


W ..

GIFT OF

4
<4

A

ALLY AL AT AP,

i 4E

A N e XL TZLC,
s =
o e ~

i

MATH.-
STAT.

LIBRARY




VNS e AL SRR ,Mh?rbmx\%...‘i‘ .

>3 ol s Sl Ay







Ceor>
ot
V]
1
\"'wsﬁb
e,
Eai
817
£,
Cov
Y o008
QB8 Cimin
by
0814 V'
S—
£
i






ELEMENTS

OF

GEOMETRY AND TRIGONOMETRY,

FROM THE WORKS OPF

A. M. LEGENDRE.

ADAPTED TO THE COURSE OF MATHEMATICAL INSTRUCTION IN
THE UNITED STATES,

BY CHARLES DAVIES, LL.D.,

AUTHOR OF ARITI{METIC, ALGEBRA, PRACTICAL MATHEMATICS FOR PRACTICAL MEN,
ELEMENTS OF DESCRIPTIVE AND OF ANALYTICAL GEOMETRY, ELEMENTS
OF DIFFERENTIAL AND INTEGRAL CALCULUS, AXD samms.
SHADOWS, AN!) »rxm*ncr:vm

2

A. S. BARNES & COMPANY,
NEW YORK AND CHICAGO.

1872.



kj [“\\D ’.i‘) [,

DAVIES MATHEMATICE) 2
TRE WEST POINT COURSI,

And Oaly Thorough and Complete Mathematical Series. MATHS
STAT,
IN THREE PARTS. UBRA!;Y

I. COMMON SCHOOL COURSE

Davies’ Primary Arithmetic.—The fundamental principles displayed in
Object Lessons.

Davies’ Intellectual Arithmetic.—Referring all operations to the unit 1 as
the only tangible basis for logical development.

Davies’ Elements of Written Arithmetic.—A practical introduction to
the whole gubject. Theory subordinated to Practice.

Davies’ Practical Arithmetic.*—The most successful combination of Theory
and Practice, clear, exact, brief, and comprehensive,

1. ACADEMIC COURSE.

Davies’ University Arithmetic.*—Treating the subject exhaustively as
a science, in a logical series of connected propositions,

Davies’ llementary Algebra«*—A connecting link, conducting the pupil
easily from arithmetical processes to abstract analysis.

Davies’ University Algebra.*—For institutions desiring a more complets
but not the fullest course in pure Algebra,

Davies’ Practical Mlathematics.—The science practically applied to the
useful arts, as Drawing, Architecture, Surveying, Mechanics, etc.

Davies’ Elementary Geometry.—The important principles in simple form,
but with all the exactuness of vigorous reasoning.

Davies’ Elements of Surveying.—Re-written in 1870. The simplest and
most practical presentation for youthe of 12 to 16.

I1l. COLLEGIATE COURSE.

Davies’ Bourdon’s Algebra.*—Embracing Sturm’s Theorem, and a most
exhaustive and scholarly course.

Daviss’ University Algebra.*—A shorter course than Bourdon, for Institu-
tions have less time to give the subject.

Davies’ Liegendre’s Geometry.—Acknowledged ke only satisfactory treatise
of its grade. 300,000 copies have been sold.

Davies’ Analytical Geometry and Calculus.—The shorter treatises,
combined in one voluine, are more available for American courses of study.

Davies’ Analytical Geometrys }’I'he original compendiums, for those de-

Davies’ Difie 82 Tnt. Caleuluss J _reiving to give full time to each branch.

Davies’ Descriplive (veomef.rv.,—th application torSpherical Trigonome-
try, Spherical Projections, and Warped Surfaces.

Davies’ Chades, San&ows, and Perspective.—A euccinct exposition of
the mathematical priuciples involréd,

Davies’ Bcience of Nlathematics.—For teachers, embracing

1. GRAMMAR OF ARITHMETIC, III. Logic axXD UTILITY OF MATHEMATICS,

II. OUTLINES OF MATHEMATICS, IV. MATHEMATICAL DICTIONARY.

* Keys may be obtained from the Publishers by Teachers only.

Entered, according to Act of Congress, in the year 1862, by

% CHARLES DAVIES,
In the Clerk’s Office of the District Court of the United States for the Southern District of
New York.

.

L.



*m% [
£gar g ‘osr® \

&« .

PREFACE.

Or the various Treatises on Elementary Geometry
which lave appeared during the present century, that
of M. Lrcexpre stands preéminent. Its peculiar merits
have won for it mnot only a FEuropean reputation, but
bave also caused it to be selected as the basis of many
of the best works on the subject that have been pub-
lished in this country.

In the original Treatise of LrcrnprE, the propositions
are not enunciated in general terms, but by means of
the diagrams employed in their demonstration. This
departure from the method of EvcLip is mueh to be
regretted. . The propositions of Geométry are general
truths, and ought to be stated in general terms, without
reference to particular diagrams. In the following work,
each proposition is first enunciated in general terms, and
afterwards, with reference to a particular figure, that
figure being taken to represent any one of the class to
which it belongs. By this arrangement, the ,difficulty
oxperienced by beginners in comprehending abstract truths,
is lessened, without in any manner impairing the gener-
ality of the truths evolved.

The term solid, used not only by Lrcesprr, but by
many other authors, to denote a limited portion of space,
seems calculated to introduce the foreign idea of matter

364332



iv PREFACE.

into a science, which deals only with the abstract pro-
perties and relations of figured space. The term wolume,
has been introduced in its place, under the belief that
it corresponds more exactly to the idea intended. Many
other departures have been made from the original text,
the value and utility of which have been made manifest
in the practical tests to which the work has been sub-
jected.

In the present Edition, numerous changes have been
made, both in the Geometry and in the Trigonometry. The
definitions have been carefully revised—the demonstrations
have been harmonized, and, in many instances, abbreviated—
the principal object being to simplify the subject as much as
possible, without departing from the general plan. " These
changes are due to Professor Peck, of the Department of
Pure Mathematics and Astronomy in Columbia College. For
his aid, in giving to the work its present permanent form, I
tender him my grateful acknowledgements.

CHARLES DAVIES.

CorLumBiA COLLEGE,
Nsw York, April, 1862,
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i E O M E T R

INTRODUCTION.

DEFINITIONS OF TERMS.

1. QuANTITY is anything which can be increased, dimin-
ished, and measured.

To measure a thing, is to find out how many times it
contains some other thing of the same kind, taken as a stand-
ard. The assumed standard is called the wnit of measure.

2. In GEOMETRY, there are four species of quantity, viz:
LixEs, SURFACES, VoLuMES, and ANGLES. These are called,
GEOMETRICAL MAGNITUDES.

Since the unit of measure of a quantity is of the same
kind as the quantity measured, there are four kinds of units
of measv.re, viz.: Units of Length, Units of Surface, Units
of Veiwme, and Units of Angular Measure.

GEOMETRY is that branch of Mathematics which treats
¢ the properties, relations, and measurement of the Geo-
“ metrical Magnitudes.

4. In Gceometry, the quantitics considered are generally
represented by means of the straight line and curve. The
operations to be performed upon the quantities and the rela
tions between them, are indicated by signs, as in Analysis.



10 1 GEQMETRY.
‘he following are the prineipal signs employed :

The Sign of Addition, -+ , called plus:

Thus, 4 + B, indicates that 2B is to be added to A.

The Sign of Subtraction, — , called minus :

Thus, 4 — B, indieates that B is to be subtracted
from A.

The Sign of Multiplication, X :

Thus, A x B, indicates that 4 is to be multiplied
by B. [

The Sign of Division, - :

fihus, i 24 - B for, indicates that 4 is to be
divided by B.

A
1_21

The Zxponential Sign :
Thus, A3, indicates that 4 is to be taken three times
as a factor, or raised to the third power. 3

The Radical Sign, +/ :
Thus, /4, 3/B, indicate that the square root of 4,
and the cube root of B, are to be taken.

When a compound quantity is to be operated upon as a
single quantity, its parts are connected by a vinculum or
by a parenthesis :

Thus, A + B x C, indieates that the sum of A and
B is to be multiplied by C; and (44 B) = C, indi
cates that the sum of 4 and B is to be "divided by C.

A number written blefore a quantity, shows how many
times it is to be taken.

Thus, 3(A4 + B), indicates that the sum of 4 and Z
is to be taken three times.

The Sign of Egquality, =:

Thus, A = B + C, indicates that A4 i3 equal to the
sum of B and C.
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The expression, A = B + C, is called an equation. The
part on the left of the sign of equality, is called the first
member ; that on the right, the second member.

The Sign of Inequality, < :
Thus, \/d < 3/B, indicates that the square root of

is less than the cube root of B.- Thke opening of the sign
ig towards the greater quantity.

The sign, .. i3 used as an abbreviation of the word
hence, or consequently.

The symbols, 1°, 2°, etc., mean, 1st, 2d, ete.

5. The general truths of Geometry are deduced by a
course. of logical reasoning, the premises being definitions and
principles previously established. The course of reasoning
employed in establishing any truth or principle, is called a
demonstration.

6. A THEOREM iz a truth requiring demonstration.
7. An Axrom is a self-evident truth.

8. A ProBLEM is a question requiring a solution.
9. A PosTULATE i3 a self-evident Problem.

Theorems, Axioms, Problems, and DPostulates, are all called
Lropositions.

10, A Lmaaa is an auxiliary proposition.

11. A CororraRY is an obvious consequence of one or
more propositions,

12. A Scmourom is a remark made upon one or more
propositions, with reference to their connection, their use,
their extent, or their limitation.



12 GEOMETRY.

13. An Hryrormesis is a supposition made, either in the
statement of a proposition, or in the course of a demonstra-
tion.

14. Magnitudes are equal to each other, when each con-
tiins the same unit an equal number of times.

15. Magnitudes are equal in all their parts, when they
may be so placed as to coincide throughout their whole
extent.



ELEMENTS OF GEOMETRY.

BOOK 1.

ELEMENTARY PRINCIPLES,

DEFINITIONS,

1. GEOMETRY is that branch of Mathematics which treats
of the propertics, relations, and measurements of the Geo-
metrical Magnitudes.

9. A Porst is that which has position, but not magni-
tude.

3. A LiIxE is that which has length, bu* neither breadth
nor thickness.
Lines are divided into two classes, straight and curved.

4. A StratgET LINE i3 one which does mnot change its
direction at any point.

5. A CurveDp LINE is one which changes its direction at
every point.

When the sense is obvious, to avoid repetition, the word
Line, alone, is sometimes used for séraight line; and the
word curve, alone, for curved line.

6. A line made up of straight lines, not lying in the same
direction, is called a &roken line.

%. A SURPACE is that which has length and Dbreadth
without thickness.
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Surfaces are divided into two classes, plane and curved
surfaces.

8. A Pranz is a surface, such, that if any two of its
points be joined by a straight line, that line will lie wholly
in the surface.

9. A Curvep Surrace is a surfice which is neither a
plane nor composed of planes, ;

10. A PLANE ANGLE is the amount of divergence of two
straight lines lying in the same plane.

Thus, the amount of divergence of the
lines AB and AC, is an angle. The : o
ﬁnes AB and AC are called sides, and X B
their common point A4, is called the ver-
tex. An angle is designated by naming its sides, or some-
times by simply naming its vertex; thus, the above is ealled
the angle BAC, or simply, the angle A.

11. When one straicht line meets D
another the two angles which they form :
are called adjacent angles.  Thus, the A B
angles ADBD and DB(C are adjacent.

12. A Rieur AxGLE is formed by one

straight line meeting another so as to

make the adjacent angles equal. The first
line is then said to be perpendiculur to the second.

v

13. An OpLiQue Axcre is formed by
one straight line meeting another so as

to make the adjacent angles unequal.

Oblique angles are subdivided into two classes, acute

angles, and obtuse angles.

14, An Acure AxGLE is less than a : ;
right angle

¢
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15. An OpTUsE ANGLE is greater than
a right angle.

16. Two straight lines are parallel,
when they lic in the same plane and can-

not meet, how far soever, either way, both
muy be produced. They then have the same direction.

17. A DTiaxe Fiure is a portion of a plane bounded

by lines, either straight or curved.

18. A Porveox is a plane figure bounded by straight
lines.

The bounding lines are called sides of the polygon. The
broken line, made up of all the sides of the polygon, is called
the perimeter of the polygon. The angles formed by the
sides, are called angles of the polygon. o

19. Polygons are classified according to the number of
their sides or angles,

A Polygon of three sides is ecalled a triangle ; one of
four sides, a quadrilateral ; one of five sides, a pentagon ;
one of six sides, a hewagon ; one of seven sides, a hepta-
gon ; one of eight sides, an octagon ; one of ten sides, a
decagon ; one of twelve sides, a dodecagon, &,

20. An EquiLareraL Pouvcown, is one whose sides are
all eqnal.

An EQuiaNGULAR Poryson, is one whose angles are all
equal.

A Rrecurar PoLvcon, is one which is both /equilaternl
and equiangular.

?l. Two polygons are mufually equiluteral, when their
sides, taken in the same order, are equal, each to each: that
is, following their perimeters in the same direction, the first
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side of the one is equal to the first side of the other, the
second side of the one, to the second side of the other,
and so on.

22. Two polygons are mufually equiangular, when
their angles, taken in the same order, are equal, each to
‘eaclw. ‘

23. A DracoxAL of a polygon is a straight line joining
the vertices of two angles, not consecutive.

24, A DBase of a polygon is any one of its sides on
which the polygon is supposed to stand.

25. Triangles . may be classified with reference either to
their sides, or their angles.

When classified with reference to their sides, there are
two classes : scalene and <sosceles.

1st. A Scarenr TriaxeLE is one which
has no two of its sides equal,

2d.” An Jsosceres TRIANGLE is one which i z
has two of its sides equal.

When all of the sides are equal, the
triangle is EQUILATERAL.

0y

When classified with reference to their angles, there are

are two classes : right-angled and oblique-angled.

1st. A RieHT-ANGLED TRIANGLE is one

\

that has ome right angle.

The side opposite the right angle, is called the Aypothe

nuse.

90d. An OBLIQUE-ANGLED TRIANGLE is /
one whose angles are all oblique. s
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If one angle of an oblique-angled triangle is obtuse, the
triangle is said to be oBruse-axcLED. If all of the angles
are acute, the triangle is said to be ACUTE-ANGLED.

26. Quadrilaterals are classified with reference to the rcl
ative directions of their sides. There are then two classes
the first class embraces .those which have no two sides par
allel; the second class embraces those which have at least
two sides parallel.

Quadrilaterals of the first class, are called trapeziums.

Quadrilaterals of the second elass, are divided into two

species : trapezoids and parallelograms.
27. A Trapezomp is a quadrilateral :
which has only two of its sides parallel.

28. A PararLErocraM is a quadrilateral which has its
opposite sides parallel, two and two.

There are two varieties of parallelograms : rectangles
and rhomboids.

1st. A REecraNcie is a parallelogram

whose angles are all right angles. l

A Squsre is an equilateral rectangle.

A Rnowsus is an equilateral rhomboid.

2. A Ruowmsom is a parallelogram / e
whose angles are all oblique. R b oll
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29. SPACE is indefinite extension.

80. A Vorume is a limited portion. of space. A Volume
has three dimensions : length,-breadth, and thickness.

AXIOMS.

1. Things which are equal to the same thing, are equa
to each other.

2. If equals be added to equals, the sums will be equal,

8 If equals be subtracted from equals, the remainders
will be equal.

4. If equals be added to unequals, the sums will be
unequal. ;
L i equals be subtracted from unequals, the remainders
will be unequal.

6. If equals be multiplied by equals, the products will be
equal.

7. If equals be divided by equals, the quotients will be
equal.

8. The whole is greater than any of its parts.

9. The whole is equal to the sum of all its parts.
10. All right angles are equal.

11. Only one straight line can be drawn joining two
given points.

12. The shortest distance from one poinﬁ' to another is
measured on the straight line which joins them.

18. Through the same point, only ene straight line can
be drawn parallel to a given straight line.
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POSTULATES.

1. A straight line can be drawn joining any two points.
2. A straight line may be prolonged to any length.

& If two straight lines are unequal, the length of the
less may be laid off on the greater.

4. A straight line may be bisected; that \is, divided into
two equal parts.

5. An angle may be bisected.

6. A perpendicular may be drawn to a given straight line,
either from a point without, or from a point on the line.

7. A straight line may be drawn, making with a given

straight line an angle equal to a given angle.

8. A straight line may be drawn through a given point,
parallel to a given line.

NOTE.

In making  references, the following abbreviations are employed, viz.
A. for Axiom; B. for Book; C. for. Corollary; D. for Definition; [
for Introduction ; P. for Proposition; Prob. for Problem ; Post. for
Postulate ; and 8. for Scholium. In referring to the same Book, the
number of the Book ¢s not given; in referring to any other Book, the

number of the Book is given.
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PROPOSITION I. TIIEOREM.

I/ a straight line meet another straight line, the sum of the
adjacent angles will be equal to two right angles.

Let DC meet AD at C:

then will the sum of the angles E D
DCA and DCDB be equal to E /
two right angles. | i

Av C, let CFE be drawn per- !

pendicular to 473 (Post.6) ; then,
by definition (. 12), the angles
ECA and FECB will both be right angles, and conse-
quently, their sum will be equal to two right angles.

The angle DCA is equal to the sum of the angles
ECA and ECD (A. 9); hence, ‘ -

DCA + DCB = ECA + ECD + DCB ;
But, LCD + DCB is equal to ECB (A. 9); hence,
DCA + DCDB = ECA + ECB.

The sum of the angles FCA and ZCD, is equal to
two right angles; consequently, its equal, that is, the sum
of the angles PCA and BCB, must also be equal to twe
right angles ; which was to be proved.

Cor. 1. If one of the angles BCA, D(CB, Vs a right

angle, the other must also be a r'ighl. angle.

Cor. 2. The sum of the an-
gles BAC, CAD, DAE, EAF, C
formed about a given point on
the same side of a straight Tline
BF, is equal to two right an- B F
gles. For, their sum is equal to




BOOK I. 21

the sum ot the angles EAB and ZAZ; which, from the

proposition just demonstrated, is equal to two right angles.
Pt

DEFINITIONS,

If two straight lines intersect each other, they form four
angles about the point of intersection, which have reccive!
different names, with respect to each other.

1°.  Apjacext ANGLES  are
those which lie on the same side
of one line, and on opposite sides
of the other; thus, ACE and ;
ECDB, or ACE and 4CD, are D B
adjacent angles.

2°, @rrosITE, or VEKRTICAL ANGLES, are those which lie
en opposite sides of both lines; thus, ACE and DCDB,
or ACD and KECDB, are opposite angles. From the pro-
position just demonstrated, the sum of any two adjacent
angles is equal to two right angles.

PROPOSITION II. THEOREM.

If two straight lines intersect each other, the opposite or
vertical angles will be equal.

Let AB and DE intersect
at C: then will the opposite
or vertical angles be equal.

The sum of the adjacent angles
_ACE and ACD, is equal to D
two right angles (P. 1) : the sum
of the adjacent angles ACE and KECD, is also equal to
two right angles. But things which are equal to the same
thing, are equal to each other (A. 1); hence,



29 GEOMETRY.
ACE + ACD = ACE + ECB;

Taking from both the common

A
angle A4CZE (A, 8), there re- ﬂ

mains, : @
ACD = ECD. D B
In like manner, we find,
ACD + ACE = ACD + DCEB
and, taking away the coﬁunon angle A4CD, we have,

ACE = DCB.
Hence, the proposition is proved.
Cor. 1. If one of the angles about C is a right angle,

all of the others will be right angles also. For, (. L, C.1),

each of its adjacent angles will

be a right angle; and from the »
proposition just demonstrated, its
opposite angle will also be a right A 5 B
angle.

Cor. 2. If one line DE, is E

perpendicular to another ADB, then will the second line - 4.8
be perpendicular to the first DZ  For, the angles DA
and DCB are right angles, by definition (D..12); and
from what has just been proved, the angles ACL and
BCE are also right angles. Ilence, ®the “two lines are
mutually perpendicular to each other.

B
Cor. 3. The sum of all the A
angles ACB, BCD, DCE, ECI, D
1'CA, that can be formed about 3 % f
a point, is equal to four right F
angles. &
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For, if two lines be drawn through the point, mutually
perpendicular to each other, the sum of the angles which
they form will be equal to four right angles, and it will
also be equal to the sum of the given angles (A. 9).  Hence,

the sum of the given angles is equal to four right angles,

PROPOSITION 11I. TIIE@REM.

If two straight lines have two points in common, they will
coincide throughout their whole extent, and form one and
the same line.

Let 4 and B be two points
common to two lines: then will A

E
the lines coincide ihroughout. o C ! b
Between 4 and B they must

coincide (A. 11). Suppose, now, that they begin to separate
at some point C, beyond AR, the one becoming A CZ,
and the other ACD. If the lines do separate at 'O, one
or the other must change direction at this point; but this
is contradictory to the definition of a straight line (D. 4):
hence, the supposition that they separate at any point is
absurd. They must, therefore, coincide throughout; whick
was to be proved.

Cor. Two straight lines can intersect in only one point.

Nore—The mecthod of demonstration employed above, is
called the reductio ad absurdum. It consists in assuming an
hypothesis which is the contradictory of the proposition to
be proved, and then continuing the reasoning until the
assumed hypothesis is shown to be false. Its contradictory is
thus proved to be true.  This method of demonstration is

often used in Geometry.
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PROPOSITION IV. THEOREM.

If a straight line meet two other straight lines at a com-
mon point, making the sum of the contiguous angles
equal to two right angles, the two lines met will fohn
one and the same straight line.

Let DC meet AC and BC
at (C, making the sum of the
angles DCA and DCB equal C
to two right angles:. then will
(B be the prolongation of AC.
~ For, if not, suppose CZ to be the prolongation of AC;
then will .the sum of the angles DCA and DCE be
equal to two right angles (P. L): We shall; consequently,
have (A. 1),

DCA + DCB = DCA + DCE;

= wg

Taking from both the common angle DCA, there re

mains,

DCB = DCE,

which is impossible, since a part cannot be equal to the
whole (A. 8). Ilence, CB must be the prolongation of
AC ; which was to be proved.

o

PROPOSITION V. TIEOREM.

If two triungles have two sides and the included anglé of
the one equal to two sides and the included angle of
the other, each to each, the triangles will be equal in all
their parts.

In the triangles ABC and DEF, let ADB be equal
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to DE, AC to DF, and the angle 4 to the angle D:
then will the triangles be equal in all their parts,

TFor, let ABC be
applied to DZLF, in A D
such a manner that the
angle A4 shall coincide
with the angle D,
the side AB taking Criii F
the direction DZ, and
the side A4C the direction DZF. Then, because AR is
equal to DFE, the vertex B will coincide with the vertex
Z; and because AC is equal to DI the vertex € will
coincide with the vertex % ; consequently, the sidle BC
will coincide with the side EF (A. 11). The two triungles,
therefore, coincide throughout, and are consequently equal in
all their parts (L., D. /1;2, which was to be proved. ;

PROPOSITION VI.. THEOREM.

If two triangles have two angles and the ineluded side of the
one equal to two angles and the included side of the other,
each to each, the triangles will be equal in all their parts.

In the triangles
ADC and DEF, let A
the angle B be equal
to the angle Z, the
angle. ¢ to the angle
F, and the sidle BC B @ H F
to the side ZZF': then
will the triangles be equal in all their parts.
For, let ABC be applied to DEF in such a manner
that the angle B shall coincide with the angle Z, the side
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B taking the direction EF, and the side B4 the direc
tion ZD. Then, because BC is equal to EF, the vertex
C will coincide with the vertex Z7; and beeause” the angle
C is equal to the angle 7, the side CA will take the
direction ZD. Now, the vertex A being at the same timo
on the lines ZD and FD, it must be at their intersection
D (P. 11, C): hence, the triangles coincide throughout,
and are therefore equal in all their parts (I, D. 14) ;
which was to be proved.

PROPOSITION VII. TIEOREM.

The sum of amy two sides of a triangle is greater than the
third side.

Let ABC be a triangle: then will B
the sum of any two sides, as AB, BC,
be greater than the third side A4C.

For, the distance from 4 to G, A C
measured on any broken line 4B, BC,
is greater than the distance measured on the straight line
AC. (A, 12): hence, the sum of AB and BC is greater
than AC ; which was to be proved.

Cor. If from both membérs efwthe inequality,
#He < AB & B i i
wo take away either of the sides AD, BC, as DBC, for

pxample, there will remain (A. 5),
AC - BC L ADB;

that is, the difference between any two sides of a triangle @8
less than the third side.

Scholivm. In order that any three given lines may re-
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present the sides of a triangle, the sum of any two must be
greater than the third, and the difference of any two must
be less than the third.

PROPOSBITION VIII. TIIEOREM.

If from any point within a triangle two straight lines b
drawn to the extremities of any side, their sum will be
less than that of the two remaining sides of the triangle.

Let O be any point within the triangle B4 C, and let
the lines OB, OC, be drawn to the
extremities of any side, as DBC :
then will the sum of BO and OC
be less than the sum of the sides
BA and AC.

Prolong one of the lines, as BO,
till it meets the sidle AC in D; then, from Prop. VIL, we
shall have,

B

0C< OD + DC

adding BO to both members of this inequality, recollecting

that the sum of BO and 0D is equal to BD, we have
(A. 4),
BO+0C < BD + DC.

From the triangle BAD, we have (P. VIL),
BD < BA + AD;
adding DC to both‘ members of this inequality, recollecting
that the sum of AD and DO is equal to AC, we have,
BD 4+ DC< BA + AC.

But it was shown that O+ OC is less than BD 4- DC 5
still more, then, is BO 4 OC less ttan BA + AC 5 which
was (o be proved.
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PROPOSITION IX. TIIEOREM.

If two triangles have two sides of the one equal to two sides of
the other, each to each, and the included angles unequal, the
third sides will be unequal ; and the greater side will belong
to the triangle which has the greater included angle.

In the triangles BAC and DEF, let AB be equal to
" DE, AC to DF, and the angle A greater than the an-
gle D: then will BC be greater than ZEF!

Let the line AG be drawn, making the angle CA@
equal to the angle D (Post. 7); make 4G equal to DE,
and draw' ¢ C. Then will the triangles AGC and DEF
have two sides and the included angle of the one equal to
two sides and the included angle of the other, each to each;
consequently, &C is equal to EIF' (P. V).

Now, the point & may be without the triangle ABC,
it may be on the side BC, or it may be within the tri-
angle ABC. Each case will be considered separately.

A D
1°° When & 1is

without the triangle
ABC.
In the triangles GIC | [ P

and AIDB, we have, B M
(P. VIL), G E

GI+ IC > GC, and BI+ IA> AB;

whenece, by addition, recollecting that the sum of BI and
IC is equal to BC, and the sum of G/ and I4, to G4,
we have,

AG@ + BC > AB + GC.
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Or, since AG = ADB, and GC = EF, we have,
AB + BC > AB + EF.
Taking away the common part ADB, there remains (A. b5),
BC > EF.

2°. When @ is on BC. % D
In this case, it is obvious

that G@C 1is less than BC; or,

gince GC = EI, we have,

BC > EF B G C

=

3°, When @ is within the triangle ABC.
From Proposition VIII., we have,

BA + BC >.GA + GC;

or, since GA =DBA, and GC = EF, B{g

we have,
BA 4+ BC > BA 4+ EF.

5

D

Taking away the common part ADB,
there remains, C F
BC > EF.

Hence, in each case, BC is greater than EF; which was

to Le proved.

Conversely : If in two triangles ABC and DEF, the
sidle AL is equal to the side DZE, the side A0 to DT,
and B( greater than E7%, then will the angle .BAC be
gicater than the angle EDZ.

For, if not, BAC must either be equal to, or less than,
LEDFE.  In the former case, BC would be equal to KI
(P. V.), and in the latter case, BC would be less than
EF; cither of which would be contrary to the hypothesis :
hence, BAC must be greater than KD,
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PROPOSITION X. TIIEOREM.

If two triangles have the three sides of the one equal to the
three sides of the other, each to each, the triangles will be
equal in all their parts.

In the triangles ABC =and DEF, let AB be equal to
DE, AC to DF, and BC to EF: then will the tri-
angles be equal in all their parts.

