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AUTHOR S PREFACE TO THE
FIRST EDITION*

Amplissima et pulcherrima scientia figurarum. At quam est inepte sortita

nomen Geometrise ! NICOD. FRISCHLINUS, Dialog. I.

Perspective methodus, qua nee inter inventas nee inter inventu possibiles ulla

compendiosior esse videtur . . . B. PASCAL, Lit. ad Acad. Paris., 1654.

Da veniam scriptis, quorum non gloria nobis

Causa, sed utilitas officiumque fuit. OVID, ex Pont., iii. 9. 55.

THIS book is not intended for those whose high mission it

is to advance the progress of science
; they would find in it

nothing new, neither as regards principles, nor as regards

methods. The propositions are all old
;
in fact, not a few of

them owe their origin to mathematicians of the most remote

antiquity. They may be traced back to EUCLID (285 B.C.), to

APOLLONIUS of Perga (247 B.C.), to PAPPUS of Alexandria (4th

century after Christ); to DESARGUES of Lyons (1593-1662);

to. PASCAL (1623-1662); to DE LA HIRE (1640-1718); to

NEWTON (1642-1727); to MACLAURIN (1698-1746); to J. H.

LAMBERT (1728-1777), &c. The theories and methods which

make of these propositions a homogeneous and harmonious

whole it is usual to call modern, because they have been dis

covered or perfected by mathematicians of an age nearer to

ours, such as CARNOT, BRIANCHON, PONCELET, MOBIUS, STEINER,

CHASLES, STAUDT, &c.
; whose works were published in the

earlier half of the present century.

Various names have been given to this subject of which we

are about to develop the fundamental principles. I prefer

* With the consent of the Author, only such part of the preface to the original

Italian edition (1872) is here reproduced as may be of interest to the English reader.
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not to adopt that of Higher Geometry (Geometrie superieure,

holiere Geometrie), because that to which the title higher at

one time seemed appropriate, may to-day have become very

elementary; nor that of Modern Geometry (neuere Geometrie),

which in like manner expresses a merely relative idea
;
and is

moreover open to the objection that although the methods

may be regarded as modern, yet the matter is to a great extent

old. Nor does the title Geometry ofposition (Geometrie der Lage)
as used by STAUDT* seem to me a suitable one, since it

excludes the consideration of the metrical properties of figures.

I have chosen the name of Protective Geometry f, as expressing
the true nature of the methods, which are based essentially on

central projection or perspective. And one reason which has

determined this choice is that the great PONCELET, the chief

creator of the modern methods, gave to his immortal book

the title of Traite des proprietes projectives desfigures (1822).

In developing the subject I have not followed exclusively

any one author, but have borrowed from all what seemed

useful for my purpose, that namely of writing a book which

should be thoroughly elementary, and accessible even to those

whose knowledge does not extend beyond the mere elements of

ordinary geometry. I might, after the manner of STAUDT,
have taken for granted no previous notions at all

;
but in that

case my work would have become too extensive, and would
no longer have been suitable for students who have read the

usual elements of mathematics. Yet the whole of what such

students have probably read is not necessary in order to

understand my book
;

it is sufficient that they snould know
the chief propositions relating to the circle and to similar

triangles.

It is, I think, desirable that theoretical instruction in

*
Equivalent to the Descriptive Geometry of CATLEY (Sixth memoir on quantics,

Phil. Trans, of the Royal Society of London, 1859; P- 9)- Tne &quot;ame Geomttrie
de position as used by CARNOT corresponds to an idea quite different from that
which I wished to express in the title of my book. I leave out of consideration
other names, such as Geometric segmentaire and Organische Geometric, as referring
to iileaa which are too limited, in my opinion.

f See KLEIN, Vtber die aogenannte nicht-Euklidische Geometrie (Gottinger
Nachrichten, Aug. 30, 1871).
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geometry should have the help afforded it by the practical

constructing and drawing of figures. I have accordingly laid

more stress on descriptive properties than on metrical ones
;
and

have followed rather the methods of the Geometrie der Lage of

STAUDT than those of the Geometrie superieure of CHASLES *.

It has not however been my wish entirely to exclude metrical

properties, for to do this would have been detrimental to

other practical objects of teaching f. I have therefore intro

duced into the book the important notion of the anharmonie

ratio, which has enabled me, with the help of the few above-

mentioned propositions of the ordinary geometry, to establish

easily the most useful metrical properties, which are either

consequences of the project!ve properties, or are closely related

to them.

I have made use of central projection in order to establish

the idea of infinitely distant elements-, and, following the example

of STEINER and of STAUDT, I have placed the law of duality

quite at the beginning of the book, as being a logical fact

which arises immediately and naturally from the possibility

of constructing space by taking either the point or the plane as

element. The enunciations and proofs which correspond to

one another by virtue of this law have often been placed in

parallel columns ; occasionally however this arrangement has

been departed from, in order to give to students the oppor

tunity of practising themselves in deducing from a theorem

its correlative. Professor REYE remarks, with justice, in the

preface to his book, that Geometry affords nothing so stirring

to a beginner, nothing so likely to stimulate him to original

work, as the principle of duality; and for this reason it is

very important to make him acquainted with it as soon

as possible, and to accustom him to employ it with con

fidence.

The masterly treatises of PONCELET, STEINER, CHASLES, and

*
Cf. REYE, Geometrie der Lage (Hannover, 1866; 2nd edition, 1877), p. xi of

the preface.

f Cf. ZECH, Die hbhere Geomelrie in ihrer Anwendung auf Kegelschnitte und

Flachen zweiler Ordnung (Stuttgart, 1857), preface.
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STAUDT * are those to which I must acknowledge myself most
indebted

; not only because all who devote themselves to

Geometry commence with the study of these works, but also

because I have taken from them, besides the substance of

the methods, the proofs of many theorems and the solutions of

many problems. But along with these I have had occasion

also to consult the works of APOLLONIUS, PAPPUS, DESARGUES,
DE LA HIRE, NEWTON, MACLAURIN, LAMBERT, CARNOT,
BRIANCHON, MOBIUS, BELLAVITIS, &c.

;
and the later ones of

ZECH, GASKIN, WITZSCHEL, TOWNSEND, REYE, POUDRA,

FIEDLER, &c.

In order not to increase the difficulties, already very con

siderable, of my undertaking, I have relieved myself from the

responsibility of quoting in all cases the sources from which
I have drawn, or the original discoverers of the various pro
positions or theories. I trust then that I may be excused if

sometimes the source quoted is not the original one f, or if

occasionally the reference is found to be wanting entirely.
In giving references, my desire has been chiefly to call the

attention of the student to the names of the great geometers
and the titles of their works, which have become classical.

The association with certain great theorems of the illustrious

names of EUCLID, APOLLONIUS, PAPPUS, DESARGUES, PASCAL,
NEWTON, CARNOT, &c. will not be without advantage in assist

ing the mind to retain the results themselves, and in exciting
that scientific curiosity which so often contributes to enlarge
our knowledge.

Another object which I have had in view in giving refer

ences is to correct the first impressions of those to whom the

name Protective Geometry has a suspicious air of novelty. Such

*
PONCEI.ET, Traite des propriety projectivesdesfigures (Paris, 1822). STEINEB,

Syriematische Eniwickelung derAbhanyigkeitgeomctrischer Gestalten von einander,
&c.

vBerlin, 1832). CHASLES, TraiUde Geometric mpdrieure (Paris, 1852); Traite
de* sections coniques (Paris, 1865). STAUDT, Geometric AerLage (Nurnberg, 1847).

t In quoting an author I have almost always cited such of his treatises as are
of considerable extent and generally known, although his discoveries may have
been originally announced elsewhere. For example, the researches of CHASLES in
the theory of conies date from a period in most cases anterior to the year 1830;
those of STAUDT began in 1831 ; &c.
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persons I desire to convince that the subjects are to a great
extent of venerable antiquity, matured in the minds of the

greatest thinkers, and now reduced to that form of extreme

simplicity whichGERGONNE considered as the mark of perfection
in a scientific theory*. In my analysis I shall follow the

order in which the various subjects are arranged in the book.

The conception of elements lying at an infinite distance is due
to the celebrated mathematician DESARGUES

;
who more than

two centuries ago explicitly considered parallel straight lines

as meeting in an infinitely distant point f, and parallel planes
as passing through the same straight line at an infinite

distance J.

The same idea was thrown into full light and made

generally known by PONCE LET, who, starting from the postu
lates of the Euclidian Geometry, arrived at the conclusion

that the points in space which lie at an infinite distance must

be regarded as all lying in the same plane .

DESARGUES
||
and NEWTON IT considered the asymptotes

of the hyperbola as tangents whose points of contact lie at an

infinite distance.

The name homology is due to PONCELET. Homology, with

reference to plane figures, is found in some of the earlier

treatises on perspective, for example in LAMBERT** or per

haps even in DESARGUES ft, who enunciated and proved the

theorem concerning triangles and quadrilaterals in perspective
or homology. This theorem, for the particular case of two

triangles (Art. 17), is however really of much older date, as it

On ne peut se flatter d avoir le dernier mot d une
the&quot;orie,

tant qu on ne

peut pas 1 expliquer en peu de paroles a un passant dans la rue (cf. CHASLES,

Apergu historique, p. 115).

t (Euvres de DESARGUES, reunies et analysees par M. POUDRA (Paris, 1864),
tome i. Brouillon-projet d une atteinte aux evtnements des rencontres d un cdm
avec un plan (1639), PP- 1O

4&amp;gt;

IO
5&amp;gt; 205.

t Loc. cit., pp. 105, 1 06.

Traite des proprietes projectives des figures (Paris, 1822), Arts. 96, 580.

||
Loc. cit., p. 210.

H PkUowphiae naturalis principia mathematica (1686), lib. i. prop. 27,
scholium.

** Freie Perspective, 2nd edition (Zurich, 1774).

tt Loc. cit., pp. 413-416.
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is substantially identical with a celebrated porism of EUCLID

(Art. 1 1
4), which has been handed down to us by PAPPUS *.

Homological figures in space were first studied by PONCELET f.

The law of duality, as an independent principle, was enun

ciated by GERGONNE J ;
as a consequence of the theory of

reciprocal polars (under the name principe de reciprocite polaire)

it is due to PONCELET .

The geometric forms (range of points, flat pencil) are found,

the names excepted, in DESARGUES and the later geometers.

STEINER
||
has defined them in a more explicit manner than

any previous writer.

The complete quadrilateral was considered by CARNOT If ;

the idea was extended by STEINER** to polygons of any
number of sides and to figures in space.

Harmonic section was known to geometers of the most

remote antiquity ;
the fundamental properties of it are to be

found for example in APOLLONIUS ft- DE LA HIRE JJ gave the

construction of the fourth element of a harmonic system by
means of the harmonic property of the quadrilateral, i. e. by

help of the ruler only.

From 1832 the construction of projective forms was taught

by STEINER .

The complete theory of the anharmonic ratios is due to

MOBIUS
|| ||,

but before him EUCLID, PAPPUS 1% DESARGUES ***,

and BRIANCHON fff had demonstrated the fundamental pro

position of Art. 63. DESARGUES JJJ was the author of the theory

* CHASLES, Les trois livres de porismes d Euclide, &c. (Paris, 1860), p. 102.

f Loc. cit., pp. 369 sqq.

J Annales de Matkematiqnes, vol. xvi. (Montpellier, 1826), p. 209.

Ibid., vol. viii. (Montpellier, 1818), p. 201.

|| Systematische Entwickelung , pp. xiii, xiv. Collected Works, vol. i. p. 237.

T! De la correlation desfigures de Geometric (Paris, 1801), p. 122.

** Loc. cit., pp. 72, 235; 19, 55.

ft Conicorum lib. i. 34, 36, 37, 38.

it Sectiones conicae (Parisiis, 1685), i. 20.

Loc. cit., ]&amp;gt;. 91.

(HI Der barycentrische Calcul (Leipzig, 1827), chap. v.

^ Mdthematicae Collectiones, vii. 129.
*** Loc. cit., p. 425.

ftt Memoire sur les lignes du second orJre (Paris, 1817), p. 7.

Jtt Loc. cit., pp. 119, 147, 171, 176.
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of involution, of which a few particular cases were already

known to the Greek geometers *.

The generation of conies by means of two prqjective forms

was set forth, forty years ago, by STEINER and by CHASLES
;

it is based on two fundamental theorems (Arts. 149, 150)

from which the whole theory of these important curves can

be deduced. The same method of generation includes the

organic description of NEWTON f and various theorems of

MACLAURIN.

But the projectivity of the pencils formed by joining two

fixed points on a conic to a variable point on the same had

already been proved, in other words, by APOLLONIUS J.

When only sixteen years old (in 1 640) PASCAL discovered

his celebrated theorem of the mystic hexagram ,
and in 1806

BRIANCHON deduced the correlative theorem (Art. 153) by
means of the theory of pole and polar.

The properties of the quadrilateral formed by four tangents
to a conic and of the quadrangle formed by their points of

contact are to be found in the Latin appendix (De linea-

rum geometricarum proprietatibus generalibm traetatns) to the

Algebra of MACLAURIN, a posthumous work (London, 1748).

He deduced from these properties methods for the con

struction of a conic by points or by tangents in several cases

where five elements (points or tangents) are given. This

problem, in its full generality, was solved at a later date by
BRIANCHON.

The idea of considering two protective ranges of points on

the same conic was explicitly set forth by BELLAVITIS
||.

To CARNOTlT we owe a celebrated theorem (Art. 385) con

cerning the segments which a conic determines on the sides of

*
PAPPUS, MatJiematicae Collectiones, lib. vii. props. 37-56, 127, 128, 130-133.

f Loc. cit., lib. i. lemma xxi.

J Conicorum lib. iii. 54, 55, 56. I owe this remark to Prof. ZEUTHEN (1885).
Letter of LEIBNITZ to M. PEKIEK in the (Euvres de B. Pascal (Bossui s

edition, vol. v. p. 459).

|| Saggio di geometria derivata (Nuovi Saggi dell Accademia di Padova, vol. iv.

l838 )&amp;gt; P- 270, note.

H Geometric de position (Paris, 1803), Art. 379.
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a triangle. Of this theorem also certain particular cases were

known long before *.

In the Frcie Perspective of LAMBERT we meet with elegant

constructions for the solution of several problems of the first

and second degrees by means of the ruler, assuming however

that certain elements are given ;
but the possibility of solving

all problems of the second degree by means of the ruler and

a fixed circle was made clear by PONCELET ;
afterwards STEINER,

in a most valuable little book, showed the manner of practically

carrying this out (Arts. 238 sqq.).

The theory of pole and polar was already contained, under

various names, in the works already quoted of DESARIUES f

and DE LA HIRE J ;
it was perfected by MONGE

,
BRIAN-

CHON
||,
and PONCELET. The last-mentioned geometer derived

from it the theory of polar reciprocation, which is essentially

the same thing as the law of duality, called by him the prin-

cipe de reciprocity polaire.

The principal properties of conjugate diameters were ex

pounded by APOLLONIUS in books ii and vii of his work on

the Conies.

And lastly, the fundamental theorems concerning foci are to

be found in book iii of APOLLONIUS, in book vii of PAPPUS,

and in book viii of DE LA HIRE.

Those who desire to acquire a more extended and detailed

knowledge of the progress of Geometry from its beginnings

until the year 1830 (which is sufficient for what is contained

in this book) have only to read that classical work, the Aperqu

historique of CHASLES.

* APOLLONIUS, Conicorum lib. iii. 16-23. DESARGUES, loc. cit., p. 202. DE

LA HIRE, loc. cit., book v. props. 10, 12. NEWTON, Enumeratio linearum tertii

ordinis (Opticks, London, 1704), p. 142.

f Loc. cit., pp. 164, 1 86, 190 sqq.

J Loc. cit., i. 21-28; ii. 23-30.

Geometric descriptive (Paris, 1795). Art. 40.

II
Journal de VEcole Polytechnique, cahier xiii. (Paris, 1806).
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IN April last year, when I was in Edinburgh on the occasion

of the celebration of the tercentenary festival of the University
there, Professor SYLVESTER did me the honour of saying that in

his opinion a translation of my book on the Elements of Projec-
tive Geometry might be useful to students at the English Uni
versities as an introduction to the modern geometrical methods.
The same favourable judgement was shown to me by other

mathematicians, especially in Oxford, which place I visited in

the following month of May at the invitation of Professor SYL
VESTER. There Professor PRICE proposed to me that I should
assist in an English translation of my book, to be carried out

by Mr. C. LEUDESDORF, Fellow of Pembroke College, and to be

published by the Clarendon Press. I accepted the proposal
with pleasure, and for this reason. In my opinion the English
excel in the art of writing text-books for mathematical teach

ing ; as regards the clear exposition of theories and the

abundance of excellent examples, carefully selected, very few
books exist in other countries which can compete with those
of SALMON and many other distinguished English authors that
could be named. I felt it therefore to be a great honour that

my book should be considered by such competent judges
worthy to be introduced into their colleges.

Unless I am mistaken, the preference given to my Elements
over the many treatises on modern geometry published on the
Continent is to be attributed to the circumstance that in it I

have striven, to the best of my ability, to imitate the English
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models. My intention was not to produce a book of high

theories which should be of interest to the advanced mathe

matician, but to construct an elementary text-book of modest

dimensions, intelligible to a student whose knowledge need not

extend further than the first books of Euclid. I aimed there

fore at simplicity and clearness of exposition; and I was

careful to supply an abundance of examples of a kind suitable

to encourage the beginner, to make him seize the spirit of the

methods, and to render him capable of employing them.

My book has, I think, done some service in Italy by helping

to spread a knowledge of projective geometry ;
and I am

encouraged to believe that it has not been unproductive of

results even elsewhere, since I have had the honour of seeing

it translated into French and into German.

If the present edition be compared with the preceding ones,

it will be seen that the book has been considerably enlarged

and amended. All the improvements which are to be found

in the French and the German editions have been incor

porated ;
a new Chapter, on Foci, has been added ;

and every

Chapter has received modifications, additions, and elucidations,

due in part to myself, and in part to the translator.

In conclusion, I beg leave to express my thanks to the

eminent mathematician, the Savilian Professor of Geometry,

who advised this translation; to the Delegates of the

Clarendon Press, who undertook its publication; and to

Mr. Leudesdorf, who has executed it with scrupulous

fidelity.

L, CREMONA.

Rome, May 1885.
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ELEMENTS OF PKOJECTIVE GEOMETRY,

CHAPTER I.

DEFINITIONS.

1. BY a figure is meant any assemblage of points, straight

lines, and planes ;
the straight lines and planes are all to be

considered as extending to infinity, without regard to the

limited portions of space which are enclosed by them. By
the word triangle, for example, is to be understood a system

consisting of three points and three straight lines connecting
these points two and two

;
a tetrahedron is a system consisting

of four planes and the four points in which these planes inter

sect three and three, &c.

In order to secure uniformity of notation, we shall always denote

points by the capital letters A
,
B

, C ,
. . .

, straight lines by the small

letters a
,
b

,
c

,
. . .

, planes by the Greek letters a
, ft , y ,

... . Moreover,
AB will denote that part of the straight line joining A and B which

is comprised between the points A and B
;
Aa will denote the plane

which passes through the point A and the straight line a
;

aa the

point common to the straight line a and the plane a
; a/3 the straight

line formed by the intersection of the planes a, /3 ; ABC the plane of

the three points A ,
B

,
C ; a/3y the point common to the three planes

n
, /3 , y ;

a.BC the point common to the plane a and the straight line

BG
; A.fty the plane passing through the point A and the straight

line fty ;
a.Bc the straight line common to the plane and the plane

Be; A.0c the straight line joining the point A to the point ftc, &c.

The notation a.BC EE A
f we shall use to express that the point common

to the plane o and the btraight line EC coincides with the point A \

B
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u = ABC will express that the straight line w contains the points
A

,
B

,
C

,
&c.

2. 7.9 project from a fixed point S (the o?&-e of projection) a

figure (ABCD..., abed...) composed of points and straight

lines, is to construct the straight lines or projecting rays
8A

,
SJB

,
(?

,
1? , ... and the planes (projecting planes)

Sa
,
Sd

,
So

,
Sd

, ... . We thus obtain a new figure composed of

straight lines and planes which all pass through the centre S.

3. To cut by a fixed plane &amp;lt;r (transversal plane) a figure

(a/3y8, ... abed
...) made up of planes and straight lines, is to

construct the straight lines or traces a-a
, or/3 , cry ,

. . . and the

points or traces era
,
crb

,
&amp;lt;rc

, By this means we obtain a new

figure composed of straight lines and points lying in the

plane &amp;lt;r.

4. To project from a fixed straight line s (the axis) a figure
ABCD . . . composed of points, is to construct the planes #A, $,
sC, ... . The figure thus obtained is composed of planes which
all pass through the axis s.

5. To cut by a fixed straight line s (a transversal) a figure a/3y8 . . .

composed of planes, is to construct the points sa, #/3 , #y, . . . . In

this way a new figure is obtained, composed of points all lying
on the fixed transversal s.

6. If a figure is composed of straight lines a,u,c, ... which all

pass through a fixed point or centre S, it can be projected from

a straight line or axis s passing through S
;
the result is a figure

composed of planes sa,gb,8c, ... .

7. If a figure is composed of straight lines a
,
b

,
c

,
. . . all lying

in a fixed plane, it may be cut by a straight line (transversal)
* lying in the same plane ;

the figure which results is formed

by the points sa ,*,*,... *.

* The operations of projecting and cutting (^projection and section) are the two

fundamental ones of the Projective Geometry.



CHAPTER II.

CENTRAL PROJECTION
; FIGURES IN PERSPECTIVE.

8. CONSIDER a plane figure made up of points A,B,C, ... and
straight lines AB, AC, ..., J3C, ... . Project these from a centre
S not lying in the plane (&amp;lt;r)

of the figure, and cut the rays
SA,SB,SC y ... and the planes SAB ,SAC,..., SBC, ... by a trans
versal plane &amp;lt;/ (Fig. i). The traces on the plane a of the

projecting rays and planes will

form a second figure, a picture
of the first. When we carry-
out the two operations by which
this second figure is derived

from the first, we are said to

projectfrom a centre (or vertex) S
a given figure a- upon a plane of

projection &amp;lt;/. The new figure-
&amp;lt;/ is called the perspective image
or the central projection of the

original one. Of course, if the second figure be projected
back from the centre S upon th plane &amp;lt;r,

the first figure will
be formed again; i.e. the first figure is the projection of the
second from the centre S upon the picture-plane o-. The two

figures o- and &amp;lt;/ are said to be in perspective position, or simply
in perspective.

9. IfA
, B\ C

, ... are the traces of the rays SA, SJJ, SC ,
... on

the plane a-
, we may say that to the points A, B, C, ... of the

first figure correspond the points A
,
B

,
C

,
... of the second,

with the condition that two corresponding points always lie

on a straight line passing through S. If the point A describe
a straight line a in the plane a-, the ray SA will describe a

plane Sa
;
and therefore A will describe a straight line a\ the

intersection of the planes Sa and o- . The straight lines a and a .

B 2

Fig. i.
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in which the planes o- and a- are cut by any the same project

ing plane, may thus be called corresponding lines. It follows

from this that to the straight lines AB ,AC,...,BC ,
. . . correspond

the straight lines A B
t
A C

, ..., B C
, ... and that to all

straight lines which pass through a given point A of the plane a-

correspond straight lines which pass through the corresponding-

point A of the plane a .

10. If the point A describe a curve in the plane &amp;lt;r,
the

corresponding point A will describe another curve in the

plane &amp;lt;/,
which may be said to correspond to the first curve.

Tangents to the two curves at corresponding points are clearly

corresponding straight lines
;
and again, the two curves are cut

by corresponding straight lines in corresponding points. Two

corresponding curves are therefore of the same degree *.

11. The two figures may equally well be generated by the

simultaneous motion of a pair of corresponding straight lines

a
,
a . If a revolve about a fixed point A, then a will always

pass through the corresponding point A .

Similarly, if a envelop a curve, then a will envelop the

corresponding curve. The lines a and
,
in corresponding

positions, touch the two curves at

g
/ corresponding points ;

and again, to

fiT~
the tangents to the first curve from

/

v

f|\ /

a point A correspond the tangents to

/ ^\\ / the second from the corresponding
/ \\V\ / point A . Two corresponding curves

_
fl r/ p \c\A\B

/
&amp;lt;* _ are therefore of the same class f.

\\\ y
12. Consider two straight lines

\\\j a and a which correspond to one

\\ /* another in the figures a-
,
o- (Fig. 2).

^Jc Every ray drawn through S in

/
D their plane meets them in two

/&amp;lt; points, say A and A
,
which cor

respond to one another. If the ray

change its position and revolve round #, the points A and A

change their positions simultaneously; when the ray is about to

* The degree of a curve is the greatest number of points in which it can be cut

by any arbitrary plane. In the case of a plane curve, it is the greatest number

of points in which it can be cut by any straight line in the plane.

f The das* of a plane curve is the greatest number of tangents which can be

drawn to it from any arbitrary point in the plane.
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become parallel to
&amp;lt;z,

the point A approaches l
r

(the point
where of is cut by the straight line drawn through S parallel to

a) and the point A moves away indefinitely. In order that the

property that to one point of a corresponds one point of a

may hold universally, we say that the line a has a point at

infinity 7, with which the point A coincides when A f
coincides

with /
, viz. when the ray, turning about S, becomes parallel

to a. The straight line a has only one point at infinity, it

being assumed that we can draw through S only one ray

parallel to a *.

The point /
,
the image of the point at infinity 7, is called

the vanishing point of a .

Similarly, the straight line a has a point / at infinity,

which corresponds to the point / where a is cut by the ray
drawn through S parallel to of.

Two parallel straight lines have the same point at infinity.

All straight lines which are parallel to a given straight line

must be considered as having a common point of intersection

at infinity.

Two straight lines lying in the same plane always intersect

in a point (finite or infinitely distant).

13. If now the straight line a takes all possible positions in

the plane o-, the corresponding straight line a will always be

determined by the intersection of the planes o- and Sa. As a

moves, the ray SI traces out a plane TT parallel to o- and the

point If
describes the straight line wo-

,
which we may denote

by i
f
. This straight line i

f
is then such that to any point lying

on it corresponds a point at infinity in the plane o-, which point

belongs also to the plane TT.

We assume that the locus of these points at infinity in the

plane o- is a straight line i because it may be considered as

the intersection of the planes TT and o-. But this locus must

correspond to the straight line i
f
in the plane o-

;
thus the law

that to every straight line in the plane &amp;lt;/ corresponds a straight

line in the plane o- holds without exception.

The plane or has only one straight line at infinity, because

through the point S only one plane parallel to o- can be drawn.

The straight line i
t
the image of the straight line at infinity,

is called the vanishing line of o- . It is parallel to oV.

* This is one of the fundamental hypotheses of the Euclidian Geometry.
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In the same way, the plane or has a straight line at infinity
which corresponds to the intersection of the plane a- with the

plane in drawn through S parallel to v .

Two parallel planes have the same straight line at infinity
in common. All planes parallel to a given plane must be

considered as passing through a fixed straight line at infinity.

If a straight line is parallel to a plane, the straight line at

infinity in the plane passes through the point at infinity on
the line. If two straight lines are parallel, they meet in the

same point the straight line at infinity in their plane.
Two planes always cut one another in a straight line (finite

or infinitely distant).

A straight line and a plane (not containing the line) always
intersect in a point (finite or infinitely distant).

Three planes which do not contain the same straight line

have always a common point (finite or infinitely distant).

14. THEOREM. If two planefigures ABC .,&amp;gt;,
A B C ..., (Fig. i)

lying In different planes & and or
,
are in perspective ,

i. e. if the rays

AA
,
BB

, CC\... meet in a point 0, then the corresponding straight

lines AB and A B
,
AC and A C , ..., BC and B C ,... will cut

one another in points lying on the same straight line^ viz. the inter

section of the planes of the two figures.

It is to be shown that if M is a point lying on the

straight line a- or
,
and if a straight line

&amp;lt;z, lying in the plane &amp;lt;r,

passes through M\ then the corresponding straight line a will

also pass through M. Eut this is evidently the case, since the

two straight lines a and a are the intersections of the same

projecting plane with the two planes a- and a-
,
and conse

quently the three straight lines
&amp;lt;r&amp;lt;/, a, and a meet in a point,

viz. that common to the three planes. The straight line

(TV is the locus of the points which correspond to themselves

in the two figures.

The vanishing line i in the plane &amp;lt;/ is parallel to the straight

line (TO-
,
since i and the corresponding straight line i, which

lies entirely at an infinite distance in the plane cr, must inter

sect one another on o-o- . Similarly, the vanishing line j of

the plane a- is parallel to oV.

If each of the figures is a triangle, the theorem reads as

follows :

If two triangles ABC emd A B C
, lying respectively in the
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planes o- and o-
,
are such that the straight lines AA

,
BB

,
CC

meet in a point 8, then the three pairs of corresponding

sides, EC and B C
,
CA and C A

,
AB and A B

,
intersect in

points lying on the straight line era- .

15. Conversely, if to the points A, B, C, . .
,
and to the straight

lines AB
, AC, . . , BC, . . . of a plane figure a- correspond severally

the points A ,
B

, (7, . . and the straight lines A B
,
A C

,
. .

,
B C

,
. .

of another plane figure a- *, in such a way that the corresponding

lines AB and A B
,
AC -and A C ,..., BC and B C ,... meet in

points lying on the line of intersection (oV), of the planes a- and &amp;lt;/,

then the two figures are in perspective.

For if S be the point which is common to the three

planes AB . A B
,
AC . A C

,
BC . B C

,
the three edges

AA\ BB
,
CC of the trihedral angle formed by the same

planes will meet in S. Similarly, the three planes AB . A B
,

AD . A D
,
BD . B D meet in a point which is common to the

edges AA ,
BB

,
DD

,
and this point is again 8, since the two

straight lines AA
,
BB suffice to determine it. Therefore all

the straight lines AA
,
BB

,
CC

,
DD ... pass through the

same point 8
;
that is, the two given figures are in perspective,

and 8 is their centre of projection.

If each of the figures is a triangle, we have the theorem :

If two triangles ABC and A B C
, lying respectively in the

planes o- and o-
,
are such that the sides BC and B C

,
CA

and C A
,
AB and A B intersect one another two and two

in points lying on the straight line &amp;lt;rcr
,
then the straight lines

AA
,
BB

,
CC meet in a point 8.

16. THEOREM. If two triangles A-^B-fl^ and A2
B

2
C
2 , lying in the

same plane, are siich that the straight lines A^2 ,
B

1
B

2 , C-f!2 meet

in the same point 0, then the three points of intersection of the sides

B-iC^ and B
2
C

2 , C^A^ and C
2
A

2 ,
A

1
B

1
and A

2
B

2
lie on a straight

line. (Fig. 3.)

Through the point which is common to the straight

lines A^A2 ,
B B

2 , C^C2 ,
draw any straight line outside the plane

a-, and in this straight line take two points 8
1
and 8.

2
. Project

the triangle A
l
B

1
C

l
from S

l
and the triangle A2

B
2
C

2
from ,.

The points Al ,
A

2 , 0, S29 S lie in the same plane; therefore

&amp;lt;S\

A
l
and S

2
A

2 meet one another (in A suppose) ; similarly
S

1
B

1
and S

2
B

2 (in B suppose) and S-^C^ and S
2
C
2 (in C suppose).

* The planes a and a are to be regarded as distinct from each other.
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Fig. 3-

Thus the triangle ABC is in perspective both with A^Bf^ and
with A^B2C2

. The straight lines BC, Bf^, B2C2 intersect in

pairs and therefore meet in one and the same point A*.

Similarly CA, C^, and A
2
C
2 meet in a point BQ , and AB,

Bi4i, and A
2B.2 in a point

C . The three points A
Q ,

B
,
C
Q

lie on the straight

line which is common to

the planes o- and ABC.
The theorem is therefore

proved.

17. Conversely, If two

triangles A^B^ and A
2
B

2
C

2 ,

lying in the same plane, are

such that the sides B
l
C

l
and

B
2
C

2 , C^! and C
2
A

2 ,
A

l
B

l

and A2
B

2
cut one another in

pairs in three collinear points A
Q ,
B

Q ,
C
Q ,

then the straight lines

A^4 2 , B^Bo, C^C2 ,
which join corresponding angular points, will

pass through one and the same point 0. (Fig. 3.)

Through the straight line AQB C draw another plane,

and project, from an arbitrary centre S
19
the triangle A

1
B

1
C

1

upon this plane. IfABC be the projection, the straight lines BC,
B

{ C-i will cut one another in the point A , through which B2
C
2

will also pass ; similarly AC will pass through B and AB
through (7 . The straight lines AA

2 ,
BB

2 ,
CC

2 intersect in

pairs, without however all three lying in the same plane ;

they will therefore all meet in one point S
2 . The straight

lines S^ and AA2 lie in the same plane, since S^ and S
2
A2

intersect in A\ therefore S
1
S
2
meets the three straight lines

A^, B^.2 , C^, i.e. A^, B^2 , C^C^ all meet in one point 0,

viz. that which is common to the plane a and the straight

line
*$!&amp;lt;$.,

f-

* BC is the intersection of the planes ^BiC j
and &amp;gt;92JB2C2 ,

which do not coin

cide
;
so that the straight lines BC, B

v
Clt and J?a (72 do not all three lie in one

plane. The three planes C . BiC^ JBC . 2 C2 ,
and S^Ci.B.tC^ (or a) intersect

in the same point A .

f PONCELET, Prop ietcs projectives des figures (Paris, 1822), Art. 168. The

theorems of Arts. 11 and 12 are due to DESARGUES ((Euvres, ed. Poudra, vol. i.

P- 4 1 3)-



CHAPTEE III.

HOMOLOGY.

18. CONSIDEK a plane o- and another plane (/, in which latter

lies any given figure made up of points and straight lines.

Take two points ^ and S
2 lying outside the given planes,

and project from each of them as centre the given figure v on

to the plane &amp;lt;r. In this way two new figures (o-j
and rr

2 say)

will be formed, which lie in the plane cr, and which are the

projections of one and the same figure a upon one and the

same plane o-, but from different centres of projection. Let

two points A1
and A

2 ,
or two straight lines a

l
and a

2 ,
in the

figures 0-j
and ar

2 be said to correspond to each other when

they are the images of one and the same point A or of

one and the same straight line a of the figure o- . We have

thus two figures o-
1
and cr

2 lying in the same plane o-, and

so related that to the points A
lt v Cv ... and the lines

^/j-Z?!, A
l
C

lf ...
9 1

C
lt ..., of the one correspond the points

A.2 ,
B

2 ,
C
2 ,

. . .
,
and the lines A

2
Z?

2 ,
A.2C2 ,

. . . , 2
C

2 ,
. . .

,
of the other.

Since any two corresponding straight lines of &amp;lt;/ and o-j
intersect

in a point lying on the straight line o-(/, and again any two

corresponding straight lines of &amp;lt;/ and cr
2
intersect in a point

lying on the same straight line oV, it follows that three

corresponding straight lines of o-,
ar
l9 and &amp;lt;T

2
meet in one

and the same point, which is determined as the intersection

of the straight line of &amp;lt;/ with the straight line o-o- . That is

to say, two corresponding straight lines of the figures o-j
and

o-
2 always intersect on a fixed straight line, the trace of (/ on or-

If moreover A
l
and A

2 are a pair of corresponding points of o-
1

and &amp;lt;r

2 ,
the rays S

l
A

lt S.?A2 have a point A in common, and

therefore lie in the same plane : consequently A^A2
and S^

intersect in a point 0. Thus we arrive at the property that

every straight line, such as A^A^ which connects a pair of
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corresponding points of the figures v
l
and o-

2 , passes through
a fixed point 0, which is the intersection of S^ and &amp;lt;r.

From this we conclude that two figures cr
1
and &amp;lt;r

2 which
are the projections of one and the same figure on one and

the same plane, but from different centres of projection,

possess all the properties of figures in perspective (Art. 8)

although they lie in the same plane. To the points and the

straight lines of the first correspond, each to each, the points
and the straight lines of the second figure ;

two corresponding

points always lie on a ray passing through a fixed point ;

and two corresponding straight lines always intersect on a

fixed straight line s. Such figures are said to be homological,

or in homology ;
is termed the centre of homology, and s the

axis of homology*. They may also be said to be in plane

perspective \ being called the centre of perspective ,
and s the

axis ofperspective.

19. THEOREM. In the plane a- are given two figures o^ and a
2

which are such that to the points Al ,
B

, C^ ,
...and to the straight

lines A
l
B

l , A^, ..., B^, ... of the one correspond, each to

each, the points A 2 ,
_Z?

2 ,
C

2 ,
. . . and the straight lines A

2
B

2 ,
A

2
C

2 ,

...,B2
C
2 ,

... of the other. If the points of intersection of corre

sponding straight lines lie on a fixed straight line, then the straight

lines which join corresponding points will all pass through a fixed

point 0.

Let A
l
and A

2 , B^ and B
2 . C

l
and C

2 be three pairs

of corresponding points ; they form two triangles A 1
S

1
C

1
and

A.
2
B

2
C
2 whose corresponding sides B^ and B

2
C
2 , C^A^ and

C.)A2 ,A 1
B

1
and A.,B2

intersect in three collinear points. By
the theorem of Art. 17 the rays A^A2 , B^B2 , C^C2

will there

fore meet in the same point but two rays A^A2
and B^B^

suffice to determine this point ;
in whatever way then the

third pair of points C
l ,
C2 may be chosen, the ray C

1
C

2 will

always pass through 0.

The figures o-j ,
o-

2
are therefore in homology, being the

centre, and * the axis, of homology.

Corollary. It follows that if two figures lying either in the same

or in different planes are in perspective, and if the plane of one

of the figures be made to turn round the axis of perspective,

then corresponding straight lines A
t
A

2 , B&, &c., will always be

* PONCELET, Proprietes projectives, Arts. 297 seqq.
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concurrent
;

i. e. the two figures will remain always in perspective.

The centre of perspective will of course change its position ;
it will be

seen further on (Art. 22) that it describes a certain circle.

20. THEOREM. If to the straight lines a, b, c, ... and to the

points ab
} ac, ..._, be, ..., of a figure correspond severally the

straight lines a
,

b
,

c ,... and the points a //, a c\ . . .
,

b c
9

. . .

of another coplanar figure, so that the pairs of corresponding points

ab and a b
,
ac and a c\ be and b c

,
... are collinear with a

fixed point 0; then the corresponding straight lines a and a
,

b and b
,
c and c

,
will intersect in points which lie on a stfaight

line.

Let a and a
,
b and b

,
c and c be three pairs of corre

sponding straight lines
;
since by hypothesis the straight lines

which join the corresponding vertices of the triangles abc
t
a b c

all meet in a point 0, it follows (Art. 16) that the correspond

ing sides a and a, b and b
t
c and c intersect in three points

lying on a straight line. But two points aa
y bb\ suffice to

determine this straight line
;

it remains therefore the same if

instead of c and c any other two corresponding rays are

considered. Two corresponding straight lines therefore always
intersect on a fixed straight line, which we may call s

;
thus

the given figures are in homology, being the centre, and s

the axis, of homology.
21. Consider two homological figures o^ and o-

2 lying in

the plane &amp;lt;r

; let be their centre, s their axis of homology.

Through the point and outside the plane a- draw any

straight line, and on this take a point S
li from which as

centre project the figure &amp;lt;7

T upon a new plane v drawn in any

way through s. In this manner we construct in the plane &amp;lt;/ a

figure A B C ... which is in perspective with the given one

o-j = A
l 1

C
L .... If we consider two points A and A

2 of the

figures o- and o-
2 ,

which are derived from one and the same

point A^ of o-
1 ,

as corresponding to each other, then to every

point or straight line of o- corresponds a single point or straight

line of o-
2 ,

and vice versa
;
and every pair of corresponding

straight lines, such as A B r and A
2
jB

2) intersect on a fixed

straight line oV or s. Consequently (Art. 15) the figures o-

and 0-
2 are in perspective, and the rays A A.

2 ,
B B%, ... all

pass through a fixed point #
2 . Moreover every ray A A.2

meets the straight line OS1} since the points A\ A.2 lie on the
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sides S^ ,
OJ

L
of the triangle OA& . The rays A A

2,B B,
do not all lie in the same plane, because the points A.

2 ,
J9

2 , ...

lie arbitrarily in the plane a- the point S
2 therefore lies on

the straight line OS
1

.

From this we conclude that two homological figures may
be regarded, in an infinite number of ways, as the projections,
from two distinct points, of one and the same figure ;

this

figure lying in a plane passing through the axis of homology,
and the two points being collinear with the centre of homology

22. Consider two figures in perspective, lying in the planes

0-,
cr respectively (or two figures in plane perspective in the

same plane o-) ;
let (Fig. 4) be the centre and s the axis of

perspective, and let j and
i

r
be the vanishing lines of

the two figures. If / and

I are points lying on these

vanishing lines, the points
J and / which correspond

J s to each of them respec-

Fig. 4. tively in the other figure

will be at infinity on the

rays OJ, 01 respectively. Further, the two corresponding

straight lines IJ. 1 J must meet in some point on #; there are

consequently an infinite number of parallelograms having one

vertex at 0, the opposite one on #, and the other two vertices

on.? and i
f

respectively.

Now, supposing the two figures to keep their positions in

their planes unaltered, let the plane a be made to turn round

(TO- or s. Every pair of corresponding straight lines must

always meet on s
; consequently the two figures will always

remain in perspective (Arts. 15, 19), and the point will

describe some curve in space.

In order to determine this curve, consider any one of the

above-mentioned parallelograms OJSI . It remains always
a parallelogram, and the length of 1 S is invariable

;
therefore

also OJ is of constant length. The locus of the centre of

perspective is therefore a circle whose centre lies on the

vanishing line^ and whose plane is perpendicular to this line

and therefore to the axis of perspective * *.

*
MciBius, Sarycentrische Calcul (Leipzig, 1827), 230 (note, p. 326).
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23. (1) Given the centre and the axis s of homology, and two

corresponding points A and A /
(collinear with 0) ;

to construct the

figure homological with a given figure.
Take a second point B of the given figure (Fig. 5). To obtain the

corresponding point.5
7

,
we notice that the ray BB must pass through

and that the straight lines AB, A B which correspond to one
another must intersect on s; thus B will be the .point where OB
meets the straight line joining A to the intersection of AB with s*.

In the same way we can construct any number of pairs of correspond
ing points; in order to draw the

straight line r which corresponds 3 j//\ j

to a given straight line r, we have

only to find the point B which

corresponds to a point B lying on

the line r, and to join the points
B and rs.

In order to find the point I

(the vanishing point) which corre

sponds to the infinitely distant

/\/ I

Fig- 5-

point / on a given straight line (a ray 07, for example, drawn from

0), we repeat the construction just given for the point B ;
i.e. we join

another point A of the first figure to the point at infinity / on 01

(that is, we draw AI parallel to 01), and then join A to the point
where AI meets s, and produce the joining line to cut 01 in I .

Then I is the required point.

All points analogous to /
(i.

e. those which correspond to the points
at infinity in the given figure) fall on a

straight line i
, parallel to s

;
if is the

vanishing line of the second figure. If, in

the preceding construction, we interchange
the points A and A t, we shall obtain a

point J (a vanishing point) lying on the

vanishing line j of the first figure.

(2) Suppose that instead of two corre

sponding points A, A there are given (Fig. 6)
two corresponding straight lines a

,
a .

These will of course intersect on s
;
and Flg&amp;gt;

6 *

every ray passing through will cut them in two corresponding
* This construction shows that if B lies upon s, then B will coincide with B

;

i. e. that every point of s is its own correspondent.
f Otherwise : Draw through A any straight line J A, then through A and

the intersection of J A with s draw a straight line JA, and through O draw OJ
parallel to A J . Then the intersection of OJ and JA is the vanishing point J,
and a straight linej drawn through /parallel to s is the vanishing line of the
first figure.
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points A, A . In order to obtain the straight line b which corre

sponds to any straight line 6 in the first figure, we have only to join

the point bs to the point of intersection of of with the ray passing

through and db *.

(3) The data of the problem may also be the centre 0, the axis s, and

the vanishing line j of the first figure (Fig. 7).

x
t

In this case, if a straight line a of the first

figure cuts j in J and s in P, the point

-7 J corresponding to J will be collinear with

/ J and and at an infinite distance from 0.

And as the straight line a corresponding to

^x^ a must pass both through J and through P,

it is the parallel drawn through P to OJ.

To find the point A corresponding to a

given point A, we must draw the straight

line a which corresponds to a straight line a drawn arbitrarily

through A ; the intersection of of with OA is the required point A
f

.

(4) Assuming a knowledge of the constructions just given, let-

again be the centre, s the axis, of homology, and j the vanishing

line of the first figure.

In the first figure let a circle C be given (Figs. 8, 9, 10); to this

circle will correspond in the second figure a curve C which we can

construct by determining, according to the method above, the points

and straight lines which correspond to the points and tangents of C.

Two corresponding points will always be collinear with 0, and two

corresponding chords
(i.e. straight lines MN, M N

,
where M and M

,

j\
J
andN

t
are two pairs of corresponding points) will always intersect on

s; as a particular case two corresponding tangents m and in
(i.e.

tan

gents at corresponding points M and M
)
will meet in a point lying on s.

It follows clearly from this that the curve C possesses, in common

with the circle, the two following properties :

(1) Every straight line in its plane either cuts it in two points, or

is a tangent to it, or has no point in common with it.

(2) Through any point in the plane can be drawn either two

tangents to the curve, or only one (if the point is on the curve),

or none.

Since two homologicalfigures can be considered as arising from tJu&amp;gt;

superposition of two figures in perspective lying in different planes

(Ait. 22), the curve C is simply the plane section of an oblique cone

on a circular baxe ; i.e. the cone which is formed by the straight lines

which run from any point in space, to all points of a circle.

* It follows from this that if a passes through O, then a will coincide with a
;

i. c. every straight line passing through corresponds to itself.
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For this reason the curve C is called a conic section or simply a

conic
;
thus the curve which is homological ivith a circle is a conic.

The points on the straight line j correspond to the points at

infinity in the second figure. Now the circle C may cut j in two

points Jv J2 (Fig. 8), or it may touch j in a single point J (Fig. 9),
or it may have no point in common with j (Fig. 10).

Fig. 9.

In the first case (Fig. 8) the curve C will have two points //, //, at

an infinite distance, situated in the direction of the straight lines OJ]}

OJ
2

. To the two straight lines which touch the circle in J
l
and 7

2

will correspond two straight lines (parallel respectively to OJ
l
and
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OJ2)
which must be considered as tangents to the curve C at its

points at infinity //, &amp;lt;//.
These two tangents, whose points of

contact lie at infinity, are called asymptotes of the curve
C&quot;;

the

curve itself is called a hyperbola.

In the second case (Fig. 9) the curve C has a single point J at

infinity ;
this must be regarded as the point of contact of the straight

line at infinity j ,
which is the tangent to C corresponding to the

Fig. 10

tangent j at the point ./ of the circle. This curve C is called a

parabola.

Fig. 1 1 .

In the third case (Fig. 10) the curve has no point at infinity; it is

called an ellipse.
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In the same way it may be shown that if in the first figure a conic

C is given, the corresponding curve C&quot; in the second figure will be a

conic also.

(5). The centre of homology is a point which corresponds to itself,

and every ray which passes through it corresponds to itself. If then
a curve C pass through 0, the corresponding curve C will also pass

through 0, and the two curves will have a common tangent at this

point. Fig. 1 1 shows the case where one of the curves is taken to be
a circle, and the axis of homology s and the point A corresponding to

the point A of the circle are supposed to be given.

Similarly, every point on the axis of homology corresponds to

itself. If then a curve belonging to the first figure touch 6 at a

certain point, the corresponding curve in the second figure will touch
s at the same point. In Fig. 12 is shown a circle which is to be

transformed homologically by means of its tangents ; moreover it is

Fig. 12.

supposed that the axis of homology touches the circle, that the centre

of homology is any given point, and that the straight line a of the

second figure is given which corresponds to the tangent a of the

circle.

(6). Two particular cases may be noticed :

(i) The axis of homology s may lie altogether at infinity ;
then two

corresponding straight lines are always parallel, or, what amounts to

the same thing, two corresponding angles are always equal. In this

C
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case the two figures are said to be similar and similarly placed, or

homothetic*, and the point is called the centre of similitude.

Let Mly MI and 3/
2 ,
M be two pairs of corresponding points

of two homothetic figures, so that M
1
M

l

f

, M^MJ meet in 0, while

M
l
M

2 , M{MJ are parallel. By similar triangles

OM, : OMJ= OM, : 0J//= M,M2
: 1//J//,

so that the ratio OM : OM/
is constant for all pairs of corresponding

points M and M . This constant ratio is called the ratio of similitude

of the two figures.

The tangents at two corresponding points M, Mf
must meet on the

axis of homology s, i.e. they are parallel to one another. If then the

tangent at M pass through 0, it must coincide with the tangent at

M . It follows that if the two figures are such that common tangents
can be drawn to them, every common tangent passes through a centre

of similitude.

Take two points C, C
f
collinear with and such that

00 OM
OC~

=
~OM

~
similitude.

Then if CM, G fM f
be joined, they will evidently be parallel, and

CM\ CM = ratio of similitude. Therefore if M lie on a circle, centre

C and radius p, M will lie on another circle whose centre is Cf and

whose radius // is such that p : p = ratio of similitude. In two homo
thetic figures then to a circle always corresponds a circle. Further,
if CC be again divided at

,
so that

O C : O C = OC:OC =p:p = ratio of similitude,

it is clear that Of
will be a second centre of similitude for the two

circles. It can be proved in a similar manner that any two central

conies (see Chap. XXI) which are homothetic, and for which a point
is the centre of similitude, have a second centre of similitude

]

and that 0, Of
are collinear with the centres C, C of the two conies,

and divide the segment CC internally and externally in the ratio of

similitude. If the conies have real common tangents, and will

be the points of intersection of these taken in pairs the two external

tangents together, and the two internal tangents together.

(2) The point 0, on the other hand, may lie at an infinite distance;

then the straight lines which join pairs of corresponding points are

parallel to a fixed direction. In this case the figures have been termed

homological by affinity t, the straight line 8 being termed the axis of

* Homothetic figures may be regarded as sections of a pyramid or a cone made

by parallel planes ; s, the line of intersection of the two planes, lies at an infinite

distance. This is the case in Art. 8 if a and a are parallel planes.

f EULEB, Introductio ... ii. cap. 18; MOBIUS, Baryc. Calcul, 144 et seqq.
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affinity *. To a point at infinity corresponds in this case a point at

infinity, and the straight line at infinity corresponds to itself. It
follows from tins that to an ellipse corresponds an ellipse, to a hyper
bola a hyperbola, to a parabola a parabola, to a parallelogram a

parallelogram.

* If two figures are so related, they may be regarded as plane sections of a
pnsm or of a cylinder. This is the case in Art. 8 if the centre 8 of projection is

infinitely distant. The projection is then called parallel projection. In the
particular case where the parallels SA , SB, SC, ... are perpendicular to the pL
of projection it is called orthogonal projection.

.ane

C 2



CHAPTER IV.

HOMOLOGICAL FIGURES IN SPACE.

24. SUPPOSE a figure to be given which is made up of points,

planes, and straight lines lying in any manner in space ;
the relief-

perspective
* of this is constructed in the following manner. A point

in space is taken as centre of perspective or liomo ogy; a plane of

liomology TT is taken, every point of which is to be its own image ;

and in addition to these is taken a point A which is to be the image

of a point A of the given figure, so that AA passes through 0. Let

now B be any other point ;
in order to obtain its image B ,

the plane

OAB is drawn, and we then proceed in this plane as if we had to

construct two hornological figures, taking as the centre and the

intersection of the planes OAB and TT as the axis of homology, and A, A

as two corresponding points. The point B will be the intersection of

OB with the straight line passing through A and the point where the

straight line AB cuts the plane TT (Art. 23, Fig. 4). Let C be a third

point ;
its image C&quot; will be the point of intersection of OC with

A D or with B E (in TT),
where D and E are the points in which

the plane TT is met by A C, BC respectively.

This method will yield, for every point of the given figure, the

corresponding point of the image, and two corresponding points will

always lie on a straight line passing through 0. Every plane a-

passing through cuts the two solid figures (the given one and its

image) in two homological figures, for which is the centre, and the

straight line an the axis, of homology. It follows from this that to

every straight line of the given figure corresponds a straight line in

the image, and that two corresponding straight lines lie always in a

plane passing through and meet each other in a point lyii;g on the

plane IT.

Further : to every plane a, belonging to the given figure, and not

passing through 0, will correspond a plane a in the image. For to the

straight lines a ,
b

,
c

,
. . .of the plane a correspond severally the straight

* This problem may present itself in the construction of bas-reliefs and of

theatre decorations (PoNCELET, Prop. proj. 584; POCDRA, Perspective-relitf,

Paris, 1860).
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lines a
,
b

,
c

,
. . .

;
and to the points ab, ac, . . .

, be, . . . the points a b
f

,
a c

,

..., 6V,... . In other words, the straight lines a
,
&

,
c

,
... are such

that they intersect in pairs, but do not all meet in the same point ;

they lie therefore in the same plane of *. Two corresponding planes

a, a intersect on the plane TT; for all the points and all the straight

lines of this last plane correspond to themselves, and therefore the

straight line O TT coincides with the straight line OTT.

The two planes a, a evidently contain two figures in perspective

(like the planes &amp;lt;r,

&amp;lt;/ of Arts. 12 and 14).

25. In every plane &amp;lt;r passing through lies a vanishing line i
,

which is the image of the point at infinity in the same plane. The

vanishing lines of the planes cr, ,
cr
2 have a common point, which is the

image of the point at infinity on the line o-jO^. The vanishing lines

of all the planes o- are therefore such as to cut each other in pairs ;

and as they do not pass all through the same point (since the planes

through do not pass all through the same straight line), they must

lie in one and the same plane .

This plane &amp;lt;//,
which may be called the vanishing plane, is parallel

to the plane TT, since all the vanishing lines of the planes o- are

parallel to the same plane TT. The vanishing plane &amp;lt;fS
is thus the

locus of the straight lines which correspond to the straight lines at

infinity in all the planes of space, and is consequently also the locus

of the points which correspond to the points at infinity in all the

straight lines of space : for the line at infinity in any plane a is the

same thing as the line at infinity in the plane through parallel to

a
;
so also the point at infinity on any straight line a coincides with

the point at infinity on the straight line drawn through parallel

to a.

26. The infinitely distant points of all space are then such that

their images are the points of one and the same plane &amp;lt; (the vanishing

plane). It is therefore natural to consider all the infinitely distant

points in space as lying in one and the same plane &amp;lt; (the plane at

infinity) of which the plane is the image t.

The idea of the plane at infinity being granted, the point at infinity

on any straight line a is simply the point a&amp;lt;,
and the straight line at

infinity in any plane a is the straight line
a(f&amp;gt;.

Two straight lines are

parallel if they intersect in a point of the plane &amp;lt;

; two planes are

parallel if their line of intersection lies in the plane &amp;lt;,
&c.

* Since c cuts both a and 6 without passing through the point a b
,
therefore

c has two points in common with the plane a b , and consequently lies entirely in

the plane a b . And similarly for the other straight lines.

t PONCELET, Prop. proj. 580.



CHAPTER V.

GEOMETRIC FORMS.

27. A range or row of points is a figure A^ B, C, ... composed
of points lying on a straight line (which is called the base of

the range) ;
such is, for example, the figure resulting from the

operations of Art. 5 or Art. 7.

An axial pencil is a figure a, /3, y, ... composed of planes all

passing through the same straight line (the axis of the pencil) ;

such is the figure resulting from the operations of Art. 4 or

Art. G.

A. flat pencil is a figure a
,
b

,
c

,
... composed of straight lines

lying all in the same plane and radiating from a given point

(the centre or vertex of the pencil) ;
such would be the figure

obtained by applying the operation of Art. 2 to a range, or

that of Art. 3 to an axial pencil.

A n/ieaf (sheaf ofplanes, sheaf of lines) is a figure made up of

planes or straight lines, all of which pass through a given

point (the centre of the sheaf) ;
like that which results from

the operation of Art. 2.

A plane figure (plane of points, plane of lines) is a figure which

consists of points or straight lines all of which lie in the same

plane ;
such is the figure resulting from the operation of

Art. 3.

28. The first three figures can be derived one from the other

by a projection or a section*.

From a range A, B
, C, ... is derived an axial pencil

.v(^ , B, C, ...) by projecting the range from an axis s (Art. 4) ;

and a flat pencil 0(A , B, C,...) by projecting it from a centre

* The series of planes sA , sB ,
s C , .. . ;

of rays OA ,
OB

,
OC , . . . ; of points *o,

*/3, *y, ... ;
and of straight lines oa, a&, ay, ... will be denoted by s (A ,

B
, C, ...),

O(A ,
B

,
C

, ... ,), ( , , 7, ... ,), and *
( &amp;gt;7, ) respectively. To denote the

seiies of points A t B, C, ... the symbols A ,
B

,
6

, ... and ABC ... will be used

indiffei ently.
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(Art. 2). From an axial pencil a , (3 , y , . . . is derived a range
$ (a , (3 , y , ...) by cutting the pencil by a transversal line 6-

(Art. 5) ;
and a flat pencil a- (a, /3 , y , ...) by cutting it by a

transversal plane a- (Art. 3). From a flat pencil ,
#

, 0, ... is

.derived a range &amp;lt;r

(,&,&amp;lt;?,...) by cutting it by a transversal

plane o- (Art. 3) ;
and an axial pencil (a, b

, &amp;lt;?,...) by pro

jecting it from a centre (Art. 2).

29. In a similar manner the last two figures of Art. 27 can

be derived one from the other by help of one of the operations

of Art. 2 or Art. 3
;
in fact, if we project from a centre a

plane of points or lines we obtain a sheaf of lines or planes ;

and reciprocally, if we cut a sheaf of lines or planes by a

transversal plane we obtain a plane of points or lines. Two

plane figures in perspective (Art. 12) are two sections of the

same sheaf.

30. The elements or constituents of the range are the points ;

those of the axial pencil, the planes ;
those of the flat pencil,

the straight lines or rays.

In the plane figure either the points or the straight lines

may be regarded as the elements. If the points are considered

as the elements, the straight lines of the figure are so many
ranges ; if, on the other hand, the straight lines or rays are

considered as the elements, the points of the figure are the

centres of so many flat pencils.

The plane of points (i.
e. the plane figure in which the ele

ments are points) contains therefore an infinite number of

ranges *, and the plane of lines
(i.e.

the plane figure in which

the elements are lines t) contains an infinite number of flat

pencils.

In the sheaf either the planes, or the straight lines or rays,

may be regarded as the elements. If we take the planes as

elements, the rays of the sheaf are the axes of so many
axial pencils ; if, on the other hand, the rays are considered

as the elements, the planes of the sheaf are so many flat

pencils.

The sheaf contains therefore an infinite number of axial

* One of these ranges has all its points at an infinite distance ;
each of the

others has only one point at infinity.

&quot;t&quot;

The straight line at infinity belongs to an infinite number of flat pencil?, each

of which has its centre at infinity, and consequently all its rays parallel.
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pencils or an infinite number of flat pencils, according as its

planes or its straight lines are regarded as its elements.

31. Space may also be considered as a geometrical figure,

whose elements are either points or planes.

Taking the points as elements, the straight lines of space,

are so many ranges, and the planes of space so many planes of

points. If, on the other hand, the planes are considered as

elements, the straight lines of space are the axes of so many
axial pencils, and points of space are the centres of so many
sheaves of planes.

Space contains therefore an infinite number of planes of

points* or an infinite number of sheaves of planes f, according

as we take the point or the plane as the element in order to

construct it.

32. The first three figures, viz. the range, the axial pencil,

and the flat pencil, which possess the property that each can

be derived from the other by help of one of the operations of

Arts. 2, 3,..., are included together under one name, and are

termed the one-dimensional geometric prime-forms.

The fourth and fifth figures, viz. the sheaf of planes or lines

and the plane of points or lines, which may in like manner be

derived one from the other by means of one of the operations

of Arts. 2, 3,..., and which moreover possess the property of

including in themselves an infinite number of one-dimensional

prime-forms, are likewise classed together under one title, as

the two-dimensional geometric prime-forms.

Lastly, space, which includes in itself an infinite number of

two-dimensional prime-forms, is considered as constituting the

three-dimensional geometric prime-form.

There are accordingly six geometric prime-forms ;
three of

one dimension, two of two dimensions, and one of three

dimensions %.

]\ ote. With reference to the use of the word dimension in the

preceding Article, it is clear, from what has been said in Art. 28,

that we are justified in considering the range, the flat pencil, and

the axial pencil, as of the same dimensions, since to every point in

* One of them lies entirely at infinity.

f Among these, there are an infinite number which have their centre at an

infinite distance, and whose rays are consequently parallel.

J v. STAUDT, Geometric der Lage (Niirnberg, 1847), Arts - 2
^&amp;gt;

a8 -



32] GEOMETRIC FORMS. 25

the first corresponds one ray in the second and one plane in the

third. The number of elements in each of these forms is infinite,

but it is the same in all three.

Similarly we conclude from Art. 29 that we are justified in con

sidering the plane figure as of the same dimensions with the sheaf.

But the plane of points (lines) contains (Art. 30) an infinite number
of ranges (flat pencils) ;

and each of these ranges (flat pencils) itself

contains an infinite number of points (rays). Thus the plane figure

contains a number of points (lines) which is an infinity of the second

order compared with the infinity of points in a range, or of rays in a

flat pencil ;
and must therefore be considered as of two dimensions if

the range and flat pencil are taken to be of one dimension.

So too the sheaf of planes (or lines) contains (Art. 30) an infinite

number of axial pencils (or of flat pencils), and each of these itself

contains an infinite number of planes (or of rays). Therefore also

the sheaf of planes or lines must be of double the dimensions of the

axial pencil or the flat pencil.

Again, space, considered as made up of points, contains an infinite

number of planes of points, and considered as made up of planes, it

contains an infinite number of sheaves of planes. Space thus contains

an infinite number of forms of two dimensions, which latter, again,
contain each an infinite number of forms of one dimension. Space
must accordingly be regarded as of three dimensions.

We may put the matter thus :

Forms of one dimension are those which contain a simple infinity

(oo) of elements;

Forms of two dimensions are those which contain a double infinity

(co
2

)
of elements

;

Forms of three dimensions are those which contain a triple infinity

(oo
3

)
of elements.

ASt/lAjU



CHAPTER VI.

THE PRINCIPLE OF DUALITY*.

33. GEOMETRY (speaking generally) studies the generation
and the properties of figures lying (

i
)
in space of three dimen

sions, (2) in a plane, (3) in a sheaf. In each case, any figure
considered is simply an assemblage of elements

; or, what
amounts to the same thing, it is the aggregate of the elements

with which a moving or variable element coincides in its

successive positions. The moving element which generates the

figures may be, in the first case, the point or the plane ;
in the

second case the point or the straight line
;
in the third case

the plane or the straight line. There are therefore always
two correlative or reciprocal methods by which figures may be

generated and their properties deduced, and it is in this

that geometric Duality consists. By this duality is meant the

co-existence of figures (and consequently of their properties

also) in pairs ;
two such co-existing (correlative or reciprocal]

figures having the same genesis and only differing from one

another in the nature of the generating element.

In the Geometry of space the range and the axial pencil, the

plane of points and the sheaf of planes, the plane of lines and

the sheaf of lines, are correlative forms. The flat pencil is a

form which is correlative to itself.

In the Geometry of the plane the range and the flat pencil
are correlative forms.

In the Geometry of the sheaf the axial pencil and the flat

pencil are correlative forms.

The Geometry of the plane and the Geometry of the sheaf,

considered in three-dimensional space, are correlative to each

other.

34. The following are examples of correlative propositions

* v. STAUDT, Geom. der Laye, Art. 66.
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in the Geometry of space. Two correlative propositions are

deduced one from the other by interchanging the elements

point &nd plane.

1 . Two points A ,
B determine

a straight line (viz. the straight

line AB which passes through the

given points) which contains an

infinite number of other points.

2. A straight line a and a point
B (not lying on the line) deter

mine a plane, viz. the plane aB
which connects the line with the

point.

3. Three points A,B,C which

are not collinear determine a

plane, viz. the plane ABC which

passes through the three points.

4. Two straight lines which

cut one another lie in the same

plane.

5. Given four points A ,
B

, (?,

D
;

if the straight lines AB
,
CD

meet, the four points will lie in

a plane, and consequently the

straight lines BC and AD, CA
and BD will also meet two and

two.

6. Given any number of straight

lines
;

if each meets all the others,

while the lines do not all pass

through a point, then they must
lie all in the same plane (and
constitute a plane of lines)*.

1. Two planes a
, /3 determine a

straight line (viz. the straight line

a/3, the intersection of the given

planes), through which pass an

infinite number of other planes.

2. A straight line a and a plane

(not passing through the line)

determine a point, viz. the point

a/3 where the line cuts the plane.

3. Three planes a
, /3 , y which

do not pass through the same line

determine a point, viz. the point

a/3y where the three planes meet

each other.

4. Two straight lines which lie

in the same plane intersect in a

point.

5. Given four planes a
, /3 , y ,

fi
;

if the straight lines a/3 , yd meet,

the four planes will meet in

a point, and consequently the

straight lines /3y and ad
, ya and

|38, will also meet two and two.

6. Given any number of straight

lines
;

if each meets all the others,

while the lines do not all lie in

the same plane, then they must

pass all through the same point

(and constitute a sheaf of lines) t.

7. The following problem admits of two correlative solutions :

Given a plane a and a point A in it, to draw through A a straight
line lying in the plane a which shall cut a given straight line r which

does not lie in a and does not pass through A.

* See note to Art. 20.

t For let a, b, c, ... be the straight lines
;
as ab, ac, be are three planes distinct

from each other, the common point must be the intersection of the straight lines
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Join A to the point ra. Construct the line of inter

section of the plane a with the

plane rA.

8. Problem. Through a given 8. Problem. In a given plane

point A to draw a straight line a, to draw a straight line to cut

to cut each of two given straight each of two given straight lines b

lines b and c (which do not lie in and c (which do not meet and do

the same plane and do not pass not lie in the plane a),

through A).

Solution. Construct the line Solution. Join the point ab to

of intersection of the planes Ab, the point ac.

Ac.

35. In the Geometry of Space, the figure correlative to a triangle

(system of three points) is a trihedral angle (system of three planes) ;

the vertex, the faces, and the edges of the latter are correlative to

the plane, the vertices, and the sides respectively of the triangle ;

thus the theorem correlative to that of Arts. 15 and 17 will be the

following :

If two trihedral angles a y ,
a
n

$&quot; y&quot;
are such that the edges /

and
fr&quot;y&quot;, y of and

y&quot;a&quot;,
a /3 and a&quot;j8&quot; lie in three planes a

, /3 , y

which
2&amp;gt;ass through the same straight line, then the straight lines

aV, |8 /3&quot;, // will lie in the same plane.

The proof is the same as that of Arts. 15 and 17, if the elements

point and plane are interchanged. If, for example, the two trihedral

angles have different vertices S
,

S&quot; (Art. 15), then the points where

the pairs of edges intersect are the vertices of a triangle whose sides

are aV, j8 /3&quot;, // ;
these latter straight lines lie therefore in the

same plane (that of the triangle).

So also the proof for the case where the two trihedral angles have

the same vertex S will be correlative to that for the analogous case of

two triangles A B C and A&quot;B&quot;C&quot; which lie in the same plane (Art.

17). The theorem may also be established by projedting from a point

S the figure corresponding to the theorem of Art. 1 6.

The proof of the theorem correlative to that of Arts. 14 and 16 is

left as an exercise for the student. It may be enunciated as follows :

If two trihedral angles a fi y ,
a!

f

$&quot;y&quot;
are such that the straight lines

a
a&quot;,

8
fi&quot;, y y&quot;

lie in the same plane, then the pairs of edges $ y and

ft&quot;y&quot;, y a and
y&quot;a&quot;,

d$ and a&quot;/3&quot; determine three planes which pass

all through the same straight line.

36. In the Geometry of the plane, two correlative propo

sitions are deduced one from the other by interchanging the

words point and line, as in the following examples:
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1. Two points A, B determine

a straight line, viz. the line AB.

2. Four points A,B,C,D (Fig.

13), no three of which are col-

linear, form a figure called a

complete quadrangle*. The four

Fig. 13-

points are called the vertices, and

the six straight lines joining them

in pairs are called the sides of

the quadrangle.

Two sides which do not meet

in a vertex are termed opposite ;

there are accordingly three pairs

of opposite sides, BC and AD,
CA and BD, AB and CD. The

1. Two straight lines a, b de

termine a point, viz. the point

db.

2. Four straight lines a,b ,c,d

(Fig. 14), no three of which are

concurrent, form a figure called

complete quadrilateral*. The four

Fig. 14.

straight lines are called the sides

of the quadrilateral, and the six

points in which the sides cut one

another two and two are called

the vertices.

Two vertices which do not lie

on the same side are termed

opposite ;
there are accordingly

three pairs of opposite vertices, be

and ad, ca and bd, ab and cd.

Fig. 1 6.

points E, F&amp;gt;
G in which the oppo- The straight lines e

, /, g which

site sides intersect in pairs are join pairs of opposite vertices are

* The complete quadrangle has also been called a tetrastigm, and the complete

quadrilateral a tetragram. TOWNSEND, Modern Geometry, ch. vli.
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termed the diagonal prints ;
and

the triangle EFG is termed the

diagonal triangle of the complete

quadrangle. The complete quad
-

rangle includes three simple

quadrangles, viz. ACBD, ABCD,
and ABDC (Fig. 15).

3. And so, in general :

A complete polygon (complete

n-gon, or n-jpoint*) is a system
of n points or vertices, with the

n(n i) . ,, ,. .,
straight lines or sides

called the diagonals ; and the

triangle efy is termed the diagonal

triangle of the complete quadri

lateral. The complete quadri
lateral includes three simple

quadrilaterals, viz. acbd, adcb, and

acbd (Fig. 16).

A complete multilateral (or

n-side^) is a system of n straight
M fM J \

lines or sides, with the

points or vertices in which they

which join them two and two. intersect one another two and

two.

4. The theorems of Arts. 16 and 17 are correlative each to the

other.

5. Theorem. If two complete Theorem. If two complete

quadrangles A BCD, A B C D quadrilaterals abed, a b c d are

are such that five pairs of sides such that five pairs of vertices

AB and A B
t
BC and B C

,
CA

and C A
,
AD and A D

,
ED and

B D cut one another in five

points lying on a straight line s,

then the remaining pair CD and

C D will also intersect one an

other on s (Fig. 1 7).

ab and a b
,

be and 6V, ca and

c a
,
ad and a df, bd and I d

lie upon five straight lines which

meet in a point S, then the re

maining pair cd and c d will also

lie on a straight line through 8

(Fig. 1
8).

Fig. 17. Fig. i 8.

Since the triangles ABC, Since the triangles (tri-

A B C are by hypothesis in laterals) abc, a b c are by

* Or polystigm ; TOWNSEND, loc. cit. )
Or polygram.
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perspective (Arts. 17, 18),

the straight lines AA
,
BB

,

CCf
will meet in one point

S. So too the triangles ABD,
A B D are in perspective ;

there

fore DD also will pass through

S, the point common to AA
and BB f

. It follows that the

triangles BCD, B C D are also in

perspective : therefore CD and

C D meet in a point on the

straight line s, which is deter

mined by the point of intersec

tion of BC and B G and by that

of D a,n&B D *.

! J 37. In the Geometry of space the

A complete n-gon (in a plane).

hypothesis in perspective (Art.

18), the points aa
,
W

,
cc

will lie on one straight line s.

So too the triangles abd, a b d are

in perspective ; therefore the point
ddf

lies on the straight line s

which passes through the points
aa

,
W. It follows that the

triangles (trilateral) bed, b cd
are also in perspective ;

therefore

cd and cd lie on a straight line

through the point S
t
which is

determined by the straight lines

(be) (b c
f

)
and (bd) (b d

f

)
*.

following are correlative :

A complete n-flat (in a sheaf) ;

i.e. a figure made up of n planes

(or faces) which all pass through
the same point (or vertex), toge

ther with the edges in

A complete multilateral of n

sides, or n-side (in a plane).

which these planes intersect two

and two.

A complete n-edye (in a sheaf);

i.e. a figure made up of n straight

lines radiating from a common

point (or vertex), together with

the planes (or facts)

which pass through these straight

lines taken in pairs.

