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PREFACE.

THIS translation has been made with the hope that the

high scientific character of Briot et Bouquet s Legons de

Geometric Analytique may contribute something toward the

improvement of the standard of instruction in the elements

of analytical geometry.

The translator leaves for the second edition the addi

tion of notes which will bring some of the topics treated

in the text down to the present scientific development of

the subject. A note has been added with the object of

furnishing the more elementary courses with simple exercises.

I wish to thank Professor E. Hastings Moore, Professor

Oscar Bolza, Professor Henry S. White, Dr. Harris Hancock,

Dr. T. J. J. See, for valuable suggestions and assistance in

making this translation.

JAMES HARRINGTON BOYD.

UNIVERSITY OF CHICAGO, July 1, 1896.
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ANALYTICAL GEOMETKY

ANALYTICAL GEOMETRY has for its object the study of fig

ures through the methods of algebraic calculation or analysis.

The representation of figures by algebraic symbols is due

to Descartes, who established a general method for the resolu

tion of geometrical questions.

In this treatise, plane figures, or those of two dimensions,

are considered.

PLANE GEOMETRY

BOOK I

CHAPTER I

CONCERNING CO-ORDINATES.

The position of a point in a plane is determined by means

of two magnitudes, which are called the co-ordinates of that

point.

There can be an infinity of systems of co-ordinates. An

exposition of those systems only is given which are most

simple and most used.

RECTILINEAR CO-ORDINATES.

1. Let there be two non-parallel straight lines or fixed axes

X Xand FT traced in a plane (Fig. 1); the position of any
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point M of the plane will be determined by the intersection of

the two lines G G,HH parallel to the axes. The position of the

parallel HH is denned by the segment OP, which it intercepts

on X X. It is necessary to indicate the

direction in which the length OP is

measured. For this purpose it will be

convenient to give the sign + to the

distance OP, if it is measured on OX,

for exampie; the sign -, if it is ineas-

ured on OX . In like manner, the posi

tion of the parallel G G is defined by

the length OQ affected with the + sign

or the - sign, according as it is measured on OF or OY .

The two lengths OP and OQ (each affected with the proper

sign), which determine thus the position of the two parallels,

and consequently the point M, are the rectilinear co-ordinates

of M. They are usually represented by the letters x and y.

Further, the co-ordinate designated by x is given the name

abscissa; the other, y, that of ordinate. The two fixed right

lines XX and Y Y are called the axes of co-ordinates; the

first is the axis of the aj s, and the second the axis of the

y a. The point from which we measure the co-ordinates on

each axis, in the one direction or in the other, is called the

origin of co-ordinates.

If all possible values, positive or negative, be assigned to x

and to y, in other terms, if x and y be made to vary from

- oo to + oo, all points of the plane are obtained ; otherwise,

each pair of values gives a point, and one only.

The two co-ordinates of the point M are the projections of

the line OM, taken in the direction OM, on the axes OX and

OF, the projection on each axis being taken parallel to the

other. The projection on the axis of x is the length OP,

identical with the co-ordinate a?,
affected with the + sign or

- sign, according as it is measured in the direction OX or in

the opposite direction OX ;
the projection on the axis o:

is the length OQ identical with the co-ordinate y, affected

with the + sign or --
sign, according as it

is^

measured in

the direction OF or in the opposite direction QY .
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RECTILINEAR RECTANGULAR CO-ORDINATES.

2. Usually the fixed axes are drawn per

pendicularly to each, other
;
in this case, the

two co-ordinates of the point M (Fig. 2) are

the distances of this point from the two

axes: they are also the orthogonal projec

tions of the line OM on the two axes.

Fig. 2.

POLAR CO-ORDINATES.

Fig. 3.

3. Let be a fixed point called the pole, OX a fixed axis

(Fig. 3). We can determine the position of a point M by the

length p, the radius vector OM, and by the

angle o&amp;gt;,

which the radius vector makes with

the axis.

The position of the point M is determined

by the intersection of a circle of radius p,

having the pole for center, and the half-line OL drawn from

the pole and making the angle w with the axis OX (Fig. 4) ;
but

it is necessary to define the direction in.

which we reckon the angle w, namely coun

ter clockwise from the axis OX. All the

points of the plane are obtained if p vary
from to + co

,
and w from to 2 ?r. In

fact if, w remaining constant, one makes p

vary from to + GO, one has all the points

of the half-line OL
; if, therefore, w vary from to 2 TT, the

half-line OL moves from the position OX and describes the

entire plane.

BI-POLAR CO-ORDINATES.

