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PREFACE

AnaLyTIC GEOMETRY is a broader subject than Conic Sections. It is far
more important to the student that he should acquire a good knowledge of the
analytic method, that he should comprehend the generality of its processes, and
learn how to interpret its results, than that he should obtain a detailed knowl-
edge of the properties of any particular set of curves. Furthermore, there is
a certain interrelation, or interdependence, between the various branches of
elementary mathematics. Kxperience in teaching these subjects has convinced
me that, on the ground of expediency alone, this interdependence should be
recognized in the class room. In the study of mathematics, as well as in its
applications, Algebra and Geometry, Analytics and Calculus, are mutually
helpful. Hence these branches should not be studied entirely apart. As all
these branches, or at least more than one, must finally be used in the complete
solution of many problems, there seems to be no good reason why the student
should not be taught to do this as soon as possible.

Tor these reasons a fuller treatment than usnal is given of the general analytic
method before taking up the study of the conic sections, and subjects have been
introduced that are not ordinarily included in text-books on Analytic Geometry.
The method of the Differential Calculns is the only way of studying the slope of
curves, and furnishes the best means for finding the equation of the tangent
and the normal. The graphical method of illustration and the derivative are
indispensable in the study of the Theory of Equations. The use of the Deriva-
tive Curve in the theory of equal roots, together with the fact that the ordinate
of the derivative curve is the slope of the Integral Curve, naturally suggests a
possible converse relation, and leads easily and logically and with no difficult
transition to the study of Quadrature and Maxima and Minima.

1t is believed that the elementary treatment of these subjects here given will
tend to meet the needs of scientific and technical students, who now require a
knowledge of the graphical method and the simpler elements of the Calculus at
the earliest possible moment; and that it will also be helpful to the general
student who pursues the study of mathematics no farther. Moreover, in the

iii



iv PREFACE

secant method of finding the equation of the tangent, the reasoning is essen-
tially the same as in the method here used, but the student seldom or never
comprehends its significance. And, furthermore, he never uses the method
save in the case of the conic sections, whereas the derivative method is one that
he can always use.

The subjects discussed in Chapter VI need not be taken at the time or in the
order in which they occur in the book. Or, if the teacher prefers to pursue the
old established method of teaching each branch of mathematics exclusively, he
may, at his discretion, omit this entire chapter without interfering in any way
with the continuity of his course. While this book has been in preparation,
my own plan has been (with students who have not previously had the Theory
of Equations) to give in substance the theorems contained in §§ 63-71 immedi-
ately after the work on curve tracing, or symmetry. The remainder can be
given any time after Chapter V has been read.

In finding the equations of loci, special emphasis is given to the meaning of
the parameters which appear in the final equations, and the significance of a
variation in their value, and a full discussion and a thorough geometric inter-
pretation of the result are rigidly insisted on from the beginning. 7he teacher
should never lose sight of this vital principle.

Polar coordinates and their relations to rectangular coordinates have been
introduced at the very beginning.

The conic section is first briefly studied geometrically. Its defining property
is proved in this way, from which its general equation is shown to be of the
second degree. The two central conics are treated simultaneously by using the
double sign in the standard equation. In this way much time is saved, and
the similarities of the properties of the two conics are presented in a striking
manner.

As the book is intended for beginners, numerous illustrative examples are
given in the first part on Plane Geometry, and also a large number of exercises.
The numerical examples have all been prepared especially for this book. An-
swers are given to only a few of these, as it is far better to check results in such
exercises by constructing an accurate figure. A unique feature in the way of
exercises is found in the list of Miscellaneous Problems on Loci that occur in
the phenomena of everyday life. These cover a wide range of subjects and
should be of interest to students in any department. The study of mathematics
should not only develop the power of investigation, but should also cultivate the
habit of carefully examining interesting phenomena. I hope these problems
will help toward the accomplishment of these ends, and at the same time tend
to bridge over the chasm between the theoretical and the practical. They are
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placed at the end of Part I, so that they may be assigned at any time without
seeming to have been passed over.

The theory of the second part on Solid Geometry is somewhat fuller, and the
examples are considerably more extensive both as to number and character, than
is usually the case in elementary books. The chief new feature that has been
introduced is the use of the notion of Contour Lines in the tracing of surfaces.
This idea, as well as the whole subject of surface tracing, has not hitherto been
sufficiently emphasized.

Where the proof in Solid Geometry is the same as in the corresponding propo-
sition in Plane Geometry the demonstration has not always been repeated. In
two instances, viz. § 1564 and § 169, an entirely different method of proof has
been used. This has not been done simply for the sake of variety, although
this would be a sufficient reason, but because the algebraic results obtained in
this way admit of a much broader interpretation. 'The student should be re-
quired, as an exercise, to apply these methods of proof to the corresponding
propositions in Plane Geometry, and wvice versa. As a suggestion to this end,
appropriate references are given in all these sections. If this is done, the student
will be able to prove for himself the harmonic properties of the conic section.

I have put two small sections, I and II, in the Appendix rather than assign
them to any particular place in the body of the text. The method of finding
the direction of a curve at the origin, given in I, I have found to be helpful as
early as in the section on curve plotting in Chapter II. If used at all, it should
at least precede the formal study of slope.

I wish to thank most heartily all my colleagues in this university who have
aided me so kindly in the work, and to acknowledge my special obligation to
Professor Ellery W. Davis, who, from the inception of the plan to the completion
of the book, has given me much valuable assistance. I am also much indebted
to Professor George D. Olds, of Amherst College, and Professor E. V. Hunting-
ton, of Harvard University, who have read the entire manuscript with great
care and offered many helpful suggestions.

A L. C.

THE UNIVERSITY OF NEBRASKA,
May 25, 1904.
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ANALYTIC GEOMETRY

CHAPTER 1 ¢ *5i 3305 33 0435
COORDINATES, LENGTHS OF LINES, AND AREAS OF POLYGONS
REecTiLINEAR COORDINATES

1. Let X'X and Y'Y be two fixed, non-parallel straight lines, in-
tersecting in the point 0. Let P be any point in the plane of these
lines. Draw RP and QP parallel to X'X and Y'Y respectively.

Y

x’ X

’

Y

These distances, RP and QP, determine the place of P within the
angle XOY. That is, to every position of I’ there is one and only
one pair of distances, to every pair of distances one and only one
position of P. Moreover, the position of P can be found when the
lengths of the lines RP and QP are given, and vice versa.

Suppose, for example, that we are given RP =a, QP = b, we need
only measure OQ = a and OR =0 and draw the parallels R and
QP, which will intersect in the required point.

2. The two lines RP and QP, or OQ and OR, which thus de-
termine the position of the point P with reference to the lines
1



2 COORDINATES 3

X'X and Y'Y are called the Rectilinear or Cartesian* Coordinates of
the point P. QP is called the Ordinate of the point 2 and is denoted
by the letter y; RP, or its equal OQ, the intercept cut off by the
ordinate, is called the Abscissa, and is denoted by the letter w.

‘The fixed lines X'X and Y'Y are called the Axes of Coordinates,
‘and thei'i:"pbfnﬁ of ‘intersection O is called the Origin. When the
angle, between thguaiégs of coordinates is oblique, the axes, and also
the ceordinases, are said to be Oblique; when the angle between the
axes is right, the axes and the coordinates are said to be Rectangular.

If OQ=a and OR =0, then at P, z=a and y=0; at Q, z=a
and y=0;at B, x=0and y=>5; and at O, 2=0 and y=0.

The axis X'X is called the Axis of Abscissas, or the x-axis; and
Y'Y is called the Axis of Ordinates or the y-axis.

3. Let 0Q and OQ' be equal in magnitude to a, and let OR and
OR' be equal in magnitude to b. "Through @, @', R, and R' draw
lines parallel to the axes, and intersecting in P, Py, P;, Ps

Y

P, > P,

Y!

Now at all of these four points @ =a, in magnitude, and y =b,
in magnitude. Hence in order that the equations x=a and y=15

* This method of determining the position of a point in a plane is due to the French
philosopher and mathematician, Descartes. Hence the name Cartesiun. The new
method was first published in 1637.

“It is frequently stated that Descartes was the first.to apply algebra to geometry.
This statement is inaccurate, for Vieta and others had done this before him. Even
the Arabs sometimes used algebra in connection with geometry. The new step that
Descartes did take was the introduction into geometry of an analytical method based
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shall determine only onre point, it is not sufficient to know the lengths
of ¢ and b, we must also know the directions in which they are
measured.

In order to indicate the directions of lines we adopt the rule that
opposite directions shall be indicated by opposite signs. 1t is agreed, as
in Trigonometry, that distances measured in the directions OX (or
to the right) and OY (or upwards) shall be considered positive.
Hence distances measured in the directions OX' (or to the left) and
0Y" (or downwards) must be considered negative. Therefore (assum-
ing a and b to be positive numbers)

at Pyex=a,y=>0; at P, x=—a, y=>;
at Py o=—a,y=—0; at Py, x=a,y= —0b.

Thus the four points are easily and clearly distinguished, for no
two pairs of values of x and y are the same.

If all possible values, positive and negative, be given to 2 and
to y, i.e., if both # and y be made to vary independently from
— o to 4 o0, all points in the plane will be obtained. Moreover,
to each pair of values of & and y there corresponds, in all the plane,
one and only one point ; to each point, one and only one pair of values.

4. For the sake of brevity, a point is represented by writing
its coordinates within a parenthesis, the abscissa being always
written first. Thus, in the preceding figure, P,, P, P, P,, are the
points (a, b), (—a, b), (—a, —Db), (a, —b), respectively. In general,
the point whose coordinates are @ and y is called the point (x, y).

When the axes are rectangular it is convenient to distinguish the
parts into which the axes divide the plane as first, second, third, and
fourth quadrants, as in Trigonometry.

Because of simplicity in formule and equations, it is generally
more convenient to use rectangular axes.

on the notion of variables and constants, which enabled him to represent curves by
algebraic equations. In the Greek geometry, the idea of motion was wanting, but with
Descartes it became a very fruitful conception. By him a point on a plane was deter-
mined in position by its distances from two fixed right lines or axes. These distances
varied with every change of position in the point. This geometric idea of coordinate
representation, together with the algebraic idea of two variables in one equation hav-
ing an indefinite number of simultaneous values, furnished a method for the study of
loci, which is admirable for the generality of its solutions. Thus the entire conic
sections of Apollonius is wrapped up and contained in a single equation of the second
degree.” [A History of Mathematics by Florian Cajori, p. 185.]
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Accordingly, throughout this book, except when the contrary is
expressly stated, the axes may be assumed rectangular.