Thus the following theorems are correlative, in the Geometry of

space, to the two theorems above (Art. 36, No. 5), which latter

are themselves correlative to each other in the Geometry of the

plane.

If two complete four-flats in a

sheaf (be their vertices coincident

or not) a/37S, &amp;lt;/ /$ are such

that five pairs of corresponding

If two complete four-edges in a

sheaf (be their vertices coincident

or not) abed, a b c d are such that

five pairs of corresponding faces

* These two theorems hold good equally when the two quadrangles or quadri
laterals lie in different planes j

in fact, the proofs are the same as the above, word
for word.
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edges lie in five planes which cut one another in five straight

pass all through the same straight lines which lie all in one plane a-,

line s, then the sixth pair of corre- then the line of intersection of

spending edges will lie also in a the sixth pair of corresponding

plane passing through s. faces will lie also in the plane or.

The proofs of these theorems are left as an exercise to the student.

They only differ from those of the theorems No. 5, Art. 36 in the

substitution for each other of the elements point and plane ;
and just

as theorems 5, Art, 36 follow from those of Arts. 15 and 16, so the

theorems enunciated above follow from those of Art. 35. When

the two four-flats have the same vertex 0, the theorem on the left-

hand side may also be established by projecting from the point

(Art. 2) the figure corresponding to the right-hand theorem of

No. 5, Art. 36. And in this case we may by the same method

deduce the theorem on the right-hand side above from that on the

left-hand of No. 5, Art. 36.

38. In the Geometry of the sheaf, two correlative theorems are

derived one from the other by interchanging the elements plane and

straight line. Just as the Geometry of the sheaf is correlative to

that of the plane, with regard to three-dimensional space, so one

of the Geometries is derived from the other by the interchange of

the elements point and plane. The Geometry of the sheaf may also

be derived from that of the plane by the operation of projection from

a centre (Art. 2).

From the Geometry of the sheaf may be derived that of spherical

figures, by cutting the sheaf by a spheie passing through the centre

of the sheaf.



CHAPTER VII.

PROJECTIVE GEOMETRIC FORMS.

39. BY means of projection from a centre we obtain from

a range a flat pencil, from a flat pencil an axial pencil, from a

plane of points or lines a sheaf of lines or planes. Con

versely, by the operation of section by a transversal plane
we obtain from a flat pencil a range, from an axial pencil a

flat pencil, from a sheaf a plane figure. The two operations,

projection from a point and section by a transversal plane,

may accordingly be regarded as complementary to each other
;

and we may say that if one geometric form has been derived

from another by means of one of these operations, we can con

versely, by means of the complementary operation, derive the

second form from the first. And similarly for the operations :

projection from an axis and section by a transversal line.

Suppose now that by means of a series of operations, each of

which is either a projection or a section, a form/g has been

derived from a given form^, then another form/g from/;,, and

so on, until by n\ such operations the form fn has been

arrived at. Conversely, we may return fromj^ toj^ by means

of another series of n 1 operations which are complementary

respectively to the last, last but one, last but two, &c. of the

operations by which we have passed from/j iofn . The series

of operations which leads from /T to/n ,
and the series which

leads from fn to /j, may be called complementary, and the

operations of the one series are complementary respectively to

those of the other, taken in the reverse order.

In the above the geometric forms are supposed to lie in

space (Art. 31). If we confine ourselves to plane Geometry, the

complementary operations reduce to projectionfrom a centre and

D



34 PROJECTIVE GEOMETRIC FORMS. [40

section ly a transversal line. In the Geometry of the sheaf,

section by a plane and projection from an axis are comple

mentary operations.

40. Two geometric prime forms of the same dimensions

are said to be protectively related, or simply prq/ective, when one

can be derived from the other by any finite number of projec

tions and sections (Arts. 2, 3, ... 7).

For example, let a range u be given ; project it from a

centre 0, thus obtaining a flat pencil ; project this flat pencil

from another centre
, by which means an axial pencil with

00 as axis is produced ;
cut this axial pencil by a straight

line u.2 ,
thus obtaining a range of points lying on ?^

2 ; project

this range from an axis, and cut the resulting axial pencil by a

plane, by which means a flat pencil is produced, and so on
;
then

any two of the one-dimensional geometric forms which have

been obtained in this manner are projective according to

definition.

When we say that a form A, B, C, D, ... is projective with

another form A ,
B

,
C

,
2)

,
... we mean that, by help of the

same series of operations, each of which is either a projection

or a section, A is derived from A, B from U, C f
from C, &c.

The elements A and A
,
B and B

,
C and &amp;lt;?

,
... are termed

corresponding elements *.

For example, a plane figure is said to be projective with

another plane figure, when from the points A, B, C, . . . and from

the straight lines AB, AC..., BO, ... of the one are derived

the points A ,
B

,
C

,
... and the straight lines A B

,
A C

, ...

B f C
, . . . of the other, by means of a finite number of projections

and sections.

In two projective plane figures, to a range in the one cor

responds in the other a range which is projective with the

first range ;
and to a flat pencil in the one figure corresponds

in the other a flat pencil which is projective with the first

pencil.

41. From what has been said above it is easy to see

that two geometric forms which are each projective with

* Two projective forms are termed homograpMc when the elements of which

they are constituted are of the same kind
;

i. e. when the elements of loth are

points, or lines, or planes. It will be eeen later on (Art. 67) that this definition of

homography is equivalent to that given by CHASLES (Geometric superieure,A.Ti. 99).
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a third are project!ve with one another. For if we first go
through the operations which lead from the first form to the

third, and then go through those which lead from the third to

the second, we shall have passed from the first form to the

second.

42. Geometricforms in perspective.

The following forms are said to be in perspective :

Fig. 19- Fig. 20.

Two ranges (Fig. 19), if they are sections of the same flat

pencil (Art. 12).

Two flat pencils (Fig. 20), if they project, from different

centres, one and the same range ;
or if they are sections of

the same axial pencil.

[Note. If we project a range u=ABG... from two different centres
and not lying in the same plane with it, we obtain two flat

pencils in perspective. These pencils, again, may be regarded as

sections of the same axial pencil made by the transversal planes Ou,
Ou

; the axial pencil namely which is composed of the planes 00 A,
00 B, 00 C, ..., and which has for axis the straight line 00 . This
is the general case of two flat pencils in perspective ; they have not the
same centre and they lie in different planes ;

at the same time, they
project the same range and are sections of the same axial pencil.
There are two exceptional cases : (i). If we project the row u from
two centres and O f

lying in the same plane with u, then the
two resulting flat pencils lie in the same plane and are consequently
no longer sections of an axial pencil ; (2). If an axial pencil is cut by
two transversal planes which pass through a common point on the

axis, we obtain two flat pencils which have the same centre 0, and
which consequently no longer project the same range.]

Two axial pencils, if they project, from two different centres,
the same flat pencil.
A range and a flat pencil, a range and an axial pencil, or aflat

pencil and an axial pencil, if the first is a section of the

second.
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Two plane figures, if they are plane sections of the same

sheaf.

Two sheaves, if they project, from two different centres, the

same plane figure.

A plane fgnre and a sheaf, if the former is a section of the

latter.

From the definition of Art. 40 it follows at once that two

(one-dimensional) forms which are in perspective are also pro-

jectively related ;
but two projective forms are not in general

in perspective position.

43. Two figures in homology are merely two projective

plane figures superposed one upon the other, in a particular

position ;
for by Art. 21 two homological figures may always

be regarded (and this in an infinite number of ways) as pro

jections of one and the same third figure.

If two projective plane figures are superposed one upon the

other in such a manner that the straight line connecting any

pair of corresponding points may pass through a fixed point ;

or, again, in such a manner that any pair of corresponding

straight lines may intersect on a fixed straight line
;
then the

two figures are in homology (Arts. 19, 20).

In two homological figures, two corresponding ranges are in

perspective (and therefore of course are projectively related) ;

and the same is the case with regard to two corresponding

pencils.

44. THEOREM. Two one-dimensional geometricforms-,
each con

sisting of three elements, are always projective.

To prove this, we notice in the first place that it is

enough to consider the case of two ranges A^C, A B C
; for,

if one of the given forms is a pencil, flat or axial, we may
substitute for it one of its sections by a transversal.

(1) If the two straight lines ABC, A B C lie in different

planes, join AA f

,
BB

, CC&quot;, and cut these straight lines

by a transversal **. Then the two given forms are seen

to be simply two sections of the axial pencil sAA
,
sBB f

,

sCC .

(2) If the two straight lines lie in the same plane (Fig. 21),

join AA ,
and take on this straight line any two points, S, S ;

* To do this, we have only to draw through any ppint of AA a straight line

which meets BE and CC (Prob. 8, Art. 84).
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draw SB
,
S B to cut in

&quot;,
and SC

,
S C to cut in C&quot;

,
andjoin

&quot;&quot;, cutting &S in A&quot;. Then ^ JB C&quot; may be derived from

Fig. 21. Fig. 22.

ABC by two projections, viz. we first project ABC from S

into A&quot;B&quot;C&quot;,
and then J&quot;JS&quot;C&quot; from into^ .

(3) In the case where the two points A and A coincide (Fig.

33), the two given forms are directly in perspective ;
the centre

of perspective is the point where BB f

and CC intersect.

(4) Ifthe two sets of pointsABC,A B C r

lie onthe same straight

line (Fig. 23), it is only necessary

to project one of them A B C on

to another straight line A^Bf^

(from any centre 0) ;
then let

any two centres S and S
1

be

taken (as in Fig. 21) on AA19

and let the straight line A&quot;B&quot;C&quot;

be constructed in the manner

already shown in case (2). Then

A B C may be derived from

ABC by three projections, viz.

we first project ABC from 8

\niQA&quot;B&quot;C&quot;, ihenA&quot;&quot;C&quot; from

A
, B\r c

Fig. 23.

j into A^Ci ,
and lastly A^B^ from into A B C .

(5) If A coincides with A
,
and B with B 1

,
we may make

use of a centre S and two transversals s
1 ,

s
2 drawn through A

in the plane SABCC . If the triad ABC be projected from 8

upon g
1 (giving A^CJ, and the triad A B C be projected

from S upon *
2 (giving A

2
B

2
C2) ;

then the triads A
l^Bl

C
l
and

^
2
#

2
C
2 will be in perspective, because ^ coincides with A 2 (in

the point AA ).

In every case, then, it has been shown that the triads
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ABC ,A B C can be derived from each other by a finite

number of projections and sections
;

therefore by Art. 40

they are projective.

As a particular case, ABC must be projective with BAG, for

example. In order actually to project one of these triads into

the other, take (Fig. 24) any two points L and N collinear

with C. Join AL
, BN, meeting

in K, and BL
, AN, meeting in

M. Then BAG can be derived

from ABC by first projecting
ABC fromKinto LNC, and then

LNC from M into BAG.

In order to project ABC into

BCA, we might first project

ABC into BAG, and then BAG
into BCA.

45. THEOREM. Any one-dimensional geometric form, consisting

offour elements, is projective with any of the forms derived from it

by interchanging the elements in pairs. For instance, ABCD is

projective with BADC.
Let A

,
B

,
G

,
I) be four given points (Fig. 25), and let

FFGD be a projection of thesepoints

from a centre M on a straight line

DP passing through D. If AF
,
CM

meet in N, then MNGC will be a

projection of EFGD from centre A^
and ^^D(7 a projection of MNGC
from centre .F; therefore (Arts.

40, 41) the form BADC is pro-

In a similar manner it can be shown

Fig. 24.

Fig. 25.

jective with ABCD.

that CDAB and .005^ are projective with ABCD*.
From this it follows for example that if a flat pencil abed is

projective with a range ABCD, then it is projective also with

BADC, with CDAB, and with DCBA
;

i.e. if two geometric forms,

each consisting of four elements, are protectively related, then the

elements of the one can be made to correspond respectively to the

elements of the other infour different ways.

STAUDT, Geometric der Luge, Art. 59.



CHAPTER VIII.

HARMONIC FORMS.

46. THEOEEM*.

Given three points A, B, C on

a straight line s
;

if a complete

quadrangle (KLMN) be con

structed (in any plane through s)

in such a manner that two oppo
site sides (KL, MN) meet in A,

two other opposite sides (KN, ML)
meet in J3, and the fifth side (LN)

passes through C, then the sixth

side (KM) will cut the straight

line s in a point D which is de

termined by the three given

points ;
i.e. it does not change its

position, in whatever manner the

arbitrary elements of the quad

rangle are made to vary (Fig. 26).

Given in a plane three straight

lines a, b, c which meet in a point

S; if a complete quadrilateral

(klmn) be constructed in such a

manner that two opposite vertices

(kl , mn) lie on a, two other oppo
site vertices (kn , ml) lie on b, and

the fifth vertex (nl) lies on c,

then the sixth vertex (km) will

lie on a straight line d which

passes through S, and which is

determinate
; i. e. it does not

change its position, in whatever

manner the arbitrary elements of

the quadrilateral are made to

vary (Fig. 27).

Fig. 27.

For if a second complete For if a second complete

quadrangle (K L M N
)
be con- quadrilateral (k l m n

}
be con-

* STAUDT, loc. cit., Art. 93.

vKvl

IT fr&amp;gt;v-
&quot;V A
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structed (either in the same plane,

or in any other plane through s),

which satisfies the prescribed con

ditions, then the two quadrangles
will have five pairs of correspond

ing sides which meet on the given

straight line
; therefore the sixth

pair will also meet on the same

line (Art. 36, No. 5, left).

From this it follows that if the

first quadrangle be kept fixed

while the second is made to vary
in every possible way, the point

D will remain fixed; which

proves the theorem.

The four points ABCD are

called harmonic, or we may say

that the group or the geometric

form constituted by these four

points is a harmonic one, or that

ABCD form a harmonic range.

Or again : Four points ABCD of
a straight line, taken in this order,

are called harmonic, if it is pos
sible to construct a complete quad

rangle such that two opposite sides

2)ass through A, two other opposite

sides through B, t]i& fifth side

through C, and the sixth through D.

It follows from the preceding theo

rem that when such a quadrangle

exists, i.e. when the form ABCD
is harmonic, it is possible to con

struct an infinite number of other

quadrangles satisfying the same

conditions. It further follows that,

given three points ABC of a

range (and also the order in which

they are to be taken), the fourth

point D, which makes with them

a harmonic form, is determinate

and unique, and is found by the

construction of one of the quad

rangles (see below, Art. 58).

structed which satisfies the pre
scribed conditions, then the two

quadrilaterals will have five pairs

of corresponding vertices collinear

respectively with the given point ;

therefore the sixth pair will also

lie in a straight line passing

through the same point (Art. 36,

No. 5, right).

From this it follows that if the

first quadrilateral be kept fixed

while the second is made to vary
in every possible way, the straight

line d will remain fixed
;
which

proves the theorem.

The four straight lines or rays
abed are called harmonic, or we

may say that the group or the

geometric form constituted by
these four lines is a harmonic

one, or that abed form a harmonic

pencil. Or again : Four rays
abed of a pencil, taken in this

order, are called harmonic, if it is

possible to construct a complete

quadrilateral such that two oppo
site vertices lie on a, two other

opposite vertices on b
y

the fifth

vertex on c, and the sixth on d. It

follows from the preceding theo

rem that when such a quadri
lateral exists, i.e. when the form

abed is harmonic, it is possible

to construct an infinite number

of other quadrilaterals satisfying

the same conditions. It further

follows that given three rays abc

of a pencil (and also the order in

which they are to be taken), the

fourth ray d, which makes with

them a harmonic form, is deter

minate and unique, and is found

by the construction of one of the

quadrilaterals (see below, Art. 58).
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47. Iffrom any point S the harmonic range ABCD be projected

upon any other straight line, its projection A B C D will also be a

harmonic range (Fig. 28).

Imagine two planes drawn one through each of the straight

lines AB, A B
} and suppose that in the first of these planes

is constructed a complete quadrangle
of which two opposite sides meet in

A, two other opposite sides meet in B,

and a fifth side passes through G\

then the sixth side will pass through
D (Art. 46), since by hypothesis ABCD F

.

2g

is a harmonic range. Now project

this quadrangle from the point S on to the second plane ;
then

a new quadrangle is obtained of which two opposite sides

meet in A , two other opposite sides meet in B , and whose

fifth and sixth sides pass respectively through C and I)
;

therefore A B C D is a harmonic range.

48. An examination of Fig. 27 will show that the harmonic

pencil abed is cut by any transversal whatever in a har

monic range. For let S be the centre of the pencil and m be

any transversal
;
in a take any point R ; join R to D by the

straight line k and to B by the straight line l\ and join A to

Jcb or P by the straight line n. As abed is a harmonic pencil

and five vertices of the complete quadrilateral klmn lie on a, b,

and d, the sixth vertex In or Q must lie on the fourth ray c.

Then from the complete quadrangle PQRS it is clear that

ABCD is a harmonic range.

Conversely, if the harmonic range ABCD (Fig. 27) be given,

and any centre whatever of projection S be taken, then the

four projecting rays S (A ,
B

,
C

, D) will form a harmonic

pencil.

For draw through A any straight line to cut SB in P and

SC in Q, and join BQ, cutting AS in R. The quadrangle PQftS
is such that two opposite sides meet in A, two other opposite

sides in B} and the fifth side passes through C
; consequently

the sixth side must pass through D (Art. 46, left), since by

hypothesis the range ABCD is harmonic. But then we have

a complete quadrilateral klmn which has two opposite vertices

A and R lying on SA
t
two other opposite vertices B and P on

SB, a fifth vertex Q on SC, and the sixth D on SD ;
therefore
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(Art. 46, right) the four straight lines which project the range
ABCD from S are harmonic. We may therefore enunciate the

following proposition :

A harmonic pencil is cut by any transversal whatever in a

Harmonic range ; and, conversely ,
the rays which project a harmonic

rangefrom any centre whatever form a harmonic pencil.

Corollary. In two homological figures, to a range of four harmonic

points corresponds a range of four harmonic points ;
and to a pencil

of four harmonic rays corresponds a pencil of four harmonic rays.
\

49. The theorem on the right in Art. 46 is correlative to

that on the left in the same Article. In this latter theorem

all the quadrangles are supposed to lie in the same plane ;
but

from the preceding considerations it is clear that the theorem

is still true and may be proved in the same manner, if the

quadrangles are drawn in different planes.

Considering accordingly this latter theorem (Art. 46, left)

as a proposition in the Geometry of space, the theorem corre

lative to it will be the following :

If three planes a
, (3 , y all pass through one straight line s, and if

a completefour-flat (see Art. 37) /cAjuz; be constructed, of which two

opposite edges K\
, \LV lie in the plane a, two other opposite edges KV

, A/x

lie in the plane ft, and the edge \v lies in the plane y ; then the sixth

edge KJU,
will always lie in a fixed plane 8 (passing through s),

which

does not change, in whatever manner the arbitrary elements of the

four-flat be made to vary.

For if we construct (taking either the same vertex or any
other lying on s) another complete four-flat which satisfies the

prescribed conditions, the two four-flats will have five pairs of

corresponding edges lying in planes which all pass through
the same straight line

&amp;lt;?;
therefore (Art. 37, left) the sixth pair

also will lie in a plane which passes through s. The four

planes, a
, (3 , y ,

8 are termed harmonic planes ;
or we may

say that the group or the geometric form constituted by
them is harmonic

;
or again that they form a harmonic (axial)

pencil.

50. If a complete four-flat K\^JLV be cut by any plane not

passing through the vertex of the pencil, a complete quadri

lateral is obtained
;
and the same transversal plane cuts the

planes a
, /3 , y ,

8 in four rays of a flat pencil of which the first
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two rays contain each a pair of vertices of the quadrilateral
while the other two pass each through one of the remaining
vertices. Consequently (Art. 46, right) an axial pencil of foul-

harmonic planes is cut by any transversal plane in a flat pencil
of four harmonic rays.

Similarly, if the harmonic axial pencil of four planes
a

, /3 , y ,
b is cut by any transversal line in four points A ,

B
, C,D,

these form a harmonic range. For if through the transversal

line a plane be drawn, it will cut the planes a
, ft , y ,

b in four

straight lines a, b, c, d. This group of straight lines is har

monic, by what has just been proved ;
but ABCD is a section

of the flat pencil a
,
b

,
c

,
d

; consequently (Art. 48) the four

points A ,
B

,
C

,
D are harmonic. Conversely, if four points

forming a harmonic range be projected from an axis, or if four

rays forming a harmonic pencil be projected from a point, the

resulting axial pencil is harmonic.

51. If then we include under the title of harmonic form the

group of four harmonic points (the harmonic range), the group
of four harmonic rays (the harmonic flat pencil), and the

group of four harmonic planes (the harmonic axial pencil), we

may enunciate the theorem :

Every projection or section of a harmonicform is itself a harmonic

form: or,

Every form which is protective with a harmonic form is itself

harmonic.

Conversely, two harmonic forms are always protective with one

another.

To prove this proposition, it is enough to consider two

groups each of four harmonic points ;
for if one of the forms

were a pencil we should obtain four harmonic points on

cutting it by a transversal. Let then ABCD, A B C D be two

harmonic ranges, and project ABC into A B C in the manner

explained in Art. 44
; the same operations (projections and

sections) which serve to derive A B C from ABC will give for

D a point Dl ;
from which it follows that the range A B C D

l

will be harmonic, since the range ABCD is harmonic. But

A B C D &TQ also four harmonic points, by hypothesis ; there

fore D
l
must coincide with D ,

since the three points A B C
determine uniquely the fourth point which forms with them a

harmonic range (Art. 46, left).
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We may add here a consequence of the definitions given in

Arts. 49 and 50 :

The form which is correlative to a harmonic form is itself

harmonic.

52. If a
,
I

,
c

,
d are rays of a pencil (Fig. 28), then a and b

are said to be separated by c and d, when a straight line pass

ing through the centre of the pencil, and rotating so as to

come into coincidence with each of the rays in turn, cannot

pass from a to I without coinciding with one and only one of

the two other rays c and d *. The same definition applies to

the case of four planes of a pencil, and to that of four points of

a range (Fig. 26) ; only it must be granted that we may pass

from a point A to & point B in two different ways, either by

describing the finite segment AS or the infinite segment which

begins at A, passes through the point at infinity, and ends at B.

This definition premised, the follow-

o
v

g ing property may be enunciated as at

&amp;lt;

- A B
&amp;lt; once evident : Four elements of a one-

Fj 2
dimensional geometric form (i.e. four

points of a range, four rays of a

pencil, &c.) can always be so divided into two pairs that

one pair is separated by the other, and this can be done in

one way only. In Fig. 26, for example, the two pairs which

separate one another are AB
,
CD

;
and if A B C D is a form

projective with ABCI), the pair A B will be separated by the

pair C D
\
for the operations of projection and section do not

change the relative position of the elements.

53. Let now ABCD (Fig. 30) be four harmonic points, i.e. four

points obtained by the construction of Art. 46, left. This

allows us to draw in an infinite number of ways a complete

quadrangle of which A and B are two diagonal points

(Art. 36, No. 2, left), while the other two opposite sides pass

through C and D. It is only necessary to state this con

struction in order to see that the two points A and B are

precisely similar in their relation to the system, and that the

same is true with regard to C and D. It follows from this

that if ABCD is a harmonic range, then BACD ,
ABDC

, BADC,
which are obtained by permuting the letters A and B or C

and D, or both at the same time, are harmonic ranges also.

* a and b, c and d, may also be termed alternate pairs of rays.
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Consequently (Art. 51) the harmonic range ABCD for example

is projective with BACD, i.e. we can pass from one range to the

other by a finite number of projections and sections. In fact

if the range ABCD be projected from K on CQ, we obtain the

range LNCQ, which when projected from M on AB gives

BACD.

B

Fig. 30.

54. If A ,
B

,
C

,
D are four harmonic points, then A and B are

necessarily separated Ijy
C and D.

For if (Fig. 30) the group ABCD be projected on the straight

line KM, first from the centre L and then from the centre N,

the projections are KMQD and MKQD respectively. Now, as

already stated in Art. 52, the operations of projection and

section do not change the relative position of the elements of

the group. If therefore K and Q were separated by M and D,

then also M and Q must be separated by K and D
; which is

impossible. The only possible arrangement is that K and

M should be separated by Q and D, and therefore A and B

separated by C and D.

55. Let the straight lines AQ, BQ be drawn (Fig. 31), the

former meeting MB in U
and NB in S, while the

~~&quot;

latter meets KL in T and

MN in F. The complete

quadrangleLTQ Uhas two

opposite sides meeting in

A, two other opposite sides

meeting in B, and a fifth

side (LQ or LN) passes

through .C; therefore the sixth side UT will pass through D(Art.

46). In like manner the sixth side FSof the complete quadrangle

NFQS must pass through D, and the sixth sides of the com

plete quadrangles KSQT, MUQF through C. We have thus a

quadrangle STUFtwo of whose opposite sides meet in C, two
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other opposite sides in D, while the fifth and sixth sides pass

respectively through A and B. This shows that the relation

to which the points C and D are subject (Art. 53) is the same

as the relation to which the points A and B are subject ; or,

in other words, that the pair A
,
B may be interchanged

with the pair C
,
D. Accordingly, if ABCD is a harmonic

range, then not only the ranges BACD ,
ABDC

, BADC, but

also CDAB
,
DCAB

,
CDSA

,
DCBA are harmonic *.

The points A and B are termed conjugate points, as also are

C and D. Or either pair are said to be harmonic conjugates

with respect to the other. The points A and B are said to be

harmonically separated by the points C and D, or the points C
and D to be harmonically separated by A and B. We may
also say that the segment AB is divided harmonically by the

segment CD, or that the segment CD is divided harmonically

by AB. If two points A and B (Fig. 30) are separated har

monically by the points C and D in which the straight line

AB is cut by two straight lines QC and QD, we may also say
that the segment AB is divided harmonically by the straight

lines QC , QD, or by the point C and the straight line QD, &c.;

and that the straight lines QC , QD are separated harmonically

by the points A ,B; &c.

Analogous properties and expressions exist in the case of

four harmonic rays or four harmonic planes.

[Note. In future, whenever mention is made of the harmonic

system ABCD, it is always to be understood that A and.Z&amp;gt;, C and D, are

conjugate pairs; it being at the same time remembered that (Art. 54)

A and B, C and D, are necessarily alternate pairs of points.]

56. The following theorem is another consequence of the

proposition of Art. 46, left:

In a complete quadrilateral, each

diagonal is divided harmonically ly

the other two f .

Let A and A
,
B and B

,
C

and C be the pairs of opposite

vertices of a complete quadri-

lateral (Fig. 32), and let the

diagonal AA be cut by the other diagonals BB and CC in F
* REYE, Geometrie der Lage (Hanover, 1866), vol. i. p. 34.

f CARNOT, Geomttrie de position (Paris, 1803), Art. 225.
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and E respectively. Consider now the complete quadrangle
BB CG

\
one pair of its opposite sides meet in A, another

such pair in A\ a fifth side passes through E, the sixth

through F. The points A
,
A are therefore harmonically

separated by F and E. Similarly a consideration of the two

complete quadrangles CC AA and AA BB will show that

B
,
B are harmonically separated by J^and D

;
and C

, C
f

by
7) and E.

57. In the complete quadrangle BB CC the diagonal points
are A ,

A
, and D ; also since the range BB FD is harmonic, so

too is the pencil of four rays which project it from A (Art. 48) ;

therefore :

In a complete quadrangle, any two sides which meet in a diagonal

point are divided harmonically by the two other diagonal points.

This theorem is however merely the correlative (in accord

ance with the principle of Duality in plane Geometry) of that

proved in the preceding Article.

58. The theorems of Art. 46 can be at once applied to the

solution, by means of the ruler only, of the following pro
blems :

Given three points of a har

monic range, tofind the fourth.

Solution. Let A
,
B

,
C (Fig.

33) be the given points (lying

on a given straight line) and let

Given three rays of a har

monic pencil^ to construct the

fourth.

Solution. Let a
,
b

,
c (Fig.

34) be the given rays (lying in

one plane and passing through a

Fig. 33-

A and B be conjugate to each

other. Draw any two straight

lines through A, and a third

through C to cut these in L and

Fig. 34-

given centre S), and let a and b

be conjugate to each other.

Through any point Q lying on c

draw any two straight lines to
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cut a in A and 72, and b in P
and B, respectively. Join A B and

RP
;
these will cut in a point D,

the line joining which to 8 is the

required ray d, conjugate to c.

Fig. 35-

N respectively. Join BL cutting

^V in M, and BN cutting AL in

K
;
then if KM be joined it will

cut the given straight line in the

required point Z&amp;gt;, conjugate to

C*.

59. In the problem of Art. 58, left, let C lie midway between A
and B. We can, in the solution, so arrange the arbitrary elements

that the points K and M shall move off

to infinity ;
to effect this we must con

struct (Fig. 35) a parallelogram ALBN
on AB as diagonal ; then since the other

diagonal LN passes through C, the point
D will lie at infinity.

If, conversely, the points A ,
B

,
D are

given, of which the third point D lies

at infinity, we may again construct a

parallelogram ALBN on AB as diagonal ;
then the fourth point C,

the conjugate of D, must be the point where LN meets the given

straight line : that is, it must be the middle point of A B. Therefore :

// in a harmonic range ABCD
the point C lies midway between the

two conjugates A and B, then the fourth

point D lies at an infinite distance;

and conversely, if one of the points D
lies at infinity, its conjugate C is the

point midway between the two others,

A and B.

60. In the problem of Art. 58,

right, let c be the bisector of the

angle between a and b (Fig. 36). If

Q be taken at infinity on c, the segments AB ,
PR become equal to

one another and lie between the parallels

AP ,
BR

; consequently the ray d will be

perpendicular to c, i.e. given a harmonic

pencil of four rays, abed ; if one of

them c bisect the anjle between the two

conjugates a and b, the fourth ray d

will be at right angles to c.

Conversely: ifin a harmonic pencil abed

(Fig. 37) two conjugate rays c
,
d are at riglri angles, then they are the

bisectors, internal and external, of the angle between the other two rays

a
,
b.

* DE LA HIRE, Sectiones Conicae (Parisiis, 1685), lib. i, prop. 20.

Fig. 36.

Fig. 37-
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For if the pencil be cut by a transversal AB drawn parallel to d,
the section ABCD will be a harmonic range (Art. 48); and as J)

lies at infinity, C must lie midway between A and B (Art. 59) ; conse

quently, if S be the centre of the pencil, ASB is an isosceles triangle
and SO the bisector of its vertical angle.



CHAPTER IX.

ANHARMONIC RATIOS.

61. GEOMETRICAL propositions divide themselves into two

classes. Those of the one class are either immediately con

cerned with the magnitude of figures, as Euc. I. 47, or they

involve more or less directly the idea of quantity or measure

ment, as e.g. Euc. I. 12. Such propositions are called metrical.

The other class of propositions relate merely to the position

of the figures with which they deal, and the idea of quantity

does not enter into them at all. Such propositions are called

descriptive. Most of the propositions in Euclid s Elements are

metrical, and it is not easy to find among them an example of

a purely descriptive theorem. Prop. 2, Book XI, may serve

as an instance of one. Projective Geometry on the other

hand, dealing with protective properties (/.
e. such as are not

altered by projection), is chiefly concerned with descriptive

properties of figures. In fact, since the magnitude of a geo

metric figure is altered by projection, metrical properties are

as a rule not projective. But there is one important class of

metrical properties (anharmonic properties) which are pro

jective, and the discussion of which therefore finds a place in

the Projective Geometry. To these we proceed; but it is

necessary first to establish certain fundamental notions.

62. Consider a straight line
;
a point may move along it in

two different directions, one of which is opposite to the other.

Let it be agreed to call one of these the positive direction, and

the other the negative direction. Let A and B be two points

on the straight line
;
and let it be further agreed to represent

by the expression AJ1 the length of the segment comprised

between A and 7?, taken as a positive or as a negative number

of units according as the direction is positive or negative in

which a point must move in order to describe the segment ;
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this point starting from A (the first letter of the expression

AB} and ending at B.

In consequence of this convention, which is termed the nile

of signs, the two expressions AB ,
BA are quantities which are

equal in magnitude but opposite in sign, so that BA = AB, or

AB + J3A =
(1)

Now let A
,
B

,
C be three points lying on a straight line.

If C lies between A and B (Fig. 38 a\

/ v

(a)

A

Fig. 38.

we have AB = AC+ CB
;

whence -CBAC+AB = 0,

or BC+CA + AB=Q.

Again, if B lies between A and C (Fig. 38 V),

whence BC-AC + AB = 0,

or BC+CA +AB=Q.

Lastly, if A lies between B and C (Fig. 38 c),

CB = CA + AB-,
whence CB + CA + AB = 0,

or BC + CA +AB=Q.
Accordingly :

flf
A

,
B

,
C are three collinear points, then whatever their relative

positions may be, the identity

BC+CA +AB=Q
(2)

always holds good.

From this identity may be deduced an expression for the

distance between two points A and B in terms of the distances

E 2
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of these points from an origin chosen arbitrarily on the

straight line which joins them.

For since OA + AB +BO= 0,

.-. AB = OB-OA-, ....... (3)

or again, AS = A + B *.

The results (1) and (2) may be extended; they are in fact

particular cases of the following general proposition :

IfAl ,
A

2 ,
. . . An be n collinear points, then

A
1
A

2 + A2
A

3 +...+An_l
An + AnA l

= 0,

the truth of which follows at once from (3), since the expres
sion on the left hand is equal to

(
OA

2
-OA

l) + (
OA

3
- OA

2) + ... + (
OA

l
- OAn),

which vanishes.

Another useful result is that if A
,
B

,
C

,
D be four collinear

points,

This again follows from (3), since the left-hand side

= 0.

Many other relations of a similar kind between segments

might be proved, but they are not necessary for our purpose.

We will give only one more, viz.

If A ,
B

,
C

,
be anyfour collinear points, then

OA* . BC+OB 2
. CA + OC2

. AB = -BC.CA . AB.

For by (3) the left-hand side is equal to

(
OA2-OC2

)BC + (
07j 2 - OC2

)
CA

= CA(OA+OC}BC+ CB(OB+OC)CA
= BC.CA(OA-OB)
= -BC .CA.AB.

It may be noticed that this last theorem is true even if do

not lie on the straight line ABC, but be any point whatever.

For if a perpendicular 0(7 be let fall on ABC,
OA* . BC+ OB2

. CA + OC* . AB
= (00

2 +0 A*)BC+. .. + ...

= O A2
. BC+ O B* . CA+ O C2

. AB

= -BC.CA. AB,

by what has just been proved.

63. Consider now Fig. 39, which represents the projection

* MOBius, Barycentrische Calcul, I.
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from a centre S of the points of a straight line a on to another

straight line a
\

let us examine the relation which exists

between the lengths of two corresponding segments AB, A B .

!a
i

1*

I m&v i a

p
la

- 39- Fig. 40.

From the similar triangles SAJ ,
A SI

so from the similar triangles SBJ ,
B SI ,

JB .JS:: l
fS : 1 B

;

.-. JA . I A = JB . I B = JS . I S;

i.e. the rectangle JA . I A has a constant value for all pairs
of corresponding points A and A .

If the constant JS . I S be denoted by k
y
we have

7^ =
,
I B =

;

therefore by subtraction,

k(JA-JB]
JA.JB

But rB I A =A B\ and JA~JB=BA= -AB\

*S =
7^TB- AB -

If we consider four points A
,
I?

,
(7

,
D (Fig. 40) of the

straight line a and their four projections, A\ B ,
C

,
D

,
we

obtain, in a similar manner,
* We suppose that in all equations involving segments the rule of signs is

observed. See MOBIUS, Baryc. Calcul, i
; TOWNSEND, Modern Geomttry,

chapter v.
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whence by division

A?VAW ACAD

This last equation, which has been proved for the case of

projection from a centre S, holds also for the case where
ABCD and A B C D are the intersections of two transversal

lines * and / (not lying in the same plane) with four planes
a

, /3 , y ,
8 which all pass through one straight line u

;
in other

words, when A B C D is a projection of ABCD made from an
axis u (Art. 4). For let the four planes a

, /3 , y ,
8 be cut in

A&quot;
, B&quot;, C&quot;,

D &quot;

respectively by a straight line / which meets

-v and /. The straight lines A
A&quot;, BB&quot;, CC&quot;, DD&quot; are the

intersections of the planes a
, /3 , y ,

8 respectively by the plane
*/

,
and therefore meet in a point S; that namely in which

the plane w&quot; is cut by the axis u. So also ^&quot;, J0&quot;,
C

C&quot;,

D D&quot; are four straight lines lying in the plane *Y and

meeting in a point S of the axis u (that namely in which the

plane * *&quot; is cut by the axis u). Therefore A&quot;B&quot;C&quot;D&quot; is a

projection si ABCD from centre S and a projection A B C D
from centre S

;
so that

A&quot;C&quot;
m

A&quot;D&quot; _AC_ t AD___ A C ,A D^ t

We77 : Wo 7
~

~BC
: jw

~
We*

:

Wjy
AC AD

The number -=-^- :

-=jr

is called the anliarwonic ratio of the four collinear points
A

,
B

,
C

,
Z&amp;gt;. The result obtained above may therefore be

expressed as follows:

The anharmonic ratio offour collinear points is unaltered by any

projection whatever *.

*
PAPPUS, Mathetnaticae Collectiones, book vii. prop. 129 (ed. Hultsch, Berlin,

1877, vol. ii. p. 871).
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Or again :

Jf two ranges, each offour points, are protective, they have the

same anharmonic ratio, or, as we may say, are egiiianharmonic *.

64. Dividing one by the other the expressions for A C and

B C
,
we have

A C AC AS

In this equation the right-hand member is the anharmonic

ratio of the four points A ,
B

, ,
7

; consequently the left-hand

member must be the anharmonic ratio of A
,
IB

,
C

,
J

;
thus

the anharmonic ratio offour -points A ,
B

,
C

}
J

, cf which, the last

lies at infinity,
is merely the simple ratio A C : B C .

This may also be seen by observing that if A and B
remain fixed while D f

moves off to infinity on the line A B
,

then
A D

limiting value of
j&amp;gt;Tjy

*
&amp;gt;

A C A D A C
.-. limiting value of

-^-^
:

^TJJ,
=

-^r&amp;gt;

Similarly, on the same supposition,

A D A C B C
limiting value of ^-,

:

^7^7
=

-jrjy
&amp;gt;

i.e. the anharmonic ratio of the four points A , B
f

,
D

,
C

, of which

the third lies at injinity, is equal to the simple ratio B C : A C .

65. From this results the solution of the following

PROBLEM. Given three collinearpoints A ,
B

, C\ to find a fourth,

D so that the anharmonic ratio of the range ABCD may be a

number A given in sign and magnitude (Fig. 4 1
).

Solution. Draw any transversal through C, and take on

it two points A
,
B such that the

ratio CA : CB is equal to A : 1, the

given value of the anharmonic

ratio; the two points A and B

lying on the same or on opposite

sides of C according as A is positive

or negative. Join AA ,BB
f

, meeting
in 8

;
the straight line through S parallel to A B will cut Aft

in the point D required f. For ifD be the point at infinity on

* TOWNSEND, Modern Geometry, Art. 278.

f CHASLES, Geometric superieure (Paris, 1852), p. 10.
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A B
, and we consider ABCD as a projection of A B C D

(C coincides with C) from the centre S, then the anharmonic
ratio of ABCD is equal to that of A B C D

, that is, to the

simple ratio A C : B C or X.

The above is simply the graphical solution of the equation

^

BC 1UJ

AD AC

or in other words of the problem :

Given two points A and B, to find a point D coUinear with them
such tJiat the ratio of the segments AD, BD to one another may be

equal to a number given in sign and magnitude.
As only one such point D can be found, the proposed

problem admits of only one solution; this is also clear

from the construction given, since only one line can be drawn
through S parallel to A B . Consequently there cannot be
two different points D and D

l such that ABCD and ABCDl

have the same anharmonic ratio. Or :

If the groups ABCD, ABCD
l
are equianharmonic, the point Dl

must coincide with D.

66. THEOREM. (Converse to that of Art. 63.) If two ranges

ABCD, A B C D
,
each offour points, are equianharmonic, they are

projective ivith one another.

For (by Art. 44) we can always pass from the triad

ABC to the triad A B C by a finite number of projections or

sections
;
let D&quot; be the point which these operations give as

corresponding to D. Then the anharmonic ratio of A B C D&quot;

will be equal to that of ABCD, and consequently to that of

A B C D
-,
whence it follows that#&quot; coincides with D

,
and that

the ranges ABCD ,
A B C D are projective with one another.

67. It follows then from Arts. 63 and 66 that the necessary
and sufficient condition that two ranges ABCD

,
A B C D

,

consisting each of four points, should be projective, is the

equality (in sign and magnitude) of their anharmonic ratios.

The anharmonic ratio of four points ABCD is denoted by
the symbol (ABCD)*; accordingly the projectivity of two
forms ABCD and A B C D is expressed by the equation

(ABCD)^(A B C D
).

*
MciBius, Barycentrische Calcul, 183.
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From what has been proved it is seen that if two pencils
each consisting of four rays or four planes are cut by any two
transversals in ABCD and A B C D respectively, the equation

(ABCD} (A B C D
}
is the necessary and sufficient condition

that the two pencils should be projective with one another.

The anharmonic ratio of a pencil of four rays a,b,c,d or

four planes a
, /3 , y ,

5 may now be defined as the constant

anharmonic ratio of the four points in which the four elements

of the pencil are cut by any transversal, and may be denoted

by (abed) or (a/3y5).

This done, we can enunciate the general theorem :

If two one-dimensional geometric forms, consisting each of four

elements, are projective, they are equianharmonic ; and if they are

equianharmonic, they are projective.

68. Since two harmonic forms are always projectively

related (Art. 51), the preceding theorem leads to the con

clusion that the anharmonic ratio of four harmonic elements

is a constant number. For if ABCD is a harmonic system,
BACD is also a harmonic system (Art. 53), and the two

systems ACBD and BCAD are projectively related
1

*; thus

(ACBL) = (BCAD),
AB AD BA BD

i.e.
CB CD

~

CA CD
, AC AD

whence -=^ : -^ = - 1
,

i. e. (ABCD) = - 1
;

therefore the anharmonic ratio offour harmonic elements is equal

to 1 f.

69. The equation (ABCD) = -1, or

AC AD

which expresses that the range ABCD is harmonic, may be put into

two other remarkable forms.

Since AD = CD-CA (Art. 62) and BD = CD-CB, the equation

(1) gives

* In Fig. 30 ACBD may be projected (from K on NC} into LCNQ ;
and then

LCNQ. may be projected (from M on AD} into ECAD.
f MOBIUS, loc. cit., p. 269.
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i.e. CD is the harmonic mean between CA and CB; a formula which

determines the point D when A
,
B

,
C are given.

Again, if is the middle point of the segment CD, so that we have

OD = CO=-OC, then

AC=OC-OA-, AD = OD-OA=-(OC+OA);
BC = OC-OB; BD=-(OC + OB).

Substituting these values in (1) or in

AC BC

we have
OC-OA OB-OC
VC + OA

OC
OB + OC
OB

or OC Z = OA.OB, ....... (3)

i. e. half the segment CD is a mean proportional between the distances

of A and B from the middle point of CD.

The equation (3) shows that the segments OA and OB must have

the same sign, and that therefore can never lie between A and B.

If now a circle be drawn to pass

through A and B (Fig. 42), will lie

A c/ \B o \n outside the circle, and OC will be the

length of the tangent from to it
*

(Euc. III. 37). The circle on CD as

diameter will therefore cut the first

circle (and all circles through A and B}

orthogonally. Conversely, if two circles cut each other orthogonally,

they will cut any diameter of one of them in two pairs of harmonic

points t.

70. The same formula (3) gives

the solution of the following pro

blem :

Given two collinear segments AB
and A B

;
to determine another

segment CD which shall divide each

of them harmonically (Figs. 43, 44).

Take any point G not lying on

the common base AB\ and draw the circles GAB
,
GA B meeting

* If through a point O any chord be drawn to cut a circle in P and Q, the

rectangle OP . OQ is called the poiver of the point with regard to the circle.

STEINEB, Crelle s Journal, vol i. (Berlin, 1826) ;
Collected Works, vol. i. p. 22.

\V
r
e may then say that OC 2

is the poiver of the point with regard to the circle

in Fig. 42.

f PONCELET, Propr.proj. Art. 79.
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again in H. Join GH *, and produce it to cut the axis in 0. Then

from the first circle

OA.OB = OG. OH (Euc. III. 36),

and from the second

OA f.OB =OG.OH-&amp;gt;

.-. OA . OB = OA . OB .

is therefore the middle point of the segment required ;
the

points C and D will be the

intersections with the axis

of a circle described from

the centre with radius

equal to the length of the

tangent from to either of

the circles GAB, G A B .

The problem admits of a

real solution when the point

falls outside both the
Fig. 44.

segments AB
}
A B

,
and consequently outside both the circles GAB,

GA B (Figs. 43, 44). There is no real solution when the segments

AB, A B overlap (Fig. 45) ;
in this case lies within both segments.

71. Let ABCD be a harmonic

range, and let A and B
(a pair of

conjugates) approach indefinitely near

to one another and ultimately coin

cide. If C lie at an infinite distance,

then D must coincide with A and B,

since it must lie midway between these

two points (Art. 59). If C lie at a
Fig. 45-

finite distance, and assume any position not coinciding with that of A
or B, then equation (2) of Art. 69 gives CD=CA = CB, i. e. D coincides

with A and B.

Again, let A and C (two non-conjugate points) coincide, and B
(the conjugate of A) lie at an infinite distance. In this case A must

lie midway between C and D, so that D will coincide with A and 0.

If B lie at a finite distance, and assume any position not coinciding

with that of A or 0, then equation (1) of Art. 69 gives AD = 0, i.e.

the point D coincides with A and C. So that :

//, of four points forming a harmonic range, any two coincide, one

of the other two points will also coincide with them, and the fourth
is indeterminate.

72. The theorem of Art. 45 leads to the following result: given
four elements A

,
B

,
C

,
D of a one-dimensional geometric form, the

* GH is the radical axis of the two circles, and all points on it are of equal

power with regard to the circles.
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anharmonic ratios (ABCD) , (BADC) , (CDAB) , (DCSA) are all equal
to one another.

I. Four elements of such a form can be permuted in twenty-four
different ways, so as to form the twenty-four different groups

ABCD BADC CDAB DCBA .

here arranged in six lines of four each. The four groups in each
line are projective with one another (Art. 45), and have therefore
the same anharmonic ratio. In order to determine the anharmonic
ratios of all the twenty-four groups, it is only necessary to consider
one group in each line; for example, the six groups in the first

column. These six groups are so related to each other that when
any one of them is known the other five can be at once determined.

II. Consider the two groups ABCD and ABDC, which are derived
one from the other by interchanging the last two elements. Their
anharmonic ratios

(A BCD) or ^:/y /Hf JJ I \

and (ABDC) or _
are one the reciprocal of the other

;
thus

(ABCD)(ABDC)=l (1)

Similarly, (A CBD) (A CDS) = 1
, (2)

and (ADBC)(ADCB)=l (3)

III. Now if A, B, C, D are four collinear points, it has been seen

(Art. 62) that the identical relation

EC . AD + CA . BD +AB . CD =
always holds. Dividing by EG . AD, we have

AC.BD AB.CD _
EG. AD + CB.AD

~

AC,A1) AB AD _
~BC ~BD

+ OH
: CD~ l}

that is (Arts. 63, 67),

(ABCD) + (ACBD) = l (4)

Similarly, (ABDC)+(ADBC) = I, (5)

and (ACDB)+ (ADCB)=1 (6)
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IV. If A denote the anharmonic ratio of the group ABCD, i. e. if

(ABCD} = A,

the formula (1) gives (ABDC) = T ,

A

and (4) gives (A CBD) = 1 - A
;

then by (2) (A CDB) = ^-^ ,

and by (6) (ADCB) = I -^ =
-^-_ ;

and finally, by (3) or (5)

(ADBC) =
X
-^-*A

Y. The six anharmonic ratios may also be expressed in terms of

the angle of intersection 6 of the circles described on the segments

AB, CD as diameters
;

it being supposed that A and B are separated

by C and D. It will be found that

(ABCD} = -tan2

^, (ABDC} = -cot2

1,2 -

(ACBD)= sec
2

^, (ACDB)= cos
2

^,

(4Z)Cfl) = sin
2

^, (ADBC) = cosec2

1
.

f

VI. If in the group ABCD two points A and .Z? coincide, then

AC = BC, AD = BD, and therefore

But if X = 1
,
the other anharmonic ratios become

(ACAD] =1-1 = 0, and (ACDA) = oo
;

thus when of four elements two coincide, the anharmonic ratios have

the values 1, 0, oo.

If (ABCD) = 1, i.e. if the range ABCD is harmonic, the formulae

of (IV) give

(A CBD) = 2 and (ACDB) = i ;

so that when the anharmonic ratio of four points has the value 2 or

J, these points, taken in another order, form a harmonic range.

VII. Conversely, the anharmonic ratio of a range ABCD, none of

whose points lies at infinity, cannot have any of the values 0, 1, oo,

without some two of its points coinciding.

For if in (IV) A = 0, ^ : ^ = 0, and either AC or BD must
.oO JJL)

vanish
;

i. e. either A coincides with C, or B with D.

*
MOBIUS, loo. cit., p. 249.

f CASEY, On Cyelides and SpJiero-g^uartics (Phil. Tran?. 1871), p. 704.
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If X = 1, (ACBD) = 1 -X = 0, so that either A coincides with B,
or C with D.

And if A = oo, (ASDC) = - = 0, so that either A coincides with
Z&amp;gt;, or B with (7.

VIII. By considering the expressions given for the six anharmonic
ratios in (IV) it is clear that whatever be the relative positions of the

points A ,
B

,
C

, D, two of the ratios (and their two reciprocals) are

always positive and a third (and its reciprocal) negative ;
and thus we

see that the anharmonic ratios of four points no two of which coincide

may have all values positive or negative except + 1, 0, or oo.

73. From the theorems of Arts. 63 and 66, which express
the necessary and sufficient condition that two ranges, each

consisting of four elements, should be protectively related, we
conclude that

If two geometric forms of one dimension are projectile, then any
two corresponding groups offour elements are equianharmonic *.

As a particular case, to any four harmonic elements of

the one form correspond four

harmonic elements of the other

(Art. 51).

74. Let A, A and 7?, B be any
two pairs of corresponding points
of two projective ranges (Fig.

46) ;
let / be the point at infinity

belonging to the first range, and 1 the point corresponding
to it in the second range ; similarly let J be the point at

infinity belonging to the second range, and / its corre

spondent in the first range. By Art. 73

(ABU) = (A BTJ ) ;

/. (BAJ1) = (A BTJ ) (Art. 72) ;

from which, since / and J f

lie at infinity,

7?/: AJ = AT: XT (Art. 64),

and JA.1 A =JB.1 B
;

i. e. the product JA . 1 A has a constant value for all pairs of

corresponding points f .

[This proposition has already been proved in Art. 63 for

the particular case of two ranges in perspective.]

*
STEINEE, Systematische Entwickelung . . (Berlin, 1832), p. 33, 10; Collected

Works, ed. Weierstrass (Berlin, 1881), vol. i. p. 262.

t STEINEE, loc. cit., p. 40, 12
;
Collected Works, vol. i. p. 267.
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75. In two homological figures, four collinear points or

four concurrent straight lines of the one figure form a group
which is equianharmonic with that consisting of the points or

lines corresponding to them in the other figure (Art. 73). Let

be the centre of homology, M and M any pair of corre

sponding points in the two figures, N and Nf

another pair of

corresponding points lying on the ray OMM
9
and X the

point in which this ray meets the axis of homology. Since

the points OMNX
,
OM N X correspond severally to one

another,

(OXMN) = (OXM N ),

OM ON OM OW
NX ~ MXN X

ON OW ON ON
_

* MX WX~ NX WI
and consequently the anharmonic ratio (OXMM )

is constant

for all pairs of corresponding points M and M taken on a ray
OX passing through the centre of homology.
Next let L and IS be another pair of corresponding points,

and Y the point in which the ray OLL cuts the axis of

homology. Since the straight lines LM
,
L M must meet in

some point Z of the axis XY, it follows that OYLL f
is a pro

jection of OXMM from Z as centre, and therefore

(OYLL )
= (OXMM );

consequently the anharmonic ratio (OXMM )
is constant for

all pairs of corresponding points in the plane.

Consider now a pair of corresponding straight lines a and

a
,
the axis of homology ?, and the ray o joining the centre of

homology to the point aaf. The pencil osaa is cut by

every straight line through in a range of four points

analogous to OXMM
; consequently the anharmonic ratio

(osaa )
is constant for all pairs of corresponding straight

lines a and a
, and is equal to the anharmonic ratio

(OXMM ).

This anharmonic ratio is called the coefficient or parameter

of the homology. It is clear that two figures in homology
can be constructed when, in addition to the centre and axis,

we are given the parameter of the homology.
76. When the parameter of the homology is equal to 1,

all ranges and pencils similar to OXMM
,
osaa

,
are harmonic.
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In this case the homology is called harmonic * or inwlutonal^
and two corresponding points (or lines) correspond to one

another doubly ;
that is to say, every point (or line) has the

same correspondent whether it be regarded as belonging to

the first or the second figure. (See below, Arts. 122, 123.)

Harmonic homology presents two cases which deserve special

notice : (i) when the centre of homology is at an infinite distance, in

the direction perpendicular to the axis of homology; (2) when the

axis of homology is at an infinite distance. In the first case we have

what is called symmetry with respect to an axis
; the axis of homology

(in this case called also the axis of symmetry) bisects orthogonally

the straight line joining any pair of corresponding points, and bisects

also the angle included by any pair of corresponding straight lines.

The second case is called symmetry with respect to a centre. The

centre of homology (in this case called also the centre of symmetry)
bisects the distance between any pair of corresponding points, and

two corresponding straight lines are always parallel. In each of

these two cases the two figures are equal and similar (congruent) t ;

oppositely equal in the first case, and directly equal in the second.

77. Considering again the general case of two homological

figures, let a
,
b

,
m

,
n be four rays of a pencil in the first

figure, and a
,
b

,
m . n the straight lines corresponding to

them in the second. Then

(mnafj) = (m n a b \
Now let an arbitrary transversal be drawn to cut mnab in

MNAB, and draw the corresponding (or another) transversal

to cut m u a V in M N A B
; then

(MNAB) = (M N A K),
MA

.
WA _ NA_ B

N A
MB ~M B

~
NB N7]?

MA M A .

Consequently, the ratio -^~n 7i/ 7?&amp;gt;
depends only on ^ne

straight lines ab (and #
),
and not at all on the straight line

m (or m ).

The ratio MA : NA is equal to that of the distances of the

points M, N from the straight line a, which distances we may
denote by (M, a), (JV, a) ;

thus

*
BELLAVITIS, Saggio di Geometria derivata (Nuovi Saggi of the Academy of

Padua, vol. iv. 1838;, 50.

f Two figures are said to be congruent when the one may be superposed upon
the other so as exactly to coincide with it.
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(M,a) (J/ X)
(M^YW^r

that is to say
*

:

In two homologtcalfigures (or, more generally, in two protectively

related figures) the ratio of the distances of a variable point Mfrom
two fixed straight lines a

,
b in the first figure bears a constant ratio

to the analogous ratio of the distances of the corresponding pointMfrom the corresponding straight lines a
,
V in the other figure.

Suppose l&amp;gt; to pass through the centre of homology ;
then

M and M are collinear with and b coincides with I
,
so that

(M, b) : (M , V) = OM: OM
;

and therefore

OM (M.a)

If N and N f
are another pair of corresponding points, we

have then

OM_ (M,a) ON (N^a)
OM7

(IfX)
~

~ON~ (FXJ
Now suppose the straight line a to move away indefinitely ;

then a becomes the vanishing line in the first figure ;
the ratio

, M 1 will in the limit become equal to unity, and thus

OM ON
_,:(Jf, )=_:(#,*)

= constant
;

in other words f :

In two homologicalfigures, the ratio of the distances of any point

in the first figurefrom the centre ofhomology andfrom the vanishing

line respectively, varies directly as the distance of the corresponding

point in the second figurefrom the centre of homology.

*
CHASLES, G-eometrie supdrieure, Art. 512.

f CHASLES, Sections coniques, Art. 267.



CHAPTEE X.

CONSTRUCTION OF PROJECTIVE FORMS.

78. LET ABC and A B C be two triads of corresponding

elements of two projective forms of one dimension (Fig. 47),

and imagine any series of operations (of projection and section)

by which we may have

XD*_ u , passed from ABC to

VC~~~~~j::r^r -.V^ A B C . Then whatever

\SC* r (^k^
&quot;&quot;&quot;&quot;

this series be*, it will
\ \ \Q ( Gj2rf\\ ,

also lead from any other

element D of the first

form to the element D
which corresponds to it

^ in the second. For if D

Fio .

47
could give, as the result

of these operations, an

element D&quot; different from D
,
then the anharmonic ratios

(ABCD) and (A B C
I)&quot;)

would be equal; but by hypothesis

(ABCD) = (A B C D ); therefore (A B C D
)
= (A B C

D&quot;),

which is impossible unless D&quot; coincide with D (Art. 65).

79. THEOREM (converse to that of Art. 73):

Given twoforms ofone dimension; if to the elements A,B,C,D,...

of the one correspond respectively the elements A
,
B

,
C

,
D

,
...

of the other in such a manner that any four elements of the firstform

are equianharmonic with thefour corresponding elements of the second,

then the twoforms are projective.

For every series of operations (of projection or section),

which leads from the triad ABC to the triad A B C , leads at

the same time from the element D to another element D&quot; such

that (ABCD) = (A B C
D&quot;).

But (ABCD] = (A B C D
) by

hypothesis; therefore (A B C D
)
= (A B C

D&quot;),
and IT must

coincide with D (Art. 65). And since the same conclusion is

* In Fig. 47 the series of operations is : a projection from S, a section by u&quot;,

a projection from S ,
and a section by .
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true for any other pair whatever of corresponding elements, it

follows that the two forms are project!ve (Art. 40).
80. From Art. 78 the following may be deduced as a par

ticular case :

If among the elements of two protective forms of one dimension
there are tivo corresponding triads ABC and A B C which are in

perspective, then the twoforms themselves are in perspective.

(1). If, for example, the forms are two ranges ABCD ... and
A B C I) ...

;
then if the three straight lines AA

,
BB

,
CC

meet in a point S, the other analogous lines DD
, ... will all

pass through S (Figs. 19, 40).

Suppose, as a particular case, that the points A, A coincide

(Fig. 22), so that the two ranges have a pair of corresponding
points A and A united in the point of intersection of their

bases* The triads ABC, A B C are in perspective, their centre
of perspective being the point where BB and CO meet

;

accordingly :

If two projective ranges have a self-correspondingpoint, they are in

perspective.

Conversely it is evident that two ranges which are in per*
spective have always a self-corresponding point.

(2). Again, if the two forms are two flat pencils abed ... and
a b c d ... lying in the same plane; then if the three points
aa\ W, cc lie on one straight line s, the analogous points del . . .

will all lie on the same straight line (Fig. 20). If the line 6-

lie altogether at infinity, we have the following property :

Jf, in two projective flat pencils,

three pairs of corresponding rays
are parallel to one another, then

every pair ofcorresponding rays are

parallel to one another.

The hypothesis is satisfied

in the particular case where the

rays a and a coincide (Fig. 48),
so that the two pencils have a self-corresponding ray in the

straight line which joins their centres
;
then s is the straight

line joining W and cc. Accordingly:
* In the case of two projective forms we shall in future employ the term

self-corresponding to denote an element which is such that it coincides with its

correspondent ; thus A or A above may be called a self-corresponding point of the
f. urn r^.iirrtiatwo ranges.

F 2
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When tivo protective flat pencils (lying in the same plane} have a

self-corresponding ray, they are in perspective.

Conversely, two coplanar flat pencils which are in perspective

have alicai/s a self-corresponding ray.

(3). If one of the systems is a range ABCD ... and the other

a flat pencil abed ... (Fig. 28), the hypothesis amounts to

assuming that the rays a
,
b

,
c pass respectively through the

points A
,
B

,
C

;
then we conclude that also d, ... will pass

through D, ... &c.

81. Two ranges may be superposed one upon the other, so as

to lie upon the same straight line or base, in which case they

may be said to be collinear. For example, if two pencils (in

the same plane) S == abc ... and = a l c ... (Fig. 49) are cut

by the same transversal, they will

determine upon it two ranges
ABC ...

,
A B C ... which will be

protectively related if the two

pencils are so. The question arises

whether there exist in this case

any self-corresponding points, i.e.
Fig. 49.

whether two corresponding points of the two ranges coincide

in any point of the transversal.

If, for instance, the transversal s be drawn so as to pass

through the points aa
f and bb

y
then A will coincide with A ,

and B with B ;
in this case

consequently there are two

self-corresponding points.

Again, if
,

.a range u be

projected (Fig. 50) from two

centres S and (lying in

the same plane with u\

Fi o
two flat pencils abc ... and

a b c . . . will be formed,which

have a pair of corresponding rays a
,
a united in the line SO.

And if a transversal * be drawn through the point in which

this line cuts u, we shall obtain two projective ranges ABC ...,

A B C ... lying on a common base *, and such that they have

one self-corresponding point AA .

And lastly, we shall see hereafter (Art. 109) that it is possible
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for two collinear projective ranges to be such as to have no

self-corresponding point.

So also two flat pencils (in the same plane) may have a

common centre, in which case they may be termed concentric
;

such pencils are formed when two different ranges are pro

jected from the same centre (Fig. 51). And two axial pencils

may have a common axis
;
such pencils

are formed when we project two dif

ferent ranges from the same axis, or

the same flat pencil from different

centres. Again, if two sheaves are cut

by the same plane, two plane figures

are obtained ; if, on the other hand,

two plane figures are projected from

the same centre, two concentric sheaves are formed. In all

these cases the forms in question may be said to be superposed

one upon the other
;

and the investigation of their self-

corresponding elements, when the two forms are projectively

related, is of great importance. The complete investigation

will be given later on, in Chapter XVIII; at present we can

only prove the following Theorem.

82. THEOREM. Two superposed projective (one-dimensional)

forms either have at most two self-corresponding elements, or else

every element coincides with its correspondent.

For if there could be three self-corresponding elements

A
,
B

,
C suppose ;

then if D and D are any other pair of cor

responding points, we should have (Art. 73) (ABCD}= (ABCD ),

and consequently (Art. 65) D would coincide with D . Unless

then the two forms are identical, they cannot have more than

two self-corresponding elements.

83. THEOREM (converse to that of Art. 53). If a one-dimen

sionalform consisting offour elements A
,
B

,
C

,
D is projective with

a second form deducedfrom it by interchanging two of the elements

(e.g. BACIJ), then the form will be a harmonic one, and the tivo

interchanged elements will be conjugate to each other.

First Proof. If (ABCD) = (BACD\ then (Art. 72. IV) X = ;

.-. A2 = i, and since we cannot take X = + i (Art. 72. VIII)

we must have X = i, i.e. the form is a harmonic one.

Second Proof. Suppose, for example, that A
,
B

, C, D are four
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collinear points (Fig. 52). Let K
,
M

, Q ,
D be a projection of

these points on any straight line through D, made from an

arbitrary centre L. Since ABCD is protective with KMQD
and also (by hyp.) with BACD, the forms KMQD and BACD

are protective with one another.

And they have a self-corre

sponding point D ; consequently

they are in perspective (Art. 80),

and KB, MA, QC will meet in
* c

.

B
one point N. But this being
the case, we have a complete

quadrangle KLMN, of which one pair of opposite sides meet

in A, another such pair in B, while the fifth and sixth sides

pass respectively through C and D. Accordingly (Art. 46)
ABCD is a harmonic range.

84. Let there be given two protectively related geometric
forms of one dimension. Any series of operations which suf

fices to derive three elements of the one from the three corre

sponding elements of the other will enable us to pass from

the one form to the other (Art. 78) ;
and any two given triads

of elements are always protective, 2. . can be derived one from

the other by means of a certain number of projections and

sections. Hence we conclude that :

Given three pairs of corresponding elements of two protectiveforms

of one dimension, any number of other pairs of corresponding elements

can be constructed.

We proceed to illustrate this by two examples, taking

(i) two ranges and (2) two flat pencils; the forms being
in each case supposed to lie in one plane.

Given (Fig. 53) three pairs of Given (Fig. 54) three pairs

corresponding points A and A
, of corresponding rays a and a

,

B and B
,
C and C

, of the pro- b and b
,
c and c, of the projec-

jectire ranges u and uf

;
to con- tive pencils U and U f

;
to con

struct tJiese ranges. struct these pencils.

We proceed as in Art. 44. On Through the point of inter-

the straight line which joins any section of any two of the cor-

two of the corresponding points, responding rays, say a and a
,

say A and A
,
take two arbitrary draw two arbitrary transversals

points S and 8 . Join SB
,
S B s and /. Join the points sb and

cutting one another in
B&quot;,

and s b by the straight line
b&quot;,

and

SO
,
S C cutting one another in the points sc and s c by the
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C&quot; \ join B&quot;C&quot; y
and let it cut

AA inA&quot;. The operations which

enable us to pass from ABC to

straight line
c&quot;;

and let a&quot; be the

straight line joining the points

l&quot;c&quot; and aa\ The operations

Fig. 54.

A B C are: i. a projection from

S; 2. a section by u&quot; (the line on

which lie the points A&quot;, B&quot;, C&quot;}]

3. a projection from S } 4. a

section by u . The same opera
tions lead from any other given

point D on u to the correspond

ing point D on u
,
so that the

rays SD and S D must intersect

in a point D &quot;

of the fixed straight

line u&quot;.

In this manner a range

which enable us to pass from abc

to a b c are : i. a section by s
;

2. a projection from the point

U&quot; where
a&quot;, b&quot;,

c&quot; meet
; 3. a

section by s\ 4. a projection

from U f
. The same operations

lead from any other given ray d

of the pencil U to the correspond

ing ray d of the pencil U
f

\
so that

the points sd and s d must lie on

a straight line d&quot; which passes

through the fixed point U&quot; .

In this manner a pencil

is obtained which is in perspec- is obtained which is in perspec

tive both with u and with u. tive both with U and with U .

In the preceding construction (left),
D is any arbitrary point on u.

If D be taken to be the point at infinity on u, then (Fig. 53) SD
will be parallel to u; in order therefore to find the point on u
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which corresponds to the point at infinity on u, draw SI&quot; parallel to

u to cut u&quot; in I&quot; then join /&quot;, which will cut u in the required
point / . Similarly, if the ray through S parallel to u cuts u&quot; in

/&quot;,
and SJ&quot; be joined, this will cut u in /, the point on u which

corresponds to the point at infinity on ur
.

If D be taken at P, the point
where u and u&quot; meet, then D&quot;

aleo coincides with P, and the

point P / on it corresponding to

the point P on u is found as the

intersection of AS&quot;Pwith u .

Similarly, if Q
f
be the point of

intersection of u and
u&quot;,

the

point on u corresponding to Q
f

on u is Q, where SQ cuts it.

85. The only condition to

which the centres S and S are

subject is that they are to lie

upon the straight line which joins

a pair of corresponding points;
in other respects their position is

arbitrary. We may then for in

stance take S at A and S at A

(Fig- 55)- Then the ray S P co

incides with u, and P is accord:-

ingly the point of intersection of

u and u . So too the ray SQ
coincides with u, and Q also lies

at the point uu
f

.

If then we take the points A
and A as the centres S and S
respectively, the straight line u&quot;

will cut the bases u and u re

spectively in P and Q , the points
which correspond to the point
uu regarded in the first instance

as the point P of the line u and
in the second instance as the

point Q of the line u.

Now in the construction of

the preceding Art., the straight
line u&quot; was found at the locus of

In the preceding construction

(right), d is any arbitrary ray

passing through U. If it be taken
to be p, the line joining U to

U&quot;,

then the corresponding ray// of

the pencil U is the line joining
the point U to the point s p.

Similarly, if
&amp;lt;f

be the ray
U U&quot; of the pencil 7

, the ray q

corresponding to it in the pencil
U is that which joins the points
U and sq .

The only condition to which
the transversals s and s are sub

ject is that they are to pass

through the point of intersection

of a pair of corresponding rays ;

in other respects their position is

arbitrary. We may then for in

stance take a for s and a for /
(Fig- 56). Then the point sp
coincides with U, and p is ac

cordingly the straight line UU .

So too the point sq coincides

with U
,
and q also must be the

straight line UU .
t

If then we take the rays of

and a as the transversals s and
s respectively, the point U&quot; will

be the intersection of the rays p
and cf which correspond to the

straight line VU
, regarded in

the first instance as the ray p of

the pencil U , and in the second

instance as the ray q of the

pencil U.

Now in the construction of the

preceding Art., the point U&quot; was
found as the centre of perspective
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the points of intersection of pairs

of corresponding rays of the

pencils in perspective

S (ABCD..} and S (A B C D
..).

The straight line u&quot; obtained by
the construction ofthe presentArt.

is in like manner the locus of the

points of intersection of pairs of

corresponding rays of the pencils

A (AECD..)andA (A B C D
..),

i.e. the locus of the points in

which the pairs of lines A B and

AB
,
A C and AC

t
A D and

AD ... intersect.

of the ranges in perspective

s (abed...) and / (a b Jdf . .

.).

The point U&quot; obtained by the

construction of the present Art.

is in like manner the centre of

perspective of the ranges
a (abcd...)&nAa(a b c d ...),

i.e. the point in which the lines

joining the pairs of corresponding

points a b and ab
,
a c and ac

,

ad and ad
,

. . . meet.

Fig. 55-

If in place of A 1 and A any
other pair of points B and B, or

6r/ and C, ... be taken as centres

of the auxiliary pencils $ and $ ,

the straight line u&quot; must still

cut the two bases u and u in the

points P and Q
f

;
i.e. the straight

line u&quot; remains the same.

If then ABC ... MN ... and

A B C ... M N ... are two pro
-

jective ranges (in the same plane),

every pair of straight lines such

as MN and M N intersect in

points lying on a fixed straight

line. This straight line passes

through those points which cor-

Fig. 56.

If in place of of and a any
other pair of rays b and 6, or c

and c, ... be taken as transversals,

the point U&quot; must still be the

intersection of p and q \
i.e. the

point U&quot; remains the same.

If then abc ... mn ... and

a b c ... m n ... are two projec-

tive pencils (in the same plane)

every straight line which joins a

pair of points such as mn and

m n passes through a fixed point.

This point is the intersection of

those rays which correspond in
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respond in each range to the

point of intersection of their bases

when regarded as a point of the

other range.

86. If the two ranges u and uf

are in perspective (Fig. 57) the

points P and Q will coincide

with the point in which the

bases u and u meet
;
and since

the straight line which is the

locus of the points (AB ,
A B),

(AC ,
A C), (AD

f

,
A D), ... and

the straight line which is the

locus of the points (BA ,
B A),

(BC ,
B C), (BD ,

B D), ... have

two points in common, viz. and

(AB , A B), these straight lines

must coincide altogether. This

being so, AA BB is a com

plete quadrangle, whose diagonal

points are 0, S (the point where
AA ,BB ,

... meet), and M (the

point of intersection of AB and
A B) consequently (Art. 57) the

straight lines u and u are har

monic conjugates with regard to

the straight lines u&quot; and OS. If

therefore two transversals u and
u cut a flat pencil (a, b,c,...) in the

points (A,A ),(B,B ),(C,C }...,

then the points of intersection of

the pairs of straight lines A B f and
A B

, AC and A C
, BC and

B C, ... lie on one and the same

straight line
u&quot;,

which passes

through the point uu
;
and the

straight line joining uu to the

centre of the pencil is the har

monic conjugate of u&quot; with re

spect to u and u .

From this follows the solution

of the problem :

To draw the straight line con

necting a given point M with the

each pencil to the straight line

joining the centres of the pencils
when regarded as a ray of the

other pencil.

If the two pencils U and U
are in perspective (Fig. 59) the

rays_p and q will coincide with

tlie straight line UU
;
and since

through the point of intersection

of the rays (ab ,
a

b), (a/, a c),

(ad t
a d), ... and through the

point of intersection of the rays

(ba ,
b
a), (be ,

b
c), (bd ,b d), ...

pass two different straight lines,

viz. UU and (ab t
a

b), these

points must coincide. This being

so, aafbb is a complete quadri

lateral, whose diagonals are UU
,

s (the straight line on which
aa

,
bb

,
. . . intersect), and m (the

straight line which joins ab and
a b} , consequently (Art. 56) the

points U and U are harmonic

conjugates with regard to U&quot; and
the point in which s meets UU .