For, since the sides
AD, AC, are equal to A
DE, DF, each to each,
if the angle A4 were
greater than D, it would

follow, by the last Pr> B C & iy
position, that the side .

BC would be greater than EF; and if the angle 4 were
less than 2D, the side BC would be less than ZF  But
B(C is equal to EF, by hypothesis; therefore, the angle A
can neither be greater nor less than D : hence, it must be
equal to it. The two triangles have, therefore, two sides and
the included angle of the one equal to two sides and the inclu-
ded angle of the other, each to cach; and, consequently, they
are equal in all their parts (P. V.); which was to be proved.

Scholium. In triangles, equal in all their parts, the equal
gides lie opposite the equal angles; and conversely.

v

PROPOSITION XI. THEOREM,

In an isosceles triangle the angles opposite the equal sides are
equal.
Let BAC be an isosceles triangle, having the side 4B
equal o the side 4C: then will the angle C be equal to
the angle Z.
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Join the vertex 4 and the middle point 2D of the base
BC. Then, AB is equal to AC, by hypothesis, AD
common, and BD equal to DC, by
construction’: hence, the triangles LBAD,
and DAC, have the three sides of the
one equal to those of the other, each to

o

each ; therefore, by the last Proposition, B

7
«Q

the angle B is equal to the angle C;
which was to be proved.

Cor. 1. An equilateral triangle is equiangular,

Cor. 2. The angle BAD is equal to DAC, and BDA
to UDA : hence, the last two are right angles. Conse-
quently, a strawht line drawn from the verfex of an isosceles
triangle to the middle of the base, bisects the angle at the verter,
and 1s perpendicular to the base.

PROPOSITION XII. THEOREM,

If two angles of a triangle are équal the sides opposite .to
them are also equal, and conseguently, the triangle is isos-
celes.

In the triangle ABC, let the angle
ABC be equal to the angle ACB:
then will 4AC Dbe equal to AR, and
consequently, the triangle will be isosceles,

For, if AB and AC are not equal,
suppose one of them, as AD, to be the
greater.  On this, take BD equal to AC (Post. 3), and
~draw D(C. Then, in the triangles ABC, DBC, we have
the side D equal to 4C, by construction, the side BC
common, and the included angle 4 0B equal to the ircluded
angle DB C, by hypothesis: hence, the two triangles are equal
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in all thewr parts (P. V.). But this is impossible, hecause a
part cannot be equal to the whole (A. 8) : hence, the
hypothesis that AL and AC are unequal, is false. They
must, therefore, be equal ; which was to be proved.

Cor. An cquiangular triangle is equilateral.

PROPOSITION XIII. THEOREM.

In any triangle, the greater side is opposite the greater angle ;
and, conversely, the greater angle is opposite the greater
side.

In the triangle ABC, let the angle
ACDB be greater than the angle ABC: A

then will the sidle AB bLe greater than D
the side AC.
For, draw CD, making the angle @ B

BCD - equal to the angle B (Post. 7):

then, in the triangle DCB, we have the angles DCDB and
DBC equal: hence, the opposite sidles DB and DC are
equal (P. XIL). 1In the triangle 4CD, we bave (P. VIL),

AD 4+ DC > AC
or, since DC = DB, and AD + DB = AD, we have,

ADB > AC

which was to be proved. v

(]

Conversely : Let AB be greater than AC: then will the
angle A CB be greater than the angle ABC.

Tor, if ACB were less than ADBC, the side 4B would
be less than the side A C, from what has just been proved ;
if ACB were equal to ABC, the side AD would be
equal to A4 C, by Prop. XIL; but both conclusions are contrary
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to the hypothesis: hcnce, ACB can neither be less than,
nor equal to, ABC ; it must, therefore, be greater; which
was to be proved.

PROPOSITION XIV. THE@REM.

From a given point only one perpendicular can be drawn t
a given straight line.

Let 4 be a given point, and ADB A
a perpendicular to JZ: then can no
other perpendicular to DZ be drawn
from A. i) C B E
For, suppose a second perpendicular
AC to be drawn. Prolong 4B till
BF is equal to AB, and draw CF.
Then, the triangles AZBC and FBC will have ADB equat
to DBF, by construction, (B common, and the included
angles ABC and FBC equal, because both are right an-
gles: hence, the angles ACDB and Z'CB are equal (P. V.)
But ACDB is, by a hypothesis, a right angle: hence,
£’CB must also be a right angle, and consequently, the line
ACE must be a straight line (P. IV.). But this is impos-
sible (A. 11). The hypothesis that two perpendiculars can
be drawn is, therefore, absurd; consequently, only one such
perpendicular can be drawn ; which was to be proved.

If the given point is on the given line, the proposition
is ejually true. For, if from A two perpendiculars AL
and 4C could be drawn to DUE,
we should have BAZ and CAE
each equal to a right angle; and

B C

consequently, equal to each other;
which is absurd (A. 8). D A E
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PROPOSITION XV. THEOREM.

If from a point without a straight line a perpendicular be
let fall on the line, and oblique lines be drawn to differ-

. ent points of it:

1°.  The perpendicular will be shorter than any oblique line.

2°.  Any tiwo oblique lines that meet the given line at points
cqually distant from the foot of the perpendicular, will
be equal:

3°  Of two oblique lines that meet the given line at points
unequally distant from the foot of the perpendicular, the one
which meets it at the greater distance will be the longer,

Let A be a given point, DE a A
given straight line, A5 a perpendicular
to DE, and AD, AC, AL oblique
lines, BC being equal to BE, and BD D e 5O
greater than BC. Then will ADB be
less than any of the oblique lines, AC
will be equal to AZF, and AD greater ¥
than A4C.

Prolong AB wuntl BF is equal to 4B, and draw
FC, FD.

1°. In the triangles ABC, FBC, we have the side
AB equal to BF, by construction, the sidle BC common,
and the included angles ABC and FBC equal, because both
are right angles: hence, JFC is equal to AC (P. V.).
But, AF is shorter than ACF (A. 12): hence, ADB, the
balf of AF, is shorter than AC, the half of ACF; whick
was to be proved.

2°, In the triangles ABC and ADBE, we have the

sidle BC equal to BE, by hypothesis, the sidle 4B com
mon, and the included angles ABC and ABE equal,
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because both are right angles: hence, 4C is equal to AE;
which was to be proved,

3% It may be shown, as in the first case, that 4D is
equal to DF. Then, because the point ¢ lies within the
triangle ADZ] the sum ot the lines AD and DF will be
greater than the sum of the lines 4C and CF (P. VIII):
hence, AD, the half of ADZF, is greater than AC, the
half of ACE ; which was to be proved.

Cor. 1. The perpendicular is the shortest distance from a
point to a line.

Cor. 2. Frem a given point to a given straight line, only
two equal straight lines can be drawn; for, if there could
be more, there would be at least two equal oblique lines on
the same side of the perpendicular ; which is impossible.

PROPOSITION XVI. THE®REM. =

If a perpendicular be drawn to a given straight line at its
middle point : 3

1°. Any point of the perpendicular will be equally distant
Jrom the extremitics of the line:

2°. Any point, without the perpendicular, will be unequally
distant from the extremities.

Let AL be a given straight line, C F
its middle point, and ZF the perpendicular.
Then will any point of EF be equally dis-
tant from 4 and B ; and any point without ‘
EF, will be unequally distant from 4 and B. A y B
¥°. From any point of EZF, as D, draw’ "
the lines DA and DB. Then will DA ¥
and DB be equal (P. XV.): hence, D is
cqually distant from 4 and B ; which was to be proved.
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2°. From any point without ZF, as I, draw ZA4. and
IB. One of these lines, as 74, will cut ZF in some
point D; draw DDB.  Then, from what
has just been shown, DA and DB wil F
be equal; but 7B is less than the sum
of ID and DB (P. VIL); and because &)
the sum of ID and DB is equal to the g \\B
sam of ZD and DA, or Id4, we have U
IB less than 74 : hence, I is unequally 7
distant from A and D 3 which was to be E
proved.

Cor. If a straight line EF have two of its points X
and 7 equally distant from 4 and B, it will be perpen-
dicular to the line AB at its middle point.

PROPOSITION XVII. TIIEOREM.,

If two right-angled triangles have the hypothenuse and a side
of the one equal to the hypothenuse and a side of*the
other, each to each, the triangles will be equal in all their

parts.
Let the right-angled tri- A D
angles A BC and DEF have RN,
the hypothenuse AC equal \\\
to DF, and the sidle AB R, F

equal to DZ: then will the
triangles be equal in all their parts.

If the side BC is equal to EF, the triangles will be
equal, in accordance with Proposition X. Let us suppose then,
that BC and EF are unequal, and that BC is the
longer. On BC lay off BG equal to EF, and draw
AG. The triangles ABG@ and DEF have AD equal to
DE, by hypothesisy, BG equal to EF, by construction, and
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the angles B and % equal, because both are right angles;
consequently, AG 1is equal to DF (P. V.) But, 4AC is
equal to DZF, by hypothesis: hence, 4G and AC are equal,
which is impossible (P. XV.). The hypothesis that B(C and
FF are unequal, is, therefore, absurd : hence, the triangles
have all their sides equal, each to each, and are, consequently,
equal in all of their parts; which was to be proved.

PROPOSITION XVIII. THEOREM.

If two straight lines are perpendicular to a third straight line,
they will be parallel.

Let the two lines AC, BD, be perpendicular to AR :
then will they be parallel. ]

For, if they could meet in a B D
point O, there would be two N'“"“--_—_—_-:::,_O
perpendiculars 04, 0B, drawn e =

from the same point to the same
straight line; which is impossible (P>. XIV.): hence, the
lines are parallel ; which was to be proved.

DEFINTTIONS.

If a straight line ZF inter-
sect two other straight lines AD /
and (D, it is called a secant, A G

with respect to them. The eight
angles formed about the points of ¢ i
intersection have different names, /

with respect to each other, i &

¥
1°. INTERIOR ANGLES ON THE SAME SIDE, are those that

lie on the same side of the secant and within the other two
lines.  Thus, BG@H and GID are interior angles on the
same side. s
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2°. EXTERIOR ANGLES ON THE SAME SIDE, are those that lie
on the same side of the secant and without the other two
lines, Thus, FGB and DHF
are exterior angles on the same

; E

side.
¥ : A G B
3°. ALTERNATE ANGLES, are

those that lie on opposite sides &

of the secant and within the G 7H
other two lines, but not adja-

cent. Thus, AGH and GIID

are alternate angles.

4°. ALTERNATE EXTERIOR ANGLES, are those that lie on
dpposite sides of the secant and without the other two lines.
'Thus, AGE and FID are alternate exterior angles.

5°. OPPOSITE EXTERIOR AND INTERIOR ANGLES, are those
that lie on the same side of the secant, the one within and
the other without the other two lines, but not adjacent. Thus,
EGDB and GIID are opposite exterior and interior angles,

PROPOSITION XIX. THEOREM.

If two Sstraight lines meet a third sfmight line, making the
sum of the interior angles on the same side equal to two
right angles, the two lines will be parallel.

Let the lines KC and JZD meet the line BA, making
the sum of the angles BAC and ALD equal to two right
. angles: then will AC and ZD be parallel.

Through @, the middle point
of ADB, draw GF perpendicular
to A C, and prolong it to Z.

The sum of the angles GBE
and G@BD is equal to two right K AF

H EB 1

Q
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angles (P. L)'; the sum of the angles FAG and GBD is
equal to two right angles, by hypothesis: hence (A. 1),

GBE 4+ GBD = FAG + GLD.

Taking from both the common part GBD, we have the
sngle GBE equal to the angle F7AG. Again, the angles
BGE and AGF are equal, because they are vertical an-
gies (P. IL): hence, the triangles GZB and GFA lave
two of their angles and the included side equal, each to each;
they are, therefore, equal in all their parts (P. VI.): hence,
the angle GZB is equal to the angle GZFA. DBut, GFA
is a right angle, by construction; GZEB must, therefore, be
a right angle : hence, the lines A'C and JID are both per-
pendicular to ZF, and are, therefore, parallel (P. XVIIL);
which was to be proved. ; ;

Cor. 1. If two straight lines are cut by a third straight
line, making the alternate angles equal to each other, the
two straight lines will be parallel.

Let the angle ZIGA be equal E
to GHD. Adding to hoth, the # /
angle ZGDB, we have, A B
HGA + IGB = GUD+ HGB. D
2 H
But the first sum is equal to /

two right angles (P. L): hence, 7
the second sum is also equal to two right angles; therefore,

from what has just been shown, AB and CD are parallel.
L

Cor. 2. If two straight lines are cut by a third, making
the opposite exterior and interior angles equal, the two straight
lines will be parallel. Let the angles ZGB and GHD be
equal: Now EGB and AGH are cqual, because they are verti-
cal angles (P. IL); and consequently, AGJI and GHD are
equal: hence; from Cor. 1, AB and CD are parallel.
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PROPOSITION XX. THEOREM.

If a straight line intersect two parallel straight lines, the sum
of the interior angles on the same side will be equal to
two right angles.

Let the parallels AB, CD, be cut by the secant line
FE : then will the sum of HG@B and GHD be equal to
two right angles.

For, if the sum of HGB E

and GHD is not equal to I\G/

two right angles, let JGL be A B
drawn, making the sum of /G L C / L D
and GIID equal to two right I“/H

angles ; then ZZ and CD will
be parallel (P. XIX.); and consequently, we shall have two
lines GB, GL, drawn through the same point G and par-
allel to CD, which is impossible (A. 18): hence, the sum
of ZIGB and GIID, is equal to two right angles; whick .
was to be proved.

In like manner, it may be proved that the sum of Z/GA
and GIIC, is equal to two right angles,

Cor. 1. If HHGB is a right angle, GID will be a right
angle also : hence, if a line is perpendicular to.one of two
parallels,. it s perpendicular to the other also.

Cor. 2. If a straight line meet twc parallels, the alternate

angles will be equal.

For, if AB and CD are E
parallel, the sum of BGI and % G
GIID is equal to two right v
angles ; the sum of BGH and o 3

HGA is also equal to two right / 8
engles (P. L) : hence, these sums F
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are equal, Taking away the common part BGZ/, there re-
mains the angle GZXD - equal to JIGA. In like manner,
it may be shown that BGIH and GHC are equal

Cor. 8. If a straight line meet two parallels, the opposite
exterior and interior angles will be equal. The angles DH@G
and ZIGA are equal, from what has just been shown. TLe
angles JIGA and BGE are equal, because they are verti-
cal : hence, DIIG@ and DBQE are equal. In like manner,
it may be shown that CI/G and AGE are equal

Scholium. Of the eight angles formed by a line cutting
two parallel lines obliquely, the four acute angles are equal,
and so, also, are the four obtuse angles.

PROPOSITION XXI. THEOREM.

If two straight lines intersect a third straight line, making the
sum of the inferior angles on the same side less than two
right angles, the two lines will meet if sufficiently produced.

Let the two lines CD, IL, meet the line LF, making
the sum of the interior angles ZIG'L, GHD, less than two
right angles: then will ZZ and CD meet if sufficiently pro-
duced.

For, if they do mnot meet, E
they must be parallel (D. 16). I /

But, if they were parallel, the \G

sum of the interior angles I7G L, L
GIID, would be equal to two C H D
right angles (P. XX.), which is /

contrary to the hypothesis: hence,
IL, CD, will meet if sufficiently produced ; which was to be
proved.

F
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Cor. It is evident that IZL and CD, will meet on that
side of ZF, on which the sum of the two angles is less
than two right angles.

PROPOSITION XXII. TIIEOREM.

If two straight lines are parallel to a third line, they are
parallel to each other.

Let AB and CD be respectively

parallel to ZEZ': then will they be par-  _
E R F
allel to each other.
For, draw PR perpendicular to C Q
EF; then will it be perpendicular to & P B
AB, and also to CD (P. XX, C.1):

hence, AB and CD are perpendicu-
lar to the same straight line, and consequently, they are par-
allel to each other (P. XVIIL); which was to be proved.

PROPOSITION XXIII. THEOREM.

Two parallels are everywhere equally distant.

Let AB and CD be parallel : thep will they be every-
where equally distant.

From any two points of 4B, as cll. Gy
F and E draw FII and EG o/l
perpendicular to CD ; they will also be ',//
perpendicular to 4B (P. XX, C. 1), A F/’ B

and will measure the distance between

AB and OD, at the points # and Z  Draw also ¥@
The lines /77 and EG are parallel (P. XVIIL): hence,
the alternate angles ZIFG and FGZE are equal (P. XX, C. 2).
The lines AB and CD are parallel, by hypothesis: hence,
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the alternate angles E¥G and FGI are cqual. The tri-
anglés FGE and FGH have, therefore, the angle HGF
equal to GI'E, GIH equal to FGE, and the side @
common ; they are, therefore, equal in all their parts (P. VL):
hence, ZH is equal to ZEG ; and consequently, 4B and
CD are everywhere equally distant; whick was to be proved,

PROPOSITION XXIV. - THEOREM.

If two angles have their sides parallel, and lying either in
the same, or in opposite directions, they will be equal.

1°. Let the angles ABC and DZEF have their sides
parallel, and lying in the same direction: then will they be
equal.

Prolong FZ to L. Then, because
DE and AL are parallel, the exterior
angle DEI is equal to its opposite in-
terior angle ALE (P. XX, C. 8); and
because BC and LZF are parallel, the
exterior angle ALZ is equal to its op-

posite interior angle ABC : hence, DEF is equal to
ABC ; which was to be proved.

2°, Let the angles ABC and QUK
have their sides parallel, and lying in op- & H*'--{M
posite directions : then will they be equal. B
Prolong GII to M. ‘Then, because .
KIT and BM are parallel, the exterior
angle GUIIC i3 equal to its opposite interior angle HMB;
and because ZZM and BC are parallel, the angle Z/MB
is equal to its alternate angle MB(C (. XX, C. 2): hence,
GHE is equal to ABC; which was to be proved.

Cor. The oppositv angles of a pax'allelogram are equal
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PROPOSITION XXV. THEOREM.

In any triangle, the sum of the three angles ts equal to two
right angles.

w Let OBA be any triangle: then will the sum of the
angles O, A, and B, be equal to

two right angles. B
For, prolong C4 to D, and draw /E
AE parallel to BC. ,"/
Then, since A% and CD are ,"'
parallel, and CD cats them, the ex ( A D

terior angle DAZKL is equal to its

opposite interior angle ¢ (P. XX., C. 8). In-like manner,
gsince A7 and CPB are parallel, and 4B cuts them, the
alternate angles ALBC and DAL are equal: hence, the
gum of the three angles of the triangle B.AC, is equal to
the sum of the angles CADB, DAL FAD; but this sum
is equal to two right angles (P. I, C. 2); consequently, the
sum of the three angles of the triangle, is equal to two
right angles (A. 1); which was to be proved.

Cor. 1. Two angles of a triangle being given, the third
will be found by subtracting their sum from two right angles.

Cor. 2. If two angles of one triangle are respectively
cqual to two angles of another, the two triangles are mutually
equiangular.

Cor. 3. In any triangle, there can be but one right angle;
for if there were two, the third angle would be zero. Nor
can a triangle have more than one obtuse angle.

Cor. 4. In any right-angled triangle, the sum of the acute

angles is equal to a right angle.
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Cor. 5. Since every equilateral triangle is also equianguiar
(P. XI., C. 1), each of its angles will be equal to the third part
of two right angles; so that, if the right angle is expressed
by 1, each angle, of an equilateral triangie, will be expressed
by 2. :

Cor. 6. In any triangle ABC, the exterior angle BAD
is equal to the sum of the interor opposite angles 2 and
C. Tor, AK being parallel to BC, the part DBAFKE is
equal to the angle B, and the other part DAZ, is equal
to the angle C.

PROPOSITION XXVI. THEOREM

The sum of the interior angles of a polygon s “equal to
two right angles taken as many times as the polygon has
sides, less two.

Let ABCDE be any polygon: tnen will the sum of its
interior angles 4, B, C, D, and E, be equal to two right
angles taken as many times as the polygon has sides, less
two.

From the vertex of any angle A4, draw
diagonals A, AD. The polygon will be
divided into as many triangles, less two, as
it has sides, having the point A4 for a
common vertex, and for bases, the sides of
the polygon, except the two which form the
angle A. It is evident, also, that the sum of the angles of
these triangles does not differ from the sum of the angles of
the polygon: hence, the sum of the angles of the polygon i3
equal to two right angles, taken as many times as there are
triangles ; that is, as many times as the polygon has sides,
less two 5 which was to be proved.
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Cor. 1. The sum of the interior angles of a quadrilateral
is equal to two right angles taken twice; that is, to four
right angles. If the angles of a quadrilateral are equal, each
will be a right angle.

CUor. 2. The sum of the interior angles of a pentagon is
equal to two right angles taken three times; that is, to six
right ’anfrles- hence, when a pentagon is equiangular, each
angle is equal to the fifth part of six right angles, or to g
of one right angle.

-

Cor. 3. The sum of the interior angles of a hexagon is
equal to eight right angles : hence, in the equiangular
hexagon, each angle is the sixth part of eight right angles,

or 4 of one right angle.

Cor. 4. In any equiangular polygon, any interior angle is
equal to twice as many right angles as the figure has sides,
less four right angles, divided by the number of angles.

PROPOSITION XXVII THEOREM.

The sum of" the exterior angles of a polygon i3 equal to
Jour right angles.

Let the sides of the polygon ABCDE
be prolonged, in the same order, forming
the exterior angles a, b, ¢, d, e¢; then will
the sum of these exterior angles be equal

to four right angles.
For, each interior angle, together with

the corresponding exterior angle, is equal
to two right angles (P. L): hence, the sum of all the inte-
rior and exterior angles is equal to two right angles taken
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as many times as the f)olygon has sides. DBut the sum of
the interior angles is equal to two right angles taken as
many times as the polygon has  sides, less two : hence, the
sum of the exterior angles is equal to two right angles taken
twice ; that is, equal to four right angles ; which was to be
proved,

PROPOSITION XXVIII. THEOREM.

;*éiég

2

In any parallelogram, the opposite sides are equal, each 29
each. %

Let ABCD be a parallelogram : then k

will ADB be equal to DC, and 4D to D ¢
Bc. i

For, draw the diagonal BD. Then,
because A B and DC are parallel, the £ B

angle DDA ‘is equal to its alternate

angle BZDC (P. XX, C. 2): and, because 4D and BC
are parallel, the angle 3DA is equal to its alternate angle
DBC. The triangles ABD and CDB, have, therefore,
the angle DBA equal to CDRB, the angle BDA equal
to DBC, and the included sidle DB common ; consequently,
they are equal in all of their parts: hence, AR is equal
to DO, and AD to BC; which was to be proved.

Cor. 1. A diagonal of a parallelogram divides it into twe
triangles equal in all their parts.

Cor. 2. Two parallels included between two other par
allels, are equal.

Cor. 3. If two parallelograms have two sides and the
included angle of the one, equal to two sides and the included
. angle of the other, each to each, they will be equal.

#
v
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PROPOSITION XXIX. TIEOREM.

If the opposite sides of a quadrilateral are equal, each to
each, the figure is a parallelogram.

In the quadrilateral ABCD, let AB D 5
be equal to DC, and 4D to BC:
then will it be a parallelogram. 6

Draw the diagonal DB, Then, the A B
triangles 4ADB and CBD, will have
the sides of the one equal to the sides of the other, each to
reach ; and therefore, the triangles will be equal in all of their
parts : hence, the angle ABD is equal to the angle CDB
(P. X,, S.); and consequently, AB is parallel to DC (P.
XIX, C. 1). The angle DBC is also equal to the angle
BDA, and consequently, ZC is parallel to AD: hence,
the opposite sides are parallel, two and two; that is, the

figure is a parallelogram (D. 28); which was to be proved.

PROPOSITION XXX. TIIEOREM.

If two sides of a quadrilateral are equal and parallel, the
Sigure is a parallelogram.

In the quadrilateral ABCD, let AB . D Cc
be equal and parallel to DC: then will :
the figure be a parallclogram,

Draw the diagonal D2, Then, be- A B
cause ADB and DC are parallel, the
angle ADD is equal to its alternate angle CDB. Now,
the triangles ABD and CDZB, have the sidle DC equal
to AB, by hypothesis, the side DB common, and the

included angle ABD equal to BDC, from what has just
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been shown; hence, the triangles are equal in all their parts
(P. V.); and consequently, the alternate angles ADZB and
DBC are equal. The sides BC and AD are, therefore,
parallel, and the figure is a parallelogram ; which was to be
proved.

Cor. If two points be taken at equal distances from a
given straight line, and on the same side of it, the straight
line joining them will be parallel to the given line.

PROPOSITION XXXI. THEOREM,

Tre diagonals of a parallelogram divide each other into
equal parts, or mutually bisect each other.

Let ABCD be a parallelogram, and p C
AC, BD, its diagonals: then will AF
be equal to EC, and BE to ED.

For, the triangles BEC and AED,
have the angles ZB(C and ADE equal
(P. XX, C. 2), the angles ZOB and DAE equal, and the
included sides BC and AD equal: hence, the triangles
are equal in all of their parts (P. VL) ; consequently, A is
equal to XZC, and BE to ED; which was to be proved.

A D

Scholium. In ‘a rhombus, the sides AB, BC, being
equal, the triangles AZB, EB(C, have the sides of the
one equal to the corresponding sides of the other; they are,
therefore, equal: hence, the angles AKED, BEC, are equal,
and therefore, the two diagonals bisect each other at right
angles,
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RATIOS AND PROPORTIONS,

DEFINITIONS.

1. Tae Ramio of one quantity to another of the same
kind, is the quotient obtained by dividing the second by the
first. The first quantity is called the AxNTecepENT, and the
second, the CONSEQUENT.

2. A PrororTiON is an expression of equality between
two equal ratios. Thus, '

B. 2D
% AN B

expresses the fact that the ratio of 4 to B is equal to
the ratio of C to D. In Geometry, the proportion is
written thus,

A6 LRIR. &Rk DY

and read, 4 is to B, as C is to D. o

3. A Coxmizxvep ProrortioN is one in which several
ratios are successively equal to each other ; as,

Aice B c:-C 7y D Ei F G A H GG

4. There are four terms in every proportion. The first
and second form the first couplet, and the third and fourth,
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the second couplet. The. first and fourth terms are called
extremes; the second and third, means, and the fourth term,
a fourth proportional to the other three. When the second
term is equal to the third, it is said to be a mean proportional
between the extremes. In this case, there are but three
different quantities in the proportion, and the last is said to
be a third proportional to the other two. Thus, if we have,

A:.‘B‘E:fB:O’,

B is a mean proportional between 4 and C, and C is a
third proportional to 4 and DB.

5. Qnuantities are in proportion by alternation, when ante-
cedent is compared with autecedent and consequent with con-

sequent

6. Quantities are in- proportion by <¢nversion, when ante-
cedents are made consequents, and consequents, antecedents.

7. Quantities are in proportion by composition, when the
sum of antecedent and consequent is compared w1t,h either
antecedent or consequent

8. Quantities are in proportion by division, when the dif-
ference of the antecedent and consequent is compamd elther
with antecedent or consequent.

9. Two varying quantities are  reciprocally or inversely
proportional, when one is increased as many times as the
other is diminished. In this ease, ‘their product is a fixed
quantity, as xy = me.

10. Equimultiples of two or more quantities, are the pro-
ducts obtained by multiplying both by the same quantity.
Thus, m4 and mB, are equimultiples of 4 and B.
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PROPOSITION I TITEOREM.

If four quantities are in proportion, the product of the
means will be equal to the product of the extremes.

Assume the proportion,

A:.B::C:D;Whmm,%:

clearing of fractions, we have,
BC = AD;
which was to be proved.
Cor. If B is equal to C, there will be but three pro-

portional quantities; in this case, the square of the mean is
equal to the product of the extremes.

PROPOSITION IIL TIIE@REM.

Ir the product of two quantities is equal to the product of
two other quantities, two of them wmay be made the
means, and the other two the extremes of a proportion.

If we have,
AD = BC,

l"

by changing the members of the equation, we have,
BC = AD;
dividing both members by AC, we have,

B D
T=7° or jvA . : Bigi O &Y

which was to be proved.
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PROPOSITION III. THEOREM.