EXAMPLES

1. In what quadrants must a point lie if its coordinates have the same sign ?
different signs ?

2. Locate the points (1,— 3), (— 2, 4), (5, 0), (—1, —3), (4, 2), (0, 3).

3. Construct the triangle whose vertices are the points (0, 4), (— &, — 1),
and (4, — 3).

4. Construct the triangle whose vertices are (4, — 1), (1, 2), (— 1, — 3).

6. Construct the quadrilateral whose vertices are the points (3, 4), (—1,4),
(-1, —2), (38, —2). What kind of a quadrilateral is it ? Consider both
oblique and rectangular axes.

6. Plot the points (8, 0), (5, 4), (0, 4), (— 3,0), (0, — 4), (5, —4), and con-
nect them by straight lines. What kind of a figure do these six lines enclose ?

7. Pis the point (2, ¥); P1, P, Ps are its symmetrical points with respect
to the x-axis, y-axis, and origin, respectively. What are the coordinates of
Py, Py, P3?

8. The side of a square is 2¢. 'What are the coordinates of its vertices when
the diagonals are the axes ?

9. The side of an equilateral triangle is 2¢. What are the coordinates of its
vertices, if one vertex is at the origin and one side coincides with the x-axis ?

10. Where may a point be if its abscissa is 2 ? if its ordinate is — 3 ?

11. Can a point move and yet always satisfy the conditionz =0? y=0°?
both the conditions z =0 and y =0?

12. How must a point move so as to satisfy the condition x=¢? y=d? both
these conditions, ¢ being a negative and d a positive number ?

13. If a point moves along either of the bisectors of the angles between the
axes, what is the relation between its coordinates ?

14. Where may a point be if its coordinates satisfy the condition 22 + %2 = a2 ?
What is the relation between the coordinates of a point which moves so that its
distance from the origin is always 2 ?

15. If a line AB is two units to the left of the y-axis, what are the coordinates
of a point whose distance from AB is three units ?

16. If P be any point on the bisector of the angle between the y-axis and a
line three units above the z-axis, what is the general relation between the
coordinates of P?
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Porar COORDINATES

5. Let O be a fixed point called the Pole, and OX a fixed line
called the Initial Line.

Take any other point P in the plane and draw OF. The position
of the point P with reference to the line OX is known when the
distance OP and the angle X OP are given.

The line OP is ealled the Radius Vector of the point /2, and will be
denoted by p; the angle XOP, which the radius vector makes with
the initial line, is called the Vectorial Angle of the point 2%, and will
be denoted by 6. P

8
(o] X

Then p and # are the Polar Coordinates® of P; that is, I’ is the
point (p, 6). As in Trigonometry, it is agreed that the angle 6 shall
be positive when measured from OX counter clockwise; that p shall
be positive when measured in the direction of the terminal line of
the vectorial angle 6.

In determining the position of a point whose polar coordinates are
given the following direction will be useful: Suppose I stand at O
facing in the direction of OX. To get to the point (p, 6), I turn
through the angle 6 to the left or right according as 6 is positive or
negative, then, keeping my new facing, I go a distance p forward or
backward according as p is positive or negative. ¥

* Whenever the position of a point in a plane is determined by any two magnitudes
whatever, these two magnitudes are the coordinates of the point. Thus there may be
an indefinite number of systems of coordinates. For an explanation of other systems
which are in common use see Chap. I of Elements of Analytical Geometry by Briot and
Bouquet, translated by J. II. Boyd.

+ This method of locating points by means of coordinates is not altogether new to
the student, neitherisit confined to mathematics. For example, when we locate places
on the surface of the earth by means of their latitude and longitude, we make use of a
system of rectangular coordinates in which the axes are the equator and some chosen
meridian. When we say the city B is forty miles north-east of thecity A, we locate I3
with reference to A by means of a system of polar coordinates in which the initial line
is the meridian through A, and A is the pole. Let the student suggest other familiar
examples, if possible. How are places located in cities? in Washington, D.C.?
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EXAMPLES
Plot on one diagram the following points :
L (4,30°), (—3,135%), (3,120°), (—4, —30°).
2. (5, 45%), (—4,120°), (3, —150°), (—6, —240°).
3. (a,}m), (—a, }m), (e, — §m), (2a, — }v), (—la, —§m), (a, 0), (2a, m).
4. (5,tan715), (—2,tan"12), (3, —tan-13), (—4,tan-l—1).
5. (a, tan-12), (a, —tan-13), (—a, tan-1}), (—a, —tan-1 $),
[a, tan"1(—4)].

6. Plot the points (—6,30°), (2,150°), (2, —90°) and connect them by
straight lines. What kind of a figure do these lines enclose ?

7. Plot the points (a, 60°), (b, 150°), (a, 240°), (b, — 30°), and join them by
straight lines. What kind of a figure do these lines enclose ?
8. Find the polar coordinates of the vertices of a square whose angular
points in rectangular coordinates are (3, —1), (—1, —1), (=1, 38), (3, 3).
9. The side of an equilateral triangle is 2a. If one vertex is at the pole,
_and one side coincides with the initial line, what are the polar coordinates of its
vertices ? of the middle points of the sides ?
10. Change ‘‘ equilateral triangle ”’ to ‘‘square’ in Ex. 9.
11. Change ‘‘ equilateral triangle’’ to ‘‘ regular hexagon ’’ in Ex. 9.
12. How must p and ¢ vary in order to obtain all points in the plane?
(See § 3.)
13. Show that to each pair of values of p and 6 there corresponds in all the
plane one and only one point.
14. Show by plotting the four points, (8,60°), (—8,240°), (3, —800°),
(—3, —120°), that the converse of Ex. 13 is not true.

15. Show that in general the same point is given by each of the four pairs of
polar coordinates,

(p,0), (—p,m+0), [p, =2 —8)], [—p, — (7 — 6)].
16. Show that for all integral values of n the same point (p, 6) is also given by
(py 0 + 2nw) and [—p, 6+ 2n+ 7).
17. Where does the point (p, ) lieif 6 =0? if0=n? ifp=2?

18. How can the point (p, #) move if 8 = ? if p=a? where « and @ are
constants ?

19. What condition must p and @ satisfy if the point (p, ) moves along a line
perpendicular to the initial line ? parallel to the initial line ?

20. What is the position of the point (p, 8) if p=acos8? p=asiné?
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RELATIONS BETWEEN RECTANGULAR AND PoLAr COORDINATES

6. Let P be any point whose rectangular coordinates are  and y,
and whose polar coordinates, referred to O as pole and OX as initial
line, are p and 6.

Y Y
P
£ y

U

X 0 X X Q ™\ X
o X Q x [+)
y
{4
b'd P b'd

Draw PQ perpendicular to OX.
Then, according to the preceding definitions,

. 0Q=x, QP=y, OP=p, ZXOP=4¢.
From the right triangle PQO we have
0Q=O0Pcos XOP and QP=O0Psin XOP.
c.a =peos .
y = psiné. } 1)
a2 + y2 =pl.

These equations (1) express the rectangular coordinates in terms
of the polar coordinates.

From equations (1) we find the corresponding equations express-
ing the polar coordinates in terms of the rectangular coordinates to

be
p=Va?+y2, 9=tan—lg’ ]
: @)
sinO:—r‘—IL—_—, cose:—«——‘f,——”-
Va1 y? Va2 + g2

By means of formule (1) and (2) equations in either system of
coordinates can be changed into the other system of coordinates.
It is seldom necessary, however, to use equations (2).
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EXAMPLES
1. Change the equation p? = a2 cos 2 8 to rectangular coordinates.
Multiplying the equation by p?, and putting cos 2 § = cos? § — sin? § gives
p* = a?(p? cos? 6 — p?sin? 9).
Whence by substituting equations (1) we have
(@2 + )2 = a2(a? — ).
Change to polar coordinates the equations
2. 224+ y2=2rx. Ans.p=2rcosé. 3. 2?2 —y2=q2 Ans. p2=a2sec20.
4. (2224 292 — ax)? = a?(x? + ¥2). Ans. p% = a? cos 16.
Transform to rectangular coordinates
5. p?2sin20=2a2% Ans.xy=a2 6. p%OOS iﬁ:a%. Ans. 2 +4axr=4a2

DistanceE BETWEEN Two Points

7. To find the distance between two points whose rectilinear coordi-
nates are given.
Let Py(w;, 1) and Py(xs, 35) be the given points, and let the axes be
inclined at an angle w.
Draw P,Q, and %Q, parallel to OY, to meet OX in @, and Q,.
Draw P, R parallel to OX to meet P,@Q, in R.
Y Ve

P,
w
P, R Qs X
v P, R-
/ 0 Q. Q 3

Then O =2, OQh=w, QP =y, QPr=y.
o PR = Q= 00, — OQy=u, — m,,
and RPy= QP — Q= QP — Q.P,=1y—y,
Also Z PgRPl =l 0Q1P1 =7 — w
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From the triangle P,RP, we have, by the law of cosines,
PP’ = PR+ RP? —2PR + RP, cos (r — o).
Whence by substitution, since cos (r — w) = — €08 o,
PPy = [(201 — @2)? + (Y1 — Y2)? + 2 (&1 — 22) (Y1 — Y2) €08 w]2 @

When the axes are rectangular, o = 90° and cos v = 0.
Hence for the distance between two points whose rectangular
coordinates are given, we have the very useful formula

PPy =V (g — @)%+ (Y1 — y2)t* @ |
If the plus sign before the radicals in (1) and (2) gives PyP,, the

minus sign will give ,P,. It will aid the memory to observe that
the meaning of (2) is expressed by writing

(Distance)? = (Basting)® + (Northing)®.

Cor. If P, coincides with the origin @, =y, = 0, and equations
(1) and (2) give for the distance of a point P(z, 7,) from the origin

Py = ‘/9312 y12 + 2 x1Y1 €08 w, for oblique axes, (3)
OP; =Va,® + y1?, for rectangular axes. )
EXAMPLES

1. Find the distance between (— 5, 3) and (7, — 2).

2. Show that if the axes are inclined at an angle of 60°, the distance between
the points (— 3, 8) and (4, — 2) is V/39.

3. Find the distance from the origin to the point: (— 2, 4) when the axes are
inclined at angle of 120°.

4. Find the lengths of the sides of the triangle whose vertices are (4, 1),
(—2,4), and (1, —2).

5. Show that the four points (2, 4), (1, 7), (— 2, 4), and (— 1, 1) are the
angular points of a parallelogram.

6. If the point (x,%)is 5 units digtant from the point (3, 4), then will
22+ y2—-6x—8y=0.

* The student should convince himself of the generality of equations (1) and (2) by
constructing other special cases in which the given points lie in different quadrants.
He will thus have an illustration of the general principle that formulz and equations
deduced by considering points lying in the first quadrant, where both coordinates are
positive, must, from the nature of the analytic method, hold true when the points are
situated in any quadrant.
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8. The distance between two points in terms of their polar coordinates.