4. The position of a point may also be defined by the dis

tances u and v from two fixed points F and F (Fig. 5). The

position of the point M is then determined by the intersection

of the two circles described about the points F and F as cen

ters with the radii u and v. However, this system does not

offer the same theoretical perfection as the two preceding ;
for

Fig..4./
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every couple of values of u and v is not admissible
;

it is neces

sary that the distance between the poles be less than their

sum and greater than their difference.

When this condition is fulfilled, the

two circumferences intersect in two

points, and a troublesome ambiguity

arises.

The position of the point M may
still be determined by aid of the an

gles MFF1

,
MFF; we designate these angles, reckoned in a

definite direction, by a and /? ;
each of them varying from

to 2 TT : to every couple of values of a and corresponds one

point of the plane, and one only.

5. The number of systems of co-ordinates is infinite. In

general, the position of a point in a plane is determined by

the intersection of two lines traced in

l_ this plane. Let A 1

, A&quot;,
A

&quot;, (Fig.
* &quot;

6) be a first system of lines of the

&quot;- same kind, corresponding to the sev-

/ / eral values u
,
u

&quot;,

u &quot;

,
of the variable

f I u\ B , B&quot;,
B

&quot;,

---a second system of

*&quot;

.
&amp;lt;&quot; lines of the same kind, correspond

ing to the several values v\ v&quot;,
v

&quot;,

of the variable v
; any arbitrary point of the plane is defined by

the two lines which meet in this point, and the particular

values which it is necessary to give to the variables u and

v, in order to determine these two lines, are called the co-ordi

nates of the point. The totality of these two series of lines

constitutes a system of co-ordinates.

In the first system which we have studied, each series of lines

is composed of right parallel lines
;
hence the co-ordinates were

given the name rectilinear co-ordinates.

In the polar system, the first series of lines is composed of

half-lines emanating from the pole 0, and positioned by the

variable angle ,
which they make with the axis OX (Fig. 4) ;

the second system of concentric circles described about the

point as center with the variable radius p.
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In the first bi-polar system each series is composed of con

centric circles (Fig. 5). In the second, each series is composed
of half-lines emanating from one of the points F or F .

REPRESENTATION OF LINES IN A PLANE BY EQUATIONS.

6. Let AB be any line whatever, straight or curved, in the

plane (Fig. 7) ;
draw in the plane two straight lines OX and

Y&quot;,
and designate by x and y the two co

ordinates OP and PM of any point M of

the line
;
when the pointM is moved along

the line, the two co-ordinates vary simulta

neously ;
if an arbitrary value be assigned

to OP, the magnitude of the corresponding
ordinate MP is perfectly determined, and Fig -

7&amp;gt;

the variation of the abscissa controls that of the ordinate. That

is, the ordinate JfPis a function of the abscissa OP; the cliar-

^acter of this function depends on that of the line. If the line is

defined geometrically, an equation between x and y, serving to

define the function ?/, can be deduced from the geometric defini

tion of the line. The equation which is found in this manner

is called the equation of the line.

7. Conversely, let there be given an equation

*foy)=0,
between the variables x and y ;

each pair of real values of x

and y, satisfying this equation, determine a point of the plane.

Let x and yQ be a pair of real values of x and y satisfying

the equation ;
if x begin with the value XQ,

and vary in a con

tinuous manner, one of the values of y, beginning with y ,
will

also vary in a continuous manner, and will in general be real

as long as x is restricted to varying between certain limits :

the point, of which the co-ordinates are x and y, will describe

in the plane a continuous line. Thus, the totality of the real

solutions of an equation in two variables is, in general, repre
sented by a line in a plane. I

8. What has been said concerning rectilinear co-ordinates is

applicable to every other system of co-ordinates. In the polar
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system, where the point M is on the given line, the radius

vector p varies with the angle w
;

it is a function of w, and the

line is represented by some equation between p and &amp;lt;o.

9. The representation of figures by equations is the object

of Analytical Geometry, and in it the results of algebraic cal

culation are applied to their study. In Analytical Geometry

the student is occupied with three fundamental questions:

given a figure denned geometrically, determine its equation;

conversely, given an equation, determine the figure which

corresponds to this equation ; finally, study the relations which

exist between the geometric properties of the figures and the

analytic properties of the equations.

The examples which are given in the following chapter will

show how lines may be represented by equations.
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CHAPTER II

EXAMPLES.

In general, the geometric definition of a curve determining
each of the points corresponds to a certain system of co-ordi

nates; if the particular system implied by the definition be

chosen, the equation of the curve is the immediate algebraic
translation of its geometric definition.

