by the tangents drawn Jrom
the given point, when this is exterior to the conic.

206. In Art. 263 (Fig. 183) let the point @ be taken to
coincide with the centre O of the conic (hyperbola or ellipse) ;
two conjugate lines such as GF, GZ will then become conju-
gate diameters, and we see that #4e pairs of conjugate diameters
of a conic form an involution. 1If the comic is a hyperbola, the
asymptotes are the double rays of the involution (Arts. 264,
283) ; thus any two conjugate diameters of a hyperbola are har-
monically conjugate with regard to the asymptotes *. If the conic
is an ellipse, the involution has no double rays.

Consider two pairs of conjugate elements of an involution B
the one pair either overlaps or does not overlap the other, and
according as the first or the second is the case, the involution
has not, or it has, double points (Art. 128); thus:

Of any two pairs of conjugate diameters of an ellipse, the one
aa’ is always separated by the other b (Fig. 192);

Of any two pairs of conjugate diameters of a hyperbola, the one
aa’ is never separated by the other by (Fig. 197).

297. The involution of conjugate m a a
diameters will have one pair of con- b
jugate diameters including a right
angle (Art. 295). If there were a
second such pair, every diameter / @

would be perpendicular to its con-
jugate (Art. 207), and in that case
the angle subtended at any point
on the curve by a fixed diameter
would be a right angle (Art. 287), and consequently the conic
would be a circle. Every conic therefore which is not a para-
bola or a circle has a single pair of conjugate diameters which
are at right angles to one another. These two diameters
a and &’ are called the azes of the conic (Figs. 192, 197). In the
* DE LA Higg, loc. cit., book ii. prop. 13, Cor. 4.
Q2

Fig. 19%.
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hyperbola (Fig. 197) the axes are the bisectors of the angle
between the asymptotes m and » (Arts. 296, 60).

In the ellipse both axes cut the curve (Art. 281); the
greater («’) is called the major, the smaller (a) the minor axis.
In the hyperbola only one of the axes cuts the curve; this one
(¢') i called the fransverse axis, the other (a) the conjugate axis.
The points in which the conic is cut by the axis o’ in either
case are called the vertices.

Regarding an axis as a diameter which bisects all chords
perpendicular to itself, it is seen that the parabola also has
an axis. For since all chords at right angles to the common
direction of the diameters are parallel to one another, their
middle points lie on one straight line, which is the axis a of
the parabola (Fig. 190). The parabola has one vertex at
infinity ; the other, the finite point in which the axis a cuts the
curve, is generally called #4e vertex of the parabola.

298. Since each of the orthogonal conjugate diameters of a
central conic (ellipse or hyperbola) bisects all chords perpen-
dicular to itself, it follows that the conic is symmetrieal with re-
spect to each of the diameters in question (Art. 76). The ellipse
and the hyperbola bave therefore each two axes of symmetry;
the parabola, on the other hand, has only one such axis.

The ellipse and hyperbola are also symmetrical with respect
to a point; the centre of symmetry being in each case the
pole of the straight line at infinity.

In general, given a conic, a point 8, and s the polar of § with
respect to the comic; if § be
taken as centre and s as axis of
harmonic homology (Art. 76), the
conic is homological with itself
(Art. 250) *.

2909. In the theorem of Art.
275 suppose the inseribed triangle
to be 44, M (Fig. 198); that is,
let two of its vertices 4 and 4,
be collinear with the eentre O of the conic, which is taken
to be an ellipse or hyperbola. The pole of the side 44, will
be the point at infinity common to the chords bisected by
the diameter 44,,and the theorem will become the following:

* See also Art. 396, below.
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The straight lines whick join two conjugate points P and P’ to the
extremities A and A4, of that diameter whose conjugate is parallel to.
PP’ intersect on the conic.

800. The pairs of conjugate points taken, similarly to 2P
and P/, on the diameter conjugate to 44, form an involution
(Axt. 263) whose centre is the centre O of the conic. If this
involution has two double points B and B, these lie on the
curve, which is therefore an ellipse. If the involution has no
double points, the conic is a hyperbola (Art. 284); in this
case two points B and B, can be found which are conjucate
in the involution and consequently conjugate with respect to
the conic, and which lie at equal distances on opposite sides
of O (Art. 125). In both cases the length of the diameter
conjugate to 44, is interpreted as being the segment BB,
(Arts. 290, 294).

In the ellipse we have (Art. 294)

OP . OP’= constant = 0852=0B 2,
and in the hyperbola
OP.OP’=constant=0B.0B,= — 0B%= — 08,2
801. The foregoing theorem enables us to solve the problem :

To construct by points a conic, having given a pair of conjugate
diameters A4, and BB, in magnitude and position.

In the case of the ellipse (Fig. 198) the four points 4, 4,, B, B,
all lie on the curve; in the case of the hyperbola (Fig. 199) let 44,
be that one of the two given diameters which meets the conic.

Construct on the diameter BB, several pairs of conjugate points
P and P’ of the involution determined by having O as centre
and B and B, in the first case as double points, in the second case
as conjugate points, The straight lines AP and 4,P’ (as also 4,P
and 4 P’) will intersect on the curve.

802. The straight lines OX, OX” drawn parallel to 4P, 4, P’
respectively are a pair of conjugate diameters (Art. 287). The
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pairs of conjugate diameters form an involution (Art. 296);
consequently the pairs of points analogous to X, X” (in which
the diameters cut the tangent at 4) also form an involution,
the centre of which is 4, since O4 and the diameter OB
parallel to 4X are a pair of conjugate diameters. If the conic
is a hyperbola, the involution of conjugate diameters has two
double rays, which are the asymptotes; therefore the points
K and K, in which 4X meets the asymptotes, are the double
points of the involution XX, ... %,

303. Since OPAX is a parallelogram, 4X=— OP; and from
the similar and equal triangles OP’4, and 41’0, AX’= 0P’ }.
But OP. OP’= + OB? (Art. 125); therefore 4X. AX'=F OB%;
or

The rectangle contained by the segments intercepted on a fixed tangent
to a conic between its point of contact and the points where it is cut
by any two conjugate diameters is equal to the square (¥ OB?) on the
semi-diameter drawn parallel to the tangent.

304. We have seen (Art. 302) that in the case of the hyper-
bola K and K, are the double points of the involution of which
A is the centre and X, X” a pair of conjugate points ; thus

AX AX'=A4K*= 0B
Therefore AK= 0B, and O4KB is a parallelogram. Accord-
ingly :

If a parallelogram be described so as to have a pair of conjugate
semi-diameters of a hyperbola as adjacent sides, one of its diagonals
will coincide with an asymptote 1.

Further, the other diagonal AB is parallel to the second asymptote.
For consider the harmonie pencil (Art. 296) fornied by the two
asymptotes and the two conjugate diameters 04, OB. The
four points in which this pencil cuts 4B will be harmonic;
but one of the asymptotes OK meets 4B in its middle point,
therefore the other will meet it at infinity (Art. 59).

305. Let X, be the point where the diameter OX meets the
tangent at 4;,. Since OX’ and OX, are a pair of conjugate
lines which meet in a point on the chord of contact 44, of

* In Fig. 199 only one of the points K, K is shown.

+ In order to account for the signs, it need only be observed that in the case of
the ellipse OP and OP’ are similar, but AX and AX’ opposite to one another
in direction; while in the case of the hyperbola OP and OP'are opposite, but
AX and AX’ similar as regards direction.

+ ArpoLLoN1US, loc. cit., book ii. 1.
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the tangents 4X and 4,X,, the straight line X’X, (Art. 274)
will be a tangent to the conic.

The point of contact of this tangent is 4/, the point of inter-
section of 4P and 4,P’ (Art. 299).

806. It is seen moreover that XX, is one diagonal of the
parallelogram formed by the tangents at 4 and 4, and the
parallels to 44, drawn through £ and P’; this may also be
proved in the following manner. All points of a diameter
have for their polars straight lines which are parallel to the
conjugate diameter (Art. 284) ; if then through the conjugate
points P and P’ parallels be drawn to 44, , the first will be
the polar of P’ and the second the polar of £; consequently
these parallels are conjugate lines. If now the theorem of
Art. 274 be applied to these conjugate lines and the two tan-
gents at 4 and 4,, we obtain the following proposition :

If a parallelogram is suck that one pair of its opposite sides are
tangents to a conic, and the other pair are straight lines, conjugate
with regard to the conic and drawn parallel to the chord of contact of
the two tangents, then its diagonals also will be tangents to the conic.

807. This gives the following solution of the problem :

To construct a conic by tangents, having given a pair of conjugate
diameters A4, and BB, in magnitude and direction.

Suppose BB, to be that diameter which meets the conic in the case
where the latter is a hyperbola. On BB, determine a pair of con-
jugate points P and P’ of the involution which has the centre O of
the conic as centre and the points B, B, either as double points or
as conjugate points, according as the conic to be drawn is an ellipse
or a hyperbola. Draw through A4 and A4, parallels to BB, and
through P and P’ parallels to 44, ; the diagonals of the parallelo-
gram so obtained will be tangents to the required conic.

808. The segments 4X and 4, X, are equal in magnitude and
opposite in sign ; and it has been seen that AdX. 4X'= F 0B?%;
therefore AX’.4,X,= + 0B*%; or

The rectangle contained by the segments intercepted upon two
parallel fized tangents between their points of contact and the points
where they are cut by a variable tangent (X'X)) is equal to the
square (+ OB%) on the semi-diameter parallel tothe fixed tangents*.

809. Since the straight line OB is parallel to 4X and 4,X;
and half-way between them, the segments determined by 4/

* See Art. 160.
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and 4, M respectively on 4,X; and 4X (measured from 4, and
4 respectively) are double of OP and OP’; but by the
theorem of Art. 300 the rectangle OP. 0P’ is constant ; thus

The straight lines connecting the extremities of a given diameter
with any point on the conic meet the tangents at lhese extremities in
two points suck that the rectangle contained by the segments of the
tangents intercepted between these points and the points of contact is
constant ¥,

810. Since X is (Art. 288) the point of intersection of the
tangent at 4 and the tangent parallel to X"X,, the proposition
of Art. 303 may also be expressed as follows:

The rectangle contained by the segments (AX , AX') determined by
two variable parallel tangents upon any fized tangent is equal to the
square (F OB2) on the semi-diameter parallel o the fized tangent.

311. From the theorems of Arts. 299, 300 is derived the solution
of the following problem :

Given the two extremities A and A, of a diameter of a conic, a third
point M on the conic, and the direction of the diameter conjugate to
AA,y, to determine the length of the latter diameter (Fig. 199).

Through O, the middle point of 44,, draw the diameter whose
direction is given; let it be cut by AM and 4,3 in Pand P’ respec-
tively, and take OB the mean proportional between OP and OP’;
then OB will be the half of the length required.

312. The proposition of Art. 303 gives a construction for pairs of
conjugate diameters, and tn par-

ticular for the axes, of an ellipse of
/ [ N which two conjugate semi-diameters
ol .

04 and OB are given in magnitude

-}
- L
/
y
Ed

-

¢
A and, direction (Fig. 200).
\hl’/ g Through 4 draw a parallel to
X 4 \ / OB ; this will be the tangent at 4,
Sl N\ and will be cut by any two conju-

gate diameters in two points X and
X7 such that
AX . AX'=—0B%

If now there be taken on the normal at 4 two segments A( and
AD each equal to OB, every circle passing through € and D will cut
this tangent in two points X and X’ which possess the property ex-
pressed by the above equation ; these points are therefore such that
the straight lines joining them to the centre O will give the direc-
tions of a pair of conjugate diameters. If the circle be drawn

Fig. 200.

* APOLLONIUS, loc. cit., lib, iii. 53.
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through O the angle XOX” becomes a right angle, and consequently
0X , 0X’ will be the directions of the axes.

Since the circular arcs CX’, XD are equal, the angles COX’, X’0O.D
are equal; consequently OX’, OX are the internal and external
bisectors of the angle which OC, OD make with one another. In
order then to construct the semi-axes O, 0@ in magnitude, let fall
perpendiculars A X, A.X,"on OX, OX’ respectively. Then X and X,
X’ and X" are pairs of conjugate points; therefore OF will be the
geometric mean between OX and 0X |, and 0@ the geometric mean
between OX” and 0X/ *.

318. Through the extremities 4 and 4" (Fig. 201) of two
conjugate semi-diameters O4 and 04’ of a conic draw any two
parallel chords 4B and 4’B’. To find
the points 5 and B’ we have only to
Join the poles of these chords; this
will give the diameter OX’which passes
through their middle points.

Let OX be the diameter conjugate
to OX’, 7.e. that diameter which is
parallel to the chords 4B, 4’B’. The
pencils O(XX’4 B) and O(X’XA’B’) are each harmonic (Art. 59),
and are therefore projective with one another; consequently
the pairs of rays O(XX’, 44’, BB’) are in involution (Art. 123).
But the two pairs O(XX’, 44’) determine the involution of
conjugate diameters (Arts. 127, 296); therefore also OB and OB’
are conjugate diameters. Thus

If through the extremities A and A’ of two conjugate semi-diameters
parallel chords AB, A'B’ be drawn, the points B and B’ will be the
extremities of two other conjugate semi-diameters.

Two diameters 44 and BB determine four chords AB
which form a parallelogram (Arts. 260, 287). The diameters
conjugate respectively to them form in the same way another
parallelogram, which has its sides parallel to those of the first ;
that is, every chord 4B is parallel to two chords 4’B’, and not
parallel to two other chords 4’B’.

314. Let H, K be the points where 4B is cut by 04’, OB’
respectively. The diameter OX’ which bisects 4’8 will also
bisect /K ; therefore 4B and IIK have the same middle point ;
thus 4ll=KB and AK=HB. The triangles 04K and OBH

Fig. 201.

* CHASLES, Apergu historique, pp. 45, 362 ; Sections conigues, Art. 203.
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are therefore equal in area (Euc. L. 37), as also 4KB’ and
BIHA’, and therefore also OAB” and O4’B are equal. Accord-
ingly:

The parallelogram described on two semi-diameters (OA , OB’) as
adjacent sides is equal in area to the parallelogram described similarly
on the two conjugate semi-diameters.

In the same way the triangles O4B and OA4’B’ can be
proved equal.

The triangles 4H4’, BKB’ are equal for the same reason;
and OAH , OBK are equal, and therefore also 044" and OBB’.
Therefore

The parallelogram described on a pair of conjugate semi-diameters
as adjacent sides is of constant area*.

315. Let M and N be the middle points of the non-parallel
chords 4B and A4’B’. Since 4B and 4’B’ are parallel to a
pair of conjugate diameters (Art. 287) and since ON is the
diameter conjugate to the chord 4’B’, therefore ON will be
parallel to 4B; so also OM will be parallel to 4’B’. The
angles OMA and ONA’ are therefore equal or supplementary ;
and since the triangles OMA and ONA’ are equal in area
(being halves of the equal triangles 045 and O4’B ’), we have

(Euc. VI 15),
OM.AM=+ ON.N4' .

Now project (Fig. 202) the points 4, M, B, 4, N, B’ from
the point at infinity on OB as centre
upon the straight line B’B’. The
ratio of the parallel segments AM
and ON, OM and NA’ is equal to
that of their projections; we con-
clude therefore from the equality
just proved that the rectangle
contained by the projections of
OM and AM is equal to that
contained by the projections of
ON and NA’. As the projecting
rays are parallel to OB, the projections of OM and Md are

Fig. 202.

* AroLLoNIUS, loc. cit., lib. vil. 31, 32.

+ The signs + and — caused by the relative direction of the segments
OM ,NA' and ON, AM correspond respectively to the case of the ellipse (Fig.
201) and to that of the hyperbola (Fig. 202).
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each equal to half the projection of BA or of 04. Since N
is the middle point of 4’B’, the projection of ON will be equal
to half the sum of the projections of 04" and OB, and the
projection of V4" will be equal to half the projection of B’
that is, to half the difference between the projections of 04’
and OB’. We have therefore

(proj. 04)*= + proj. (04’ + 0B’)

x proj. (0B’— 04’),

or (proj. 04")? 4 (proj. O4)*= (proj. OB’)2.

In the same manner, by projecting the same points on OB
by means of rays parallel to OB’ (Fig. 203), we should
obtain

(proj. O4)? + (proj. O4’)?= (proj. OB)%

This proves the following proposition :

If any pair of conjugale diameters are projected upon a fived
diameter by means of parallels to the
diameter conjugate to this last, then
the sum (in the ellipse) or difference
(in the hyperbola) of the squares on
the projections is equal to the square
on the fived diameter.

By the Pythagorean theorem
(BEue. I. 47) the sum of the
squares on the orthogonal pro-
jections of a segment on two
straight lines at right angles to
one another is equal to the square on the segment itself. If
then a pair of conjugate diameters are projected orthogonally
on one of the axes of a conic and the squares on the pro-
jections of each diameter on the two axes are added together,
the following proposition will be obtained :

The sum (for the ellipse) or difference ( for the hyperbola) of the
squares on any pair of conjugate diameters is constant, and is equal
to the sum or the difference of the squares on the axes™*,

Fig. 203.

816. If five points on a conic are given, then by the method
explained in Art. 285 the centre O and two pairs of conjugate
diameters % and %/, v and ' can be constructed. If these pairs
overlap one another, the conic is an ellipse; in the contrary case it

* APOLLONIUS, loc. cit., lib. vii, 12, 13, 22, 23.
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is a hyperbola (Art. 296). If in this second case the double rays of
the involution determined by the two pairs u and «/, v and o be
constructed, they will be the asymptotes of the hyperbola.

If in either case the orthogonal pair of conjugate rays of the in-
volution be constructed, they will be the axes of the conic.

The direction of the axes can be found without first constructing
the centre and two pairs of conjugate diameters™. Let4,B,C, F, @
be the five given points (Fig. 168); describe a circle round three of
them 4BC, and construct (Art. 227,1) the fourth point of intersection
¢’ of this circle with the conic determined by the five given points.
Any transversal will cut the two curves and the two pairs of opposite
sides of the common inscribed quadrangle ABCC” in pairs of poiuts
forming an involution (Art. 183). The double points P and @ (if
such exist) of this involution will be conjugate with regard to each
of the curves (Arts. 125, 263); 7.e. they will be the pair common
(Art. 208) to the two involutions which are formed on the transversal
by the pairs of points conjugate with regard to the circle and by the
pairs of points conjugate with regard to the conic (Art. 263). Suppose
that the straight line at infinity is taken as the transversal. As this
straight line does not meet the circle, one at least of these two
involutions will have no double points, and consequently (Art. 208)
the points P and @ do really exist. Since these points are infinitely
distant and are conjugate with regard to both curves they will be
(Arts. 276, 284) the poles of two conjugate diameters of the circle
and also of two conjugate diameters of the conic; but conjugate
diameters of the circle are perpendicular to one another (Art. 289);
therefore P and @ are the poles of the axes of the conic. Further,
the segment PQ is harmonically divided by either pair of opposite
sides of the quadrangle 4BCC’; consequently P and @ are the
points at infinity on the bisectors of the angles included by the
pairs of opposite sides (Art. 60). In order then to'find the required
directions of the axes, we have only to draw the bisectors+ of the
angle included by a pair of opposite sides of the quadrangle ABCC’,
for example by 4B and CC” (Fig. 168).

317. Let grst (Fig. 161) be a complete quadrilateral, and §
any point. It has already been seen (Art. 185, right) that the
pairs of rays @ and @, 6 and #, which join S to two pairs of
opposite vertices, belong to an involution of which the tangents
drawn from S to any conic inscribed in the quadrilateral are a
pair of conjugate rays. Suppose the involution to have two
double rays m and z; they will be harmonically conjugate

* PONCELET, loc. cit., Art. 394
+ See also the note to Art. 387.
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with regard to such a pair of tangents (Art. 125), and will
consequently be conjugate lines with respect to the conie.
But (Art. 218, right) » and » are the tangents at § to the
two conics which can be inscribed in the quadrilateral grst
80 as to pass through 8. Therefore

If two conics which are inscribed in a given quadrilateral pass
through a given point, their tangents at this point are conjugate lines
with respect to any conic inscribed in the quadrilateral.

Instead of taking an arbitrary point S, let 2 be supposed
given. If this straight line does not pass through any of the
vertices of the quadrilateral, there will be one conic, and only
one, which touches the five straight lines = ,q,r,s,7 (Art.
152). Let 8 be the point where this conic touches = ; there
will be a second conic which is inscribed in the quadrilateral
and which passes through §; let the tangent to this at § be .
The straight lines » and » will then be conjugate to one
another with respect to all conies inseribed in the quadrilateral ;
and therefore (Art. 255),

The poles of any straight line m with respect to all conics inscribed
in the same quadrilateral lie on another straight line n.

Moreover, since the straight lines 7 and » are the double
rays of the involution of which the rays drawn from § to two
opposite vertices are a conjugate pair, therefore m and =
divide harmonically each diagonal of the quadrilateral.

318. L. The correlative propositions to those of Art. 317 are
the following:

If a straight line touches two conics whick circumseribe the same
quadrangle, the two points of contact are conjugate to one another
with respect to all conics circumscribing the quadrangle.