If four quantities are in proportion, they will be ir pro-
portion by alternation.

1 Assume the proportion,

2 SO SRS AR 41 whence,-ﬁ—:—gﬂ

Multiplying both members by %, we have,

C D
Z—:—B-;or,A:C'::B:D;

which was to be proved.

PROPOSITION 1IV. THEOREM.

If one couplet in each of two proportions is the same, the
other couplets will form a proportion.

Assume the proportions,

A : B :: C : D; whence

2

ws

NN
I
Yo b

and, s bR U T 6 F G ; whence,

From Axiom 1, we have,

%:%; whence, C : D :: F : G;

which was to be proved.
13

Cor. If the antecedents, in ‘two proportions, are the same
the consequents will be proportional. For, the antecedents

of the second couplets may be made the consequents of the
first, by alternation (P. IIL).

i 7
)

-~

-
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PROPOSITION V. THEOREM.

If four quantities are in proportion, they will be in pro-
portion by inversion.

Assume the proportion,

Ay B %t C DY " whened, L’:% B

A
If we take the reciprocals of both members (A. 7), we have,
%‘z_-g—; ‘whence, B ) A P WENRCE

which was to be proved.

PROPOSITION VI. THEOREM.

If four quantities are in proportion, they will be in pro-
portion by composition or division.

Assume the proportion,

j B D
A : B :: C : D; whence, T=7"

If we add 1 to both members, and subtract 1 from both
members, we shall have,

B D B D

,‘,'

-

whence, by reducing to a common denominator, we have,

E—jl_jl = D—-(,}—-g, and, £ :1 oo P——Z,—g ; whence,

A:B+A::C: D+C andy 4 : B—4 :: C : D-C

which was to be proved.
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PROPOSITION VII. THEOREM,

Eyuimultiples of two quantities are proportional to the quan-
tities - themselves.

Let 4 and B be any two quantities ; then g- will
denote their ratio. et
If we multiply both terms of this fraction by m, its

value will not be changed; and we shall have,

mB B

d =4 whence, m4 : mB :: A : B;

which was to be proved.

PROPOSITION VIII. THEOREM.

If four quantities are in proportion, any equimultiples of
the first couplet will be proportional to any equimuliiples

of the second couplet.
&

Assume the proportion,

A : B :: 0 : D; whence,

RS
Il
QS

If we multiply both terms of the first member by m, and
both terms of the second member by n, we shall have,

B D
:Ti::—z_a; whence, md : mB :: nC : nD;

which was to be proved,
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PROPOSITION IX, THEOREM.

If two quantities be increased or diminished by like parts
of each, the results will be proportional to the quantities
themselves.

We have, Prop. VIL,
A : B :: mA : mDB.

If we make m =1 :I:I—;- , iIn which %—- is any fraction,
we shall have,

A : B :: Aif-;-A : Bif.;—B;

which was to be proved.

PROPOSITION X. THEOREM.

If both terms of the first couplet of a proportion be in-
creased or diminished by like parts of each ; and if both
terms of the second couplet be increased or diminished by
any other like parts of each, the results will be in pro-
portion.

7

Since we have, Prop. VIIL, v
mAd : mB :: nC : nD;

p r
if we make m:l;l:?, and, nzli—q—” we shall
have, ;
Awla o pa2p o oulio i D e 20k
:!:9 :tq q q )

which was to be proved.
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PROPOSITION XI. THEOREM.

In any continued proportion, the sum of the antecedents is
to the sum of the consequents, as any antecedent to its
corresponding consequent.

From the definition of a continued proportion (D. 3),

AN aB e €2 Do B3 B Ly @ s vH 8.

hence,

g = g ; whence, BA = AB;

g = '.g ; whence, B(C = AD ;

g = % 3 whence, BE = AF ;

g = ]@I; whence, BG = 480 ;
&e., &e.

Adding and factoring, we have,

B(A4+C+E+G@+ &) = A(B+D+F+ H+ &e.) :
hence, from Proposition II.,

A+4+C+ E+ G+ &o. B'+D+F+H+&c. slis) Ll VR

which was to be proved.
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PROPOSITION XIIL TITEOREM.

If two proportions be multiplied together, term by term, the
the products will be proportional.

Assume the two proportions,

A : B :: C : Dy whence,

RN M
QN db

. and, F : F :: G : H; whence,

Multiplying the equations, member by member, we have,

Dr o

q5 =TG5 whence, AF : BF :: (G : DH;

which was to be proved.

Cor. 1. If the corresponding terms of two proportions
are eqhal, each term of the resulting proportion will be the
“square of the corresponding term in either of the given pro-
portions : hence, If four quantities are proportional, their
squares will be proportional.

Cor. 2. If the principle of the proposition be extended
to three or more proportions, and the corresponding terms
of each be supposed equal, it will follow that, like powers
of proportional quantities are proportionals.

921 L a
-~ 7 ’./ / 4
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THE CIRCLE AND THE MEASUREMENT OF ANGLES

DEFINITIONS.

’

1. A Cmce is a plane figure,
bounded by a curved line, every point
of which is equally distant from a point
within, called the centre.

The bounding line is called the cir-
cum ference.

2. A Rapws is a straight line drawn from the centre
to any point of the circumference.

3. A Driamerer is a straight line drawn through the
centre and terminating in the circumference.

All radii of the same circle are equal. All diameters
are also equal, and eacn is double the radius.

4. An Arc is any part of a circumference.

5. A Cuorp is a straight line joining the extremities of
an are, ’ ‘
Any chord belongs to two arcs: the smaller one is meant,
unless the contrary is expressed.

6. A SecmeNT i3 a part of a circle included between an
arc and its chord.

7. A Secror is a part of a circle included within an
an arc and the radii drawn to its extremities.
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8. An IxscrieEp ANGLE is an angle
whose vertex is in the circumference, and
whose sides are chords.

9. An INscrIBED PoLyGoXN is a poly-
gon whose vertices are all in the circum-
ference. The sides are chords.

10. A SECANT is a straight line which
cuts the circumference in two points.

11. A TANGENT is a straight line which
touches the circumference in one point only.
This point is called, the point of contact,
or, the point of tangency.

12. Two circles are tangent to
each other, when they touch each
other in one point. This point is
called, the point of contact, or the
point of tangency.

13. A Polygon is circumsecribed about
v
@ circle, when all of its sides are tangent
to the circumference.

14. A Circle is inscribed in a polygon,
when its circumference touches all of the
gides of the polygon.

POSTULATE,

A circumference can be described from

centre. and with any radius.

i
o

D OC

G

any point as a
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PROPOSITION I THEOREM.

61

Any diameter divides the circle, and also its circumference,

tnto two equal parts.

Let AEBF be a circle, and AB
any diameter: then will it divide the
circle and jits circumference into two
equal parts.

For, let AFB be applied to AED,
the diameter AB remaining common ;

E

then will they coincide; otherwise there would be some points

in either one or the other of the curves unequally distant

from the centre; which is impossible (D. 1): hence, AB

divides the circle, and also its circumference, into two equal

parts ; which was to be proved.

B

PROPOSITION II. THEOREM.

A diameter is greater than any other chord.

Let AD be a chord, and AB a diameter through one
extremity, as A: then will 4B be greater than AD,

Draw the radius CD. 1In the tri-
angle ACD, we have AD less than
the sum of AC and CD (B. I, P.
VIL). But this sum i3 equal to
AB (D. 3): hence, AB is greater
than AD; which was to be proved.

D

s B
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PROPOSITION III. THEOREM.

A straight line cannot meet a circumference in more than
two points.

Let AFEBF be a circumference, and i)
AL  a straight line: then A4Z cannot
meet the circumference in more than two

points. T
For, suppose that they could meet in A B
‘three points. We should then have three E

equal straight lines drawn from the same point to the same
straight line ; which is impossible (B. I, P. XV., C. 2):
lence, ADB cannot meet the circumference in more than
two points ; which was to be proved.

PROPOSITION 1IV. THEOREM.

In cqual circles, equal arcs are subtended by equal chords ;
and conversely, equal chords subtend equal arcs.

1°. In the equal cir- D
ces ADD and EGE I\m /<\
let the ares AMD and A
ENG Dbe equal: then U
will the chords 42 and

EG Dbe equal

Draw the diameters AZB and ZF  If the semi-circle
ADDB be applied to the scmi-circle ZGZF, it will coincide
with it, and the semi-circumference ADB will coincide with
the semi-circumference ZGF. But the part AMD is equal
to the part ZNG, by hypothesis: hence, the point D will
fall on @ ; thercfore, the chord AD will coincide with
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EG (A. 11), and is, therefore, equal to it; which was to
be rroved.

2°, Let the chords AD and FEG be ecqual: then will
the arcs AMD and ENG be equal

Draw the radii CD and OG. The? triangles ACD
and FOG have all the sides of the one equal to the cor-
responding sides of the other; they are, therefore, equal in
all their parts: hence, the angle ACD is equal to EOG.
If, now, the sector ACID be placed upon the sector 0@,
so that the angle A CD shall coincide with the angle ZOG@,
the sectors will coincide thronghout ; and, conseqilently, the
arcs AMD and ING will coincide: hence, they will be
equal ; which was to be proved.

PROPOSITION V. THEOREM.

In equal circles, a greater arc is subtended by a greater
chord ; and conversely, a greater chord subtends a greater
are. i

1°, In the equal circles
ADIL and EGK, let the
arc EGP be greater than
the arc AMD : then will
the chord ZP be greater
than the chord AD,

For, place the circle ZQK upon AITL, so that the cen-
tre O shall fall upon the centre C, and the point & upon
A ; then, because the are ZG@P is greater than AMD, the
point P will fall at some point 77, beyond D, and the
" chord EP will take the position 477

Draw the radii C4, CD, and CH. Now, the sides
AC, CIH, of the triangle 4CII, are equal to the sides
AC, COD, of the triangle ACD, and the angle ACH is
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greater than A CD: hence, the side AJf, or its equal EP,
is greater than the side AD (B. L, P.IX.); which was to
be proved.

2°, Let theychord EP,
or its equal AZ, be great-
er than AD: then will the
arc FQ@P, or its equal
ADH, be greater than
AMD.

For, if ADI were equal to AMD, the chord AH
would be equal to the chord AD (P. IV.); which is con-
trary to the hypothesis. And, if the arc ADI were less
than AMD, the chord A/ would be less than AD;
which is also contrary to the hypothesis. Then, since the

arc . ADH, subtended by the greater chord, can neither be
equal to, nor less than AMD, it must be greater than
AMD ; which was to be proved.

PROPOSITION VL THEOREM.

The radius which is perpendicular to a chord, bisects that
chord, and also the arc subtended by it.

Let CG be the radius which is
perpendicular to the chord 4B :
then will this radius bisect the chord
AB, and also the arc AGD.

For, draw the radii C4 and CB.
Then, the right-angled triangles CDA A
and CDB will have the hypothenuse

CA4 equal to CB, and the side CD
common ; the triangles are, therefore, equal in all their

parts : hence, AD is equal to DB. Again, because C@

G
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_is perpendicular to ADB, at its middle point, the chords
GA and GB are equal (B. I, P. XVL); and consequently,
the arcs GA and GB are also equal (P. IV.): hence, C@
bizects the chord AB, and also the arc AGB; whick was
to be proved.

Cor. A straight line, perpendicular to a chord, at its mid
dle point, passes through the centre of the circle.

Scholium. The centre €, the middle point D of the
chord AB, and the middle point G of the subtended are,
are points of the radius perpendicular to the chord. DBut
two points determine the position of a straight line (A. 11):
hence, amy straight line which passes through two of these
points, will pass through the third, ahd be perpendicular to
the chord.

PROPOSITION VII. THEOREM.

Through any three points, not in the same straight line, one
circumference may be made to pass, and but one.

Tet A, B, and C, be any three points, not in a
straight line: then may one circumference be made to pass
‘ through them, and but one.
Join the points by the lines
AB, B, and bisect these lines
by perpendiculars DE and I'G: G\
then will these perpendiculars

meet in some point O. For, % D ‘—%\K
if they do not meet, they are \_/B

parallel ; and if they are parallel,

the line ABXK, which is perpendicular to DUE, is also per-

pendicular to K& (B. I, P. XX,, C. 1); consequently, there

are two lines BXAX and BF, drawn through the same
5
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point B, and perpendieular to the same line K@ ; which

is impossible : hence, DZ and FG meet in some point O.
Now, O is on a perpendicu-

lar to AB at its middle point,

it is, therefore, equally distant e

from 4 and B (B. I, P. XVL). Q C

For a like reason, O is equally D

distant from B and C. If] A‘\L/B K

therefore, a eircumference be de- ‘
scribed from O as™a centre, with a radius equal to OA,
it will pass through 4, B, and C.

Again, O is the only peint which is equally distant from
A, B, and (: for, DE contains all of the points which
are equally distant from A and B; and FG all of the
points which are equally distant from B and € ; and con-
sequently, their point of intersection O, is the only point
that is equally distant from A4, B, and C : henee, one
circumference may be made to pass through these points, and
but one; which was to be proved.

Cor. Two circumferences eannot intersect in mere than
two points; for, if they could intersect in three points, there
would be two circumferences passing through the same three
points ; which is impossible.

PROPOSITION VIII. THEOREM.

In equal circles, equal chords are equally distant from the
centres ; and of two wnequal chords, the less is at the
greater distance from the centre. {

1°. In the equal circles ACI and KL@, let the
chords A4C and KL be equal: then will they be equally
distant from the centres. :
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For, let the circle K LG be placed upon ACH, so that
the centre 2 shall fall upon the centre O, and the point
XK upon the point A:
then will the chord AL
coincide with AC (P
IV.); and consequently,
they will be equally dis-
tant from the centre ;
which was to be proved.

2°, Let ADB be less than AL : then will it be at a
greater distance from the centre.

For, place the circle, ALG upon ACH, so that R
shall fall upon O, and A upon A. Then, because the
chord AL 1is greater than ADB, the arc XSL is greater
than AMDB; and consequently, the point Z will fall at a
point C, beyond I, and the chord XKAZ will take the
direction A C.

Draw OD and OZF, respectively perpendicular to AC
and ADB; then will OF Ve greater than OF (A. 8), and
OF than 0D (B. I, P. XV.): hence, O is greater than
OD. But, OF and 0D are the distances of the two
chords from the centre (B. I, P. XV, C. 1): hence, the less
chord is at the greater distance from the centre ; whick was
to be proved.

Scholiwm, All the propositions relating to chords and arcs
of equal circles, are also true for chords and ares of one and
the same circle. For, any circle may be regarded as made
up of two equal circles, so placed, that they coincide in all
their parts,
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PROPOSITION IX, TITEOREM,

If a straight line is perpendicular to a radius at its outer
extremity, 1t will be tangent to the circle at that point ;
conversely, if a straight line is tangent to a circle at any
point, it will be perpendicular to the radius drawn to
that point.

v

1°. Let BD be perpendicular to the radius Cd, at
A4 : then will it be tangent to the circle at A.

For, take any other point of

BD, as FE, and draw CE: B A E_D
then will CZ Dbe greater than R
4 (B. I, P. XV.); and con-

sequently, the point Z will lie

without the circle : hence, BD ¢

touches the circumference at the
point 4 ; it is, therefore, tangent to it at that point (D.11);
which was to be proved.

2°, Let DD be tangent to the circle at A : then will
it be perpendicular to CA.

For, let Z be any point of the tangent, except the
point of contact, and draw CZ. Then, because BD is a
tangent, J7 lies without the circle; and consequently, »CE
is greater than (4 : hence, C4 is shorter than auny other
line that can be drawn from (€ to BD>; it is, therefore,
perpendicular to BD (B. I, P. XV, C. 1) ; whichk was to
be proved.

Cor. At a given poim of a circumference, only one tan-
gent can be drawn. For, if two tangents could be drawn,
they would both be perpendicular to the same radius at the
same point ; which is impossible (B. I, P. XIV.),
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PROPOSITION X. THEOREM.
Two parallels intercept equal ares of a circumference,

There may be three cases: both parallels may be secants:
one may be a secant and the other a tangent; or, both
may be tangents.

1°.  Let the secants ADB and DX be parallel : then
will the intercepted arcs MN and P@ be equal

For, draw the radius CH

perpendicular to the chord IT_\
MP ; it will also be per- A P B
pendicular to N@ (B. I, P. D { QﬁE
XX., C. 1), and 7 will be at- e

the middle point of the are
MIP, and also of the are
NIIQ : hence, MN, which is
the difference of ZIN and ZIM,
is equal to 7@, which is the difference of Q@ and HP
(A. 3) ; which was to be proved.

2°. Let the secant AL and tangent DX, be parallel
then will the intercepted ares MZI and PJII be éthal.

For,< draw the radius CI7
to the point of contact X ;
it will be perpendicular to DZ
(P. IX.), and also to its par-
allel AMP. But, because CI .
is perpendieular to MP, IT
is the middle point of the arc
MIIP (P.VL): hence, MI
and PII are equal; whick
was to be proved. 3

E
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3°. Let the tangents DE and JIL be parallel, and let
X7 and A be their points of contact: then will the in-
tercepted ares JIWI and IIPK be equal

For, draw the secant ADB

parallel to DE; then, from D i3 B
what has just been shown, we A i L
shall have JZM equal to IID

and MAL equal to P’: hence, Cc+

HME, which is the sum of
HAM and MK, is eqnal to

HPK, which is the sum of hE e L
HP and PK; which was to
be proved.

PROPOSITION XI. THEOREM.

If two circumferences intersect each other, the points of in-
tersection will be in a perpendicular fo the straight line
Joining their centres, and at equal distances from it,

Let the circumferences, whose centres are ¢ and D,
intersect at the points 4 and
B : then will CD be perpen-

dicular to ADB, and AF will <
be equal to BIT ‘m
For, the points 4 and B, V

being on the circumference 4
whose centre is €, are equally
distant from € ; and being on
the circumference whose centre is D, they are equally dis-
tant from D : hence, CD is perpendicular to AB at its

middle point (B. L, P. XVI, C); which was to be proved,
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PROPOSITION XIIL TITEOREM.

If two circumferences intersect each other, the distance be-
tween their centres will be less than the sum, and greater
than the difference, of their radii.

Let the circumferences, whose centres are ¢ and D,
intersect at A : then will CD
be less than ~the sum, and
greater than the difference of ¥
the radii of the two circles. “\
For, draw AC and AD, \/
forming the triangle ACD.
Then will CD be less than
the sum of AC and AD,
and greater than their difference (B. I, P. VIL); which was
to be proved.

PROPOSITION  XIII. THEOREM.

If the distance between the centres of two circles is equal
to the sum of their radii, they will be tangent externally.

Let C and P be the centres of two circles, and let
the distance between the centres be equal to the sum of the
radii : then will the circles be tangent externally.

For, they will have a point
A, on the line CD, common,
and they will have no other
point in common ; for, if they

had two points in common, the
distance between their centres
would be less than the sum of
their radii; which is contrary to the hypothesis: hence, they
are tangent externally; which was to be proved.
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PROPOSITION XIV. THEOREM,

If the distance between the centres of two circles is equal to
the difference of their radii, one will be tangent to the
other internally. ;

Iet C and D be the centres of two circles, and let
the distance between these centres be equal to the difference
of the radii: then will the one be tangent to the other in-
ternally.

For, they will have a point 4, on E
DC, common, and they will have no
other point in common. For, if they

had two points in common, the distance A C .D
between their centres would be greater

than the difference of their radii;
Which is contrary to the hypothesis :
hence, one touches the other internally; which was to be
proved,

Cor. 1. If two circles are tangent, either externally or
mternally, the point of contact will be on the straight line
drawn through their centres.

Cor, 2. All circles whose centres are on the same straight
line, and which pass through a common point of that line,
are tangent to cach other at that point. And if a straight
line be drawn tangent to one of the circles at their common
point, it will be tangent to them all at that point.

Scholium. TFrom the preceding propositions, we infer that
two circles may have any one of six positions with respect
to each other, depending upon the distance Letween their
centres :

1°. When the distance between their centres is greater
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than the sum of their radii, they are external, one to the
other:

2°. When this distance is equal to the sum of the radii,
they are tangent, externally:

8°. When this distance is less than the sum, and greater
than the difference of the radii, they intersect each other :

4°. When this distance is equal to the difference of theh
radil, one ¢s tangent to the other, internally:

5° When this distance is less than the difference of the
radii, one ¢s wholly within the other:

6°. When this distance is equal to zero, they have a
common centre; or, they are concentric.

PROPOSITION XV. THEOREM.

In equal circles, radii making equal angles at the centre,
intercept equal arcs of the circumference ; conversely,
radit which intercept equal arcs, make equal angles at the
centre.

1°. In the equal circles ADL and EGF, let the an-
gles ACD and EOG be equal: then will the arcs AMD
and ZNG be equal B F

For, draw the chords 4D
and EG ; then will the tri-
angles ACD and EOG have
wo sides and their included
angle, in the one, equal to

two sides and their included

angle, in the other, each to each. They are, therefore, equal
in all their parts ; consequently, AD is equal to EG.
But, if the chords AD and EG are equal, the arecs AMD
and ZING are also equal (P.1IV.); which was to be proved.
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2°. Let the arcss AMD and ENG be equal: then will
the angles ACD and EOG be equal

For, if the arecs AMD
and ZFENG are equal, the
chords AD and FEG are

¢ 0o
equal (P. IV.); consequently,
the triangles A CD and KOG A
have their sides equal, each "t M -

to each; they are, therefore,
equal in all their parts: hence, the angle ACD is equal
to the angle EOG ; which was to be proved.

PROPOSITION XVI. THEOREM.

In equal circles, commensurable angles at the centre are pro-
portional to their intercepted arcs.

In the equal circles, whose centres are ¢ and O, let
the angles ACDB and DOZ be commensurable; that is,
be exactly measured by a common unit: then will they be
proportional to the intercepted ares AL and DZE.

Let the angle A7 be a common unit ; and suppose, for
example, that this unit is contained 7 times in the angle
ACB, and 4 times in the angle DOZL.  Then, suppose
ACB be divided into 7 angles, by the radii Cm, Cn, Cp,
&c.; and DOE into 4 angles, by the radii Oz, Oy, and’
0z, each equal to the unit AL
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.

From the last proposition, the ares Am, mn, &e., Dz,
zy, &ec., are equal to each cther; and because there are 7
of these arcs in 4D, and 4 in DZE, we shall have,

arc AL : are DE :: 7 : 4.
But, by hypothesis, we have,
angle ACB : angle DOE :: 7 : 4;
hence, from (B. IL, P. IV.), we have,
angle 'AC'I)’ : angle DOE :: arc AB : arc DE.

If any other numbers than 7 and 4 had been used, the
same proportion would have been found ; which was to be
proved.

Cor. If the intercepted arcs are commensurable, they will
be proportional to the corresponding angles at the centre,
as may be shown by changing the order of the couplets in
the above proportion.

‘PROPOSITION XVII, THEOREM,

In equal circles, incommensurable angles af the centre are
proportional to their intercepted arcs.

In the equal circles, whose C 0
centres are ¢ and O, let
ACB and FOII be incom-
mensurable : then will they A y
be proportional to the arcs DIOB E o
AB and FIT.

For, let the less angle F'OH, be placed upon the greater
angle ACDB, so that it shall take the position A4 CD.
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Then, it the proposition is not c 9
true, let us suppose that the

angle ACB is to the angle

FOH, or its equal ACD, 2 i
as the arc AB is to an arc £ DIOB » ia
A0, greater than FH, or

its equal AD; whence,

angle ACB : angle ACD :: arc AB : arc AO.

Conceive the arc 4B to be divided into equal parts,
each less than DO : there will be at least one pt;int of
division between 2 and O ; let I be that point; and
draw CZ. Then the arcs 4B, AZ will be commensura
ble, and we shall have (P. XVL),

angle ACB : angle ACI :: arc AB : arc AL

Comparing the two proportions, we sce that the antecedents
are the same in both: hence, the consequents are propor-
tional (B. II, P. IV., C.); hence,

angle ACD : angle ACI :: are AO . are AL

But, 40 is greater than A7 : hence, if this proportion is
true, the angle 4CD must be greater than the angle A CZ
On the contrary, it 1s less: hence, the fourth term of the
assumed proportion cannot be greater than AD.

In a similar manner, it may be shown that the fourth
term cannot be less than A.D : hence, it must be equal to

AD ; therefore, we have,
angle ACB : angle ACD :: arc AD -+ arc AD
which was to be proved.

Cor. 1. The intercepted arcs are propcrtional to the cor-
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responding angles at the centre, as may be shown by chang-
ing the order of the couplets in the preceding proportion,

Cor. 2. In equal circles, angles at the centre are pro-
portional to their intercepted arcs; and the reverse, whether
they are commensurable or incommensurable.

Cor 3. In equal circles, sectors are proportional to their
angles, and also to their ares,

Scholium. Since the intercepted arcs are proportional to
the corre'sponding angles at the centre, the arcs may be
taken as the measures of the angles. That is, if a circum-
ference be described from the vertex of any angle, as a cen-
tre, and with a fixed radius, the arc intercepted between the
sides of the angle may be taken as the measure of the
angle. In Geometry, the right angle which is measured by
a quarter of a circumference, or a quadrant, is taken as a
unit.  If, therefore, any angle be measured by one-half or
two-thirds of a quadrant, it will be equal to one-half or
two-thirds of a right angle.

PROPOSITION XVIII. THEOREM.

An inseribed angle is measured by half of the arc included
between its sides.

There may be three cases: the centre of the circle may
lie on one of the sides of the angle; it
may lie within the angle; or, it may
lie without the angle.

1°, Let FAD be an inscribed an-
gle, one of whose sides AZX passes
throngh the centre: then will it be
measured by half of the arc DZE.
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For, draw the radius CD. The external angle DCE,
of the triangle DCA, is equal to the sum of the opposite
interior angles CAD and CDA (B.1, P XXV, C. e).
But, the triangle D(CA being isosceles,
the angles D and A ‘are equal ; A
therefore, the angle DCE is double
the angle DAE. Because DCE is
at the centre, it is measured by the C
arc DE (P. XVIL, S.): hence, the,
angle DAE is measured by half of
the arc DL ; which was to be proved. E

2°. Let DADB be an inscribed angle, and let the centre
lie within it: then will the angle be measured by half of
the arc BED,

For, draw the diameter AZE. Then, from what has just
been proved, the angle DAZ is measured by half of DZE,
and the angle EADB by half of EB: henee, BAD, which
is the sum of EAB and DAE, is measured by half of
the sum of DZ and ZEB, or by half of BED ; which
was to be proved.

8°. Let BAD be an inscribed angle, and let the centre
lie without it: then will it be measured by  half of the arc
arc DBD.

For, draw the diameter AZ. 'Then, A
from what precedes, the angle DAFE
is measured by half of DE, and the
angle BAXE by half of BZE: hence,
BAD, which is the difference of BAK B
and DAE, is measured by half of the
difference of BE and DE, or by o
half of the arc BD ; which was to be proved.

L‘JK
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Cor. 1. All the angles BAC,
BDC, BEC, inscribed in the same
segment, are equal ; because they are
each measured by half of the same
arc BOC.

D
4
A
0
{ A
Cor. 2. Any angle BAD, in-
scribed in a semi-circle, is a right an-
gle ; because it is measured by half B
the semi-circumference BOD, or by
a quadrant (P. XVIL, S.). . 5
A
B@c
0O

Cor. 8. Any angle BAC, in-
scribed in a segment greater than a
semi-circle, is acute ; for it is mea-
sured by half the arc BOC, less
than a semi-circumference.
Any angle BOC, inscribed in a
segment less than a semi-circle, is
obtuse ; for it is measured by half the arc BAC, greater
than a semi-circumference.

- Cor. 4. The opposite angles A

and C, of an inscribed quadrilateral

ABCD, are together equal to two A

right angles; for the angle DAB D o
-1 measured by half the arc .DCB,

the angle DCB by half the arc

DAB : hence, the two angles, taken together, are mes
sured by half the circumference : hence, their sum is equal
to two right angles,
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PROPOSITION XIX. THEOREM.

Any angle formed by two chords, which intersect, is mea-
sured by half the sum of the included arcs.