If therefore a range be projected
from two points U and U by the

rays (a ,
a

), (b ,
b

), (c,c )..., then

the straight lines which join the

pairs of points (ab ,
a

b), (ac ,
a c),

(be ,
b

c), ... meet in one and the

same point U&quot;, which lies on the

line UU
]
and the point where

the straight line U U cuts the base

of the range is the harmonic con

jugate of U&quot; with respect to U
and U .

From this follows the solution

of the problem :

To construct the point where a

given straight line m would be in-
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inaccessible point of intersection of

two given straight lines u and uf.

tersected by a straight line (UU )

which cannot be drawn, but which

is determined by its passing

through two given points U and

U .

C 1*

Fig. 57-

Through M (Figs. 57 and 58)

draw two straight lines to cut u
in A and B, and u in B and A

On m (Fig. 59) take two points,

and join them to U by the

straight lines a and b, and to U

A //

/ V7M A/ C/ \ /B u

Fig. 58.

respectively; join AA ,
BB meet

ing in S. Through S draw any

straight line to cut u in C and
u in

C&quot;,
and join BC

,
B C,

intersecting in N. The straight
line joining M and N will be the

line u&quot; required.

Fig- 59-

by the straight lines b and of
;

let s be the straight line joining

the points of intersection of a
,
a

and b
,
b . On s take any other

point and join it to U, V by the

straight lines c
,
c
f

respectively.

The straight line n which joins

the points be and b c will cut m
in the point U&quot; required.

If the straight lines u and u are parallel to one another (Fig. 58}
the preceding construction gives the solution of the problem : given
two parallel straight lines, to draw through a given point a straight

line parallel to them, making use of the ruler only.

87. If in the theorem of the

preceding article the flat pencil

If in the theorem of the pre

ceding article the range consist



76 CONSTRUCTION OF PROJECTIVE FORMS. [88

consist of only three rays, the

theorem may be enunciated as

follows, with reference to the

three pairs of points AA
,
BB

,

CC i

If a hexagon (six-point)
AB C A EC/ (Fig. 60) has its ver

tices of odd order
(
i st, 3rd, and 5th)

Fig. 60.

on one straight line u, and its ver

tices of even order (2nd, 4th, and

6th) on another straight line ?/,

then the three pairs of opposite

sides (AB and /#*
,
B C and

BC
,
CA and C A) meet in three

points lying on one and the same

straight line u&quot; *.

of only three points, the theorem

may be enunciated as follows

with reference to the three pairs

of rays aa
, W, cc :

If a hexagon (six-side) ab ca bc

(Fig. 61) be such that its sides of

odd order (ist, 3rd, and 5th)

Fig. 61.

meet in one point U, and its sides

of even order (2nd, 4th, and

6th) meet in another point U
,

then the three straight lines

which join the pairs of opposite

vertices (ab and a b, b c and be
,

caf and c d) pass through one and

the same point U&quot;.

-&amp;gt;. 17&quot;

u D 1

Fig. 62. Fig. 63.

88. Returning to the con- Returning to the construction

struction of Art, 84
(left), let the of Art. 84 (right), let the straight

*
PAPPUS, loc. cit., Book vii. prop. 139.
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centre S be taken at the point

where AA meets BB&amp;gt;
,
and the

centre S at the point where AA

line joining the points aa
,
cc be

taken as the transversal s, and

that joining the points aa
,
W

meets CC (Fig. 62). Then since as the transversal / (Fig. 63).

SB ,
S B meet in B

,
and SO, Then since the line joining the

S C in C, therefore B G is the points sb
,
s b is 6, and the line

straight line u&quot;. Consequently joining the points sc
,
s c

r
is c

f

,

any other pair of corresponding therefore be is the point U&quot;.

points D and D are constructed

by observing that the straight

lines SD
,
S D* must meet on B C.

From a consideration of the

Consequently any other pair of

corresponding rays d arid df
are

constructed by observing that the

points sd
,
s d must be collinear

with be .

From a consideration of the

figure SS CDD Bf which is a figure ss cdd b, which is a hexa-

hexagon, we derive the theorem : gon (six
-
side) we derive the

theorem :

In a hexagon, of which two In a hexagon, of which two ver-

sides are segments of the bases of tices are the centres of two pro-

two projective ranges, and the four jective pencils, and the four others

others are the straight lines con- are the points of intersection of

necting four pairs of correspond

ing points, the straight lines which

join the three pairs of opposite

vertices are concurrent.

89. If in the problem of Art.

84 (left) the three straight lines

AA
,
BB

,
CC f

passed through the

same point S
(if,

for example, A

four pairs of corresponding rays,

the three points in which the pairs

of opposite sides meet one another

are collinear.

If the three points aa
,
bb

f

,
cc

in Art. 84 (right) lay on the

same straight line s
(if,

for ex

ample, a and a coincided), then

and A coincided), then the two the two pencils would be in per-

ranges would be in perspective ; spective ;
we should therefore

we should therefore only have to only have to connect the two

draw rays through S in order to centres of the pencils with every

obtain any number of pairs of cor- point of s in order to obtain any

responding points (Fig. 19). number of pairs of corresponding

rays (Fig. 20).

90. If the two ranges u and u (Art. 84, left) are superposed one

upon the other, i.e. if the six given points AA BB CC lie on the

same straight line (Fig. 64), we first project u from an arbitrary

centre S r on an arbitrary straight line u
lt
and then proceed to make

the construction for the case of the ranges u=(ABC ...) and

^ ...),
i.e. to construct with regard to the pairs of points

J, (CCJ in the way shown in Art. 84. A pair of corre

sponding points D and D
1
of the ranges u and u^ having been found,
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the ray S D^ determines upon u the point D which corresponds
to D.

The construction is simpler in the case where two corresponding

points A and A coincide (Fig. 65).
When this is so, if u

t
be drawn

through 4, the range u^ will be in per

spective with u
; thus, after having

projected uf

upon u^ from an arbi

trary centre
,&&quot;,

if 8 be the point
where BE and (?(?/ meet, it is

only necessary further to project u
from S upon u

lt and then u from

S upon u .

The two collinear ranges u and

u have in general two self-corre

sponding points ;
one at AA

,
and

a second at the point of inter

section of their common base line

with the straight line SS .

If then SS passes through the point uu
lt the two ranges u and u

have only one self-corresponding point. If it were desired to con
struct upon a given straight line two collinear ranges having
A and A for a pair of corresponding points, and a single self-corre

sponding point at M (Fig. 66), we should proceed as follows. Take

Fig. 64.

Fig. 65.

any point S ,
and draw any straight line u

t through M ; project A from

y on u^ ; join the point A
:
so found to A, and let AA

l
meet S M in ti.

Then to find the point on u which corresponds to any point B on u,

project B from S into B
I}
and then B

1
from S into B

;
this last is

the point required.

If the two pencils U 9
U (Art. 84, right) are concentric, i.e. if the

six rays aa Wccf pass all through one point, we first cut afb c by
a transversal and then project the points of intersection from an

arbitrary centre U
l

. If
1
6
1
c
1
are the projecting rays, we have then
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only to consider the non-concentric pencils V and U
l
=

(a1
b
l
c
l). Or

we may cut abc by a transversal in the points ABC, and a b c by
another transversal in A B C

,
and then proceed with the two ranges

ABC ..., A B G ... in the manner explained above.

The figures corresponding to these constructions are not given ;

the student is left to draw them for himself. He will see that in

these cases also the constructions admit of considerable simplification

if, among the given rays, there be one which is self-corresponding ; if,

for example, a and a coalesce and form a single ray, &c.

&quot;91. Consider two projective (homographic) plane figures TT and

T/; as has already been seen (Art. 40), any two corresponding straight

lines are the bases of two projective ranges, and any two correspond

ing points are the centres of two projective pencils.

If the two figures have three self-corresponding points lying in a

straight line, this straight line s will correspond to itself; for it will

contain two projective ranges which have three self-corresponding

points, and every point of the straight line s will therefore (Art. 82)

be a self-corresponding point. Consequently every pair of corresponding

straight lines of n arid n will meet in some point on s, and therefore

the two figures are in perspective (or in homology in the case where

they are coplanar).

92. If two projective plane figures which are coplanar have three

self-corresponding rays all meeting in a point 0, this point will be

the centre of two corresponding (and therefore projective) pencils

which have three self-corresponding rays ;
therefore (Art. 82) every

ray through will be a self-corresponding one. Hence it follows

that every pair of corresponding points will be collinear with 0\
therefore the two figures are in homology.

93. If two projective plane figures which are coplanar have four

sdf-corresponding points A ,
B

,
C

, D, no three of which are collinear,

then will every point coincide with its correspondent.

For the straight lines AB
,
AC

,
AD

,
BC

,
BD

,
CD are all self-

corresponding ;
therefore the points of intersection of AB and CD,

AC and BD, BC and AD, i.e. the diagonal points of the quadrangle

ABCD, are all self-corresponding. Since the three points A , B, and

(AB] (CD) are self-corresponding, every point on the straight line

AB coincides with its correspondent ;
and the same may be proved true

for the other five sides of the quadrangle. If now a straight line be

drawn arbitrarily in the plane, there will be six points on it which

are self-corresponding, those namely in which it is cut by the six

sides of the quadrangle; and therefore every point on the straight

line is a self-corresponding one
;
which proves the proposition.

In a similar manner it may be shown that if two coplanar pro

jective figures have four self-corresponding straight lines a, b, c, d,
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forming a complete quadrilateral (i.e. such that no three of them are con-

current), then every straight line will coincide with its correspondent.

94. THEOEEM. Two plane quadrangles ABCD
,
A B C D are,

always protective.

(1). Suppose the two quadrangles to lie in different planes ?r
,
?/.

Join AA
, and on it take an arbitrary point S (different from A

),
and

through A draw an arbitrary plane TT&quot; (distinct from n) ;
then from

S as centre project A ,
B f

,
&amp;lt;?

,
D upon TT&quot; and let A&quot;,

B&quot;
,

C&quot;
,

D&quot;

be their respective projections (A&quot;
therefore coinciding with A\

In the plane TT join AS , CD, and let them meet in E
;

so too in

the plane *&quot; join A&quot;B&quot;
, C&quot;D&quot;, and let these meet in E&quot;. The

straight lines ABE
,

A&quot;B&quot;E&quot; lie in one plane since they meet each

other in the point A = A&quot;
;
therefore BE&quot; and EE&quot; will meet one

another in some point Sr
Now let a new plane n &quot;

(distinct from
TT)

be drawn through the

straight line ABE, and let the points A&quot;,
B&quot;

, C&quot;, D&quot;,
E&quot; be pro

jected from S
l

as centre upon IT&quot; . Let A
&quot;,
B &quot;

, C&quot;&quot;,
D

&quot;,
E &quot;

be their respective projections, where A&quot;
,
B r&amp;gt;

,
E f &quot; are collinear and

coincide with A
,
B

,
E respectively, and C

&quot;,
D

&quot;,
E &quot; are collinear

also, since their correspondents C&quot;,
D

&quot;,
E&quot; are collinear. The straight

lines CDE
, C

f
&quot;D &quot;E&quot; lie in one plane since they meet each other

in the point E = E&quot;
f

;
therefore CC &quot; and DD &quot;

will meet one

another in some point S
2

. If now the points A &quot;,
B

&quot;,
C

&quot;,
D &quot; be

projected from S
2
as centre upon the plane TT, their projections will

evidently be A
,
B

,
C

,
D.

The quadrangle A BCD may therefore be derived from the quad

rangle A B G D by first projecting the latter from S as centre upon
the plane w&quot;,

then projecting the new quadrangle so formed in the

plane TT&quot; from S
1 upon TT&quot;

,
and lastly projecting the quadrangle so

formed in the plane TT
&quot; from S2 upon TT

;
that is to say, by means

of three projections and three sections *.

(2). The case of two quadrangles lying in the same plane reduces

to the preceding one, if we begin by projecting one of the quadrangles

upon another plane.

(3). If the two quadrangles (lying in different planes) have a pair

of their vertices coincident, say D and Z)
,
then two projections will

suffice to enable us to pass from the one to the other; or, what

amounts to the same thing, a third quadrangle can be constructed

which is in perspective with each of the given ones ABCD,
A B C D .

For let there be drawn through D two straight lines s and s
,
one

in each of the planes; let s cut the sides of the triangle ABC in

* GKASSMANN, Die stereometriachen Gleichnnyen dritten Grades und die dadurch

erzeugten Olerflachtn ; Crelle s Journal, vol. 49. 4 (Berlin, 1855).
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L
, M, N respectively, and let s cut the sides of the triangle A B C in

L
,
M

,
Nf

respectively. Then in the plane ss
f
the straight lines LL

,MM
,
NN will form a triangle which is in perspective at once with

ABC and with A. B C .

(4). If the quadrangles (still supposed to lie in different planes)
have two pairs of their vertices C= C

,
D = D coincident, then if

the straight lines AA
,
BB f meet one another the quadrangles will be

directly in perspective, the point of intersection of A A and BB
being the centre of projection ;

so that we can pass at once from the

one quadrangle to the other by one projection from 0. If AA
,
BB

are not in the same plane, so that they do not meet one another, then

through CD let an arbitrary plane 77&quot; be drawn, and in it let the

straight line be drawn which meets AB and A!B . If in this straight
line two arbitrary points A&quot;,

B&quot; be taken, then A&quot; B&quot; C&quot; D&quot; will be

a quadrangle which is in perspective at once with ABCD and with
A B C D .

95. From the theorem just proved it follows that two projective

plane figures TT and IT can be constructed when we are given two

corresponding quadrangles ABCD, A B C D
; for the operations

(projections and sections) which serve to derive A B f C D from
ABCD will lead from any point or straight line whatever of TT to the

corresponding point or straight line of T/; and vice versa.

Or, again, it may be supposed that two corresponding quadrilaterals
are given. For if in these two corresponding pairs of opposite ver

tices be taken, we have thus two corresponding quadrangles ;
and the

operations (projections and sections) which enable us to derive

one of these quadrangles from the other will also derive the one

quadrilateral from the other.

96. Two plane figures may also be made projective in another

manner; leaving out of consideration the relative position of the

planes in which they lie, we may operate on each of the figuies

separately*. Suppose that we are given, as corresponding to one

another, two complete quadrilaterals abed, a b tfdf. &quot;We begin by
constructing, on each pair of corresponding sides, such as a and of,

the projective ranges which are determined by the three pairs of

corresponding points ab and a b
,
ac and aV, ad and a d!. This

done, to every point of any of the four straight lines a,b.c t
d will

correspond a determinate point of the corresponding line in the

other figure.

(1). Now let in the first figure a transversal m be drawn to cut

a, b, c, d in A ,B ,C,D respectively ;
then the points A

,
fi

,
C

,
D

which correspond to these in the second figure will in like manner lie

on a straight line m .

* STAUDT, Geom. der Lage, Art. 130.

G
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For, considering the triangle abc, cut by the transversals d and m,
the product of the three anharmonic ratios

a (bcdm) ,
b (cadm) ,

c (abdm)

is equal to + i (Art. 140); but these anharnaonic ratios are equal

respectively to the following :

a (VJd )
. A

,
b tfa d

)
.&

,
c (a b d

}
. C ,

so that the product of these last three is also equal to + i. And

therefore, since the points afdl
,
b df

,
c df are collinear, the points

A
,
B

,
C f

are also collinear (Art. 140).

By considering in the same manner the triangle abd, cut by the

transversals c and m, it can be shown that A
, ,

D f
are collinear;

it follows then that the four points A
,
B

,
C f

,
D f

all lie on the

same straight line ra
,
the correspondent of m.

This proof holds good also when m passes through one of the

vertices of the quadrilateral abed
;

if for example m pass through

cd, the anharmonic ratios c(abdm), d(abcm) will each be equal to + i;

the reasoning, however, remains unaltered.

Thus every pair of corresponding vertices of the quadrilaterals

abed
,
a Vc d (for example cd and c d

}
become the centres of two

protective pencils, in which to c
, d, (cd)(ab) correspond c

,
d

, (c d
f

)(a
f
b

f

)

respectively, and to any ray cutting a
,
b in two points P

, Q cor

responds a ray cutting a
,
If in the two corresponding points P , Q .

(2),
The two ranges ABCD

,
A B C W in which the sides of the

quadrilaterals abed
,
a Vc d are respectively cut by two corresponding

straight lines m
,
mf

are projective.

For, considering the triangle bcm, cut by the transversals a and d,

the product of the anharmonic ratios of the three ranges

be
,
B

,
ba

,
bd

C
,

cb
,
ca

,
cd

B
,
C

,
A

,
D

is equal to + i. And considering in like manner in the other plane

the triangle b c m
,
cut by the transversals a and d

,
the product of

the anharmonic ratios of the three ranges

6V, & ,b a ,b d

C ,c b ,c a ,c d

B ,C ,A ,D
is also equal to + i. But the range in which b is cut by the pencil

cmad is equianharmonic with the range in which b is cut by the

pencil c m a d
]

i.e. the ranges

be
,
B

,
ba

,
Id

6V, B ,Va t
b d

are equianharmonic ;
and for a similar reason the ranges
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C
,

cb
j

ca
,

cd

C&quot;,
c b

,
c a

,
c d

are equianharmonic. Therefore the ranges

B
,
C

,
A

,
Z&amp;gt;

, C&quot;,
4

,
/)

will be equianharmonic and therefore projective ;
whence ib follows

that the projective ranges 971 and mf are determined by means of

the pairs of corresponding points lying on a and a
,

b and 6
,

c and c .

(3). If the straight line m turn round a fixed point M, then mf
also will revolve round a fixed point.

For by hypothesis the points A and B, in which m cuts a and b,

describe two ranges in perspective whose self-corresponding point is

db. Similarly the points A
,
B describe two ranges, which, being

respectively projective with the ranges on a
,
b

,
are projective with

one another; and which are further seen to be in perspective,
since they have a self-corresponding point afb . Consequently the

straight line mf will always pass through a fixed point M ,
the

correspondent of M
;
and will therefore trace out a pencil. The

pencils generated by m and mf are projective, since the ranges
are projective in which they are cut by a pair of corresponding
sides of the quadrilaterals, e.g. by a and a . To the rays of the

pencil M which pass respectively through the vertices db
,
ac

,
ad

,

be
,
bd

,
cd of the quadrilateral abed correspond the rays of the pencilM which pass respectively through the vertices a b

,
a c

,
a d

,
b c

,

b d
,
c d of the quadrilateral a b c d .

This reasoning holds good also when the point M, round which
TO turns, lies upon one of the sides of the quadrilateral, on c for

example ;
because we still obtain two ranges in perspective upon two

of the other sides. Since c is now a ray of the pencil M, c will be

the corresponding ray of the pencil M ; that is to say, M will lie on
c . IfM be taken at one of the vertices, as cd, then M will coincide

with c d
,
&c.

(4). Now suppose the pencil M to be cut by a transversal n, and the

pencil Mf
to be cut by the corresponding straight line n . While the

point mn describes the range n, the corresponding point m n will

describe the range n
;
and these two ranges will be projective since

they are sections of two projective pencils. When the point mn falls

on one of the sides of the quadrilateral abed, the point m n will fall

on the corresponding side of the quadrilateral a b c d ; therefore the

two projective ranges are the same as those which it has already
been shown may be obtained by starting from the pairs of correspond

ing points on a and a
,
b and b

,
c and c .

G 2
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In this manner the two planes become related to one another in

such a way that there corresponds uniquely to every point in the one a

point in the other, to every straight line a straight line, to every

range a protective range, to every pencil a projective pencil. The
two figures thus obtained are the same as those which can be obtained,

as explained above (Art. 95) by means of successive projections and

sections, so arranged as to lead from the quadrilateral abed to the

quadrilateral a b c d . For the two figures ?/ derived from IT by
means of these two processes have four self-corresponding straight
lines a

,
b

,
c

,
d forming a quadrilateral, and therefore (Art. 93)

every element (point or straight line) of the one must coincide with

the corresponding element in the other
;

i. e. the two figures must be

identical.

97. THEOREM. Any two protective plane figures (the straight lines

at infinity in which are not corresponding lines) can be superposed
one upon the other so as to become homological.

Let i
, y be the vanishing lines of the two figures i. e. the

straight lines in each which correspond respectively to the straight
line at infinity in the other. In the first place let one of the figures

be superposed upon the other in such a manner that i and f may be

parallel to one another. Since to any point M on i corresponds a

point at infinity in the second figure, to the pencil of straight lines

in the first figure which meet in M corresponds in the second figure

a pencil of parallel rays. Through M draw the straight line m
parallel to these rays ;

then m will be parallel to its correspondent m .

Similarly let a second point N be taken on i and through N let the

straight line n be drawn which is parallel to its correspondent n
;

let m and n meet in S
t
and m! and n in S . If through S a straight

line I be drawn parallel to i, its correspondent l
f
will pass through S

and will also be parallel to i, since the point at infinity on i corre

sponds to itself. The corresponding pencils S and iS
r/
are therefore such

that three rays Z
,
m

,
n of the one are severally parallel to the three

corresponding rays Z
,
m

,
nf

of the other; and consequently (see

below, Art. 104) the two pencils are equal. Now let one of the planes

be made to slide upon the other, without rotation, until S comes

into coincidence with S] then the two pencils will become concentric;

and since they are equal, every ray of the one will coincide with the

ray corresponding to it in the other. This being the case, every

pair of corresponding points will be collinear with S, and the two

figures will be homological, S being the centre of hornology.

98. Suppose that in a plane TT is given a quadrangle AJ3CD, and

in a second plane TT a quadrilateral afb c d . By means of construc

tions analogous to those explained in Arts. 94-96, the points and

straight lines of the one plane can be put into unique correspondence
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with those of the other, so that to any range in the first plane cor

responds in the second plane a pencil projective with the said range,
and to any pencil in the first plane corresponds in the second plane a

range projective with the said pencil. Two plane figures related to

one another in this manner are called correlative or reciprocal.



CHAPTER XL

PARTICULAR CASES AND EXERCISES.

99. Two ranges are said to be similar, when to the points

A, 3, C, I), ...of the one correspond the points A ,
B ,C ,D ,...

of the other, in such a way that the ratio of any two corre

sponding segments AB and A B
,
ACsmd A C

, ... is a constant.

If this constant is unity ,
the ranges are said to be equal.

Two similar ranges are protective, every anharmonic ratio

such as (ABCD) being equal to the corresponding ratio

(A B C I)
).

For suppose the

bases of the two ranges to lie

in the same plane (Fig. 67)
and let their point of inter

section be denoted by P when
considered as a point be

longing to u and by Q when
considered as a point belong

ing to u. Let A
,
A be any

pair of corresponding points ;
P that point of u which corre

sponds to P
,
and Q that point of u which corresponds to Q.

Draw A A&quot; parallel to ?/, and A A&quot; parallel to u.

The triangles PQQ ,
PA A&quot; have the angles at Q and A

equal and the sides about these equal angles proportionals,
since by hypothesis

PQ PA PA
P Q

~
P A

~
AA&quot;

Therefore the triangles are similar, and the angles QPQ and
APA&quot; are equal; and consequently the points P, Q ,

A&quot; are

collinear. If then the range ABC ... be projected upon PQ ,

by straight lines drawn parallel to u
,
we shall obtain the

range A&quot; B&quot; 6 &quot;... ;
and from this last, by projecting it upon
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u by straight lines drawn parallel to u, the range A B C ...

may be derived.

If PQ=P Q ,
i.e. if the straight line PQ makes equal

angles with the bases of the given ranges, the ranges are

equal.

To the point at infinity of u corresponds the point at infinity

of u .

100. Conversely, if the points at infinity I and I of two

protective ranges u and u correspond to each other, the ranges

trill be similar. For if (Fig. 67) u be projected from I
,
and u

from / (as in Art. 85, left), two pencils of parallel rays will be

formed, corresponding pairs of which intersect upon a fixed

straight line u&quot; . The segments A&quot; B&quot; of u&quot; will be propor
tional to the segments AB ofn and also to the segments A B
of /; consequently the segments AB of u will be proportional

to the segments A B f
of u .

Otherwise: if AA
,
BB

,
CC f

are three pairs of corre

sponding points, and 7, / the points at infinity, we have (by

Art. 73)

(ABCI) = (A B CT) ;

or (by Art. 64), since /and V are infinitely distant,

AC_ _ A C

BC
~
B C

*

an equation which shows that corresponding segments are

proportional to one another.

Examples. If a flat pencil whose centre lies at a finite distance

be cut by two parallel straight lines, two similar ranges of points will

be obtained.

Any two sections of a flat pencil composed of parallel rays are

similar ranges.

In these two examples the ranges are not only projective, but also

in perspective : in the first case the self-corresponding point lies at

infinity; in the second case it lies (in general) at a finite distance.

101. Two flat pencils, whose centres lie at infinity, are pro

jective and are called similar, when a section of the one is

similar to a section of the other. When this is the case any
other two sections of the pencils will also be similar to one

another.

102. From the equality of the anharmonic ratios we con

clude that two equal ranges are projective (Art. 79), and that
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conversely two projective ranges are equal (Art. 73), when the

corresponding segments which are bounded by the points of
two corresponding triads ABC and A B C are equal ;

i.e. when
A B =AB,A Cf

=AC, (and consequently B C =BC).

Examples. If a flat pencil consisting of parallel rays be cut by
two transversals which are equally inclined to the direction of the

rays, two directly equal ranges of points will be obtained *.

If a flat pencil of non-parallel rays be cut by two transversals
which are parallel to one another, and equidistant from the centre of
the pencil, two oppositely equal ranges will be obtained *.

103. Two similar ranges lying on the same base, and which have one

self-corresponding point N at infinity, have also a second such point
M, which is in general at a finite distance. If AA

,
BB are two

pairs of corresponding points,

MA : MA =AB : A B = a constant.

To find M therefore it is only necessary to divide the segment AA
into two parts MA , MA which bear to one another a given ratio.

This ratio MA : MA is equal (Art. 64) to the anharmonic ratio

(AA MN). If its value is - i, the points AA MN are harmonic

(Art. 68), i.e. M is the middle point of AA ,
and similarly also that of

every other corresponding segment BB f

,
...

;
in other words, the two

ranges, which in this case are oppositely equal, are composed of pairs
of points which lie on opposite sides of a fixed point J/, and at equal
distances from it.

But if the constant ratio is equal to + i, i.e. if MA and MA are

equal in sign and magnitude, the point M will lie at infinity. For
since (AA MN)=i, .-. (NJfA A) = i (Art. 45); consequently the

points M and N coincide.

It follows also from the construction of Art. 90 (Fig. 66) that two

ranges on the same base, which have
a single self-corresponding point lying
at infinity, are directly equal.

For if in Fig. 66 the point M
move off to infinity, the straight lines

___ 88 and A
l
B

l
become parallel to the

Aj
given straight line u or u on which

Fig. 68. the ranges lie (Fig. 68), and as

the triangles SA& and S A^ lie

upon the same base and between the same parallels, the segments
*
Imagine a moving point P to trace out a range AI1C... and its correspondent

P to trace out simultaneously the equal range A B C .... Then if P and P
move in the same direction, the two ranges are said to be directly equal ;

if P
and P move in opposite directions, the ranges are said to be oppositely equal.
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which they intercept upon any parallel to the base are equal ;
thus

AB=A fBf

,
or two corresponding segments are equal] consequently

AA -=BB*
,

i.e. the segment bounded by a pair of corresponding points

is of constant length. We may therefore suppose the two ranges to

have been generated by a segment given in sign and magnitude,
which moves along a given straight line

;
the one extremity A of

the segment describes the one range, and the other extremity Af

describes the other range.

Conversely it is evident that if a segment AA
f

^ given in sign and

magnitude, slide along a given straight line, its extremities A and A
will describe two directly equal (and consequently projective) ranges,

which have a single self-corresponding point, lying at an infinite

distance.

104. Two flat pencils are said to be equal when to the

elements of the one correspond the elements of the other in

such a way that the angle included between any two rays
of the first pencil is equal in sign and magnitude to tbe angle
included between the two corresponding rays of the second.

It is evident that two such pencils can always be cut by
two transversals in such a way tbat the resulting ranges are

equal ;
but two equal ranges are always projective ;

therefore

also two equal flat pencils are always projective.

Conversely, two projectiveflat pencils abed ... and a b c d ... will

be equal if three rays abc of the one make with each other angles

which are equal respectively to those which the three corresponding

rays make with each other.

This theorem may be proved by cutting the two pencils

by two transversals in sucb a way tbat the sections ABC
and A B C of the groups of rays abc and a l/c may be equal.
Tbe projective ranges so formed will be equal (Art. 102); con

sequently also the other corresponding angles ad and a d ,... of

the given pencils must be equal to one another.

105. Since two equal forms (ranges or flat pencils) are

always projective with one another, it follows that if a range
or a flat pencil be placed in a different position in space,

without altering the relative position of its elements, tbe form

in its new position will be projective with regard to the same
form in its original position.

106. Consider two equal pencils abcd...&nd a b c d ... in the

same plane or in parallel planes ;
and suppose a ray of the

one pencil to revolve about tbe centre and to describe the
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pencil ;
then the corresponding ray of the other pencil will

describe that other pencil, by revolving about its centre.

This revolution may take place in the same direction as

that of the first ray, or it may be in the opposite direction
;

in the first case the pencils are said to be directly equal, and in

the second case to be oppositely equal to one another.

In the first case the angles aa
,
bb y cc, . . . are evidently all

equal, in sign as well as in magnitude ; consequently a pair
of corresponding rays are either always parallel or never

parallel.

In the second case two corresponding angles are equal in

magnitude, but of opposite signs. If then one of the pencils
be shifted parallel to itself until its centre coincides with that

of the other pencil, the two pencils, now concentric, will still

be projective (Art. 105) and will evidently have a pair of

corresponding rays united in each of the bisectors (internal
and external) of the angle included between two correspond

ing rays a and a . It follows that these rays are also the

bisectors of the angle included between any other pair of

corresponding rays. If the first pencil be now replaced in its

original position, so that the two pencils are no longer con

centric, we see that there are in each pencil two rays, each of
which is parallel to its correspondent in the other pencil ; and these

tivo rays are at right angles to each other, since they are parallel

to the bisectors of the angle between any pair of correspond

ing rays.

107. If two flat pencils abed... and a b cd ... are projective, and

if the angles aa
,
bit

,
cc included by three pairs of corresponding rays

are equal in magnitude and of the same sign, then the angle dd

included by any other pair of corresponding rays will have the same

sign and magnitude.

For if we shift the first pencil parallel to itself until it

becomes concentric with the second, and then turn it about the

common centre through the angle aa
,
the rays a, b, c will coin

cide with the rays a
,
b

,
c respectively. The two pencils, which

are still projective (Art. 105), have then three self-correspond

ing rays ; consequently (Art. 82) every other ray will coincide

with its correspondent. If now the first pencil be moved back

into its original position, the angle dd will be equal to aa .

108. As the angles aa
,
bb

,
cc

, ... of two directly equal
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pencils are equal to one another, such pencils, when concentric

and lying in the same plane, may be generated by the rotation

of a constant angle aa
f
round its vertex 0, supposed fixed

;
the

one arm a traces out the one pencil, while the other arm a

traces out the other pencil.

Conversely, if an angle of constant magnitude turn round

its vertex, its arms will trace out two (directly) equal and

therefore projective pencils. Evidently these pencils have no

self-corresponding rays.

A transversal cutting these two pencils determines on

itself two collinear ranges having no self-corresponding points.

What has been said in Arts. 104-108 with respect to two pencils

in a plane might he repeated without any alteration for the case of

two axial pencils in space.

109. (1). Let AEG ..., A B C ... he two projective ranges lying

upon the same base, and let them, by means of the pencils abc...,

afb c ..., be projected from different points 17,17 . Let i, j
r be those

rays passing through U, V respectively, which are parallel to the

given base, and let e
, j be the rays corresponding to them. The

points /
,
J in which these last two rays cut the given base will then

be those points which correspond to the point at infinity (/ or J
)
of

the base, according as that point is regarded as belonging to the

range ABC ... or to the range A B C ... .

The fact that the two corresponding groups of points are pro-

jectively related gives an equation between the anharmonic ratios,

from which we deduce (as in Art. 74)

,74. 7 4 = /./ = a constant; . . . . (1)

i.e. the product JA . I A is constant for every pair of points A, A .

Let be the middle point of the segment JI
,
and O f

the point

corresponding to regarded as a point belonging to the first range.

Since the equation (1) holds for every pair of corresponding points,

and therefore also for and
,
we have

JA . PA = JO . I V, (2)

or (OA-OJ)(OA -01f
)+OJ(OO -OIf

)
= o t

or since 01 = OJ,
OA.OA -OI (OA-OA +OOf

)
= o (3)

Let us now enquire whether there are in this case any self-

corresponding points. If such a point exist, let it be denoted by E ;

then replacing both A and A in (3) by E, we have

OEZ = OI .00 (4)

&quot;We conclude that when 01 . 00 is positive, i.e. when does not
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lie between / and #
,
there are two self-corresponding points E and

F, lying at equal distances on opposite sides of 0, and dividing the

segment I O harmonically (Art. 69).

When lies between 1 and
,
there are no such points.

When coincides with 0, there is only one such point, viz. the

point itself.

(2). Imagine each of the given ranges to be generated by a point

moving always in one direction*. If the one range is described in

the order ABC, the other range will be described in the order A B C ;

this order may be the same as the first, or may be opposite to it.

If the order of ABC is opposite to that of A B C
,
the same will be

the case with regard to the order ofHA and that of I J A
,
and again

with regard to the finite segment JA and the infinite segment J A
;

i. e. the finite segments JA and I A f have the same sign. In con

sequence therefore of equation (2), JO and I O have the same sign ;

so that does not fall between I and O r

(Fig. 69 a) ;
there are there

fore two self-corresponding points. And these will lie outside the

finite segment //
, since OE is a mean proportional between 01 and

00 .

If the order of ABC is the same as that of A B C
,
we arrive in a

similar manner at the con

clusion that JA and I A
,u (

r o u

b
\ u j o u and again JO and I O

,
have

r opposite signs. In this case

Fig. 69. then, self-corresponding points

exist if does not lie be

tween I and
;
that is, if lies between and / (Fig. 69 b).

And
these will lie within the segment JI

,
since OE is a mean proportional

between 01 and 0(7.

(3). Suppose that there are two self-corresponding points E and

F (Fig. 70); draw through E any straight line, on which take two

points ft, S ; and project one of

the ranges from S and the

other from S . The two pencils

which result are in perspective,

since they have a self-corre

sponding raySES ; accordingly

the corresponding rays SA and

S A
t
SB and S B

,
... &Fand

Fig. 70. S F will intersect in points

lying on a straight line u&quot;

which passes through F.

Let E&quot; be the point where this straight line u&quot; meets SS . Then

*
STEINEB, loc. cit., p. 61. 16, II. Collected Works, vol. i. p. 280.
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EFAA and EFBB are the projections of EE&quot;$S from the centres

A&quot; and B&quot; respectively; therefore EFAA and EFBB are protective
with one another; thus the anharmonic ratio of the system consisting
of any two corresponding points together with the two self-corre

sponding points is constant.

In other words : two protective forms which are superposed one upon
the other, and which have two self-corresponding elements, are composed
ofpairs of elements which give with two fixed ones a constant anhar-
tnonic ratio *.

(4). Next suppose that there are no self-corresponding points ;
so

that lies between and / (Fig. 71). Draw from a straight line

U at right angles to the given base and make U the geometric
mean between I O and 00 f

;
thus I UO will be a right angle.

Again, draw through U the straight line IUJ parallel to the given

base; then the angle IUT will be equal to JUJ
,
and the angle

QUO will be equal to O/ ^and
therefore to IUI . Thus in the

two protective pencils which pro

ject the two given ranges from U,
the angles IUI

,
JUJ

,
QUO

included by three pairs of cor

responding rays are all equal; Fig. 71.

consequently (Art. 107) the angles
A UA

,
BUB

,
... are also all equal to them and to one another, and

are all measured in the same direction t.

Thus : two collinear ranges which have no self-corresponding points
can always be regarded as generated by the intersection of their base
line with the arms of an angle of constant magnitude which revolves,

always in the same direction, about its vertex.

11O. We have seen (Art. 84) the general solution of the problem :

Given three pairs of corresponding elements of two projective one-
dimensional forms, to construct any desired number of pairs ; or, in

other words, to construct the element of the one form which corre

sponds to a given element of the other. The solution of the following
particular cases is left as an exercise to the student :

i. Suppose the two forms to be two ranges u and uf
which lie on

different bases ; and let the given pairs of elements be

(a) PandP
, QzndQ l, A and A

;

* The above construction gives the solution of the problem : Given two pairs
A

,
A and B

,
B of corresponding points, and one of the self-corresponding points

E, to find the other self-corresponding point.

f CHASLES, loc. cit., p. 119.

t P,P ,Q,Q ,I, I , J, J nave the same meaning as in Art. 84
;
A

,
B

, ... are

any given points.
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2. Solve problems (d) and (g), supposing the ranges to be collinear.

3. Solve the problems correlative to (a) and (b) when the two given
forms are two non-concentric pencils.

4. Suppose one of the pencils to have its centre at infinity.

5. Suppose both the pencils to have their centres at infinity.
111. He may also prove for himself the following proposition :

If the three vertices A
,
A f

, A&quot; of a variable, triangle slide respectively
on three fixed straight lines u, u

,
u&quot; which meet in a point, while two

of its sides A
A&quot;,

A&quot;A turn respectively round two fixed points and

,
then will also the third side AA always pass through a fixed point

,
collinear with and # .

It is only necessary to show that the points A
,
A

,
A&quot; in moving

describe three ranges which are two and two in perspective. Or the

theorem of Art, 16 may be applied to two positions of the variable

triangle.

This proposition proved, the following corollary may be at once

deduced :

If the four vertices A
,
A

, A&quot;,
A&quot;

f

of a variable quadrangle slide re

spectively upon four fixed straight lines

which all pass through the same point 0,

while three of its sides AA
,
A

A&quot;,
A&quot;A &quot;

turn respectively round three fixed points
C

,
B

&quot;,
B

,
then will the fourth side

A &quot;A and the diagonals A
A&quot;,

A A &quot;

2&amp;gt;ass respectively through .three other fixed

points C&quot;
, C&quot;, B&quot;, which are deter

mined by the three former ones. The six

fixed points are the vertices of a complete

quadrilateral, i.e. they lie three by three

on four straight lines (Fig. 72).

In a similar manner may be deduced the analogous corollary

relating to a polygon of n vertices.

112. THEOEEM. If a triangle 1 0^03 circumscribes another triangle

U^U2
U

3 ,
there exist an infinite number of triangles each of which is

circumscribed about the former and inscribed in the latter (Fig. 73).

The two pencils

Fig. 72.
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obtained by projecting the range /&quot;

2
Z7

3
... from

2
and from

3 ,
are

evidently in perspective. Similarly the pencils

0^, V
2 ,
U8 ...) and O

a (Ult f/
2 ,
U

s ...)

obtained by projecting the range U
1
U

3
... from 0^ and from

3 ,
are

in perspective. Therefore the pencils

Oi(Uv Ut,ir9 ...)
and f (Z7i, ZT-,,0;...)

are protective (Art. 41); but the rays 1
U

3
and

2
7
3 coincide;

therefore (Art. 62) the pencils are in perspective, and their corre

sponding rays intersect in pairs on U
l
U

2
.

There are then three pencils 15 Oz , 3 ,

which are two and two in perspective ;

corresponding rays of the first and

second, second and third, third and first,

intersecting in pairs on the straight lines

l\Uz ,
U

2
U

3 ,
U

3
L7

1 respectively. This

shows that every triad of corresponding

rays will form a triangle which is cir

cumscribed about the triangle 1 2 3)

and inscribed in the triangle 7.,72 (73 *.

113. THEOREM. A variable straight

line turning about a fixed point U cuts two fixed straight lines u and
uf

in A and A respectively; if S ,
S are two fixed points collinear

with uuf

,
and SA

,
S A be joined, the locus of their point of intersection

M will be a straight line f.

To prove this, we observe that the points A and A trace out

two ranges in perspective with one another, and that consequently the

pencils generated by the moving rays SA
,
S A are in perspective

(Arts. 41, 80).

The demonstration of the correlative theorem is proposed as an

exercise to the student.

114. THEOEEM. U
,
S

,
S are three collinear points ; a transversal

turning about U cuts two fixed straight lines u and u in A and A f

respectively ; if SA ,
S A be joined, their point of intersection M will

describe a straight line passing through the point uu \.

The proof is analogous to that of the preceding theorem.

The proposition just stated may also be enunciated as follows :

If the three sides of a variable triangle AA M turn respectively about

three fixed collinear points U, S, S
,
while two of its vertices A

,
A

* STEINER, loc. cit., p. 85. 23, II. Collected Works, vol. i. p. 297.

f PAPPUS, loc. cit., book VII. props. 123, 139, 141, 143; CHASLES, loc. cit.,

pp. 241, 242.

J CHASLES, loc. cit., p. 242.
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slide respectively upon two fixed straight lines u
,
u

,
then will the

third vertex M also describe a straight line *.

In a like manner may be demonstrated the more general theorem :

If a polygon of n sides displaces itselfin such a manner that each of
its sides passes through one of n fixed collinear points, while ni
of its vertices slide each on one of n i fixed straight lines, then will

also the remaining vertex, and the point of intersection of any two

non-consecutive sides, describe straight lines t.

The correlative proposition is indicated in Art. 85.

115. PROBLEM. Given a parallelogram ABCD and a point P in its

plane, to draw through P a parallel to a given straight line EF also

lying in the plane, making use of the ruler only.

First Solution. Let E and F (Fig. 74) be the points where the

given straight line is cut by AB and

AD respectively. On AC take any

point K\ join EK, meeting CD in

G, and FK, meeting EG in H.

The triangles AEF
,
CGH are

homological (Art. 18), since AC
,
EG

,

FH meet in the same point K\ and

the axis of homology is the straight

line at infinity, since the sides

AE
,
AF of the first triangle are parallel respectively to the cor

responding sides CG, CH of the second. Therefore also the remaining
sides EF and GH are parallel to one another J.

The problem is thus reduced to one already solved (Art. 86), viz.

given two parallel straight lines EF and GH, to draw through a

given point P a parallel to them.

Second Solution . Produce (Fig. 75) the sides AB, BC , CD, DA
Q P and a diagonal AC of the

given parallelogram to meet

the given straight line EF in

E, F, G, II, I respectively, and

join EP, GP. Through 7 draw

any straight line cutting EP in

A and GP in &amp;lt;?
, and join HA ,

- 74-

FO
;

if these meet in Q, then

will PQ be the required straight

line.

For if B denote the point where EP cuts FQ, and D /
the point

* This is one of Euclid s porisms. See PAPPUS, loc. cit., preface to book VII.

f This is one of the porisms of PAPPUS ; loc. cit., preface to book VII.

PONCELET, ProprUtes projectives, Art. 198.

LAMBERT, Freie Perspective (Zurich, 1774), vol. ii. p. 169.
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where GP cuts HQ, the parallelograms ABCD and A B C D are

homological, EF being the axis of homology. The point P corre

sponds to the point of intersection of AB and CD, and the point Q
to that of BC and AD; therefore PQ corresponds to the line at in

finity in the first figure; accordingly it is the vanishing line of the

second figure, and consequently PQ is parallel to EF (Art. 18).
116. PEOBLEM. Given a circle and its centre; to draw a perpen

dicular to a given straight line, making use of the ruler only.
Draw two diameters AC ,

BD of the circle (Fig. 76); the figure
ABCD is then a rectangle. Accordingly, if any point K be taken on

the circumference, then by means of the last

proposition (Art. 115) a parallel KL can be ? *L

drawn to the given straight line EF. If
v ^ -^ f

the point L where this parallel again meets

the circumference be joined to the other

extremity M of the diameter through K,
then evidently LM will be perpendicular
to KL, and therefore also to the given

straight line.

117. PEOBLEM. Given a segment AC and
its point of bisection B, to divide BC into n equal parts, making use

of the ruler only.

Construct a quadrilateral ULDN (Fig. 77) of which one pair of

opposite sides DL
,
NU meet in A, the other pair LU ,

DN in C, and

of which one diagonal DU passes through B ;
the other diagonal LN

will be parallel to AC (Art. 59), and will be bisected in M by DU.

c

Fig. 76.

Now construct a second quadrilateral VMEO which satisfies the

same conditions as the first, and which moreover has M for an

extremity and N for middle point of that diagonal which is parallel

to AC. To do this it is only necessary to join AM and BN, meeting
in JS

}
and to join CE; this last will cut LN produced in a point
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such that NO=MN=LM. Now construct a third quadrilateral

analogous to the first two, and which has N for an extremity and

for middle point of that diagonal which is parallel to AC. If P is

the other extremity of this diagonal, then OP=NO=MN=LM.
Proceed in a similar manner, until the number of the equal segments
LM

,
MN

,
NO

, OP, ... is equal to n.

If PQ is the segment last obtained, join LB, meeting QC in Z
;

the straight lines which join Z to the points M, N , 0, P, ...will

divide BC into n equal parts *.

118. The following problems, to be solved by aid of the ruler only,

are left as exercises to the student :

Given two parallel straight lines AB and u
}

to bisect the seg
ment AB (Art. 59).

Given a segment AB and its point of bisection C
;
to draw through

a given point a parallel to AB (Art. 59).

Given a circle and its centre
;
to bisect a given angle (Art. 60).

Given two adjacent equal angles A OC, COB ; to draw a straight
line through at right angles to OC (Art, 60).

119. THEOKEM. If two triangles ABC ,
A B C

, lying in different

planes o-
, (/, are in perspective, and if the plane of one of them be made

to turn round era
,
then the point in which tlie rays AA ,

BB
,
CC

meet will cliange its position, and will describe a circle lying in a

plane perpendicular to the line aa- t.

Let D
,
E

,
F (Fig. 78) be the points of the straight line oV

in which the pairs of corresponding sidesBC and B C , CA and C A ,AB
and A B meet respectively (Art. 18). First consider the planes of the

triangles to have any given definite posi

tion, and let be the centre of projec
tion for that position. Through draw

0#, 0#, OJT paral lei respectively to the

sides of the triangle A B C
\

as these

parallels lie in the same plane (parallel

to (/) they will meet the plane o- in three

points G , If, K of the line no-.

Now suppose the plane o- together
with the triangle A B C to turn round

the line w . The range BCDG is in perspective with the range
WC DG (where G denotes the point at infinity on B C

) ,
there

fore the anharmonic ratio (BCDG) is equal to the anharinonic ratio

(B C DG
),

i.e. to the simple ratio B D : C D (Art. 64), which is

* These and other problems, to be solved by aid of the ruler only, will be found

in the work of LAMBERT quoted above.

f CHASLES, loc. cit., Arts. 368, 369. This proposition has already been proved

by a diflerent method in Art. 22,
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constant. Since then B, C, D are fixed points, G must also be a
fixed and invariable point (Art. 65). From the similar triangles

OBG, B BD
OG .B D: \BG\BD,

i. e. OG is constant. The point therefore moves on a sphere whose
centre is G and whose radius is the constant value just found for OG.

In a similar manner it may be shown that moves upon each of

two other spheres having their centres at H and K respectively.
Since then the point must lie simultaneously on several spheres,

its locus must be a circle, whose plane is perpendicular to the line

of centres of the spheres, and whose centre lies upon this same line.

This line GHK is the line of intersection of the planes TT and a-

and is consequently parallel to aar (since TT and &amp;lt;/ are parallel planes) ;

it is the vanishing line of the figure a-, regarded as the perspective

image of the figure v (Art. 13).

120. THEOKEM. Two concentric protective pencils lying in the same

plane, which have no self-corresponding rays, may be regarded as the

perspective image of two directly equal pencils *.

Let be the common centre of the two pencils. Cut them by a
transversal s, thus forming two collinear projective ranges ABC
and A B C , . . which have no self-corresponding points. Draw through
s any plane &amp;lt;/

;
we can determine in this plane (Art. 109) a pointV

such that the segments AA ,
BB

,
CO

, ... subtend at it a constant

angle; thus if the two ranges be projected from U as centre, two

directly equal pencils will be obtained. Now let the eye be placed at

any point of the straight line U, and let the given pencils be pro
jected from this point as centre on to the plane o- . In this way two
new pencils will be formed

;
and these are precisely the two directly

equal pencils mentioned in the enunciation.

*
CHASLES, loc. cit., Art. 180.

H 2,



CHAPTEE XII.

INVOLUTION.

121. CONSIDER two project!ve flat pencils (Fig. 79) having a

common centre
;

let them be cut in corresponding points by
the transversals u and u

3 thus giving two projective ranges
ABC ... and A B C ... ;

and let w&quot; be

the straight line on which the pairs

of lines AB and A B, ... (Art. 85, left)

intersect. Through draw any ray

(not a self-corresponding ray) ;
it will

cut u and u in two non-corresponding

points A and B and will meet u&quot; in
Flg &quot;

79&amp;lt; a point of the line A B. To the ray OA
of the first pencil corresponds accordingly the ray OA of the

second, and to the ray OB of the second pencil corresponds
the ray OB of the first. In other words, to the ray OA or OB f

correspond two different rays OA
,
OB according as the first

ray is regarded as belonging to the first pencil or to the

second. For the line A B must cut AB on
u&quot;,

and cannot

pass through so long as this point does not lip on u&quot;. We
see then that

In two superposed projective forms
*

(of one dimension) there

correspond^ in general, to any given element two different elements^

according as the given element is regarded as one belonging to the

first or to the secondform.

We say in general^ because in what precedes it has been

assumed that does not lie upon u&quot;.

* We say two forms, because the reasoning which we have made use of in the

case of two concentric flat pencils may equally well be applied in the case of two

collinear ranges, and of two axial pencils having a common axis. The same result

may be arrived at by cutting the two flat pencils by a transversal, and by pro

jecting them from a point lying outside their plane.
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122. But in the case where lies upon u&quot; (Fig. 80), if a

ray be drawn through to cut u and in A and B respec

tively, then will also A B pass through ;
in other words, to

the ray OA or OB corresponds
the same ray OA or OB.

This property may be expressed

by saying that the two rays

correspond doulty to one another
\

or we may say that the two rays

are conjugate to one another.

Now suppose, reciprocally,

that two concentric projective r -

8o

flat pencils have a pair of rays

.which correspond doubly to one another. Cut the pencils

by two transversals u and u
,
and let A and B denote the

points where these transversals intersect one of the given

rays; then A and B will denote the points where they

intersect the other given ray. The straight line
u&quot;,

the

locus of the points of intersection of the pairs of lines such

as MN , M N, formed by joining crosswise any two pairs of

corresponding points of the ranges u
,
u (Art. 85), will pass

through 0, since the lines AB ,
A B meet in that point. If

now there be drawn through any other ray, cutting the

transversals say in C and J)
t
then will C J) also pass through

0, i.e. the rays QCD and ODC f
also correspond doubly to

each other. We conclude that

When two superposed projective forms of one dimension are such

that any one element has the same correspondent, to whichever

form it be regarded as belonging, then every element possesses this

property.

123. This particular case of two superposed projective forms

of one dimension is called Involution*. We speak of an

involution of points, of rays, or of planes, according as the

elements are points of a range, rays of a flat pencil, or planes

of an axial pencil.

In an involution, then, the elements are conjugate to one

another in pairs; i.e. each element has its conjugate. To

whichever of the two forms a given element be considered to

*
DESARGUES, Brouillonprojet (Tune atteinte aux tenements des rencontres (Tun

cdne arec un plan (Paris, 1639) : edition POCDBA (Paris, 1864), vol. i. p. 119.



102 INVOLUTION. [124

belong, the element which corresponds to it is the same, viz.

its conjugate. It follows from this that it is not necessary to

regard the two forms as distinct, but that an involution may be

considered as a set of elements which are conjugate to one another in

pairs.

When ^4
,
BB

,
CC

,
... are said to form an involution, it is

to be understood that A and A
,
.Sand B

,
Cand

C&quot;, ... are pairs

of conjugate elements
; moreover, any element and its con

jugate may be interchanged, so that AA BB CC r

... and

A A B B C C ... are projective forms.

124. Since an involution is only a particular case of two

superposed projective forms, every section and every projection of

an involution gives another involution *.

Two conjugate elements of the given involution give rise to

two conjugate elements of the new involution. It follows

(Art. 18) that the figure homological with an involution is

also an involution.

125. When two collinear projective ranges form an involu

tion, there corresponds to each point (and consequently also to

the point at infinity / or /
)
a single paint (! or J) ;

i.e. the

two vanishing points coincide in a single point. Let this point,

the conjugate of the point at infinity, be denoted by 0. The

equation (1) of Art. 109 then becomes

OA . OAf = constant.

In other words, an involution of points consists of pairs of

points A, A which possess the property that the rectangle

contained by their distances from a fixed point 0, lying on

the base, is constant f. This point is called the centre of the

involution.

The self-corresponding elements of two forms in involution

are called the double elements of the involution. In the case of

the involution of points AA ,
BB

t
... we have

OA . OA = OB . OB = ... = constant.

If this constant is positive, i. e. if does not lie between two

conjugate points, there are two double points E and F, such

that

OE* = OF 2 = OA . OA = OB . OB = ...
;

* DESABGUES, loc. cit., p. 147.

f Ibid., pp. 112, 119.
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therefore lies midway between E and F, and the segment
EF divides harmonically each of the segments AA

, ,
...

(Art. 69. [3]). Accordingly:

If an involution has two double elements^ these separate har

monically any pair of conjugate elements ; or: An involution is made

up ofpairs of elements which are harmonically conjugate with regard

to two fixed elements.

If, on the other hand, the constant is negative, i.e. if falls

between two conjugate points, there are no double points. In

this case there are two conjugate points situated at equal

distances from and on opposite sides of it, such that

OE = - OE
,
and

OE2 = OE 2 = - OE . OE = - OA.OA .

If the constant is zero, there is only one double point ;

but in this case there is no involution properly so called.

For since the rectangle OA . OA vanishes, one out of every

pair of conjugate points must coincide with 0.

126. The proposition that if an involution has two double

elements, these separate harmonically any pair of conjugate

elements, may also be proved thus :

Let E and F be the double elements, A and A any pair of

conjugate elements
;
since the systems EFAA ,

EFA A are pro-

jective, therefore (Art. 83) each of them is harmonic.

The following is a third proof.

Consider EAA ... and EA A ... as two projective ranges, and

project them respectively from two points S and S collinear

with E (Fig. 81). The projecting pencils S(EAA ...} and

S (EA A ...) are in perspective (since

they have a self-corresponding ray
in SS E] ;

therefore the straight line

which joins the point of intersection

of 8A and S A to that of SA and

S A will contain the points of inter

section of all pairs of corresponding
Fi&amp;lt;r gl

rays, and will consequently meet

the common base of the two ranges at the second double

point F. But from the figure we see that we have now a

complete quadrilateral, one diagonal of which, AA
,
is cut by

the other two in E and F; consequently (Art. 56) EFAA is a

harmonic range.
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The proposition itself is a particular case of that proved in

Art. 1 09 (3). From this we conclude that the pairs of elements

(points of a range, rays or planes of a pencil) -which, with two
fixed elements, give a constant anharmonic ratio, form two

superposed protective forms, which become an involution in the

case where the anharmonic ratio has the value i (Art. 68).
127. An involution is determined ly two pairs of conjugate

elements.

For let A, A and B, B be the given pairs. If any element C
be taken, its conjugate is determinate, and can be found as in

Art. 84, by constructing so that the form A A B C shall be

projective with AA BC. We then say that the six elements

AA
,
BB

,
CC are in involution ; i.e. they are three pairs of an

involution.

Suppose that the involution with which we have to deal is

an involution of points. Take any point G (Fig. 82) outside

the base, and describe circles round GAA and GBB f

;
if // is

the second point in which these circles meet, join GH, and let

it cut the base in 0. Since GilAA lie on a circle,

OG.OII = OA.OA
;

and since GHBB lie on a circle,

OG.OH= OB. OB
-,

.-. OA.OA = OB. OB .

is therefore the centre of the involution determined by the

pairs of points A, A and B,B . If any other circle be drawn

through G and N, and cut the base in C and C
,
we have

OG.OH = OC. OC
\

.-. OC. OC&quot;= OA. OA = OB. OB
,

and C
}
C are therefore a pair of conjugate points of the invo

lution. In other words, the circle which passes through two
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Fig. 83.

conjugate points C
,
C or D

,
D f and through one of the points

G
,
H always passes through the other. Accordingly :

The pairs of conjugate points of the involution are the points of

intersection of the base with a series of circles passing through the

points G and H.

128. From what precedes it is evident that if the involution

has double points, these will be the points of contact of the

base with the two circles which can be drawn to pass through
G and // and to touch the base. It has already been seen

(Art. 125) that these points are harmonically conjugate with

regard to A and A
,
and also

with regard to B and B . Con

sequently (Art. 70) the involution

has double points when one of the

pairs AA ,
BB lies entirely within

or entirely without the other, i.e.

when the segments AA and BB
do not overlap (Fig. 82) ;

and the

involution has no double points

when one pair is alternate to the other, i.e. when the segments AA
and BB overlap (Fig. 83)*.

In the first case, the involution (as already seen) consists of

an infinite number of pairs of points which are harmonically

conjugate with regard to a pair of fixed points.
In the second case, on the other hand, the involution is

traced out on the base by
the arms of a right angle
which revolves about its

vertex. For since (Fig.

84) the segments AA and

BB overlap, the circles

described on AA and BB
respectively as diameters

will intersect in two points
G and // which lie symmetrically with regard to the base

;

GH being perpendicular to the base, which bisects it at 0,

the centre of the involution. It follows that

* An involution of the kind which has double points is often called a hyperbolic
involution

; one of the kind which has no double points being called an elliptic
involution.

Fig. 84.
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OG2=OH2=AO. OA =BO.OB f

,

and that all other circles passing through G and II and

cutting the base in the other pairs CC\ DD\ ... of the involu

tion will have their centres also on the base, and will have

CC\DD\ ... as diameters. If then we project any of the

segments AA , BB\ CC
,
... from G (or H )

as centre, we shall

obtain in each case a right angle AGA
,
BOB , CGC ,

...

(or AHA ,
BHB

,
CHC

, ...).

We conclude that when an involution of points AA ,
BB ,...

has no double points, i. e. when the rectangle OA . OA is equal
to a negative constant / 2

,
each of the segments AA t

Bl?
t
...

subtends a right angle at every point on the circumference of

a circle of radius k, whose centre is at and whose plane is

perpendicular to the base of the involution.

This last proposition is a particular case of that of Art. 109 (4).

If then an angle of constant magnitude revolve in its plane about its

vertex, its arms will determine on a fixed transversal two protective

ranges, which are in involution in the case where the angle is a right

angle.

129. Consider an involution of parallel rays ;
these meet in a point

at infinity, and the straight line at infinity is a ray of the involution.

The ray conjugate to it contains the centre of the involution of points

which would be obtained by cutting the pencil by any transversal ;
it

may therefore be called the central ray of the given involution. If,

reciprocally, we project an involution of points by means of parallel

rays, these rays will form a new involution, whose central ray passes

through the centre of the given involution.

When one involution is derived from another involution by means

of projections or sections (Art. 124), the double elements of the first

always give rise to the double elements of the second.

130. Since in an involution any group of elements is projective with

the group of conjugate elements, it follows that if any four points of

the involution be taken, their anharmonic ratio will be equal to that

of their four conjugates. In the involution AA
,
BB

,
CC

,
. . . the

groups of points ABA C and A B AO, for example, will be projective;

therefore

AA
u
AC _A A

%
A C

JA 7 :

~BC
&quot; WA

&quot;

WC
whence

AB . EC . CA + A B. B C . C A= o.

Conversely, if this relation hold among the segments determined by

six collinear points AA BB CC
,
these will be three conjugate pairs of



131] INVOLUTION. 107

an involution. For the given relation shows that the anharmonic

ratios (ABA C
} &nd.(A B AC)&rG equal to one another; the groups

ABA C and A B AG are therefore protective. But A and A corre

spond doubly to each other; therefore (Art. 122) AA ,
BB

,
CO are

three conjugate pairs of an involution.

131. THEOREM. The, three pairs CORRELATIVE THEOREM. The

of opposite sides of a complete straight lines which connect any

point with the three pairs of oppo
site vertices of a complete quadri
lateral are three pairs of conjugate

rays of an involution.

Let qrst (Fig. 86) be a com-

quadrangle are cut by any trans

versal in three pairs of conjugate

2&amp;gt;oints of an involution *.

Let QRST (Fig. 85) be a

complete quadrangle, of which the

pairs of opposite sides RT and

QSy
ST and QR, QT and RS are

cut by any transversal in A and

A
,
B and B

t C and (7 frespec-

plete quadrilateral, of which the

pairs of opposite vertices rt and qs,

st and qr, qt and rs are projected
from any centre by the rays a and

a
,
b and &

,
c and c respectively.

Fig. 85.

tively. If P is the point of

intersection of QS and RT, then

ATPR is a projection of ACA B
from Q as centre, and ATPR is

also a projection of ABA /C/ from

S as centre ; therefore the group
ACA B iz projective withABA C ,

and therefore (Art. 45) with

A C AB. And since A and A

correspond doubly to one another

in the protective groups ACA B

Fig. 86.

Let p be the straight line which

joins the points qs and rt. The

pencils atpr and aca b are in per

spective (their corresponding rays

intersect in pairs on q) ; similarly

atpr and aba
/
c
/

are in perspec
tive (their corresponding rays

intersect in pairs on s). The

pencil atpr is therefore of course

projective with each of the

pencils aca b and aba c
,
and

* DESARGUES, loc. cit.
t p. 171.
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and A C AB, it follows (Art. 122) therefore aca b is protective with
t\\&iAA ,BB\ CG are three con- aba c or (Art. 45) with a c ah.

jugate pairs of an involution. And since a and a correspond

doubly to one another in the

pencils aca b and a c ab, it follows

(Art. 122) that aa ,bb ,cc are

three pairs of conjugate rays of

an involution.

The theorem just proved may The theorem just proved may
also be stated in the following also be stated in the following
form : form :

If a complete quadrangle move If a complete quadrilateral
in such a way that jive of its sides move, in such a way that Jive ofits

2)ass each through one of fivefixed vertices slide each on one of five
collinear points, then its sixth fixed concurrent straight lines, then

side will also pass through a fixed its sixth vertex will also move on a

point collinear with the other five, fixed straight line, concurrent with

and forming an involution with the other five, and forming an in-

them. volution with them.

132. By combining the preceding theorem (left) with that of Art.

130, we see that

If a transversal be cut by the three pairs of opposite sides of a com

plete quadrangle in A and A
,
B and B

,
C and C respectively, these

determine upon it segments which are connected by the relation

AB .BC . CA + A B.B C.C A = o*.

133. In the theorem of Art. 131 (right) let U and U
t
V and V,

W and W denote respectively the opposite vertices rt and qs, st and

qr, qt and rs of the quadrilateral qrst, and let AA
,
BB

,
CG denote

respectively the points of intersection of the rays era
, W, cc with an

arbitrary transversal. With the help of Art. 124 the following

proposition may be enunciated :

If the three pairs UU
, VV, WW of opposite vertices of a complete

quadrilateral be projected from any centre upon any straight line, the

six points AA
,
BB

, CC so obtained will form an involution.

Suppose now, as a particular case of this, that the centre of pro

jection G is taken at one of the two points of intersection of the circles

described on UU
t VV respectively as diameters. Then AGA and

BOB are right angles, and therefore also (Art. 128) CGC is a right

angle ;
therefore the circle on WW as diameter will also pass through

G. Hence the three circles which have for diameters the three

diagonals of a complete quadrilateral pass all through the same two

*
PAPPUS, loo. cit., book VII. prop. 130.
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points; that is, they have the same radical axis. The centres of

these circles lie in a straight line
;
hence

The middle points of the three diagonals of a complete quadrilateral

are collinear *.

134. The proposition of Art.

131 (left) leads immediately to the

Construction for the sixth point
C of an involution of which five

points A ,
A

,
B

,
B

, C are given.

For draw through C (Fig 85)
an arbitrary straight line, on

which take any two points Q and

T, and join AT, Bl\ A Q, B Q;
if AT, B Q meet in It, and BT,
A Q in S, the straight line RS
will cut the base of the involu

tion in the required point C .

The proposition of Art. 131

(right) leads immediately to the

Construction for the sixth ray
c of an involution of which five

rays a,a ,b ,
b

,
c are given.

For take on c (Fig. 86) an arbi

trary point, through which draw

any two straight lines q and
,

and join the point ta to qb ,
and

the point tb to qa ;
if the joining

lines be called r
,
s respectively,

then the straight line connecting
the centre of the pencil with the

point rs is the required ray c.

If, in the preceding problem (left), the point C lies at infinity, its

conjugate is the centre of the involution. In order then to find
the centre of an involution of which two

pairs AA
,
BB of conjugate points are

given, we construct (Fig. 87) a complete

quadrangle QSTR of which one pair of

opposite sides pass respectively through A
and A

,
another such pair through B and B

,

and which has a fifth side parallel to the

base
;
the sixth side will then pass through

the centre 0.

The sixth point C which, together with

five given points AA BB C, forms an involution, is completely deter

mined by the construction
;
there is only one point C

f which possesses

the property on which the construction depends (Art. 127). This

may be otherwise seen by regarding C as given by the equation

(AA BC)= (A AB G
)
between anharmonic ratios; for it is known

(Art. 65) that there is only one point C which satisfies this equation.

135. The theorem converse to that of Art. 131 is the fol

lowing :

If a transversal cut the sides of a triangle RSQ (Fig. 85) in

three points A\ B ,
C which, when taken together with three other

points A ,
B , C lying on the same transversal, form three conjugate

*
CHASLES, loc. cit., Arts. 344, 345 ; GAUSS, Collected Works, vol. iv.p. 391.
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pairs ofan involution, then the three straight lines EA
,
SB

, QC meet

in the same point.

To prove it, let EA
,
SB meet in T, and let TQ meet the

transversal in Cr Applying the theorem of Art. 131 (left) to

the quadrangle QEST, we have

(AA BC,} = (A AB C
).

But by hypothesis

(AA BC) = (A AB C
} ,

.-. (AA ECl )
= (AA BC);

consequently (Art. 54) C
l
coincides with C, i.e. QC passes

through T.

The correlative theorem is :

If a point S be joined to the vertices of a triangle rsq (Fig. 86) ly

three rays a
,
I

,
c which, when taken together with three other rays

a
,
b

,
c passing also through S, form three conjugate pairs of an

involution, then the points ra
, qb ,

so lie on the same straight line t.

136. Take again the figure of the complete quadrangle

QEST whose three pairs of opposite sides are cut by a trans

versal in A and A
,
B and B

,
C and C . Let (Fig. 88) SQ and

ET meet in E
, QE and 8T in S

,
ES and QT in Q

7
.

Consider the triangle ESQ ;
on each of its sides we have a

group of four points, viz.

SQR A
, QRS B , ESQ C .

The projections of these from T on the transversal are

BCAA
,
CABB

,
ABCC .

The product of the anharmonic ratios of these last three

groups is

AC
^

~CA
_

BC
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or CA . AB . BC&quot;

A . CB .AC
*

which (Art. 130) is equal to i. Therefore :

Ifany transversal meet the sides of a triangle, and if moreoverfrom
any point as centre each vertex beprojected upon the side opposite to it,

the groups offourpoints thus obtained on each ofthe sides ofthe triangle
will be suck that the product oftheir anharmonic ratios is equal to i .

Conversely, if three pairs of points R A , S B , Q C be taken,

one on each of the sides of a triangle RSQ, such that the product of
the anharmonic ratios (SQR A MQRS f), (RSQ C

)
is equal to-i;

then, if the straight lines RR
,
SS

, QQ are concurrent, the points
A

,
B

,
C will be collinear ; and conversely, if the points A ,

B ,C
are collinear, the straight lines RR

,
SS

, QQ will be concurrent.

137. Suppose now the transversal to lie altogether at

infinity ;
then the anharmonic ratios (SQR A

), (QRS H ),
and

(RSQ C
)
become (Art. 64) respectively equal to SR : QR ,

QS : RS
,
and RQ : SQ ;

so that the preceding proposition
reduces to the following

*
:

If the straight lines connecting the three vertices of a triangle

RSQ with any given point T meet the respectively opposite sides

in R
,
S

, Q ,
the segments which they determine on the sides will be

connected by the relation

SR . QS .RQ

and conversely:

If on the sides SQ , QR ,
RS respectively of a triangle RSQ

points R ,
S

, Q be taken such that the above relation holds, then

will the straight lines RR
,
SS

, QQ meet in one point T.

138. Repeating this last theorem for two points T and
T&quot;,

we obtain the following :

If the two sets of three straight lines which connect the vertices of
a triangle RSQ with any two given points T and T&quot; meet the

respectively opposite sides in R
,
S

, Q and R&quot;
, S&quot;, Q&quot; ,

then will

the product of the anharmonic ratios (SQR R&quot;), (QRS S&quot;),
and

(RSQ Q&quot;)
be equal to + i.

[For each of the expressions

SR . QS .RQ SR&quot;. QS&quot;. RQ&quot;

QR .RS .SQ qR&quot;.RS&quot;.8Q&quot;

* CEVA S theorem. See his book, De lineis rectis se invicem secantibtis statica

construct (Mediolani, 1678), i. 2. Cf. MOBIUS, Baryc. Calc. 198.



112 INVOLUTION. [139

is equal to I
;
and the required result follows on dividing

one of them by the other.]

139. Considering again the triangle QRS (Fig. 88), and

taking the transversal to be entirely arbitrary, let ST
, QTloe

taken so as to be parallel to QR ,
RS respectively. Then the

figure QRST becomes a parallelogram ;
the points S and Q

pass to infinity, and R (being the point of intersection of the

diagonals QS , RT) becomes the middle point of SQ. Conse

quently (Art. 64) the anharmonic ratios (SQR A
), (QRS B ),

(#S&amp;lt;3 &amp;lt;r)

become equal respectivelyto-(QA i SA
), (RB i QB },

and (SC : RCf

).
Thus*:

If a transversal cut the sides of a triangle RSQ in A
,
B f

,
C

respectively, it determines upon them segments which are connected

by the relation

QA .RB .SC _
SA . QB .RC

~

and conversely :

If on the sicks SQ , QR ,
RS respectively of a triangle points

A
,
B

,
C be taken such that the above relation holds, then will

these three points be collinear.

140. Repeating the last theorem of the preceding Article for

two transversals, we obtain the following :

Tf the sides of a triangle RSQ are cut by two transversals in

A ,B ,
C and in A&quot;

,
B&quot;

,
C&quot; respectively, the product of the

anharmonic ratios (SQA A&quot;), (QRB B&quot;),
and (RSC C&quot;)

will be

equal to + I.

[For each of the expressions

QA . RB . SC QA&quot;. RB&quot;. SC&quot;

8A 7QB .~RC SA&quot;.QB&quot;.RC&amp;lt;

is equal to i
; dividing one by the other, the required result

follows.]

Reciprocally, if on the si/Jes of a triangle RSQ three pairs of

points A A&quot;
,
B B&quot;

,
C C&quot; be taken such that the product of the

anharmonic ratios (SQA A&quot;), (QRB B&quot;), (RSC C&quot;) may be equal to

+ i
; then, if the points A ,

fi
,
C are collinear, thepoints A&quot;,

B&quot;
,

C&quot;

will also be collinear, and if the lines RA
,
SB

, QC are concurrent,

the lines EA&quot;
, SB&quot;, QC&quot;

will also be concurrent.

141. It has heen shown (Art. 122) that if two protective ranges

* Theorem of MENELAUS ; Sphaerica, iii. i. Cf. MOBIUS, loc. tit.
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(ABC...) and (A B C ...), lying in the same plane, are projected from

the point of intersection of a pair of lines such as AB and A B, AC
and A C, ... or BC and. B C..., the projecting rays form an involution.

The theorems correlative to this are as follows :

Given two protective, but not concentric, flat pencils (abc...) and

(a b c ...) lying in the same plane ;
if they be cut by the straight line

which joins a pair of points such as ab and a b, ac and a c,... or be

and b c..., the points so obtained form an involution.

Given two protective axial pencils (a/3y...) and (u jS -/...) whose

axes meet one another ;
if they be cut by the plane which is deter

mined by passing through a pair of lines such as a/3 and
&amp;lt;//3, ay and

ay,... or )3/ and & y..., the rays so obtained form an involution.