The polars of any given point M with respect to all the conics
circumseribing the same quadrangle meet in a fixed point N. The
segment MN is divided harmonically at the two points where it is cut
by any pair of opposite sides of the complete quadrangle.

II. Suppose in the second theorem of

Art. 317 that the straight line » lies at L8
infinity ; then the poles of » will be the
centres of the conics (Art. 281), and » will 6

bisect each of the diagonals of the quadri-
lateral (Art. 59); therefore:
The centres of all conics inscribed in the same quadrilateral lie

Fig. 204.
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on the straight line (Fig. 204) which passes through the middle
points of the diagonals of the quadrilateral ™.

IIL. Suppose similarly in theorem I of the present Article
that the point M lies at infinity ; the polars of M will become
the diameters conjugate to those which have M as their
common point at infinity ; thus:

In any conic circumseribing a given quadrangle, the diameter whick
18 conjugate to one drawn in a given fived direction will pass through
a fiwved point.

319. Newton’s theorem (Art. 318, II) gives a simple method for
finding the centre of a conic deter-
mined by five tangents a,b,c,d e
(Fig. 203). The four tangents
a,b,c,d form a quadrilateral;
join the middle points of its
diagonals. Let the same be done
with regard to the quadrilateral
abee ; the two straight lines thus
obtained will meet in the required
centre O,

The five tangents, taken four
and four together, form five quad-
rilaterals; the five straight lines
which join the middle points of the
diagonals of each of the quadri-
laterals will therefore all meet in
the centre O of the conic inscribed

Fig. 205.

in the pentagon abede.

The same theorem enables us fo find the direction of the diameters
of a parabola which is determined by four tangenis a, b, c,d. For
each point on the straight line joining the middle points of the
diagonals of the quadrilateral abed is the pole of the straight line at
infinity with regard to some conic inscribed in the quadrilateral
(Art. 318, II); therefore the point at infinity on the line will be
the pole with regard to the inscribed parabola (Arts. 254 IIT, and 23).
The straight line therefore which joins the middle points of the
diagonals is itself a diameter of the parabola (Fig. 204).

* NEWTON, Principia, book i. lemma 25. Cor. 3.



CHAPTER XXII.

POLAR RECIPROCAL FIGURES.

820. AN auxiliary conic K bheing given, it has been seen
(Art. 256) that if a variable pole describes a fixed straight
line its polar turns round a fixed point, and reciprocally, that
if a straight line considered as polar turns round a fixed point,
its pole describes a fixed straight line.

Consider now as polars all the tangents of a given curve C,
or in other words suppose the polar to move, and to envelope
the given curve. Its pole will describe another curve, which
may be denoted by C’. Thus the points of C” are the poles of
the tangents of C.

But it is also true that, reciprocally, the points of C are
the poles of the tangents of C’. For let
M’ and N’ be two points on ¢’ (Fig. 206);
their polars » and = will be two tangents
to C and the point mn where they meet
will be the pole of the chord M’N’ (Art.
256). Now suppose the point N’ to approach
M’ indefinitely ; the chord 3/’N’ will ap-
proach more and more nearly to the position
of the tangent at 3/’ to the curve C’; the
straight line » will at the same time ap-
proach more and more nearly to coincidence with =, and the
point 7z will tend more and more to the point where
touches C. In the limit, when the distance M’N’ becomes
indefinitely small, the tangent to C” at 3/’ will become the
polar of the point of contact of m with C. Just then as
the tangents of C are the polars of the points of C’, so also
are the tangents of C” the polars of the points of C; if a
straight line m touches the curve C at 3/, the pole M’ of m

Fig. 200.
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is a point of the curve C” and the polar =" of I is a tangent
to the curve C’ at A/".

Two curves C and C” such that each is the locus of the
poles of the tangents of the other, and at the same time also
the envelope of the polars of the points of the other, are said
to be polar reciprocals* one of the other with respect to the
auziliary conic K.

321. An arbitrary straight line » meets one of the reciprocal
curves in 2 points say; the polars of these points are » tan-
gents to the other curve all passing through the pole 22 of 7.
To the second curve therefore can be drawn from any given
point R’ the same number of tangents as the first curve has
points of intersection with the straight line 7, the polar of R’;
and vice versa. In other words, the degree and class of a curve
are equal to the class and degree respectively of its polar reciprocal
with respect lo a conie.

' 322. Now suppose the curve C to be a conic, and a, & two
tangents to it; they will be cut by all the other tangents
c,d,e,... in corresponding points of two projective ranges
(Art. 149). In other words, C may be regarded as the curve
enveloped by the straight lines ¢, 4, ¢,... which connect the
pairs of corresponding points of two projective ranges lying
on 2 and # respectively (Art. 150).

The curve ¢’ will pass through the poles 4", B’,C’, I', I, ..
of the tangents a,6,c¢,d,e,... of C. The straight lines
47(C’, D', B, ...} will be the polars of the points a (¢,d, ¢, ...)
and will form a pencil projective with the range of poles
lying on the straight line a (Art. 291); so too the straight lines
B(C', D', I,...) will be the polars of the points b(c, d, e, ...)
and will form a peneil projective with the range of poles lymg
on 4. But the ranges a(c,d,e,...) and b(c,d,e,...) are
plo_jective therefore also the pencds A4’ (¢, D', L ...) and
B’(C', D', I, ...) are projective. Consequently C” is the locus
of the pomts of intersection of corresponding rays of two
projective pencils; that is (Art. 150) a conic. Accordingly:

The polar reciprocal of a conic with respect to another conic 18 a
conie t.

323, When an auxiliary conic K is given and another conic

* PoNcCELET, loc. cit., Art. 233.
+ Ibid., Art. 231.
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C whose polar reciprocal €’ is to be determined, the question
arises whether C” is an ellipse, a hyperbola, or a parabola. The
straight line at infinity is the polar of the centre O of K ; there-
fore the points at infinity on C’ correspond to the tangents of
C which pass through 0. It follows that #4e¢ conic C©" will le an
ellipse or a hyperbola according as the point O s interior or exterior
to the conic C, and C" will be a parabola when O lies upon C.

If 4 is the pole of a straight line « with respect to C, and &
the polar of 4 and 4" the pole of ¢ with respect to K, then
will 4" be the pole of @’ with respect to C’, since to four poles
forming a harmonic range correspond four polars forming a
harmonic pencil (Art. 291) and wice versa. Therefore the
centre M’ of ¢’ will be the pole with respect to K of the
straight line » which is the polar of O with respect to C. To
two conjugate diameters of C” will correspond two points of
m which are conjugate with respect to C, &e.

324. Let there be given in the plane of the auxiliary conic
a figure (Art. 1) or complex of any kind composed of points,
straight lines, and curves; and let the polar of every point, the
pole of every line, and the polar reciprocal of every curve, be
constructed. In this way a new figure will be obtained ; the
two figures are said to be polar reciprocals one of the other, since
each of them contains the poles of the straight lines of the
other, the polars of its points, and the curves which are the
polar reciprocals of its curves. To the method whereby the
second figure has been derived from the first the name of polar
reciprocation is given.

Two figures which are polar reciprocals one of the other are
correlative figures in accordance with the law of duality in plane
Geometry (Art. 33); for to every point of the one corresponds
a straight line of the other, and to every range in the one corre-
sponds a pencil in the other. They lie moreover in the same
plane ; their positions in this plane are determinate, but may
be interchanged, since every point in the one figure and the
corresponding straight line in the other are connected by the
relation that they are pole and polar with respect to a fixed
conic. Thus two polar reciprocal figures are correlative figures
which are coplanar, and which have a special relation to one
another with respect to their positions in the plane in which
they lie. On the other hand, if two figures are merely

R
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correlative in accordance with the law of duality, there is no
relation of any kind between them as regards their position *.

325. If one of the reciprocal figures contains a range (of
poles) the other contains a pencil (of polars), and these two
corresponding forms are projective (Art. 291). If then the
points of the range are in involution, the rays of the corre-
sponding pencil will also be in involution, and to the double
points of the first involution will correspond the double rays
of the second (Art. 124). If there is a conic in one of the
figures there will also be one in the other figure (Art. 322); to
the points of the first conic will correspond the tangents of
the second, and to the tangents of the first will correspond the
points of the second; to an inscribed polygon in the first
figure will correspond a circumscribed polygon in the second
(Art. 320). If the first figure exhibits the proof of a theorem
or the solution of a problem, the second will show the proof of
the correlative theorem or the solution of the correlative
problem ; that namely which is obtained by interchanging the
elements ‘point’ and ¢line’

328. TuroreM. If two triangles are both self-conjugate with
regard to a given conic, their six wvertices lie on a conic, and their six
sides touch another conic .

Let ABC aund DEF be two triangles (Fig. 207) each of
which is self-conjugate (Art. 258) with regard
to a given conic K. Tet DE and DF
cut BC in B, and O, respectively, and let AB
and AC cut £F in E, and F, respectively. The
point B is the pole of C4, and C is the pole of
AL ; B, is the pole of the straight line joining
the poles of BC and DE, t.e. of AF; and C, is
the pole of the straight line joining the poles of
BC and DF, i.e. of AL. The range of poles BCB C, is therefore (Art.
291) projective with the pencil of polars A(CBFE), and therefore
with the range of points /£, FE in which this pencil is cut by the
transversal ZF. Thus

(BOB,C)) = (F,IL,FE)
=(E,F EF) by Art. 45,
which shows that the two ranges in which the straight lines BC' and
E F respectively are cut by 4B, C4, DE, FD are projectively related.

* STEINER, loc, cit., p. vii of the preface ; Collected Works, vol. i. p. 234.
+ STEINER, loc. cit., p. 308, § 60, Ex. 46; Collected Works, vol. i. p. 448;
CHASLES, Sections coniques, Art. 215.

Fig. 204.
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These six straight lines therefore, the six sides of the given triangles,
all touch a conic C (Art. 150, II).

The poles of these six sides are the six vertices of the triangles;
these vertices therefore all lie on another conic C” which is the polar
reciprocal of C with regard to the conic K *.

827. The proposition of the preceding Article may also be expressed
as follows: Given two triangles which are self-conjugate with regard
to the same conic K; if a conic C touch five of the six sides it will
touch the sixth side also, and if a conic pass through five of the six
vertices it will pass through the sixth vertex also.

It follows that if a conic C touch the sides of a triangle abe which is
self-conjugate with regard to another conic K, there are an infinite
number of other triangles which are self-conjugate with regard to the
second conic and which circumscribe the first.

For let d be any tangent to C; from D), its pole with regard to K,
draw a tangent ¢ to C, and let f be the polar with regard to K of the
point de; then the triangle def will be self-conjugate with regard to
K (Art. 259). But C touches five sides a, b, ¢, d, e of two triangles
which are both self-conjugate with respect to K ; therefore it must
also touch the sixth side f'; which proves the proposition.

828. If the point D is such that from it a pair of tangents ¢’ and
S’ can be drawn to K, the four straight lines e, f, ¢, f/ will form a
harmonic pencil (Art. 264), since ¢ and f are conjugate straight lines
with respect to the conic K; consequently the straight lines ¢/ and f/
are conjugate to one another with respect to C.

The locus of D is the conic C” which is the polar reciprocal of C
with regard to K ; therefore:

If a conic C s inscribed in a triangle which is self-conjugate with
respect to another conic K, the locus of a point such that the pairs of
tangents drawn from it to the conics C and K form a harmonic pencil
ts a third conic C’ which is the polar reciprocal of C with respect to K.

329. Correlatively: If a conic C’ circumseribes a triangle which
is self-conjugate with respect to another conic K, there are an infinite
number of other triangles which are inscribed in C’ and are self-con-
Jugate with respect to K ; and the straight lines which cut C” and XK in
two pairs of points which are harmonically conjugate to one another all
touch a third conic C which is the polar reciprocal of C’ with regard
to K.

* We may show independently that the six vertices lie on a conic as follows,
It has been seen that the pencil of polars 4 (CBFE) is projective with the range
of poles BOB,(, ; it is therefore projective with the pencil D (BCB,(;) formed by
joining these to the point D. Therefore

A (CBFE) = D(BOB,C,) = D (BCEF)
= D (CBFE) by Art. 45,
which shows (Art. 150, I) that 4, B, C, D, E, F lie on a conic,
R 2
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330. THEOREM. If two triangles circumscribe the same conic,
their six vertices lie on another conic.

Let OQ’R’ and 0’PS be two triangles each circum-
scribing a given conic C (Fig. 208). The two tangents PS
and Q’R’ are cut by the four
other tangents 0'P,0Q’,0R’,0’S
in two groups of corresponding
points PQRS and P’Q R’ of two
projective ranges » and «’ (Art.
149); consequently the pencils
O(PQRS) and O'(P'Q'R'S)
formed by connecting these points
with O and O’ respectively are
projective. Therefore. the points P, Q’, ', 8, in which their
pairs of corresponding rays intersect, lie on a conic C”(Art.150,1)
passing through the centres O and 0 ’s which proves the theorem.

331. The theorem correlative and converse to the foregoing
one is the following :

If two triangles are inscribed in the same couic, their six sides
touch another conic*.

This may be proved by considering the triangles 0Q'R’
and 0'PS as both inseribed in the conic €, and by reasoning
in a manner exactly analogous, but correlative, to that above.

332. It follows at once that:

If two triangles circumscribe If two triangles are inscribed
the same conic, the conic which in the same conic, the conic which
passes throngh five of their ver- touches five of their sides touches
tices passes through the sixth the sixth side also.
vertex also.

Or:

If two conics are such that a triangle can be inscribed in the one
s0 as to circumscrile the other, then there exist an infinite number of
other triangles which possess the same property e

333. There are in the figure (Fig. 208) four projective
forms : the two ranges z and »”, which determine the tangents to
the conic C, and the two pencils O and 0’ which determine the
points of €”; the pencil O is in perspective with the range

+ Briancuoy, loc. cif., p. 35; STEINER, loc. cit., p. 173, § 46, 1I; Collected

Works, vol. i. p. 356.
+ PoncEeLET, loc. cit., Art. 505.
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and the pencil O’ is in perspective with the range »’. If then
any tangent to C cut the bases » and #” of the two ranges in
4 and 4’ respectively, the rays 04 and 0’4’ will meet in a
point M lying on €’; and, conversely, if any point 3/ on C’ be
joined to the centres O and O’, the joining lines will cut » and
« respectively in two points 4 and 4’ such that the straight

line joining them is a tangent to C. Therefore:

If a variable triangle AA’M is
such that two of its sides pass
respectively  through two fixed
points O and O lying on a given
conic, and the vertices opposite to
them lie respectively on two fixed
straight lines w and w’, while the
third wvertex lics always on the
given conie, then the third side
will touch a ficed conic which
touches the straight lines v and u’.

If a wvariable triangle A4’M 1s
such that two of its wvertices lie
respectively on two fixed tangents
u and ' to a given conic, and
the sides opposite to them pass
respectively  through two fixed
points 07 and O, while the third
side always touches the given
conic, then the third vertex will lie
on a fived conic which passes
through the points O and O’.

334. THEOREM. J[f the extremities of eack of two diagonals of a
complele quadrilateral are conjugate points with respect to a given
conic, the extremities of the third diagonal also will be conjugate
points with respect to the same conic*.

Let 4BXY (Fig. 209) be a complete quadrilateral such
that 4 is conjugate to X, and B to Y, with respect to a given
conic K (not shown in
the figure). Let the sides
AB, XY meet in C, and
the sides 4Y, BX in Z,

N

then shall ¢ and Z be ¥
conjugate points with S
respect to the conic K. Q\
Suppose the polars of 57 A o B B 5
the points 4, 3, C (with Fig. 209.

respect to K) to cut the

straight line ABC in A4’, B’, ¢’ respectively. The three
pairs of conjugate points 4 and 4/, B and B’, C and (’ are
in involution; consequently, considering XYZ as a triangle
cut by a transversal 4’B’C’, it follows by Art. 135 that the

* HEssg, De octo punctis intersectionis {rium superficierum secundi ordinis
(Dissertatio pro venia legendi, Regiomonti, 1840), p. 17.
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straight lines XA’, YB’, ZC’ meet in one point . Since
evidently X4’ is the polar of 4 and Y B’ the polar of B with
respect to K, their point of intersection @ is the pole of 45.
Since then C is a point on 45 and is conjugate to C’, its polar
will be QC”; but QC’ passes through Z; therefore C and Z are
conjugate points, which was to be proved.

335. The proof of the following, the correlative theorem, is
left as an exercise to the student:

If two pairs of opposite sides of a complete quadrangle are conju-
gate lines with respect to a conic, the two remaining sides also are
conjugate lines with respect to the same conic.

In order to obtain such a complete quadrangle, it is only
necessary to take the polar reciprocal of the quadrilateral con-
sidered in Hesse’s theorem, i.e. the figure which is formed by
the polars of the six points 4 and X, B and Y, C and Z.

336. The following proposition is a corollary to that of
Art. 334:

Two triangles which are reciprocal with respect to a conic are in
homology ¥,

Let 4BC (Fig. 210) be any triangle ; the polars of its
vertices with respect to a given
conic form another triangle 4’B’C’
reciprocal to the first, that is, such
that the sides of the first triangle
are also the polars of the vertices of
the second. Let thesides C4 and C'4’
meet in %, and the sides 4B and
A’B’in F. :

The points B and Z are conjugate
with respect to the conic, since Z lies on C’4’, the polar of B;
gimilarly C and ¥ are conjugate points. Thus in the quadri-
lateral formed by BC, Cd, AB, and LF, two pairs of opposite
vertices B and F, C and F are conjugate; therefore the
third pair are conjugate also, viz. 4 and the point 2 where
BC meets EF. The polar B’C’ of 4 therefore passes through
D; thus BC and B’C’ meet in a point D lying on ZF.
Since then the pairs of opposite sides of the two triangles meet
one another in three collinear points, the triangles are in
homology, and the straight lines 44’, BB’, CC’ which join

* CHASLES, loc. cit., Art. 135.

Fig. 210.
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the pairs of vertices meet (Art. 17) in a point O, the pole of
the straight line DEF.

337. By combining this theorem with that of Art. 155 the
following property may be enunciated:

If two triangles are reciprocals with respect to a given conic K,
the siw points in which the sides of the ome intersect the non-
correspoading* sides of the other lie on a conic C, and the six straight
lines whick connect the vertices of the one with the non-corresponding
vertices of the other touch another conic ©, the polar reciprocal of
C with respect to K (Art. 322); these straight lines are in fact
the polars with regard to K of the six points just mentioned.

If one of the triangles 4’B’C” is inscribed in the other
ABC, the three conics €, ¢/, and K coincide in one which is
circumseribed about the former triangle and inscribed in the
latter (Arts. 174, 176).

338. ProBLEM. Given two triangles ABC, A'B’C’ which are in
homology ; to construct (when it exists) the conic with regard to which
they are reciprocal.

Take one of the sides, BC for example; the points in which it is
cut by 0”4’ and 4’B”’ are conjugate to the points B and C respectively,
and these two pairs of conjugate points determine an involution
(Art. 263), the double points of which (if they exist) are the points
where BC is cut by the conic in question. In order then to find the
points in which this conic cuts BC, it is only necessary to construct
these double points. In this way the points in which the sides of
the triangles meet the conic can be found, and the latter is determined.
Since 4’ and B are the poles of BC and 0’4’ these points and that
in which 0“4’ meets BC will be the vertices of a self-conjugate
triangle (Art. 258). If then, in finding the points of intersection of
the conic and the straight lines BC and 0“4’ in the manner just
explained, it should happen that the two involutions found have
neither of them double points, the conclusion is that no conic exists
such as is required; for if it did exist, it must be cut by two of the
sides of the self-conjugate triangle (Art. 262).

839. The centre of homology O of the given triangles (Fig. 210) is
the pole of the axis of homology DEF; and the projective corre-
spondence (Art. 291) between the points (poles) lying on the axis
and the straight lines (polars) radiating from the centre of homology
is determined by the three pairs of corresponding elements D and

* Two sides BC and B’C’ of the triangles may be termed corresponding, when
each lies opposite to the pole of the other. And two vertices 4 and 4’ may be
termed corresponding, when each lies opposite to the polar of the other.
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AA’, E and BB’, F and CC’. Consequently it is possible to construct
with the ruler only (Art. 84) the polar of any other point on the
axis, and the pole of any other ray passing through the centre 0.

What has just been said with regard to the point O and the axis
of homology may also be said with regard to any vertex of one of
the triangles and its polar (the corresponding side of the other
triangle). For if e.g. the vertex 4’ and the side BC be considered,
the projective correspondence between the straight lines radiating
from A’ and the points lying on BC is determined by the three pairs
of corresponding elements 4’B” and C, 4’C’ and B, 4’0 and D.

This being premised, it will be seen that the polar of any point P
and the pole of any straight line p can be constructed with the help
of the ruler only. For suppose P to be given; it has been shown
that the poles of the straight lines PO, P4, PB, PC, PA’, ... can
be coustructed, and these all lie on a straight line X which is the
required polar of 7. So again if the straight line p is given, the
polars of the points in which it meets BC, 04, ... can be constructed,
and will meet in a point which is the pole of p.