Let DEB be an angle formed by the intersection of
the chords AZ and CD : then will it be measured by
half the sum of the arcs AC and DB.

For, draw AF parallel to DC:
then, the arec DF will be equal to
AC (P. X.), and the angle ZFARB
equal to the angle DEB (B. 1, P.
XX, C. 8). But the angle FAB is
measured by half the arec ZDB (P.
XVIIL); therefore, DEB is measured
by half of FDB; that is, by half the sum of D and
DB, or by half the sum of AC and DB; which was to
be proved. e

(9,

D

PROPOSITION XX. TIIEOREM.

The angle formed by two secants, intersecting without the circum-
Sference, is measured by half the difference of the included arcs.

Let AB, AC, be two secants : them will the angle
BAC be measured by half the differ-
ence of the arecs BC and DIl

Draw DZE parallel to AC: the
arc ZC will be equal to DF (. X)),
and the angle BDE equal to the an-
gle BAC (B.I1, P. XX, C.3.). Bw
BDE is measured by half the arc
BE (P. XVIIL) : hence, BAC is
also measured by half the arc BZ;
that is, by half the difference of B C
and EC, or by half the differcnce of BC and DF; which

was to be proved.
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PROPOSITION XXI. THEOREM.

An angle formed by a tangent and a chord meeting it at
the point of contact, s measured by half the included
are.

" Let BE be tangent to the circle AMC, and let AC
be a chord drawn from the point of contact A : then
will the angle BAC be measured
by half of the arc AMC.

For, draw the diameter AD.
The angle BAD is a right angle
(P. IX.), and is measured~by balf
the semi-circumference AMD (P.
XVIL, 8.); the angle DAC is
measured by half of the arc DC B
(P. XVIIL.) : hence, the angle BAC,
which is equal to the sum of the angles BAD and DAC,
is measured by half the sum of the arcs AMD and DC,
or by half of the arc AMC ; which was to be proved.

N =

i

The angle CAE; which is the difference of BDAE and DAC
is measured by half the difference of the arcs DCA4 and DC,
or by half the arc CA.



PRACTICAL APPLICATIONS.

PROBLEM L
To bisect a given siraight line.

Let AB be a given straight line.
From A4 and B, as centres, with
a radius greater than omne half of AD,

N
75

describe arcs intersecting at % and
f': join £ and F, Dby the straight
fine EF, Then will FF Dbisect the F——75— i'g-
given line. AR, For, £ and F
are each equally distant from 4 and ° A<F
B; and consequently, the line EF

bisects 4B (B. L, P. XVI, C.).

‘PROBLEM II.

To erect a perpendicular to a given straight line, Gt a given
point of that line.

Let EF be a given line, and let 4 be a given point o
that line.

From A, lay off the equal
distances AB and ‘A C; from
B and O, as centres, with a
radiug greater than one half E B A [5) i
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of B, describe arcs intersecting at D; draw tle line AD:
then will 40D be the perpendicular required. For, D and 4
are each equally distant from B and C; consequently, DA is
verpendicular to B( at the given point A (B. L, P. XVI, C.).

PROBLEM IIIL

To draw a perpendicular to a given straight line, Jrom a
given point without that line.

Let BD be the given line, and 4 the given point.

From A4, as a centre, with a ra-
dius sufficiently great, describe-an arc ‘}
cutting BD in two points, B and g
D ; with B and D as centres, and ‘E\__,C__T,i
a radius greater than onchalf of BD, D
describe arcs intersecting at %; draw
AE : then will 4Z be the perpendi-
cular required. For, 4 and E are each equally distant
from B and D: hence, AKX is perpendicular to BD
(B R XV 6.

PROBLEM 1IV.

At a point on a given straight line, fo construct an angle
equal to a given angle.

Let A be the given point,,. AB the given line, and
IKL the given angle.

From the vertex K as a I Op
centre, with any radius K7, % 4
describe the arc IZL, terminat- L % Y

’ 3 £ B

mg in the sides of the angle.
From A4 as a centre, with a radius AB, equal to X7,
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describe the indefinite are B O ; then, with a radius equal
to the chord LI, from B as a centre, describe an are
cutting the are BO in D ;

draw AD: then will BAD L~ 0D
be equal to the angle . Y "“
For, the ares DBD, IL, K A B

have equal radii and equal
chords : hence, they are equal (P. IV.); therefore, the angles
BAD, IKL, measured by them, are also equal (D. XV.).

PROBLEM V.
Tb bisect a given arc, or a given angle.

1°. Let AEB be a given are, and ( its centre,
Draw the chord 4B ; through C,
draw CD perpendicular to ADB (Prob.
1) : then will CD bisect the are
AEB (P. VL). 7t

7

90, Let ACB be a given angle.

With € as a centre, and any
radins OB, describe the arc B4 ;
bisect it by the line CD, as just v
“explained : then will CD bisect the angle ACB.

For, the ares AK and EB are equal, from what was
just shown ; consequently, the angles ACE and ECB are
also equal (P. XV.).

Scholium. If each half of an arc or angle be bisected,
the original arc or angle will be divided into four equal
parts ; and if each of these be bisected, the original arc or
angle will be divided into eight equal parts; and so on.
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PROBLEM VL

Through a given point, to draw o straight line .parallel to
a giwen straight line.

Let 4 be a given point, and BC a given line.
From the point 4 as a centre,

with a radius AZ, greater than the 5 F E ¢
shortest distance from A to 'BC, "\ / “-‘
describe an indefinite are £0 ; from Yl “.
I as a centre, with the same ras A Dz)

dius, describe the arec AF ; lay off
ED equal to AF, and draw AD: then will 4D be the
parallel required..

For, drawing AZE, the angles AEF, EAD, are equal

(P. XV.); therefore, the lines AD, EF are parallel (B. L,
P. XIX,, C. 1.).

PROBLEM VII.

Given, two angles. of a triangle, to construct the third
angle.

Let 4 and B be given angles of a triangle.
Draw a line DZF, and at some

point of it, as &, construct the an- H
gle FEI equal to 4, and HEC Cv
equil to B. Then, will CED be g a—
equal to the required angle.

For, the sum of the three angles at % is equal to two -
right angles (B. L, P. I, C. 3), as is also the sum of the

three angles of a triangle (B. I, P. XXV.). Consequently,

the third angle CED must be equal to the third angle of
the triangle.
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PROBLEM VIIL

Given, two sides and the included angle of a triangle, tv
construct the triangle.

Lot B and C denote the given sides, and 4 the given
angle, &
Draw the indefinite line DF

and at 2D construet an angle Wi g

FDE, equal to the angle 4 ; on A / \
D B . F

AL izt

DF, lay off DI equal' to the
side C, and on DK, lay off
DG equal to the side B; draw
GH : then wil DG@H be the required triangle (B. L, P. V.).

PROBLEM IX.

Given, one side and two angles of a triangle, to construct
the triangle.

The two angles may be either both adjacent to the given
side, or one may be adjacent and the other opposite to it.
In the latter case, construct the third angle by Problem VII
We shall then have two angles and their included side.

Draw a straight line, and on it
lay of DE equal to the given Q@ ',J‘"

AN

side; at D construct an angle 2
equal to one of the adjacent an- A}
gles, and at Z consfruet an angle D

equal to the other adjacent angle;
produce the sides DF and EG till they intersect at H :
then will DEH be the triangle required (B. I, P. VL)
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PROBLEM X.

Given, the thres sides of a triangle, to construct the tri-
angle.

Let A, B, and C, be the given sides.
Draw DE, and make it equal )

to the side 4 ; from D as a /\
D E

centre, with a radius equal to the

side B, describe an arc; from 7 A y
. > )————-—-—{
as a centre, with a radius equal ]é,___,

to the side (), describe an arc
intersecting the former at Z7; draw DJF and EF: then
will DEF be the triangle required (B. I, P. X.).

Scholium. In order that the construction may be possible,
any one of the given sides must be less than the sum of the
other two, and greafer than their difference (B. I, P. VII,, S.).

PROBLEM XI.

Given, two sides of a triangle, and the angle opposite one
of them, to construct the triangle.

Let 4 and B be the given sides, and ¢ the given
angle.

Draw an indefinite line D@, DAL ekt U LN Y
and at some point of it, as D, Br ] C
construct an angle GDZE equal o \

to the given angle; on one side /-\‘
D Y

of this angle lay off the distance
DE equal to the side B adjacent 4
to the given angle; from Z as ¢
a centre, with a radius equal to the side opposite the given
angle, describe an are cutting the side DG at G; draw
6. Then will DEG Ve the requred triangle.
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For, the sides DE and EG are equal to the given
sides, and the angle D, opposite one of them, 1s equal to
the given angle.

Scholium. When the side opposite the ’given angle is
greater than the other given side, there will be but one
salation.  When the given angle is acute, and the side
cpposite the given angle is less-
than the other given side, ar‘ld Atprme—e—d <
greater than the shortest dis-
tance from % to D@, there /:\
will be two solutions, DEG D X

and . DEF.  When the side e, ~G

o
-------

opposite the given angle is
equal to the shortest distance from & to D@, the arc
will be tangent to D@, the angle opposite DE will be
a right angle, and there will be but one solution. When
the side opposite the given angle is shorter than the distance
from & to D@G, there will be no solution,

PROBLEM XII.

Given, two adjacent sides of a parallelogram and their
included angle, to construct the parallelogram.

‘Let A and B be the given sides, and"' C the given

angle.

Draw the line DX, and 4 e
at some point as D), construct /l\
the angle HDF equal to the , /
angle C. Lay off DE equal D 2 H

to the side A, and DX equal o o
to the side B ; draw FG Has H L_
parallel to DZ, and KEG par-

allel to DF -+ then wil DFGE be the parallelogram re
quired.
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For, the opposite sides are parallel by construction ; and
consequently, the figure is a parallelogram (D. 28); it ie
also formed with the given sides and given angle.

PROBLEM XIIT.
To find the centre of a given circumference.

Take any three points A, G
B, and C, on the circumference
or are, and join them by the ___%_Ii‘_,
chords AB, BC; biscct these

chords by the perpendiculars DE

and FG : then will their poini B

of intersection O, be the centre A Q‘L

required (P. VIL). ek
D

Scholium. The same construc-
tion enables us to pass a circumference through any three
points not in a straight line. If the points are vertices of
a triangle, the circle will be circumscribed about it.

PROBLEM XIV.
Through a given point, to draw a tangent to a given circle.

There may be two cases: the given point may lie on
the circumference of the given circle, or it may lie without
the given circle.

1°. Let C be the centre of the
given circle, and 4 a point on the
circmﬁference, through which the tan-

D

gent is to be drawn, ;
Draw the radius €4, and at A

draw AD perpendicular to A4(C: then

wil 4D be the tangent required (P. IX.).
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2°, Let C be the centre of the given circle, and 1 a
point without the circle, through which the tangent is to be
drawn.,

Draw the line AC; Dbisect it at
O, and from O as a centre, with a
radius OC, describe the circumference
ABCD ; join the point 2 with the
points of intersection 2 and DB :
then will both AD and AB be
tangent to the given circle, and there

N

will be two solutions.

For, the angles ABC and 4ADC
are right angles (P. XVIIL, C. 2): ~
hence, each of the lines AB_ and AD is perpendicular to
a radius at its extremity ; and consequently, they are tangent
to the given circle -(P. IX.).

Corollary. The right-angled triangles ABC and ADC,
have a common hypothenuse A, and the side BC equal
to DC; and consequently, they are equal in all their parts
(B. I, P. XVIL): hence, 4B 1is equal to 4D, and
the angle (CADB is equal to the angle (CA4D. The tan-
gents are therefore equal, and the line 4C Dbisects the
angle between them.

PROBLEM XV.

To inscribe a circle in a given triangle.

Let ADBC be the given
triangle.

Bisect the angles 4 and
B, by the lines A0 and
B0, meeting in the point O
(Prob. V.); from the point O
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let fall the perpendiculars OD, OE, OF, on the sides of
the triangle : these perpendiculars will all be equal,

For, in the triangles BOD and BOE, the angles OBE
and OBD are equal, by construction ; the angies ODB
and OFEB are equal, because both are right angles ; and
consequently, the angles BOD and BOE are also equal
(B. L, P. XXV, C. 2), and the side OB is common ; and
therefore, the triangles are equal ‘in all their parts B. L,
P. VL): hence, OD is equal to OZX In like manner, it
may be shown that OD is equal to OF

From O as a centre, with a radius 0D, describe a
circle, and it will be the circle required. For, each side is
perpendicular to a radius at its extremity, and is therefore
tangent to the circle.

Corollary. The lines that bisect the three angles of a
triangle all meet in one point,

PROBLEM XVI,

On a given straight line, to construct a segment that shall
contain a given angle.

Jet ADB be the given line,

Produce AB towards D; at B construct the angle
DBE equal to the given angle draw BO perpendicular
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to BF, and at the middle point @, of AB, draw GO
perpendicular to AB ; from their point of intersection O,
a3 a centre, with a radius OB, describe the are AMB:
then will the segment AMB be the segment required.

For, the angle ABF, equal to EBD, is measured by
half of the arc AKB (P. XXI); and the inscribed angle
AMB is measured by half of the same arc : hence, the
angle AMB is equal to the angle ZEBD, and conse-
_quently, to the given angle.
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MEASUREMENT AND RELATION OF POLYGONS.

DEFINITIONS.

1. Smmar Porvaons, are polygons which are mutually
cquiangular, and which have the sides about the equal angles,
taken in the same order, proportional.

2. In similar polygons, the parts which are similarly
placed in each, are called Aomologous.

The corresponding angles are /JAomologous angles, the
corresponding sides are homologous sides, the corresponding
diagonals are homologous diagonals, and so on.

3. SIMILAR ARCS, SECTORS, or SEGMENTS, in different circles,
are those which correspond to equal angles at the centre.

Thus, if the angles 4 and O are A
equal, the ares BFC and DGL are 2
similar, the sectors BAC and DOFX é
are similar, and the segments BFC 18 G B
and DGE are similar. 1

4. The Arvrrrupe or A Triancie, is the perpendicular
distance from the vertex of either an-
gle to the opposite side, or the opposite
side produced.
The vertex of the angle from which
the distance is measured, is called the
vertex of the triangle, and the opposite
side, is called the bdase of the triangle.

»
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5. The Artirupe oF A PaArarrrrogray, is the perpen-
dicular distance between two opposite

gides,
These sides are called bases ; one the i ;

upper, and the other, the lower base.

6. The Armrupe or A Traprzoip, is the perpendicular
distance between its parallel sides.

These sides are called dases ; one the

ypper, and the other, the lower base.

7., The Area oF A SURFACE, is its numerical value
expressed in terms of some other surface taken as a wnit.
The unit adopted is a square described on the linear unit,
as a side.

PROPOSITION 1. THEOREM.

Parallelograms which have equal bases and equal altitudes,
are equal.

Let the parallelograms ABCD and EFGH have equal
bases and equal altitudes: then will the parallelograms be
equal.

For, let them be so placed

D_H € G.H

that their lower bases shall G
coincide ; then, because they \/ \/ / /
have the same altitude, their o

A B E

upper bases will be in the
same line D@, parallel to AB.

The triangles DAI and CBG, have the sides 4D and
BC equal, because they are opposite sides of the parallel-
ogram AC (B. 1, P. XXVIIL); the sides AI7 and BG
equal, because they are opposite sides "of the parallelogram
AG@ ; the angles DAH and CBG equal, because their
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sides are parallel and lie in the same direction (B. I,
P. XXIV.) : bhence, the triangles are equal (B. L, P. V.).
It from the quadrilateral ABGD, we take away the tri-
angle DA, there will remain the parallelogram AG ; if
from the same quadrilateral ABGD, we take away the tri-
tiiangle CB@, there will remain the parallelogram A0 :
hence, the parallelogram AC is equal to the parallelogram
LG (A. 3); which was to be proved. '

PROPOSITION II. THEOREM.

A triangle is equal to one-half of a paralledlogram having
an equal base and an equal altitude.

Let the triangle A B¢, and the parallelogram ABFD,
have equal bases and equal altitudes: then will the triangle
be equal to one-half of the parallelogram.

For, let them be so

placed that the base of DL EF C &
the triangle shall coin- /"
cide with the lower base A i £

of the parallelogram ;

then, because they have equal altitudes, the vertex of the
triangle will lie in the upper base of the parallelogram, or
in the prolongation of that base.

From A, draw AZFE parallel to B, forming the par-
allelogram ABCE. This parallelogram will be equal to
the parallelogram ABZFD, from Proposition I.  But the
triangle ABC is equal to half of the parallelogram ABCE
- +(B. L, P. XXVIIL, C. 1) : hence, it is equal to half of
the parallelogram ABFD (A. 7); which was to be proved

Cor. Triangles having equal bases and equal altitudes are
equal, for they are halves of equal parallelograms,

X
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PROPOSITION III. THEOREM.

Rectangles having equal altitudes, are proportional to their
bases.

There may be two cases: the bases may be commensu-
rable, or they may be incommensurable.

1°. Let ABCD and HEFK, be two rectangles whose
altitudes AD and HK are equal, and whose bases AL
and Z/E are commensurable : then will the areas of the
rectangles be proportional to their bases,

D" K

boeemmeeaneae|

A B 1

Suppose that AB is to IZE, as 7 is to 4. Conceive
AB to be divided into 7 equal parts, and J/E into 4
equal parts, and at the points of division, let perpendiculars
be drawn to AB and HE. Then wil ABCD be divi-
ded into 7, and ZEFK into 4 rectangles, all of which will
be equal, because they have equal bases and equal altitudes
{P. L) : hence, we have,

ABODy & TEFK "1 ¥ 4,
But we have, by hypothesis,
2 Y SRR T 6 e SR el
From these proportions, we have (B. IL, P. IV.),
ABOP v HRRE Y SR

Had any otner numbers than 7 and 4 been used, the same
proportion would have been found ; which was to be proved,
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2°, Let the bases of the rectangles be incommensurable :
then will the rcctangles be proportional to their bases.

For, place the rectangle HEFK
upon the rectangle ABCD, so that D FK C
it shall take the position AEFD,
Then, if the rectangles are not pro-

portional to their bases, let us sup-

pose that
ABCD : AEKFD :: AB : AO;

in which 40 1is greater than AE. Divide 4B into
equal parts, each less than OF ; at least one point of
division, as [Z, will fall between & and O ; at this point,
draw JIC perpendicular to ADB. Then, because AB and
AT are commensurable, we shall have, from what has just
been shown,

VB C D (AR SN BB A,

The above proportions have their antecedents the same
in each; hence (B. II, P. IV, C.),

METD i AT 4 A O sy AT

The rectangle AFEFD is less than AZKD; and if the
above proportion were true, the line 40 would De less
than AJZ; whereas, it is greater. The fourth term of the
proportion, therefore, cannot be greater than AZ., In like
manner, it may be shown that it cannot be less than A7 ;
consequently, it must be equal to AZ : hence,

ABICD S SN ABRD: g AB AE ;
which was to be proved.

Cor. If rectangles have equal bases, they are to each
other as their altitudes.
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PROPOSITION IV. THEOREM.

Any two rectangles are to each other as the products of
their bases and altitudes.

TLet ABCD and AEGF be two rectangles: then wil
ABCD be to AEGEF, as AB x AD is to AE x AF
For, place the rectangles so

that the angles DAB and EAF 1 D C
shall be opposite or vertical;
then, produce the sides CD D Yy B
and GZ till they meet in I,

The rectangles ABCD and G F

ADHE have the same altitude
AD : hence (P. IIL),

ABCD : ADHE :: AB : AF.
The rectangles ADHE and AFEGF have the same
_altitude A : hence,

ADHE : AEGF :: AD : AF
Multiplying these proportions, term by term (B. IL, P,

XIL), and omitting the common factor ADHE (B. IL,
P. VII.), we have,

ABCD : AEGF :: ABx AD : AE x AF;

which was to be proved.
Scholium 1. If we suppose AFE and AF, each to be

equal to the linear unit, the rectangle AZGZF will be the
superficial unit, and we shall have,

ABIOD SRS R IR ) e ST
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ABCD = ADB x AD :

hence, the area of a rectangle is equal to the product of
its base and altitude ; that is, the number of superficial
units in the rectangle, is equal to the product of the number
of linear units in its base by the number of linear units in
its altitude.

Scholium 2. The product of two lines is sometimes called
the rectangle of the lines, because the product is equal to
the area of a rectangle constructed with the lines as sides.

PROPOSITION V. THEOREM.

The area of a paralldogram s equal to the product of its
base and altitude.

Let ABCD be a parallelogram, 4B its base, and BE
its altitude: then will the area of ABCD be equal to
AB x BE,

For, construct the rectangle
ABEF, having the same base
and altitude : then will the rec-
tangle be equal to the parallelo-
gram (P. 1) ; but the area of the
rectangle is equal to 4B x BE:
hence, the area of the parallelogram is also equal to
AB x BE ; which was to be proved.

Cor. Parallelograms are to each other as the products
of their bases and altitudes., If their altitudes are equal,
they are to each other as their bases. If their bases are
equal, they are to each other as their altitudes.
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PROPOSITION VI. THEOREM.

The area of a triangle is equal to half the product of its
base and altitude.

Let ABC be a triangle, BC its base, and AD its
altitude : then will the area of the triangle be equal to
sBC x AD,

For, from C, draw CFE
parallel to BA, and from A,
draw AZFE vparallel to CB. The
area of the parallelogram 25 CEA
is BC x AD (P. V.); but the
triangle ABC is half of the par-
allelogram BCEA': hence, its area is equal to $BC x AD;
which was to be proved.

Cor. 1, Trianglés are to each other, as the products of
their bases and altitudes (B. II, P. VIL). If their alti-
tudes are equal, they are to each other as their bases. If
their bases are equal, they are to each other as their alti-
tudes.

Cor. 2. The area of a triangle is equal to half the pro-
duct of its perimeter and the radius of the inscribed circle,

For, let DEF be a circle
inscribed in the triangle - A BC.
Draw 0D, OFE, and OF, to
the points of contact, and 04,
OB, and OC, to the verti-
ces. S
The area of OBC will be
equal to 30X x BC ; the
area of 04C will be equal to 30F x AC ; and the ares

¢




>
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of OAB will be equal to 40D x AB; aud siuce 0D,
OE, and OF; are equal, the area of the triangle ABC
(A. 9), will be equal to $0D (AB + BC + CA).

PROPOSITION VII. THEOREM,

The area of a trapezoid is equal to the product of its alti-
tude and half the sum of its parallel sides.

Let ABCD be a trapezoid, DI’ its altitude, and AB
and DC its parallel sides: then will its area be equal to

DE x 3(AB + DO).
i For, draw the diagonal A4, form-
ing the triangles ABC and ACD.
The altitude of each of these trian-
gles is equal to DZ. The area of
ABC is equal to $4B x DE (P.
VL) ; the area of ACD is equal to
4DC x DE: hence, the area of the trapezoid, which is the
sum of the triangles, is equal to the sum of 448 x DE
and $DC x DE, or to DE x $(AB 4+ DC); which was
to be proved.

PROPOSITION VIII. THEOREM.

The square described on the sum of two lines is equal to
the sum of the squares described on the lines, increased
by twice the rectangle of the lines.

Let AB and BC be two lines, E
and AC their sum: then will 4
F G
AC® = AB® + BC® + 24B x BC.
On AC, construct the square
A B C

ACDE ; from B, draw BH par-
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allel to AE; lay of AF equal to AB, and from
£y draw FG parallel to AC : then will 7G and IH be
each equal to BC ; and IB and IF, to AB.

The square ACDE is composed

of four parts. The part ABIF is E 11
a square described on AZB; the part
IGDH is equal to a square described F| 1 G

on B(; the part BCGI is equal
to the rectangle of AB and BC ;
and the part FIHE is also equal to A B ¢
the rectangle of AB and BC : and

because the whole is equal to the sum of all its parts (A. 9),

we have,
AC® = AB® + BC*? + 24B x B(C ;

which was to be proved.

Cor. If the lines AB and BC are equal, the four
parts of the square on AC will also be equal: hence, the
square described on a line is equal to four times the squure
described on half the line.

PROPOSITION IX. THEOREM.

The square described on the difference of two-'lines is equul
to the sum of the squares described on the lines, dimin-
ished by twice the rectangle of the lines.

Let 4B and BC be two lines, and AC their differ-
ence: then will
AC® = AB" + BC* — 248 x BC.

On AB construct the square ABIF; from C draw
C@ vparallel to BI; lay off CD equal to AC, and
from D draw DX parallel and equal to B4 ; complete
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the square EFLK : then will ZK be equal to BC, and
EFLE will be equal to the square of BC.
The whole figure ABILKE is
. L_F G
equal to the sum of the squares KL

described on AR and BC. The
part CBIG is equal to the rect
angle of 4B and B ( ; the part
DGLK is also equal to the rect- A C B
angle of AB and BC. If from

the whole figure ABILKE, the two parts CBIG and
DGLK be taken, there will remain the part ACDE,
which is equal to the square of AC : hence,

E D

ACH = A8 + BC' '~ 248 X B0

which was to be proved.

PROPOSITION X. THEOREM.

The rectangle contained by the sum and difference of ftwo
lines, is equal to the difference of their squares.

Let AB and BC be two lines, of which AZB is the
greater : then will

(AB + BC) (AB — BC) = AB* — BC*

On AD, - construct the square

ABIF; prolong AB, and make F————‘-G—Il
BE equal to BC; then wil AK  E 5 H
be equal to AB+ BC; from
K, draw KL parallel to BI, and
make it equal to AC ; draw LE

A C B K

parallel to KA, and CG parallel
to BI: then DG is equal to
BC, and the figure DIIG is equal to the square on
BC, and EDGF is equal to BXLH.
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If we add to the figure ABIIE, the rectangle BKLH,
we shall have the rectangle AXKLE, which is equal to the
the rectangle of 4B + BC and
AL — BC. If to the same figure
ABIE, we add the rectangle
DEER, equal to BELH, ,we ., B o
shall have the figure ABHDGF]
which is equal to the difference of
the squares of 42 and BC. But
the sums of equals are equal (A. 2),

hence, i T
(AB + BC) (4B — BC) = AB* — BC*;

which was to be proved.

PROPOSITION XI. THEOREM.

The square described on the hypothenuse of a right-angled
triangle, is equal to the sum of the squares described on
the other two sides.

Let ABC be a triangle, right-angled at 4 : then will
BO* = AB* + AC". .

Construct the square BG on the side B, the square
AHX on the side 4D, and :
the square .47 on the side K
A4C; from A draw AD
perpendicular to BC, and
prolong it to % : then will
DE be parallel to DF;
draw AF and HC.
 In the triangles HBC
and ABF, we have B
equal to ADB, because they
are sides of the same square;




BOOK 1IV. 103

BC equal to DBF, for the same reason, and the included
angles ZZB( and ABF equal, because each is equal to the
angle ABC plus a right angle : hence, the triangles are
equal in all their parts (B. I, P. V.).

The triangle ABF, and the rectangle .BZ, have the
same base BF, and becanse DZ is the prolongation of
D4, their altitudes are equal : hence, the triangle ADF
is equal to half the rectangle BE (P. IL). The trianglo
B0, and the square BL, have the same base B, and
because AC is the prolongation of AL (B. I, P. IV.),
their altitudes are equal: hence, the triangle HBC is equal
to half the square of AZL. But, the triangles ABZF and
HBC are equal: hence, the rectangle BFE is equal to the
square AZ7, In the same manner, it may be shown that
the rectangle DG is equal to the square A7 : hence, the
sum of the rectangles BZ and D@, or the square DG,
is equal to the sum of the squares AXH and A7; or,
BC® = AB® + AC*?; which was to be proved.

Cor. 1. The square of either side about the right angle
is equal to the square of the hypothenuse diminished by the

square of the other side : thqu

AB = BC* ZAQ*; oty AC0* = BO*— 4B~

Cor. 2. If from the vertex of the right angle, a per-
pendicular be drawn to the hypothenuse, dividing it into two
segments, BD and DO, the square of the hypothenuse will
be to the square of cither of the other sides, as the hypo-
thenuse is to the segment adjacent to that side.