Given two projective flat pencils (abc...) and (a b c
...)

which are

concentric, but lie in different planes ;
if they be projected from the

point of intersection of a pair of planes such as ab and a b, ac and

a c..., or be and b c..., the projecting planes form an involution.

142. Particular Cases. All points of a straight line which lie in

pairs at equal distances on opposite sides of a fixed point on the line,

form an involution, since every pair is divided harmonically by the

fixed point and the point at infinity.

Conversely, if the point at infinity is one of the double points of an

involution of points, then the other double point bisects the distance

between any point and its conjugate. If in such an involution the

segments AA ,
BB formed by any two pairs of conjugate points have

a common middle point, then will this point bisect also the segment
CC formed by any other pair of conjugates.

All rectilineal angles which have a common vertex, lie in the same

plane, and have the same fixed straight line as a bisector, form an in

volution, since the arms of every angle are harmonically conjugate
with regard to the common bisector and the ray perpendicular to it

through the common vertex.

Conversely, if the double rays of a pencil in involution include a

right angle, then any ray and its conjugate make equal angles with

either of the double rays. If in such an involution the angles included

by two pairs of conjugate rays aa and W have common bisectors,

these will be the bisectors also of the angle included by any other pair

of conjugate rays cc .

All dihedral angles which have a common edge and which have the

same fixed plane as a bisector, form an involution
;

for the faces of

every angle are harmonically conjugate with regard to the fixed plane

and the plane drawn perpendicular to it through the common edge.

Conversely, if the double planes of an axial pencil in involution are

at right angles to one another, then any plane and its conjugate make

equal angles with either of the double planes.

I
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PROTECTIVE FORMS IN RELATION TO THE CIRCLE.

143. CONSIDER (Fig. 89) two directly equal pencils abed . . .

and a b c d .,. in a plane, having their centres at and

respectively. The angle contained by a pair of corresponding

rays aa ,bb ,cc , ... is constant (Art. 106); the locus of the inter

section of pairs of corresponding rays

is therefore (Euc. III. 21) a circle

passing through and . The

tangent to this circle at makes

with 00 an angle equal to any of

the angles OAO
,
OEO

,
OCO

,
&c. ;

but this is just the angle which O O

considered as a ray of the second

pencil should make with the ray

Fi

&quot;

g corresponding to it in the first pencil ;

therefore to O O or q considered as

a ray of the second pencil corresponds in the first pencil the

tangent q to the circle at 0.

Imagine the circumference of the circle to be described by a

moving point A ;
the rays AO, AO or a, a will trace out the

two pencils. As A approaches 0, the ray AO will approach

00 or c[ and the ray AO will approach q ;
and in the limit

when A is indefinitely near to 0, the ray AO will coincide with

q or the tangent at 0. This agrees with the definition of the

tangent at 0, as the straight line which joins two indefinitely

near points of the circumference.

Similarly, to the ray 00 or p considered as belonging to the

first pencil corresponds the ray p of the second pencil, the

tangent to the circle at .

144. Conversely, if any number of points A, B, C, D ,... on a

circle be joined to two points and O f

lying on the same



146] PROJECTIVE FOKMS IN RELATION TO THE CIRCLE. 115

circle, the pencils (A, B, C, ,...) and (A, B, C, D,...) so

formed will be directly equal, since the angle AOB is equal to

AO B, AOCto AO C,... BOC to BO C, &c. But two equal

pencils are always protective with one another (Art. 104). If

then the points A, B, C, ... remain fixed, while the centre of

the pencil moves and assumes different positions on the cir

cumference of the circle, the pencils so formed are all equal to

one another, and consequently all protective with one another.

The tangent at is by definition the straight line which joins

to the point indefinitely near to it on the circle. It follows

that in the projective pencils 0(A,, C,...) and (A,B, C,...),

the ray of the first which corresponds to the ray O O of the

second is the tangent at 0.

145. It has been seen (Art. 73) that in two projective forms

four harmonic elements of the one correspond to four harmonic

elements of the other. If then the four rays 0(A y B, C, D}
form a harmonic pencil, the same is the case with regard to

the four rays (A, B, (?, J)), whatever be the position of the

point on the circle. By taking O f

indefinitely near to A,

we see that the pencil composed of the tangent at A and

the chords AB, AC, AD will also be harmonic
;
so again the

pencil composed of the chord BA, the tangent at B, and the

chords BC, BD will be harmonic, &c.

When this is the case, the four points A ,
B

, C, D of the circle

are said to be harmonic *.

146. The tangents to a circle

determine upon any pair offixed

tangents two ranges which are

projective with one another.

Let M (Fig. 90) be the

centre of the circle, PQ, and

P Q a pair of fixed tangents,

and AA a variable tangent.

The part AA of the variable

tangent intercepted between

the fixed tangents subtends

a constant angle at M\ for if Q, P ,
T are the points of

contact of the tangents respectively,

* STEINER, loc. cit., p. 157, 43; Collected Works, vol. i. p. 345.

I 2
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angle AMA = AMT+TMA
= i QMT+ i TMP

Accordingly, as the tangent AA moves, the rays MA, MA
will generate two projective pencils (Art. 108), and the points

A, A will trace out two projective ranges.

Since the angle AMA is equal to the half of QMP ,
it is

equal to either of the angles QMQ ,
PMP (denoting by P and

Q the same point, according as it is regarded as belonging to

the first or to the second tangent). Consequently Q and Q ,

P and P are pairs of corresponding points of the two pro

jective ranges ;
i. e. the points of contact of the two fixed

tangents correspond respectively to the point of intersection

of the tangents.

Imagine the circle to be generated, as an envelope, by the

motion of the variable tangent ;
the points A, A will trace out

the two projective ranges. As the variable tangent approaches

the position PQ, the point A approaches Q ,
and A ap

proaches the point which corresponds to Q ,
viz. Q ;

and in the

limit when the variable tangent is indefinitely near to PQ, the

point A will be indefinitely near to Q or the point of contact

of the tangent PQ. The point of contact of a tangent must

therefore be regarded as the point of intersection of the

tangent with an indefinitely near tangent.

147. The preceding proposition shows that four tangents

a, I, &amp;lt;?,

d to a circle are cut by a fifth in four points A,B,C,D
whose anharmonic ratio is constant whatever be the position

of the fifth tangent.

This tangent may be taken indefinitely near to one of the

four fixed tangents, to a for example ;
in this case A will be

the point of contact of a, and E,C,D the points of intersection

ab, ac, ad respectively.

As a particular case, ifa,b,c,d meet the tangent PQ m four

harmonic points, they will meet every tangent in four har

monic points. The group constituted by the point of contact

of a and the points of intersection ab, ac, ad will also be har

monic. In this case, the four tangents a, b, c, d are said to le

harmonic f.

* PONCELET, Propr. proj., Art. 462.

f STEINER, loc. cit, p. 157, 43 ;
Collected Works, vol. i. p. 345.
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148. The range determined upon any given tangent to a circle by

any number of fixed tangents is protective with the pencil formed by

joining their points of contact to any arbitrary point on the circle.

Let A,B, Cj...X (Fig. 91) be points on the circle, and

a, b, c,...% the tangents at these points respectively. If the

points A
,

_#
,

&amp;lt;? ,... in

which the tangent x is cut

by the tangents a, b, c, ...

be joined to the centre of

the circle, the joining lines

will be perpendicular re

spectively to the chords

KA, XB, XC,... and will

therefore (Art. 108) form

a pencil equal to the pencilX (A , B, C, . .
.).

The range A B C . . .

is therefore project!ve with the pencil X(A, B, C, ...).

COROLLARY. Iffour points on a circle are harmonic, then the

tangents also at these points are harmonic ; and conversely.

For if, in what precedes, X (ABCD) is a harmonic pencil,

A B C D will be a harmonic range ;
and conversely.

Fig. 91.



CHAPTER XIV.

PROTECTIVE FORMS IN RELATION TO THE CONIC SECTIONS.

149. LET the figures be constructed which are homological
with those of Arts. 144, 146, 148. To the points and tangents
of the circle will correspond the points and tangents of a conic

section (Art. 23). A tangent to a conic is therefore a straight

line which meets the curve in two points which are inde

finitely near to one another; a point on the curve is the

point of intersection of two tangents which are indefinitely

near to one another. To two equal and therefore protective

pencils will correspond two protective pencils, and to two

protective ranges will correspond two protective ranges ;
for

two pencils or ranges which correspond to one another in two

homological figures are in perspective. We deduce therefore

the following propositions :

(l). If any number ofpoints A, B, C, D, .. . on a conic are joined

to two fixed points and lying on the same conic (Fig. 93), the

pencils (A, J3, C, D, ...)
and

(A, B, C, D,...) so formed
are protective with one another.

To the ray 00 of the first

pencil corresponds the tangent at

,
and to the ray O O of the

second pencil corresponds the

tangent at 0.

o

Fig. 92.

(2). Any number of tangents a, b,c,d, ... to a conic determine on a

pair offixed tangents o and o (Fig. 93) two protective ranges. To

the point oo or Q of the first range corresponds the point of contact

Q of o
t
and to the same point o o or P of the second range corre

sponds the point of contact P of o*.

*
STEINER, loc. cit, p. 139, 38 ;

Collected Works, vol. i. pp. 332, 333.
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(3). The range which a variable tangent to a conk determines upon
a fixed tangent is protective with the pencil formed by joining the

Fig- 93-

point of contact of the variable tangent to any fixed point of the

conic. (Fig. 94.)

150. We proceed now to the theorems converse to those

of Art. 149. The proofs here

given are due to M. Ed. Dewulf.

I. Iftwo (non-concentric} pencils

lying in the same plane are pro-

jective with one another (but not

in perspective), the locus of the

points of intersection of pairs of

corresponding rays is a conic

passing through the centres of the

two pencils; and the tangents to

the locus at these points are the rays which correspond in the two

pencils respectively to the straight line which joins the two centres.

Let and A (Fig. 95) be the respective centres of the two

pencils, and let OM^ and AM19 OM2 and AM2 , OM^ and AM^...
be pairs of corresponding rays. The locus of the points M^ ,

M
2,M3 ,... will pass through 0, since this point is the inter

section of the ray AO of the pencil A with the corresponding

ray of the pencil 0. Similarly A will be a point on the

locus.

Fig. 94.
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Let o be that ray of the pencil which corresponds to the

ray AO of the pencil A. Describe a circle touching o at 0,

and let this circle cut OA in A
,
and OMlf OM2 ,

0J/
3 ,

... in the

points I//, M2 ,
M3 ,

. . . respectively.

The pencils 0(Ml

f

MJ M3 ...) and A (MJ M2 l/3 ...) are

directly equal to one another
;
and since by hypothesis the

pencil 0(M1 M{ MJ...) or 0(M1
M

2 MB ...) is projective
with the pencil A (Ml

M
2
Jf3 ...), therefore the pencils

A (Mf M
2 I//...) and A (Jfj M2 M3 ...) are projective.

But they are in perspective, since the ray A O in the one

corresponds to the ray AO in the other (Art. 80); therefore

pairs of corresponding rays will intersect in points S
lt S2 ,

&quot;Ssj ljing u a straight line *. In order, then, to find that

point of the locus which lies on any given ray m of the pencil

A, it is only necessary to produce m to meet *? in S, to join SA

cutting the circle in M
,
and to join OM ; this last line will

cut in in the required point M. But this construction is pre

cisely the same as that employed in Art. 23 (Fig. n) in order

to draw the curve homological with a circle, having given the

axis s and centre of homology, and a pair of corresponding

points A and A . The locus of the points M is therefore a

conic section.

II. If two (non-collinear) range* lying in the same plane are pro-

jective with one another (but not in perspective), the envelope of the

straight lines joining pairs ofcorresponding points is a conic, i. e. the

straight lines all touch a conic. This conic touches the bases of the
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two ranges at the points which correspond in these respectively to the

point of intersection of their bases.

Let $ and / (Fig. 96) be the bases of the two ranges, and
let A and A

,
B and

,
C and

C&quot;,
... be pairs of corresponding

* Ys s&quot;

Fig. 96.

points. The curve enveloped by the straight lines AA
,
BB

,

CC ,... will touch s, since this is the straight line joining the

point s/ or # ,of the second range with the corresponding

point 8 of the first. Similarly, / will be a tangent to the

envelope.

Describe a circle touching s at $, and draw to it tangents

a&quot;, &quot;, c&quot;,
. . . / from the points A,B,C,...S

f

respectively. The

tangents a&quot;, 3&quot;,
c&quot;, . . . will determine on / a range which is

protective with s and therefore also with s . But the point S

corresponds to itself in the two ranges / and /
;
these are

therefore in perspective (Art. 80), and the straight lines A&quot; A .

B&quot; B
,

C&quot; C
,

. . . will meet in one point 0. In order then to

draw a tangent to the envelope from any given point M lying
on the line s, it is only necessary to draw from M a tangent m
to the circle, meeting / in M&quot;, and to join OM&quot;\ this last line

will cut / in that point M of the range / which corresponds
to the point M of the range s, and MM will be the required
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tangent to the envelope. But this construction is precisely

the same as that made use of in Art. 23 (Fig. 12) in order to

draw the curve homological with a circle
3 taking a given tan

gent to the circle as axis of homology, any given point as

centre of homology, and /, / as a pair of corresponding

straight lines. The envelope of the lines MM is therefore a

conic section.

The theorems (I) and (II) of the present Article are correlative

(Art. 33), since the figure formed by the points of intersection

of corresponding rays of two protective pencils is correlative

to that formed by the straight lines joining corresponding

points of two protective ranges. Thus in two figures which are

correlative to one another (according to the law of duality in a

plane\ to points lying on a conic in one correspond tangents to a

conic in the other.

151. Having regard to Arts. 73 and 79, the propositions of

Arts. 149, 150 may be enunciated as follows :

The anharmonic ratio of the four straight lines which connect

four fixed points on a conic with a variable point on the same is

constant.

The anharmonic ratio of the four points in which four fixed tan

gents to a conic are cut by a variable tangent to the same is

constant *.

The anharmonic ratio of four points A, B, C, D lying on a conic is

the anharmonic ratio of the pencil (A , B, C, D) formed by joining

them to any point on the conic. The anharmonic ratio of four

tangents a, b, c, d to a conic is that of the four points o(a, 6, c, d),

where o is an arbitrary tangent to the conic.

If this anharmonic ratio is equal to i, the group of four points

or tangents is termed harmonic.

The anharmonic ratio of four tangents to a conic is equal to that

of their points of contact f.

Consequently the tangents at four harmonic points are harmonic,

and vice versa.

The locus of a point such that the rays joining it to four given

points ABCD form a pencil having a given anharmonic ratio is a

conic passing through the given points.

*
STEINEE, loc. cit., p. 156, 43 ;

Collected Works, vol. i. p. 344.

f CHASLES, Geometric Suptrieure, Art. 663.
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The tangent to the locus at one of these points, at A for

example, is the straight line which forms with Afi, AC, AD a

pencil whose anharmonic ratio is equal to the given one.

The curve enveloped by a straight line which is cut by four given

straight lines in four points whose anharmonic ratio is given is a

conic touching the given straight lines.

The point of contact of one of these straight lines, a for

example, forms with the points ab, ac, ad a range whose anhar

monic ratio is equal to the given one *.

152. Through Jive given points

0, ,A ,B,Cin a plane (Fig. 92),

no three of which lie in a straight

line, a conic can be described.

For we have only to construct the

two protective pencils which have

their centres at two of the given

points, and for example, and

in which three pairs of corre

sponding rays OA and O A, OB
and O B, OC and O C intersect

in the three other points. Any
other pair OD and O D of corre

sponding rays will give a new

point D of the curve.

To construct the tangent at any
one of the given points, at for

example, we have only to deter

mine that ray of the pencil

which corresponds to the ray O O
of the pencil .

Through five given points only

one conic can be drawn
;

for if

there could be two such, they
would have an infinite number of

other points in common (the

intersections of all the pairs of

corresponding rays of the pro-

jective pencils) ;
which is impos

sible.

Given five straight lines

o, , a, b, cin a plane (Fig. 93),

no three of which meet in a point,

a conic can be described to touch

them. For we have only to con

struct the two protective ranges
which are determined upon two of

the given lines, o and o
/
for ex

ample, by the three others a, 6, c,

and of which three pairs of cor

responding points oa and o a, ob

and o b, oc and o c are given.

The straight line d which joins

any other pair of corresponding

points of the two ranges will be a

new tangent to the curve.

To construct the point of con

tact of any one of the given

straight lines, that of o for ex

ample, we have only to determine

that point of the range o which

corresponds to the point o
f
o of the

range o .

Only one conic can be drawn to

touch five given straight lines
;

for if there could be two such,

they would have an infinite num
ber of common tangents (all the

straight lines which join pairs of

corresponding points of the pro-

jective ranges); which is im

possible.

*
STEINEB, loc. cit.

} pp. 156, 157, 43 ;
Collected Works, vol. i. pp. 344, 345.
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From this we see also that :

Through four given points can

be drawn an infinite number of

conies
;
and two such conies have

no common points beyond these

four.

153. The theorems of Art. 88

following manner :

Ifa hexagon ab ca bc is circum

scribed to a conic (Figs. 97 and 61),

the straight lines p, q, r which join

the three pairs of opposite vertices

are concurrent.

There can be drawn an infinite

number of conies to touch four

given straight lines
;
and two such

conies have no common tangents

beyond these four.

may now be enunciated in the

Ifa hexagon AB CA BC is in

scribed in a conic (Figs. 98 and 60),

the three pairs of opposite sides

intersect one anotJier in thre*

collinear points P, Q, R.

Fig. 97. Fig. 98.

This is known as BKIANCHON S

theorem *.

This is known

theorem t.

as PASCAL S

These results are of such importance in the theory of conies

that they deserve independent proofs.

The ranges a (ba b c
)

and

c (ba b c
}

are projective (Art.

149) ;
the pencils formed by join

ing them to the points (ba ), (be )

respectively are therefore projec

tive. If the line joining (ac ), (a b)

be denoted by h, and that joining

(be ), (a c) by k, the pencils in

The pencils A (BA B C
)
and

C (BA B C
}
are projective (Art.

149); the ranges in which they

cut BA
,
BC respectively are

therefore projective. If AC
,
A B

cut in // and BC
,
A C in K,

ranges in question are (BA RH)
and (BKPC ).

Since they have

* This theorem was published for the first time by BRIANCHON in 1806, and

repeated in his Mimoire sur les lignes du second ordre (Paris, 1817 : p. 34).

f This theorem was given in PASCAL S JSssai sur les Coniques, a small work of

six pages 8vo., published in 1640, when its author was only sixteen years old.

It was republished in the (Euvres de Pascal (The Hague, 1779), and again

by H. WEISSENBOBN, in the preface to his book Die Projection in der Ebene

(Berlin, 1862).
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question are (ba rh) and (bkpc ).
the point B in common, they are

Since they have the ray b in com- in perspective; therefore A f

K, RP,

mon, they are in perspective; HC are concurrent, that is P, Q,
therefore (a k), (rp), (he )

are col- JK are collinear.

linear, that is p, q, r are con

current.

154. Pascal s theorem has reference to six points of a conic,

Brianchon s* theorem to six tangents ;
these six points or tan

gents may be chosen arbitrarily from among all the points on

the curve and all the tangents to it. Now a conic is deter

mined by five points or five tangents ;
in other words, five

points or five tangents may be chosen at will from among all

the points or lines of the plane, but as soon as these five

elements have been fixed, the conic is determined. Pascal s

theorem then expresses the condition which six points on a

plane must satisfy if they lie on a conic
;
and Brianchon s

theorem expresses similarly the condition which six straight

lines lying in a plane must satisfy if they are all tangents to

a conic. And the condition in each case is both necessary
and sufficient.

That it is necessary is seen from the theorems themselves.

For six points on a conic, taken in any order, may be re

garded as the vertices of an inscribed hexagon
*

; but since

Pascal s theorem is true for every inscribed hexagon, the three

pairs of opposite sides must meet in three collinear points in

whatever order the six points be taken.

The condition is also sufficient. For suppose (Fig. 98) that

the hexagon AB CA BC
,
formed by taking the six points in a

certain order, possesses the property that the pairs of opposite
sides BC and B C, CA and C A,AB emdA B intersect in three

collinear points P, Q, R. Through the five points AB CA B
one conic (and one only) can be drawn

;
if X be the point

where this conic cuts AC again, then AB CA BX is an in

scribed hexagon, and its pairs of opposite sides B fC and BX,
XA (or C A) and CA

,
A B and AB will meet in three collinear

points. But the second and third of these points are Q and

* It is perhaps hardly necessary to remind the reader that the hexagons to

which Pascal s and Brianchon s theorems refer are not hexagons in Euclid s sense

i. e. they are not necessarily convex (non-reentrant) figures.
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R
; therefore BX must meet B C at the point of intersection of

B C and Qlt, i. e. at P. Both BC and BX thus pass through
P, and they must therefore coincide. Since then the point X
lies not only on JC but also on BC

,
it must coincide with

the point C itself.

The condition is therefore sufficient; and it has already
been shown to be necessary.

By taking the six points in all the different orders possible,

sixty
*

simple hexagons can be made. From the reasoning
above, it follows that if any one of these hexagons possesses
the property that its three pairs of opposite sides intersect in

three collinear points, the six points will lie on a conic, and

consequently all the other hexagons will possess the same

property f.

By analogous considerations having reference to Brianchon s

theorem, properties correlative to those just established may
be shown to be true of a system of six straight lines J.

155. Consider the two triangles which are formed, one by
the first, third, and fifth sides, the other by the second, fourth,

and sixth sides, of the inscribed hexagon AB CA BC (Fig. 98).

Let BC and B C, CA and C A
,
AB and A B be taken as corre

sponding sides of the triangles. By Pascal s theorem these

sides intersect in pairs in three collinear points ;
and there

fore (Art. 17) the two triangles are homological. Pascal s

theorem may therefore be enunciated as follows :

If tivo triangles are in homology, the points of Intersection of the

sides of the one with the non-corresponding sides of the other lie

on a conic.

Similarly, in a circumscribed hexagon ab ca bc (Fig. 97) let

the vertices of even order and those of odd order respectively

be regarded as the angular points of two triangles, and let

be? and b c, caf and c a, ab and a b be taken to be corresponding
vertices. By Brianchon s theorem these vertices lie two and

two on three straight lines which meet in a point ;
therefore

* In general, a complete n-gon includes in itself \(n i) (n 2)...! simple

w-gons.

f STEINEE, loc. cit., p. 311, 60, No. 54 ; Collected Works, vol. i. p. 450.

J A. system of six points on a conic thus determines sixty different lines such as

PQR in Fig. 98, or Pascal lines as they have been called. So too a system of six

tangents to a conic determines sixty different Brianchon points.
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(Art. 16) the two triangles are homological. Brianchon s

theorem may therefore be enunciated as follows :

If two triangles are in homology, the straight lines joining the

angular points of the one to the non-corresponding angular points

of the other all touch a conic.

The two theorems may be included under the one enunciation :

If two triangles are in homology, the points of intersection of the

sides of the one with the non-corresponding sides of the other lie on

a conic, and the straight lines joining the angular points of the one

fo the non-corresponding angular points of Ike other all touch another

conic *.

156. Returning to Fig. 98, let the points A, B , C, A ,
B be

regarded as fixed, and C as variable ; Pascal s theorem may
then be presented in the following form :

If a triangle C PQ move in suck a way that its sides PQ, QO ,

C fP turn round three fixed points R, A, B respectively, while two

of its vertices P, Q slide along two fixed straight lines CB
,
CA

respectively, then the remaining vertex C will describe a conic which

passes through the following five points} viz. the two given points A
and B

} the point of intersection C of the given straight lines, the

point of intersection B f

of the straight lines AR and CB
,
and the

point of intersection A of the straight lines BR and CA
~\.

So also Brianchon s theorem may be expressed in the

following form :

Jf a triangle c pq (Fig. 99) move in suck a way that its vertices

pq, qc ,
cp slide along three fixed straight lines r, a, b respectively,

while two of its sides p} q turn round two fixed

points cb , ca respectively, then the remaining

side c will envelope a conic which touches the

following five straight lines, viz. the two given

straight lines a and 6, the straight line c which

joins thefixed points, the straight line b which

joins the points ar and cU
,
and the straight

line a which joins the points br and ca .

157. (1). If in the theorems of Art. 152

(right) one of the tangents is supposed
to lie at infinity, the conic becomes a

parabola (Art. 23). Thus a parabola is determined byfour tangents,

*
M5BIUS, loc. cit., Art. 278.

t This theorem was given by MACLAURIN, in 1721 ;
cf. Phil. Trans, of ike Royal
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or (Art. 152, right) only oneparabola can be drawn to touchfour given

straight lines; and no two parallel tangents can be drawn to a parabola.

(2). If the same supposition is made in theorem (2) of Art.

149, it is seen that the points at infinity on the two tangents
o and o are corresponding points of the projective ranges
determined on these tangents ;

for the straight line which

joins them is a tangent to the curve. It follows (Art. 100)

that

The tangents to a parabola meet two fixed tangents to the same in

pointsforming two similar ranges or

Two fixed tangents to a parabola are cut proportionally by the

other tangents *.

(3). Let A and A
t
B and B

,
C and ,.- be the points in

which the various tangents to the parabola meet the two

fixed tangents (Fig. 100), and let P and Q be the respective

points of contact of the latter. The point of intersection of

Fig. 100.

the two fixed tangents will be denoted by Q or P according

as it is regarded as a point of the first or of the second tan

gent. We have then

A3 AC__ BC _ _AP__.^_ J*Q

(4). Conversely, given two straight lines in a plane, on which lie

two similar ranges (which are not in perspective), the straight lines

connecting pairs ofcorrespondingpoints will envelope aparabola which

Society of London for 1735, and CHASLES, Aperqu historique sur I origine et le

developpement des methodez en Geometric (Brussels, 1837 ;
second edition, Paris,

1875). If B lies at infinity, the theorem becomes identical with lemma 20,

book i. of NEWTON S Principia.
* AFOLLONII PEKGAEI Conicorum lib. iii. 41.
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touches the given straight lines at the points which correspond in

the two ranges respectively to their point of intersection.

For the points at infinity on the given straight lines being

corresponding points (Art. 99), the straight line which joins

them will be a tangent to the envelope ;
thus the envelope is

a conic (Art. 150 (II.)) which has the line at infinity for a

tangent, i. e. it is a parabola.

158. In theorem I of Art. 150 (Fig. 95) suppose that the

point A lies at infinity, or, in other words, that the pencil A
consists of parallel rays. To the straight line OJ, considered as

a ray a of the pencil (viz. that ray which is parallel to the

rays of the other pencil), corresponds that ray a of the pencil

A which is the tangent at the point A. This ray a may be at

a finite, or it may be at an infinite distance.

In the first case (Fig. 101) the straight Hne at infinity is

a ray j of the pencil A, and to it corresponds in the pencil

a ray/ different from a and consequently not passing through

A\ the conic will therefore be a hyperbola (Art. 23) having

A(= aa
) andj?/ for its points at infinity ;

the straight line a

is one asymptote and j is parallel to the other.

Fig. 101. Fig. 102.

In the second case (Fig. 103) the line at infinity is the

tangent at A to the conic, which is therefore a parabola.
159. If in this same theorem of Art. 150 the points A and

are supposed both to lie at infinity (Fig. 103), the two pro-

jective pencils will each consist of parallel rays ;
and since

the conic which these pencils generate must pass through A
and it is a hyperbola (Art. 23). The asymptotes of the

hyperbola are the tangents to the curve at its infinitely distant

points
*

; they will therefore be the rays a and o of the first

*
DESABGUES, loc. cit., p. 210; NEWTON, Principia, lib. i. prop. 27, Scholium.

K
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and second pencil which correspond to the straight line at

infinity considered as a ray of the second and first pencil

respectively.

By the general theorem of Art.

1 49, the asymptotes of a hyperbola
are cut by the other tangents in

points formingtwo projective ranges,

in which the points of contact

(which are in this case at infinity)

correspond respectively to the point

of intersection Q of the asymptotes.

The equation of Arts. 74 and 109 (1),

Fig. 103. VIZ.

JM. IM = constant
becomes therefore in this case

QM. QM = constant,

3/and M being the points of intersection of any tangent
with the asymptotes. We conclude therefore that

The segments which are determined by any tangent to a hyperbola

on the two asymptotes (measured from the point of intersection of

the asymptotes), are such that the rectangle contained by them is

constant.

This may be stated in a different form as follows :

The triangle formed by any tangent to a hyperbola and the

asymptotes has a constant area *.

160. Again, let the theorem of Art. 149 be applied to the

case of two fixed parallel tangents which are cut by a variable

tangent inM and M . In the projective ranges thus generated
the points which correspond respectively to the infinitely

distant point of intersection of the two fixed tangents are

their points of contact
;

if these be denoted by J and /
,
we

have by Art. 74 the equation
JM.TM = constant.

Therefore, the segments which a variable tangent to a conic cuts off

from two Jixed parallel tangents (measuredfrom the points of contact

of these latter) are such that the rectangle contained by them is

constant-\.

* APOLLONIDS, loc. tit., iii. 43.

f Ibid., iii. 42.



CHAPTER, XV.

CONSTRUCTIONS AND EXEECISES.

161. BY help of Pascal s and Brianchon s theorems may be

solved the following problems :

Given five tangents a
,
I

,
c

, of,

b
,

to a conic, to draw from any
given point If, lying on one of
these tangents a, another tangent
to the curve (Fig. 104).

Fig. 104.

If c be the required tangent,
a& ca &c is a hexagon to which

Brianchon s theorem applies. Let

r be the diagonal connecting one

pair a& and a b of opposite ver

tices, and let q be the diagonal

connecting another such pair caf

and c a (where c a is the given

point H] ;
then the diagonal which

connects the remaining pair be

and Ifc must pass through the

point qr. If then p be the straight

Given five points A, B ,
C

,
A

,

B on a conic, to find the point of
intersection of the curve with any
given straight line r drawn through
one of these points A (Fig. 105).

Fig. 105.

If G f
be the required point,

AB CA BC is a hexagon to

which Pascal s theorem applies.

Let R be the point of intersection

of one pair AB f and A B of oppo
site sides, and let Q be the point
of intersection of another such

pair CA and r; then QR must

pass through the point of inter

section of the remaining pair
BC and B C. If then PB be

joined, it will cut the given
K 2
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line joining the points 7? and & c,

the straight line which joins pb
to the given point // is the re

quired tangent.

r&amp;gt;y assuming different positions

for the point H, all lying on one

of the given tangents, and repeat

ing in each case the above con

struction, any desired number of

tangents to the conic may be

drawn.

Brianchon s theorem therefore

serves to construct, by means of its

tangents, the conic which is deter

mined by five given tangents *.

straight line r in the required

point C&quot;.

By assuming different positions

for the given straight line r, all

passing through one of the given

points on the conic, and repeating

in each case the above construc

tion, any desired number of points

on the conic may be found.

Pascal s theorem therefore serves

to construct, by means of its

points, the conic which is deter

mined by five given points t.

162. Particular cases of the problem of Art. 161 (right).

I. Suppose the point B to lie at infinity ;
the problem then

becomes the following :

Given four points A, B , C, A on a hyperbola and the direction

of one asymptote^ to find the second point of intersection C of the

curve with a given straight line r drawn through A (Fig. 106).

Solution. This is deduced from that of

the general problem by taking the point

B to lie at infinity in the given direction.

We draw through A a straight line m in

-this direction ;
if then AB meets m in 7?,

and A C meets r in Q, we join QR meeting

B C in P, and draw through P a parallel

to m
;

this parallel will cut r in the re

quired point C .

II. Suppose the point A to lie at in

finity ;
the problem is then :

Given four points B\ C, A ,
B on a hyper-

Ma and the direction of one asymptote, to find the point of inter-

section of the curve with a given straight line r drawn parallel to

this asymptote (Fig. 107).

Solution. Draw through B a straight line parallel to the

given direction. If this line meet A B in 72, and if A C meetr

* BBIANCHON, loc. cit., p. 38 ; PONCELET, loc. tit., Art. 209.

t NEWTON, Principia, prop. 22; MACLAUBIN, De linearum geometrical urn pro-

pdetatibus gineraUbut (London, 1748), 44.
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in Q, join QR cutting B C in P. Then if BP be joined, it

will cut r in the required point G .

III. Suppose the two points A emdB both to lie at infinity.

The problem then becomes :

Given three points A, ,
C on a hyperlola and the directions of

loth asymptotes, to find the second point of intersection of the curve

with a given straight line r drawn through A (Fig. 108).

Fig. 107. Fig. 108.

Solution. Through the point Q, where the given straight

line r meets a straight line drawn through C parallel to the

direction of the first asymptote, draw a parallel to AB . Let

P be the point where this parallel cuts B C
; then a parallel

through P to the second asymptote will cut r in the required

point C .

IV. If the two points A and B both lie at infinity, the

problem is :

Given three points C ,
A

,
B of a hyperbola and the directions of

loth asymptotes, to find the point of

intersection of the curve with a given

straight line r drawn parallel to one of
the asymptotes (Fig. 109).

Solution. Through Q, the point of

intersection of r and CA
,
draw a

parallel to A B
;

let P be the point

where this parallel meets the straight

line drawn through C parallel to the

other asymptote. Then if BP be

joined, it will cut r in the required point C .

V. If, lastly, the points B
&amp;gt; C, A

,
B are finite and the

straight line AC lies at infinity, the problem becomes the

following :

Fig. 109.
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Fig. no.

Givenfour points B , C, A ,
B of a hyperbola and the direction

of one asymptote, to find the direction of the other asymptote

(Fig. no).
Solution. Through the point 7?, in which A B meets the

straight line drawn through
B in the given direction,

draw a parallel to CA
\ let

P be the point where this

parallel cuts B C. Then if

BP be joined, it will be

parallel to the required di

rection.

It will be a useful exercise

for the student to deduce the constructions for these particular

cases from the general construction
;
in order to do this it is

only necessary to remember that to join a finite point to a

point lying at infinity in a given direction we merely draw

through the former point a parallel to the given direction.

163. Particular cases of the problem of Art. 161 (left).

I. Suppose the point ac
r
to lie at infinity ;

then the problem
becomes the following :

Given five tangents a, I
, c, a*

,
b to a conic, to draw the tangent

which is parallel to one of them, to a,for example (Fig. in).
Solution. Draw through the point a c a straight line q

parallel to a
; join ab and a b

by the straight line r, and join

the points or and b c by the

straight line p. Then if through
the point pb a parallel be drawn

to a, it will be the required

tangent.

From a given point in the

plane of a conic two tangents
at most can be drawn to the

curve (Art. 23) ;
so that from a point lying on a given tangent

only one other tangent can be drawn. If then the conic is a

parabola, it cannot have a pair of parallel tangents. (This

has already been seen in Art. 157 (1).)

II. Suppose the straight line b to lie at infinity; the

problem is then :

Fig. in.
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Given four tangents a, b
, c,af to a parabola, to drawfrom a given

point H lying on one of them, a, another tangent to the curve (Fig-

Fig. 112.

Solution. Through the point

ab draw a straight line r

parallel to a&quot;
; join the points

H and a c by the straight line

q, and the points qr and b c by
the straight line p. The straight

line drawn through // parallel

to p will be the required tan

gent.

III. If the straight line a

lies at infinity, we have the problem :

Givenfour tangents b
, c, a

,
6 to a parabola, to draw the tangent

which is parallel to a given straight line (Fig. 113).

Solution. Through a b draw

the straight line r parallel to

b
,
and through a c draw the

straight line q parallel to the

given direction
; join the

points qr, b c by the straight

line p. The straight line

through pb parallel to the

given direction is the tangent Fig II3

required.

IV. If in problem II the point H assume different positions

on a, or if in III the given straight line assume different

directions, we arrive at the solution of the problem :

To construct by means of its tangents the parabola which is deter

mined byfour given tangents.



CHAPTER XVI.

DEDUCTIONS FROM THE THEOREMS OP PASCAL
AND BRIANCHON.

164. WE have already given some propositions and con
structions (Arts. 161-163) which follow immediately from the
theorems of Pascal and Brianchon, by supposing some of
the elements to pass to infinity. Other corollaries may be
deduced by assuming two of the six points or six tangents to

approach indefinitely near to one another *.

If AB CA BC are six points on a conic, Pascal s theorem
asserts that the pencils A(A B CC

}
and B(A B CC \ for

example, are project!ve with one another. To the ray AS of
the first pencil corresponds in the second the tangent at B, so
that we may say that the group of four lines

is projective with the group
BA

,
BB

, BC\ tangent at B.

But this amounts evidently to saying that the point C&quot;,
which

was at first taken to have any arbitrary position on the curve,
has come to be indefinitely near to

the point B. Instead then of the

inscribed hexagon we have now the

figure made up of the inscribed

pentagon AB CA B and the tan

gent b at the vertex B (Fig. 114);
and Pascal s theorem becomes the

following :

FJ If a pentagon is inscribed in a conic,

the points of intersection R, Q of two

pairs of non-consecutive sides (AB and A B, AB and CA
},
and the

*
CARNOT, loc. cit., pp. 455, 456.
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point P where the fifth side (B C) meets the tangent at the opposite
vertex (B), are collinear.

This corollary may also be deduced from the construction (Art. 84,

right) for two projective pencils. Three pairs of corresponding rays
are here given, viz. AA and BA

, AC and BC, AB and BE . We
cut the two pencils by the transversals CA

, CB respectively; if R
be the point of intersection of A B and AB

,
then any pair of corre

sponding rays of the two pencils must cut the transversals CA
,
CB

respectively in two points which are collinear with E. In order
then to obtain that ray of the second pencil which corresponds to

AB, viz. the tangent at B, we join R to the point of intersection Q of

CA and AB, and join QR meeting CB in P; then BP is the

required ray b. But this construction agrees exactly with the corol

lary enunciated above.

165. By help of this corollary the two following problems can be
solved :

(1). Given Jive points A, Bf

,
C

,
A

,
B of a conic, to draw the tangent

at one of them B (Fig. 1 1 4).

Solution. Join Q, the point of intersection of AB and CA
,
to R,

the point of intersection of AB and A B; if P is the point where
QR meets B C, then BP will be the required tangent *.

Particular cases.

Given four points of a hyperbola and the direction of one asymptote,
to draw the tangent at one of the given points. (This is obtained

by taking one of the points A ,
B

,
C

,
A to lie at infinity.)

Given four points of a hyperbola and the direction of one asymptote,
to draw that asymptote. (B at infinity.) J? &amp;gt; C/

Given three points of a hyperbola and the directions of both

asymptotes, to draw the tangent at one of the given points. (Two of

the four points A, B ,
C

,
A at infinity.)

~
,

v

Given three points of a hyperbola and the directions of both

asymptotes, to draw one of the asymptotes. (B and one of the other

points at infinity.) ^ -,

(2). Given four points A, B, A
,
C of a conic and the tangent at

one of them B, to construct the conic by points ; for example, to find
the point of the curve which lies on a given straight line r drawn

through A (Fig. 114).

Solution. Let R be the point where A B meets r, and Q the

point where AB meets CA
;
and let QR cut the given tangent in P.

The point B where CP cuts the given straight line r will be the one

required.

By supposing one or more of the elements of the figure to lie at

*
MACLAURIN, loc. cit.

} 40.
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infinity, e.g. one of the points A, A
, C\ or two of these points; or

the point A and the line r
;
or the point B ; or the point B and one

of the other points ;
or the point B and the given tangent ; we obtain

the following particular cases :

To construct by points a hyperbola, having given
three points of the curve, the tangent at one of these points, and

the direction of one asymptote ;

or : two points, the tangent at one of them, and the directions of

both asymptotes ;

or : three points and an asymptote ;

or: two points, one asymptote, and the direction of the other

asymptote.

Given three points of a hyperbola, the tangent at one of them,
and the direction of an asymptote, to find the direction of the other

asymptote.

To construct by points a parabola, having given three points of

the curve (lying at a finite distance) and the direction of the point at

infinity on it. ^ -f; /t ^ ^
166. Keturning to the hexagon AB CA EC inscribed in a

conic, let not only C be taken in

definitely near to B, but also C

indefinitely near to B . The figure

will then be that of an inscribed

quadrangle AB A B together with the

tangents at B and B (Fig. 115), and

Pascal s tbeorem becomes the follow

ing :

If a quadrangle is inscribed in a

conic, the points of intersection of the

two pairs of opposite $ide#, and the point

of intersection of the tangents at a pair

of opposite vertices^ are three collinear

points.
Fig. 115-

This property coincides with one already obtained elsewhere (Art.

85, right). For considering the protective pencils of which BA and B A,
BA and B A

,
... are corresponding rays, it is seen that the straight

line which joins the point of intersection Q of BA and B A to the

point of intersection R of B A and BA must pass through the point

of intersection P of the rays which correspond in the two pencils

respectively to the straight line joining their centres B and B .

167. By help of the foregoing corollary the following problems can

be solved :
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(I). Git:en four points A, B ,
A

,
B of a conic and the tangent BP

at one of them B, to draw the tangent at another of the points B
f

(Fig. US)-
Solution. Let AB and A B meet in Q, and AB and A B in R

;

and let QR meet the given tangent in P. Then B P will be the

required tangent*.

By supposing one of the given points, or the given tangent, to

lie at infinity, the solutions of the following particular cases are

obtained :

^y]4t\MT*~**~~
To draw the tangent at a given point of a parabola, having given

in addition two other points on the curve, the tangent at one of them,

and the direction of one asymptote ; or, one other point, the tangent

at this, and the directions of both asymptotes; or, one other point,

one asymptote, and the direction of the other asymptote.

To draw the asymptote of a hyperbola when its direction is known,

having given in addition three points on the curve and the tangent at

one of them
; or, two points on the curve, the tangent at one of them,

and the direction of the second asymptote; or, two points on the

curve and the second asymptote.

To draw the tangent at a given point of a parabola, having given

two other finite points on the curve, and the direction of the point at

infinity on it.

(2). To construct a conic by points, having given three points A , B, B
on the curve and the tangents BP ,

B P at two of them ; i. e. to

determine, for example, the point A in which an arbitrary straight

line r drawn through B is cut by the conic (Fig. 116).

Solution. Join the point of intersection P of the given tangents
to the point R where r cuts AB

; and let

PR cut AB in Q. If B Q be joined, it will

cut r in the required point A .

By supposing one of the points A, B, B
or one of the lines BP

,
B P, r to lie at

infinity, we shall obtain the solutions of

the following particular cases :

To construct by points a hyperbola,

having given two points on the curve, the

tangents at these, and the direction of one

asymptote ; or, one point on the curve,

the tangent there, one asymptote and the

direction of the second asymptote; or, one point on the curve and

both asymptotes.
To construct by points a parabola, having given two points on the

*
MACLAURIN, loc. cit., 38.
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curve, the tangent at one of them, and the direction of the point at

infinity on the curve.

168. The tangents at the other vertices A and A of the

quadrangle ABA &quot;B (Fig. 1 16) will also intersect on the straight
line joining the points (AB, A B

)
and (AB ,

A B). Hence the

theorem of Art. 166 may be enunciated in the following, its

complete form :

If a quadrangle is inscribed in a conic, the points of intersection

of the tivo pairs of opposite sides, and the points of intersection of
the tangents at the two pairs of opposite vertices^ are four collinear

points.

If two opposite vertices of the quadrangle be taken to lie at

infinity, this becomes the following :

If on a chord of a hyperbola, as diagonal, a parallelogram he

constructed so as to have its sides parallel to the asymptotes, the

other diagonal will pass through the point of intersection of the

asymptotes.

169. THEOREM. The complete quadrilateral formed ly four

tangents to a conic, and the complete quadrangleformed ly theirfour

points of contact, have the same diagonal triangle.

In the last two figures write C,D,E, G in place of

Fig. 117.

A ,B ,R, Q respectively. In the inscribed quadrangle ABCD
(Fig. 117) the point of intersection of the tangents at A and C,
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that of the tangents at B and D, the point of intersection of the

sides AD, BC, and that of the sides AB, CD all lie on one straight

line EG. If the same points A, B, C ,
D are taken in a different

order, two other inscribed quadrangles ACDB and ACBD are

obtained, to each of which the theorem of Art. 168 may be

applied. Taking the quadrangle ACDB, it is seen that the

point of intersection of the tangents at A and D. that of the

tangents at C and B, the point of intersection of the sides

AB, CD, and that of the sides AC, BD all lie on one straight

line FG. So too the quadrangle ACBD gives four points

lying on one straight line EF\ viz. the points of intersection

of the tangents at A and B, of the tangents at C and D, of the

sides AD, CB, and of the sides AC, BD*.
The three straight lines EG, GF, FE thus obtained are the

sides of the diagonal triangle EFG (Art. 36, [2] )
of the complete

quadrangle whose vertices are the points A,B } C,D; and

since the same straight lines contain also the points in which

intersect two and two the tangents a, b
, c, d at these points,

they are also the diagonals of the complete quadrilateral

formed by these four tangents. The theorem is therefore

proved.
170. In the complete quadrilateral abed the diagonal f,

whose extremities are the points ac, Id, cuts the other two

diagonals g and e in E and G respectively ;
these two points

are therefore harmonically conjugate with regard to ac and Id

(Art. 56). The correlative theorem is : The two opposite sides

of the complete quadrangle ABCD which meet in F are har

monically conjugate with regard to the straight lines which
connect Fwith the two other diagonal points 2? and G (Art. 57).

Summing up the preceding, we may enunciate the following

proposition (Fig. 117):

If at the vertices of a (simple) quadrangle ABCD, inscribed in a

conic, tangents a,b,c,d be drawn, so as to form a (simple) quadri
lateral circumscribed to the conic, then this quadrilateral possesses the

following properties with regard to the quadrangle: (i) the diagonals

of the two pass through one point (F) and form a harmonic pencil ;

(2) the points of intersection of the pairs of opposite sides of the two

lie on one straight line (EG) and form a harmonic range ; (3) the

* MACLAURIN, loc. cit., 50 ; CARNOT, loc. cit., pp. 453, 454.
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L

diagonals of the quadrilateral pass through the points of intersection

of the pairs of opposite sides of the quadrangle*.

171. By help of the theorem of Art. 169, when we are given four

tangents a
,
b

,
c

,
d to a conic and the point of contact A of one of

them, we can at once find the points of contact of the three others
;

and when we are given four points A
,
B

,
C

,
D on a conic and the

tangent a at one of them, we can draw the tangents at the three

other points t.

Solution. Draw the diagonal

triangle EFG of the complete

quadrilateral abed; then AG,
AF, AE will cut 6, c, d respec

tively in the required points

contact B, C, D.

of

Draw the diagonal triangle

EFGr of the complete quadrangle
ABCD] then the straight lines

joining ag, af, ae to B, C, D re

spectively will be the required

tangents.

172. The theorem of Art. 169 may be enunciated with re

gard to tbe (simple) quadrilateral formed by the four straight
lines a,l,c,d ;

it then takes the following form, under which
it is seen to be already included in the theorem of Art. 170 J :

In a quadrilateral circumscribed to a conic, the straight lines

which join the points of contact of the pairs of opposite sides pass

through the point of intersection of the diagonals (Fig. 118).

This property coincides with one already proved with regard
to two projective ranges (Art. 85, left). For

consider the projective ranges on a and c as

bases, in which ab and cb, ad and cd, ... are

corresponding points; the straight lines which

connect the pairs of points ab and cd, cb and

ad respectively, must intersect on the straight

line which connects the points corresponding
in the two ranges respectively to ac ;

but this

is the straight line joining the points of contact

of a and c.

If the conic is a hyperbola, and we consider

the quadrilateral which is formed by the asymp
totes and any pair of tangents, the foregoing

theorem expresses that the diagonals of such a quadrilateral are

parallel to the chord which joins the points of contact of the two

tangents .

* CHASLES, Sections coniques, Art. 121.

t MACLAURIN, loc. cit., 38, 39.

NEWTON, loc. cit., Cor. ii. to lemrna xxiv.

APOLLONIUS, loc. cit., iii. 44.

Fig. 1 1 8.
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173. The theorem of Art. 172 gives the solution of the problem :

To construct a conic by tangents, having given three tangents a
, b, c

and the points of contact A and C of two of them ; to draw, for

example, through a given point H lying on a a second tangent to the

curve (Fig. 118).

Solution. Join the point ab to the point of intersection of AC and

If (be); the joining line will meet c in a point which when joined to

H gives the required tangent d.

If one of the points A ,
C or one of the given tangents be supposed

to lie at infinity, the solution of the following particular cases is

obtained :

To construct by tangents a hyperbola, having given one asymptote,

two tangents to the curve, and the point of contact of one of them ;

or, both asymptotes and one tangent.

To construct by tangents a parabola, having given the point at

infinity on the curve, two tangents, and the point of contact of one of

them
; or, two tangents and the points of contact of both.

Given four tangents to a conic and the point of contact of one of

them, to find the points of contact of the others.

174. If in Pascal s theorem the points A ,
B

,
C be taken to

lie indefinitely near to A, B, C

respectively, the figure becomes

tbat of an inscribed triangle
ABC together with the tangents
at its vertices (Fig. 119) ; and
the theorem reduces to the

following :

In a triangle inscribed in a conic,

the tangents at the vertices meet the

respectively opposite sides in three Fig. 119.

collinear points.

175. This gives the solution of the problem :

Given three points A, B, C of a conic and the tangents at two of
them A and B, to draw the tangent at the third point C (Fig. 1 1 9).

Solution. Let P, Q be the points where the given tangents at

A, B cut BC
,
CA respectively; if PQ cut AB in R, then CR is the

tangent required.

The following are particular cases :

Given two points on a hyperbola, the tangents at these points,
and the direction of one asymptote, to construct the asymptote
itself.

Given one asymptote of a hyperbola, one point on the curve, the
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tangent at this point, and the direction of the second asymptote, to

construct this second asymptote.

Given both asymptotes of a hyperbola and one point on the curve,

to draw the tangent at this point.

(From the solution of this problem, it follows that the segment

-^
determined on any tangent by the asymptotes is bisected at the point

of contact.)

Given two points on a parabola, the direction of the point at

infinity on the curve, and the tangent at one of the given points, to

draw the tangent at the other given point.

176. The inscribed triangle ABC and the triangle DEF
formed by the tangents (Fig. 119) possess the property that

their respective sides BC and EF, CA and FD, AB and DE
intersect in pairs in three collinear points. The triangles are

therefore homological, and consequently (Art. 18) the straight

lines AD, BE, CF which connect their respective vertices pass

through one point 0. Thus we have the proposition :

In a triangle circumscribed to a conic, the straight lines which join

the vertices to the points of contact of the respectively opposite sides

are concurrent.

177. By help of this proposition the following problem can be

solved :

Given three tangents to a conic and the points of contact of two of

them, to determine the point of contact of the third.

Solution. Let DEF (Fig. 119) be the triangle formed by the

three tangents, and let A
,
B be the points of contact of EF, FD re

spectively. If AD and BE intersect in 0, then FO will cut the

tangent DE in the required point of contact C.

Particular cases.
,

Given one asymptote of a hyperbola, two tangents, and the point

of contact of one of them, to determine the point of contact of the

other.

Given both asymptotes of a hyperbola, and one tangent, to deter

mine the point of contact of the latter.

Given two tangents to a parabola and their points of contact, to

determine the direction of the point at infinity on the curve.

Given two tangents to a parabola, the point of contact of one of

them, and the direction of the point at infinity on the curve, to deter-

^ y mine the point of contact of the other given tangent.

178. As a particular case of the theorem of Art. 176, consider a

parabola and the circumscribing triangle formed by the tangents at

any two points A , B, and the straight line at infinity, which is also
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Fig. 120.

a tangent. If the tangents at A and B meet in G (Fig. 120), the

straight line joining G to the middle point D of the chord AB will be

parallel to the direction in

which lies the point at infinity
on the curve.

Again, if any point M be

taken on AB, and parallels

MP
, MQ be drawn to BG

,
AC

respectively to meet AC
,
BO

in P
, Q ;

and if MR be drawn

parallel to DC to meet PQ in

R ; then PQ will be a tangent
to the parabola, and R its point of contact.

179. Just as from Pascal s theorem a series of special
theorems have been derived, relating to the inscribed pen
tagon, quadrangle, and triangle, so also from Brianchon s

theorem can be deduced a series of correlative theorems

relating to the circumscribed pentagon, quadrilateral, and

triangle.

Suppose e.g. that two of the six tangents a,b\c,a ,b, c which
form the circumscribed hexagon (Art. 153, left),

I and c for

example, lie indefinitely near to one another. Since a tangent
intersects a tangent indefinitely
near to it in its point of contact

(Arts. 146, 149), the hexagon will

be replaced by the figure made up
of tbe circumscribed pentagon
ab ca b together with the point of

contact of the side b (Fig. 121).

Brianchon s theorem will then become the following :

If a pentagon is circumscribed to a conic, the two diagonals which

connect any two pairs of opposite vertices, and the straight line join

ing the fifth vertex to the point of contact of the opposite side, meet

in the same point.

This theorem expresses a property of projective ranges which has

already (Art. 85, left) been noticed.

For consider the two projective ranges determined by the other

tangents on a and b as bases. Three pairs of corresponding points
are given, iiz. those determined by a

,
b

,
and c. Project the first

range from the point ca and the second from cb
;

this gives two

pencils in perspective of which corresponding pairs of rays intersect
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on the straight line r which joins the points ab
,

baf. In order

then to obtain that point of the second range which corresponds to

the point ab of the first, viz. the point of contact of the tangent b, we

draw the straight line q which joins the points caf and ab, and then

the straight line p which joins cb
f and qr ;

then pb is the point

required. But this construction agrees exactly with the theorem in

question.

180. By means of the property of the circumscribed pentagon

just established the following problems can be solved :

(1). Given five tangents to a conic, to determine the point of contact

of any one of them *.

v Particular case. Given four tangents to a parabola, to determine

their points of contact, and also the direction of the point at infinity

on the curve.

(2). To construct by tangents a conic, having given four tangents

and the point of contact of one of tJiem.

Particular cases.

To construct by tangents a hyperbola of which three tangents and

one asymptote are given.

To construct by tangents a parabola, having given three tangents

and the direction of the point at infinity on the curve; or three

tangents and the point of contact of one of them.

181. The corollaries of Brianchon s theorem which relate to the

circumscribed quadrilateral and triangle have already been given

(they are the propositions of Arts. 172 and 176) ; they are correlative

to the theorems of Arts. 166 and 174, just as those of Arts. 164 and

179 are correlative to one another.

It will be a very useful exercise for the student to solve for himself

the problems enunciated in the present chapter : the constructions all

depend upon two fundamental ones, correlative to one another, and

following immediately from Pascal s and Brianchon s ^theorems,

182. The corollaries to the theorems of Pascal and Brianchon show

that just as a conic is uniquely determined by five points or five

tangents, so also it is uniquely determined by four points and the

tangent at one of them, by four tangents and the point of contact of

one of them, by three points and the tangents at two of them, or

by three tangents and the points of contact of two of them. It

follows that

(1). An infinite number of conies can be drawn to pass through

three given points and to touch a given straight line at one of these

points; or to pass through two given points and to touch at them

two given straight lines
;
but no two of these conies can have another

point in common.

* MACLAURIN, loc. cit., 41.
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(2). An infinite number of conies can be drawn to touch a given
straight line at a given point, and to touch two other given straight
lines

;
or to touch two given straight lines at two given points ;

but
no two of these conies can have another tangent in common.

If then two conies touch a given straight line at the same point

(i.e. if the conies touch one another at this point), they cannot have
in addition more than two common tangents or two common points j

and if two conies touch two given straight lines at two given points

(i. e. if two conies touch one another at two points) they cannot have

any other common point or tangent.
Thus if two conies touch a straight line a at a point A, this point

is equivalent to two points of intersection, and the straight line a is

equivalent to two common tangents.

L 2



CHAPTER XVII.

DESARGUES THEOREM.

183. THEOKEM. Any transversal

whatever meets a conic and the op

posite sides of an inscribed quad

rangle in three conjugate pairs of

points of an involution.

This is known as DESARGUES

theorem *.

Let QRST (Fig. 122) be a

quadrangle inscribed in a conic,

COEKELATIVE THEOREM. The

tangentsfrom an arbitrarypoint to

a conic and the straight lines which

join the same point to the opposite

vertices of any circumscribed quad
rilateralform three conjugate pairs

of rays of an involution.

Let qrst (Fig. 123) be a quad
rilateral circumscribed about a

Fig. 122. Fig. 123.

and let 8 be any transversal cut- conic
;

from any point S let

ting the conic in P and P
,
and tangents p , p be drawn to the

the sides QT ,
Kti , QR ,

TS of the conic, and let the straight lines

* DESARGUES, loc. cit., pp. 171, 176.
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quadrangle in A
,
A

,
B

,
B re

spectively.

The two pencils which join

the points P, R, P
,
T of the

conic to Q and S respectively are

projective with one another (Art.

149), and the same is therefore

true of the groups of points in

which these pencils are cut by
the transversal. That is, the

group of points PBP A is pro

jective with the group PA P B
,

and therefore (Art. 45) with

P B PA
\ consequently (Art.

123) the three pairs of points

PP
,
AA

,
BE

are in involution.

184. This theorem, like that

of Pascal (Art. 153, right), enables

us to construct by points a conic

of which five points P,Q,K,S,T
are given. For if (Fig. 122) an

arbitrary transversal s be drawn

through P, cutting QT, ES, QR,
TS in A, A , B, B respectively;

and if (as in Art. 134) the point
P be found, conjugate to P in

the involution determined by the

pairs of points A ,
A and B

,
B

\

then will P f
be another point on

the conic to be constructed.

185. The pair of points C, C
in which the transversal cuts the

diagonals QS and RT of the

inscribed quadrangle belong also

(Art. 131, left) to the involution

determined by the points A
,
A

and/?, B .

Moreover, since the points
A

,
A and J5, B suffice to deter

mine the involution, the points

a, a
,
b

,
b be drawn which join

S to the vertices qt ,
rs

, qr ,
ts of

the quadrilateral respectively.

The two groups of points in

which q and s are cut by the

tangents p , r, p ,
t are pro

jective with one another (Art.

149), and the same is therefore

true of the pencils formed by

joining these points to S. That

is, the group of rays pbp a is

projective with the group pa p b
,

and therefore (Art. 45) with

p b pa i consequently (Art. 123)
the three pairs of rays

pp ,
aa

,
W

are in involution.

This theorem, like that of

Brianchon (Art, 153, left), en

ables us to construct by tangents
a conic of which five tangents

p, q, r, 6-, t are given. For if

(Fig. 123) an arbitrary point /$

be taken on p9
and this point be

joined to the points qt, rs, qr, ts

respectively by the rays a,a , 6, &
;

and if (Art. 134) the ray p be

constructed, conjugate to p in the

involution determined by the pairs
of rays a, a and b, b

/

;
then will

p be another tangent to the conic

to be constructed.

The pair of rays c, c which

connect S with the points of

intersection qs and rt of the

opposite sides of the circum

scribed quadrilateral belong also

(Art. 131, right) to the involu

tion determined by the rays a
,
a

and b
,
b .

Moreover, since the rays a, a

and b
,
b suffice to determine the

involution, the rays p, p are a
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P
,
P are a conjugate pair of

this involution for every conic,

whatever be its nature, which

circumscribes the quadrangle

QRST.
Thus :

Any transversal meets the conies

circumscribed about a given quad

rangle in pairs of points forming
an involution.

If the involution has double

points, each of these is equivalent

to two points of intersection P
and P lying indefinitely near to

one another
;
and will therefore

be the point of contact of the

transversal with some conic cir

cumscribing the quadrangle.

There are therefore either two

conies which pass through four

given points Q ,
R

,
S

,
T and

touch a given straight line s

(not passing through any of the

given points), or there is no

conic which satisfies these con

ditions.

186. If, from among the six

points AA
,
BB

,
PP of an

involution, five are given, the

sixth is determined (Art. 134). If

then in Fig. 122 it is supposed
that the conic is given, and that

the quadrangle varies in such a

way that the points A
,
A

,
B

remain fixed, then also the point

E f
will remain invariable; con

sequently :

If a variable quadrangle move

in such a way as to remain

always inscribed in a given conic,

while three of its sides turn each

round one of three fixed collinear

points, then the fourth side will

turn round a fourth fixed point,

conjugate pair of this involution

for every conic, whatever be its

nature, which is inscribed in the

quadrilateral qrst.

Thus:

The pairs of tangents drawn

from any point to the conies

inscribed in a given quadrilateral

form an involution.

If the involution has double

rays, each of these is equivalent

to two tangents p and p lying

indefinitely near to one another
;

and will therefore be the tangent
at S to some conic inscribed in

the quadrilateral.

There are therefore either two

conies which touch four given

straight lines q, r, s, t and pass

through a given point S (not

lying on any of the given lines),

or there is no conic which satis

fies these conditions.

If, from among the six rays
aa

,
bb

, pp
f

of an involution,

five are given, the sixth is deter

mined (Art. 134). If then in

Fig. 123 it is supposed that the

conic is given, and that the

quadrilateral varies in such a

way that the rays a
,
a

,
b remain

fixed, then also the ray b will

remain invariable
; consequently :

Ifa variable quadrilateral move

in such a way as to remain always
circumscribed to a given conic,

while three of its vertices slide

each along one of three fixed con

current straight lines, then the

fourth vertex will slide along a
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collinear with the three

ones.

fourth fixed straight line, concur

rent with the three given ones.

Fig. 124.

187. The theorem of the preceding Art. (left) may be ex

tended to the case of any inscribed polygon having an even

number of sides. Suppose such a polygon to have zn sides,

and to move in such a way that 2^ 1 of these pass respec

tively through as many fixed points all lying on a straight

line s (Fig. ] 24). Draw the

diagonals connecting the

first of its vertices with the

4
th

,
6th

,
8th

,
... 2 (rc-i)

th

vertex, thus dividing the

polygon into n i simple

quadrangles. In the first

of these quadrangles the first

three sides (which are the

first three sides of the polygon) pass respectively through
three fixed points on s

;
therefore also the fourth side (which is

the first diagonal of the polygon) will pass through a fixed point
on s. In the second quadrangle the first three sides (the first

diagonal and the fourth and fifth side of the polygon) pass

respectively through three fixed points on s; therefore the

fourth side (the second diagonal of the polygon) will pass

through a fixed point on s. Continuing in the same manner,

we arrive at the last quadrangle and find that the fourth side

of this
(i.

e. the 2 nih side of the polygon) passes through a

fixed point on s. We may therefore enunciate the general

theorem :

If a variable polygon of an even number of sides move in such a

way as to remain always inscribed in a given conic, while all its

but one pass respectively through as many fixed

straight line, then the last side also willpass through a fixed point

collinear with the others *.

If tangents can be drawn to the conic from the fixed point

round which the last side turns, and if each of these tangents
is considered as a position of the last side, the two vertices

which lie on this side will coincide and the polygon will have

only 2 n i vertices. The point of contact of each of the two

on a

*
PONCELET, IOC. tit., Art. 513.
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tangents will therefore be one position of one of the vertices

of a polygon of 2 n I sides inscribed in the conic so that its

sides pass respectively through the 2^1 given coliinear

points.

188 The solution of the correlative theorem is left as an

exercise to the student : the enunciation is as follows :

If a variable polygon of an even number (2 n) ofsides moves so as to

remain always circumscribed to a given conic, while all its vertices

lut one slide along as many fixed

straight lines radiatingfrom a centre,

then the last vertex also will slide

along a fixed straight line passing

through the same centre (Fig.

If the straight line on which

this last vertex slides cut the

conic in two points, and if the

tangents at these be drawn, each

of them will be one position of

a side of a polygon of zn i

sides circumscribed about the

conic so that its vertices lie each

on one of the in i given con-
Fig. 125.

current straight lines.

189. If in Fig. 122 it be sup

posed that the points S and T lie

indefinitely near to one another on

the conic, or in other words that

ST is the tangent at S, then the

quadrangle QRST reduces to the

inscribed triangle QRS and the

tangent at S (Fig. 126), so that

Desargues theorem becomes the

following :

If a triangle QRS is inscribed

in a conic, and if a transversal s

meet two of its sides in A and A
,

the third side and the tangent at

the opi
osite vertex in B and B

,

and the conic itself in P and P
,

If in Fig. 123 the tangents

s and t be supposed to lie indefi

nitely near to one another, so that

st becomes the point of contact of

the tangent s, then the quadri

lateral qrst reduces to the circum

scribed triangle qrs and the point

of contact of s (Fig. 127), so that

the theorem correlative to that of

Desargues becomes the following :

// a triangle qrs is circum

scribed about a conic, and if from

any point S there be drawn tlte

straight lines a
,
a to two of its

vertices, the straight lines b
,
b to

the third vertex and the point of
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tfiese three pairs of points are in

involution.

190. This theorem gives a

contact of the opposite side, and

the tangents p , p to the conic
,

then these three pairs of rays are

in involution.

This theorem gives a solution of

solution of the problem : Givenfive the problem : Given five tangents

Fig. 126.

points P ,
P

, Q ,
R

,
S on a conic,

to draw the tangent at any one of
them S.

For ifA
,
A

,
B (Fig. 126) are the

points in which the straight line

PP cuts the straight lines QS,SR,
RQ respectively, we construct (as

in Art. 134) the point B conjugate
to B in the involution determined

by the two pairs of points A ,
A

and P, P ;
then B S will be the

required tangent.

191. If in Fig. 126 it be now

supposed in addition that the

points Q and R also lie inde

finitely near to one another on

the conic, i.e. that QR is the

tangent at Q, then the inscribed

quadrangle QRST is replaced by
the two tangents at Q and S and

their chord of contact QS counted

twice (Fig. 128).

Since the straight lines QT,
MS now coincide, A and A will

Fig. 127.

P, p ,q,r, s to a conic, to find the

point of contact of any one of
them s.

For if a, a ,
I (Fig. 1 2 7) are the

rays joining the point pp to the

points qs ,
sr

, rq respectively, we
construct (as in Art. 134) the ray
& conjugate to b in the involu

tion determined by the two pairs

of rays a
,
of and p , j/ ;

then b s

will be the required point of con

tact.

If in Fig. 127 it be now sup

posed in addition that the tan

gents q and r lie indefinitely near

to one another, i.e. that qr is the

point of contact of the tangent q,

then the circumscribed quadri

lateral qrst is replaced by the

points of contact of the tangents

q and s and the point of intersec

tion qs of these tangents counted

twice (Fig. 129).

Since the points qt ,
rs now

coincide in a single point qs, the
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also coincide in one point, which
is consequently one of the double

points of the involution deter

mined by the pairs of conjugate

points P, P and S, E . In this

case, then, Desargues theorem

becomes the following :

// a transversal cut two tan

gents to a conic in B and B f

,
their

chord of contact in A, and the

conic itself in P and P
,
then the

point A is a double point of the

involution determined by the pairs

ofpoints P, P and B, B f
.

Or, differently stated :

If a variable conic pass through
two given points P and P and
touch two given straight lines, the

chord ivhich joins the points of
contact of these two straight lines

will always pass through a fixed

point on, PP f
.

If the tangents QU ,
SU vary

at the same time with the conic,

while the points P, P ,
B

,
B f

re

main fixed, the chord of contact

rays a and a will also coincide

in a single ray a, which is conse

quently one of the double rays of

the involution determined by the

Fig. 129.

pairs of conjugate rays p, p and

b
,
& . The theorem correlative to

that of Desargues then becomes

the following :

If a given point S be joined to

two points on a conic by the

straight lines b
,
b

,
and to the

point of intersection of the tan

gents at these points by the straight

line a ; and if from the same

point S there be drawn the two tan

gents p , p to the conic ; then a is

a double ray of the involution de

termined by the pairs of rays p , p
and b

,
b .

Or, differently stated :

If a variable conic touch two

given straight lines p and p and.

pass through two given points, the

tangents at these two points will

always intersect on a straight line

passing through pp .

If the points of contact of q and

s vary at the same time with the

conic, while the straight lines

P p t
&

)
b remain fixed, the point
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QS must still always pass through
one or other of the double points

of the involution determined by
the pairs of points P, P f and B, B .

If then four collinear points P,P ,

B
,
B f

are given and any conic is

drawn through P and P
t
and

then the pairs of tangents from

B and B f
to this conic; then if

each tangent from B is taken to

gether with each tangent from

B f

,
four chords of contact will be

obtained, which intersect one

another two and two in the double

points of the involution determined

by P,P and
,

*.

192. From the theorem of the

last Article
(left) is derived a

solution of the problem : Given

four points P,P ,Q ,S on a conic

and the tangent at one of them Q,

to draw the tangent at any other

of the (jiven points S (Fig. 128).

For if A
,
B are the points in

which PP cuts QS and the given

tangent respectively, and we con

struct the point B conjugate to

B in the involution determined

by the pair of points P, P and
the double point A; then the

straight line SB will be the tan

gent required.

of intersection qs must still always
lie on one or other of the double

rays of the involution determined

by the pairs of rays p ,p and b
,
b
f

.

If then four concurrent straight

lines p ,p ,b ,
b are given and any

conic is drawn touching p and ^/,

and then the two pairs of tan

gents to this conic at the points

where it is cut by b and 6
;

then if the tangents at the two

points on b are combined with

the tangents at the two points on

&
,
each with each, four points of

intersection will be obtained,

which lie two and two on the

double rays of the involution de

termined by /; , p and b
,
b .

From the theorem of the last

Article (right) is derived a solu

tion of the problem : Given four

tangents p, p ,q ,
s to a conic and

the point of contact of one of them

q, to determine the point of contact

of any other of the given tangents

s (Fig. 129).

For if a
,
b are the rays which

connect pyf with qs and with the

given point of contact respec

tively, and we construct the ray
b conjugate to b in the involu

tion determined by the pair of

rays p ,p
f and the double ray a

;

then sb
f

will be the required

point of contact.

193. Consider again the theorem of Art. 191 ; and suppose that

the conic is a hyperbola, and that its asymptotes are the tangents

given (Fig. 130). The chord of contact QS lies in this case entirely
at infinity; so that the involution (PP ,

BB
, ...) has one double

point at infinity, and therefore (Arts. 59, 125) the other double point

* BRIANCHON, loc. cit., pp. 20, 21.
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is the commoii point of bisection of the segments PP ,BB ,... We
conclude that :

If a hyperbola and its asymptotes be cut by a transversal, the seg

ments intercepted by the curve and by tlw asymptotes respectively have

the same middle point.

Fig. 130.

From this it follows that

PB = B P and PB = BP *,

which gives a rule for the construction of a hyperbola when the two

asymptotes and a point on the curve are given t.

194. Consider once more the Consider once more the theorem

theorem of Art. 191 (left),
and of Art. 191 (right), and suppose

suppose now that the points P
and P are indefinitely near to one

another, i.e. let the transversal

be a tangent to the conic (Fig.

131). Its point of contact P will

now that the tangents p and p lie

indefinitely near to one another,

i.e. let the point S He on the

conic itself (Fig. 132). The tan

gent to the conic at S will be the

Fig. 131.

be the second double point of the

involution determined by the pair

of points B
,
B f and the double

point A ; consequently (Art. 125)

P and A are harmonic conjugates

Fig. 132.

second double ray of the involu

tion determined by the pair of

rays b
,
b and the double ray a

;

consequently (Art. 125) p and a

are harmonic conjugates with

* APOLLONIUS, loc. cit. t
ii. 8, 16.

f Ibid., ii. 4.
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with regard to B and E f and

we conclude that :

In a triangle UBB circum

scribed to a conic, any side BB
is divided harmonically by its

point of contact P and the point

where it meets the chord QSjoining

the points of contact of the other

two sides.

195. From A a second tangent

can be drawn to the conic
;

let its

point of contact be 0. Since the

four points P,A,B,B ,
which have

been shown to be harmonic, are

respectively the point of contact

of the tangent AB, and the three

points where this tangent cuts

three other tangents OA , QB, SB

respectively, it follows that the

tangents AB
,
OA

, QB ,
SB will

be cut by every other tangent in

four harmonic points (Art. 149);
i. e. they are four harmonic tan

gents (Art. 151). And since the

chord of contact QS of the con

jugate tangents QB ,
SB passes

through A the point of intersec

tion of the tangents at P and 0,

we have the theorem :

// the chord of contact of one

pair of tangents to a conic pass

through the point of intersection of
another pair of tangents, then each

pair is harmonically conjugate

with regard to the other.

And conversely :

If four tangents to a conic are

harmonic, the chord of contact of
each pair of conjugate tangents

passes through the point of inter

section of the other pair.

regard to b and b
;
and we con

clude that :

In a triangle ubb inscribed in

a conic, any two sides b and b

are harmonic conjugates with re

gard to the tangent p at the vertex

in which they meet and the straight

line joining this vertex to the point

of intersection of the tangents q
and s at the other two vertices.