It will be noticed that all these determinations of poles and polars
are linear (2. e. of the first degree) and independent of the construction
(Art. 338) of the auxiliary conic, which is of the second degree,
since it depends on finding the double elements of an involution.
The construction of the poles and polars is therefore always possible,
even when the auxiliary conic does not exist. In other words: the
two given triangles in homology determine between the points and
the straight lines of the plane a reciprocal correspondence such that
to every point corresponds a straight line and to every straight line
a point, to the rays of a pencil the points of a range projective with
the pencil, and wvice versa. Any point and the straight line corre-
sponding to it may be called pole and polar, and this assemblage of
poles and polars, which possesses all the properties of that determined
by an auxiliary conic (Art. 254), may be called a polar system.

Two triangles in homology accordingly determine a polar system.
If an auxiliary conic exists, it is the locus of the points which lie
on the polars respectively corresponding to them, and it is at the
same time the envelope of the straight lines which pass through the
poles respectively corresponding to them. If no auxiliary conic
exists, there is no point which lies on its own polar ¥,

* SrauDT, loc. cif., Art. 241.
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840. IT has been seen (Art. 263) that the pairs of straight
lines passing through a given point § and conjugate to one
another with respect to a given conic form an involution. Let
a plane figure be given, containing a conic € ; and let the figure
homological with it be constructed, taking S as centre of homo-
logy ; let C" be the conic corresponding to C in the new figure.
Since in two homological figures a harmonic pencil corre-
sponds to a harmonic pencil, any pair of straight lines through
§ which are conjugate with respect to C will be conjugate
also with respect to ¢’. The polars of § with respect to the
two conics will be corresponding straight lines ; if then the
polar of § with respect to C be taken as the vanishing line
in the first figure, the polar of § with respect to €’ will
lie at infinity; ¢.e. the point § will be the centre of the
conic C’.

In this case therefore any two straight lines through §
which are conjugate with respect to ¢ will be a pair of conju-
gate diameters of ¢". If § is external to C, the double rays of
the involution formed by the conjugate lines through § are
the tangents from § to C, and therefore the asymptotes of C’,
which is in this case a hyperbola. If § is internal to C,
the involution has no double rays, and therefore €’ is an
ellipse.

We conclude then that o every point § in the plane of a given
conie C corresponds a conic G’ homological with C and having its
centre at 8 ; which conic Q" is a hyperbola or an ellipse according as
8 is external or internal to the given conic C.

* STEINER, Vorlesungen iiber synthetische Geometrie (ed.Schréter), I1ter Abschnitt,

§ 35; Zucu, Hohere Geeometrie (Stuttgart, 1857), § 7; REYE, Geometrie der Lage
(2nd ed., Hannover, 1877), Vortrag 13.
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841. For certain positions of the point § the conic ¢’ will
be a circle.  When § has one of these positions it is called a
JSocus* of the conic C. Since all pairs of conjugate diameters
of a circle cut one another orthogonally the involution at § of
conjugate lines with respect to € will in this case consist
entirely of orthogonal pairs.

If ¢ is a circle, its centre O is a focus; for every pair of

conjugate lines which meet in O, i.e.
\\ every pair of conjugate diameters of C,
cut orthogonally. And a cirele C kas no
other focus but its centre O. For let any
point S be taken (Fig. 211) distinct from
0 and a straight line SQ be drawn not
passing through O; and let P be the
pole of 8Q. Then since PO must be
perpendicular to 8@, the conjugate lines
SP,8Q cannot be orthogonal, and there-
Q fore S cannot be a focus of C.
Fig. 211. The foci of a conic C which is not a
circle are of mecessily internal points ;
this follows from what has been said above (Art. 340).
Further, they lie on the axes. For if I is a focus and O
the centre of the conic, the pole of the diameter FO will lie
on the perpendicular drawn through # to FO; therefore
IO is perpendicular to its conjugate diameter, ¢.e. FO is an
axis of the conic.

Again, the straight line connecting two foci F and Fy is an
axis. For if straight lines perpendicular to FF; be drawn
through 7 and Z these will both be conJuaate to I'F, and
their point of mtelsectlon will therefore be the pole of FI7;
but this point lies at infinity ; therefore I’/ is an axis.

342. Let a point P be taken arbitrarily on an axis a of a
conic; through P draw a straight line 7, and from £, the pole
of 7, draw the straight line // perpendicular to 7 ; let P” be the
point where ” meets the axis. The straight lines passing
through P and those passing through P’ and conjugate to
them respectlvely form two projective pencils; for the second
pencil is composed of rays which project from P’ the range

S

* DE 1A HIRE, Sectiones conicae (Parisiis, 1685, lib, viii. prop. 23 ; PONCELET,
Propriétés projectives, Art. 457 et seqq.
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formed by the poles of the rays of the first pencil, which range
is (Art. 291) projective with the first pencil itself. The two
pencils in question have three pairs of corresponding rays
which are mutually perpendicular; for if 4 be the point at
infinity which is the pole of the axis @, the rays Pd, PP’, r of
the first pencil correspond to the rays PP, P’'d, " of the
second, and the three former rays are severally perpendicular
to the three latter. The two pencils therefore by the inter-
section of corresponding rays generate a ecircle of which
PP’ is a diameter ; and therefore every pair of corresponding
rays of the two pencils P and P’ intersect at right angles.
Thus:

1o every point P lying on an axis of the conic corresponds a point
P’ on the same axis such that any two conjugate straight lines which
pass one through P and the other through P’ are perpendicular o
one another.

The pairs of points analogous to P, P’ form an involution.
For let the ray » move parallel to itself; the corresponding
rays +/ (which are all perpendicular to ») will all be parallel to
each other. The pencil of parallels  is projective (Art. 291)
with the range which the poles 2 of the rays » determine upon
the diameter conjugate to that drawn parallel to »; and the
pencil of parallels »” is in perspective with this same range.
Therefore the pencils 7, 7" are projective, and consequently the
points P, P’ in which a pair of corresponding rays »,+" of the
pencils cut the axis a trace out two projective ranges. To the
straight line at infinity regarded as a ray 7 corresponds
in the second pencil the diameter parallel to the rays »”; and
similarly, to the line at infinity regarded as a ray +° corre-
sponds in the first pencil the diameter parallel to the rays .
Therefore the point at infinity on the axis has the same corre-
spondent whether it be regarded as a point P or as a point P’:
viz. the centre O of the conic. We coneclude that the pairs of
points P, P’ constitute an involution of which the centre is the
centre O of the conic.

343. If the involution formed by the points P, " on the
axis « has double points, each of them will be a focus of the
conic, since every straight line through such a double point
will be conjugate to the perpendicular drawn to it through
the point itself.
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If the involution has no double points, each of the two
points (Art. 128) at which the pairs PP’ subtend a right angle
will be a focus of the conic. For every pair of mutually
perpendicular straight lines which meet in such a point will
pass through two points P, P’, and will therefore be conju-
gate lines with respect to the conic.

From this it follows that one at least of the two axes of a
conic contains two foci. Further, a conic has only two
foci; for every straight line which joins two foci is an
axis (Art. 341), and no conic (except it be a circle) has more
than two axes.

Consequently a central conic (ellipse or Ayperbola) has two foci,
which are the double points of the involution PP’ on an axis and are
also the points at which the pairs of points PP’ of the involution on
the other axis subtend a right angle.

The axis which contains the foci may on this account be
called the focal axis. Since the foci are internal points, it is
seen that in the hyperbola the focal axis is that one which
cuts the curve (the transverse axis).

Since the centre O of the conic is the centre of the
involution PP’, it bisects the distance between the two
foei.

From what has been said it follows that Zwo perpendicular
straight lines which are conjugate with respect to a conic meet the focal
axis in two points whick are harmonically conjugate with respect to
the foci ; and they determine upon the other axis a segment which
subtends a right angle at either focus.

344. The normal at any point on a curve is the perpen-
dicular at this point to the tangent. Since the tangent and
normal at any point on a conic are conjugate lines at right
angles, they meet the focal axis in a pair of points harmoni-
cally conjugate with respect to the foci; and they determine
on the other axis a segment which subtends a right angle at
either focus (Art. 343). Accordingly:

If a circle be drawn to pass through the two foci and through any
point on the conic, it will have the two points in which the non-focal
axis is cul by the tangent and normal at that point as extremities of
a diameter.

And again (Art. 60):

The tangent and normal at any point on a conic are the bisectors
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of the angle made with one another by the rays which join that point
to the foci*.

These rays are called the focal radii of the given point.

345. A pair of conjugate lines which intersect at right
angles in a point § external to the conic are harmonically
conjugate with respect to the tangents from § to the conic
(Art. 264) as well as with respect to the rays joining § to the
foci (Art. 343); therefore:

The angle between two tangents and that included by the straight
lines which join the point of intersection of the tangents to the foci
have the same bisectors T.

346. In the parabola, the point at infinity on the axis,
regarded as a point P, coincides with its correspondent P’
for the straight line at infinity, being a tangent to the conic
at the said point P, passes through its own pole.

Accordingly one of the double points of the involution
determined on the axis by the pairs of conjugate orthogonal
rays, i.e. one of the foci, is at infinity. The other double point
lies at a finite distance, and is generally spoken of as ¢4e focus
of the parabola.

Since in the case of the parabola one focus is at infinity,
the theorems proved above (Arts. 343-345) become the
following :

Two conjugate orthogonal rays, and in particular the tangent and
normal at any point on the parabola, meet the axis in two points
which are equidistant from the focus.

The tangent and normal at a point on a parabola are the bisectors
of the angle which the focal radius of the point makes with the
diameler passing through the point §.

The straight line which connects the focus with the point of inter-
section of two tangents to a parabola makes with either of the
tangents the same angle that the awis makes with the other tangent.

347. From the last of these may be immediately deduced
the following theorem :

The circle circumseribing a triangle formed by three tangents to a
parabola passes through the focus.

Let PQR (Fig. 212) be a triangle formed by three

* APOLLONIUS, loe. ¢it., iii. 48.
+ Ibid., iii. 46.
+ DE 1A Hirg, loc. cit,, lib, viii. prop. 2.
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tangents to a parabola, and let 7' be the focus. Considering
the tangents which meet in P, the angle FPQ is equal to that
made by PR with the axis; and

considering the tangents which

U/ ‘meet in R, the angle FRQ is

equal to that made by RP with

the axis. Hence the angles

P
NN A/r ‘ FPQ,FRQ are equal, and there-
R

fore P, Q, R, F lie on the same
circle.
COROLLARY. The locus of the
Joci of all parabolas which touck the
Tig. 212. . three sides of a given triangle is the
cireumseribing cirele of the triangle.

This corollary gives the construction for the focus of a
parabola which touches four given straight lines. And since
only one such parabola can be drawn (Art. 157), we conclude
that :

Given four straight lines, the circles circumscribing the four
triangles which can be formed by taking the lines three and three
together all pass through the same point,

348. The polar of a focus is called a directrix.

The two directrices are straight lines perpendicular to the
transverse axis and external to the conie, since the foei lie
on the transverse axis and are internal to the conic (Art. 343).

In the case of the parabola, the straight line at infinity

is one directrix ; the other

Q lies at a finite distance,

and is generally spoken

Q" of as the directrix of the
parabola.

= T = 5 If 7 be a focus, and if

the tangent at any point

X on a conic cut the

@ corresponding directrix in

Fig. 213. Y, this point ¥ will be the

pole of the focal radius

I'X. Therefore X, FY are conjugate lines with respect to

the conic, and since they meet in a focus, they will be at

right angles : consequently :




349) FOCI. 255

The part of a tangent to a conic intercepted between its point of
contact and a directriz subtends a right angle at the corresponding
Jocus.

849. Let the tangent and normal at any point A/ on a
conic meet the focal axis in P, P’ respectively, and let them
meet the other axis in @, @ respectively (Fig. 213). From M/
let perpendiculars M/P”, HQ” be drawn to the axes.

From the similar triangles OPQ, Q"3 Q

OP:0Q=Q"M:Q"Q,
and from the right-angled triangle Q@ 2/Q
Q'M:Q"Q = Q' Q":Q"I;
oo 0P:0Q=0Q'Q":Q"M

= Q/Q//: OPIl’
or OP.0P” = 0Q.Q’Q"
] — OQ (Q’O-*—OQ”),
so that OP.0P”—0Q.0Q" =0Q.Q0.. . . . (1)

But P and P” are a pair of conjugate points, since MP” is
the polar of P; similarly @ and @” are conjugate points.
Therefore (Art. 294)

OP.OP” = 04% and 0Q.0Q"” = + 0B?,
where 04, OB are the lengths of the semiaxes, and the double
sign refers to the two cases of the ellipse and the hyperbola.
Again, the points @, @’ subtend a right angle at either of the
two foci 7, F” (Art. 343) so that
0Q.Q'0= OF~
Substituting, (1) becomes
OF? = 04%*F OB2.

This shows that in the ellipse 04 > OB ; so that the focal
axis is the axis major.

Referring now to Figs. 214 and 2135,

Fd = F0+ 04,
FA'= FO+ 04" = FO—04;
T4 .FA' = FO*—04?
= F OB2

If D be the point in which a directrix cuts the focal axis,
the vertices 4 and 4’ of the conic will be harmonically conju-
gate with respect to 7' and the point D where the polar of #
cuts 44’ (Art. 264); therefore, since O bisects 44,

04* = OF. OD.
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The parabola has one vertex at infinity; consequently
the other lies midway between the focus and the directrix
(Fig. 218).

350. If a focus F of a conic C be taken as centre of homo-
logy, and a conic C’ be constructed homological with ¢ and

P P’
(A ]
D’ D|D
D A& 0 F' /A T JA| [o Al F
B
d & \
Fig. 214. Fig. 215.

having its centre at F, it has been seen (Arts. 340, 341) that
C’ is a circle. But by what has been proved in Art. 77, if
M and M’ are a pair of corresponding points of C and ¢/,

M
E? : .Z;[P = Constant,
oo
or WP~ FM’ x constant,

where MP (Figs. 214, 215) is the distance of M from the
vanishing line, that is from the polar of Z, i.e. the correspond-
ing directrix. Now FM’ is constant, because C” is a circle;
therefore '

The distance of any point on a conic from a focus bears a constant
ratio to its distance from the corresponding directriz.

Moreover, this ratio is the same for the two foci. For let O
(Figs. 214, 215) be the centre of the conie, #, I the foci, 4, 4’
the vertices lying on the focal axis, 2, 2’ the points in which
this axis is-cut by the directrices; then (Art. 294)

042 = 04’ = OF. 0D = 0I". 0",
But OF = —O0F, so that 4’D’' = —A4D and I"d" = — T4,
and therefore Fd: 4D = F'4’: 4'D’,
which shows that the ratio is the same for /" and for #”.
In the case of the parabola the ratio in question is unity,
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because (Art. 349) the vertex of a parabola is equally distant
from the focus and the directrix. Therefore

The distance of any point on a parabola from the focus is equal to
its distance from the directri.

851. Conversely, the locus of a point M whick is such that its
distance from a fized point F bears a constant ratio € to its distance
Jrom a fived straight line d is a conic of which F is a focus and d
the corresponding directriz’.

For let MP (Figs. 214, 215) be drawn perpendicular to 4;

then by hypothesis
M

up=©
Let now the figure be constructed which is homological
with the locus of M ; F being taken as centre of homology,
and ¢ as vanishing line. If 2’ be the point corresponding to

M, then (Art. 77)
M

i MP = constant.

These two equations show that " is constant; thus the
locus of M’ is a circle, centre . The locus of M is there-
fore a conic (Art. 23) having one focus at # (Art. 341). And
since the straight line at infinity is the polar of F with
respect to the circle, the straight line 4 is the polar of 7 with
respect to the conic; Z.e. it is the directrix corresponding to Z.

852. The length of a chord of a conic drawn through a focus
perpendicular to the focal axis is called the lafus rectum or
the parameter of the conie.

Let MFM’ (Fig. 216) be a chord of a conic drawn through a
focus ¥, and let V be the point where it cuts the corresponding
directrix. Iet LFL’ be the latus rectum drawn through 7.
Then since the directrix is the polar of the focus, NV and F
are harmonic conjugates with regard to M and M’. There-
fore

2 1 I
NPT N T NI
and if perpendiculars MK, FD, M’K” be let fall on the
directrix,
2 I I
0T WK T AE
* Pappus, Math. Collect., lib. vii. prop. 238.
8
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But by Art. 350
MK :FD:MK=M'F:FL:FM;
2 1 I
FL=IF T
that is to say:
In any conic, kalf the latus rectum is o harmonic mean between
the segments of any focal chord.

Q
=
N
=
oj
B

Zth
H R
Q

X<’

Fig. 216.

CoroLLARY. If M, M’ be taken at 4’, 4 respectively,
I
TL =47+ 7p)
AA’
=Y rr

04
+ + 012

0R?

so that FlL =+ ok

which gives the length of the semi-latus rectum in terms of
the semi-axes.

(by Art. 349),

In the parabola, A = o, so that 'L = 2 F'A.

353. THEOREM. In the ellipse the sum,and in the kyperbola the
difference, of the focal radii of any point on the curve is constant *.
Let M be any point on a central conic (Figs. 214, 215) whose

* APOLLONIUS, loc. cil., iil. 51, 52.
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foci are 7, F” and directrices 4, d’; and let (M, d) &e. denote
as usual the distance of M from d, &c. By Art. 351

FM M
@, d)~ @, 7))~ ¢
FM+F'M

= €.

(M,d)+(M,d)

But (Fig. 214) in the ellipse (M, d) + (M, @’), and (Fig. 215)
in the hyperbola (M, d)— (M, d’) is equal to the distance DD’
between the two directrices ; therefore

FM+FM=¢.DD’,
which proves the proposition.

Conversely : The locus of a point the sum (difference) of whose
distances from two fiwed points is constant is an ellipse (@ hyperbola)
of whick the given points are the foci.

854. If in the proposition of the last Article the point M be
taken at a vertex 4,

€. DD =1F4+F4
=204
= Ad4’,
so that #ke length of the focal awis is the constant value of the sum
or difference of the focal radii. Tt is seen also that the constant
€ is equal to the ratio of the length of the focal axis to the
distance between the directrices.
855. Since by Art. 294

042= OF . OD,
or A4% = FF'. DI,
A4’ FF

T Dp T da’
so that the constant ¢ is equal to the ratio of the distance
between the foci to the length of the focal axis. Now in the
ellipse /"< 44’, in the hyperbola FF’ > AA4’, in the parabola
FF'=44"= o, in the circle FF’= 0. Therefore the conic is
an ellipse, a hyperbola, a parabola, or a circle, according as
€<I, €>1I, e=1I, or e=0. This constant ¢ is called the
eccentricity of the conic.
856. THEOREM. TVe locus of the feet of perpendiculars let fall
Jrom a focus upon the tangenls to an ellipse or hyperbola is the
circle described on the focal axis as diameter *.

* AroLroN1us, loc. cit., iii. 49, 50.
8 2
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Take the case of the ellipse (Fig. 217). If ', F” are the foci,
and 1/ is any point on the curve, join #”J/ and produce it to G
making }G equal to MF. Then F'G will (Art. 354) be equal
to A4’ whatever be the posi-
tion of M ; thus the locus of ¢
is a circle, centre /'’ and radius
equal to 44",

If F@ be joined, it will cut
the tangent at M perpendicu-
larly, since this tangent (Art.
344) bisects the angle FIG;
and the point U where the two
lines intersect will be the mid-
dle point of I'G because FMG
is an isosceles triangle. There-
fore OU is parallel to F’G and equal to 117G, that is, to 04;
i.e. the locus of U is the circle on 44" as diameter.

Fig. 217.

A similar proof holds good for the hyperbola, except that from the
greater of the two 3/ F, M F" must be cut off a part M@ equal to the less.

357. If FU,FU’ (Fig. 217) are the perpendiculars let fall
from a focus # on a pair of parallel tangents, U, 7', U’ will
evidently be collinear. And since U and U’ both lie on the
circle deseribed on 44" as diameter,

FU.FU' =F4. 1AL
= F OB? (Art. 349),

according as the conic is an ellipse or a hyperbola.

Thus the product of the distances of a pair of parallel tangents
Jrom a focus is conslant. o

Since the perpendicular let fall from the other focus F” on
the tangent at 2/ is equal to I'U”, it follows that

The product of the distances of any tangent to an ellipse (hyper-
bola) from the two foci is coustant, and equal to the square of half
lhe minor (conjugale) axis.

Conversely : The envelope of a straight line which moves in such a
way that the product of its distances from two fized points is constant
is a conic ; an ellipse if the value of the constant is positive, a lyperbola
if it is megative.

358. Let F (Fig. 218) bo the focus of a parabola, 4 the
vertex, J any point on the curve, N the point of intersection
of the tangents at 3 and 4. If NF ’ be drawn to the infinitely
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distant focus 2 (i.e. if NF’ be drawn parallel to the axis), the
angles ANF', FNM will be equal (Art. 346). But ANF’ is a
rightangle ; therefore FN 1/
isaright angle also. Thus

The foot of the perpen- 2
dicular let fall from the focus / WY oo
of a parabola on any tangent K
F

lies on the tangent at the
vertex.

