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PREF A CE.

Tris translation has been made with the hope that the
high scientific character of Briot et Bouquet’s ZLegons de
Géométrie Analytique may contribute something toward the

" improvement of the standard of instruction in the elements
of analytical geometry.

The translator leaves for the second edition the addi-
tion of notes which will bring some of the topics treated
in the text down to the present scientific development of
the subject. A note has been added with the object of
furnishing the more elementary courses with simple exercises.

I wish to thank Professor E. Hastings Moore, Professor
Oscar Bolza, Professor Henry S. White, Dr. Harris Hancock,
Dr. T. J. J. See, for valuable suggestions and assistance in
making this translation.

JAMES HARRINGTON BOYD.

UNIVERSITY OoF CHICAGO, July 1, 1896.
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ANALYTICAL GEOMETRY

——ooiotoe—

ANALYTICAL GEOMETRY has for its object the study of fig-
ures through the methods of algebraie calculation or analysis.

The representation of figures by'algebraic symbols is due
to Descartes, who established a general method for the resolu-
tion of geometrical questions.

In this treatise, plane figures, or those of two dimensions,
are considered.

PLANE GEOMETRY

Booxk 1

CHAPTER 1

CONCERNING CO-ORDINATES.

The position of a point in a plane is determined by means
of two magnitudes, which are called the co-ordinates of that
point.

There can be an infinity of systems of co-ordinates. An
exposition of those systems only is given which are most
simple and most used.

RECTILINEAR CO-ORDINATES.

1. Let there be two nor-parallel straight lines or fixed axes
X'X and Y'Y traced in a plane (Fig. 1); the position of any
9



10 PLANE GEOMETRY. BOOK I.

point M of the plane will be determined by the intersection of
the two lines G'G, H'H parallel to the axes. The position of the
parallel H'H is defined by the segment OP, which it intercepts
on X'X. Tt is necessary to indicate the
direction in which the length OP is
measured. For this purpose it will be
convenient to give the sign -+ to the
distance OP, if it is measured on OX,
for example; the sign —, if it is meas-
ured on OX'. In like manner, the posi-
tion of the parallel G'G is defined by
the length OQ affected with the + sign
or the — sign, according as it is measured on OYor OY"

The two lengths OP and OQ (each affected with the proper
sign), which determine thus the position of the two parallels,
and consequently the point M, are the rectilinear co-ordinates
of M. They are usually represented by the letters 2 and .
Turther, the co-ordinate designated by z is given the name
abscissa; the other, y, that of ordinate. The two fixed right
lines X'X and Y'Y are called the axes of co-ordinates ; the
first is the axis of the a’s, and the second the axis of the
y’s. The point O from which we measure the co-ordinates on
each axis, in the one direction or in the other, is called the
origin of co-ordinates.

If all possible values, positive or negative, be assigned to @
and to y,—in other terms, if » and ¥ be made to vary from
— & to + «,—all points of the plane are obtained otherwise,
each pair of values gives a point, and one only.

The two co-ordinates of the point M are the projections of
the line O, taken in the direction OM, on the axes OX and
07, the projection on each axis being taken parallel to the
other. The projection on the axis of z is the length OP,
identical with the co-ordinate =, affected with the + sign or
— sign, according as it is measured in the direction OX or in
the opposite direction OX'; the projection on the axis of ¥
is the length OQ identical with the co-ordinate y, affected
with the + sign or — sign, according as it is measured in
the direction QY or in the opposite direction oz

Fig. 1.
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RECTILINEAR RECTANGULAR CO-ORDINATES.

2. Usually the fixed axes are drawn per- b4
pendicularly to each other; in this case, the
two co-ordinates of the point M (Fig. 2) are o
the distances of this point from the two yan
axes: they are also the orthogonal projec- !
tions of the line OM on the two axes. |

PorAR CoO-ORDINATES.

3. Let O be a fixed point called the pole, OX a fixed axis
(Fig. 3). We can determine the position of a point M by the

length p, the radius vector OM, and by the .
angle w, which the radius vector makes with e
the axis. (o

The position of the point M is determined ¢ X

by the intersection of a circle of radius p, Fig. 3.

having the pole for center, and the half-line OL drawn from
the pole and making the angle » with the axis OX (Fig. 4); but
it is necessary to define the direction in
which we reckon the angle v, namely coun-
ter clockwise from the axis OX. All the
points of the plane are obtained if p vary
from 0 to + 0, and o from 0 to 27. In
fact if, » remaining constant, one makes p
vary from O to + oo, one has all the points
of the halfline OL; if, therefore,  vary from 0 to 2, the
half-line O moves from the position OX and describes the
entire plane.

Fig. 4.1

Br-PoLAR CO-ORDINATES.

4. The position of a point may also be defined by the dis-
tances » and v from two fixed points F and F' (Fig. 5). The
position of the point M is then determined by the intersection
of the two circles described about the points F' and F' as cen-
ters with the radii » and v. However, this system does not
offer the same theoretical perfection as the two preceding; for
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every couple of values of u and v is not admissible; it is neces-
sary that the distance between the poles be less than their
sum and greater than their difference.

Y When this condition is fulfilled, the
l‘\ two circumferences intersect in two
' points, and a troublesome ambiguity

% arises.
= The position of the point M may
e still be determined by aid of the an-

gles MFF', MF'F; we designate these angles, reckoned in a
definite direction, by @ and f; each of them varying from 0
to 2x: to every couple of values of « and @ corresponds one
point of the plane, and one only.

5. The number of systems of co-ordinates is infinite. In
general, the position of a point in a plane is determined by
the intersection of two lines traced in
this plane. Let 4', 4", A", ... (Fig.
6) be a first system of lines of the
same kind, corresponding to the sev-
eral values u/, u', u'", ... of the variable
w; B', B", B", ... a second system of
S lines of the same kind, correspond-

ing to the several values v, DUAGIUATS
of the variable v; any arbitrary point of the plane is defined by
the two lines which meet in this point, and the particular
values which it is necessary to give to the variables u and
v, in order to determine these two lines, are called the co-ordi-
nates of the point. The totality of these two series of lines
constitutes a system of co-ordinates.

In the first system which we have studied, each series of lines
is composed of right parallel lines; hence the co-ordinates were
given the name rectilinear co-ordinates.

In the polar system, the first series of lines is composed of
halflines emanating from the pole O, and positioned by the
variable angle o, which they make with the axis 0X (Fig. 4);
the second system of concentric circles described about the
point O as center with the variable radius p.

Fig.6.
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In the first bi-polar system each series is composed of con-
centric circles (Fig. 5). In the second, each series is composed
of half-lines emanating from one of the points F or F".

REPRESENTATION OF LINES IN A PLANE BY EQUATIONS.

6. Let AB be any line whatever, straight or curved, in the
plane (Fig. 7); draw in the plane two straight lines OX and
0Y, and designate by x and y the two co-

¥
ordinates OPF and PM of any point M of 7
the line; when the point M is moved along »
the line, the two co-ordinates vary simulta-
. . 2 i
neously ; if an arbitrary value be assigned
B X

to OP, the magnitude of the corresponding
ordinate MP is perfectly determined, and Fig. 7.

the variation of the abscissa controls that of the ordinate. That
is, the ordinate MP is a function of the abscissa OPF; the char-
Jacter of this function depends on that of the line. If the line is
defined geometrically, an equation between @ and y, serving to
define the function y, can be deduced from the geometric defini-
tion of the line. The equation which is found in this manner
is called the equation of the line.

7. Conversely, let there be given an equation
F(x, )= 0,

between the variables @ and y; each pair of real values of x
and y, satisfying this equation, determine a point of the plane.
Let a, and 7, be a pair of real values of x and y satisfying
the equation; if x begin with the value w, and vary in a con-
tinuous manner, one of the values of #, beginning with y,, will
also vary in a continuous manner, and will in general be real
as long as @ is restricted to varying between certain limits:
the point, of which the co-ordinates are « and 7, will deseribe
in the plane a continuous line. Thus, the totality of the real
solutions of an equation in two variables is, in general, repre-
sented by a line in a plane.

8. What has been said concerning rectilinear co-ordinates is
applicable to every other system of co-ordinates. In the polar



14 PLANE GEOMETRY. BOOK 1.

system, where the point M is on the given line, the radius
vector p varies with the angle o; it is a function of o, and the
line is represented by some equation between p and w.

9. The representation of figures by equations is the object
of Analytical Geometry, and in it the results of algebraic cal-
culation are applied to their study. In Analytical Geometry
the student is occupied with three fundamental questions:
given a figure defined geometrically, determine its equation
conversely, given an equation, determine the figure which
corresponds to this equation; finally, study the relations which
exist between the geometric properties of the figures and the
analytic properties of the equations.

The examples which are given in the following chapter will
show how lines may be represented by equations.
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CHAPTER II

EXAMPLES.

In general, the geometric definition of a curve determining
each of the points corresponds to a certain system of co-ordi-
nates; if the particular system implied by the definition be
chosen, the equation of the curve is the immediate algebraic
translation of its geometric definition.

CIRCLE.

10. The circle is the locus of all points equally distant from a
Jized point called the center. It is described by means of a com-
pass; one foot being placed at the
center, the other will trace the circum-
ference.

If the center O be taken as pole, and

A

”
Y

any right line OX as polar axis (Fig. 8), C j %,

and r represent the length of the radius,
the equation of the circumference in
polar co-ordinates is Fig. 8.

@) p=T
since the length of the radius vector is constant and equal to r
whatever value the angle » may have.

Let us now seek the equation of the circle in rectilinear
co-ordinates. If two rectangular axes OX and OY passing
through the center be taken, the right triangle OMP gwes
immediately the relation

@ oty =r
which exists between the two co-ordinates « and y of any point

M of the circumference. This is the equation of the circumn-
ference in this system of co-ordinates.
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ELLIPSE.

11. The ellipse is a curve such that the sum of the distances of
each of its points from two fived points is constant. The two
fixed points are the foci of the ellipse.

Let 2 a represent the sum of the distances of any point of
the ellipse to the foci, and 2¢ the distance FF" between them.
The points of the ellipse can be constructed by describing a
circle with arbitrary radius v about one of the foci as center,
and a second circle about the other focus as center with radius
v equal to 2a — u. The points of intersection M and M’ of
the two circles belong to the ellipse. In order that the two
circles intersect, it is necessary that the longest radius be no
longer than a + ¢, and the shortest no shorter than a — c.

The points M and M being symmetrical with respect to the
line FF', this line is an axis of curve. The right line BB/,
perpendicular to FF' at its mid-point O, is a second axis.

The points in which the axes cut the curve are called sum-
mits. The summits 4 and A' are obtained by taking the
distances FA, F'A' equal to @ —c. The summits B and B,
situated on the second axis, are deter-
mined by describing a eircle with radius a
about one of the foci as center of a circle.
The distance OA is equal to a, and the
distance OB, which is designated by b, is
equal to Va? — ¢ Instead of defining
the ellipse by the lengths 2'a and 2¢, as
in the preceding, it can be defined by
means of the lengths 2a and 2b; hence, c =Va®— b The
point O, the mid-point of FF', is the center of the curve.

12. We now derive the equation of the ellipse. The system
of co-ordinates used is the first bi-polar system (§ 4); if the
position of each of the points of the plane is determined by
its distances from two fixed points F and F, the ellipse will
have for its equation,

@) utv=2a
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In the second bi-polar system the equation has also a very
simple form ; if « and B8 represent the two co-ordinate angles
MFF', MF'F, and 2 p the perimeter of the triangle MFF", then

e«_ [(p=20)(p—u B_.[e—20(p—v).
S B = R

whence,

tan & B_p—2c_a—c,
(9] an 2tan2 N

13. Finally, the equation in rectilinear co-ordinates is con-
sidered. Take the two axes of the
curve as axes of co-ordinates (Iig.

10); the lengths PF and PF' being X
equal to ¢ — and ¢+ «, the right- > g

angled triangles FMP, F'MP, give o P F X
u=Vy2+(c—m2) .
v=Vi+ (¢c+ )% Fig. 10.

By sibstituting the values of » and v in equation (1), we
obtain the equation

3) Vit (c—a) +Viyi+ (c+a) =20

Transposing the first radical to the second member and
squaring, gives '

P+ (c+a)l=4a+9+ (c—2)*—4da Vi + (c=x)%;

or, simplifying,

Q¢

aVy' + (¢ — x)? = a® — cx.
Squaring and transposing lead to the equation,
4 . @y’ + (o — ) a? = a? (a* — ).
However, equation (4) is not equivalent to equation (3); it
is equivalent to the four equations )
ut+v=20, u—v=2q —ut+v=2a0, —u—v==2a,

which are obtained from equation (3) by changing the sign of

the radicals. The equation — » — v = 2 @ has no real solution.
B

P

V4
1\ ) :
- A -
g LI O R
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The equation v — v =2a, and — v 4 v =2a, do not have real
solutions if one suppose 2a >2c¢; because the quantities u
and v represent the distances of the points F and F' from
a point in the plane whose co-ordinates are  and y, and the
difference of these distances cannot be equal to the length 2a,
greater than the distance 2¢ or FF'. Thus, when real solu-
tions only are considered, the equation (4) can be regarded
as equivalent to equation (3). The constant sum 2a being
greater than the distance between the foci 2¢, one can put
a? — & =V, and the equation of the ellipse reduces to the form
atf + bt = a?b?, or

.’1)2 2
6)) ?+3é_?=1.

HYPERBOLA.

14. The hyperbola is a curve such that the difference of the
distances of each of its points from two fixed points is constant.
The two fixed points F and F' are the foci of the hyperbola.

The hyperbola, like the ellipse, has two axes of symmetry,
.the right line, FF' (Fig. 11), and the perpendicular, BB', to
7 this line at its mid-point O.
: It is composed of two distinet
branches. The points of a
branch of a hyperbola can be
constructed by describing a
cirele with an arbitrary radius
uw about I" as a center, and a
/. second circle with a radius v
7 A equal to 2a + u about F'as a

Fig. 11.. center. In order that these
circles intersect, it will be necessary that u be greater than
¢ —a. In a similar manner a second branch may be found.
The point O, the middle of FF', is the center of the curve.

The first axis intersects the curve in two points only, namely
A and A', which are its vertices and are determined by taking
0A = 0A' = a; this axis is for this reason called the transverse

axis.

N,
2

f
I
J
i
:
i
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i
i
1
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In the first bi-polar system, if » and » represent the distances
of any point of the curve from the foci ' and F', the two
branches of the curve have respectively for their equations
€ v—u==2a.

In the second bi-polar system the equations of the two
branches are

o o
tan - tan;
@) 2 c¢c+4a 2 ¢c—a
2 = 9 = .
c—a c+a
tan’g tang +

15. If the two axes of the curve are taken as axes of
co-ordinates, the equation of the hyperbola in rectangular
co-ordinates will be

ViE+ e+ 2 —ViP+ (c—a) = + 2a.

By repeating the transformation of (§ 13), one obtains the
integral equation a®? 4 (a® — ¢*) @* = o’ (¢’ — ¢*), which we have
already obtained for the ellipse.

This equation, as has been remarked, is equivalent to four
distinet equations v —w = + 2a, v+ v = £ 2a; but in the
given case 2a being smaller than 2¢ the last two equations
have no real solution. Placing ¢ —a*= 10" the equation
becomes .,

r_y__
3) T i,

Tt is well to observe that, in the rectilinear system, the two
branches of the hyperbola are embraced in the same equation
(3), while in the first bi-polar system, one of the branches is
represented by the equation v —u = 2a, the other by v —v =
2a. It is also necessary to have two distinct equations in the
second bi-polar system.

PARABOLA.

16. The parabola is a curve every point of which is equally
distant from a fized point called the focus and a fized line called
the directrix. '
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The perpendicular drawn through the focus to the directrix

K

is an axis of symmetry of the curve. The
point 4, middle of DF, is the vertex of
the parabola. The curve lies wholly to
the right of a line drawn through A4,
parallel to ‘the directrix. Any point of
the curve can be found by drawing a
line MM' parallel to the directrix, at the
distance DP greater than 4D and describ-
ing a circle with a radius equal to this
distance DP about the focus as center
(Fig. 12).

17. The definition of the parabola suggests a system of co-
ordinates, which has not yet been considered. Any point, M,

7] Y

E|

Fig. 13.

<

of the plane can be determined by the dis-
tances MF and ME from the fixed point
F and fixed line DD' (Fig. 13). The posi-
tion of the point M will be determined by
the intersection of a circle described about
Fas a center and a right line parallel to
DD'. Tf we call « and » the two co-ordi-
nates of the point M, the parabola will
have for its equation, in this system,

U =".

18. Let A, the vertex of the palabola, be,taken for the
origin of rectangular co-ordinates, the axis of the parabola for
the z-axis and the perpendicular AY for the y-axis. Repre-
sent the distance FD of the focus from the directrix by p:

then is

2
(1) v=AP+4D=2+5, u= y2+<w_g),

and the equation of the parabola becomes

or (2)

N+ (s =244

y2 = 2]):1:.
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19. Before proceeding further the definition of a tangent to
any eurve whatever will be given. In elementary geometry,
a line is said to be tangent to a circle when it has but one point
in common with the circumference, but this definition cannot
be generalized and it will be convenient to define a tangent in
another manner. Let M be a
given point on a curve (Fig. Y e K]
14); through this point and a
neighboring point M' draw an
indefinite right line; in the figure which we study, the direc-
tion MM has, in general, a limiting position M T, as the point
M' approaches the point M as alimit. The right line M T is
called a tangent to the curve at the point M. The perpendicular
to the tangent at this point M is called the normal to the curve.

From this definition, it follows that the tangent to the circle
at the point M is perpendicular to the radius OM at its ex-
tremity (Fig. 15) ; because, in the isosceles

Fig. 14.

triangle MOM', the angle OMM' is equal M T
to a right angle less half the angle MOM'. w
When the point M’ approaches contin-

uously toward the point M, the angle at 0

the center approaches zero, and the angle
OMM' becomes right-angled. The normal
to the circle in M is the radius MO. Fig. 15.

C1ssoIp oF DIOCLES.

20. If one be given a circle, a diameter AB, a tangent BC
at the extremity of this diameter (Fig. 16), and if a secant
AE be made to revolve about the point 4, on which a length
ADM be then equal to the distance DE comprised between the
circle and the fixed tangent, the locus of M is a curve which is
called the cissoid.

If the movable secant start from the position AB and
revolves about the point 4, from 4X toward the perpendicular
AY, the length DE, and consequently AM, increase indefi-
nitely, and the point M will describe an infinite branch MM’ of
the curve. By revolving the movable secant from the other side
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of AB, a second branch of the curve equal to the first is
. obtained. The line AB is an axis of
\ the curve, since the two branches are

y = symmetrical to this right line.
The tangents to the two branches
A at the point A4 coincide with the axis.
» E’ Because, if the secant revolves about
D

the point 4 in such a manner that
A\ the chord AM or DE becomes zero,
it tends toward the limiting position
7 X AB; therefore AB is the tangent at
A. The point 4 is called a cusp ‘or
turning point. It is also apparent
that the two branches of the curve
continually approach the line CC"
o In fact, consider the secant in the
position AE'; if from the line AE'
LR L the equal lengths AM' and D'E' be
subtracted alternatively, then will M'E'= AD'. The chord
AD' diminishes continually and approaches zero; it is equal
in length to M'E', therefore for a greater reason does the per-
pendicular M'H approach zero. The right line CC', which
the curve continually approaches, is called the asymptote.
The cissoid was conceived by the Greek geometer, Diocles,
to solve the problem, to construct two mean proportionals
between two given lines.

@ 21. Let us seek the equation of the
cissoid in polar co-ordinates; take the
point 4 as pole and the right line AB
for the polar axis. Call ¢ the diameter
of the given circle, p and o the co-ordi-
nates of any point M of the curve (Fig.
17). In the right-angled triangles ABE,
ABD, one has

AE =% AD=acosw;
COS @

2

a a sin” w
whence, p=DE=AE——AI)=————aOOSw=-LE—-
€os @ 08
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Hence the cissoid has for its polar equation,

@)

Let us now derive the equation in rectangular co-ordinates;
take the point A for the origih, the right line AB for the
w-axis, and a perpendicular for the y-axis. From the triangle
MAP, one gets

o= pCoS o, y = psinw, pP=a + %

_asin’e
COS @

if, in equation (1) cosw be replaced by T sinw by Y, it
P P

becomes p%x = az?, then p* by a®+7° the equation of the
cissoid in rectangular co-ordinates will be

"2 (e —a) —a*=0.

22, Having already derived the equation of the cissoid in
rectangular co-ordinates from its geometric definition, it is
proposed to construct the curve from its equation. Solving
the equation (2) with respect to y, one has

e

a—a

The ordinate is real for all values of the abscissa comprised
between x = ¢ and « = @ and for those values only; therefore
the curve lies wholly between the y-axis and the parallel CC'
erected at the distance a (Fig. 16). As & increases from 0 to
a, the numerical value of y increases from 0 to oo, which
determines a branch of the curve beginning at the origin A
and ascending indefinitely. At the same time the distance
M'H = a — a of a point on the curve to the line BC' approaches
zero, which shows that the line BC is an asymptote of the
curve. Since to each value of x there corresponds two equal
values of y opposite in sign, the curve is composed of two
branches symmetrical with respect to the axis AX.

STROPHOID.

23. A right angle YOX (Fig. 18) and a fixed point 4 on
one of the legs, being given in a plane, draw from the fixed
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point 4 any line 4D, which cuts the side OY in D, and begin-
ning at D, lay off to the one side and to the other on this line,

b3 ¥ 3 the lengths DM and DN equal to
OD; the locus of the points M and
p N is the strophoid.
v When the movable line occupies
N the position 40, the two points M
M and N fall together in O. If the
/

K e line moves so that the point D
V ascends continually on OY, OD in-
creases and the point IV describes
the infinite branch ON of the curve.
The point M approaches continually
the point 4, because the points M
¥ 'y and N are obtained by describing
Fig.18. a circle with radius DO about D
as a center; as the point D recedes continually from O, the
angle OAM approaches a right angle and the point M coin-
cides with 4. The curve has evidently another branch sym-
metrical to the first with respect to the axis OX.

The point O, in which the two branches of the curve cross,
is a double point. The tangents to the two branches of the
curve at this point coincide with the bisectors of the angles
YOX and YOX' Because the angle ODE, exterior to the
isosceles triangle DOM, is equal to the sum of the two oppo-
site interior angles and, consequently, to two times the angle
DOM; similarly the angle ODA is equal to two times the angle
DON. As the line AD approaches 04, the obtuse angle ODE
decreases and tends toward a right angle; therefore the half

"

angle YOM decreases and tends toward Z The acute angle

ODA increases and tends toward a right angle; hence the half

angle YON increases and approaches Z as its limit. Whence

it follows that OM and ON are perpendicular to each other
in their limiting positions as tangents at O. It is to be noticed
further that the arec OMA is below, while the arc AON is
above its tangent.
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The tangent at A is perpendicular to the axis OX, because
as the point D is continually elevated, the chord AM becomes
finally perpendicular to OX.

On A0 produced take OG = 04, and at the point G erect
the perpendicular HH'. This line is an asymptote to each of
the infinite branches of the curve, for the distance NE, equal
to AM, approaches zero.

24. To derive the equation of the curve in polar co-ordi-
nates, take the point O as pole and the line 0.4 as polar axis ;
the polar co-ordinates of the point M are p= OM, v = MOA;
in the isosceles triangle DOM, each of the angles DOM, DMO

is equal to %—— w, and the angle ODM to 2 o; the angle 0AM,
complement of the preceding, equals % — 2o

If a represent the length 04, it follows from the triangle

OMA that
B_sin<7§r—2w)’
* sin (‘g = )
whence -
<1>

The co-ordinates of the point N satisfy the same equation.

To derive the equation of the curve in rectangular co-ordi-
nates, take for axes the two lines OX and OY. If, in the pre-
ceding equation, put under the form p cos v =a (cos’  — sin’ w),
cos o and sin o be replaced by their values 5 3—/, one gets
ap? = a (2 — y?); putting in the place of p* its value a* 4 37, the
following equation of the third degree is obtained:
@ z(@+y) —a@—y) =0

25. The curve can now be constructed by means of its equa-
tion in rectangular co-ordinates. Equation (2), solved with

respect to y, becomes
et /a —x
y= a+
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In order that the ordinate y be real, it is necessary that the
quantity under the radical be positive. If 2 be given positive
values, the denominator being positive, the numerator will also
be positive so long as z is less than a. If @ be given negative
values, the numerator being positive, the denominator will
be positive so long as the absolute value of « is less than a.
Thus the abscissa  can vary from — a to 4 a. If, therefore,
we begin at the origin and lay off on the a-axis, to the right
and to the left, the distances OA and OG equal to a, and at
the points G' and A erect IH', KK' parallel to the y-axis, the
curve will be wholly comprised between these two parallels.
The form of the curve will vary in accordance with the varia-
tion of the function

- fa—a; \
y= at+z

As z varies from 0 to «, the ordinate y takes finite values.
Tt is zero for # =0 and also for 2 =a. This furnishes the
branch OM.A of the curve, beginning at the point O and end-
ing in the point 4. As @ varies from 0 to — @, the ordinate y
is negative and varies from 0 to — . This furnishes the
branch OXN’, which begins at the origin and descends con-
tinually, approaching indefinitely the line HII, which is an
asymptote. This branch ON'is a continuation of the branch
AMO.

By changing the sign of the radical, the branch AM' 'ON,
symmetrical to the first with respect to the z-axisy is obtained.

LivacoN or PASCAL.

26. Through a point A on a circle, draw any secant AD, on
which beginning at D), where it cuts the eircle again, lay off a
constant length DM or DN; the locus of the points M and N
(Fig. 19) is a curve called the Limagon of Pascal.

The entire curve will be traced by supposing the radius
vector to coincide with the diameter AB of the circle and then
to revolve through an angle = in either direction. The whole
curve will also be traced by giving the radius vector a com-
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plete revolution, and laying off a constant length in the direc-
tion of radius vector, beginning with the point in which this
radius vector or its pro-
longation intersects the
circle. The curve takes
three different forms ac-
cording as the constant
length o is greater, equal
to, or less than the diam-
eter b of the circle.

1° The first case con-
sidered is when the length
a is greafer /than b. 1If
the radius vector coin-
cides with AB, it will be
necessary to start from the point B. Construet on AB a length
B@ equal to ¢, which determines the point & of the locus (Fig.
19). If the radius vector revolves from the point A and takes
the direction AD, the point M is determined. When the
radius vector has revolved through a right angle, the point D
coincides with A, and the point M with M. Continuing the
revolution of the radius vector to the position AD' and pro-
longing it, it intersects the circle in D;; it is necessary to start
from this point Dy, and lay off in the same direction AD', a
length DM, cqual to a. When the radius vector having
revolved through the two right angles occupies the position
AX', the point D), coincides with B and the point M, with H;
thus the are, M'M, I, a continuation of GMM', is constructed,
and is, moreover, exterior to the circle. The radius vector
revolving beyond AX' through two more right angles returns
to its initial position AX; the moving point describes the arc
HN'Q, symmetrical to the arc GMIH, with respect to the line
XX'. In this manner, by a continuous movement, the point
describes the entire curve.

2° Suppose that the length a be equal to b. When the
radius vector, starting from the initial position AX, moves
through two right angles, the point M describes the arc
GMM' A (Fig. 20), which ends in the point 4. The tangent

Fig. 19.
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at 4 is the right line AX’, limiting position of the secant 4M,.
The point 4 is called a cusp.

3° As the last case to be considered, let a be less than b.
When the radius vector, starting from the initial position, has

Fig. 20.

revolved through one right angle, the point M describes the
arc GMM' (Fig. 21). If now the radius vector takes the di-
rection A D', the point D moves to Dy, the point M falls in M.
But when the radius vector assumes a direction AD'", such
that the chord D,4 is equal to a, the point MM, falls then in A,

- Fig. 21.

and the curve will be tangent to the right line AD". As the
radius vector continues its motion, the chord D;4 becomes
greater than @, and, if the length DM is taken equal to «,
one has a point M, situated within the circle. Finally, as the
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radius vector takes the direction AX', the point M falls in H.
Thus the interior arc AM;H is the prolongation of the exterior
arc GM'A. The other half of the rotation gives the are
HNAN'G symmetrical to the first with respect to the line
X'X, and completes the curve.

27. Let us obtain now the equation of the curve in polar
co-ordinates. Take the point 4 as pole, and the line AX
as polar axis. Call o the angle which the radius vector
makes with the direction AX. When the radius vector has
the position of the line ADM, the right triangle ADB gives
AD = b cos o, and, consequently,

p=DM+4 AD =a+b cos o.

When the prolongation of the radius vector intersects the
circumference, as is the case in the position AD', the angle o
is the angle XAD'; the right triangle BAD, gives

DA =—Dbcose.
and hence,
p= DM — Dd=a+bcoso.

But, if the radius vector, in Fig. 21, has the direction AD",
the length is measured in the opposite direction to .4D'".
Therefore, the radius vector of the point M will be AM;
affected with the — sign; whence, one has

p=—AM;=D;M; — AD;= a + b cos o.

Thus, the entire curve is, in any case, represented by the
equation
@ p=a+bcoseo.

Tf the point 4 is taken as origin, the diameter AB as axis
of w, and a perpendicular to it at 4 as the axis of y, then the
equation of the curve in rectilinear co-ordinates will be

@ @ +y — ) = @’ (@ + y).

Equation (2) is derived from (1) by putting ; for cos w and

#*+y* for p? (§ 20), and squaring in order to remove the
radical.
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28. The same curve may be obtained by another process.
Being given a circle G and a fixed point 4, think of a mov-
able tangent C'M revolving on the circumference of the circle,

and drop from the point 4 a per-
y pendicular AM on this tangent
B A (Fig. 22); find the locus of the
point M. There will be three cases
|/ A4 to consider, according as the point
& G lies within, on, or without the cir-
X . cumference of the circle. Suppose,
Rt < for example, that the point A lies
without the circumference. When
the tangent touches the circumfer-
ence at ¢, the perpendicular from
A coincides with the diameter AG and the point G is a point
of the locus. As the tangent revolves about the quadrant
GCC'", the point M describes the arc GMM' of the curve.
When the tangent descends to the position C"A, the point M
describes the arc M'A. The tangent continuing its motion
along C"II, the foot of the perpendicular falls below the
diameter and describes the arc ANII of the curve. The tan-
gent has revolved about the semi-circumference G'C'H'; when
the tangent revolves about the lower semi-circumference, the
point M will trace a portion of the curve symmetrical to the
first half. ‘

In order to get the equation of this curve in polar co-ordi-
nates, represent the radius of the given circle by.t, the dis-
tance AB by b, and draw through the center B, of the circle, a
line BD parallel to the tangent CM. Whence it follows

Fia. 22.

p=A4D + DM =0bcosw + a.

This equation is identical with equation (1) of § 26; therefore
the curves which they represent are identical.

Moreover it is easy to verify geometrically this identity.
The angle D being a right angle, the locus of the point D) is the
circumference described on AB as a diameter. The point M
will therefore be obtained by prolonging the chord 4D till DM
is equal to BC.
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THE RoseE or FOUrR BRANCHES.

29. Being given two lines OX and OY at right angles to
each other, on which the extremities of a right line P@ of con-
stant length are free tomove,
find the locus of the foot of
the perpendicular OM drawn
from O to PQ (Fig. 23).
When the line PQ coincides
with O, the point M coin-
cides with O and the chord
OMtakes the direction OX;
therefore the tangent to the
arc OM at O coincides with
OX. The point Z, the mid-
point of PQ, describes a cir-
cumference of which the cen-
teris O, and the radius equal
to a; if the constant length
be represented by Z2a, the perpendicular OJM is less than the
oblique line OT; therefore the distance OM is a maximum
when the right line P is perpendicular to the bisector OA.
As the movable line PQ continues its motion, it will assume a
position P'Q' symmetrical to PQ with respect to the bisector
0A, and one finds the arc OM'A4 the symmetrique of the arc
OMA with respect to 0A. The same curve is reproduced in
each of the other right angles. Hence the curve has four axes,
the two fixed right lines OX, OY, and the two bisectors A'4,
B'B. The point O is the center of the curve.

Fig. 23.

30. If the point O be taken as pole and OX as the polar
axis, it follows from the right-angled triangles OMP, OPQ,
that

p= OPcosw, OP=2asine; therefore
@y . p=asin2e.

In rectangular co-ordinates the curve is represented by an
equation of the sixth degree

@ @ + ) — 4o’y =0,
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which follows at once from equation (1) by substituting re-

" Xy "
spectively for cos w, sin w and p, 5 %, and p =V a? 4 y% Squaring
and transposing.

TANGENTS.

31. The preceding examples show how to construct a curve
from its geometric definition and to derive finally its equation.
It is possible also in some cases to deduce from the geometric
definition of a curve a simple construction of a tangent to it.
Two remarkable examples will be given, —the curves described
by the various points of a plane figure, which moves in a plane,
and the locus of the feet of perpendiculars drawn from a fixed
point to the tangents to a given curve. The construction be-
longing to the first class of curves depends on the following
proposition :

LeMMA.— Every plane figure can be brought from one position
to another in its plane by a rotation about a fixed point.

It is first to be noted that the position of a plane figure in a
plane is determined when one knows the position of two of its
points. Let 4 and B be the two points of the figure in its first
position (Fig. 24), A" and B' the same points in a second posi-

tion; the line 4B, of constant length,

, is transferred to A'B'. Erect perpen-
/"\\ 5 diculars to AA', BB' at their mid-
Sy points; the perpendiculars intersect in

a point I. The two triangles AIB,

, A'IB' are equal, since their sides are
equal each to each, 4B equal to A'B/,
IA4 and IA'are equal, being oblique
lines drawn from a point in a perpendicular cutting off equal
distances from its foot, and similarly /B and IB' are equal;
therefore the two angles AIB and A'IB' are equal; by sub-
tracting the common angle A'IB, it follows that the angles
AIA', BIB' are equal. Suppose now that the figure is revolved

about the fixed point 7, through the angle AIA4', the radius 74
will fall on 74’ and the point 4 on A’; in the same manner

I
Fig.24, ¥
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the line IB, revolving through the angle BIB'equal to AIA4',
will fall on IB'and the point Bon B'. Therefore this rotation
about the point I brings the figure from its first position to the
second.

32. TuroreM. — If one considers the curves described by the
different points A, B, C,---, of an invariable plane figure which
moves in a plane, the normals to these curves, at points which
correspond to the same position of the figure, intersect in the
same point.

Suppose 4, B, C, .-+, to be different points of the figure in any
position whatever, A, B!, (', ..., these same
points in a new position. After what has
been said, we can bring the figure from the
first position to the second by revolving it
about a certain point I;; by this motion the
lines 1,4, I,B, I,C-.., describe angles respec-
tively equal, and finally coincide with 1.4,
LB, 1,(' ... (Fig. 25). The lines MI, NT,
PI, ..., perpendicular to the ‘chords A4’
BB, CC', ..., at their mid-points, all intersect in the point I,.

Suppose now that the second position approaches continu-
ally the first, and that the point I, tends toward a limiting
position I; the chords A.A', BB, CC',..., prolonged, become
tangents to the curves in A, B, C, ...; the perpendiculars
MI, NI, PI, -+, to the chords coincide with the perpendicu-
lars to the tangents at A, B, C,---; that is, with the normals
to the curves. Hence the normals to the curves described by
A, B, ..., at these points all intersect in the same point I.

CororrArY. — If one could draw the normals to the curves
described by the two points 4 and B of the movable figure,
these two normals determine by their intersection the point
I; by joining the point I to any third point (), one will have
a normal to the curve deseribed by C'; a perpendicular to the
normal at C' will be a tangent. This is the case if the two
points describe straight lines or circumferences of circles.
In the next section some applications of this method will
be given.

©
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33. In case two points of the movable figure describe right
lines, it will be shown that the curve described by any other
point is an ellipse; the preceding method will enable one to
construct a tangent to the ellipse.

Suppose, then, that the two extremities of a stragight line
CD of constant length lie on two lines OX, OY at right angles
to each other, find the locus traced

Y
by a point M of this line (Fig. 26).
Y S S I When the line OD ecoincides with
z N OX, the point M will fall on 4 at
P D 4 a distance 04 equal to DM ; as the
o 77 1R . extremity D slides along OY start-
24{/ TENT ¥ ing from the point O, the point €

approaches the point O, and the
point M describes the arc AMB.
When the line C'D coincides with OY, the point M will fall
on B at a distance MB equal to CM. The same arc is repro-
duced in each of the four right angles, and the curve thus
described is an ellipse.

For, take the two fixed lines OX, OY as axes of co-ordinates,
and call « and b the two constant lengths DM and CM, « and
y the co-ordinates of the point M, then the similar triangles
MPC, DQM give

MpP _CM k b & P

D0 D " \/@y_—wf&’ or Gtp=1
which is equation (5) of § 13. Thus, the curve is an ellipse
whose axes 2« and 2 b coincide with the two given rectangular
axes.

Fig, 26.

34. It is not necessary that the point M be restricted to
lying on the movable line between the points €' and D; it can
be situated on the prolongation. Consider the line "D’ of
which the two points €' and D' slide on the two perpendicular
lines OX and OY; and find the locus deseribed by the point
M. If a and b be put for the distances D'M and C'M, the
similar triangles MPC', D'QM will give, as in the preceding,

MP _ MC Y b

D0 D’ " Jp—2 a
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The construction of a small instrument called an elliptical
compass depends upon this property.

The two feet are placed on the points C' and D, taken at
wish on the line CD, and a pencil point at the point M; the
two feet slide in grooves placed on the perpendicular lines OX
and OY’; the pencil point M describes by a continuous move-
ment an ellipse.

Tt is evident that a straight line is its own proper tangent.
The points C and D of the movable plane describe the lines
OX and OY; the perpendiculars CI and DI to these lines
determine the point I through which pass the normals to the
curves described by the various points of the movable figure
for every position of this figure. The line IM is therefore
normal to the ellipse at M described by this point; the line
drawn through M perpendicular to the normal to the ellipse
at that point will be a tangent.

35. Imagine two points E and F of the movable plane to
slide on any two fixed straight lines OA and OB (Fig. 27).
The perpendiculars to these lines at
the points E and F determine the
point of intersection I of the nor-
mals. The circle described on OI
as a diameter passes through the
points E and F; the line EIF" and
the angle EOF being constant, the
diameter of the circle is constant.
Suppose that the circle is situated
in the movable plane, and controlled
in its movement by the motion of the line EF'; this circle
will always pass through the point O; every point D of the
circumference will describe a straight line OY, since the
inscribed angle FOD, which corresponds to the constant arc
FD, is itself constant.

Consider any point 3 of the movable plane; draw a line
through this point and the center K of the circle; the
two points, € and D), the extremities of the diameter M,
describe two perpendicular lines OX and OY’; whenee it fol-
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lows that the point M describes an ellipse whose axes are two
times the distances CM and DM, and have the same directions
as OX and OY. The line I} is normal to the ellipse at M.

CONCHOID.

36. Being given a point 4 and a
straight line CC', draw through the
point 4 any secant AD, and, begin-
ning at the point D where it meets
the line CC', lay off on either side a
given length DM and DN; the locus
of the points M and N is the con-
choid (Xig. 28). 1t can easily be
seen that this curve has two infi-
nite branches, one on each side of
the line CC', and asymptotic to this
line. The left branch will have dif-
ferent forms according as the given
< length DM is less, equal to, or greater

Fig. 28. than the perpendicular drawn from
A to the line CC'.

This curve belongs to the preceding category : one can regard,
in fact, the line 4D as revolving in the plane, in the following
manner, one of its points D describes the line C'C', while the
line itself passes through the point A4, about which it revolves;
a point M of this line describes a branch of the conchgid. Con-
sider the point of the movable line which is in 4, when the
line occupies the position AD; this point describes a branch
of the conchoid passing through the point 4 and tangent to
the line AD in this peint; the normal to this particular branch
of the curve is the line A7, perpendicular to 4. The normal
to the curve described by the point D is the line D1, perpen-
dicular to the line CC'; by drawing a straight line from the
point of intersection I of the two normals to the point M,
one obtains the normal IM to the curve described by the
point M; the perpendicular to IM at M is a tangent to the
curve.
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The limagon (§ 26) is a curve analogous to the conchoid;
it is sufficient to replace the line C'C' on which the point D
slides, by the circumference of a circle
(Fig. 29). Consider then the point of
the movable line which is in .4, when
the line occupies the position AD. This
point describes a curve passing through
the point A and tangent to the straight
line AD at this point; the normal to this
curve is the perpendicular A7 The nor-
mal to the circumference described by the
point D is the diameter DI; the point of intersection I of the
normals is therefore the extremity of the diameter which passes
through the point D; the straight line IM is a normal to the
curve described by the point M.

Fig. 29.

37. The same construction is also applicable to the eissoid
and strophoid; but it is necessary beforehand to give these
curves another geometrical defi-
nition. Consider a right angle )
ABC (Fig. 30), of which a side 5 ¢ K
BA passes through a fixed point g
4, and a point C on the other
side slides on the line EE'; it is
further supposed that the length
BCis equal to the distance A0
of the point 4 from the line
EE'; the point M, mid-point of o &
BC, describes a cissoid, and the Fig. 30.
vertex B of the right angle a strophoid.

In fact, the two right triangles ABC, AOC being equal, the
angles CAL, ACL are equal, and the triangle ALC isosceles;
since AB is equal to CO, one has also LB = LO; therefore
the locus of the point B is a strophoid (§ 23).

The triangle ACP is also isosceles; join the point M to the
mid-point D of A0 and prolong this line till it is intersected
in K by CK, drawn parallel to AO. The triangle CMHK being
isosceles, it follows that CK = CM = AD. Finally, describe

E| G
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a circumference about the point O as a center with a radius
OD; let F be the extremity of the diameter DO and H the
point of intersection of the circumference with DK, The isos-
celes triangle MCK is equal to DOH, DI = MK, whence
DM = KH; moreover, the line FG is tangent to the circum-
ference at #. Therefore the locus of the point M is a cissoid
having the point M for vertex and the line GG’ for an asymp-
tote (§ 20).

Consider now the point of the movable figure which is in
A, when the right angle occupies the position ABC; this
point describes a curve passing through the point 4 and tangent
to the line AB at this point; the line A7, perpendicular to AB,
will be a normal to this curve. Further, the line CI, perpen-
dicular to EE', is a normal to the curve described by the point
C; the point of intersection I of the two normals is the common
point of intersection of all the normals. Therefore the lines
IB and IM are normals, the one to the strophoid, the other to
the eissoid.

PEDALS.

38. The pedal of a given curve ADB is the locus of the foot
P of the perpendicular dropped from a fixed point O upon any
line MP tangent to this curve (Fig. 31). A neighboring tan-
gent M'P' will give a second point P' of the pedal. Let D be
the point of intersection of these two tangents; the circle
deseribed on OD as a di-
ameter passes thréough the
points P and P, and the
line PP’ is a secant of
the circle. Suppose now
that the point M' ap-
proaches indefinitely the
point M, the point D will
ultimately coincide with MM,
and the diameter OD with OM; the secant P’P' will at the
same time become tangent to the circle and to the pedal; the
normal to the pedal will therefore coincide with the normal to
the circle constructed on OMM as a diameter, and this normal

o Fig. 31.
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may be found by joining the point P to the point C, the mid-
point of OJ.

This construction may also be applied to the limagon, which
is the pedal of a circle (§ 28). DBut it is seen later (§ 30T7)
that the construction of the tangents to pedals is reduced to
the general method sketched in § 32.

EXERCISES.

1. A variable triangle ABC, whose vertex 4 is fixed and
the angle A constant, is inscribed in a given circle. Show
that the locus of the center of the circle inscribed in and
escribed about the triangle is represented by two limagons.

2. Show that the locus of the vertices of angles of given

magnitude, whose sides are tangents to two given circles, is
represented by two limacons.
"73. A variable circle touches a given eircle in a given point,
and a tangent is drawn common to the two cireles. Show that
the locus of the point of contact of this tangent with the vari-
able circle is a cissoid.

4. A variable plane moves in a fixed plane in such a manner
that two straight lines of the variable plane remain respectively
tangent to two circles of the fixed plane. Show that a point
on the fixed plane traces an ellipse on the movable plane.

5. Construct the curves which, in the first system of bi-polar
co-ordinates, are defined by the equation v + nv = a. Show that
of the three equations v +nv=a, v —nv=a, —u+nv=aq, in
which the two constants ¢ and n have the same values, two
alone define geometrical loci. These loci are closed curves,
the one within the other; one calls them the conjugate ovals
of Descartes. They are represented by the same integral alge-
braic equations in rectangular co-ordinates. On the line which
passes through the two poles there exists a third point, such
that by taking this point and one of the first as poles, the
equation preserves its form.

6. If, being given two circles, any secant be drawn through
a fixed point taken on the line of centers, and each center be
joined to one of the points of intersection of the secant with
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the circle, show that the point of intersection of these two
lines describes the ovals of Descartes.

7. The projection of the curve of intersection of two cones
of revolution, whose axes are parallel to a plane perpendicular
to the axes, is a system of the ovals of Descartes,

8. Construct the curve which, in the first bi-polar system,
1s represented by the equation wu . v = @, 2 @ being the distance
between the two poles. This curve is called the lemniscate.

9. Find the locus of the vertex of a triangle whose base a
remains fixed, and in which the other two sides b, ¢, and the
corresponding median m satisfies the relation b — ¢ = m /2
(lemniscate).

10. A straight line and a circumference each revolve with
a uniform motion about a fixed point common to the two lines,
the ratio m of the two angnlar velocities, is affected with the
+ or — sign, according as the rotations are in the same or
opposite sense; required to find the locus described by the
second point of intersection of the two lines.

Discuss the following particular cases :

m= %, or m =4}, the limacon of Pascal;
m= —1, or m =}, rose of four branches;
m= —1% or m=1%;

= & N — &
m=2  orm=2

11. Solve the same problems, taking for the revolving curves
two equal circumferences which revolve about a fixed point
common to them. o

Discuss the cases :

m = 2, limagon of Pascal;

m = 3, rose of four branches;
m=—2 5

m= — 3.



CHAP. III. CONCERNING HOMOGENEITY. 41

CHAPTER III*
CONCERNING HOMOGENEITY.

39. DerixtTION. — The function f(a, b, ¢, --+) is said to be
homogeneous with respect to the letters a, b, ¢, ---, when, on re-
placing « by ka, b by kb, ---, one has

f(kay kb, ke, ) =k"f(a, b, ¢, --+);

the exponent m being the degree of the homogeneous function.
The following are examples of such functions:

¢
avb 4+ bVe sin- -

—+ b
a? 42 ab, a’ a+Va @

a+b a+c @@+ 0’

the degree of the first is 2, of the second 1, of the third 0, of
the fourth —2.

One can easily see:

1° That the sum or difference of two homogeneous functions
of the same degree is a function of the same degree as the given
function ;

2° That the product of several homogeneous functions of
any degree whatever is a function whose degree is equal to the
sum of the degrees of the given functions;

3° That the quotient of two homogeneous functions is a
homogeneous function whose degree is equal to the excess of
the degree of the dividend over that of the divisor;

4° That the power of a homogeneous function is a homo-
geneous function whose degree is equal to the degree of the
given function times the exponent of the power;

5° That the root of any homogeneous function is a homo-
geneous function whose degree is equal to the degree of the
given function divided by the index of the root;
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6° That a transcendental function of a homogeneous funec :
tion of degree 0, is a homogeneous function, and of the degree 0.
For example, the functions
0 ab loo b+ Vat+ b*
« + 02/ °© a+b -

are homogeneous and of the degree 0; because if « and b are
replaced by ka and kD, the letter & disappears under the
transcendental sign. But if the quantity placed under the
transcendental sign, though homogeneous, were not of the de-
gree 0, the letter k could not be removed from under the
transcendental sign and the function would not be homoge-
neous.