P, ‘ P,

Py

LXN\¢:
o

Let Py(py, 6,) and Py(ps, 6,) be the two given points.
Then OP, = p,, OP, = p,, ZX0P, =6, ZXOP,=0,
and . Z P,0OP, = 6, — 6,
From the triangle P,OP,, as in § 7, we have
PP?= OP? + OP? — 2 OP, - OF, cos P,or,
1Py = Vpi® + py® — 2 pypy cos (6 — 0). 1)
Ex. 1. Derive equation (2), § 7, from equation (1), § 8.
Expanding the last term and squaring (1), § 8, gives
P1Po? = p1% 4 po? — 2(p1 o8 61) (pg COS 02) — 2 (py sin 61) (ps Sin 62).
Substituting the values given in equations (1), § 6, we have
PP =212 + y1% + 222 + ya? —2 w12 — 2 Y1y
PPy = V(e — 21)? + (y2 — y1)2

Ex. 2. Show that the distance between the points (4, 90°) and (— 3, 30°),
is V37,

Ex. 3. Find the distance between (2 a, 180°) and (— a, 45°).

9. To find the coordinates of the point which divides the line join-
ing two given points in a given ratio (m, : m,).

Let Py(x, 1) and Py, y,) be the two given points, and let Pz, y)
be the required point

Draw P,Q,, PQ, P,Q, parallel to the y-axis, and PR, P,R, parallel
to the z-axis.

Then PR =2—x, PR=ux,—u2,
_Rl])= Y — Yy = Yo —Ys
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P,

From the similar triangles P,PR, and PP,R, we have
PP_PR_RP_m_r—=2_Yy—h
PP, PR RP, my, x—x y—Yy
< omy (2, — ) = my (& — 2y), @
and my (Y — ) = My (Y — )- 2
Solving (1) and (2) for » and y, respectively, we obtain

| . M + 1);-_):1'.! L miys + MYy 9
= Tt ms YT T mytmy ®)
If we let A = m, : my, equations (3) reduce to the form
&y + Mg Y1+ Ay
IES UL A T )
These equations, (3) or (4), cover all cases, the division being
internal or external according as X\ is positive or negative.
If P be the middle point of PP, m, =in, and therefore the
coordinates of the middle of a line joining two given points are

1
x =5(x1 + X2), y=:§(y1+1/2)- )

These formule, (3), (4), (5), are independent of the angle between
the axes, and hold for both rectangular and oblique axes.

Ex. 1. Find the points which divide the line joining (2, 5) and (— 5, —2)
internally in the ratio 3 : 4, and externally in the ratio 2 : 9.

Ex. 2. In what ratio is the line joining the points (2, 1) and (— 8, 6) divided
by the point (— 2, 8) ? by the point (8, —2)?
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ArEAs oF PoLvcoxs
10.* 7o find the area of a triangle in terms of the coordinates of its
vertices, the axes being inclined at an angle w.
Case 1. When one vertex is at the origin.

Y
P,
R
£ male (Y
Qa (o) ”’Ql
/o Q. Q P,

Let Py(ay, 31,), Pa(2y,75) be the other two vertices. Draw PQy, PQ,
parallel to the y-axis, and Q,2 perpendicular to P,(Q),.

Then 0=, OQy=um, @ D=y, @QP=y,
BQy = Q.0 sin 0 = (2, — 2,) sin w, and
AOP Py = A 0Q,P, + trap. QPP — A 0Q P,
= %[OQZ - QP+ Q) (@l + ) — 00, - 7] sin o,
= [@ays + (20 — ) (y, + Y2) —ay] sin o,

1 q 121y, Yi| .
=, @1y2 — x2yy) sine =, sin 1
2 (X1y2 — @2y) 2| wa, ye 1)

in the notation of determinants.

*The area of the trapezoid ABCD, in which the non-parallel sides interseet, is
the difference of the areas of the two triangles formed by the diagonal AC. That is,
ABCD = ABC— ADC = ABE — CDE.

This is expressed analytically by saying that the area is the algebraic sum of the
triangles. The base C'D is then regarded as changing its direction (and sign) with
reference to A ; for in going along the sides con-
secutively in the order ABCDA, the base CD is
traversed in the same dirvection as 4 B, whieh is not
the case in the ordinary trapezoid. Thadt is, when
D is to the left of C, both the base CD and the
area of the triangle 4CD are positive, say. But as
D moves to the right, both CD and the area ACDH
B become zero and change sign as D passes through C.

(o} D
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Case II. When the origin is not a vertex of the given triangle.

Py

P,

Let Py(@y, 1), Ls(ws 1), Ps(wy, ;) be the vertices of the given
triangle. Draw the lines OF,, OP,, OF; Then by Case I we have

L1y

AOPPy=L(xy,—ayy)sino= 1| sin .
Tay Yo
. 1 Tl
A OP,Py= M(ays — xys) Sinw =4 | 7 %! sin w.
T3y Ys
AOI),)__] < 1 Tay Y3 | ;
3Py = Ly, — ) sine = 1 oy sin w.
w1 J1

A PP Py= [ (2y)s — @) + 0y — @) + (2h —@yy)] sin @ (2)

2, 3 Loy U T T .
=%{ ‘1; Jll 2 Yo ‘3; Ys }Sln o
Loy Yo L3y Ys Ty
2y 1y 1
=1|ay ¥, 1{sin o 3)
Ty Yz 1

When the axes arve rectangular sin o =1, and equations (1), (2),
(3), respectively, reduce to
1|1y Y1

1
AN OPyPy = (Y — as =
26 2( 1Y2 21]1) 2 X2y Yo

. 4)
1 :
A PyPy Py =, (1Y — @ayy + Xay3 — 3y2 + 23y — 1Y) (D),
x1, Y1, 1
T2y Y2y 1
x3, Y3, 1

T — &gy Yh — T

Ly — Ly Yo — Y3

[T

: (©)

=2
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11* When the origin is within the given triangle, the given
triangle includes the three triangles OP\P,, OP,P, OP,P, (§ 10);
hence the expressions &(wy, — awn), $(2ys — as), and Hagy, — 1Y)
must have the same sign. When the origin is outside, the given
triangle does not include all of these triangles, and therefore the
above expressions can not have the same sign.

Suppose a person to start from O and walk consecutively around
the triangles OP, P, OP,P,, OP,P, in the direction indicated by this
order of vertices. This imaginary person would thus walk along
each side of the given triangle once in the same direction around the
figure, as indicated by P, /,P, and along each of the lines OP,, OP,
OP,, twice in opposite directions. When the origin is inside the given
triangle, he would walk around each of these triangles in such a
manner that he would have its area always on his left hand. When
the origin is outside, he would go around those triangles which in- -
clude no part of the given triangle, in such a manner that he would
have their area always on his right hand.

Thus direction around a triangle may be taken to indicate the sign
of its area. (See footnote under § 10.)

The expressions for area in § 10 will be found to be positive, if
the vertices are numbered so that in passing around in the direction
thus indicated the area is always on the left.

Let the student show by trial that (w9, — x) is + according as
£ P,0P,is +; £ P,OP, is + according as the cycle OP, P, 1s +.

12* To express the area of a triangle in terms of the polar coordi-
nates of its vertices.

Let P(py, 61), Po(psy 02), Pis(ps, 05) be the three vertices.
Then @, =p, cos 6, @ =p,C08 b ¥;= p;COS by,
th=msing, y=p,sinb, y;=pgsinb, [(1), §6.]
Substituting these values in (5) and (6) of § 10 gives
OP\Py =% pip; (sin 6, cos 6, — cos 6, sin 6;) = 1 p,p, sin (6, — 6)). @
PPy Py= [ pipsy 8in (6, — 6,) + pops sin (6; — 6,) + psp, sin (6, — 65) ] (2)

From (1) it follows that the three terms of (2) represent, re-
spectively, the areas of the triangles OP,P,, OP,P, and OP,P.
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The signs of these terms are the signs of the angle differences
(since p can always be made positive), and we therefore have an
independent proof of the statements in § 11.

Let the student prove (1) and (2) directly from a figure.

13.* To find the area of any polygon when the rectangular coordi-
nates of its vertices are known.

Let Py (2, ), Doy y2) Ps (23, us)y Py(®gy Yy) -+ P, _(-l'm Ya) be
the n vertices of the given polygon. Then, we have, from (5) § 10,

A 01)1[)2_;% T’l) 3/1 , A 0])2P3:% w2’ ?/2 ,
S %y Yo L3y Ys a
Z. .7/3 Lyy :’/
1| D 1| 14
A OPP=}| 7 B, & ORR=3| B,
A ()1')"1)l = % J"n’ ?/71 .
Ly Y
Area PP, - P,=1 ]2 % Loy Y2 Ty Ys
Clay v T35 Y3 Ly Yy
Ly Yy ‘ e Ly Yu L 1
L5y Ys @y, gl )’ @

since the area of the polygon is the algebraic sum of the areas of
these triangles. This formula is easy to remember, but by expand-
ing the determinants and collecting the positive and negative terms
it may be written,
Avea I Py e I, = f, [(@1y2 + X2yg + T3Yy + *+* TnY1)

— (Y1202 + Yaxy + Y34 + ¢+ Yu®D ] 2)
which gives the following simple rule for finding the area of a
polygon when the rectangular coordinates of its vertices are known:

(1) Nwnber the vertices consecutively, keeping the area on the left.

(2) Multiply each abscissa by the next ordinate.

(3) Multiply each ordinate by the next abscissa.

(4) From the sum of the first set of products subtract the swn of the
second set and take half of the result.

If the axes are oblique, the second members of (1) and (2) must
be multiplied by the sine of the angle between the axes.
The law of the sign of the area is the same as for the triangle.
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o EXAMPLES ON CHAPTER |

Find the area of the polygons the coordinates of whose vertices taken in

order are, respectively,
1..(1,3), (-2, —4), and (3, —1).

(2, 5), (=6, —2), and (-1, 5), when w=260°.
(4, 16°), (—5, 45°), and (6, 75°).
(3, —30%), (—5,1560°), and (4, 210°).
(2, 15%), (6, 756°), and (5, 135°).
(—a, i), (a,}m), and (—2¢, —2m).
(a, b+c¢), (a, b—c), and (—a, c).
(a, ¢+ a), (a,c), and (—a, c—a).
(2,3), (-1,4), (=5, —2), and (3, —2).