CoRroLLARY.  Since any d
point on the circumseribing
circle of a triangle may be
regarded (Art. 347) as the focus of a parabola inseribed in the
triangle, it follows at once from the thecrem just proved that if from
any point on the circumscribing circle of a triangle perpendiculars be
let fall on the three sides, their feet will be collinear *.

359. The theorem of Art. 356 may be put into the following form :

If a right angle move in its plane in such a way that its wvertex
describes a fixed circle, while one of its arms passes always through a
Siwed point, the envelope of its other arm will be a conic concentric with
the given circle, and having one focus at the fixed point. The conie is
an ellipse or a hyperbola according as the given point lies within or
without the given circle t.

So too the corresponding theorem (Art. 358) for the parabola may
be expressed in a similar form as follows :

If a right angle move in ils plane in such a way that its vertex
describes a fixed straight line, while
one of its arms passes always through
a fived point, the other arm will en-
velope a parabola having the fixed
point for focus and the fixed straight
line for tangent at its vertew.

360. I. Let the tangents at
the vertices of a central conic
be cut in P, P’ by the tangent
at any point M (Fig. 219). The
three tangents form a triangle
circumseribed about the conie,
two of the vertices of which
are P and P’, the third (at infinity) being the pole of the

* For other proofs of this see Art. 416.
+ MACLAURIN, Geometria Organica, pars I1° prop. xi.

Fig. 218.

A

Fig. 219.
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axis 44’. Therefore (Art. 274) the straight lines drawn from
P and P’ to any point on the axis will be conjugate to one
another with respect to the conic. Thus, in particular, the
straight lines joining  and P’ to a focus will be conjugate
to one another; but conjugate lines which meet in a focus
are mutually perpendicular (Art. 343) ; consequently the circle
on PP’ as diameter will cut the axis 44" at the foci *.

II. Let the tangent PMP’ cut the axis 44" at N; then N is
the harmonic conjugate of M/ with respect to P, P’ (Art. 194).

Consider now the complete quadrilateral formed by the
lines FP,I"P, FP', I'P’. Two of its diagonals are FF’ and
PP’; the third diagonal must then cut F#” and PP’ in points
which are harmonically conjugate to N with regard to I, #”
and P, P’ respectively. It must therefore be the normal at
M to the conic .

361. Let 7M , TN (Fig. 220) be a pair of tangents to a conic,
M and N their points of contact,
F a focus, 4 the corresponding

3t a directrix. If the chord MN cut 4
M in P, this point is the pole of 7'F;
therefore 7FP is a right angle

L 5 (Art. 343) 1.

But MN is divided harmonically
by FT and its pole P; thus
F(MNTP) is a harmonic penecil,
and consequently F7, /P are the
bisectors of the angle MFN. Accordingly :

One of the bisectors of the angle whick a chord of a conic sublends
at a focus passes through the pole of the chord. The other bisector
meets the chord at ils point of intersection with the directriz corre-
sponding to the focus.

Or the same thing may be stated in a different manner, thus:

The straight line whick joins a focus to the point of intersection of
a pair of tangents to a conic makes equal (or supplementary) angles
with the focal radii of their points of contact .

Fig. 220.

* APOLLONIUS, loc. cit., iil. 45; DESARGUES, (Fuvres, i. pp. 209, 210.

1 ArovrroNivs, loc. cit., iii. 47.

1 If the points M and N are taken indefinitely near to one another, this reduces
to the theorem already proved in Art. 348,

§ De La Hirg, loc. cit., lib. viil. prop. 24.
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362. Let the tangents 73, TNV be cut by any third tangent
in M’, N’ respectively (Figs. 221, 222); let L be the point of
contact of this third tangent. The following relations will
hold among the angles of the figures:

N'FL =NFN' = }NFL,
LM = M'FM = 3 LFM,
whence by addition
N’FL + LFM’ = §(NFL+ LFM),
or N'FM’ = 3 NFM = NFT = TFM.*

Let now the tangents 7, TN be fixed, while the tangent
M’N’ is supposed to vary. By what has just been proved,
the angle subtended at the focus by the part M'N’ of the

Fig. 221. Fig. 222.

variable tangent intercepted between the two fixed ones is
constant. As the variable tangent moves, the points ", N’
deseribe two projective ranges (Art. 149), and the arms
FM’, FN’ of the constant angle M’FN’ trace out two con-
centric and directly equal pencils (Art. 108). Accordingly :

* Tn this reasoning it is supposed that FM', FN', FI are all internal bisectors ;
4.¢. that either the conic is an ellipse or a parabola, or that if it is a hyperbola,
the three tangents all touch the same branch (Fig. 221). If on the contrary two
of the tangents, for example 7'M and TN, touch one branch and the third M'N "
the other branch (Fig. 222), then FM' and FN' will be external bisectors. In
that case,

N'FL=4NFL-"
LFM = § LFM +

(the angles being measured all in the same direction);
... N'FM’= } NFM, just as in the case above.
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The ranges whick a variable tangent to a conic determines on two
Jiwed tangents are projected from either jfocus by means of two
directly equal pencils.

This theorem clearly holds good for the cases of the parabola and
its infinitely distant focus, and the circle and its centre. For the
parabola it becomes the following :

T'wo fiwed tangents to a parabola intercept on any variable tangent
to the same a segment whose projection on a line perpendicular to the
aicis is of constant length.

The general theorem may also be put into the following form :

One vertex F of a variable triangle M'FN' is fixed, and the angle
M’FN’ is constant, while the other vertices M’, N’ move respectively on
Sized straight lines TM, TN. The envelope of the side M'N’ is a
conic of which I is a focus, and which touches the given lines TM, TN.

863. The problem, Given the two foci F, F’ of a conic and a
tangent t, to conmstruct the conte, is
determinate, and admits of a single

\ AN solution, as follows.
\ \\ Join FI' (Figs. 223, 224) and let
|/ ‘ \ it cut ¢ in P; take P’ the harmonic
F ] oP \P”I“’ P conjugate of P with respect to /' and
< F’. If a straight line 2/ be drawn

perpendicular to ¢, it will be the
normal corresponding to the tangent
t (Art. 344), 7.e. M will be the point
of contact of ¢. Draw MP” perpendicular to FF/; it will be the
polar of P, and P, P”” will be conjugate points with respect to the

Fig. 223.

H, T
~C
C/
N 7 -
Fig. 224.

conic. If then FF’ be bisected at O, and on F'F’ there be taken
two points 4, 47 such that 04*=04”=0L.0P", 4 and 4’ will
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be the vertices of the conic. The conic is therefore completely deter-
mined ; for three points on it are known (M, 4, 4”) and the tangeuts
at these three points (¢ and the straight lines 4C, 4’C” drawn
through 4, A’ at right angles to 44).

An easy method of constructing the conic by tangents is to describe
any circle through # and £, cutting AC, A’C” in I/ and X, H’ and K’
respectively (Fig. 224). Then if the chords HK’, H’K be drawn
which intersect crosswise in the centre of the circle (which lies on
the non-focal axis), these will be tangents to the conic (Art. 360).
Every cirele through # and F/ which cuts 4C' and 4’C” thus deter-
mines two tangents to the conic.

The conic is an ellipse or a hyperbola according as ¢ cuts the
segment J'F” externally or internally.

The conic is a parabola when F” is at infinity (Fig. 225). In this
case produce the axis PF to P’/ making FP’ equal to PF, and draw
P’M perpendicular to ¢; then M will be the point of contact of the
given tangent ¢.. Draw M P” perpendicular to the axis; then P and
P will be conjugate points with
respect to the parabola. And since
the involution of conjugate points ~
on the axis has one double point
at infinity, the middle point 4 M
of PP” will be the other double L
point, 7. e. the vertex of the parabola. P
The parabola is therefore com- % plar P »
pletely determined, since two points
on it are known (M and 4), and
the tangents at these points (¢ and
the straight line drawn through 4 Fig. 225.
at right angles to the axis).

364. On the other hand, the problem, 70 construct the conic which
has its foci at two given points F, F' and which passes through a
gtven point M, which is also a determinate one, admits of two solutions.
For if the locus of a point be sought the sum of whose distances from
F and F’is equal to the constant value FA+ F’M, an ellipse is
arrived at; but if the locus of a point be sought the difference of whose
distances from # and #7 is equal to KM —~FM’, a hyperbola is found.

This may also be seen from the theorem of Art. 344, which shows
that if the straight lines ¢, ¢ be drawn bisecting the angle FMF’
(Fig. 223) each of these lines will be a tangent at 4f to a conic which
satisfies the problem, the other line being the corresponding normal
to this conic. The finite segment #F’ is cut or not by the tangents
according as the comic is a hyperbola or an ellipse. There will
consequently be two conics which have F, 7 for foci and which pass
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through 7 ; a hyperbola having for tangent at M that hisector ¢
which cuts the segment '/, and for normal the other bisector ¢;
and an ellipse having ¢ for tangent at M and ¢’ for normal.

These two conics, having the same foci, are concentric and have
their axes parallel. They will cut one another in three other points
besides 37 ; and their four points of intersection will form a rectangle
inscribed in the circle of centre O and radius OM ; in other words,
the three other points will be symmetrical to 3/ with respect to the
two axes and the centre. -This is evident from the fact that a conic
is symmetrical with respect to each of its axes.

385. Through every point A/ in the plane then pass two conics,
an ellipse and a hyperbola, having their foci at # and #/. In other
words, the system of confocal conics having their foci at I and #” is
composed of an infinity of ellipses and an infinity of hyperbolas; and
through every point in the plane pass one ellipse and one hyperbola,
which cut one another there orthogonally and intersect in three other
points.

Two conics of the system which are of the same kind (both
ellipses or both hyperbolas) clearly do not intersect at all.

Two conics of the system however which are of opposite kinds
(one an ellipse, the other a hyperbola) always intersect in four points,
and cut one another orthogonally at each of them. This may be
seen by observing that the vertices of the hyperbola are points lying
within the segment F#’, and therefore within the ellipse. On the
other hand, there must be points on the hyperbola which lie outside
the ellipse; for the latter is a closed curve which has all its points
at a finite distance, while the former extends in two directions to
infinity. The hyperbola therefore, in passing from the inside to the
outside of the ellipse, must necessarily cut it.

No two conics of the system can have a common tangent ; because
(Art. 363) only one conic can be drawn to have its foci at given
points and to touch a given straight line.

Any straight line in the plane will touch a determinate conic of
the system, and will be normal, at the same point, to another
conic of the system, belonging to the opposite kind. The first of
these conics is a hyperbola or an ellipse according as the given
straight line dees or does not cut the finite segment /£

366, If first point #” lies at infinity, the problem of Art. 364
becomes the following : Given the axis of a parabola, the focus ¥, and
a point M on the curve, to construct the parabola.

Just as in Art. 364, there are two solutions (Fig. 226). The
tangents at M to the two parabolas which satisfy the problem are
the bisectors of the angle made by MF with the diameter passing
through M ; therefore the parabolas cut orthogonally at 4/ and
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consequently intersect at another point, symmetrical to M with
respect to the axis. The parabolas cannot intersect in any other
finite point, since they touch one another at infinity *.

The tangents to the two parabolas at M cut the axis in two points
P, P’ which lie at equal distances
on opposite sides of F'; and if P” is
the foot of the perpendicular let fall
from 3/ on the axis, the vertices 4, 47
of the parabolas are the middle points
of the segments PP, P’P” respec-
tively. PA P

Suppose 4 and P’ to fall on the same
side of #. Then since P’P"’"<P'P,
and P’A’ is the half of P/P”, and
P’F the half of P’P, therefore
P’A’<P’'F; i.e. A and 4’ fall on
opposite sides of #. It follows that in
the system composed of the infinity of
parabolas which have a common axis
and focus, two parabolas intersect (orthogonally and in two points)
or do mot intersect, according as their vertices lie on opposite sides
or on the same side of the common focus.

Since #, 4 , A’ are the middle points of PP/, PP”, P’P” respec-
tively, we have the relations

FP+FP = o,
2F4 = FP+ FP”,
2 FA’= FP’+ FP”,
whence the following are easily deduced :
FP” = FAd + FA'
FP = FA—FA"= 4’4,
FP' =FA'—F4 = 44"

These last relations enable us at once to find the points P, P/, P”
when 4 and 4’ are known. The point M/ (and the symmetrical point
in which the parabolas intersect again) can then be constructed by
observing that #J/ is equal to #2 or FP’.

867. It has been seen that a conic is determined when the two
foci and a tangent are given. It can also be shown that e conic
18 determined when one focus and three tangents are given ; this follows

Fig. 226.

* That is to say, if the figure be constructed which is homological with that
formed by the two parabolas, it will consist of two conics touching one another
at a point situated on the vanishing line of the new figure, and intersecting in
two other points.

+ Hence the middle point of 44’ is also the middle point of FP/'.
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at once from the proposition at the end of Art. 362. For let LMN
(Fig. 227) be the triangle formed by the three given tangents, and ¥
the given focus. Then the conic is seen to be the envelope of the
base M’N’ of a variable triangle
M’FN’, which is such that the
vertex F is fixed, the angle
M’FN’ is always equal to the
constant angle MFLN, and the
vertices M, N/ move on the fixed
straight lines LM , LN respec-
tively.

F F’ In order to determine the
other focus /’, we make use of
the theorem of Art. 345. At
the point A make the angle
LMI’ equal to FMAN ; and at
the point N make the angle
LNF’ equal to NI (all these
angles being measured in the same direction); then the point of
intersection of M F/, NF’ will be the second focus F”.

The investigation of the circumstances under which the conic is an
ellipse, a hyperbola, or a parabola, is left as an exercise to the student.
The following are the results:

(1) The conie is an ellipse if ' lies within the triangle LMV ; or
if F lies without the circle circumscribing LMN and within one of
the (infinite) spaces bounded by one of the sides of the triangle and
the other two produced :

(2) a hyperbola if F lies inside the circle but outside the triangle;
or if it lies within one of the (infinite) V-shaped spaces which have
one of the angular points of the triangle LM N for vertex and are
bounded by the sides meeting in that angular point, both produced
backwards :

(3) a parabola if # lies on the circle circumscribing the triangle
LMN, as we have seen already (Art. 347) *.

M

L

N
Fig. 227.

368. Let 7M, TN (Fig. 228) be a pair of tangents to an
ellipse or hyperbola which intersect at right angles. If per-
pendiculars FU, F’U’ and FV, F’7’ be let fall upon them
respectively from the foci F and /7, then evidently 7U = V'F
and 7U’=7V'F’. But by Art. 357 we have VF. V'F’'= + OB?;
therefore TU.TU’= 4+ OB% But since U and U’ both lie on

* STEINER, Développement d’une série de théorémes relatifs aux sections conigues
(Annales de Gergonne, t, xix. 1828, p. 47); Collected Works, vol. i. p. 198.
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the circle deseribed upon the focal axis 44" as diameter (Art.
356), the rectangle 7U.TU’ is the power of the point 7' with
respect to this circle, and is equal to 072— 042 Thus

O07* = OA*+ OB?% = constant,

so that we have the following theorem * :

The locus of the point of intersection of two tangents to an ellipse
or a kyperbola which cut at right angles is a concentric circle,

This circle is called the director circle of the conie f.

In the ellipse 072 = 042+ 0B?, so that the director circle circum-
scribes the rectangle formed by the tangents at the extremities of
the major and minor axes. In the hyperbola O7?=04?—0B2 so
that pairs of mutually perpendicular tangents exist only if 04 >05.
If 0A = 0B, i.e. if the hyperbola is equilateral (Art. 395), the di-
rector circle reduces simply to the centre O; that is, the asymptotes
are the only pair of tangents which cut at right angles. If 04 < OB,
the director circle has no real existence; the hyperbola has no pair
of mutually perpendicular tangents.

2}
o T
»

Fig. 228. ‘ Fig. 229.

369. Consider now the case of the parabola (Fig. 229). Let
I be the focus, 4 the vertex, I and 7K a pair of mutually
perpendicular tangents. If these meet the tangent at the
vertex in // and K respectively, the angles F//7, FKT will be
right angles (Art. 358), so that the figure 7/ FK is a rectangle.
Therefore 741 = KF; and since the triangles TEIl, FAK are
evidently similar, 7/ = AF. The locus of the point 7 is

* Dr La Hixg, loe. ¢it., 1ib. viii. props. 27, 28.

+ GaskiIn, The geometrical construction of a conic section, . . . (Cambridge,
1852), chap. iii. prop. 10 et seqq.
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therefore a straight line parallel to /7K, and lying at the same
distance from HK (on the opposite side) that /" does. That is
to say:

The locus of the point of intersection of two tangents to a para-
bola which cut at right angles is the directriz *.

Since the director circle of a conic is concentric with the latter, it
must in the case of the parabola have an infinitely great radius. In
other words, it must break up into the line at infinity and a finite

straight line. And we have just seen that this finite straight line is
the directrix.

870. The director circle possesses a property in relation to
the self-conjugate triangles of the
conic which we will now proceed
to investigate. Let XTZ (Fig. 230)
be a triangle which is self-conjugate
with respect to a conic whose centre
is 0. Join OX and let it cut Y7
in X’ and the conic in 4’. Draw
OB’ parallel to YZ; let it cut XV
in Z and the conic in B’; and draw
Z1/ parallel to OX to meet OB’ in L.

Then 04" and OB’ are evidently
conjugate semi-diameters; also X and
X’, L and I are pairs of conjugate
points with respect to the conic. Therefore

0X.0X" =+ 04" and OL.OL’ =+ OB,

where the positive or the mnegative signs are to be taken
according as the semidiameters 04", OB’ are real or ideal
(Art. 294).

Thus for the ellipse

0X.0X'+OL.0OL’ = 04"+ OB"
= 0A2+ O_BZ,

and for the hyperbola
0X.0X'+0L.0L’ = +(04"2— 0B")
= +(04%*— 0B?),
s0 that in both cases (Art. 368)
ox.ox’+or.or’=o01%, . . . . . (1)
where O7 is the radius of the director circle.

* D 1A HIRE, loc. cit., lib. viii. prop. 26.
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Now let a circle be described round the triangle XY7Z, and
let U be the point where it cuts OX again; then
XY X7=XX.X"U;
XYy,
XU = T Xz
0L

=ox %

(from the similar triangles OLX, X’ YX)

0L p
=ox or’.
Therefore equation (1) gives
07% = 0X.0X'+ 0X.X'U
= 0X.0U,
that is to say: The centre of a conic has with respect to the circum-
scribing circle of any triangle self-conjugate to the conic a constant
power, whick is equal to the square of the radius of the director
circle.
Or in other words:
The circle circumseribing any triangle whick is self-conjugate with
regard to a conic is cut orthogonally by the director circle ¥,

The following particular cases of this theorem are of interest :

1. The centre of the circle circumscribing any triangle which is self-
conjugate with respect to a parabola lies on the directrix.

II. The circle circumscribing any triangle which is self-conjugate
with respect to an equilateral Lyperbola passes through the centre of
the conic.

371. Consider a quadrilateral circumscribed about a conic. Since
each of its diagonals is cut harmonically by the other two, the circle
described on any one of the diagonals as diameter is cut orthogonally
by the circle which circumscribes the diagonal triangle (Art. 69).
But the diagonal triangle is self-conjugate with respect to the conic
(Art. 260), and therefore its circumscribing circle cuts orthogonally
the director circle (Art. 370). Consequently the director circle and
the three circles described on the diagonals as diameters all cut
orthogonally the circle circumscribing the diagonal triangle. Now
by Newton’s theorem (Art. 318) the centres of the four first-named
circles are collinear; and circles whose centres are collinear and
which all cut the same circle orthogonally have a common radical
axis. Therefore :

The director circle of a conic, and the three circles described on

* (ASKIN, loc. cit., p. 33.
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the diagonals of any circumscribed quadrilateral as diameters, are
coaxial,

In the parabola the director circle reduces to the directrix and
the straight line at infinity; in this case then the above theorem
becomes the following :

If a quadrilateral is circumscribed about a parabola, the three
cireles described on the diagonals of the quadrilateral as diameters have
the directrix for their common radical axis.

372. If in the theorem of Art. 371 the quadrilateral be supposed
to be given, and the conic to vary, we arrive at the following
theorem :

The director circles of all the conies inscribed in a given quadri-
lateral form a coaxial system, to which belong the three circles having
as diameters the diagonals of the quadrilateral.

There is one circle of such a system which breaks up into two
straight lines: that namely which degenerates into the radical axis
and the straight line at infinity. Now the director circle breaks up
into two straight lines—viz. the directrix and the line at infinity—
in the case of a parabola (Art. 369). Therefore the common radical
axis of the system of coaxial director circles is the directrix of the
parabola which can be inscribed in the quadrilateral.

If the circles of the system do not intersect, there are two of them
which degenerate into point-circles (the limiting points). Now the
director circle degenerates into a point in the case of the equilateral
hyperbola (Art. 368). Therefore when the circles do not cut one
another, the two limiting points of the system are the centres of
the two equilateral hyperbolas which can in this case be inscribed
in the quadrilateral. If the circles do intersect, the system has no
real limiting points; and in this case no equilateral hyperbola can be
inscribed in the quadrilateral.