Thus, the function sin (¢ + V/be) is not homogeneous, for
here sin (ak + Vbek?) = sin (@ + Vo)k.

When a monomial is rational and integral with respect to the
letters a, b, ¢, -+, the degree of the monomial with respect to a
letter will be the exponent of this letter in the monomial: the
degree of the monomial with respect to several letters is the
sum of the exponents of these letters. A monomial is always
a homogeneous function, of a degree equal to the degree of the
monomial; therefore the sum of several monomials of the same
degree is a homogeneous polynomial of this same degree. T'or
example, the polynomial

a®—4ath+5ab? —20

is a homogeneous function of the third degree, with respect to
the letters a and b.

40. Tn seeking the relations which exist between the lengths
of the various lines 4, B, C, ---, of a figure, one thinks of these
lines as being expressed in terms of a unit of length, which
usually is not specified and remains to be chosen at will. Re-
present by a, b, ¢, -+, the numbers which thus express the meas-
ures of the lines of the figure and suppose that one has found
between the numbers the relation

€)) fla,b,¢,+++)=0.
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" The steps made in arriving at this result being independent of
the unit of length, it is evident that this relation exists what-
ever be the unit of length. Call «, 3, y, -+, the particular values
of a, b, ¢, -+-, for the first unit; «', B, y/, .-+, the values of these
same quantities for another unit; the two sets of numbers
satisfy the relations

&) i S, By, ) =0,

(3) f(“') :8'; 7') "‘) =0.

But as the unit is changed the numbers vary proportionately,
of the sort that, if k& designate the ratio of the first unit to the
second, one has

al Bl ,yl

w —«-y:...:]g;

~whence ' =ke, B'=kB, y =ky---.
If these values are substituted in the relation (3) it becomes

4) S (ka, kB, ky, ) = 0.

Consider that the first unit is fixed and the second varies;
« B, y, --+, will be constant numbers and equation (4) will be
satisfied whatever this number ¥ may be.

Thus, if equation (1) is satisfied when the letters a, b, c, «--, are
replaced by «, B, y, «++, it will be satisfied when the letters are
replaced by ka, kB, ky, «--, whatever the number k may be.

41. The preceding condition is evidently fulfilled when the
first member of equation (1) is a homogeneous function of the
Jetters a, b, ¢, ---; because then one has

S ke, kB, Ky, -=) =E"f (& B, vy ++*) ;3
if the expression f(«, 8, vy, «++) is zero, the same will be true of
S(ke, kB, ky, ---) whatever k may be.

Conversely, in order that the previous condition be fulfilled,
it is necessary that the equation be homogeneous. The only
case considered here is that in which the equation is algebraic.

Suppose that f(a, b, ¢, ---) be an integral polynomial; if all
the terms are not of the same degree, there will be groups of
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them which will be of the same degree; call ¢(a, b, ¢, -+) the
collection of all the terms of the degree m, the highest,
¥(a, b, ¢, ---) the collection of all terms of the next degree n,
ete., the equation (4) becomes

Enp(a, By y, ++) + ENie, B, v, <) 4 e =0.

In order that this equation be verified, & being arbitrary, it is
necessary that there exist separately

(e B, v, ) =0, ¥, B, Y ) =0, .

If the unit to which the numbers «, B, vy, -, are referred is
arbitrary, then there must exist between the lines of the fig-
ures the homogeneous relations

¢((L, B’ ¥ ...) = O, ll;(((, b, c} ...) — O, 000,

Therefore, if equation (1) is not homogeneous it is equivalent
to several equations, separately homogeneous.

42. 1t can happen that a homogeneous equation may be
satisfied, where a particular unit has been chosen, without the
parts which compose it being zero separately; however, if the
unit be changed, the equation will no longer be satisfied.

This is illustrated by the example: Determine the dimen-
sions of a cylinder whose total surface shall be equivalent to
that of a sphere of radius .4 and its volume to that of a sphere
of radius B. v

Let X be the radius and Y the height of the eylinder; call
a, b, x, y, the measure of the lines 4, B, X, Y, referred to any
unit whatever; the unknown quantities will satisfy the two
equations:

%) 227 4 22y —4a’ =0,
(6) 2y — 40P =0.

Each of these equations is homogeneous; the one is of the
second degree, the other is of the third. If they are satisfied
when the lines are measured in a certain unit, the same will

be true when they are referred to another unit.
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The unknowns x and y satisfy also the non-homogeneous
equation
) a2 +2xy —4a>) + (@Py — 4 V%) =0,
which is obtained by adding equations (5) and (6) member to
member.

Consider now equation (7), disregarding its origin. Four
lines, A, B, X, Y, can be found such that, if they be measured
in a particular unit, the numbers obtained verify this equation
without annulling separately the two parts. Suppose, for
example, that the lines referred to a first unit have for meas-
ures the four members a =1, b=3, =2, y =4, of which
three have been taken arbitrarily and the fourth determined
_ by equation (7); if the lines are measured in a unit half as
large, then one gets the numbers twice as large, a =2, b =6,
¢=4, y=8, which do not satisfy the equation. The cyl-
inder constructed with the lines X and Y thus determined
enjoys the property, that the sum of the numbers, which, with
the unit chosen, express the measures of its surface and of its
volume, is equal to the sum of the numbers which express the
measure of the surface of a sphere and of the volume of
another sphere; but the same relation does not exist when the
linear unit changes. Equation (7) can only be satisfied by the
measures of the same lines when the unit of length is changed
arbitrarily, provided these lines satisfy equations (5) and (6)
taken singly. In the solution of problems of geometry, one
never uses combinations of equations analogous to the pre-
ceding. The equations which give immediately the theorems
of elementary geometry, are homogeneous; and when equa-
tions are added member to member it is to obtain a new equa-
tion more simple than the proposed; for this it is necessary
that the equations added be of the same degree. The prin-
ciple of homogeneity serves in each instance to verify the
algebraic transformation deduced.

43, In case one of the lines of the figure is taken as the unit
of length, the equations cease to be homogeneous; but it is
easy to re-establish homogeneity. Let

(8) F(b', cv, ) =0
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be the equation which is obtained when a line A is taken for
the unit; the letters 3/, ¢/, .-, represent the measures of the
lines B, C, .-+, with respect to A. Choose an arbitrary unit,
and call a, b, ¢, -++, the measures of the lines 4, B, C, ---; then
will

1 s ¢
a b ¢
b ¢
whence b':a, =", .oy
a

and equation (8) is transformed into the following:

b ¢
(9) F(&) P ) =07
which is homogeneous.

Thus, for example, if the sides of the right angle of a right
triangle be referred to the hypotenuse of this triangle taken
for the unit of measure, the measures of the sides satisfy the
non-homogeneous equation

b!? _+_ cl2 = 1’

from which is deduced the homogeneous equation

G 2 2 2
c_Lé+@’=1’ or ¥+ =d’

by replacing ' by 2 and ¢’ by 5-

The curves, ellipse, hyperbola, parabola, cissoid, etc., studied
in the preceding chapter, are represented by homogeneous
equations. Any homogeneous equation

S, y,a,b,¢-)=0,

between the variable co-ordinates « and y of a point of the
plane and the lengths a, b, ¢, --- of the various given lines,
determine a curve, of which the position and dimensions are
independent of the unit with which the lines are measured.
Consider, on the contrary, a numerical equation in « and y,

f(x; y):O;
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that is, an equation which does not involve other letters than
x and y, and suppose their equation to be non-homogeneous.
In order to represent by points of the plane the real solution
of this equation, it is necessary to begin by choosing arbitrarily
a scale, or the line to be employed as the unit. When the
scale varies, the curve is no longer the same. It will be seen
later that the various curves obtained in this manner have
remarkable analogies ; they are called homothetic curves.

44. Remark I.—TIt frequently happens that one considers
the numbers which represent the measures of lines, surfaces,
and volumes. The units of surface and of volume, as well as
the unit of length, remain indeterminate; but one habitually
assumes that there exists among them this relation, that the
unit of surface is the square constructed on the unit of length,
and the unit of volume is the cube constructed on the same
line. In this case, in order to verify the homogeneity of a rela-
tion in which certain letters § and V represent the measure of
a surface and a volume, these letters are replaced by p? and ¢?
where p and ¢ represent a side of the square and an edge of
the cube equivalent to the surface and the volume considered.
By this change the equation will contain only the lines. More-
over, their substitution may be dispensed with, namely, in
evaluating the degree of each term the exponent of a letter
which designates a surface is doubled, and a letter representing
a volume is tripled.

Remarx II. —In general, when angles enter into a caleula-
tion, these angles are referred to a unit definitely determined,
and their measures are fixed numbers. In evaluating an angle,
an arc of a circle is described about its vertex as a center with
an arbitrary radius, and the ratio of this arc to the radius is
taken as the measure of the arc; the unit arc is the arc which
is equal to the radius. The trigonometric functions of angles
are therefore numbers. In the application of the principle of
homogeneity, one introduces the abstraction of letters which
represent the angles or their trigonometric functions.
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CONSTRUCTION OF FORMULAS.

45. In solving, if it be possible, the equations of a definite
problem, one determines the formulas which represent the
arithmetical operations that it is necessary to perform on these
numbers which measure the known magnitudes in order to
find the numerical values of the unknown. But can one not
deduce from each formula, or what is the same from each
equation, an appropriate graphical construction to give, not
merely the numerical value of the unknown, but the unknown
itself 7 In a word, is it possible to replace the numerical
operations by graphical ? Tn elementary geometry, the con-
structions are considered which can be accomplished by means
of a limited number of straight lines and circles, and which,
consequently, can be made with the use of a rule and a com-
pass. Since the circle is the most simple of curves and the
most easily constructed, the ancient geometers set a great price
on this sort of eonstruction; on the other hand, being ignorant
of algebraic analysis, they did not have the means to decide if
the questions which they had in view were susceptible of this
kind of a solution, and it was not until they had made many
fruitless efforts that they decided finally to investigate other
curves. Their investigations have made certain problems
celebrated which can be shown to-day not to be solvable by the
straight line and circle. Examples of such are the duplication
of the cube, the trisection of an angle, ete. .

The unknown quantity is assumed to be a straight line;
when the unknown is a surface or a volume, it is represented
by aw or a’r, « being a line taken arbitrarily; the construction
of the line  gives a rectangle or a parallelopiped equivalent
to the surface or volume sought. The determination of an
angle given by one of its trigonometrical lines is reduced also
to that of a straight line. It can be assumed then that every
letter, such as x, designates a straight line.

46. RarioNnAL Formura.—The formula which gives the
unknown « ought to be homogeneous and of the first degree;
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it can, however, be integral, rational, or irrational. When it is
integral, it takes the form
r=a+b+c+ -,
and the length « is found by measuring one after the other,
in one direction or in another, the lengths a, b, ¢, «--.
The fractional formula is the most simple:
ab

c

The unknown is a fourth proportional, which can be con-
structed by two parallels or by a cirele.
In the same manner may be constructed the formula

_abed o _a b cd
T a'b'e! T X e
by means of the series of fourth proportionals,

cd by x_a,B

Y= ﬁ=y; =

By the aid of the preceding construction, a monomial
%@l—!ﬂ—l, of the degree m, may be reduced to the form
ai -+ 1, or, further, to the form A™~'¢, A being any length and ¢
a line determined by the formula

ol oo l
= ,\m—l
Consider now the formula
o A—B+C
=dA 1B -0

in which 4, B, C designate monomials of the degree m + 1,
A', B', " monomials of the degree m: each monomial may
be reduced to the simple forms

A, Amb, A™c, --+y A™Tlaf, AmTID!, Amlels
whence it follows that

_)\(a—b+c)__)\a
Td v —c¢ B
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That is, the unknown x can be determined by a fourth pro-
portional between the lines B, «, A.

If the fraction were of the degree m, the preceding opera-
tions would reduce it to the form

e

47. IrrATIONAL ForMULA oF THE SEcoND DEGREE. — Let
the formula in this case be

7 a
w=Vab, or L=7.
z b

The unknown « is a niean proportional between the lines a and
b; it is constructed by a right triangle, or by a tangent to a
circle. When the quantity under the radical is a rational fune-
tion of the degree m, the formula is transformed as follows:

m_2

VAT =VAm It =) % u.

Consider next an irrational formula of the second degree, in
which the quantities are supposed to be connected by the +
or — sign, are homogeneous, and of the same degree. For the
sake of clearness, suppose that the value of # is reduced to the

form

N

Tr= B,

N and D representing functions in which the sign of division
does not enter, neither do fractional nor negative exponents; it
can also be assumed that neither the product of two radicals
nor the product of a radical by an integral quantity enters the
expression. In order {o find the value of the numerator N, it
is necessary to perform certain operations in a definite order;
the first radical sign affects an integral expression, it will reduce

m

to the form A%« ; if this quantity be added to the others, they
will be reduced to the same form, and consequently their sum
also. A new radical sign may now be introduced affecting
m

either an integral quantity, or a quantity with the exponent 37
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m being odd. In every case, the radical will reduce to the

form A*v; this term is added to the others of the same form,
and so on. Thus, it is seen that the numerator N will take

the form A¥?¢. The denominator can be discussed in the same
manner. The unknown @ being of the first degree, it can be
found as a fourth proportional.

One can demonstrate that the hypotheses which have been
‘assumed in constructing the formula are necessary in order
that it be homogeneous.

Thus, every homogeneous expression of the first degree con-
structed in any arbitrary manner by means of the symbols of the
simple operations, addition, subtraction, multiplication, division,
involution to an integral power, the extraction of a square root; in
a word, every expression, rational and irrational, containing square
roots only, can be constructed by means of « finite number of
straight lines and circles.

It can also be shown that only expressions of this sort-are
susceptible of construction by the method just indicated; but
this demonstration cannot appropriately be given here. For
example, the edge « of a cube which is the double of another
whose edge is @, is given by the formula

A
= V2d

and cannot be constructed by a rule and a compass. In like
manner, it is, in general, true of roots of equations of the third
and fourth degree, since cubical radicals enter in the expression
of these roots.

48. CoNSTRUCTION OF THE Roo1s oF THE EQUATION CF THE
SeEcoxp DrerEE. — The equation of the second degree in one
unknown quantity is reducible to the form a?+ px+q=0;
in order that it be homogeneous, it is necessary that the
quantity p be of the first degree, and ¢ of the second; whether
these quantities be rational or irrational of the second degree,
it will be possible to construct a straight line a equivalent to
the first and a square b® equivalent to the second, and the
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equation of the second degree will assume one of the four

following forms:
2+ ax + 1 =0,

2+ ax —b?* =0,
@ —ax+ V=0,
2 —ar— =0,

The roots of the first and second equation are equal to those
of the third and fourth, taken with contrary signs; it suffices,
therefore, to consider those of the latter; if they be put under
the form

z(a—x)=0% x(@@—a) =107
it is evident that it suffices to construct a rectangle equivalent
to a square &% and of which the sum or difference of the edges
is equal to a given line «, problems which can be solved by
elementary geometry. The solution of equations and the con-
struction of formulas necessitate the discovery of theorems of
geometry.

The bi-quadratic equation may be reduced in a similar man-
ner to one of the types

2t + aba? — *d? = 0,
2 — aba® + Fd? = 0,
at — aba? — FdP=0;
because it is useless to consider the eqllation xt + abx? 4 Ad* =0,

which has imaginary roots. If one put 2” = cz, these equations

become

22+@z—d2=0, zz—a—bz+d2=0, 22—%bz—d2=0.
¢ c

One solves these equations for z, then finds « by means of a
mean proportional between ¢ and z.
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CHAPTER 1V
TRANSFORMATION OF CO-ORDINATES.

The equation of a curve in terms of certain co-ordinates
being given, it is important to be able to deduce the equation
of the same curve in terms of other co-ordinates.

In order to discuss the problem in a general manner, it is
necessary to deduce the formulas which express the co-ordi-
nates of any point of the plane in a certain system in terms
of the co-ordinates of the same point in another system. These
formulas are, moreover, useful in the investigation of a large
number of other questions.

First will be discussed the transformation of rectilinear
co-ordinates of one kind into other rectilinear co-ordinates.

TRANSPOSITION OF THE ORIGIN.

49. Suppose that the two axes OX and OY be replaced by
other axes O'X'and O'Y", which are respectively parallel to the
first (Fig. 32) and have the same direction. The position of
the new axes will be determined by the co-ordinates a and b
of the new origin with respect to the
primitive axes. Let » and y be the co- o
ordinates of any point M of the plane ’

with respect to the primitive axes; a'

and 7' the co-ordinates of the same point ’ ’7’
with respect to the new axes. Imagine the /o / X
point O to be moved along the straight

line O or the broken line OO'M to M, e, 82

and project, parallel to OY, these two lines upon the axes OX.
The projection of the line OM with the proper sign is the
abscissa @ of the point M; the projection of the line OO’ is
the abscissa a of the point O; the projection of the line O'M
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on OX, or on the parallel axis O'X", is the new abscissa 2.
The projections of the two lines OM, OO'M, being equal, one
has x=a 42" By projection parallel to OX on the axis 07,
one has in a similar manner y = b 4 4'. Thus are obtained the
two relations,

) v=a+a, y=0b+y)
between the old and the new co-ordinates of the point 2L

These relations are satisfied, whatever be the position of the
point M in the plane. One may deduce from (1),

@ g'=z—a, y'=y—0

CHANGE IN THE DIRECTION OF THE AXES.

50. Preserving the same origin, suppose now that the direc-
tion of the axis is changed. Consider a particular case which
has frequent application,—the case
when the two axes are rectangular.
Suppose that the direction of the axes
is changed by revolving the right
angle XOY (Fig. 33) through an angle
« about the origin till it attains the
position X'OY", and consider the angle
« as positive if the rotation takes place
from OX toward OY, and negative if the rotation be accom-
plished in an opposite direction.

Through any point M of the plane draw M and MP' par-
allel respectively to OY and OY"; let « and y be the co-ordi-
nates of the point M with respect to the first axes, and 2'
and y' the co-ordinates of the same point with respect to the
new axes. The projections of the two paths OPM, OP'M on
any axis are equal. Project then these two paths on the axis
OX; the projection of the length OP is the line itself, affected
with the 4+ or — sign, according as it is measured in the direc-
tion OX, or in the opposite direction; that is, in every case,
the abscissa 2; PM being perpendicular to OX, its projection
is zero; the projection of the first path reduces, therefore, to a.
Project now the path OP'M, projecting first the portion OF';

" Fig. 33.
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if the length OP'is measured on OX/, it is necessary to mul-
tiply by cos e, which gives for the projection OF' cos «; should
this length be measured in an opposite direction, it is necessary
to multiply by cos (r + @), which gives OPF'. cos (w4 «) or
— OPF'-cos «; but in the first case one has '= OF', and in
the second @' = — OP': thus the projection of the line OP'is
always expressed by x'cos «. Consider the second line P'M.
If it be constructed in the direction OY", it makes the angle
« +Z with OX, and its projection is P'M - cos | « —}—g ; if it be
measured in an opposite direction, it makes the angle « + g +
with OX, and its projection is — P'M - cos( @+ 2 | but one has,
in the first case y'= P'M, in the second, y' = — P'M; hence,
the projection of P'M is always expressed by y' cos( & + )

Consequently, the projection of the path OP'M is always
x'cos w4 y'cos |« +§>, or @' cos e — y'sine. By equating the
projection of the two paths OPM, OP'M, one gets the relation
x=2'cos ¢ — y'sin a.

Project now the two paths on OY. The projection OP is
zero; that of P, affected with the proper sign, is y; thus the
projection of the first path reduces to y. The two directions

OX' and OY" make respectively the angles —Z 4 « and + «
with OY, which furnishes for the projection ;f the second
path «' cos [ — 72—1- + a )+ y' cos @, or x'sin « + ' cos &, and one
has the relation y = 2'sin « 4 y'cos «. Therefore the formulas
sought are

3) x=2a'cos ¢ —y'sin e, ¥ = a'sin « 4+ y'cos «,

which express the old co-ordinates as functions of the new.

61. Next the general question will be investigated. Let
OX and OY be any two axes inclosing an angle §, OX' and
O7Y", two new axes whose directions are defined by the angles
« and B, which they make with OX (Fig. 34); one considers
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the angles « and B as positive, when a movable straight line,
starting from the position OX, gen-

o erates them in revolving from OX
toward OY, and as negative in case
the line revolves in an opposite di-
rection. From any point M of the

! ~% plane draw the lines MP and MP'
N ¥ respectively parallel to the axes OY

&)

Y and OY'". To get a, project the two

\‘\\ paths OPM, OP'M on OH, perpen-

—_— I dicular to 0%, so that a line, start-
ig. 34.

ing from the position OY, revolving
in the direction OX through an angle equal to g, will arrive
finally in the position OI. Since the line OXHmaJkes with
OH the angle g— 6, and the direction OY is perpendicular to
OH, the projegtiou of the first path reduces to #sin 6. The
line OX' makes with OH an angle equal to the angle HOX
increased by the angle XOX', which together make % —6)+ e
In the same manner the line OY’ makes with OH an angle
T —6)+ B; one has, therefore, for the projection of the sec-

2

ond path
m'cos(f:;— 0 + u) + 7 COSG—@"‘B)’
or z' sin (9 = 05) + :’/' sin (0 I B)’ 0

which furnishes the relation
@ sin § = &' sin (8 — «) + y'sin (6 — B).

To calculate y, project the two paths OPM, OP'M on a line
OX perpendicular to OX, so that a straight line starting from
OX and revolving through the angle gtoward OY will coincide
with OK.  Since the line OX is perpendicular to OK and the
line OY makes with this line the angle — 72—r + 6, the projection
of the first path reduces to y sin . The angles which the lines
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OX' and OY form with OK are equal to the angles which
they make with,OX diminished respectively by g, which

gives — %r + «, and —;Z— + B; the projection of the second
path is therefore «' cos (— g + a) + y'cos (—- z—; + ,8),
or a'sin « + ' sin 3,
and one has the relation
ysin @ = ' sin « 4+ y'sin B.
Thus are derived the formulas

2’ sin ( — &) + y'sin (0 — B)
r= 5 1)
sin 6

@) R
_a'sine+4y'sinf
B sin 6 ’
for the transformation of oblique co-ordinates into other
oblique co-ordinates.

It is a simple process to deduce the formulas serving to
return from the new to the old co-ordinates. The angle
between the new axes is 8 — e; the axes OX'and OY form
with OX'the angles — « and — « 4 6; it suffices therefore to
replace in the preceding formulas the angle 6 by 8 —«, ¢ by
— «, 3 by 6 — «, which gives

w,___msinﬁ—-}—ysin(ﬁ—@)

. sin (8 — @) ’
®) , _ —axsine4ysin(0—a)
o= sin (8 — @) '

Let the angle 8 — « between the new axes be represented by
¢'; then the determinant of the coefficients ' and y' in
formulas (4) is
sin Bsin (§ — «) — sine sin (§ —B) _sin '
sin®6 “sin 6

and the determinant of the coefficients = and y in formulas
(5) is the reciprocal of the preceding, __53111111 Z"
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52. The general formulas furnish certain special formulas
which are of frequent use,

1° The case when the primitive axes are rectangular. Here §
m

will be equal to 5

, and formulas (4) will become

(©)

{x:m’cosu—i—y'eos[},

y=a'sine+ y'sinf.

2° The case when the new axes are rectangular. Let 8= a+ g,
then formulas (4) reduce to

2'sin (6 — «) — y' cos (0 — «)
ap =3 O — 3
sin 6

a'sin « 4 ' cos «
Y = — .
sin 6

One could also put = u—gv which would amount to

changing the direction of the axis 017, and, consequently, the
sign of y' in formulas (7).

3° The case when the two systems of axes are rectangular.
If, in formulas (6), one put =« + %T, one deduces formulas
(3), already found, :

© r=2a'cose —y'sine,
<)
y =a'sine + ' cos a.

1

These formulas can also be derived by putting in formulas

©) 0=ZZ'.
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GENERAL TRANSFORMATION.

53. Suppose that the origin and the direction of the axes
are changed at the same time. The new systemn of axes will
be determined by the co-ordinates @ and Y,
b of the new origin O', with respect to
the old axes, and by the angles « and
B8 which the new axes O'X'and O'Y’
make with OX (Fig. 35). Through the
point O' draw the two axes OX, and / ° x
07, respectively parallel to OX and Fig. 35.
0Y. Then will in one case

z=a+x, y=b+u;
and in the other case, by virtue of formulas (4),

xsxn(a—u)+?/ sin (8 — B) . ' sine 4+ y' s1n,3
sin ) = sin@

] =

substituting the values of x;, and ¥, the general formulas of
transformation become

jwza_i_m s1n(6—a)+1/ sin (@ J

sin @
®) I
[y:b—}—x smajl—y smB.
sin @
The old co-ordinates 2 and y are expressed as linear integral
functions of the first degree in the new co-ordinates ' and y'.

THE TRANSFORMATION OF RECTILINEAR CO-ORDINATES
INTO POLAR CO-ORDINATES,

54. Let OX and OY be the rectangular v
axes; take the origin as pole, and the z-axis

as the polar axis (Fig. 36); by projecting
the line OM on the axes OX and OY one
W

obtains the relations

) *=pcosw, y=psino Fig. 36.
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Conversely, one can pass from polar co-ordinates to rec-
tangular co-ordinates by means of the formulas

p=Vat+y tam»:%-

Several transformations of this kind have been made, namely,
when the equations of the cissoid, strophoid, limagon of Pascal,
and rose (§§ 21, 24, 27, 30) were derived in rectangular co-
ordinates. '

DISTANCE BETWEEN Two POINTS.

85. Assume the axes to be rectangular and seek the distance
of the origin from the point M, whose co-or-
dinates are « and y. From the right triangle
OPM (Fig. 37) one has

OM? = OP* + PM* =2 + 9",

X
Fig. 1. whatever be the position of the point 3 in
the plane; whence it follows, by putting
I for the distance OM,

10) l=Va+ 9%

Seek, next, the distance between two points M and M, situ-
ated anywhere in the plane; call # and y the co-ordinates of
the point M, &' and y' those of the point M’ with respect to the
rectangular axes OX, OY. Through the

T point M (Fig. 38) draw the axes MX/
w4 MY parallel to the given axes. The co-
‘ordinates of the point M’ with respect to

= ™ the new axes are equal to ' — x, y' — ¥, by

o] x  virtue of formulas (2) of § 49. The dis-
R ss tance of the new origin M from M will

therefore be, owing to formula (10),

11) I=V@E' -2+ @ -y
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56. In case the axes are oblique and the angle included
by them is represented by 6, the .
expression will be somewhat more o s

complicated. /\ M
Seek now the distance of the origin 5

O from any point M of the plane. ol © e
In the triangle OPM (Fig. 39), what-  x , P
ever be the position of the point 2, Y
Fig. 39.
one has

OM' = OP’ + PM°—2.0P- PMcos OPM.

Tn case the point M is situated within the angle YOX| the co-
ordinates « and y of this point are equal to + OF and + PM,
and the angle OPM is the supplement of §; one has therefore

(12) 1= ~2+ i + 2xy cos 0.
If the point M is situated within the angle Y'OX', the co-ordi-
nates x and y being equal to — OP and — PM, and the angle
OPM, the supplement of 6, the same formula (12) is deduced.
When the point 3 is situated within one of the angles YOX,
Y'0X, the angle OPM is equal to 6, but one of the co-ordinates
is positive and the other negative, which reproduces formula
(12). This formula is, therefore, universal.

In order to obtain the distance between two points M and M,
one imagines, as above, axes drawn through the point M parallel
to the first, and obtains the formula

13) I=V@' =2+ @' -y +2@" —2) @' -y c0s 6.

57. Itis frequently useful to know the co-ordinates of a point
which divides the distance between two given points in a given
ratio. In case several segments are situated on the same line,
one calls the direction of the segment the ..
direction in which a movable point travels "
that starts from the first point 3 and goes o
toward the second M'. The algebraic
value of the ratio of two segments is then
the absolute value of their ratio, preceded ° 22
by the 4+ or — sign, according as the two B
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segments are measured in the same or opposite direction. Thus,

N . MM, . 2 . MM, MM
Fig. 40, the rat =21 tive, the rat 0, gl
m Fig. 40, ratio ML, 1s positive, the ratios ]l[zM" AR

are negative.

Being given two points M and M', on an indefinite straight
line, having the co-ordinates @ and ¥, 2' and ¥', find on this line
a point M, with the co-ordinates @, and 7, such that the ratio
MM
mn
transferred parallel to themselves to the point Af;, the new
co-ordinates of the points M and M' will be x — 2, and y — #,,

!
. . . m

has in magnitude and sign the value = . If the axes are
m

!
. - o, .
' — o and y' —y.  In case the given ratio — is negative, the
m

point sought, M, ought to lie between A and M’'; this is the
case in the figure. The differences x — 2; and o' — 2, or y — 1,
and y' — y, have opposite signs; their ratio is negative, and the
absolute value of their ratio is equal to the absolute value of
MM m'

or —.
MM m

One has, therefore, in magnitude and in sign

) . !
(14) ; il — .7/' h_m,
-t Y= m

!
When 2 is positive, the point sought, M, lies without the seg-
m

ment MM'; the differences x — @, and ' —a, or y —y, and
y' — , have the same sign; their ratio is plus and equal to the

!
ratio JI‘{:; or to 2. Therefore equations (14) are'also appli-
My di m

cable to this case. 'Whence one has the following formulas

!
which solve the problem for every value of the ratio ;7—;—,

me—m'r'  my —mly'
= T h= Ao
0 m—m

Remark. — The co-ordinates of the point M, 2, and y,, may
be deduced from the preceding by changing the sign of m'.

_mx4+mla’ | omy+my'

Ly = s
m+m' m + m'
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From the position of this point it follows that
MM MM w

MM MM m’

the points M, and M, corresponding to values, equal and

!
. . . - m . .
opposite in sign, of the ratio —, are called harmonic conjugates
m

!
with respect to the segment MM'. In case the given ratio Z: i—

is equal to — 1, the point M, will bisect the segment MM’ and
has the co-ordinates

v+ vty

v = » Y=m0;
2 2

the point M, is removed to infinity.
It ™ s put equal to — A, it follows at once that the two
m

conjugate points have respectively the co-ordinates

o, = T A = Y+
S U e TN
_r=at o y— Ny

SN e

CLASSIFICATION OF PLANE CURVES.

58. Rectilinear co-ordinates are especially adapted to the
study of the general properties of plane curves. In this
system plane curves are classified in the following manner:
They are distinguished as algebraic and transcendental, accord-
ing as the equations which represent them are algebraic or
transcendental. An equation is said to be algebraic when the
co-ordinates x and y enter affected only by the symbols of
algebraic operations. If, however, one of the co-ordinates
enters affected by a transcendental symbol, as a sin, logarithm,
tan, ete., the equation is said to be transcendental. Algebraic
equations can always be put under an integral form by remov-
ing the radicals and the denominators.

One classifies algebraic curves according to the degree of
their equations. Curves of the first degree (straight lines) are
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those which are represented by equations of the first degree in
z and y; the equation of the second degree furnishes curves
of the second degree, ete. .

It is very plain that the degree of any curve remains
unaltered whatever may be the position of the axes of co-ordi-
nates in the plane. In fact, let f (2, ) = 0 be the equation of a
curve referred to certain axes OX and OY, m the degree of
this equation supposed to be integral. To refer this curve
to other axes O'X' and 0'Y", it is necessary to substitute for
z and y in the proposed equation the values given by the
formulas of transformation (8); these formulas being of
the first degree in the co-ordinates 2’ and ¥/, it is impossible
that the equation in @' and y' be of a degree greater than m.
The equation will not be of a degree less, because in that case
the inverse transformation would increase the degree, which is
impossible. Thus, the new equation is of the same degree as
the primitive.

The degree of a curve is the same as the number of points
of its intersection with a straight line. In fact, let m be the
degree of a curve whose equation is f(x, y) =0 when the
straight line has been chosen as the w-axis; if in this equa-
tion one makes y =0, the equation thus obtained in = will give
the abscissas of the points common to the curve and the
x-axis. Sinee the first member of the equation is not identi-
cally zero, and is at most of the degree m, the equation cannot
have more than m roots, and consequently the line has at most
m points in common with the line. If the equation were
satisfied by more than m values of x, the first member would
be identically zero, and consequently the line would be a part
of the locus; in this case, the polynomial f(x, y) vanishing
identically when # is put equal to zero would contain y as a
factor, and the equation f(z, y) =0 could be decomposed into
two equations, one y = 0 of the first degree, the other of the
degree m—1.

Accordingly, curves of the first degree cannot be cut by a
straight line in more than one point; therefore the curves are
straight lines. Curves of the second degree cannot be cut by
a straight line in more than two points; those of the third
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degree, in more than three points. The circle, ellipse, hyper-
bola, and the parabola are curves of the second degree (§§ 10,
13, 15, 18). These curves can be cut by a straight line in
two points. The cissoid and strophoid (§§ 21 and 24) are of
the third degree. They can be cut in three points by a straight
line. The limacon of Pascal (§ 27) is of the fourth degree;
the rose of four branches (§ 30) is of the sixth degree.

First, one studies curves of the first, then those of the
second, and finally those of any degree whatever.

When an algebraic integral equation of the degree m is said
to represent a curve of the degree i, it is assumed that the
first member cannot be decomposed into integral factors; other-
wise the equation could represent two or a greater number of
curves of lower degrees. Thus, for example, an equation of the
second degree, whose first member is the product of two inte-
gral factors of the first degree, represents two lines of the first
degree ; that is, two straight lines. Similarly, an equation of
the third degree may represent three straight lines, or one
curve of the second degree and a straight line. It is for this
reason that certain properties of curves of the mth order are.
applicable to a system of m straight lines; that is, to a polygon
of m sides. Thus is learned that the properties of curves of
the second degree are applicable to a system of two straight
lines, since this system can be considered as a locus of the
second degree.

E
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STRAIGHT LINE AND CIRCLE

CHAPTER I
STRAIGHT LINE.

CONSTRUCTION OF THE EQUATION OF THE FIRST
DEGREE.

59. The general equation of the first degree between two
variables « and y has the form

) Az + By + C=0.

It has already been noticed that the line represented by this
equation cannot be cut by a straight line in more than one
finite point, and is necessarily straight. Y
However, it is best to show directly that
this equation represents a straight line. T vt e
It is impossible that the coefficients A4 and /

r X

B be zero at the same time, for then ¢

must also be zero, and the equation is %

reduced to an identity. But it is possible Fig. 1.

that one of the coeflicients be zero. If, for example, the coeffi-
cient 4 be zero, the equation takes the form By+ C'=0,

)/
whence y = —%: b. This equation represents the locus of a

point M whose ordinate is constant and equal to b, whatever
the abscissa may be; the locus is a straight line parallel to the
67
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axis OX (Fig. 41). This line is constructed by laying off on
07, beginning at the origin, a length equal in ahsolute value
to b, in one direction or the opposite, according to the sign
of b, then drawing G'G' through the point B parallel to the
axis OX. As a special case, the equation y = 0 represents the
axis OX.
When the coefficient B is equal to zero, the equation reduces
to de+C=0, or x=— %: a. This equation represents
e
the locus of the point 3, whose abscissa is constant and equal
to @, whatever the ordinate may be. Itisa
straight line HI' parallel to the axis OY
(Fig. 42). This line can be constructed by
laying off on the axis OX, beginning at the
origin, a length OA equal to the absolute
value of «, in one direction or the opposite,
according to the sign of a, then drawing JIH'
Fig. £2. through the point A parallel to OY. As a
special case, the equation « = 0 represents the axis OY.
In case the coefficient B is not zero, all the terms of the
equation can be divided by B and it may be written

B B
or (2) Yy = ax + b,
. g A C :
by putting, for brevity, a = — E b= — —

Consider next the particular case when b = 0.

The equation then reduces to the form

g
y = ax, or - = .

If @ be a positive number, every point of the locus, having
co-ordinates with the same sign, lies in the angle YOX or its
vertically opposite (Fig. 43). Take an arbitrary abscissa OP,
and draw through the point P a line parallel to the axis of y;

D
if a point M can be found on this parallel, such that ‘2) [l]’

=a,
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it will be a point of the locus.
Let M, M', M'", ..., be points
of the locus constructed by the
preceding rule; it follows from
the equal ratios

%I_)_J[!P!__JIHI)H=“._Q X’
orP  OoP'~ —op" -

that the triangles OPM, OP'M,
OP"M", ..., are similar, and
hence the angles MOP, M'OP/,
M"OP", ..., are equal; there- Fig. 43.
fore the points M, M', M", ...  all lie on the straight line 4'A4
passing through the origin. If « varies continuously from
— o t0 + w0, the point M will move
continuously and describe an indefi-
nite straight line 44"

When @ is negative, all points of
the locus, having co-ordinates of

opposite signs, lie in the angles ' far ¥
YOX' and Y'OX (Fig. 44). Let M, &
My M", ..., be different points of the by

locus; then, as above, it follows from Fig. 44.

the relations .
MpP _ MP _—M"P'_ a
—orP —-oP  op' ~— 7 .

that all these points are on the same straight line 4'A passing
through the origin. Thus, in every case, the equation y = ax
represents a straight line A'A passing through the origin.

Let us return now to the equation y=ax + 0. By compar-
ing the two equations y=awx +0b, y =ax, one sees that the
ordinates corresponding to the same abscissa differ by a con-
stant b; if therefore the ordinates of all the points of the
straight line A'A are increased or diminished according to
the sign of b by the lengths MN, M'N', M"'N", ..., equal to the
absolute value of & (Fig. 43), the points N, N, N, ..., thus
obtained, form evidently the right line B'B parallel to 4'A.
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It follows from what precedes that any equation of the first
degree between two variables x and y represents a straight line.

60. It can be shown, reciprocally, that any straight line is
represented by an equatin of the first degree. If the straight
line be parallel to the axis OX, then all of its points have the
same ordinate, and the equation has the form y = b (Iig. 41).
If it be parallel to the axis 0Y, all of the points have the
same abscissa and the equation will have the form x=a
(Fig. 42). In case the straight line passes through the origin,
it occupies one or the other of the two positions indicated in
the figures 43 and 44, and the similar triangles give

MP _ MP _—_M'P'_
op_ or ~ _opr
MP _ M'P _ — M'P"

or

— 0P — 0P opP"

If a be this constant ratio, the equation of the right line is
Y=a, or y=ax Suppose, finally, that the straight line is
x

not parallel to either of the axes nor passes through the origin
(Fig. 43); according to what precedes, a line drawn through
the origin parallel to this straight line will have the equation
y = ax; now the excess of the ordinate of a point on the pro-
posed line over the ordinate of the corresponding point on the
parallel is a constant quantity & ; therefore the proposed straight
line has for its equation y = ax + b. i

MEANING OF THE COEFFICIENTS.

61. The equation of every straight line which is not parallel
to the axis of ¥ can be put in the form
)] y=axr+ b.

The constant & is the ordinate of the point H (Fig. 43)
where the straight line cuts the axis of y; it is called the
ordinate of the origin.

The constant « determines the direction of the line; it is
the same for all parallel straight lines and is called the angular
coefficient or coefficient of direction.
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Draw through the origin a line 4'0A4 parallel to the proposed
straight line and situated with respect to the axis X X' on the
same side as the line OY. Let 6 be the angle XOY, « the
angle AOX, an angle which can vary from 0 to =; it follows
from Fig. 43 that

a=y=]k[P= sin MOP _ _ sine
z OP sinOMP sin(d—«)
and from Fig. 44 that
oY MP _ sin MOP _ sin(m—@) _  sina

=T O0P —smOMP _sn(z—6) sm(@—a)

one has, therefore, in every case,

sin «
3 ——r_ _—=a.
®) sin (6 — «)
If the axes are rectangular, this relation reduces to
€)) tan ¢ = a,

and determines the angle « which 04 makes with the axis OX.
When the axes are oblique, one deduces from the relation
(3) the formula
sin ¢ = a sin § cos « — a cos §sin «,
5 tan g — @S0
2 i) « 1+ acosé

In order that this formula may be solved by logarithms, the
following transformation is made. It follows from (3),

6
t -
a—1 sine—sin(§d—a) an(a 2)ﬁ

a+1=sina+sin(0——a) - tang
2
or (6) tan <u — g> = Zi—i tan g

62. In constructing the straight line represented by the
equation of the first degree, with numerical coefficients, one
usually seeks the points in which the straight line cuts the
axes and draws a straight line through them.
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Suppose that the equation 2 — 3y =5 be given; for y=0,
one has 2=15; for 2 =0, y= — %3 starting from the origin,
one lays off on the a-axis the length § in the direction 0X, on
the y-axis the length % in the direction OY'; through these
two points the line is to be drawn. If the equation be free
from an additive constant, the straight line passes through
the origin. One determines then a seeond point, by giving
to @ a partieular value; let, for example, 2y4+3x=0; the
equation being satisfied for a=0, =0, the line passing

through the origin; if one makes =2, then one has y=—3;
construct the point whose co-ordinates are =2, y = — 3, and

draw a line through it to the origin.

63. The general equation of the straight line,
Adx + By + 0 =0,

contains but two arbitrary eoefficients or parameters ; because
one ean divide the equation by one of the coefficients, then the
other two will be replaced by their ratios to the divisor. When
the equation is put under the form y = ax + b, the two param-
eters are « and b. In order to fix the position of the straight
line in"the plane, it will be neeessary to give a value to each of .
the two parameters or to be given two relations between them.

64. Prosuuy L— 7o find the general equation of straiyht
lines which pass through « given point.

Let 2" and y' be the co-ordinates of the given point M. The
equation of any line is i

Y =ar+D

If this line pass through the given point M, the co-ordinates
of this point must satisfy the equation to the line; if therefore
the variable co-ordinates 2 and y are replaced by the co-ordi-
nates x' and y' of the point M, one will have the equation of

condition,
y'=ax' + b

This relation between the two parameters a and b determines
one of them as a function of the other; for example, the pa-
rameter b as a funetion of a. By replacing b in the equation
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of the straight line by its value y'— az' deduced from the
equation of condition, one obtains the equation

) y—y'=alz—2a).

Equation (7), in which the angular coefficient a is arbitrary,
represents all the straight lines which pass through the point
M. 'When the parameter a is varied, the line revolves about
the point M.

It has been assumed that every straight line is represented
by an equation of the form y= ax + b, whatever its position
in the plane may be. DBut there is one exception, viz., when
the straight line is parallel to the y-axis; because, in this case,
the angular coefficient @ is infinite, and the ordinate at the
origin is b. Accordingly, if in equation (7) « is replaced by
the ratio %’, the equation may be put under the form

n(y—y)=m—a);

and letting n = 0, one gets the equation = ', which represents
a straight line, drawn through the point M, parallel to the y-axis.

65. ProprLEM II.— Through a given point draw a straight
line parallel to a given straight line.

Let y=ax+b be the equation of the given straight line
AB, «' and y', the co-ordinates of the
given point M (Fig. 45). Since the line
is to pass through the given point M, its
equation, as we have seen above, will
have the form

y—y'=a@-2a)
This line will be parallel to the line AB
when the angular coefficient ' is equal to the angular coeffi-

cient of the line AB. One will have, therefore, a'=a, and
the parallel required will have for its equation

bd

Fig. 45.

y—y' =a(@—2.

66. ProBLEM III.— Draw a straight line through two given
points.,
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Let M and M' (Fig. 46) be the two given points, «' and y'
o the co-ordinates of M, 2" and y" those
of M'. The line MM, passing through

% the point M, is represented by an equa-
tion of the form
To T (7) y—y'=al—.

i It is a simple matter to determine the

coefficient a so that this line may pass through the point M.
For this, it is necessary that the co-ordinates of the point M'
satisfy equation (T), which gives the relation

y'—y' =a (wu _ wr),

whence one deduces a=9 "Y

2l —

Thus, the angular coefficient of the line MM is equal to the
ratio of the difference of the ordinates to the difference of the
aoscissas of the two given points. If in equation (7V) a be
replaced by its value, one obtains the equation of the line MM,

" __ ot
® y—y ==Y o)

an equation which can be written in the form

z—a _ y—y
' —a' Yyl —y

When the point M is at the origin, one has m' 0, ¥'=0,
and equation (8) reduces to

67. It is sometimes useful to define a line by the points

by where it cuts the axes (Fig. 47). Call a
the abscissa of the first point, b the ordi-
p nate of the second, and let
) Ae 4+ By +C=0

makes successively y =0 and =0, one

/0 % A\ — be the equation of the line sought. If one
Fig. 47. obtains the points where the line cuts the
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axes; one has a=—%, b =—%; wheneeA:—g, =—§-
By replacing 4 and B by their values, the equation takes the
simple form,

Ty
©) S

68. ProBLEM IV.— Find the point of intersection of two
given lines.

Let Az + By +C =0,
Az + Bly+ 0'=0,

be the equations of the two given lines AB and CD (Fig. 48),
M the point of intersection of these two
lines. The point M being common to
each of the two lines, its co-ordinates will
satisfy at the same time the two equa-
tions; if, therefore, one solves these two
simultaneous equations for the two un- 0 X
known quantities, # and y, we obtain the ——/ /

co-ordinates of the point M,

_BC" — C'B', y= CA'—- AC"
AB'— BA' AB'— BA'

. Fig. 48

@

‘When the denominator AB' — BA' is different from zero, the
formulas furnish finite and determinate values for = and y,
and the two lines intersect in a finite point M. But when the
denominator is zero and the numerators different from zero,
the values of x and wy are infinite; in this case, the two lines
are parallel, and, in fact, they have equal angular coefficients
——fi:—f—l,~ If one has "—1’=£'=g, the two numerators
B B 4 B C
and denominators will be zero at the same time, and the values

of x and y will take the form g; the intersection will be inde-

terminate, and, in fact, the two proposed lines coincide ; because
: ' B_C . -
if one puts T=B=0= K, then is A'= 4K, B'= BK,
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C" = OK; substitute these values in the second equation, and
divide by A, the resulting equation will be identical with the
first.

69. ProsLEM V.— To find the general equation of a straight
line which passes through the point of intersection of two given
straight lines. Let
(10) Ax +By +C =0,

(11) A'e + B'y 4 "' =0,

be the equations of two given straight lines. One could first
find the point of intersection of the proposed lines by solving
equations (10) and (11); then find the equation to any line
through this point (§ 64). But one can arrive at the same
result in a more rapid manner.

If one multiplies equation (11) by an arbitrary quantity,
then adds it member by member to equation (10), one gets an
equation of the first degree,

12) (dx+ By + C)y+x(Ax+ By + ) =0,

which represents a third line passing through the point of
intersection of the first two; for, in fact, the co-ordinates
of this point satisfy the two equations (10) and (11), annulling
the two quantities put in parentheses, and consequently, satisfy
equation (12). This equation (12), in which the coefficient A
is arbitrary, represents any straight line which passes through
the point of intersection of the two given lines; hecause one
can determine this coefficient A so that the line may pass
through any point M of the plane having as co-ordinates
x' and y'; for this it suffices that the equation of condition,

(4’ + By' + C) + A (A'%' + By' 4 C") =0,
be satisfied, which gives

Ax'+ By'+ C

13) A== By O

In case one makes A = 0, the equation (12) becomes

Az + By +C=0;
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m
w’
ing multiplied by n, place n =0, one gets the second line,
A'z 4+ B'y+ C'=0.