10. (4,5), (1,4), (—2,6), (—5,3), (-2, ~1), (=38, —4), (1, —2),
(3, —4), and (2, 1).

11, What are the rectangular coordinates of (4, 30°), (—2, 135°),
(=3, 4m)?

12. What are the polar coordinates of (3, —4), (-5, 12), (1,3)?

13. Find the coordinates of the points which trisect the line joining the
points (—2, —1) and (3, 2).

14. Find the coordinates of the point which divides the line joining (3, —2)
and (— 5, 4) internally in the ratio 3 :4.

L R

15. Find the coordinates of the point which divides the line joining (5, 3)
and (—1, 4) externally in the ratio 3:2.

16. Find the length of the sides and medians of the triangle (2, 6), (7, — 6),
(=5, —1). What kind of a triangle is it ?

17. Find the length of the sides and the area of the triangle (3, 4), (—1, 0),
(2, —3). What kind of a triangle is it ?

18. Find the sides and area of the quadrilateral whose vertices taken in
order are (5, —1), (—1,2), (—5,0), and (1, —3). What kind of a quaa-
rilateral is it ?

Change to polar coordinates the equations

19. 224+ 92 =12 20. y =z tan q.

21. 23 =y%2a—x). 22. (x4 y?)(x — a)? = b=
Transform to Cartesian coordinates

23. 6= tan—1m. 24. p2 =a?sec 26.

95. p=asin26. 26. ot = al sin Jo.
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Prove analytically the following theorems :
27. The diagonals of a parallelogram bisect each other.

98. The lines joining the middle points of the adjacent sides of any quadri-
lateral form a parallelogram.

29. The three medians of a triangle meet in a point, which is one of their
points of trisection.

30. The lines joining the middle points of opposite sides of any quadrilateral
and the line joining the middle points of its diagonals meet in a point and bisect
one another.

31. The area of the triangle formed by joining the middle points of the sides
of a given triangle is equal to one-fourth of the area of the given triangle.

32. If in any triangle a median be drawn from the vertex to the base, the
sum of the squares of the other two sides is equal to twice the square of half
the base plus twice the square of the median.

33. The sum of the squares of the four sides of any quadrilateral is equal to
the sum of the squares of the diagonals plus four times the square of the line
joining the middle points of the diagonals.

34. Pl(xla yl)v P2(w2s y‘l), Pg(.’lﬁ{;, y3)1 P‘l(xb y4) LIRS Pn(xm y") are any »n
points in a plane. Py P; is bisected at Q;; QiP5 is divided at 3 in the ratio
1:2; Qo P, is divided at @ in the ratio 1:3; @35 at Qq in the ratio 1:4, and
s0 on till all the pomts are used. Show that the coordinates of the final point
so obtained are

X1 +xs+ X3+t ... Tn and nty+ustyst+ .- Yn
n n

Show that the result is independent of the order in which the points are taken.
[This point is called the Centre of Mean Position of the n given points.]



CHAPTER II
LOCI AND THEIR EQUATIONS

14. It has been shown in § 3 that to each pair of values of # and
y there corresponds in all the plane one and only one point, and that
to each point corresponds one and only one pair of values. Also, if
@ and y vary independently and unconditionally from —co to oo,
every point in the plane will be obtained.

1f, on the contrary, one or both of the coordinates cannot take all
v values, or if all values cannot be

independently taken by both, the
2 point cannot move to all positions
Il S0 in the plane.
If, for example, > 0, the point
x (® y) must lie to the right of the
0 y-axis; if < 0, the point must lie
to the left of the yaxis; if x is
z <0 neither greater nor less than zero, the
point can lie neither to the right nor
to the left of the y-axis; i.e. if 2=0,
the point must lie on the y-axis.
15. If z>a, the point (z, y) Y A
must lie to the right of the parallel :
AB, which is a units to the right @
of the' y-axis; if x<a, the point r<a e’
must lie to the left of AB. There-
fore, if x=a, the point will lie on X
the line AB. 9
Ex. 1. Where will the point (2, y) lie
ifz>—-38? a<—3? 2=—-3°? T;
Ex. 2. Where is the point (x, ») if P
y>b?  y<b?. y=>b? y>-—>5b?
y<—-5b? y=->0? B

18
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16. Draw a circle with centre Y
at the origin and radius equal to a.
Then the point P(w, y) will be by
outside, inside, or on this circle
according as P
OP>a, OP<a, or OP=aq.
But OP2=a?+ 3% [(4),§7.]
Therefore the point P(z, y) is
outside, inside, or on the circle, 12
according as ]
PH+yP>al, 2+ <a], or P4+ yY¥=d '
Ex. 1. Write down the conditions that the point (x, y) shall be outside,
inside, or on the circle whose centre is at the origin and radius 3.
Ex, 2. What are the conditions that the point (x, y) shall be outside, inside,
or on a circle with centre at (— 3, 1) and radius 4 ?

Ex. 8. Draw a circle with centre at (@, b) and radius r, and write down the
conditions that the point (x, y) shall be outside, inside, or on this circle.

17. Let the line AOB bisect the angle XO7Y.

=)

Y
x ]’/ B
X / P
X
P y y
y
X' 5 X
A NVl

Then every point on 4B is equidistant from the axes. Hence the
point P(z, y) is above AB, below AB, or on AB, according as

y>z y<w, or y=u
or according as y—x >, <, or =0;
i.e. according as y — « is positive, negative, or zero.
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18. Draw CD parallel to AB, cutting the y-axis in E, three units
above O.

Then every point on CD is three units farther from the w-axis
than from the y-axis. Therefore the point P (x, y) will be above CD,
below CD, or on CD, according as

y>, <,or =u+3;
i.e. according as y — « — 3 is positive, negative, or zero.

E 53 P D
— ., "
x A P
X
2

»

C, A v

Ex. 1. Draw a line parallel to A B, cutting the y-axis two units below O ; and
write down the conditions that the point (z, ) shall be above, below, or on
this line.

Ex. 2. What are the conditions that the point (x, ») shall be above, below,
or on the line through # parallel to the bisector of the angle X'0O Y ?

19. Let CD be the perpendicular bisector of the line joining
A(—1,1) and B(3, — 1).

Then all points on CD are equidistant from A and B, and all
other points are not equally distant from A and B. Hence the
point P(w, y) will lie to the »ight of, to the left of, or on CD,
according as AP >, <, or = BP,

_or according as AP > v, orh =B P2
i.e. according as [(2), § 7]

@E+1)+@-1)">, <,or = (=3 + (¥ +1)%
whence 26 —y—2>, <,or =0.
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Y P D

c/ Y

Ex. 1. Find the conditions that the point (x, ») shall be above, below, or on
the perpendicular bisector of the line joining (2, 3) and (— 1, — 2).

Ix. 2. What is the condition that (x, y) shall be on the perpendicular
bisector of the line joining (a, b) and (¢, @) ?

20. The examples in §§ 14-19 illustrate certain general principles,
of which we will here make only a preliminary statement.

1. All points whose coordinates satisfy an equation of condition
(not an identity) lie on a certain line; and conversely, if a point lies
on a fixed line, its coordinates must satisfy an equation.

II. Points whose coordinates satisfy a condition of inequality do
not lie on any fixed line.

If f(x, ) be used to represent any expression containing the two
variables @ and y and certain constants, these principles may be
stated more definitely, as follows:

L. All points whose coordinates make f(2, ) = 0, lie on a certain
line; and conversely, the coordinates of all points on this line make
S, y) =0.

IT. If f(ay, 1) >0 and f(x, 7,) <0, the two points (@, 7) and
(@5 y,) lie on opposite sides of the line the coordinates of whose
points make f(x, y) = 0.

Hence every line, as well as the axes of coordinates, is said to
have a positive and a negative side.
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DEr.  The locus of « variable point subject to a given condition is
the place, i.e. the totality of positions, where the point may lie and sat-
isfy the given condition.

Der.  The line (or lines) containing all points, and no others, whose
coordinates satisfy a given equation is called the Locus of the Equation;
“conversely, the equation satisfied by the coordinates of all points on a
certain line (or lines) is called the Equation of the Line, or the Equation
of the Locus.

Drr.  That part of the plane containing all points, and no others,
whose coordinates satisfy a given inequation is the Locus of the
Inequation.

Thus the Locus of a point in Plane Geometry is not always a
line.

In the examples of §§ 14-19 only Cartesian coordinates have been
used, but the fundamental principles there illustrated, and also the
above definitions, hold for all systems of coordinates.

Let the student give some similar illustrations with polar co-
ordinates.

EXAMPLES
‘What is the locus of
L2224 2=0? 224+ 42>0? 224 2<0°?
2 2= Va4 F? 2> Va2 42?2 2<VaR ;22
3. p=asecl? p>asechd? p<asech?
4 p=bcsch? p>bescod? p<beschd?
5. 4?4 y2<9?
6. 9<(x—-2)2+ (y—3)2<16?
7. asec§<p<bsec?
8 p=acosf? p>acosh? p<acosh?
9. acos 0 <p<bcosh?
10. p=asin6? p>asind? p<asing?
11. p=a? p>a? p<a?

12. What is the locus of a point moving so that the sum of its dlbtances from
the lines x =0 and z =31is 1,2, 3,49
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To Finp Tue Locus or A Givex Equarion

21, If the locus of an equation is a straight line, the locus is
easily drawn; it is only necessary to locate two points on it
(preferably the interscctions* with the axes) and draw a straight
line through these points. Likewise, if the locus is a cirele, the
complete locus can be drawn when the centre and radins are known.

It will be shown farther on that straight lines and circles can
easily be recognized by the forms of the equations.

In general, having given an equation of condition between the
coordinates (in any system) of a variable point, we may assign any
-alue we please to one coordinate and find a corresponding  value, or
values, of the other. To every such pair of corresponding values will
correspond a definite point of the locus. Since these pairs of values
may be as numerous as we please, we can in this way locate as many
points of the locus as we please. A smooth curve drawn through
these points will be an approxzimation to the locus of the given equa-
tion. The degree of approximation will depend upon the proximity
of the points thus located. This method of construeting a locus is
applicable to any equation that can be solved for one of the variables,
and is called Plotting i an Equation, or Plotting the Locus of an
Equation. The steps of this process are as follows:

* Unless both intersections are near the origin, when the line will be inaccurately
determined, or both at the origin, when its direction will be qnite undetermined.

+ ¢ Corresponding values >’ of the variables,  and y say, involved in a given equa-
tion are a pair of values of a and y which satisfy the equation.