The straight line a cuts the

conic in a second point; let the

tangent at this be o. Since the

four rays p ,
a

,
b

,
b

, which have

been shown to be harmonic, are

respectively the tangent at S, and

the straight lines which join S to

three other points on the conic

(the points of contact of o
, q, and

s) it follows that the straight
lines connecting these four points
with any other point on the conic

will form a harmonic pencil (Art.

149); i.e. the four points are

harmonic (Art. 151). And since

the point of intersection of the

tangents q and s lies on the chord

of contact of the tangents p and o,

we have the theorem :

If the point of intersection of
the tangents at one pair of points
on a conic lie on the chord join

ing another such pair of points,

then each pair is harmonically

conjugate with regard to the other.

And conversely :

If four points on a conic are

harmonic, the point of intersection

of the tangents at each pair of con

jugate points lies on the chord

joining the other pair.

196. These two correlative propositions can be combined into one



158 DESARGUES THEOREM. [197

by virtue of the property already established (Arts. 148, 149) that

the tangents at four harmonic points on a conic are themselves har

monic, and conversely. We may then enunciate as follows :

If a pair of tangents to a conic meet in a point lying on the chord

of contact of another pair, then also the second pair will meet in a

point lying on the chord of contact of the first ; and the four tangents

(and likewise tlieir points of contact) will form a harmonic system*.
Thus in Fig. 131 QS passes through A, the point of intersection of

PA and OA, and similarly OP passes through U, the point of inter

section of QB and SB
;
and the pencil U (QSPA] is harmonic, and

likewise the pencil A (OPQ U).
In Fig. 132 the point qs lies on a, the chord of contact of o and p,

and similarly the point op lies on the straight line u which joins the

points of contact of q and s
; and the range u (qsap) is harmonic, and

the range a (opqu) also.

197. Example. Suppose the conic to be a hyperbola (Fig. 133).

Its asymptotes are a pair of tangents whose

chord of contact QS is the straight line at

infinity ; consequently the chord joining the

points of contact of a pair of parallel tangents
will pass through the point of intersection U
of the asymptotes ;

and conversely, if through
U a transversal be drawn, the tangents at the

points P and 0, where it cuts the curve, will

133&amp;gt;

be parallel. The point U will lie midway
between P and 0, since in general UVPO

(Fig. 131) is a harmonic range, and in this case V lies at in

finity.

Any tangent to the curve cuts the asymptotes in two points B and

B which are harmonically conjugate with regard to the point of con

tact P and the point where the tangent meets the chord of contact of

the asymptotes ;
but this last lies at infinity ;

therefore P is the

middle point of BB . Thus

The part of a tangent to a hyperbola which is intercepted between

the asymptotes is bisected at its point of contact t.

This proposition is a particular case of that of Art. 193.

198. THEOREM J. If a quadrangle is inscribed in a conic, the

rectangle contained by the distances of any point on the curve from

* DE LA HIRE, loc. cit., book i. prop. 30. STEINER, loc. cit., p. 159, 43;

Collected Works, vol. i. p. 346.

f APOLLONIUS, loc. cit., ii. 319.

J To this CHASLES has given the name of PAPPUS theorem, since it corresponds

to the celebrated problema ad quatuor lineas&quot;
1

of this ancient geometer. Cf.

Apergu historique, pp. 37, 338.
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one pair of opposite sides is to the rectangle contained by its distances

from the other pair in a constant ratio.

In Fig. 122, the pairs of points P and P
,
A and A

,
B and B

being, by Desargues theorem, in involution, the anharmonic ratios

(PP AB) and (P PA B
)
are equal to one another, or

:?:??.- P A P B
P 7! l P B~~ PA : ~PW

PB PA
~
P B P A

But PA : P A is equal to the ratio of the distances (measured in

any the same direction) of the points P and P from the straight line

QT, and the other ratios in the foregoing equation maybe interpreted

similarly ;
we have therefore

(A) (By (B ) (A Y

W W _ (AY . (A Y

(B}.(B )~(BY . (* )&quot;

where (A), (A ), (B), (B )
denote the distances of the point P from

the sides QT, ES, QR, ST respectively of the inscribed quadrangle

QRST, and (A) , (4% (B) , (BJ denote similarly the distances of

the point P
r from these sides respectively. (These distances may be

measured either perpendicularly or obliquely, so long as they are all

measured parallel to one another.) The ratio

(B) (B )

is therefore constant for all points P on the conic
;
which proves the

theorem.

199. THEOREM. If a quadrilateral is circumscribed about a conic,

the rectangle contained by the distances of one pair of opposite vertices

from any tangent is to the rectangle contained by the distances of the

other pair from the same tangent in a constant ratio *.

In Fig. 123 let the vertices qr , qt ,
st

,
sr of the circumscribed

quadrilateral qrst be denoted by R ,
T

, T^ , R^ respectively ;
let the

points where the tangents p , p meet the side q be called P
,
P

respectively t, and let the points where these same tangents meet the

side s be called P15 P/ respectively. Since by the theorem corre

lative to that of Desargues, the pairs of rays p and p t
a and a

,

b and b
,

are in involution, the anharmonic ratios (bapp )
an^

(b a p p) are equal to one another. Hence by theorem (2) of

Art. 149,

* CHASLES, Sections coniques, Art. 26.

f P is not shown in the figure.
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(RTPP )
= (T^PSPJ
= (#, T^Pf) by Art. 45 ;

_
TP TP

~ 7
i\Pl

:

~TJ\
*

whence RP^P RP .T^
TP.R

1
P

1
TP .R^Pj

But RP : TP is equal to the ratio of the distances (measured in

any the same direction) of the points R and T from the straight line

p ;
so also T

1
P

l
: R

l
P

l
is the ratio of the distances of the points Tl

and R
l
from the same straight line p. The foregoing equation

therefore expresses that the ratio

RP . 7
T

1
P

1

TP . R
l
P

l

is constant for every tangent p to the conic
;

which proves the

theorem.



CHAPTER XVIII.

SELF-CORRESPONDING ELEMENTS AND DOUBLE ELEMENTS.

200. CONSIDER two projective flat pencils, concentric or non-

concentric. Through their common centre or through their

two centres and draw a conic or a circle, and let this

cut the rays of the first pencil in A., B , C, ... and those of the

second in A
,
B

,
C

, ... . Project these two series of points
from two new points O

lt O/ (or from the same point) lying
on the conic; the two projecting pencils O

l (ABC ...
)
and

0^(A
fB C f

... )
are by Art. 149 projective with the two given

pencils 0(ABC ...
)
and (A B C ...} respectively ;

and are

therefore projective with one another.

The two series of points ABC ... and A B C ... are said to form
two projective ranges on the conic*.

I. Now project these two ranges (Fig. 134) from two of their

corresponding points, say from A and A. The projecting

pencils

A (A,B,C,...} and A(A ,B ,C ,...)

will be projective with one another
;
and since they have the

self-corresponding ray AA\ they are

in perspective. Corresponding pairs

of rays will therefore (Art. 80) inter

sect on a fixed straight line, so that

AB and A B, AC and A C, AD and

A D... ,
will meet on one straight line s.

If any point be taken on *, the straight

lines joining it to A and A will cut

the conic again in another pair of corresponding points of

the ranges ABCD ... and A B C D ... .

* BELLAVITIS, Saggio di Geomefria derivata (Nuovi Saggi dell Accademia di

Padova, vol. iv. 1838, p. 270, note).

M

Fig. 134-
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If instead of A and A any other pair of corresponding

points had been taken as centres of projection, say B and B,

the same straight line s would have been arrived at. For

since AB CA BC is a hexagon inscribed in a conic, it follows

by Pascal s theorem that the point of intersection of B C and

BC must lie on the straight line which joins the point of

intersection of A B and AB to that of A C and AC (Art. 153,

right).

II. Any point M in which the conic and the straight line s

intersect is a self-corresponding point of the two ranges

ABC. . . and A B C . . . . For ifM
,
M be corresponding points

Fig- 135- Fig. 136.

of the two ranges, it has been seen that A M, AM must

intersect on s
;

if then M lie on s, M must coincide with M\
I. e. a pair of corresponding points of the two ranges are

united at M.

The two ranges will therefore have two self-corresponding points,

or only one, or none at all, according as

the straight line s cuts the conic in two

points (Fig. 135), touches it (Fig. 136), or.

does not cut it (Fig. 137).

III. From what precedes it is clear

that two protective ranges of points on

a conic are determined by three pairs of

corresponding points A and A
,
B and B

,

C and C . For in order to find other

pairs of corresponding points, and the

self- corresponding points (when such

exist), we have only to construct the

straight line s which passes through the points of intersection

of the three pairs of opposite sides of the hexagon AB CA BC
(Figs. 98, 134, 135). The self-corresponding points will then

Fig. 137-
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be the points where $ cuts the conic, and any number of pairs
of corresponding points can be constructed by help of the

property that any pair D and D are such that the lines A D
and AD (or B D and BD\ or C D and CD

)
intersect on #*.

201. Instead of protective ranges of points on a conic we may
consider protective series of tangents to the same. Let o, o

/
be two

protective ranges of points (either collinear or lying on different straight
lines as bases). Describe a conic to touch o and o

,
and draw to this

conic, from each pair of corresponding points A and A
,
B and

,

C and
C&quot;,

... the tangents a and a
,
b and 6

,
c and c

,
... . If now

these two series of tangents are cut by two other tangents o
1
and o/,

two new ranges of points will be obtained, which are protective with

the given ranges respectively (Art, 149), and are therefore protective
with one another.

Two series of tangents to a conic are said to be projectile with one

another when they are cut by any other tangent to the curve in two

protective ranges.

I. Suppose the first series of tangents to be cut by the tangent a
,

and the second by the tangent a. The two protective ranges so

formed are in perspective, since they have the self-corresponding

point aa
;

the straight lines which join the pairs of corresponding

points a b and abf

,
a c and ac

,
... will therefore pass through one

point S. This point does not change if another pair of tangents
& and b are taken as transversals; for by Brianchon s theorem the

straight lines which join the three pairs of opposite vertices a b and

ab
,
a c and ac

,
b c and be of the circumscribed hexagon ab c a bc

must meet in a point (Art. 153, left).

II. If the point S is such that tangents can be drawn from it to

the conic, each of them will be a self-corresponding line of the two

protective series of tangents abc ... and a b c ....

[The proof of this is analogous to that of the corresponding property
of two projective ranges of points on a conic (Art. 200, II).]

III. Two projective series of tangents to a conic are determined

by three pairs of corresponding lines a and a
,

b and b
,

c and c .

For in order to find other pairs of corresponding lines, and the self-

corresponding lines (when such exist), we have only to construct the

point of intersection S of the diagonals which join two and two the

opposite vertices of the circumscribed hexagon ab c a bc . The self-

corresponding lines will be the tangents from S to the conic, and any

pair of corresponding lines d and d may be constructed by means of

the property that the points a
fd and ad (or b d and bd

,
or c d and

cdf

,
. .

.)
are collinear with S.

*
STEINER, loc. cit., p. 174, 46, iii.

;
Collected Works, vol. i. p. 357.

M 2
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IV. A range of points A, B , C, ... on a conic and a series of tangents

a, b, c, ... to the same are said to be projective with one another,

when the pencil formed by joining A, B, C, ... to any point on the

conic is projective with the range determined by a, b, c, ... on any

tangent to the conic.

A range of points A, B, C, ... on a conic, or a series of tangents

a, b, c, ... to the same, is said to be projective with a range of points

on a straight line, or a pencil (flat or axial), when this last-mentioned

range or pencil is projective with the pencil formed by joining

ABC ... to any point on the conic or with the range determined by

a, b, c, ... on any tangent to the conic.

V. These definitions premised, we may now include under the

title of one-dimensional geometric form not only the range of

collinear points, the flat pencil, and the axial pencil, but also

the range of points on a conic and the series of tangents to a

conic *
;

and with regard to these we may enunciate the general

theorem: Two one-dimensional forms which are each projective

with a third (also of one dimension) are projective with one another

(cf.
Art. 41).

VI. From these definitions it follows also that theorem (3) of

Art, 149 may be enunciated in the following manner:

Any series of tangents to a conic is projective with the range formed

by their points of contact.

VII. Let A
, B, C, ... and A

,
B

,
C

,
... be two projective ranges of

points on a conic, and let a, b, c, ... and a
,
b

,
c

,
... be the tangents

at these points. The series of tangents a, b, c, ... and a
,

&
,

c
,

...

are projective with the series of points of contact A, B, C, ... and

A
,
B

,
C

,
... respectively, and are therefore projective with one

another. Let s be the straight line on which the pairs of straight lines

such as AB and A B, AC and A C, BC and B C ... intersect
;
and

let S be the point in which meet the straight lines joining pairs of

points such as ab and a &, ac and a c, be and b c, .... If s cuts the

conic in two points M and N, these must be the self-corresponding

points of the ranges ABC ... and A B C ...
;
the tangents m and n

at M and N respectively must therefore be the self-corresponding

lines of the projective series abc . . . and a b c . . .
; consequently the

straight lines m and n will meet in S.

VIII. From the foregoing it follows that for the consideration of a

* The introduction of these new one-dimensional forms enables us now to add

to the operations previously made use of (section by a transversal straight line

and projection by straight lines radiating from a point) two others, viz. section of

a flat pencil by a conic passing through the centre of the pencil, and projection of

a range of collinear points by means of the tangents to a conic which touches the

base of the range.
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series of tangents can always be substituted that of their points of

contact, and vice versa.

202. Instead of considering any two project!ve pencils as

in Art. 200, take an involution of straight lines radiating
from a point 0. Suppose these to be cut by a conic passing

through in the pairs of points A and A
y
B and B

,
C and

C
t ...

,
and let these points be joined to any other point 1

on
the conic. Since by hypothesis (Arts. 122, 123) the pencils

0(AA BC...) and 0(A AB C ...) are projective with one

another, the pencils O
l (AA EC . . .

)
and O^A AB C ...) are

so too (Art. 149) ;
and therefore the rays issuing from

L

form an involution also. In this case we say that the two

projective ranges of points ABC ... and A B C ... on the conic form
an involution ; or that there is on the conic an involutionformed by

the pairs of conjugate points AA ,
BB

, CC\ ...*.

I. Similarly, if there is given an involution of points on a straight

line o and if from the pairs of conjugate points there be drawn

tangents a and of, b and b
,
c and c

,
. . . to a conic touching o, these

will be cut by any other tangent to the conic in an involution of

points ;
in this case we say that aaf, W, cc

,
. . . form an involution of

tangents to the conic (cf. Art. 201).

II. If several pairs of tangents aa
,

bb
,

cc . . . to a conic form

an involution, their points of contact AA
,
BB

,
CC

,
... form an

involution also, and conversely (Art. 201, VI).

203. Of the six points A
,
B

, C ,
A

,
B

,
C on a conic

considered in Art. 200, let C lie indefinitely near to A, and

C indefinitely near to A . The projective ranges (ABC ... ) or

(ABA ...) and (A B C ...) or (A B A...) will then form an

involution (AA ,
BB

, ...) and the inscribed hexagon is replaced

by the figure made up of the inscribed quadrangle AB A B and

the tangents at the opposite vertices A and A (Figs. 115, 138).

We conclude that

An involution of points on a conic is determined by two pairs

AA
,
BB .

I. In order to find other pairs of conjugate points, it is only

necessary to construct the straight line * which joins the point
of intersection of AB and A B to that of AB and A B

;
i.e. to

*
STAUDT, Beitraye zur Geometrie der Lage (Niirnberg, 1856-57-60), Arts. 70

sqq.
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Fig. 138.

draw the straight line joining the points of intersection of the

pairs of opposite sides of the inscribed quadrangle AB A B.

The points where s cuts the conic

are the double points. Pairs of

conjugate points will be constructed

by remembering that any pair C

and C f

are such that the straight

lines AC and A C (or AC and A C,

s
or BC and B C

9
or B C and BC

)

intersect on s.

II. The tangents at a pair of

conjugate points, such as A and A
,

B and B
,
... likewise intersect on

the straight line * (Art. 166).

III. Since the pairs of sides BC
and B C

,
CA and C A

,
AB and

A B of the triangles ABC, A fB C

intersect in three points lying on

a straight line #, the triangles are homological (Art. 17)*, and

the straight lines AA
,
BB

,
CC will meet in one point S. But

AA and BB suffice to determine this point ; accordingly:

Any pair of conjugate points of the involution are collinear with a

fixed point S
;
or

Every straight, line drawn through S to cut the conic determines

on it a pair of conjugate point* of the involution.

IV. It has been seen that if s cuts the conic in two points
M and N, these are the double points of the involution. The

tangents at M and N will therefore meet in S. &amp;lt;

V. Conversely, the pairs of points in which a conic is cut by

the rays of a pencil whose centre S does not lie on the curveform
an involution.

For if A and A
,
B and B are the points of intersection

of the curve with two of the rays, these two pairs AA
and BB determine an involution such that the straight
line joining any pair of corresponding points always passes

through a fixed point, viz. S. If the involution has double

points, these are the intersections of the conic with the

* The triangles A BC and AB C
,
AB C &nd-A BC ,

ABC and A B C are

likewise homological in pairs.
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straight line s which joins the point of intersection of AB and

A B to that of+AB and A B.

VI. If from different points of a straight line s pairs of tangents

a and a
,
b and b

,
c and c

,
... be drawn to the conic, these form an

involution. For if A and A
,
B and B

,
C and C

,
... are the points of

contact of the tangents a and
&amp;lt;/,

6 and &
,
c and c

,
... respectively, and

S is the point of intersection of the chords AA f and BB
,
then in the

involution determined by the pairs A ,
A and B

,
B the straight line

joining any other pair of conjugate points will pass through S. The

point C and its conjugate lie therefore on a straight line passing

through S, and the tangents at these points must meet on the

straight line joining the points oaf and W, i.e. on s
;
the conjugate

of C is therefore C . This shows that A and A
,
B and B

, C and C
form a range of points in involution, and that consequently a and a ,

b and 5
,
c and c form a series of tangents in involution.

VII. If M and N are the double points of an involution

AA
,
BB

,
CC j ... of points on a conic, it has been seen that

AB
,
A B

,
MN are three concurrent straight lines (the same is

the case with regard to AB
,
A B, MN). In consequence then of

theorem V, above, we conclude that :

If AA and BB f
are two pairs of conjugate elements of an involu

tion, and MN the double elements, then MN, AB, and A B (and

similarly MN, AB
,
and A B) are three pairs of conjugate elements

of another involution.

VIII. The straight line * cuts the conic (see below, Art.

254) when the point S lies outside the conic (Fig. 138), that is,

Fig. 139.

when the arcs AA and BB do not overlap one another ;
when

these arcs overlap, the point S lies within the conic and the

straight line * does not cut the latter (Fig. 139). We therefore
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arrive again at the property already proved in Art. 128, viz.

that

An involution has two double elements when any two pairs of

conjugate elements are such that they do not overlap ; and it has no

doable elements when they are such that they do overlap.

In no case can an involution, properly so called, have only

one double element. For if s were a tangent to the conic,

8 would be its point of contact, and of every pair of conjugate

points one would coincide with 8
(cf. Art. 125).

204. If (MNAB...) and (MNA B ...) are two protective

ranges of points on a conic, M and N will be the self-corre

sponding points, and the straight line MN will pass through
the point of intersection of AB and

A B (Art. 200). Now let B be sup

posed to lie indefinitely near to A
and similarly B to A

,
so that the

straight lines AB and A B become

in the limit the tangents at A and

A respectively (Fig. 140). Since now
MNAA and MNA A are groups of

corresponding points of two protective

ranges, the two pencils mnaa and

mna a formed by joining them to any

point on the conic will be protective ; and therefore mnaa

is a harmonic pencil (Art. 83). We thus arrive again at the

second theorem of Art. 195 (right); viz.

If four points M,N,A, A on a conic are harmonic, the tangents

at one pair of conjugate points, say A and A
,
intersect on the chord

MN joining the other pair ;

and its correlative (Art. 195, left),

Iffour tangents to a conic are harmonic, the point of intersection

of one pair of conjugates lies on the chord of contact of the other

pair.

From the former of these it follows that if through the

point of intersection S of the tangents at M and N straight

lines be drawn cutting the conic in A and A
,
B and B ,C and

(7, . . . respectively, any of these pairs of points will be har

monically conjugate with regard to M and N. The tangents

at A and A ,
B and B f

,
C and C

, ... will therefore intersect in

pairs on the straight line MN.

Fig. 140.
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Fig. 141.

In other words :

If from any point there be drawn to a conic two tangents and

a secant^ the two points of contact and

the two points of intersection form a

harmonic system.

The points (AA \ ( ), (CC \ ...

form an involution of which M and

N are the double points (Art. 203,

III, IV). We therefore arrive again
at the property of an involution

that if it has two double elements these are separated harmoni

cally by any pair of conjugate elements (Art. 125).

205. Suppose now that the conic is a circle (Fig. 141). From the

similar triangles SAM, SMA
,

AM: MA :: SM:SA ,

and from the similar triangles SAN, SNA
AN:NA ::SN:SA

-,

AM A M
IF- I7F,(ince^=^,

or AM.A N=AN.A M.

But by Ptolemy s theorem (Euc. vi. D),

AA .MN = AM. A N +AN.A M.

If then M, N, A, A are four harmonic points on a circle,

\ AA . MN = AM. A N = AN. A M.

206. The properties established in Art. 200 and the following

Articles lead at once to the solution of the important problem :

To construct the self-corresponding elements of two superposed pro-

jective forms, and the double elements of an involution.

I. Let two concentric protective pencils I

mined by three pairs of corresponding rays

(Fig. 142); it is required to construct their

self-corresponding rays.

Through the common centre describe

any circle, cutting the three given pairs

of rays in A and A
,
B and B

,
C and C f

respectively. Let AB
,
A B meet in R,

and AC
,
A C in Q ;

if the straight line QR
cut the circle in two points M and N,
then OM, ON will be the required self-

corresponding rays.

given, which are deter-

Fir 142.
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II. Let A and A
,
B and B

, C and C (Fig. 143) be three pairs
of corresponding points of two collinear ranges; it is required to

construct the self-corresponding points.

c M

Fig- 143-

Describe any circle touching the common base o of the two ranges,
and to this circle draw from the given points the tangents a and a

,

I and b
f

,
c and c . Let r be the straight line which joins the points

ab
, a b, and q that which joins the points acf, a c. If the point qr

lies outside the circle and from it the tangents m and n be drawn to

the circle, then the points om, on in which these meet the base will

be the required self-corresponding points of the two ranges.

Otherwise (Fig. 144):
Draw any circle whatever in the plane and take on it any point
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0. From project the given points upon the circumference of the

circle, and let A
l
and A/, B^ and

.Z?/, C
l
and

&amp;lt;7/

be the projec

tions of A and A
,
B and B

,
C and C respectively. JoinA^ , AJB^

meeting in R, and Af-f, A
l
C

l

meeting in Q (or B&, B
l
C

l
meet

ing in P). If the straight line PQR
cut the circle in two points Mlt

N
lt

and these be projected from the

point back upon the given base o,

then their projections M ,
N will

be the required self-corresponding

points of the given ranges *.

III. In (I) let the two pencils

be in involution (Fig. 145), and let

it be required tofind the double rays.

Two pairs of conjugate rays suffice now to determine the pen

cils. Draw through the centre any circle cutting the given

rays in A and A
,
B and B respectively. Let AB

,
A B meet in

R, and AB
,
A B in Q ;

if the straight line QR cut the circle in

two points M and N, then OM
,
ON will be the required double rays

of the involution.

IV. Let A and A
,
B and B be two given pairs of conjugates of an

Fig. 146.

involution of points on a straight line ; it is required to find the

double points (Fig. 146).

Draw any circle in the plane and take on it any point 0. From

project the given points upon the circumference of the circle, and

let A
1
and A^, Bl

and B^ be the projections of A and A
,
B and B

respectively. Let A& , A^B^ meet in R, and A& , AfB^ in Q. If

QR cuts the circle in M
,
N

1)
and these points be projected from

back upon the given straight line, then their projections M ,
N will

be the required double points.

*
STEINER, loc. cit., pp. 68 and 174,

pp. 285, 356.

17 and 46; Collected Works, vol. i.
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Otherwise :

Describe a circle touching the base AB... (Fig. 147), and draw to

this circle from the points A and A
,
E and B

, the tangents a and a ,

A M A

Fig. 147.

b and &
, respectively. Let r be the straight line which joins the

points ab
, afb, and q that which joins the points ab, a b . If the point

qr lies outside the circle, the tangents m and n from this point to the

circle will cut the base line of the involution in the required double

points.

207. THEOREM. A pencil in involution is either such that every

ray is at right angles to its conjugate, or else it contains one and

only one pair of conjugate rays including a right angle.

Consider again Art. 206, III
;

if the point of intersection S

of the straight lines AA\ TIB
,
... is the centre of the circle

(Fig. 148) then AA
,
BB f

,
... are all diameters-, and therefore

Fig. 148.

each ray OA
,
OJ1

,
... will be at right angles to its conjugate

OA
, , ... In tbis case tben tbe involution is formed by a

series of right angles which have their common vertex at 0.
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But if S is not the centre of the circle (Fig. 149), draw

the diameter through it
;

if C and Cr
are the extremities of

this diameter, the rays OC, OC will include a right angle.

But these will be the only pair of conjugate rays which

possess this property, since through S only one diameter can

be drawn.

208. This proposition is only a particular case of the

following one:

Two superposed involutions (or such as are contained in the same

one-dimensional form} have always a pair of conjugate elements in

common, except in the case where the involutions have double

elements and the double elements of the one overlap those of the other.

Take two involutions of rays having a common centre 0,

and let a circle drawn through cut the pairs of con

jugate rays of the first involution in the pairs of points

(AA 9
BB

, ...) and those of the second in (GG ,
HHf

, ...). Let

8 be the point of intersection of AA\BB\... and T that of

GG ,HH ,
.... If the straight line 8T cut the circle in two

points E and E
,
these will be a conjugate pair of each involu

tion, since they are collinear with 8 and with T also. Let us

now examine in what cases ST will cut the circle.

A H

Fig. 150. Fig. 151,

In the first place, it will certainly do so if one at least of the

points S, T lies within the circle (Art. 203, VIII), i. e. if one at

least of the involutions has no double elements (Figs. 150, 151).

Secondly, if both the points S, T lie outside the circle, i. e. if

both the involutions have double elements, then the straight
line ST may or may not cut the circle. If OM, ON are the

double elements of the first involution, OU,OF those of the

second, the rays 02$, OE must be harmonically conjugate both

with regard to OM, (Wand with regard to OU,07\ but (Art.

70) in order that there should exist a pair of elements which
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are at the same time harmonically conjugate with regard to

each of the two pairs OM, ON and OU,OF, it is necessary and

sufficient that these two pairs should not overlap. If then

these pairs do not overlap, S77

will cut the circle (Fig. 152) ;

Fig. 152. Fig- 153-

whereas if they do overlap, ST will not cut the circle (Fig.

i 53).
The two involutions have therefore a common pair of

conjugate elements in all cases except this last, viz. when they

both have double elements and these overlap.

[In Figs. 150, 151 and 152, are shown cases of two
^involutions

having a common pair of conjugate elements E and E
] Fig. 153

on the other hand illustrates the case where no such pair exists.]

209. The preceding problem, viz. that of determining the common

pair of conjugate elements of two involutions superposed one upon

the other, depends upon the following, viz. to determine (in a range,

in a pencil, or on a conic) a pair of elements which are harmonically

conjugate with regard to each of two given pairs. This problem has

already been solved, for the case of a range, in Art. 70 ;
the following

is another solution :

Suppose that we have to deal with a range of points lying on a

straight line. Take any circle and a point on it, and project the

given points from upon the circumference ;
let M ,

N and U ,
V be

Sieir projections (Fig. 152). Let the tangents at Jf and N to the

circle meet in S, and the tangents at U and V m T. If the pair MN
does not overlap the pair UV, then ST will cut the circle in two

points E and E ,
which when projected back from upon the given

straight line will give the points required.

210 The double points of the involution determined by the pairs

A A and B, B&amp;gt; are the common pair of conjugate elements of two

other involutions; one of these is determined by the pairs A,J&amp;gt;
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and A
,
B f

,
the other by the pairs A, E and A

,
B (Art. 203,

VII.)

From this follows a construction for the double points of an
involution of collinear points which is determined by the pairs A

,
A f

and B, B . Take any point G outside the base of the involution

and describe the circles GAB, GA B
\ they will meet in another

point, say in H. Similarly let K be the second point of intersection

of the circles GAB
,
GA B. Every circle passing through G and H

meets the base in a pair of conjugate points of the involution AB
,
A B

(Art. 127) ; so too every circle passing through G and K gives a pair
of conjugate points of the involution AB

y
A B. If then the circle

GHK be described and it meet the base, the two points of intersection

will be the double elements of the involution AA
,
BB f

*.

211. It follows from the foregoing that the determination of the

self-corresponding points of two projective ranges ABC ... and

A B fC f
... on a conic (and consequently of the self-corresponding

points of any two superposed projective forms) reduces to the con

struction of the straight line s on which intersect the pairs of

straight lines AB and A B, AC and A C, BC f and B C, .... Simi

larly the determination of the double points of an involution AA f

,

BB
,

... depends on the construction of the straight line s on which
intersect the pairs of straight lines AB and A fB ,AB and A B, ...

or the pairs of tangents at A and A
,
B and J5

, ... .

Conversely, if any straight line s (which does not touch the conic)
is given, an involution of points on the conic is thereby determined

;

for it is only necessary to draw, from different points of s, pairs of

tangents to the conic, and the points of contact will be pairs of

conjugate points of an involution.

But, on the other hand, in order that two projective ranges of

points ABC ... and A B C ... may be determined, there must be

given, in addition to the straight line s, a pair of conjugate points A
and A also

; then the straight lines joining A and A to any point
on s will cut the conic in a pair of corresponding points B and B.

Two projective ranges of points determine an involution
;
for they

determine the straight line s, which determines the involution. If

the two ranges have two self-corresponding points, these will also be

the double points of the involution.

* CHASLES, Geomttrie superieure, Art. 263.



CHAPTER XIX.

PROBLEMS OF THE SECOND DEGREE.

212. PKOBLEM. GivenJivepoints

0,0 , A,B,C on a conic, to

determine the points of intersection

of tJie curve with a given straight

line s.

Solution. Join any two of

the points 0, to each of the

others A
,
B

,
C (Fig. 154); the

PROBLEM. Given five tangents

o
,
o

,
a , b

,
c to a conic, to draiu

a pair of tangents to the curve

from a given point S.

Consider the points where two

of the tangents o
,
o are met by

the others a
, b, c (Fig. 155) ;

the

Fig. 154.

pencils (A, B, C, ...) and

(A,B,C,...} will be projective,

and will cut the transversal s

in points forming two collinear

projective ranges.

A point M which corresponds

to itself in these two ranges will

Fig. 155.

ranges o (a, 6, c, ... )
and

o (a ,
b

,
c

,
. .

.)
will be projective,

and if projected from S as centre

will give two concentric projec

tive pencils.

Any ray m which corresponds

to itself in these two pencils will
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also be a point on the conic, since

a pair of corresponding rays of

the two pencils must meet in M.

The points of intersection of the

conic with the straight line s are

therefore found as the self-corre

sponding points of the two colli-

near ranges which are determined

on s by the three pairs of corre

sponding rays OA and O A
,
OB

and O B, OC and O C. There

may be two such self-correspond

ing points, or only one, or none

at all ; consequently the straight

line s may cut the conic in two

points, or it may touch it, or it may
not meet it at all. The construction

of the self-corresponding points

themselves may be effected by
either of the methods explained
in Art. 206, II.

213. In a similar manner the

problem may be solved if there

be given four points 0, ,
A

,
B

on a conic and the tangent o at

one of them
;

or three points

, ,
A and the tangents o and

o at two of them and . In

the first case the two pencils are

determined by the three pairs of

rays o and O O
,
OA and O A,

OB and O B
;
and in the second

case by the three pairs o and

O O
,
00 and o

,
OA and O A.

If however there be given five

tangents, or four tangents and

the point of contact of one of

them, or three tangents and the

points of contact of two of

them, we may begin by first con

structing such of the points of

contact of the tangents as are not

also be a tangent to the conic,

since a pair of corresponding

points of the two ranges o and o
f

must lie on m. The tangents
from S to the conic are therefore

found as the self-corresponding

rays of the two concentric pencils

which are determined by the rays

joining S to the three pairs of

corresponding points oa and o
f

a,

6b and o b, oc and o c. There

may be two such self-correspond

ing rays, or only one, or none at

all
; consequently there can either

be drawn from the point S two

tangents to the conic, or S is a

point on the conic, or else from S
no tangent at all can be drawn.

The construction of the self-

corresponding rays themselves

may be effected by the method

explained in Art. 206, I.

In a similar manner the pro

blem may be solved if there be

given four tangents o, o
, a, b to

a conic and the point of contact

of one of them o
;

or three tan

gents o, o
,
a and the points of

contact and of two of them

o and o . In the former case

the three pairs of points which

determine the two ranges are

and o O) oa and o a, ob and

o b
;

in the latter case they are

and o o
,
oo

f and
,
oa and

(/a.

If however there be given five

points on the conic, or four points

and the tangent at one of them,

or three points and the tangents

at two of them, we may begin by
first constructing such of the

tangents at the points as are

not already given (Arts. 165,
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already given (Arts. 180, 171,

177); the problemwill then reduce

to one of the cases given above.

171, 175); the problem will then

reduce to one of the cases given

above.

214. In the construction given in Art. 212 (left) suppose that the

conic is a hyperbola and that the given

straight line s is one of the asymptotes

(Fig. 156). The collinear protective ranges

determined on s by the pencils 0(A, B, C, ...)

and (A, B ,C ,
... )

will have in this case

one self-corresponding point, and this (being

the point of contact of the hyperbola and

the asymptote) will lie at an infinite dis

tance. But in two collinear ranges whose

self-corresponding points coincide in a single

one at infinity, the segment intercepted between any pair of corre

sponding points is of constant length (Art. 103). We therefore

conclude that

// from two fixed points and on a hyperbola there be drawn

two rays to cut one another on the curve, tlie segment PP
f which these

intercept on either of the asymptotes is of constant length *.

Fig.

Fig- 157.

215. If in Art. 212 (left)
the straight line s be taken to lie at

infinity, the problem becomes the following :

Given five points , ,
A

,
B

,
C on a conic, to determine the points

at infinity on it (Fig. 157).

* BRIANCHON, loc. cit., p. 36.
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Consider again the projective pencils (A ,
B

,
C

,
. . . ) and

(A ,
B

, C, . . .
),
which determine on the straight line at infinity s two

collinear ranges whose self-corresponding points are the required

points at infinity on the conic. Since each of these self-corresponding

points must lie not only at the intersection of a pair of corresponding

rays of the two pencils but also on the line at infinity s, the corre

sponding rays which meet in such a point must be parallel to one

another; the problem therefore reduces to the determination of the

pairs of corresponding rays of the two pencils which are parallel to

one another.

In order then to solve the problem we draw through the parallels

OA
,
OS

,
OC to O A, O B, O C respectively, and then construct

(Art. 206, I) the self-corresponding rays of the two concentric

pencils which are determined by the three corresponding pairs OA
and OA

,
OB and OB ,

OC and OC&quot;. If there are two self-corre

sponding rays OM and ON, the conic determined by the five given

points is a hyperbola whose points at infinity lie in the directions

OM
,
ON

;
i. e. whose asymptotes are parallel to OM and ON

respectively.

If there is only one self-corresponding ray OM, the conic deter

mined by the five given points is a parabola whose point at infinity

lies in the direction OM.
If there is no self-corresponding ray, the conic determined by the

five given points is an ellipse, since it does not cut the straight line

at infinity.

If in the first case (Fig. 157) it is desired to construct the asymp
totes themselves of the hyperbola, we consider this latter as determined

by the two points at infinity and three other points, say A, B, and

C ,
in other words, we regard the hyperbola as generated by the two

projective pencils, one of which consists of rays all parallel to OM,
and the other of rays all parallel to ON, and which are such that one

pair of corresponding rays meet in A, a second pair in B, and a

third pair in C. The rays which correspond in the two pencils

respectively to the straight line at infinity (the line joining the

centres of the pencils) will be the asymptotes required.

Let then a, b
,
c (Fig. 157) be the rays parallel to OM which pass

through A ,
B

,
C respectively, and let a

,
b

,
c be the rays parallel

to ON which pass through the same points respectively. Join the

points ab and af
b and the points be and b c, and let K be the point

of intersection of the joining lines
;
the straight lines drawn through

K parallel to OM and ON will be the required asymptotes.

216. PKOBLEM. Given five points A
,
B

,
C

,
D

,
E on a conic, to

draw the tangents from a given point /S to the conic.

This problem also can be made to depend on that of Art. 212

N 2,



180 PROBLEMS OF THE SECOND DEGREE. [217

Fig. 158.

(left), by making use of the properties of the involution (Art. 203)

obtained by cutting the conic by transversals drawn through S.

Join SA,SB (Fig. 158); these

straight lines will cut the conic

again in two new points A and J3
,

which can be determined (making
use of the ruler only, and without

drawing the curve) by means of

Pascal s theorem (Art. 161, right).

(In the figure the points A and

B f have been constructed by means

of the hexagons ADCBEA and

BECADB respectively). Now
let the point of intersection of AB
and A B be joined to that ofAW

and A B
;
the joining line 5 will pass through the points of contact of

the tangents from S (Art. 203). The problem therefore reduces to

that of determining the points of intersection of the conic and the

straight line s (Art. 212, left).

217. The problem, To find the points of intersection of a given

straight line s and a conic which is

determined by five given tangents,

may similarly be made to depend
on that of Art. 212 (right), by

making a construction (Fig. 159)

analogous to the foregoing one.

And the problem, To draw

through a given point a straight

line which shall divide a given

triangle into two parts having to

one another a given ratio, may be

solved by reducing it to the follow-

ing construction : To draw from

the given point a tangent to a

hyperbola of which the asymptotes and a tangent are known.

These are left as exercises to the student,

218. PROBLEM. To construct

a conic which shall j)ass through

four given points Q ,
R

,
S ,

T
,

and shall touch a given straight

line s which does not pass through

any of the given points.

Solution. Let A
,
A

,
B

,
B

To construct a conic which shall

touch four given straight lines

q , r, s, t
,
and shall ])ass through

a given point S which does not lie

on any of the given lines.

Let 6,6 be the rays
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be the points where the sides

QT ,
MS

, QR , ST respectively

of the quadrangle QRST cut

the straight line s (Fig. 160).

joining the point S to the vertices

qt ,
rs

, qr ,
st respectively of the

quadrilateral qrst (Fig. 161).

Construct the double rays (if

Fig. 1 60.

Construct the double points (if

such exist) of the involution de

termined by the pairs of points

A and A
,
B and B .

If there are two double points

M and N, each of them will be

(Art. 185, left) the point of con

tact with s of some conic cir

cumscribed about the quadrangle

QRST. Each of the conies

QRSTM, QRSTN therefore gives

a solution of the problem ;
and

these conies can be constructed

by points by help of Pascal s

theorem (Art. 161, right).

If however there are no double

points, there is no conic which

satisfies the conditions of the

problem.

Fig. 161.

such exist) of the involution de

termined by the pairs of rays

a and a
,
b and b .

If there are two double rays

m and n, each of them will be

(Art. 185, right) a tangent at

A^ to some conic inscribed in

the quadrilateral qrst. Each of

the conies qrstm, qrstn therefore

gives a solution of the problem ;

and these conies can be con

structed by tangents by help of

Brianchon s theorem (Art. 161,

left).

If however there are no double

rays, there is no conic which

satisfies the conditions of the

problem.

219. If in the foregoing Art. (left)
the straight line s be taken to

lie at infinity, the problem becomes the following :

To construct a parabola which shall pass through four given points

Q,lt,S 9 T.

To solve it, take any point (Fig. 162), and through it draw

the rays a
,

of
,
b

,
b parallel respectively to the straight lines

QT ,
RS

, QR , ST; and construct the double rays (if such exist)

of the involution determined by the pairs of rays a and a, b and b .
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Each of these double rays will determine the direction in which lies

the point at infinity on a parabola passing through the four given

points ;
the problem therefore reduces to

the last problem of Art. 165. If however

the involution has no double rays, no

parabola can be found which satisfies the

conditions of the problem.

Through four given points therefore can

be drawn either two parabolas or none
;

in the first case the other conies which

pass through the given points are ellipses

and hyperbolas ;
in the second case they

are all hyperbolas. The first case occurs

when each of the four points lies outside

the triangle formed by the other three

(i. e. when the quadrangle formed by the four points is non-reentrant);

the second case when one of the four points lies within the triangle

formed by the other three
(i.

e. when the quadrangle formed by the

four points is reentrant).

220. If in Art. 218 (right) one of the straight lines q ,
r

,
s

,
t lies

at infinity, the problem becomes the following :

To construct a parabola which shall touch three given straight lines

and shall pass through a given point.

Fig. 162.

221. PROBLEM. To construct

a conic which shall pass through

three given points P ,
P

,
P&quot; and

shall touch two given straight lines

q and s, neither of which passes

through any of the given points.

Solution. This depends on the

theorem of Art. 191 (left).
Join

PP
9
and consider it as a trans

versal which cuts the conic in

P and P
,
and the pair of tan

gents q and s in the two points

B and E (Fig. 163). If A and A
l

are the double points of the in

volution determined by the two

pairs of points P and P
,
B and B

,

the chord of contact of the conic

and the tangents q and s must

pass through one of these points,

by the theorem quoted above.

To construct a conic which

shall touch three given straight

lines p , p , 2&amp;gt;&quot;

and shall pass

through two given points Q and $,

neither of which lies on any of the

given straight lines.

The solution depends on the

theorem of Art. 191 (right). Con

sider pp as a point from which

the tangents p and p
/ have been

drawn to the conic, and the rays

b and b to the two points Q
and S (Fig. 164). If a and a

l
are

the double rays of the involution

determined by the two pairs of

rays p and p ,
b and &

,
the point

of intersection of the tangents at

Q and /S to the conic must lie on

one of these rays, by the theorem

quoted above. Repeat the same
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Repeat the same reasoning for reasoning for the case of the point

the case of the transversal PP&quot;, pp&quot;,
from which are drawn the

which cuts q and s in D arid D&quot;
; rays d and d&quot; to the points

Fig. 163.

if C and C^ are the double points

of the involution determined by
the two pairs of points P and

P&quot;,

D and D&quot;,
the chord of contact

must similarly pass through

C or C
1

. The problem admits

therefore of four solutions ;
viz.

when the two involutions

(PP ,
BB ) and

(PP&quot;, DD&quot;}

both have double points, there

are four conies which satisfy the

given conditions. If the double

points are A
,
A

l
and C

,
C

respectively, the chords of con

tact of the four conies and the

tangents q and s are AC, A^C ,

A C
l ,
and A

,
C

l
. Of each of these

conies five points are known, viz.

P, P , P&quot;, and the two points

of intersection of AC (or of A^C,
or AGlt or A l

Cl ,
as the case may

be) with q arid s; they can ac

cordingly be constructed by points

by means of Pascal s theorem

(Art. 161, right).

Fig. 164.

Q and S; if c and c
r

are the

double rays of the involution de

termined by the two pairs of rays

p and
p&quot;,

d and d&quot;
,
the point of

intersection of the tangents must

similarly lie on c or cr The

problem admits therefore of four-

solutions ;
viz. when the two in

volutions (pp , W) and
(pp&quot;, dd&quot;)

both have double rays, there are

four conies which satisfy the given

conditions. If the double rays are

a
, CTJ

and c
, ^ respectively, the

points of intersection of the

tangents at Q and S to the four

conies are ao, a^c ,
ac

1}
and a^.

Of each of these conies five

tangents are known, viz. p, p , p&quot;,

and the two straight lines which

join ac (or a^c, or acl}
or a^, as

the case may be) to Q and S ;

they can accordingly be con

structed by tangents by means of

Brianchon s theorem (Art. 161,

left).
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222. PKOBLEM. To construct a polygon whose vertices shall lie on

given straight lines (each on each), and whose sides shall pass through
given points (each through each *).

Solution. For the sake of simplicity suppose that it is required
to construct a quadrilateral, whose vertices 1,2,3,4 shall lie

respectively on four given straight lines s
l ,

s
2 ,

s
3 ,

s
4 ,

and whose
sides 12, 23 , 34, 41 shall pass respectively through four given points

#12 &amp;gt; $28 ^34 &amp;gt;
$ (Fig- 165). The method and reasoning will be the

Fig. 165.

same as for a polygon of any number of sides. Take any points
A

l , BI ,
C1) ... on s

l
and project them from /S^ as centre upon s

2 ;
and

let A
2 ,
B

z , 62, ... be their projections. Project A
2 ,
B

2 ,
(72 ,

... from

$23
as centre upon s

s ,
and let A

3 ,
B

s ,
C

3 ,... be their projections.

Project A 3 ,
B

3 ,
C

3 ,
. . . from SM as centre upon s

4 ,
and let A

,
JB

4 ,
(74 , . . .

be their projections. Finally project A 4 ,
B

,
(7

4 ,
... from $

41
as centre

upon Sj,
and let A

, B, C, ... be their projections. ,

The points S^ , S23 , 34 , 41
are the centres of four projectively

related pencils ;
for the first and second are in perspective (since

their pairs of corresponding rays A1
A

2 ,
S

1
B

2 ,
... and A

2
A

3 ,
J5

2
J?

3 ,
...

intersect on s
2),

the second and third are in perspective (pairs of

corresponding rays intersect on s
3),

and similarly the third and fourth

are in perspective (pairs of corresponding rays intersect on s4). Con

sequently (Art. 150) pairs of corresponding rays of the first and

fourth pencils (such as A
1
A

Z
and AA) will intersect on a conic; or

in other words the locus of the first vertex of the variable quadri

lateral whose second, third, and fourth vertices (A2 ,
A

& , A) slide

respectively on three given straight lines (s2 ,
s
s ,

s
4)

and whose sides

(A^A Z ,
A

Z
A

3 ,
A

3A^ ,
A 4 A) pass respectively through four given points,

*
PONCELET, IOC. tit., p. 345.
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is a conic*. This conic passes through the points 12 ,
S

tl ,
the

centres of the pencils which generate it
;
in order therefore to deter

mine it, three other points on it must be known; the intersections

of the three pairs of corresponding rays A^2
and A

4
A

, B^B^ and BB,
Cf^ and CJO will suffice. It is then only necessary further to con

struct (Art. 212) the points of intersection M and N of the straight

line Sj with the conic determined by these five points ;
either M or N

can then be taken as the first vertex of the required quadrilateral.

This construction maybe looked at from another point of view. The

broken lines A^A^A^A^A , BJB^BJBJB ,
and (7

1
C/

2
(7

3
6 4(7 may be regarded

as the results of so many attempts made to construct the required quad
rilateral ; these attempts however give polygons which are not closed,

for A does not in general coincide with A I} nor B with Slf nor

G with Cr These attempts and all other conceivable ones which might

similarly be made, but which it is not necessary to perform, give on

the straight line ^ two ranges A^B1
C

1
... and ABC...:, one being

traced out by the first vertex and the other by the last vertex of the

open polygon. These ranges are protective with one another, since

the second has been derived from the first by means of projections

from S
12 , $23 , $34 ,

S4l as centres, and sections by the transversals

sz y
s
s &amp;gt;

S
4 &amp;gt; *i* Each of the self-corresponding points therefore of the

two ranges will give a solution of the problem ; for, if the first vertex

of the polygon be taken there, the last vertex will also fall on the

same point, and the polygon will be closed.

In the following examples also the method remains the same

whatever be the number of sides of

the polygon which it is required to

construct.

223. PKOBLEM. To inscribe in a

given-]: conic a polygon whose sides

pass respectively through given points.

Solution. Suppose that it is re

quired to inscribe in the conic a

triangle whose sides pass respectively

through three given points Slt S2t S9

(Fig. 1 66). Let us make three trials. Take then any three points

A
,
B

,
C on the conic

; join them to S
l
and let the joining lines

cut the conic again in A
1 ,
Bl} Cl } join these points to $2

and let

* This theorem, viz. that if a simple polygon move in such a way that its

sides pass respectively through given points and all its vertices except one slide

respectively along given straight lines, then the remaining vertex will describe a

conic, is due to MACLAURIN (Phil. Trans., London, 1735). Cf. CHASLES, Aper^u

historique, p. 150.

f i. e. either completely traced or determined by five given points.



186 PROBLEMS OF THE SECOND DEGREE. [224

the joining lines cut the conic again in A
2 ,
B

2 ,
(7

2 ; finally join

these points to 3
and let the joining lines cut the conic again

in A ,
B

,
C . Since the point finally arrived at, A or B or C&quot;,

does not in general coincide with the corresponding starting-point

A or B or C, we shall have, instead of an inscribed triangle as re

quired by the problem, three polygons AA^A^A , BB^B^B , CC-ft^C

which are not closed. But since, by a series of projections from

Si, Si, S
3

in succession as centres, we have passed from the

range A
,
B , C, ... to the range Alt B lt Cv ...

t
from this last to

Ai,B9 ,
C 2 ,..., and from this to A ,B ,

C ,..., it follows that the

range of points A,B,C,..., with which we started is projective with

the range of points 4 ,
B

,
C

, ..., with which we ended (Arts. 200, 201,

203). The problem would be solved if one of the points in the latter

range coincided with its correspondent in the former. If then the

two projective ranges ABC ... and A B C ... have self-corresponding

points, each of these may be taken as the first vertex of a triangle

which satisfies the given conditions. We have therefore only to

determine (Art. 200, II) the straight line on which intersect the three

pairs of opposite sides of the inscribed hexagon AB CA BC
,
and to con

struct (Art. 212) the points of intersection M and N of this straight

line with the conic; each of them will give a solution of the problem*.

224. By a similar method may be solved the correlative problem :

To circumscribe about a given

conic (i.e.
one which is either

completely drawn or determined

by Jive tangents) a polygon whose

vertices lie respectively
on given

straight lines.

Suppose that it is required to

circumscribe about the conic a

triangle whose vertices lie re

spectively on the straight lines

s , ,
s
3 (Fig. 167). Take any

point A on the conic and draw

the tangent a at it; from the

point where this tangent cuts

s
l
draw another tangent a

l (let

its point of contact be A^ ;
from

the point where a
1
cuts s

2
drawFig. 167.

a third tangent 2 (let
its point of contact be A

2) ; finally, from

the point where 2
cuts *

3
draw the tangent of, and let its point

of contact be A . The problem would be solved if the point A

* PONCELET, IOC. Clt., p. 352.
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coincided with A, i. e. if the tangents a and a coincided with one

another. Suppose that other similar trials have been made, taking
other arbitrary points B ,

C
,
... on the conic to begin with

;
then we

shall arrive in succession at the ranges of points A
,
B

,
C

,
. . .

,

A lt Slt Clt ..., A 2 ,
S

2 ,
&amp;lt;7

2 ,
...

,
and A

,
B

,
C

,
...

,
which are all

protectively related to one another. For the first range is protective

with the second (Art. 203), since the tangents at A and A
1 ,
B and B

l ,

C and Clt ... always intersect on s
l ; and for similar reasons the

second and third, and the third and fourth, are protective with one

another
; consequently (Art. 201) the same is true of the fourth and

the first. Since the problem would be solved if A coincided with A
,

or B with B, ...
,
each of the self-corresponding points of the pro-

jective ranges ABC ... and A B C ... may be taken as the point of

contact of the first side of a triangle which satisfies the given con

ditions. We have therefore only to make three trials (Art. 200),
*. e. to take any three points A

,
B

,
C on the conic and to derive

from them the corresponding points A
,
B f

,
C f

;
and then to con

struct the points of intersection of the conic with the straight line

which joins the points of intersection of the three pairs of opposite
sides (the Pascal line) of the inscribed hexagon AB CA BC *.

225. The particular case of the problem of Art. 223 in which the

given points Sl ,
S

2 ,
. . . lie all upon one straight line s must be con

sidered separately. If the number of sides of the required polygon
is even, the theorem of Art. 187 may be applied; in this case the

problem has either no solution at all, or it has an infinite number of

solutions. Suppose it required, for example, to inscribe in the conic

an octagon of which the first seven sides pass respectively through
the points Slt

S
z ,

... S7)
then by the theorem just quoted the last side

will pass through a fixed point S on s : this point S is not arbitrary,

but its position is determined by those of the points Slt Sz ,
... S

7
.

If then the last of the given points SB
coincides with S, there are an

infinite number of octagons which satisfy the given conditions. But

if S
B
does not coincide with S, there is no solution.

If the number of sides of the required polygon is odd, the problem
becomes determinate. Suppose it is required to inscribe in the conic a

heptagon (Fig. 124) whose sides pass respectively through the given
collinear points Sl ,

S2 ,
S

3 ,
... S

7
. By the theorem of Art. 187 there

exist an infinite number of octagons whose first seven sides pass through
seven given collinear points and whose eighth side passes through
a fixed point S collinear with the others. If among these octagons
there is one such that its eighth side touches the conic, the problem
will be solved

;
for this octagon, having two of its vertices indefinitely

*
PONCELET, IOC. Clt., p. 354.
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near to one another, will reduce to an inscribed heptagon, whose

sides pass respectively through seven given points. If then tan

gents can be drawn from the point S to the conic, the point of

contact of each of them will give a solution (Art. 187). According

therefore to the position of the point S with reference to the conic,

there will be two solutions, or only one, or none.

In Fig. 126 is shown the case of this problem where the polygon

to be inscribed is a triangle *.

The solution of the correlative problem, to circumscribe about a

given conic a polygon whose vertices lie respectively on given rays of a

pencil, is left as an exercise to the student. This problem also is

either indeterminate or impossible if the polygon is one of an even

number of sides
;

it is determinate and of the second degree if the

polygon is one having an odd number of sides (Figs. 125, 127).

226. LEMMA. // two conies cut one another in the points

,
A

,
B

,
C

, C&quot;,
and if from

A and B respectively two

straight lines AFF
,
BGG f

be

drawn cutting the first conic

in F and G, and the second

in F and G
,
tJien the chords

FG
,
FfG r

will intersect in

a point H lying on the chord

CC f

(Fig. 168).

The transversal CC cuts

the first conic and the oppo

site sides of the inscribed

quadrangle ABGF in six

points of an involution (Art.

183, left) ;
and the same is true with regard to the second conic and

the inscribed quadrangle ABG Ff
. But the two involutions must

coincide (Art. 127), since they have two pairs of conjugate points in

common, viz. the points C ,
C in which the transversal cuts both the

conies, and the points in which it cuts the pair of opposite sides

AFF
,
BGG

,
which belong to both quadrangles. The involutions

will therefore have every pair of conjugate points in common, and

therefore the transversal CC will meet FG and F G in the same

point H, the conjugate of the point in which it meets AB\.

227. The preceding lemma, which is merely a corollary of Desargues

theorem, leads at once to the solution of the two following problems,

one of which is of the first, and the other of the second degree.

*
PAPPUS, loc. cit., book vii. prop. 117.

f This may also be proved very simply by applying Pascal s theorem to each of

the hexagons AF&BCC ,
AF Q BCC in turn.

Fig. 168.
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I. PKOBLEM. Given three of the points of intersection A
,
B

, of
two conies, and in addition two other points D ,

E of the first, and tiuo

other points F ,
G of the second, to determine the fourth point of inter

section of the two conies (Fig. 168).

Take two of the given points of intersection A and B, and join

AF, BG. These straight lines will cut the first conic again in points

F
t
G r

respectively which can be determined by the method of Art.

161 (right). Join FG,F G
,
and let them meet in H. By the fore

going lemma H will lie on the chord joining the other two points of

intersection of the conies. This chord will therefore be HC, and

it remains only to determine the point C where HC cuts either of

the conies
;
C /

will be the required fourth point of intersection of the

conies.

II. PKOBLEM. Given two of the points of intersection, A ,
B

, of two

conies, and in addition the three points D ,
E

,
N of the first and the

three points F, G, M of the second, to determine the other two points

of intersection of the conies (Fig. 168).

Join ,4^ and BG, and let them meet the first conic again in F
y
Gr

respectively; join FG ,
F G

,
and let them meet in H. The point H

will lie on the chord joining the two required points. Again, join

AM, and let it meet the first conic again in M
; join GM ,

G M
,
and

let these meet in K] then the point K also will lie on the same

chord. The required points therefore lie on UK, and the problem
reduces to the determination (Art. 212) of the points of intersection

C
,
C of the conies with HK *.

228. The solution just given of problem II holds good equally when
the points A and B lie indefinitely near to one another, i. e. when the

two conies touch a given straight line at the same given point.

In this case two conies are given which touch one another at a

point A, and the straight line HK is constructed which joins their

remaining points of intersection C and C&quot;. If HK passes through

A, one of the points G or C must coincide with A, since a conic

cannot cut a straight line in three points. When this is the case,

three of the four points of intersection of the conies lie indefinitely

near to one another, and may be said to coincide in the point A
;

and the conies are said to osculate at the point A . The construction

gives a point H of the chord which joins A to the fourth point of

intersection C of the conies. It may happen that this chord coin

cides with the tangent at A
;
in this case A represents four coincident

points of intersection of the two conies (or rather, four such points

lying indefinitely near to one another).

*
GASKIN, The geometrical construction of a conic section, &c. (Cambridge, 1852),

pp. 26, 40.
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229. Let now the lemma of Art. 226 be applied to the case of a

conic and a circle touching it at a point A. At A draw the normal

to the conic (the perpendicular to the tangent at A), and let it cut

the conic again in F and the circle again in F . On AF as diameter

describe a circle
;

this circle, which touches the conic at A and cuts

it at F, will cut it again at another point G such that AGF is a right

angle. Join AG and let G be the point where it cuts the first

circle. Join FG
,
F G

; by the lemma they will intersect on the

chord HK] but they are parallel to one another, since AG F also is

a right angle. Thus for any circle whatever which touches the conic

at A, the chord of intersection HK with the conic has a constant

direction, viz. that parallel to FG.

If HK passes through A, the conic and the circle osculate at this

point. If then a parallel through A to FG cut the conic again in

C, the circle which touches the conic at A and cuts it at C will be

the osculating circle (circle of curvature) at A . *.

[In the particular case where A is a vertex (Art. 297) of the conic,

F will be the other vertex, FG the tangent at F, AC the tangent at A,

and C will coincide with A. It is seen then that the osculating circle

at a vertex of a conic has not only three but four indefinitely near

points in common with the conic.]

Conversely, the conic can be constructed which passes through

three given points A ,
P

, Q and has a given circle for its osculating

circle at one of these points A.

For join AP , AQ, and let them cut the given circle in P
, Q

respectively; and join PQ ,
P Q , meeting in U. IfAU be joined and

cut the circle again in C, the required conic will pass through C. It

is therefore determined by the four points A ,
P

, Q ,
C and the tangent

at A (which is the same as the tangent to the circle there).

230. The proposition correlative to the lemma of Art. 226 may be

enunciated as follows : ^

If a and b are a pair of common tangents to two conies, and iffrom

two points taken on a and b respectively the tangents f , g be drawn to

the first conic and the tangents / , g
f
to the second, then the points fg and

fg will be collinear with the point of intersection of the second pair of

common tangents to tJte conies.

This proposition enables us to solve the problems which are corre

lative to I and II of Art. 227
;

viz. given three (or two) of the com

mon tangents to two conies, and in addition two (or three) tangents

to the first and two (or three) tangents to the second, to determine

the remaining common tangent (or the two remaining common tan

gents) to the conies.

231. PKOBLEM. GivenelevenpointsA yB,C,D,E A
i)
S

1 ,Cl)
D

l ,E1;P\

*
PONCELET, loc. cit.

}
Arts. 334-337-
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to construct by points the conic which passes through P and through the

four points of intersection of the two conies which are determined by the

points A ,
B

,
C

,
D

,
E and AJ9Bl9 Clt J)lt l respectively. The conies

are supposed not to be traced, nor are their points of intersection given *.

Solution. Draw through P any transversal, and construct (Art.

212, left) the points M and Mr
in which it cuts the conic ABODE

and the points N and N in which it cuts the conic A
l
B

1 1
D

1
E

l
.

Since these two conies and the required one all pass through the same

four points, Desargues theorem may be applied to them. If therefore

(Art. 134, left) the point P /
be constructed, conjugate to P in the

involution determined by the pairs of points M and M
,
N and N

,

this point P will lie on the required conic. By causing the trans

versal to turn about the point P, other points on the required conic

may be obtained.

232. PKOBLEM. Given ten points A , B, C, D, E ; A^B1 ,C1,D^El

and a straight line s; to construct a conic which shall touch s and

shall pass through the four points of intersection of the two conies

which are determined by the points A,B,C,D,E and AltBl) Olf Dlf l

respectively. The conies are supposed not to be traced, nor are their

points of intersection given.

Solution. Construct (Art. 212) the points of intersectionM and M
of s with the conic ABODE, and the points of intersection N and

N of s with the conic A
1
B

1C1
D

1
E

1 ,
and then (Art. 134) the double

points of the involution determined by the two pairs of points

M and M
,
N and N . If P is one of these double points, it will be

the point of contact (Art. 185) of s with a conic drawn through the

four points of intersection of the conies ABODE and A
1
B

1
G

1
D

1
E

1

to touch s. The problem thus reduces to that of the preceding
Article.

233. The correlative constructions give the solutions of the corre

lative problems : viz. to construct a conic which passes through a given

point (or which touches a given straight line), and which is inscribed

in the quadrilateral formed by the four common tangents to two

conies
;
the conies being supposed each to be determined by five given

tangents, but not to be completely traced
;
and their four common

tangents being supposed not to be given.

234. PROBLEM. Through a given point S to draw a straight line

which shall be cut by four given straight lines a
,
b , c ,

d in four points

having a given anharmonic ratio.

Solution. It has been seen (Art. 151) that the straight lines

which are cut by four given straight lines in four points having a

given anharmonic ratio are all tangents to one and the same conic

*
PONCELET, loc. cit., Art. 389.
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touching the given straight lines
;
and that if A

,
B

,
C are the points

where d cuts a
,
b

,
c respectively, and D is the point of contact of d,

the anharmonic ratio (ABCD) is equal to that of the four points in

which the straight lines a
,
b

,
c

,
d are cut by any other tangent to

the conic. Accordingly, if on the straight line d that point D be

constructed (Art. 65) which gives with the points

ad(=A) , bd(=B) , cd(=C)

an anharmonic ratio (ABCD) equal to the given one, and if then the

straight lines be constructed (Art. 213, right) which pass through S
and touch the conic determined by the four tangents a

,
b

,
c

,
d and

the point of contact D of d, each of these straight lines will give a

solution of the proposed problem.

If one of the straight lines a
,
b

,
c

,
d lie at infinity, the problem

becomes the following :

Given three straight lines a
,
b

,
c and a point S, to draw through S

a straight line such that the segment intercepted on it between a and b

may be to that intercepted on it between a and c in a given ratio.

To solve this, construct on the straight line a that point A which

is so related to the points ab(=B) and ac(=C) that the ratio

AS: AC has the given value; and draw from S the tangents to the

parabola which is determined by the tangents a
,
b

,
c and the point

of contact A of a.

The correlative construction gives the solution of the following

problem: On a given straight line s to find a point such that the

rays joining it to four given points A ,
B

,
C

,
D form a pencil having

a given anharmonic ratio.

235. PROBLEM. Given two protective ranges of points lying on the

straight lines u
,
ur

respectively ; to find two corresponding segments

MP, M P such that the angles MOP, M O P which they subtend at

two fixed points 0,0 respectively may be given in, sign and mag-

itude.

Solution. Take on ur two points A and D such that the angle

A O D may be equal to the second of the given angles ;
let A arid D

be the points on u which correspond respectively to A and D f

,
and

let A^ be a point on u such that the angle A }
OD is equal to the first

of the given angles. The problem would evidently be solved if OA^

coincided with OA, since in this case the angles AOD and A O D
would be equal to the given angles respectively. If the rays

O A
,
OA

,
O D ,

OD , OA^ be made to vary simultaneously, they will

trace out pencils which are protectively related. For those traced

out by O A and Q D respectively are protective, and similarly

those traced out by OA1
and OD respectively, since the angles A

/O fD /

and A^OD are constant (Art. 108); and the pencils traced out by
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OA and Or A respectively, and by OD , O
f D f

respectively, are pro-

jective since the given ranges on u and u are so. Consequently the

pencils generated by OA and OA
l respectively are projective, and

their self-corresponding rays give the solutions of the problem. If

three trials be made of a similar kind to the foregoing one, three

pairs of corresponding rays OA and OA
l ,
OB and OB

l ,
00 and 00

l

will be obtained
;

let the self-corresponding rays of the concentric

projective pencils determined by these three pairs be constructed

(Art. 206, I). If one of these self-corresponding rays meets u in J/,

and if the point P be taken on u such that the angle MOP is equal to

the first of the given ones, and if then on u the points M ,
P/ be found

which correspond to M
,
P respectively, the angle M O P will be

equal to the second of the given angles, and the problem will be solved.

236. PROBLEM. Given two projective ranges ofpoints A ,
B

,
C

,
...

and A
,
B

, C&quot;,... lying on the straight lines u and u respectively, to

find two corresponding segments which shall be equal, in sign and

magnitude, to two given segments.

Solution. Take on uf
a segment A D equal to the second of the

given ones, and let AD be the segment on u which corresponds to

A D . Take on u the point A such that AJ) is equal to the first of

the given segments ; then the problem would be solved if A
l
coincided

with A. If the points A
,
A

,
D

,
D

,
A

l
be made to vary simulta

neously, the ranges traced out by A and A f

respectively will be projec

tive with one another, as also those traced out by D and D respectively

(by reason of the projective relation existing between ABC... arid

A B G . .

.) ;
and the ranges traced out by A and D respectively, and

similarly those traced out by A / and D respectively, will be projective

with one another, since they are generated by segments of constant

length sliding along straight lines (Art. 103). Consequently also the

ranges traced out by A and A
l
are projectively related, and their self-

corresponding points give the solutions of the problem. It is there

fore only necessary to obtain three pairs of corresponding points

A and A
,
B and B

,
C and C

, by making three trials, and then to

construct the self-corresponding points of the ranges determined by
these three pairs (Art. 206, II).

237. The student cannot have failed to remark that the method

employed in the solution of the preceding problems has been in all

cases substantially the same. This method is general, uniform, and

direct
; and it may be applied in a more or less simple manner to all

problems of the second degree, i.e. to all questions which when treated

algebraically would depend on a quadratic equation. It consists in

making three trials, which give three pairs of corresponding elements

of two superposed projective forms
;
the self-corresponding elements

of these systems give the solutions of the problem. This method is

O
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precisely analogous to that known in Arithmetic as the rule of false

position/ and it has on that account been termed a geometric method

offalse position *.

238. Problems of the second degree (and those which are reducible

to such) are solved, like all those occurring in elementary Geometry,

by means of the ruler and compasses only, that is to say by means of

the intersections of straight lines and circles t. But again, the solu

tion of any such problem can be made to depend on the determination

of the self-corresponding elements of two superposed projective forms,

which determination depends (Art. 206) on the construction of

the self-corresponding points of two projective ranges lying on a

circle whose position and size is entirely arbitrary. It follows

that a single circle, described once for all, will enable us to solve all

problems of the second degree which can be proposed with reference

to any given elements lying in one plane (the plane in which the

circle is drawn) J. This circle once described, any such problem will

reduce to that of constructing three pairs of points of the two pro

jective systems whose self-corresponding elements give the solution of

the problem. This done, we proceed to transfer to the circumference

of the circle, by means of projections and sections, these three pairs of

points. This will give three pairs of points on the circle
; taking these

as the pairs of opposite vertices of an inscribed hexagon, we have only

further to draw the straight line which joins the points of intersection

of the three pairs of opposite sides (the Pascal line) of this hexagon.

It is hardly necessary to remark that instead of the solution of such

a problem being made to depend on the

common elements of two superposed pro

jective forms, it may always be reduced to

the determination of the double elements

of an involution (Art. 211).

The following Articles (239 to 249)

^ contain examples of problems solved by

Fi
g&amp;lt;

j a9
means of the method just explained.

239. PROBLEM. Given (Fig. 169) two

projective ranges ofpoints lying on the straight lines u and u respectively ,

and two other projective ranges ofpoints lying on the straight lines v

* CHASLES, Geom. sup., p. 212.

f A problem is said to be of the first degree when it can be solved with help of

the ruler only, i. e. by the intersections of straight lines. See LAMBERT, loc. cit.,

p. 1 6 1
; BRIANCHON, loc. cit., p. 6

; PONCELET, loc. cit., p. 76.

J PONCELET, loc. cit., p. 187 ; STEINER, Die geometrischen Constructionen aus-

gefiihrt mittelst der geraden Linie und eines festen Kreises (Berlin, 1833), p. 67 ;

Collected Works, vol. i. pp. 461-522; STATTDT, Geometrie der Lage (Nurnberg,

1847), 23-
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and v respectively ; it is required to draw through a given point two

straight lines s and s
,
which shall cut u and u in a pair of corre

sponding points and also v and v
f
in a pair of corresponding points.

Through draw any straight line cutting u ,
v mA

,
P respectively;

let A be the point on u which corresponds to A
,
and let P be the

point on v which corresponds to P 1

. The problem would be solved if

the straight lines OA and OP coincided with one another. If these

straight lines be made to change their positions simultaneously, they
will trace out two concentric protective pencils (determined by three

trials of a similar kind to the one just made) ;
and the self-corre

sponding rays of these pencils will give the solutions of the problem.
240. In the preceding problem the straight lines u and u might

be taken to coincide, and similarly v and v . If all four straight

lines coincided with one another, the problem would become the

following :

Given two projective ranges u, uf and two other projective ranges

v, v all lying on one straight line, to find a pair of points which shall

correspond to one another when regarded as points of the ranges u
,
u

respectively, and likewise when regarded as points of the ranges v
,
v

respectively.

241. PEOBLEM. Between two given straight lines u and u^ to place
a segment such that it shall subtend given angles at two given points

and S (Fig. 1 70).

Fig. 170.

Draw any ray SA to meet u in A
;
draw SA

l
to meet u^ in A

l
so

that ASA 1 may be equal to the second of the given angles; join OAlt

and draw OAf
to meet u in A so that A rOA

l may be equal to the

first of the given angles. Then the problem would be solved if OA
coincided with OA f

. Three trials of a similar kind to the one just made

will give three pairs of corresponding rays (OA and OA
,
OB and OB ,

OC and OC
)
of the two projective pencils which would be traced out

by causing OA and OA to change their positions simultaneously ;

the self-corresponding rays OM and ON of these pencils will give the

solutions (MMl
and NNJ of the problem.

%
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242. PROBLEM. Given two protective ranges u and u; ifa pair of

corresponding points A and A! of these ranges be taken, it is required

to find another pair of corresponding points M and Mf such that the

ratio of the length of the segment AM to that of the segment A M may
be equal to a given number A.

Let A and A
,
B and Bf

,
C and be three pairs of corresponding

points of the two ranges. On u take two new points B&quot; , C&quot; such that

AB&quot;=X.A B and AC&quot;=\.A C . The points A,B&quot;,C&quot; determine

a range which is similar (Art. 99) to the range A
,
B

, (7V.. and

therefore projective with A,,C,.... The collinear ranges

A
,

B&quot;
,

C&quot; , ... and A
,
B

,
C

,
... have already one self-corresponding

point in A
;
their other self-corresponding point M (Art. 90) will

give tlie solution of the problem, since AM= AM&quot;=\ . A M . This

problem is therefore of the first degree.

243. PROBLEM. Given two collinear projective ranges ABC ... and

A B C ...
,
to find a pair of corresponding points M and M such

that the segment MM shall be bisected at a given point 0.

Take three points A&quot;
,

B&quot;
,

C&quot; such that is the middle point of each

of the segments A A&quot;,
BB&quot;

,
CC&quot;

;
the points A&quot;,

B&quot;
,

C&quot; determine

a range which is equal to the range ABC ..., and therefore projective

with the range A B C .... Construct the self-corresponding points of

the collinear projective ranges A B C ... and A f
B&quot;C&quot; ...

;
if M or

M&quot; is one of them, then MM will have its middle point at 0, and

will be a segment such as is required.