The circles which cut orthogonally the circles of a coaxial system
form another coaxial system; if the first system has real limit-
ing points, the second system has not, and vice versa. In order
then o inscribe an equilateral hyperbola in a given quadrilateral,
it is only necessary to describe circles on two of the diagonals of the
quadrilateral as diameters, and then to draw two circles cutting the
former two orthogonally. When the problem is possible, these two
orthogonal cireles will intersect ; and their two points of intersection
are the centres of the two equilateral hyperbolas which satisfy the
conditions of the problem.

373. If five points are taken on a conic, five quadrangles may be
formed by taking these points four and four together; and the
diagonal triangles of these five quadrangles are each of them self-
conjugate with respect to the conic. If the circumscribing circles of
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these five diagonal triangles be drawn, they will give, when taken
together in pairs, ten radical axes. These ten radical axes will all
meet in the same point, viz. the centre of the conic.

874. Consider again a quadrilateral circumscribing a conic; let
P and P/, Q and @', R and R’ be its three pairs of opposite vertices.
If these be joined to any arbitrary point S, and if moreover from this
point S the tangents ¢, ¢/ are drawn to the conic, it is known by the
theorem correlative to that of Desargues (Art. 183, right) that ¢ and ¢/,
SP and SP’, SQ and SQ’, SE and SR’ are in involution. Now let
one of the sides of the quadrilateral (say P/Q’R’) be taken to
be the straight line at infinity, so that the inscribed conic is
a parabola; and let S be taken at the orthocentre (centre of perpen-
diculars) of the triangle PQR formed by the other three sides of
the quadrilateral. Then each of the three pairs of rays SP and SP’,
8Q and SQ’, SE and SR’ cut orthogonally; therefore the same will
be the case with the fourth pair ¢ and ¢/. But tangents to a para-
bola which cut orthogonally intersect on the directrix (Art. 369);
therefore :

The orthocentre of any triangle circumscribing a parabola lies on
the directrie.

875. If in the theorem of the last Article the triangle be supposed
to be fixed, and the parabola to vary, we obtain the theorem :

The directrices of all parabolas inscribed in a given triangle meet in
the same poind, viz. the orthocentre of the triangle.

Given a quadrilateral, one parabola (and only one) can always be
inseribed in it. By taking the sides of the quadrilateral three and
three together, four triangles are obtained; and the four ortho-
centres of these triangles must all lie on the directrix of the parabola.
It follows that

GQiven four straight lines, the orthocentres of the four triangles
formed by taking them three and three together are collinear.

876. Let C be any given conic, and let ¢’ be its polar
reciprocal with respect to an auxiliary conic K. The particular
case in which K is a cirele whose centre coincides with a focus
F of the conic C is of great interest; we shall now proceed to
consider it.

If », 7/ be any two straight lines which are conjugate with
respect to C, and if B, R’ be their poles with respect to K, it
is known (Art. 323) that 2, " will be conjugate points with
respect to ¢’.  Consider now two such lines 7, # which pass
through #; they will be at right angles since every pair of
conjugate lines through a focus cut one another orthogonally.

T
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They will therefore be perpendicular diameters of the circle K,
and their poles 22, R’ with respect to K will be the points at
infinity on #/, » respectively. These points are conjugate
with respect to C’, and the straight lines joining them to the
centre of this conic are therefore a pair of conjugate diameters
of C’; consequently two conjugate diameters of C” are always
mutually perpendicular. This proves that C” is a circle; i.e.
the polar reciprocal of a conic, with respect to a circle whick has
its centre at one of the foci, is a circle,

By taking the steps of the above reasoning in the opposite
order, the converse proposition may be proved, viz.

The polar reciprocal of a circle with respect to an auxiliary
circle is a conic having one focus ai the centre of the auwiliary
circle.

As in Art. 323, it is seen that the conic is an ellipse, a
hyperbola, or a parabola, according as the centre of the
auxiliary circle lies within, without, or upon the other
circle.

377. If d be the directrix of the conic C corresponding to
the focus 7, and if its pole be taken with respect to the circle
K, this point will evidently be the centre of the circle C’
(Art. 323).

The radius of the circle C’ may also easily be found. For
in Fig. 216 let two points X, X" be taken in the latus rectum
LFL such that

IX. VL =TIX . FL' = i,

where % denotes the radius of the circle K; and let straight
lines be drawn through X and X’ perpendicularto X#X". These
straight lines are evidently parallel tangents of the circle ¢’
and the distance XX between them is therefore equal in length
to the diameter of ¢’. But

2

k
LYY e Y — 5
2XX_]‘X__I’YC

2
so that the radius of the circle C” is equal to E/CT, .

The eccentricity e of the conic C may be expressed in a
simple manner in terms of quantities depending upon the
two circles K and ¢’. For if O’ be the centre and p the
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radius of the latter circle, it has been seen that the directrix

is the polar of 0’ with respect to K; therefore (Fig. 216)
FD.T0"= /-

But it has just been proved that

IL.p=#k?;

_FL Ff)’

7D~ e

878. The proposition of Art. 376 may be proved in a
different manner, so as to lead at once to the position and size
of the circle C".

Take any point 1/ on the (central) conic € (Fig. 217); from
the focus /' draw Z'U perpendicular to the tangent at 17, and on
I'U take a point Z such that FZ.FU = %, k being as before
the radius of the circle K. Then the locus of Z is the polar
reciprocal of C with respect to K.

Now it is known (Arts. 856, 357) that U lies on the circle
on A4’ as diameter, and that if UF cut this circle again at U’
FU.FU’'=F OB

Therefore FZ:FU’ = #?: F OB?;
which proves (Art. 23 [6]) that the locus of Z is a circle whose
centre O’ lies on O and divides it so that FO': FO = k2%: 0B?,

therefore (Art. 351), e=

and whose radius p is equal to £2. OOB" that is, (Art. 352 Cor.)
2
to ]]f—l; And again, since OF. 0D = 042% and FD = FO+ 0D,

(Figs. 214, 215),
" FD.FO=O0F*—042=F0R =
by what has just been proved.
IO FD = k2
i.e. 0’ is the pole of the directrix ¢ with respect to K.

o F
# ﬁO’

In the particular case where £ = OB, p = 04 ; that is to say :

The polar reciprocal of an ellipse (hyperbola) with respect to a circle
having its centre at a focus and its radius equal to half the minor
(conjugate) ais is the circle described on the major (transverse) axis as
diameter.

879. In the case where C is a parabola, let 2/ be any point
on the curve (Fig. 218); let fall FV perpendicular to the tangent
at M, and take on FNV a point Z such that #Z.FN=/?. Then,

T 2
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as before, the locus of Z will be the polar reciprocal of C with
respect to K. Draw Z@ perpendicular to ZF to cut the axis
of the parabola in Q.
Then a circle will evidently go round QA4NZ, so that
FA.FQ =FN.FZ = I?;
therefore @ is a fixed point, and the locus of Z is the circle on

QF as diameter. If O” be the centre, p the radius of this
circle, ‘

; £®
Fo =p=%_-FZ

In the particular case where % is equal to half the latus rectum,
that is, to 24, we have p = %; that is to say:

The polar reciprocal of a parabola with respect to a circle having its
centre at the focus and its radius equal to half the latus rectum is
a circle of the same radius, having its centre at the yoint of intersection
of the axis with the directrix.



CHAPTER XXIV.

COROLLARIES AND CONSTRUCTIONS.

380. IN the theorem of Art. 275 suppose the vertices B and C of
the inscribed triangle 4 BC' (Fig. 188) to be the points at infinity on
a hyperbola; then S will be the centre of the curve, and the theorem
will become the following :

If from any point 4 on a hyperbola parallels be drawn to the
asymptotes, they will meet any given diameter in two points # and G
which are conjugate to one another with regard to the curve. Or:

If through two points lying on a diameter of a kyperbola, which
are conjugate to one another with regard to the curve, parallels be
drawn to the asymptotes, they will intersect on the curve.

From this follows a method for the construction of a hyperbola by
points, having given the asymptotes and a point M on the curve.

On the straight line SM, which joins M to the point of inter-
section S of the asymptotes, take two conjugate points of the in-
volution determined by having .S for centre and M for a double
point. These points will be conjugate to one another with respect
to the conic (Art. 263); if then parallels to the asymptotes be drawn
through them, the two vertices of the parallelogram so formed will
be points on the hyperbola which is to be constructed.

881. Let similarly the theorem of Art. 274 be applied to the
hyperbola, taking the sides b and ¢ of the circumscribed triangle abe
to be the asymptotes ; it will then become the following :

If through the points where the asymptotes are cut by any tangent
to a hyperbola any two parallel straight lines be drawn, these will
be conjugate to one another with respect to the conic. Or:

Two parallel straight lines which are conjugate to one another with
respect to a hyperbola cut the asymptotes in points, the straight lines
Jotning which are tangents to the curve.

From this we deduce a method for the construction, by means of its
tangents, of a hyperbola, having given the asymptotes b and ¢ and one
tangent m.

Draw parallel to m two conjugate rays of the involution (Art. 129)
determined by having m for a double ray and the parallel diameter
for central ray. The two straight lines so drawn will be conjugate
to one another with respect to the conic; if then the points where
they cut the asymptotes be joined to one another, we shall have two
tangents to the curve,
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382, Let B and C be any two points on a parabola, and 4 the
point where the curve is cut by the diameter which bisects the chord
BC. Let F and G be two points lying on this diameter which are
conjugate with respect to the parabola, <.e. two points equidistant
from 4 (Art. 142); by the theorem of Art. 275, BF and OG, and
likewise BG and CF, will meet on the curve.

This enables us to construct by points a parabola which circum-
serihes a given triangle ABC and has the straight line joining A to
the middle point of BC as a diameter.

Or we may proceed according to the following method :

On BC take two points 2/ and 7’ which shall be conjugate to one
another with regard to the parabola, 4. e. any two points dividing BC
harmonically. Since /7 and #4’ are collinear with the pole of the
diameter passing through 4, therefore by the theorem of Art. 275,
a point on the parabola will be found by constructing the point of
intersection of 417 with the diameter passing through 7/, and another
will be found as the point where AZ{” meets the diameter passing
through 4. ’

883. In the theorem of Art. 274 suppose the tangent ¢ to lie at
infinity; then we see that

If @ and b are two tangents to a parabola, and if from any point
on the diameter passing through the point of contact of a there be
drawn two straight lines, one passing through the point ad and the
other parallel to b, these will be conjugate to one another with regard
to the parabola.

This enables us to construct by tangents a parabola, having given
two tangents a and t, the point of contuct A of one of them a, and the
direction of the diameters.

Draw the diameter through 4 and let it meet ¢ in O; the second
tangent ¢’ from O will be the straight line which is harmonically
conjugate to ¢ with respect to the diameter OA (the polar of the point
at infinity on @) and the parallel through O to a. If now two straight
lines 2 and A’ be drawn through O which shall be conjugate to one
another with regard to the parabola, 7. e. two straight lines which are
harmonic conjugates with regard to ¢ and ¢’, the parallel to A’ drawn
from the point ke and the parallel to A drawn from the point 2’a
will both be tangents to the required parabola.

384. If in the theorem of Art. 274 the straight line a be supposed
to lie at infinity, and b and ¢ to be two tangents to a parabola, we
obtain the following :

The parallels drawn to two tangents to a parabola, from any point
on their chord of contact, are conjugate lines with regard to the conic.

By another application of the same theorem we deduce a result
already proved in Art. 178, viz. that
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If, from a point on the chord of contact of a pair of tangents b and ¢
to a parabola, two straight lines h and b’ be drawn parallel to b and ¢
respectively, the straight line joining the points he and h'b will be
a tangent to the curve ™.

From this may be deduced a construction for the tangents to
a parabola determined by two tangents and their points of contact.

385. THEOREM. If a conic cut the sides BC, CA, AB of
a triangle ABC in the points D and D', E and E’, F and I"
respectively, then will
BD.BD' CE.CE" AF. AV’
cv.cp ap.an prEr =t o (1)
This celebrated theorem is due to CARNOT f.
Consider the sides of the triangle 4BC (Fig. 231) as

A

Fig. 231.

cut by the transversals DE and D'E’ in the points D and D,
E and £/, G and G’; by the theorem of Menelaus (Art. 139)

BD CE AG
@.E.E= I, . « « « « . (2)
BD’ CE 4G’
and W-E,.E—G_’—: I .« o ¢ « (3)

Again, DEE'D’ is a quadrangle inscribed in the conie, and by
Desargues’ theorem (Art. 183) the transversal 45 meets the
opposite sides and the conic in three pairs of points in involu-
tion ; therefore (Art. 130) the anharmonic ratios (45FG) and
(BAF’G’) are equal; thus (Art. 45) (4BFG) = (ABG'F’), or
(ABFG):(ABG'F’) = 1, which gives

AV . AT AG.AG’
FF e Ee. e = ()

* DE LA Hirg, loc. cit., lib, iii. prop. 21. + Géométrie de position, p. 437.
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Multiplying together (2), (3), and (4), we obtain the relation
stated in the enunciation *.

386. Conversely, if on the sides BC, CA, AB respectively of
a triangle ABC there be taken three pairs of points D and D’,
Eand E', F and F’ suck that the segments determined by them and
the vertices of the triangle satisfy the relation (1) of Art. 385,
these siz points lie on a conic.

For let the conic be drawn which passes through the five
points D, D', E, I’, I, and let F” be the point where it cuts
AB again. By Carnot’s theorem a relation holds which differs
only from (1) in that it has #” in the place of F’. This
relation, combined with (1), gives

AV’ : BF = AF”: BF”,
whence (dBF'F") =1,
and therefore (Art. 72, VII) F” coincides with 7",

* CARNOT'S theorem, being evidently true for the circle (since in this case
BD.BD'=CD .CD', &c.), may be proved without making use of involution
properties as follows:

Let I, J, K be the points at infinity on BC, C4, AB respectively, and sup-
pose Fig. 231 to have been derived by projecting from any vertex on any plane a
triangle 4, B, 0, whose sides are cut by a circle in D, and D/, E, and E//, F, and F,’
respectively., Let I, J;, K, be the points on the sides B,C,, C,4,, 4,B, which
project into 7, J, K respectively; they will of course be collinear. Then

D = (BCDI)  (art. 64)
= (B,C,D, 1)) (Art. 63)
_ B, BI,
011)]. Ol Il
BD'  BD/ BI,
cp'  CDy qI,’
BD.BD’ BID -B,Dy BI? -t
CD.CD’ = ¢{D,. 0D} " 6'111
= %?—2 (Eue. iii. 35, 36.)
CE.CE’ 4, J 2
AE.AE' T ¢J?
AF.AF'" B K?
BFBF ~ 4, K*
Multiplying these three equations together, and remembering that by the
theorem of Menelaus the product on the right-hand side is equal to unity, we
have the result required.

Carnot’s theorem ig true not only for a triangle but for a polygon of any num-
ber of sides; the proof just given can clearly be extended so as to show this, the
theorem of Menelaus being capable of extension to the case of a polygon.

Menelaus’ theorem is included in that of Carnot. It is what the latter reduces
to when the conic degenerates into two straight lines of which one lies at infinity.

Similarly,

and
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387. If the point 4 pass off to infinity (Fig. 232) the ratios
AF: AE and AF’: AE’ become in the limit each equal to unity,
and the equation (1) of Art. 385 accordingly reduces to

BD.BD' CE.CE’
e FEEp = o )

Draw parallel to BC a straight line to cut CEL” in @ and
the conic in P and P’; the preceding equation, applied to the
triangle whose vertices are C, @, and the point at infinity
where PP’ and BC meet, gives

QE.QE" CD.CD"
CE.CE QP.QP —

Fig. 232.

Multiplying together these last two equations, we obtain
BD.BD" _ QP.QP",
BF.BF ~— QE.QE"”’

that is to say:

If through any point Q there be drawn in given directions two
transversals to cut a conic in P, P" and B, E’ respectively, then the
rectangles QP . QP and QF . QE’ are to one another in a constant
ratio ¥ 7.

* ApoLLoNIUS, loc. cit., lib. iii. 16-23 ; DESARGUES, loc. cit., p. 202 ; DE LA
HirE, loc. cit., bk. v. props. 10, 12.

+ From this follows at once the result already proved in a different manner in
Art. 316, viz. that ¢f a conic is cut by a circle, the chords of intersection make
equal angles with the axes.

Forlet P, P’, E, E' be the points of intersection of a circle with the conic;
then (Euc. iil. 35) QP . QP'=QE. QE'. Butif MCM’, NCN’ be the diameters
of the conic parallel respectively to QPP' and QEE’, we have, by the theorem
in the text,

QP.QP':QE.QE'=CM.CM':CN.CN'
= CM?*: CN2
Therefore CM =CN, and consequently CM and CN (and therefore also QPP’
and QEE’) make equal angles with the axes.
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888. Suppose in equation (5) of Art. 387 that the conic is a
hyperbola and that in place of BC is taken an asymptote /K
of the curve; then the ratio 7ID.HD’': KD.KD’ becomes
equal to unity, and therefore

IHr. 7’ = KE.KE’,
that is to say:

If through any point H (or H') lying on an asymptote there le
drawn, parallel to a given straight line, a transversal to cut a hyper-
bola in two points I' and ¥’ (D and D'), then the rectangle
HF . HF (II'D . H'D’) contained by the intercepts will be constant.

If the diameter parallel to the given direction /7’0 meets
the curve, then if § and §” are the points where it meets it,
and if O is the centre,'

H'D.H'D" = 08.08 =—08%

If the diameter OT parallel to the given direction /ZF does
not meet the curve, a tangent can be drawn which shall be
parallel to it. The square on the portion of this tangent
intercepted between its point of contact and the asymptote
will be equal to the rectangle //F.I/I” by the theorem now
under consideration; but this portion is (Art. 303) equal to
the parallel semidiameter 0OZ'; therefore HF. HF’ = O1%, or:

If a transversal cut a hyperbola in F and F' (in D and D’)
and an asymptote in I (in 1), the rectangle HF . IF (H'D.1H'D’)
is equal to + the square on the parallel semidiameter OT (0S); the
positive or unegative sign being taken according as the curve has or
has not tangents parallel to the transversal.

389. If the transversal cuts the other asymptote in L
(in Z/), then by Art. 193

HF' =FL or I'D’ = DI/,
and consequently
FIH.FL =—0T? or DII'’.DL"=08%;
therefore :
If a transversal drawn from any point I (D) on a hyperbola
cut the asymptotes in I and I (in H' and L), the rectangle
FH.FL (DH'.DIL) is equal to F the square on the parallel

semidiameter ; the negalive or positive sign being taken according as
the curve has or has not tangents parallel to the transversal.
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890. From the proposition of the last Article may be deduced a
construction for the axes of a hyperbola, having given a pair of conjugate
semidiameters OF and 01 in magnitude and direction (Fig. 233).

We first construct the asymptotes. Of the two given semidiameters,
let OF be the one which cuts the curve.
Draw through F a parallel to OZ7'; this
will be the tangent at /. Take on this
parallel #P and ' each equal to O7';
then O and 0@ will be the asymptotes
(Art. 304). In order now to obtain the
directions of the axes, we have only to

find the bisectors of the angle included % \

by the asymptotes, or, in other words, the
two perpendicular rays OX , O0Y which
are conjugate to one another in the in-
volution of which OF and 0@ are the double rays (Arts. 296, 297).

To determine the lengths of the axes, draw through # a parallel
to 0X, and let it cut the asymptotes in B and B’; and on 0X take
OS the mean proportional between #B and #B’., Then will OS be
the length of the semiaxis in the direction OX ; and 0X will or will
not cut the curve according as the segments #B, B’ have or have
not the same direction. Again, construct the parallelogram of which
08 is one side, which has an adjacent side along OY, and one
diagonal along an asymptote ; its side OR will be the length of the
semiaxis in the direction OY (Art. 304).

891. In the plane of a triangle A BC take any two points O and
0’; if 04, 0B, OC meet the respectively opposite sides BC', (4, 4B
of the triangle in D, £, I", Ceva’s theorem (Art. 137) gives

BD CE AF
@ -E . ,ﬁ’ ===l

Similarly, if 0’4 , 0’8, 0’C meet the respectively opposite sides in

D/, E’, F', then
BD" OE' AF _
CD" 4B B T "

If these equations be multiplied together, equation (1) of Art. 385
is obtained ; therefore :

If from any two points the vertices of a triangle are projected wpon
the respectively opposite sides, the six points so obtained lie on a conie.

Yor example, the middle points of the sides of a triangle and the
feet of the perpendiculars from the vertices on the opposite sides
are six points on a conic ¥,

* This conie is a circle (the nine-point circle). See STEINER, 4 nnales de Mathé-
matiques (Montpellier, 1828), vol. xix. p. 42 ; or his Collected Works, vol. i. p. 195.
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392. ProBLEM. 7o construct a conic which shall pass through three
given points A, B, C, and with regard to which the pairs of corre-
sponding points of an involution lying on a given straight line w shall
be conjugate points.