1 The logic of the process of
plotting is that of induction, and
should be so recognized by the
student. Given the points 4, B,
(', D, E, F on a curve; then, in
the absence of further knowledge,
we take as a probable approxi-
mation a smooth eurve drawn
through them like the full enrve
in the figure. We are not war-
ranted in drawing such a curve as the dotted one through the points, because it is
unlikely that, taking points at random on such an irregular enrve, the position of
these points should fail to disclose any of the irregularity. The student should also
be warned that sudden changes of slope or curvature are as unlikely as sudden changes
in the value of an ordinate.
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(1) Solve the equation with respect to one of the coordinates.

(2) Assign to the other coordinate a series of values differing but
little from each other.

(3) Find each corresponding value, or values, of the first coor-
dinate.

(4) Locate the point corresponding to each pair of corresponding
values thus found.

() Join these points in order by a smooth curve, and this curve
will be approximately the required locus. If there be doubt how to
fill up any of the intervening spaces, interpolate more points.

22. ILLUSTRATIVE EXAMPLES.
Ex. 1. Plot the locus of the equation 10y = x? — 3x — 20.

Assigning to x values from — 8 to + 10, differing by two units, we find the
following pairs of values of « and y to satisfy the equation:

r=| —8| -6 —4] —2 0

\ Y A v= 6.8 3.4, .8l—-1| —2
e\ /] == 2 4 6 | 810
N JANE —2.2'—1.6 _.2|215
"'\\ Plotting the corresponding points
A\ Pe ‘x Py, Py, P3,etc., and 'dra.wing a smooth
NG Pz sitve tpl‘ough them in the order of the
=T increasing values of z, we find the locus

to be approximately the curve drawn

in the figure.

Ex. 2. Plot the locus of the equation y2=4x.

Y T P
Solving for y gives y = 4+ 2 /. -~ v
Whenz=0,1,4,9, . . . to o, B
y="m £2, +4, +6...t0o L o, ‘.-',/

The corresponding points of the locus are P/
0(09 0), ])1(17 - 2), 1)2(]1 2), })3(47 —4)a
Py(4, 4), P5(9, —6), and Pg(9, 6). . . .

When z is negative, y is imaginary. There- [5
fore no points of the locus lie to the left of the
y-axis. For every positive value of z there
are two values of y numerically equal but ;
opposite in sign. Hence the two correspond- SN ¥
ing points of the locus are equidistant from PR I
the z-axis. As z increases, both values of ¥ \'\ -
increase numerically. : P

PN
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Therefore the locus cannot be such a curve as that represented by the dotted
line, but must be approximately that indicated by the full line.

Ex. 8. Plot the locus of the equation 25(x — 1)% + 16(y — 3)2 = 400.

Solving for y gives y = 8 £ $VI16 —(z—1)2 »

This form of the equation shows that y is imaginary when x < —3, or z > 5,
since 16 — (x— 1)? is then negative; and when x is neither less than — 3 nor
greater than 5 there are two real unequal values of y, one found by using the -+
sign before the radical, the other by using —
the — sign. Hence the locus lies between LY N
the two parallel lines x = — 3 and = = 5. P,/ \\

The equation is satisfied by the follow- /
ing pairs of values of z and y: \

x= | -8 | —2 — il 0
Y= 3 6.3 7.3 7.8
= 8| — 3| —13| —18 7

r=] —1 2 3 4 5
= 8 7.8 7.3 6.3 3
y=| —2{ —-18 | —13 - .3 3 \ X
The corresponding points are P(— 3, 3), Pa\ o /'
Pi(-2, 6.3), P(—2, —.3), etc., and the e
locus is the curve shown in the figure. \‘ J/
Ex. 4. Plot the locus of the equation, p = 2q sin 6.
Here p has its greatest value when sin ¢
C has its greatest value, i.e. when 6 = 1.
As ¢ increases from 0 to } m, siné in-
creases from 0 to 1, and p increases from
D B 0 to 2a ; as 6 increases from }r to m, sin @
decreases from 1 to 0, and p decreases
from 2¢ to 0. Hence the locus starts
from the origin and returiis to the origin
as 6 is made to vary from 0O to .
Assigning to ¢ values from 0 to 180°,
£ A differing by 30° we find the following
points are on the locus:
0(0, 0), A(a, 30°), B(ay/3, 60°),
[5) X C(2q, 90°), D(a+/3, 120°), E(a, 150°),
and 0(0, 180°).
The complete locus is the curve shown in the figure.

Ex. a. Show that the points 4, B, . . . all lie on a circle tangent to OX at
O and whose radius is a. Show also that every point on this circle satisfies the
given equation.
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Iix. b. Show that the same circle will be described as ¢ varies from 180° to
360°; also as 6 varies from any value « to « + .

We have in this example an illustration of a characteristic property of equa-
tions in polar coordinates containing a periodic function of 4. In such equations
p takes all possible values as 6 varies through a limited range of values called the
period of the function. The complete locus is described at lcast once as 6 varies
through this period, and is repeated as 6 varies through any other equal period.

The period of sin@ is 27 ; hence p takes all possible values from — 2q
to + 2 a as 6 varies from 0 to 2. The whole circle is described twice as
varies through this period, once as ¢ varies from 0 to = with p positive, and once
as 6 varies from = to 2 with p negative, Also the whole circle is described
twice if 6 starts from any value and varies through 2 = in either direction.

Ex. 5. Plot the locus of the equation p = sin 2 6.
This equation is satisfied by the following pairs of values of p and 6:
6 =45° 225°, p=1.
=135°% 315°, p=—1.
6 = 30°, 60°, 210°, 240°,
pP=1v3
= 120°, 150°, 300°, 330°,

p=—1v3

6 = 15°, 75°, 195°, 255°,
p=1

0 = 105°, 165°, 285°, 345°,
p=—1

0 = 0°, 90°, 180°, 270°, 360°,
p=0.

The corresponding points are
found by drawing three circles
with centres at O and radii 4, /3, and 1, and then drawing radii dividing these
circles into ares of 15°  The locus is the four-leaf curve shown in the figure,

As ¢ varies from 0 to 2 «, the four leaves are described in the order 1, 2, 3, 4,
and in the direction indicated by the arrow heads.

EXAMPLES
Plot the loci of the following equations : *
2 —-3y— 6=0.1 2¢+3y+ 5=0.
1. y42—6y— 6=0. 2. {3z—-2y—-12=0.
6r—9y+27=0. br+2y— 4=0.

* For convenience in plotting loci the student should be supplied with ¢‘ coordinate
paper,” both *‘ rectangular’’ and *“ polar.”
1 Loci grouped under the same number should be plotted on the same diagram.
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4. (x—4)(y+3) =0

y="7x—3. 5. (x2— 4)(y—2)=0. .
gy Heed 6. a2 — 2 =0. 422—y2=0.
7. 622+5xy—6y2=0. 1 22 + y% = 25,
) !’x2+y‘-’=4.} 9.‘{@:2. } 10. {(m—8)2+(y—4)2=25. ]
et —yt=4. Ty =—2. (z—4)2+ (y—2)2=5b.
11.»[4(x+1):(y-—2)2.] 12 y=a3—422—4x 416
l 10y =(x+1)% 1x {“g:x4—20x2+64.}
16 ?w—(m2_4)2 ]{ o 25 ".y2=x4—20x2+64.
| 2= — % 15. (a2 + 92)2 = a2(22 — v2).
X16. y=ux, 2%, x3, at, a5, . an x=y, ¥, ¥, ¥4 ¥ Yn

Note the effect of interchanging x and y; e.g. the locus of x =y is obtained
from the locus of y_x3 by revolving the plane through 180° around the line

=t}
17. y=(x —1). (x—1)2
19. 2 =, a2, 28, xt
21.
L 23.

(x—1)8,

y =tan®, cotx, tan~1x, cot~1

y=sin 2z, sin 23] 1sin 2z,
2

(x—2)(x—4)

£ 18.
. 20.
22.

x 24

y=ud ¥ —x, a8+ x.

y =sinx, cosx, sin~1x, cos™l .
y = sec x, csc x, sec™!x, cseTlx.
x -|- c.

x.

2 sin y= bsin %, psin T
a

. 25. p=sin g, cos 6, sec b, csc 6. +26. p=sin 3 6, sin 4 6.
97. p=cos 26, cos 36, cos40. 28. p=tan 6, cot 6.
4 2 6
29. p=sinl#@, cos}éo. 30. p= .
P 7 2 P =1 "coso’ 3—2cos 0
g R iooe o D: 32. p2=sec26, csc20. (Cf.No.9.)
33. y:2“’, 1082 X 34. Y= 10”, lOglo x.
~85. y=a*, logg . (@=N=r<ety) ~36. y =27, 272, }(2*+27%).
37. y=e4 € o, ) (e*+ e ¢). Catenary, if e=2.7+.
2 a*—-l)(ac— DS (x—l)(z—2) (x—1)(x—3)
38 y=2—2 39. :
V=z"39 V= e—8)(z—4) @—2)@—9)
40. y=x+2,5a:—lggx——3). 4.y (T+1)(m Z) (+2)(x—9)
z+8  z-2 T@ErE-9 @-HE-3)
g y=@=DE=3@-5) g3, y= @ENE-HE=0)
@—2)(@—H)(@—6) (@—D(z+2)(z—3)
s y= E=DE=@ -5 26, y= E=NEEDE=6),

(x—2)(x—4)
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2241 B4+l _ x4 2
46. Y= o . 47. y—T' 48. y-m'
x+1_ (z—1)(x—-3) 2241
Wv=monr N r=Tlyr o N r=grgeny

52. Are the points (3, 60°) (3, — 90°) on the same or opposite sides of the
loci of Ex. 30 ?

53. Which of the following loci pass through the origin ?
M 224+3y=0. @) yP—a22=0. (7)y2=4ax.
@) a?+y2=1. (b)) ax+by+c=0. (8) Y¥=4a(x+ a).
@ y=322—z (B)a?+bP=1 () (@—a)®+ (y—b)?=a2+b
What is the necessary and sufficient condition that the locus of an equatxon
in Cartesian coordinates shall pass through the origin ?

Ture Use or GraprHIc METHODS

23. It has been shown in §§ 14-20 that whenever the relation
between two quantities, whose values depend upon one another, can
be definitely expressed by an equation, then the geometric or graphic
representation of this relation is given by means of a curve. Such
2 eurve often gives at a glance information which otherwise could
be obtained only by considerable computation; and in many cases
reveals facts of peculiar interest and importance which might other-
wise escape notice.

The nse of graphic methods in the study of physics, analytical
mechanics, engineering, and many other branches of scientific inves-
tigation, is already extensive and is rapidly increasing. Graphic
methods can be used, however, not only in examples where the
equation connecting the two variable quantities is known, such as
those already given, but also in examples where no such relation can’
be found; in these latter cases the graphic method furnishes almost
the only practical means of studying the relations involved.