244. PROBLEM. Given a straight line and two points E ,
F on it ;

to determine on the straight line two points M and M such that the

segment MM may be equal in length to a given segment, and the

anharmonic ratio (EFMM ) equal to a given number,

Take on the given straight line any three points A ,
B

,
C

;
then

find on it three points A ,B ,C such that the anharmonic ratios

(EFAA } , (EFBB } , (EFCC ) may each be equal to the given number ;

and again three points A&quot;,B&quot;,C&quot;
such that the segmerits A A&quot;,

BB&quot;
,

CC&quot; may each be equal in length to the given segment. The ranges

ABC ... and A B C ... will be projectively related (Arts. 79, 109), and

the same will be the case with regard to the ranges ABC... and

A&quot;B&quot;C&quot;...(k*t. 103); therefore 4 C ... and A&quot;B&quot;C&quot;... will be

projective with one another. If these ranges have self-corresponding

points, and if M or M&quot; is one of them, the segment MM and the

anharmonic ratio (EFMM )
will have the given values, and the

problem is solved.

245. PROBLEM. To inscribe in a given triangle PQR a rectangle

of given area (Fig. I7 1
)-

Suppose MSTU to be the rectangle required; if MS be drawn

parallel to PR, a parallelogram MSPS will be formed which is equal
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Fig. 171.

in area to the rectangle; so that for the given problem may be

substituted the following equivalent one :

Tofind on the base QR of a given triangle PQR a point M su?h that

ifMS ,
MS be drawn parallel

to the sides PQ ,
PR to meet

PR
, PQ in S, S respectively,

the rectangle contained by PS
and PSf

shall be equal to a

given square &2
.

Take any point A on QR,
draw AD parallel to PQ to

meet PR in D, and take on

PQ a point D such that

the rectangle contained by
PD and PD may be equal to #*; then draw D A parallel to PR to

meet QR in A f
. If the points A and A coincided with one another,

the problem would be solved.

Now let the points A
,
D

,
D

,
A be made to vary simultaneously ;

they will trace out ranges which are all protective with one another.

For since D is the projection of A made from the point at infinity on

PQ, and A the projection of D made from the point at infinity on

PR, the first and second ranges are in perspective, and the third and

fourth likewise. But the second and third ranges are projective with

one another, since the relation PD . PD =W shows (Art. 74) that the

points D and D
,
in moving simultaneously, describe two projective

ranges such that the point P, regarded as belonging to either range,

corresponds to the point at infinity regarded as belonging to the other*.

Three similar trials give three pairs of points similar to A and

A
;

if the self-corresponding points of the ranges determined by these

pairs be constructed, they will give the solutions of the problem.

Instead of taking the point A quite arbitrarily in the three trials,

any particular positions may be chosen for it, and by this means the

construction may often be simplified. This remark applies to all the

problems which we have discussed. With regard to the present one,

it is clear that if A be taken at infinity, its projection D will also lie

at infinity; consequently D f
will coincide with P, and therefore A f

with R. Again, if A be taken coincident with Q, its projection D
will coincide with P, and consequently D ,

and therefore also A
,
will

pass off to infinity. &quot;We have thus two trials, neither of which requires

* If the two ranges be called u and u, and the construction of Art. 85 (left)

be referred back to, it will be seen that the auxiliary range u&quot; lies in this case

entirely at infinity. If then a pair of corresponding points D and D have been

found, and we wish to find the point E which corresponds to any other point E
of PR (

=
u), we have only to join D E, and to draw DE parallel to D E to

meetPQ (= O in E .



198 PROBLEMS OF THE SECOND DEGREE. [246

any construction ;
the pairs which result from them are composed

respectively of the point at infinity and R, and of Q and the point at

infinity. If the pair given by the third trial be called B
,
B

,
and if

A
,
A stand for any pair whatever, we have (Art. 74)

QA.RA =QB . RB
,

and therefore, ifM is a self-corresponding point,

QM.RM=QB.RB t

from which the self-corresponding points could be found. But it is

better in all cases to go back to the general construction of Art. 206.

In this case the three pairs of conjugate points of the two ranges
which are given are : B and B

;
the point at infinity and R ; Q and

the point at infinity. Let then any circle be taken, and a point on

its circumference
;
from draw the straight lines OB

,
OB

,
OR

, OQ,
and a parallel to QR, and let these cut the circle again in B

l , B{, A\ , Qv
and / respectively *. Join the point of intersection of B

1
R

l
and B{ I

with that of B
l
I and B{ Q l ;

if the joining line cut the circle in

two points Ml
and N

l ,
the straight lines which join these to will

meet QR in the self-corresponding points M and N, and these give

the solutions of the problem.

246. PKOBLEM. To construct a polygon, whose sides shall pass

respectively through given points, and all whose vertices except one shall

lie respectively on given straight lines ; and which shall be such that

the angle included by the sides which meet in the last vertex is equal to

a given angle,

Suppose, for example, that it is required to construct a triangle

LMN (Fig. 172) whose sides MN
,
NL

,
LM shall pass through the

given points , V, U respectively,

and whose vertices M,N shall lie

on the given straight lines u
,
v re

spectively ;
and which shall be such

that the angle MLN is equal to a

given angle.

Through draw any straight

line to cut u in A and v in B
;

join BV, and through U draw the

Fig. ^2. straight line UX making with BV
an angle equal to the given one.

Let UX meet u in A
;
the problem would be solved if the point

A coincided with A. If the rays OA
,
UA be made to vary

simultaneously, they will determine on u two projective ranges ;
the

solutions of the problem will be found by constructing the self-corre

sponding points of these ranges.

* Of these points only / is marked in the figure.
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247. The following problem is included in the foregoing one :

A ray of light emanating from a given point is reflected from n

given straight lines in succession; to determine the original direction

which the ray must have, in order that this may make with its direction

after the last reflexion a given angle.

Let ult uzt ...un be the given straight lines (Fig. 173). If the

ray OA l
strike u^ at A

lt
then by the

law of reflexion the incident and re

flected rays will make equal angles

with but the incident ray passes

through the fixed point 0; therefore the

reflected ray will always pass through

the point which is symmetrical to

with regard to u
l
*. So again, if

the ray after one reflexion strikes u2
at

A,2 ,
it will be reflected according to

the same law
; consequently the ray after two reflexions will pass

through a fixed point 2
which is symmetrical to O

l
with regard to

w
2 ;

and so on. The paths of the ray before reflexion, and after one,

two, ... n reflexions form therefore a polygon OA t
A

z
A

9
...

,
whose n+ i

sides pass respectively through n+i fixed points , : ,
O

z , ... On ,

and which is such that n of its vertices lie respectively on n given

straight lines
Uj_ ,

u
z ,

. . . un ;
while the angle included by the sides

which meet in the last vertex is to be equal to a given angle. Thus

the problem reduces, as was stated, to that of Art. 246.

248. PEOBLEM. To construct a polygon whose vertices shall lie

respectively on given straight lines, and whose sides shall subtend given

angles at given points respectively.

Suppose it required to construct a triangle whose vertices 1,2,3
shall lie on the given straight lines u

sides 23, 31, 12 shall subtend at

the given points Slt S^ 9
S3 respec

tively the angles o^ ,
o&amp;gt;

2 ,
&amp;lt;

3
which

are given in sign and magnitude

(Fig. 174). On MJ take any point

A
; join AS

3 ,
and make the angle

AS
Z
B equal to &&amp;gt;

3 ;
let S

Z
B cut u^

in B. Join BS
l j

make the angle

BS^G equal to to
lt

and let S^ cut

u
3

in C. Join CSZ ;
make the

i
3 respectively, and whose

Fig. 174.

angle CS^A equal to o&amp;gt;

2 ,
and let

S A! cut u^ in A . The problem would be solved if S^Af coincided

* L e. a point Ox such that 00t is bisected at right angles by UL .
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with S
Z
A. If S

2
A be made to turn about S

z ,
the other rays

8^,8^,8^,8,0, S
tC, and S^A will change their positions simul

taneously, and will trace out pencils which are all protectively

related. For the ranges traced out by S
S
A and S3

B respectively

will be protective (Art. 108) since the angle AS3
B is constant; the

ranges traced out by $3$ and S^ respectively are projective since

they are in perspective ;
and so on. The solutions of the problem will

therefore be given by the self-corresponding rays of the concentric

projective pencils which are generated by S
2
A and S

2
A respectively.

In the same manner is solved the more general problem in which

the straight lines joining Slt Stf ...to the vertices of the polygon are

no longer to include given angles, but are to be such that together

with pairs of given straight lines meeting in S
l ,
S

t ,
. . . respectively

they form at each of these points a pencil of four rays having a given

anharmonic ratio. If at each of the points the pencil is to be

harmonic, and the given straight lines such as to include a right

angle, the problem can be enunciated as follows (Art. 60) :

To construct a polygon whose vertices shall lie respectively on given

straight lines, and whose sides shall subtend at given points angles

whose bisectors are given.

249. The same method gives the solution of the problem :

To construct a polygon whose sides shall pass respectively through

given points, and which shall be such that the pairs of adjacent sides

divide given segments respectively in given anharmonic ratios *.

Particular cases of this problem may be obtained by supposing that

each pair of adjacent sides is to intercept on a given straight line a

segment given in magnitude and direction; or a segment which is

divided by a given point into two parts having a given ratio to one

another t.

* That is to say, two adjacent sides are to cut a given straight line, on which

are two given points A, 13, in two other points C
,
D such that the anharmonic

ratio (ABCD} may be equal to a given number.

f CHASLES, Geom. sup., pp. 219-223 ;
and TOWNSEND, Modern Geometry (Dublin,

1865), vol. ii. pp. 257-275.



CHAPTER XX.

POLE AND POLAR.

250. LET any point S be taken in the plane of a conic

(Fig. 175), and through it let any number of transversals be

drawn to cut the conic in pairs of points A and A\ B and B
,

C and C
,

. . . . The tangents a and a
,
b and b

,
c and c at these

points will, by Arts. 203, 204, intersect in pairs on a fixed

straight line *, on which lie also the points of contact of the tan

gents from S to the conic (when the

position of S is such that tangents
can be drawn). Further, the pairs of

chords AB f and A B
,
AC and A C

t
...

BCf and B C,... AB and A B
,

AC and A C ,...BC and B C ,...

will intersect on s. Another pro

perty of the straight line * may
be noticed. In the complete quad

rangle AA BB
f

,
each of the straight

lines AA and BB is divided har

monically by the diagonal point S

and the point where it is cut by
the straight line s which joins the

other diagonal points (Art. 57);

consequently A and A (and simi-
*

lg&amp;gt; 175

larly B and B
,
C and

C&quot;, ...) are harmonic conjugates with

regard to S and the point where AA (or BB ,
CC

, ...)
is cut

by s.

The straight line * determined in this manner by the point
S is called the polar of S with respect to the conic

; and, re

ciprocally, the point S is said to be the pole of the straight
line *.

The polar of a given point Sis therefore at the same time : (\}the
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lows of the points of intersection of tangents to the conic at the pain
ofpoints where it is cut by any transversal through S; (2) the locus

of the points of intersection ofpairs of opposite sides of quadrangles
inscribed in the conic such that their diagonals meet in S; (3) the

locus ofpoints taken on any transversal through 8 such that they are

harmonically conjugate to S with regard to the pair of points in

which the transversal is cut by the conic ; (4) the chord ofcontact of
the tangentsfrom S to the conic, when S has such a position that it

is possible to draw these * f.

251. Reciprocally, any given straight line * determines a

point S, of which it is the polar. For let A and (Fig. 176) be

any two points on the conic
;
the tangents a and b at these

points will cut * in two points from which can be drawn two

other tangents a and b to the conic. Let A and B be the

points of contact of these, and let AA
,
BB meet in S

;
then

the polar of S will pass through the points aa
f
and lb\ and

must therefore coincide with s.

Ifthenfrom any point on s a pair of tangents can be drawn to the

conic, their chord of contact will pass through S.

Fig. 176.

252. The complete quadrangle AA BB and the complete

quadrilateral aa W (Fig. 176) have the same diagonal

*
APOLLONIDS, loc. cit., lib. vii. 37 ; DESARGUES, loc. cit., pp. 164 sqq. ;

DE LA

HIRE, loc. cit., books i. and ii.

t (4) follows from (3) by what has been proved in Art. 71.
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triangle (Art. 1 69). The vertices of this triangle are S, the point

of intersection FoiAB and A B f

,
and the point of intersection

E of AB and A B; its sides are s, the straight line /joining the

points ab and a b
f

,
and the straight line e joining the points ab

and a b. Thus iffrom any two points taken on the straight line s

pairs of tangents a and a
,

b and b be drawn to the conic, the

diagonals of the quadrilateral aba b ivill pass through 8.

253. The straight lines a, a
, 6, b (Fig. 177) form a quadri

lateral circumscribed about the conic, one of whose diagonals is

#, and whose other two diagonals

meet in 8. Thus iffrom any point

on s a pair of tangents be drawn to

the conic, they will be harmonically

conjugate with regard to s and the

straight line joining the point to S

(Art. 56).

254. Tf then a conic is given,

every point in its plane has its

polar and every straight line has its

pole*. The given conic, with

reference to which the pole and

polar are considered, may be

called the auxiliary conic.

I. If a point in the plane of a conic is such that from it

two tangents can be drawn to the curve, it is said to lie

outside the conic, or to be an external point ;
if it is such that

no tangent can be drawn, it is said to lie inside the conic, or

to be an internal point. If then the pole lies outside the

conic (Art. 203, VIII) the polar cuts the curve, and it cuts

it at the points of contact of the tangents from the pole to the

conic f-

If the pole lies inside the curve, the polar does not cut the

conic.

II. If a point on the conic itself be taken as pole and a

transversal be made to revolve round this point, one of its

points of intersection with the conic will always coincide with

the pole itself. Since then the polar is the locus of the points

where the tangents at these points of intersection meet, and

* DESARGUES, loc. cit., p. 190.

f See also Art. 250, (4).
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in this case one of the tangents is fixed, it follows that the

polar of a point on the conic is the tangent at this point ;
or

that if the pole is a point on the conic, the polar is the tangent at

this point.

III. Reciprocally, if every point of the polar lies outside the

conic, the pole lies inside the conic
;

if the polar cuts the

conic, the pole is the point where the tangents at the two

points of intersection meet
;
and if the polar touches the conic,

the pole is its point of contact.

255. If two points are such that the first lies on the polar

of the second, then will also the second lie on the polar of the first.

Consider Fig. 176; let E be taken as pole and let F be

a point lying on the polar of E. If the straight line EF cuts

the conic, it will cut it in two points which are harmoni

cally conjugate with regard to E and F (Art. 250 [3] ) ;

consequently one of the points E, F will lie inside and the

other outside the conic, and by Art. 250 (3) again, if F be

taken as pole, E will be a point on its polar.

If the straight line EF does not cut the conic, the chord of

contact of the tangents from E will pass through F, since this

chord is the polar of E\ and therefore by Art. 250 (1) E will

lie on the polar of F.

The above proposition may also be expressed in the follow

ing manner :

If a straight linef pass through the pole of another straight line

e, then will also e pass through the pole off.
For let E, F be the poles of e, f respectively ;

since by

hypothesis E lies on the polar of F, therefore *F will lie on

the polar of E that is to say, e will pass through F. the pole

of/.

Two points such as E and F, which possess the property
that each lies on the polar of the other, are termed conjugate or

reciprocal points with respect to the conic. And two straight

lines such as e and/, each of which passes through the pole of

the other, are termed conjugate or reciprocal lines with respect

to the conic.

The foregoing proposition may then be enunciated as

follows :

If two points are conjugate to one another with respect to a conic,

their polars also are conjugate to one another^ and conversely.
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256. The same proposition can be put into yet another

form, viz.

Every point on the polar of a given point E has for its polar a

straight line passing through E.

Every straight line passing through the pole of a given straight

line e has for its pole a point lying on e *.

In other words, if a variable pole F be supposed to describe

a given straight line e, the polar of F will always pass through
a fixed point E, the pole of the given line

;
and conversely, if

a straight line/ revolve round a fixed point E, the pole of/
will describe a straight line

tf,
the polar of the given point E.

Or again : the pole of a given straight line e is the centre of the

pencil formed by the polars of all points on e ; and the polar of a

given point E is the locus of the poles of all straight lines passing

through E~\.

257. PROBLEM. Given a point

S, to construct its polar with

respect to a given conic.

I. Let the conic be determined

by five points A
,
B

,
C

,
D

,
E

(Fig. 178).

Given a straight line s, to con

struct its pole with respect to a

given conic.

I. Let the conic be determined

by five tangents a
,
b

,
c . d

,
e (Fig.

179).

Fig. 178.

Join SA
,
SB

,
and find the

points A ,
B f where these cut the

conic again respectively (Art. 161,

right). The straight line s which

joins the point of intersection of

AB and A B to that of AB and

Fig. 179.

From the points sa
,
sb draw

the second tangents of, b respec

tively to the conic (Art. 161,

left). The point S in which the

diagonals of the quadrangle aba b

intersect one another will be

* DESARGUES, lac. cit., p. 191.

f PONCELET, loc. tit., Art. 195.
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A B will be the polar of the the pole of the given straight

given point (Art. 250 [2]). line.

II. Let the conic be determined II. Let the conic be deter-

by five tangents a
,
b

, c, d
,
e mined by five points A,, C, D,E

(Fig. 1 80). (Fig. 181).

Fig. 1 80.

Through S draw two trans

versals u and v, and construct

their poles U and V (as on the

right-hand side above) ;
U V will

be the polar of S (Art. 256). To

simplify matters the transversal

u may be drawn through the

point db
;

if then the second

tangent c be drawn to the conic

(Art. 161) from the point uc, U
will be the point of intersection

of the diagonals of the quadri
lateral acbc . So too if the

transversal v be drawn through
the point ac for example, and the

second tangent b be drawn to the

conic from the point vb, then V
will be the point of intersection

of the diagonals of the quadri
lateral abcb .

OE

CD

On s take two points U and

V, and construct their polars u
and v (as on the left-hand side

above) ;
the point uv will be the

pole of s (Art. 256). To simplify

matters the point Z7may be taken

on the straight line AB
;

if then

UC be joined, and the second

point C in which it meets the

conic be constructed, u will be the

straight line joining the points of

intersection of the pairs of oppo
site sides of the quadrangle
ACBC . So too if V be taken on

the straight line AC for example,
and VB be joined, and its second

point of intersection B f with the

conic be constructed, then v will

be the straight line joining the

points of intersection of the pairs

of opposite sides of the quadrangle
ABCB .

258. Let .2? and F (Fig. 182) be a pair of conjugate points
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and let G be the pole of EF\ then G will be conjugate both to

E and to F, so that the three points E, F, G are conjugate to one

another two and two. Every side therefore of the triangle

EFG is the pole of the opposite vertex, and the three sides are

conjugate lines two and two.

A triangle such as EFG, in which each vertex is the pole

of the opposite side with regard to a given conic is called a

self-conjugate or self-polar triangle with regard to the conic.

259. To construct a triangle self-conjugate with regard to a given

conic.

One vertex E (Fig. 182) may be taken arbitrarily; construct its

Fig. 182.

polar, take on this polar any point F, and construct the polar of F.

This last will pass through JE, since E and F are conjugate points ;

if G be the point where it cuts the polar of E, then E and G,

F and G, will be pairs of conjugate points ;
and therefore EFG is a

self-conjugate triangle.

In other words : take any point E and draw through it any two

transversals to cut the conic in A and D
,
B and C respectively ; join

AC
, BD, meeting in F, and AB,CD meeting in G

;
then EFG is a

self-conjugate triangle.

Or again, one side e may be taken arbitrarily, and its pole E con

structed ;
if through E any straight line / be drawn, and its pole
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(which will lie on e) be constructed and joined to the pole of e by the

straight line g, then efg will be a triangle such as is required ;
for the

straight lines e,f,g are conjugate two and two.

Thus, after having taken the side e arbitrarily, we may proceed as

follows : take two points on e and from them draw pairs of tangents
a and d

,
b and c

,
to the conic

; join the points ac
,
bd by the straight

line /, and the points ab
,
cd by the straight line g ;

then will efg be

a self-conjugate triangle.

260. From what has been said above the following property
is evident:

The diagonal poinls of the complete quadrangle formed by any

four points on a conic are the vertices of a triangle which is self-

conjugate with regard to the conic. And the diagonals of the

complete quadrilateral formed by any four tangents to a conic

are the sides of a triangle which is self-conjugate with regard to the

conic*.

Or, in other words :

The triangle whose vertices are the diagonal points of a complete

quadrangle is self-conjugate with regard to any conic circumscribing

the quadrangle. And the triangle whose sides are the diagonals of a

complete quadrilateral is self-conjugate with regard to any conic

inscribed in the quadrilateral.

261. From the properties of the circumscribed quadrilateral and

the inscribed quadrangle (Arts. 166 to 172) it follows moreover

that:

If EFG (Fig. 182) is a triangle self-conjugate with regard to

a given conic, and ABC is a triangle inscribed in the conic,

such that two of its sides CA
,
AB pass through two of the

vertices F
,
G respectively of the other triangle, then will the re

maining side EC pass through the remaining vertex E, and every

side of the inscribed triangle will be divided harmonically by the

corresponding vertex of the self-conjugate triangle and the side which

joins the other two vertices of it.

The three straight lines EA
,
FB

,
GC meet in one point D on the

conic
;
the two triangles are therefore in perspective, and the three

pairs of corresponding sides FG and EG
,
GE and CA, J^and AB,

will meet in three collinear points.

Hence it follows that a self-conjugate triangle EFG and a point A

of a conic determine an inscribed quadrangle ABCD, whose diagonal

*
DK3AUGUES, IOC. tit., p. l86.
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triangle is EFG. The points B
,
C

,
D are those in which the

straight lines AG
,
AF

,
AE cut the conic again.

The enunciation of the correlative property is left to the student *.

262. Of the three vertices of the triangle JEFG, one always
lies inside the conic, and the two others outside it. For if E
is an internal point, its polar does not cut the conic, and con

sequently F and G are both external to the conic. If, on the

other hand, E is an external point, its polar cuts the conic, and

F and G are harmonic conjugates with regard to the two

points of intersection
;
of the two points F and (7 therefore,

one must be internal and the other external to the conic.

From this property and that of Art. 254, 1, we conclude that

of the three sides of any self-conjugate triangle, two always
cut the curve, and the third does not.

263. (l).
On every straight line there are an infinite number of

pairs of points which are conjugate to one another with respect to a

given conic, and theseform an involution^.

(2). Through every point pass an infinite number of pairs of

straight lines which are conjugate to one another with respect to a

given conic, and theseform an involution f.

(3). If a point describes a range, its polar with respect to a given

conic will trace out a pencil which is protective with the given range.

And, conversely, if a straight line describes a pencil, its pole with

respect to a given conic will trace out a range which is projective with

the given pencil {.

To prove these theorems, consider Fig. 183, and suppose
in it the conic and the three points A

,
B

,
G to be given.

Let the point C be supposed to move along the conic.

Then the rays AC
,
BC will trace out two pencils which are

projective with one another (Art. 149 [l]) ;
and therefore the

ranges in which these pencils cut the polar of G will be pro

jective also
;
that is to say, the conjugate points ^and E will

describe two collinear projective ranges. In these ranges the

points F and E correspond to one another doubly, since the

polar of E passes through F, and the polar of F passes

through E-, consequently the ranges in question are in in

volution.

From what has been said it follows also that the pairs of

*
PONCELET, loc. dt., p. 104. f DESARGUES, loc. tit, pp. 192, 193.

J MOBIUS, Baryc. Calc.t 290.

P
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conjugate lines GF
,
GE in like manner form an involution,

and that the range of poles E, F , ... is project!ve with the

pencil of polars GF, GE, ... .

264. If the straight line EF cuts the conic, the two points of

Fig. 183.

intersection are the double points of the involution formed by
the pairs of conjugate poles. The centre of the involution lies

on the diameter which passes through the pole G of the given

straight line (Art. 290).

If the point G is external to the conic, the tangents from G
to the conic are the double rays of the involution formed by
the pairs of conjugate polars.

Consequently (Art. 125):
A chord of a conic is harmonically divided by any pair of points

lying on it which are conjugate with respect to the conic; and
The pair of tangents drawn from any point to a conic are har

monic conjugates with respect to any pair of straight lines meeting in

the given point which are conjugate with respect to the conic.

If the point G lies at infinity, the pairs of conjugate straight
lines form an involution of parallel rays, the central ray of

which is a diameter of the conic (Arts. 129, 276).

265. THEOREM. If two complete quadrangles have the same

diagonal points, their eight vertices lie either four andfour on two

straight lines or else they all lie on a conic.
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Let ABCD emdA C (Fig. 184) be two quadrangles
having the same diagonal points E , F, G

;
so that

BC,AD, B C
,
A D all meet in E,

CA,BD 9
C A ,B D F,

AB,CD 9 A ff,C ]) G.

(I). In the first place let the eight vertices be such that some
three of them are collinear. Suppose
for example that A lies on AB. Since

AB and A B meet in G, therefore

B also must lie on AB\ and since

the straight lines GE
,
GF are har

monically conjugate with regard both

to AB,CL and to A B ,C D\ and
AB coincides with A B

, therefore also

CD coincides with C l) . Thus the

four points C
,
D

,
C

,
D are collinear,

Fig. 184.

and the eight points A,B, C, D, A ,
B

,
C

t
D lie four and four

on two straight lines.

(2). But if this case be excluded, i. e. if no three of the eight
vertices lie in a straight line,

then a conic can be drawn

through any five of them. Let

a conic be drawn through

^,#,C,jM (Fig. 185); then

shall B
t
C ,D lie on the

same conic. For since E,F,G
are the diagonal points of

the inscribed quadrangle

ABCD, G is the pole of EF,
and therefore G and the

point where its polar EF meets the transversal GB A are

harmonically conjugate with regard to the points where this

transversal cuts the conic. But one of these last points is

A\ therefore the other is B
; for since E,F,G are also the

diagonal points of the quadrangle A B C D
,
the points A

and B are harmonically conjugate with regard to G and the

point where EF cuts A B . In a similar manner it can be
shown that C and D also lie on the same conic. The eight
vertices A

,
B

,
C

,
D

,
A

,
B

, C&quot;,
D therefore lie on a conic, and

the proposition is proved.
P 2

Fig. 185.
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Since the straight lines AS and A B meet in G, therefore

AA and BB
,
as also AB and A B, will meet on EF, the polar

of G. This property gives the means of constructing the

point B when the points A ,
B

,
C

,
D

,
A are given. The point

C will then be found as the point of intersection of A F and

B E, and the point D
f
as that of B F,A E,&ndi C G.

266. Suppose now that two conies are given which are

inscribed in the same quadrilateral. Let the four common

tangents which form this quadrilateral be a
,
b

,
c

, d, and let their

points of contact with the conies be A
,
B

, C, D and A
,
B

,
C

,
I/

respectively. By the theorem of Art. 169, the triangle formed

by the diagonals of the circumscribed quadrilateral abed has for

its vertices the diagonal points of the inscribed quadrangle

ABCD and also those of the inscribed quadrangle A B C L
;

thus ABCD and A B C D have the same diagonal points.

Accordingly, by the theorem of Art. 365, the eight points

A
,
B

,
C

,
D

,
A

,
B

,
C

,
D lie either four andfour on two straight

lines, or they lie all on a conic.

267. By writing, as usual, line for point, and point for line,

the propositions correlative to those of Arts. 265 and 266 can

be proved, viz*

If two complete quadrilaterals have the same three diagonals, their

eight sides cither passfour andfour through two points, or else they

all touch a conic.

If two conies intersect in four points, the eight tangents to them

at these points either passfour andfour through two points, or they

all touch a conic *.

268. If there be given the diagonal points Ij,F 3
G and one

vertex A of a quadrangle ABCI), the quadrangle is completely

determined, and can be constructed. For D is that point on

AE which is harmonically conjugate to A with respect to E
and the point where FG cuts AE; so C is that point on AF
which is harmonically conjugate to A with respect to F and

the point where GE cuts AF; and B is that point on AG
which is harmonically conjugate to A with respect to G and

the point where EF cuts AG.

But if there be given the diagonal points E
,
F

,
G of a

quadrangle ABCD and the conic with respect to which EFG

is a self-conjugate triangle, the quadrangle is not completely
* STAUDT, loc. cit., p. 293.
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determined. For we may take arbitrarily on the conic a point
A as one vertex of the quadrangle ABCD-, then the other

vertices B
, C, D are the second points of intersection of the

conic with the straight lines AG
, AF, AE respectively. Hence

it follows that :

All conies with respect to which a given triangle EFG is self-

conjugate, and which pass through a fxed point A, pass also through
three other fixed points ,

C
,
D.

269. PKOBLEM. To construct a conic passing through two given

points A and A
,
and with respect to which a given triangle EFG

shall be self-conjugate.

Solution. Construct, in the manner just shown, the three points
B

, C, D which form with A a complete quadrangle having E, F, and G
for its diagonal points. Five points A ,

A
, B, C, D on the conic are

then known, and by means of Pascal s theorem any number of other

points on it may be found. Or we may construct the three points
B f

,C ,D which form with A a complete quadrangle having E, F }
and

G for its diagonal points ;
the eight points A ,

B
,
C

,
D

,
A

,
B

,
C

,
D f

will then all lie on the conic required.

270. Consider again the problem (Art. 218) of describing a conic

to touch four given straight lines a,b,c,d and to pass through a given

point S (Fig. 1 86). The diagonals

of the quadrilateral abed form a

triangle EFG which is self-conju

gate with regard to the conic;

consequently, if the three points

P , Q ,
R be constructed which

together with S form a quadrangle

having E, F, and G for its diagonal

points, the three points so con

structed will lie also on the

required conic. Now it may
happen that there is no conic

Fig. 186.

which satisfies the problem, or

again there may be two conies which satisfy it (Art. 218, right);

in the second case, since the construction for the points P, Q, R
is linear, the two conies will both pass through these points. Thus :

If two conies inscribed in the same quadrilateral abed pass through
the same point S, they will intersect in three other points P, Q, R ; and

the triangle formed by the diagonals of the circumscribed quadrilateral

abed will coincide with that formed by the diagonal points of the

inscribed quadrangle PQRS.
In order to find a construction for the points P , Q ,

R
,
consider
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the point P for example which lies on ES (Fig. 186). It is seen

that the segment SP must be divided harmonically by E and its

polar FG (Art. 250) ;
but the diagonal (ab) (cd) which passes through

E is also divided harmonically, at E and F. We have therefore

two harmonic ranges, which are of course projective (Art. 51) and

which are in perspective since they have a self-corresponding point at

E
;
therefore the straight lines P (ab\ S (cd), and FG, which join the

other pairs of corresponding points, will meet in a point (Art. 80).

We must therefore join S to one extremity of one of the diagonals

passing through E, for example to the point cd, and take the point

where the joining line meets FG. This point, when joined to the

other extremity ab of the diagonal, will give a straight line which

will meet ES in the required point P *.

271. The propositions and constructions correlative to those of

the last three Articles, and which will form useful exercises for the

student, are the following :

All conies with respect, to which a given triangle is self-conjugate,

and which touch afixed straight line, touch three otherfixed straight lines.

To construct a conic to touch two given straight lines, and with

respect to which a given triangle shall be self-conjugate.

If two conies circumscribing the same quadrangle have a common

tangent, they have three other common tangents.

To construct the three remaining common tangents to two conies

which pass through four given points and touch a given straight line

(Art. 218, left).

Fig. 187.

272. Let ABCD (Fig. 187) be a complete quadrilateral whose

diagonal points are E, F, and G. Let also

L and P be the points where FG meets AD and BC respectively.

J/andQ GE BDmdCA
EF CD and AB

The six points so obtained are the vertices of a complete quad

rilateral. For the triangle EFG is in perspective with each of the

* BRIANCHON, loc. cit., p. 45 ; MACLAURIN, De lin. Qeom., 43.
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triangles ABC, DCB, CDA, BAD, the centres of perspective being

D, A, B, C respectively; whence it follows that the four triads of

points PQJK, PMN, LQN, and LMR lie on four straight lines (the

axes of perspective).

These four axes form a quadrilateral whose diagonals LP, MQ, NR
form the triangle EFG. Accordingly, a conic inscribed in the

quadrangle ABCD and passing through L will pass also through

N, P, and R (Art. 270); similarly a conic can be inscribed in

the quadrangle ABDC to pass through R, M, N, and Q; and

a conic can be inscribed in the quadrangle ACBD to pass through

Q,P,M, andZ.

It will be seen that for each of these conies the four tangents

shown in the figure (the four sides of the complete quadrangle ABCD)
are harmonic, and that the same will therefore be the case with

regard to their points of contact (Arts. 148, 204). For take one of

the sides of the quadrangle, for example AB ;
a consideration of the

complete quadrangle CDEF shows that this side is harmonically

divided in R and G. Now the points A
,
B

,
G are the points of

intersection of the tangent AB with the other three tangents, and R
is the point of contact of AB

;
therefore the four tangents are cut by

any other tangent to the conic in four harmonic points *.

273. If ABCD is a parallelogram, the points E ,
G

,
M

, Q pass off

to infinity, and LNPR also becomes a parallelogram. Of the three

conies considered above the first will in this case be an ellipse which

touches the sides of the parallelogram ABCD at their middle points ;

the second a hyperbola which touches the sides AB and CD at their

middle points and has AC and BD for asymptotes ;
and the third a

hyperbola having the same asymptotes and touching the sides AD
and BC at their middle points.

274. From that corollary to Brianchon s theorem which has

reference to a quadrilateral circumscribed about a conic

(Art. 172) we have already, in Art. 173, deduced a method for

the construction of tangents to a conic when we are given
three tangents a

,
b

,
c and the points of contact B

,
C of two

of them (Fig. 183). We take any point E on BC and join it

to the points ab
,
ac by the straight lines g , /, respectively ;

if

the point in which g meets c be joined to that in which /&quot;meets

b, the joining line d will be a tangent to the conic.

The four tangents a
,
b

,
c

,
d form a complete quadrilateral

two of whose diagonals g = (ab) (cd) and/= (ac) (bd) intersect

* STEINEB, loc. cit., p. 160, 43, 4; Collected Works, vol i. p. 347; STAUDT,

Beitrdge zur Geometric der Lage, Art. 329.
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in E
-,
therefore also (Art. 172) the chords of contact AD and

BC of the tangents a and d, b and c respectively will intersect

in E. The straight lines joining E to the points ab and ac,

being two of the diagonals of the quadrilateral abed, are con

jugate lines with respect to the conic
; consequently:

If a triangle abc is circumscribed about a conic, the straight lines

which join two of its vertices ab and ac to any point E on the polar

of the third vertex be are conjugate to one another with respect to the

conic.

And conversely :

If two straight lines (c and b)
touch a conic, any two conjugate

straight lines (f and g} drawnfrom any point (E) on their chord of

contact will cut the two given tangents in points such that the

straight line (adjoining them touches the conic.

275. Let us now investigate the correlative property. Sup

pose three points A
,
E

,
C on a conic to be given, and the

tangents b
,
c at two of these points (Fig. 183). If a straight

line e drawn arbitrarily through the point be cut AB in G and

AC in F; then if GC and FB be joined they will intersect in

a point 1) lying on the conic.

The four points A
,
B

,
D

,
C form a complete quadrangle

two of whose diagonal points lie on e\ therefore (Art. 166)

the point be and the point of

intersection of the tangents at

A and D will lie on e. The

points G and F, being two of the

diagonal points of the quadrila

teral ABCD, are conjugate with

respect to the conic
; consequently

If a triangle ABC (Fig. 188) is

inscribed in a conic, the points F
and G in which two of the sides are cut by any straight line drawn

through the pole S of the third side are conjugate to one another

with respect to the conic.

And conversely:

If two given points (B , C) on a conic be joined to two conjugate

points (G ,F) which are collinear with the pole (S) of the chord (BC)

joining the given points, then the joining lines will intersect in a

point (A) lying on the conic.



CHAPTEE XXI.

THE CENTRE AND DIAMETERS OF A CONIC.

276. LET an infinitely distant point be taken as pole, and

through it let a transversal be drawn (Fig. 189) to cut the

conic in two points A and

A . The segment AA f
will

be harmonically divided by
the pole and the point where

it is cut by the polar (Art.

250) ;
this point will there

fore be the middle point of

AA (Art. 59). That is to
Fig. 189.

say:

If any number ofparallel chords of a conic le drawn, the locus of
their middle points is a straight line ; and this straight line is the

polar of the point at infinity in which the chords intersect *.

277. This straight line is termed the diameter of the chords

which it bisects. If the diameter meets the conic in two

points, these will be the points of contact of the tangents
drawn to the conic from the pole, i. e. of those taDgents which

are parallel to the bisected chords. If the tangents at the

extremities A and A of one of these chords be drawn, they will

meet in a point on the diameter. If AA f and BB are two of

the bisected chords, the straight lines AB and A B
,
AB and

A B will intersect in pairs on the diameter (Art. 250).

If, conversely, from a point on the diameter can be drawn
a pair of tangents a and a to the conic, their chord of contact

AA will be bisected by the diameter; and if through the

same point there be drawn the straight line which is har

monically conjugate to the diameter with respect to the two

*
APOLLONIUS, Conic., lib. i. 46, 47, 48 ;

lib. ii. 5, 6, 7, 28-31, 34-37.
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tangents, this straight line will be parallel to the bisected

chords. If from two points on the diameter there be drawn

two pairs of tangents a and a
y
b and b

r

,
the straight line join

ing the points ab and a b and that joining the points alt and

a b will both be parallel to the bisected chords (Art. 252).

278. To each point at infinity, that is, to each pencil of

parallel rays, corresponds a diameter. The diameters all pass

through one point ;
for they are the polars of points lying on

one straight line, viz. the straight line at infinity ;
the point

in which the diameters intersect is the pole of the straight

line at infinity (Art. 256).

279. Since every parabola is touched by the straight line at

infinity, and the point of contact is the pole of this straight

line (Art. 254, II), it follows (Art. 278) that all diameters of a

parabola are parallel to one another (they all pass through the

point at infinity on the curve) ; and conversely, every straight

line which cuts a parabola at infinity is a diameter of the curve.

280. If B is any point from which a pair of tangents a and

a can be drawn to the conic (Fig. 189), the chord of contact

AA
,
the polar of 8, will be bisected at R by the diameter

which passes through S\ for S and the point at infinity on

AA are conjugate points with respect to the conic. If the

diameter cuts the curve in M and M
,
the tangents at these

points are parallel to AA
,
and MM is divided harmonically

by the pole S and the polar AA
f

(Art. 250).

If then the conic is a parabola (Fig. 1 90) the point Mf moves

off to infinity, and therefore M is the

middle point of the segment SR
;
thus

The straight line which joins the middle

point of a chord of a parabola to the pole

of the chord is bisected by the curve *.

\ 281. When the conic is not a parabola,

the straight line at infinity is no longer
Fig. 190.

6 *
,,

a tangent to the curve, and consequently

the pole of this straight line, or the point of intersection of the

diameters, is a point lying at a finite distance. Since any two

points on the conic which are collinear with the pole are

separated harmonically by the pole and the polar (Art. 250), the

pole will lie midway between the two points on the curve

* APOLLONIUS, loc. cit.
t
lib. i. 35.
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when the polar lies at infinity. Every chord of the conic

therefore which passes through the pole of the straight line at

infinity is bisected at this point.

On account of this property the pole of the straight line at

infinity or the point in which all the diameters intersect is

called the centre of the conic.

282. Applying the properties of poles and polars in general

(Arts. 250 253) to the case of the

centre and the straight line at in

finity, it is seen (Fig. 191) that:

If A and A are any pair of points

on the conic collinear with the

centre, the tangents at A and A
are parallel.

If A and A
,
B and B f

are any two

pairs of points on the conic which are collinear with the

centre, the pairs of chords AB and A B
,
AB f and A B are

parallel, so that the figure ABA B is a parallelogram.
If a and are any pair of parallel tangents, their chord

of contact passes through the centre, as also does the straight

line lying midway between a and a and parallel to both.

If a and of, b and V are any two pairs of parallel tangents, the

straight line joining the points ab and aTand that joining the

points ab and a b both pass through the centre
;

in other

words, if aba b is a parallelogram circumscribed to the conic,

its diagonals intersect in the centre.

283. If the conic is a hyperbola, the straight line at in

finity cuts the curve
; consequently the centre is a point

exterior to the curve (Art. 254, I) in which intersect the

tangents at the infinitely distant points, i.e. the asymptotes

(Fig. 197).

If the conic is an ellipse, the straight line at infinity does

not cut the curve
; consequently the centre is a point inside

the curve (Figs. 191, 192).

284. Two diameters of a central conic (ellipse or hyper
bola *) are termed conjugate when they are conjugate straight

* In the case of the parabola there are no pairs of conjugate diameters; for

since the centre lies at infinity, the diameter drawn parallel to the chords which

are bisected by a given diameter must coincide always with the straight line at

infinity.
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lines with respect to the conic, i.e. when each passes through
the pole of the other (Art. 255).

Since the pole of a diameter is the point at infinity on any
of the chords which the diameter

bisects, it follows that the diameter

l)

r

conjugate to a given diameter b is

parallel to the chords bisected by b
;

conversely, b bisects the chords which

are parallel to b *.

Fifr T 2 Any two conjugate diameters form

with the straight line at infinity

a self-conjugate triangle (Art. 258), of which one vertex is

the centre of the conic and the other two are at infinity.

Since in a self-conjugate triangle two of the sides cut the

conic and the third side does not (Art. 262), and since the

straight line at infinity cuts a hyperbola but does not cut an

ellipse, it follows that of every two conjugate diameters of a

hyperbola one only cuts the curve, while an ellipse is cut by
all its diameters.

285. PROBLEM. Given Jive points A
,
B

,
C

,
D

,
E on a conic, to

determine its centre.

Solution. We have only to repeat the construction given in Art.

257, II (right), assuming the straight line s to lie in this case at

infinity. Draw through C a parallel to AB, and determine the point C
f

in which this parallel meets the conic again ;
draw also through B a

parallel to AC, and determine the point B in which this parallel

meets the conic again. The straight line u which joins the points of

intersection of the pairs of opposite sides of the quadrangle ACBC ,

and the straight line v which joins the points of intersection of the

pairs of opposite sides of the quadrangle ABOB ,
will meet in the

required point 0, which is the pole of the straight line at infinity

and therefore the centre of the conic t.

The straight lines u and v are the diameters conjugate respec

tively to AB and AC
,

if through there be drawn the straight

lines u
,
v parallel to AB, AC respectively, then u and u, v and v

will be two pairs of conjugate diameters.

If the conic is determined by five tangents, its centre may be

found by a method which will be explained further on (Art. 319).

*
APOLLONIUS, loc. cit., lib. ii. 20.

t If u and v should be parallel, the conic is a parabola, whose diameters are

parallel to u and v.
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286. Four tangents to a conic form a complete quadrilateral

whose diagonals are the sides of a self-conjugate triangle

(Art. 260). Suppose the four tangents to be parallel in pairs

(Fig. 191) ;
then one diagonal will pass to infinity, and

consequently the other two will be conjugate diameters

(Art. 284) ;
thus :

The diagonals of any parallelogram circumscribed to a conic are

conjugate diameters.

The points of contact of the four tangents form a complete

quadrangle whose diagonal points are the vertices of the self-

conjugate triangle (Arts. 169, 260). In the case where the

four tangents are parallel in pairs one of these diagonal points
is the centre of the conic, and the other two lie at infinity.

That is to say, the six sides of the quadrangle are the sides

and diagonals of an inscribed parallelogram ;
its sides are

parallel in pairs to the diagonals of the circumscribed paral

lelogram, and its diagonals intersect in the centre of the

conic.

287. Conversely, let ABA B (Fig. 191) be any inscribed

parallelogram, and consider it as a complete quadrangle.
Since its three diagonal points must be the vertices of a

self-conjugate triangle, one of them will be the centre of

the conic, and the other two will be the points at infinity

on two conjugate diameters
;
thus :

In any parallelogram inscribed in a conic, the sides are parallel to

two conjugate diameters and the diagonals intersect in the centre.

Or again :

The chords which join a variable point A on a conic to the ex

tremities B and B f

of a fixed diameter are always parallel to two

conjugate diameiers.

288. The following conclusions can be drawn at once from

Art. 286.

Any two parallel tangents (a and a
)
are cut by any pair of

conjugate diameters in two pairs of points, the straight lines

connecting which give two other parallel tangents (b and I
].

If from the extremities (A and A
)
of any diameter straight

lines be drawn parallel to any two conjugate diameters, they
will meet in two points on the curve, and the chord joining
these will be a diameter.

Given any two parallel tangents a and a whose points of
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contact are A and A respectively, and any third tangent b
;
if

from A a parallel be drawn to the diameter passing through

a b this parallel will meet the tangent b at its point of

contact B.

Given any two parallel tangents a and a whose points of

contact are A and A respectively, and another point B on the

conic
;
the tangent at B will meet the tangent a in a point

lying on that diameter which is parallel to A B, and it will

meet the tangent a in a point lying on that diameter which is

parallel to AB.

289. Suppose now that the conic is a circle (Fig. 193), i.e.

the locus of the vertex of a right angle

AMB whose arms AM and BM turn round

fixed points A and B respectively. These

arms in moving generate two equal and

consequently project!ve pencils ;
therefore

the tangent at A will be the ray of the

first pencil which corresponds to the ray

BA of the second (Art. 143). The tangent

at A must therefore make a right angle with BA ;
and simi

larly the tangent at B will be perpendicular to AB. The

tangents at A and B are therefore parallel, and consequently

AB is a diameter, and the middle point of AB is the centre

of the circle (Art. 282).

I. Since AB is a diameter, the straight lines AM and BM
will be parallel to a pair of conjugate diameters, whatever be

the position of M (Art. 287); therefore :

Every pair of conjugate diameters of a circle are of, right angles to

one another.

II. Since the diagonals of any parallelogram circumscribed

about the circle are conjugate diameters, they will intersect

at right angles ;
thus any parallelogram which circumscribes a

circle must be a rhombus.

III. In a rhombus, the distance between one pair of opposite

sides is equal to the distance between the other pair ;
thus by

allowing one pair of opposite sides of the circumscribed rhom

bus to vary while the other pair remain fixed, we see that the

distance between two parallel tangents is constant. This

distance is the length of the straight line joining the points of

contact of the tangents, for this straight line, which is a
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diameter, cuts at right angles the conjugate diameter and the

tangents parallel to it
;
therefore all diameters of a circle are

equal in length.

IV. The diagonals of any inscribed parallelogram are

diameters
;
but all diameters are equal in length ;

therefore

any parallelogram inscribed in a circle must be a rectangle.

290. Returning to the general case where the conic is any
whatever (Fig. 189), let s be any straight line and S its pole.

All chords parallel to s will be bisected by the diameter

passing through S
; for since S and the point at infinity on s

are conjugate points with respect to the conic, the polar of the

second point will pass through the first. We may also say that :

If a diameter pass through a fixed point, the conjugate diameter

will be parallel to the polar of this point.

I. If the diameter passing through S cuts the conic in two

points M and M
9
then MM is divided harmonically by the

pole S and the polar **
;
thus if is the middle point of MM

,

that is, the centre of the conic, and R the point where MM is

cut by the polar s, we have (Art. 69)

OS. OR = OM2
.

II. From this follows a construction for the semi-diameter

conjugate to a chord AA of a conic, having given the extremities

A and A of the chord and three other points on the conic.

We determine (Art. 285) the centre 0, and join it to the

middle point R of AA
\
we then construct the tangent at

A and take its point of intersection S with OR. If now a

point M be taken on OR such that OM is the mean propor
tional between OR and OS, then OM will be the required
semi-diameter.

If lie between R and S, so that OR and OS have opposite

signs, the diameter OR will not cut the conic
;
but in this case

also the length OH, the mean proportional between OR and

OS, is called the magnitude of the semi-diameter conjugate to the

chord AA .

An analogous definition can be given for the case of any
straight line (Art. 294).

III. If the conic is a circle, the perpendicularity of the

conjugate diameters in this case gives the theorem :

*
APOLLONIUS, loc. cit, i. 34, 36 ;

ii. 29, 30.
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The polar of any point with respect to a circle is perpendicular to

ihe diameter which passes through the pole.

291. From this last property can be derived a second de

monstration of the very important theorem of Art. 263 (3), viz.

The range formed by any number of collinear points, and the

pencilformed by their polars with respect to any given conic
,
are two

protectiveforms.

Consider as poles the points A ,
B

, C, ... lying on a straight

line s (Fig. 194); the diameters (A,,C,...) obtained by

joining them to the centre of

the conic will form a pencil

which is in perspective with the

rangeA ,
B ,

C
,

. . . . Another pencil

will be formed by the polars

a
,
b

,
c

,
. . . of the points A t

S
9
C ttt .

since these polars all pass through

a point S (Art. 256), the pole of

Flg -
I94&amp;gt;

s. If now the conic is a circle,

then by the property proved in Art. 290, III. the straight lines

(A ,
B

, C,. . .)
are perpendicular respectively to a

,
b

,
c ,. . .

;
and

the two pencils are in this case equal. The range of poles

A ,B ,
C ,... is therefore projective with the pencil of polars

,
b

,&amp;lt;?,...
with regard to a circle.

This result may now be extended and shown to hold not

only for a circle but for any conic. For any given conic may
be regarded as the projection of a circle (Arts. 149, 150). In

the projection, to harmonic forms correspond harmonic forms

(Art. 51) ; consequently to a point and its polar with regard

to the conic will correspond a point and its polar with regard

to the circle, and to a range of poles and the pencil formed

by their polars with regard to the conic will correspond a

range of poles and the pencil formed by their polars with

regard to the circle. But it has been seen that this range and

pencil are projective in the case of the circle ;
therefore the

same is true with regard to the range and pencil in the case

of the conic, and the theorem is proved.

292. THEOREM. A quadrangle is inscribed in a conic, and a point

is taken on the straight line which joins the points of intersection of the

pairs of ophite sides. If from this point be drawn the straight lines

connecting it with the two pairs of opposite vertices, and also a pair of
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Fig. 195.

tangents to the conic, these straight lines will be three conjugate pairs of
an involution.

Let ABCD be a simple quadrangle inscribed in a conic (Fig.

195) ;
let the diagonals AC ,

BD meet in F, and the pairs of opposite

sides BC,AD and AB
,
CD in E

and G respectively ;
the points

E
, F, G will then be conjugate two

and two with respect to the conic

(Art. 259). Take any point / on

EG and join it to the vertices of

the quadrangle, and draw also the

tangents IP, IQ to the conic. The

two tangents are harmonically

separated by IE
,
IF (Art. 264),

since these are conjugate straight

lines, F being the pole of IE. But

the rays IE
,
IF are harmonically

conjugate also with regard to IA
, 1C ,

for the diagonal AC of the

complete quadrilateral formed by AB ,
BC

,
CD

,
and DA is divided

harmonically by the other two diagonals BD and EG, and the two

pairs of rays in question are formed by joining / to the four

harmonic points on AC. For a similar reason the rays IE
,
IF

are harmonically conjugate with regard to

IB
,
ID. The pair of tangents, the rays

IA
, 1C, and the rays IB

,
ID are therefore

three conjugate pairs of an involution, of

which IE, IFme the double rays (Art. 125).

I. By virtue of the theorem correlative

to that of Desargues (Art. 183, right), a

conic can be inscribed in the quadrilateral

ABCD so as to touch the straight lines

IP and IQ.

II. The theorem correlative to the one

proved above may be thus enunciated :

If a simple quadrilateral ABCD (Fig.

196) is circumscribed about a conic, and if

through the point of intersection of its diagonals any transversal be

draum, this will cut the conic and the pairs of opposite sides AB
and CD, BC and AD, in three pairs of conjugate points of an invo

lution.

III. By virtue of Desargues theorem (Art. 183, left), a conic can

be described to pass through the four vertices of the quadrilateral and

through the two points where the conic is cut by the transversal *.

*
CHASLES, Sections coniques, Arts. 122, 126.

Q

Fig. 196.
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293. The theory of conjugate points with regard to a conic gives

a solution of the problem :

To construct the points of intersection of a given straight line s with

a conic which is determined by Jive points or by five tangents.

Take on s any two points U and V, construct their polars u and v

(Art. 257), and let U and V be the points where these meet s. If

the involution determined by the two pairs of reciprocal points U
and U

,
V and 7

,
has two double points M and N, these will be the

required points of intersection of the conic with s. If U and V
should coincide, the conic touches s at the point in which they

coincide. If the involution has no double points, the conic does

not cut s *.

By a correlative method may be solved the problem : to drawfrom

a given point S a pair of tangents to a conic which is determined by

five tangents or by five points.

294. Let A and A be a pair of points lying on a straight line s

which are conjugate with respect to the conic, and let be the point

where s meets the diameter passing through its pole S (the diameter

bisecting chords parallel to s).
Then will be the centre of the

involution formed on s by the pairs of conjugate points such as A

and 4 ,
and therefore (Art, 125)

OA . OA = constant.

If s cuts the conic in two points M and N, these will be the double

points of the involution, and

OA.OA = OM Z = ON 2
.

If s does not cut the conic, the constant value of OA . OA will be

negative (Art. 125) ;
in this case there exists a pair H and H of

conjugate points of the involution, or of conjugate points with regard

to the conic, such that lies midway between them, and

OA .OA =OH . &amp;lt;9# =-0# 2 = -0# 2
.

The segment HHr has been called an ideal chord t of the conic,

just as MN in the first case is a real chord. Accepting this defini

tion we may say that a diameter contains the middle points of all

chords, real and ideal, which are parallel to the conjugate diameter.

When two conies are said to have a real common chord MN, it is

meant that they both pass through the points M and N. When two

conies are said to have an ideal common chord HH t
this signifies

that H and H are conjugate points with regard to both conies, and

that the diameters of the two conies which pass through the

respective poles of HE both pass through the middle point of

HE .

* STAUDT, Geometric tier Lage, Art. 305.

f PONCELET, IOC. Clt., p. 29.
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295. A pencil of rays in involution has in general (Art. 207)
one pair of conjugate rays which include a right angle.
Therefore

Through a given point can always be drawn one pair of straight
lines which are conjugate with respect to a given conic and which
include a right angle ; and these are the internal and external bisec

tors of the angle made with one another by the tangents drawnfrom
the given point, when this is exterior to the conic.

296. In Art. 263 (Fig. 183) let the point G be taken to

coincide with the centre of the conic (hyperbola or
ellipse) ;

two conjugate lines such as GF, GE will then become conju
gate diameters, and we see that the pairs of conjugate diameters

of a conicform an involution. If the conic is a hyperbola, the

asymptotes are the double rays of the involution (Arts. 264,

283) ; thus any two conjugate diameters of a hyperbola are har

monically conjugate with regard to the asymptotes *. If the conic
is an ellipse, the involution has no double rays.

Consider two pairs of conjugate elements of an involution
;

the one pair either overlaps or does not overlap the other, and

according as the first or the second is the case, the involution
has not, or it has, double points (Art. 128); thus :

Of any two pairs of conjugate diameters of an ellipse, the one
aa

r
is always separated by the other bb

f

(Fig. 192) ;

Of any two pairs of conjugate diameters of a hyperbola, the one
aa is never separated by the other W (Fig. 197).

297. The involution of conjugate
diameters will have one pair of con

jugate diameters including a right

angle (Art. 295). If there were a

second such pair, every diameter

would be perpendicular to its con

jugate (Art. 207), and in that case

the angle subtended at any point
on the curve by a fixed diameter

would be a right angle (Art. 287), and consequently the conic

would be a circle. Every conic therefore which is not a para
bola or a circle has a single pair of conjugate diameters which
are at right angles to one another. These two diameters
a and a are called the axes of the conic (Figs. 192, 197). In the

* DE LA HIRE, loc. cit., book ii. prop. 13, Cor. 4.

Q 2

Fig. 197.
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hyperbola (Fig. 197) the axes are the bisectors of the angle

between the asymptotes m and n (Arts. 296, 60).

In the ellipse both axes cut the curve (Art. 284); the

greater (a) is called the major, the smaller (a) the winor axis.

In the hyperbola only one of the axes cuts the curve ;
this one

(a )
ife called the transverse axis, the other (a) the conjugate axis.

The points in which the conic is cut by the axis a in either

case are called the vertices.

Regarding an axis as a diameter which bisects all chords

perpendicular to itself, it is seen that the parabola also has

an axis. For since all chords at right angles to the common

direction of the diameters are parallel to one another, their

middle points lie on one straight line, which is the axis a of

the parabola (Fig. 190). The parabola has one vertex at

infinity ;
the other, the finite point in which the axis a cuts the

curve, is generally called the vertex of the parabola.

298. Since each of the orthogonal conjugate diameters of a

central conic (ellipse or hyperbola) bisects all chords perpen

dicular to itself, it follows that the conic is symmetrical with re

spect to each of the diameters in question (Art. 76). The ellipse

and the hyperbola have therefore each two axes of symmetry;

the parabola, on the other hand, has only one such axis.

The ellipse and hyperbola are also symmetrical with respect

to a point ;
the centre of symmetry being in each case the

pole of the straight line at infinity.

In general, given a conic, a point S, and * the polar of S with

respect to the conic ;
if S be

taken as centre and * as axis of

harmonic homology (Art. 76), the

conic is homological with itself

(Art. 250)*.

299. In the theorem of Art.

275 suppose the inscribed triangle

to be AA^M (Fig. 198) ;
that is,

let two of its vertices A and A
l

be collinear with the centre of the conic, which is taken

to be an ellipse or hyperbola. The pole of the side AA l
will

be the point at infinity common to the chords bisected by

the diameter AA l} and the theorem will become the following:

* See also Art. 396, below.
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The straight lines which join two conjugate points P and P f
to the

extremities A and A
1 of that diameter whose conjugate is parallel to

PP f
intersect on the conic.

300. The pairs of conjugate points taken, similarly to P
and P

,
on the diameter conjugate to AA

1
form an involution

(Art. 263) whose centre is the centre of the conic. If this

involution has two double points B and B
1 ,

these lie on the

curve, which is therefore an ellipse. If the involution has no

double points, the conic is a hyperbola (Art. 284); in this

case two points B and B
l
can be found which are conjugate

in the involution and consequently conjugate with respect to

the conic, and which lie at equal distances on opposite sides

of (Art. 125). In both cases the length of the diameter

conjugate to AA
: is interpreted as being the segment

(Arts. 290, 294).

In the ellipse we have (Art. 294)

OP . OP = constant = OB 2= 03^,
and in the hyperbola

OP. OP

301. The foregoing theorem enables us to solve the problem :

To construct by points a conic, having given a pair of conjugate
diameters AA

1
and BB^ in magnitude and position.

Fig. 199.

In the case of the ellipse (Fig. 198) the four points A ,
A

l ,
B

,
B

{

all lie on the curve; in the case of the hyperbola (Fig. 199) let AA
l

be that one of the two given diameters which meets the conic.

Construct on the diameter BB
l
several pairs of conjugate points

P and P of the involution determined by having as centre

and B and B
1
in the first case as double points, in the second case

as conjugate points. The straight lines AP and Af (as also A^P
and AP

)
will intersect on the curve.

302. The straight lines OX, OX drawn parallel to AP, A^P
respectively are a pair of conjugate diameters (Art. 287). The
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pairs of conjugate diameters form an involution (Art. 296) ;

consequently the pairs of points analogous to X
,
X (in which

the diameters cut the tangent at A) also form an involution,

the centre of which is A, since OA and the diameter OB

parallel to AX are a pair of conjugate diameters. If the conic

is a hyperbola, the involution of conjugate diameters has two

double rays, which are the asymptotes ;
therefore the points

K and K^ ,
in which AX meets the asymptotes, are the double

points of the involution XX
,

. . . *.

303. Since OPAX is a parallelogram, AX= OP
;
and from

the similar and equal triangles OP ^and AX O, AX =OP f.

But OP. OP =OB 2
(Art. 125) ;

therefore AX.AX = + OB 2
;

or

The rectangle contained by the segments intercepted on afixed tangent

to a conic between its point of contact and the points where it is cut

by any two conjugate diameters is equal to the square ( + OB 2
)
on the

semi-diameter drawn parallel to the tangent.

304. We have seen (Art. 302) that in the case of the hyper

bola K and K^ are the double points of the involution of which

A is the centre and X, X a pair of conjugate points ;
thus

AX.AX =AK*=0$*.

Therefore AK= OB, and OAKB is a parallelogram. Accord

ingly :

If a parallelogram be described so as to have a pair of conjugate

semi-diameters of a hyperbola as adjacent sides, one of its diagonals

will coincide with an asymptote J.

Further, the other diagonal AB isparallel to the second asymptote.

For consider the harmonic pencil (Art. 296) formed by the two

asymptotes and the two conjugate diameters OA
,
OB. The

four points in which this pencil cuts AB will be harmonic ;

but one of the asymptotes OK meets AB in its middle point,

therefore the other will meet it at infinity (Art. 59).

305. Let X
1
be the point where the diameter OX meets the

tangent at AY Since OX and OX1
are a pair of conjugate

lines which meet in a point on the chord of contact AA^ of

* In Fie;. 199 only one of the points K.
, K^ is shown.

f In order to account for the signs, it need only be observed that in the case of

the ellipse OP and OP are similar, but AX and AX opposite to one another

in direction
;
while in the case of the hyperbola OP and OP are opposite, but

AX and AX similar as regards direction.

% APOLLONIUS, loc. cit., book ii. i.
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the tangents AX and A
1
X

1 ,
the straight line X X

l (Art. 274)

will be a tangent to the conic.

The point of contact of this tangent is M, the point of inter

section of AP and AJP (Art. 299).

306. It is seen moreover that X/X
1
is one diagonal of the

parallelogram formed by the tangents at A and A and the

parallels to AA l drawn through P and P
;
this may also be

proved in the following manner. All points of a diameter

have for their polars straight lines which are parallel to the

conjugate diameter (Art. 284) ;
if then through the conjugate

points P and P parallels be drawn to AA19 the first will be

the polar of P and the second the polar of P
; consequently

these parallels are conjugate lines. If now the theorem of

Art. 274 be applied to these conjugate lines and the two tan

gents at A and A^ ,
we obtain the following proposition :

If a parallelogram is such that one pair of its opposite sides are

tangents to a conic, and the other pair are straight lines, conjugate

with regard to the conic and drawn parallel to the chord of contact of

the two tangents, then its diagonals also will be tangents to the conic.

307. This gives the following solution of the problem :

To construct a conic by tangents, having given a pcdr of conjugate

diameters AA l
and BB

V
in magnitude and direction.

Suppose BBl
to be that diameter which meets the conic in the case

where the latter is a hyperbola. On JSB
i
determine a pair of con

jugate points P and P /
of the involution which has the centre of

the conic as centre and the points B ,
B

l
either as double points or

as conjugate points, according as the conic to be drawn is an ellipse

or a hyperbola. Draw through A and A
t parallels to BB^ and

through P and P parallels to AA
1 ;

the diagonals of the parallelo

gram so obtained will be tangents to the required conic.

308. The segments AX and A
1
X

1
are equal in magnitude and

opposite in sign ;
and it has been seen that AX.AX + OB 2

;

therefore AX .A X\=OJJ 2
;
or

The rectangle contained by the segments intercepted upon two

parallel fixed tangents between their points of contact and the points

where they are cut by a variable tangent (X X-^) is equal to the

square ( OB*) on the semi-diameter parallel to thefoced tangents*.

309. Since the straight line OB is parallel to AX and A^
and half-way between them, the segments determined by AM

* See Art. 160.
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and A^I respectively on A
l
X

l
and AX (measured from A

l
and

A respectively) are double of OP and OP
;
but by the

theorem of Art. 300 the rectangle OP. OP is constant
;
thus

The straight lines connecting the extremities of a given diameter

with any point on the conic meet the tangents at these extremities in

two points such that the rectangle contained by the segments of the

tangents intercepted between these points and the points of contact is

constant #.

310. Since X is (Art. 288) the point of intersection of the

tangent at A and the tangent parallel to X X
l ,

the proposition
of Art. 303 may also be expressed as follows:

The rectangle contained by the segments (AX, AX )
determined by

two variable parallel tangents upon any Jixed tangent is equal to the

square ( + OB
2
)
on the semi-diameter parallel to the Jixed tangent.

311. From the theorems of Arts. 299, 300 is derived the solution

of the following problem :

Given the two extremities A and A
l of a diameter of a conic, a third

point M on the conic, and the direction of the diameter conjugate to

AA
l}

to determine the length of the latter diameter (Fig. 199).

Through 0, the middle point of AA
l} draw the diameter whose

direction is given ; let it be cut by AM and A^M in Pand P respec

tively, and take OB the mean proportional between OP and OP
;

then OB will be the half of the length required.

312. The proposition of Art. 303 gives a construction for pairs of

conjugate diameters, and in par
ticular for the axes, of an ellipse of

which two conjugate semi-diameters

OA and OB are given in magnitude
and direction (Fig. 200).

Through A draw a parallel to

OB
;

this will be the tangent at A
,

and will be cut by any two conju

gate diameters in two points X and

X such that

AX.AX =-OB\
If now there be taken on the normal at A two segments A C and

AD each equal to OB, every circle passing through C and D will cut

this tangent in two points X and X which possess the property ex

pressed by the above equation ;
these points are therefore such that

the straight lines joining them to the centre will give the direc

tions of a pair of conjugate diameters. If the circle be drawn

*
APOLLONIUS, loc. cit., lib. iii. 53.
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through the angle XOX becomes a right angle, and consequently
OX

,
OX will be the directions of the axes.

Since the circular arcs CX
,
X D are equal, the angles COX ,

X OD
are equal ; consequently OX

,
OX are the internal and external

bisectors of the angle which OC
,
OD make with one another. In

order then to construct the semi-axes OP
, OQ in magnitude, let fall

perpendiculars AX^AX( on OX, OX respectively. Then X andX
l ,

Xf and X{ are pairs of conjugate points ;
therefore OP will be the

geometric mean between OX and OX^, and OQ the geometric mean
between OX and

313. Through the extremities A and A (Fig. 201) of two

conjugate semi-diameters OA and OAf
of a conic draw any two

parallel chords AB and A B . To find

the points ~B and B we have only to

join the poles of these chords
;

this

will give the diameter OX which passes

through their middle points.

Let OX be the diameter conjugate
to OX

,
i.e. that diameter which is

parallel to the chords AB ,A B . The

pencils 0(XX AB) and O(X XA B )
are each harmonic (Art. 59),

and are therefore projective with one another
; consequently

the pairs of rays 0(XX ,
AA

,
BB

)
are in involution (Art. 123).

But the two pairs (XX ,
AA

)
determine the involution of

conjugate diameters (Arts. 127, 296) ;
therefore also 0J?and OB

are conjugate diameters. Thus

If through the extremities A and A of two conjugate semi-diameters

parallel chords AB
,
AfB f

be drawn, the points B and B will le the

extremities of two other conjugate semi-diameters.

Two diameters AA and BB determine four chords AB
which form a parallelogram (Arts. 260, 287). The diameters

conjugate respectively to them form in the same way another

parallelogram, which has its sides parallel to those of the first
;

that is, every chord AB is parallel to two chords A B
, and not

parallel to two other chords A B .

314. Let H, K be the points where AB is cut by OA
,
OB

respectively. The diameter OX which bisects A B will also

bisect HK
; therefore AB and HK have tbe same middle point ;

thus AH=KB and AK=ffB. The triangles OAK and OBH
*
CHASLES, Aperfu hibtorique, pp. 45, 362 ;

Sections coniques, Art. 205.
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are therefore equal in area (Euc. I. 37), as also AKB f and

SNA , and therefore also GAB and OA B are equal. Accord

ingly:

The parallelogram described on two semi-diameters (OA ,
OB

)
as

adjacent sides is equal in area to the parallelogram described similarly

on the two conjugate semi-diameters.

In the same way the triangles OAB and OA B can be

proved equal.

The triangles AHA
,
BKB are equal for the same reason ;

and OAH, OBK are equal, and therefore also OAA and OBB r
.

Therefore

The parallelogram described on a pair of conjugate semi-diameters

as adjacent sides is of constant area *.

315. Let 3/and Nloe the middle points of the non-parallel

chords AB and A B . Since AB and AfB f
are parallel to a

pair of conjugate diameters (Art. 287) and since ON is the

diameter conjugate to the chord A B
,
therefore ON will be

parallel to AB
;
so also OM will be parallel to A B . The

angles OMA and ONA are therefore equal or supplementary ;

and since the triangles OMA and ONA are equal in area

(being halves of the equal triangles OAB and OA B
),
we have

(Euc. VI. 15),
OM.AM=ON.NA t.

Now project (Fig. 202) the points A,M,B, A
,
N

,
B from

the point at infinity on OB as centre

upon the straight line B B . The

ratio of the parallel segments AM
and ON, OM and NA is equal to

that of their projections ;
we con

clude therefore from the equality

just proved that the rectangle

contained by the projections of

OM and AM is equal to that

contained by the projections of

ON and NA . As the projecting

rays are parallel to OB, the projections of OM and MA are

*
APOLLONIUS, loc. cit., lib. vii. 31, 32.

t The signs + and - caused by the relative direction of the
^segments

OM
,
NA and ON ,AM correspond respectively to the case of the ellipse (Fig.

201) and to that of the hyperbola (Fig. 202).
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each equal to half the projection of BA or of OA. Since N
is the middle point of A B

,
the projection of ON will be equal

to half the sum of the projections of OA and OB
,
and the

projection of NA will be equal to half the projection of B A
y

that is, to half the difference between the projections of OA
and OB . We have therefore

(proj. OA)
2= proj. (OA + OB

)

or (proj. OA
}
Z

(proj. OA)
2=

(proj. OBJ.
In the same manner, by projecting the same points on OB

by means of rays parallel to OB (Fig. 203), we should

obtain

(proj. OA)
2

(proj. O&amp;lt;)

2
=(proj. OB)

2
.

This proves the following proposition :

If any pair of conjugate diameters are projected upon a -fixed

diameter by means of parallels to the

diameter conjugate to this last, then

the sum (in the
ellipse) or difference

(in the hyperbola) of the squares on

the projections is equal to the square

on the jixed diameter.

By the Pythagorean theorem

(Euc. I. 47) the sum of the

squares on the orthogonal pro

jections of a segment on two
Fi

straight lines at right angles to

one another is equal to the square on the segment itself. If

then a pair of conjugate diameters are projected orthogonally
on one of the axes of a conic and the squares on the pro

jections of each diameter on the two axes are added together,
the following proposition will be obtained :

The sum (for the
ellipse)

or difference (for the hyperbola) of the

squares on any pair of conjugate diameters is constant, and is equal
to the sum or the difference of the squares on the axes *.

316. If five points on a conic are given, then by the method

explained in Art. 285 the centre and two pairs of conjugate
diameters u and u

,
v and v can be constructed. If these pairs

overlap one another, the conic is an ellipse ;
in the contrary case it

*
APOLLONIUS, loc. cit., lib. vii. 12, 13, 22, 25.
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is a hyperbola (Art. 296). If in this second case the double rays of

the involution determined by the two pairs u and u
,
v and v be

constructed, they will be the asymptotes of the hyperbola.

If in either case the orthogonal pair of conjugate rays of the in

volution be constructed, they will be the axes of the conic.

The direction of the axes can be found without first constructing

the centre and two pairs of conjugate diameters *. Let A
,
B

,
C

, F, G
be the five given points (Fig. 168); describe a circle round three of

them ABC, and construct (Art. 227, 1) the fourth point of intersection

C of this circle with the conic determined by the five given points.

Any transversal will cut the two curves and the two pairs of opposite

sides of the common inscribed quadrangle ABGC in pairs of points

forming an involution (Art. 183). The double points P and Q (if

such exist) of this involution will be conjugate with regard to each

of the curves (Arts. 125, 263); i.e. they will be the pair common

(Art. 208) to the two involutions which are formed on the transversal

by the pairs of points conjugate with regard to the circle and by the

pairs of points conjugate with regard to the conic (Art. 263). Suppose

that the straight line at infinity is taken as the transversal. As this

straight line does not meet the circle, one at least of these two

involutions will have no double points, and consequently (Art. 208)

the points P and Q do really exist. Since these points are infinitely

distant and are conjugate with regard to both curves they will be

(Arts. 276, 284) the poles of two conjugate diameters of the circle

and also of two conjugate diameters of the conic ;
but conjugate

diameters of the circle are perpendicular to one another (Art. 289);

therefore P and Q are the poles of the axes of the conic. Further,

the segment PQ is harmonically divided by either pair of opposite

sides of the quadrangle ABCC*
; consequently P and Q are the

points at infinity on the bisectors of the angles included by the

pairs of opposite sides (Art. 60). In order then to find the required

directions of the axes, we have only to draw the bisectors t of the

angle included by a pair of opposite sides of the quadrangle ABCC ,

for example by AB and CC (Fig. 168).