If in equation (12) one replace A by the value (13), one gets
the equation

this is the first straight line. If one replace A by —, after hav-

Ax+ By+C Ax4 By+4 ('
Ax'+ By'4+- C A'z' 4+ B'y'+ ('

(14)

which represents the line passing through the point M and
the point of intersection of the two given lines. The numera-
tors are the first members of the given lines, the denominators
are these same polynomials when = and y are replaced by the
co-ordinates of the given point. One recognizes at once, from
inspecting this equation, that the line it represents passes
through the given point and through the point of intersection
of the two given lines.

When the two lines (10) and (11) are parallel, equation (12)
represents all the lines parallel to them.

An equation of the first degree in x and y, which contains
an arbitrary constant A, represents an infinity of lines; when
this parameter appears in the first degree in the equation, one
can put the equation in the form (12); one sees then that all
the lines pass through the same point, — the point of intersec-
tion of the lines (10) and (11).

ReMARK. — Suppose that four concurrent lines d, d', d;, and
d, are given; then the lines d, and d; are called harmonic con-
jugates of the lines d and d', when the two points where a
secant cuts the lines d, and d, are harmonic conjugates of
the two points where it cuts d and d' (§ 57). It is easy to
see then that the two lines d; and d,, whose equations are:

(d) Ax+By+C+ X (Ad'r 4+ B'y+ C") =0,

(d) Ax+ By+ C—A(Ad'z+ B'y+C)=0,
are harmonic conjugates of the given lines (10) and (11). In
fact, cut the three lines (10), (11), and (12) by a secant hav-

ing the equation y =ma +n and meeting these lines in the
points M, M', and M,
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The abscissas of the three points are

__bBntC gl Bn4C o — Bt C+ N(B'n+C"
A+ Bw A+ Bwm' ' A4 B XA+ B'm)

and, according to the formulas of § 57, one has in magnitude

and in sign,

MM _z—w _ _)\A' + B'm
MM ' —a A+ Bm’

Similarly, calling 3, the point where the same secant cuts
the line d,,

MM - A'+ B'm

MM' " A+ Bm’
as one can easily see by changing XA into —X. Therefore,
finally,

MM _ MM
MM MM
which shows that the two points M, M, are harmonic conju-
gates of the points M, M (§ 57).

70. ProBrLEM VI.— The condition that three lines pass
through a point.

Let Ax + By +C =0,
Az + By +C' =0,
Az - B”]j-l— O = O,

be the equations of three given lines. One finds'the point
of intersection of the first two lines, and substitutes the
co-ordinates of this point in the third equation. This fur-
nishes the equation of condition

A"(BC"'— CB"Y 4+ B"(CA'— AC"y + " (AB'— A'B) =0,
or O"(AB'—A'B) +C' (A"B—AB") 4+ C(A'B"—A"B")=0.
The lines will not only intersect, but also be parallel if

AB' — A'B, A'B"— A"B', A"B— AB"

are all three zero.



CHAP. I. STRAIGHT LINE AND CIRCLE. 79

Otherwise, the general equation of the lines which pass
through the point of intersection of the first two is
(dz + By + C) + A (A'z + B'y 4+ C") =0,
or A+ rAYx+ (B4+ABYy+ (C+2rC)=0
If the lines have a common point, by assigning a suitable value
to A, this equation will represent the third line; therefore we
ought to have
A+2rd'=KA", B4+AB'=KB", C+A(0"= K(C",
where I{ is arbitrary,
A+rA'" _B4AB'_C+\C'
A" pr T o
By eliminating X, one gets the equation already obtained.

or

71. ExamprLe. — Consider the three medians of a triangle OAB
(Fig. 49); take the vertex O as origin, the two
sides OA and OB as co-ordinate axes, and
designate by @ and b the two lengths OA
and OB. The median AF, cutting the axes

at the distances @ and g— from the origin, has
for its equation,

x , 2y

T4y _q.

a + b ’

similarly, the median BF has for its equation,

g——z—}-zzl

The mid-point of AB has the co-ordinates OF_— OF_Q the line

0D, which joins the or1gm and this point, has the equatlon,
b
a

Y

By solving the first two equations, one gets the co-ordinates

a b
T = -é ’ y= 51
of the point C the intersection of AE and BF.  These co-ordinates satisfy
the third equation ; hence the third median OD passes through the point C.
By applying the second method, we see at once that the three medians
pass through the same point; for, by subtracting the second equation,
member by member, from the first, we get the third equation.
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72. ProBrLEM VII.— Find the condition that three points lie on a
straight line.

Let ' and y’, ' and y', ' and y»''/, be the co-ordinates of three
given points M', M, M'!. If the points lie on
a line, the preceding pairs of co-ordinates satisfy
the equation Az + By + C =0, and the deter-
minant

, ¥, 1
D=|z" gy 1

zHI’ yIH’ 1

HIE 0, is zero.

The lines MM, M'M'", coincide, and their angular coefficients are
equal, then will
gl —y! oyl — g
2 — g gl

73. ExampLE. — If the four sides of a quadrilateral 0ACB are pro-
longed (Fig. 61), a complete quadrilateral 0OACBA'B' is formed; the
sides intersect two by two in six
points or vertices ; by joining the
vertices one obtains the diagonals
AB, A'B', OC; it will be proven
that the mid-points F, E, D, of
the three diagonals 0C, A'B/,
AD, lie on a straight line.
Choose the sides 04 and OB
¥ as co-ordinate axes; represent
Fig. 51. by @ and @' the abscissas of the
points A and A'; by b and b’
the ordinates of the points B and B/. The point D, mlddle of AB, has

the co-ordinates &' =g, y = g The point E, middle of A’B’ has the

f n_da ny_Y
co-ordinates /' ==, y// =—-
2 2

In order to get the co-ordinates of the point ¥, the middle of AC, seek
those of the point €, which is the intersection of the lines AB’, A'B,
whose equations are

+ 5o @b
By solving these équatlons, the co-ordinates of the point C are found
to be
_aa' (b— b’), = L' (a —a')
ab — a'b! ab — a'd!
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The point F being the middle of the line OC, its co-ordinates xz'!/, y'"
are the halves of those of the point C'; one has, therefore,

gt = 20/ (6 =0 m bV (@—a’),
2 (ab — a'd') 2 (ab — a'b')

Having the co-ordinates of the points D, E, F one can easily show that
they lie on a straight line. The lines DE and DF have the following

angular coefficients :

' (a — a')

y' =y _b—b Yy —y'_ _ab—a¥’ _b_b'—b,
2T —x ad—a 2 -2 ad (b—V) Tad —a’
ab — a'b!

these two angular coefficients being equal to each other, it follows that
the points D, E, F lie on a straight line.

94. ProsrEM VIII.— Find the angle between two lines.

Let y = ax + b, y = a'x + b, be the
equations of two given lines. Draw
through the origin, and on the same
side of the axis as OY, two lines 04
and OA' parallel to the given lines
(Fig. 52) ; call @ and «'the angles which
they form with OX, V the angle which
they inclose, and, to be definite, let
«' >« Evidently one has V= «' — «, whence

° Fig. 52.

5) tan V= tane' —tane
1 + tan e tan e’

When the axes are rectangular, one knows that
tane =a, tane¢’'=a’,

if those values be substituted in the preceding formula,

a'—a
16) tan V= m-
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In case the axes are oblique, one has (§ 61):

@ sin 8 a'sin
tang=——"——"—, tana'= ————;
14 acosé 1+a'cosé
and, hence,

- - (a' —a)siné
a7 27 _1+aw'+(u,+a’) cosf

One can deduce from these formulas the relation which must
exist between the angular coefficients of two lines which are
perpendicular to each other. In fact, in case the angle V is
right, its tangent becomes infinite; one has, if the axes are
rectangular,

(18) 1+ aa'=0,
and, if they are oblique,
19) 14 aa'+ (a+a'ycosd=0.

75. ProprLEM IX. — From a given point draw a perpendicular
to a given line, and find the length of this perpendicular.

Let (2) y=ar+b

be the equation of the given line AB, '
and y' the co-ordinates of the given point
M (Fig. 53). Suppose the axes to be rec-
0 ¢ * tangular. Any line passing through the

Fig. 53. point M has an equation of the form (§ 64)

y—y'=a(x—2a).

In order that this line be perpendicular to the line AB, it is
necessary that the relation 1+ aa'=0, be satisfied (§ 74);

whence it follows that ' = = On replacing a' by its value,
a

one gets the equation of the perpendicular MP
(20) y—y'= -1 @—a).
a

The co-ordinates « and y of the foot P of the perpendicular, or
the point of intersection of the two lines AB and MP, are
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found by solving the simultaneous equations (2) and (20); but
it is necessary to calculate the differences x — ' and y — y'
in terms of quantities which do not contain « and y (§ 55).
Equation (2) can be written in the form

y—y'=ale—a) = (¢ — @' —);

if, in this equation, ¥ — y'is replaced by its value derived from
equation (20), one finds

,v_x,__(ty'—-ax’——bz
’ 14 a

and hence, by virtue of equation (20),
y' —ar'—b
14 a?
By applying the formula for the distance between two points
(§ 55), one gets the length [ of the perpendicular M P,

z=V@—xy+@_yﬁ=¢@uﬂﬂ—®ﬂt+®)

)

y—y'=-

(1 + a2)2
whence (21) J=<x Z’/—{lﬁb'
14 o’

The sign is so chosen that  will have a positive value. It
is easy to see that the numerator is positive or negative, accord-
ing as the point M is situated on the opposite or origin side of
the line AB. For, let N be the point where the line AB is
intersected by a line drawn, from the point M parallel to the
axis of y; the point N being on the line AB, the ordinate y, of
this point will equal ax' 4 b, so that the formula (21) becomes

=y U=
Vi
The difference, 3' — y,, is positive in the first case and negative
in the second. '
It is to be noticed that the length of the perpendicular under
this last form may be obtained immediately, by noticing that
the right-angled triangle MNP gives

MP = MNsin MNP = + (y' — ;) cos &
el (O et 1)
sec o V14 o
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76. Suppose that the axes are oblique; the lines AB and
MP will be perpendicular if their angular coefficients @ and
a' satisfy the relation 14 aa'+ (a + a')cos § =0 (by 17);

whence o' = — 112080 o arire the equation of the
@ + cos 6
perpendicular MP is
1+ acosé
22 y—yl=—-—T""7="7 — ).
2) A a4 cos 6 @—a)

By solving the two simultaneous equations (2) and (22), one
gets the co-ordinates x and y of the point P. TIf, as above, one
seeks the differences x — 2/, y — ¥/, one finds

_w¢=(?/'—-(m'—b) (a + cos 6)
1+a*4+2acoséd

i _ (' —ax'—b) (14 acosh),

14+ a®+ 2acosf ’

&

2

y—=y

substituting these differences in the formula for the distance
between two points (§ 56),

l=+V@—aY+y—y)+2@—2a"){@y—y)cosb,
one gets

V(a + cos 6)2 + (1 + acos )2 — 2(a + cos 6) (1+a cosd) cos b %
+ 1+2acosf + a?

1=
@' —ax’ ~b)
By developing, one remarks that the quantity under.the radical
contains the factor 1 — cos?6 or sin*6, and is equal to
(1 4 2acosf + a?) sin®6;
(y' — ax' — b)sin §
V1T 2acost + @
The numerator will be positive or negative according as the

point M is situated on the side of AB opposite to, or on the

same side as the origin. The sign is so chosen that [ is positive.
i

hence (23) =+

77. In what precedes, we have supposed that the equation
of the given line has the form y = ax 4+ b. If the equation has
the general form
1) Az 4+ By+ C=0,



CHAP. I. STRAIGHT LINE AND CIRCLE. 85

the angular coefficient « of the given line being equal to —%,

one will have, in case of rectangular co-ordinates, a' = — }; = %13,
and the perpendicular let fall from M will be represented by
the equation

B

y—y'=7 @—2)
! !
o4 oo _y—y

or (24) i =

Tormula (21), in which one substitutes for a and b their

values — iB1, - %, becomes
Ax' 4+ By' + C

V A2+ B

This formula is an expression for the distance of a point
from a straight line in rectangular co-ordinates: the numerator
is the first member of the equation of the line, in which @ and
y are replaced by the co-ordinates of the point; the denomina-
tor is the square root of the sum of the squares of the coeffi-
cients of x and .

When the axes are oblique, one has

__B— Acoso,
~ A— Beosd’

the equation of the perpendicular will be

(25) I &

a!

"} ]
26 r—® __ Y Y
=) A—Bcos§ B— Acosb

and formula (23) becomes
I— 1 (4=' + By' 4 C)siné

VA + B — 2 ABcos6
It is easy to determine the sign of the numerator, according
to the position of the point M with respect to the line AB.
Let V (Fig. 53) be.the point where the line AB is intersected

by MQ drawn parallel to the axis of y; imagine a movable
point, having @ and y for co-ordinates, to travel along this

@7)
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parallel, and consider the values of the polynomial Ax+ By+C
for the various positions of the movable point. If the movable
point be at N, the value of the polynomial is zero. If the
coefficient BB is positive when one travels in the direction of
positive #’s, the term By increases, and the function takes
greater and greater positive values; when one travels in the
opposite direction, it takes negative values; the contrary is
true when B is negative.

78. ProprLEM X.— Through the point of intersection-of two
given lines, draw a line perpendicular to a given line.

Let Ax + By + C =0,
A'x +B'y +C" =0,
Aﬂx + Bﬂy + C” = 0’
be the equation of three lines in rectangular co-ordinates.
Every line passing through the intersection of the first two is
represented by an equation of the form
(Ax 4+ By+ C) + A (A'z+ B'y+ ) =0;
in order that it be perpendicular to the third, one must have
e )\AI} A
1+x112”((14?i)\]3')—0’

whence one finds
AA" + BB"

_AIAH_*_BIBH'

On replacing X by its value, one obtains the equation sought,
(28) (A'A"+ B'B"y(Ax+ By + (')

= (A"A + B"B) (A'x + B'y 4 ().

A=

79. The three given lines form a triangle whose vertices are
the intersections of these lines two by two. Equation (28)
represents the perpendicular let fall from one of the vertices
to the side opposite. By permuting the accents, one gets the
equation of the perpendiculars let fall from each of the other
two vertices to its opposite side, i.e.,

(A"A + B"B) (A'z + B'y + C"y=(AA'+ BB") (A"z+ B"y + C"),
(AA'+BB") (A"s+ B'y + C")=(A'A" + B'B") (Az + By + O).
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By adding the first two of these equations member to mem-
ber, one obtains the third. Hence one infers (§ 70) that the
three altitudes of a triangle pass through a common point.

80. ProBLEM XI.— To find the locus of all points equally distant
Jfrom two given points.

Suppose the axes to be rectangular, and let =/ and y’, /' and y"’ be the
co-ordinates of the two given points. If x and y are the co-ordinates of
any point whatever of the locus, the equation of the locus will be

@—2)+ @ -y = - o)+ - YA,
or, more simply,

@ @ -2 (z-EEE) b -y (y- L2 ) <o

This locus is a straight line perpendicular to the line joining the two
given points at its mid-point.

81. ProsrEM XII.— T find the locus of all points which are
equally distant from two given lines.
Let us suppose the axes to be rectangular. Let

Ax +By +C =0,
A'z 4+ B'y 4+ "' =0,

be the equations of the two given lines. If one represent the
co-ordinates of any point of the locus by = and y, the equation
of the locus will be

(30) Az + By+C _ + Az + B'y+ C'
' VEF B VAT B

Owing to the double sign, this equation represents two lines,
which are the bisectors of the angles which are formed by the
given lines.
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EQuATION oF THE STRAIGHT LINE IN POLAR
CO-ORDINATES.

82. Let O be the pole and OX the polar axis. The position
of a line AB can be determined by the
length @ of the perpendicular let fall from
the origin on this line, and by the angle
« which this perpendicular makes with
A A the polar axis, this angle having the limits
? \ * Oand 27 Let p and o be the co-ordinates
Fig. 54, of any point of this line; by projecting

the radius vector OM on the perpendicular OD, one has

a

(31) pcos (o —a)=a; or p=cTs(w——a).

Since @ and « are constants, this equation can be given the
form, by developing cos (v — «),

C

32 ’ = .
32) . Acos o+ Bsin o

Conversely, every equation of this form represents a
straight line; for, by referring it to rectangular co-ordinates,
t.e, by taking the polar axis as the a-axis, and a perpendicu-
lar to it at the pole as the y-axis, then using the transforma-
tion formulas #=pcosw, y=psine, the new equation is
Ax+ By=C. t

Remark. —If the line pass through the pole, then ¢ = 0 and
p» in equation (31), is not zero; therefore cos (w — &) = 0, or

3
w=“+7§r; “+T;-‘;"’:

ie., o = constant,.
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ANOTHER ForM or THE EQUATION TO A
STRAIGHT LIXNE.

83. Equation (31) developed becomes :
p COS wCOS & + pSinwsine = q,
or, in rectangular co-ordinates,
(33) zeose + ysine —a = 0.

The equation of the line being put under this form, its first
member has a very simple geometric meaning. Let any point
M of the plane, whose polar co-ordinates are p and o, and rec-
tangular co-ordinates » and y, be consid- 5|
ered ; from this point drop a perpendicu-
lar MP on the line AB (Fig. 55). The M
projection of the radius vector OM on - &
the line OD is p cos (w— «); but this
projection is equal to OD, increased or - A
diminished by the perpendicular P.JM, x
according as the point M and the origin \

O are situated on opposite sides or on LG

the same side of the line; if therefore this perpendicular be
represented by p, affected with the + sign in the first case,
and by the — sign in the second, one will have, in general,

=)

a4 p=pcos(v—«)=acose+ysine,
whence p=+(xcosa+ysine— a).

Thus, the first member of the equation (33) represents the
distance from any point of the plane, whose co-ordinates are
x and ¥, to the line represented by this equation, this distance
affected with the proper sign.

It is easy to deduce the co-ordinates @, and y, of the foot P
of the perpendicular; the differences ® — @, ¥ — %, being the
projections of the line PM on the two axes, we have

& — 2 =pcos«= (xcos & + ysine — a)cos «,

Y — 1y =psin e = (xcos ¢+ ysin e — a) sin a.
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The form (33), under which the equation of the line can
always be put, is useful in a Jarge number of investigations.

83. 2. The equation of a line passing through two points.

Let
(Pl ’ wl)’ (Pfu ‘"2)

be the co-ordinates of the two points; the equation of the line
joining these two points is

1 .

= COS w S w

P

1 : =0:
— COS oy Sl w, | = VY)
P1

1 .

— COSw, S w;
P2

in fact, this equation represents a straight line since it can
be put under the form of (32), and it is evidently verified by
p=pp ® =0y andp=p2, 0 = Wy
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CHAPTER II
THE CIRCLE.

84. We seek first the equation of the circumference of a
circle in rectangular co-ordinates. Repre- Y|
sent by a and b the co-ordinates of the
center C' (Fig. 56), and by » the radius;
the circumference, being the locus of the
points whose distance from the center
is equal to the radius, has for its equa- — © x
tion

M) (@ —a)y+@y—by=r};
this equation developed may be written
(2) AR+ 1)+ 2D+ 2Ey+F=0.

Hence, the equation of the circle, in rectangular co-ordinates,
is an equation of the second degree, whicl does not involve the
product xy of the variables, and in which the terms in a* “and o
have the same coefficient.

Fig. 56.

85. Conversely, every equation of this form, in rectangular
co-ordinates, represents a circumference of a circle, if it repre-
sents a locus. In fact, equation (2) can be written in the form

e R
(®+ > ( A? A

The center (' will, therefore, by (1), have the co-ordinates
—-3 and ——%; the first member represents the square of

the distance of any point M of the plane, having the co-
ordinates 2 and », from the point C; if the second member
is positive, the equation will be satisfied by the co-ordinates
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of all the pomts of the plane whose distance from (' is equal
¢ f])‘ —i—E2
0 ; it represents therefore a cucumference

of a cirele. ‘When the second member is zero, the distance
MC becomes zero, the point M will coincide with the point C,
and the equation will still be satisfied by the co-ordinates of
this point; the locus will be reduced therefore to a single
point.

Finally, in case the second member is negative, the equation
cannot be satisfied by any point of the plane; because the
square of the distance of the point M from the point € is a
positive quantity; the equation cannot therefore, in this case,
represent a geometrical locus.

86. Suppose now that the co-ordi-
nate axes are oblique, and inclose an
angle 4 (Iig. 57); by expressing that
the distance of any point of the locus
from the center is equal to the radius,
one will have the equation of the
circumference,

3) (x—a)+@y—0+2@—a)@y—b)cosd =1~
This equation may be written in the form
4) AP+ +2aycos ) +2 Dr+2 Ey+ I'=0.

Hence, the equation of a circle, in oblique co-ordingtes, is an
equation of the second degree, in which the terms in 2% in ¥, and
in 2 xycos @ have the same coefficients.

On dividing by A, one reduces, as in (3), the coefficients of
2% 9% 2wy cos § to unity.

87. Conversely, every equation of this form represents a
circumference of a cirele, if it represent a locus. In fact, one
can determine the three constants, a, b, and % by comparing
equations (3) and (4). Equation (3), developed, becomes

P+t +2xycos 0 — 2 (a+ beos b — 2 (b4 acos by
+a?+ b +2abcos —r*=0.
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Equations (3) and (4) will become identical by placing

a—l—bcos@:—f—i, b—}—acosG:—JZE’,

a2+bz+2abcos0—r2=E-
A
The first two relations give finite values for « and b, since
the determinant 1 — cos?d or sin’*@ is different from zero.
The third gives

72=a?+b2+2abcos0—§-

Notice the point €, which has the co-ordinates @ and b. The
first member of equation (3) represents the square of the
distance of any point M of the plane, whose co-ordinates are
x and g, from the point C. If »* is found to be a positive
quantity, the equation will be satisfied for every point of
the plane whose distance from C' is equal to r; it represents
therefore the circumference of a circle. TIf 2 has the value
zero, then the distance M equals zero, and the equation will
be satisfied by the co-ordinates of the point C'; it will repre-
sent a single point. Finally, if +* have a negative value, the
equation will not be satisfied by a single point of the plane.

Instead of determining the center C' of the circle by its
co-ordinates @ and b, it is more convenient to determine it by
the orthogonal projections of the line OC on the two axes.
(all these two projections OD and OE, «' and ' (Fig. 57),
affected by proper signs, and express the fact that the projec-
tion of the line OC on the one or on the other axis is equal to
that of the broken line OPC or OQC; one has

a'=a+beos, b'=0+acosb;

whence, a' = —3, b= —g. After having laid off the
lengths o' and ' on the axes, beginning at the origin, one
erects perpendiculars to the axes at the points D and E; the
intersection of the two perpendiculars will determine the

center C.
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88. The equation of the circumference of a circle, as has
been found, is

©G) @=a)’'+@—0*+2@—a)(y—Db)cosd —r?=0.

The first member has a geometrical signification which it is
well to notice. Consider a point M of the plane having the
co-ordinates @ and y; the expression

@E—a)*+ G —0"+2@—a)(y —b)cos

represents the square of the line (), which joins the point
M with the center (Fig. 58); the first member of the equation
is, therefore, equal to M C*— 7% that is, to the product of the
two factors MC + r and MC — r, which are
™ the two segments MA and MB of the diam-
eter drawn through the point M, the seg-
ments being affected by the same or contrary
signs, according as they are measured in
the same or in opposite directions. Thus the
first member of equation (5) represents the
product of two segments of any secant drawn from the point
M, that is, the power of this point with respect to the circle.
When the point M is without the circumference, this product
is equal to the square of the tangent.

Fig. 58.

89. Prosrem 1.— To find the equation of the tangent to any
curve. =
We have already given the definition of a tangent at a point
M of a curve (§ 19). Through
the point M and a neighboring
point M’ on the curve draw a se-
cant MM, and allow the point M’
to continually approach the point
M. The secant MM' will revolve
about the point M, and if it tends
toward a limiting position M7,
Fig, 50. ] this line M7 is called the tan-
gent to the curve at the point M (Fig. 59).

‘u " --—--l
pemmiemees
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Let o and 7 be the co-ordinates of the point of contact M;
4 h and y 4+ & those of the neighboring point M'; the angu-

lar coefficient of the secant MM’ is the ratio ]& of the difference
(2

of the ordinates of the two points M and M' to the difference
of their abscissas. As the point M' approaches indefinitely
toward the point M, the two increments 4 and k tend simulta-
neously toward zero; we study here curves defined by equa-

tions such that the ratio ;—” tends toward a limit, which is the
)

derivative of the ordinate regarded as a function of its absecissa.
If the equation of the curve is solved with respect to y, and
put under the form y = f(x), the tangent will have for its
angular coefficient y'=f'(2). In case the equation of the
curve f(x, y) =0 cannot be solved, the derivative y' of
the implicit function y can be derived from the equation
S+ -7, =0, in which f, and f', represent the partial
derivatives of the function f(wx, y), with respect to « and .
Whence it follows
S
(6> Yo fvy‘
Thus, if X and Y be the co-ordinates of any point of the tan-
gent, the equation of this line will be

(D Y—y=— fj (X —2), or (X —2)f, + (Y =) [, =0

90. ProBLEM I1. — To find the equation of the tangent to the
circle.

Let the preceding formula be applied to the circle, suppos-
ing that the axes are rectangular and the origin is at the center
of the circle. The equation of the circle is

®) 2y — 1= 0.
The equation, solved for y, becomes y =+ Vr* —a*; on tak-
ing the derivative of this function, one has

y’:'—‘—;w_—_:—f-
EVPA—a ¥
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By leaving the equation unsolved and applying formula (6),
the same value y'=—2 is obtained. Thus the equation of the
tangent is Y

Y—yz—j—j(X—-w), or e X +yY =a*+ 32

Since the point M is on the ecircle, its co-ordinates satisfy
the equation of the circle, and one has 2® + »* = % The equa~
tion of the tangent is simplified and becomes

) e X +yY =>4
Since the angular coefficient of the radius drawn to the

point of contact is Y it follows that the tangent is perpendicu-
x
lar to this radius.

91. ProsreEM III.— To draw a tangent to « circle from an
exterior point.

Suppose that the circle is always referred to rectangular
axes drawn through the center, and represented by the equa-
tion

®) o+ gt =17

call 2, and , the co-ordinates of the given point P (Fig. 60).
Let MP be a tangent drawn from this point; the question is
now to determine the point M, whose unknown co-ordinates
are assumed to be @ and y..r The point
M being on the circle, its co-ordinates
satisfy equation (8). The tangent at
the point M has the equation X 4y Y
=12 This tangent passes through the
point 7, and the equation must be satis-
fied by the co-ordinates of this point,
which furnishes the relation

(10) axy + Yy = 1"

Y

Fig. €0.

By solving the two simultaneous equations (8) and (10), the
values of the unknown « and y will be obtained. :
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The solving of the two equations (8) and (10) results in
finding the point of intersection of the two lines. The first
equation represents the given circle; the second a straight
line. To find the values of x and y, which satisfy at the same
time these two equations, is to find the peints of intersection
of the line and circle. This line cuts the circle in two points
M and M’ and is the line of contact. It is to be noticed that
equation (10) of the line of contact has the same form as
equation (9) of the tangent; only, that the co-ordinates of the
point of contact are replaced by those of point .

92. One knows that, in case one has two equations
A=0,B=0,

simultaneous with respect to two unknown quantities « and y,
if one of the equations be replaced by mA + nB = 0, which is
obtained by multiplying the equations by the arbitrary quan-
tities m and n, and then adding them member to member, one
forms a new system of equations

A=0, dm + Bn =0,

equivalent to the given system. This signifies geometrically
that the points of intersection of the two curves represented
by the two given equations are the same as the points of inter-
section of one of them with the third curve.

It has been stated that the points of contact M and Jl[ "are
given by the intersection of the given circle and the line of
contacts. By subtracting the two equations (8) and (10) mem-
ber from member, one obtains the new equation

P4y —ax—yy=0,

. LAY AN
” (=5) +(-5) ="

which may replace equation (10). This new equation repre-
sents a circle whose center is the mid-point of the line OP and

has the co-ordinates % and % Since the equation has no con-

stant term, the circle passes through the origin and is, there-
G
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fore, described on OP as a diameter. The points in which the
circle cuts the given cirele are the points of contact. In this
manner the construction of elementary geometry is verified.

93. ProBLEM IV.— To draw a tangent parcilel to a given line.
To the circle

®) 24 =1,

it is required to draw a tangent parallel to the line 0.4, which
is supposed to be drawn through the origin, and to be repre-
Y sented by the equation y = mx (Fig.
61). If x and y be the co-ordinates
of the point of contact M, one knows
that the angular coefficient of the

T,

7’

tangent is equal to —<. In order
4 X g 1 s

that the tangent M7 be parallel to

“ the given line, the angular coefficient
N t b 1 tom, ie. —Z=
Fig. 61. must be equal to m, i.e. s =m, or
1) y=—1La,

m

Further, the co-ordinates of the point M satisfy the equation
of the circle. These co-ordinates are therefore determined -by
the two simultaneous equations (9) and (11), and, consequently,
the points of contact M and M' are given by the points of
intersection of the circle and the line represented by equation
(11). Tt may easily be shown that the line MM’ is perpen-
dicular to the line OA.

94. This problem may be discussed in another manner, and
this will give us the opportunity of presenting the equation of
the tangent to the circle in a new form. Let us therefore seek
the points of intersection of the circle 2* 4- y* = 7% by the line
y=mx + k. On eliminating #, one gets the equation of the
second degree, * + (mw + k)* = % or

(m? 4+ 1) & + 2 mkx + K — r* = 0.
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When this equation has real roots, the line cuts the circle in
two real points whose abscissas are the roots of the equation.
In case the roots of the equation are equal, the points of inter-
section will coincide, and the line becomes a tangent to the
circle. Finally, when the roots are imaginary, the line does
not cut the circle.

Thus, the condition that the line be tangent to the circle is

mk* = (m* + 1) (&* — %), or K> =" (m*+1).
Substituting for % its value, the equation of the line becomes
12) y=mx +rvVm?+ 1. '

This equation, which involves a single arbitrary parameter
m, represents all the tangents to the circle.

95. ProBrEM V.— T find the locus of the points whose distances from
two fired points are in a given ratio.

Let A and B be the two given points ¥
(Fig. 62). Take the line AB as the
x-axis, and for the y-axis a perpendicular
to A B at its middle point. If one calls
2 g the distance 4B, 1
n
and if  and y designate the co-ordinates

of any point in the locus, the equation 4 oo\ B 2 X
of this locus will be

V@t a? m
PH@—ap w

2
or (13) a;2+y2—2ax:::izz+ a?=0.

the given ratio,

This is a circle whose center lies on the axis of X. The two extremities
of the diameter DE are the points which divide the line AB in the ratio
m to n.

96. ProsrLEM VI.— To find the points of intersection of two
circles.

Let (14) #*+3¥*+2Dx +2Ey +F =0,
(15) P4y 2D+ 2E'y+ F =0,

be the equations of two circles in rectangular co-ordinates, the
coefficients of a? +2? being equal to unity. The points of
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intersection will be given by these two simultaneous equations.
One can replace the second eircle by the line

16y  2(D—DYa+2(E—EYy+ (F—F)=0,

which is obtained by subtracting the equations member from
member, and the question is reduced to finding the points of
intersection of the first cirele with this line. 1If the line cuts
the circle, the circles have two points of intersection, and
equation (16) represents the common secant. If the line
becomes tangent to the eircle, the points of intersection eoin-
eide, and the two eircles will be tangent; equation (16) will in
this case represent the common tangent. Finally, when the
line does not cut the circle, the two circles do not have a
common point.

Moreover, the equation (16) has in every case a remarkable
geometrical signification. The first members of equations (14)
and (15) represent respectively (§ 88) the powers of any
point M of the plane, having the co-ordinates a and ¥, with
respect to the two given eircles; whence equation (16) may be
obtained by equating these two expressions, the terms of the
second degree canceling; equation (16) represents, therefore,
the locus of points of equal power with respeet to two
circles; this locus is a straight line, which is ealled the radical
axis of the two cireles. The portion of this line external to
the ecircles is the locus of the points from whieh any pair of
tangents drawn to the two circles are equal each to each. It
is clear that the radical axes of three circles meet in a point;
this point is called the radical center of the three eircles.
When it is exterior to the three circles, the tangents emanating
from this point have the same lengths. The eirele described
about this point as center with a radius equal to the common
length of the tangents is orthogonal to the three eircles con-
sidered.

ReMARK. — If the coefficients of >+ 3* be not equal to
unity, and if the equation of the two cireles are of the form

AN fle, =4 @+y)+2Dr +2Ey + F=0,
¢ Y=A'"@+y)+2Dw+2Ey+ F =0,
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the equation of the radical axis can be derived by eliminating
the terms of the second degree between the two equations, that
is to say, by multiplying the first by — A' the second by A4,
and adding; thus is found the equation

(18) A¢— Af=2(AD'— DAz +2(AE'— EA)y
+ AF' —FA'=0.

More clearly does this equation represent the radical axis,
because the power of the point (2, y) with respect to the first

cirele isf (L’lﬂ) , with respect to the second, ‘#—(li’fy), by equating

these two powers and clearing of fractions, one gets equa-
tion (18).

97. ProprEM VIL — To find the general equation of the
circles which pass through the points of intersection of two given
circles.

The totality of these circles is called a pencil of circles.
Their equation may be found by a method identical with that
employed in the analogous problem of straight lines (§ 69).
Let the two circles be represented by equations (17), the
equation

(19) f(% Y+ A (m’ Y= 0,
that is to say, ‘
(A + 24" (@ + 1)+ 2(D+ AD)z + 2(E +AE")y + F+AF' =0,

where X plays the role of an arbitrary constant, represents a
circle passing through the points of intersection of the two
given circles; for the co-ordinates of each of the points of inter-
section reducing f and ¢ to zero, evidently make [+ Ad = 0.
Equation (19) is the most general equation of the circle sought,
that is to say, for every value of A, it represents some circle S
passing through the points common to the given circles. In
fact, choose a point (x;, ¥,) on the circle S, and determine A by
the equation of the first degree

Sy y) + A (@, 1) =

— R
2R A S
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which expresses the condition that the ecircle (19) passes
through the point (x, ;). The coefficient A being thus de-
termined, the circle (19) and the circle S coincide, because
they have in common three points at finite distances, namely,
the two points of intersection of the given circles and the given
point (2, y,).

All of the circles of the pencil (19), taken two by two, have
the same radical axis, which is no other than the radical axis
of the given circles (18). This radieal axis is to be reckoned
among the cireles of the pencil, for it is derived by giving the

particular value —% to A, which causes the terms of the
Pe

second degree to disappear.

Livitixe Poixts. — Take, for simplicity, the line through
the centers of the given circles as the a-axis and their radical
axis as the y-axis; the equations of the two circles take the
form

(20) 4+ —2ax +c=0,
@4y —2a'vr+c=0,
a and a' being the abscissas of the centers of the two circles
and ¢ the power of the origin with respect to each of the two
circles, the power being the same for the two circles, because
by hypothesis the origin is on the radical axis. The general
equation of the circles passing through the points common to
the two circles is ’
A+10NE+yH) — 2@+ ra)z+1 + N)e=0,

or more simply on dividing by (1 4+-A) and calling the ratio

a+xa'
142 =M
1) P+ —2pr+c=0,

where u represents an arbitrary coefficient. This last equa-
tion could have been deduced a priori, because it is the general
equation of the circles, which, associated with either of the
given circles, has OY as the radical axis.
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Among the cireles (21), there are two, each of which reduces
to a point real or imaginary, or, in other words, has a radius
equal to zero; these two circles are the limiting points. Equa-
tion (21) can be written

@-p'+y=p—c

Therefore, for p =+, this circle reduces to the point
w=p,y=0. If cis positive, that is, if the origin is exterior
to the two circles, or what amounts to the same thing, if the
two circles intersect in imaginary points, the values of u are
real and the two limiting points are real. In this case, Ve
represents the common length of the two tangents drawn from
the point O to the given circles; the limiting points are there-
fore the intersections of the line of centers, Ox, with the circle
described about the foot O of the radical axis as center, with a
radius equal to the length of the tangent drawn from O to any
one of the given circles. If, on the other hand, the two given
circles (20) intersect in real points, O being within the two
circles, ¢ is negative and the two limiting points are imaginary.
1f the two given circles are tangent, O is their point of contact,
¢ =0, p=0, and the two limiting points coincide with O

97. 2. ProsuEm VI -— Find the condition that two circles
intersect orthogonally.

When two circles intersect at right angles, the radii drawn
to the point of intersection M are perpendicular, because they
are perpendicular to tangents which are perpendicular by
hypothesis. The triangle, which has as vertices the point M
and the two centers, is therefore right angled at M, and the
square of the distance between the centers is equal to the sum
of the squares of the radii. Suppose that the two circles are
represented by equation (17); then by using the expressions
given in § 85 for the co-ordinates of the center of a circle
and the square of its radius, the condition that the two circles
cut orthogonally in rectangular co-ordinates will be

(22) AF' 4+ FA'—2(DD' + EE") =0.



104 PLANE GEOMETRY. BOOK II.

The same result can be derived without the assistance of
geometry. Let (2, y) be a point common to the two cireles a7y:

the angular coefficients of the tangents to the two circles at
!

this point being respectively (§ 89) — ;—‘ and — %, the neces-
¥ ¥

sary and sufficient condition that the two circles be orthogonal

at the point (a, y) is
f'.’t ¢'Z +f’y ¢'_ll = 07
which becomes by substituting and developing

23 AA' @ 4 9) + (AD' + DAz + (AE' + A'E
Y
+ DD' + EE' =0.

If @, y be regarded as current co-ordinates, this last equation
represents a cirele, and, as it should be satisfied by the points
of intersection of the two given circles (17), it ought to repre-
sent a cirele passing through the points of intersection of these
two circles. Morcover, the three circles (17) and (23), taken
two by two, should have the same radical axis. The radical
axis of circle (23) and the first circle, f= 0, of (17) has the
equation

(AD'— DAYx 4 (AE'— EA')y + DD' + EE'— FA'=0;

the equation of the radical axis of cirele (23) and the second
circle ¢ =0, of (17), is o

(AD'— DAYx + (AE' — EA'yy — DD' — EE' + AF' =0.

Expressing the condition that these two equations should
be identical, one gets equation (22).

The condition expressed in (22) may be verified by suppos-~
ing A'=0; the second circle becomes a straight line, and
the condition of orthogonality ought to express the condition
that this straight line pass through the center of the first
circle.

Remark. —The condition of orthogonality is linear and
homogeneous with respect to the coefficients of each of the
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circles. Conversely, if between the coefficients 4, D, E, F
of the equation of a circle

A@*+y)+2Dx+2Ey + F =0,
any linear-and homogeneous equation
LA+ MD+ NE + PF=0

be established, this relation compared with condition (22)
shows that the circle considered is orthogonal to the fixed
circle

P(? +y)— Mx— Ny+ L=0.

Avrprications. — To find the equation of a circle which cuts orthogo-
nally three given circles
fx, ) =A@ +y)+2Dx +2Ey + F =0,
oz, )= A2 +y)+2Dx +2E'y + F =0,
(e, Y)=A"(2 +y?)+ 2D+ 2By + P =0
Let (24) a(x? +y2)+ 2dx + 2ey + f = 0

be the circle sought; one should have, after condition (22) has been
applied to circle (24), associated with each of the other three in order
and been arranged with respect to a, d, e, and f.

(25) aF —2dD —2eE +f4 =0,
aF! —2dD' —2¢E' +fA' =0,
aF" —2dD" — 2 eE" + fA" =0.

If the three given circles taken two by two do not have the same radical
axis, these equations give a single system of values for the ratio of any
one of the coefficients a, d, e, f to the other three; there is, therefore,
one circle only cutting the proposed circles at right angles; it is called
the orthotomic circle. Its equation is obtained by eliminating «, 2d, 2e,
F between equations (24) and (25), which gives in determinant form

x‘2+y2, —% —Y 1

F, D, E, 4 | _ 0
FI, D’, E’, AT
I, D', E", Al

1t is admissible to suppose that any one of the coefficients 4, A/, All'is
zero ; the corresponding circle is then replaced by a straight line.
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Ner oF Circies. —Let f(x, y), ¢ (%, ), ¥ (2, y), be the first
members of the equation of the three preceding ecircles, which,
taken two by two, do not have the same radical axis; the
equation

(26) A (@, ) + pd (2, y) + v (x,y) =0,

where A, u, v are arbitrary coefficients, represents an infinitude
of circles, forming what is called a net. It is desired to
determine the condition that every ecircle of the mnet be
orthogonal to some fixed cirele, that is, orthotomic to a circle.
In fact, by adding equations (25), member to member, after
having multiplied the first by A, the second by p, the third by
v, a relation is obtained which expresses precisely that the
circle (26) is orthogonal to the orthotomie circle (24).

Conversely, the totality of the cireles which are orthogonal
to a fixed circle forms a net. For the condition that a
circle § be orthogonal to a fixed circle leads to a linear homo-
geneous relation with respect to the four coefficients of the
equation of the cirele 8.  One of these coeflicients is therefore
a linear homogeneous function of the other three, which are
arbitrary and which may be called X, g, v; the equation of the
circle S arranged with respect to A, p, v takes then the form
of (26), and the circle .S forms a net.

LEquaTtion or A CIrcLE IN PoLAR CO-ORDINATES.

97. 3. Let O be the pole and OX the polar axis (Fig. 63);
call « and « the co-ordinates of the center C, r the radius,
and p and o the co-ordinates of any
A point M of the circumference. In the

triangle OCM, one has

(27) p* —2ap cos (0 — &) + & —1* = 0.

When the pole O is situated on the
? Fle. 63 ¥ circumference, one has a = r, and the
& o equation reduces to

(28) p= 2rcos (a) = (Z).
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As an application of this equation, considertwo circles which
intersect; through one of the points of intersection O, draw
any secant; this secant meets the circles in two other points
M and M'; find the locus of the mid-point of the line MM
If the point O be taken as pole, the two circles are represented
by the equation

p=2rcos(v—a), p=2r'cos (o—a'),
and one obtains immediately the equation of the locus
p=1co0s (0 — &)+ 1'cos (o —a');
this equation can be put under the form
p =27 cos (w— &),

and the locus is a circle passing through the point of intersec-
tion O of the two given circles.
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CHAPTER III*
GEOMETRICAL LOCL

98. Geometrical loci may be defined in various ways.
‘Whenever a property common to all points of a locus is given,
it is by interpreting this property by means of algebrai¢
symbols that the equation of the locus is obtained. In this
manner, the circumference of a circle was defined as the locus
of points whose distances from a given point are equal to the
same given quantity; it was by expressing this property,
common to every point of the locus, that the equation of the
circumference was obtained (§ 84). Thus, also, has been
found the locus of the points whose distances from two given
points are in a given ratio (§ 95); the expressing of this
property gives the equation of the locus. Likewise, by the
same process, the equation of the perpendiculars erected at
the mid-point of the straight line which joins two given points
(§ 80), and those of the bisectors of the angles formed by
two given lines (§ 81).

But, usually, a curve PQ (Fig. 64) is defined by the motion
of a point in the plane. Iach position of the variable point
M is determined by the construction of a figure whose various
parts depend on an arbitrary parameter «. Consequently the
two co-ordinates « and ¥ of the point M are functions of this
variable parameter a: let

z = fla), y=h(a),

be the two functions; one sees that the equation of the locus
described by the point M is found by eliminating the param-
eter a between the two equations.

More generally, the geometric construction determines every
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point of the locus by the intersection of the variable curves
which depend on the parameter a; let

@) Fx, Y a) =0,
(2) ﬁvl(x) Ys a‘) = 0}

be the equations of the two curves. Ifa particular value be
assigned to this parameter, two curves A and B are obtained
which intersect in a point M, whose
co-ordinates @ and y satisfy the two
simultaneous equations (1) and (2).
If another value «' be assigned to the
parameter, the two lines will occupy
the positions A' and B, and the point
of intersection will be at M'; a third
value «' assigned to the parameter
will give the two curves A" and B"
and their point of intersection M", and so on. Allow the
parameter @ to vary in a continuous manner; then the two
curves A and B will be displaced in the plane in a continuous
mannper, and the point of intersection M will describe the
line PQ.

The equation of the curve P@, the locus of the point M,
will be found by eliminating the parameter « between the two
equations (1) and (2). In fact, the elimination of a between
the two equations (1) and (2) amounts to finding a system of
two equations

3) Fy(, y, a) =0,

(4) S, y) = 0,

equivalent to the system of two equations (1) and (2), and
such that one of them does not contain the symbol a. Two
systems of equations are said to be equivalent, when they
are satisfied by the same assigned values of the variables.
When a particular value is assigned to a, the co-ordinates x
and y of the point M associated with this value of a form
a system of three quantities, x, ¥, @, which satisfy at the
same time the two equations (1) and (2); since the system

Fig. 64.
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of equations (3) and (4) is equivalent to the preceding, these
values satisfy also equations (3) and (4); equation (4), which
does not involve a, is therefore satistied by the co-ordinates
of every point of the locus.

Conversely, every point M, whose co-ordinates a and y
satisfy equation (4) belongs to the locus. Because, if one
determines a value @ which satisfies equation (3), in which
one gives to x# and y the preceding values, one gets a system
of values of three quantities, @, y, «, satisfying the system of
equations (3) and (4). Equations (1) and (2), constituting
a system equivalent to this system, will be satisfied by the
same values; one will thus obtain two lines 4 and B passing
through the point M.

It can happen, moreover, that to a system of real values
of x and y satisfying equation (4) corresponds a value of a,
for which ‘equations (1) and (2) do not represent real curves;
one will have this kind of a locus, for example, if the value
of a were imaginary. But, in every case, the values of x, y,
a will satisfy the two equations (1) and (2).

99. Although the construction of each of the positions of
the figure, which gives the various points of the locus, de-
pends upon the value given to the arbitrary parameter, it is
frequently more convenient to introduce into the discussion
several variable parameters a, b, ¢, --+; but these parameters
are then so connected with one another that the Va'lue of one
only is arbitrary, and that the variation of this™ parameter
determines moreover the value of the others. If these param-
eters are n in number, they will be connected by » — 1 equa-
tions of condition.

Suppose, for example, that only two variable parameters
@ and b connected by the equation of condition

®) d(a, b)=0
are employed, and let
(6) F("T’ Y a, b)= 0,

(7) Fy (2, y, a, b)=0,
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be the equations of two variable curves 4 and B, whose inter-
sections furnish every point of the locus. If the parameter
a varies in a continuous manner, the parameter » which de-
pends upon @ by reason of the relation (5) will vary also in
a continuous manner; the two curves 4 and B, whose equa-
tions contain the two parameters, vary also in a continuous
manner, and their point of intersection M will describe a
curve PQ.

The equation of this curve will be obtained by eliminating
the two parameters a and b between the three equations (5),
(6), (7). In fact, to eliminate « and » between these three
equations is to find a system of three equations

(8) F2(w’ Y a b>= 07
(9> Fs(x; e b>= 07
(10) f('% y)= 0,

equivalent to the given system, and such that one of them
no longer contains @ and b When values are assigned to
a and b which satisfy equation (5), the co-ordinates « and y
of the point M, associated with these values of @ and b, form
a system of values of four quantities x, y, a, b, satisfying at
the same time the three equations (5), (6), (7). The three
equations (8), (9), (10) forming a system equivalent to the:
preceding system will also be satisfied by the same values;
equation (10), being independent of « and 0, will therefore
be satisfied by the co-ordinates @ and y of each point of the
locus.