For, the square D@, is to the rectangle BE, as BC
to BD (P. IIL) ; but the rectangle BE is equal to the
square AIl : hence,

BC* : AB® :: BC : BD,
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In like manner, we have,
BC* AT i BET ¢ D6,

Cor. 8. The squares of the sides about the right angle
are to each other as the adjacent
scgments of the hypothenuse.

tions of the preceding corollary
(B. I, P. IV., C.), we have, )

A
For, by combining the propor- i
D

AB* : AC° ::-BD : DG

X Cor. 4 The square described on the diagonal of a
square is double the given square.

For, the square of the diagonal is B e
equal to the sum of the squares of the
two sides; but the square of each side Al C

is equal to the given square: hence,

R U
AC* = 2AB*; or, AC® = 2BC>
L ]

]

Cor. 5. From the last corollary, we have,

A0 5 AB, s ST ;-

hence, by extracting the square root of each term, we have,
ALG AR S /A

that is, the diagonal of a square is to the side, as the
square root of two to one; consequently, the diagonal and
the side of a square are incommensurable.



BOOK 1V. 107

PROYOSITION XIL THEOREM.

In any triangle, the square of a side opposite an acute
angle, i3 equal to the sum of the squares of the base and
the other side, diminished by twice the rectangle of t/w’
base and the distance jfrom the vertex of the acute angle
to the jfoot of the perpendicular drawn from the vertex
of the opposite angle to the base, or to the base produced.

Let ABC be a triangle, C one A
of its acute angles, B C its base, and
AD the perpendicular drawn from A4
to BC, or BC produced; then will

AB* = BC" + AC" — 2B(C x CD. B | R

For, whether the perpendicular meets the base, or the
base produced,  we have BD equal to the difference of
BC and CD: hence (P. IX.),

.4 i S [ ]
BD* =BC*® + (D' — 2BC x CD.

Adding AD® to both members, we

have,

G

BD* + AD* = BC*® + OD* 4+ AD* — 2BC x CD.

But, BD*+ AD' = AB’, ad (D' 4+ AD* = AC*:

hence, -
AR — BC'+ 40" —2B0 x 6D

which was to be proved.
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PROPOSITION XIII. THEOREM.

In ang) obtuse-angled triangle, the square of the side opposits
the obtuse angle is equal to the sum of the squares of
the base and the other side, increased by twice the rect-
angle of the base and the distance from the vertex of the
obtuse angle to the foot of the perpendicular drawn Jrom,
the vertex of the opposite angle to the base produced.

Let ABC be an obtuse-angled triangle, B its obtuse
angle, BC its base, and AD the perpendicular drawn
from 4 to BC produced; then will

AC* = BC® + AR + 2BC x BD.
For, (D is the sum of BC A
and BD: hence (P. VIIL),
CD* = BC® + BD? + 2BC x BD.
Adding AD® to both members,
and reducing, we have,

AC* = BC® + AB® + 2BC x BD;
[

which was to be proved.

Scholium. The right-angled triangle is ‘the only ome mn
which the sum of the squares described on two sides is
cqual to the square described on the third side.

PROPOSITION XIV. THEOREM.

In any triangle, the sum of the squares described on two
sides is equal to twice the square of half the third side
increased by twice the square of the line drawn from
the middle point of that side to the vertex of the opposite
angle.

Let ABG be any triangle, and HA a line drvawn from



BOOK 1V, 109

the middle of the base BC to the vertex 4 : then will
AD® + AC*® = 2 BE* + 254

Draw AD perpendicular to B C; then, from Proposition
XII, we have,

A0* = EC® + FA® — 2EC x ED. A

From Proposition XIII., we have,

Gl TR LN\g
iP = BE' + EA* + :BEx ED. 5  ED

Adding these equations, member to member (A. 2), recollect-
ing that BZE is equal to E(C, we have,
AB® + AC0* = 2BE® + 2FA4A*;
which was to be proved.
Cor. Let ADBCD be a parallelogram, and BD, AC,
its diagonals. Then, since the diagonals

mutually bisect each other (B. I, P. B C
XXXL), we shall have,

AB® + BC® = 24F* + 2BE:
and, gt " i A D
D’ + DA* = 20E* + 2DE*;
whence, by addition, recollecting that A% is equal to CF,
and BE to DE, we have, :
AB' + BC' + (0D 4+ DA* = (CL" + 4DF";
but, 4CE" is equal to AC? and 4D to BD*
(P. VIIL,, C.): hence,
AB* + BC* + CD* + DA* = AC* + BD
That is, the sum of the squares of the sides of a parallelo-
gram, ts equal to the sum of the squares of its diagonals.
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PROPOSITION XV, THEOREM.

In any triangle, a line drawn paralld to the base divides
the other sides proportionally.

Let ABC be a triangle, and DZ a line parallel to
the base BC : then

SASDES . DI i A T SR RS T

Draw EB and DC. Then, because
the triangles AED and DFEB have their
bases in the same line AZB, and their
vertices at the same point Z, they will
have a common altitude : hence, (P. VI,
C)

AED : DEDB :: AD : DD.

The triangles AED and EDC, have their bases in the
same line A, and their vertices. at the same point D ;
they have, therefore, a common altitude; hence,

AED : EDC, :: AE : EC.

But the triangles DEZB and EDC have a common base
DE, and their vertices in the line BC, -parallel to DFE ;
they are, therefore, equal: hence, the two preceding propor-
tions have a couplet in each equal; and consequently, the
remaining terms are proportional (B. IL, P. IV.), hence,

AD 2 (DB i SAES O
which was to be proved.
Cor. 1. We have, by composition (B. II, P. VL),

AD + DB : AD :: AE + EC : AL;
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or, AR R 4D AC 2 AE
and, in like manner,
ABIGE DB s A R,
Cor. 2. If any number of parallels be drawn cutting twe
- lines, they will divide the lines proportionally.
For, let O be the point where AB
and CD meet. In the triangle OZF] 0

the line 4C being parallel to the base
LI, we shall have,

OE S A WSSO SO F

In the triangle OGZH, we shall have,

GER LG O N
hence (B. IL, P. IV,, C.),
AE : EG@ :: COF : FH.
In like manner,

EG : GB :: FH  IHD;

and so on. °

PROPOSITION XVI., THEOREM.

If a straight line divides $wo sides of @ triangle proportionally,
' @t will be parallel to the third side.

Let ABC be a triangle, and let DE
dividle 4B and AC, so that

24

Ay DB b AFE, v EC

then will DE be parallel to BC.

Draw DC and EB. Then the tri-
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angles ADZ and DEB will have a common altitude ; and
consequently, we shall have,

ADE : DEB :: AD : DB,

The triangles ADE and EDC have also
a common altitude ; and consequently, we
shall have,

ADE : EDC :: AE : EC;

but, by hypothesis,
AD : DB :: AE : EC;
hence (B. IL, P. IV.),

ADE : DEB :: ADE : EDC.

The antecedents of this proportion being equal, the con-
sequents will be equal; that is, the triangles DEB and
ED(C are equal. But these triangles have a common base
DZE : hence, their altitudes are equal (P. VI, C.); that is,
the points B and C, of the line B(, are equally distant
from DE, or DI prolonged : hence, BC and DE are
parallel (B. I, P. XXX,, @) ; which was to be proved.

¥
PROPOSITION XVIL TIIEOREM.

In any triangle, the straight line which bisects the angle al
the wertex, divides the base inio two segments proportional
to the adjacent sides.

Let AD Dbisect the vertical angle 4 of the triangle
BAC : then will the segments BD and DC be propor-
tional to the adjacent sides BA and CA.

From C, draw CZE parallel to DA, and produce it
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until it meets BA prolonged, at Z  Then, because CE
and DA are parallel, the angles BAD and AKEC are
equal (B. I, P. XX, C. 3); the
angles DAC and ACE are E
also equal (B. I, P. XX, C. 2). :
But, BAD and DAC are A /
equal, by hypothesis ; consequent- !
ly, AEC and ACE are equal: /
hence, the triangle ACE is /
isosceles, AZX being equal to ‘B D C
AC.

In the triangle BEC, the line AD is parallel to the
base ZC : hence (P. XV)),

BA Sl AE iy i BDy i DiEEy

or, substituting AC for its equal AE,
Bl AR sy BB B

which was to be proved.

PROPOSITION XVIIIT. THEOREM.

Triangles which are mutually equiangular, are similar.

Let the triangles ABC and DEF have the angle 4
equal to the angle D, the angle B to the angle Z, and
the angle C to the angle Z': then will they be similar.

For, place the triangle
DEF upon the triangle
ABC, so that the angle
Z shall coincide with the
angle B then will the
point & fall at some B B IS ¥
point X, of B(; the point D at some point &, of B4;

8
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the side DF will take the position GZ, and BGH will
be equal to EDF,
Since the angle BHG A

is equal to BCO4, GH
will be parallel to AC
(BN, P. XIX,; OC. 2);
and consequently, we shall
have (P. XV.),

BA RGO B
or, since BG is equal to ED, and BH to EF,

BA : ED :: BC : EF

In like manner, it may be shown that

BC" D REF s WGAW SR
and also,
CA : FD :: AB : DE;

hence, the sides about the equal angles, taken in the same
order, are proportional; and consequently, the triangles are
similar (D. 1) ; which was to be proved.

°

Cor. If two triangles have two angles in one, equal to
two angles in the other, each to each, they will be simnnr
(B. I, P. XXV, C. 2).

PROPOSITION  XIX. THEOREM.

Triangles which have their corresponding sides proportionar,
are similar.

In the triangles ABC and DEF, let the correspondisg
sides be proportional ; that is, let
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WD DE %Y B€ 'y EF - €4 - FD

then will the triangles be similar,

For, on BA lay off BG equal to ED; on BC lay
of BH equal to EF,
and draw GUH. Then,

D
because B@ is equal to
DE, and DBH to EF,
we have,
E F

B4 " BG . BC V BE%

hence, G is parallel to 4C (P. XVL); and consequently,
the triangles BAC and BGH are equiangular, and there.
fore similar : hence,

BC- . BE . CA ¢ mey
But, by hypothesis,

BC : EF :: CA : FD;
hence (B. IL, P. IV., C), we have,

B : EF :: HG : FD.

L]
But, BIT is equal to EF; hence, Z7G is equal to ZFD,
The triangles BHG and EFD have, therefore, their sides
equal, each to each, and consequently, they are equal in all
their parts. Now, it has just been shown that BHG and
BCA are similar: hence, EFD and BCA are also simi-
lar ; which was to be proved.

Scholium. TIn order that polygons may be similar, they
must fulfill two conditions : they must be mutually equian
gular, and the corresponding sides must be proportional. In .
the case of triangles, either of these conditions involves ‘the
other, which is not true of any other species of polygons.
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PROPOSITION XX, THEOREM.

Triangles which have an angle in each equal, and the ir
cluding sides proportional, are similar.

In the triangles ABC and DEF, let the angle B be
equal to the angle Z%'; and suppose that

BE EDXs BO 2 UL

then will the triangles be similar.

For, place the angle E
apon its equal B ; ¥
will fall at some point of
BC, as II; D wil fall \
at some point of BA4, as B H C E ¥
¢ ; DF wil take the position GI7, and the triangle
DEF will coincide with GBI, and consequently, will be
equal to it.

But, from the assumed proportion, and because BG is
equal to ED, and BH to EF we have,
BA:BG.::BO:BII;

hence, GII is parallel to AC; and consequently, BAC
and BGH are mutually equiangular, and therefore similar. But,
EDF is equal to BGH : hence it is also similar to BAC'; which

was to be proved.

PROPOSITION XX THEOREM.

Triangles which have their sides parallel, each to each, or
perpendicular, each to each, are similar.

19. Let the triangles ABC and DEF have the side
AB parallel to DE, BC to EF, and CA to FD:
then will they be similar.
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For, since the side AB iz parallel to DE, and BC
to ZF, the angle B 1is equal to the angle £ (B. L, P.
XXIV.) ; in like manner, A
the angle C is equal to D
the angle 7] and the an-
gle 4 to the angle D ;
the triangles are, therefore, t P
mutually equiangular, and B
consequently, are similar (P. XVIIL) ; whick was to be
proved.

2°, Let the triangles ABC and DEF have the side
AB perpendicular to DE, BC to KEF, and CA to
FD : then will they be similar.

For, prolong the sides of the tri-
angle DEF till they meet the sides
of the triangle ABC. The sum of
the interior angles of the quadrilateral
BIEG is equal to four right angles
(B. I, P. XXVL) ; but, the angles
EIB and FEGDB are each right
angles, by hypothesis; hence, the sum of the angles IZG
IBG is equal to two right an.gles; the sum of the angles
IEG and DEF is equal to two right angles, because they
are adjacent ; and since things which are equal to the same
thing are equal to each other, the sum of the angles [E@
and IB@ is equal to the sum of the angles JFG and DEF';
or, taking away the common part JEG@, we have the angle
IBG equal to the angle DEF. In like manner, the angle
GCH may be proved equal to the angle ZFD, and the
angle HAT to the angle ZDF ; the triangles ABC and
DEF are, therefore, mutually equiangular, and consequently
similar ; whick was to be proved.

Cor. 1. In the first case, the parallel sides are homolo
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gous ; in the second case, the perpendicular sides are homo-
logous.

Cor. 2. The homologous angles are those included by
sides respectively parallel or perpendicular to each other.

Scholium. When two triangles have their sides perpen-
licular, each to each, they may have a different relative
position from that shown in the figure. But we can alwayss
construct a triangle within the triangle ABC, whose sides
shall be parallel to those of the other triangle, and then the
demonstration will be the same as above,.

PROPOSITION XXII. THEOREM.

If a straight line be drawn parallel to the base of a riangle,
and straight lines be drawn Jfrom the vertex of the triangle
to points of the base, these lines will divide the base and
the parallel proportionally.

TLet ABC be a triangle, BC its base, A4 its vertex,
DE parallel to BC, and AF, AG, AH, lines drawn
from A to points of the base: then will

D B TR A FG s KL G, o i iy

t

For, the triangles AZD and
AFB, being similar (P. XXL), we

have,
AT AT DT B

and, the triangles ATK and AFG,
being similar, we have,

Al : AF :: IK : F&;

bence, (B. IL, P. IV.), we have,
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DT S HABE b e TGS 2 G
In like manner,

I 3. F@ . :. KL : GH

and,
KL : "GH :: LE : HC;

hence (B. IL, P. IV.),

DI : BF :: IK : PG :: KL : GH :: LE : HC;

which was to be proved.

Cor. If B(C is divided into equal parts at F, @, and
I, then will DZ bc divided into equal parts, at 7, K,
and L.

PROPOSITION XXIII, THEOREM.

If, in a right-angled triangle, a perpendicular be drawn from
the vertex of the right angle to the hypothenuse :

1°. The triangles on each side of the perpendicular will be
similar to the given triangle, and to each other :

2°. Fach side about the righteangle will be a mean propor-
tional between the hypothenuse and the adjacent segment :

8°. The perpendicular will be a mean proportional between
the two segments of the hypothenuse.

1°. Let ABC be a right-angled triangle, A the vertex
of the right angle, BC the hypo-

thenuse, and AD perpendicular to A

BC: then wil ADB and ADC

be similar to ABC, and conse-

quently, similar to each other. % ) )

The triangles ADB and ADBC
have the angle B common, and the angles 4DB and
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BAC equal, because both are right angles; they are, there.
fore, similar (P. XVIIL, C). In like manner, it may be
shown that the triangles ADC and ABC are similar;
and since ADB and ADC are both similar to 4B,
they are similar to each other; which was to be proved.

2°, AB will be a mean pro- %
portional between BC and BD;
and 4C will be a mean propor-
tional between CB and CD.

For, the triangles 4DB and B D Q
BAC being similar, their homo-
logous sides are proportional : hence,

BC : "AB . AB : BD,

In like manner,
DG RRAN N T A AR (R
which was to be proved.

8°. AD will be a mean proportional between BL and
DC. For, the triangles ADB and ADC Dbeing similar,
their homologous sides are psoportional ; hence,

BDE TN AW Y TADNS DS

which was to be proved.

Cor. 1. From the proportions,
BC : AB :: AB : BD,
BCL 1 ACE o AT RINEDE
we have (B, IL, P. 1),

and,

[N

BC x BD,

AB’
and,
4 772

AC® = BC x DC;
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whence, by addition,

AB* + AC* = BC(BD + DC) ;
or,
A + 40" = BO ;

as was shown in Proposition XI.

Cor. 2. If from any point A, in a semi-circumference
BAC, chords be drawn to the
extremities BB and C of the diam-
eter BC, and a perpendicular AD
be drawn to the diameter: then
will 4BC be a rightangled tri-
angle, right-angled at 4 ; and from what was proved above,

B D C

each chord will be a mean proportional between the diameter
aond the adjucent segment ; and, the perpendicular will be a
mean proportional between the segments of the diameter.

PROPOSITION XXIV. THEOREM.

Triangles which have an angle in each equal, are to each
other as the rectangles of the including sides. .

Let the triangles GHK and ABC have the angles @
and A4 equal: then will they be to each other as the
rectangles of the sides about these angles.

For, lay off AD equal
to GH, AFE to GK, and G
draw DE ; then will the
triangles ADE and GHE 18
be equal in all their parts. K
Draw EB.




122 GEOMETRY.

The triangles ADE and ABE have their bases in the
game line 425, and a common vertex % ; therefore, they
have the same altitude, and consequently, are to each other
a8 their bases; that is,

ADE : ABE :: AD : AB.

The triangles ABZE and G

ABC, have their bases in
the same line AC, and a H
common vertex 5 ; hence, K

ABE : ABC :: AF : AC;

multiplying these proportions, term by term, and omitting
the common factor ABE (B.IL, P. VIL), we have,

ADE : ABC :: AD x AE : AB x AC;

substituting for ADE, its equal, GHIK, and for AD x AL,
its equal, GH x GK, we have,

GHE : ABC :: GHx GK : AB x AC;
which was to be proved.

Cor. If ADE and ABC are similar, the angles D
and B being homologous, DE will be paralld to BC,
and we shall have,

AD . AB. 1: AE 3, AC;
hence (B. IL, P. IV.), we have,
ADE : ABE :: ABE : ABC;

that is, ABF is a mean proportional be-
tween ADE and ABC.




BOOK 1V. 123

PROPOSITION XXV, TITEOREM.

Similar triangles are to each other as the squares of their
homologous sides.

Let the triangles ABC and DEF be similar, the angle
A being equal to the angle D, B to K, and C to F.
then will the triangles be to each other as the squares of
any two homologous sides.

Because the angles 4 and D are equal, we have (P.
XXIV.),

ABC : DEF :: ABx AC : DE x DF;

and, because the triangles i
are similar, we have, D

AB : DE :: AC : DF;

multiplying the terms of
o o B G T
18 proportion by the cor- »
responding terms of the proportion,
AT DR A A G S e
we have (B. IL, P. XIL),
AB x AC : DEx DF :: AC® : DF%

combining this, with the first proportion (B. IL, P. IV.),
we have, :
ABC : DEF :: AG' : DF.
In like manner, it may be shown that the triangles are
to each other as the squares of AB and DE, or of BC
and EF 5 which was to be proved.
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PROPOSITION XXVI. THEOREM.

Similar polygons may be divided into the same number of
triangles, similar, each to each, and similarly placed.

Let ABCDE and FGHIK be two similar polygons,
the angle 4 being equal to the angle 7] B to G, C to
I, and so on: then can they be divided into the same
number of similar triangles, similarly placed.

For, from A draw

the diagonals AC, c
AD, and from F, B G I
homologous with 4,

D |, I
draw the diagonals A F
FH, FI, to the ver- % K

tices A and Z, hom-
ologous with C and .D.

Because the polygons are similar, the triangles ABC and
FGIT have the angles B and G equal, and the sides
about these angles proportional ; they are, therefore, similar
(P. XX.). Since these triangles are similar, we have the
angle ACB equal to FHG, and the sides AC and FII,
proportional to BC and GIH, or to CD and HI  The
angle BCD being equal to the angle GHI, if we take
from the first the angle ACB, and from the second the
equal angle FZG, we shall have the angle ACD equal
to the angle FHI : hence, the triangles 4CD and FHT
bave an angle in each equal, and the including sides propor-
tional; they are therefore similar

In like manner, it may be shown that ADZE and FIK
are similar; which was to be proved.

Cor. 1. The corresponding triangles in the two polygons
are homologous triangles, and the corresponding diagonals are

homologous diagonals.
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Cor. 2. Any two homologous triangles are like parts of
the polygons to which they belong.
For, the homologous +riangles being similar, we have,

ABC : FGH :: AC* : FH?;

and, ACD: FHT ;i AC* : FH;
whence, ABC : FGH :: ACD : FHIL
But, ABC : FGI :: ABC : FGH;

and, ABC: FGH :: ADFE : FIK;
by composition, ’

ABC . FGH :: ACD+ABC+ADE : FHI+ FGH+FIK;
that is, ABC : FGH :: ABCDE : FQHIK.

Cor. 3. If two polygons are made up. of similar triangles,
similarly placed, the polygons themselves will be similar.

PROPOSITION XXVII. THEOREM.

The perimeters of similar polygons are to each other as any
two homologous sides ; and the polygons are to each
other as the squares of any two homologous sides.

1°. Let ABCDE and FGHIK be similar polygons:
then will their perimeters be to each other as any two
homologous sides,

For, any two homo-

c
logous sides, as ADB B g H
and F'G, are like parts :
of the perimeters to A / D
which they belong : K
hence (B. IL, P. IX.), E

the perimeters of the AR
polygons are to each other as AB to FG, or as any
other two homologous sides; whick was to be proved.
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2°. The polygons will be to each other as the squares
of any two homologous sides.

For, let the poly-
gons Dbe divided into
homologous  triangles
(P. XXVI, C. 1);
then, because  the

homologous  triangles
ABC and FGH are
like parts of the polygons to which they belong, the poly-
gons will be to each other as these triangles ; but these
triangles, being similar, are to each other as the squares of
AB and FG : hence, the polygons are to each other as
the squares of AB and FG, or as the squares of any
other two homologous sides; which was to be proved.

Cor. 1. DPerimeters of similar polygons are to each other
as their homologous diagonals, or as any other homologous
lines ; and the polygons are to each other as the squares of
their homologous diagonals, or as the squares of any other
homologous lines.

Cor. 2. If the three sides_of a right-angled triangle be
made homologous sides of three similar polygons, these poly-
gons will be to each other as the squares of ‘the sides of
the triangle. But the square of the hypothenuse is equal
to the sum of the squares of the other sides, and conse-
quently, the polygon on the hypothenuse will be equal to
the sum of the polygons on the other sides.

PROPOSITION XXVIIIL. THEOREM.

If two chords intersect in a circle, their secments will be
reciprocally proportional.

Let the chords AB and CD intersect at O : then
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will their segments be reciprocally proportional ; that is, one
segment of the first will be to one segment of the second,
as the remaining segment of the second is to the remaining
segment of the first.

For, draw CA4 and DBD. Then C_B
will the angles ODB and 0AC be '
equal, because each is measured by half
of the arc CB (B. IIL, P. XVIIL).
The angles OBD and 0CA4, will also
be equal, because each is measured by
half of the are 4D : hence, the triangles OBD and .0CA
are similar (P. XVIII, C.), and consequently, their homolo-
gous sides are proportional : hence,

Oy 4O 2 OB s QO

whick was to be proved.

Cor. TFrom the above proportion, we have,
DO x 0C = A0 x OB ;

that is, the rectangle of the segments of one chord is equal
to the rectangle of the segments of the other.

PROPOSITION XXIX. THEOREM.

If from a point without a circle, two secants be drawn ter-
minating in the concave arc, they will be reciprocally
proportional to their external segments.

Let OB and OC be two secants terminating in the
comcave arc of the circle BCD : then will

OB:OG::OD:OA.
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For, draw AC and DB. The triangless ODB and
0AC have the angle O common, and the angles OBD
and 004 equal, because each is measured
by half of the arc 4D : hence, they are
similar, and consequently, their homologous
sides are proportional ; whence,

OB : 0OC :: OD : OA; o

which was to be proved.

&,

Cor. From the above proportion, we
have,

OB x 04 = 0C x 0D ;

that is, the rectangles of each secant and its external seg-
ment are equal.

PROPOSITION XXX. THEOREM,

If from a point without a circle, @ tangent and a secant
be drawn, the secant terminating in the concave arc, the
tangent will be a mean proportional between the secant
and its external segment. .

Let ADC Dbe a circle, OC a secant, and 04 a tan-
gent : then will

0oC : 04 :: 04 : OD.

For, draw 4D and AC. The tri- | 14
angles OAD and OAC will have the D
angle O common, and the angles 04D
and ACD equal, because each is mea- A
sured by half of the are A0 (B. IIL,
P. XVIIL, P. XXI.); the triangles are C
therefore similar, and consequently, their
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homologous sidés are proportional : hence,
oC¢ : 04 04 : OD; ]

which was to be proved.
From the above proportion, we have,

Cor.
0C x 0D ;

40 =
that is, the square of the tangent is equal to the rectangle

of the secant and its external segment.

PRACTICAL APPLICATIONS.

PROBLEM L

To divide a given straight line info parts proportional to given
straight lines: also into equal parts.

1°. Let AB be a given straight line, and let it be required

to divide it into parts proportional to the lines P, @, and R.

B
‘l
i
f

From one extremity A,
draw the indefinite line AG@G, A
making any angle with 4B ;
P

lay of A4C equal to P, OD
Q—

(@431
==~ {p—

¥
i
i
D

equal to @, and DE equal ;
! R— !
to Rj; draw ZEB, and B
f N
from the points ¢ and D, G
to EB: then, wil AL IF

draw CI and DF parallel
and FB, be proportional to P, @, and R (P XV, C.2)

9
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2° Let AH be a given straight line, and let it be requiced
to divide it into any number of equal. parts, say five.
From one extremity

A, draw the indefinite
line 4G ; take AT equal
to any convenient line,
and ‘lay off IXK, KL,
LM, and MB, each
equal to AL Draw
BH, and from I, K, L, and M, draw the lines IC,
KD, LE, and MF, parallel to BH : then will AX be
divided into equal parts at C, D, E, and F (P. XV,
C. 2).

PROBLEM 1I

To construct a fourth proportional to three given straight lines.

Let A, B, and C, be
the given lines. Draw
DE and DF, making
any convenient angle with
each other. Lay off DA
equal to 4, DB equal
to B, and DC equal
to C; draw AC,' and from B draw BX parallel to
AC: then wil DX be the fourth proportional required.

For (P. XV., C.), we have,

DA : DB :: DC : DX;
or,

o UG CWIN) PR e ik =L TG

Cor. If DC is made equal to DB, DX wil be
thi-d proportional to DA and DB, or to A and B.
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PROBLEM IIIL

To construct a mean proportional between two given straight
lines.

Let A4 and B be the given G
lines. On an indefinite line, lay off
DE equal to A, and EF equal D
to B; on DF as a diameter de- B B
scribe  the semi-circle DGF, and A1
draw ZG. perpendicular to DF:
then will Z@ be the mean proportional required.

For (P. XXII, C. 2), we have,

5]

DE : EG :: EG : EIF;
or,

ANy /SR T &

PROBLEM IV.

To divide o given straight Lne inio two suck paris, that the
greater port shall be a mean proportional between the whole
line and the other part.

Let AB be the given line,

At the extremity B, draw
BC perpendicular to A5, and
make it equal to half of AB.
With C as a centre, and (B '
28 a radius, describe the are [ ]} s
DDBE ; draw A(C, and produce
it till it terminates in the concave arc at % ; with A4 as
centre and AD as radius, deseribe the are DF : then
will AF be the greater part required.

™,
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For, AB being perpendicular to OB at DB, is tan
gent to the arc DBE : hence
(P. XXX.),

AENRAB 2 ABL WD

and, by division (B. IL, P. VL), £ ¥ B
AE — AB : AB :: AB -~ AD : AD.

But, DF is equal to twice OB, or to ADB: hence,
AE — AB is equal to AD, or to AF; and AB — AD
is equal to AB — AF, or to FB: hence, by substitution,

AT SEABRe e BN s ASKS
and, by inversion (B. IL, P. V.),

AB : AF¥ :: AF : FB.