317. Let qrst (Fig. 161) be a complete quadrilateral, and S

any point. It has already been seen (Art. 185, right) that the

pairs of rays a and a
,
b and V, which join 8 to two pairs of

opposite vertices, belong to an involution of which the tangents

drawn from 8 to any conic inscribed in the quadrilateral are a

pair of conjugate rays. Suppose the involution to have two

double rays m and n
; they will be harmonically conjugate

*
PONCELET, IOC. tit., Art. 394.

f See also the note to Art. 387.
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with regard to such a pair of tangents (Art. 125). and will

consequently be conjugate lines with respect to the conic.

But (Art. 218, right) m and n are the tangents at S to the

two conies which can be inscribed in the quadrilateral qrst

so as to pass through S. Therefore

If two conies which are inscribed in a given quadrilateral pass

through a given point, their tangents at this point are conjugate lines

with respect to any conic inscribed in the quadrilateral.

Instead of taking an arbitrary point S, let m be supposed

given. If this straight line does not pass through any of the

vertices of the quadrilateral, there will be one conic, and only

one, which touches the five straight lines m
, q, r, s, t (Art.

152). Let S be the point where this conic touches m
;
there

will be a second conic which is inscribed in the quadrilateral

and which passes through S
;
let the tangent to this at S be n.

The straight lines m and n will then be conjugate to one

another with respect to all conies inscribed in the quadrilateral ;

and therefore (Art. 255),

The poles of any straight line m with respect to all conies inscribed

in the same quadrilateral lie on another straight line n,

Moreover, since the straight lines m and n are the double

rays of the involution of which the rays drawn from S to two

opposite vertices are a conjugate pair, therefore m and n

divide harmonically each diagonal of the quadrilateral.

318. I. The correlative propositions to those of Art. 317 are

the following :

If a straight line touches two conies which circumscribe the same

quadrangle, the two points of contact are conjugate to one another

with respect to all conies circumscribing the quadrangle.

The polars of any given point M with respect to all the conies

circumscribing the same quadrangle meet in a fixed point N. The

segment MNis divided harmonically at the two points where it is cut

by any pair of opposite sides of the complete quadrangle.

II. Suppose in the second theorem of

Art. 317 that the straight line m lies at

infinity ;
then the poles of m will be the

centres of the conies (Art. 281), and n will

bisect each of the diagonals of the quadri-
^

Fi

lateral (Art. 59); therefore:

The centres of ail conies inscribed in the same quadrilateral lie
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on the straight line (Fig. 204) which passes through the middle

points of the diagonals of the quadrilateral *.

III. Suppose similarly in theorem I of the present Article

that the point M lies at infinity ;
the polars ofM will become

the diameters conjugate to those which have M as their

common point at infinity ;
thus :

In any conic circumscribing a given quadrangle^ the diameter which

is conjugate to one drawn in a given fixed direction will pass through

a fixedpoint.

319. Newton s theorem (Art. 318, II) gives a simple method for

finding the centre of a conic deter

mined by five tangents a
,
b

,
c

,
d

,
e

(Fig. 205). The four tangents

a
,
b

,
c

,
d form a quadrilateral ;

join the middle points of its

diagonals. Let the same be doneO

with regard to the quadrilateral

abce
;
the two straight lines thus

obtained will meet in the required

centre 0.

The five tangents, taken four

and four together, form five quad

rilaterals; the five straight lines

which join the middle points of the

diagonals of each of the quadri

laterals will therefore all meet in

the centre of the conic inscribed

in the pentagon abcde.

The same theorem enables us to find the direction of the diameters

of a parabola which is determined by four tangents a, b, c, d. For

each point on the straight line joining the middle points of the

diagonals of the quadrilateral abed is the pole of the straight line at

infinity with regard to some conic inscribed in the quadrilateral

(Art. 318, II); therefore the point at infinity on the line will be

the pole with regard to the inscribed parabola (Arts. 254 III, and 23).

The straight line therefore which joins the middle points of the

diagonals is itself a diameter of the parabola (Fig. 204).

*
NEWTON, Principia, book i. lemma 25. Cor. 3.

Fig. 205.



CHAPTEK XXII.

POLAR RECIPROCAL FIGURES.

320. AN auxiliary conic K being given, it has been seen

(Art. 256) that if a variable pole describes a fixed straight
line its polar turns round a fixed point, and reciprocally, that

if a straight line considered as polar turns round a fixed point,
its pole describes a fixed straight line.

Consider now as polars all the tangents of a given curve C,

or in other words suppose the polar to move, and to envelope
the given curve. Its pole will describe another curve, which

may be denoted by C . Thus the points of & are the poles of

the tangents of C.

But it is also true that, reciprocally, the points of C are

the poles of the tangents of C . For let

M and N be two points on C (Fig. 206) ;

their polars m and n will be two tangents
to C and the point mn where they meet

will be the pole of the chord M N (Art.

256). Now suppose the pointN to approach
Mf

indefinitely ;
the chord M N will ap

proach more and more nearly to the position
of the tangent at M to the curve C

;
the

straight line n will at the same time ap

proach more and more nearly to coincidence with m, and the

point mn will tend more and more to the point where m
touches C. In the limit, when the distance M N becomes

indefinitely small, the tangent to C at M will become the

polar of the point of contact of m with C. Just then as

the tangents of C are the polars of the points of C
,
so also

are the tangents of C the polars of the points of C
;

if a

straight line m touches the curve C at M
t
the pole M of m
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is a point of the curve C and the polar m
f
ofM is a tangent

to the curve C at M .

Two curves C and C such that each is the locus of the

poles of the tangents of the other, and at the same time also

the envelope of the polars of the points of the other, are said

to be polar reciprocals
* one of the other with respect to the

auxiliary conic K.

321. An arbitrary straight line r meets one of the reciprocal

curves in n points say ;
the polars of these points are n tan

gents to the other curve all passing through the pole R of r.

To the second curve therefore can be drawn from any given

point R the same number of tangents as the first curve has

points of intersection with the straight line r, the polar of R
;

and rice versa. In other words, the degree and class of a curve

are equal to the class and degree respectively of its polar reciprocal

with respect to a conic.

322. Now suppose the curve C to be a conic, and 0, b two

tangents to it
; they will be cut by all the other tangents

c,d,e,... in corresponding points of two projective ranges

(Art. 149). In other words, C may be regarded as the curve

enveloped by the straight lines c
,
d

,
e

,
. . . which connect the

pairs of corresponding points of two projective ranges lying

on a and b respectively (Art. 150).

The curve C will pass through the poles A , ,
C

,
Z&amp;gt;

, W, ...

of the tangents a
,
b

,
c

,
d

,
e

,
. . . of C. The straight lines

A (C\ D ,
E

, ...) will be the polars of the points a(c,d,e,...)
and will form a pencil projective with the range of poles

lying on the straight line a (Art. 291) ;
so too the straight lines

J5
(6&quot;,j0 ,

.# ,...) will be the polars of the points b(c, d, e,...)

and will form a pencil projective with the range of poles lying

on b. But the ranges a
(&amp;lt;?, d, e, ...)

and 6(c,d 9 e t ...)
are

projective; therefore also the pencils A (C\ D ,
E

} ...)
and

B (C ,
I)

, E\ . .
.)

are projective. Consequently C is the locus

of the points of intersection of corresponding rays of two

projective pencils; that is (Art. 150) a conic. Accordingly:

The polar reciprocal of a conic with respect to another conic is a

conic f.

323. When an auxiliary conic K is given and another conic

* PONCELET, loc. cit., Art. 232.

f Ibid., Art. 231.
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C whose polar reciprocal C is to be determined, the question

arises whether C is an ellipse, a hyperbola, or a parabola. The

straight line at infinity is the polar of the centre of K ;
there

fore the points at infinity on C correspond to the tangents of

C which pass through 0. It follows that the conic C will be an

ellipse or a hyperbola according as the point is interior or exterior

to the conic C, and C will be a parabola when lies upon C.

If A is the pole of a straight line a with respect to C, and a
f

the polar of A and A the pole of a with respect to K, then

will A be the pole of af with respect to C
,
since to four poles

forming a harmonic range correspond four polars forming a

harmonic pencil (Art. 291) and vice versa. Therefore the

centre M of C will be the pole with respect to K of the

straight line m which is the polar of with respect to C. To

two conjugate diameters of C will correspond two points of

m which are conjugate with respect to C, &c.

324. Let there be given in the plane of the auxiliary conic

a figure (Art. 1) or complex of any kind composed of points,

straight lines, and curves ;
and let the polar of every point, the

pole of every line, and the polar reciprocal of every curve, be

constructed. In this way a new figure will be obtained
;
the

two figures are said to be polar reciprocals one of the other, since

each of them contains the poles of the straight lines of the

other, the polars of its points, and the curves which are the

polar reciprocals of its curves. To the method whereby the

second figure has been derived from the first the name of polar

reciprocation is given.

Two figures which are polar reciprocals one of the other are

correlative figures in accordance with the law of duality in plane

Geometry (Art. 33) ;
for to every point of the one corresponds

a straight line of the other, and to every range in the one corre

sponds a pencil in the other. They lie moreover in the same

plane ;
their positions in this plane are determinate, but may

be interchanged, since every point in the one figure and the

corresponding straight line in the other are connected by the

relation that they are pole and polar with respect to a fixed

conic. Thus two polar reciprocal figures are correlative figures

which are coplanar, and which have a special relation to one

another with respect to their positions in the plane in which

they lie. On the other hand, if two figures are merely
R
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correlative in accordance with the law of duality, there is no

relation of any kind between them as regards their position *.

325. If one of the reciprocal figures contains a range (of

poles) the other contains a pencil (of polars), and these two

corresponding forms are projective (Art. 291). If then the

points of the range are in involution, the rays of the corre

sponding pencil will also be in involution, and to the double

points of the first involution will correspond the double rays
of the second (Art. 124). If there is a conic in one of the

figures there will also be one in the other figure (Art. 322) ;
to

the points of the first conic will correspond the tangents of

the second, and to the tangents of the first will correspond the

points of the second
;

to an inscribed polygon in the first

figure will correspond a circumscribed polygon in the second

(Art. 320). If the first figure exhibits the proof of a theorem

or the solution of a problem, the second will show the proof of

the correlative theorem or the solution of the correlative

problem ;
that namely which is obtained by interchanging the

elements point and line.

326. THEOKEM. // two triangles are both self-conjugate with

regard to a given conic, their six vertices lie on a conic, and their six

sides touch another conic f.

Let ABC and DEF be two triangles (Fig. 207) each of

which is self-conjugate (Art. 258) with regard

to a given conic K. Let DE and DF
cut BC in B

}
and C

1 respectively, and let AB
and A C cut EF in E

l
and F

l respectively. The

point B is the pole of CA, and C is the pole of

AB; ^ is the pole of the straight line joining

the poles of BC and DE, i.e. of AF\ and C
l
is

the pole of the straight line joining the poles of

BC and DF, i.e. of AE. The range of poles BCB1
C

1
is therefore (Art.

291) projective with the pencil of polars A(CBFE], and therefore

with the range of points F^E^FE in which this pencil is cut by the

transversal EF. Thus

= (E1
F

1EF) by Art. 45,

which shows that the two ranges in which the straight lines BC and

EF respectively are cut hy AB, CA, DE, FD are protectively related.

*
STEINER, loc. cit., p. vii of the preface ; Collected Works, vol. i. p. 234.

f STEINER, loc. cit., p. 308, 60, Ex. 46; Collected Works, vol. i. p. 448;

CHASLES, Sections coniques, Art. 215.
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These six straight lines therefore, the six sides of the given triangles,

all touch a conic C (Art. 150, II).

The poles of these six sides are the six vertices of the triangles ;

these vertices therefore all lie on another conic C which is the polar

reciprocal of C with regard to the conic K *.

327. The proposition of the preceding Article may also be expressed
as follows : Given two triangles which are self-conjugate with regard
to the same conic K

;
if a conic C touch five of the six sides it will

touch the sixth side also, and if a conic pass through five of the six

vertices it will pass through the sixth vertex also.

It follows that if a conic C touch the sides of a triangle abc which is

self-conjugate with regard to another conic K, there are an infinite

number of other triangles which are self-conjugate with regard to the

second conic and which circumscribe the first.

For let d be any tangent to C
;
from D, its pole with regard to K,

draw a tangent e to C, and let / be the polar with regard to K of the

point de
;
then the triangle def will be self-conjugate with regard to

K (Art. 259). But C touches five sides a, b, c, d, e of two triangles

which are both self-conjugate with respect to K
;
therefore it must

also touch the sixth side /; which proves the proposition.

328. If the point D is such that from it a pair of tangents d and

/ can be drawn to K, the four straight lines e
, /, ef,f will form a

harmonic pencil (Art. 264), since e and / are conjugate straight lines

with respect to the conic K
; consequently the straight lines e and /

are conjugate to one another with respect to C.

The locus of D is the conic C which is the polar reciprocal of C
with regard to K

;
therefore :

If a conic C is inscribed in a triangle which is self-conjugate with

respect to another conic K, the locus of a point such that the pairs of

tangents drawn from it to the conies C and K form a harmonic pencil

is a third conic C which is the polar reciprocal of C with respect to K.

329. Correlatively : If a conic C circumscribes a triangle which

is self-conjugate with respect to another conic K, there are an infinite

number of other triangles which are inscribed in C and are self-con

jugate with respect to K
;
and the straight lines which cut C and K in

two pairs of points which are harmonically conjugate to one another all

touch a third conic C which is the polar reciprocal of C with regard

to K.

* We may show independently that the six vertices lie on a conic as follows.

It has been seen that the pencil of polars A(CBFE} is protective with the range

of poles BCB1Cl ;
it is therefore projective with the pencil D^BCB^C^) formed by

joining these to the point D. Therefore

A(CBFE} = D (SCBM = D (BCEF)
= D BFE} by Art. 45,

which shows (Art. 150, I) that A
, B, C, D, E, F lie on a conic.

B 2
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330. THEOREM. If two triangles circumscribe the same conic,

their six vertices lie on another conic.

Let OQ R and O PS be two triangles each circum

scribing a given conic C (Fig. 208). The two tangents PS

and Q R are cut by the four

other tangents O P, OQ
f

,
OR

,
O S

in two groups of corresponding

points PQliS&udP Q R S of two

projective ranges u and u (Art.

149); consequently the pencils

O(PQRS) and (P Q R 8
)

formed by connecting these points

with and respectively are

projective. Therefore the points P, Q ,
R f

,
S

t
in which their

pairs of corresponding rays intersect, lie on a conic C (Art. 150,1)

passing through the centres and ;
which proves the theorem.

331. The theorem correlative and converse to the foregoing

one is the following :

If two triangles are inscribed in the same conic, their six sides

touch another conic *.

This may be proved by considering the triangles OQ R

and O PS as both inscribed in the conic C
,
and by reasoning

in a manner exactly analogous, but correlative, to that above.

332. It follows at once that :

I i

If two triangles are inscribed

in the same conic, the conic which

touches five of their sides touches

the sixth side also.

If two triangles circumscribe

the same conic, the conic which

passes through five of their ver

tices passes through the sixth

vertex also.

Or:

If two conies are such that a triangle can le inscribed in the one

so as to circumscribe the other, then there exist an infinite
number of

other triangles which possess the same property f.

333. There are in the figure (Fig. 208) four projective

forms the two ranges u and u
,
which determine the tangents to

the conic C, and the two pencils and ,
which determine the

points of C ;
the pencil is in perspective with the range u

* BRIANCHON, loo. dt., p. 35 J STEINER, loc. cit., p. 173, 4*, IX
5

Collected

Works, vol. i. p. 356.

f PONCELET, loc. Clt., Art. 565.
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and the pencil is in perspective with the range u
f
. If then

any tangent to C cut the bases u and u of the two ranges in

A and A f

respectively, the rays OA and A f
will meet in a

point M lying on C ; and, conversely, if any pointM on C be

joined to the centres and
,
the joining lines will cut u and

^&amp;lt;f respectively in two points A and A such that the straight

line joining them is a tangent to C. Therefore :

If a variable triangle AA
fM is

such that two of its sides pass

respectively through two fixed

points and lying on a given

conic, and the vertices opposite to

them lie respectively on two fixed

straight lines u and u
,
while the

third vertex lies always on the

given conic, then the third side

will touch a fixed conic which

touches the straight lines u and u .

If a variable triangle AA M is

such that two of its vertices lie

respectively on two fixed tangents

u and uf
to a given conic, and

the sides opposite to them pass

respectively through two fixed

points and 0, while the third

side always touches the given

conic, then the third vertex will lie

on a fixed conic which passes

through the points and O f
.

334. THEOREM. If the extremities of each of two diagonals of a

complete quadrilateral are conjugate points with respect to a given

conic, the extremities of the third diagonal also will de conjugate

points with respect to the same conic *.

Let ABXT (Fig. 209) be a complete quadrilateral such

that A is conjugate to X, and B to Y, with respect to a given
conic K (not shown in

the figure). Let the sides

AB
,
XY meet in C, and

the sides A Y, BX in Z
;

then shall C and Z be

conjugate points with

respect to the conic K.

Suppose the polars of

the points A
,
B

,
C (with

respect to K) to cut the

straight line ABC in A
,
B

,
C respectively. The three

pairs of conjugate points A and A
,
B and B f

,
C and Cr

are

in involution
; consequently, considering XYZ as a triangle

cut by a transversal A B C
,
it follows by Art. 135 that the

*
HESSE, De octo punctis intersectionis trium superficierum secundi ordinis

(Dissertatio pro venia legendi, Regiomonti, 1840), p. 17.
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straight lines XA
,
YB

,
ZC f

meet in one point Q. Since

evidently XA is the polar of A and YB the polar of B with

respect to K, their point of intersection Q is the pole of AB.
Since then C is a point on AB and is conjugate to C

,
its polar

will be QC ;
but Q(7

r

passes through Z\ therefore C and Z are

conjugate points, which was to be proved.
335. The proof of the following, the correlative theorem, is

left as an exercise to the student:

If two pairs of opposite sides of a complete quadrangle are conju

gate lines with respect to a conic, the two remaining sides also are

conjugate lines with respect to the same conic.

In order to obtain such a complete quadrangle, it is only

necessary to take the polar reciprocal of the quadrilateral con

sidered in Hesse s theorem, i. e. the figure which is formed by
the polars of the six points A and X, B and Y, C and Z.

336. The following proposition is a corollary to that of

Art. 334:

Two triangles which are reciprocal with respect to a conic are in

homology *.

Let ABC (Fig. 210) be any triangle ;
the polars of its

vertices with respect to a given
conic form another triangle A B C

reciprocal to the first, that is, such

that the sides of the first triangle

are also the polars of the vertices of

the second. Let the sides CA and C A
meet in E, and the sides AB and

A B in F.

The points B and E are conjugate

with respect to the conic, since E lies on C A
,
the polar of B ;

similarly C and F are conjugate points. Thus in the quadri

lateral formed by BC ,
CA

, AB, and EF} two pairs of opposite

vertices B and E, C and F are conjugate ;
therefore the

third pair are conjugate also, viz. A and the point D where

BC meets EF. The polar B C of A therefore passes through

D; thus BC and B C meet in a point D lying on EF.

Since then the pairs of opposite sides of the two triangles meet

one another in three collinear points, the triangles are in

homology, and the straight lines AA
,
BB

,
CC which join

* CHASLES, loc. cit., Art. 135.
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the pairs of vertices meet (Art. 1 7) in a point 0, the pole of

the straight line DEF.

337. By combining this theorem with that of Art. 155 the

following property may be enunciated :

If tivo triangles are reciprocals with respect to a given conic K,
the six points in which the sides of the one intersect the non-

corresponding* sides of the other lie on a conic C, and the six straight

lines which connect the vertices of the one with the non-corresponding

vertices of the other touch another conic C r

, the polar reciprocal of

C with respect to K (Art. 322) ;
these straight lines are in fact

the polars with regard to K of the six points just mentioned.

If one of the triangles A B C is inscribed in the other

ABC, the three conies C, C ,
and K coincide in one which is

circumscribed about the former triangle and inscribed in the

latter (Arts. 174, 176).

338. PROBLEM. Given two triangles ABC ,
A B fC which are in

homology ; to construct (when it exists) the conic with regard to which

they are reciprocal.

Take one of the sides, BC for example ;
the points in which it is

cut by C A f and A B are conjugate to the points B and C respectively,

and these two pairs of conjugate points determine an involution

(Art. 263), the double points of which (if they exist) are the points

where BC is cut by the conic in question. In order then to find the

points in which this conic cuts BO, it is only necessary to construct

these double points. In this way the points in which the sides of

the triangles meet the conic can be found, and the latter is determined.

Since A and B are the poles of BC and C A
,
these points and that

in which C A meets BC will be the vertices of a self-conjugate

triangle (Art. 258). If then, in finding the points of intersection of

the conic and the straight lines BC and C A in the manner just

explained, it should happen that the two involutions found have

neither of them double points, the conclusion is that no conic exists

such as is required ;
for if it did exist, it must be cut by two of the

sides of the self-conjugate triangle (Art. 262).

339. The centre of homology of the given triangles (Fig. 210) is

the pole of the axis of homology DEF; and the projective corre

spondence (Art. 291) between the points (poles) lying on the axis

and the straight lines (polars) radiating from the centre of homology

is determined by the three pairs of corresponding elements D and

* Two sides BC and B C of the triangles may be termed corresponding, when

each lies opposite to the pole of the other. And two vertices A and A may be

termed corresponding, when each lies opposite to the polar of the other.
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AA
,
E and BE

,
F and CO . Consequently it is possible to construct

with the ruler only (Art. 84) the polar of any other point on the

axis, and the pole of any other ray passing through the centre 0.

What has just been said with regard to the point and the axis

of homology may also be said with regard to any vertex of one of

the triangles and its polar (the corresponding side of the other

triangle). For if e. g. the vertex A and the side EG be considered,
the projective correspondence between the straight lines radiating
from A and the points lying on EG is determined by the three pairs
of corresponding elements A E and 0, A G and E, A O and D.

This being premised, it will be seen that the polar of any point P
and the pole of any straight line p can be constructed with the help
of the ruler only. For suppose P to be given ;

it has been shown
that the poles of the straight lines PO, PA, PE, PC, PA ,

... can

be constructed, and these all lie on a straight line X which is the

required polar of P. So again if the straight line p is given, the

polars of the points in which it meets EG, CA, ... can be constructed,
and will meet in a point which is the pole of p.

It will be noticed that all these determinations of poles and polars
are linear

(i.
e. of the first degree) and independent of the construction

(Art. 338) of the auxiliary conic, which is of the second degree,
since it depends on finding the double elements of an involution.

The construction of the poles and polars is therefore always possible,

even when the auxiliary conic does not exist. In other words : the

two given triangles in homology determine between the points and

the straight lines of the plane a reciprocal correspondence such that

to every point corresponds a straight line and to every straight line

a point, to the rays of a pencil the points of a range projective with

the pencil, and vice versa. Any point and the straight line corre

sponding to it may be called pole and polar, and this assemblage of

poles and polars, which possesses all the properties of that determined

by an auxiliary conic (Art. 254), may be called a polar system.

Two triangles in homology accordingly determine a polar system.
If an auxiliary conic exists, it is the locus of the points which lie

on the polars respectively corresponding to them, and it is at the

same time the envelope of the straight lines which pass through the

poles respectively corresponding to them. If no auxiliary conic

exists, there is no point which lies on its own polar *.

* STAUDT, loc. cit., Art. 241.



CHAPTER XXIII.

FOCI

340. IT has been seen (Art. 263) that the pairs of straight
lines passing through a given point S and conjugate to one

another with respect to a given conic form an involution. Let

a plane figure be given, containing a conic C
;
and let the figure

homological with it be constructed
, taking $as centre of homo-

logy ;
let C be the conic corresponding to C in the new figure.

Since in two homological figures a harmonic pencil corre

sponds to a harmonic pencil, any pair of straight lines through
S which are conjugate with respect to C will be conjugate
also with respect to C . The polars of S with respect to the

two conies will be corresponding straight lines
;

if then the

polar of S with respect to C be taken as the vanishing line

in the first figure, the polar of S with respect to C 7
will

lie at infinity ;
i. e. the point S will be the centre of the

conic C .

In this case therefore any two straight lines through S
which are conjugate with respect to C will be a pair of conju

gate diameters of C . If S is external to C, the double rays of

the involution formed by the conjugate lines through S are

the tangents from S to C, and therefore the asymptotes of C
,

which is in this case a hyperbola. If S is internal to C,

the involution has no double rays, and therefore C is an

ellipse.

We conclude then that to every point S in the plane of a given

conic C corresponds a conic C homological with C and having its

centre at S ; which conic C is a hyperbola or an ellipse according as

S is external or internal to the given conic C.

*
STEINER, Vorlesungen iiber synthetische Geometric (ed. Schroter), Ilter Absclmitt,

35 ; ZECH, Hohere G-eometrie (Stuttgart, 1857), 7 ; REYE, Geometrie der Lage
(and ed., Hannover, 1877), Vortrag 13.
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341. For certain positions of the point S the conic C will

be a circle. When S has one of these positions it is called a

focus* of the conic C. Since all pairs of conjugate diameters

of a circle cut one another orthogonally the involution at S of

conjugate lines with respect to C will in this case consist

entirely of orthogonal pairs.

If C is a circle, its centre is a focus ; for every pair of

conjugate lines which meet in 0, i. e.

every pair of conjugate diameters of C,

cut orthogonally. And a circle C has no

other focus but its centre 0. For let any

point S be taken (Fig. 211) distinct from

and a straight line SQ be drawn not

passing through 0; and let P be the

pole of SQ. Then since PO must be

perpendicular to SQ, the conjugate lines

SP, SQ cannot be orthogonal, and there

fore S cannot be a focus of C.

211. The foci of a conic C which is not a

circle are of necessity internal points;

this follows from what has been said above (Art. 340).

Further they lie on the axes. For if F is a focus and
* i/

the centre of the conic, the pole of the diameter FO will lie

on the perpendicular drawn through F to FO
;

therefore

FO is perpendicular to its conjugate diameter, i. e. FO is an

axis of the conic.

Again, the straight line connecting two foci F and F
l

is an

axis. For if straight lines perpendicular to ffi\ be drawn

through F and F
l
these will both be conjugate to FF

lt
and

their point of intersection will therefore be the pole of FFl ;

but this point lies at infinity ;
therefore FF^ is an axis.

342. Let a point P be taken arbitrarily on an axis a of a

conic
; through P draw a straight line r, and from E, the pole

of r, draw the straight line r perpendicular to r
;
let P be the

point where / meets the axis. The straight lines passing

through P and those passing through P and conjugate to

them respectively form two projective pencils ;
for the second

pencil is composed of rays which project from P the range

* DE LA HIRE, Sectiones conicae (Pcarisiis, i6S$\ lib. viii. prop. 23 ; PONCELET,

Proprieties projectives, Art. 457 et seqq.
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formed by the poles of the rays of the first pencil, which range

is (Art. 291) projective with the first pencil itself. The two

pencils in question have three pairs of corresponding rays

which are mutually perpendicular ;
for if A be the point at

infinity which is the pole of the axis #, the rays PA ,
PP

,
r of

the first pencil correspond to the rays P P, P A, / of the

second, and the three former rays are severally perpendicular
to the three latter. The two pencils therefore by the inter

section of corresponding rays generate a circle of which

PP is a diameter ;
and therefore every pair of corresponding

rays of the two pencils P and P intersect at right angles.

Thus:

To every point P lying on an axis of Ike conic corresponds a point

P on the same axis such that any two conjugate straight lines which

pass one through P and the other through P f
are perpendicular to

one another.

The pairs of points analogous to P, P form an involution.

For let the ray r move parallel to itself
;
the corresponding-

rays / (which are all perpendicular to r) will all be parallel to

each other. The pencil of parallels r is projective (Art. 291)
with the range which the poles R of the rays r determine upon
the diameter conjugate to that drawn parallel to r

;
and the

pencil of parallels / is in perspective with this same range.
Therefore the pencils r

,
r are projective, and consequently the

points P ,
P in which a pair of corresponding rays r

,
/ of the

pencils cut the axis a trace out two projective ranges. To the

straight line at infinity regarded as a ray r corresponds
in the second pencil the diameter parallel to the rays / ;

and

similarly, to the line at infinity regarded as a ray / corre

sponds in the first pencil the diameter parallel to the rays r.

Therefore the point at infinity on the axis has the same corre

spondent whether it be regarded as a point P or as a point P :

viz. the centre of the conic. We conclude that the pairs of

poinls P, P constitute an involution of which the centre is the

centre of the conic.

343. If the involution formed by the points P, P on the

axis a has double points, each of them will be a focus of the

conic, since every straight line through such a double point
will be conjugate to the perpendicular drawn to it through
the point itself.
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If the involution has no double points, each of the two

points (Art. 128) at which the pairs PP subtend a right angle

will be a focus of the conic. For every pair of mutually

perpendicular straight lines which meet in such a point will

pass through two points P, P 9
and will therefore be conju

gate lines with respect to the conic.

From this it follows that one at least of the two axes of a

conic contains two foci. Further, a conic has only two

foci
;

for every straight line which joins two foci is an

axis (Art. 341), and no conic (except it be a circle) has more

than two axes.

Consequently a central conic (ellipse or hyperbola) has two foci,

which are the double points of the involution PP on an axis and are

also the points at which the pairs ofpoints PP of the involution on

the other axis subtend a right angle.

The axis which contains the foci may on this account be

called the focal axis. Since the foci are internal points, it is

seen that in the hyperbola the focal axis is that one which

cuts the curve (the transverse axis).

Since the centre of the conic is the centre of the

involution PP
,

it bisects the distance between the two

foci.

From what has been said it follows that two perpendicular

straight lines which are conjugate with respect to a conic meet thefocal

axis in two points which are harmonically conjugate with resjject to

the foci ; and they determine upon the other axis a segment which

subtends a right angle at either focus.

344. The normal at any point on a curvets the perpen

dicular at this point to the tangent. Since the tangent and

normal at any point on a conic are conjugate lines at right

angles, they meet the focal axis in a pair of points harmoni

cally conjugate with respect to the foci
;
and they determine

on the other axis a segment which subtends a right angle at

either focus (Art. 343). Accordingly :

If a circle be drawn to pass through the twofoci and through any

point on the conic, it will have the two points in which the non-focal

axis is cut by the tangent and normal at that point as extremities of

a diameter.

And again (Art. 60) :

The tangent and normal at any point on a conic are the bisectors
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of the angle made with one another by the rays which join that point

to the foci *.

These rays are called the focal radii of the given point.

345. A pair of conjugate lines which intersect at right

angles in a point 8 external to the conic are harmonically

conjugate with respect to the tangents from 8 to the conic

(Art. 264) as well as with respect to the rays joining S to the

foci (Art. 343); therefore:

The angle between two tangents and that included by the straight

lines which join the point of intersection of the tangents to the foci

have the same bisectors f.

346. In the parabola, the point at infinity on the axis,

regarded as a point P, coincides with its correspondent P ;

for the straight line at infinity, being a tangent to the conic

at the said point P, passes through its own pole.

Accordingly one of the double points of the involution

determined on the axis by the pairs of conjugate orthogonal

rays, i. e. one of the foci, is at infinity. The other double point

lies at a finite distance, and is generally spoken of as the focus

of the parabola.

Since in the case of the parabola one focus is at infinity,

the theorems proved above (Arts. 343-345) become the

following :

Two conjugate orthogonal rays, and in particular the tangent and

normal at any point on the parabola^ meet the axis in two points

which are equidistantfrom the focus.

The tangent and normal at a point on a parabola are the bisectors

of the angle which the focal radius of the point makes with the

diameter passing through the point %.

The straight line which connects the focus with the point of inter

section of two tangents to a parabola makes with either of the

tangents the same angle that the axis makes with the other tangent.

347. From the last of these may be immediately deduced

the following theorem :

The circle circumscribing a triangle formed by three tangents to a

through the focus.

Let PQR (Fig. 212) be a triangle formed by three

* APOLLONIUS, loc. cit., iii. 48.

f Ibid., iii. 46.

DE LA HIRE, loc. cit., lib. viii. prop. a.
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Fig. 212.

tangents to a parabola, and let F be the focus. Considering
the tangents which meet in P, the angle FPQ is equal to that

made by PR with the axis
;
and

considering the tangents which

meet in R, the angle FRQ is

equal to that made by RP with

the axis. Hence the angles

FPQ, IRQ are equal, and there

fore P, Q ,
R

,
F lie on the same

circle.

COEOLLAEY. The locus of the

foci of all parabolas which touch the

three sides of a given triangle is the

circumscribing circle of the triangle.

This corollary gives the construction for the focus of a

parabola which touches four given straight lines. And since

only one such parabola can be drawn (Art. 157), we conclude

that:

Given four straight lines, the circles circumscribing the four

triangles which can be formed by taking the lines three and three

together all pass through the same point.

348. The polar of a focus is called a directrix.

The two directrices are straight lines perpendicular to the

transverse axis and external to the conic, since the foci lie

on the transverse axis and are internal to the conic (Art. 343).
In the case of the parabola, the straight line at infinity

is one directrix
;
the other

Q lies at a ,finite distance,

and is generally spoken
of as the directrix of the

parabola.

If F be a focus, and if

the tangent at any point
X on a conic cut the

corresponding directrix in

J&quot;,
this point Zwill be the

pole of the focal radius

FX. Therefore FX
,
FY are conjugate lines with respect to

the conic, and since they meet in a focus, they will be at

right angles : consequently :

p 1

P&quot;

Q

Fig. 213.
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The part of a tangent to a conic intercepted between its point of
contact and a directrix subtends a right angle at the corresponding

focus.

349. Let the tangent and normal at any point M on a

conic meet the focal axis in P
,
P respectively, and let them

meet the other axis in Q , Q respectively (Fig. 213). FromM
let perpendiculars MP&quot;, MQ&quot; be drawn to the axes.

From the similar triangles OPQ, Q&quot;MQ

OP:OQ = Q&quot;M:Q&quot;Q 9

and from the right-angled triangle Q MQ
Q&quot;M:Q&quot;Q=Q Q&quot;:Q&quot;M;

.-. OP:OQ=Q Q&quot;:Q&quot;M

= Q Q&quot;:OP&quot;,

or OP. OP&quot; = OQ.Q Q&quot;

= OQ(Q 0+OQ&quot;),

so that OP.OP&quot;-OQ.OQ&quot; = OQ.Q (1)

But P and P&quot; are a pair of conjugate points, since MP&quot; is

the polar of P
; similarly Q and Q

&quot;

are conjugate points.

Therefore (Art. 294)

OP. OP&quot; = OA 2 and OQ .
OQ&quot;

= OB 2
,

where OA, OB are the lengths of the semiaxes, and the double

sign refers to the two cases of the ellipse and the hyperbola.

Again, the points Q , Q subtend a right angle at either of the

two foci F, F (Art. 343) so that

OQ.Q 0= OF2
.

Substituting, (l) becomes

OF 2 = OA 2 +OB 2
.

This shows that in the ellipse OA &amp;gt; OB ; so that the focal

axis is the axis major.

Referring now to Figs. 214 and 215,

FA = FO+OA,
FA = FO + OA = FO- OA

;

.-. FA. FA = F0 2-OA 2

= + OB 2
.

If D be the point in which a directrix cuts the focal axis,

the vertices A and A f

of the conic will be harmonically conju

gate with respect to F and the point D where the polar of F
cuts AA (Art. 264) ; therefore, since bisects AA

,

OA 2 = OF. OD.
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The parabola has one vertex at infinity ; consequently
the other lies midway between the focus and the directrix

(Fig. 218).

350. If a focus F of a conic C be taken as centre of homo-

logy, and a conic C be constructed homological with C and

Fig. 214. Fig. 215.

having its centre at F
t

it has been seen (Arts. 340, 341) that

C is a circle. But by what has been proved in Art. 77, if

M and M are a pair of corresponding points of C and C
,

FM
FM7 : MP = constant,

or
FM
MP = FM x constant,

where MP (Figs. 214, 215) is the distance of M from the

vanishing line, that is from the polar of F, i. e. the correspond

ing directrix. Now FM is constant, because C is a circle;

therefore

The distance of any point on a conic from afocus bears a constant

ratio to its distancefrom the corresponding directrix.

Moreover, this ratio is the same for the two foci. For let

(Figs. 214, 215) be the centre of the conic, F, F the foci, A, A

the vertices lying on the focal axis, D ,
D the points in which

this axis is cut by the directrices; then (Art. 294)

OA 2 = OA 2 = OF. OD = OF . OD .

But OF = - OF, so that A W = -AD and F A = -FA,

and therefore FA : AD = F A : A D ,

which shows that the ratio is the same for F and for F .

In the case of the parabola the ratio in question is unity,
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because (Art. 349) the vertex of a parabola is equally distant

from the focus and the directrix. Therefore

The distance of any point on a parabolafrom thefocus is equal to

its distancefrom the directrix.

351. Conversely, the locus of a point M which is such that its

distancefrom a fixed point F bears a constant ratio e to its distance

from a fixed straight line d is a conic of which F is a focus and d

the corresponding directrix*.

For let MP (Figs. 214, 215) be drawn perpendicular to d\
then by hypothesis

_

MP~
Let now the figure be constructed which is homological

with the locus of M ;
F being taken as centre of homology,

and d as vanishing line. If M be the point corresponding to

M, then (Art. 77)
FM
77=77 : MP = constant.
JfJa.

These two equations show that FM is constant
;
thus the

locus of M is a circle, centre F. The locus of M is there

fore a conic (Art. 23) having one focus at ^(Art. 341). And
since the straight line at infinity is the polar of F with

respect to the circle, the straight line d is the polar of F with

respect to the conic
;

i.e. it is the directrix corresponding to F.

352. The length of a chord of a conic drawn through a focus

perpendicular to the focal axis is called the lotus rectum or

the parameter of the conic.

Let MFM (Fig. 216) be a chord of a conic drawn through a

focus F, and let 7\^be the point where it cuts the corresponding
directrix. Let LFL be the latus rectum drawn through F.

Then since the directrix is the polar of the focus, N and F
are harmonic conjugates with regard to M and M . There

fore

NF~ NM
and if perpendiculars MK , FD ,

H K be let fall on the

directrix,

TI ,i / vrFD
~ M K MK

*
PAPPUS, Math. Collect., lib. vii. prop. 238.

S
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But by Art. 350

MfK : ID : MK=M F: FL : FM ;

2

FL FM
that is to say :

In any conic, half the latus rectum is a harmonic mean between

the segments of any focal chord.

COROLLARY. If M,M be taken &iA ,A respectively,

JL.-i(JL + JL\
FL

~ * \AF * FA *

= 1
AA

AF.FA
OA

(by Art. 349),

so that FL = - OA

which gives the length of the semi-latus rectum in terms of

the semi-axes.

In the parabola -=jj
= o, so that FL = 2 FA .

353. THEOREM. In the ellipse the sum, and in the hyperbola the

difference, of thefocal radii of any point on the curve is constant*.

Let M be any point on a central conic (Figs. 214, 215) whose

* APOLLONIUS, loc. cit., iii. 51, 5 2.
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foci are F, I and directrices d, cl
; and let (M,d) &c. denote

as usual the distance of 3/from d, &c. By Art. 351

FM IM

FMF M

But (Fig. 214) in the ellipse (M, d) + (M, d
),
and (Fig. 215)

in the hyperbola (M, d)-(M, d
)
is equal to the distance DD

between the two directrices
; therefore

which proves the proposition.

Conversely : The locus of a point the sum
(difference) of whose

distancesfrom tivo fixed points is constant is an ellipse (a hyperbola]

of which the given points are the foci.

354. If in the proposition of the last Article the point M be
taken at a vertex A,

= AA
,

so that the length of the focal axis is the constant value of the sum
or difference of thefocal radii. It is seen also that the constant
e is equal to the ratio of the length of the focal axis to the

distance between the directrices.

355. Since by Art. 294

OA2 =OF. OD,
or AA 2 = FF .DD

,

AA FF=
DD ~

AA&quot;

so that the constant e is equal to the ratio of the distance

between the foci to the length of the focal axis. Now in the

ellipse FF &amp;lt;AA
,
in the hyperbola FF

&amp;gt; AA\ in the parabola
FF =AA = oo, in the circle IF = o. Therefore the conic is

an ellipse, a hyperbola, a parabola, or a circle, according as

&amp;lt;i, oi, c=i, or e= o. This constant e is called the

eccentricity of the conic.

356. THEOREM. The locus of the feet of perpendiculars letfall

from a focus upon the tangents to an ellipse or hyperbola is the

circle described on thefocal axis as diameter *.

*
APOLLONIUS, loc. cit.

t iii. 49, 50.

8 2
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Take the case of the ellipse (Fig. 217). If F, F are the foci,

and M is any point on the curve, join jO/and produce it to G

making MG equal to MF. Then F G will (Art. 354) be equal

to AA whatever be the posi

tion of Jf; thus the locus of G

is a circle, centre F f and radius

equal to AA .

If FG be joined, it will cut

the tangent at M perpendicu

larly, since this tangent (Art.

344) bisects the angle FMG
;

and the point U where the two

lines intersect will be the mid

dle point of FG because FMG
2I ?- is an isosceles triangle. There

fore OU is parallel to F G and equal to \F G, that is, to OA\

i. e. the locus of U is the circle on AA as diameter.

A similar proof holds good for the hyperbola, except that from the

greater of the two MF, MF must be cut off a part MG equal to the less.

357. If FU,FU (Fig. 217) are the perpendiculars let fall

from a focus F on a pair of parallel tangents, U
,
F

,
U will

evidently be collinear. And since U and U both lie on the

circle described on AA as diameter,

FU. FU = FA . FA
= + OB2

(Art. 349),

according as the conic is an ellipse or a hyperbola.

Thus the product of the distances of a pair of parallel tangents

from a focus is constant.

Since the perpendicular let fall from the other focus F on

the tangent at M is equal to FU t
it follows that

The product of tie distances of any tangent to an ellipse (hyper-

uola] from the two foci is constant, and equal to the square of half

the minor (conjugate) axis.

Conversely : The envelope of a straight line which moves in such a

way that the product of its distances from two fixed points is constant

is a conic ; an ellipse if the value of the constant is positive,
a hyperbola,

if it is negative.

358. Let F (Fig. 218) be the focus of a parabola, A the

vertex M any point on the curve, N the point of intersection

of the tangents at M and A. If NFf
be drawn to the infinitely
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218.

distant focus F
(i.

e. if NF be drawn parallel to the axis), the

angles ANF ,
FNM will be equal (Art. 346). But ANF is a

right angle ;
thereforeFNM

is a right angle also. Thus

The foot of the perpen

dicular letfallfrom thefocus

of a parabola on any tangent

lies on the tangent at the

vertex.

COROLLAKY. Since any

point on the circumscribing

circle of a triangle may be

regarded (Art. 347) as the focus of a parabola inscribed in the

triangle, it follows at once from the theorem just proved that if from,

any point on the circumscribing circle of a triangle perpendiculars be

let fall on th? three sides, their feet will be collinear *.

359. The theorem of Art. 356 may be put into the following form :

If a right angle move in its plane in such a way that its vertex

describes a fixed circle, while one of its arms passes always through a

fixed point, the envelope of its other arm will be a conic concentric with

the given circle, and having one focus at the fixed point. The conic is

an ellipse or a hyperbola according as the given point lies within or

without the given circle t.

So too the corresponding theorem (Art. 358) for the parabola may
be expressed in a similar form as follows :

If a right angle move in its plane in such a way that its vertex

describes a fixed straight line, while

one of its arms 2^asses always through

a fixed point, the other arm will en

velope a parabola having the fixed

point for focus and thefixed straight

line for tangent at its vertex.

360. I. Let the tangents at

the vertices of a central conic

be cut in P, P f

by the tangent

at any point M (Fig. 219). The

three tangents form a triangle

circumscribed about the conic,

two of the vertices of which Flg&amp;lt; 2I9

are P and P
,
the third (at infinity) being the pole of the

* For other proofs of this see Art. 416.

f MACLADKIN, Geometria Organica, pars IP. prop. xi.
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axis AA . Therefore (Art. 274) the straight lines drawn from

P and P to any point on the axis will be conjugate to one

another with respect to the conic. Thus, in particular, the

straight lines joining P and P to a focus will be conjugate
to one another

;
but conjugate lines which meet in a focus

are mutually perpendicular (Art. 343) ; consequently the circle

on PP as diameter will cut the axis AA at the foci*.

II. Let the tangent PMP cut the axis AA at
JV&quot;;

then N\$&amp;gt;

the harmonic conjugate of M with respect to P, P (Art. 194).

Consider now the complete quadrilateral formed by the

lines FP,F P,FP ,F P . Two of its diagonals are FF* and

PP
;
the third diagonal must then cut FF and PP in points

which are harmonically conjugate to N with regard to F&amp;gt;F

and P
,
P respectively. It must therefore be the normal at

M to the conic f-

361. Let TM ,
TN (Fig. 220) be a pair of tangents to a conic,

M and N their points of contact,

F a focus, (I the corresponding
directrix. If the chord MN cut d

M ^=^ ^ in P, this point is the pole of TF;
therefore TFP is a right angle

(Art. 343) t
But MN is divided harmonically

by FT and its pole P; thus

F(MNTP) is a harmonic pencil,

and consequently FT, FP are the

bisectors of the angle MFN. Accordingly :

One of the bisectors of the angle which a chord of a conic subtends

at a focus passes through the pole of the chord. The other bisector

meets the chord at its point of intersection with the directrix corre

sponding to the focus.

Or the same thing may be stated in a different manner, thus :

The straight line which joins a focus to the point of intersection of
a pair of tangents to a conic makes equal (or supplementary] angles

ivith thefocal radii of their points of contact .

*
APOLLONIUS, loc. cit., iii. 45; DESARGUES, (Euvres, i. pp. 209, 210.

f APOLLONIUS, loc. cit., iii. 47.

J If the points M and N are taken indefinitely near to one another, this reduces

to the theorem already proved in Art. 348.

DE LA HIRE, loc. cit., lib. viii. prop. 24.
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362. Let the tangents TM, TN be cut by any third tangent

in M
,
N respectively (Figs. 221, 222) ;

let L be the point of

contact of this third tangent. The following relations will

hold among the angles of the figures :

N FL=NFN = \NFLy

LFM = M FM = \LFM,
whence by addition

N FL +LFM = i (NIL + LFM),
or ^ FM = 1NFM = NFT = TIM*

Let now the tangents TM, TN be fixed, while the tangent

M N is supposed to vary. By what has just been proved,

the angle subtended at the focus by the part M N of the

M

Fig. 221. Fig. 222

variable tangent intercepted between the two fixed ones is

constant. As the variable tangent moves, the points M ,
N

describe two projective ranges (Art. 149), and the arms

FM
,
IN of the constant angle M FN trace out two con

centric and directly equal pencils (Art. 108). Accordingly :

* In this reasoning it is supposed thatFM ,FN
f

,
FT are all internal bisectors ;

i.e. that either the conic is an ellipse or a parabola, or that if it is a hyperbola,

the three tangents all touch the same branch (Fig. 221). If on the contrary two

of the tangents, for example TM and TN, touch one branch and the thirdMN
the other branch (Fig. 222), then FM and FN will be external bisectors. In

that case,

N FL-lNFL-1

LFM1 = \ LFM + -
2

(the angles being measured all in the same direction) ;

.-. N FM =*
| NFM, just as in the case above.
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The ranges which a variable tangent to a conic determines on two

fixed tangents are projected from either focus by means of two

directly equalpencils.

This theorem clearly holds good for the cases of the parabola and
its infinitely distant focus, and the circle and its centre. For the

parabola it becomes the following :

Two fixed tangents to a parabola intercept on any variable tangent
to the same a segment whose projection on a line perpendicular to the

aids is of constant length.

The general theorem may also be put into the following form :

One vertex F of a variable triangle M FN is fixed, and the angleM FN is constant, while the other vertices M
,
N move respectively on

fixed straight lints TM, TN. The envelope of the side M N is a
conic of which F is a focus, and which touches the given lines TM, TN.

363. The problem, Given the two foci F, F of a conic and a

tangent t, to construct the conic, is

determinate, and admits of a single

solution, as follows.

Join FF (Figs. 223, 224) and let

it cut t in P
;
take P the harmonic

conjugate of P with respect to F and

F . If a straight line P M be drawn

perpendicular to t, it will be the

. 223.
normal corresponding to the tangent
t (Art. 344), i. e. M will be the point

of contact of t. Draw MP&quot; perpendicular to FF
}

it will be the

polar of P, and P, P&quot; will be conjugate points with respect to the

Fig. 224.

conic. If then FF be bisected at 0, and on FF there be taken

two points A, A such that OA* = OA 2= OP. OP&quot;, A and A will
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be the vertices of the conic. The conic is therefore completely deter

mined; for three points on it are known (M, A, A ) and the tangents
at these three points (t and the straight lines AC, A C drawn

through A, A at right angles to AA
].

An easy method of constructing the conic by tangents is to describe

any circle through F and F
, cutting A C, A G in // and K, E and K

respectively (Fig. 224). Then if the chords HK
,
H K be drawn

which intersect crosswise in the centre of the circle (which lies on

the non-focal axis), these will be tangents to the conic (Art. 360).

Every circle through F and F which cuts AC and A C thus deter

mines two tangents to the conic.

The conic is an ellipse or a hyperbola according as t cuts the

segment FF externally or internally.

The conic is a parabola when Ff
is at infinity (Fig. 225). In this

case produce the axis PF to P making FP equal to PF
t
and draw

P M perpendicular to t
;
then M will be the point of contact of the

given tangent t. Draw MP&quot; perpendicular to the axis
;
then P and

P&quot; will be conjugate points with

respect to the parabola. And since

the involution of conjugate points

on the axis has one double point
at infinity, the middle point A
of PP&quot; will be the other double

point, i. e. the vertex of the parabola.

The parabola is therefore com

pletely determined, since two points

on it are known (M and A), and

the tangents at these points (t
and

the straight line drawn through A
at right angles to the axis).

364. On the other hand, the problem, To construct the conic which

has its foci at two given points F, F and which
2&amp;gt;asses through a

given point M, which is also a determinate one, admits of two solutions.

For if the locus of a point be sought the sum of whose distances from

F and F is equal to the constant value FM+ F M, an ellipse is

arrived at
;
but if the locus of a point be sought the difference of whose

distances from F and F is equal to FM***FM
t
a hyperbola is found.

This may also be seen from the theorem of Art. 344, which shows

that if the straight lines t, t be drawn bisecting the angle FMF
(Fig. 223) each of these lines will be a tangent at M to a conic which

satisfies the problem, the other line being the corresponding normal

to this conic. The finite segment FFf
is cut or not by the tangents

according as the conic is a hyperbola or an ellipse. There will

consequently be two conies which have F
t
F for foci and which pass

Fig. 225.
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through M\ a hyperbola having for tangent at M that bisector tf

which cuts the segment FF
,
and for normal the other bisector t

;

and an ellipse having t for tangent at M and t
f
for normal.

These two conies, having the same foci, are concentric and have

their axes parallel. They will cut one another in three other points
besides M

;
and their four points of intersection will form a rectangle

inscribed in the circle of centre and radius OM; in other words,

the three other points will be symmetrical to M with respect to the

two axes and the centre. This is evident from the fact that a conic

is symmetrical with respect to each of its axes.

365. Through every point M in the plane then pass two conies,

an ellipse and a hyperbola, having their foci at F and F/
. In other

words, the system of confocal conies having their foci at F and F is

composed of an infinity of ellipses and an infinity of hyperbolas ;
and

through every point in the plane pass one ellipse and one hyperbola,

which cut one another there orthogonally and intersect in three other

points.

Two conies of the system which are of the same kind (both

ellipses or both hyperbolas) clearly do not intersect at all.

Two conies of the system however which are of opposite kinds

(one an ellipse, the other a hyperbola) always intersect in four points,

and cut one another orthogonally at each of them. This may be

seen by observing that the vertices of the hyperbola are points lying

within the segment FF
f

t
and therefore within the ellipse. On the

other hand, there must be points on the hyperbola which lie outside

the ellipse; for the latter is a closed curve which has all its points

at a finite distance, while the former extends in two directions to

infinity. The hyperbola therefore, in passing from the inside to the

outside of the ellipse, must necessarily cut it.

No two conies of the system can have a common tangent ;
because

(Art. 363) only one conic can be drawn to have its foci at given

points and to touch a given straight line.

Any straight line in the plane will touch a determinate conic of

the system, and will be normal, at the same point, to another

conic of the system, belonging to the opposite kind. The first of

these conies is a hyperbola or an ellipse according as the given

straight line dees or does not cut the finite segment FF .

366. If first point F lies at infinity, the problem of Art. 364

becomes the following : Given the axis of a parabola, the focus F, and

a point M on the curve, to construct the parabola.

Just as in Art. 364, there are two solutions (Fig. 226). The

tangents at M to the two parabolas which satisfy the problem are

the bisectors of the angle made by MF with the diameter passing

through M ;
therefore the parabolas cut orthogonally at M and
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consequently intersect at another point, symmetrical to M with

respect to the axis. The parabolas cannot intersect in any other

finite point, since they touch one another at infinity*.

The tangents to the two parabolas at M cut the axis in two points

P, P r which lie at equal distances

on opposite sides of F
; and if P&quot; is

the foot of the perpendicular let fall

from M on the axis, the vertices A
,
A f

of the parabolas are the middle points

of the segments PP&quot;,P P&quot; respec

tively.

Suppose A and P&quot; to fall on the same

side of F. Then since P P&quot;&amp;lt;P P,
and P A is the half of P P&quot;, and

P F the half of P P, therefore

P A &amp;lt;P F\ i.e. A and A fall on

opposite sides of F. It follows that in

the system composed of the infinity of

parabolas which have a common axis
Fig. 226.

and focus, two parabolas intersect (orthogonally and in two points)
or do not intersect, according as their vertices lie on opposite sides

or on the same side of the common focus.

Since F, A ,
A are the middle points of PP

, PP&quot;, P P&quot; respec

tively, we have the relations

2 FA =FP+FP&quot;,

2 FA =FP
whence the following are easily deduced :

FP = FA-2?A =A A,
FP = FA -FA = AA .

These last relations enable us at once to find the points P, P ,
P&quot;

when A and Ar
are known. The point M (and the symmetrical point

in which the parabolas intersect again) can then be constructed by

observing that FM is equal to FP or FP .

367. It has been seen that a conic is determined when the two

foci and a tangent are given. It can also be shown that a conic

is determined when one focus and three tangents are given ;
this follows

* That is to say, if the figure be constructed which is homological with that

formed by the two parabolas, it will consist of two conies touching one another

at a point situated on the vanishing line of the new figure, and intersecting in

two other points.

t Hence the middle point of AA is also the middle point of FP ft
.
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Fig. 227.

at once from the proposition at the end of Art. 362. For let LMN
(Fig. 227) be the triangle formed by the three given tangents, and F
the given focus. Then the conic is seen to be the envelope of the

base M N of a variable triangle

M FN
,
which is such that the

vertex F is fixed, the angle

M FN is always equal to the

constant angle MFN, and the

vertices M
,
N move on the fixed

straight lines LM
,
LN respec

tively.

In order to determine the

other focus F
,
we make use of

the theorem of Art. 345. At

the point M make the angle

LMF equal to FMN
;
and at

the point N make the angle

LNF equal to FNM (all
these

angles being measured in the same direction) ;
then the point of

intersection of MF
,
NF will be the second focus F .

The investigation of the circumstances under which the conic is an

ellipse, a hyperbola, or a parabola, is left as an exercise to the student.

The following are the results :

(1) The conic is an ellipse if .Flies within the triangle LMN; or

if F lies without the circle circumscribing LMN and within one of

the (infinite) spaces bounded by one of the sides of the triangle and

the other two produced :

(2) a hyperbola if F lies inside the circle but outside the triangle ;

or if it lies within one of the (infinite) T-shaped spaces which have

one of the angular points of the triangle LMN for vertex and are

bounded by the sides meeting in that angular point, both produced

backwards :

(3) a parabola if F lies on the circle circumscribing the triangle

LMN, as we have seen already (Art. 347) *.

368. Let TM, TN (Fig. 228) be a pair of tangents to an

ellipse or hyperbola which intersect at right angles. If per

pendiculars FU, F U and W, I V be let fall upon them

respectively from the foci F and F
,
then evidently TU VF

and TU = VI . But by Art. 357 we have VF . VI = OB* ;

therefore TU. TU = OB 2
. But since U and W both lie on

*
STEINER, Dtreloppement d une strie de ihioremes relatifs aux sections coniqties

(Annalea de Gergonne, t. xix. 1828, p. 47); Collected Works, vol. i. p. 198.
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the circle described upon the focal axis AA as diameter (Art.

356), the rectangle TU.TV is the power of the point T with

respect to this circle, and is equal to OT2 OA*. Thus

OT2 = OA2 OB2 = constant,

so that we have the following theorem *
:

The locus of the point of intersection of two tangents to an ellipse

or a hyperbola which cut at right angles is a concentric circle.

This circle is called the director circle of the conic f .

In the ellipse OT 2 = OA z
-\- 0j5

2

,
so that the director circle circum

scribes the rectangle formed by the tangents at the extremities of

the major and minor axes. In the hyperbola OT /2= OA 2 OB 2

,
so

that pairs of mutually perpendicular tangents exist only if OA&amp;gt;OB.

If OA = OB, i. e. if the hyperbola is equilateral (Art. 395), the di

rector circle reduces simply to the centre
;
that is, the asymptotes

are the only pair of tangents which cut at right angles. If OA &amp;lt; 0,
the director circle has no real existence

;
the hyperbola has no pair

of mutually perpendicular tangents.

Fig. 228. Fig. 229.

369. Consider now the case of the parabola (Fig. 229). Let

F be the focus, A the vertex, TH and TK a pair of mutually

perpendicular tangents. If these meet the tangent at the

vertex in // and K respectively, the angles FHT, FKT will be

right angles (Art. 358), so that the figure THFK is a rectangle.

Therefore TH = KF; and since the triangles TEH, FAK are

evidently similar, TE = AF. The locus of the point T is

* DE LA HIKE, loc. cit., lib. viii. props. 27, 28.

t GASKIN, The geometrical construction of a conic section, . . . (Cambridge,

1852), chap. iii. prop. 10 et seqq.
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therefore a straight line parallel to HK, and lying at the same

distance from HK (on the opposite side) that F does. That is

to say :

The locus of the point of intersection of two tangents to a para
bola which cut at right angles is the directrix *.

Since the director circle of a conic is concentric with the latter, it

must in the case of the parabola have an infinitely great radius. In

other words, it must break up into the line at infinity and a finite

straight line. And we have just seen that this finite straight line is

the directrix.

370. The director circle possesses a property in relation to

the self-conjugate triangles of the

conic which we will now proceed
to investigate. Let XTZ (Fig. 230)

be a triangle which is self-conjugate

with respect to a conic whose centre

is 0. Join OX and let it cut TZ
in X and the conic in A . Draw
OB parallel to YZ-, let it cut XY
in L and the conic in B

;
and draw

Z/ parallel to OX to meet OB in L .

Then OA and OB are evidently

conjugate semi-diameters
;
also A7

and

X
,
L and L are pairs of conjugate

points with respect to the conic. Therefore

OX. OX = OA 2
,
and OL .OL = OB \

where the positive or the negative signs are to be taken

according as the semidiameters OA
9
OB are real or ideal

(Art. 294).

Thus for the ellipse

OX. OX + OL . 01 = OA 2 + OB 2

= OA 2 +OB2
,

and for the hyperbola

OX.OX + OL.OL = (OA
2-OB 2

)

(1 )

so that in both cases (Art. 368)

OX. OX + OL . OL = OT 2
,

where OT is the radius of the director circle.

* DE LA HIRE, loc. cit., lib. viii. prop. 26.
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Now let a circle be described round the triangle XYZ, and
let U be the point where it cuts OX again ;

then

X Y.XfZ=X X.X U\

L
J 7=

ox
xz

(from the similar triangles OLX, X YX)

= .OL&amp;gt;~ox
Therefore equation (1) gives

OT2 = OX.OX +OX.FU
= ox.ou,

that is to say : The centre of a conic has with respect to the circum

scribing circle of any triangle self-conjugate to the conic a constant

power, which is equal to the square of the radius of the director

circle.

Or in other words :

The circle circumscribing any triangle which is self-conjugate with

regard to a conic is cut orthogonally by the director circle *.

The following particular cases of this theorem are of interest :

I. The centre of the circle circumscribing any triangle which is self-

conjugate with respect to a parabola lies on the directrix.

II. The circle circumscribing any triangle which is self-conjugate
with respect to an equilateral hyperbola passes through the centre of
the conic.

371. Consider a quadrilateral circumscribed about a conic. Since

each of its diagonals is cut harmonically by the other two, the circle

described on any one of the diagonals us diameter is cut orthogonally

by the circle which circumscribes the diagonal triangle (Art. 69).

But the diagonal triangle is self-conjugate with respect to the conic

(Art. 260), and therefore its circumscribing circle cuts orthogonally
the director circle (Art. 370). Consequently the director circle and

the three circles described on the diagonals as diameters all cut

orthogonally the circle circumscribing the diagonal triangle. Now
by Newton s theorem (Art. 318) the centres of the four first-named

circles are collinear; and circles whose centres are collinear and

which all cut the same circle orthogonally have a common radical

axis. Therefore :

The director circle of a conic, and the three circles described on

*
GASKIN, loc. cit., p. 33.
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the diagonals of any circumscribed quadrilateral as diameters, are

coaxial.

In the parabola the director circle reduces to the directrix and

the straight line at infinity ;
in this case then the above theorem

becomes the following :

If a quadrilateral is circumscribed about a parabola, the three

circles described on the diagonals of the quadrilateral as diameters have

the directrix for their common radical axis.

372. If in the theorem of Art. 371 the quadrilateral be supposed
to be given, and the conic to vary, we arrive at the following

theorem :

The director circles of all the conies inscribed in a given quadri

lateral form a coaxial system, to which belong the three circles having

as diameters the diagonals of the quadrilateral.

There is one circle of such a system which breaks up into two

straight lines : that namely which degenerates into the radical axis

and the straight line at infinity. Now the director circle breaks up
into two straight lines viz. the directrix and the line at infinity

in the case of a parabola (Art. 369). Therefore the common radical

axis of the system of coaxial director circles is the directrix of the

parabola which can be inscribed in the quadrilateral.

If the circles of the system do not intersect, there are two of them

which degenerate into point-circles (the limiting points). Now the

director circle degenerates into a point in the case of the equilateral

hyperbola (Art. 368). Therefore when the circles do not cut one

another, the two limiting points of the system are the centres of

the two equilateral hyperbolas which can in this case be inscribed

in the quadrilateral. If the circles do intersect, the system has no

real limiting points ;
and in this case no equilateral hyperbola can be

inscribed in the quadrilateral.

The circles which cut orthogonally the circles of a coaxial system

form another coaxial system ;
if the first system has real limit

ing points, the second system has not, and vice versa. In order

then to inscribe an equilateral hyperbola in a given quadrilateral,

it is only necessary to describe circles on two of the diagonals of the

quadrilateral as diameters, and then to draw two circles cutting the

former two orthogonally. When the problem is possible, these two

orthogonal circles will intersect ;
and their two points of intersection

are the centres of the two equilateral hyperbolas which satisfy the

conditions of the problem.

373. If five points are taken on a conic, five quadrangles may be

formed by taking these points four and four together; and the

diagonal triangles of these five quadrangles are each of them self-

conjugate with respect to the conic. If the circumscribing circles of
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these five diagonal triangles be drawn, they will give, when taken

together in pairs, ten radical axes. These ten radical axes will all

meet in the same point, viz. the centre of the conic.

374. Consider again a quadrilateral circumscribing a conic
;

let

P and P
, Q and $ ,

R and R be its three pairs of opposite vertices.

If these be joined to any arbitrary point S, and if moreover from this

point S the tangents t, t
f
are drawn to the conic, it is known by the

theorem correlative to that of Desargues (Art. 183, right) that t and t
,

SP and SP
, SQ and SQ ,

SR and SR are in involution. Now let

one of the sides of the quadrilateral (say P/Q/M/
)
be taken to

be the straight line at infinity, so that the inscribed conic is

a parabola ;
and let S be taken at the orthocentre (centre of perpen

diculars) of the triangle PQR formed by the other three sides of

the quadrilateral. Then each of the three pairs of rays SP and SP ,

SQ and SQ ,
SR and SR cut orthogonally; therefore the same will

be the case with the fourth pair t and t . But tangents to a para
bola which cut orthogonally intersect on the directrix (Art. 369) ;

therefore :

The orthocentre of any triangle circumscribing a parabola lies on

the directrix.

375. If in the theorem of the last Article the triangle be supposed
to be fixed, and the parabola to vary, we obtain the theorem :

The directrices of all parabolas inscribed in a given triangle meet in

the same point, viz. the orthocentre of the triangle.

Given a quadrilateral, one parabola (and only one) can always be

inscribed in it. By taking the sides of the quadrilateral three and

three together, four triangles are obtained
;

and the four ortho-

centres of these triangles must all lie on the directrix of the parabola.

It follows that

Given four straight lines, the orthocentres of the four triangles

formed ly taking them three and three together are collinear.

376. Let C be any given conic, and let C be its polar

reciprocal with respect to an auxiliary conic K. The particular

case in which K is a circle whose centre coincides with a focus

F of the conic C is of great interest
; we shall now proceed to

consider it.

If r, / be any two straight lines which are conjugate with

respect to C, and if R, 72 be their poles with respect to K, it

is known (Art. 323) that R
,
H will be conjugate points with

respect to C . Consider now two such lines r
,
/ which pass

through F-, tbey will be at right angles since every pair of

conjugate lines through a focus cut one another orthogonally.
T
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They will therefore be perpendicular diameters of the circle K,

and their poles R ,
R with respect to K will be the points at

infinity on /, r respectively. These points are conjugate

with respect to C
,
and the straight lines joining them to the

centre of this conic are therefore a pair of conjugate diameters

of C
; consequently two conjugate diameters of C are always

mutually perpendicular. This proves that C is a circle; i.e.

the polar reciprocal of a conic, with respect to a circle which has

its centre at one of thefoci, is a circle.

By taking the steps of the above reasoning in the opposite

order, the converse proposition may be proved, viz.

The polar reciprocal of a circle ivitli respect to an auxiliary

circle is a conic having one focus at the centre of the auxiliary

circle.

As in Art. 323, it is seen that the conic is an ellipse, a

hyperbola, or a parabola, according as the centre of the

auxiliary circle lies within, without, or upon the other

circle.

377. If d be the directrix of the conic C corresponding to

the focus F, and if its pole be taken with respect to the circle

K, this point will evidently be the centre of the circle C

(Art. 323).

The radius of the circle C may also easily be found. For

in Fig. 216 let two points X, X be taken in the latus rectum

LFL such that

where k denotes the radius of the circle K
;
and let straight

lines be drawn through X and A7/

perpendicular to XFX . These

straight lines are evidently parallel tangents of the circle C ,

and the distance XX between them is therefore equal in length

to the diameter of C . But

so that the radius of the circle C is equal to ^
The eccentricity e of the conic C may be expressed in a

simple manner in terms of quantities depending upon the

two circles K and C . For if be the centre and p the
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radius of the latter circle, it has been seen that the directrix

is the polar of with respect to K
; therefore (Fig. 216)

FD.FO f=k2
.

But it has just been proved that

therefore (Art. 351), *
p

378. The proposition of Art. 376 may be proved in a
different manner, so as to lead at once to the position and size

of the circle C .

Take any point M on the (central) conic C (Fig. 217) ;
from

the focus .Fdraw FU perpendicular to the tangent at M, and on
FU take a point Z such that FZ . FU = k 2

,
Jc being as before

the radius of the circle K. Then the locus of Z is the polar

reciprocal of C with respect to K.

Now it is known (Arts. 356, 357) that U lies on the circle

on AA as diameter, and that if UF cut this circle again at U
FU.FU = + OB 2

.

Therefore FZ : FU = &2
: + OB 2

-,

which proves (Art. 23 [6]) that the locus of Z is a circle whose
centre lies on FO and divides it so that FO : FO = Jc

2
:

and whose radius p is equal to P . -, that is, (Art. 352 Cor.)
k2

to
j^

. And again, since OF. 01) = OA2 and FD = FO+ OD,

(Figs. 214, 215),

.-. FJ).FO= OF2-OA2 = +

by what has just been proved.

i. e. O f
is the pole of the directrix d with respect to K.

In the particular case where k = OB, p OA
;
that is to say :

The polar reciprocal of an ellipse (hyperbola] with respect to a circle

having its centre at a focus and its radius equal to half the minor

(conjugate) axis is the circle described on the major (transverse) axis as
diameter.

379. In the case where C is a parabola, let M be any point
on the curve (Fig. 218); let fall ^perpendicular to the tangent
at M, and take on FN a point Z such that FZ . FN= k2

. Then,
T 2,
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as before, the locus of Z will be the polar reciprocal of C with

respect to K. Draw ZQ perpendicular to ZF to cut the axis

of the parabola in Q.

Then a circle will evidently go round QANZ, so that

FA.FQ = FN.FZ = &;

therefore Q is a fixed point, and the locus of Z is the circle on

QF as diameter. If be the centre, p the radius of this

circle,

In the particular case where k is equal to half the latus rectum,

that is, to 2 FA, we have p = k; that is to say :

The polar reciprocal of a parabola with respect to a circle having its

centre at the focus and its radius equal to half the latus rectum is

a circle of the same radius, having its centre at the foint of intersection

of tlie axis with the directrix.



CHAPTEK XXIV.

COROLLARIES AND CONSTRUCTIONS.

380. IN the theorem of Art. 275 suppose the vertices B and C of

the inscribed triangle ABC (Fig. 1 88) to be the points at infinity on

a hyperbola ;
then S will be the centre of the curve, and the theorem

will become the following :

If from any point A on a hyperbola parallels be drawn to the

asymptotes, they will meet any given diameter in two points F and G
which are conjugate to one another with regard to the curve. Or :

If through two points lying on a diameter of a hyperbola, which

are conjugate to one another with regard to the curve, parallels be

drawn to the asymptotes, they will intersect on the curve.

From this follows a method for the construction of a hyperbola by

points, having given the asymptotes and a point M on the curve.

On the straight line SM, which joins M to the point of inter

section S of the asymptotes, take two conjugate points of the in

volution determined by having S for centre and M for a double

point. These points will be conjugate to one another with respect

to the conic (Art. 263) ;
if then parallels to the asymptotes be drawn

through them, the two vertices of the parallelogram so formed will

be points on the hyperbola which is to be constructed.

381. Let similarly the theorem of Art. 274 be applied to the

hyperbola, taking the sides b and c of the circumscribed triangle abc

to be the asymptotes ; it will then become the following :

If through the points where the asymptotes are cut by any tangent

to a hyperbola any two parallel straight lines be drawn, these will

be conjugate to one another with respect to the conic. Or :

Two parallel straight lines which are conjugate to one another with

respect to a hyperbola cut the asymptotes in points, the straight lines

joining which are tangents to the curve.

From this we deduce a method for the construction, by means of its

tangents, of a hyperbola, having given the asymptotes b and c and one

tangent m.

Draw parallel to m two conjugate rays of the involution (Art. 129)

determined by having m for a double ray and the parallel diameter

for central ray. The two straight lines so drawn will be conjugate

to one another with respect to the conic; if then the points where

they cut the asymptotes be joined to one another, we shall have two

tangents to the curve.
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382. Let B and be any two points on a parabola, and A the

point where the curve is cut by the diameter which bisects the chord

EC. Let F and G be two points lying on this diameter which are

conjugate with respect to the parabola, i.e. two points equidistant
from A (Art. 142); by the theorem of Art. 275, BF and CG, and
likewise BG and CF, will meet on the curve.

This enables us to construct by points a jiarabola which circum

scribes a given triangle ABC and has the straight line joining A to

the middle point ofBC as a diameter.

Or we may proceed according to the following method :

On BC take two points H and II which shall be conjugate to one

another with regard to the parabola, i. e. any two points dividing BC
harmonically. Since H and H are collinear with the pole of the

diameter passing through A, therefore by the theorem of Art. 275,
a point on the parabola will be found by constructing the point of

intersection of AH with the diameter passing through H ,
and another

will be found as the point where AH meets the diameter passing

through H.