Conversely, every point M whose co-ordinates @ and y
satisfy equation (10) belongs to the locus; because if one
determines the values of @ and b which satisfy the two equa-
tions (8) and (9), in which  and y have been assigned the
preceding values, one has a system of values of four quantities
x, 7, a, b satisfying the system of three equations (8), (9), (10).
The three equations (5), (6), (7), forming a system equivalent
to the former, will also be satisfied, and one will have two
curves . and B passing through the point M.
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100. Suppose, in general, that one employs n variable pa-
rameters a, b, ¢, ..., k connected by n — 1 equations of condition,

¢1(aa by ¢y eeey k)= 0,

(11) * ot
l bn1(a, by ¢, ooy B)=0,

and let

(12) F(J" ¥ @ by ¢, e, h) =0,

(13) /. (a'y Yy @ by ¢y ooy h) =0,

be the equations of two variable curves 4 and B, whose inter-
sections give every point of the locus. When the parameter «
is allowed to vary, the remaining parameters vary simultane-
ously, and the point M describes the locus. The equation of
this locus is obtained by eliminating the n parameters between
n + 1 equations (11), (12), (13).

101. It has been asserted that the construction of the
figure depends upon a single arbitrary parameter a. If the
figure should depend upon two arbitrary parameters a and b,
the two co-ordinates x and y of the point M would be func-
tions of these two parameters, i.e.,

@ = f(a, b), y=rfila,b). .

v

Such values could be assigned to these parameters that the
point M might be made to coincide with any point of the
plane, having the co-ordinates z; and y,. To accomplish this,
it suffices to determine @ and b by means of the equations

@y =f(a, b), n=1si(a,0)

The point M may describe the entire plane and not any defi-
nite curve in the plane.

One sees very clearly, then, why it is necessary, when »
variable parameters are employed, that these n parameters be
connected by n — 1 distinct equations of condition; because,



CHAP. IIIL GEOMETRICAL LOCL 113

if these equations of condition could be reduced to a smaller
number, two parameters at least would be arbitrary.

It is possible that the two variable curves A and B inter-
sect in several points; the preceding process gives the locus
described by the totality of these points.

102. REeMARK. — It often happens that one of the two vari-
able curves 4 and B, whose intersection furnishes a point M
of the locus, passes through a fixed point P. In this case, the
co-ordinates of this point P satisty the equation found by elim-
ination. In fact, suppose that the equations of the two curves
contain n variable parameters connected by n —1 relations
(§ 100); if the co-ordinates and y, of a fixed point P sat-
isfy the equation of the line 4, whatever be the values of the
parameters, by replacing z and y in the equation of the curve
B by , and y,, one will get an equation, which, combined with
the n — 1 equations of condition between the parameters, will
form a system of n equations which will determine the values
of these parameters. This point P> will, properly speaking,
be foreign to the geometrical locus, if imaginary curves corre-
spond to the values found. .

In this case, it frequently happens that the point I” enters
in the equation through a particular factor which ean be
removed. After this factor has been suppressed, the equa-
tion represents the geometrical locus itself. But often it is
impossible to decompose the first’ member of the equation into
two factors, and the point P must be considercd as an isolated
point connected with the curve.

103. Pronrevm 1. Being given in the plane (Fig. 65) an angle X07,
and a fixed point P, draw through the point I the fixed secant PBA and
the variable secant PDC; draw also
the lines AD, BC; find the locus of their
point of intersection M.

Take the lines OX and OY as co-
ordinate axes, and represent by x; and ¥,
the co-ordinates of the point P. The
fixed secant PBA will have an equation
of the form

y—n=a@—x),
in which the parameter ¢ has a constant
H
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value. Similarly, the variable secant PDC will be represented by the
equation

Y—y1=m(x—21),
in which m is a variable parameter. If one puts successively in these
equations y =0, x = 0, one gets the co-ordinate of the points in which
these lines intersect the axes of co-ordinates.

4, y=0, =2~ 4,

a
B, =0, y=y1 - ax,
01 .7/=01 xr=x — ﬂ’
m

Dy, £=0, y =y — mx.

By applying the formula of § 67, one gets the equations of the lines
AD, CD,

x ]
+ < =
1) oYL Y- man
a
& YRR
@ xl_y_l+yx—ax1
m

The values of x and y, which satisfy the two simultaneous equations
(1) and (2), are the co-ordinates of the point of intersection M of the two
lines AD and BC; these co-ordinates vary with the arbitrary parameter
m. By subtracting the equations member from member one obtains the
equation

m __a > ( 1 1 .
Y — MLy Y1 — axg Y — Mxy Y1 — axy
or more simply
m—a

3
@) (y1 — may) (y1 — axy)

which, combined with equation (1), forms a system eqﬁ’ivalent to the
system of two equations (1) and (2). So long as the parameter m has a
value different from @, the first factor being different from zero, the
co-ordinates x and y of the point A7 must reduce the second factor to
zero. Therefore the co-ordinates of each of these points of the locus
satisfy the equation

(nix + x1y) =0,

or Y1+ 21y =0,

) vy,

x x1

This locus is a straight line passing through the origin.

When m = a, the system of two equations (1) and (2) reduces to equa-~
tion (1) ; the two lines AD and BC coincide, and their point of inter-
section is any point of the fixed secant P4.
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Suppose the elimination had been made in another manner; if for
example the value of m dedueed from equation (1) were substituted in
equation (2), an equation of the second degree would be obtained, the first
member of which would be decomposable into two linear faetors of the first
degree, and whieh, consequently, would represent two straight lines, the
locus OL and the straight line P4A. This equation would have the form

Y+ e[y —n—a(@—2x1)]=0.

It is to be noticed that equation (4) does not contain the constant pa-
rameter a ; therefore the locus is independent of the partieular position
assigned to the fixed secant PA. Whence the following theorem may be
deduced: When an angle XOY and a fixed point P, in the same plane
are given, if any two secants A, I’C be drawn through this point P, the
point of interseetion M of the two straight lines AD and BC is always
situated on the same straight line OL.

Turther, it is to be noticed that equation (4) depends upon the ratio

o1
3—6_1’ that is, upon the angular coefficient of the straight line O Hence,

the loeus OL will remain the same, if the point P be moved along the
line OP passing through the origin.

104. This question can be discussed more quickly in another manner.
Suppose that any two axes have been drawn in the plane. Represent,
for brevity, the equations of the given straight lines 04 and OB by
a=0,8=0, and the fixed secant P4 by v =0. The given point P> will
no longer be determined by its co-ordinates, but by the intersection of
the two given straight lines P4 and OP; the latter, passing through the
point of intersection O of the lines 04 and OB, has an equation of the
form B + aa = 0. The movable secant PC, drawn through the point of
intersection P of the two lines 8 + @a = 0, y = 0, is represented by an
equation of the form

) B+ aa + my =0,

in which m represents an arbitrary parameter. The point €, in which
this seeant cuts the line 0A, is given by the two simultaneous equations
a=0, B+ aa+my =0, or more simply a =0, 8+ my=0; the last
equation represents a line passing through the point C, and also through
the point of intersection BB of the lines g =0, vy =0; it is, therefore, the
equation of the line BC. Similarly, the point D, where the movable
secant interseets the line OB, is given by the two simultaneous equations
B=0, B+ aa + my =0, or more simply 8 =0, aa + my =0; the line
represented by the last equation, passing also through the point of inter-
section A of the lines a = 0, v = 0, is none other than the line AD. The
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two movable lines BC' and AD, whose intersection determines the point
M of the locus, have therefore the equations,

(2) B+ my =0,
3) aa 4+ my = 0.

The equation of the locus will be found by eliminating m between the
two equations ; if the equations be subtracted member from member, one
obtains the equation

“ B — aa =0.

Whenece it follows that the locus is a straight line passing through the

point 0. This line is independent of +, that is, of the fixed secant Pd,

and is the same whatever be the position of the point /2 on the line OP.
It has been assumed that the parameter m has a finite value ; if m be

replaced by 2’ and after multiplying by ¢, one makes q = 0, the equations
q

(1), (2), (3) reduce to y = 0 ; the movable secant coincides with the fixed
secant ’A, so also the two lines BC and AD.

105. PronreyM I1.— The sides of a variable triangle ABC revolve
about three fixed points P, P, P, situated in a straight line, while the
two vertices A and B slide on the two
Jized lines ID and 1E; find the locus
described by the third vertex C (I'ig. 66).

Draw in the plane any two axes,
and, for brevity, represent, as in the
preceding discussion, the equations of
the given lines ID, IE, by a =0, g8 =0,
and the line PP'P" by vy =0; each of
the fixed points P, I, I, can be de-
fined by the intersection-bf this line
and of a line passing through the point
I; the point I being the point of in-
tersection of the lines a =0, 8 =0, the
lines IP, IP!, 1P have equations of the form

l3+aa=0, )8+ala:01 ﬁ+a”‘7~=01

in which @, @', @' designate constant coefficients. In order to construct
a particular position of the variable figure, draw through the point P an
arbitrary line PA, then construct the lines AP’ and BI"', whose inter-
section will determine a point C of the locus. The point P being the
intersection of the two lines v =0, B+ a2 =0, the line P4, drawn
through this point, will have an equation of the form

¢Y) B+ aa + my =0,

Fig. 66.
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in which m is an arbitrary parameter. The point A, in which the line
PA cuts the line ID, is given by the two simultaneous equations

a=0, B+ ax+my=0, or more simply & =0, 8+ my =0.

The line AP, passing through this point, has an equation of the form
B + my + mla; it is necessary to determine the coefficient m'in such a
manner that the line passes also through the point P’ determined by the
two equations y =0, 8 + ala=0; ify be put equal to zero in the equation
of this line and g = —a'a, then will (m/ —a') e = 0; as a is not zero, since
the point P is not on the line a = 0, therefore must m! —a'=0,orm! =a'.
Thus the line AP' will be represented by the equation

®) B+ ala+ my =0.

Similarly, the point B, in which PB cuts the line IE, is given by the
two equations 8 =0, 8 + aa + my =0, or moresimply 8 = 0, aa + my =0;
the line BP'!, passing through this point, has an equation of the form
aa + my + m''8 =0 ; determine now the coefficient m// in such a manner
that this line may pass through the point P't, the intersection of the lines
v=0, B+ a'’a=0; if in this equation v be put equal to zero and
g = —a''a, then will (a— m'a' ).a = 0; therefore, choose m'' = %;
a
hence the line BP! is represented by the equation

©) %(ﬁ—i—a”a) + m~y=0.

Equations (2) and (3) are the equations of the two movable lines AP
and BP, whose intersection is any point O of the locus ; the equation of
the locus will be obtained by eliminating m between these two equations ;
subtracting them member from member, one gets the equation

@ (a/ —a)a'a + (a/' —a)B=0.

Therefore, it follows that the locus is a straight line passing through
the point I.

106. Cororrary L — The solution of the following problem may be
deduced from what precedes. Inscribeina triangle IED a second triangle
whose edges pass respectively through the three given points P, J2% JEU
lying in the same straight line.

1f a variable triangle be constructed whose sides are conditioned to pass
through the points P/, ", P, while the two vertices 4 and B slide on
the straight lines ID and IE, the locus of the third vertex is a straight
line JC. The point of intersection €y of the lines IC and DE is therefore
one of the vertices C; of the triangle sought ; the lines Cy P!, C P! give
the other two vertices 4; and B;. Itis worthy of notice that this solution
requires the use of no other instrument than the rule.
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CoroLrary II.—The preceding problem may be easily generalized.
Consider a quadrilateral whose four sides pass through the four points
P, Py P, P!"' lying in a straight line, in such a manner that the three
vertices A4, B, C slide on three fixed straight lines R, S, 7'; find the
locus described by the fourth vertex (Fig. 67).

The three sides of the triangle BCE passing through the three fixed
points P, P'!, P!, revolve in such a way that the two vertices B and C
slide on the fixed lines S and 7'; the vertex X describes therefore a
straight line EF. Accordingly, the three sides of the triangle AED pass-
ing through the three fixed points P, P, P!, revolve in such a manner
that the two vertices A4 and K slide on the two lines R and EF ; the
vertex D) describes therefore a straight line.

From the quadrilateral one may pass to the pentagon. Moreover,
when the n sides of a polygon pass through n fixed points lying in a
straight line and revolve so that n — 1 of its vertices slide on n — 1 fixed
lines, the nth vertex will describe a straight line. o

107. Prosrem IIL — Being given a triangle ABA!, draw through O
taken on the side AA' a variable secant
OCC'; pass a circumference of a circle
through the three points 0, 4, C, and a
second through the three points O, A', C';
Jind the locus of the point of intersection M
of these two circumferences (Fig. 68).

Take the line 04’ for the z-axis and a
perpendicular OY, drawn through O, for
the y-axis. If @ and a’ be chosen as the
abscissas of the points 4 and ./, the two
fixed lines 43 and A'B will have the
equations

Fig. 68.
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@ y=c(x—a),

&) y=cd(@x—d),

and the variable secant the equation

) y = ma,

in which m represents a variable parameter. The co-ordinates of the

point € are found by solving the two simultaneous equations (1) and (3),

which gives
o=t _ mea
Se=r0 0

Tec—m
Every circle passing through the points O and 4 has an equation of
the form
224yt —ax —by=0,
in which the parameter b is arbitrary. This parameter is determined by
the condition that the circle passes through the point C, which gives
b= a(em + 1)

- Fl

c—m

the circle which passes through the three points 0, 4, C' has therefore the
equation (
a(em + 1)
24 2 — qp — AT L) 0.
“) 22+ ¥ — ax o—m 7 0
If, in this equation, ¢ and ¢ be replaced by o’ and ¢/, the equation of the
circle which passes through the three points 0, A', ' will evidently be

®) 2ty —ae—— — —y=0

In order to find the equation of the locus of the point of intersection M
of the two circles, it is necessary to eliminate the variable parameter m
between the two equations (4) and (5). By equating the values of m
deduced from (4) and (5), one gets the equation

c(@® 4y —ax)—ay _c/(z*+y?—a'x) —a'y
@+ y? — ax)+ cay (@ + y* — d'x) + 'y’
which may be written

(c— N[+ ¥ — ax) (2 + y? — a'x) + ad'y?]+
(14 ec)yla!(2? +y2 — ax) — a(x? + 2 — a'x)]=0,
or (o= eDI(#+D)? = (a+ aNa(@ +97) + ad (22 + 9]
+ (1 +ec)(@ —a)y(x +y5) =03
by putting (2 4 y2) without a bracket, and dividing by ¢ —¢', one
obtains the equation
(1+ ee’)(a—a")

© @+ [”2+y'2—(a+a’)x“ c—d

v+ aa’] =0,
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This equation is decomposed into two: the one 22 4 y> =0 gives the
fixed point O in which the two variable circles intersect ; the other

(14 cc’)(a — a')

2 2 !
M 2tp—(a+a)a-CEOE

y+aad =0
is the equation of the locus of the point AZ. This locus is a circle.

It can be seen & priori that the three points B, 4, A' belong to the
locus. Because, if the variable secant pass through the point B, the two
circles intersect in B; this point constitutes a part of the locus. Suppose
now that the secant becomes parallel to the line A'B; the point ' is
removed to infinity, the second circle coincides with the line 0A’, which
cuts the first circle in 4. In a similar manner the point A’ is found by
supposing the secant to be made parallel to 4B. It is also easy to show
that the co-ordinates of the points B, A4, A’. satisfy equation (7). Thus
the locus required is a circle circumseribing the triangle AB.A.

108. PronrLEM IV. — Being given a circle and a fixed point P, revolve
ahout the fixed point P a right angle APB; join by a straight line the twwo
points A and B, in which the sides of the right
angle produced mect the circle, and draw from
the point P a perpendicular PM to the line AB;
Jind the locus of the foot M of the perpendicu-
lar (Fig. 69).

Take the diameter OP for the x-axis and
the diameter perpendicular to OP for the
y-axis; the given circle is represented by the
equation

¢))] 2?4y =12
Let (2) y=ax+b

1
v

be the equation of the secant AB. If y be eliminated between the two
equations (1) and (2), one gets an equation of the second degree,

3) I+ a¥)a?+2abx + 12— 1r2=0,

whose roots are the abscissas 2/ and x'/ of the points A and B and the

values of the ordinates will be ax' + b, ax'" + b. If ¢ represent the con-
stant length OP, the two lines P4, PB have the angular coefficients

y' y! par’+b oax+b,

¥ =c x—=¢ o —¢' a—¢’

the angle 4 PB being right, one has the condition

(ax’ + b)(ax" +b) _
JCEDICED)
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which may be written
> (1 +a®)x'z"” + (ab—c) (& + ') + b2+ 2 =0;

if the values of x/+x!" and z'x!’ be replaced by their values deduced from
equation (3), one obtains the relation

@) (1 + a?) (et —12) + 2b(ac +b) =0,
which connects the two parameters ¢ and b.

The perpendicular PM, drawn from the point P to the line AB, has
the equation

The point M is determined by the equations (2) and (5), in which the
variable parameters @ and b satisfy equation (4); the equation of the
locus of the point M is found by eliminating these two parameters be-
tween the three equations (2), (4), (5). From equation (5) it follows

thata:_x—( w.

; whence from equation (2) one deduces b = -
On substituting these values in equation (4), one gets the equation

. o 2 —r?)

©) [+ (2= (@ + P — et —5— =0,

which decomposes into two: the one, 2+ (x — ¢)? =0, gives the point
P; the other,

©) w2+ y?—cx+
represents the locus sought.

It is evident that the point P does not belong to the geometrical locus
according to its definition ; but it is easy to understand how analysis has
introduced it into the result. The co-ordinates x = ¢, y = 0 of the point
P satisfy equation (5), whatever the parameters may be; one could
therefore deduce from equations (2) and (4) the corresponding values of
the two parameters @ and b; thus one finds ¢ =4 7, b=— ac. This is
an application of the remark made in § 102.

Equation (7) shows that the locus is a circle having its center on the
line OP. To construct it, it suffices to determine the extremities of the
diameter 0D ; if AB/, BA' be drawn making angles of 45° with the diam-
eter OP, the chords AA/, BB, being perpendicular to this diameter, will
give the two points C and D.

212

3 =0

109. The same circle may be found by seeking the locus of the mid-
point M’ of the chord AB. In fact, the mid-point is determined by the
intersection of the chord AR and the perpendicular drawn from the center
to this chord. Since these two lines have the equations

y=az+b, y=— 1z,
a
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the equation of the locus will be obtained by eliminating the two variable
parameters ¢ and b between these two equations and equation (4). We
thus have the equation

2 _ g2
(x2+y'-’)(ac‘~’+y2_cx+c > ”):0,

whiclh decomposes into two, the one giving the point O foreign to the

geometrical locus, the other the circle.

110. ProBLEM V.— A circumference and a fixed point P are given,
y a right aungle revolves about
its vertex placed in P; find the
locus of the point of concur-
rence M of the tangents drawn
to the circumference at the
points of intersection A and
B with the sides of the right
angle (Fig. 70).
x Take the diameter OP as
the z-axis and the diameter
o perpendicular to it as the y-
axis; let » be the radius of
the circumference and ¢ the
distance OP; the equation of
Fig. 70. the given circumference is

m 22+ y2=1r
Represent by z; and y; the co-ordinates of any point M of the plane.

The chord of contact of the tangents drawn from this point will have the
equation !

@) e+ y1y =%

The co-ordinates of the points of contact will be found by solving the
simultaneous equations (1) and (2). If z, y be considered a solution of
this system, the value m of the angular coefficient of the line which joins
the corresponding point to the point I has the equation

3 m=—
G P

The elimination of x and y from the equations (1), (2), (3) gives the
equation which determines the angular coefficients of the two lines drawn
from the point P to the points of intersection of line (2) with the circum-
ference. In order to accomplish this elimination, solve equations (2) and
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(8) for x and y, and substitute their values in (1); thus is found the
equation of the second degree

@) [0 —cx)?+ (e — ry2Im? + 2% (c — z)m + r2(r? — 2,2) = 0.

In order that the point M, chosen arbitrarily in the plane, be a point
of the locus, it is necessary and sufficient that the directions, which cor-
respond to the two roots of equation (4), be rectangular. On expressing
that the product of the roots is equal to — 1, the equation of the locus
is found to be

@2+ y2) (2 — D)+ 21w — 21t =0,

which, suppressing the indices, may be written

2 2 1292 — 2
5 2 —ToC ) a2 — )
© (e
The locus is a circle which can be constructed by the method indicated
in the preceding problem.

The radii B and r of the two circumferences and the distance D
between their centers satisfy the relation

(6 (B2 — D)2 = 242(R2 + D?).

If the sides of the right angle 4PB be prolonged, and tangents be
drawn at A’ and B/, the points of intersection of the consecutive tangents
are the vertices of a variable quadrilateral, which is at one and the same
time circumscribed about the given circle and inscribed in circle (5).
Hence, when the radit B and r of the two circles Oy and O and the dis-
tance D between their centers satisfy relation (6), a quadrilateral can be
constructed, inscribed in Oy and circumscribed about O, by taking as an
edge of the quadrilateral any tangent to the circle O.

r2

111. ProBLEM VI.— Find the locus of the points, such that the feet
of the perpendiculars drawn from each of them to the sides of a triangle
lie in a straight line.

Let
xcosa + ysina —p; =0,
m xcosB + ysinpg —ps =0,
xcosy+ ysiny —ps =0,

be the equation of the three sides of the triangle, referred to any two
rectangular axes, and, for the sake of brevity, represent by ai, f1, 71, the
first members of these equations. Calling # and y the co-ordinates of the
point M of the locus, 2; and y;, s and ¥z, 23 and y; those of the feet of
the perpendiculars drawn from the point M to the sides of the triangle,
one has (§ 83)

X — 2 =a;c08a, *—xg=p1C08PB, X —x3="7y1C08%,

y—y1=asing, y—ye=p18inp, y—ys=7siny.
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The equation of the locus will be found by expressing the condition
that the three points lie on a straight line. For this purpose it is neces-
sary to equate the two ratios Y2~ YL and Y2 — Y1 which can be put under

Tz —* r3 — 901
the form

===y _ == -1
(kg —x)— (1 —x) (X3 —2)— (acl — x)

By substituting from the preceding equation, this equation becomes

Bi1sin B —aysin a _M siny — ay sma

B1COSB — a1€0Sa  ~Y1COS7y — ayCOSa
or (2) ay B sin (B = a) + Bl Y1 sin (’7 = ﬂ) +via sin (a = ’y) =0.
The letters ay, B1, ¥1, representing polynomials of the first degree in x
and y, it follows that equation (2) is of the second degrce. The coeffi-
cient of xy is
sin (a + B) sin (83— a) + sin (B + v) sin(y — B) + sin (v + «)sin (a — ) ;
if the product of sines be transformed into the difference of cosines, this
coefficient becomes

(cos2a —cos28) (0828 —cos2v)+(cos2y —cos2a)
5 ,

it is identically zero. The coefficients of x? and y2 are

M =cos acos.ﬁsin (B—a)+ cos Bcosysin (y—B)+cosy cos asin (a — 7v),
N =sinasingsin (3—a)+sin Bsiny sin (y —B) + sin ysin asin (a—7).
1f their sum and difference be calculated, one has
M — N =cos (a+ B)sin (8 —a)+ cos (B + v)sin(y —B)
+ cos (v + a) sin (a — )
_sin28 ~sin2a +s8in2y —sin28+ sin2a —sin2y -0
= B) = =Y
M+ N=cos(a—B)sin(B—a)+ cos(B—v)sin (y —8)
+ cos (v — a) sin (a — ¥)
_sin2(B —a) +sin2(y — B) +sin2(a — v) =
- 2
= —2sin (8 —a) sin(y — B) sin (a —v);
whence it follows that
M=N= —sin(B—a)sin(y — g)sin (a —v)-

Therefore the locus is the circumference of a circle. Equation (2) being
satisfied when one puts g; = v1 = 0, it follows that the point A belongs to
the locus ; similarly with the points B and C'; the locus is therefore the
circle circumscribed about the triangle ABC.
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112. From equation (2), which represents the circle circumscribed
about a triangle whose sides are represented by equations (1), may easily
be deduced an important property of a special system of two circles.
Suppose that the sides (1) be tangents to a circle of radius » having its
center at the origin O of co-ordinates. It will be necessary in equations
(1) to make p; = p = ps = r. 1t equation (2) of the circle be developed,
it may be written

3) M@ +y?) - Per—Qy+ F=0.

Let R be the radius of this circle and D be the distance of its center
0, from the center O of the first circle ; one will have

P2 Q_F oy P4 Q2
4 M2 a 4 M2’
whence D — R =

[
ol

The radii of the circle O, determined by the angles a, 8, v, form two
by two the supplementary angles of the angles A, B, ¢ of the triangle
formed by the three tangents. One has, therefore,

M =—sin.4sin Bsin ¢ =— —S—,
' 2 R*
F =1r%(sin 4 + sin B + sin 0)=4r2cos 4 cos B eos g:iS,
2 2 2 R

S representing the area of the triangle ABC. From these results follows

that TI; = — 2 Ry, and consequently
L

4) D*=R?—2Rr.

Now it is proposed to determine all the triangles which are at the
same time inscribed in the circle Oy and circumscribed about the circle O,
whose radii and the distance between the centers satisfy relation (4). It
will be no restriction to suppose that the point O, is situated on the
x-axis, and the angles a, 8, ¥ to fulfill the conditions

r2 _E_ D2 — p2.
4M2 M 4 312

Q=0, R?=

But, owing to relation (4), which the given quantities R, r, and D
satisfy, these three relations may be replaced by the two following:

F
5 =0, —=—2Rr.
®) Q@=0, i Rr

Let, in fact, R’ be the radius of a circle circumscribed about the tri-
angle A'B' (', determined by the angles o/, 8/, 7/, which satisfy equations
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(5), D' the distance of its center O from the point 0. ¥rom the preced-
ing, it will follow

¥ _opw pr=pr_opn
M

Moreover, by hypothesis

—-%:213;-, Dr=R:_2Rr;
whence it follows that R’ is equal to 2, and D' equal to D. One of the
three angles a’, 8/, 4/, which must fulfill only the two conditions (5), can
therefore be taken arbitrarily. Hence, when the radii R and » of the two
circles O and O and the distance D between their centers satisfy relation
(4), a triangle can be constructed inscribed in Oy and circumscribed about
O by taking any tangent to the circle O as a side of the triangle.

The theorems analogous to the preceding and to § 110 exist for
polygons of any number of sides.

113. Form (2) of the equation of the circle circumscribing a triangle
is worthy of notice. The first member has a very simple geometrical
meaning. To be precise, suppose that the origin of co-ordinates be situ-
ated within the triangle ABC (Fig. 71), and that
the angles a, 8, v, varying between 0 and 2, be
arranged according to their increasing order of
magnitade. Consider a point M having the co-or-
dinates # and » and situated also within the tri-
angle ; draw from this point perpendiculars to the
sides, and join the feet of these perpendiculars
forming the triangle DEF, The letters aj, 81, v1
designate the length of these perpendiculars

Fig. 7L, affected in this position by the — sign ; these per-
pendiculars are constructed in the same direction as those”which have
been drawn from the origin, and which have served to determine the
angles a, 8, y. The term a; B sin (8 — a) being equal to MD . ME .
sin DME represents double the area of the triangle DME; the two
remaining terms represent in a similar manner double the triangles
EMF, FMD ; thus the first member of equation (2) represents double
the area of the triangle DEF.

Consider next a point M’ situated without the triangle ABC. It follows
from the figure that ay = — M'D’', By = — M'E', v1 = + M'F'; the first
member of the equation represents double the difference between the tri-
angle D'M E' and the sum of the two triangles E'M'F', F'M'D' ; which
is, moreover, double the area of the triangle D'E'F'. Whatever the posi-
tion of the point Af in the plane may be, the first member of the equation
represents double the area of the triangle DEF affected by the + or —
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sign. Equation (2) expresses, therefore, that the area of the triangle
DEF is zero ; that is, that the three points D, E, F lie in a straight line.

If 7 be the radius of the circle circumseribing the triangle ABC, and
d the distance of a point, whose co-ordinates are z and y, from the center
of the circle, the first member of equation (2) can be written in the form

A@ 4 ),

and is equal to A(d* — #2). This expression preserves the same sign, so
long as the distance d is less than », that is, while the point M lies within
the circle, and takes the contrary sign as soon as the point M falls without.

It follows from the preceding that the locus of points such that the
area of the triangle whose vertices are the feet of the three perpendiculars
is a constant quantity k, is represented by two circles whose equations are

aify sin (8 — a)+ Bryisin (v — B)+ viar sin(a — v) = £ 242

These two circles are concentric to the circle circumscribing the triangle
ABC: the one lies without and is always real, whatever be the given
area ; the other lies within, and is not real unless the given area is less

than the absolute value of %’_3 :

EXERCISES.

1. Express the area of a triangle and of any polygon as a
function of the co-ordinates of its vertices.

2. Find the area of a triangle formed by lines whose equa-
tions are given.

3. Being given n points 4, B, C, ... in a plane and % quan-
tities m', m", m'", ... which correspond to these n points; on
the line 4B take a point N, so that the distances from this
point to the first two points are in the ratio m' to m'; then on
the line N,C, which joins ) to the third, take a point XV, so
that its distances from the points N, and (' are in the ratio
m'" to m' 4 m''; further, on the line N,D which joins the point
N, to the fourth point D, a point N, so that its distances from
the points N, and D are in the ratio m"" to m' 4+ m" + m'"',
and so on, till the last given point is reached. Find the
co-ordinates of the last point of division, which is ealled the
center of proportional distances.

When the multipliers m/, m", m'" ... are all equal to the
same quantity, the last point of division is called the center of
mean distances.



128 PLANE GEOMETRY. BOOK II.

As an application, find the guantities m', m", m'", which
give, in case of a triangle, the center of gravity, the center
of the inscribed circle, the point of intersection of the three
altitudes, the center of the cirenmseribed cirele.

4. Find the locus of the points such that the sum of the
products of the squares of the distances of each of them from
n given points, by the quantities m', m', m'" ..., is equal to
a given quantity.

5. Find the locus of the centers of circles which, viewed
from two fixed points, subtend constant angles.

6. Find the locus of the centers of circles which intersect
each of two given circles in diametrically opposite points.

7. Find the locus of points such that the sum of the dis-
tances of each of them from two given straight lines, and in
general from several given straight lines, is constant.

8. Construct on two perpendicular lines OX, OY a variable
rectangle OABC having a given perimeter 2. Show that the
perpendicular drawn from the vertex C to the diagonal AB
passes through a fixed poiut.

9. Being given the figure used in demonstrating the
theorem concerning the square of the hypotenuse of a right
triangle, show that the two straight lines, which join the ex-
tremities of the hypotenuse to the vertices of the squares
constructed on the opposite sides, meet in a point on the per-
pendicular drawn from the vertex of the right angle to the
hypotenuse.

10. From a fixed point P draw tangents to the cireles which
pass through two given points; find the locus of the point
in which the chord of contacts intersects the diameter which
passes through P

11. Being given a regular hexagon ABCDEF, draw the
straight lines AC and AE; through the center draw any
secant which cuts the two straight lines AC and AE in &
and IT; draw BG and FH; find the locus of the point of inter-
section of these two lines.

12. The circumferences described on the three diagonals of
a complete quadrilateral as diameters, have two by two the
same radical axis.
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13. Being given five straight lines, four are chosen to form
a complete quadrilateral, and the mid-points of its three diago-
nals are in a straight line; the five lines thus obtained meet
in the same point.

14. Being given three points 4, B, C and two straight lines
X,Y; on AB as a diagonal, construet a parallelogram whose
sides are parallel to X and Y; proceed in the same manner
with B, C and C, A; the second diagonals of the three paral-
lelograms pass through the same point.

15. Being given four straight lines A, B, C, D, construct a
triangle with any three and determine the common point of
intersection of its altitudes; the four points thus determined
lie in a straight line.

. 16. Two variable circles, which are tangent to each other,
are tangent to two given circles; find the locus of the point of
contact of the two variable ecircles.

17. Four points are chosen arbitrarily on the eircumference
of a circle; the bisectors of the three pairs of angles formed
by the lines which pass through these four points are parallel
two by two.

18. Find the locus of the point such that the chords of
contact of the tangents drawn from this point to three given
circles meet in the same point.

19. One is given a fixed angle 40.A' and a fixed point C' on
its biseetor. An angle of constant magnitude revolves about its
vertex placed at C'; join by a straight line the points of inter-
section B and B' of the sides of the movable angle with the
sides of the fixed angle and drop a perpendicular from the point
C upon BB'; find the locus of the foot of the perpendicular.

20. One is given four straight lines 4, B, C, D, which taken
three by three form four triangles. The line A belongs to
three of these triangles; the center of the circle circumscribed
about each of them is joined to the vertex which is not situated
on A; the three lines thus construeted intersect in the same
point I; the four points analogous to I and the centers of the
four cireles lie on the same circumference.

21. A series of circles are given, which taken two by two
have the same radical axis; if a variable circle cut two of these

I
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circles with constant angles, it will cut similarly each of the
remaining circles with a constant angle.

22. The locus of the centers of circles orthogonal to two
fixed circles is the radical axis.

23. Show that the circle, cutting orthogonally three given

circles
f=0; ¢=O; l/’=07

which, taken two by two, do not have the same radical axis, is
the locus of the points of which the polars, with respect to
these three circles, are concurrent.

24. Show that each of the limiting points of a pencil of
circles and also the point at infinity on the radical axis, has
the same polar with respect to all circles of the pencil.
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CURVES OF THE SECOND DEGREE
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CHAPTER I
CONSTRUCTION OF CURVES OF THE SECOND DEGREE.

114. The general equation of the second degree between
the variables z and y is of the form

7°
@) Ax2‘+2Bxy+'qy2+2Dx+2Ey+F=0;
A ° A

it involves five arbitrary parameters, the ratios of five coeffi-
cients to the sixth.

In order to give an account of the different forms of the
curves which can be represented by this equation, solve it
with respect to y.

Two cases are to be distinguished, according as y appears
in the equation to the second, or only to the first degree; that
is, according as C is different from zero or equal to zero.

Suppose that the coefficient C' is not zero, and solve the
equation with respect to y; one gets the equation

Be+E, 1
@) y=——xg—'i5\/Mx2+2Nx+P,

by putting M = B*— AC, N= BE — CD, P=E*— CF.
Construct the straight line DD’ represented by the equation
— B
c
131
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In order now to construct the points of the locus represented
by equation (2) for each value of z, it is necessary, starting
from the straight line DD’, to lay off from either side along
the ordinate a length equal to

Y= é\/w o N+ P

The line DD' (Fig. 72), which bisects the chords parallel
to the axis 07, is a diameter of the
curve ; the quantity Y is the length
of the ordinate measured from the
diameter. The construction of the
locus is thus reduced to the study
of the trinomial

M+ 2 No+ P

and, as the form of the locus depends
principally on the sign of the co-
efficient M, there will be three prin-
cipal cases to be diséussed.

GENUS ELLIPSE.

115. Consider the case when the coefficient 3/, that is,
B? — AC, has a negative value. The ordinate is not real unless
the trinomial has a positive value. The case investigated here
is subdivided into three others, according to the natyre of the
roots of this trinomial.

1° N?— MP>0. The two roots of the trinomial are real
and unequal. Represent by a' the smaller, and by ' the
larger root; the trinomial can be written

Mz — ') (x — '), or — M (z — &) (z" — 2);
the trinomial is positive, and, consequently, the ordinate Y is
real, for every value of x taken between the limits 2’ and 2"
the trinomial is, on the contrary, negative, and the ordinate
imaginary for every value of « less than ' or greater than '

Take on the w-axis two points P’ and P'' having the abscissas
' and 2", and draw through these points the lines P'A', P"'A"
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parallel to the y-axis; the curve will lie wholly between these
two parallels. As the abscissa @ varies from 2’ to ', the ordi-
nate Y preserves a finite value, and begins with the value zero
and returns to zero; the locus is therefore a closed curve, which
passes through the points A' and A", and to which has been
given the name ellipse.

A value of 2 taken between 2’ and 2" will be the abscissa of
a point P situated between P and P', and the corresponding
value of Y will be equal to

%ﬂ/( — M) PP PP".

The variable product PP'- PP of the two segments of the line
P'P" is equal to the square of the rectangular ordinate of the
cirele deseribed on P'P' as a diameter ; when the point P> moves
from P' to I, the mid-point of P'P", the rectangular ordinate of
the cirele, and consequently the quantity Y, which is propor-
tional to it, will continually increase; it diminishes continually,
on the contrary, as the point moves from I to P The quantity
Y has therefore a maximum value, when the point Pis at Z, that
& 'f)' . —EI- ; this maximum value is equal to

“

ol N\~ — Q 0 . .
@' ;C’ M Beginning at the point C, the middle of the

is, when @ =

diameter A'A", lay off along the ordinate, in opposite directions,
a length equal to this maximum value; two points B' and B"
of the curve will be found, and, by drawing through these
points parallels to the diameter, a parallelogram will be formed,
which will circumseribe the ellipse.

Tt is clear that to the two points P and @, equally distant
from the mid-point 7, eorrespond equal values of Y; these
values, laid off in opposite directions from the diameter DD',
give the four points M, M', N, N'. The two triangles CRM,
CSN' being equal, the three points M, C, N’ lie in a straight
line, and the point C is the mid-point of MN'; hence all the
points of the curve are two by two symmetrical with respect to
the point C, the mid-point of the diameter A'A"; the point C
is, therefore, the center of the ellipse. It follows also that the
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lines MN, M'N' are parallel to the diameter A'4" and each
is divided into two equal parts by the line B'B"; this line
is a second diameter. The diameters A'A", B'B" each of
which bisects the chords parallel to the other, are called con-
Jugate diameters of the ellipse.

2° N*— MP=0. The two roots =’ and " are equal, and it
follows that
dmmie N yoz=d o
M’ C ’
the coefficient M being negative, the quantity ¥ is imaginary
for all values of » excepting « = &', and then ¥ = 0; the equa-
tion has no longer a real solution, excepting the single point
C situated on the straight line DD

3° N?— MP < 0. The trinomial

)T ar

is negative, and consequently ¥ is imaginary for every value
of ; the equation, having no real solution, does not represent
a geometrical locus.

2
Mf’+2Nw+P=M(w+ N> MP— N?

GENUs HYPERBOLA.

116. Consider next the case when the coefficient M/ has a
positive value; this case subdivides into three.

1° N*— MP>0. The trinomial
MP+2Ne+ P,
which one writes in the form
Mz — (@ —a"),
is positive, and consequently Y is real as « varies from a' to
4+ w0, and from z' to — «o; moreover, Y varies at the same
time from 0 to «. Choose, as before, on the z-axis two points
P’ and P with the abscissas ' and 2", and draw through

these two points the lines P'A’, P'"A" parallel to the y-axis;
the curve will be situated to the right and left of these par-

1
=
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allels; it is composed of two dis-
tinct branches extending to infinity
(Fig. 73). This curve has been given
the name hyperbola. If, beginning at
the point I, the mid-point of P'P",
one lay off in opposite directions on
the x-axis two equal lengths IP and
IQ, the corresponding values of ¥
are equal; the point C, the mid-point
of A'A", is the center of the curve,
and the two lines DD' and IC are
two conjugate diameters.

117. Consider the following value of y :

Bx+E 1 N\, MP—N*

=— =AM = e

Y ¢ ‘o (“M)J“ i

In case « has a very large numerical value, the first term of
the quantity under the radical sign is very large as compared
with the absolute value of the second. If the first term only
of the quantity be considered, an approximate value of ¥

will be
®) y1=—B”+Ei1< +%>VM.

C C
The preceding equation defines two distinct straight lines
which intersect in a point of the diameter DD', whose abscissa
is equal to —%; that is, equal to the half-sum of the abscissas

of the points P'and P'; this point is, therefore, the center C
of the curve. Consider the branch A"M of the curve; if C'be
positive, this branch is represented by the equation
__Bx+E l\h[(- N\ K MP—N?
y=— B Mo+ ) + =5
in which allow # to vary from ' to +o0; consider at the
same time the line CL, which has the equation

Bx+E 1 N
e +=(z+=)VIM
3/1 C C’(x Jl[) A




136 PLANE GEOMETRY. BOOK III.

For any value of « greater than a', the ordinate of the curve
is less than the corresponding ordinate of the straight line;
hence the branch A"M is comprised within the angle LCD'.
The difference 3, — » of the ordinates which correspond to the
same abscissa has the value

n—y=g| (= 3p)VA—(x + 2V + o

C 3 iU} g
_N'—MP 1
T oM N i \/_ N\ 1P — N2
o+ N VI A M (w4 XY N
<”“ + M) VI (x + ﬂ[) T

As 2 increases indefinitely, the denominator increases indefi-
nitely, and, consequently, the difference y, — y approaches the
limit zero. The straight line €', which continually approaches
the branch A"M of the curve, is called the asymptote of this
branch of the curve, which is comprised within the angle
LCD'. In a similar manner it can be shown that the branches
A"M', A'N, A'N' are comprised within the angles L'CD',
I'CD, IICD, and have as asymptotes the straight lines oL,
CH', CII, and each of the indefinite lines HL, II'L' is asymp-
totic to two branches of the curve.

It is well to notice that the angular coefficients of the
asymptotes are given by the equation

—B+ VM
(4) m = +) o
or (5) On*42Bm + 4 =0,

which may be obtained by substituting in the terms of the
second degree of equation (1), 1 for  and m for y.

118. 2° N2 — MP < 0. The trinomial

3 2 2
20N > Yl NN MP— N
Mx® 42 Ne 4 I [<a’+2|[) +—-—M

being the sum of two positive quantities, the value of Y is real
for every value of x, and never becomes zero; Y attains its
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V2
minimum value %\/l—”—l—)—]}—ﬂ- when o= — J—?{T . Let I (Fig.74)

be the point of the a-axis whose abscissa is — JJT[V; draw ICparallel

to the axis 07, and take the lengths
CB' and OB' equal to the minimum
value of Y; the two points B'and B"
belong to the locus. As x varies from
—;—L[T to + w0, or fron‘x —% to — oo,
the value of Y increases indefinitely.
If, therefore, one draw through the
points B' and B' parallels to the
diameter DD, the curve is composed
of two distinet portions, situated respectively above and below
the parallels, and extending to infinity in opposite directions.
The name hyperbola is also given to this curve.

If the two values . = — % + abe assigned to x, and the two

distances IP = IQ = « be laid off, starting from I, the corre-
sponding values of Y are equal; whence it follows that the
point C'is the center of the curve, and that the two straight
lines DD', IC are conjugate diameters.
It is also easily seen that the two straight lines
Bx+FE 1 N
S i = VM,

J ¢ e <x + M) ’
which intersect at the center, are asymptotes of the two infinite
branches.

119. 3° N2— MP = 0. One has then

_1 NY_ VM, N
=i 3 - )

and y=—Bx21'E;t-—-”GM<x+§—;>.

The locus is represented by two straight lines which intersect
on the diameter DD'.
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GENUS PARABOLA.

120. Suppose finally that the coefficient M or B* — AC be
zero. The value of Y reduces to

= —(1:'\/2 Nz + P.
This case may be subdivided into several others.

1° N >0. By putting — 5}—,\7 = !, the expression for ¥ may

be written

Y= -é VIN (@ =)

When z varies from 2’ to 4 oo, the quantity Y is real and
varies from 0 to 4 oo ; butitisimaginary for
all values of « less than ' If, therefore,
the line 7’4’ be drawn through the point F/,
whose abscissa is @', parallel to the y-axis,
the curve is situated wholly to the right of
this parallel; it passes through the point A’
and extends, on either side of the diameter
DD’ to infinity (Fig. 75). This curve is
given the name parabola.

2° N< 0. The quantity Y is real when o varies from z'
to — w; the curve passes through the point A', lies avholly to
the left of the parallel 7', and extends to infinity ; this curve
is also called the parabola.

3° N=0. The value of y reduces to

—_BetE 1p
V=T *e

If P is positive, this equation represents two real straight
lines, parallel to the diameter DD, and situated at equal dis-
tanees from this diameter. If >=0, these two parallels
coincide with the diameter; finally, if I’ is negative, the equa-
tion does not have a real solution.
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121. In what precedes, it has been assumed that the co-
efficient C differed from zero. In case the coeflicient C is zero
and the coefficient 4 different from zero, one can solve the
equation with respect to « and construct the locus as in the pre-
ceding discussion; the first term of the trinomial under the
radical has the coefficient M = B?, a positive quantity or zero,
and the locus belongs to the genus hyperbola or the genus
parabola. . In case a variable appears in the first degree, it is
preferable to solve the equation with respect to it; moreover,
this method is only applicable when the two coeflicients .4 and
C are zero at the same time.

It follows, by arranging equation (1) with respect to y, that

2 (Bx+ E)y+ Aa* +2 Dz + F=0,

AP+ 2Ds 4+ F
2(Bx+ E)

Suppose now that B be different from zero, and after arrang-
ing with respect to the decreasing powers of a, that one divides
till a remainder is found which does not contain @. Two cases
are distinguished, according as the remainder is different from
or equal to zero. In the first case one will obtain a result of
the form

whence Y=

c .
x—d

y=ax+b+ =ar+4+ b+

"
2 (Br+ E)
In order to fix the ideas, assume ¢>0. Construct the auxil-
iary locus defined by the equation

L

y=gax+b,and put ¥ =- cd' The -
Pr —
equation y = ax 4+ b represents a o L
straight line HL (Fig. 76); for each .
value of z,it is necessary to increase Qﬁ

quantity becomes infinite for # = d;
take, therefore, a point I having the
abscissa d and draw H'L' parallel to
OY. If a value d + ' be given to z, 2’/ being positive, ¥ will
have a positive value, and as @' tends toward zero, Y will increase

the ordinate of thisline by a quantity [’
QM equal to the value of Y. This %ﬂﬁl P x
P4

Fig. 6.
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indefinitely ; if, on the contrary, @' increase indefinitely, ¥
tends towards zero; thus is obtained a curve comprised within
the angle L'CL and composed of two infinite branches, asymp-
totic to the two lines CL, CL. To values of z less than
d correspond negative values of Y, and a second curve is
obtained which is comprised within the angle HCII', and com-
posed of two infinite branches asymptotic to the lines CH and
CH'. Totwo equal values of @' with contrary signs, correspond
two values of ¥ which are also equal and of contrary signs, and,
consequently, two points M and M' symmetrical with respect
to the point C, which is the center of the curve. If the con-
stant ¢ were negative, one would still obtain a curve consisting
of two distinet parts, situated in the angles HCL', II'CL. The
curve is a hyperbola in both cases.
If the remainder after division be zero, one has

A 4+ 2 De+ F=—2 (Bo + E) (ax + 1),

and the equation takes the form (y —ax—0)(Bx+ E)=0;
it resolves into two others, y — ax — b = 0, Br 4+ K = 0, which
represent two lines, one of which is parallel to the y-axis.

When A and C are zero at the same time, it is sufficient to
put @ = 0 in the preceding discussion; the line DD' becomes
parallel to the a-axis; thus is found, in one case the hyperbola
having its asymptotes parallel to the co-ordinate axes, in the
other two straight lines respectively parallel to the axes.

In case the coefficients B and C are zero, the valie of y has
the form 7 = aa®+ bx + ¢; it is real whatever real value @
may have; by causing « to vary from — oo to + o0, one gets
a curve which extends to infinity in two directions; this is a
parabola.

122. Risumi. — In discussing the equation of the second
degree, three species of curves have been found; closed curves,
curves composed of two distinet parts extending to infinity
in two directions, curves composed of a single branch extending
to infinity in two directions. To these three species of curves
have been given the names ellipse, hyperbola, and parabola.
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In the beginning of this work (Book I., Chapter II.) it has
been noticed that the curves designated by the same names in
elementary geometry are represented by equations of the
second degree. Conversely we shall see hereafter that all
the curves represented by the equation of the second degree
possess the properties which are characteristic of the definitions
in elementary geometry, and hence that the two modes of
definitions are equivalent.