Comparative statistics, and results of experiments and direct
observations, can frequently be more concisely and forcibly repre-
sented graphically than by tabulating numerical values. The fol-
lowing are simple examples of this kind:

1. The following table shows the net gold (to the nearest million of dollars)

in the U. S. Treasury at intervals of one month, from Jan. 10, 1893, to Oct. 31,
1894 (Report of the Sec. of the Treas., 1894, p. 8):
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9 Millions Millious 5 Millions Millions

1893 of Dollars. 1893 of Dollars. 1594 of Dollars. LSOt of Dollars.
Jan. 10 120 July 10 97 Jan. 10 T4 July 10 65
Feb. 10 112 Aug. 10 104 Feb. 10 104 Aug. 10 523
Mar. 10 102 Sept. 9 98 Mar. 10 107 Sept. 10 56
Apr. 10 106 Oct, 10 87 Apr. 10 106 Oct. 10 60
May 10 99 Nov. 10 85 May 10 92 Oct. 31 61
June 10 91 Dec. 9 84 June 9 @ |l coecood ocoocoooo

Using time (in months) as abscissas, and dollars (1,000,000 per unit) as
ordinates, the separate points represented by the table have been plotted
(Fig. 1) and then joined by a smooth curve.

N
L

1 2 8 4 5 6 7 8 9 1011 12) 1 2 8 4 5 6 7 8 9 10 11 12
1503 1804

S

Fia. 1.

In this example the curve gives no new information, but it presents in a much
more concise form the information given by the tabulated nummbers. Observe
also that if the points are inaccurately located, the diagram becomes not only
worthless, but misleading.

2. An excellent example of the use and advantages of the graphic method
of representing comparative statistics is found in the large engraved plate placed
under the front cover of the Annual Report of the Secretary of the Treasury
for 1894, This plate presents on a single sheet information that covers several
pages when expressed in tabulated numbers. All of the curves given on this
plate, except one, are shown (on a smaller scale) in Fig. 2. This figure should
be carefully studied, and if possible the original plate should be consulted.

3. The curves in figures 1 and 2 were constructed by locating separate points
and then drawing a smooth curve through these points. Such curves give no
new information, but represent graphically information already ascertained.

In some cases, however, curves can be drawn mechanically. When this is
possible the curve is constructed, not for the purpose of exhibiting facts
previously known, but for the purpose of obtaining new information. For
instance, in the stations of the U. S. Weather Bureau an instrument called
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the Thermograph * constructs automatically a curve which shows the continuous
variation of the local temperature, Similarly the Barograph* records the varia-
tion of the barometric pressure, etc.

8 9 10 1
Mt 6 Sl 6 Mt 6 XII 6 Mt 6
100 NS RENERRNNARNE SRNRNNNRNARNNSRANSARRNE ANNRRRARNARNANNARN)
90 g;}g{!}g!‘g{!}“”l ] R T T
80 J +
70”7[([11”]7]’””””‘“HHII“”]H”HHI]I[”’”H,HHH
co L DA TSN TP 7T S T i o
T I NS T T T T L A TN T T
50 [AREREEREEREAREERE AN QN L'L' | ERRENAERD
10 T M
80 = -
20 1
11 ERRRL RNERENE! IR NN NN AR ERRE
St AN AN RN NN NN N AANE ENEE NN RN NN NN RN
AR AN R NN RN FRE NN NN AR RN AR N
olLLITUIITTE P T TR AE VT A T ipiiii it iv it iR iiiiiqiiqiqyifqtiqtil
F16. 3.— Thermographs for Aug. 9-10 and Sept. 27-28, 1899, at Lincoln, Neb
Mon. 13 Tu. Wed. Th. Fri. 17
XII Mt XII Mt XII Mt XII Mt XII Mt
30 ° (0 1 105 5 U 0 (. £ £ 00 0 %10 (1 9 1 (0 1 [ 0 0 Y 0 £ I £ 0 (10 19 I U 40 0 £ 0 ) (950 O [ A [0 [ i)
LT [1] [
5 |
|
29 =<
T | TR
52\“%““\\1%“ IRRERRARARARTARANA 1]
28 t

Fic. 4. —Barograph Sheet, March 13-17, 1899, at Lincoln, Neb.

Figures 3 and 4 are copies of curves thus constructed in the local station at
Lincoln, Neb. The upper curve in Fig. 3 shows the temperature from 10 »r.n.
Aug. 8, 1899, ta 9 A Aug. 11, 1899 ; the lower from 11 r.m. Sept. 26, 1899, to
8 a.m. Sept. 29, 1899. Interpret these curves. Notice especially the record
from 6 p.y. to midnight Aug. 10.

The varying pressure on the piston in the cylinder of a steam engine is deter-
mined in the same way by means of a similar instrument, called an Indicator.*

4. Exhibit graphically the information contained in the following table of
wind velocities for Jan. 20 and June 15 and 25, 1894 :

*For a deseription and cut of the ¢ Thermograph,’” ¢ Barograph,” and ¢ Indicator,”
see these words in the Century, Standard, or Webster’s International Dictionary.
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Day 12-1 | 1-2 2-3 3-1 4-5 56 6-7 7-8 8-9 | 9-10 | 10-11|11-12
Jan. 20, .M. . .| 8 6 7 7 8 9 12 15 15 19 12 21
Juneld, a.m. . .| 15 11 8 10 8 9 8 38 11 15 17 21
June25, a.M. . .1 17 14 13 13 11 23 23 13 9 4 2 10
Jan, 20, p.M. . ] 22 22 18 19 14 9 [ T 5 6 5 4
June 15, p.M. . .| 15 21 22 20 17 17 12 5 5 6 6 3
June 25, p.M. . .| 12 15 11 12 12 5 1 3 6 1 7 3

INTERSECTION oF Loct

24. To find the points of intersection of two loci when their equations
are known.

Since the points of intersection of two loci lie on both curves,
their coordinates must satisfy both equations. Therefore, to find
the coordinates of the points of intersection of two loci we treat
their equations simultaneously, regarding the coordinates as the
unknown quantities, and thus find the values of the coordinates
which satisfy both equations. A pair of values which satisfy both
equations are the coordinates of a point of intersection of the two
loci. '

If the equations are both of the first degree, there will be but one
pair of values of coordinates satisfying them, and therefore but one
point of intersection of the loci.

If one or both of the equations be of a higher degree than the
first, there will be several pairs of roots, and one point of intersec-
tion for each pair. The loci will then have several points of inter-
section.

If of a pair of roots even one is imaginary, there is no correspond-
ing real point common to the twoloci. We then say the intersection
is imaginary.

Since imaginary roots of equations always oceur in pairs, imagi-
nary intersections of loci always occur in pairs, and hence the passage
from a real pair of intersections to an imaginary one is through a
coincident pair. Suppose, for example, that a straight line intersects
a circle in two real points. If the line be moved so that it becomes
tangent to the circle, the two points of intersection coincide in the
point of contact. If the line be moved still farther, the intersections
are said to become imaginary.
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25. Intercepts on the axes of coordinates.

This is a special and very important case of the preceding section
in which one of the given equations is =0, or y =0.

To find the points of intersection of a curve with the a-axis, put
y=0 in the equation of the curve and solve the resulting equation
for . The roots of this equation in x represent the distances from
the origin to the points of intersection; and these distances are called
the x-intercepts of the given curve.

Similarly, to find the y-intercepts, put @ =0 in the given equation
and solve the resulting equation for y.

Ex. 1. How many z-intercepts may a curve of the nth degree have ?

Ex. 2. What does it mean when in an equation in polar coordinates we put
0=0? p=0?

26. A line may be defined as the path of the moving point. Then,
if (x, y) be the moving point, both # and y are variable quantities,
and are called the variable or current coordinates of the moving
point. The path of the moving point is then determined by the
condition that its coordinates must vary only in such a manner as
always to satisfy a given equation; i.e. although both coordinates vary
the relation between them remains fixed.

EXAMPLES

Find the intercepts and the points of intersection of the following loci :
1. 2243y =12, 4 —y=>5. 7. £—3y=0, 2+ y2 420y =0.
2.3x+5y=1, r—3y+7=0. 8. y2=4ax, 2 xy = a
3. br—2y+4=0, x—2y=4. 9. y? = 4ax, Yy — o2 =a%
4. x4+ 3y =15, x2 4 y2 = 25, 10. y2 =4ax, x?2=4ay.
5 3x—4y=20, 224+ 92 —-10—10y +25=0.
6. bx+4y =20, 224 y2=4.

11. Find the points of intersection of the loci of Nos. 1, 2, 3, 9, 15, 17, 18, 19,
20, 21, 26 in the last preceding set of examples.

12. Find the intercepts of the loci of Nos. 7, 9, 10, 11, 12, 13, 14, 18, 19, 20 of
the same set and check the results by the plots already made.

13. Find the area of the triangle whose sidesarexz —3y +5=0, 3z + 4y =11,
2x4Ty=3.
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SYyMMETRY or Loci

27. The process of constructing a locus explained in § 21 is
long and tedious. It may often be shortened by an examination
of the peculiarities of the given equation, such as the limiting
values of the variables for which both are real (see Iix. 3, § 22),
symmetry, ete. Such considerations will often reveal the general
form and limits of the curve and give all the information desired
with little labor. The intercepts (§ 25) are almost always useful for
this purpose.

Derinitrons. Two points A4 and B are said to be symmnetrical
with respect to a centre O when the line AB is bisected by -O.
Two points C and D are said to be symmetrical with respect to an
axis when the line OD is bisected at right angles by the axis.
The two points (x, y) and (— x, — y) are symmetrical with respect
to the origin; (z, ) and (@, — y) with respect to the x-axis.
A curve is said to be sym-

/\ i ¥ /\ metrical with respect to a centre
D D c & . :
" O when all lines passing
\ / 9 through O meet the curve in a
B pair, or pairs, of points sym-
R s| metrical with respect to O.

A curve is said to be sym-
metrical with respect to an axis
(o when all lines perpendicular
to the axis meet the curve in
a pair, or pairs, of points sym-
£ metrical with respect to the

axis.

Or, in other words, a curve is symmetrical with respect to an
axis, if the figure appears the same when a plane mirror is placed
on the axis perpendicular to the plane of the curve.

The curve Q) is symmetrical with respect to the origin, and RS
is symmetrical with respect to the y-axis. v

The principal kinds of symmetry arising from the f01111 of the
equation are as follows:

P
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28. Equations in Cartesian Coordinates.