Scholium. When a straight line is divided so that the
greater segment is a mean proportional between the whole
line and the less' segment, it is said to be divided ¢n extreme
and mean ratio. ¢

Since 4B and DZ are equal, the line A% ig divided in
extreme and mean ratio at D; for we have, from the first
of the above proportions, by substitution,

4E:DE’::DE:AD.
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PROBLEM V.

Through a given point, in a given angle, to draw a stratght
line so that the segments between the point and the sides of
the angle shall be equal.

Let BCD be the given angle, and A the given point.
Through A, draw AZF parallel to

DC; lay of EF equal to CF, and g
draw FAD: then wil AF and AD
be the segments required. F
For (P. XV.), we have,
B A

HA VA D  HE C BO D
but, FE is equal to EC; hence, - FA is equal to AD.

PROBLEM VI

To construct a triangle equal to a given polygon.

Let ABCDE be the given polygon.

Draw CA ; produce ZA, and
draw B@G parallel to (U4 ; draw
the line C@. Then the triangles
BAC and GAC have the com-
mon base AC, and because their
vertices B and G lie in the
same line B G parallel to the base, their altitudes are equal,
and consequently, the triangles are equal : hence, the polygon
GCDE is equa. to the polygon ABCDE.

Again, draw CZ; produce AE and draw DF parallel
to CE; draw also CF; then will the triangles FCE
and DCE be equal: hence, the triangle GCF is equal
to the polygon GCDE, and consequently, to the given
polygon. In like manner, a triangle may be constructed
equal to any other given polygon.

B Ao B il
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PROBLEM

VII.

To construct a square equal to a given triangle.

Let ABC be the given triangle,

B(C its base.

Construct a mean pro-
portional between AD
and half of BC (Prob.
IOL). Let XY be that
mean proportional, and on
it, as a side, construct a
square : then will this be the square required.

the construction,

B

A

D

C

its altitude, and

|
!

For, from

XY* = 4BC x AD = area ABC.

Scholium. By means of Problems VI. and VIIL, a square

may be constructed equal to any given polygon.

PROBLEM VIIL

On & given straight line, to construct @ polygon similar to a

Let FG be the given line, and ABCDE the given
polygon. Draw AC and AD,

At F, construct
the angle GIH equal
to BAC, and at @
the angle F'GH equal
to ABC; then will
FGH be similar to
ABC (P. XVIIL, C.)

given polygon.

e
-
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In like manner, construct the triangle FHI similar to 40OD,
and FIK similar to 4DZ; then will the polygon FGHIK
be similar to the polygon ABCDE (P. XXVI., C. 3).

PROBLEM IX.

To construct a square equal to the sum of two given
squares : alo a square equal to the difference of two
given squares.

1°. Let A4 and B be the sides of the given squares,
and let A be the greater.

Construct a right angle A
CDE ; make DE equal “7_’ i ‘—B_‘—'
to 4, and DC equal to
B; draw CE, and on it R A E .
construet a square: this square will be equal to the sum

of the given squares (P. XI.).

2°, Construet a right angle CDE.,

Lay off DC equal to B ; withw C C
as a centre, and CZF, equal to A4, as
a radius, describe an arc cutting DZE at
% ; draw CE, -and on DFE construct D E
a square: this square will be equal to
the difference of the given squares (P. XI., C. 1).

Scholium. A polygon may‘be constructed similar to either
of two given polygons, and equal to their sum or difference.

For, let A and B be homologous sides of the given polygons
Find a square equal to the sum or difference of the squares
on A4 and B; and let X be a side of that square. On X as
a side, homologous to 4 or B, construct a polygon similar
to the given polygons, and it will be equal to their sum or
difference (P. XXVIIL, C. 2)..

‘
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REGULAR POCLYGONS.—AREA OF THRE CIRCLE.

DEFINITION.

1. A Rzcurar Porveox is a polygon which is both
equilateral and equiangular,

PROPOSITION I. THEORTEM.
Regular polygons of the same number of sides are similur,

Let ABCDEF and abedef be regular polygons of the
same number of sides: then will they be similar.

For, the corresponding o
angles in each are equal,
because any angle in
either polygon is equal F C
to twice as many right
angles as the polygon 5 B 5
has sides, less four right
angles, divided by the number of angles (B. I, P. XXVI,
C. 4); and further, the corresponding sides are proportional,
because all the sides of either polygon are equal (D. 1): hence,
the polygons are similar (B. IV., D. 1); which was to e proved.
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PROPOSITION II. THEOREM.

The circumference of a circle may be circumscribed about any
regular polygon ; a circle may also be inscribed in it.

1°. Let ABCF be a regular polygon: then can the
circumference of a circle be circumseribed about it.

For, through three consecutive ver-
tices A, B, C, describe the circum-
ference of a circle (B. IIL, Problem
XIII., 8.). Its centre O will lie
on PO, drawn perpendicular to BC,
at its middle point 2’3 draw 04
and OD.

Let the quadrilateral OPCD be
turned about the line OP, until PC
falls on PB ; then, because the angle € is equal to B,
the side CD will take the direction B4 ; and because CD
is equal to BA, the vertex D, will fall upon the vertex
4 ; and consequently, the line 0D will coincide with 04,

and is, therefore, equal to it: hence, the circumference which
passes through 4, B, and C(,' will pass through D. In
like manner, it may be shown that it will pass through all
of the other vertices: hence, it is circumscribed about the
polygon ; which was to be proved.

2°, A circle may be inscribed in the polygon.

For, the sides 4B, BC(C, &c., being equal chords o
the circumseribed cirele, are equidistant from the centre O
hence, if a circle be described from O as a centre, with
OP as a radius, it will be tangent to all of the sides or
the polygon, and consequently, will be inscribed in it; whick
was to be proved.
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Scholium. If the circumference of a circle be divided
into equal arcs, the chords of these ares will be sides of a
regular inscribed polygon.

For, the sides are equal, because they are chords of equal
arcs, and the angles are equal, because they are measured by
halves of equal arcs.

If the vertices 4, B, C, &c, E 3
of a regular inscribed polygon be
joined with the centre O, the tri- V\

H

angles thus formed will be equal,

because their sides are equal, each
to each: hence, all of the angles
about the point O are equal to
#ach other. X

DEFINITIONS.

1. The CenNTRE OoF A REcurar Porveon, is the common
centre of the circumscribed and inscribed -circles.

2. The AnxciLe AT THE CENTRE, is the angle formed by’
drawing lines from the centre to the extremities of -either
side,

The angle at the centre is equal to four right angles
divided by the number of sides of the polygon.

3. The AproTHEM, is the shortest distance from tke centre
to either side. '

The  apothegm is equal to the radius of the inscribed
circle.
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PROPOSITION III. PROBLEM.
To inscribe a square in a given circle.

Let ABCD be the given cir-
de. Draw any two diameters 4C

snd  BD perpendicular to each
other ; they will divide the circum- Al

ference into four equal arcs (B. IIL,
P. XVIIL, 8.). Draw the chords
AB, BC, CD, and DA: then
will the figure ABCD be the
square required (P. IL, S.).

e = S

Scholium. The radius is to the side of the inscribed
square as 1 is to /2.

PROPOSITION IV. THEOREM.

If a regular hewagon be inscribed in a circle, any side will
be equal to the radius of the circle.

Let ABD be a circle, and ABCDEH a regular in-
scribed hexagon: then will any side, as 4B, be equal to
the radius of the circle.

Draw the radii 04 and OB.
Then will the angle AODB be
equal to onesixth of four right
angles, or to two-thirds of one
right angle, because it is an an-
gle at the centre (P. IL, D. 2).
The sum of the two angles 0AD
and OBA is, consequently, equal
to fonrthirds of a right angle (B. L, P. XXV., C. 1); but,
the angles QAR and ODBA are equal, because the opposite

sidles OB and OA are equal : hence, each is equal to
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two-thirds of a right angle. The three angles of the triangle
AOB are therefore, equal, and consequently, the triangle is
equilateral : hence, AB 1is equal to 04 ; which was to le
proved.

PROPOSITION V. PROBLEM.
To inscribe a regular hexagon in a given circle.

Let ABE be a circle, and O its centre,

Beginning at any point of B :
the circumference, as 4, ap-
ply the radius O4 six times \C
as a chord ; then will a Py
ABCDEF be the hexagon
required (P. IV.). 0

Cor. 1. If the alternate
vertices of the regular hexagon
be joined by the straight lines E
AC, CE, and 24, the inscribed
triangle ACE will be equilateral (P. II., S.).

Cor. 2. If we draw the radii 04 and OC, the figure
AOCOB will be a rhombus, because its mdes are equal:
hence (B. IV., P. XIV., C.), we have,

. AB + BC* + 04® + 0C* = A0’ + 0B';

or, taking away from the first member the quantity 0A°
and from the second its equal OB and reducing, we have

304 = 4AC*;
whence (B. IL, P II),

AQrwa 04 +AVgly 14
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or (B. IL, P, XII, C. 2),
AC : 04 :: V3i: 1y

+that is, the side of an inscribed equilateral triangle is to the
radius, as the square root of 38 is to 1.

PROPOSITION VI. THEOREM.

If the radius of a circle be divided in extreme and mean
ratio, the greater segment will be equal to one side of a
regular inscribed decagon.

Let ACG be a circle, 04 its radius, and AB, equal to
OJ, the greater segment of OA when divided in extreme
and mean ratio: then wil AB be equal to the side of a
regular inscribed decagon. i

Draw OB and BM. We
have, by hypothesis,

LAOSS O "0 O ' A

or, since AB is equal to
OM, we have,

A0 : AB :: AB : AM;

hence, the triangles 0AB
and BAM have the sides
about their common angle
BADM, proportional ; they are, therefore, similar (B. Iv,,
P. XX.). But, the triangle OAB is isosceles; hence, BAM
is also isosceles, and consequently, the sidle BM is equal to
AB. But, AB is equal to OJM, by hypothesis : hence,
BJ is equal to OM, and consequently, the angles AMOR
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and MBO are equal. The angle AMDB being an exterior
angle of the triangle OMDB, is equal to the sum of the
angles MOB and MBO, or

to twice the angle MOB ; (
and because AMDB is equal to
04 B, and also to OBA, the
sum of the angles 0A4DB and
OBA is equal to four times o
the angle AOB : hence, AOB

is equal to onedfifth of two M

D]

—

right angles, or to one-tenth of

four right angles; and conse- A C
quently, the arc AB is equal B
to one-tenth of the circumfer-
ence : hence, the chord 4B is equal to the side of a

regular inscribed decagon ; which was to be proved,

Cor. 1. If AB be applied ten times as a chord, the
resulting polygon will be a regular inscribed decagon.

Cor. 2. If the wvertices 4, C, E, G, and I, of the
alternate angles of the decagon be joined by straight lines,
the resulting figure will be a regular inscribed pentagon.

Scholium 1. If the arcs subtended by the sides of any
regular inscribed polygon be bisected, and chords of the semi-
arcs be drawn, the resulting figure will be a regular inscribed
polygon of double the number of sides.

Scholium 2. The area of any regular inscribed polygon
is less than that of a regular inscribed pclygon of double
the number of sides, because a part is less than the whole
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PROPOSITION VII. PROBLEM.

To circumscribe, about o circle, a polygon which shall be
stmilar to a given regular inscribed polygon.

Let TNQ Dbe a circley, O its centre, and ABCDEF
a regular inscribed polygon. ]

At the middle points
T, N, P, &c., of the arcs
subtended by the sides of
the inseribed polygon, draw
tangents to the circle, and
prolong them till they in-
tersect ; then will the re-
sulting figure be the poly-

gon required.

1°. The side HG be-
ing parallel to B4, and
HI to BC(, the angle H is equal to the angle B. In
like manner, it may be shown that any other angle of the
circumseribed polygon is equal to the corresponding angle of
the inscribed polygon : hence, the circumseribed polygon ig

equiangular.

2°. Draw the straight lines OG, 07, OH, ON, and OL
Then, because the lines H7 and XN are tangent to the
circle, OH will bisect the angle NZT, and also the angle
NOT '(B. IIL, Prob. XIV., S.); consequently, it will pass
through the middle point B of the arc NBZ7. In like
manuner, it may be shown that the straight line drawn
“from the' centre to the vertex of any other angle of the
circumscribed polygon, will pass through the corresponding
vertex of the inseribed polygon.

The friangles OHG and OHI have the angles OHG




144 GEOMETRY.

and OHI equal, from what has just been shown; the an-
gles GOH and HOI equal, because they are measured by
the equal arcs 405 and
BC, and the side OH
common ; they are, there-
fore, equal in all their
parts : hence, GH is
equal to HI. In like
manner, it may be shown
that HTI is equal to IK,
IK to KL, and so on:
hence, the circumscribed

polygon is equilateral.

The circumseribed poly-
gon being both equiangular and equilateral, is regular ; and
since it has the same number of sides as the inscribed poly-
gon, it is similar to it.

Cor. 1. If straight lines be drawn from the centre of a
regular circumscribed polygon to its vertices, and the consee-
utive points in which they intersect the circumference be
joined by chords, the resulting figure will be a regular
inscribed polygon similar to the given polygon.

Cor. 2. The sum of the lines AT and” HN is equal
to the sum of H7T and 7G, or to HG; that is, to one
of the sides of the circumscribed polygon.

Cor. 8. If at the vertices 4, B, C, &oc., of the in-
seribed polygon, tangents be drawn to the circle and pro-
longed till they meet the sides of the circumscribed polygon,
the resulting figure will be a circumscribed polygon of double
the number of sides.

Cor. 4. The area of any regular circumscribed polygon
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is greater than that of a regular circumsecribed polygon of
double the number of sides, because the whole is greater
than any of its parts.

Scholium. ~ By ‘means of a circumscribed and inseribed
square, we¢ may construct, in succession, regular circumsecribed
and inscribed polygons of 8, 16, 32, &c., sides. By means
of the regular hexagon, we may, in like manner, construct
regular polygons of 12, 24, 48, &c., sides. By means of the
decagon, we may construct regular polygons of 20, 40, 80,
&e., sides.

o

PROPOSITION  VIIL THEOREM.

The area of a regular polygon is equal to half the product
of its perimeter and apothem.

Let GIHIK be a regular polygon, O its centre, and -
OT its apothem, or the radius of the inscribed circle :
then will the area of the polygon be equal to half the
product of the perimeter and the apothem.

For, draw lines from the centre
to the vertices of the polygon.
These lines will divide the polygon
into triangles whose bases will be
the sides of the polygon, and

whose altitudes will be equal to
the apothem. Now, the area of
any triangle, as OII@, is equal to
half the product of the side G
and the apothem : hence, the area

of the polygon is equal to half the product of the perimeter
and the apothem ; which was to be proved.
10
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PROPOSITION IX. THEOREM.

The perimeters of similar wregular polygons are to each
other as the radii of their circumseribed or inscribed
circles ; and their areus are to euch other us the squares
of those radii.

1°. Let ABC and HKHLM be similar regular polygons,
fiet 04 and QXK be the radii of their circumscribed, OD
and @QF be the radii pf their inseribed circles: then will
the perimeters of the polygons be to each other as 04 s
to QK, or as 0D is to QR.
For, the lines
YA and QK are A B
homologous lines
of the polygons
%o which they be-
long, as are also
the lines 00 and
QR : hence, the C
perimeter of ABC
is to the perimeter of KLM, as 0A is to QK, or as
DD is to QR (B. IV., P. XXVIL, C. 1); which was to be

[

rroved,

2°. The areas of the polygons will be to each other as
04® is to QK or as OD® is to QR

For, 0OA being homologous with @A, and OD with
@R, we have, the area of ADBC is to the area of KLM
as 0A® is to QK* or as OD' is to QR (B.IV, P
XXVIL, C. 1) ; which was to be proved.
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PROPOSITION X. THEOREM.

Two regular polygons of the same number of sides can be
constructed, the one circumscribed about a circle and the
other inscribed in it, which shall differ from each other
by less than any given sugface.

Let ABCE be a circle, O its centre, and @ the side of
a square equal to or less than the given surface; then can
two similar regular polygons be constructed, the one circum-
scribed about, and the other inscribed within the given circle,
which shall differ from each other by less than the square
of @, and consequently, by less than the given surface.
Inscribe 8 square in the

given circle (P. IIL), and by £

means of it, inscribe, in succes- 6 ¢ d
sion, regular polygons of 8, 16, 3
32, &c., sides (P. VIL, S.), un- ) A

tii one is found whose side is \ 0 ¢
less than @; let AB Dbe the
side of such a polygon.

Counstruct a similar’ circum-
geribed  polygon abede :  then
will these polygons differ from each other by less than the
square of €. i

For, from @ and &, draw the lines @0 and 50 ; they
will pass through the points 4 and B. Draw also OK
to the point of contact K ; it will bisect 4B at I and
be perpendicular to it. Prolong 40 to Z

Let P denote the circumscribed, and p the inscribed
polygon ; then, because they are regular and similar, we
shall have (P. IX)),
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P :p :: OK or 04" : OI
hence, by division (B, IL, P. VL), we have,

P: P—_p :: 04> : 04 - OI':
or,
Py P—p :: 04> : 4AIN

Multiplying the terms of the
second couplet by 4 (B. IL, P.
VII), we have,

P P—p :: 404" : 4dAT

whence (B. IV, P. VIIL, C.),

e .. AE : AR

But 7 is less than the square of AFE (P. VIL, C. 4);
hence, P — p is less than the square of ADB, and conse
yuently, less than the square of ¢, or than the given sur-
face ; which was to be proved.

Cor. 1. When the number of sides of the inscribed poly-
gon is increased, the area of the polygon will be increased,
and the area of the corresponding circumseribed polygon will
be diminished (P. VIL, c¢. 4); and each will constantly
approach the circle, which is the limif of both.

Cor. 2. When the number of sides of either polygon
reaches itg limit, which is 4nfinity, each polygon will reach
its limit, which is the circle: hence, under that supposition,
the difference between the two polygons will be less than
any assignable quantity, and may be denoted by zero,* and
either of the polygons will be represented by the circle.

% Univ, Algebra, Arts. 72, 73. Bourdon, Art. 71,
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Scholium 1. The circle may be regarded as the limit
of the inscribed and circumseribed polygons; that is, it is
a figure towards which the polygons may be made to ap-
proach nearer than any appreciable quantity, but beyond
which they cannot be made to pass.

Scholium 2. The circle may, therefore, be regarded as a
regular polygon of an infinite number of sides; and because
of the principle, that whatever s true of a whole class. ¢
true of every individual of that class, we may affirm that
whatever is true of a regular polygon, having an infinite
number of sides, is true also of the circle.

Scholium 3. When the circle is regarded as a regular poly-
gon, of an infinite number of sides, the circumference is to be

regarded as its perimeler, and the radius as its apothem.

PROPOSITION XT. PROBLEM.

The area of a regular inscribed polygon, and that of @
similar circumscribed polygon being given, to find the
areas of the regular inscribed and circumseribed polygons
having double the number of sides.

Let AB be the side of the given inseribed, and EF
that of the given circumseribed polygon. TLet € be their
common centre, AMB a portion of the circumference of
the circle, and M the middle point of the arc AMB.

Draw the chord AM, and
at A and B draw the tangents TR DT QL iR
R BQ; then wil AN e | /
be the side of the inscribed B
polygon, and P@ the side of
the circumscribed polygon of
double the number of sides (P.
VIL). Draw CE, CF, CM,
and CF.

a
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Denote the area of the given inscribed polygon by p,
the area of the given circumscribed polygon by P, and the
areas of the inscribed and circumscribed P?Jygons having
double the number of sides, respectively by/p* and PV

1°. The triangles CAD, CAM, STl ot o SR Q _71"
and CEM, are like parts of the N bt S
polygons to which they belong :

hence, they are proportional to the
polygons themselves. But CAM
is a mean proportional between
CAD and CEM (B.1V, P.
XXIV. C.); consequently p’ a
is a mean proportional between

p and P: hence,
= Vp X R « a ey exJeis e (1.)

2°, Because the triangles CPM and CPE have the
common altitude CM, they are to each other as their
bases : hence,

crPM : CPE :: PM : PE;

and because CP bisects the angle ACHM, we have (B. Iv,,
P. XVIL),

PM : PE :: OCM : CE :: CD : (4,
hence (B. IL, P. IV),
OPM : CPE :: CD : CA or CM

But, the triangles CAD and CAM have the common
sltitude AD ; they are therefore, to each other as their

bases : hence,

CAD : CAM :: CD : CM;
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or, because CAD and CAM are to each other as the
polygons to which they belong,

¥ Al
' O :: D : CM;
hence (B. IL, P. IV.), we have,
OIPMes Ve ORL Vil {)0: § 8

and, by composition, o o0 f
OPM : CPM+ CPE or CME :: p : p+p';
hence (B. IL, P. VIL), 6 !
’ — /

2CPM or CMPA : CME :: 2 : p+p.

But, CMPA and ,CME  are like parts of P and B,
hence, 5 o (T

Py P ogpiopty;
or, £ !

LSS MR R TR T

Scholium. By means of Equation (1), we can find p’,

und then, by means of Equation (2), we can find P,

PROPOSITION XII.  PROBLEM.
To find the approximate area of « circle whose radius is 1.

The area of an inscribed square is equal to twice the square
described on the radius (P. IIL, S.), which square ic the unil
of measure, and is denoted by 1. The area of the circ.mscribed
square is 4. Making p equal fo 2, and P equal to 4, we have,
from Equations (1) and (2) of Proposition XI,

p = A8 = 28w . . . inscribed octagon ;

16
722
2+ 4/8

— 3.3137085 . . . circumscribed octagon.
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Making p equal to 2.8284271, and P equal to 3.3137085,
we bave, from ‘the same equations,

p’ = 8.0614674 . . . inscribed polygon of 16 sides.
P! = 31825979 . . . circumscribed polygon of 16 sides.

By a continued application of these equations, we find
the areas indicated below,

NuMBER OF SIDES, INSCRIBED PoLyGons. CIRCUMSCRIBED POLYGONS.
4 5 3 2.0000000 8 5 4.0000000
8 . : 2.8284271 S 1 3.3137085

16 5 . 3.0614674 5 . 3.1825979
32 g 5 3.1214451, 5 3 3.1517249
64 = - 3.1365485 5 . 3.1441184
128 3 . 3.1403311 c S 3.1422236
256 . 5 3.14127172 . . 3.1417504

512 5 : 3.1415138 5 5 3.1416321
1024 5 5 3.1415%729- g 5 3.1416025
2048 . 4 3.1415877 . 3 3.1415951
4006 . : 3.1415914 3 . 3.1415933

8192 5 . 3.1415923 . . 3.1415928
16384 . 5 3.1415925 . . 3.1415927

Now, the figures which express the areas of the two last
polygons are the same for six decimal places; hence, those areas
differ from each other by less than one-millionth of the measuring
unit. But the circle differs from either of the pblygons by less
than they differ from each other. Hence, 1° taken 3.141592 times,
expresses the area of a circle whose radius is 1, to less than one-
millionth of the measuring unit; and by increasing the number
of sides of the polygons, we should obtain an area still nearer the
true one. Denote the number of times which the square of the
radius is taken, by =, we have,

¥ X 1* = 3.141592;
that is, the area of a circle whose radius is 1, is 3.141592, in
which the unit of measure is the square on the radius.

Sch. For ordinary accuracy, = is taken equal to 3.1416.
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PROPOSITION XIII. THEOREM.

The circumferences of circles are to each other as their radii,
and the areas are to each other as the squares of their
radi.

Iet ¢ and O be the centres of two circles whose
radii are CA4 and OR : then will the circumferences be
to each other as their radii, and the areas will be to each
other as the squares of their radii.

For, let similar regular polygons MNPST and EFGKL
be inscribed in the circles: then will the perimeters of these
polygons be to each other as their apothems, and the areas
will be to each other as the squares of their apothems, what-
ever may be the number of their sides (P. IX.).

If the number of sides be made infinite (P, X. S. 2.), the
polygons will coincide with the circles, the perimeters with
the circumferences, and the apothems with the radii: hence,
the circumferences of the circles are to each other as their
radii, and the areas are to each other as the squares of the
radil 5 which was to be proved.

Cor. 1. Diameters of circles are proportional to their
radii : hence, the circumferences of circles are proportional
to their diameters, and the areas are proportional to the
squares of the diameters.
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Cor. 2. Similar arcs, as AB and DE, are like parts
of the circumferences to which
they belong, and similar sectors, 2 B
as 4CR and DOE, are like D
parts of the circles to which
they belong : hence, similar
arcs are to each other as their C
radii, and similar sectors are
to each other as the squares of their radii.

Scholium. The term infinite, used in the proposition, is to
be understood in its technical sense. When it is proposed to
make thé number of sides of the polygons <nfinite, by the
method indicated in the scholium of Proposition X., it is sim-
ply meant to express the condition of things, when the in-
scribed polygons reach their limits; in which case, the dif
ference between the area of either circle and its inseribed
polygon, is less than any appreciable quantity. We have seen
(P. XIL), that when the number of sides is 16384, the areas differ
by less than the millionth part of the measuring uuit. By increas-

ing the number of sides, we approximate still nearer.

PROPOSITION XIV. .THEOREM.

=f
The area of a circle is equal to half the product of its
circumference and radius.

Let O be the centre of a circle, OC its radius, and
ACDE its circumference : then will

the area of the circle be equal to half 2 ~C
the product of the circumference and 7
radius.

For, inscribe in it a regular poly-
gon ACDE. Then will the area of
this polygon be equal to half the pro-
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duct of its perimeter and apothem, whatever may be the
number of its sides (P. VIIL).

If the number of sides be made infinite, the polygon will
coincide with the circle, the perimeter with the circumference,
and the apothem with the radius : hence, the area of the
dircle is equal to half the product of its circumference anl
adius 3 which was to be proved.

Cor. 1. The area of a sector is equal to half the pro-
duct of its arc and radius.

Cor. 2. The area of a sector is to the area of the circle,
as the arc of the sector to the circumference.

PROPOSITION XYV, PROBLEM.

o find an expression for the area of any circle in terms
of its radius.

Let C be the centre of a circle, and CA its radius.
Denote its area by arca CA, its radius
by R, and the area of a circle whose
radins is 1, by « X 1* (P. XIL, 8.).
Then, because the areas of circles
are to each other as the squares of their A
radii (P. XIIL), we have,

apen OA ' o« X 1730 RV 1
whence, area CA = xR,

That is, the area of any cwrcle is 3.1416 times the square
of the radius.

PROPOSITION XVI. PRUBLEM.

To find an expression for the circumference of a circle, in
terms of its radius, or diameter.

Let C be the centre of a circle, and CA its radius, -
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Denote its circumference by cire. CA, its radius by R, and
its diameter by D. From the last Proposition, we have,

area C4 = =R?;
and, from Proposition XIV., we have,
area CA = jcirc. C4A x B; A
bence, fcirc. CA x R = «R3;
whence, by reduction,
circ. A = 2vR, or, circ. CA = =D.

That is, the circumference of any circle is equal to 3.1416
times its diameter.

Scholium 1. The abstract number =, equal to 3.1416, de-
notes the number of times that the diameter of a circle is
contained in the circumference, and also the number of times
that the square constructed on the radius is contained in the
area of the circle (P. XV.). Now, it has been proved by
the methods of Higher Mathematics, that the value of « is
incommensurable with 1 ; hence, it is impossible to express,
by means of numbers, the exact length of a circumference
in terms of the radius, or the exact area in terms of the
square described on the radius. We may also infer that it
W3 impossible to square the circle ; that is, to construct a
square whose area shall be exactly equal to that of the circle.

Scholium 2. Besides the approximate value of x, 3.1416,
usually employed, the fractions 22 and ${§ are also used to
express the ratio of the diameter to the circumference.
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PLANES AND POLYEDRAL ANGLES.

DEFINITIONS.

1. A straight- line i3 PERPENDICULAR TO A PLANE, when
it is perpendicular to every straight line of the plane which
passes through its roor; that is, through the poinf in which
it meets the plane.

In this case, the plane is also perpendicular to the line.

2. A straight line i3 PARALLEL TO A PLANE, when it can-
not meet the plane, how far soever both may be produced.
In this case, the plane is also parallel to the line.