On reviewing the discussion, it is seen that it is the sign of
the quantity M= B?— AC which determines the species
of the curve represented by the equation of the second degree;
the curve is an ellipse, a hyperbola, or a parabola, according
as the quantity M is negative, positive, or zero.

Moreover, it is important to recall that the equation does
not always represent a curve, or what is the same, a locus;
when the quantity M is negative, the equation represents an
ellipse or a point, or does not admit of a real solution; in case
this quantity is positive, the equation represents an hyperbola,
or two straight lines which intersect; finally, when M= 0,
the equation represents either a parabola, or two parallel
straight lines, or a single straight line, or it does not have a
real solution.

VArIoUs FORMS OF THE POLYNOMIAL OF THE SECOND
DEGREE IN TWO VARIABLES.

123. The preceding discussion shows that the first member
of the equation of the curve can be put under various forms
which it is important to characterize. Two principal cases
are distinguished, according as € is different from zero or
equal to zero.

12 C’§ 0. By solving the equation with respect to y, as
has been done, transposing and removing the radical from
M+ + 2 No + P by squaring, the equation can be put under
the form

(6) (Cy + Bz + E)’ —(Mx* 4 2 No + P) = 0.
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If M differ from zero (genus ellipse or hyperbola), and the
trinomial Mx? 4 2 Nz + P be resolved into a square, one has
the form

N\*, N*— MP
7 Cy+Bo+ By — M (2 + ) + LM
@ (Cy + Bx + E) et Y77
If one suppose M =0 (genus parabola), it follows from (6)
that

) (Cy + Bx + E)* — (2 No + P) = 0.

0.

Thus, when M < 0, the first member of the equation is decom-

posed into three squares (7), of which the last is a constant,
these squares being affected by the signs + or —, the first
square is affected by the + sign, the second is multiplied by
— M, which can be positive or negative, the third can be posi-
tive or negative. The different combinations of signs corre-
spond to the cases which have been met in the preceding general
discussion. They are elassified in the table given below, where
the positive square
(Cy + Bo + E

is represented by « the square — M (ac -+ %)2 by + p%or — 7

according as the coefficient — M is positive or negative; finally,

N?I— MP -
M

positive or negative.

When M = 0, the equation takes the form (8) of a square «*
followed by a linear function (2 Nx + P), which is represented
by y when N is different from zero; if N be zero, this linear
function is reduced to a constant P, which is designated by
+ k?or — K? according as it is positive or negative.

Thus will arise the following table, in which it is not neces-
sary for the moment to regard the results written in the third
column which refer to the case €' =0 examined farther on.

The constant ¢, which appears in the third column, has the

value 2_%1 (— AE* — FB' + 2 BDE).

This table shows that, if the inequalities M <0, and
N2 — MP < ( exist at the same time, the equation does not

the constant by +A? or — k% aceording as it is
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FORM OF THE

NUT > =] o}
GENTUS cz0 C=0 CURVE o T

N2— MP>0{If C=0 the curve| Real ellipse. 421 g2 ;2=0
M<0,Ellipse. |[N2—MP<0| is never an Imaginary |,94 g2y 20

ellipse.
N2 MP=0 ellipse. Point.  |a®+32=0
N2 MPZ0 c20 Hyperbola. [q2—p24%2=0
M >0, Hyperbola. Two straight
N2 MP=0 c=0 lines which |a?—B2=0

intersect.

NZO B=0,E20 Parabola. |a2— =0
5 Real parallel
=0, Parabola. |N=0, P>0| p_g [ D*—AF>0jstraight lines. |o? — =0

N=0,P<0 J D?— A F<0|ld.imaginary. a2 4+ k2=0
AYZO, P=0 E=0 LDZ —AF=0 Coincident a2=0

straight lines.

represent a locus, because the first member of the equation is then
the sum of three squares «? -+ ° 4 &% which cannot be zero for
any real values of the co-ordinates: in this case the curve is said
to represent an imaginary ellipse. Similarly, one sees at once
that, if M < 0 and N? — MP = 0, the equation represents a point,
because its first member «? 4 8% being the sum of two squares,
can only be reduced to zero by the co-ordinates of the point
whose co-ordinates reduce to zero at the same time these two

squares, that is, Cy + Bz + E and +7‘—l\[7. In case of the genus
e

hyperbola, the equation represents always a locus: if
N?— MP =0, it représents, as has been seen, two straight lines
which intersect; this follows at once from the preceding
equation, because the equation, having then the form o — 32 =0,
decomposes into a product of two real factors of the first degree
(¢4 B) (¢ — B) = 0; itis therefore equivalent to the system of

two equations
at+pB=0, «—B=0,

which represents two straight lines passing through the point
of intersection of ¢ =0 and 8 =0. In analogy with this case,
it is sometimes said, that a point-ellipse is an ensemble* of

* The French expresses the idea better than a translation-
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imaginary straight lines which intersect, because the equation
takes then the form «? 4 8% = 0, and is algebraically equivalent
to the ensemble of two linear equations

«+BV—-1=0, a—,B\/ 1=0,

which represent nothing more than what one is accustomed for
convenience to call the equations of conjugate imaginary straight
lines. These two equations are satistied by the co-ordinates of
the point which reduce at the same time « and g to zero, that
is, of the point to which the ellipse is reduced. The two
imaginary straight lines are said to intersect in this point.

2° ('=0. The curve can never belong to the genus ellipse.
If B be different from zero, the equation can, as has been
seen in § 121, be put under the form

d
where the constant ¢, which is the remainder of the division of
— (da* +2Dx+ F)
by 2B <a: + E), has the value

c—‘)—l—;—’( AE? — FB* + 2 BDE);

by clearing of fractions the equation may therefore be written

(y —ax—b)(x—d)y—c=0. o

The first member is a product of linear factors in z and .
Tt can also be thrown into the form of a difference of squares
«® — B by writing

2
(y—aw——b—i—w—( 2_(3/_ax—b—m +d) =0,
2 2

<

an equation of the form o — 8 —c¢=0, ¢ designating a con-
stant which may be positive, negative, or zero.

If ¢ be different from zero, one has a real hyperbola. If
¢ =0, the first member of the equation resolves into the
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“product of two linear factors, and the curve is represented by
two straight lines which intersect.
If B be zero at the same time as C, E being different from
zero, the equation becomes

AP +2Dx+2 Ey+ F=0.

It vepresents a parabola, and can be written in the form
«®—y=0, « and y being two linear functions, the first of
which reduces to «. If, further,  be zero, the equation is a
trinomial in « equal to zero, and can be written

DN\* D*— AF

=) —=—=0.

(” + A> e

It represents two parallel straight lines real, imaginary, or
coincident, according as D* — AF is positive, negative,.or zero.

The term —*—Q1 is a linear function «; the constant %‘
%
is of the form 4 %% The equation takes therefore the form

o+ k2=0.
These results are given in the table on page 143 ; the different

hypotheses corresponding to the case ('=0 are arranged in
the third column.

ReMARK. — If the quantity N* — MP be constructed by re-
placing M, N, P by their values as functions of the coefficients
A, B, C, D, E, F, it follows that

(9) N*—MP= — C(ACF— AE* — CD’— FB’ 4 2 BDE).

The quantity within the parenthesis, which plays an important
role in the theory, is called the discriminant of the curve: it is
designated by A:

A= ACF — AE* — CD* — FB*+ 2 BDE.

It follows from the discussion which has been given, and
the results of which have been arranged in the preceding table,
that the necessary and sufficient condition in order that the curve
be a system of two real, imaginary, or coincident straight lines is

A=0.
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In fact, if neither C' nor M be zero, the necessary and suffi-
cient condition in order that the equation may represent two
straight lines is N* — MP = 0, this is, according to (9), A = 0;
if O be different from zero and M zero, this condition is N = 0,
that is, still A= 0.

If ¢ =0, and B be different from zero, the condition is ¢'= 0,
that is, by reason of the value of ¢, A =0.

If ¢ and B are zero, this condition is E = 0, that is, still
A=0.

124. Seek directly the condition necessary and sufficient, in
order that the general equation of the second degree may rep-
resent two real or imaginary straight lines, that is, in order
that its first member may be resolved into a product of factors
linear in x and y: 7
(10) A +2Bxy+ Oy +2Dx +2Ey + I

= (le +my + p) (v + m'y + p').

Substitute in this identity for = and y, T and Z, then by

2 2

removing the denominator 2% one will get a new identity of
the form
11) f(@, y,2) = QR,
where  f(, y, 2)= Aa* + 2 Bry + Cy* + 2 Dz 4- 2 Eyz + F2,
Q=Ilv+my+pz, R=Ux+my+p
Conversely, in case the identity (11) is given, one may return
to the identity (10) by making z=1. Take the successive
partial derivatives of the two members of the identity (11) with
respect to @, y, z, then one has
fo=2(de+ By + D2)=1IR +1'Q,
(12) Sy=2DBx+ Cy + Ez)=mB + m'Q,
fe=2(Dr+ Ey + Fz) =pR +p'Q.
There exists evidently at least one system of values of «, 7, z,
@ =a, y=>b, z = ¢, which reduces to zero at the same time the

linear functions R and @, a, b, ¢ not all three being zero.
According to the identities (12), the same values a, b, ¢ reduce
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simultancously f',, f, /', to zero. Hence, when the conic is
decomposed into two straight lines, the three linear and homo-
geneous equations in x and y

Az + By + Dz =0,
13) Bz + Oy + Ez =0,
Dx+ Ey+ Fz =0,

admit at least of one solution @ = a, 7 = b, z = ¢, in which the
three unknown quantities are not zero at the same time.
Therefore the determinant of the coefficients

4 B D
A= |B (C E
D E F

is zero. This determinant is none other than the discriminant
written above (REMARK) in a developed form.

The condition A = 0 is therefore necessary. It is sufficient.
In fact, suppose it fulfilled: there exists then a system of
values a, b, ¢, of z, ¥, z, of which all three are not zero, satis-
fying equations (13), that is, reducing to zero f',, f', /.. Let,
for example, ¢ differ from zero: making the change of variables,

x=az' + @,
14 y=b 49,
2z =c?,
the function f(x, y, 2) will become
flaz'+ 2!, b2' + 3, 2",

that is, by developing and recalling that the function is homo-
geneous, and of the second degree in w, ¥, z, and that conse-
quently its derivatives are homogeneous and of the first degree,

@ 1) = 27 (2, b, €+ a2/ flu + 4%y + Au® 42 Boly' + Cy”.

The derivatives f', and f, are zero: f(a, b, ¢) is also zero by
virtue of the identity easily verified (theorem of homogeneous

functions),
2f(a, b, ¢) = af’, + bf% + ¢f'..
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The function f(x, y, #) is therefore identical with the
expression Ax” 4 2 Bx'y' + Cy"”, which evidently decomposes
into the product of two linear factors (Ax'+ py") (A\'z'+ p'y"),
and one has identically

S(@ 9 2) = ' + py') W' + p'y").

Returning to the variables x, y, z by aid of equations (14),
which give

) _R ' a ' b
4 =E, @ =£l7—EZ, Y =y—zz,

one gets for fan expression of the form
S, y, 2) = (o + my + pz) ('e+4 m'y 4 p'?).

REeEMARK. — Designate by a, b, ¢, d, e, £ the minors of the
discriminant A, with respect to the elements 4, B, (; D, E,
F'; thus ’

a=CF—E? b=DE-—DBF, c¢c=A4F— D}

d=DBE— COD, e=BD —AE, ft=AC - B

The genus of the conic depends on the sign of f: when
f is zero, the curve belongs to the genus parabola.

From this notation, one has, on developing, the determinant
A with respect to the elements of a row,

A = Aa+ Bb + Dd = Bb + Cc + Ee = DA + Ee + F1.
124. 2. As a special case, determine the necessary and
sufficient conditions, in order that the conic be formed of two
coincident straight lines. The first member of the equation
is then a perfect square of a linear function of the co-ordinates,

and one has the identity
(15) S(@, vy, z) = (le + my + p2)*.

On taking the partial derivatives of this identity, it is seen
immediately that the three linear equations (13) are replaced
by a single equation,

(16) le 4+ my + pz = 0.
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Their coefficients are therefore proportional, which shows
that all the minors of A are zero.

an a=0b=0,c=0, d=0, e=0, f=0.

For example, the conditions

>N
S

e
c

give, when the denominators are removed, f =0, d=0; ete. +..

These conditions may also be verified directly, because the

identity (15) gives
A=08 C=m?) F=p’
B=Ilm, D=1Ip, K-=mp.

It will be found on constructing the minors a, b, ¢, ---, that
they are all zero.

These conditions are, moreover, sufficient in order that the
first member of the equation be a perfect square. In fact, if
they be fulfilled, the three coefficients, 4, C, F, cannot all be
zero, because conditions (17) require that B, D, E should also

be zero and all the coefficients would be zero. Assume then
that 4 be different from zero, one will have

Af (#,y,2) = A%* + 2 ABxy + ACy* + 2 ADxz 4 2 AEyz + AF2
Supposing that the conditions are fulfilled, one has
AC =D, AE = BD, AF= D?;
and the preceding relation gives
Af(x, y, ) = (da + By + %)~

This subject will be considered more in detail at the end
of Book III.
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TANGENT TO CURVES OF THE SECOND DEGREE.

125. Let f(x, ¥) = 0 be the equation of a curve; if x and y
be the co-ordinates of the point of contact M, X and Y the
co-ordinates of any variable point of the tangent, one has seen
(§ 89) that the tangent is represented by the equation

X-2a)f.+ (Y =y Sf,=0,
or X+ ¥y — @+ uft) =0.
‘When the curve is of the second degree, one has
S@ y) =A% +2Bxy+ Cy*+2Dx+ 2Ey + F;
S.=2(dx+ By + D), f',=2(Bx+ Cy+ E);
af', + yf', = 2 (Aa* + 2 Bay + Cy* + Dx + Ey).

The point of contact M being situated on the curve, its
co-ordinates « and y satisfy the equation

@ A +2Bey+ Cy* +2Dx+2Ey+ F=0.
It follows that
A+ 2Bx+ Cy'=— 2Dx+2Ey+ F),
and, consequently,
af . +yff,=—2Dx+ Ey + F).

The equation of the tangent, at the point whose co-ordinates
are « and y, becomes

©) (Az+ By+ D)X + (Be+ Cy+ E)Y + (Dx+ Ey + F)=0.

One notices that the co-ordinates x and y of the point of con-
tact enter only to the first degree. As this equation can be
put in the form

() (AX+BY+ D)+ (BX+ OY+E)y
+ (DX +EY+F)=0,

it is to be noticed that it does not change, in case X and z,
Y and y are permuted.
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It is proposed now to draw tangents to the curve from a
given point P, not situated on the curve, and having the co-
ordinates x; and y,. Call @ and y the unknown co-ordinates of
one of the points of contact M. These co-ordinates should
satisfy equation (1). The tangent at the point M is repre-
sented by equation (2). Since this tangent passes through the
point P, the co-ordinates of this point satisfy equation (2) or
equation (3), and one will have

) (42, + By, +D)x+ (Bxy+ Cy+ E)y+ Dy + Ey, + F=0.

The co-ordinates 2 and y are therefore determined by the
two simultaneous equations (1) and (4). The one being of the
second, the other of the first degree, this system of two equa-
tions has two solutions, and two tangents can be drawn from a
given point P to a curve of the second degree. The solution of
these two equations amounts to finding the points of intersection
of the curves defined by each of them; the first is the given
curve, the second, a straight line passing through the two points
of contact. One notices that equation (4) of the chord of con-
tacts has the same form as equation (2) of the tangent. It is
sufficient to replace in the latter the co-ordinates of the point
of contact by those of the point P.

126. Find the condition that the straight line y =max 4k
be tangent to a curve of the second degree. If y in equation
(1) be replaced by ma 4+ k, an equation will be found of the
second degree in x, which furnishes the abscissas of the points
of intersection of the straight line and the curve. The straight
line will be a tangent when the two roots are equal. Thus is
found the equation of condition

am?—2bm +c+2dmhk — 2 ek + 7= 0.
When the equation of the line has the form
ur+ vy +1=0,
the equation of condition becomes

® au’ +2buv +cv?+ 2du+2ev +£=0.



152 PLANE GEOMETRY. BOOK III.

The calculation may be made more symmetrical by proceed-
ing as follows:

Consider the line X4+ vY+4+1=0,

and suppose that it be tangent to the curve at the point whose
co-ordinates are @ and . Then the latter equation ought to be
identical with that of the tangent at this point, and one should
have, on representing a coefficient of proportionality by X:

u =X (Ax 4 By + D),
(6) v=A(Br+ Cy+ E),
1=\(Dz+ Ey+ F).
By multiplying the first of these equations by «, the second
by %, and adding to the third, one has
ur+vy+1=1(A42"+2Bxy+ Cf +2Dx+2Ey+ F);

since the point , 7 is on the curve, the second member is zero,

and one has
uxr +vy+1=0,

or Aur4+vy+1)=0.

This equation, combined with equations (6), gives a system
of four equations of the first degree in Ax, Ay, and A\. The
elimination of these three quantities gives the condition sought
in the form of a determinant:

!

A4 B D u
B c E v
D E F 1
o v 1 0{=0,

whose development leads to equation (5).
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CHAPTER 1II

CENTER, DIAMETERS, AND AXES OF CURVES OF THE
SECOND DEGREE.

127. The center of a curve has been defined as a fixed point
C, with respect to which all the points of the curve are sym-
metrical two by two. In the discussion of the gemeral equa-
tion of the second degree, it was found that the ellipse and
hyperbola have a center. It is proposed now to determine
directly the center of a curve of the second degree without
solving the equation. The method which will be used depends
on the theorem: when the origin of co-ordinates is the center
of a curve of the second degree, the equation of the curve does
not contain the terms of the first degree.

Let
@) A2+ 2Bxy+ CpP+2Dx+2Ey 4+ F=0

be the equation of a curve of the second degree having the
origin at the center (Fig. 77); the equation of a straight line
MM' drawn through the origin

has the form y=ma. The elim- 5 ‘¥
ination of y between this equa- v
tion and that of the curve gives

%/ )

the equation

2) (4+2Bm+ Cm*) 2 7
+2(D+ Em)s 4+ F =0,

which determines the abscissas
of the two points of intersec-
tion. The origin being the mid-point of the line MD/, the’
preceding equation ought to have equal roots with contrary
signs, and this will be the case if the coefficient of the first
power of  be zero; one has, therefore, D + Em =0, and,

o X
Fig. 77.
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since this condition should hold for an infinity of values of
m, one should have separately D=0, E=0. Conversely,
when these conditions are fulfilled, equation (2) has two equal
roots with contrary signs, whatever be the value of m, and,
consequently, the origin is the center of the curve.

128. In order to know if a locus of the second degree have
a center, keeping the axes parallel to themselves, transfer the
origin to an arbitrary point whose co-ordinates are a and b,
then examine whether these quantities can be so determined
that the new equation does not contain the terms of the first
degree.

The formulas for transferring the axes parallel to themselves
arex=a+ 2, y=>b4y". On substituting in equation (1),
the new equation will be -

(3) Ax”+ 2 Ba'y'+ Cy"+ 2(Aa+ Bb+D)a'+ 2 (Ba+Cb 4 E)y'

+Aa*+2Bab+ CY¥*+2Da + 2 Eb + F =0,
whose composition should be carefully noted. Represent, for
brevity, the first member of equation (1) by f(x, y), which is
an integral function of the second degree in x and #; in equa-
tion (3), the terms of the second degree are the same as in
equation (1); the terms of the first degree have as coefficients
the partial derivatives of the function f(#, y), taken with respect
to the variables @ and y, and in which the variables have been
replaced by @ and b; finally, the constant term is the value
which the polynomial f(z, y) takes for 2 =a and y'=10, and
equation (2) can therefore be written

(4) Ax”+2Bx'+ Cy® + f.(a, D) 2' + [, (a, D)y’ + f(a, b)=0.
On equating to zero the coefficients of ' and y', one obtains

the two equations of the first degree,

Aa + Bb+ D =0,
)

Ba + Cb + E=0.
It follows, therefore, that the center of a curve of the second
degree is determined by solving the two equations which are

Jound by equating to zero the partial derivatives of the first
member of the given equation, taken with respect to x and .
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129. If @ and b be regarded as variable co-ordinates, each of
the equations (5) defines a straight line, and there is occasion
to distinguish several cases, according as the denominator,
common to the values of the unknown quantities, or the
determinant AC — B? which has been represented by — M or
f, is different from zero or equal to zero.

1° When the determinant f is different from zero, the sys-
tem of equations is satisfied by one system of values of a and &
and by one only; the two straight lines intersect; the curve
has a center and a definite center, whose co-ordinates are, accord-
ing to § 124,

d
Ja:f,

6
©) _e
=

[b

2° In case the determinant f is equal to zero (genus parab-
ola), the lines are parallel, or coincide. In the first case, the
curve does not have a center; in the second case, every poinf
of the straight line defined by one of equations (5) is a center.
It is easy to see that, in the latter case, the locus, if it exist, is
necessarily composed of two parallel straight lines. Let, in
fact, CC' be the straight line which is °

the locus of the centers (Fig. 78), and A S &
M a point belonging to the locus; join W
the point M to the various points of ¢ 2 =
the straight line (', and prolong each % \

of these straight lines till IN is equal T
to IM, ete. The points N, N/, N/, ...,
thus obtained, will belong to the locus.
Now all of these points are situated on a line parallel to CC'".
Proceeding in the same manner with the point N, a second
parallel MM will be determined. Moreover, equation (1) can-
not represent other points than those of these straight lines;
otherwise a straight line could intersect the locus in more than

two points. If the point M were situated on the line CC', the
two parallels would coincide with the locus of the centers.

Fig. 78.
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130. If the curve have a ceuter, and the origin be trans-
formed to this point while the axes remain parallel to them-
selves, the equation simplifies and becomes

) Ax® + 2 Ba'y' + Cy” + H =0,

since the terms of the first degree disappear. The constant
term H of the new equation has the value

H = Aa*+ 2 Bab + CV® + 2 Da + 2 Eb 4 F,

a and b representing the co-ordinates of the center. But the
quantities ¢ and b satisfy equations (5): if the members of
each of them be multiplied respectively by a and b, and added
together, they become

Ad? + 2 Bab + CV? 4+ Da 4 Eb =0,
whence A + 2 Bab + CV* = — (Da + Eb),
and, consequently, X = Da + Eb + F;

and by replacing a and b by their values (6)

®) H=2,
f
When the diseriminant A is zero, the equation reduces to
©) Ax?+ 2 Bely' + Cy? =0,
whence '

a SR =

If the quantity B*— AC be negative, the equati'o'n has the
real solution 2'=0, y'=0. If it be positive, the equation
represents two straight lines passing through the origin. In
this case equation (7), in which any arbitrary value may be
assigned to [, defines a hyperbola; it has been found (§ 117)
that the asymptotes of a hyperbola pass through its center,
and that their angular coefficients are given by the formula

—B+VB— AC,
0 b

these asymptotes are none other than the straight lines repre-
sented by equation (10) or by equation (9). Thus, when an

m =
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equation of the second degree represents a hyperbola referred
to its center, the equation of the asymptotes is found by sup-
pressing the constant term in the given equation.

From this it follows that if the general equation of the
second degree,

fw, y)=Aa*+2Bay+ Cy' + 2Dz +2Ey + F=0,

represent a hyperbola, the equation
A
) r@p—5=0
represents the ensemble of two asymptotes. In fact, if the ori-
gin be transferred to the center of the curve, f(2, y) becomes
Az + 2 Bae'y' + Oy"” + %;
therefore, equation (11) becomes
Az"” 42 Ba'y' + Cy” =0,

which is the equation of the asymptotes.

DIAMETERS.

131. If a curve of the second degree be cut by a system of
parallel straight lines, the locus of the mid-points I of the
chords MM, determined by the two points of intersection, is
a diameter of the curve. Let m be the angular coefficients of
the chords, and

@) f(a:,y):Am“‘+2B.vg/+C’y2+2Dx+2Ey+F=0

be the equation of the curve. If the axes be kept parallel to
themselves, and the origin be transferred to the arbitrary point
I of the plane, whose co-ordinates are ¢ and b, the equation of
the curve becomes (§ 128)

(4) Ax”+2 Ba'y' + Cy” + fla (a,0) &' + 1% (a,b)y' + f(a,b) =0.

Draw through this point 7 a line MM’ parallel to the given
direction; the equation of this parallel is y'= ma'. The
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elimination of y' between this equation and that of the curve
leads to the equation of the second degree,

(11) [4+2DBm +Om*j2"” + [ f(a,b) + 1 (a, b) m]a'
+f(aa b) =0,

which gives the abscissas of the points of intersection. So
long as the value assigned to m does not
reduce A + 2 Bm +Cm? the coeflicient
of a% to zero, each of the secants inter-
sects the curve in two points; if it be
assumed that the origin 7 be placed at
the mid-point of the chord MM' (Fig.
79), equation (11) having its roots equal
with contrary signs, one has the relation

(12) I (ay B) + 11 (a, b) m =0

this equation being satisfied by the co-ordinates of the mid-
point of any of the chords considered, is the equation of the
locus. If a and b be replaced by @ and ¥, it becomes

Fig. 719.

(13) . (=, ¥+ mfy (% y) =0,
or
(14) (dx + By + D) + m (Bx +Cy + E) = 0.

Since this equation is of the first degree, it follows that the
diameter, which corresponds to any system of parallel chords,
is a straight line DD'. Call m'the angular coefficient of the
diameter; we shall have the relation ’

&

A+ Bm

5 e T 2

((io) " B+ Cm
(16) Cimm' + B (m +m') + 4=0.

132, Remark I.— The values of @ and y, which satisfy the
simultaneous equations
Az 4+ By+ D=0, Be+ Oy + E =0,
satisfy equation (14), whatever be the value of m; therefore
if the locus have a definite center, all of the diameters pass
through the center, and, if it have an infinity of centers, all of
the diameters coincide with the locus of the centers.
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The two equations, which determine the center, represent
two diameters ; the first corresponds to the chords parallel to
the 2-axis, the second to chords parallel to the y-axis. They
are formed by putting m = 0 or m = oo.

133. Remarx II.—1In case the curve be an ellipse, the
trinomial A+ 2 Bm + Cm? which has imaginary roots, is always
different from zero; to every direction of the chords cor-
responds a diameter defined by equation (14).

This equation (14), if m be regarded as an arbitrary param-
eter, represents all of the straight lines which pass through
the center; whence it follows that every straight line passing
through the center is a diameter.

Remark ITT.—In case of the hyperbola, the trinomial
A + 2 Bm 4 Cm? becomes zero for two real values of m which
are the angular coefficients of the asymptotes. If one of these
values be given to m, equation (11) is depressed to the first
degree; each of the secants intersects the curve in but one
point. If, further, the co-ordinates @ and & of the point I,
through which the secant is drawn, satisfy relation (12), equa-
tion (11), having its first two coefficients zero, has no longer a
solution ; the straight line represented by equation (14) is then
the locus of the points 7 such that the parallels drawn through
each of its points with the given direction do not intersect the
curve; but, by reason of relation (16), the value of m' being
equal to m, all of these parallels coincide with line (14) itself.
Since this line passes through the center, it is one of the
asymptotes.

If m be regarded as an arbitrary parameter, equation (14)
represents all of the straight lines which pass through the
center; whence it follows that all of these straight lines, except-
ing the two asymptotes, are diameters.

134. Remark IV.—In case of the parabola, we have
AC —B*=0, or %: Jg; whenece it follows that the value of

m', given by equation (15), is independent of m and equal to
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- g; thus all of the diameters of the parabola are parallel to

each other.
The trinomial 4 4 2 Bm 4 Cm? has its two roots equal to

—g, the angular coefficient of the diameters. If parallel

secants be drawn in this direction, each of them will intersect the

curve in but one point. On the other hand, if the value —]g

be assigned to m, the coefficients of x and y in equation (14)
become zero and the equation .ceases to represent a straight
line.

Equation (14), in which m is regarded as an arbitrary
parameter, represents all of the straight lines parallel to the

direction ——%; whence it follows that every straight line

parallel to this direction is a diameter of the parabola.
If at the same time AC — B*=0 and BE — CD =0,
cA_B_D
"BToT R
by two parallel straight lines; if —m'represent the common
value of the preceding ratios,

, the locus of the second degree is represented

Az + By + D =—m'(Bx + Cy + E),
and equation (14) reduces to
(m —m")y (Bx+ Cy+ E)=0.

Thus, in this case, all of the diameters coincide. o

CONJUGATE DIAMETERS.

135. Assume that AC — B? differs from zero. The two
coefficients m, and m' are connected by the relation
(16) Cim' + B (m +m') + A=0.

Imagine secants to be so drawn that the chord MM" be
parallel to the diameter DD’ (Fig. 79); let m' be the angular
coefficient of the diameter E'E' which bisects these chords,
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then the relation between the direction m' of the chords and
the direction m' of the corresponding diameter EE', will be

Om'm" + B (m' +m") + A =0;

this and the preceding equation being of the first degree with
respect to m'' and m, it follows that m' = m. The two diameters
DD'and EE', whose angular coefficients are m'and m, have the
property, that each of them bisects the chords parallel to the
other; they are for this reason called conjugate diameters.

The ellipse and the hyperbola have an infinity of systems of
conjugate diameters. One can take for the first diameter any
straight line drawn through the center, provided that, if the
curve be a hyperbola, it does not coincide with one of the
asymptotes.

136. It has been seen (§ 130) that the equation of the
curve, referred to axes parallel to the primitive axes and drawn
through the center, is

an A+ 2Bxy + Cy* + H= 0.

If any two diameters be taken as axes of co-ordinates, and as
this transformation may be accomplished by aid of formulas (4)
of § 51, the homogeneous polynomial of the second degree
Ax? + 2 Bry + Cy? transforming into a homogeneous polynomial
of the second degree A'z” + 2 B'z'y' 4+ C'y"% the equation
becomes
A'2” 4+ 2 B2'y'+ C'y"” + H=0.

In case the two diameters are conjugate, since to each value of
z' two equal values of ' with opposite signs correspond, the
coefficient B' is zero, and the equation reduces to the simple
form

(18) Az 4 Cy" 4+ H=0.

In case of the parabola, if a point on the curve be taken as
the origin, which causes the constant term to vanish, the
diameter which passes through this point as the «'-axis, a line
through this point parallel to the chords which the diameter

bisects as the y'axis, since to each value of «'correspond two
L
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equal values of y' with opposite signs, one ought to have
B'z' + E'= 0, and, consequently, separately B'=0, E'=0; on
the other hand, since the curve is a parabola, the condition
A'C' — B” =0 ought to be satisfied, which gives A'=0; thus
the equation reduces to the simple form

19 C'y? 4+ 2 D'zs'= 0.

From which it is seen that the y'axis coincides with the
tangent at the origin.

AXEs.

137. In curves of the second degree, the diameters perpen-
dicular to the chords which they bisect are the awes of sym-
metry.

The parabola having all its diameters parallel, if one imagine
a series of chords MM’ (Fig. 80) perpen-
dicular to the common direction of the
diameters, the diameter .14', which bisects
the chords, will be an axis of the curve and
= 27 it will be the only one. The angular co-

efficient of the diameter is — ]Z;' ; therefore,

if the co-ordinates are rectangular, the axis
Fig. 80. of the curve is the diameter of the chords

having the angular coefficient % ; its equation (§ 131) is

4
v

20 B(Ax+ By + D) + C(Bx + Cy + E) =0.

In case of oblique co-ordinates, the angular coefficient of the
chords perpendicular to the axis being

C'— Becosf
B— Ccost

this straight line is determined by the equation
(dx + By + D)y (B—Ccosf) + (Bx + Cy + E) (C— Bcos 6)=0.

The equation of the parabola referred to its axis 44'and to
the tangent at the vertex A, is of the form (19).
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When the curve is an ellipse or a hyperbola, referred to the
axis A4’ (Fig. 81), and a second BB’ cor-
responding to it, forming with the firsta - z
system of conjugate diameters, the ques- /
tion is then reduced to finding a pair of _ . -
perpendicular conjugate diameters. If
the co-ordinates be rectangular, the angu- K_/ <
lar coefficients of the axes are found by 5
combining the relation mm'= —1 with Fig. &1.
c—4

B

M

equation (16) which gives m +m'= ; thus, m and m'

are the roots of an equation of the second degree,
(21) B +(A—C)u—B=0.

Should the origin of co-ordinates coincide with the center,
the equation

(22) By + (A4 — Cywy — Ba? =0,

which is deduced from equation (21) by substltutlng for u,
represents the ensemble of the two axes.

In case of oblique co-ordinates, the angular coeflicients of
the axes are the roots of the equation

23 (B—CcosO)u*+(Ad— C)u—(B—Acos)=0.
The equation of the curve, referred to these two axes, is of
the form (18).

Let u be a root of one of the equations (21) or (23); the
equation of the corresponding axes will be

S+ uff,=0.

Therefore, the origin of co-ordinates being chosen in any
manner, one will have an equation of the second degree repre-

x

senting the ensemble of the axes on replacing » by —‘fl, in
v
(21) or (23), which gives, when the axes are rectangular

(eq. 21),
(24) B(fl=rH—A~-O)f.fy=0.
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137. 2. To determine the position of a point with respect to
a conic.

Let f(x, y)=A2*+2Bxy+ O +2Dx+2Ey + F
be the first member of the equation of a conic. If the point
M (x, y) be displaced in the plane in a continuous manner by
making it follow any arbitrary path, the function f(x, ») varies
in a continuous manner, and can only change sign when it
becomes zero; that is, when the point M crosses the curve.
The sign of f(x, y) is therefore the same for all points of the
plane situated on the same side of the curve; moreover, this
sign changes when the point M crosses a simple branch of the
curve. In faet, let y = ma + L be the equation of a secant
M'M" cutting the eurve in two real distinet points M', M",
with the abscissas #' and @"; displacing the point M on this
secant, one will have

J (2 9)=F Gty mao 4 1)

the function f(x,ma + k) is a trinomial of the second degree
in @ having the roots @' and 2'. The trinomial has a certain
sign when 2 is situated without the interval @'2", and the oppo-
site sign when x lies within this interval. Therefore, when
the point M is displaced on this indefinite straight line ', *
the function f(x, mx + 1), or its equal f(x, y), has a certain sign
so long as the point M is exterior to the segment M'M", and
the opposite sign when the point is on this segment. The
sign of f(x, y) changes, therefore, when the point M crosses
the curve on a secant. i

Accordingly, it suffices to know the sign of f(x, y) for one
point of the plane not situated on the curve in order to know
its sign for any portion of the plane. Take, for example, the
function

S@,n=2+ay+ =22 +y,

which, equated to zero, represents a real ellipse. If one take
a point M (w, ), situated at a sufficient distance, it will be
exterior to the curve; take, for example, on the axis Oy (x = 0,
y sufficiently large); then f(w, y), which is reduced to a tri-
nomial in ¥, is evidently positive. Therefore, in this example,
J(x, y) is positive without the ellipse, and consequently nega-
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tive within. One can perceive immediately the position
of a point with respect to the curve from the sign of
S y).

We come now to the general case, and seek to give simple
rules for the different cases.

1° If the equation f(x, )= 0 represent an imaginary ellipse
or a point-ellipse, or two imaginary parallel straight lines, or
two coincident straight lines, the function f(x, ) has the same
sign for every point of the plane; because, in case of the three
first hypotheses, it reduces to zero for but one point at most,
and in the last (coincident straight lines), the function f(z, y)
is a perfect square.

2° If f(x,y)=0 represent a real ellipse or a hyperbola, it is
convenient to call the region of the plane which contains the
center the interior of the curve; the remainder of the plane,
the exterior. The signs of f(x, y) are different for the exterior
and the interior. Let a and b be the co-ordinates of the center,
the function f(x, y) takes for the center the value (§ 130)
the sign of this quantity furnishes therefore the sign of
f(x, y) for the interior of the conic; the sign will be the
opposite for the exterior.

3° If f(x, y)=0 represent a parabola or two real parallel
straight lines, the interior of the curve is the region which
contains the focus of the parabola or the region comprised
between the two straight lines. The sign of f(z, y) may be
obtained immediately for the exterior of the curve by taking
the sign of f(z, y) for a point at infinity in a direction not
parallel to the direction of the axis or to that of the two lines.
This particular direction is obtained by equating to zero all of
the terms of the second degree Aa®+ 2 By + Cy’, which is a
perfect square in the case considered. Since one of the two
coordinate axes at least is mot parallel to this particular
direction, it will suffice to take the sign of f (w, ) for infinity on
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this co-ordinate axis ; that is, the sign of the coefficient 4 or C
which is not zero.

4° If the curve f(2, y)= 0 be composed of two straight lines
which intersect, the sign of f(z, y) will be the same in the
vertical angles; the signs of f(z, y) are opposite in the adjacent
angles.
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CHAPTER III

REDUCTION OF THE EQUATION OF THE SECOND
DEGREE.

138. In order to study with the most facility the properties
of a curve of the second degree, it is important to simplify as
much as possible its equation by referring it to co-ordinate axes
suitably chosen. It has been seen, in the preceding chapter,
that the equation of the second degree can always be reduced
to one of the two forms

(@) A# 4+ CpP+ H=0, (B) Cy'+2Dx=0.

In case the curve is an ellipse or a hyperbola, its equation
is reduced to the form («), on taking any two conjugate diame-
ters for a system of co-ordinate axes; in general, the co-ordi-
nates will be oblique; they will be rectangular, if the curve be
referred to its axes. In case the curve is a parabola, its equa-
tion is reduced to the form (B), on taking any diameter as the
axis of , and a tangent at the extremity of this diameter as
the axis of y; in case the co-ordinates are rectangular, one
takes the axis of the curve as the z-axis.

Tt is by means of these equations («) and (8), in rectangular
co-ordinates, that one demonstrates in most part the properties
of the curve of the second degree. One applies now the method
used to accomplish the reduction of the equation. Let

@) A2 +2Bry+ P +2Du+2Ey+ F=0

be the given equation of the second degree referred to rectan-
gular axes; if they were not, one would first render them such
by a transformation. On retaining the x-axis and taking for
the y-axis the perpendicular erected to the z-axis at the origin,
the formulas of transformation are

o8l Y

rx=1=T " ) =
sin 6 sin 6
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Ervuirse Axp HYPERBOLA.

139. Consider now the case where the quantity AC — B?is
different from zero; the curve has a definite center, whose
co-ordinates « and b are given by the formulas (§ 129)

a:g, b:g
f f

Keeping the axes parallel to them-
X selves, transfer the origin to the
center € (Fig. 82). One knows that
the terms of the second degree
do not change, that those of the
first degree disappear, and that
the constant term I of the new equation is given by the

0 X
Fig, 82.

formula % The equation of the curve, by this change of
co-ordinates, simplifies and becomes

)] Ax? +2 By, + Oy + H=0.

Rotate now the co-ordinate axes, supposed rectangular, about
the center C through the angle «, in order that they may coin-

cide with the axes of the curves. The formulas of trans-
formation are

T =a'ecosw—y'sine, y =a'sina+y' COS ¢t
Substituting in equation (2), one gets the new equation
(3) (Acos’e¢+ Csin’«+ 2 Bsin « cos ) 2"
+ (A sin*« 4 Ccos’a — 2 Bsin «cos «) y"
+ 2[(C —4) sin « cos « + B(cos®« — sin*e)]2'y' + H = 0.

The angle « may be so determined that the coefficient of the
term 'y’ will be null; for this purpose, one will put

4@ (C—4) sin « cos « + B (cos® @ — sin®a) = 0,
or

) Btan’e + (4 — C) tan « — B=0.
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This equation of the second degree is the same as equation
(21), § 137, by which the directions of the axes of the curve
are determined. Equation (4) can be solved more simply by
putting it under the form

(C—-4) sin2a+2Bcos2a=0,
whence
2B e

- 94—
6) tan 2 « 10

If the case of the circle be excluded, where one has at the
same time B =0 and 4 =C, equation (6) gives for 2« a posi-
tive value o less than «, and the various values of 2« which
satisfy this equation are represented by the formula

2= o+ km,
where & designates any integral number positive or negative;

whence one deduces «= % S k%’

The different values of « furnish no more than four different
directions for the axis C'X'; these four directions are two by
two opposite, and determine two perpendicular straight lines.

One gives to « the value g, which is always positive and less

than .
an 3

140. The term in z'y' disappears from equation (3); it
remains to calculate the value of the coefficients of the terms
in 2% and y” If one put

A'=A cos? « + O sin? ¢ 4 2 B sin « cos «,
C'=Asin*« +C cos’ o« — 2 B sin « cos «,
one will have
A'+C'=4+0C,
() {4'—C'=(4—-0C)(cos®« — sin®«) + 4 Bsin « cos &,
=(d—C)cos2a+2Bsin2a.
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Equation (6) gives

sin2a= = y cos2a= 4-0 ¥
+VADB + (4—0) + V4B + (4 —-0)

it follows A — O =+VIB (4 —O)

The two coefficients A" and €' can be calculated by means of
the formulas

! I —
@®) A'+C0'=4+C,
A'—C'=R,
on putting R=v4DB 4+ (44— C).

The value of 2« was taken positive and less than ». Sin2e«
having a positive value, it will be necessary to give the radical
the sign which B has. In this manner the equation of the
curve is reduced to the simple form

©) A'2? 4 C'y"” + I = 0.
It rvepresents an ellipse or a hyperbola, according as the two
coefficients A’ and €' have the same or opposite signs.

The preceding formulas (8), squared and subtracted, furnish
the relation

A'C'=A4C— DB

The coefficients A' and (" of the equation of the curve referred
to its axes are the roots of the equation

(10) 82— (A +C)S + (AC— B) =0.

The dimensions of the curve defined by equation (9) depend
on the two parameters —%{, — g In case of the ellipse,
these two quotients, which have the same sign, are positive; if
they be represented by a? and 0% « and b will be the segments
of CX'and C'Y' comprised between the center and the curve.
The lengths 2« and 2 b are called the axes of the ellipse. The
quantities a® and 0? are the roots of the equation of the second
degree

1) (AC — B w2 + (A + C) Hu + H?=0,

1_1

which is obtained by substituting — H for 8in equation (10).
u
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In case of the hyperbola, the two quotients —%, ——é—{
opposite signs. If they be represented by a* and — &, or — a*
and %% according to the two cases which can occur, these two
quantities are still the roots of equation (11). The quantities

2 q and 20 are called the axes of the hyperbola.

have

PARABOLA.

141. When AC — B2 =0, the terms of the second degree in

the given equation form a perfect square. One has, in fact,
2

on replacing 4 by its value %,

2B B B \?
Aa* +2 Bry + Cyf* = 0<y2+7wy+52 )= O'(y +-O—,m),
and the equation can be written

o(y+%x>2+20x+2Ey+F=0-

Rotate the axes of co-ordinates about the origin through an
angle o (Fig. 83) by means of the formulas of transformation,

=12 c08c — Yy Sine, y=a;sine+ y; cosa;

the proposed equation becomes

12) O’[(cos «— % sin oc) %+ <Sin a4+ % cos a) xl:r

+ 2 (Dcos a + Esina)#,+ 2(E cos « — D sin e)y, + F'= 0.
One can determine the
value of « so that the co-
efficient of , or ¥, is zero x
in that part of the poly- X s
nomial which is squared. y
Put, for example,

'y

. e
s1na+600su=0; &
) X
whence / o

13) tane=— % * Fig. 8
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— B C

sine= ———"— cosa=

+ VBT Y + VB 7
then equation (12) will simplify and become

14 Oyl +2 D'ay + 2 Ey, + F=0,
where
2
= C(cos @ — % sin u) = C(cos « 4 tan « sin ¢)? =

cos? &’
and, consequently,
2 2
0=8+tT_4i0
c
The coefficients D' and E' are obtained by replacing sin « and
cos ¢ by their values, which give

p—_CD—BE ., CE+BD
+VOAFO) +vVO(d+ 0)

One of the values of « given by equation (13) is positive
and less than #. If one take this value, sin « will be positive,
and it will be necessary to give the radical a sign opposite to
that of B. If the coefficient D' were zero, equation (14) would
no longer contain @), and would represent two straight lines
parallel to the axis OD,. Incase this coefficient is different from
zero, one transfers the axes parallel to themselves by putting

m=a+2, y=0b+y'; ;

equation (14) becomes
Cy*+2D'%" +2(Cb+ EYy'+ (CV¥+2D'a+2 E'b + F)=0.

The co-ordinates of the new origin A4 are so determined that
the coefficient of »' and the constant term are zero,

Cb+E'=0, C*+2D'a+2E'D+ F=0,

which give finite values for ¢ and b, and the equation will
reduce to the simple form

(15) C'y” +2 D' = 0.
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The dimensions of the curve depend on the numerical value
!
of the quotient %, or of that of
BE — CD
A4+ 0V (4 +0)
This quantity is ealled the parameter of the parabola.

142. The coefficients of the reduced equations can be easily
calculated by employing certain functions of the coefficients
and of the angle between the axes, which do not change in
value when any change whatever of the axes is made. To
form these functions, take formulas (4) of § 51:

[x=x'sin(9-—a)+y'sin(0—,@

sin @

(16)

. a'sin « + »'sin B,

sin 0
which serve for the transformation of co-ordinates, when the
direction of the axes is changed and the origin remains fixed;
these formulas express @ and y as homogeneous funections of
the first degree in @' and y'. If these values be substituted for
@ and y in the homogeneous polynomial of the second degree

Ax* + 2 Bry + Cify

the result will be a homogeneous polynomial of the second
degree in ' and y':

AlwIZ + X lelyl + CY ’yIZ'
In particular, the trinomial

@? 42y cos 6+ 12

is transformed into

x? 42 90']/' cos 0 + yvz’
@' being the angle between the new axes; because each of these
trinomials gives the square of the distance of the origin from
the same point of the plane.

Consider the polynomial

Ax? + 2 Bay + Cff — S (@® + 22y cos 6 + i),
or 17) (A—8)a* +2(B— Scosb)zy + (C— 8
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in which the letter S designates an arbitrary constant; it will
evidently furnish the transformed polynomial

-Arxlz + 2 Blwlyl + O"I ”__ S(wm + 2:”'_?/'003 9! + yYZ)’
or (18) (A'—8)a"+2(B' — & cos 8 z'y' + (' — S) ™.

One notices now that the values of S, for which one of
the polynomials is the square of an integral function of the
first degree in the variables which it involves, are the same.
Assume, for example, that the first polynomial takes for a
certain value of § the form (az + by)% @ and b being con-
stants; when x and y are replaced by their values (16), the
function of the first degree, ax + by, changes into a function
of the first degree a's' + b'y', and the second polynomial takes
the form (a'z' 4 0'y")2. When the polynomials are squares, the
equations which are found by equating their roots to zero
represent the same straight line referred to the two systems of
axes YOX, Y'OX"

The values of .S, for which the polynomial (17) is a square,
are the roots of the equation of the second degree

A-=8)(C—-8)— (B—Scosb)?=0,
or (19) S*sin?6— (A+ C—2Bcosf)S + AC— B =0.
The roots of this equation are represented by S, and S,; simi-
larly, the values of S, for which the polynomial (18) is a
square, are the roots of the equation
(A4'—=8)(C"—8) — (B'— Scos 0"’ =0,
or (20) S$?sin?f' — (A'+ C'— 2 B'cos §) S 4 A'C' — B? =0.