Let 4B and AC (Fig. 234) be joined, and let them meet » in D
and . Let the points corresponding in the involution to D) and E
respectively be D’ and E’; let D’/ be the harmonic conjugate of D

Fig. 234.
with respect to 4 and B, and let £’/ be the harmonic conjugate of
E with respect to 4 and €. Thus D will be conjugate (with respect
to the required conic) both to D’ and to D”, and therefore D’D”
will be the polar of D. 8o too £”Z” will be the polar of £.

Join BE,CD, and let them cut £’E” and D’D” in B, and D,
respectively; then Z, will be conjugate to Z and D, to D. If then
two points B’, 0’ be found such that the ranges BB’EE, and
CC’DD, are harmonic, they will both belong to the required conic.

In the figure, # and F’, G and G’ are the pairs of points which
determine on u the involution of conjugate points.

393. ProBLEM. 7o construct a
conic which shall pass through four
given points Q, R, S, T and shall
divide harmonically a given seg-
ment MN (Fig. 235).

Let the pairs of opposite sides
of the quadrangle QRS7 meet the
straight line MV in 4 and 4/,
B and B’. If the required conic
cuts MN, the two points of inter-
section will be a pair of the invo-
lution determined by 4 and 4’
B and B’ (Art. 183). 1If then the
involution of which A and N are
the double points and the involution
determined by the pairs of points 4 and 4’, B and 5’ have a pair
P and P’ in common, the required conic will pass through each of
the points P and P’ (Arts. 125, 208).

Fig. 235.
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In order to construct these points, describe any circle (Art. 208)
and from any point O on it project the points 4,4’, B, B/, M, N
upon the circumference, and let 4,,4/, B,, B/, M,, N, be their
respective projections. If the chords 4,4,” and B, B/ meet in V, and
the tangents at 3/, and N, meet in U, all straight lines passing
through U determine on the circumference, and consequently (by
projection from O) on the straight line MV, pairs of conjugate points
of the first involution, and the same is true, with regard to the
second involution, of straight lines passing through V. If the straight
line UV meets the circle in two points P, and P, let these be joined
to O; the joining lines will cut A/V in the required points P and P’.

Let W be the pole of UV with respect to the circle. Every
straight line passing through W and cutting the circle determines
on it two points which are harmonically conjugate with regard to
P, and P/; and these points, when projected from O on MN, will
give two points which are harmonically conjugate with regard to
P and P’, and which are therefore conjugate to one another with
respect to the required conic. If then UV does not cut the circle, so
that the points P and P’ cannot be constructed, draw through W
two straight lines cutting the circle, and project the points of inter-
section from the centre O upon the straight line J/V; this will give
two pairs of points which will determine the involution on MV of
conjugate points with respect to the conic. The problem therefore
reduces to that treated of in the preceding Article.

394. ProsruEM. o construct a conic which shall pass through
Jour given points Q, R, S, T, and through two conjugate points
(which are not given) of a known involution lying on a straight line u.

This problem is similar to the preceding one; since it amounts
to constructing the pair of conjugate points common to the given
involution and to that determined on u by the pairs of opposite
sides of the quadrangle QRST (Art. 183).

Such a common pair will always exist when the given involution
has no double points; and the two points composing it will both lie
on the required conic. If the given involution has two double points
M and N, the present problem becomes identical with that of
Art. 393.

The problem clearly admits of only one solution, and the same is
the case with regard to those of the two preceding Articles.

395. Consider a hyperbola whose asymptotes are perpen-
dicular to one another, and to which, on this account, is given
the name of recfangular hyperbola (Fig. 236). Since the
asymptotes are harmonically conjugate with regard to
any pair of conjugate diameters (Art. 296), they will in
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this case be the bisectors of the angle included between
any such pair (Art. 60). But the parallelogram described
on two conjugate semidiameters as adjacent sides has its
diagonals parallel to the asymptotes (Art. 304); in this case
therefore every such parallelogram is a rhombus; that is, every
diameter is equal in length to its
conjugate. On account of this
property the rectangular hyper-
bola is also called equilateral *.

I. Since the chords joining the
extremities P and P’ of any
diameter to any point 3/ on the
curve are parallel to a pair of
conjugate diameters (Art. 287),
the angles made by PJM and

Fig. 236. P’M with either asymptote are

equal in magnitude and of

opposite sign. If the points P and P’ remain fixed, while 3/

moves along the curve, the rays 23/ and P’M trace out two
pencils which are oppositely equal to one another (Art. 106).

II. Conversely, the locus of the points of intersection of pairs
of corresponding rays of two oppositely equal pencils is an equilateral
hyperbola.

For, in the first place, the locus is a conie, since the two
pencils are projective (Art. 150). Further, the two peneils have
each a pair of rays which include a right angle, and which
are parallel respectively to the corresponding rays of the other
pencil (Art. 106); the conic has thus two points at infinity
lying in directions at right angles to one another, and is there-
fore an equilateral hyperbola. Itwill be seen moreover that the
centres P and P’ of the two pencils are the extremities of a
diameter. For the tangent p at P is the ray corresponding to
P’P regarded as a ray p of the second pencil, and the tangent
¢  at P’ is the ray corresponding to P/’ regarded as a ray ¢
of the first pencil (Art. 150); but the angles pg and »’¢" must
be equal and opposite; therefore, since " and ¢ coincide,
p and ¢" must be parallel to one another.

III. The angular points of a triangle ABC and its ortho-
centre (centre of perpendiculars) D are the vertices of a

* APoLLONIUS, loc, cit., vii. 21; DE LA HIRE, loc. cit., book v. prop. 13.
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complete quadrangle in which each side is perpendicular to
the one opposite to it, and whose six sides determine on the
straight line at infinity three pairs of points subtending each
a right angle at any arbitrary point S. The three pairs of rays
formed by joining these points to § belong therefore to an in-
volution in which every ray is perpendicular to its conjugate
(Arts. 131 left, 124, 207).

But this involution of rays projects from § the involution
of points which, in accordance with Desargues’ theorem, is
determined on the straight line at infinity by the pairs of
opposite sides of the quadrangle and by the conics (hyper-
bolas *) circumscribed about it. The pairs of conjugate rays
therefore of the first involution give the directions of the
asymptotes of these conics; thus:

If a conic pass through the angular points of a triangle and
through the orthocentre, it must be an equilateral hyperbola +.

IV. Conversely, if an equilateral hyperbola be drawn to
pass through the vertices 4, B, C of a triangle, it will pass
also through the orthocentre 2. For imagine another hyper-
bola which is determined (Art. 162, I) by the four points
4, B, C, D and by one of the points at infinity on the given
hyperbola. This new hyperbola will be an equilateral one by
the foregoing theorem, and will consequently pass through the
second point at infinity on the given curve; and since the
two hyperbolas thus have five points in common (4, B, C, and
two at infinity) they must be identical; which proves the
proposition. Therefore:

If a triangle be inscribed in an equilateral hyperbola, its ortho-
centre is a point on the curve.

V. If the point D approach indefinitely near to 4, i.e. if BAC
becomes a right angle, we have the following proposition :

If EFG (Fig. 236) is a triangle, right-angled at E, whick is

* No ellipse or parabola can be circumscribed about the quadrangle here con-
sidered (Art. 219).

4 This may be deduced directly from Pascal’s theorem. For let a conic be
drawn through 4, B, C, D, and let I; and I, be the points where it meets the
line at infinity. Since ABC DI, I, is a hexagon inscribed in a conic, the inter-
sections of 4B and DI, of BC and I,1,, and of CD and I,4, are three collinear
points. Therefore the straight line joining the point in which DI, meets AB
to that in which A7, meets CD must be parallel to BC. Thus 4T, must be at
right angles to DI;, and as these lines are parallel to the asymptotes of the conic
the latter is a rectangular hyperbola.
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inscribed in an equilateral hyperbola, the tangent at E is perpendicular
to the kypotenuse FG.

VI. Through four given points @, 2, 8, 7 can be drawn only
one equilateral hyperbola (Art. 394). The orthocentre of each
of the triangles QRS, RST, STQ, QRT lies on the curve *.

VIL. Given four langents to an equilateral hyperbola, to construct
the curve.

Since the diagonal triangle of the quadrilateral formed by the
four tangents is self-conjugate with respect to the hyperbola,
the centre of the latter will lie on the circle circumseribing
this triangle (Art. 8370, IT). But the centre of the hyperbola
lies also on the straight line which joins the middle points of
the diagonals of the quadrilateral (Art. 318,II). Either of the
points of intersection of this straight line with the circle will
therefore give the centre of an equilateral hyperbola satisfying
the problem; there are therefore two solutions. For another
method of solution see Art. 372.

VIIL. T%e polar reciprocal of any conic with respect to a circle K
having its centre on the director circle is an equilateral hyperbola.

For since the tangents to the conic from the centre O of the
circle K are mutually perpendicular, the conic which is the
polar reciprocal of the given one must cut the straight line at
infinity in two points subtending a right angle at 0. That is
to say, it must be an equilateral hyperbola.

896. Suppose given a conie, a point .S, and its polar s; and let a
straight line passing through S cut the conic in 4 and 47, Let the
figure be constructed which is homological with the given conic,
S being taken as centre of homology, s as axis of homology, and 4, 4’
as a pair of corresponding points. Then every other point B’ which
corresponds to a point B on the conic will lie on the conic itself.
For if AB meets the axis s in P, then B’, the point of intersection of
SB and A’P, is likewise a point on the conic (Art. 250). The curve
homological with the given conic will therefore be the conic itself.
Any two corresponding points (or straight lines) are separated har-
monically by § and s; this is, in fact, the case of harmonic homology
(Arts. 76, 298).

To the straight line at infinity will therefore correspond the

* These theorems are due to BRIANCHON and PONCELET ; they were enunciated
in a memoir published in vol. xi. of the Annales de Mathématiques (Montpellier,
1821), and were given again in vol. ii. (p. 504) of PoNCELET'S Applications
& Analyse et de Géométrie (Paris, 1864).
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straight line j which is parallel to s and which lies midway between
S and s; and the points in which j meets the conic will correspond
to the points at iufinity on the same conic.

From this may be derived a very simple method of determining
whether a given arc of a conic, however small, belongs to an ellipse, a
parabola, or a hyperbola.

Draw a chord s joining any two points in the arc; construct its
pole S, and draw a straight line
J parallel to s and equidistant
from § and s. If j does not cut
the arc, the latter is part of an
ellipse (Fig. 237a). If j touches
the arc at a point J, the arc belongs
to a parabola of which SJ is a
diameter (Fig. 2375). If, finally,
J cuts the arc in two points J,, J,
(Fig. 237 ¢), the arc will be part
of a hyperbola whose asymptotes
are parallel to SJ, and SJ,*.

397. PROBLEI\f. Given a tangent Fig. 237.

o a conic, its point of contact, and
the position (but not the magnitude) of a pair of conjugate diameters ;
to construct the conic (Fig. 238).

Suppose O the point of intersection of the given diameters, and
P and @ the points in which they are cut by the given tangent.
Through the point of contact M of this tangent draw parallels to
0@, OP to meet OP, 0Q in P’ and ¢’ respectively. Since the
polar of M (the tangent) passes through P, the polar of P will pass

{a)

()

.

through M ; and since the polar of P is parallel to 0@, it must be
MP’; therefore P and P’ are conjugate points.

If now points 4 and 4” be taken on OP such that 04 and 04’ may
each be equal to the mean proportional between OF and OF’, then
44’ will be equal in length to the diameter in the direction OP
(Art. 290). In the same way the length of the other diameter BB’
will be found by making OB and OB’ each equal to the mean pro-
portional between OQ and 0Q".

* PONCELET, loc. cit., Arts. 225, 226.
U
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If the points P and P’ fall on the same side of O, the involution
of conjugate points has a pair of double points 4 and 4’ (Art. 128) ;
that is to say, the diameter OF meets the curve. If, on the other
hand, P and P’ lie on opposite sides of O, the involution has no
double points, and the diameter OP does not meet the curve. In
this case 4 and 4’ are two conjugate points lying at equal distances
from 0. The figure shows two cases : that of the ellipse (a) and that
of the hyperbola (b).

898. PROBLEM. (liven a point M on a conic and the positions of
two pairs of conjugate diameters a and o', b and V', to construct the
conic.

L. First solution (Fig. 239). Through M draw chords parallel to
each diameter, and such that their middle points lie on the respec-
tively conjugate diameters. The other extremities 4, 4’, B, B’ of

o b Q'
\ —g/’
M =:::_"':_T:%“_(:j,2
b, <
a 4 \om' ’
N’ b @
Fig. 239. Fig. 240.

the four chords so drawn will be four points all of which lie on the
required conic.

IL. Second solution (Fig. 240). Denoting the diameter MOM’ by
¢, if the ray ¢’ be constructed which is conjugate to ¢ in the in-
volution determined by the pairs of rays a and «/, b and ¥/, then ¢’
will be the diameter conjugate to ¢ (Art. 296). Through 3/ draw
MP parallel to a, and through 3’ draw M’P’ parallel to o’ ; these
parallels will intersect on the conic (Art. 288); let them cut ¢’ in P
and P’ respectively. These last two points are cbhjugate with re-
spect to the conic (Art. 299) ; thus if on ¢’ two other points be found
which correspond to one another in the involution determined by the
pair P, P’ and the central point O, then M@ and J’Q’ will intersect
on the conic. If then on ¢ two points &V and N be taken such that
the distance of either of them from O is a mean proportional be-
tween OP and OF’, they will be the extremities of the diameter ¢’
(Art. 290).

II1. 7hird solution. Through the extremities M and A’ of the
diameter which passes through the given point draw parallels to a
and a’ ; they will meet in a point 4 lying on the conic. Through
the same points draw parallels to b and &’ ; these will meet in another
point B also lying on the conic (Art. 288). Produce 40 to 4’,
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making 04’ equal to 40; and similarly BO to B’, making OB’ equal
to BO; then will 4” and B’ be points also lying on the required conic
(Art. 281).

899. PrROBLEM. (iven in position two pairs of conjugate diameters
a and o', b and V' of a conic, and a tangent t, to construct the conic.

L. First solution (Fig. 241). Let O
be the point of intersection of the
given diameters, that is, the centre
of the conic. Draw parallel to ¢ and i/
at a distance from O equal to that
at which ¢ lies, a straight line ¢’; this
will be the tangent parallel to¢. Let
the points of intersection of ¢ and ¢
with @ and o’ be joined; this will give two other parallel tangents
w and o’ (Art. 288). Another pair of parallel tangents v and " will
be obtained by joining the points where ¢ and ¢’ meet b and ¥’.

II. Second solution. The conjugate diameters @ and a’, b and ¥,
will meet ¢ in two pairs of points 4 and 4, B and B’ which deter-
mine an involution whose centre is the point of contact of ¢ (Art. 302).
The problem therefore reduces to one already solved (Art. 397). If
the involution has double points, the straight lines joining these points
to O will be the asymptotes.

400. ProBLEM. Given two points M and N on a conic and the
position of a pair of conjugate diameters a and a’, to construct the
conic (Fig. 242).

Let 3" and &’ be the other extremities of the diameters passing
through 4 and N. Through 3/ and M’ draw MH , M’ H parallel to
a and o respectively ; similarly, through & and &N’ draw NK, N'K
parallel to a and o' respectively. The points / and K will lie on
the required conic.

Fig. 241.

Fig. 242. Fig. 243.

401. PrOBLEM. Given two tangents m and n to a conic, and the
position of a pair of conjugate diameters a and a’, to construct the
conic (Fig. 243).

Draw the straight lines m” and »’ parallel respectively to m and n,
and at distances from the centre O equal respectively to those at
which m and » lie; then m’ will be the tangent parallel to m, and »’

U2
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the tangent parallel to ». Join the points where m and m’ meet a and
@ by the straight lines ¢ and ¢, and the points where n and »#’ meet
a and o’ by the straight lines » and «'. The four straight lines
¢, ¢, u,u will all be tangents to the required conic (Art. 288).

402. ProBLEM. (lven five points on a conic, to construct a pair of
conjugate diameters which shall make with one another a given angle *.

Construct first a diameter 44 of the conic (Art. 285); and on it
describe a segment of a circle containing an angle equal to the given
one. Find the points in which the circle of which this segment is a
part cuts the conic again (Art. 227); if M is one of these points, AM
and A’M will be parallel to a pair of conjugate diameters. Since
then AM A’ is equal to the given angle, the problem will be solved by
drawing the diameters parallel to 41/ and 4’ M.

. If the segment described is a semicircle, this construction gives
the axes.

403. PrOBLEM. To construct a conic with respect to which a given
triangle EFG shall be self-conjugate, and a given point Pshall be the
pole of a given straight line p .

Let p meet F in 4. The polar of 4 will pass through Z the
pole of F(@, and through P the pole of p, and will therefore be
EP. Similarly #P, GP will be the polars of the points B, C in
which p is cut by GF, EF respectively. Let A4’ be the point in
which #@ intersects EP; then # and @, 4 and 4’, are two pairs
of conjugate points with respect to the conic, and if the involution
which they determine has a pair of double points L and L’, these points
will lie on the required conic (Art. 264). The same construction may
be repeated in the case of the other two sides of the triangle £FG.

If the point P lies within the triangle EFG, the points 47, B/, ¢”
lie upon the sides FG', GE , ET respectively (not produced ;). The
straight line p may cut two of the sides of the triangle, or it may lie
entirely outside the triangle. 1In the first case the involutions lying
on the two sides of the triangle which are cut by p are both of the
non-overlapping (hyperbolic) kind, and therefore each possesses double
points (Art. 128) ; these give four poiuts of the required curve, and
the problem reduces to that of describing a conic passing through four
given points and with respect to which two other given points are
conjugates (Art. 393). In the second case, on the other hand, the
pairs of conjugate points on each of the sides of the triangle ZF@
overlap, and the involutions have no double points (Art. 128); in

* DE LA Higg, loc. cit., book ii. prop. 38.

+ Staupt, Geometrie der Lage, Art, 237.

1 We shall say that a point A’ lies on the side FG of the triangle, when it lies
between F and G; and that a straight line cufs the side FFG', when its point of
intersection with F'@ lies between F and G.
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this case the conic does not cut any of the sides of the self-
conjugate triangle ; therefore (Art. 262) it does not exist.

If the point P lies outside the triangle, one only of the three
points A7, B/, ¢’ lies on the corresponding side; the two others lie
on the respective sides produced. If these two other sides are cut by
p, none of the involutions possesses double points, and the conic does
not exist. If, on the other hand, p cuts the first side, or if p lies
entirely outside the triangle, the conic exists, and may be constructed
as above.

In all cases, whether the conic has a real existence or not, the
polar system (Art. 339) exists. It is determined by the self-conjugate
triangle ZFG, the point P, and the straight line p. To construct
this system is a problem of the first degree, while the construction of
the conic is a problem of the second degree.

404. ProBLEM. (iven a pentagon ABCDE, to describe a conic with
regard to which each vertew shall be the pole of the opposite side *.

Let F be the point of intersection of 4B and CD. If the conic
K be coustructed (Art. 403) with regard to which ADF is a self-
conjugate triangle and Z the pole of BC, then the points B and C in
which BC is cut by AF and DF respectively will be the poles of D
and Z4, the straight lines which join Z to the points D and 4
respectively. Every vertex of the pentagon will therefore be the
pole of the opposite side ; that is, K will be the conic required.

If the conic C be constructed which passes through the five vertices
of the pentagon, and also the conic ¢’ which touches the five sides
of the pentagon (Art. 152), these two conics will be polar reciprocals
one of the other with respect to K (Art. 322).

405. ProBuEM.  Given five points A, B, C, D, E (no three of
which are collinear), to determine
a point M such that the pencil
M(ABCDE) shall be projective with
a given pencil abede (Fig. 244).

Through D draw two straight
lines D.D’, D E’ such that the pencil
D (ABCD’E’) is projective with
abede (Art. 84, right). Construct g
the point £/ in which DE’ meets Fig. 244.
the conic which passes through the
four points 4 BCD and touches DD” at D (Art. 165) ; then construct
the point M in which the same conic meets Z%’. M will be the
point required. For since M, 4, B, C, D, E’ lie on the same conic,
the pencil M (ABCDE’) is projective with the pencil D (4dBCID/E’),

* Sravpr, loc. cit., Arts. 238, 258.
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which by construction is projective with the given pencil abede.
Since then M Z’ and ME are the same ray, the problem is solved.

As an exercise may be solved the correlative problem, viz.

Given five straight lines a, b, c, d, e, no three of which are con-
current, to draw a straight line m to meet them in five points forming
a range projective with o given range ABCDE *.

408. ProBLEM. 70 trisect a given arc AB of a circle+.

On the given arc take (Fig. 245) a point &, and from B measure
in the opposite direction to AN an arc BN’ equal to twice the arc
AN. If BT be the tangent at B, and if O be the centre of the circle

Fig. 245.

of which the arc 4B is a part, the angles AON and 7BN’ are equal
and opposite. If N and N’ vary their positions simultaneously, the
rays OV and BNV will describe two oppositely equal pencils, and the
locus of their point of intersection M will therefore (Art. 395, II) be
an equilateral hyperbola passing through O and B. The asymptotes
of this hyperbola are parallel to the bisectors of the angle made by
40 and BT with one another; for these straight lines:are correspond-
ing rays (being the positions of the variable rays OX and BN’ for
which the arcs AN and BN’ are each zero). The centre of the
hyperbola is the middle point of the straight line OB which joins the
centres of the two pencils.