3. Two PrLANES ARE PARALLEL, when they cannot meet,
how far soever both may be produced.

4. A Dieprar aANGLE is the amount of divergence of two
planes,

The line in which the planes meet, is called the edge of
the angle, and the planes themselves are called faces of the
ungle.

The measure of a diedral angle is the same as that of a
plane angle formed by two straight lines, one in each face,
and both perpendicular to the edge at the same point. A
diedral angle may be acufe, obtuse, or a right angle. In the
latter case, the faces are perpendiculor to each other.



158° GEOMETRY.

5. A PoLYEDRAL ANGLE is the amount of divergence of
several planes meeting at a common point.

This point is called the wertex of the angle ; the lines in
which the planes meet are called edges of the angle, and
the portions of the planes lying between the edges are
called faces of the angle. Thus, §
is the vertex of the polyedral angle,
whose edges are S84, 8B, S8C,
SD, and whose faces are ASDB,
BSC, COS8D, DSA.

A polyedral angle which has but
three faces, is called a triedral

“angle.
POSTULATE.

A straight line may be drawn perpendicular to a plane from
any point of the plane, or from any point without the plane.

PROPOSITION I. THEOREM.

If a straight line has two of its points in a plane, it will
lie wholly in that plane.

For, by definition, a plane is a surface such, that if any
“two of its points be joined by a straight line, that line will
lie wholly in the surface (B. I, D. 8).

Cor. Through any point of a plane, an infinite number
of straight lines may be drawn which will lie in the plane.
For, if a straight line be drawn from the given point to any
other point of the plane, that line will lie wholly in the plane.

Scholiwm. If any two points of a plane be joined by a
straight line, the plane may be turned about that line as an



BOOK VI. 159

axis, so as to take an infinite number of positions. Hence,
we infer that an infinite number of planes may be passed
through a given straight line.

PROPOSITION II THEOREM.

Through three points, mot in the same straight ULne, one
plane can be passed, and only one.

Let 4, B, and C be the three points: then can one
plane be passed through them, and only one.
Join two of the points, as A4 and
B, by the line AB. Through AD
let a plane be passed, and let this plane
be turned around A5 until it contains
the point €' ; in this position it will

pass through the threce points 4, B,
“and C. If now, the plane be turned

about AB, in either direction, it will no longer contain the
point C : hence, one plane can always be passed throngh
three points, and only one; which was to be proved.

Cor. 1. Three points, not in a straight line, determine the
position of a plane, because only one plane can be passed
through them.

Cor. 2. A straight line and a point without that lne,
determine the position of a “plane, because only one plane
can be passed through them.

Cor. 3. Two straight lines which intersect, determine the
~position of a plane. TFor, let AB and AC intersect at
A : then will either line, as 4B, and one point of the
other, as (, determine the position of a plane.

Cor. 4. Two parallel straight lines determine the position of a
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plane, For, let 4B and CD be parallel. By definition
(B. I, D. 16) two parallel lines always lic in the same plane,
But either line, as 4B, and any point

of the other, as #, determine the posi- " B

D

tion of a plane : hence, two parallels
determine the position of a plane.

PROPOSITION IIL THEOREM.

The intersection of two planes is a straight line.

Let AB and CD be two planes: then will their inter-
section be a straight line,

For, let Z and ¥ be any two
points common to the planes; draw
the straight line Z7. This line hav-
ing two points in the plane ADB,

will lie wholly in that plane ; and
having two points in the plane CD,
will lie wholly in that plane: hence, every point of ZEZF is
common to both planes. Furthermore, the planes can have
no common point lying without ZZ, otherwise there would
be two planes passing through a straight line and a point
lying without it, which is impossible (P. IL;" C. 2); hence,
the intersection of the two planes is a straight line ; whick
was to be proved.

PROPOSITION IV. TIIEOREM.

If a straight line is perpendicular to two straight lines at
their point of intersection, it is perpendicular to the plane
of those lines.

Let MN be the plane of the two lines BB, CC, and
let AP be perpendicular to these lines at P : then wil
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AP be perpendicular to every straight line of the plane which
passes through P, and consequently, to the plane itself.

For, through 2, draw in
the plane MY, any line PQ;
through any point of this line, \\ K
as ¢, draw the line LB C, so C B,
that BQ shall be equal to QC %P Q
(B. IV., Prob. V.); draw 45, & B j
AQ, and AC.

The base BC, of the triangle BP(C, being bisected at
@, we have (B. IV, P. XIV.),

PC* + PB = 2P + 2QC"
In like manner, we have, from the triangle ABC,
AC* + AT = 2AQ + 200"

Subtracting the first of these equations from the second,
member from member, we have,

AC* — PC® + AR - PB = 24¢" — 2PQ.
But, from Proposition XI., C. 1, Book IV., we have,
AC* — PC* = AP, and AR — PB = AP;
hence, by substitution,
24P = 24Q" — 2P Q;
whence,

AP = AQ* — PQ*; or, AP’ 4+ PQ' = A¢Q.
The triangle APQ is, therefore, right-angled at P (B. IV,,
P, XIII,, S.), and consequently, AP is perpendicular to
PQ : hence, AP is perpendicular to every line of the
plane MN passing through 2, and consequently, to the
plane itself ; which was to be proved.

11
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Cor. 1. Only one perpendicular can be drawn to a planc
from a point without the plane. A
For, suprose two perpendiculars,
as AP and AQ, could be \ N
drawn from the point A to the E
plane AMN. Draw P¢Q; then : P Q /
the triangle 42P¢@Q would have
two right angles, AP¢@Q and
AQP; which is impossible (B. L, P. XXV., C. 3).

M

Cor. 2. Only one perpendicular can be drawn to a plane
from a point of that plane. For, suppose that two perpen-
diculars could be drawn to the plane M, from the point
L. Pass a plane through the perpendiculars, and let P @
be its intersection with MAN; then we should have two per-
pendiculars drawn to the same straight line from a point of
that line ; which is impossible (B. I, P. XIV., C.).

PROPOSITION V., THEOREM.

If from a point withowt a plane, a perpendicular be drawn
to the plane, and obliqgue lines be drawn to different
points of the plane :

1°.  The perpendicular will be shorter than any: oblique line :

2°, Oblique lines which meet the plane at equal distances
Jrom the foot of the perpendicular, will be equal :

8.° Of two oblique lines which meet the plane at unequal
distances from the foot of the perpendicular, the one which
meets it at the greater distance will be the longer.

Let 4 be a point without the plane MN ; let AP
be perpendicular to the plane; let 4.C, 4D, be any two
oblique lines meeting the plane at equal distances from the
foot of the perpendicular; and let 4C and AZ be any
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two oblique lines meeting the plane at unequal distances from
the foot of the perpendicular :

1° AP will be shorter 4
than any oblique line AC. /\
For, draw PC; then will N
AP be less than 4C (B. ’// "“f \\\E
L, P. XV.) ; which was to i‘):.‘_’,::?“- __/513
i,
be proved. M

2°. AC and 4D wil be equal

For, draw 2D ; then the right-angled triangles APC,
APD, will have the side AP common, and the sides e,
PD, equal: hence, the triangles are equal in all their parts,
and consequently, AC and AD will be equal; which was
to be proved.

8%, AFZ will be greater than AC.

For, draw PZK, and take PB equal to PC; draw
AB: then wil AZ be greater than AB B. 1, P. XV.);
but AB and AC are equal: hence, A is greater than
AC ; which was to be proved.

Cor. The equal oblique lines 4B, AC, AD, meet the
plane MV in the circumference of a circle, whose centre is
P, and whose radius is PB : hence, to draw a perpendi-
cular to a given plane MN, from a point A, without that
plane, find three points B, C, D, of the plane equally dis
tant from 4, and then find the centre P, of the circle
whose circumference passes through these points: then will
AP be the perpendicular required.

Scholium. The angle ABP is called the inclination of
the oblique line AB to the plane MN. The equal oblique
lines AB, AC, AD, are all equally inclined to the plane
MN. The inclination of 4Z is less than the inclination of
any shorter line A4RB. :
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PROPOSITION VI. THEOREM.

If from the foot of a perpendicular fo a plane, a straight line
be drawn at right angles to any straight line cof that plane,
and the point of intersection be joined with any point of the
perpendicular, the last Wine will be perpendicular to the line
of the plane.

Let AP be perpendicular to the plane MN, P its foot,
BC the given line, and A any point of the perpendicular ;
draw PD at right angles to BC, and join the point D
with A : then will AD be perpendicular to BC.

For, lay off DB equal to
DC, and draw PB, PC, AD,
and AC. Because PD is per-
pendicular to BC, and DB
equal to DC, we have, PB
equal to PPC (B. I, P. XV);
and because AP is perpendicu-  pf
lar to the plane MN, and PB
equal to PC, we have AB equal to A4C (P. V.). The
line 4D has, therefore, two of its points 4 and D, each
equally distant from B and C : hence, it is perpendicular
to BC (B.L, P. XVIL, 8.); which was to* be proved.

Cor. 1. The line BC 1is perpendicular to the plane of
the triangle APD; because it is perpendicular to 42 and
PD, at D. (P. IV.).

Cor. 2. The shortest distance between AP and BC is
measured on PD, perpendicular to both. For, draw BZE
between any other points of the lines : then will BE be
greater than PB, and PB will be greater than PD :
hence, PD is less than BE.
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Scholium. The lines AP and B¢, though not in the
same plane, are considered perpendicular to each other, In
~general, any two straight lines not in the same plane, are
considered as making an angle with each other, which angle
is equal to that formed by drawing through a given point,
two lines respectively parallel to the given lines.

PROPOSITION VII. THEOREM.

If one of two parallels is perpendicular to a plane, the other
one is also perpendicular to the same plare.

Let AP and ZD be two parallels, and let AP be
perpendicular to the plane MN : then wil £D be also
perpendicular to the plane AN,

For, pass a plane through the - B
parallels ; its intersection with {\ N
MN will be PD; draw AD, /C
and in the plane MN draw L
BC perpendicular to PD at {

D. Now, BD is perpendicular M
to the plane APDE (P. VL, C.);

the angle BDE is consequently a right angle; but the an-
gle EDP is a right angle, because ZD is parallel to AP
(B. L, P. XX, C. 1): hence, ED is perpendicular to BD
and PD, at their point of intersection, and consequently, to
their plane MN (P. IV.); whick was to be proved.

Cor. 1. If the lines AP and ED are perpendicular to
the plane AN, they are parallel to each other. For, if
not, draw through D a line parallel to 14 ; it will be
perpendicular to the plane MN, from what has just been
proved ; we shall, therefore, have two perpendiculars to the
the plane MY, at the same point; which is impossible (F.
Iv. C. 92).
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Cor. 2. If two straight lines, 4 and B, are parallel to a
third line C, they are parallel to each other. For, pass a
plane perpendicular to C'; it will be perpendicular to both
A and B: hence, 4 and B are parallel.

PROPOSITION VIII. THEOREM.

If a straight line s parallel to a line of a plane, it is parallel
to that plane. '

Let the line AB be parallel to the line CD of the
plane N ; then wil 4B be parallel to the plane JMN.
For, through AZB and CD
pass a plane (P. IL, C. 4); CD A B

will be its intersection with N
the plane A/N. Now, since AR :

lies in this plane, if it can meet / CL——'_T)/
the plane MN, it will be at M
some point of CD; but this is

impossible, because AB and CD are parallel: hence, 4B
cannot meet the plane MV, and consequently, it is parallel

to it ; which was to be proved.

£

PROPOSITION IX, THEOREM.

If two planes are perpendicular to the same straight line,
they are parallel to each other.

Let the planes MN and PQ

be perpendizular to the line 4B, B—.. il

: P —~
at the points 4 and B : then O
will they be parallel to each M et
other, A7

For, if they are not parallel,
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they will meet; and let O be a point common to both.
From O draw the lines 04 and OB : then, since 0A
lies in the plane MM, it will be perpendicular to BA at
A (D.1). For a like reason, OB will be perpendicular
to «AB at B : hence, the triangle 0ADB will have two
right angles, which is impossible ; consequently, the planes
cannot meet, and are therefore parallel ; which was to be
proved.

PROPOSITION X. THEOREM.

If a plane intersect two parallel planes, the lincs of inter-
section will be parallel.

Let the plane ZH intersect the parallel planes JMN and
PQ, in the lines ZF and GII: then will ZF and GH
be parallel.

For, if they are not parallel,
they will meet if sufficiently pro-
longed, because they lie in the
same plane; but if the lines meet,
the planes MN and PQ, in
which they lie, will also meet ;
but this is impossible, because

these planes are parallel : hence,
the lines ZZF and GH cannot meet; they are, therefore,
parallel ; which was to be proved.

PROPOSITION XI. THEOREM.

If a straight line is perpendicular to one of two paralld
Planes, it is also perpendicular to the other.

Let MN and P be two parallel planes, and let the
line 4B be perpendicular to P@  then will it also be
perpendicular to MV, ;
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For, through AB pass any plane; its intersections with
MN and P@Q will be parallel (P. X.); but, its intersection
with 2@ is perpendicular to AB at B (D.1); hence,
its intersection with MN is

also perpendicular to AB at A4 Q
(RSN X% 00 1) ¢ - hemsesdr £ BS /
AB is perpendicular to every
line of the plane MN through S N
4, and is, therefore, perpendicu- i A\ ;
lar to that plane; which was to M

be proved.

PROPOSITION XII. THEOREM.
Parallel straight lines included between parallel plancs, are equal.

Let ZG and FH be any two parallel lines included
between the parallel planes MN and P : then will they
be equal.

Through the parallels conceive
a plane to be passed ; it will
intersect the plane MN in the
line ZF, and P¢@ in the line
GIl; and these lines will be
parallel (Prop. X.). The figure
EFHG is, therefore, a parallelo-
gram : hence, GFE and HI
are equal (B. I, P. XXVIIL); whick was to be proved.

Cor. 1. The distance between two parallel planes 18 mesa-

sured on a perpendicular to both ; but any two perpendiculars
between the planes are equal : hence, parallel planes are every-
where equally distant.

Cor. 2. If a straight line GH is parallel to any plane MN,
then can a plane be passed through G parallel to MN:
hence, if a straight line is parallel to a plane, all of its points
are equally distant from that plane.
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PROPOSITION XIII. THEOREM

If two angles, not situated in the same plane, have their
sides parallel and lying in the same direction, the angles
will be equal and their planes/ parallel,

Let CAE and DBF be two angles lying in the planes
MN and PQ, and let the sides AC and AFE be re
spectively parallel to BD and BF, and lying in the same
direction : then will the angles CAX and DBF be equal,
and the planes MN and PQ will be parallel,

Take any two points of AC and AZE, as ¢ and Z, and
make BD equal to AC, and
BF to AE; draw COF, DF, o = A
AB, CD, and EF / /

1° The angles CAZ wnd A \E
DBE will be equal

For, AE and BF being

parallel and equal, the figure Q
ABFE is a parallelogram (B. \M
3 F
B
P

L, P. XXX.); hence, EF is
parallel and equal to A4B. For
a like reason, CD is parallel and equal to AB: hence,
CD and EF are parallel and equal to each other, and
consequently, CZ and DZF are also parallel and equal to
cach other. The triangles CAZ and DBF have, therefore,
their corresponding sides equal, and consequently, the corres-
ponding angles CAE and DBF are equal; which was to
be proved.

2°. The planes of the angles MV and PQ are parallel.
For, if not, pass a plane through 4 parallel to Pg,
and suppose it to cut the lines CD and EF in ¢ and
H. Then will the lines GD and IIF be equal respect-
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ively to AB (P. XIL), and consequently, GD will be
equal to CD, and HF to [EF'; which is impossible : hence,
the planes MN and P must be parallel ; which was to
be proved.

Cor. If two parallel planes MN and P¢Q, are met by
two other planes 4D and AZF, the angles CAZ and
DBF, formed by their intersections, will be equal

PROPOSITION XIV. THEOREM.

If three straight lines, not situated in the same plane, are
equal and parallel, the triangles formed by joining the
extremities of these lines will be equal, and their planes
parallel.

Let AB, CD, and EF be equal parallel lines ‘not in
the same plane: then will the triangles ACE and BDF
be equal, and their planes parallel.

For, AB being equal and
parallel to E7F, the figure ABFE

is a parallelogram, and conse- i\ ;:
quently, A% is equal and par- D=t

|
allel to BF. For a like reason,
AC is equal and parallel to
BD: hence, the included angles
CAE and DBF are equal and \ f: \
their planes parallel (P. XIIL). & B
Now, the triangles CAZE and
DBEF have two sides and their

meluded angles equal, each to each: hence, they are equal
in all their parts. The triangles are, therefore, equal and

their planes parallel ; which was to be proved.
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PROPOSITION XV. THEOREM.

If two straight lines are cut by three parallel plones, they
will be divided proportionally.

Let the lines AB and CD be cut by the paralle]
slanes MN, P, and RS, in the points 4, Z B, and
C, F, D; then

AE : EB :: CF : FD.
For, draw the line 4D, and
;i 1 S
suppose it to pierce the plane
P@Q in G; draw AC, BD, ”
EG, and GUF. A
The plane ABD intersects Q

the parallel planes RS and P¢Q / T ) /

in the lines BD and EG ;
consequently, these lines are par-

allel (P. X.) : hence (B. IV, / \X /

REBXCVS)E
AE : EB :: AG@ : GD,

The plane A CD intersects the parallel planes MN and
P¢@, in the parallel ines AC and GQF: hence,

AG@ : GD :: CF : FD.

Combining these proportions (B. II, P. IV.), we have,
AE : EB :: CF : FD;
which was to be proved.

Cor. 1. If two straight lines are cut by any number of
parallel planes, they will be divided proportionally.

Cor. 2. If any number of straight lines are cut by three
parallel planes, they will be divided proportionally,
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PROPOSITION XVI. THEOREM.

If a straight line is perpendicular to a plane, cvery plane passed
through the line will also be perpendicular to that plane.

Let 4P be perpendicular tc the plane MN, and let
BF be a plane passed through AP : then will BF be
perpendicular to ALN.

In the plane MN, draw PD A ¥
perpendicular to B, the intersec-
tion of BF and MN. Since AP —0

is perpendicular to MY, it is per-

pendicular to BC and DP (D. 1); Bl oD
and since AP and DP, in the b

planes BF and MN, are perpendicular to the intersection
of these planes at the same point, the angle which they
form is equal to the angle formed by the planes (D. 4);
but this angle is a right angle : hence, BF is perpendicu-
lar to MN ; which was to be proved.

Cor. If three lines AP, BP, and DP, are perpen-
dicular to each other at a common point 2, each line will
be perpendicular to the plane of the other two, and the
three planes will be perpendicular to each other.

PROPOSITION XVII. THEOREM.

If two planes are perpendicular to each other, a straight line
drawn tn one of them, perpendicular to their intersection,
will be perpendicular to the other.

{

Let the planes BF and MN be perpendicular to each
other, and let the line AP, drawn in the plane BF, be
perpendicular to the intersection B( ; then wil AP be
perpendicular to the plane JMN.
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For, in the plane MYV, draw P.D perpendicular to BC
at P. Then because the planes B F and MN are perpen-
dicalar to each other, the angle AL1D

will be a right angle: hence, AP is X

A

perpendicular to the two lines PD
N

and B, at their intersection, and /— s
consequently, is perpendicular to their / Lt
plane MN; which was to be proved. M/ R D;

Cor. If the plane BF is perpendicular to the plane
MN, and if at a point P of their intersection, we erecct
a perpendicular to the plane AN, that perpendicular will
be in the plane BF. TFor, if not, draw in the plane BF]
LA perpendicular to PC, the common intersection ; AP
will be perpendicular to the plane MN, by the theorem ;
therefore, at the same point P, there are two perpendiculars
to the plane MAN ; which is impossible (P. IV., C. 2).

PROPOSITION XVIII. THEOREM.

If two planes cut each other, and are perpendicular to a
third plane, their intersection is also perpendicular to
that plane.

Let the planes BF, DH, be perpendicular to MN :
then will their intersection AP be perpendicular to MW,

For, at the point P, erect a per-
pendicular to the plane MAN ; that
perpendicular must be in the plane
BF, and also in the plane DH
(P. XVIL, C.); therefore, it is their
common intersection AP: which was
to be proved. -
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PROPOSITION XIX. THEOREM.

The sum of any two of the plane angles formed by the
edges of a triedral angle, is greater than the third,

Let S4, 8B, and G§8C, be the edges of a triedral
angle : then will the sum of any two of the plane angles
formed by them, as AS8C and CS8SB, be greater than the
third A4S8B.

If the plane angle ASB is equal to, or less than, either
of the other two, the truth of the proposition is evident. Let
us suppose, then, that ASB is greater than either.

In the plane ASDB, construct
the angle BSD equal to BSC ; S
draw ADB in that plane, at plea- ;
sure ; lay off SC equal to 8D,
and draw AC and CB. The
triangles BSD and BSC have
the side SC equal to 8D, by - 0
construction, the side 8B com-
mon, and the included angles BSD and BSC equal, by
construction ; the triangles are therefore equal in all their

parts : hence, BD is equal to BC. But, from Proposition
VII., Book I, we have,

BC + CA > BD + DA.
Taking away the equal parts BC and BD, we have,
04 > D4 ;

hence (B. L, P. IX.), we have,
angle ASC > angle AS8D ;

and, adding the equal angles BSC and BSD,
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angle A8C + angle CSB > angle ASD + angle DSB;
or, angle ASC + angle CSB > angle ASB;

which was to be proved.

PROPOSITION XX, THEOREM.

The sum of the plane angles formed by the edges of any
polyedral angle, is less than four right angles.

Let S be the vertex of any polyedral angle whose edges
are 84, 8B, 8C, 8D, and SZ; then will the sum of
the angles about & be less than four right angles,

For, pass a plane cutting the edges
in the points 4, B, O, D, and F
and the faces in the lines AB, BC,
CD, DE, and EA. From any point
within the polygon thus formed, as O,
draw the straight lines 04, 0B, 0C,
0D, and OF.

We then have two sets of triangles,

one set having a common vertex S, the

other having a common vertex O, and both having com-
mon bases AB, BC, CD, DE, EA. Now, in the set
which has the common vertex &, the sum of all the angles
i8 equal to the sum of all the plane angles formed by the
edges of the polyedral angle whose vertex is S, together
with the sum of all the angles at the bases : viz, S4B,
SBA, SBC, &c.; and the entire sum is equal to twice
as many right angles as there are triangles. In the set
whose common vertex is O, the sum of all the angles is
equal to the four right angles about O, together with the
interior angles of the polygon, and this sum is equal to
twice as many right angles as there are triangles. Since
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the nnmber of triangles, in each set, is the same, it follows
that these sums are equal. But in the triedral angle whose
vertex is B, we have (P. XIX.),

ABS + SBC > ABC;

and the like may be shown at each
of the other vertices, C, D, K, A:
hence, the sum of the angles at the _
bases, in the triangles whose common
vertex is S, is greater than the sum

of the angles at the bases, in the set
whose common vertex is O: therefore,
the sum of the vertical angles about S, is less than the
sum of the angles about O : that is, less than four right
angles ; which was to be proved.

Seholiuvm. The above demonstration 1s made on the sup-
position that the polyedral angle is convex, that is, that the
diedral angles of the consecutive faces are each less than two
right angles.

PROPOSITION XXI. THEOREM.

If the plane angles jformed by the edges of two triedral
angles are equal, each to each, the planés of the equal
angles are equally inclined to each other.

Let § and 7' be the vertices of two triedral angles,
and let the angle A48C be equal to DTFH, ASB to DITE,
and BSC to ETF: then will the planes of the equal
angles be equally inclined to each other.

For, take any point of SB, as B, and from it draw
in the two faces ASB and CS8DB, the lines BA and BC,
respectively perpendicular to 8D : then will the angle ABC
measure the inclination of these faces. Lay off 7/ equal
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to 8B, and from Z draw in the faces DTFE and FTE,
the lines ED and ZEZF, respectively perpendicular to Z7& -
then will the angle DZEF
measure the inclination of these
faces. Draw AC and DF.

The right-angled triangles
SBA and TED, have the
side S8 equal to 7Z and
the angle A8B equal to
DTE ; hence, AB is equal to DE, and A8 to TD.
In like manner, it may be shown that BC is equal to .EF,
and CO8 to FT. The triangles ASC and DTF, have
the angle ASC equal to DTF, by hypothesis, the side AS
equal to D7, and the side OS to /7, from what has
just been shown ; hence, the triangles are equal in all their
parts, and consequently, 4C is equal to DF. Now, the
triangles ABC and DFEF have their sides equal, each to
each, and consequently, the corresponding angles are also
equal ; that is, the angle 4ABC is equal to DEF : hence,
the inclination of the planes A4S8B and CS8B, is equal to
the inclination of the planes D77 and FTE In like
manner, it may be shown that the planes of the other equal
angles are equally inclined ; whichk was to be proved.

Scholium. 1f the planes of the equal plane angles are
like placed, the triedral angles are equal in all respects, for
they may be placed so as to coincide. If the planes of the
equal angles are not similarly placed, the triedral angles are
equal by symmetry. In this case, they may be placed so
that two of the homologous faces shall coincide, the triedral
angles lying on opposite sides of the plane, which is then
called a plane of symmetry. In this position, for every point
on one side of the plane of symmetry, there is a correspond-
ing point on the other side.
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POLYZEDRONBS.

DEFINITIONS.

1. A PovLveprox is a volume bounded by polygons.

The bounding polygons are called faces of the polyedron;
the lines in which the faces meet, are called edges of the
polyedron ; the points in which the edges meet, are called
vertices of the polyedron.

2. A Prisy is a polyedron in which two of
the faces are polygons equal in all their parts,

and having their homologous sides parallel. The
other faces are parallelograms (B. I, P. XXX.).
The equal polygons are called bases of the
prism ; one the wpper, and the other the
lower base ; the parallelograms taken together
make up the lateral or convex surface of the prism; th:
lines in which the lateral faces meet, are called lateral edges

of the prism.

3. The Arrrrupe of a prism is the perpendicular di-
tance between the planes of its bases.

4, A Ricur Prisx is one whose lateral ")
edges are perpendicular to the planes of the
bases,

In this ease, any lateral edge is equal to
the altitude.
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5. An OsBrLique Prism is one whose lateral edges are

oblique to the planes of the bases,

In this case, any lateral edge is gieater than the altitnde.

6. Prisms are named from the number of sides of their

bases; a triangular prism is one whose bases are triangles ;
w pentanguler prism is one whose bases are pentagons, &c.

7. A PARALLELOPIPEDON is a prism whose bases are

parallelograms.

A Right Parallelopipedon is one whose lat-
eral edges are perpendicular to the planes
of the bases.

A Rectangular Parallelopipedon is one
whose faces are all rectangles.

A Cube is a rectangular parallelopipedon
whose faces are squares.

8. A Pyravip is a polyedron bounded
by a polygon called the b&ase, and by tri-
angles meeting at a common point, called the
vertex of the pyramid.

The triangles taken (ogether make up the
lateral or convex surface of the pyramid ;
the lines in which the lateral faces meet, are
called the lateral edges of the pyramid.

9. Pyramids are named from the number of sides of
their bases; a triangular pyramid is one whose base is a

triangle ; a gquadrangular pyramid is one whose base is a

quadrilateral, and so on.

10. The ArriTupE of a pyramid is the perpendicular

distance from the vertex to the plane of its base.
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11. A Riear Pyrayip is one whose base is a regular
polygon, and in which the perpendicular drawn from the
vertex to the plane of the base, passes through the centre
of the base.

This perpendicular is called the axis of the pyramid.

12 The Sitant Hrear of a right pyramid, is the per-
pendicular distance from the vertex to any side of the base.

18. A Truncatep Pyramip is that
portion of a pyramid included between
the base and any plane which cuts the
pyramid.

When the cutting plane is parallel to

the base, the truncated pyramid is called
a4 FRUSTUM OF A PYRAMID, and the inter-
section of the cutting plane with the pyramid, is called the
upper base of the” frustum ; the base of the pyramid is eal-
led the lower base of the frustum.

14, The Arrrrupe of a frustum of a pyramid, is the per-
pendicular distance between the planes of its bases.

15, The Stant Heear of a frustum of a' right pyramid,
is that portion of the slant height of the pyramid which lies
between the planes of its upper and lower bases.