The two equations (19) and (20) have the same roots, whence
it follows g
A+ C—2Bcosf_A'+ C'"—2B'cos b’
sin’6 N sin?6' 0
1) AC—B_A'C'—B"
sin’§ ~ sin?@'
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Therefore, the two functions
A+C—2Bcosd AC— B

. 7 .
sin? 6 sin? 6

of the coefficients of the equation of a conic and the angle
between the axes preserve the same values when a transforma-
tion of co-ordinates is made.

_A2 possesses the same property. In fact,
sin’d
suppose f different from zero; then, by transforming the origin
of co-ordinates to the center of the conie, one has an equation

whose constant term H has the value (§ 130) If =—? .

The quantity

Since this constant term I remains the same whatever be

the orientation and the angle between the axes and as ey
sin
remains constant when a change of axes is made, it follows that

the same is true of Thus, the conic being referred to the

sin?
axes Oy which include an angle 6, if it be referred to new
axes 2'0'y' including an angle ¢, and if the new equation be
called
Alxﬂ + 2 B!xfyl + Cly@ + 2 D!a:l + 2 Elyf + FI — 0’
and the new value of A, A'= A'(C'"F' — E®) 4-..., one has
A A
sin? @'~ sin?@

@2)

This relation will be satisfied if A', B!, C', D', E', F', be
replaced by their values as functions of 4, B, C, D, E, F, which
result from the formulas of transformation of co-ordinates. It
still holds whatever A, B, C, D, E, F may be; that is, will be
the same in the case where f is zero, although the argument
used to establish this relation can no longer be applied to this
case.

The three quantities

@3) A+ C—2Becos b f A

0 ] . 3’ O
sin? @ sin?@” sin?é

are homogeneous with respect to the coefficients 4, B, C, D, E, F';
the first is of the first, the second of the second, the third of
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the third degree. If, therefore, the first member of the conic
AP 42 Bry+ Oy +2De+2Ey 4+ F=0

be multiplied by a constant X, that is, if 4, B, C, D, E, F be
replaced by KA, KB, KC, ---, the first of the three quantities
(23) will be multiplied by K, the second by A% the third by K*;
whence it follows that a combination of quantities (23), homo-
geneous and of the zero degree with respect to 4, B, C, -., does
not change if the factor & be introduced. Such, for example,
are the two combinations
f sin? @ A sin'
(4+ C—2Bcos)? (A+ C—2 B cos 6)¥

found by dividing the second and third of quantities (23) by
the square and cube of the first. One has then the two ex-
pressions (24), which do not change when the axes are changed
and all of the coeflicients are multiplied or divided by the
same factor.

The condition A =0 expresses that the conic is reduced to
two straight lines; the condition f = 0, that it belongs to the
genus parabola ; the condition 4 4 C'— 2 Beos § = 0, that it is
an equilateral hyperbola, that is, a hyperbola whose asymptotes
are perpendicular. TIn fact, call m' and m'" the angular coefli-
cients of the asymptotes ; the condition of perpendicularity is

(25) 14+ (m'+m')cos§ +m'm'"=0;

@D

further, these angular coefficients are roots of the, equation
Cm®+2 Bm+ A4 =0,
_ 2_§’ m'm! = il,

¢

values which, substituted in relation (25), give the required
condition.

which gives m' 4 m!' =

143. The magnitude of an ellipse or of a hyperbola depends
on two numbers which are the lengths of the axes of the
curves; the magnitude of a parabola depends on a single
number, the parameter; finally, the magnitude of a conic
reduced to two straight lines depends on a number which is
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their angle of intersection if they intersect, and the perpendicu-
lar distance between them if they be parallel. It is next pro-
posed to calculate these different quantities.

Let A+ 2Bxy + G +2Dx+2Ey+ F=0

be the equation of a curve of the second degree referred to axes
inclosing an angle 6. If one put

e=A+ C—2DBcosb, f=AC—B, A=A(CF— E) + -,
the three quantities

@

€ f A
sin?¢ sin?6’ sin%d

possess this property that any combination of these three quan-
tities, homogeneous and of the degree zero with respect to the
coefficients A4, B, C, -+, has a constant value when ‘the co-ordi-
nate axes are changed, and the coefficients of the equation of
the curve are multiplied or divided by the same factor, as has
already been demonstrated.

Assume, now, that the curve be an ellipse or a hyperbola;
on referring the curve to its center and its axes, its equation
may be written

a? 4+ By — a3 =0,
where, in the case of a real ellipse, « = V%, 8= &*; in that of a
hyperbola, « = 0%, 8=—a?; in that of an imaginary ellipse,
«=—"b% B=—a% It is said in these three cases that « and
B are the squares of the lengths of the axes. The two com-
binations
eA  A’sin’f

@ @, o

of quantities (1) being homogeneous and of the degree zero with
respect to the coefficients, will have the same constant value if
they be constructed for the reduced equation. In case of the
reduced equation will

0=E, e=a+ B, f=uaf, =— o’

therefore = A__(¢+h), ._S_m_g = aB,

M
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and « and B are roots of the equation of the second degree,

A A sin®é
3) Ptpsy +=—F—=0,
which is called the equation of the squares of the axes. From
the nature of the problem, this equation should have real roots;

2 cin?
this is easy to verify, because the quantity E—A« — é—A——fS;ﬂ—Q

then be written

may

2
%(3— A1 sin20)=%2{(11 — C)*sin?6 +[(A + C) cosf — 2 B2,

which is necessarily a positive quantity. The roots are equal

when
A=0C, B=Adcosd;

the curve is then a circle. The roots will be equal and of
contrary signs when e¢=0; the curve is then an equilateral
hyperbola.

Suppose now that the curve of the second degree be a parab-
ola; by referring it to its axis, and to a tangent at its vertex,
its equation will take the form

¥ —2px=0.
What is the value of the parameter p? The second of the
three quantities (1) is zero. A homogeneous combination of
the degree zero with respect to the coefficients can be formed
from the other expressions in (1) by dividing the last by the
cube of the first, which gives
Asin'6

&

This last quantity constructed for the reduced equation is
— p?; the equation which gives p is therefore

A sint 6

€

2

144. In case the conic is reduced to a system of two straight
lines which intersect, its equation can be written in the form

¥+ mat=0;
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S 2
then A = 0, and one has, on forming the expression e
. f sin®4
the reduced equation,
¢ (A +m)?
fsin?6 m

whenee may be deduced two values of m which are reciprocals.
If £ be negative, the two straight lines are real and the values
of m are negative : call ¢ the angle formed by the two straight
lines, then will

m=—tan’® and — = =4 cot’ p,
2 fsin®6

an equation which determines ¢.

Finally, suppose that the curve is reduced to two parallel
straight lines, and calculate the distance between them. In
this case, two of the three quantities (1), f and A, are zero; the
preceding combinations of the three quantities can no longer
be employed. This case will be considered as a limiting case
of the case when the curves have a unique center, and this in
the following fashion. Let

A +2Bxy + Cy* +2 D +2Ey 4+ F=0

be a conic reduced to two parallel straight lines; since 4 and
C cannot be zero at the same time, on account of the condition
f =0, suppose that C differs from zero, and consider the auxil-
iary curve

(A+Na?+2Bry + Cf+2Dx+2Ey + F=0,
which involves the parameter . In this curve will

g=A+C+rx—2Bcosb, fi=(A+))C—DB,

Ay=(Ad+\)(CF—E+ ..

The expressions A, and f; reduce for X = 0 to A and £, that is,

to zero. When A is different from zero, the auxiliary curve
has a definite center; its equation reduces to the form

0 + B — Py =0,
wheré ¢, and 3, are roots of equation (3), which is written

2
oy ﬁ) §in?0 = 0.
f, f,
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When A approaches zero, f; and A, approach zero, and their

CF— E?

ratio ? approaches the limit Therefore one of the

roots B3, of the preceding equation increases indefinitely, and
the other approaches the limit
1 2
@ = iy —————sin®0.
C

Further, the reduced equation may be written under the form

9‘-‘.1;"’ -|— y2 —_ 0 = O,
1
which becomes y* — « = 0, and the value found for « is the
square of half of the distance between the two parallel straight
lines to which the auxiliary conie is reduced for A = 0.

EXAMPLES.
1 202 — 3y + 3P+ —Ty+1=0.

The curve is an ellipse, since the quantity AC — B? is posi-
tive. In order to obtain the co-ordinates of the center, equate
to zero the two partial derivatives

42— 3y+1=0, —3w+6y—T7=0,
whence v=1, y=%§, H=—13
If, keeping the axes parallel to themselves, the origin be
transferred to the center C' (Fig. 82), the equation becomes
20 —3uyn +3y°— 12 =0.

Rotate now the axes through the angle « given by the

formula
2B

A4—-0C
The equation solved by the tables gives
20 ="71°33' 54", or @ =35°46' 57",
The angle « can also be found by a graphical construction;

lay off on the axes of @ and y, beginning at the origin C, two
lengths respectively equal to 1 and 3; the diagonal of the

tan 2 ¢ = =3.
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rectangle constructed on these two lengths makes with the axis
of x an angle whose tangent is 3; the axis CX' is therefore
the bisector of this angle. Whence 4’ and C' are obtained by
the formulas

A+ 0'=5, A'— ' =—-V10,

since B is negative. One has then

5—10 5 10
=2 2\[1 , 0!=#,

and the equation of the curve becomes
(5 —V10)a”? 4 (5 +V10)y”? = 2;
the intercepts of the curve on the axes are

=i ,_r_z_s___ OB = /ﬁﬁ___.
3(5—+/10) 3(5+/10)

II. 22" —bxy+5y—1=0.
The curve is a hyper- A x
bola (Fig. 84). The co-or-
dinates of the center which
are given by the equations Y\
4x—5y=0, —bx+5=0 4

are x=1, y=%,

C X
whence FI=}1" . 4 '

By transferring the origin
to the center, the equation

/

becomes
2a2—bxy +1=0. Fig. 8.
The angle « is given by the formula tan2«=—§, and one

has A'+C'=2, A'— C' =—+/29;

whence A'= 2—"12—-— ”29, O = ?_j—?— V29,

The equation of the curve referred to its axes is

2 —V29)2"” + (2 + 29y + 2 =0.
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The primitive equation does not contain a term in g% One
of the asymptotes is paralle] to the axis OY.

1G0T, 40 —122y + 9y — 3624100 = 0.

The curve is a parabola (Fig. 83). The terms of the second
degree form a perfect square, and the equation can be written

9(y —22)* —36x 4100 = 0.

Rotate the axes through an angle « given by the formula

tan ¢ = —g:g g, whence «=33° 41' 25" one will have
=13
¢ ’ cosa:i, si11a=——2—‘,
: V13
D= _ 54 . E'= 36
V13 Vi3

The equation of the curve referred to the axes OX, and OY;
is therefore
o 108
— +
V13 v 13
The co-ordinates of the vertex are found by combining with
this equation the following

-1, + 100 = 0.

13ys—

26y, +—72—=O§

V13
36 3901 ,
13vis O etasvis
If the origin be transferred to this point, the equation becomes
108
Vi3

whence one finds

h=—

13 y'2— z' = 0.
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CHAPTER IV

THE ELLIPSE.

183

145, It is proposed to construct the curve represented by

the equation
A4 Cy* 4+ H=0,

in which the coefficients A' and C' have the same sign.
When the constant I is zero, the equation, being satisfied
by @ =0, y =0, represents a single point, the origin of co-

ordinates.

If the coefficients A' and C' have the same sign as I, the
equation cannot be satisfied by real values of = and 7, and does

not represent a geometrical locus.

Consider finally the case where these two coefficients have

signs contrary to that of ZI, and put

H H
a? = — zl—,, P =— 6; g
the equation becomes
i S|
@ aTE= T

On solving it with respect to y, one gets
@) y=j:£)\/a2—w2.
o

The ordinate » is real so long
as the values of z are comprised 7

between —a and -+ «, and the
same is true of @ so long as the

M
. IPJ
values of y are comprised be- x4+ 0
tween —b and +b; if, there- \&
N

fore, starting from the origin, one

M

lay off on the z-axis to the right
and ‘left two lengths 04, OA'

Fig. 8.
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equal to a, and on the y-axis two lengths OB, OB' equal to b,
the curve is situated wholly within the rectangle CDEF con-
structed on the two straight lines 4A4', BB' (Fig. 85).

As x inereases from 0 to a, y decreases in absolute value
from b to 0, which, on account of the double sign, furnishes
the two equal arcs BMA, B'M'A. The same is true when «
varies from 0 to — a, which gives the two equal arcs BM A,
B'NA', equal to the preceding. These four equal arcs form
the ellipse.

146. The straight line A'A is the axis of the ellipse, because
to each abscissa OP correspond two ordinates PJ, P,
equal and of contrary signs. The straight line BB' is also an
axis of the ellipse; because, if the equation be solved with
respect to @, one can verify in a similar manner that to each
ordinate O@) correspond two abscissas QM, QM equal and of
contrary signs. The points A, A', B, B', where the axes inter-
sect the ellipse, are the wvertices of the ellipse. The lengths
A'd, B'B of the two axes are respectively equal to 2a
and 2 6.

The ellipse becomes a circle when the axes are equal.

It is easy to see that the origin O is the center of the ellipse;
in fact, let @, y be the co-ordinates of any point M of the
ellipse; it is evident that equation (1) is also satisfied by the
values — &, —y; there is, consequently, a second point N of
the ellipse which has the co-ordinates — OP!, — P'N respec-
tively equal to the co-ordinates OP, PM of the point M, but
measured in opposite dircctions; the triangles OPM, OP'N
are equal ; therefore OM = ON, and the line MON is straight
because the angles POM, P'ON are equal. Thus the points
M and N of the ellipse are two by two symmetrical with
respect to the point O; therefore the point O is the center of
the ellipse.

147. In order to study how the distance from the center to
different points of the ellipse varies, or the radius vector of
the ellipse, find the equation of the ellipse in polar co-ordi-
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nates, when the center O is taken as the pole and the axis 04
of the curve as the polar axis. If in equation (1) # and y be
replaced by p cos w and p sin w, one has

1 cos?e | sin‘e
(3) E.: az b2 *

Suppose @ > b and write the equation in the form

If o vary from 0 to =, the quantlty ; increases, and, conse-

quently, p decreases contmually from a to b. The maximum
value of p is a, the mlmmum is b.

148. Represent by @ and y the co-ordinates of any point
whatever of the plane and consider the polynomial

22
at

The polynomial is equal to zero for a point situated on the
ellipse (Fig. 86). Imagine that a mov-
able point P starts from the point 5

M and moves along the prolongation

of the radius vector OM: the two K
co-ordinates @ and y increasing in ab- % x
solute value, the polynomial must in- \/
crease indefinitely ; it takes, therefore,

greater and greater positive values. Fig. 86.

On the contrary, if the movable point

travels toward the center, the polynomial diminishes and takes
negative values. Thus, the polynomial

22t
—a—z,+b—2— 1

P

is negative for every point situated within the ellipse, zero for
points on the ellipse, and positive for every point situated
without the ellipse.
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149. The squares of the ordinates perpendicular to an axis of
the ellipse are proportional to the products of the corresponding
segments formed on this axis.

In fact, if x and y designate the co-ordinates of any point M
on the ellipse (Fig. 85), one has, on account of equation (2)

Yy S

ad—22 o (a—2a)(a+z) a

But the two segments AP, A'P of the axis AA' are equal
respectively to @ — « and a + x; one has, therefore,

_Mpr

AP x A'P o
Hence the square of the ordinate is to the product of the seg-
ments formed on the axis in a constant ratio.

150. Theordinates perpendicular to the major axis of an ellipse
are to the corresponding ordinates of the circle constructed on this
axis as a diameter in the constant ratio of the minor to the major
axis.

Let AA' be the major axis of the ellipse (Fig. 87); on this
major axis as a diameter construct a circle; to the ordinate
MP of the ellipse ecorresponds the ordinate M, P of the circle.
Equation (2) may be written

¥ _
N

but a?— a* represents the ordinate M, P of the circle; one
has, therefore,

.
» v

SRS

MP_b.
MP a

The minor axis enjoys the same property; the ordinate MQ),
perpendicular to the minor axis, is to the corresponding ordinate
M,(Q) of the circle constructed on this axis as a diameter in the
constant ratio of the major to the minor axis.

The ellipse is the orthogonal projection of a circle. Imagine
that the circle AB,4' be revolved about the axis 4.4’ through
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an angle ¢, such that cos ¢ = 9, the ordinate PM, of the circle
a

will revolve about the point P, always remaining perpendicular
to the axis AA'; in this position MP will be the projection of
M, P. Inorder to get the length of the projection, it suffices

to multiply the length PJM, by cos ¢, or by 9, which gives the
a

ordinate P of the ellipse. Thus the projection of the point
M, of the circle is the point M of the ellipse. Each point of
the circle projecting thus into the corresponding point of the
ellipse, it follows that the ellipse is the projection of the
circle.

One can also consider the circle as the orthogonal projection
of an ellipse. Tmagine the ellipse to be revolved about the

q . ..b g
axis BB' through an angle ¢ whose cosine is —, the ordinate
o

QM of the ellipse will have for its projection the ordinate QM,
of the circle described on BB' as a diameter, and the small
circle will be the projection of the ellipse.

151. The construction of the ellipse by points. From what
precedes may be deduced a very simple method for construct-
ing the ellipse by points. Construct on each of the axes of the
ellipse, as diameters, a cirele (Fig.
87); draw from the center an arbi-
trary secant intersecting the two
circles in M, M,; draw through
the point M, a line parallel to the
minor axis; through the point 3,
a line parallel to the major axis.
The point of intersection M of
these two lines belongs to the
ellipse. After having determined
in this manner a sufficient number
of points, one connects them by a continuous line, and the
ellipse is thus constructed.

Fig. 87.

152. Construct the points of intersection of an ellipse and a
straight line. It is useful to be able to construct the points in
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which a given straight line MM’ intersects an ellipse defined
by its two axes AA', BB' (Fig. 88) without tracing the ellipse.
Thus, as has been seen, the ellipse can be considered as the
orthogonal projection of the circle AB.A', described on the
major axis A4'as a diameter, the circle being revolved about
AA' through an angle ¢ whose
cosine is C% Find in the plane
of the circle the straight line
M, M), whose projection in the
plane of the ellipse is MM';
let 2V be any point of the line
MM'; prolong the straight line
BN till it intersects the axis
AA"in I the line B,I1 is pro-
jected upon BI; consequently the point N, where the line
B intersects the ordinate QXN, is projected into N. Simi-
larly, any other point of the line 31, M, could be found; but it
is more simple to begin with the point S, where the line MM’
intersects the axis; the line SN, has the given line in the
plane of the ellipse as its projection. This line SN, cuts the
circle in two points M, MM,'; the ordinates MM, P, M,'P' will
determine in the given line the two points M, M' where this
line intersects the ellipse.

Fig. 88,

TANGENTS. ]

153. The equation of the tangent to a curve of the second
degree has already been found (§ 125); when the equation
of the ellipse is put under the simple form

a?

1=
ata 1=l
the equation of the tangent at the point A, whose co-ordinates
are 2 and y, becomes

X  yY
4 i ¥ _1=0.
@ Sl
b

The angular coefficient of the tangent has the value o
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One sees that at the vertices 4 and A’ the tangent is perpen-
dicular to the axis A'A, that at B and B'it is parallel, and
that, as the point of contact moves along the ellipse from 4 to
B, the tangent makes with the axis A'4 an obtuse angle, which

increases from g to .

The normal, being perpendicular to the tangent, has the

equation T
Y—y= ‘_g%(x — ).

154. The construction of the tangent at a point of the ellipse.
If in the equation of the tangent one put ¥ = 0, one obtains

2
the abscissa X =L of the point
&X

T where the tangent intersects
the prolongation of the major
axis (Fig. 89). Since this value
of OT is independent of the #
minor axis 24 and of the ordinate

y of the point of contact, it fol-
lows, that if several ellipses be
constructed on the axis 44, the Fig. 89.

tangents at the points which have the same abscissas pass
through the same point 7' situated on the prolongation of the
axis A'A. Among these ellipses is the circle AB,4'; to con-
struet the tangent to the ellipsé at the point M, draw a tangent
to the circle at the point 3, situated on the same ordinate;
join the point M with the point 7}, where the tangent to the
circle intersects the prolongation of the axis .A'A4; the straight
line MT, thus constructed, is the tangent to the ellipse.

This construction is equivalent to regarding the tangent to
the ellipse at the point M as the projection of the tangent
to the circle at the corresponding point M,. In fact, when the
plane of the circle is made to revolve about the axis 4.4’
through an angle ¢, the point 7, where the tangent M, T meets
the axis, remains fixed ; the point M, projects into M, the line
M,T has for its projection MT; it is the tangent to the
ellipse.
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155. To draw a tangent through an exterior point P. Let

and y be the co-ordinates of the point 7 (IFig. 90). The equation

P of the chord of contact M'M has

been found (§ 126). The determina-

¥——— tion of the points of contact depends

therefore on the solution of the two
simultaneous equations

2
® S+fh=1 @ D+l

Fig. 90.

By eliminating y, one gets the equation of the second degree

S oty W,
of which the roots are the abscissas of the points of contact M
and M' of the two tangents drawn from the point P This

equation, in which ¥ can be regarded as the unknown, will
a@

2
have real roots if the condition 2»124_,*_1 > 0 be satisfied
that is, if the point P be without the ellipse.

Fig. 91.

It is easy to construct geometrically the tangents drawn
from the point P, by regarding the ellipse as the projection
of the circle AB,A' (Fig. 91). Seek in the plane of the circle
the point P, whose projection in the plane of the ellipse is
the point . Draw in the plane of the ellipse the straight



CHAP. IV. CONCERNING THE ELLIPSE. 191

line PB, which is prolonged till it intersects the axis in H;
the straight line HB, having HB for its projection, will pass
through the point P and determine this point. Draw from
the point P, to the circle the tangents P.M,, 2 M, which one
prolongs till they intersect the axis in 7'and 7"; the straight
lines PT, PT', projections of the tangents to the eircle, will be
tangents to the ellipse, and the points of contact M and M'
will be situated on the ordinates of the points M;, M, In
order that these constructions be accomplished, it is not neces-
sary that the ellipse be drawn.

156. 7o draw a tangent parallel to a given straight line. Let
y = ma be the equation of the given straight line OL, which
may be supposed to be

By

drawn through the center TN
(Fig. 92). Call 2 and y A - 7N <
the unknown co-ordinates y/ ) N
of the point of contact M; [ /L A% ! AN
this point being on the el- \\\‘“ i y ¢ T T
lipse, one has the equation N4 ,,/
' 4/ S

2 2 MIN o

2l S

@ Fig. 92.

the angular coefficient of the tangent being equal to m, one
has a second equation
b*x
—_————m
aty

These two simultaneous equations determine the two un-
known quantities @ and y; the first represents the given ellipse;
the second a straight line passing through the center; the
points where this straight line meets the ellipse are the points
of contact.

1t is easy to construct these tangents geometrically. Deter-
mine first in the plane of the circle the diameter OZL,, whose
projection in the plane of the ellipse is OL; it is sufficient to
join the point B with any point L of the line OL, and prolong
the line BL till it intersects the axis in I7; then draw B

PSS =

B
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and locate the point of intersection of this line with the ordi-
nate of the point L; the point L being the projection of the
point L, the line OL is the projection of OL,. One draws to
the circle the tangents M, T, M',T", parallel to OL,, and through
the points 7 and 7", where three tangents intersect the axis,
the lines TM, T'M' parallel to the line OL. One has the tan-
gents required ; because the projections OL, TM of the parallel
straight lines OL,, TM, are also parallel. The points of con-
tact M and M’ are determined by the ordinates of the points
M, and M.

157. The equation of a tangent to the ellipse may be found
in other forms which it will be useful to know.

If one designate by « the angle which the perpendicular let
fall from the center to the tangent makes with the axis of =
and by p the length of this perpendicular, the tangent will be
represented by the equation (§ 83)

Xcosa+ Ysine —p=0;
or, comparing it with equation (4), one has the relations

x Yy
a b il 1

acose bsine p Valeosa 4 b¥sin?e’

whence p = Vacos’e + V?sin’a. o

Then the tangent will have the equation

(6) Xecose + Ysina = Va*cos’a + b*sin’a.

The equation of the tangent may also be found by seeking
the points.of intersection of an ellipse and of a straight line,
and then expressing the condition that these two points should
coincide, as has been done in case of the circle (§ 94). One
obtains in this way the equation of the tangent in the form

) y=mztVaim®+ b’
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158. As an application, it is proposed to find the locus of
the vertex of a right angle which .
circumscribes the ellipse. Sup-
pose tnat one draw through an /
exterior point P (Fig. 93), whose (==
co-ordinates are z' and y', tangents
to the ellipse; on account of the

tangent passing through the point g *
P, one will have the equation of
condition i

yr=,mm/ i\/a2m2+ b,

in which the angular coefficient RAE

is unknown. This equation, written in an integral form,

(a* — 2y m* + 2 xy'm + (B* — y®) =0,
is of the second degree; its two roots determine the directions
of the two tangents drawn from the point P to the ellipse,
and, consequently, determine these tangents. The two tan-
gents drawn from the point P will be rectangular if the prod-
uect of the two values of m be equal to — 1, which will be the
case if the co-ordinates of the point P satisfy the relation

b2 — gyt

ﬁ: —1,or2” + y? =+ V.
Hence the locus of the vertex of a right triangle circumseribed
about an ellipse is the eircle circumscribed about a rectangle
constructed on the axes.

DIAMETERS.

159. The general equation of a diameter of a curve of the
second degree has been found in b
§ 131.  On representing by 7 »

S@y=0 ,
the equation of the curve, and by m —4 5 e
the angular coefficient of the chords '
parallel to MM' (Fig. 94), one has ?

seen that the equation of the diameter Fig. 0.
N
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DD' may be written in the form f', 4 mf’, = 0. The equation
of the ellipse being referred to its axes, the equation of the
diameter reduces to
2my b

7 =0,ory=— aT—mw

a2+

On representing by m' the angular coefficient of the diameter
DD, one has, between the direction of the chord and that of
the diameter, the relation

) b
8) mm' = -
It has also been shown that if the chord MM " be drawn par-
allel to the diameter DD, the diameter OFE, which bisects this
chord, has the angular coeflicient m ; the two diameters DI,
EE' form a system of conjugate diameters, and their angular
coefficients m' and . are connected by relation (8).

This relation shows that the two angular coeflicients m and
m' have opposite signs, and, consequently, that the two semi-
conjugate diameters O and OF, situated on the same side
of the major axis, are situated on opposite sides of the
minor axis. If the first start from OA and revolve from
04 toward OB, the second starts from OB and revolves
toward 04"

160. The tangent at any point D) of the ellipse is parallel
to the diameter EE', the conjugate of the diameter DI)' which
passes through the point of contact. In fact, if one call » and
y the co-ordinate of the point I), the diameter OD has the

angular coefficient m = Y. the coefficient of the tangent at the
2

point D is m':g—-ﬁ; these two coefficients satisfy the rela-
tion mm' = — %—

This property may be described more clearly by imagining
that the secant MM, moving parallel to the diameter EIL'
recedes continually from the center; the two points of inter-

section M and M' approach more and more the middle of the
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chord, and end by coinciding with D; then the secant becomes
a tangent at D.

161. The properties of conjugate diameters are exhibited at
once on considering the ellipse as the projection of the circle.
Two rectangular diameters 0D, OL,

(Fig. 95), in the plane of the circle, 5
form a system of conjugate diameters, 5! D1
because each of them biseets the chords
parallel to the other; the parallel chords 4
are projected into parallel chords in the
plane of the ellipse; the mid-point of
the chord has for its projection the mid-
point of the projection of the chord;
each of the diameters OD, OF, the projections of the diame-
ters OD,, OE,, bisects therefore the chord parallel to the other;
they are therefore conjugate diameters of the ellipse. It is
easy to deduce the relation which exists between the angular
coeflicients m and m' of the two conjugate diameters. If m,
and m, be called the angular coeflicients of the two conjugate

By

b
)
™ L=

Fig. 95.

. . b b
diameters OD,, OFE, of the circle, one has m = —m;, m' = =m';;
a a

b? q . .
whence mm'=—mym';; since the conjugate diameters of the
a

circle are perpendicular, one has mym'; =—1; it follows then

9

that mm' = —%

Being given OD, one can find its conjugate OF, without
drawing the ellipse. One constructs the diameter OD; whose
projection is OD; and draws the diameter OF, perpendicular
to OD,, and projects OE); the projection OFE will be the
diameter required.

162. The ellipse referred to two conjugate diameters. . Owing
to what has been said in § 136, when two conjugate diam-
eters OD, OE (Fig. 96) are taken as axes of co-ordinates, the
equation of the ellipse can be written

A!!wm_*_ Cllyli’_{_II:O.
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Sinee the coeffieients A" and C" have the same sign, contrary to
that of H, if one put

-
x H ,, xH
\ /\ a”=— ar 0% =— o

: B\n/

the equation takes the form

F
0 n X ml? 2/'2
DT O st
Z
\ which is the same form as
¢ that of the curve referred
Fig. 9. to its axes.

Tt follows that the caleulations employed in demonstrating
the properties of the ellipse, when the equation of the curve
was referred to its axes, and in which the co-ordinates were
not supposed orthogonal, could be repeated with the equation
of the curve referred to a system of conjugate diameters.
Thus, the ellipse being referred to a system of conjugate
diameters OD and OF, the tangent will have the cquation

X' y'Y’
=t

However, the equation of the normal does not preserve the
form which corresponds to the axes 04 and OB.

THEOREM OF APOLLONIUS.

163. The theorem of Apollonius admits of an easy demon-
stration by the method of § 142. Tmagine the ellipse referred
successively to its two axes and to a system of conjugate
diameters forming an angle 6. By the formulas of transfor-
mation of co-ordinates, the binomial

a ¥
« b
. . 2" ,yfz
is transformed into Ty

S
>
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Similarly the binomial 2249

becomes 2?4y + 22" cos 6,

since each of the two expressions represents the square of
the distance of the origin from the same point of the plane.
Whenee it follows that the polynomial

22 1
a—z,+5‘2—x(‘”2+3/2);
or
1 1\ 1 1
{9 @)=+

in which X plays the role of an arbitrary constant, is trans-
formed into

212 2

%Tz'*'z_:z— )1\(.1:'2 + Y24 22"y cos b),
or

1N o 0 1 1
@ ()R ()

The values of A, which make one of the polynomials (10) or
(11) a perfect square, being the same, the two equations

1 1\/1 1\ _
G-DE3)="

or
12) (A—a) (A — 1) =0,
1 1\/1 1\ cos?d
i @G-
or
(13) M — (@ + )\ + a”bsin?0 = 0,

have the same roots. It follows, therefore, that the two roots
of equation (13) are equal respectively to a® and 0% whence
follow the two relations:

(14) a!2+bl2= Cl,2+b2;

15) a”b"”sin’ § = a’b% or a'b'sind = ab.
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The preceding equations furnish the following theorems:

1° The sum of the squares of any two conjugate diameters of
an ellipse is constant and equal to the sum of the squares of the
aes.

2° The area of the parallelogram constructed on two conju-
gate diameters is constant and equal to that of the rectangle con-
structed on the axes.

Relations (21) of § 142 give immediately the two equations
(14) and (15).

164. These theorems may easily be demonstrated by con-
sidering the ellipse as the projection of a circle.

Two conjugate diameters OD, OE of the ellipse are the pro-
jections of two perpendicular diameters OD,, OE, of the circle
(Fig. 95). The angles D,0P, E,0Q being complementary, the
right triangles D,0P, E,0Q are equal, and one has

0Q = D,P; but 0D, = OF’ + D,P%
it follows that OP' + 0Q" = a2

The lengths OP and O(Q) being the projections of the two semi-
conjugate diameters OD and OE on the major axis of the
ellipse, the sum of the squares of these two projections is
constant, and one has
a? cos? o + b” cos®’ B = ,
on representing by « and B the angles which the semi-diameters
OD and OE make with the axis 0.
Similarly for the other axis, one has the projection of the

two semi-conjugate diameters on the minor axis equal to the
ordinates D/P and FEQ. DP=3D1P, EQ =3E1Q, and,
consequently,

DP' + BQ' =5 (D, + EQ).

The lengths E,Q and OP being equal, one has

D P+ EQ =D.P'+ OP'=a?,
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and, consequently, ~ DP'4+ EQ =1}
or a”sin? e + b"?sin? B = b*

On adding member to member the two preceding relations,

one obtains
a?4b%=a’+b%

165. Tn order to demonstrate the property respecting the
area of the parallelogram, one makes use of the following
theorem : .

The projection of « plane area upon any plane is equal to the
projected area multiplied by the cosine of the angle between the
planes.

For this purpose consider a triangle ABC
(Fig. 97) having an edge AD parallel to the
plane of projection; one can assume that
the plane of projection passes through this
edge AB; from the vertex C, drop upon this
plane a perpendicular CC', and, in this plane,
draw C'D perpendicular to AB; the straight
line OD will also be perpendicular to 4B
and the angle CDC' is the measure of the
dihedral angle of the two planes. From the
construction it follows that

C'D = CD cos ¢,

————————TTT0

[S
Q

Fig. 91

AB-C'D _ AB-CD

h
whence ) 5

cos ¢,

and, consequently,
AC'B = ACB x cos ¢.

Thus the area of the triangle AC'B is equal to that of the
triangle ACB multiplied by cos ¢.

Suppose now that the triangle ABC (Fig. 98) has no side
parallel to the plane of projection; this plane can be passed
through a vertex A, in such a way that the other two vertices
may lie on the same side; the plane of the triangle produced
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intersects the plane of projection in a straight line AI and the

line OB intersects this plane in the point
19 I; the triangles AIC, AIB project into
AIC', AIB', and one has, after what has
just been proven,

AIC" = AIC cos ¢,

o AIB'= AIB cos ¢,
o whence, by subtraction,
I
Fig. 98, AB'C' = ABC cos ¢.

The theorem, being demonstrated for a triangle, may be
extended to a plane polygon, since it can always be decomposed
into triangles, and similarly to a plane area bounded by any
closed curve; because this plane area may be regarded as the
limit of the area of an inscribed polygon, of which the number
of sides is increased indefinitely, in such a way that each
approaches the limit zero.

When the ellipse is regarded as the projection of a circle, the
parallelogram constructed on the two conjugate diameters is
the projection of a s‘quare circumseribed about the circle ; the
square having a constant area equal to 4 @’ that of the paral-
lelogram is also constant and equal to 4 a®cos ¢, that is, to 4 ab.

N

AREA OF THE ELLIPSE.

166. The same theorem furnishes immediately the area of
the ellipse. The ellipse being the projection of a circle, its
area is equal to that of the circle #a?, multiplied by cos ¢ or by

Q, which gives rab.
o
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EQuAL CONJUGATE DIAMETERS.

167. It has been noticed (§ 159) that the two semi-conju-
gate diameters OD, OE lie on opposite R
sides of the minor axis OB (Fig. 99). [Nu & g
One knows that the radius vector of the
ellipse increases in length as it is rotated .
farther from the minor axis; in order 0
that two conjugate diameters may become
equal, it is therefore necessary that
they make equal angles with the minor
axis OB, which will take place when the angles “ and B are

Fig. 99.

supplementary. One has, therefore, tan®« = —bj and, conse-
a
quently, tan a« = 9; hence the equal conjugate diameters OG
a

and OH coincide with the diagonals of the rectangle constructed
on the axes.
It follows from the relation a® + 0" = a® 4 b® that

2 2
a” = %,
and the equation of the ellipse, referred to its equal conjugate
diameters, is 2 g2
b &g = @+ b ;

it has the same form as the equation of a circle, only the co-
ordinates are oblique.

This equation shows that the sum of the squares of the dis-
tances of each of the points of the
ellipse from two equal conjugate
diameters is constant. In fact,
let 6 be the angle between the
two equal conjugate diameters;
MP and MQ the co-ordinates of
the point M (Fig. 100); ME and
MF the perpendiculars dropped
from M upon these dlameters, Fig. 100-
one has ME =y'sin §, MF = «'sin 6, Whence

a® + b sm20 2 a??
ME'+ MF' = (2" + y™) sin® 6 = (@ 2) TR




202 PLANE GEOMETRY. BOOK III.

SUPPLEMENTARY CHORDS.

168. Two chords MC, MC' in an ellipse are called supple-
mentary chords, if they be drawn from any point of the
ellipse to the extremities of a diameter
X 2 C¢' (Fig. 101).

E ﬁ& . Two supplementary chords are parallel
to the corresponding conjugate diameters.
Draw, in fact, the diameters OD and O
parallel to the supplementary chords M(',
Fig. 101 MC. In the triangle OMC", the two sides
CC' and OM are divided by the line OD,
parallel to C'J, into parts which are proportional; the center
O being the mid-point of OC', it follows that the diameter OD
divides the chord CM into two equal parts, and, consequently,
every chord parallel to the diameter OE. Similarly, the diam-
oter OF bisects the chord C'M, and, consequently, every chord
parallel to OD. Therefore the two diameters OD, OF, parallel

to the supplementary chords M ", MC, are conjugate.
Conversely, if straight lines be drawn from the extremities
of a diameter CC' parallel to two conjugate diameters OD, OE,
these straight lines intersect on the ellipse; draw C'M; the
supplementary chords MC, MC'" being parallel to the two con-
jugate diameters, the second chord C'M will be parallel

to OD.

o

169. The study of the variation of the angle formed by two
conjugate diameters is thus reduced to the study of the varia-
tion of the angle formed by two sup-
plementary chords, that is, of the
angle inscribed in a semi-ellipse. In
order to simplify the discussion, one
+ draws the two supplementary chords
through the extremities of the major
axis (Fig. 102). The angle AMA',
represented by 6, is equal to the dif-
ference between the angles MAX,

“Fig. 102.
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MA'X. Since the two straight lines AM, A'M have the angu-

lar coefficients — 2, — ¥ , one has
r—a x4+ a

/B
— )
tan0=x ¢ 902+a= (212/ 27
147 ey —a
2? — a?

and, by replacing a? by its value deduced from the equation of

the ellipse,
2 al?

(@ =)y

If the point M describe the upper portion of the ellipse ABA',
the tangent being negative, the angle is obtuse; when the point
M is at the point A, that is, when y = 0, the angle is right;
the point M traveling from A toward B, y increases; the abso-
lute value of tan # diminishes; the obtuse angle ¢ increases
also, and acquires its maximum value at B; thus one has y =10

2ab
a— b2’
and traces the elliptical quadrant BA', the angle § diminishes
from its maximum value to a right angle.

Whence it follows that the angle between the semi-conjugate
diameters OD, OF, situated on the same side of the major axis,
is obtuse, and varies from a right angle to the maximum value
ABA'; the conjugate diameters, which embrace the maximum
angle, being respectively parallel to the supplementary chords
A'B, AB, and, consequently, forming equal angles with the
minor axis OB, are equal.

The variation of the obtuse angle DOE of two conjugate
diameters has been studied; the acute angle DOE' varies in
an inverse manner. This angle is obtained directly by
drawing the corresponding supplementary chords through the
extremities of the minor axis BB. When the point M
describes the quadrant of the ellipse BA, the inscribed angle
diminishes from a right angle to the minimum value BAB',
the supplement of the obtuse maximum value ABA'.

tan = —

and tan § = — When the point M passes the point B
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170. When the ellipse has been drawn, the center and the
axes can be determined graphically. In order to find the
center, one draws two parallel chords sufficiently distant from
each other, and then joins the mid-points of these chords,
which will determine a diameter, whose mid-point will be the
center. If on this diameter a semi-circle be constructed, and
the point where this semi-circle intersects the semi-ellipse be
joined to the extremities of the diameter, one will have two
supplementary chords which are perpendieular; the parallel
diameters, forming a system of perpendicular conjugate diamn-
eters, will be the axes of the ellipse.

In a similar manner, the two systems of conjugate diameters
which include a given angle having as limits the minimum and
maximum values, can be constructed; it will suftice to con-
struct on a diameter a segment which will circumscribe an
angle equal to the given angle.

171. Being given two conjugale diameters, construct the corre-
sponding ellipse. Let DD', EE' (Fig. 103) be the given conju-
gate diameters, whose lengths are represented by 2 «'and 2 b
The equation of the ellipse, referred to these two conjugate
diameters, 1s - ,

Draw through the center the line E,E", perpendicular to DD/,
and take OE,=OFE; the ellipse which has the axes DD,
E,\E', referred to these axes,
is represented by the same
equation. Whence it follows
that the ordinates M P, M, P,
which correspond to the
2’ same abscissa OP, are equal

to each other. Imagine that

different points of the el-

lipse DE,\D', whose axes are
known, are constructed by the process described in § 149;
let M, be one of these points, M, P its ordinate: if one draw
through the point P, PM parallel to OF and equal to PM,, one
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will have the point M of the ellipse required. Each point of
the first ellipse will give a corresponding point of the second.
The first ellipse is deformed into the second by revolving each
ordinate PM, about its foot P through a constant angle.

The same method of transformation can be applied to the
tangent. The tangent at the point M is represented by the
equation e
@ Sta=1

written in oblique co-ordinates; this equation represents also
the tangent at the point M, if written in rectangular co-ordi-
nates. These two tangents intersect the prolongation of the
diameter DD' at the same point 7, the abscissa of which is
found by making ¥ = 0.

Instead of constructing the ellipse by points, as has been
explained, the axes of the ellipse can first be constructed, and
then the ellipse itself by means of its axes. The determina-
tion of the axes depends upon the following theorem :

172. Any two conjugate diameters determine on a fived
tangent PQ two segments DP, DQ, whose product is constant
and equal to the square of the
semi-diameter OE parallel to the
conjugate (Fig. 104). If one
take as axes of co-ordinates
the diameter OD, which passes
through the point of contact
and its conjugate OFE, and if
one calls a' and &' the lengths
of these semi-diameters, the
equation of the ellipse is

i
ai Tyt
Let y=max, y=m'r,

be the equations of two conjugate diameters 0.4, OBj; according
to the remark made in § 160, the angular coefficients will be
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]
connected by the relation mm'= —g—a- If in these equations

one put « = @', one finds DP= —ma', DQ = m'a'; whence

DP.-DQ=—mm'a"”=b"

173. This theorem may easily be demonstrated by consider-
ing the ellipse as the projection of a
circle. Let 04, OB, (Fig. 105) be
g two perpendicular diameters of the
Mi circle, P,Q, the tangent at any point
M,;; draw the radius OM, and the
> P radius OXN, parallel to the tangent;
: in the right triangle P,0Q,, one has
\J M Py M@y = OMy = ONY.

Fig. 105.

N

When the figure is projected, the di-
ameters OA,, OB; furnish two conjugate diameters of the
ellipse, the tangent P,@, a tangent to the ellipse, and the line
ON; a parallel to this tangent; the lines M, P, M,Q,, ONy,
being parallels, have the projections MP, M@, ON, which are
proportional to them; there also exist, therefore, between these
projections the relation

MP.MQ = ON>.

174. Suppose that the two conjugate diameters O4 and OB
be the axes of the ellipse (Fig. 104). The circle déseribed on
PQ as a diameter passes through the point O, and the ordinate
D, perpendicular to PQ, is equal to OF. Whence follows a
simple device for construeting the directions of the axes, when
one knows the two conjugate diameters OD and OE. One
draws through the point D a line parallel to OE; this parallel
will be tangent at the point I); on this line one erects a per-
pendicular DH equal to OF, and describes a circle having its
center on PQ and passing through the points O and H; the
straight lines OP and OQ which connect the center with the
two points P and @, where the circle intersects the tangent,
will give the direction of the axes.
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175. It remains to determine the magnitudes of the axes.
From the relations

?+b*=a”4+b" ab=a'b'sinb,
established in § 163, one deduces

(@a—bP=a"+ b’2—2a’b'sin0=a'2+b’2—2a’b'cos<§——0>,

(@+B)P=a® + b2+ 2a'h' sin 6 = a4+ b — 2 &b’ cos <§+ 0).

Since one can suppose that § designates the angle included by
the econjugate diameters, one sees from these formulas that
@ — b is the third side of a triangle of which the other twe

sides are @' and 0’ and the included angle g— 6. This triangle

is the triangle ODH (Fig. 104); because the angle ODI{ is
equal to §~ 6, and the two sides DO and DII are equal to a'

and b'; thus the third side OH will be equal to a — b. Simi-
larly @ + b is the third side of the triangle of which the other
two sides are a' and ?', and the included angle the supplement
of the preceding; this triangle is the triangle ODX, which is
obtained by prolonging the perpendicular DI till the prolon-
gation is equal to itself; the third side OX will determine
@+ b. If about the point O as center, with OH as a radius,
one describe a circle, the length K7 will be equal to the major
axis 2 @, the length KL to the minor axis 2.

One remarks that the major axis, which should lie within
the angle formed by the conjugate diameters, has the direction
0A, the bisector of the angle HOK, the minor axis is the
bisector of the supplementary angle.

EXERCISES.

1. Find the locus of the vertices of the parallelograms
constructed on the conjugate diameters of an ellipse.

2. Find the locus of the mid-points of chords drawn through
the same point in an ellipse.
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3. A chord of a circle moves parallel to itself; straight
lines parallel to two given straight lines are drawn through
the extremities; find the locus of the point of intersection of
the parallels.

4, Of all the parallelograms eircumseribed about the same
ellipse, the parallelograms constructed on two conjugate diam-
eters have a minimum area.

5. Of all the parallelograms inscribed in the same ellipse,
those whose diagonals form a system of conJuorate diameters
have a maximum area.

6. Of all the ellipses inscribed in the same parallelogram,
find the greatest.

7. Find the smallest of all the ellipses circumseribed about
the same parallelogram.

8. Among all the systems of conjugate diameters of an
ellipse, the axes form a minimum sum and the equal conjugate
diameters a maximum sum.

9. Inscribe in an ellipse a chord with a given direction
such that the sum of its length and of the distance of its mid-
point from the center be a maximum; find the locus of the
mid-point of this chord when the direction varies.

10. A straight line moves parallel to itself in the plane
of two others; one takes on it a point such that the sum
of the squares of its distances from the intersections with the
fixed lines be constant; what is the locus described by the
point ?

11. Being given any two ellipses, one can detérmine two
directions parallel at the same time to two conjugate diameters
of each of the ellipses; pass a third ellipse of which the equal
conjugate diameters are parallel to these two directions through
the points common to the two curves.

12. An ellipse revolves about its center; one draws tan-
gents to the ellipse at the points in which it intersects a fixed
straight line; find the locus of the point of intersection of
these tangents.

13. Being given a circle and a fixed straight line passing
through its center; a movable straight line equal to the
radius is supported by one of its extremities on the circum-
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ference, by the other on the line; find the locus of a point
on the movable straight line.
14. Tind the area of the ellipse defined by the equation

Ax* + 2 Bey 4 Cyf = 1.

15. A triangle being inseribed in an ellipse, if one call R
the radius of the circumsecribed circle and d, d', d'' the semi-
‘diameters parallel to the sides, one has

ddld”

ab

16. Any rectangle being circumseribed about an ellipse, the
parallelogram whose vertices are the points of contact has a
constant perimeter, and two consecutive sides make, with the
tangent, equal angles.

17. Beginning at any point on the ellipse, one lays off on

R =

2
the normal a length equal to 71, k being a constant and p the
D

perpendicular dropped from the ecenter upon the tangent;
find the locus of the extremity of this line.

18. Being given an ellipse and the circle constructed on its
major axis or diameter, one draws normals to the circle and to
the ellipse at points situated on the same perpendicular to the
major axis; find the locus of the point of intersection of the

normals.
o
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CHAPTER V
!'TH’( HYPERBOLA.