Q) If flay, y) = (o, — y),* the locus of the equation f (x, ) =0 1s
symmetrical with respect to the z-axis; i.e.

If an equation is not altered when the sign of y is changed, its locus
is symmetrical with respect to the x-S,

Let (2, y') be any point on the locus f (x, y) = 0.

Then, since f(z, ¥) = f(®, — ¥), by hypothesis,

f@, o)y =r@,—y)=0.

That is, the point (', — ¥') is also on the locus. Therefore, since
the line @ — 2' meets the locus in any point (2, y'), it will also meet
the locus in the syminetrical point (', — y"), and the curve is
symmetrical with respect to the x-axis.

Ex. Letf(x, y)=y2— 4wz, thenf(x, —y) = (—y)t—dx=y—4r

Therefore f (x, ¥,) =f (x, — ¥) and the curve y? — 4 x = 0 is symmetrical with
respect to the z-axis. (See Ex. 2, § 22.) :

(2) Similarly, if f(@, y) =f(—w, y), the locus of f(x, y) =0 is
symmetrical with respect to the y-aais.

Ex. y—cosx=y — cos (—x).

Therefore the locus of y = cos « is symmetrical with respect to the y-axis.

G) If feyy)y= £ f(—x —u) the locus of f(x, y) =0 is sym-
metrical with respect to the origin.

Let (2, ¥') be any point on the locus f(x, y) = 0.

Then, since f (@, ) = + f( — «, — y) by hypothesis,

o JF@, ") =f(—a, —y)=0.

Hence the straight line through the origin and the point (&', »")
meets the locus again in the symmetrical point (—2', — Y.
Therefore the curve is symmetrical with respect to the origin.

a2 2 (= (=P
Ex. —2+5é—1——a_2+ " —1= g +ﬁ_1
e == (=
g - a2 b2 '
~
* The sign =" means ‘ identical with,” i.e. the same for all values of x and ¥, and

therefore that the two expressions vanish for the same values of x and y.
Eg. (x+y)2=a2+2uy + 42, cos x =cos (— ).
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2 2
Therefore the curveg—2+%=l is symmetrical with respect to both axes

and the origin. (See figure, § 34.)

@) If f(x, ) =y, @) the locus of f(x, y) = 0 is symmetrical with
respect to the line y =wx. E.g. 2+ = 1.

G) If f(z,y) =f(—y,—x) the locus of f(x, ) =0 is sym-
metrical with respect to the line y = — . E.g. xy= + 1.

Let the student prove propositions (4) and (5).

The foregoing conditions of symmetry are both necessary and
sufficient; i.e. if either one of the conditions (3), for example, is
satisfied, the locus is symmetrical with respect to the origin, other-
wise not. The student, however, should examine the opposite
propositions independently. .

The following conditions, (6), (7), (8), are sufiicient, but not
necessary ; i.e. the opposite propositions are not necessarily true.

(6) If an equation contains only even powers of ¥, its locus is sym-
metrical with respect to the z-axis. [From (1).]

(T) 1If an equation contains only even powers of w, its locus is sym-
metrical with respect to the y-axis. [From (2).]

(8) If an equation contains only even powers of both x and y, its
locus is symmetrical with respect to both axes and also with respect to the
origin. [From (3).]

In an algebraic * equation either one of the following conditions is
sufficient, and one or the other is necessary.

(9) If all the terms of an algebraic equation are of even degree, or
if all the terms are of odd degree, its locus is symmetrical with respect to
the origin. [From (3).]

Show that (6), (7), (8), and (9) follow from (1), (2), and (3).

Show that (6), (7), (8) are necessary conditions of symmetry if the equation
is algebraic.

* A function in which the variables are involved in no other way than by addition,
snbtraction, multiplication, division, and root extraction is called an Aigebraic Func-
tion. All others are called Transcendental Functions.

ax3 + by?
E.g. 322—2zx-4, 22— axy+ by?, Ti—EJ_-I-n Vay,

are algebraic functions; while a#, sin x, sec~1 y, log (x2+y) are transcendental
functions.
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29. Equations in Polar Coordinates.

The best way to determine the symmetric properties of loci in
polar coordinates is to transform their equations to rectangular co-
ordinates, and then apply the tests given in § 28.

The following conditions, however, are useful in simple cases.
They are sugficient but not necessary, conditions of symmetry.

Q) If fO) =1 (—0), or, if f(0)=—f(x—0), the locus of p=S(0)
is symmetrical with respect to OX.
(2) Similarly, if £(0)=f(x—0), or, if f(6)=—f(—10), the locus
of p=f(0) is symmetrical with respect to oY.
(3) If f(8) =f(w+8), the locus of p=f(0) is symmetrical with
respect to O. )
EXAMPLES

In what respects are the loci of the following equations symmetrical ?

1y =l2S 2N I=Yutt & 9P 4. yt=u1.
B 0] Stah GINTE=N T 2=Tcs: 8 =Tl25
9. 2 =22 10. y = 5. 110 2 =t 12, yt =22
13. 4% =28 4. f =22 15 t=a5 16 5=t
17. y=a8 — . 18. y =3 — 22 19. y =t — 22 20. y=2xt—xd
21. xy=a. 22. x%y = a. 23. ar?+by2=1.
« 24, aqx?+2bxy +cy’=1. 25. arx?+ 2bxy + ay®=1.
26. oy —2(x +y)=1. 27 ¥+ =1
28 x4 yt=1. 29. 2t =y2(4a®—2?)-
~ 80. x(y+x)2+ay=0. 31. %% = (22 + ¥?).
32. x% -+ ylz = alf. 33. xg‘ + y% = a%.
34. (a—x)y? = (a+ x)22 35. (a—x)y?+2*=0.

36. y=1(2°+2-%). 87. y=1(2* —2-%). 88. p?=cos 2’0. 39. p2=sin26.

40. Point out the symmetric properties of the loci in the last two preceding
sets of examples, especially those given in polar coordinates.

41. Show that if an equation is not altered when — & is written in the place
of 7, and y in the place of x, its locus will show no change in position when the
curve is turned about the origin through a right angle in its plane. For an
examplé see No. 7, p. 27; also 222 —3zy — 292 =",

The locus of xt + a%ry — y* = 0 is also such a curve.
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To Finp tHE EqQuATrioN oF A Locus, HAVING GIVEN ITS GEo-
METRIC DEFINITION

30. It should be borne in mind that to find the equation of a locus
we have merely to find an equation that is satisfied by the coordi-
nates of every point on the locus, and not satisfied by the coordinates
of any other point. It is not easy to give specific directions which
can be applied in all cases, but the following plan will be useful to
the beginner, at least in the simpler cases:

(1) Choose the system of coordinates best adapted to the locus
under consideration, and select a convenient set of axes.

(2) Write down the geometric equation which expresses the given
geometric definition, or any known geometric property of the locus.

(3) Express this geometric equation in terms of the chosen system
of coordinates, and simplify the result.

The following examples will give a better idea of the method of
procedure than any formal rules; they should be carefully studied :

31. Tbo find the equation of any straight line.

Y c
P/

Let ABC be any straight line meeting the axes in 4 and B.
Let OB=0, let tan XAC =m.

Let P(x, ) be any point on the line.

Draw PQ parallel to OY, and BR parallel to OX.
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Then for the geometric equation we have
QP= QR+ RP= OB+ BIRtan PBR.
But QP=y, OB=0, BR=w, tan PBR=m.
y=mx+ 0, (aL)
which is the required equation.

For any particular straight line the gquantities m and & remain the
same, and are therefore called constants. Of these, m, the tangent
of the angle between the line and the a-axis, is called the Slope of
the line, while & is the y-intercept.

By giving suitable values to the constants m and &, (1) may be
made to represent any straight line whatever, e.g.

If b =0, we have ¥ = ma, @)
for the equation of any line through the origin.

Quantities entering into an equation, such as m and b, which
remain constant so long as we consider any particular curve, but
whose variation causes a change in the position, size, or shape of the
curve, are called Parameters of the curve.*

Moreover, any equation that can be put in the form (1), i.e. y equals
some multiple of x plus a constant, represents a straight line.

The general equation of the first degree

Az + By+C=0 @
may be written M= ——%w _%,

and therefore (3) represents a straight line whose slope is —‘]—1

and whose y-intercept is —-5 (See § 43.)

Ex. 1. If b varies in (1) while m remains constant, how will the line
change position? If m varies while b remains constant? If m varies
in (2)?

Ex. 2. What will be true of the signs of m and b when the line crosses the
various quadrants ?

* The difference between parameters and coordinates should be carefully noted;
also the difference in the effect of a variation of the parameters of an equation and "
the variation of the current coordinates. (See § 26.)
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32. To find the equation of a circle referred to any rectangular axes.
Y

5} \-/ X
Let r = radius, and let C(a; b) be the centre.
Let P(x, ) be any point on the circle.

Then CP=r. [ Geometric equation.]
But OP*= ( — a)’ 4 (y — b) [2),87]
(®—a)}+y-b)?=1r? ¢y

is the required equation.
If a=7rand b =0, (1) reduces to

v 2+ y2—2rx=0. )]
If a= —rand b= 0, (1) becomes

x? 4+ y? + 2rax=0. 3)

Y ' The circle at the right in

the figure is the locus of
equation (2); the circle at
the left is the locus of equa-

When the centre is at
the origin, a=0=0, and
we have for the simplest
equation of the cirele in
Cartesian coordinates the standard form (§ 16),

x>+ y=ri @
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Moreover, any equation of the second degree in which the term in
ay is wanting and the coefficients of 2* and y” are equal, can be written
in the form of equation (1), and therefore will represent a cirele, real
or imaginary. For example, the equation

24 yP—4e+6y—3=0
may be written in the form
‘ (x—2)*+ (y +3)* =16,
which shows that its locus is a ecircle whose centre is at the point
(2, — 3), and whose radius is 4.

EXAMPLES
1. What is the form of the equation and the position of the circle, if b =4 r
and ¢ =07?
2. What are the parameters in these equations ? Discuss the effect produced
by their variation.
Find the centres and radii of the following circles :

3. 22+ y2+4x=0. 4. 2+ y2+6y=0.

5. 2+ y2+2x—4y=0. 6. 22+ y2—-3x+56y=0.

7. a2+ 2+ 6x—4y +9=0. 8 4(x2+92)—120+8y — 23 =0.
9 224+ 9424 62+8y—11=0, 10. 4 (22 +92)—20x — 32y 25 =0.