16. SiMiLAR PoLyEDprONS are those which are bounded by
the same number of similar polygons, similarly placed.
DParts which are similarly placed, whether faces, edges, or

angles, are called Aomologous.

17. A Duacoxan of a polyedron, is a straight line join-
ing the vertices of two polyedral angles not in the same

face.
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18. The VoruvmMe oF A PoLYEDRON is its numerical value
expressed in terms of some other polyedron as a unit.

The unit generally employed is a cube constructed on the
linear unit as an edge.

PROPOSITION I. THEOREM.

The comvex surface of a right prism is equal to the perim-
eter of either base multiplied by the altitude.

Let ABCDE-K be a right prism: then is its convex
surface equal to,
(4B + BC + CD + DE + EA) x AF.
L3
For, the convex surface is equal to 1
the sum of all the rectangles A&, BH,
Cl, DK, EF, which compose it. Now,
the altitude of each of the rectangles
AF, BG, CH, &c., 1is equal to the
altitude of the prism, and the area of

B '
each rectangle is equal to its base mul- i
tiplied by its altitude (B. IV., P. V.)): A B

hence, the sum of these rectangles, or

the convex surface of the prism, is equal to,
(4B + BC+ CD + DE+ EA) x AF;

that is, to the perimeter of the base multiplied by the alii-
tude ; which was to be proved.

Cor. If two right prisms have the same altitude, their
convex surfaces are to each other as the perimeters of their

bases.
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PROPOSITION II. THEOREM.

In any prism, the sections made by parallel planes are polygons
equal in all their parts.

Let the prism AZX be intersected by the parallel plance
NP, SV : then are the sections NOPQR, STVX],
equal polygons. ;

For, the sides N0, 87, are parallel,
being the intersections of parallel planes
with a third plane A B GF'; these sides,
NO, ST, are included between the par-
allels V.S, O7': hence, NO is equal to
87 (B. I, P. XXVIIL, C. 2). For like
reasons, the sidese OP, PQ, QR, &c.,
of NOPQR, are equal to the sides
7V, VX, &c., of STVXY, each to
each ;; and since the equal sides are par-
allel, each to each, it follows that the
angles NOP, OPQ, &c., of the first section, are equal to
the angles S7V, 7TVX, &ec., of the second section, each to
each (B. VI, P. XIIL) : hence, the two sections NOPQR,
STVXY, are equal in all their parts; which was fo e proved.

]

Cor. The bases of a prism, and every section of a prism,
parallel to the bases, are equal in all their parts.

PROPOSITION IIL THEOREM.

If a pyramid be cut by « plane parallel to the base *
1°. The edges and the altitude will be divided proportionally :

2°, The section will be a polygon similar to the base.

Let the pyramid S-ABCDE, whose altitude is &80,
be cut by the plane abede, parallel to the base ABCDE.
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1°, The edges and altitude will be divided proportionally.

Foi, conceive a plane to be passed through the vertex S,
parallel to the plane of the base ; then
will the edges and the altitude be cut
by three parallel planes, and cousequently
they will be divided proportionally (B. VI,
P. XV., C. 2); which was to be proved.

2°, The scction abede, will be similar
to the base ABCDE. TFor, ab is par-
allel to 4B, and b to BC (B. VL,
P. X.) : hence, the angle abc is equal to

the angle ABC. In like manner, it may
be shown that each angle of the polygon abede is equal
to the corresponding angle of the base: hence, the two
polygons are mutually equiangular,

Again, because ab is parallel to AB, we have,

abi SAPE R e s DY SIS
and, because Oc is parallel to BC, we have,

bl RIS DRSS 5
hence (B. IL, P. IV.), we have,

ab : AB :: be : BC.

In like manner, it may be shown that all the sides of
abede are proportional to the corresponding sides of the
polygon ABCDE : hence, the section adede is similar to
the base ABCDE (B. IV, D. 1); which was to e proved.

Cor. 1. If two pyramids S-ABCDE, and S-XY7,
having a common vertex S, and their bases in the same
plane, be cut by a plane abe, parallel to the plane of
their bases, the scctions will be to each other as the bases.
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For, the polygons abed and ABCD, being similar, are
to cach other as the squares of their homologous sides b
and AB (B. 1V, P. XXVII); but,

ey AR st s SEY LetluSel B0’
Lence (B.IL, P.IV.), we have,
abede : ABCDE :: 80" : SO
In like manner, we have,

myz:XYZ::bToz:AW)?;A

hence,
abede : ABCDE :: zyz : XYZ.

Cor. 2. If the bases are equal, any sections at equal dis-
tances from the bases will be equal

Cor. 3. The area of any section parallel to the base, is
proportional to the square of its distance from the vertex.

PROPOSITION I[V. THEOREM.

The convex surface of a right pyramid is' equal to the
perimeter of its base multiplied by half the slant height.

Let 8 be the vertexy, ABCDE the
base, and ASZ%, perpendicular to %4, the
slant height of a right pyramid: then will
the convex surfice be equal to,

(4B + BC + CD + DE + E4) x 4SF.

Draw SO perpendicular to the plane of the
base. :
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From the definition of a right pyramid, the point O is
the centre of the base (D. 11) : hence, the lateral edges,
S84, 8B, &c., are all equal (B. VI, P. V.); but the sides
of the base are all equal, being sides of a regular polygon :
hence, the lateral faces are all equal, and consequently their
altitudes are all equal, each being equal to the slant height
of the pyramid.

Now, the area of any lateral face, as SZA, is equal to
its base Z£A, multiplied by half its altitude SZ7: hence,
the sum of the areas of the lateral faces, or the convex sur-
face of the pyramid, is equal to,

(4B + BC + OD + DE + EA) x $8F ;

which was to be proved.

Scholium. The convex surface of a frustum of a right
pyramid is equal to half the sum of the perimeters of its
upper and lower bases, multiplied by the slant height.

Let ABCDE-¢ be a frustum of a right
pyramid, whose vertex is S : then will the
section abede be similar to the base ABCDE,
and their homologous sides will be parallel,
(P. IIL.).  Any lateral face of the frustum,
as AFea, 13 a trapezoid, whose altitude is
equal to Ff, the slant height of the frustum;
hence, its area is equal to (A 4+ ea) X If
(B. IV,, P. VIL). But the area of the con-
vex surface of the frustum is equal to the sum of the areas

of its lateral faces; it is, therefore, equal to the half sum
of the perimeters of its upper and lower bases, multiplied
by the slant height.
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PROPOSITION V. THEOREM.

If the three faces which include a triedral angle of a prism
are equal in all their parts to the three faces which include
a {iriedral angle of a second prism, each to each, and are
like placed, the two prisms are equal in all their paris.

Let B and & be the vertices of two triedral angles,
included by faces respectively equal to each other, and simi-
larly placed : then will the prism ABCDE-K be equal to
the prism abede-k, in all of -its parts.

For, place the base
abede upon the equal K
base ABCDE, so that
they shall coincide; then F
because the triedral an-
gles whose vertices are ’

b and B, are equal,

the parallelogram b4 will
coincide with B, and D
the parallelogram 47 with B0
BF : hence, the two

sides fg and gh, of one upper base, will coincide with the
homologous sides of the other upper. base i and because the
upper bases are equal in all their parts, they must coincide
throughout; consequently, each of the lateral faces of one
prism will coincide with the corresponding lateral face of the
other prism: the prisms, therefore, coincide throughout, and
are therefore equal in all their parts; which was to be proved.

Cor. If two right prisms have their bases equal in all their
parts, and have also equal altitudes, the prisms themselves wili
be equal in all their parts. For, the faces which include any
triedral angle of the one, will be equal in all their parts to
the faces which include the corresponding triedral angle of
the other, each to each, and they will be similarly placed.
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PROPOSITION VI. THEOREM.

In any parallelopipedon, the opposite faces are equal in all their
parts, each to each, and their planes are parallel.

Let ABCD-II be a parallelopipedon : then will its
opposite faces be equa]l and their planes will be parallel.

For, the bases, ALCD and EFGI
are equal, and their planes parallel by E a
definition (D. 7). The opposite faces a
AFEIID and BFGC, have the sides 45
and BJ parallel, because they are oppo-
site sides of the parallelogram BE ; B C
and the sides ZZ/ and ZF'G parallel,
because they are opposite sides of * the parallelogram ZE@ ;
and consequently, the angles AXI and BFG are equal
(B. VL, P. XIIL). But the side AZ is equal to BZ] and
the side EH to ZFG ; hence, the faces ALHOD and
BFG(C are equal ; and because AZ is parallel to BF
and EH to IG, the planes of the faces are parallel
(B. VL, P. XIII.). In like manner, it may be shown that
the parallelograms ABFE and DCGI, are equal and their
planes parallel : hence, the opposite faces are equal, each to
each, and their planes are parallel ; which was to be proved.

Cor. 1. Any two opposite faces of a parallelopipedon

may be taken as bases.
H
Cor. 2. In a rectangular parallelo-
pipedon, the square of either of the
diagonals is equal to the sum of the
squares of the three edges which meet 5

at the same vertex.
For, let FD be either of the diagonals, and draw FH



188 GEOMETRY.

Then, in the right-angled triangle FHD, we have,
ID* = DH® 4 FII.

Bat DI is equal to FB, and FH’ A

is equal to FA® plus AH® or FC°: C
hence,
FD’ = FB® + FA® + FC™ B

Cor. 8. A parail‘lelopipedon may be constructed on three
straight lines 4B, AD, and A4E, intersecting in a common
point 4, and not lying in the same plane. For, pass through
the extremity of each line, a plane parallel to the plane of
the other two; then will these planes, together with the
planes of the given lines, be the faces of a parallelopipedon.

. PROPOSITION VIIL THEOREM.

If a plane be passed through the diagonally opposite edges
of a parallelopipedon, it will divide the parallelopipedon
into two equal triangular prisms.

Let ABCD-II be a parallelopipedon, “and let a plane
be passed through the edges BF and DH -+ then will the
prisms ABD-II and BCD-H be equal
in volume,

TFor, through the vertices # and B
Iet planes be passed perpendicular to
B, the former cutting the other lateral
edges in the points e A, ¢, and the
latter cutting those edges produced, in
the points @, d, and e¢. The sections
Fehg and Bade will be parallelograms,
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because their opposite sides are parallel, each to each (B. VI,
P. X.) 5 they will also be equal (P. IL): hence, the poly-
edron Badc-g is a right prism (D. 2, 4), as are also the
polyedrons Bad-A and Bed-h.

Place the triangle ZF¢h upon Bad, so that F shall
coincide with B, ¢ with o, and % with d; then,
because el hII, are perpendicular to the plane Fih, and
ad, dD, to the plane Bad, the line ¢Z will take the
direction @4, and the line A the direction dD. The
lines 4% and ae are equal, because each is equal to BF
(B. I, P. XXVIIL). If we take away from the line aZ
the part a@e, there will remain the part e¢Z; and if from
the same line, we take away the part AZ, there will re-
main the part Aa : hence, eZ and ad are equal (A. 8);
for a like reason AH is equal to dD: hence, the point
Z will coincide with 4, and the point J7 with D, and
consequently, the polyedrons Z2A-ZI and Bad-D will
coincide throughout, and are therefore equal.

If from the polyedron Bad-IH, we take away the
part Dad-D, there will remain the prism BAD-IT B
and if from the same polyedron we take away the part
Feh-H, there will remain the prism Bad-h : hence,
these prisms are equal in volume. In like manner, it may
be shown that the prisms BCD-I and Bed-h are equal
in volume,

The prisms Bad-h, and Bed-h, have equal bases, be-
cause these bases are halves of equal parallelograms (B. I,
P. XXVIIL, C.1); they have also equal altitudes; they are
therefore equal (P. V., C.): hence, the prisms BAD-IT and
BOD-H are equal (A. 1); which was to be proved.

Cor. Any triangular prism ABD-H, is equal to half of
the parallelopipedon 4@, which has the same triedral angle
4, and the same edges AB, AD, and AF.
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PROPOSITION  VIIIL THEOREM.

If two parallelopipedons have a common lower base, and
their wupper bases between the same parallels, they are
equal in volume.

Let the parallelopipedons 4G and AZL have the com-
‘mon lower base ABCD, and their upper bases ZEFGH
and IKLJM, between the same parallels ZK and XL :
then will they be equal in volume.

For, the lines ZF and
I are equal, because each

is equal to ADB ; hence,
the sum of FEZF and I,
or EI is equal to the
sum of FI and IIK, or
FK. 1In the triangular
prisms AEI-M and
RFK-L, we have the line AX equal and parallel to
BF, and EI equal to JFK ; hence, the face AFEI is
equal to BFK. 1In the faces EIMH and FKLG, we have,
HE—=.GF, EI=FK and HEI=GFK : hence, the two faces
are equal (Bk. I. P. xxviii. C. 3): the faces ALHD and BFGC
are also equal (P. VL) : hence, the prisms arc equal (P.
V)

If from the polyedron ABKE-H, we take away the
prism BFHK-L, there will remain the parallelopipedon 4G ;

and if from the same polyedron we take away the prism
AEI-M, there will remain the parallelopipedon AZ: hence,
these paraliclopipedons are equal in volume (A. 8); which
was to be proved.
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PROPOSITION IX. THEOREM.

If two parallelopipedons have a common lower base and the
same altitude, they will be equal in volume.

Let the parallelopipedons AG@ and AL have the com-
mon lower base ABCD and the same altitude: then will
they be equal in volume.

Because they have the same altitude, their upper bases
will lie in the same plane.

Let the sides IAM and K7L Q 1P Ir G
be prolonged, and also the \N \O ,\ I,/'\
sides FZ and GIT ; these M 3 L,/’ B/
prolongations will form a Xk i
parallelogram 0@, which Srt. % //'

will be equal to the com- /,"' //'

mon base of the given par- % o
allelopipedons, because its ; ’ / ,)'

sides are respectively parallel 2 N

and equal to the correspond- A B

ing sides of that base.

Now, if a third parallelopipedon be constructed, having
for its lower base the parallelogram ABCD, and for its
upper base NOZPQ, this third parallelopipedon will be equal
in volume to the parallelopipedon A@, since they have the
same lower base, and their upper bases between the same
parallels, @&, NF (P. VIIL). For a like reason, this
third parallelopipedon will also be equal in volume to the
parallelopipedon .4Z : hence, the two parallelopipedons A @&
AL, are equal in volume; which was to be proved.

Cor. Any oblique parallelopipedon may be changed into a
right parallelopipedon having the same base and the same
altitude; and they will be equal in volume.
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PROPOSITION X. PROBLEM.

To construct a rectangular parallelopipedon which shall be
equal in volume to a right parallelopipedon whose base
is any parallelogram.

Let ABCD-M be a right parallelopipedon, having for
its base the parallelogram 4B CD.

Through the edges A7 and BXK pass
the planes 4@ and BP, respectively
perpendicular to the plane AKX, the for-
mer meeting the face DZ in 0@, and
the latter meeting that face produced in
NP: then will the polyedron AP be a
rectangular parallelopipedon equal to the

given parallelopipedon. Tt will be a rect-

angular parallelopipedon, because all of its

fices are rectangles, and it will be equal to the given
parallelopipedon, because the two may be regarded as having
the common base AKX (P. VI, C. 1), and an equal altitude
A0 (P. IX)). ' :

Cor. 1. Since any oblique parallelopipeddn may be changed
into a right parallelopipedon, having the same base and alti-
tude, (P. IX,, Cor.); it follows, that any oblique parallelopipedon
may be changed into a rectangular parallelopipedon, having
an equal base, an equal altitude, and an equal volume.

Cor. 2. An oblique parallelopipedon is equal in volume to
a rectangular parallelopipedon, having an equal base and an

equal altitude.

Cor. 3. Any two parallelopipedons are equal in volume
when ‘they have equal bases and equal altitudes.
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PROPOSITION XI. THEOREM.

Two rectangular parallelopipedons having a common lower
base, are to each other as their altitudes.

Let the parallelopipedons A& and AL have the com
mon lower base ABCD: then will they be to each other
as their altitudes AX and AL

1°. Let the altitudes be commensurable, and suppose, for
example, that A% is to AZ, as 15 is to 8.

Conceive AE to be divided into 15 equal parts, of
which AT will contain 8; through the points of division
let planes be passed parallel to ABCD. These planes will
divide the parallelopipedon AG into 15 parallelopipedons,
which have equal basey (P. IIL. C.) and equal altitudes;
hence, they are equal (P. X., Cor. 3).

New, AG contains 15, and AL 8 E H
of these equal parallelopipedons ; hence,
AG is to AL, as 15 1is to 8, or as ol
AFE is to AL In like manner, it may Im W
be shown that AG is to AL, as AFE Ay
is to AIZ when the altitudes are to each A &
other as any other whole numbers, ‘3’9& __________

A Dy
2°, Let the altitudes be incommensur- B [

able.
Now, if AG is not to AL, as AL is to AI let us
suppose that,

AG@ : AL :: AE : AQ,

in which 40 is greater than AL
Divide A% into equal parts, such that each shall be
less than OF ; there will be at least one pomt of division
13
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m, between O and I Let P denote the parallelopipe-
don, whose base is ABCD, and altitude Am ; since the
altitudes AZ, Am, are to each other as two whole num-
bers, we have,

E H
AG¢ : P :: AE : Am. ;
F
But, by hypothesis, we have, O:m
N
AG : AL :: AE : AO; \
K L
therefore (B. II, P. IV, C), 531
e
ACETTEN
AL : P :: A0 : Am. D\
; B C

But 40 is greater than Am ; hence, if
the ‘proportion is true, AZ must be greater than P. On
the contrary, it is less ; consequently, the fourth term of
the proportion cannot be greater than AZ  In like manner,
it may be shown that the fourth term ecannot be less than
AT ; it is, therefore, equal to AZ In this case, therefore,
AG is to AL, as AFE is to AL

Hence, in all cases, the given parallelopipedons are to
each other as their altitudes; which was to be proved.

Sch. Any two rectangular parallelopipedong:whose bases are
equal in all their parts, are to each other as their altitudes.

PROPOSITION XIL THEOREM.

Two rectangular parallelopipedons having equal altitudes, are
to each other as their bases.

Let the rectangular parallelopipedons 4@ and AKX have
the same altitude AZ : then will they be to each other as
their bases.



BOOK VII 195

For, place them as shown in the figure, and produce the
plane of the face NZ, until
it intersects the plane of the E H
face HC, in PQ; we shall K T
thus form a third rectangular

Q
parallelopipedon 4 Q.

The parallelopipedons A @
and AQ have a common
base Al ; they are there-
fore to each other as their
altitudes AB and A0 M
(P. XL): hence, we have N 0 P

the proportion,

Q

B
vol. AG : wol. AQ :: AB : AO.

The parallelopipedons AQ and AKX have the common base
AL; they are therefore to each other as their altitudes
AD and AM : hence,

vol. AQ : woll AR :: AD : AMNM.

Multiplying these proportions, term by term (B. IL., P. XIIL.),
and omitting the common factor, wol. AQ, we have,

vol. AG : wvol. AKX :: AB x AD : AO x AM.

But AB x AD is equal to the area of the base ABCD:
and A0 x AM is equal to the area of the base AMNO
hence, two rectangular parallelopipedons having equal alti
tudes, are to each other as their bases; which was to be
proved.
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PROPOSITION XIII. THEOREM.

Any two rectangular parallelopipedons are to each other as
the products of their bases and altitudes ; that is, as the
products of their three dimensions.

Let AZ and AG be ]
any two rectangular paral-

154

H

Q

lelopipedons: then will they
be to each other as the
products of their three di- Y|
mensions, Z

For, place them as in the
figure, and produce the faces

necessary to complete the M

rectangular parallelopipedon’ N

CZM--"':(>

AK. The parallelopipedons
AZ and AK have a com-
mon base AN ; hence (P. XL),

"
P

B

vol. AZ : wol. AKX :: AX : AR,

The parallelopipedons AKX and AG have a common
altitude A% ; heénce (P. XIL),

vol. AK : wol. AG :: AMNO : ABCD.

Multiplying these proportions, term by term, and omitting
the common factor, wol. AKX, we have,

vol. AZ : wvol. AG :: AMNO x AX : ABCD x AE;

or, since AMNO is equal to AM x A0, and ABCD to
AB x AD,

vol. AZ : vol. AG :: AMx AOxAX : AB x AD x AE;
which: was to be proved.
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Cor. 1. If we make the three edges AM, A0, and
AX, each equal to the linear unit, the parallelopipedon AZ
will be a cube constructed on that unit, as an edge; and
consequently, it will be the unit of volume. TUnder this
gupposition, the last proportion becomes,

1 @ vl A4G@ :: 1 : AB x AD x AE;
whence,
vol. AG = AB x AD x AE.

Hence, the wvolume of any rectangular parallelopipedon 7is
equal to the product of its three dimensions ; that is, the
number of times which it contains the unit of volume, is
equal to the number of linear units in its length, by the
number of linear units in its breadth, by the number of
linear wunits in its height.

Cor. 2. The volume of a rectangular parallelopipedon is
equal to the product of its base and altitude ; that is, the
number of times which it containg the unit of volume, is
equal to the number of superficial units in its base, multi-
plied by the number of linear units in its altitude.

Cor. 3. The volume of any parallelopipedon is equal to
the product of its base and altitude (P. X., C. 2).

PROPOSITION X1V, THEOREM.

The wvolume of any prism is equal to the product of its
base and altitude.

Let ABCDE-K Ybe any prism : then is its volume
equal to the product of its base and altitude.

For, through any lateral edge, as A%, and the other lateral
edges not in the same faces, pass the planes AH, A7, dividing
the prism into triangular prisms. These prisms will all have
a common altitude equal to that of the given prism.
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Now, the volume of any one of the triangular prisms, as
ADBC-H, is equal to half that of a parallelopipedon eon-

structed on the edges BA, BC, BG

(P. VII,, C.); but the volume of this par- ,I
gllelopipedon is equal to the product of its K /'I Dt
base and altitude (P. XIII, C. 3); and b,"'"f—“
because the base of the prism is half D 3
that of the parallelopipedon, the volume A ;;"""x 5

of the prism is also equal to the pro- B |/ ‘,,—\" C
duct of its base and altitude: hence, AL// %

the sum of the triangular prisms, which

make up the given .prism, is equal to the sum of their
bases, which make up the base of the given prism, into
their common altitude ; whick was to be proved.

Cor. Any two prisms are to each other as the produets
of their bases and altitudes. Prisms having equal bases are
to each other as their altitudes. Prisms having equal alti-

tudes are to each other as their bases.

PROPOSITION XV, THEOREM.

§

Two triangular pyramids having equal bases and equal alii-
tudes, are equal in volume.

Let 8~-ABC, and S-abe, be two pyramids having their

equal bases ABC and «bc in the same plane, and let A7

be their common altitude : then will they be equal in vol-

ume. ¥
For, if they are not equal in volume, suppose ome of
them, as S-ADBC, to be the greater, and let their differ-

ence be equal to a prism whose base is 4BC, and whose

altitude is Aa.
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Divide the altitude A7 into equal parts Az, =y, &c.,
each of which is less than 4@, and let % denote one of
these parts; through the points of division pass planes par-
allel to the plane of the bases; the sections of the two
pyramids, by each of these planes, will be equal, ‘namely,
DEF to def, GHI to ghi, &c. (P. 1II, C. 2).

On the ftriangles 4BC, DEF, &c., as lower bases, con-
gtruct exterior prisms whose lateral edges shall be parallel
to A8, and whose altitudes shall be equal to Z: and on the
triangles def, ghi, &c., taken as upper bases, construct inte-
rior prisms, whose lateral edges shall be parallel to Sa, and
whose altitudes shall be equal to % It is evident that the
sum of the exterior prisms is greater than the pyramid
8-4ABC, and also that the sum of the interior prisms is less
than the pyramid S-adc: hence, the difference between the
sum of the exterior and the sum of the interior prisms, is
greater than the difference between the two pyramids.

Now, beginning at the bases, the second exterior
prism EFD-G, is equal to the first interior prism efd-a,
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because they have the same altitude % and their bases
EFD, e¢fd, are equal: for a like reason, tre third exterior
prism Z[IG-K, and the second interior prism hig-d, are
equal, and so on to the last in each set: hence, each of the
exterior prisms, excepting the first BCA-D, has an equal
corresponding interior prism ; the prism BCA-D, is, there
fore, the difference between the sum of all the exterior
prisms, and the sum of all the interior prisms. But the
difference between these two sets of prisms is greater than
that between the two pyramids, which latter difference was
supposed to be equal to a prism whose base is BCA, and
whose altitude is equal to .4a, greater than % ; conse
quently, the prism BCA-D is greater than a prism having
the same Dbase and a greater altitude, which i3 impossible .
hence, the supposed inequality between the two pyramids
cannot exist ; they are, therefore, equal in volume; whick
was to be proved.

PROPOSITION XVI. THEOREM.

Any triangular prism may be divided into three triangular
pyramids, equal to each other in wvolume.

Let ABC-D Dbe a triangular E D
prism : then can it be divided into N

three equal triangular pyramids.

For, through the edge 4G,
pass the plane 4 CZF, and through
the edge ZEF pass the plane
EFC. The pyramids ACE-F and
ECD-F, have their bases ACH
and ZCD equal, because they are
halves of the same parallelogram B
ACDFE; and they have a common
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altitude, because their bases are in the same plane AD, and
their vertices at the same point Z; hence, they are equal
in volume (P. XV.). The pyramids ABC-F and DEI-C,
have their bases ABC and DEF, equa! because they are
the bases of the given prism, and their altitudes are equal
because each is equal to the altitude of the prism; they
are, therefore, equal in volume : hence, the three pyramids
into which the prism is divided, are all equal in volume ;
which was to be proved.

Cor. 1. A triangular pyramid is one-third of a prism,
having an equal base and an equal altitude.

Cor. 2. The volume of a triangular pyramid is equal to
one-third of the product of its base and altitude.

‘PROPOSITION XVII. THEOREM.

The volume of any pyramid is equal to onethird of the
' product of its base and altitude.

Let S-ABCDE, Ve any pyramid: then is its volume
equal to one-third of the product of its base and altitude.
For, through any lateral edge, as SZ,
pass the planes SEB, SEC, dividing the .
pyramid into triangular pyramids. The alti-

tudes of these pyramids will be equal to

each other, because each is equal to that
of the given pyramid. Now, the volume

of each triangular pyramid is equal te one-
third of the product of its base and alti- A
tude (P. XVI, C. 2); hence, the sum of
the volumes of the triangular pyramids, is
equal to onme-third of the product of the sum of their bases

R ——
/]

l

B
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by their common altitude. But the sum of the triangular
pyramids is equal to the given pyramid, and the sum of
their bases is equal to the base of the given pyramid :
hence, the volume of the given pyramid is equal to one-
third of the product of its base and altitude ; which was to
be proved.

Cor. 1. The volume of a pyramid is equal to one-third
of the volume of a prism having an equal base and an equal
altitude.

Cor. 2. Any two pyramids are to each other as the
products of their bases and altitudes. Pyramids having equal
bases are to each other as their altitudes. Pyramids having
equal altitudes are to each other as their bases.

Scholium. The volume of a polyedron may be found by
dividing it into triangular pyramids, and computing their
volumes separately. The sum of these volumes will be equal
to the volume of the polyedron.

PROPOSITION XVIII. THEOREM.

The volume of a frustum of any triangilar  pyramid is
equal to the sum of the volumes of three pyramids
whose comimon altitude is that of the frustum, and whose
bases are the lower base of the frustum, the wpper base
of the frustum, and a mean proportional between the two
bases.

Let FGII-h be a fiustum of any triangular pyramid:
then will its volume be equal to that of three pyramids
whose common altitude is that of the frustum, and whose
bases ave the lower base Z’GZ, the upper base fgh, and
a mean proportional between their bases.



BOOK VII. 203

For, througk the edge I/, pass the plane FIfy, and
through the edge fy, pass the plane fylf, dividing the
frustum into three pyramids. The pyra-
mid g-F'G'ZI, has for its base the lower
base F'GII of the frustum, and its al-
itude is equal to that of the frustum,
ecause its vertex g, is in the plane of
he upper base. The pyramid Z/-fyh,
has for its base t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>