The hyperbola having been constructed by help of Pascal’s theorem,
the point P will have been found in which it cuts the arc 4B8. Two
corresponding points NV and N’ coalesce in this point; therefore
the arc AP is half of the arc PB, and P is that point of trisection
of the arc A8 which is the nearer to 4.

The hyperbola meets the circle in two other points R and Q. The
point 2 is one of the points of trisection of the arc which together

* SravpT, loc. ¢it. Airt. 263.
t StauDT, Beitrige, Art. 432; CHASLES, Sections coniques, Art. 37.
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with 4B makes up a semicircle; and the point @ is one of the points
of trisection of the arc which together with 4B makes up the circum-
ference of the circle.

407. It has been seen (Art. 191) that if P/, P, @/, Q" (Fig. 246)
are four given collinear points, and if any conic be described to pass
through P/ and P”/, and then a tangent be drawn to this conic from
@’ and another from Q”, the chord joining the points of contact
of these tangents passes through one of the double points M”/, N/ of
the involution which is determined by the two pairs of points
P’ and P”, Q" and Q”. The two tangents which can be drawn from
Q’, combined with the two from @7, give four such chords of contact,
of which two pass through /" and two through #/. From this may

Fig. 246.

be deduced a construction for the double points of the involution
P’P”, @’Q”, or, what is the same thing (Art. 125), for the two
points M’ , N’ which divide each of the two given segments P’P”
and Q' Q" harmonically.

Describe any circle to pass through P’ and P, and draw to it from
@’ the tangents ¢” and u’, and from @’/ the tangents ¢” and »””. The
chord of contact of the tangents ¢’ and ¢”/ and that of the tangents ”
and »”/ will cut the straight line P’ P’ in the two required points
M’ and N'.

408. This construction has been applied by Brranciox * to the
solution of the two problems considered in Art. 221, viz.

1. To construct a conic of which two points P’, P” and three
tangents q, q”, q”/ are given.

Join P/ P”, and let it cut the three given tangents in @ , @7, @”
respectively (Fig. 246). Describe any circle through P”, P” and
draw to it tangents from @, @’, @”. The chords which join the
points of contact of the tangents from @” to the points of contact of
the tangents from @ meet P’ P” in two points M and & ; and simi-
larly the tangents from @” combined with those from @’ determine
two points M’ and N’

The chord of contact of the tangents ¢’, ¢’ to the required conic
will therefore pass through one of the points 3/, IV, and that of the

* BRIANCHON, loc. cit., pp. 47, 51.



296 COROLLARIES AND CONSTRUCTIONS. [409

tangents q’, ¢” will pass through one of the points M/, N/. The
four combinations MM’, MN’, NM’, NN’ give the four solutions of
the problem.

The problem therefore reduces to the following : 7% describe a conic
which shall touch three given straight lines q, q, q” in such a way that
the chords of contact of the two pairs of tangents q , q” and q’, q” shall
pass respectively through two given points M and M’. Let QQ’Q” (Fig.
247) denote the triangle formed by the
three given tangents, and let 4, 47, 4”
be the points of contact to be deter-
mined. By a corollary to Desargues’
theorem (Art. 194), the side q = Q’Q”
is divided harmonically at the point of
contact 4 and at the point where it is
cut by the chord 474”. If these four
harmonic points be projected on MQ”
from A” as centre, it follows that the segment RQ” intercepted on
MQ” between ¢” and q” is divided harmonically by 3 and the
chord 4747

Let then Q" be joined; it will cut ¢” in some point 2 ; and
let the point ¥ be determined which is harmonically conjugate to
M with regard to Z and Q”. 1In order to do this, draw through &/
any straight line to cut ¢” and ¢’ in S and 7 respectively; join
SQ” and TR, meeting in U; and join QU, meeting RQ” in V.
Join VAML’; it will meet ¢/ and ¢” in 4’ and 4”; and finally if
MA” be joined, it will cut Q’Q” in A.

IL. To construct a conic of which three points P, P’, P” and two
tangents q , q” are given.

Join 2P’, and let it meet ¢ and ¢’ in Q and Q’ respectively ; join
PP”, and let it meet ¢ and ¢’ in B and R’ respectively. Describe
a circle round PP’ P”, and to it draw tangents from: Q and Q’; the
chords of contact will meet PP’ in two points M and &. Similarly
draw the tangents from 2 and R’; the chords of contact will meet
PP” in two other points M”and N’. Then each of the straight lines
MN’, NN’, M’ N, MM’ will meet the tangents ¢ and ¢’ in two of
the points of contact of these two tangents with a conic circumscribing
the triangle PP’ P”,

This construction differs from that given in Art. 221 (left) only in
the method of finding the double points M and N, M’ and N’.

409. THEOREM. If two angles AOS and A0’ S of given magnitude
turn about their respective vertices O and O’ in such a way that the
point of intersection S of one pair of arms lies always on a fixed
straight line u, the point of intersection of the other pair of arms will
describe a conic (Fig. 248).
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The proof follows at once from the property that the pencils
traced out by the variable rays O4
and 0S, 08 and 0’S,0’S and 0’4
are projective two and two (Arts.
42, 108), and that consequently the
pencils traced out by O4 and 0’4
are projective. This theorem is due
to NEwroN, and was given by him
under the title of ZThe Organic De-
scription of a conic *.

410. The following, which depend
on the foregoing theorem, may serve
as exercises to the student :—

1. Deduce a construction for a
conic passing through five given points 0, 0%, 4, B ; C.

2. Given these five points, determine the magnitude of the angles
A0S, 40’8 and the position of the straight line « in order that the
conic generated may pass through the five given points.

3. On the straight line 00’ which joins the vertices of the two
given angles a segment of a circle is described containing an angle
equal to the difference between four right angles and the sum of the
given angles. Show that according as the circle of which this segment
is a part cuts, does not cut, or touches the straight line #, so the conic
generated will be a hyperbola, an ellipse, or a parabola.

4. Determine the asymptotes of the conic, supposing it to be a
hyperbola ; or its axis, in the case where it is a parabola.

5. When is the conic (a) a circle, (b) an equilateral hyperbola,
(¢) a pair of straight lines? '

6. Examine the cases in which the two given angles are directly
equal, or oppositely equal, or supple-
mentary +.

411. TeeorEM. If a wariable triangle
AMA’ move in such a way that its sides turn
severally round three given points O, 07,8
(Fig. 249) while two of its vertices A, A’ slide
along two fixed straight lines w ,u’ respec-
tively, the locus of the third wertex M is a
conic passing through the following five points,
viz. 0, 0’, wu/, and the intersections B and C’ of u and  with Q'S
and OS respectively 1.

Fig. 248.

Fig. 249.

* Principia, lib. i. lemma xxi; Enumeratio linearum tertii ordinis (Opticks,
1704), p. 158, § xxxi.

+ MACLAURIN, Geometria Organica (London, 1720), sect. i, prop. 2.

1 See Art. 156.
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412. TaroreM. (The theorem of Art. 411 is a particular case of
this). If a variable polygon move in such a way that its n sides turn
severally round n fixed points 0, , 0,,...0,,
(Fig. 250) while n— 1 of its vertices slide
respectively along n—1 fiwed straight lines
Uy Uy, ouo Uy, then the last vertex will
describe a conic; and the locus of the point
of intersection of any pair of non-adjacent
sides will also be a conic *.

The proof of this theorem and its cor-

Fig. 230. relative is left to the student +.

413. THEOREM. From two given points A and A’ tangents AB, AC
and 4’B’, 470" are drawn to a conic ; then will the four points of
contact B, C, B, C’, and the two given points A , A’ all lie on a conic
(Fig. 251 %).

Let 470", 4’ B’ meet BC in D and E respectively; these points
will evidently be the poles of 40, AB’
respectively. The pencil 4 (BCB’C’)
is projective with the range of poles
BCED (Art. 291), and therefore with
the pencil A’(BCED) or A’/(BCB’(");
which proves the theorem,

414. TaroreM (correlative to that
of Art. 413). From two given poinis
A and A’ tangents AB, AC and 4’B’,
4’0" are drawn to a conic; then will
the four tangents and the two chords
of contuct all touch a conic t.

Fig. 251. For (Fig. 251) the range of points

BC (AB ,AC, A’B, A’C’) or BCED is

projective with the pencil A(BC B’(C’) formed by their polars; but

this pencil is projective with the range B’C” (4B, AC,A’B’, 4’C);

therefore the six lines 4B, AC, A’B’, A’C’, BC, B’C’ all touch
a conic.

415. THEOREM. On each diagonal of a complete quadrilateral is
taken a pair of points dividing ¢t harmonically ; if of these six points
three (one from each diagonal) lie in a straight line, the other three will
also lie in a straight lire.

CoroLLARY. The middle points of the three diagonals of a complete
quadrilateral are collirear.

0 u, Uy

* This theorem is due to MacLAURIN and BRAIKENRIDGE (Phkil. Trans.,
London, 1735).

+ PoONCELET, loc. cit., Art. 503.

1 CHASLES, Sections coniques, Arts. 213, 214.
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416. TnroreM. If from any point O on the circle circumscribing
a triangle ABC straight lines OA’, OB’ , 0C’ be inflected to meet the
sides BC',C0A , AB in A’, B', O respectively, and to make with them
equal angles (botk as regards sign
and magnitude) ; then the three
points A’, B, ¢/ will be collinear
(Fig. 252).

Through O draw 04”, OB”, 0C”
parallel to BC, 04, AB respec-
tively; then it is easily seen that
the angles 404", BOB”, COC”
have the same bisectors. The same
will therefore be true with regard to the angles 4047, BOB’, COC’;
consequently (Art. 142) the arms of these last three angles will form
an involution, and therefore (Art. 135) the points 4/, B’, €’ will be
collinear * +.

417. TuoeorEM. If from the wertices of a triangle circumscribed
about a circle straight lines be inflected to meet any tangent to the
circle, so that the angles they subtend at the centre may be equal
(in sign and magnitude), then the three straight lines will meet in
a point §.

The proof is similar to that of the theorem in the preceding
Article.

418. ProsLEMS. (1). Given three collinear segments 447, BB’, CC’;
to find a point at which they all subtend equal angles (Art. 109).

In what case can these angles be right angles? (See Art.
128).

(2). Given two projective ranges lying on the same straight line;
to find a point which is harmonically conjugate to a given point on
the line, with respect to the two self-corresponding points of the two
ranges (which last two points are not given) §.

(8). Given two pairs of points lying on a straight line; to deter-
mine on the line a fifth point such that the rectangle contained by its
distances from the points of the first pair shall be to that contained

Fig. 252.

* CHASLES, loc. cit., Art. 386.
t Otherwise : Since the triangles BOC’, COB’ are similar,
BC':CB’'=0B:0C.
So also CA': AC" = 0C: 04,
and AB': BA’ = 04 : OB;
whence by multiplication, paying attention to the signs of the segments,
BC'.CA'.AB'=—-C'A.B'C.4'B,
which shows (Art. 139) that 4’, B’, C’ are collinear.
% CHasLES, loc. cit., Art. 387.
§ CHASLES, Gldom. sup., Art. 269.
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by its distances from the points of the second pair in a given
ratio *.

(4). Through a given point to draw a transversal which shall cut
off from two given straight lines two segments (measured from
a fixed point on each line) which shall have a given ratio to ome
another; or, the rectangle contained by which shall be equal to
a given one t.

419. It will be a useful exercise for the student to apply the
theory of pole and polar to the solution of problems of the first
and second degree, supposing given a ruler, and a fixed cirele and
its centre. We give some examples of problems treated in this
manner :

L. To draw through a given point P a straight line parallel to
a given straight line q.

The pole @ of ¢ and the polar p of P (with respect to the given
circle) must be found; if 4 be the point where p is cut by the
straight line 0@ joining @ to the centre of the circle, then the polar
a of 4 will be the straight line required.

IL To draw from a given point P a perpendicular to a given straight
line q.

Draw through P a straight line parallel to 0Q; it will be the
perpendicular required.

OI. To bisect a given segment AB.

Let @ and b be the polars of 4 and B respectively, and ¢ that
diameter of the given circle which passes through ab; if d be the
harmonic conjugate of ¢ with respect to a and b, the pole of d will be
the middle point of 4B.

IV. To bisect a given arc MN of a circle.

Construct the pole S of the chord J/N; the diameter passing
through § will cut /X in the middle point of the latter.

V. To bisect a given angle.

If from a point on the circle parallels be drawn to the arms of the
given angle, the problem reduces to the preceding one.

VI. Given a segment AC ; to produce it to B so that AB may be
double of AC.

Let @ and ¢ be the polars of 4 and (' respectively, d the diameter
of the given circle which passes through ac, and & the ray which
makes the pencil abed harmonic; the pole of b will be the required
point B.

* This is the problem ¢ de sectione determinata’ of APOLLONIUS. See CHASLES,
Géom. sup., Art, 281,

t These are the problems ‘de sectione rationis’ and ‘de sectione spatii’ of
APOLLONIUS. See CHASLES, Géom. sup., Arts. 296, 298,
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VIL To construct the circle whose centre is at a given point U and
whose radius ts equal to a given straight line UA.

Produce 4U to B, making UB equal to AU (by VI), and draw
perpendiculars at 4 and B to AB (by II). Bisect the right angles at
4 and B (by V); and let the bisecting lines meet in C'and D. We
have then only to construct the conic of which 4B and C'D are a pair
of conjugate diameters (Art. 301).

420. The following problems* depend for their solution on the
theorem of Art. 376.

L. Given three points A, B, C on a conic and one focus F, to
construct the conte.

With centre # and any radius describe a circle K, and let the
polars of 4, B, ' with respect to this circle be a, b, ¢ respectively.
Describe a circle touching @, b, ¢ and take its polar reciprocal with
respect to K ; this will be the conic required.

Since there can be drawn four circles touching a, b, ¢ (the inscribed
circle of the triangle abe and the three escribed circles), there are
four conics which satisfy the problem.

IL. Given two points A, B on a conic, one tangent t, and a focus F,
to construct the conic.

Describe a circle K as in the last problem, and let a, b be the
polars of 4, B, and 7 the pole of ¢, with respect to K. Draw a circle
to pass through 7' and to touch a and b; the polar reciprocal of this
circle with respect to K will be the conic required.

Since four circles can be drawn to pass through a given point and
touch two given straight lines, this problem also admits of four
solutions.

II1. Given one point 4 on a conic, two tangents b, ¢, and a focus V',
to construct the conic.

Describe a circle K as in the last two problems; let a be the polar
of 4,and let B, C' be the poles of b, ¢ respectively with regard to this
circle. Draw a circle to pass through B and C and to touch a; its
polar reciprocal with respect to K will be the conic required.

Since two circles can be described through two given points to
touch a given straight line, this problem admits of two solutions.

IV. Given three tangents a, b, c to a conic and one focus F, to
construct the conic.

Describe a circle K as in the last three problems, and let 4, B, C
be the poles of a, b, ¢ respectively with regard to this circle. Draw
the circle through 4, B, €' and take its polar reciprocal with respect
to K ; this will be the conic required.

This problem clearly admits of only one solution.

* Solutions of these problems were given by DE LA HIRE (see CHASLES, Aper¢u
historique, p. 125), and by NEWTON (Principia, lib. i. props. 19, 20, 21).
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421. PROBLEM. Given the awes of a conic in position (not in
magnitude) and a pair of conjugate straight lines which cut one
another orthogonally, to construct the foci.

If O be the centre of the conic, and P, P’ and @, @’ the points in
which the two conjugate lines respectively cut the axes, then of the
two products OP . OP’ and 0Q . 0Q’, one will be positive and the
other negative. This determines which of the tiwo given axes is the
one containing the foci. If now a circle be circumscribed about
the triangle formed by the two given conjugate lines and the non-
focal axis, it will cut the focal axis at the foci (Art. 343).

422. The following are left as exercises to the student.

1. Given the axes of a conic in position, and also a tangent and
its point of contact, construct the foci, and determine the lengths of
the axes (Art. 344).

2. Given the focal axis of a conic, the vertices, and one tangent,
construct the foci (Art. 360).

3. Given the tangent at the vertex of a parabola, and two other
tangents, find the focus (Art. 358).

4. Given the axis of a parabola, and a tangent and its point of
contact, find the focus (Art. 346).

5. Given the axis and the focus of a parabola, and one tangent,
construct the parabola by tangents (Arts. 346, 349, 358).

6. The locus of the pole of a given straight line » with respect to
any conic having its foci at two given points is a straight line »’
perpendicular to 7. The two lines 7, »” are harmonically separated
by the two foci.

7. The locus of the centre of a circle touching two given circles
consists of two conics having the centres of the given circles for foci.

8. The locus of a point whose distance from a given straight line is
equal to its tangential distance from a given circle consists of two
parabolas,

9. In a central conic any focal chord is proportional to the square
of the parallel diameter.

10. In a parabola, twice the distance of any focal chord from its
pole is a mean proportional between the chord and the parameter.
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Affinity, pp. 18, 19.

Angle of constant magnitude turning
round its vertex traces out two
directly equal penecils, 9I.

bisection of an, 300.
trisection of an, 294.

Angles, two, of given magnitude ; gene-
ration of a conic by means of, 297.

Anharmonic ratio defined, 54, 57.

unaltered by projection, 54.
of a harmonic form is — 1, 5%.
cannot have the values+ 1, 0, or w0,
62.
of four points or tangents of a conic,
122,
Anharmonic ratios, the six, 6o, 61.
Apollonius, x, xi, xii.
_on the parabola, 127, 218.
on the hyperbola, 130, 142, 156,
158, 286.
on the diameters of a conic, 217, 223,
230, 232, 234, 235.
on focal properties of a conie, 253,
258, 259, 262.
section-problems, 300.
Arc of a conic, determination of kind
of conic to which it belongs, 28¢.
of a circle, trisection of, 294.
of a circle, bisection of, 300.
Asymptotes, tangentsatinfinity, 16, 129.
meet in the centre of the conic, 219.
determination of the, given five
points on the conic, 178, 179.
Anuxiliary conic, 203, 239, 240.
circle of a conie, 260.
Axes of a conic defined, 229, 228,
case of the parabola, 228.
focal and non-focal, 252.
bisectors of the angle between its
chords of intersection with any
circle, 236, 281.

Axes of a conic, construction of the,
given a pair of conjugate diameters,
232, 283.

given five points, 236, 292.

Axis of perspective or homology, 10.
of affinity, 18.
of symmetry, 64.

Bellavitis, xi, 64, 161.
Bisection of a given segment or angle
by means of the ruler only, 300.

Brianchon, x, xi, xii, 124, 125.
Brianchon’s theorem, xi, 124.
poiuts, the sixty, 126.

Carnot’s theorem, xi, 279, 280.
Centre of projection, 1, 3.
of perspective or homology, 10, 12,
98.
of similitude, 18.
of symmetry, 64.
of an involution, 102.
Centre of a conic, the pole of the line at
infinity, 218.
biseets all chords, 219,
the point of intersection of the
asymptotes, 219.
when external and when internal to
the conic, 219.
locus of, given four tangents, 237.
construction of the, given five points,
220.
construction of the, given five tan-
gents, 238.
Ceva, theorem of six segments, 111.
Chasles, xi, xii.
on homography, 34.
method of generating conics, 127,
correlative to the theorem ‘ad qua-
tuor lineas,” 159.
on the geometric method of false
position, 194.
solutions of problems of the second
degree, 200.
Circle, curve homological with a, 14, 15.
generated by the intersection of two
directly equal pencils, 114.
harmonic points and tangents of a,
115, 116.
fundamental projective properties of
points and tangents of a, 115.
of curvature at a point on a conic,
190.
cutting a conic; the chords of inter-
section make equal angles with
the axes, 236, 281.
circumseribing triangle formed by
three tangents to a parabola, 253.
auxiliary, of a conic, 260.
Class of a curve, 4.
is equal to the degree of its polar
reciprocal with regard to a conic,
240.
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Coefficient of homology, 63.
Collinear projective ranges, 68.
their self-corresponding points, 78,
91, 92, 93.
construction for these, 170.
Complementary operations, 33.
Concentric pencils, 6g.
construction for their self-correspond-
ing rays, 169.
Cone, sections of the, 14, 18.
Confocal conics, 266.
Congruent figures, 64.
Conic, homological with a circle, 15, 16.
generated by two projective pencils,
T19.
genergnted as an envelope from two
projective ranges, 120.
determined by five points or five
tangents, 123.
fundamental projective property of
points and tangents, 118,
projective ranges of points and series
of tangents of a, 161.
homological with itself, 228, 288.
polar reciprocal of a, 240.
homological with a given conic, and
having its centre at a given point,
249.
confocal with a given conic, and
passing through a given point, 266,
Conic, construction of a, having given
five points or tangents, 131, 149, 176,
179, 180, 297.
four points and the tangent at one
of them, 137, 177.
three points and the tangents at two
of them, 139, 177.
three tangents and the points of con-
tact of two of them, 143, 177.
four tangents and the point of con-
tact of one of them, 146, 177.
four points and a tangent, 180.
four tangents and a point, 18o.
three points and two tangents, 182,
296.
three tangents and two points, 182,
295.
the 9asymptotes and one point or
tangent, 277.
the two foci and one tangent, 264.
the two foci and one point, 265.
one focus and three tangents, 268,
30I.
one focus and three points, 30I.
one focus, two points and a tangent,
30I.
one focus, two tangents and a point,
301.
a pair of conjugate diameters, 220,
231,
a pair of conjugate diameters in posi-
tion, and two points or tangents,
291,

INDEX.

a pair of conjugate diameters in posi-
tion, and a tangent and its point
of contact, 289.

two pairs of conjugate diameters in
position, and one point or tan-
gent, 290, 291.

two reciprocal triangles, 247.

a self-conjugate triangle, and a point
and its polar, 292.

a self-conjugate pentagon, 293.

three points and the osculating circle
at one of them, 190.