383. In the theorem of Art. 274 suppose the tangent c to lie at

infinity ;
then we see that

If a and b are two tangents to a parabola, and if from any point
on the diameter passing through the point of contact of a there be

drawn two straight lines, one passing through the point ab and the

other parallel to 6, these will be conjugate to one another with regard
to the parabola.

This enables us to construct by tangents a parabola, having given
two tangents a and t, the point of contact A of one of them a, and the

direction of the diameters.

Draw the diameter through A and let it meet t in
;
the second

tangent t
f from will be the straight line which is harmonically

conjugate to t with respect to the diameter OA (the polar of the point
at infinity on a) and the parallel through to a. If now two straight
lines h and h be drawn through which shall be conjugate to one

another with regard to the parabola, i. e. two straight lines which are

harmonic conjugates with regard to t and t
,
the parallel to Ji drawn

from the point ha and the parallel to h drawn from the point h a

will both be tangents to the required parabola.

384. If in the theorem of Art. 274 the straight line a be supposed
to lie at infinity, and b and c to be two tangents to a parabola, we
obtain the following :

The parallels drawn to two tangents to a parabola, from any point
on their chord of contact, are conjugate lines with regard to the conic.

By another application of the same theorem we deduce a result

already proved in Art. 178, viz. that
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If, from a point on the chord of contact of a pair of tangents b and c

to a parabola, two straight lines h and h be drawn parallel to b and c

respectively, the straight line joining the points he and h b will be

a tangent to the curve *.

From this may be deduced a construction for the tangents to

a parabola determined by two tangents and their points of contact.

385. THEOREM. If a conic cut the sides J3C, CA
,
AB of

a triangle ABC in the points D and D\ E and E
,
F and F

respectively, then will

BD.BD CE.CE AE.AFf

CD.Cti
~

AE.AE BE. BE
This celebrated theorem is due to CARNOT f.

Consider the sides of the triangle ABC (Fig.

(1)

as

Fig. 231.

cut by the transversals DE and D E in the points D and D
,

E and E 1

,
G and ; by the theorem of Menelaus (Art. 139)

BD GZ? AG = i, (2)

and
CE AG

Again, DEE D is a quadrangle inscribed in the conic, and by

Desargues theorem (Art. 183) the transversal AB meets the

opposite sides and the conic in three pairs of points in involu

tion
;
therefore (Art. 130) the anharmonic ratios (ABFG) and

(BAF G
)
are equal; thus (Art. 45) (ABFG) = (ABG E \ or

(ABFG):(ABG
fF f

)
= I, which gives

AF. AE AG.AG _ , .

BE.BE BG.BG
~

* DE LA HIKE, loc. cit., lib. iii. prop. 21. f Gtomttrie de position, p. 437.
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Multiplying together (2), (3), and (4), we obtain the relation

stated in the enunciation *.

386. Conversely, if on the sides BC, CA, AB respectively of
a triangle ABC there be taken three pairs of points D and D\
E and E\ F and F such that the segments determined by them and

the vertices of the triangle satisfy the relation (I) of Art. 385,
these six points lie on a conic.

For let the conic be drawn which passes through the five

points 1), D , E, E , F, and let F&quot; be the point where it cuts

AB again. By Carnot s theorem a relation holds which differs

only from (1) in that it has F&quot; in the place of F . This

relation, combined with
(
1
), gives

whence (ABF F&quot;)
= i

;

and therefore (Art. 72, VII) F&quot; coincides with F.

* CARNOT S theorem, being evidently true for the circle (since in this case

1W . BD = CD . CD , &c.), may be proved without making use of involution

properties as follows :

Let I, /, K be the points at infinity on C,CA, AB respectively, and sup
pose Fig. 231 to have been derived by projecting from any vertex on any plane a

triangleA 1B1C1 whose aides are cut by a circle in DL and D/, E1 and E^,Fl and F^

respective!} . Let Jt ,
Jlt K^ be the points on the sides B^u CtAlt A l

B
l which

project into /, 7, K respectively ; they will of course be collinear. Then

2? = (BCDI) (Art. 64)

(Art. 63)

CD Ci-D/ CiV
BD.BD B.D^B.D, BJ*

&quot;

CD.GD CD.C :CI t

C I a

(Euc iiL 35^36.

CE . CE

AF.AF
BF.BF ~J^

Multiplying these three equations together, and remembering that by the

theorem of Menelaus the product on the right-hand side is equal to unity, we
have the result required.

Carnot s theorem is true not only for a triangle but for a polygon of any num
ber of sides

;
the proof just given can clearly be extended so as to show this, the

theorem of Menelaus being capable of extension to the case of a polygon.
Menelaus theorem is included in that of Carnot. It is what the latter reduces

to when the conic degenerates into two straight lines of which one lies at infinity.
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387. If the point A pass off to infinity (Fig. 232) the ratios

AF: AE and AF : AE become in the limit each equal to unity,

and the equation (l) of Art. 385 accordingly reduces to

BD.BD CE.CE _
~CD . CD BF. BF

~ *
*

Draw parallel to BC a straight line to cut GEE in Q and

the conic in P and P
;
the preceding equation, applied to the

triangle whose vertices are C, Q, and the point at infinity

where PP and BC meet, gives

QE.QE CD. _

CE . CE &quot;&quot; ~~ ~ Im

Fig. 232.

Multiplying together these last two equations, we obtain

BD.BD f

BF. BF
~
QE.QE

that is to say :

If through any point Q there le drawn in given directions two

transversals to cut a conic in P, P and E
,
E respectively, then the

rectangles QP . QP and QE . QE are to one another in a constant

ratio *~\.

*
APOLLONIUS, loc. cit., lib. iii. 16-23; DESARGUES, loc. cit., p. 202

;
DE LA

HIRE, loc. cit., bk. v. props. 10, 12.

f From this follows at once the result already proved in a different manner in

Art. 316, viz. that if a conic is cut by a circle, the chords of intersection make

equal angles with the axes.

For let P, P , E, E be the points of intersection of a circle with the conic;

then (Euc. iii. 35) QP . QP = Q,E . QE . But ifMCM ,
NCN be the diameters

of the conic parallel respectively to QPP and QEE ,
we have, by the theorem

in the text,

QP . QP : QE . QE = CM. CM : CN. CN
= CM 2

: CN 2
.

Therefore CM = CN, and consequently CM and CN (and therefore also QPP
and QEE ) make equal angles with the axes.
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388. Suppose in equation (5) of Art. 387 that the conic is a

hyperbola and that in place of EC is taken an asymptote HK
of the curve; then the ratio HD . HD : KD . KD becomes

equal to unity, and therefore

HF.HF =
that is to say:

If through any point H (or H ) lying on an asymptote there ~be

draivn, parallel to a given straight line, a transversal to cut a hyper
bola in two points F and F (D and ])

},
then the rectangle

HF. HF (II D .H D ) contained by the intercepts will be constant.

If the diameter parallel to the given direction H D meets

the curve, then if 8 and 8 are the points where it meets it,

and if is the centre,;

H D . H l) = OS. OS = - OS2
.

If the diameter OT parallel to the given direction HF does

not meet the curve, a tangent can be drawn which shall be

parallel to it. The square on the portion of this tangent

intercepted between its point of contact and the asymptote
will be equal to the rectangle HF . HF by the theorem now
under consideration; but this portion is (Art. 303) equal to

the parallel semidiameter OT-, therefore HF. HF = OT2
, or:

If a transversal cut a hyperbola in F and F (in D and D
)

and an asymptote in H (in //
),

the rectangle HF.HF
f

(H D.H D
)

is equal to + the square on the parallel semidiameter OT (OS) ;
the

positive or negative sign being taken according as the curve has or

has not tangents parallel to the transversal.

389. If the transversal cuts the other asymptote in L

(inZ ),
then by Art. 193

HF = FL or H D = EL
,

and consequently

FII. FL = - OT2 or DH .DL = OS2

therefore :

If a transversal drawn from any point F (D] on a hyperbola

cut the asymptotes in H and L (in H and L
),

the rectangle

FH.FL (DH .Dlf) is equal to + the square on the parallel

semidiameter ; the negative or positive sign being taken according as

the curve has or has not tangents parallel to the transversal.
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390. From the proposition of the last Article may be deduced a

construction for the axes of a hyperbola, having given a pair ofconjugate
semidiameters OF and OT in magnitude and direction (Fig. 233).
We first construct the asymptotes. Of the two given semidiameters,

let OF be the one which cuts the curve.

Draw through F a parallel to OT] this

will be the tangent at F. Take on this

parallel FP and FQ each equal to OT;
then OP and OQ will be the asymptotes

(Art. 304). In order now to obtain the

directions of the axes, we have only to

find the bisectors of the angle included

by the asymptotes, or, in other words, the

two perpendicular rays OX , Y which ^
are conjugate to one another in the in

volution of which OP and OQ are the double rays (Arts. 296, 297).

To determine the lengths of the axes, draw through F a parallel

to OX, and let it cut the asymptotes in B and J3
;
and on OX take

OS the mean proportional between FB and FB . Then will OS be

the length of the semiaxis in the direction OX ; and OX will or will

not cut the curve according as the segments FB ,
FB have or have

not the same direction. Again, construct the parallelogram of which

OS is one side, which has an adjacent side along OY, and one

diagonal along an asymptote ;
its side OR will be the length of the

semiaxis in the direction OY (Art. 304).

391. In the plane of a triangle ABC take any two points and

;
if OA

,
OB . OC meet the respectively opposite sides BC, GA

,
AB

of the triangle in D, E, F, Ceva s theorem (Art. 137) gives

BD
CE_

AF
__

CD AE BF~~

Similarly, if O A
,
O B

,
O G meet the respectively opposite sides in

/&amp;gt;

,
E

t
Ff

,
then

BD CE AF _
CD AEf BFf

~

If these equations be multiplied together, equation (1) of Art, 385

is obtained
;
therefore :

Iffrom any two points the vertices of a triangle are projected upon
the respectively opposite sides, the six points so obtained lie on a conic.

For example, the middle points of the sides of a triangle and the

feet of the perpendiculars from the vertices on the opposite sides

are six points on a conic *.

* This conic is a circle (the nine-point circle). See STEINEE, Annales de Mathe-

matiques (Montpellier, 1828), vol. xix. p. 42 ;
or his Collected Works, vol. i. p. 195.
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392. PROBLEM. To construct a conic which shall pass through three

given points A
,
B

, C, and with regard to which the pairs of corre

sponding points of an involution lying on a given straight line u shall

be conjugate points.

Let AB and AC (Fig. 234) be joined, and let them meet u in D
and E. Let the points corresponding in the involution to T) and E
respectively be D and E 1

let D&quot; be the harmonic conjugate of D

Fig- 234-

with respect to A and B, and let E&quot; be the harmonic conjugate of

E with respect to A and (7. Thus D will be conjugate (with respect

to the required conic) both to D and to D&quot;
,
and therefore D D&quot;

will be the polar of D. So too E E&quot; will be the polar of E.

Join BE
, CD, and let them cut E E&quot; and !&amp;gt; D&quot; in E

Q
and D

respectively ;
then E

Q
will be conjugate to E and J9 to D. If then

two points B ,C
r be found such that the ranges BB EE

Q
and

CC DD
Q
are harmonic, they will both belong to the required conic.

In the figure, F and
f&quot;,

G and G are the pairs of points which

determine on u the involution of conjugate points.

393. PROBLEM. To construct a

conic which shall pass through four

given points Q ,
R

, S ,
T and shall

divide harmonically a given seg

ment MN (Fig. 235).

Let the pairs of opposite sides

of the quadrangle QRST meet the

straight line MN in A and A
,

B and B . If the required conic

cuts MN, the two points of inter

section will be a pair of the invo

lution determined by A and A
,

B and B (Art. 183). If then the

Fig- 235-
involution of which M and N are

the double points and the involution

determined by the pairs of points A and A
,
B and B have a pair

P and P in common, the required conic will pass through each of

the points P and P (Arts. 125, 208).
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In order to construct these points, describe any circle (Art. 208)
and from any point on it project the points A ,

A
,
B

,
E f

,
M

,
N

upon the circumference, and let A lt A^, Bl , Bf, Ml , N^ be their

respective projections. If the chords A
1
A

1

/ and B^B meet in F, and

the tangents at M^ and N^ meet in U, all straight lines passing

through U determine on the circumference, and consequently (by

projection from 0) on the straight line MN, pairs of conjugate points
of the first involution, and the same is true, with regard to the

second involution, of straight lines passing through F. If the straight

line UV meets the circle in two points Pl
and P/, let these be joined

to
,
the joining lines will cut MN in the required points P and P .

Let W be the pole of UV with respect to the circle. Every

straight line passing through W and cutting the circle determines

on it two points which are harmonically conjugate with regard to

P
1
and Pf ;

and these points, when projected from on MN, will

give two points which are harmonically conjugate with regard to

P and P
,
and which are therefore conjugate to one another with

respect to the required conic. If then UV does not cut the circle, so

that the points P and P f
cannot be constructed, draw through W

two straight lines cutting the circle, and project the points of inter

section from the centre upon the straight line MN
;

this will give
two pairs of points which will determine the involution on MN of

conjugate points with respect to the conic. The problem therefore

reduces to that treated of in the preceding Article.

394. PEOBLEM. To construct a conic which shall pass througJi

four given points Q ,
R

,
/S

, T, and through two conjugate points

(which are not given) of a known involution lying on a straight line u.

This problem is similar to the preceding one
;

since it amounts

to constructing the pair of conjugate points common to the given
involution and to that determined on u by the pairs of opposite

sides of the quadrangle QRST (Art. 183).

Such a common pair will always exist when the given involution

has no double points ;
and the two points composing it will both lie

on the required conic. If the given involution has two double points
M and N, the present problem becomes identical with that of

Art. 393.

The problem clearly admits of only one solution, and the same is

the case with regard to those of the two preceding Articles.

395. Consider a hyperbola whose asymptotes are perpen
dicular to one another, and to which, on this account, is given
the name of rectangular hyperbola (Fig. 236). Since the

asymptotes are harmonically conjugate with regard to

any pair of conjugate diameters (Art. 296), they will in
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this case be the bisectors of the angle included between

any such pair (Art. 60). But the parallelogram described

on two conjugate semidiameters as adjacent sides has its

diagonals parallel to the asymptotes (Art. 304); in this case

therefore every such parallelogram is a rhombus
;
that is, every

diameter is equal in length to its

conjugate. On account of this

property the rectangular hyper
bola is also called equilateral*.

I. Since the chords joining the

extremities P and P of any
diameter to any point M on the

curve are parallel to a pair of

conjugate diameters (Art. 287),
the angles made by PM and

Fig. 336.
P M with either asymptote are

equal in magnitude and of

opposite sign. If the points P and P remain fixed, while M
moves along the curve, the rays PM and P M trace out two

pencils which are oppositely equal to one another (Art. 106).

II. Conversely, the locus of the points of intersection of pairs

of corresponding rays of two oppositely equal pencils is an equilateral

For, in the first place, the locus is a conic, since the two

pencils are protective (Art. 150). Further, the two pencils have

each a pair of rays which include a right angle, and which

are parallel respectively to the corresponding rays of the other

pencil (Art. 106) ;
the conic has thus two points at infinity

lying in directions at right angles to one another, and is there

fore an equilateral hyperbola. It will be seen moreover that the

centres P and P r
of the two pencils are the extremities of a

diameter. For the tangent p at P is the ray corresponding to

P P regarded as a ray p of the second pencil, and the tangent

q at P is the ray corresponding to PP regarded as a ray q

of the first pencil (Art. 150) ;
but the angles pq and p q must

be equal and opposite ; therefore, since j/ and q coincide,

p and (f must be parallel to one another.

III. The angular points of a triangle ABC and its ortho-

centre (centre of perpendiculars) D are the vertices of a

*
APOLLONIUS, loc. cit., vii. 21

;
DE LA HIKE, loc. cit., book v. prop. 13.
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complete quadrangle in which each side is perpendicular to

the one opposite to it, and whose six sides determine on the

straight line at infinity three pairs of points subtending each

a right angle at any arbitrary point S. The three pairs of rays
formed by joining these points to S belong therefore to an in

volution in which every ray is perpendicular to its conjugate

(Arts. 131 left, 124, 207).

But this involution of rays projects from S the involution

of points which, in accordance with Desargues theorem, is

determined on the straight line at infinity by the pairs of

opposite sides of the quadrangle and by the conies (hyper
bolas *) circumscribed about it. The pairs of conjugate rays
therefore of the first involution give the directions of the

asymptotes of these conies
;
thus :

If a conic pass through the angular points of a triangle and

through the orthocentre, it must be an equilateral hyperbola f .

IV. Conversely, if an equilateral hyperbola be drawn to

pass through the vertices A
,
B

,
C of a triangle, it will pass

also through the orthocentre D. For imagine another hyper
bola which is determined (Art. 162, I) by the four points

A, , C, D and by one of the points at infinity on the given

hyperbola. This new hyperbola will be an equilateral one by
the foregoing theorem, and will consequently pass through the

second point at infinity on the given curve ;
and since the

two hyperbolas thus have five points in common (A,B,C, and
two at infinity) they must be identical; which proves the

proposition. Therefore :

If a triangle be inscribed in an equilateral hyperbola, its ortho-

centre is a point on the curve.

V. If the point D approach indefinitely near to A, i.e. ifBAC
becomes a right angle, we have the following proposition :

If EFG (Fig. 236) is a triangle, right-angled at fi, which is

* No ellipse or parabola can be circumscribed about the quadrangle here con

sidered (Art. 219).

t This may be deduced directly from Pascal s theorem. For let a conic be

drawn through A, B , C, Z&amp;gt;,
and let Jx and I2 be the points where it meets the

line at infinity. Since A^BCDI^I^ is a hexagon inscribed in a conic, the inter

sections of AB and DI1} of BC and 1^ ,
and of CD and I2A , are three collinear

points. Therefore the straight line joining the point in which DIl
meets AB

to that in which AI2 meets CD must be parallel to BC. Thus AI2 must be at

right angles to DI1} and as these lines are parallel to the asymptotes of the conic

the latter is a rectangular hyperbola.
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inscribed in an equilateral hyperbola, the tangent at TZ is perpendicular

to the hypotenuse FG.

VI. Through four given points Q, R, S, T can be drawn only
one equilateral hyperbola (Art. 394). The orthocentre of each

of the triangles QRS , RST, STQ , QRT lies on the curve*.

VII. Given four tangents to an equilateral hyperbola, to construct

the curve.

Since the diagonal triangle of the quadrilateral formed by the

four tangents is self-conjugate with respect to the hyperbola,
the centre of the latter will lie on the circle circumscribing

this triangle (Art. 370, II). But the centre of the hyperbola
lies also on the straight line which joins the middle points of

the diagonals of the quadrilateral (Art. 318, II). Either of the

points of intersection of this straight line with the circle will

therefore give the centre of an equilateral hyperbola satisfying

the problem ;
there are therefore two solutions. For another

method of solution see Art. 372.

VIII. The polar reciprocal of any conic with respect to a circle K
having its centre on the director circle is an equilateral hyperbola.

For since the tangents to the conic from the centre of the

circle K are mutually perpendicular, the conic which is the

polar reciprocal of the given one must cut the straight line at

infinity in two points subtending a right angle at 0. That is

to say, it must be an equilateral hyperbola.

396. Suppose given a conic, a point S, and its polar s
;
and let a

straight line passing through S cut the conic in A and A . Let the

figure be constructed which is homological with the given conic,

S being taken as centre of homology, s as axis of honiology, and A
,
A

as a pair of corresponding points. Then every other point B which

corresponds to a point B on the conic will lie on the conic itself.

For if AB meets the axis s in P, then B&amp;gt;
,
the point of intersection of

SB and A P,i& likewise a point on the conic (Art. 250). The curve

homological with the given conic will therefore be the conic itself.

Any two corresponding points (or straight lines) are separated har

monically by S and s
;
this is, in fact, the case of harmonic homology

(Arts. 76, 298).

To the straight line at infinity will therefore correspond the

* These theorems are due to BEIANCHON and PONCELET ; they were enunciated

in a memoir published in vol. xi. of the Annales de MatUmatiques (Montpellier,

1821), and were given again in vol. ii. (p. 504) of PONCELET S Applications

d?Analyse et de Giomitrie (Paris, 1864).
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(a)
(6)

s

\

1C)

straight line j which is parallel to s and which lies midway between
S and s

; and the points in which j meets the conic will correspond
to the points at infinity on the same conic.

From this may be derived a very simple method of determining
whether a given arc of a conic, however small, belongs to an ellipse, a

parabola, or a hyperbola.

Draw a chord s joining any two points in the arc
; construct its

pole S, and draw a straight line

j parallel to s and equidistant
from S and 5. If j does not cut

the arc, the latter is part of an

ellipse (Fig. 237 a). If j touches

the arc at a point J, the arc belongs
to a parabola of which SJ is a

diameter (Fig. 2376). If, finally,

j cuts the arc in two points Jl ,
7
2

(Fig. 2370), the arc will be part
of a hyperbola whose asymptotes
are parallel to SJ^ and SJ

Z
*.

397. PEOBLEM. Given a tangent Fi 237
to a conic, its point of contact, and
the position (but not the magnitude) of a pair of conjugate diameters ;

to construct the conic (Fig. 238).

Suppose the point of intersection of the given diameters, and
P and Q the points in which they are cut by the given tangent.

Through the point of contact M of this tangent draw parallels to

OQ ,
OP to meet OP

, OQ in P and Q
f

respectively. Since the

polar ofM (the tangent) passes through P, the polar of P will pass

(b)

Q B_

Fig. 238.

through M; and since the polar of P is parallel to OQ, it must be

MPf

;
therefore P and P are conjugate points.

If now points A and A be taken on OP such that OA and OA m&y
each be equal to the mean proportional between OP and OP

,
then

AA will be equal in length to the diameter in the direction OP
(Art. 290). In the same way the length of the other diameter BB
will be found by making OB and OB each equal to the mean pro

portional between OQ and OQ .

* PONCELET, loc. cit.
t Arts. 225, 226.

U
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If the points P and Pf
fall on the same side of 0, the involution

of conjugate points has a pair of double points A and A (Art. 128) ;

that is to say, the diameter OP meets the curve. If, on the other

hand, P and P lie on opposite sides of 0, the involution has no

double points, and the diameter OP does not meet the curve. In

this case A and A are two conjugate points lying at equal distances

from 0. The figure shows two cases : that of the ellipse (a) and that

of the hyperbola (b).

398. PKOBLEM. Given a point M on a conic and the positions of

two pairs of conjugate diameters a and of
,
b and b

f

,
to construct the

conic.

I. First solution (Fig. 239). Through M draw chords parallel to

each diameter, and such that their middle points lie on the respec

tively conjugate diameters. The other extremities A
,
A

,
B

,
B of

Mo-=sri -_scH

rig. 239.

the four chords so drawn will be four points all of which lie on the

required conic.

II. Second solution (Fig. 240). Denoting the diameter MOM by

c, if the ray &amp;lt;/ be constructed which is conjugate to c in the in

volution determined by the pairs of rays a and a
,
b and b

,
then c

will be the diameter conjugate to c (Art. 296). Through M draw

MP parallel to a, and through M draw M P parallel to of
;
these

parallels will intersect on the conic (Art. 288) ;
let them cut c in P

and P respectively. These last two points are conjugate with re

spect to the conic (Art. 299) ;
thus if on c two other points be found

which correspond to one another in the involution determined by the

pair P, P and the central point (9, then MQ and M Q will intersect

on the conic. If then on c two points N and N be taken such that

the distance of either of them from is a mean proportional be

tween OP and OP
, they will be the extremities of the diameter c

(Art. 290).

III. Third solution. Through the extremities M and M of the

diameter which passes through the given point draw parallels to a

and a j they will meet in a point A lying on the conic. Through
the same points draw parallels to b and V ;

these will meet in another

point B also lying on the conic (Art. 288). Produce AO to A
,
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making OA equal to AO
;
and similarly BO to B

, making OB equal
to BO ;

then will A and B be points also lying on the required conic

(Art. 281).

399. PROBLEM. Given in position two pairs of conjugate diameters

a and a
,
b and V of a conic, and a tangent t, to construct the conic.

I. First solution (Fig. 241). Let

be the point of intersection of the

given diameters, that is, the centre

of the conic. Draw parallel to t and

at a distance from equal to that

at which t lies, a straight line t
;
this

will be the tangent parallel to t. Let

the points of intersection of t and t

Fig. 241.

with a and of be joined ;
this will give two other parallel tangents

u and u (Art. 288). Another pair of parallel tangents v and v will

be obtained by joining the points where t and t meet b and b .

II. Second solution. The conjugate diameters a and a
,
b and b

,

will meet t in two pairs of points A and A
,
B and B f which deter

mine an involution whose centre is the point of contact of t (Art. 302).
The problem therefore reduces to one already solved (Art. 397). If

the involution has double points, the straight lines joining these points
to will be the asymptotes.

400. PROBLEM. Given two points M and N on a conic and the

position of a pair of conjugate diameters a and a
,

to construct the

conic (Fig. 242).

Let M/ and N be the other extremities of the diameters passing

through M and N. Through M and J/ draw MH
,
MH parallel to

a and a respectively ; similarly, through N and Nf draw NK
,
NK

parallel to a and a respectively. The points H and K will lie on

the required conic.

Fig. 242. Fig. 243.

401. PROBLEM. Given two tangents m and n to a conic, and the

position of a pair of conjugate diameters a and a
,

to construct the

conic (Fig. 243).

Draw the straight lines mf and n parallel respectively to m and n,

and at distances from the centre equal respectively to those at

which m and n lie
;
then m will be the tangent parallel to m, and n

U 2
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the tangent parallel to n. Join the points where m and m meet a and

of by the straight lines t and *
,
and the points where n and n meet

a and a by the straight lines u and u . The four straight lines

t
,

t
,
u

,
i/ will all be tangents to the required conic (Art. 288).

402. PROBLEM. Given five points on a conic, to construct a pair of

conjugate diameters which shall make with one another a given angle *.

Construct first a diameter AA of the conic (Art. 285) ;
and on it

describe a segment of a circle containing an angle equal to the given
one. Find the points in which the circle of which this segment is a

part cuts the conic again (Art. 227) ;
ifM is one of these points, AM

and A M will be parallel to a pair of conjugate diameters. Since

then AMA is equal to the given angle, the problem will be solved by

drawing the diameters parallel to AM and A M.

If the segment described is a semicircle, this construction gives

the axes.

403. PROBLEM. To construct a conic with respect to which a given

triangle EFG shall be self-conjugate, and a given point P shall be the

pole of a given straight line p t.

Let p meet FG in A. The polar of A will pass through E the

pole of FG, and through P the pole of
/;, and will therefore be

EP. Similarly FP ,
GP will be the polars of the points B ,

in

which p is cut by GE
,
EF respectively. Let A be the point in

which FG intersects EP
;
then F and G, A and A

,
are two pairs

of conjugate points with respect to the conic, and if the involution

which they determine has a pair of double points L and L
,
these points

will lie on the required conic (Art. 264). The same construction may
be repeated in the case of the other two sides of the triangle EFG.

If the point P lies within the triangle EFG, the points A t
B

,
C&quot;

lie upon the sides FG
,
GE

,
EF respectively (not produced I). The

straight line p may cut two of the sides of the triangle, or it may lie

entirely outside the triangle. In the first case the involutions lying

on the two sides of the triangle which are cut by p are both of the

non-overlapping (hyperbolic) kind, and therefore each possesses double

points (Art. 128); these give four points of the required curve, and

the problem reduces to that of describing a conic passing through four

given points and with respect to which two other given points are

conjugates (Art. 393). In the second case, on the other hand, the

pairs of conjugate points on each of the sides of the triangle EFG
overlap, and the involutions have no double points (Art. 128); in

* DE LA HIRE, loc. cit., book ii. prop. 38.

t STAUDT, Geometrie der Lage, Art. 237.

J We shall say that a point A lies on the side FCr of the triangle, when it lies

between .Fand G
;
and that a straight line cuts the side FCr, when its point of

intersection with FG lies between JPand G.
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this case the conic does not cut any of the sides of the self-

conjugate triangle ; therefore (Art. 262) it does not exist.

If the point P lies outside the triangle, one only of the three

points A ,
B

,
Cf

lies on the corresponding side; the two others lie

on the respective sides produced. If these two other sides are cut by
p, none of the involutions possesses double points, and the conic does

not exist. If, on the other hand, p cuts the first side, or if p lies

entirely outside the triangle, the conic exists, and may be constructed

as above.

In all cases, whether the conic has a real existence or not, the

polar system (Art. 339) exists. It is determined by the self-conjugate

triangle EFG, the point P, and the straight line p. To construct

this system is a problem of the first degree, while the construction of

the conic is a problem of the second degree.

404. PROBLEM. Given a pentagon ABODE, to describe a conic with

regard to which each vertex shall be the pole of the opposite side *.

Let J^be the point of intersection of AB and CD. If the conic

K be constructed (Art. 403) with regard to which ADF is a self-

conjugate triangle and E the pole of EG, then the points B and C in

which BC is cut by AF and DF respectively will be the poles of ED
and JEA, the straight lines which join E to the points D and A

respectively. Every vertex of the pentagon will therefore be the

pole of the opposite side
; that is, K will be the conic required.

If the conic C be constructed which passes through the five vertices

of the pentagon, and also the conic C which touches the five sides

of the pentagon (Art. 152), these two conies will be polar reciprocals

one of the other with respect to K (Art. 322).

405. PKOBLEM. Given Jive points A
,
B

,
C

,
D

,
E (no three of

which are collinear), to determine

a point M such that the pencil

M(ABODE) shall be protective with

a given pencil abcde (Fig. 244).

Through D draw two straight

lines DD
t
DE such that the pencil

D (ABCD E )
is protective with

abcde (Art. 84, right). Construct

the point E in which DE meets Fig. 244.

the conic which passes through the

four points ABCD and touches DD at D (Art. 165) ;
then construct

the point M in which the same conic meets EE . M will be the

point required. For since M, A, B, 0, D ,
Ef

lie on the same conic,

the pencil M (ABODE )
is projective with the pencil D (ABCD E ),

* STAUDT, loc. cit., Arts. 238, 258.
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which by construction is projective with the given pencil dbcde.

Since then ME and ME are the same ray, the problem is solved.

As an exercise may be solved the correlative problem, viz.

Given Jive straight lines a,b, c,d, e, no three of which are con

current, to drayj a straight line m to meet them infive points forming
a range projective with a given range ABODE *.

406. PROBLEM. To trisect a given arc AB of a circle t.

On the given arc take (Fig. 245) a point A7
,
and from B measure

in the opposite direction to AN an arc BN equal to twice the arc

AN. HBT be the tangent at B, and if be the centre of the circle

Fig. 245.

of which the arc AB is a part, the angles AON and TBN are equal
and oppo&ite. If N and N vary their positions simultaneously, the

rays ON and BN will describe two oppositely equal pencils, and the

locus of their point of intersection M will therefore (Art. 395, II) be

an equilateral hyperbola passing through and B. The asymptotes
of this hyperbola are parallel to the bisectors of the angle made by
AO and BT with one another; for these straight lines are correspond

ing rays (being the positions of the variable rays ON and BN for

which the arcs AN and BN are each zero). The centre of the

hyperbola is the middle point of the straight line OB which joins the

centres of the two pencils.

The hyperbola having been constructed by help of Pascal s theorem,

the point P will have been found in which it cuts the arc AB. Two

corresponding points N and N coalesce in this point ;
therefore

the arc AP is half of the arc PB
,
and P is that point of trisection

of the arc AB which is the nearer to A.

The hyperbola meets the circle in two other points R and Q. The

point R is one of the points of trisection of the arc which together
*
STAUDT, loc. cit. Art. 263.

f STAUDT, Beitriiye, Art. 432 ; CHASLES, Sections coniqnes, Art. 37.
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with AB makes up a semicircle; and the point Q is one of the points
of trisection of the arc which together with AB makes up the circum

ference of the circle.

407. It has been seen (Art. 191) that if P
, P&quot;, Q , Q&quot; (Fig. 246)

are four given collinear points, and if any conic be described to pass

through P and P&quot;, and then a tangent be drawn to this conic from

Q
/ and another from

Q&quot;,
the chord joining the points of contact

of these tangents passes through one of the double points M ,
N of

the involution which is determined by the two pairs of points

P / and P&quot;, Q
f and Q&quot;. The two tangents which can be drawn from

Q ,
combined with the two from

Q&quot;, give four such chords of contact,

of which two pass through M and two through N . From this may

be deduced a construction for the double points of the involution

P P&quot;, Q Q&quot; , or, what is the same thing (Art. 125), for the two

points M ,
N which divide each of the two given segments P P&quot;

and Q Q&quot; harmonically.

Describe any circle to pass through P
f
and P&quot;, and draw to it from

Q the tangents t
f and u

,
and from Q&quot;

the tangents t&quot; and u&quot; . The

chord of contact of the tangents t and t&quot; and that of the tangents u

and u&quot; will cut the btraight line P f
P&quot; in the two required points

M and N .

408. This construction has been applied by BKIANCHON * to the

solution of the two problems considered in Art. 221, viz.

I. To construct a conic of which two points P
,

P&quot; and three

tangents q, q , q&quot;
are given.

Join P P&quot;, and let it cut the three given tangents in Q , Q , Q&quot;

respectively (Fig. 246). Describe any circle through P
,

P&quot; and

draw to it tangents from Q , Q , Q&quot;. The chords which join the

points of contact of the tangents from
Q&quot;

to the points of contact of

the tangents from Q meet P P&quot; in two points M and N ;
and simi

larly the tangents from
Q&quot;

combined with those from Q determine

two points M and N .

The chord of contact of the tangents q , q&quot;
to the required conic

will therefore pass through one of the points M , N, and that of the

* BRIANCHON, loc. cit., pp. 47, 51.
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tangents q , q&quot;
will pass through one of the points M ,

N . The
four combinations MM

,
MN

,
NM

,
NN give the four solutions of

the problem.
The problem therefore reduces to the following : To describe a conic

which shall touch three given straight lines q,q ,q&quot;
in such a way that

the chords of contact of the two pairs of tangents q , q&quot;
and q , q&quot;

shall

pass respectively through two given pointsM andM . Let QQ Q&quot; (Fig.

247) denote the triangle formed by the

three given tangents, and let A, A
,

A&quot;

be the points of contact to be deter

mined. By a corollary to Desargues
theorem (Art. 194), the side q

= Q Q&quot;

is divided harmonically at the point of

~q A- ^&quot;
contact A and at the point where it is

Fig. 247.
cut bv the chord A A&quot;- If these four

harmonic points be projected on MQ&quot;

from A&quot; as centre, it follows that the segment RQ&quot; intercepted on

MQ&quot; between
q&quot;

and q is divided harmonically by M and the
chord A A&quot;.

Let then MQ&quot; be joined; it will cut
q&quot;

in some point R-, and
let the point V be determined which is harmonically conjugate toM with regard to R and

Q&quot;. In order to do this, draw through M
any straight line to cut

q&quot;
and q in S and T respectively; join

SQ&quot; and TR, meeting in U
&quot;;

and join QU, meeting RQ&quot; in V.

Join VM
;

it will meet q and
q&quot;

in A and
A&quot;; and finally if

MA&quot; be joined, it will cut Q Q&quot; in A.

II. To construct a conic of which three points P, P ,
P&quot; and two

tangents q , q are, given.

Join PP
,
and let it meet q and q in Q and Q respectively; join

PP&quot;, and let it meet q and q in R and R respectively. Describe
a circle round PP

P&quot;,
and to it draw tangents from, Q arid Q ;

the

chords of contact will meet PP in two points M and N. Similarly
draw the tangents from R and R

;
the chords of contact will meet

PP&quot; in two other points M and N . Then each of the straight lines

MN
,
NN

,
M N

,
MM will meet the tangents q and q in two of

the points of contact of these two tangents with a conic circumscribing
the triangle PP P&quot;.

This construction differs from that given in Art. 221 (left) only in

the method of finding the double points M and N, M and N .

409. THEOREM. // two angles AOS and AO S of given magnitude
turn about their respective vertices and in such a way that the

point of intersection S of one pair of arms lies always on a fixed

straight line u, the point of intersection of the other pair of arms will

describe a conic (Fig. 248).
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Fig. 248.

The proof follows at once from the property that the pencils

traced out by the variable rays OA
and 08,08 and 8

,
O S and O A

are protective two and two (Arts.

42, 108), and that consequently the

pencils traced out by OA and O l A
are projective. This theorem is due

to NEWTON, and was given by him

under the title of The Organic De

scription of a conic *.

410. The following, which depend
on the foregoing theorem, may serve

as exercises to the student :

1. Deduce a construction for a

conic passing through five given points , ,
A

,
B

, C.

2. Given these five points, determine the magnitude of the angles
AOS

,
AO S and the position of the straight line u in order that the

conic generated may pass through the five given points.

3. On the straight line 00 / which joins the vertices of the two

given angles a segment of a circle is described containing an angle

equal to the difference between four right angles and the sum of the

given angles. Show that according as the circle of which this segment
is a part cuts, does not cut, or touches the straight line u, so the conic

generated will be a hyperbola, an ellipse, or a parabola.

4. Determine the asymptotes of the conic, supposing it to be a

hyperbola ;
or its axis, in the case where it is a parabola.

5. When is the conic (a) a circle, (b) an equilateral hyperbola,

(c) a pair of straight lines ?

6. Examine the cases in which the two given angles are directly

equal, or oppositely equal, or supple

mentary t.

411. THEOEEM. If a variable triangle

AMA move in such a way that its sides turn

severally round three given points , ,
S

(Fig. 249) while two of its vertices A
,
A slide

along two fixed straight lines u
,
u respec

tively, the locus of the third vertex M is a

conic passing through the following five points,

viz. 0,0 ,
uu

,
and the intersections B and C /

of u and uf
with O S

and OS respectively J.

*
Principia, lib. i. lemma xxi

;
Enumeratio linearum tertii ordinis (Opticks,

1704), p. 158, xxxi.

t MACLAURIN, Geometria Organica (London, 1720), sect. i. prop. 2.

t See Art. 1 56.
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412. THEOREM. (The theorem of Art. 411 is a particular case of

this). If a variable polygon move in such a way that its n sides turn

severally round nfixed points 0, , 2 ,
. . . H

(Fig. 250) while ni of its vertices slide

respectively alongni fixed straight lines

u
l ,

u
2 ,

. . . wn_1 ,
then the last vertex will

describe a conic; and the locus ofthe point

of intersection of any pair of non-adjacent
sides will also be a conic *.

The proof of this theorem and its cor

relative is left to the student f.

From two given points A and A f

tangents AB ,
AC

Fig. 250.

413. THEOREM.

and A B
, A C are drawn to a conic ; then will the four points of

contact B
,
C

,
B

,
C f

,
and the two given points A ,

A all lie on a conic

(Fig. 251 t).

Let A C

Fig. 251.

A B meet EC in D and E respectively; these points
will evidently be the poles of AC

,
AB

respectively. The pencil A(BCB C
)

is projective with the range of poles

BCED (Art. 291), and therefore with

the pencil A f

(BCED] or A (BCB C }\

which proves the theorem.

414. THEOREM (correlative to that

of Art. 413). From two given points
A and A tangents AS ,

AC and A B
,

A C are drawn to a conic; then will

the four tangents and the two chords

of contact all touch a conic \.

For (Fig. 251) the range of points

BC (AB , AC, A B ,
A C

)
or BCED is

projective with the pencil A(BC B C
)
formed by their polars; but

this pencil is projective with the range B C (AB ,
A C

,
A B

,
A C

} ;

therefore the six lines AB
, AC, A B

,
A C

,
BC

,
B C all touch

a conic.

415. THEOREM. On each diagonal of a complete quadrilateral is

taken a pair ofpoints dividing it harmonically ; if of these six points

three (one from each diagonal) lie in a straight line, the other three will

also lie in a straight line.

COROLLARY. The middle points of the three diagonals ofa complete

quadrilateral are collinear.

* This theorem is due to MACLAURIN and BRAIKENRIDGE (Phil. Trans.,

London, 1735).

f PONCELET, loc. cit., Art. 502.

CHASLES, Sections coniques, Arts. 213, 214.
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Fig. 252.

416. THEOREM. Iffrom any point on the circle circumscribing
a triangle ABC straight lines OA

,
OB

,
OC be inflected to meet the

sides BC
, CA ,

AB in A
,
B r

,
C respectively, and to make with them

equal angles (both as regards sign
and magnitude) ; then the three

points A
,
B

}
C will be collinear

(Fig. 252).

Through draw OA&quot;, OB&quot;, OC&quot;

parallel to BC
,
CA

,
AB respec

tively; then it is easily seen that

the angles AOA&quot;, BOB&quot;, COG&quot;

have the same bisectors. The same

will therefore be true with regard to the angles AOA ,
BOB

&amp;gt;

COG \

consequently (Art. 142) the arms of these last three angles will form

an involution, and therefore (Art. 135) the points A ,
B f

,
C will be

collinear
*
t.

417. THEOREM. Iffrom the vertices of a triangle circumscribed

about a circle straight lines be inflected to meet any tangent to the

circle, so that the angles they subtend at the centre may be equal

(in sign and magnitude), then the three straight lines will meet in

a point %.

The proof is similar to that of the theorem in the preceding
Article.

418. PROBLEMS. (1). Given three collinear segments AA ,
BB r

,
CC

\

to find a point at which they all subtend equal angles (Art. 109).

In what case can these angles be right angles 1 (See Art.

128).

(2). Given two protective ranges lying on the same straight line
;

to find a point which is harmonically conjugate to a given point on

the line, with respect to the two self-corresponding points of the two

ranges (which last two points are not given) .

(3). Given two pairs of points lying on a straight line
;

to deter

mine on the line a fifth point such that the rectangle contained by its

distances from the points of the first pair shall be to that contained

* CHASLES, loc. cit., Art. 386.

t Otherwise: Since the triangles 00 , COB are similar,

BC \CB = OB-.OC.

So also CA :AC = OC : OA,

and AB -.BA = OA-.OJ3;

whence by multiplication, paying attention to the signs of the segments,

BC .CA .AB =-C A. B C.A B,

which shows (Art. 139) that A
, ,

C are collinear.

t CHASLES, loc. cit., Art. 387.

CHASLES, G-eom. sup., Art. 269.
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by its distances from the points of the second pair in a given
ratio *.

(4). Through a given point to draw a transversal which shall cut
off from two given straight lines two segments (measured from
a fixed point on each line) which shall have a given ratio to one

another; or, the rectangle contained by which shall be equal to
a given onet.

419. It will be a useful exercise for the student to apply the

theory of pole and polar to the solution of problems of the first

and second degree, supposing given a ruler, and a fixed circle and
its centre. We give some examples of problems treated in this

manner :

I. To draw through a given point P a straight line parallel to

a given straight line q.

The pole Q of q and the polar p of P (with respect to the given

circle) must be found; if A be the point where p is cut by the

straight line OQ joining Q to the centre of the circle, then the polar
a of A will be the straight line required.

II. To draw from a given point P a perpendicular to a given straight
line q.

Draw through P a straight line parallel to OQ] it will be the

perpendicular required.

III. To bisect a given segment AB.
Let a and b be the polars of A and B respectively, and c that

diameter of the given circle which passes through ab; if d be the

harmonic conjugate of c with respect to a and b
}
the pole of d will be

the middle point of AB.

IV. To bisect a given arc MN of a circle.

Construct the pole S of the chord MN
;

the diameter passing

through S will cut MN in the middle point of the latter.

V. To bisect a given angle.

If from a point on the circle parallels be drawn to the arms of the

given angle, the problem reduces to the preceding one.

VI. Given a segment AC ; to produce it to B so that AB may be

double of AC.

Let a and c be the polars of A and C respectively, d the diameter

of the given circle which passes through ac, and b the ray which

makes the pencil abed harmonic
; the pole of b will be the required

point B.

* This is the problem
&amp;lt; de sectione determinata of APOLLONIUS. See CHASLES,

Giom. sup., Art. 281.

t These are the problems de eectione rationis and de sectione spatii of

APOLLONIUS. See CHASLES, Giom. sup., Arts. 296, 298.
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VII. To construct the circle whose centre is at a given point U and
whose radius is equal to a given straight line UA.

Produce A U to JB, making UB equal to A U (by VI), and draw

perpendiculars at A and B to AB (by II). Bisect the right angles at

A and B (by V) ;
and let the bisecting lines meet in C and D. We

have then only to construct the conic of which AB and CD are a pair
of conjugate diameters (Art. 301).

420. The following problems* depend for their solution on the

theorem of Art. 376.

I. Given three points A
, B, C on a conic and one focus F, to

construct the conic.

With centre F and any radius describe a circle K, and let the

polars of A
,
B

,
C with respect to this circle be a

,
b

,
c respectively.

Describe a circle touching a
,
b

,
c and take its polar reciprocal with

respect to K
; this will be the conic required.

Since there can be drawn four circles touching a,b,c (the inscribed

circle of the triangle abc and the three escribed circles), there are

four conies which satisfy the problem.
II. Given two points A, B on a conic, one tangent t, and a focus F,

to construct the conic.

Describe a circle E! as in the last problem, and let a, b be the

polars of A
,
B

,
and T the pole of t, with respect to K. Draw a circle

to pass through T and to touch a and b
;
the polar reciprocal of this

circle with respect to K will be the conic required.

Since four circles can be drawn to pass through a given point and

touch two given straight lines, this problem also admits of four

solutions.

III. Given one point A on a conic, two tangents b
, c, and a focus F,

to construct the conic.

Describe a circle K as in the last two problems ;
let a be the polar

of A, and let B
, C be the poles of b

,
c respectively with regard to this

circle. Draw a circle to pass through B and C and to touch a
;

its

polar reciprocal with respect to K will be the conic required.

Since two circles can be described through two given points to

touch a given straight line, this problem admits of two solutions.

IV. Given three tangents a
,
b

,
c to a conic and one focus F, to

construct the conic.

Describe a circle K as in the last three problems, and let A, B, C
be the poles of a

,
b

,
c respectively with regard to this circle. Draw

the circle through A
,
B

,
C and take its polar reciprocal with respect

to K
;

this will be the conic required.

This problem clearly admits of only one solution.

* Solutions of these problems were given by DE LA HIRE (see CHASLES, Aperqu

historique, p. 125), and by NEWTON (Principia, lib. i. props. 19, 20, 21).
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421. PKOBLEM. Given the axes of a conic in position (not in

magnitude) and a pair of conjugate straight lines which cut one
another orthogonally, to construct the foci.

If be the centre of the conic, and P
,
P and Q , Q the points in

which the two conjugate lines respectively cut the axes, then of the
two products OP . OP f and OQ . OQ ,

one will be positive and the

other negative. This determines which of the two given axes is the

one containing the foci. If now a circle be circumscribed about
the triangle formed by the two given conjugate lines and the non-
focal axis, it will cut the focal axis at the foci (Art. 343).

422. The following are left as exercises to the student.

1. Given the axes of a conic in position, and also a tangent and
its point of contact, construct the foci, and determine the lengths of

the axes (Art, 344).

2. Given the focal axis of a conic, the vertices, and one tangent,
construct the foci (Art. 360).

3. Given the tangent at the vertex of a parabola, and two other

tangents, find the focus (Art, 358).
4. Given the axis of a parabola, and a tangent and its point of

contact, find the focus (Art. 346).
5. Given the axis and the focus of a parabola, and one tangent,

construct the parabola by tangents (Arts. 346, 349, 358).
6. The locus of the pole of a given straight line r with respect to

any conic having its foci at two given points is a straight line r

perpendicular to r. The two lines r,r are harmonically separated

by the two foci.

7. The locus of the centre of a circle touching two given circles

consists of two conies having the centres of the given circles for foci.

8. The locus of a point whose distance from a given straight line is

equal to its tangential distance from a given circle consists of two

parabolas.

9. In a central conic any focal chord is proportional to the square
of the parallel diameter.

10. In a parabola, twice the distance of any focal chord from its

pole is a mean proportional between the chord and the parameter.



INDEX.

Affinity, pp. 18, 19.

Angle of constant magnitude turning
round its vertex traces out two

directly equal pencils, 91.
bisection of an, 300.
trisect!on of an, 294.

Angles, two, of given magnitude ; gene
ration of a conic by means of, 297.

Anharmonic ratio defined, 54, 57.
unaltered by projection, 54.
of a harmonic form is I, 57.
cannot have the values + I, o, or oo

,

62.

of four points or tangents of a conic,
122.

Anharmonic ratios, the six, 60, 61.

Apollonius, x, xi, xii.

on the parabola, 127, 218.

on the hyperbola, 130, 142, 156,

158, 286.

on the diameters of a conic, 217, 223,

230, 232, 234, 235.
on focal properties of a conic, 253,

258, 259, 262.

section-problems, 300.
Arc of a conic, determination of kind

of conic to which it belongs, 289.
of a circle, trisection of, 294.
of a circle, bisection of, 300.

Asymptotes, tangents at infinity, 16, 129.
meet in the centre of the conic, 219.
determination of the, given five

points on the conic, 178, 179.

Auxiliary conic, 203, 239, 240.
circle of a conic, 260.

Axes of a conic defined, 227, 228.

case of the parabola, 228.

focal and non-focal, 252.
bisectors of the angle between its

chords of intersection with any
circle, 236, 281.

Axes of a conic, construction of the,

given a pair of conjugate diameters,

.
232, 283.

given five points, 236, 292.
Axis of perspective or homology, 10.

of affinity, 18.

of symmetry, 64.

Bellavitis, xi, 64, 161.

Bisection of a given segment or angle

by means of the ruler only, 300.

Brianchon, x, xi, xii, 124, 125.
Brianchon s theorem, xi, 124.

points, the sixty, 126.

Carnot s theorem, xi, 279, 280.

Centre of projection, I, 3.

of perspective or homology, 10, 12,

9?. . .

of simil itude, 1 8 .

of symmetry, 64.
of an involution, 102.

Centre of a conic, the pole of the line at

infinity, 218.

bisects all chorda, 219.
the point of intersection of the

asymptotes, 219.
when external and when internal to

the conic, 219.
locus of, given four tangents, 237.
construction of the, given five points,

220.

construction of the, given five tan

gents, 238.

Ceva, theorem of six segments, in.
Chasles, xi, xii.

on homography, 34.
method of generating conies, 127.
correlative to the theorem ad qua-

tuor lineas, 159.
on the geometric method of false

position, 194.
solutions of problems of the second

degree, 200.

Circle, curve homological with a, 14, 15.

generated by the intersection of two

directly equal pencils, 114.
harmonic points and tangents of a,

115, 116.

fundamental projective properties of

points and tangents of a, 115.
of curvature at a point on a conic,

190.

cutting a conic
;
the chords of inter

section make equal angles with
the axes, 236, 281.

circumscribing triangle formed by
three tangents to a parabola, 253.

auxiliary, of a conic, 260.

Class of a curve, 4.

is equal to the degree of its polar

reciprocal with regard to a conic,

240.
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Coefficient of homology, 63.
Collinear projective ranges, 68.

their self-corresponding points, 78,

9 T
&amp;gt; 9 2

&amp;gt;.93-

construction for these, 170.

Complementary operations, 33.

Concentric pencils, 69.
construction for their self-correspond

ing rays, 169.

Cone, sections of the, 14, 18.

Confocal conies, 266.

Congruent figures, 64.

Conic, homological with a circle, 15, 16.

generated by two projective pencils,

119.

generated as an envelope from two

projective ranges, 120.

determined by five points or five

tangents, 123.
fundamental projective property of

points and tangents, 118.

projective ranges of points and series

of tangents of a, 161.

homological with itself, 228, 288.

polar reciprocal of a, 240.

homological with a given conic, and

having its centre at a given point,

249.
confocal with a given conic, and

passing through a given point, 266.

Conic, construction of a, having given
five points or tangents, 131, 149, 176,

179, 180, 297.
four points and the tangent at one

of them, 137, 177.
three points and the tangents at two

of them, 139, 177.
three tangents and the points of con

tact of two of them, 143, 177.
four tangents and the point of con

tact of one of them, 146, 177.
four points and a tangent, 1 80.

four tangents and a point, 1 80.

three points and two tangents, 182,

296.
three tangents and two points, 182,

295.
the asymptotes and one point or

tangent, 277.
the two foci and one tangent, 264.

the two foci and one point, 265.

one focus and three tangents, 268,

301.
one focus and three points, 301.
one focus, two points and a tangent,

301.
one focus, two tangents and a point,

301.
a pair of conjugate diameters, 220,

231.
a pair of conjugate diameters in posi

tion, and two points or tangents,

291.

a pair of conjugate diameters in posi

tion, and a tangent and its point
of contact, 289.

two pairs of conjugate diameters in

position, and one point or tan

gent, 290, 291.
two reciprocal triangles, 247.
a self-conjugate triangle, and a point

and its polar, 292.
a self-conjugate pentagon, 293.
three points and the osculating circle

at one of them, 190.

Conic, construction of a, homological
with itself, 228, 288.

passing through three points and

determining a known involution

on a given line, 284.

passing through four points and di

viding a given segment harmoni

cally, 284.

passing through four points and

through a pair of conjugate points
of a given involution, 285.

Conies, osculating, 189.

having a common self-conjugate

triangle, 213, 214.

circumscribing the same quadrangle,

150, 214, 237.
inscribed in the same quadrilateral,

150, 213, 214, 237.

Conjugate axis of a hyperbola, 228.

Conjugate diameters, defined, 219.
of a circle cut orthogonally, 222.

form an involution, 227.

parallelogram described on a pair as

adjacent sides is of constant area,
2 34-

sum or difference of squares is con

stant, 235.
construction of, given two pairs, 232.
construction of, given five points on

the conic, 236.

including a given angle, construction

of, 292.

Conjugate lines meeting in a point, one

orthogonal pair can be drawn,

227.

orthogonal, the involution determined

by them on an axis of the conic,

251.

orthogonal, with respect to a para

bola, 253.

Conjugate points and lines with regard
to a conic, 204.

involution-properties of, 209-

Conjugates, harmonic, 46.

in an involution, 101.

Construction of a figure homological
with a given one, 13.

for the fourth element of a harmonic

form, 47.
for the fourth point of a range whose

anharmonic ratio is given, 55.
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of pairs of corresponding elements of

two projective forms, wben three

are given, 70.
for the self-corresponding elements

of two superposed projective forms,

169.
for the sixth element of an involu

tion, 109.
of pairs of elements of an involution,

given two, 104.
for the centre of an involution, 109.
for the double elements of an in

volution, 169, 175, 295.
for the common pair of two super

posed involutions, 173.
for the pole of a line or polar of a

point, 205, 206.

of a triangle self-conjugate to a conic,

207.
of the centre and axes of a conic,

220, 236, 238, 283, 292.
of conjugate diameters, 232, 236, 292.
for diameters of a parabola, having

given four tangents, 238.
for the focus of a parabola, given

four tangents, 254.
for the foci of a conic, given the axes

and a pair of orthogonal conjugate
lines, 302.

Copolar and coaxial triangles, 7, 8.

Correlative figures, 26, 85, 241.

Curvature, circle of, 190.

Degree of a curve, 4.

is equal to the class of its polar reci

procal with respect to a conic, 240.
De la Hire, x, xii.

Desargues, ix, x, xii, 101, 102, 107, 148.
Desarplies theorem, 148.

Descriptive, the term, as distinguished
from metrical, 50.

Diagonal triangle, of a quadrangle or

quadrilateral, 30.
common to the complete quadri

lateral formed by four tangents to

a conic, and the complete quad
rangle formed by their points of

contact, 140.

Diagonals of a complete quadrilateral,
each is cut harmonically by the
other two, 46.

their middle points are collinear,

109, 299.
form a triangle self-conjugate to any

conic inscribed in the quadri
lateral, 208.

if the extremities of two are conju
gate points with regard to a conic,
those of the third are so too, 245.

Diameters of a conic defined, 217,
of a parabola, 218.

conjugate, 219.

ideal, 223.

of a parabola, construction for, given
four tangents, 238.

Dimension of a geometric form, 25.

Directly equal ranges, defined, 88.

generated by the motion of a seg
ment of constant length, 89.

Directly equal pencils, defined, 90.

two, the projection of two concentric

pr&amp;lt; jective pencils, 89.

two, generate a circle by their inter

section, 114.
subtended at a focus of a conic by

the points in which a variable

tangent cuts two fixed ones, 264.
Director circle, defined, 269.

the locus of the intersection of or

thogonal tangents, 269.
cuts orthogonally the circumscribing

circle of any self-conjugate tri

angle, 270.

Directrix, defined, 254.

property of focus and, 256.
Directrix of a parabola, the locus of

the intersection of orthogonal tan

gents, 270.
the locus of the centre of the cir

cumscribing circle of a self-con

jugate triangle, 271.
the locus of the orthocentre of a

circumscribing triangle, 273.
Division of a given bisected segment

into n equal parts, by means of

the ruler only, 97.
Double elements of an involution, 102.

they separate harmonically any pair
of conjugates, 103.

construction for the, 169, 295.

Duality, the principle of, 26-32.

Eccentricity, 259.
of the polar reciprocal of a circle

with respect to another circle, 274.

Ellipse, 1 6.

its centre an internal point, 219.
is cut by all its diameters, 220.

is symmetrical in figure, 228.

Envelope of connectors of correspond

ing points of two projective ranges
is a conic, 120.

if the ranges are similar, it is a para
bola, 128.

of a straight line the product of

whose distances from two given

points is constant, 260.

Equal ranges and pencils, 86-90.

Equianharmonic forms and figures are

proj^ctive, and vice versa, 54, 56,

62, 66.

Equilateral hyperbola, why so called,
286.

triangles self-conjugate with regard
to a, 271.

inscribed in a quadrilateral, 272.
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circumscribing a triangle passes

through the orthocentre, 287.
is the polar reciprocal of a conio with

regard to a point on the director

circle, 288.

construction of, given four tangents,

272, 288.

Euclid, porisms of, x, 96.
External and internal points with re

gard to a conic, 203.

False position, geometrical method of,

194.
Focal axis of a conic, 252.

radii of a point on a conic, 253.

radii, their sum or difference is con

stant, 258.

Foci, defined, 250.
are points such that conjugate lines

meeting in them cut orthogonally,

250.
are internal points lying on an axis,

250.
are the double points of the involu

tion determined on an axis by pairs
of orthogonal conjugate lines, 251.

of a parabob, one at infinity, 253.
of parabolas inscribed in a given

triangle, locus of, 254.

properties of, with regard to tangent
and normal, 259-264.

reciprocation with respect to the,
2 74, J75-

construction of, under various con

ditions, 302.
Focus of a parabola, 253.

inscribed in a given triangle, locus

of, 254.

reciprocal of the curve with regard
to, 275.

Forms, geometric, defined, 22, 164.
elements of, 23, 164.

prime, of one, two, three dimensions,

24.
dual generation of, 23, 24, 26.

projective, 34-38.
harmonic, 39 49.

projective, when in perspective, 67.

projective, superposed, 68, 69.

Gaskin, 189, 269, 271.

Gergonne, x.

Harmonic fonns defined, 39, 40.
forms are projective, 41, 43.

pairs of points necessarily al ternate,45 .

conjugates, 46.

point or ray, construction for the

fourth, 47.

forms, metrical relations, 57, 58.

homology, 64, 228, 288.

points and tangents of a circle, 115,

116, 169.
and oi a conic, 122, 157, 168.

Hesse, theorem relating to the ex
tremities of the diagonals of a

complete quadrilateral, 245.

Hexagon, inscribed in a line-pair, 76.
circumscribed to a point-pair, 76.
inscribed in a conic, 1 24.
circumscribed to a conic, 124.

complete, contains sixty simple hexa

gons, 125.

Homographic, the term, 34.

figures, construction of, 81.

figures may be placed in homology,
84.

Homological figures, construction of,

13-20.
metrical relations between, 63-65.

Homology, defined, 9, 10.

in space, 20.

plane of, 20.

coefficient or parameter of, 63.

harmonic, 64, 228, 288.

Homothetic figures, 18.

Hyperbola, tangent
-
properties of a,

129, 130.
and asymptotes cut by a transversal,

156, 282.

tangent cut off by the asymptotes
is bisected at the point of contact,

158.
centre is an external point, 219.
is cut by one only of every pair of

conjugate diameters, 220.

is symmetrical in figure, 228.

properties of the asymptotes and

conjugate points and lines, 277-

equilateral, 285.

Ideal diameters and chords, 223, 226.

Infinity, points and line at, 5.

line at, a tangent to the parabola, 1 6.

plane at, 21.

Internal and external points with re

gard to a conic, 203.
Intersection of a conic with a straight

line; constructions, 176, J 77 I ^

226.

of two conies
; constructions, 189.

Involution, defined, 101.

the two kinds, elliptic and hyper
bolic, 105, 1 68.

construction for the sixth element of

an, 109.
determined by two pairs of conju

gates IO
4&amp;gt;

I ^5-
of points or tangents of a conic, 165.
construction for the double elements

of an, 169, 295.
formed by cutting a conic by a pencil,

166.

of conjugate points or lines with

regard to a conic, 209.
of conjugate diameters of a conic,

227.
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Involution-properties of the complete

quadrangle and quadrilateral, 107.
of a conic and an inscribed or circum

scribed quadrangle, 148, 225.
of a conic and an inscribed or cir

cumscribed triangle, 152, 157.
of a conic, two tangents, and their

chord of contact, 154.
of conjugate points and lines with

regard to a conic, 209.

Lambert, ix, xi, 96-98.
Latus rectum, 257, 258.
Locus of the centre of perspective of

two figures when one is turned

round the axisof perspective, 12, 98.
of the intersection of corresponding

rays of two projective pencils is a

conic, 119.
ad quatuor lineas, 158.
of middle points of parallel chords

of a conic, 217.
of poles of a straight line with regard

to conies inscribed in a quadri
lateral, 237.

of the centre of a conic, given four

tangents, 237.
of foot of perpendicular from the

focus of a conic on a tangent, 260.

of the intersection of orthogonal

tangents to a conic, 269.

Maclaurin, xi, 127, 141, 185, 297, 298.

Major and minor axes of an ellipse, 228.

Menelaus, theorem on triangle cut by a

transversal, 112, 280.

Metrical, the term, distinguished from

descriptive, 50.

Mobius, theorem on figures in per

spective, 12.

on anharmonic ratio, x, 56, 6l.

Monge, xii.

Newton, locus of centre of a conic in

scribed in a quadrilateral, 238.

organic description of a conic, xi,

297.

Nine-point circle, 283.

Normal, 252.

Oppositely equal pencils, 90.

they generate an equilateral hyper
bola by their intersection, 286.

Oppositely equal ranges, 88.

Organic description of a conic, 297.
Orthocentre of a triangle circumscribing

a parabola lies on the directrix, 273.
of a triangle inscribed in an equi

lateral hyperbola lies on the curve,

287.

Orthogonal projection, 19.

pair of rays in a pencil in involution,

172.

X

pair of conjugate diameters of a

conic, 227.

conjugate lines with respect to a

conic, 251, 252.

Osculating conies, 189.
circle of a conic, 190.

Pappus, x, xii.

on a hexagon inscribed in a line-

pjflr, 76.

porisms of, 95, 96.
fundamental property of the an

harmonic ratios, 54.

problem ad quatuor lineas, 158.
on the focus and directrix property

of a conic, 257.

Parabola, touches the line at infinity,
16.

is determined by four points or tan

gents, 127.
two fixed tangents are cut propor

tionally by the other tangents,
128.

generated as an envelope from two
similar ranges, 128,

diameters of a, 218.

construction of the diameters, having
given four tangents, 238.

focal properties of the, 253, 254.
focus and directrix property, 257.

self-conjugate triangle, property of,

271.
inscribed in a triangle, its directrix

passes through the orthocentre,

273-

Parabola, construction of a, given four

points, 181.

given four tangents, 135.

given three tangents and a point,
182.

under various conditions, 138, 139,

143, 146.

given the axis, the focus, and one

point, 266.

given two tangents, the point of con

tact of one of them, and the

direction of the axis, 278.

given two tangents and their points
of contact, 279.

Parallel lines meet at infinity, 5.

projection, 19.

lines, construction of, with the ruler

only, 96, 300.

Parallelogram, inscribed in or circum

scribed about a conic, 219, 221.

described on a pair of conjugate semi-

diameters of a conic is of constant

area, 234.
Parameter of homology, 63.
Pascal s theorem, xi, 124.

lines, the sixty, 125.

Pencil, flat, defined, 22.

axial, 22.
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harmonic, 40, 42.
in involution, 101.

in involution, orthogonal pair of

rays of a, 172.
cut by a conic in pairs of points

forming an involution, 166.

Pentagon, inscribed in a conic, 136.
circumscribed to a conic, 145.
self-conjugate with regard to a conic,

293.

Perpendiculars, centre of, see Ortho-
centre.

from a focus on tangents to a conic,

the locus of their feet a circle, 259.
from the foci of a conic on a tangent,

their product constant, 260.

from any point of the circumscribing
circle of a triangle to the sides,

their feet collinear, 261, 299.
construction of, with the ruler only,

97, 300.

Perspective, figures in, 3.

triangles in, 7, 8, 246.
forms in, 35.

plane, 10.

relief, 20.

Plane of points or lines, 22.

Planes, harmonic, 42.
involution of, 101.

Points, harmonic, on a straight line, 40.

harmonic, on a circle, 116.

harmonic, on a conic, 122, 157.

projective ranges of, on a conic, 161.

Polar reciprocal curves and figures,

240, 241.
of a conic with respect to a conic is a

conic, 240.
of a circle with respect to a circle,

274.
of a conic with respect to a focus,

274. 275.
of a conic with respect to a point on

the director circle, 288.

Polar system, defined, 248.
determined by two triangles in per

spective, 248.
determined by a self-conjugate tri

angle and a point and its polar, 293.
Pole and polar, defined, 201, 202.

reciprocal property of, 204.

theory of, applied to the solution of

problems, 300.
construction of, 205, 206, 248.

Poles, range of, projective with the

pencil formed by their polars, 209,

224.
of a straight line with regard to all

conies inscribed in the same quadri
lateral lie on a fixed straight line,

337-
.

Polygon, inscribed in a conic, whose
sides pass through fixed points,

151, 185, 187.

circumscribed to a conic, whose ver
tices slide on fixed lines, 152, 186.

whose sides pass through fixed points
and whose vertices lie on fixed

lines, 184.

Poncelet, ix, x, xii.

on variable polygons inscribed in or

circumscribed, to a conic, 151, 184-
187.

on ideal chords, 226.

on polar reciprocal figures, 240.
on triangles inscribed in one conic

and circumscribed about another,

?44-

Porisms, of Euclid and Pappus, 95, 96.
of in- and circumscribed triangle, 94,

244.
of the inscribed and self-conjugate

triangle, 243.
of the circumscribed and self-con

jugate triangle, 243.
Power of a point with respect to a

circle, 58.

Prime-forms, the six, 24.

Problems, solved with ruler only, 96-98.
of the second degree, 176-200.
solved by means of the ruler and a

fixed circle, 194, 300.
solved by polar reciprocation, 301.

Projection, operation of, 2, 22, 164.
central, 3.

orthogonal, 19.

parallel, 19.
of a triad of elements into any other

given triad, 36.
of a quadrangle into any given quad

rangle, 80.

of a plane figure into another plane

figure, 8 1.

Projective forms and figures, 34.

forms, when in perspective, 67.

forms, when harmonic, 69.

ranges, metrical relations of, 62.

forms, construction of, 7O~74-

figures, construction of, 81-84.

plane figures can be put into homo-

logy, 84.

properties of points and tangents of

a circle, 114-117.

properties of points and tangents of

a conic, 118-130.

Projectivity of any two forms ABC
SMdA C , 36.

of two forms ABCD and BADC, 38.

of harmonic forms, 41, 43.
of the anharmonic ratio, 54.
of any two plane quadrangles, 80.

of a range of poles and the pencil
formed by their polars, 209, 224.

Quadrangle, complete, defined, 29.

two plane quadrangles always pro

jective, 80.
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harmonic properties, 39, 47.
involution properties, 107, 225.
inscribed in a conic, 138, 140, 208,

225.
if two pairs of opposite sides are con

jugate lines with regard to a conic,
the third pair is so too, 246.

Quadrangles having the same diagonal

points ;
their eight vertices lie on

a conic or a line-pair, 210.

Quadrilateral, complete, denned, 29.
harmonic properties, 39, 46.
involution properties, 107, 225.
middle points of diagonals are col-

linear, 109, 299.
circumscribed to a conic, 142, 208,

225, 272.
locus of centres of inscribed conies,

237-
theorem of Hesse relating to the ex

tremities of the three diagonals,

245-

Quadrilaterals having the same dia

gonals ;
their eight sides touch a

conic or a point-pair, 212.

Range, denned, 22.

harmonic, 40.

Ranges, projective, on a conic, 161.

Ratio, of similitude, 18.

harmonic, 57.

anharmonic, 54-62.

Reciprocal figures, 85.

points and lines with regard to a

conic, 204.

triangles, two, are in perspective, 246.

Reciprocation, polar, 241.
with respect to a circle, 274, 275.

applied to solution of problems, 301.

Rectangular hyperbola, see Equilateral.
Ruler only, problems solved with, 96-

98.
Ruler and fixed circle, problems solved

by help of the, 194, 300.

Section, operation of, 2, 22, 164.
of a cone, 14, 18.

of a cylinder, 19.

iSegment, dividing two given ones har

monically, 58, 103, 295.
of constant magnitude sliding along

a line generates two directly equal

ranges, 89.

bisected, its division into n equal

parts by aid of the ruler only, 97.

Segments of a straight line, metrical

relations between, 51, 52.

Self-conjugate pentagon with regard to

a conic, 293.

Self-conjugate triangle, 207-209.

circumscribing circle of a, its pro

perties, 271.

Self-conjugate triangles with regard to

a conic, two
; properties of, 242.

Self-corresponding elements, defined, 67.
of two superposed projective forms,

68, 69, 78, 91-93.

general construction for these, 169.
of two coplanar projective figures, 79.
of two projective ranges on or series

of tangents to a conic, 162, 163.

Sheaf, defined, 22.

Signs, rule of, 51.
Similar ranges and pencils, 86, 87,

128.

and similarly placed figures, 18.

Staudt, vi, vii.

on the geometric prime-forms, 24.
on the principle of duality, 26.

on harmonic forms, 39.
on the construction of two projective

figures, 81.

on the polar system, 248.
on an involution of points on a conic,

.

I6 5-
..

Steiner, vii, x, xii.

on the sixty Pascal lines and Brian-

chon points, 125.
on the solution of problems of the

second degree by means of a ruler

and a fixed circle, 194.

Superposed geometric forms, 68, 69.
construction of their self-correspond

ing elements, 169.

plane figures, if projective, cannot

have more than three self-corre

sponding elements, 79.

Supplemental chords, 221.

Symmetry, a special case of homology,

64.

Tangents, harmonic, of a circle, 116,

117.

harmonic, of a conic, 168.

to a conic, series of projective, 163,

164.

orthogonal, to a conic, 269.

to a conic from a given point ;
con

structions, 176, 177, 179, 226.

common, to two conies ;
construc

tions, 190.

Tetragram and Tetrastigm, 29.

Town send, 200.

Transversal, cut by the sides of a tri

angle, 112.

cutting a quadrangle or a quadri

lateral, 107, 108.

cutting a conic and an inscribed

quadrangle, 150.
drawn through a point to cut a

conic; property of the product of

the segments, 281.

cutting a hyperbola and its asymp
totes, 156, 282.

Transverse axis of a hyperbola, 228.
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Triangle, inscribed in one triangle and
circumscribed about another, 94.

inscribed in a conic, 143, 216.

circumscribed to a conic, 144, 216.

inscribed or circumscribed, involu

tion-properties, 152, 157.
self-conjugate with regard to a conic,

207, 270.
circumscribed to a parabola, 253,

2 73-

self-conjugate with regard to a para
bola, 271.

self-conjugate with regard to an

equilateral hyperbola, 271.
cut by a conic, Carnot s theorem,

279.
inscribed in an equilateral

bola, 287.

hyper-

Triangles, two, self-conjugate with re

gard to a conic; properties of, 242.
inscribed in one conic and self-con

jugate to another, 243.
circumscribed to one conic and self-

conjugate to another, 243.
inscribed in one conic and circum

scribed to another, 244.

reciprocal, are in perspective, 246.
formed by two pairs of tangents to a

conic and their chords of contact,

298.
Trisection of an arc of a circle, 294.

Vanishing points and lines, 5.

plane, 21.

Vertex of a conic, 228, 256.
circle of curvature at a, 1 90.

THE END.
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