11. Find tue general equation of a circle which touches both axes.

33. Polar equations of the circle.
It follows from (1), § 8, that the polar equation of the circle whose
centre is at the point (a, «) and whose radius is 7, is

p?—2ap cos (0 — «)+ a* — 1> =0. @)
If the pole is on the circle, the equation is
p=2rcos(6—w); @)
if the centre is also on the initial line, the equation is
p=2rcos 0; 3)
if the cirele is above the initial and tangent to it at the pole, its
equation is p=27sin 6. )

Ex. 1. Why is (1) of the second degree in p while (2), (8), and (4) are of the
first degree ? When is the pole outside, and when inside the circle ? Discuss
the effect of the variation of the parameters in these polar equations.

Ex. 2. Transform equations (1), (2), (3), (4) to rectangular coordinates,
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34. Tur Erniesu. The ellipse is the locus of a point which moves
so that the sum of its distances from two fized points, called foci, is con-

stant.
Y

BI

Take the line through the foci as the a-axis, and the pomt midway
between the foci as origin.
Let 2 ¢ = the sum of the distances from any point on the ellipse
to the foci. Let F(e, 0) and F'(— ¢, 0) be the two foci.
Let (=, y) be any point on the locus.

Then FP 4+ F'P=2aq. [Geometric equation.]
But FP=+ (z~c)y+,
and FP=v(@+ol+s [(2),87.]
VE—o’+y+V @+ +F=2a @)

Transposing the first radical and squaring
@+eP+y=4a’+ @—cP+r—4daV @—clP+9,

or aV (x—c)+y=a’—ca.

Squaring and transposing again

(0 — ) 2® + a® = a?(a® — ).

If we put a?— =107 we get the equation of the ellipse in the

standard form 2 L9
’ il oy i (@)

@ B
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35. An examination of this equation (2) as to symmetry, limiting
values of the variables and intercepts, will give the general form and
limits of the curve.

(1) Only the square of the variables « and y appear in this
equation.

Therefore the ellipse is symmetrical with respect to both axes,
and also with respect to the origin. [(8), § 28.]

Hence every chord passing through O is bisected by O. For this
reason, the point O is called the Centre of the ellipse. Likewise
the lines AA' and BB' are called the Major AXIS and Minor Axis,
respectively.

(2) When y=0, z = + a, a-intercepts.
When « =0, y = + b, y-intercepts.

Therefore the curve cuts the 2-axis « units to the right and « units
to the left, the y-axis b units above and b units below the origin.

3) Solving the equation (2) for y and « respectively we find
y=- \/ at— o=t \/_:"y'?

Hence y is imaginary when w>a, or £< —a; and @ is imaginary
when >, or y < —0.

Therefore the curve lies wholly within the rectangle formed by
the lines #=+aand y= + 0.

Also, as either variable increases, the other diminishes. The form
of the curve is shown in the figure.

Such an examination of an equation is called A Discussion of the
Equation.

Ex. 1. Transform equation (2), § 34, to polar coordinates and show that p is
finite for all values of 6.

Ex. 2. Where is the point (k, %) if Z’f+ ’f_1>0? <0?

Ex. 3. Show the relation of the elhpse = + y =1 to the circles 22 + y2 = a?
and 22 4 y2 = b2 .

Ex. 4. Find the axes, coordinates of the foci, and plot the ellipses.

2 2 2 .2 2
1) X481 RGN gy & 4.1
Ohs 3>t L i
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36. Tur Hyeerrora. The hyperbola is the locus of a point which
moves so that the difference of its distances from two Jized points ( foct)
is constant.

Choose axes as in the case of the ellipse, let 2 @ be the constant
difference, and show that when 42 = ¢— a? the equation of the hyper-
bola reduces to the standard form. [See Fig. § 90.]

03
x® 2

S= =21l !
a2 b2 ( )

Ex. 1. Discuss equation (1).

Ex. 2. Show that the hyperbola (1) lies wholly between the two straight
lines ay = + b, and that as x becomes infinite the ordinates of the lines become

equal to the ordinates of the hyperbola. These lines are called the Asymptotes
of the hyperbola. [See Fig. § 110.]

ix. 3. Transform equation (1) to polar coordinates, and find the value of P

when § = 4 tan-1 7

Ex. 4. Find the foci, equations of the asymptotes, and trace the curves

2 x2
1 "_Ji =1. ¥y _¥ . 3y L_¥_,
( 9 ()16 25 () 16
) x2—y2:a2. (5) 92 — a2 = b2 (6)4x2—y2=4.

37. Tue Paravora. The parabola is the locus of « point whose
distance from « fived straight line is equal to its distance Jrom a fixed
Point.

The fixed point is called the Focus; the fixed line is called the
Directrix.

Take the line throngh the focus perpendicular to the directrix as
the a- 'txis, and the origin midway between the focus and the direc-
trix; let 2« denote the distance from the focus to the directrix.
[See Fig. § 88.]

Then show that the equation of the parabola is

y? =4 ax. @)
Ex. 1. Discuss this equation (1), also > = — 4 qx and 22 = + 4 ay.
Find the foci, equations of the directrices, and draw the parabolas
(2) Y =4z=. 3) = -8z 4) ¥2=6=.

(5) 2=8y. 6) 2= ~10y. (M 2= —12y.
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EXAMPLES

1. A moving point is always four times as far from the z-axis as from the
y-axis. What is the equation of its locus ?

2. Find the locus of a point which is equidistant from the two points (3, 2)
and (— 2, 1). Ans. bx+y=4.

3. Find the locus of a point which is equidistant from the points (e, b)
and (¢, d).

4. A point moves so that its distance from the point (3, —4) is always 5.
Find the equation of its locus. Does the locus pass through the origin?
Why ? Ans. 2?24+ y2—62+8y=0.

5. Find the equation of a circle touching both axes and having its centre
at that point (— 3, 3).

6. Find the equation of a circle touching both axes and having a radius
equal to 4.

7. A point P is two units from a circle with radius 4 and centre at (2, — 6).
What is the locus of P?

8. A point moves so that its distance from the origin is twice its distance
from the x-axis. What is the equation of its locus ? Ans. «2—-3y2=0.

9. A point moves so that its distance from the z-axis is equal to its dis-
tance from the point (2, —3). Show that the equation of its locus is
22—4x+6y+13=0.

10. A point P moves so that its distances from the points 4(2, 2) and
B(— 2, —2) satisfy the condition AP+ BP = 8. Show that the equation of
its locus is 322 — 2xy + 3y = 32.

11. What is the locus of a point which moves so that (1) the sum, (2) the
difference, (3) the product, (4) the quotient of its distances from the axes is
constant (@) ?

12. What is the locus of a point which moves so that (1) the sum, (2) the
difference, (3) the product, (4) the quotient of the squares of its distances from
the axes is constant (a?) ?

13. Find the locus of a point which moves so that the sum of the squares
of its distances from the points (a, 0) and (— @, 0) is constant (2 ¢?).

14. Find the locus of a point which moves so that the sum of the squares
of its distances from the three points (5, — 1), (3, 4), (— 2, — 3) is always 64.

15. Find the locus of a point which moves so that the difference of the
squares of its distances from (a, 0) and (— @, 0) is the constant 2 ¢%

16. Find the locus of a point such that the sum of the squares of its distances
from the sides of a square is constant.



CHAPTER T1II

THE STRAIGHT LINE

38. It was shown in § 31 that the equation of any straight line
when expressed in terms of its slope m and y-intercept & is an
equation of the first degree,

y=mx+b;
and also that the general equation of the first degree,
Ax+ By + C=0,
represents a straight line. It is sometimes more convenient, how-
ever, to write the equation of the straight line in other forms; i.e.
to express it in terms of some other pair of parameters.

39. To find the equation of the straight line in terms of ils inter-
cepts on the axes.

Let A and B be the points in which the straight line meets the
axes; let 04 =a, and OB=0. Let P (x, ) be any point on the line.
Draw PQ parallel to the y-axis, and join O and P.

Then AOAP+AOBP=A OAB.
Hence bx 4 ay = ab,
x Yy :
or R e 1. @)

46
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the equation may be written

Ifl=éandm=1
le 4 my=1. @

5’

40. To find the equation of « straight line in terms of the length of
the perpendicular from the origin upon the line and the angle which that
perpendicular makes with the x-aris.

Y Y N

i ,

B R &

Let ON be perpendicular to the straight line 4B, and intersect it
in B. Let OR=p, and angle NON = «.

Let P(x, ) be any point on the line.

Then since OQPR is a closed polygon, OR is equal to the sum of
the projections of OQ, QP and PR upon OR. That is,

OR =proj. of OQ + proj. of QP+ proj. of PR
= 0Q cos «+4 QP sin «+ 0.
. eos « + Y sin o = Py / 6))
which is the required equation.
Tet £ XAP=y=90°+4+« Then cos ¢=sin y, sin a=—cos y,
and, by substituting in (1), the equation of the line becomes
x siny — ¥ €os y = P L} (&)

Since equations (1) and (2) involve the trigonometric functions, sin
and cos, ON and AB must be regarded as directed lines. As in
Trigonometry, we will consider the directions of the terminal lines
of « and vy as the positive directions of these lines.

Tf y=90° + ¢, as assumed above, then standing at R facing the
positive direction of ON, the positive direction of AB is to the left;
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and standing at R facing the positive direction of AB, the positive
direction of ON is from AB toward the right.

This will be called the positive side of the line AB.

Then in equations (1) and (2) p is positive when taken in the
positive direction of ON. Hence when p is positive the origin is on
the negative side of the line.

\ Y E.g. In the equations
B

, = =43,
N \/2

1
€os (¢ = sin ¢t = —.
V2

Q(\y 3, 5 »oo0 = 45° and y = 135°
< \" x for both lines ; but
-3 \ for AB Pi='3,
A for CD p=-3.

Hence the two lines are parallel but
on opposite sides of 0. Also O is on

the positive side of CD and on the
¢ negative side of AB.
Since sin (@ + w)=— sin § and cos ( + =)=— cos 6,
if the signs of all the terms in (1), or (2), be changed, the direction
of AB, and also of ON, will be changed by 4 =; and therefore the
positive and negative sides of the line will be reversed. That is,

the equation of a line may be written so as to make either side of
the line positive or negative, just as we choose.

E.g. The equation of the line 4B, Y
z  V3y_ /
gt > O 5
may also be written
S V3 —9. (@) P
2 2 b4 ‘\‘
In (1) p=—2, P >:¢
1 /,A . AW
cos ¢ = sin y ==,
2’
sin ¢ = — cos v _—-ﬁ.

=-—60° and y = 30°.
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In (2) p=2, cosa:siny:—%, sinoc=—cos'y=A2L3.

. ¢ = 120° and y = 210°.

Angles and directions corresponding to (1) are denoted by single arrow-heads,
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