Conie, construction of a, homological
with itself, 228, 288.

passing through three points and
determining a known involution
on a given line, 284.

passing through four points and di-
viding a given segment harmoni-
cally, 284.

passing through four points and
through a pair of conjugate points
of a given involution, 2835.

Conics, osculating, 189.

having a common
triangle, 213, 214.

circumseribing the same quadrangle,
150, 214, 237.

inscribed in the same quadrilateral,
1503 213’ 2147 237'

Conjugate axis of a hyperbola, 228.

Conjugate diameters, defined, 219.

of a circle cut orthogonally, 222.

form an involution, 227.

parallelogram described on a pair as
adjacent sides is of constant area,
234.

sum or difference of squares is con-
stant, 235.

constraction of, given two pairs, 232.

construction of, given five points on
the conic, 236.

including a given angle, construction
of, 292,

Conjugnte lines meeting in a point, one
orthogonal pair can be drawn,
227.

ortho‘{gonal, the involution determined
by them on an axis of the conic,
251.

orthogonal, with respect to a para-
bola, 253. )

Conjugate points and lines with regard
to a conic, 204.

involution-properties of, 209.

Conjugates, harmonic, 46.

in an involution, 101.

Construction of # figure homological
with a given one, 13.

for the fourth element of a harmonic
form, 47.

for the fourth point of a range whose
anharmonic ratio is given, 5.

self-conjugate
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of pairs of corresponding elements of
two projective forms, when three
are given, 70.
for the self-corresponding elements
of two superposed projective forms,
169.
for the sixth element of an involu-
tion, 109.
of pairs of elements of an involution,
given two, 104.
for the centre of an involution, 109.
for the double elements of an in-
volution, 169, 175, 295.
for the common pair of two super-
posed involutions, 173.
for the pole of a line or polar of a
point, 205, 206.
of a triangle self-conjugate to a conic,
207.
of the centre and axes of a conic,
220, 236, 238, 283, 292.
of conjugate diameters, 232, 236, 292.
for diameters of a parabola, having
given four tangents, 238.
for the focus of a parabola, given
four tangents, 254.
for the foci of a conic, given the axes
and a pair of orthogonal conjugate
lines, 302.
Copolar and coaxial triangles, 7, 8.
Correlative figures, 26, 83, 241.
Curvature, circle of, 19o.

Degree of a curve, 4.
is equal to the class of its polar reci-
procal with respeect to a conic, 240.

De la Hire, x, xii.

Desargues, ix, x, xii, 101, 102, 107, 148.

Desarsues’ theorem, 148.

Descriptive, the term, as distinguished
from metrical, 5o.

Diagonal triangle, of a quadrangle or
quadrilateral, 3o.

common to the complete quadri-
lateral formed by four tangents to
a conic, and the complete quad-
rangle formed by their points of
contact, 140.

Diagonals of a complete quadrilateral,
each is cut harmonically by the
other two, 46.

their middle points are collinear,
109, 299.

form a triangle self-conjugate to any
conic inscribed in the quadri-
lateral, 208.

if the extremities of two are conju-
gate points with regard to a conic,
those of the third are so too, 245.

Diameters of a conic defined, 217.

of a parabola, 218.

conjugate, 219.

ideal, 223.

X

305

of a parabola, construction for, given
four tangents, 238.
Dimension of a geometric form, 25.
Directly equal ranges, defined, 88.
generated by the motion of a seg-
ment of constant length, 89.
Directly equal pencils, defined, go.
two, the projection of two concentric
projective pencils, 89.
two, generate a circle by their inter-
section, 114.
subtended at a focus of a conic by
the points in which a variable
tangent cuts two fixed ones, 264.
Director circle, defined, 269.
the locus of the intersection of or-
thogonal tangents, 269.
cuts orthogonally the circumscribing
circle of any self-conjugate tii-
angle, 2%0.
Directrix, defined, 254.
property of focus and, 256.

Directrix of a parabola, the locus of
the intersection of orthogonal tan-
gents, 270.

the locus of the centre of the cir-
cumscribing circle of a self-con-
jugate triangle, 271.

the locus of the orthocentre of a
circumseribing triangle, 2%3.

Division of a given bisected segment
into # equal parts, by means of
the ruler only, g%.

Double elements of an involution, 102,

they separate harmonically any pair
of conjugates, 103.
construction for the, 169, 295.
Duality, the principle of, 26-32.

Eccentricity, 259.
of the polar reciprocal of a circle
with respect to another circle, 274.
Ellipse, 16.
its centre an internal point, 219.
is cut by all its diameters, 220,
is syminetrical in figure, 228.
Envelope of connectors of correspond-
ing points of two projective ranges
is a conic, 120.
if the ranges are similar, it is a para-
bola, 128.
of a straight line the product of
whose distances from two given
points is constant, 260.
Equal ranges and pencils, 86-9o.
Equianharinonic forms and figures are
projective, and vice versa, 54, 56,
62, 66.
Equilatéeml hyperbola, why so called,
28

triangles self-conjugate with regard
to a, 271.
inscribed in a quadrilateral, 272.
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circumseribing a triangle passes
through the orthocentre, 287.
is the polar reciprocal of a conic with
regard to a point on the director
circle, 288.
construction of, given four tangents,
272, 288,
Euclid, porisms of, x, 96.
External and internal points with re-
gard to a conic, 203.

False position, geometrical method of,
104. )
Focal axis of a conie, 252.
radii of a point on a conic, 253.
radii, their sum or difference is con-
stant, 258.
Foci, defined, 250.
are points such that conjugate lines
meeting in them cut orthogonally,
250.
are internal points lying on an axis,
250,
are the double points of the involu-
tion determined on an axis by pairs
of orthogonal conjugate lines, 251.
of a parabola, one at infinity, 253.
of parabolas inscribed in a given
triangle, locus of, 254.
properties of, with regard to tangent
and normal, 259-2064.
reciprocation with respect to the,

274, 275.

construction of, under various con- |

ditions, 302.
Focus of a parabola, 253.
inscribed in a given triangle, locus
of, 254.
reciprocal of the curve with regard
to, 275.
Forms, geometric, defined, 22, 164.
elements of, 23, 164.
prime, of one, two, three dimensions,
24.
dual generation of, 23, 24, 26.
projective, 34-3S.
harmonic, 39 49.
projective, when in perspective, 67.
projective, superposed, 68, 69.

Gaskin, 189, 269, 271.
Gergonne, x.

Harmonic forms defined, 39, 40.

forms are projective, 41, 43.

pairs of pointsnecessarily alternate, 45.

conjugates, 46.

point or ray, construction for the
fourth, 47.

forms, metrical relations, 57, 58.

homology, 64, 228, 288.

points and tangents of & cirele, 115,
116, 169.

and of a cunic, 122, 157, 168.

INDEX.

Hesse, theorem relating to the ex-
tremities of the diagonals of a
complete quadrilateral, 245.

Hexagon, inscribed in a line-pair, 76.

circumscribed to a point-pair, 76.

inscribed in a conic, 124.

circumscribed to a conie, 124.

complete, contains sixty simple hexa-
gons, 125.

Homographie, the term, 34.

figures, construction of, 81.

figures may be placed in homology,
8

4.
Homological figures, construction of,
13-20.
metrical relations between, 63-65.
Homology, defined, 9, 10.
in space, 20.
plane of, 20.
coefficient or parameter of, 63.
harmonie, 64, 228, 288.
Homothetic figures, 18.
Hyperbola, tangent- properties of a,
129, 130.
and asymptotes cut by a transversal,
150, 282.
tangent cut off by the asymptotes
is bisected at the point of contact,
158,
centre is an external point, 219.
is cut by one only of every pair of
conjugate dinmeters, 220,
is symmetrical in figure, 228.
properties of the asymptotes and
conjugate points and lines, 277.
equilateral, 285.

Ideal diameters and chords, 223, 226.
Infinity, points and line at, 5.
line at, a tangent to the parabola, 16.
plane at, 21.

Internal and external points with re.
gard to a conie, 203.

Intersection of a conic with a straight
line ; constructions, 176, 177, 180,
226,

of two conics; constructions, 189.

Involution, defined, 101.

the two kinds, elliptic and hyper-
bolic, 105, 168.

construction for the sixth element of
an, 109.

determinel] by two pairs of conju-
gates, 104, 165.

of points or tangents of a conic, 165.

construction for the double elements
of an, 169, 295.

formed by cutting a conic by a pencil,
166,

of conjugate points or lines with
regard to a conic, 209. ]

of conjugate diamcters of a conic,
227.
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Involution-properties of the complete
quadrangle and quadrilateral, 107.
of a conic and an inscribed or circum-
scribed quadrangle, 148, 2235.
of a conic and an inscribed or cir-
cumscribed triangle, 152, 157.
of a conic, two tangents, and their
chord of contact, 154.
of conjugate points and lines with
regard to a conic, 209.

Lambert, ix, xi, 96-98.

Latus rectum, 257, 258.

Locus of the centre of perspective of
two figures when one is turned
round the axisof perspective, 12, 98.

of the intersection of corresponding
rays of two projective pencils is a
conic, 11g.

ad quatuor lineas, 158.

of middle points of parallel chords
of a conic, 217.

of poles of a straight line with regard
to conics inscribed in a quadri-
lateral, 237.

of the centre of a conic, given four
tangents, 237.

of foot of perpendicular from the
focus of a conic on a tangent, 260.

of the intersection of orthogonal
tangents to a conic, 269.

Maclaurin, xi, 129, 141, 185, 297, 298.

Major and minor axes of an ellipse, 228.

Menelaus, theorem on triangle cut by a
transversal, 112, 280.

Metrical, the term, distinguished from
deseriptive, 5o.

Mobius, theorem on figures in per-
spective, 12.

on anharmonic ratio, x, 56, 61.
Monge, xii.

Newton, locus of centre of a conic in-
scribed in a quadrilateral, 238.
organic description of a conie, xi,
297.
Nine-point circle, 283.
Normal, 252.

Oppositely equal pencils, go.
they generate an equilateral hyper-
bola by their intersection, 286.
Oppositely equal ranges, 88.
Organic description of a conic, 297.
Orthocentre of a triangle circumscribing
a parabola lies on the directrix, 273.
of a triangle inscribed in an equi-
lateral hyperbola lies on the curve,
287.
Orthogonal projection, 19.
pair of rays in a pencil in involution,
172,
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pair of conjugate diameters of a
conic, 227.
conjugate lines with respect to a
conic, 251, 252.
Osculating conics, 189.
circle of a conic, 190.

Pappus, x, xii.
on a hexagon inscribed in a line-
patr, 76.
porisms of, 95, g6.
fundamental property of the an-
harmonic ratios, 54.
problem ¢ ad qnatuor lineas,” 158.
on the focus and directrix property
of a conic, 257.
Parabola, touches the line at infinity,
16.
is determined by four points or tan-
gents, 127.
two fixed tangents are cut propor-
tionally by the other tangents,
128.
generated as an envelope from two
similar ranges, 128.
diameters of a, 218.
construction of the diameters, having
given four tangents, 238.
focal properties of the, 253, 254.
focus and directrix property, 257.
self-conjugate triangle, property of,
291,
inscribed in a triangle, its directrix
passes through the orthocentre,
243,
Parabola, construction of a, given four
points, 181.
given four tangents, 135.
given three tangents and a point,
182.
under various conditions, 138, 139,
143, 146.
given the axis, the focus, and one
point, 266.
given two tangents, the point of con-
tact of one of them, and the
direction of the axis, 278.
given two tangents and their points
of contact, 279.
Parallel lines meet at infinity, 5.
projection, 19.
lines, construction of, with the ruler
only, 96, 300.
Parallelogram, inscribed in or ecircum-
scribed about a conie, 219, 221.
described on a pair of conjugate semi-
diameters of a conic is of constant
area, 234.
Parameter of homology, 63.
Pascal’s theorem, xi, 124.
lines, the sixty, 125.
Pencil, flat, defined, 22.
axial, 22.

X 2
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harmonic, 40, 42.

in involution, 101.

in involution, orthogonal pair of
rays of a, 172.

cut by a conic in pairs of points
forming an involution, 166

Pentagon, inscribed in a conic, 136.
circumscribed to a conic, 145.
self-conjugate with regard to a conie,

293.

Perpendiculars, centre of, see Ortho-

centre. .

from a focus on tangents to a conic,
the locus of their feet a circle, 259.

from the foci of a conic on a tangent,
their product constant, 260,

from any point of the circumseribing
circle of a triangle to the sides,
their feet collinear, 261, 299.

construction of, with the ruler only,
97, 300.

Perspective, figures in, 3.
triangles in, 7, 8, 246.
forms in, 35.
plane, 1o.
relief, 20.

Plane of points or lines, 22.

Planes, harmonic, 42.
involution of, 101.

Points, harmonic, on a straight line, 40.
harmonic, on a circle, 116.
harmonic, on a conic, 122, 157.
projective ranges of, on a conic, 161.

Polar reciprocal curves and figures,
240, 241.

of a conic with respect to a conic is a
conic, 240.

of a circle with respect to a circle,
274.

of a conic with respect to a focus,
274, 275.

of a conic with respect to a point on
the director circle, 288.

Polar system, defined, 248.

determined by two triangles in per-
spective, 248.

determined by a self-conjugate tri-
angle and a point and its polar, 293.

Pole and polar, defined, 201, 202.
reciprocal property of, 204.
theory of, applied to the solution of

problems, 300.
construction of, 205, 206, 248.

Poles, range of, projective with the
pencil formed by their polars, 209,
224.

of a straight line with regard to all
conics inscribed in the same quadri-
lateral lie on a fixed straight line,

Polygon; inscribed in a conic, whose
sides pass through fixed points,
151, 185, 187.

INDEX,

circumscribed to a conic, whose ver-
tices slide on fixed lines, 152, 186.

whose sides pass through fixed points
and whose vertices lie on fixed
lines, 184.

Poncelet, ix, x, xii.

on variable polygons inscribed in or
circumscribed to a conic, 151, 184~
187.

on ideal chords, 226.

on polar reciprocal figures, 240.

on triangles inscribed in one conic
and circumscribed about another,

244-
Porisms, of Euclid and Pappus, 95, 96.
of in- and circumseribed triangle, 94,

244.
of the inscribed and self-conjugate
triangle, 243.
of the circumscribed and self-con-
jugate triangle, 243.
Power of a point with respect to a
circle, 58.

Prime-forms, the six, 24.

Problems, solved with ruler only, 6-98.
of the second degree, 176-200.
solved by means of the ruler and a

fixed circle, 194, 300.
solved by polar reciprocation, 3o1.
Projection, operation of, 2, 22, 164.
central, 3.
orthogonal, 19.
parallel, 19.
of a triad of elements into any other
given triad, 36.

of a quadrangle into any given quad-
rangle, 8o,

of a plane figure into another plane
figure, 81,
Projective forms and figures, 34.
forms, when in perspective, 67.
forms, when harmonic, 69.
ranges, metrical relations of, 62.
forms, constructiop of, 70-74.
figures, construction of, 81-84.
plane figures can be put into homo-
logy, 84.

properties of points and tangents of
a circle, 114-117.

properties of points and tangents of
a conic, 118-130.

Projectivity of any two forms ABC

and A’ B'C’, 36.

of two forms 4 80D and BADC, 38.

of harmonic forms, 41, 43.

of the anharmonic ratio, 54.

of any two plane quadrangles, 8o.

of a range of poles and the pencil
formed by their polars, 209, 224.

Quadrangle, complete, defined, 29.
two plane quadrangles always pro-
jective, 8o.
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harmonic properties, 39, 47.

involution properties, 107, 225.

inscribed in a conic, 138, 140, 208,
225.

if two pairs of opposite sides are con-
jugate lines with regard to a conic,
the third pair is so too, 246.

Quadrangles having the same diagonal
points ; their eight vertices lie on
a conic or a line-pair, 210.
Quadrilateral, complete, defined, 29.

harmonic properties, 39, 46.

involution properties, 107, 223.

middle points of diagonals are col-
linear, 109, 299.

circumscribed to & comic, 142, 208,
225, 272.

locus of centres of inscribed conics,
237.

theorem of Hesse relating to the ex-
tremities of the three diagonals,

245.

Quadrilaterals having the same dia-
gonals ; their eight sides touch a
conic or & point-pair, 212,

Range, defined, 22.

harinonic, 40.
Ranges, projective, on a conic, 161.
Ratio, of similitude, 18.

harmonic, 57.

anharmonic, 54-62.
Reciprocal figures, 85.

points and lines with regard to a

conic, 204.

triangles, two, are in perspective, 246.
Reciprocation, polar, 241.

with respect to a circle, 274, 275.

applied to solution of problems, 301.
Rectangular hyperbola, see Equilateral.
Ruler only, problems solved with, 96—

8

98.
Ruler and fixed circle, problems solved
by help of the, 194, 300.

Section, operation of, 2, 22, 164.
of a cone, 14, 18.
of a cylinder, 1g.
Segment, dividing two given ones har-
monically, 58, 103, 295.
of constant magnitude sliding along
a line generates two directly equal
ranges, 89.
bisected, its division into n equal
parts by aid of the ruler only, 97.
Segments of a straight line, metrical
relations between, 51, 52.
Self-conjugate pentagon with regard to
a conic, 293.
Self-conjugate triangle, 207-209.
circumscribing circle of a, its pro-
perties, 271.
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Self-conjugate triangles with regard to
a conic, two ; properties of, 242.
Self-corresponding elements, defined, 67.
of two superposed projective forms,
68, 69, 73, 91~93.
general construction for these, 169.
of two coplanar projective figures, 79.
of two projective ranges on or series
of tangents to a conic, 162, 163.
Sheaf, defined, 22.
Signs, rule of, 51.
Similar ranges and pencils, 86, 87,
128,
and similarly placed figures, 18.
Staudt, vi, vii.
on the geometric prime-forms, 24.
on the principle of duality, 26.
on harmonic forms, 39.
on the construction of two projective
figures, 81.
on the polar system, 248.
on an involution of points on a conic,
163.
Steiner, vii, x, xii.
on the sixty Pascal lines and Brian-
chon points, 123.
on the solution of problems of the
second degree by means of a ruler
and a fixed circle, 194.
Superposed geometric forms, 68, 69.
construction of their self-correspond-
ing elements, 169.
plane figures, if projective, cannot
have more than three self-corre-
sponding elements, 79.
Supplemental chords, 221,
Symmetry, a special case of homology,

64.

Tangents, harmonic, of a circle, 116,
R0
harmonic, of a conic, 168.
to a conic, series of projective, 163,
164.
orthogonal, to a conic, 269.
to a conic from a given point; con-
structions, 176, 177, 179, 226.
common, to two conics; construc-
tions, 19o.
Tetragram and Tetrastigm, 29.
Townsend, 200.
Transversal, cut by the sides of a tri-
angle, 112.
cutting a quadrangle or a quadri-
lateral, 107, 108.
cutting a conic and an inscribed
quadrangle, 150.
drawn through a point to cut a
conic; property of the product of
the segments, 281.
cutting a hyperbola and its asymp-
totes, 150, 282.
Transverse axis of a hyperbola, 228.
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Triangle, inscribed in one triangle and

circumscribed about another, 94.

inscribed in a conic, 143, 216.

circumseribed to a conic, 144, 216.

inscribed or circumscribed, involu-
tion-properties, 152, 157.

self-conjugate with regard to a conic,
207, 270.

circumscribed to a parabola, 253,
273.

self—7conjngate with regard to a para-
bola, 271.

self-conjugate with regard to an
equilateral hyperbola, 271.

cut by a conic, Carnot’s theorem,
279.

inch‘ibed in an equilateral hyper-
bola, 287.

INDEX.

Triangles, two, self-conjugate with re-
gard to a conic; properties of, 242.
inscribed in one conic and self-con-
jugate to another, 243.
circumseribed to one conic and self-
conjugate to another, 243.
inscribed in one conic and circum-
scribed to another, 244.
reciprocal, are in perspective, 246.
formed by two pairs of tangents to a
conic and their chords of contact,
298.
Trisection of an are of a circle, 294.

Vanishing points and lines, 5.
plane, 21.

Vertex of a conic, 228, 256.
circle of curvature at a, 19o.

THE END.
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