/
176. Conmstruct/the locus defined by the equation
4 "ot Oy + H =0,
in which A’ and €' haye contrary signs.

When the constant # is zero, the equation, solved with

respect to y, gives Y
y=EN=gG%

it represents two straight lines passing thr'oiigh the-origin.
One gives the coefficient C' the same sign as H, and the
coefficient A' the opposite. If one put
yi) iy
0(,2 — — Z-’, b2 = 67’

2

the equation becomes
€Y
Solving the equation with respect to 7, one has

) y=i§Vx2~a§. .

=1k

18
S

v

The ordinate y is real for values of » greater than « in absolute
value. If, therefore, beginning at the origin, one lay off on
the axis of x, to the right and the left, two lengths 04, 04'
equal to a, and draw through the points A and A'lines parallel
to the axis of %, no point of the curve will lie between these
parallels.

When z increases from a to 4+ oo, y increases from 0 to + o
in absolute value, which, on account of the double sign, fur-
nishes two infinite arcs AD, AD', symmetrical with respect
to the axis of @ Similarly, when 2 varies from —a to — o,
one gets two infinite arcs A'E, A'E, symmetrical with respect
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to the axis of y. These four equal arcs form the two branches
of the hyperbola.
The hyperbola has a center and 2,
two axes. The axis AA4'onlyin- £ v
tersects the curve; for this reason
it is called the real or transverse
axis; the other axis does not
meet the curve; one calls it the
non-transverse or {maginary axis;
the length AA' of the transverse
axis is 2 ¢ ; by analogy, the length
of the non-transverse axis is Fig. 106.
called 25, and on this axis one lays off OB and OB’ equal in
absolute length to . The points 4 and A’are the two vertices
of the hyperbola.

177. The squares of the ordinates perpendicular to the trans-
verse axis are proportional to the products of the corresponding
seqgments on this axis.

In fact, from equation (1) it follows that

yz _ _Z?_Z or y2 _ b2 )

o —al a? +a)yw—a) a*’
Mr: 2
therefore —_ =,
A'Px AP &

178. AsymprorEs. — It has been found (§ 130) that, when
the origin of co-ordinates coincides with the center of the hyper-
bola, the equation of the asymptotes is found by suppressing
the constant term in the equation of the curve. The two asymp-
totes BRI, S8’ will have in this case the equations

TN b
3) Ez—b—Z:—_O, or y:;taw.

It can be easily verified that the difference MN of the ordi-
nates of the straight line OR and the arc 4D, has the limit
zero; because this difference can be expressed by

BloEsre—
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The arc AD lies wholly within the angle ROX and ap-
proaches indefinitely the line O, which is its asymptote. The
lines OR', OS, OS’ are for a similar reason the asymptotes
of the ares A'E', A'E, AD'. According to equation (3), the
asymptotes 'R, §'S are the diagonals of the rectangle con-
structed on the axes.

179. CoxgueaTE HypERBOLAS.—Two hyperbolas are said to
be conjugate, when they have the
same center and the same axes,
the real axis of the one being
the imaginary of the other.
Thus the proposed hyperbola has
as conjugate another hyperbola
whose transverse axis is 25 and
imaginary axis 2a (Fig. 107).

R’ Fig. 107, " The equation of this second hy-
perbola is
@
) = 1.

Two conjugate hyperbolas have the same asymptotes, since
the rectangle constructed on the axes is the same for both
curves. Oune of the curves lies wholly within the vertical
angles ROS', R'0S, the second within the other vertical angles
ROS, R'0OS'.

180. Tue EqQuinATERAL HyPERBOLAS.—A hyp'erbola, is said
to be equilateral when the axes 2a and 2% have the same length.
In this case, the rectangle of the axes becomes a square, and
the asymptotes are perpendicular to each other; the conjugate
hyperbola is equal to the first; for the two curves will coincide
when one revolves the latter through a right angle about its
center. .

The condition that the general equations of the second degree
represents an equilateral hyperbola, has been previously given
(§ 144) ; this condition is 4 + C'—2 Beos§ = 0.

The hyperbola whose axes are ¢ and b can be constructed
by means of the equilateral hyperbola whose axis is a, just as
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the ellipse having the axes @ and b was constructed by means
of the circle of radius «; that is, the first hyperbola can be
regarded as the orthogonal projection of the second. But this
construction has no practical utility in the graphical construc-
tion of the hyperbola, inasmuch as the trace of an equilateral
hyperbola is not more simple than that of any other hyperbola.

181. Let « and y be the co-ordinates of any point of the
plane; consider the expression

m? y2
@ v
This polynomial is equal to zero for a point M belonging to

the curve; if a point P starting from M travels along a line
drawn parallel to the transverse

—1.

"’ s of R/D
axis AA4' (Fig. 108), the term 32 r M/ »
remains constant, while the term /

2 z \d X

oa;z diminishes or increases, accord- y, 4
ing as the point P approaches or

recedes from the y-axis. Whence
it follows that the polynomial has
a negative value for every point situated between the two

branches of the hyperbola, and positive for all other points of
the plane.

=

Fig. 108.

Tur TANGENT.

182. The equation of the tangent at the point M, whose
co-ordinates are « and y, is

®) e —1=o.

In order to construct this line, one can determine the point 7'
(Fig. 108), where it intersects the axis OY If in equation (5)
one make Y =0, it becomes X = OT7 = —; this length OT

can be found by a third proportional.
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183. The angular coefficient of the tangent has the value
Vi b

===

%y, ’1_%:'

Suppose that the point M describes the arec AD; at A the
angular coeflicient is infinity, and the tangent perpendicular
to the transverse axis; as « increases, the angular coeflicient

diminishes constantly and approaches the limit Q, the angular
@

coeflicient of the asymptote OR; the angle MTX diminishes
therefore from T to ROX; at the same time the value of OT

diminishes from « to 0 ; whence it follows that the asymptote
is the limiting position of the tangent, when the point of con-
tact is indefinitely removed.

184. To Draw A TancexT THRoUGH AN ExTERIOR PoINT
P. —1If the co-ordinates of the point P be @, and ¥,, the points of
contact are determined by the equation of the chord of contacts

2 Yy
©) 7;7 — —Ii—‘ —1=0,
combined with equation (1) of the hyperbola.

By eliminating y, one gets the equation of the second degree
3;'2 o’ o % Yo\
AE-5)-m 1+ h)=0 .

whose roots arve the abscissas of the points of contact M and
M' of the two tangents drawn from the point . The condi-
tion that the roots are real is

22 oy

i<
that is, that the point P> should be situated between the two
branches of the curve. If the point P lie in the angles of the

2 2

asymptotes which embrace the curve, the coefficient %‘2-—%%

being positive, the product of the roots is positive; conse-
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quently the two roots have the same sign, and the two points
of contact on the same branch of the curve. On the contrary,
if the point P be in one of the angles ROS, R'OS', there
will be a point of contact on each of the branches.

185. TANGENTS PARALLEL T0 A GIVEN STRAIGHT LINE. —
It is to be noticed that the equation of the hyperbola referred
to its axes differs only from that of the ellipse in that »* is
replaced by — b?; if this change be made in equation (7) of
§ 157 of the tangent to the ellipse, one gets the equation of
the tangent to the hyperbola

™ y =me £ Va'm* — b

In order that the problem be possible, it is necessary that
2

the value of m? be greater than b~2; that is, that in case the
o

given line passes through the origin, it lie within the angle
ROS. Tt has already been shown (§ 183) that the numerical

value of the angular coefficient of a tangent is greater than v
a

186. One can draw to a hyperbola two perpendicular tan-
gents so long as the angle ROR' is less than a right angle, that
is, when a is greater than b; when this condition is satisfied,
the locus of the vertex of a right angle circumseribed about a
hyperbola has the equation

2+ ot = o — b7

that is, a circle concentric with the curve.

DIAMETERS.

187. When the hyperbola is referred to its axes, the diameter
which bisects parallel chords whose angular coefficient is m
has the equation

2z 2my
i e
or y= By

afm”
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If one designate by m' the angular coefficient of the diameter,
there will exist, between the direction of the chords and that
of the diameter, the relation

2
®) mm' = (%

This relation shows that if one
take m'as the angular coefficient
of the chords, one will find m
for the angular coefficient of the
diameter; that is, in case the line
D D' bisects the chords parallel to
EE' (Fig. 109), reciprocally the
line EE' bisects the chords paral-
lel to DD'. Thus the two diame-
ters DD', LE' are such that each
bisects the chords parallel to the
other; they are two conjugate
diameters. .

The hyperbola has an infinity of systems of conjugate
diameters, since one can choose at will one of the diameters.
Relation (8) shows that m and m' have the same sign; if one

suppose them positive, m varies from 0 to Q, ' will vary from
a

o to P the diameter D' revolves from OA4 toward the asymp-

tote OR, and the diameter EE' from OB toward the same
asymptote. Ome sees thus, that of the two diameters, one
always intersects the curve while the other never meets it.
The axes form the only perpendicular system of conjugate
diameters, and the angle included between the two conjugate

. . ™
diameters varies from = to 0.

It can be shown, as in the case of the ellipse, that the tangent
FH at the point D of the hyperbola is parallel to the diameter
EE', the conjugate of the diameter DD' which is drawn to the
p(')int of contact (§ 160).
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188. Two conjugate hyperbolas and the system of their
asymptotes possess the same diameter for the same series of
chords; because the equations of the three loci

@ oo th aTpT
differ only by the constant term which does not enter in the

equation of the diameter f, 4+ mf", = 0. The three loci possess
also the same systems of conjugate diameters.

w2 y2 1 972 ?/2 0’

2
1f the hyperbola is equilateral, the relation mm' = % becomes
a

mm' =1, which shows that the angles DOX, EOX are com-
plementary, and, consequently, that the asymptotes are the
bisectors of the angles of the conjugate diameters.

189. Tur HyrPERBoLA REFERRED T0 Two CONJUGATE
DrameTERS. — When two conjugate diameters OD, OE (Fig.
109) are chosen as co-ordinate axes, the equation of the hyper-
bola becomes (§ 136)

A 4 Oy 4+ I =0.
The coefficients A" and C" have contrary signs, for example,
C" has the sign of H, and A" the contrary sign; if one put

H .. _H
o Vo
the equation takes the form

a!‘.’ —

w!Z .7/,2
©) =-5=1,

which is of the same form as that of the curve referred to its
axes.

Since one has, by the transformation of co-ordinates,
w2 yz wlZ yl2

a? b2 a 2 b 2

for every point of the plane, it follows that the equation of the
conjugate hyperbola, referred to the same diameters OD, OF, is

2" yrz_
12 ﬁ_

a

—1.
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The diameter OE, which does not meet the first hyperbola,
meets the second in the point E, and the length &' of this
semi-conjugate diameter of the first hyperbola is equal to the
length OF of the real semi-diameter of the second.

190. Equation (3) of the asymptotes transforms into the
equation
1"’2 y72 b!
&—m—b—m=0, ory'= j:aw.
One deduces, therefore, that the diagonals of the parallelogram
FHGK, constructed on any two conjugate diameters, coincide

with the asymptotes of the hyperbola.

The sides FH, GK, of the parallelogram are tangents to the
first hyperbola, and the sides FX, GII, to the conjugate, in
such a way that the parallelogram is circumsecribed to the
curves of the two systems.

THEOREM OF APOLLONIUS.

191. It is sufficient to repeat the reasoning of § 163.
By the formulas of transformation of co-ordinates, the two
binomials

w2 2
E - %2; @ 4 77,
are changed into

x" "oe 12 Oy
= + 4”2+ 22" cos 6. o

The polynomial

A L |
P b-g_X<‘v2+y2)?
1 1 1IN e
or (10) . (az—)\).ﬁ—(?-{-/—\)y,
is transformed into
2—2— Z—: — %\(m’2 4 9" 4+ 2 2'y' cos 6),

1,1
or (11) <E¢1_'2_§>W“20_0:*%'y"<b'é+x)?/”'
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The two polynomials (10) and (11) being perfect squares for
the same values of A, the two equations

12) A= A+0)=0,
and .
13) N —(a”?—0?)A—a®"sin’f =0,

have the same roots; whence it follows that the two roots
of equation (13) are equal respectively to «* and —¥%; one
deduces the relations

(14) a — b2 = a® — b?
(15) a”?b”sin® 0 = a®?, or a'd'sin § = ab,
and, therefore, the two following theorems:

1° The difference of the squares of any two conjugate diameters
is constant and equal to the difference of the squares of the axes.

2° The area of the parallelogram constructed on two conjugate
diameters is constant and equal to the area of the rectangle con-
structed on the axes.

It follows from the relation a”? — b= o’ — b* that if a be
different from b, one cannot have a'==15'; the hyperbola can-
not have equal conjugate diameters. If, however, the hyper-
bola be equilateral, one always has a'=10'; every system of
conjugate diameters is equal; this agrees with the remark of
§ 188, for then the two diameters make equal angles with
the asymptote.

192. Since the hyperbola and its two asymptotes have the
same diameter for the same system of parallel chords, the mid-
point I of the chord MM'is also the mid-point of the chord
NN' (Fig. 109). Therefore the portions MN, M'N' of a secant
comprised between the hyperbola and its asymptotes are equal.

If the secant become tangent, one has DF = DIl. The
portions of a tangent comprised between the point of contact
and the asymptotes are equal.
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193. Suppose that the hyperbola is referred to two con-
jugate diameters DD', EE', of which EE' is parallel to a
given secant MM'; the curve will have the equation

bl2

°2
y =]
a?

(2 — avz),

bIZ .
and the asymptotes y” =a—,2w’2. In Fig. 109 the secant MM’

intersects the same branch of the curve in two points, while the
parallel diameter EE' does not meet the curve; and one has

— blZ — =52 bm_
MI =a—_'2(01 —a"%, NI'= EOIZ,
and, consequently,
NI' — MI* =" or (NT— MI) (NI+ MI) = b";
but NI—MI= MN, NI+ MI=MN';
therefore MN . MN'=0b"

In case the secant intersects the two branches of the hyper-
bola, the parallel diameter meets the curve, and one will arrive
at an analogous result. Thus, the product of the scgments of &
secant, comprised between a point of the curve and the asymptotes,
is equal to the square of the semi-diameter parallel to the secant.

194. Beinz given the asymptotes RR', SS’, and a point M
of the hyperbola, one can obtain as many points of the curve
as one wishes (Fig. 110). Draw, in fact, through the point M
wp any straight line NMXN'; this line
7 intersects the asymptotes in N and

N'; if one take on this line a length

N'M' equal to NM, one will have
" a second point M’ of the hyperbola.
P The direction and lengths of the axes
R SN may also be determined. The curve
being comprised within the angles
L3 Sk ROS, R'0OS', the Dbisector OA of

these two angles will be the transverse axis, and the perpen-
dicular OB the imaginary axis. Draw QMQ' perpendicular

Bl

C,
i
|
1
1
A
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to 0A; the imaginary semi-axis b will be a mean proportional
between MQ and MQ'. On laying off on OB alength OB equal
to b, and drawing BC parallel to 04, BC will be the real
semi-axis a. In order to construct a tangent at a point M’ of
the curve, one will draw through this.point M'P parallel to
an asymptote, taking OG' = 2 OF; the straight line M'G will
be the tangent required.

195. When one knows the positions and the magnitudes of
two conjugate diameters, one can easily
find the axes. Let, in fact, DD', EE'
(I'ig. 111) be the two diameters, of which
the first is real. The diagonals of the
parallelogram constructed on the two
diameters are the asymptotes. Know-
ing the asymptotes and a point D), one
is led to the preceding construction.

Fig. 111,

196. SurrLeEMENTARY CHorDS.— Two chords, MC, M(', are
called supplementary chords if they, starting from the same
point of the curve, be drawn to the
extremities of the same diameter
CC' (Fig. 112). One can demon-
strate, as has been done in § 168
for the ellipse, that two supplemen-
tary chords are parallel to a system
of conjugate diameters, and that,
reciprocally, if straight lines par-
allel to two conjugate diameters be
drawn through the extremities of a diameter, these lines will
intersect on the hyperbola and form a system of supplementary
chords.
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THnE HYPERBOLA REFERRED TO ITS ASYMPTOTES.

197. If, after having transferred the origin to the center,
which makes the terms of the first degree disappear, one take
y for new axes of co-ordinates the two
77/ asymptotes OX, OY (¥ig. 113), a

2 < line parallel to an asymptote will
P not meet the curve in more than one

Bl o<i/ | point; the equation should be re-
duced to the first degree in y and

also in x; that is, that the coefficients
‘ s of o* and a® are zero. The equation
Fig. 113. will, therefore, have the form

16 2By + H=0, or xy=F.
Y

One deduces the value of k, on noticing that the co-ordinates
of the vertex A4 are

! ~/ 2 2

which satisfy the equation of the curve; whence

_ a4+ bz_

k
4

198. When the hyperbola is referred to its asymptotes, the
tangent 7’7" at the point M, whose co-ordinates are % and y,
has the equation

an yN+2Y=2F
The abscissa of the point of intersection of the tangent with
the axis OX is found by putting in this equation ¥ = 0, whence
X=0T=2F_2s=20P;
Y

one has a second proof that the point of contact M bisects the
portion T'T" of the tangent comprised between the asymptotes
(§ 192).
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THE AREA OF A HYPERBOLIC SEGMENT.

199. Next is discussed the theorem which concerns the
evaluation of areas. Consider the area bounded by the axis
0X, a curve, a fixed ordinate 4B, and a variable ordinate MP
(Fig. 114), corresponding to the abscissa
x. This area, which is represented by S,
is a function of the variable w®, whose
derivative is to be determined. Give to @
an increment Az = PP’ sufficiently small
so that the ordinate of M may vary in the
same seuse as that of M. Draw through
the points M and M', MC, M'D parallel
to the axis OX. The increment AS of the area is greater than
the parallelogram MPP'C, and smaller than the parallelogram
DPP'M'. The measure of the first parallelogram is yAw sin 6,
6 being the angle between the axes, of the second (y+ Ay) Awsin 6.
Therefore it follows

Fig. 114,

yAx - sin § < AS < (y + Ay) Az - sin 6,
and, by dividing by Az,
ysin0<i——i< (y + Ay) sin 6.

Let, now, Ax approach the limit zero. The ratio %ﬁ lies
- @

between two quantities, the one y sin §, the other having this
quantity for its limit; therefore the ratio has also the same
limit y sind. Thus the derivative of the area considered as a
function of the abscissa is # sin . Reciprocally, the area S is
a function of y sin 6, considered as a function of ». In case the
axes of co-ordinates are rectangular, the derivative of the area
is equal to .

200. Consider a hyperbola referred to its asymptotes, and
determine the value of the area bounded by the asymptote OX,
the hyperbola, the fixed ordinate AB corresponding to the
abscissa ¢ and the variable ordinate MP corresponding to the
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abscissa z (Fig. 115). It follows from equation (16) that

¥ Y =§, and, consequently,
S':ysin@:ksina.%

Since = is the derivative of log «;

(N P X X 1
therefore k sin 0-5 is the deriv-
ative of k& sindlog x; one has,
consequently,
Fig. 115. S =ksin 6 logx 4 C.

The constant (' is determined by the condition that the area be
zero for x = a, which gives C'= — ksin § loga. Hence, it fol-
lows

(18) 8 =1 sin 6 (logx — loga) =k sin 6 - log (f>
a

The abscissa @ being constant, if # be made to increase indefi-
nitely, the area S increases also without limit. The same
oceurs when a approaches the limit zero, # remaining fixed.
In the particular case when the hyperbola is equilateral, one
has sinf =1; if in addition & be made equal to 1, and the
“area be reckoned from the ordinate which corresponds to the
abscissa 1, that is, from the vertex of the curve, the preceding
formula reduces to
S = logw. i
It is on account of this property that Napierian logarithms
have also been called hyperbolic logarithms.
If one assume k =1, ¢ = 1, formula (18) becomes

S = sin 0 log .

The angle 6 could be taken in such a way that S be the loga-
rithm of « in any system whatever whose base is greater than e.
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EXERCISES.

1. The base of a triangle is fixed; the difference of the
angles at the base is Z—;; find the locus of the third vertex of
the triangle.

2. What is the locus of the centers of the circumferences
which intercept given lengths on the sides of a given angle ?

3. Being given two fixed straight lines and a movable
straight line which intersects the first two in such a way that
a triangle of constant magnitude is formed, it is required to find
the locus of the centers of gravity of these triangles.

4. Two secants drawn from any point of a hyperbola to
two fixed points taken on the curve intercept on one or the
other asymptote constant lengths.

5. Every chord of a hyperbola bisects the portion of one
or the other asymptote comprised between the tangents at
its extremities.

6. If, on a chord of a hyperbola considered as a diagonal, one
constructs a parallelogram whose sides are respectively parallel
to the asymptotes, the other diagonal passes through the center.

7. Being given a fixed point and a fixed straight line; an
angle of constant magnitude rotates about its vertex placed at
the fixed point; find the locus of the center of the circle circum-
scribed about the triangle formed by the sides of the angle and
the fixed straight line.

8. A triangle ABC is insecribed in a hyperbola; two of its
sides have fixed directions; find the locus of the mid-point of
the third side.

9. On one of the diagonals of a rectangle used as a chord a
circle is described; find the locus of the extremities of the
diameters parallel to the second diagonal.

10. Beinggiven an angle and a fixed point, one draws through
this point an arbitrary secant, and through the points in which
this secant intersects the two sides of the angle, one draws
straight lines respectively parallel to these sides; find the
locus of the point of intersection of these parallels.

11. Find the locus of a point such that on drawing through
B
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this point lines parallel to the asymptotes of a hyperbola, the
area of the triangle formed by these parallels and the hyper-
bola is equal to a given constant.

12. Find the locus of a point such that one of the bisectors
of the angles formed by the straight lines which join this point
to two fixed points 4 and B has a given direction.

13. Every equilateral hyperbola circumseribed to a triangle
passes through the point of intersection of the altitudes.

14. Being given an ellipse, one draws any two conjugate
diameters ; find the locus of the point of intersection of one of
them with a straight line drawn through a fixed point perpen-
dicular to the other, or, more generally, with a straight line
making a given angle with the second diameter.

15. Being given two straight lines A'A and B'B and the
point O; about the point O as center, with an arbitrary radius,
a circle is described ; at the points of intersection of the circle’
with the straight lines perpendiculars are erected to these lines;
find the locus of the points of intersection of these perpen-
diculars.
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CHAPTER VI

CONCERNING THE PARABOLA.

201. The second type to which the equation of the second
degree may be reduced is C'y* + 2 D'z = 0, or

1) ¥ =2 px.

The case when p is negative can be treated under the case
when p is positive by reversing the direction in which one
measures the positive abscissas; assume therefore that p is
positive. It follows immediately from the form of equation
(1) that the curve is symmetrical with respect to the axis of a,
and that it passes through the origin. Iquation (1), solved
with respect to ¥, gives

Y= \/2]’)39.

In order that the ordinate be real, it is necessary that the
abseissa be positive; if « increase from 0 to 4+ «, the absolute
value of y increases also from 0 to

o ; thus it follows that the parabola Y 7
consists of two infinite arcs 4D P N
and AD' (Fig. 116). e

[}

The straight line AX is the ¥ N Ry
axis of the parabola, the point 4 :
is the vertex, the length p, which ¢
determines the magnitude of the
curve, is called the parameter of
the parabola.

202. Construction of the curve
by points. The ordinate MP of
the point M is a mean proportional between the constant
length 2p and the abscissa AP. Construct on AX, in the
direction of negative abscissas, a length 4@ equal to 2p;

Fig. 116
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then describe diverse circumferences whose centers lie on QX,
and pass through the point ¢; these circumferences intersect
the axis AX in the points P, P/, ..., and the line AY in the
points A, N', .--. Through the points P, P/, ..., draw lines
parallel to AY; through the points IV, N, .-, lines parallel to
AX; their points of intersection M, AM', ..., belong to the
parabola.

203. From the relations
MP'=2p.AP, MT"=2p.AP,

A p? >
one deduces _]ﬁ_z _ AP,
apr o Ar
The squares of the ordinates perpendicular to the axis of a
parabola are proportional to the segments of the axis comprised

between the vertex and the ordinates.

204. Through the point M of the curve, draw a parallel to
the axis, and imagine that a movable point travels along this
parallel. Replace in the function »*— 2 pa, x and y by the co-
ordinates of the movable point; if the point M be situated on
the side of the positive abscissas with respect to the parabola, the
function will be negative, if the point 2 be on the other side,
the function will be positive. For brevity the first region is
sald to be interior and the second exterior to the curve.

205. It has already been shown that the infinite -branches
of the hyperbola have asymptotes ; the same is not true of the
parabola.  For, since y increases indefinitely with @, there
cannot be an asymptote parallel to the axis of the parabola.

In the second place, let ¥ = ax+ b be the equation of any
straight line oblique to the axis, the difference of the ordinates
of the points of the line and of the curve which correspond to
the same abscissa is equal to

ax + b —/2 pz,
and can be put under the form

3 w(a —I-g—\/?)
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When  increases indefinitely, the first factor increases indefi-
nitely, and the second approaches the value a different from
zero, the product increases indefinitely. Therefore an asymp-
tote oblique to the axis cannot exist.

TANGENT.

206. The tangent at the point 3/, whose co-ordinates are z
and y, has the equation

@) ¥Y=p(X + 2).

Let T be the point where the tangent intersects the axis of
the parabola (Iig. 117); if in equa-
tion (2) one make Y =0, then will
X =—x; therefore 47 = AP. This
property furnishes a means for con- &
structing the tangent to the parab- |
ola at a given point M; to construct

the tangent draw MP perpendicular <
to the axis, take AT = AP, and con-
nect the points M and P with a
Fig. 117.

straight line.

207. To draw a tangent through an exterior point M, Let
2 and ¥, be the co-ordinates of the point ; the points of
contact will be determined by the chord of contact

) yy =p @+ ),

combined with that of the curve (1); whence it follows

2

Y=nxtVy'—2pw, 95=2y*p§

these values are real so long as the point 2 is exterior to the
eurve.

In order to construct the line MM, one seeks the points
where it intersects the co-ordinate axes; if, in equation (8), one
put y =0, one gets » = —x,, whence AI is equal to AP;; if one
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put =0, one finds y =2%; the point K may be found by a
3

fourth proportional. !

208. To draw « tangent parallel to a given line. If m rep-
resent the angular coefficient of the given line, the equation

§= m, and that of the curve, determine the co-ordinates of

the point of contact, y = %, = ‘-)—];? It follows then that the
equation of the tangent will be

4) , Y=mX+

p .
2m

209. NormAL. — The normal MN at a point M of the parab-
ola, whose co-ordinates are x and ¥, has the equation

) Y—y=—%(X——a:).
On putting Y'=0, one obtains the abscissa of the point N
where it intersects the axis; one finds

PN=X—z=p.

Thus, in the parabola the sub-normal PN is constant and equal
to the parameter p.

DIAMETERS.

210. By applying the general equation of the diameters of
a curve of the second degree to the parabola, whose equation
is y* — 2 px = 0, one obtains the equation
P

(6) my—p=0, or y= "

This property has already been demonstrated in § 134; it is,
that every diameter of the parabola is parallel to the axis.
Since the angular coeflicient m of the chords can be so chosen

that % can take any value that one chooses, it follows that, con-

versely, every straight line which is parallel to the axis is a
diameter.
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Let A’ be the point of intersection of the diameter with
the curve (Fig. 118); since the ordinate of the point A4' is

¥

equal to % and the angular coefficient of
the tangent at this point has the value
{;), that is m, it follows that the tangent at

the extremity of a diameter is parallel to
the chords which this diameter bisects.

211. Parabola referred to one of its
diameters and to the tangent at its ex-
tremity. It has been proven (§ 136) Fig. 118,
that, in case a diameter A'X' and the tangent A'Y" at its ex-
tremity be taken as the axes of co-ordinates, the equation of
the parabola will have the form

@ y=2ph.

If @ and b be the co-ordinates of the point A’ with respect to
the primitive axes, and AP' be drawn parallel to A'T, one
knows that one has A'P' = AT = AP (§ 200); the co-ordinates
A'P'y — A'T of the vertex A with respect to the new axes are
therefore ¢ and —+/4a?+ b*; since they satisfy equation (7),
1t follows that

2p1=4a2+b2=4a2+2pa=2p+4a.
@ a
One has also  p'= 5‘%_.];=£%§= TN.

If the angle Y'4'X' formed by the new axes be represented by
0, it follows from the right triangles NA'T, NA'P, that

_AN PN

TN = =
sind’ sin @
whence p'=TN= PN D

sin?@ sin?é
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212. Since the parabola, referred to a diameter .4'X and
to the tangent A'Y (Fig. 119), has the equation y® =2 p'x, it
is evident that the equation y ¥ = p'(X + x) represents either
the tangent at the point M, if # and y be
the co-ordinates of this point, or the chord
of contact of the tangents drawn from an
exterior point whose co-ordinates are x and .

The tangents at the two extremities M
and M’ of a chord intersect the diameter
in the same point 7, such that A'7'= A'T.
It is also true that the chord of contact
MM, with respect to an exterior point 7,
is bisected by the diameter 7'X which passes
thlough this point, and for a greater reason

A'T=A'T.

This furnishes the means for constructing a parabola by
points, in case one knows two tangents 7'M, TM, and the
points of contact M and M'. Draw the chord MM', and join
the mid-point 7 with the point 7, the mid-point A' of the
straight line 77 is a point of the curve, and the tangent at
this point is parallel to MM' By means of the tangent 4'T",
which touches the curve at 4’, and of each of the given tan-
gents, one can determine two new tangents by their points of
contact, and so on. This method for constructing two parallel
lines by means of an arc of a parabola is frequently used,
when the are of a circle cannot be employed; that i is, when the
distances 7'M and 7' are not equal.

Fig. 119,

THE AREA orF A PARABOLIC SEGMENT.

213. It is proposed to evaluate the area S of the triangle
A'IM formed by the straight lines A'Z, IM and the arc A'M
of the parabola (Fig. 119). If this area be regarded as a
function of the abscissa of the point M, the derivative §' is
given by the formula

S'=ysinf=v2p'x. Sille:\/?})—"sinﬁ-w%.
One deduces S=2V2p'.sing- x4+ O
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The constant C is zero since the area becomes zero for z =0.
It follows therefore that

S=%2-V2p'x-sin§=%aysinb.

The avea S is equal to two-thirds of the parallelogram A'IMN,
and, consequently, the area of the composite-line triangle
A'NM is one-third of the same parallelogram.

EXERCISES.

1. Find the locus of the vertex of an angle circumscribed
about a parabola, such that the triangle formed by the sides
of the angle and the arc of the parabola has a constant area.

2. Tind the locus of points from which two perpendicular
normals can be drawn to a parabola.

3. A secant revolves about a fixed point taken on the axis
of a parabola; normals are drawn to the parabola at the
points in which the secant intersects it; find the locus of
the point in which these normals intersect.

4. A parabola moves parallel to itself, so that its vertex
traces the parabola in its initial position; tangents are drawn
from the vertex of the fixed to the movable parabola; find the
locus of the points of contact.

5. Find the locus of a point from which-the sum of the
squares of the normals drawn to a parabola is constant. '

6. Given a curve of the second degree tangent to the sides
of a given angle, one draws an arbitrary tangent to this curve;
find the locus of the point of intersection of the medians or
the altitudes of the triangle formed by the movable tangent
and the sides of the angle; find also the locus of the center
of the circle circumscribed about this triangle.

7. Given an ellipse, one draws through a fixed point any
two straight lines at right angles to each other, and at the
points in which these lines intersect the ellipse, tangents are
drawn to this ellipse; find the locus of the points of inter-
“section of these tangents.

8. Same problem, when one replaces the perpendicular
lines by lines parallel to the conjugate axes of any other
given ellipse.
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9. An angle of constant magnitude revolves about its
vertex situated on a given curve of the second degree; at the
points in which the sides of the angle meet the curve again,
tangents are drawn to the curve. Find the locus of the point
of intersection of these tangents.

10. Find the locus of the center of an equilateral triangle
formed by three tangents or by three normals to a parabola.

11. The arca of a triangle whose vertices are the points of
contact of three tangents to a parabola is twice the area of the
triangle formed by these tangents, and is represented by the
expression

1
+ @(y' —y"NE" =y =)

where ¥', »", y"" represent the perpendiculars dropped from
the vertices of the triangle to the axis.

12. An arbitrary tangent is drawn to a hyperbola, and the
points in which the tangent meet the asymptotes are respec-
tively joined to two fixed points; find the locus of the point
of intersections of the two straight lines.

13. Draw to a parabola a normal so that the area comprised
between this normal and the curve has a minimum value.



CHAP. VIIL FOCI AND DIRECTRICES. L 285

CHAPTER VII

FPOCI AND DIRECTRICES.

215. The discussion is begun by proposing the following
question: Given a point /7 and a straight line DE (Fig. 120),
find the locus of a point whose distances
from a given point and a given straight line
are in a constant ratio. P

Draw in the plane any system of rec-
tangular axes; call « and 8 the co-ordinates 2
of the point 7, and let ma 4+ ny + h =0 be 5
the equation of the line DE; the distances
of any point M of the plane from the point
F and from the line DE are given by the
formulas

E

Fig. 120.

+ (max+ny+h)
e ———

MFP=(z—a’ + @ — B)5, MP= e

if the constant ratio ]71 ﬁi be designated by k, the locus will
have the equation
k(mx + ny 4+ )
— N2 )V 2 Tk S L 4
Ve—a)?+ @ —pF== Vi
KX (mx 4 ny + h)?
. — )2 B =N T,
or (CL a) +(y | B) - 7,).1/2_*__77/2

This locus is a curve of the second degree. The quantity
AC — B which serves to distinguish the species of the curve,
being equal to 1 — k7 the curve is an ellipse, a parabola, or a
hyperbola, according as the ratio % is less, equal to, or greater
than unity.

Conversely, given a curve of the second degree one proposes
to seek if there exist in the plane of the curve a fixed point #'
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and a fixed straight line DE, such that the ratio of the dis-
tances of each of the points of the eurve from the point ¥ and
the line DE is constant. If one find a point and a straight
line enjoying this property, the point will be called the focus
of the curve, and the straight line the directriz.

The axes of co-ordinates being arbitrary and inclosing an
angle 6, suppose that one has found a point #' whose co-ordi-
nates are « and 3, and a straight line DE whose equation is
MF

me + ny + k=0, such that the ratio is equal to a constant

quantity %; since the distance MP of a point M of the curve
whose co-ordinates are x and y from the directrix DE is repre-
sented by the expression

+ (ma +ny + k)sin
Vmi+ 7 — Zmncos b

one will have
k(ma 4+ ny + k) sin 0
Vm? 4 12 — 2 mn eos 6

MF =+

Thus the distance of any point M of the curve from the focus
F is expressed as an integral function of the co-ordinates x and
y of the point M and is of the first degree.

Conversely, if a point F enjoy the property that its distance
from any point M of the curve is expressed by an integral
function of the first degree in the co-ordinates « and y of the
point M, this point F is the focus; that is, that there exists a
straight line DE such that the ratio of the distances of each
of the points of the curve from the point F and the line DE is
constant. In fact, assume that one has

FM = + (mx + ny + k),

where ma + ny + L represents an integral function of the first
degree in the co-ordinates x and y of the point M. Consider
the straight line DE which has the equation

mx +ny + b= 0;
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the distance of the point M from this line is given by the
formula
UP__;t(mx +ny + ) sin )
Vi n? — 2mncos’

one has therefore
MF _ Vm? 4 n?— 2 mncosf
MP sin 0

Thus the ratio of the distances of each of the points of the
curve from the fixed point F and the fixed line DE is constant;
the point F' is therefore a focus and the line DE the cor-
responding directrix of the curve. Representing the value of
this constant ratio by %, one has

% sin § =/m? + 72 — 2 mn cos 6.

216. Therefore the following definition can be substituted
for the first. The focus is a point such that its distance from
any point of the curve can be expressed by an integral function
of the first degree in the variable co-ordinates of a point of the
curve. It is clear, moreover, that this algebraic definition is
independent of the position of the co-ordinate axes in the plane,
because an integral function of the first degree preserves its
character in case the axes are changed. The equation of the
directrix is found by equating this function to zero.

If the y-axis be taken parallel to the directrix, the z-axis
being arbitrary, the equation of the directrix will take the form
ma 4+ h =0, the coefficient n will be zero and the distance
of the focus from any point M of the same will be expressed

by an integral function + (ma+ &) of the first degree in the
abscissa « of the point M.

From what precedes it follows that the investigation of the
focus and the directrix of curves of the second degree is
reduced to the determination of a point ¥, such that its
distance from any point M of the curve is expressed by an
integral function of the first degree in the co-ordinates  and ¥
of the point M. Suppose that the axes are rectangular, and let

@ As? 4 Bxy + Cy¥* +2Dx+2Ey+ F=0
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be the equation of the given curve of the second degree. Call
« and B the co-ordinates of the focus sought; then will the
co-ordinates of every point of the curve satisfy the equation

V(e —a) + (y— B =% (mx + nx + ),
or (2) (@ —a)*+ (y — B)* — (mx + ny + k)*=0.

Equations (1) and (2), representing at the same time the same
curve, are identical, hence the coefficient of corresponding
terms must be proportional; one will have, therefore, to de-
termine the five unknown quantities «, 8, m, n, h, the five
equations

3) 1 —m? _—mn_1— n? _- (e + mhk)
A B C D
_ —(B+nk) a4 pT—1?
= = =—7% .

In order to simplify the calculation, one considers separately
the three curves of the second degree, referred to systems of
rectangular axes which have served to simplify their equa-
tions. Later will be given another method for finding the
foeci, especially useful for finding the geometrical loci of the
foci.

Foct AND DIRECTRICES OF THE ELLIPSE.
217. Let . ’
4 Ty¥ _1=0
S u“’+b"

be the equation of the given ellipse referred to its axes. This
equation does not have any term in ay; it is necessary there-
fore that the coefficient — 2mn of the corresponding term in
equation (2) be zero, whence it follows that one has either
n=0,orm="0. Suppose that n=0; since the terms of the
first degree are also zero, one will have « +mh =0, =0,
and equations (3) reduce to

a*(l—m?) =0= 1" — o
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2 2
a” —
Whence one deduces m? =

; since m can always be sup-

posed positive, without changing the signs of the coefficients
2 2

V=V 1f in the
a

equation @?(1 —m?) =n?—«* L be replaced by its value de-

duced from the equation « -+ mh=0, one gets «®=a®—101%

whence ¢ = +Vaf— b, h=Fa.

Thus are obtained the two foci F' and F' (Fig. 121), situated
on the major axis at equal distances from the center. In order
to determine them, one describes with a radius equal to a about
the extremity B of the

m, n, b in equation (2), one takes m =

minor axis as center, a F ”l
e - : P
circle; the Pmpts F and > B 7,?\\
F" where this circle inter- P s

. . Y, N
sects the major axis, are N AN

the foci. If, for brevity, ~o| 2 #~<_0] _- “F JL P X
one put a?—0*=¢’% one i

c r
has a= j:c,m:(;, B

I = F a; the upper signs

correspond to the focus F, the lower signs to the focus F".

One knows that the equation of the directrix is found by

equating to zero the polynomial mx 4+ ny + k; this equation
2

reduces to %w Fa=0, or x=4+ %- Thus are obtained the
2

. . . . L %
two directrices; the directrix whose equation is @=- corre-

sponds to the focus F, and the directrix whose equation is
2

a . g
v=—— corresponds to the focus F'. These directrices are

perpendicular to the major axis and at equal distances from
the center; the determination of the point D depends upon a
third proportional; one constructs it in the following manner:
describe on the major axis as diameter a circle, draw through
the focus ¥ a perpendicular to this axis and, at the point N
where this perpendicular meets the circle, draw a tangent to
the circle; the point in which this tangent intersects the major
axis is the point D.
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It has also been seen that the constant ratio of the distances
of each of the points of the curve from the focus and from the
corresponding directrix is equal to vm?+ 7’ in rectangular

. c 2. ® g
co-ordinates; one has therefore & =m =-. The ratio — is
a a

called e, the eccentricity of the ellipse.

218. Suppose now m = 0; the coefficients of the first degree
should be zero; one will have « =0, 8+ nh =0, and equations
(3) reduce to

?=01—n")=n— B

Whence may be deduced
2
n=_Vbb—“2, B=+VI— h=Fb.

In order to obtain these new solutions, it suffices to permute
in the first solutions the letters @ and b, m and =, « and B.
Since a has been supposed greater that b, these two solutions
are imaginary. Thus one can assign to the constants four
systems of values which render equations (2) and (4) iden-
tical; but two only of these systems of values which give the
foci and the directrices are real.

219. TueoreM I.— The sum of the distances of each of the
points of an ellipse from the foci is constont.
The distance of a focus from any point M of the-curve is

expressed by + (mx + ny 4 h), that is +(a — ﬁ); the sign is
a

so chosen that the quantity will be positive. The abscissas «
and « of the focus, and of a point of the ellipse being less
than @ in absolute value, and, consequently, the quantity
within the parentheses is positive for every point of the
ellipse; it will be necessary, therefore, to give the parentheses
the sign +, and one will have

MF =q —ex, MF' = a+ex;

whence it follows
MF + MF'=2a.
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220. CorOLLARY 1.— The sum of the distances of « point
within the ellipse from the foci is less than the major axis; the
sum of the distances of « point without is greater than the major
axis.

Consider first the point N (Fig. 122), situated within the
ellipse, join this point to the two foci, and prolong the straight
line F'NV till it intersects the ellipse in M. Since the point
2 belongs to the ellipse, the sum of the two radii vectors
MF + MF' is equal to the major axes AA'; but the straight
line NF is shorter than the broken line NM + MF; by adding
to each of these expressions the same length F', it follows
that the path F'N + NI is shorter than F'M + MF, that is,
less than AA'. Consider next a point P situated without the
ellipse; the line P intersects the ellipse at a point M. The
broken line MP + PF is greater than the straight line M7#; on
adding to both the same length F'}M, one sees that the path
F'P + PF is greater than I"M 4 MF,

that is, greater than AA'. It is clear i
that the converse propositions are true. x
If the sum of the distances of a point ]

of the plane from the two foci be less
than the major axis, this point will lie
within the ellipse. If the sum be greater
than the major axis, the point will lie
without. Whenece it follows that one can consider the ellipse
as the locus of the points of which the sum of the distances
from the two foci is equal to 2a. Thus is the ellipse con-
structed in elementary geometry, and it is on this property
that the construetion of the ellipse by points depends, or on a
continuous motion, of which mention has been made at the
beginning (§ 11).

Fig. 122,

221. CoroLLARry II.—The ellipse in the locus of points equally
distant from the focus F and the circle described about the other
focus F' as center with a radius equal to the major axis. If the
foci be joined to any point M of the ellipse with straight lines
(Fig. 123), and if the radius vector F"M be prolonged till MH

is equal to MF, one obtains a constant length F'H equal to the
Q
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major axis; the locus of the point I is therefore the cireum-
ference described about the focus F' as center with the major
axis as radius. The portion MH of the radius being the shortest
path from the point M to the circumference, the point M of the
ellipse is equally distant from the focus /" and the circumfer-
ence. The name director circle has been given to this circle.

Fig. 123,

222, Turorem 1I. — A tangent to the ellipse makes equal
angles with the radii vectores, which are drawn from the point
of contact to the foci.

Take two points M and M’ (Fig. 124) on the ellipse; about
the focus F as center, with FM as radius, construct the arc of
a circle which intersects the radius vector FM"™at C; the

length M'C represents the difference

& o

2N of the two radii vectores F.M and F.M/,

207 4 N or the increment which the radius vec-
G

s

tor FM receives when the point M has
been moved to the neighboring point
M'. Similarly, if one describe about
the focus F' as center with the radius
F'M an arc of a circle which intersects
in D the radius vector F'M' produced,
the length M'D will represent the difference of the two radii
vectores F'M and F'M', or the negative increment which the

78\

Fig. 124,
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radius vector F'M receives when the point M has been moved
to the point M'. Thus, when the point M moves to the point
M, the radius vector FM is increased by the increment M'C,
while the other radius vector F'M is diminished by the incre-
ment M'D. Since the sum of the two radii vectores FIM ++ F'M
remains constant, the quantity by which the one is increased is
equal to that by which the other is diminished, and, conse-
quently, the two lengths M'C and M'D are equal.

Draw through the two points M and M' the secant MS;
draw in the two circles previously constructed the two chords
MC and MD. Lay off on the secant MS the arbitrary but
invariable length M@, and through the point ¢ draw GIH
parallel to MC, QX parallel to MD; from the preceding
construction it follows that one has the equal ratios

M'C MM _M'D.
NI MG MK’

since the two lengths M'C and M'D are equal, it follows that
the two lengths M'H and M'K are also equal. Suppose now
that the point M' approaches continu-
ally the point M; the secant MS will
approach a limiting position M7 (Fig.
125), which is a tangent to the ellipse.
The points C and D will at the same
time approach the point M, the chords
MC and MD, prolonged, approach the
tangents to the circles deseribed about
the points ¥ and F' as centers with
FM and F'M as radii, and, consequently, become perpendicular
to the radii M and F'"M; their parallels GH and GK take
also directions perpendicular to the same radii, and, conse-
quently, the angles H and K become right. The limits of the
two triangles M'G'H, M'GK (Fig. 124) are two right-angled
triangles MG I, MG K (Fig. 125); these two triangles, having
the common hypotenuse MG and the sides MH and MK, are
equal, since they are the limits of equal lengths; whence it
- follows that the two angles GMH, GMK are equal. There-
fore the tangent M7 to the ellipse bisects the angle FMAK

Fig. 125.
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formed by the radius vector M F and the prolongation of the
other F'MM.

The vertical angles F"M7" and GMK being equal, one sees
that the tangent 77" makes, with the two radii vectores drawn
from the point of contact, the equal angles FM T, F'M T

223. CoronLARY I.— At the point M

ar (Fig. 126) draw to the tangent 77" a

I perpendicular MN; it will be a normal

to the ellipse. The two angles FMN,

F'MN are equal, since they are the com-

plements of the equal angles FMT,

F'MT'y thus, the normal to the ellipse at

Fig. 126. the point M bisects the angle FMF' formed
by the radii vectores which are drawn from this point to the two

Jfoci.

e

224. Corornary II.— Suppose that a light be placed at the
focus F' (Fig. 127) of an ellipse; the rays of light, emanating
from the point F, are reflected on the

e 7 ellipse, making the angle of reflection
equal to the angle of incidence. Let
1 I'M be one of these rays; draw to the
ellipse at this point the tangent 7'7";
the reflected ray, which makes with M7"
Fig. 127, an angle equal to FIM T, will he reflected

along MF'. Thus the reflected rays will

all be concurrent at the second focus I, where they form a
very brilliant image of the flame placed at the first focus F.
It is on this account that the points F and ¥ are called

Joci.

™

225, Coronrary III. — Conversely, the ellipse is the only
curve which enjoys the property that the radii vectores which
are drawn from the point of contact to the two fixed points I
and ' and make equal angles with the tangent. Seek, in
fact, the equation of the curve in bi-polar co-ordinates (§ 4),
and represent by « and v the radii vectores MF, MF' (Fig.
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124). When the point M of the curve moves to the point M,
the two radii vectores v and v receive the increments,

Au=4+M'C, Av=—M'D,

Av M'D MK
and one has T = 3G ==

When the point M’ approaches indefinitely the point M, the
straight line MM' becomes a tangent and the two angles at
If and K, as has been stated, become right. One supposes,
moreover, the two angles GMH, GMK (Fig. 125) equal to
each other; the two right triangles GM, G MK are therefore

equal; one has MH = MK, and the ratio % approaches a
u

limit equal to —1. If one consider v as a function of w, one
sees that the derivative of this function is equal to —1; on
returning to the primitive function, one has v =—u + C, and,
consequently, u +v = (. Therefore the curve is an ellipse.

226, CoroLLARY LV.— The locus of the projections of the
foci on the tangents to the ellipse is the circle described on the
major axis as a diameter. Prolong the radius vector M
till MH is equal to MF; the tangent
bisecting the angle FMII is perpendic-
ular to the straight line FIH at its mid-
point (Tig. 128); join this point to the
center O of the ellipse. The straight
line OI, which bisects the two sides
FF', FH of the triangle F'I'H, is paral-
lel to the third side F'H, and equal to
its half; the length F'I7 being equal
to the major axis 44/, the distance O is constant and equal
to 0A. Therefore the locus of the point I is the circum-
ference of the circle described about the point O as center,
with 04 as radius.
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227. ProBLEM I.— To draw a tangent to an ellipse at
given point M on the ellipse.

This problem has already been solved, by considering the
ellipse as the projection of a circle. The same questions will
e ) be treated by another method which is

2o--=""."! applicable to the hyperbola and the

"/ parabola.

Prolong the radius vector F'M (Fig.
129) till MH is equal to the other radius
vector MF, and draw through the point
M a straight line 77" perpendicular to
FH; one will have the tangent required.

Because in the isosceles triangle FMH, the line M7, drawn
from the vertex perpendicular to the base FI, bisects the
vertical angle. This line, being the bisector of the angle
FMH formed by one of the radii vectores and the prolongation
of the other, coincides with the tangent to the ellipse.

Fig. 129,

228. REmMARK. — One should notice that all of the points
of the tangent, excepting the point of contact A, lie without
the ellipse. Let P be any point of the tangent; join this
point to the foci and to the point H. The tangent being per-
pendicular to F'II at its mid-point, the distance PF is equal to
PH, and, consequently, the broken line I"P + PF is equal to
the broken line F'P + PIH; but the latter is greater than the
line F'11, which is equal to the major axis of the ellipse, since
the radius vector MF' was prolonged till M/ is equal to MF.
Since the sum of the distances of the point /> from the foci
is greater than the major axis, this point is situated without
the ellipse.

The broken line F'M 4+ MF is the shortest path going from
the point F' to a point on the tangent and then to the point F.

A broken line is said to be convex, in case it is situated on
the same side with respect to each of its sides indefinitely pro-
longed. Similarly, a curve is said to be convex in case it lies
entirely on the same side of every tangent to it indefinitely
produced. Accordingly, it follows that the ellipse is a closed
convex curve.
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229, ProprEM 1I.— To draw to an ellipse a tangent from an
external point P.

Assume that the problem is solved, and let PM (Fig. 130)
be a tangent passing through the point P. If the radius
vector F'M be prolonged till MII is equal to MF, it follows
that the tangent PM is perpen-
dicular to the straight line FH at
its mid-point; it remains there-
fore to determine the point H.
Since the line F'II is equal to the
major axis .AA', the point IT is on
the circumference described about
the focus F' as a center with 4.4’
as a radius. On the other hand,
the distance PH being equal to PF, the point H is on the cir-
cumference described about the point P as a center with PF
as a radius; the point ZI is therefore the intersection of these
two circumferences. The following construction may be in-
ferred from the preceding: Describe about the focus F' as
center, with a radius equal to the major axis, a circle. De-
seribe about the point P as center, with a radius equal to the
distance PI of this point from the other focus, a second circle,
which intersects the first in 7. Join F and H by a straight
line and draw from the point P a perpendicular to FI; the
perpendicular will be the tangent required. The point of con-
tact M will be determined by the intersection of the tangent
with the line F'H. The two circles intersect in a second point
I'; on drawing from the same point Pa perpendicular to FII',
a second tangent PM' will be determined, whose intersection
with the straight line F'H' will be the point of contact M "

These constructions can be accomplished without drawing
the ellipse. It is sufficient that the foci and the major axis
be known.

Fig. 130.

230. ProsrEM I11.— To draw to an ellipse a tangent which
is parallel to a given straight line IL. 4

Assume the problem to be solved, and let ST be a tangent
parallel to KL (Fig. 131). I1f F'M be prolonged till MIH is
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equal to MF, one knows that the tangent is perpendicular to
FH at its mid-point. Whence the following construction can
be inferred: Describe a circle about
the focus F'as center, with a radius
_ equal tothe major axis; draw through

the other focus F a straight line F'H
perpendicular to the given line K1I;
this line will intersect the circum-
ference in a point H; draw ST
perpendicular to FII at its mid-
point; ST will be the tangent re-
quired. The point of contact will
be determined by the intersection
of the tangent with the straight
line F"H. The straight line FH,
prolonged, intersects the circumfer-
ence in a second point /I'; on erecting a perpendicular to FII'
at its mid-point, a second tangent S'7" will be found, whose
point of contact M’ will be determined by the intersection of
F'H' with 7'S'.

Fig. 131.

231. ProsrLEM IV.— An ellipse is defined by its foci and its
major axis. Determine the points of its intersections with a given
straight line MM'.

Let M be one of the points where the given straight line
intersects the ellipse (Fig. 132); connect this point by straight

lines to the two foci, and pro-

long the radius vector F'M till

MII is equal to MF'; the point

H belongs to the director circle
\ described about F” as a center;

i if a cirele be described about
/ M as a center with a radius
equal to MF, this circle will be
tangent to the director circle at

H; on dropping from the focus

F a perpendicular upon this
given line, and prolonging it till the line is double its origi-
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nal length, a second point F is found belonging to this same
circle. The problem is reduced, therefore, to finding the center
M of a circle passing through two given points F' and #} and
tangent to the director circle. For this purpose one constructs
through the two given points F and Fj any circle which inter-
sects the director eircle in two points K and K'; draw from
the point I, the intersection of the two lines FFy and KA, a
tangent to the director circle; the point M, where the line
F'H intersects the given line, will be the point sought.
One has, in fact,

IH? = IK x IK'= IF x IF};

therefore, the circle which passes through the three points
F, F,, H, is tangent to the director circle at H. Since two
tangents can be drawn from the point I to the director circle,
there will be two points M and M".

‘When the point F}, which is the symmetrique of the focus F
with respect to the given straight line, is situated within the
director circle, there are practically two solutions. In case
the point F) is on the circle, the line is tangent to the ellipse.
Finally, when the point F is situated without the circle, the
line does not intersect the ellipse.

Focr AND DIRECTRICES OF THE HYPERBOLA.

232. Since the equation of the hyperbola referred to its
axes is

@ ¥ q_
g g

it is sufficient to replace »* by — &% in the results derived for
the ellipse. One has then the two real solutions

B=0, a=+Va+V¥=xc
and the polynomial of the second degree is the square of the

polynomial of the first degree a—%. The remaining two
solutions are imaginary. @
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The hyperbola has therefore two real foci I7 and F, situated
on the transverse axis and at equal distances from the center
(Fig. 133). They are found by
drawing through the vertex 4 a
straight line AG perpendicular
to the transverse axis, meeting
the asymptote in @, and laying
off on the transverse axis the
lengths OF and OF' equal to OG.

The equation of the directrix

2
is @=%. The directrix DE
o

Fig. 133,

corresponds to the focus F, and
the directrix D'E' to the focus #'. Describe about the point O
as center, with OA4 as radius, an arc of a cirele which inter-
sects the asymptote in the point H; the point belongs to the
directrix. The two triangles OAG, OHF, which have a com-
mon angle O, the sides 04 and OG respectively equal to OH
and OF, are equal, and the angle OHF is right; if a perpen-
dicular 7D be dropped from the point /1 on the transverse
axis 04, one has OH' = OF x OD, and, consequently,

2
OD =%. Thus the line DH is the directrix.
¢

The constant ratio k=vVm?+ »* is equal to f; this is the
a

eccentricity of the hyperbola; it is usually represented by the
letter e. o

233. Turorem III.— The difference of the distances of each
of the points of the hyperbola from the two foci is constant
and equal to the transverse axis.

The distance from a focus to any point M of the curve is

represented by + (a —‘ﬂ) The abscissas ¢ and 2 of the focus
a

and of a point of the hyperbola being in absolute value greater
than a, the second term is greater in absolute value than «. It
is necessary, therefore, to give the — or + sign to the preced-
ing parenthesis, according as this point M is on the right or
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left branch, and as its distance is measured to the one or the
other of the foci. In case of the right branch, one has

MF=—a-+ er, MF'=a + ex;
whence MF — MF=2a.
In case of the left branch
MF =a —ex, MF'=— a — ex;
whence MF — MF'=2a.

234. CoroLLARY I.— The difference of the distances of a
point situated between the two branches of a hyperbola from the
two foci is less than the transverse axis; in case the point is
situated in either of the other two portions of the plane, the differ-
ence is greater than the transverse xis.

Let P be a point situated between the two branches of the
curve (Fig. 134); the straight line
PF meets the hyperbola at the point
M. One has

PF' — PM < MF';

if MF be subtracted from each mem-
ber of the preceding inequality, it
becomes

PF' — PF < MF' — MF;

this last difference is equal to 2« and

therefore the first is less than 2a. Suppose now that P is
situated to the right of the first branch of the hyperbola; the
straight line NF" intersects this branch in 3; one has

NF < NM+ MF,

‘Fig. 134.

and on adding to each member MF",
NF + MF' < NF'+ MF,
whence NF'— NF > MF' — MF.

The second difference being equal to 2a, the first is greater
than 2 a.
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Whence it follows that the hyperbola may be considered as
the locus of the points, such that the difference of their dis-
tances from the two foci is equal to 2a. The construction of
the hyperbola by points or by a continuous motion, given in
the beginning (§ 14), depends upon this property.

235. Corourary II.— The distance of any point M of the
Lyperbola from the focus F' is equal to one of the normals drawn
from this point to the circle de-
scribed about the other focus F' as
center with a radius equal to the
transverse axis. For a point M
of the first branch (Fig. 135), one
has

MF' — MF=2a=F'N,
and, consequently,
Fig. 135, MF=MF —F'N=MN.
For a point ' of the second branch, one has
MF—MF =2a=FN,
and, consequently,
MF=MF 4 FN=MXN.

In the first case, the portion MV of the normal represents
the distance of the point M from the circle, and the first
branch of the hyperbola is the locus of points which are
equally distant from the focus /" and from the director circle.

1

236. T oreEM IV.—A tangent to a hyperbola Ubisects the
angle formed by the radii vectores which are drawn jfrom the
point of contact to the focl.

Let M and M' be two consecutive
points on the hyperbola (Fig. 136).
About the focus F as center describe
with MF as radius the arc of a circle
which intersects the radius vector F.M'
in C; about the focus F' as eenter
describe an arc of a circle with a
radius equal to F'M which intersects
the radius vector F'M' in Dj as the

Fig. 136.
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point M moves to the point M, the two radii vectores receive
the inerements M'C and M'D; since the difference between
the vectores is constant, these two increments are equal to one
another.

Lay off on the secant MM’ an arbitrary length M@, and draw
through the point @, GH parallel to the chord MC and GI
parallel to the chord MD. TFrom this construction, it follows

M'C_ M'M_M'D,

MH MG MK’
since the two lengths M'C and M'D are equal, it follows that
the two lengths M'II and M'K are also equal. When the
point M approaches indefinitely the point M, the secant MM’
approaches a limiting position and becomes the tangent to the
hyperbola at the point M; at the same time, the chords MC
and MD become tangents to the circles deseribed about the foci
as centers and, consequently, perpendicular to FM and F'M;
the lines GH and GK, which are parallel to the chords, become
also perpendicular to these same radii vectores, and the angles
H and IC become right angles. The two triangles M'GII,
M'GK, which have a common side M'G and a side M'JI equal
to M'IK, become therefore right-angled, consequently equal to
each other; whence it follows that the angles GM'H, GM'IK
become equal; thus the tangent to the hyperbola at the point
M is the bisector of the angle FMF".

237. CorontArY I. — The hyperbola is the only eurve which
possesses this property; because on calling the radii vectores
u and v, and their increments Au and Aw, one has

Av_M'D MK

aw MO M'H
If it be supposed that the angles GM'H, GM'I become equal
when the point M' approaches indefinitely the point A, the two
triangles GM'H, GM'K become equal and also the sides M'Il
and M'I{; whence

lirn a2 =
Au

On returning to the primitive function, one has
v=1u+ C, whence v —u=C.
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238. CororLrLARY II.— Adn ellipse and a confocal hyperbola
intersect at right angles.

Two curves of the second degree are said to be confocal when
their foci coincide; the angle at which two curves intersect is
the angle formed by their tangents at the point of intersection.
Let M be the point of intersection of
an ellipse and a hyperbola which has
the same foei F, F' (Fig. 137); the
bisector M N of the angle FMF" is, on
the one hand, perpendicular to the
ellipse, on the other, tangent to the
hyperbola; therefore the tangents
MT, MN to the curves are perpen-
dicular to each other.

Fig. 137.

239. ProvrLEM V.— To draw a tangent to a hyperbola at a
given point M of the hyperbola.

Take on the radius vector MF' a length MH equal to the
other radius vector MF, and draw through the point M a line
MP perpendicular to F/H ; one has the
tangent required (Iig. 138).

RemArk. — It should be noticed that
the tangent is wholly situated between
the two branches of the hyperbola.
Let P be any point of this tangent;
one has

PP — PH<FH, "'
and, consequently,
Fig. 138. PF' — PF<2a;

therefore the point P lies between the two branches of the
hyperbola. One branch of the hyperbola, lying always on the
same side of any tangent to it, is a convex curve when viewed
from any point of said tangents.

The tangent being perpendicular to FJI at its mid-point 7,
the point I is the projection of the focus I7 on the tangent.
The straight line OI, which is parallel to F'/I and equal to the
half of F'H, is constant; whence it follows that the locus of
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the projections of the foci on the tangents is the circle
described on the transverse axis as diameter.

240. ProsrEM VI.— To draw a tangent to a hyperbola from
any point P situated between its branches.

Tet PM be a tangent passing through the point P (Fig. 139).

1f MH = MF be subtracted from the radius vector MF", one
knows that the tangent
PM is perpendicular to
FH at its mid-point. The
problem is reduced to de-
termining the position of
the point I7; this point
will be the intersection of
the circle deseribed about
the focus F" as center, with
a radius equal to 2a, and
the cirele described about
the point P as center, with Fig. 139,
a radius equal to PF. The tangent will be formed by drawing
from the point P a perpendicular to FII, and the point of
contact M will be determined by prolonging the radius vector
F'II. These two circles intersect in a second point H'; a
second tangent will be found by drawing a line through 2 per-
pendicular to FH'; the point of contact of the tangent will be
determined by the prolongation of the straight line F"H'".

In case the point P is on one of the asymptotes, one of the
tangents drawn from P coincides with this asymptote, and
the point of contact is removed to infinity.

241. Prosrem VIL.—To draw to a hyperbola o tangent
which is parallel to a given straight line OL.

One constructs about the focus F' as center, with a radius
equal to 2 a, the director circle, and draws from the focus ¥ a
straight line perpendicular to OZ (Fig. 140); this straight line
intersects the circle in two points H and H'; straight lines
are drawn through the mid-points of the lines FH and FH'
parallel to OL; these parallels will be the tangents required.
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The points of contact M and M’ are determined by the lines
F'H, F'II".

In order that the problem be
possible, it is necessary that the
given straight line, which can be
assumed to be drawn through
the center, does not intersect the
hyperbola; for, then the perpen-
dicular F"H' drawn from the focus
Fwill intersect the director cirele
in two points.

242. ProsrLEM VIII.—To find the points of intersection of
a straight line and of a hyperbola defined by its foci and its
transverse axis.

The construction is precisely the same as for the ellipse.

THE Focus oF THE PARABOLA.

243. The equation of the parabola, referred to its axis and
to the tangent at the vertex, is

P—2pr=0.

Since this equation contains neither a term in 2y nor one in a?
one should have, according to the general relations of § 216,
mn=0,1 — m?=0; whence n=0, m=1. Because the coeflicient
of the term in 7 and the constant term are also zero, one has
B =0, «*—1*=0. Moreover, equations (3) of § 216 reduce to

1=+ h; that is, « +h =p. The equation «*—A*=0 or
p

(¢ + h)(e — k)= 0 becomes p(e— k)=0, that is, « —h=0;

whence it follows that ¢« =h = g

4

Here one has a single solution. Thus the parabola possesses
a single focus situated on its axis at a distance from its ver-
tex A equal to the half of its parameter (Fig. 141). The
polynomial of the second degree being the square of the
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poiynomial of the first degree o + f—, the dis-
tance FIM is equal to m—}—g To the focus

corresponds the directrix DE, whose equation
1.
—
the axis at a distance AD, equal to AF, from
the vertex.
* The constant ratio I =+/m? 4 n* reduces in Fig. 141.
this case to unity; whence it follows that
every point of the parabola is equally distant from the focus
and the directrix.

the directrix is perpendicular to

244, TuroreM V.— The distance of any point within the
parabola from the focus is less than its distance from the direc-
triz; on the contrary, the distance of every point without from
the directrix is less than its distance from the focus.

Consider accordingly a point N which lies within the parab-
ola; draw a perpendicular from this point to the directrix,
and connect it with a straight line to the focus. The perpen-
dicular intersects the curve in a point M which is joined to
the focus. Since the point M belongs to the parabola, the
distances ME and MF are equal. But the straight line NF
is shorter than the broken line NM + MF; if MF be replaced
by its equal ME, it follows that the distance NF is less than
NE. Thus the internal point IV is nearer to the focus than to
the directrix. Consider next an external point P situated
between the curve and the directrix. Connect it with the
focus and draw to the directrix a perpendicular PE which is
prolonged till it intersects the curve in M. Since the point
M belongs to the parabola, the distances MF and ME are
equal; the straight line MF, or its equal ME, is shorter than
the broken line MP + PF; if MP be subtracted from each
member of the inequality, it follows that PE is shorter than
PF. In case the point P lies to the left of the directrix, it is
evidently nearer to the directrix than to the focus.

Tt follows from the preceding discussion that the parabola
may be regarded as the locus of points, each of which is

R
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equally distant from the focus and the directrix. Tt is in this
manner that the parabola is defined in elementary geometry,
and it is by means of this property that the parabola is con-
structed point by point, or by a continuous motion. as has
already been described (§ 16).

245. TuroreM VI.— The tangent to a parabola makes equal
angles with the diameter and focal vector drawn from the point
of contact.

Take on the parabola two consecutive points M and M’
(Fig. 142), which we join to the focus and from which we
drop perpendiculars ME and M'E' upon the
directrix. Construct an are MC of a circle,
about the focus F as a center, with a radius
FM, and draw from M, M (" parallel to the
directrix. The length M'C is the difference
of the two radii vectores F'M' and FM; it is
the increment which the radius vector F3/
receives when the point M moves to M’
Similarly, the length M'C' is the difference
of the two perpendiculars M'E', M E; it is
the increment which the perpendicular ME
receives when the point M is removed to M'  Since the radius
vector MF is always equal to the perpendicular ME, it follows
that the two increments M'C and M'C" are equal.

Draw through the points M and M' the secant ALS and con-
struct the chord MC' in the circle described about the focus as
center. Take on the secant MS an arbitrary length MG, and
draw through the point ¢, G H parallel to MC, and GX par-
allel to MC". On account of these parallels, one has the equal

ratios :E:g: j:;:‘g: 37‘1[,’]6‘:’, since the two lengths M'C, M'C'
are equal, the two lengths M'IT and M'K, which are propor-
tional to them, are also equal.

Suppose now that the point M’ approaches indefinitely the
point M ; the secant S will approach a limiting position and
be tangent to the parabola; the chord MC prolonged will, in a
similar manner, approach a limiting position and be tangent

Fig. 142.
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to the circle, and consequently become perpendicular to the
radius FM; the parallel GAH takes also a direction perpen-
dicular to FM. Whence it follows that 0
the two triangles M'GH, M'GI have
as limits the two right-angled triangles
MQII, MGK (Fig. 143); these two right
~triangles, having the common hypotenuse
M@, and the two sides MH and MK
equal to each other since they are the
limits of equal lengths, are equal; hence
the two angles GMA and GMII are
equal. Therefore the tangent M7 to the
parabola bisects the angle FME, formed
by the radius vector and the perpendicular dropped from the
point of contact to the directrix. If EM be prolonged, the
two vertical angles GMA and 7"ML will be equal and, conse-
quently, the two angles FMT, T'"ML, formed by the tangent
with a line parallel to the axis and the radius vector F.J, are
equal.

Fig. 143.

246. CoroLLARY I.— Suppose that a light be placed at the
focus F' (Fig. 144) of the parabola; the rays of light, emanat-
ing from the focus F, are reflected on meeting the parabola,
making the angle of reflection equal to the
angle of incidence. Let FM be one of the
rays; draw at the point M a tangent to
the parabola; the reflected ray, making the
angle LMT' equal to the angle FMT, will be
parallel to the axis AB of the parabola. Simi-
larly, every reflected ray will be parallel to
the axis.

It is by means of this property of the
parabola that the reflectors used in reflector
telescopes and coach lamps are constructed.
The interior surface, of well-polished metal, is produced by a
parabola revolving about its axis; a light is placed at the
focus; the luminous rays, after reflection, all become parallel
to the axis; the reflector projects a pencil of parallel rays

Fig. 144.
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which are propagated without dispersing, and which light,
therefore, at the greatest distance.

CorornAry IL.—Suppose that luminous rays, parallel to
the axis, fall upon a parabolic mirror; after reflection, they
will all converge to the focus.

Parabolic mirrors are used in the construction of telescopes.
The axis is directed toward the star; the luminous rays coming
from the star are reflected on the mirror, and form at the focus
a very brilliant image of the star.

The parabolic form is used in the construction of speaking-
trumpets and certain acoustical instruments.

247. Corornary IIL — Conversely, the parabola is the only
curve which enjoys this property that the tangent at any point
of the curve makes equal angles with the radius vector drawn
from a fixed point to the point of contact, and with a straight
line drawn from the point of contact parallel to a fixed straight
line. Imagine that any point M of the plane be determined by
its distance MF' from a fixed point F, and its distance ME
from a straight line DE perpendicular to the fixed straight
line F'B (Fig. 142); represent these two co-ordinates by « and
v (§ 17). As any point M of the curve is moved to a neigh-
boring point M, these two eo-ordinates receive the increments

Au=M'C, Av=M'C',
h bl i Ay

and one has A" MCT MH g

As the point M approaches indefinitely the point M, the
straight line M’ becomes tangent and the angle at /1 becomes
a right angle. The two triangles GMI, GMI are at the
limit right-angled and equal (Fig. 143), since they have a
common hypotenuse and the angle G'MII equal to GML by
hypothesis. Therefore one has

. Av
lim AT 1,

and returning to the primitive function v =w+ C.  On remov-
ing the line DE a distance equal to the constant C, it follows
that v = u.
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248. Proprey IX.— 7o draw a tangent at a given point of
parabola.

First Mernop. — Let 7' (Fig. 145) be the point in which
the tangent prolonged intersects the axis, ME the perpen-
dicular drawn from the point M to the directrix. It is known
that the tangent bisects the angle FME; the angle FTM being
equal to the alternate interior angle TME, and, consequently,
to the angle FMT, it follows that the
triangle TFM is isosceles, and the two
sides FM, FT are equal. Hence, in order
to construct the tangent at the point M,
it is sufficient to lay off on the axis a
length FT equal to the radius vector FM,
and draw 7M. This method is not prac-
tical in case the point M is very near the
vertex A of the parabola; for then the
two points M and 7, being very near to Fig. 145.
each other, do not determine the tangent with sufficient
precision. For this particular case the following method is
used.

Spcoxp Mermop. — The tangent M7 bisects the angle at
the vertex M of the isosceles triangle F.ME, and is perpen-
dicular to the base FE at its mid-point. Thus, in order to
construct the tangent a perpendicular ME is drawn from the
point M to the directrix, and a second perpendicular is drawn
from the point M to the straight line FE.

It follows from this construction that the tangent at the
vertex A of the parabola is perpendicular to the axis of the
parabola.

Remark. — Every point of the tangent, excepting the point
of contact M, lies without the parabola. Let I’ be any point
of the tangent; it is perpendicular to FE at its mid-point;
therefore, the distances PE, PF are equal; but the oblique
line PE is greater than the perpendicular P therefore, the
distance PF is greater than PXK, and, consequently, the point P
is without the parabola. Whence it follows that the parabola
is a convex curve when viewed from any point on a tangent.
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249. CororrAry. — The locus of the projections of the focus
upon tangents to the parabola is the tangent at the wvertex.

In fact, it is seen that the point Z, mid-point of FE, and the
projection of the focus upon the tangent, lie on a parallel to
the directrix drawn through the point 4, the mid-point of FD,
that is, on the tangent at the vertex 4.

250. ProsrLEM X.— To draw « tangent from an ewxternal
point P to a parabola.

Assume that the problem is solved, and let PM (Fig. 146)
be a tangent passing through the point P. If a perpendicular
ME be drawn from the point M to the directrix, and the
points E and F be joined, it follows that
the tangent P/ is perpendicular to FE at
its mid-point; whence it follows that the
distance PE is equal to PF, and one has
the construction required: a circle is
described about P as a center, having a
radius equal to the distance PF of this
point from the focus and intersecting the
directrix in the point £. Join the points

Fig. 115, I’ and E, and draw from P a perpendicular
to F'E; it will be the tangent required. The point of contact
M is determined by the intersection of the tangent with the
line drawn through the point F parallel to the axis,

The circle intersects the directrix in a second point E'. In
a similar manner a perpendicular is drawn from the point P to
FE', and a second tangent is constructed.

These constructions can be accomplished without tracing the
parabola. It is only necessary that the focus and directrix be
known.

251. ProsreEmM XI.— To draw to a parabola a tangent which
is parallel to a given straight line K L.

Assume that the problem is solved, and let M7 be the
tangent required. If a perpendicular ME be drawn from
the point of contact to the directrix, and the points K and F
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be joined, then the tangent is perpendicular to FE at its
mid-point.

Whence the following construction is
deducible: Draw through the focus F a
straight line perpendicular to the given
line KL, and produce it till it meets the
directrix in E, and at the mid-point of FE
erect a perpendicular 7'M, which will be
the tangent required. The point of con-
tact M will be determined by drawing
through the point E the line ME parallel
to the axis. Fig. 147.

252. PropreM XII.— To find the point of intersection of @
given straight line and of a parabola defined by its focus and
directrizx.

" Let the point 7} be a point which is symmetrical to the focus
with respect to the given line (Fig. 148).
The point M, being equally distant from the
points F, Fy, and the directrix, is the center
of a circle passing through these two points
and tangent to the directrix. In order to
determine the point of contact K, one lays
off on the directrix, beginning at the point I
in which the straight line F\F intersects the
directrix, to the one side or to the other, a
length IE which is a mean proportional
between the two lengths IF, IF; thus are et
the two points of intersection M and M’ determined.

“In case the point Fj, the symmetrique of the focus with
respect to the given line, is situated to the right of the directrix,
there are two solutions. When the point F; is on the directrix,
the line is tangent to the parabola. Finally, when the point
I, lies to the left of the directrix, the straight line cannot
intersect the parabola.
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253. Tueorem VIL — The limiting case of an ellipse or of a
liyperbola whose parameter remains finite, while the major or
minor axis increases indefinitely, is a parabola.

The ordinate at the focus in
the parabola is equal to the
parameter p; by analogy, the
ordinate at the focus in the
ellipse and the hyperbola is
called the parameter; itis equal

to 2 and is represented by p.

a
The ellipse, referred to its
major axis and to the tangent
at the left vertex (Fig. 149),
has an equation of the form

20 »?
Y="—z—=2% or = 2px —La2
; a @

Assume now that the vertex remains fixed, and the parameter
p remains finite, while the major axis 2« is allowed to increase
indefinitely ; the equation of the ellipse is reduced to the equa-
tion »*=2px, which represents a parabola. If the points,
which correspond to the same value of z, be considered, one
sees that each point of the parabola is the limiting position
toward which the corresponding point of the ellipse tends when
a is increased indefinitely ; it is this that is implied in saying
that the parabola is the limit of the ellipse.

The equation of the hyperbola, referred to its major axis and
to the tangent at the vertex A, is

if a be allowed to increase indefinitely, the parameter p remain-
ing finite, this equation will also reduce to

¥t = 2pux.
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The parabola is the limit of the branch of the hyperbola to
which the vertex A belongs; the other branch is removed
indefinitely toward the left.

In the preceding discussion we have supposed that the
parameter of the ellipse or the hyperbola remains finite. The
same conclusion is reached, on supposing that the distance AF
of the vertex 4 from the neighboring focus F remains finite.
In fact, on calling « this distance, one has, for the ellipse,

2 2 __ p2 —
p:b_z:a C=(a C)(a+0)=a<2_g>;
a a a a

since the parameter p has as limit the finite quantity 2 «, the
equation of the ellipse reduces to y* =4 ex. The same will be
the case for the hyperbola.

254. Remark. — This transformation of the ellipse into the
parabola is important. It allows the deductions of the proper-
ties of the parabola from those of the ellipse as particular cases.
Thus, in the ellipse, the diameter, or the locus of a system of
parallel chords, is a straight line passing through the center;
if it be supposed that the center is removed to infinity, the
ellipse is transformed into the parabola, and the diameters
become parallel to the axis. The ellipse is the locus of points
equally distant from the focus # and from the director circle
described about the focus F” as center (§ 221). If the focus F”
be removed to infinity, the director circle becomes the directrix
of the parabola.

The tangent to the ellipse makes equal angles with the radii
vectores drawn from the point of contact to the foei (§ 222);
if the focus ¥' be removed to infinity, the radius vector MF
becomes parallel to the axis.

255. TuroreMm VIIL. — If two tangents be drawn to a curve
of the second deqree, the straight line FP, which is drawn from
the focus F' to the point of intersection I’ of the two tangents, is
the bisector of the angle formed by the radii vectores FM, FM',
drawn from F to the points of contact of the tangents, or the
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external angle, according as the two tangents touch the same
branch of the curve or two different branches.

Consider two tangents PM, PM' of an ellipse (Fig. 150);
prolong the radius vector F'J till
MH is equal to MF, and similarly
FM' till M'H' is equal to M'F';
the tangents being perpendicular at
the mid-points of FII and F'I', it
follows that

PH=PF, PH = PF',

Fig. 150. and the two triangles F'PH, I'PF
are equal, since the three sides of
the one are equal each to each to the three sides of the other,

namely,
F'H=F['=2qa, PI=PF, PF"=PH';

whence it follows that the angles PIIM, PI'M' are equal. But
the angle PHDJ is equal to the angle PFM, therefore the
angles PI'M, PFM' are equal and the straight line F'P is the
bisector of the angle MF".

The same discussion holds in case the locus is a hyperbola,
when the two tangents touch the same branch; but in case
the tangents touch two different branches, the line P’ is the
bisector of the angle formed by one of the radii vectores FM
and the prolongation of the other. e

Consider, finally, the case when the curve is a parabola (Fig.
151). From the points of contact draw the perpendiculars
MH, M'IT' to the directrix; since the tangents are perpen-
dicular to FII and FII' at their mid-points, the angles PI'M,
PFM' are equal respectively to the angles PHM, PII'M'. The
straight lines PII and PII', being each equal to the straight
line PF, are equal to each other, and the triangle HPII' is
isosceles. The angles PHM, PH'M', complements of the
equal angles of the isosceles triangle, are equal to each other;
therefore the angles PFM, PFM' are equal. This result may
otherwise be obtained immediately on regarding the parabola
as the limiting case of an ellipse.
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256. TueorEM IX. — Tangents drawn from an exterior point
P to an ellipse or a hyperbola, make equal angles with the straight
lines drawn from this point to the foct.

In the two equal triangles F'PH, H'PF (Fig. 150), one has
the two equal angles F'PH, H'PF; on subtracting the com-
mon part F'PF, one has FPII = F'PH', and, on taking half
of the remainders, one obtains FPM = F'PM'.

The same property belongs to the parabola, considered as
the limiting case of an ellipse; it suffices to replace the radius
vector PI' by a straight line PI
parallel to the axis (Fig. 151). Itis
easy, moreover, to demonstrate this
property directly. If about the point /
P as a center, a circle be described !
with a radius equal to PF, this circle
will pass through the points II and
H'; the angles MPI, FHII' are equal,
since their sides are respectively per-
pendicular; but the inscribed angle
FHH' is the half of the angle F/PH'
at the center, and, consequently,
equal to the angle FPM'; therefore the angles MPI, M'PF
are equal.

Fig. 151.

257. Tueorem X.— The straight line FIL, which joins the
focus of a curve of the second degree with the point in which any
secant intersects the directrix, is the bisector of the external angle
Sformed by the radii vectores emanating from the focus to the
points in whiclh the secant cuts the curve or bisector of the angle
included by the same radil vectores, according as the two points
of intersection, M and M', are situated on the same branch, or
different branches of the curve.

Draw from the points M and M’ perpendiculars to the direc-
trix (Fig. 152); one has
MF _ M'F
ME  ME’
MF _ME _ MK

and, consequently, T ME - WK
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In case the two points 3 and M’ belong to the same branch
of the curve, since the point I lies
on the prolongation of the chord
MM, the straight line 'K is the
“ Dbisector of the external angle of the
triangle MFM'. In case the points
M and M' belong to two different
branches, since the point K is situ-

Fig. 152. ated between the points M and I/,
the straight line F'/V is the bisector of the angle MF M.

258. Tneorem XI. — If tangents be drawn from awy point
P on the directriz to a curve of the second degree, the chord of
contact MM' passes through the cor- '
responding focus F, and is perpendic-
wlar to the straight line F'P which joins
the point P to the focus (Fig. 153).

Let the tangent P} be the limiting
position of a secant of the ellipse
whose points of intersection with the
ellipse are made to coincide; then it
follows from the preceding theorem
that the line FP is perpendicular to FAf; it is for the same
reason perpendicular to FM'; therefore the line MEFM' will be
a straight line perpendicular to FI.

259. Turorem XI1I.— The product of the distances of the
two foci from the tangent of an ellipse or a hyperbola is constant.
Let FII, I'II' be the perpendiculars dropped from the foci
upon a first tangent (Fig. 154), FK, F'K' the perpendiculars
dropped upon a second tangent, I’ the
point of intersection of the two tan-
gents. Then by Theorem IX. it fol-
lows that the right triangles FPII,
F'PK' are similar, so also are the
triangles FPIK, F'PI, and one has
FO _FP_FK
FK'~ PP FH’
Fig. 154 whence FII.FH'=Fk.FK'.

Fig. 153.
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If the curve be an ellipse, in drawing the tangent parallel to
the major axis, it follows that the constant product is equal
to b When the curve is a hyperbola, if the asymptotes be
regarded as the limiting position of tangents, one sees also
that the product is equal to b

260. ProsLEM XIII.— 70 construct a curve of the second
degree, given the focus F and three points 4, B, C.

Assume that the problem is solved and that the three points
belong to the same branch; the point D, where the secant AB
is met by the bisector of the exterior angle of the triangle
AFB, is on the directrix (§ 257); the
secant BC will determine in a simi-
lar manner a second point D' on the
divectrix. The focus F, the direc-
trix DD', and the point A define a
curve of the second degree and one
only; it will be an ellipse, a parab-
ola, or a hyperbola, according as
the distance AI" is less, equal to, or
greater than the distance AE of the point 4 from the direc-
trix. It is easily seen that this curve passes through the two
points B and C; for, on account of the bisector FD, one has

AF _AD_AE
BF BD BE'

and, consequently, % = %;

therefore the curve passes through the point B. It can be
shown in a similar manner that the curve passes through C.
This gives one solution.

It is possible that the three points are not on the same
branch; if, for example, the two points, 4 and B, are on the
same branch and the point C on the other branch of the
hyperbola, the bisectors of the angles AFC, BF'C will deter-
mine two points on the directrix. The three solutions found
in this manner are hyperbolas. One has therefore, in all, four
solutions; of these four curves of the second degree to which
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the given focus belongs and on which the three given points
lie, three are always hyperbolas, the fourth is an ellipse, a
hyperbola, or a parabola depending upon the disposition of the
points.

261. A calculation will lead to the same result; let & and
B be the co-ordinates of the focus, ' and y', " and y", 2"
and y', the co-ordinates of the three given points, §', 8", &',
their distances from the focus; the equation of the curve can
be put under the form

(@ — &) 4 (y — B)2 — (max + ny + k)2 =0,

where mx + ny + h = 0, is the equation of the directrix. One
can determine the three constants m, », & by means of the
three equations of the first degree:

8" =+ (ma' +ny' +0h),
3" =+ (ma" +ny'" + 1),
8”! = :t (7nx”7 + ,ny”Y + ]L).

Each combination of signs furnishes a system of equations;
there are eight combinations; but it is to be noticed that, if
the signs be changed in the three equations, the values of m,
n, h change signs, and the curve is the same; therefore there
are only four solutions.

The distance of a point from a straight line is expressed by
a formula affected with a double sign; the same sign should
be taken for any point lying on one side and the opposite sign
for any point situated on the other side of the line. Oue
knows that the ellipse lies wholly on the same side with re-
spect to each directrix; the parabola is also situated on the
same side of its directrix, but, however, the two directrices
of the hyperbola lie between the two branches of the curve.
When the three points lie on the same branch, their distances
from either directrix have the same sign; in case, however,
two of the points lie on one branch and the third on the other
branch, these distances take different signs.
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262. ProsrEM XIV.— Construct a curve of the second degree,
when one focus and three tangents are given.

Assume that the problem is solved; if perpendiculars be
dropped from the given focus upon the given tangents, and
each prolonged a length equal to itself, three points, I, II’,
H", are determined, belonging to the director circle (Fig. 156)
whose center is at the second focus F';
the radius F'H of this circle is equal to
the axis 2@ which passes through the
two foci. The two foci F, I, along with
the length 2 a, define a curve of the sec-
ond degree, and one only. It is easy
to see that this curve is tangent to the
three given lines, for let M be the
point in which the line F'H intersects
the straight line M7, the sum or the
difference of the radii vectores MF" and Fig. 156.

MF being equal to F'H or to 2a, the

point M belongs to the curve; further, the straight line M7,
being perpendicular to FII at its mid-point, is tangent to the
curve at the point M. The problem has thus one, and one
solution only.

If the three points H, H', H' should lie on the same straight
line, the curve sought would be a parabola having this line for
its directrix.

TrixoMIAL EQuatioNn CoyMMON TO THE THREE CURVES
OF THE SECOND DEGREE.

263. If a point O of a curve of the second degree be taken
for the origin, the diameter meeting the curve in this point
for the z-axis, and the tangent at this point for the y-axis, the
equation of the curve takes the form

yt=2px + ¢’
In fact, let

A+ 28Bay 4 O +2Dx+2Ey+ F=0
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be the equation of the curve referred to the axes mentioned.
Since the curve passes through the origin and is tangent to
the axi h

e axis Oy, one has F=E=0;

since the axis Ox is the diameter conjugate to the chords
parallel to the axis Oy, the equation should contain only the
second power of y, because to each value of x there should
correspond two equal values of y with opposite signs; there-
fore B=0. The coeflicient C is not zero, because if it were,
the conic would reduce to two straight lines parallel to the
axis Oy. Hence one can solve the equation with respect to
»? and obtain an equation of the form given above. The curve
is an ellipse, a hyperbola, or a parabola, according as ¢ is nega-
tive, positive, or zero.

Take, in particular, the point in which the focal axis meets
the curve for the origin, and the direction in which one looks
from this point toward the nearest focus for the positive
direction of the axis Ox. Whence the coeflicients p and ¢ will
have the following values:

1° Ellipse. Oncalling @ and b the axes of the ellipse, one
ought to have y=0 for #=2 @, and 3*=0b* for x=a. Therefore

pa+qa* =0, 2pa+ ga® =10
whence p=—, ¢g=——=——1=e"—1.

2° Hyperbola. One should have y =0 for x=—2a, and
y?=—"0b?for ¢ =— a. Therefore o

—pa+qat=0, —2pa+qit=—10"

C2

12
q=zl—2=—2—1=82—1.

whence p=
@

P
3° Parabola. Here q is equal to zero, and p is the parameter.
In general, therefore, on taking the point in which the

straight line drawn through the foci intensects the curve for

the origin, and the straight line drawn from this point to
the nearest focus for the a-axis, one can put the equation of
the three curves under the form

Y =2pr+ (2 — 1)
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in which p is the parameter and e the eccentricity, which is
greater than unity for the hyperbola, less than unity for the
ellipse, and equal to unity for the parabola.

Tue EQuATIONs OF THE CURVES OF THE SECOND
DEGREE IN PoLAR CO-ORDINATES.

264. A focus I"is chosen as the pole, and the perpendicular
drawn from this focus to the corresponding directrix DE
is taken for the polar axis.

Consider now the ellipse. The ratio of the distances of any
point M of the curve to the
focus and to the directrix

being constant and equal to ¥ .
the eccentricity, one has
UA

ME_ . or MF=ME - .
ME .

The distance FD of the

focus to the directrix is equal Fig. 157.
2

to 2. On projecting the broken line FME (Fig. 157) upon
&

the axis, one has
b?

‘pcosw+ﬂ[E=FD=?, o=/ XFM,

b2

whence ME = S —Ppeose;

on replacing ME by its value

in the preceding equation, one

finds ¥

=P
) P=1tecosw =

j73l
If the curve be a hyperbola
(Fig. 158), the same calculation
is applicable to the branch 4,
whose vertex is nearer the _
focus F' taken for the pole. When the point M' is on the
s :

Fig. 158.
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branch A/, situated on the other side of the directrix, the pro-
jection of the broken line FIM'E gives

pcos o —ME=FD,

which leads to the equation

2 e
@) P=1 " ecosw

Moreover, if the negative radii vectores be constructed in a
sense contrary to the direction indicated by the angle w, it
is easily seen that equation (1) represents the two branches
of the hyperbola. Let M’ be any point of the second branch,
o' the corresponding angle A'FM', p' the radius vector F'M';

-p
1—ccos o
tion (1), the value o' 4= be substituted for the angle , it
will become

owing to equation (2), one has p'= If in equa-

_ p _ '
P=1 "ecosw P
Thus a negative value — p' is obtained for p. But the value
o+ 7 assigned to o indicates the direction FJI opposite to
"M'; if p have a positive value, it will be necessary to measure
it in the direction FM,; p having a negative value — p', one
measures the absolute value p' in the opposite direction; that
is, in the direction FM', which determines the point M’
Whence it follows that equation (1) suffices to represent the
two branches of the hyperbola, the first
by the positive values of p, the second by
the negative values.
Z The calculation given for the ellipse
is applicable to the parabola (Fig. 159);
it suffices to put e =1. It follows there-
fore that equation (1) represents the
three curves of the second degree; the
curve is an ellipse, a parabola, or a
hyperbola according as the eccentricity
e is less, equal to, or greater than unity.

Fig. 159.
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EXERCISES.

1. If P be the point of intersection of the tangents drawn to
a parabola at the points M and M’ and F the focus, prove that

PM:_PM"
MF~ MTF

2. In case of a curve of the second degree, show that the
perpendicular dropped from the focus upon a chord and the
diameter conjugate to this chord intersect on the directrix.

3. A semi-diameter of an ellipse or of a hyperbola is a mean
proportional between the straight lines which join the foci to
the extremity of the diameter conjugate to the first.

4. Show that the distance of any point of an equilateral
hyperbola from its center is a mean proportional between the
distances of this point from the foeci.

5. Find in the plane of an ellipse a circle such that the
length of the tangent drawn from every point of the ellipse to
the circle is a rational, integral function of the first degree in
the co-ordinates of this point.

Prove that the sum or the difference of the tangents drawn
from every point of the ellipse to two circles which enjoy the
preceding property is constant.

6. Find the locus of the vertex of a constant angle which is
cireumscribed about a parabola.

7. A chord is drawn through the focus of a parabola, and a
circle is constructed on this chord as a diameter, then tangents
are drawn to the circle parallel to a given straight line; find
the locus of the points of contact.

8. A constant angle revolves about the focus of a curve of
the second degree; tangents are drawn to the curve at the
points in which the sides of the angle meet this curve; find
the locus of the point of intersection of the tangents.

9. A tangent is drawn to a given ellipse at any point M and
is prolonged till it intersects the tangents at the extremities of
the major axis in P and @; find the point of intersection N of
the straight lines F'P and F@), and of the point of intersection
N' of the straight lines FP and F'Q. Show that the two
points V and N’ are situated on the normal at the point 2
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10. A curve of the second degree is given, and a secant re-
volves about a fixed point P; the focus F is joined to the
points M and M'in which the secant intersects the curve;
PFM PFM!

Q)
- &

tan

show that the product tan is constant.

11. Show that the portion of a tangent comprised between
two fixed tangents to a curve of the second degree subtends
a constant angle whose vertex is at a focus of this curve.

12. Prove that the point of intersection of the altitudes of a
triangle circumscribed about a parabola is on the directrix, and
that the circle circumseribed about the triangle passes through
the focus.

13. If, at any point M of an ellipse, a normal be drawn, the
portion of this normal comprised between the point M and the
minor axis has for its projection on the radii vectores drawn
from the point M to the two foci a length equal to the semi-
major axis.

14. Prove that the portion of the normal comprised between
the point M and the major axis has for its projection on the
radii vectores a length equal to the parameter of the ellipse.

15. Two curves of the second degree have a common focus;
if radii vectores be drawn from this focus to the extremities
of any diameter of one of the curves, the sum or the difference
of the ratios of these radii vectores to the radii vectores of the
second curve, which have the same direction, is constant.

16. If the radii vectores which are drawn from any point M
of an ellipse be prolonged till they intersect the curve at P and
Q, show that the sum %-{—ﬁ{g

17. A mariner’s compass composed of m rays revolves about
its center placed at the focus of an ellipse; show that the
sum of the inverse of the lengths intercepted on each ray be-
tween the focus and the point where it intersects the ellipse, is
constant. i

18. From any point 2 situated in the plane of an ellipse,
tangents are drawn to this ellipse; a perpendicular PC is
dropped from the point P to the chord of contact AB; the
straight lines PC and AB intersect the minor axisin D and E;

is constant.
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show that the circle described on DE as a diameter passes
through the two foei.

19. Being given two confocal ellipses, through a point I’ one
draws to one of them tangents which intersect the second, the
one in A and B, the other in C and D ; demonstrate that

1 1 1 1
PAtPET PO PD

20. A circle is described on the major axis of an ellipse as
a diameter; the ordinate of any point M of the ellipse inter-
sects the circle in a point N; if o be the angle which the
radius vector 73 makes with the major axis, and U the angle
which the radius vector ON of the circle makes with the

major axis, one has the relations

w
p=a(l—ecosu), tan§_ T g

On representing the area of the elliptic sector AFM by S, one
has also
S:%lz(u—e sin w).

21. An equilateral hyperbola confocal to an ellipse inter-
cepts, on the sides of a right angle circumscribed about an
ellipse, two equal chords.

22. If one call R the radius of the circle circumscribed
about a triangle which is inseribed in a parabola, ¢, ¢/, ¢" the
chords drawn from the focus parallel to the sides of the tri-
angle, 6, 6', 8" the angles which the sides of the triangle make
with the axis, one has

Rsing'-sinf"=p, 8pR*=cclc'.

23. Let A be the vertex, F' the focus of a parabola, (p, w),
(p', w') the co-ordinates of two points M and M' of the curve,
6 the angle MFM', S the area of the sector AFM, A that of
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