CIRCLE.

10. The circle is the locus of all points equally distant from a

fixed point called the center. It is described by means of a com

pass ;
one foot being placed at the

center, the other will trace the circum

ference.

If the center be taken as pole, and

any right line OX as polar axis (Fig. 8),

and r represent the length of the radius,

the equation of the circumference in

polar co-ordinates is

(1) P = r,

since the length of the radius vector is constant and equal to r

whatever value the angle &amp;lt;o may have.

Let us now seek the equation of the circle in rectilinear

co-ordinates. If two rectangular axes OX and OY passing

through the center be taken, the right triangle OMP gives

immediately the relation

(2) *2 + 2/

2 = r2

,

which exists between the two co-ordinates x and y of any pointM of the circumference. This is the equation of the circum
ference in this system of co-ordinates.
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ELLIPSE.

11. The ellipse is a curve such that the sum of the distances of

each of its points from two fixed points is constant. The two

fixed points are the foci of the ellipse.

Let 2 a represent the sum of the distances of any point of

the ellipse to the foci, and 2 c the distance FF between them.

The points of the ellipse can be constructed by describing a

circle with arbitrary radius u about one of the foci as center,

and a second circle about the other focus as center with radius

v equal to 2 a u. The points of intersection M and M of

the two circles belong to the ellipse. In order that the two

circles intersect, it is necessary that the longest radius be no

longer than a -h c, and the shortest no shorter than a c.

The points M and M being symmetrical with respect to the

line FF
,
this line is an axis of curve. The right line BB 1

,

perpendicular to FF at its mid-point 0, is a second axis.

The points in which the axes cut the curve are called sum

mits. The summits A and A are obtained by taking the

distances FA, FA equal to a c. The summits B and B
,

situated on the second axis, are deter

mined by describing a circle with radius a

about one of the foci as center of a circle.

The distance OA is equal to a, and the

distance OB, which is designated by b, is

equal to Va2
c
2

. Instead of defining

the ellipse by the lengths 2 a and 2 c, as

in the preceding, it can be defined byFig - 9 -

means of the lengths 2 a and 2 b
; hence, c = Va2 6

2
.

point 0, the mid-point of FF
,
is the center of the curve.

The

12. We now derive the equation of the ellipse. The system

of co-ordinates used is the first bi-polar system ( 4) ;
if the

position of each of the points of the plane is determined by

its distances from two fixed points F and F
,
the ellipse will

have for its equation,

m u + v = 2a.
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In the second bi-polar system the equation has also a very

simple form
;

if a and ft represent the two co-ordinate angles

MFF
,
MF F, and 2p the perimeter of the triangle MFF ,

then

tan
a

*

whence,

(2)

p(p-v)
-, tan =

2c a c

+ c

13. Finally, the equation in rectilinear co-ordinates is con

sidered. Take the two axes of the

curve as axes of co-ordinates (Fig.

10) ;
the lengths PF and PF being

equal to c x and c + x, the right-

angled triangles FMP, FMP, give

-

(c -f- xy. Fig. 10.

By substituting the values of u and v in equation (1), we

obtain the equation

(3) Vt/
2 + (c

-
a;)

2 + V?/
2 + (c + x)

2 = 2 a.

Transposing the first radical to the second member and

squaring, gives

y
2 + (c -f- a?)

2 = 4 a2
-f- y

2

or, simplifying,

_ 2 _ 4 ft

(c x)
2 = a2

ca;.

Squaring and transposing lead to the equation,

(4) ay+(a2 -c2

)a,
2 = a2

(a
2 -c2

).

However, equation (4) is not equivalent to equation (3); it

is equivalent to the four equations

u + v = 2 a, u v = 2a, u + v 2a, u v = 2a,

which are obtained from equation (3) by changing the sign of

the radicals. The equation u v 2 a has no real solution.
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The equation u v = 2 a, and u + v = 2 a, do not have real

solutions if one suppose 2 a
&amp;gt;

2 c
;
because the quantities u

and v represent the distances of the points F and F from

a point in the plane whose co-ordinates are x and y}
and the

difference of these distances cannot be equal to the length 2 a,

greater than the distance 2 c or FF . Thus, when real solu

tions only are considered, the equation (4) can be regarded

as equivalent to equation (3). The constant sum 2 a being

greater than the distance between the foci 2e, one can put

or c
2 = &

2

,
and the equation of the ellipse reduces to the form

or

(5) a2
b
2

HYPERBOLA.

14. The hyperbola is a curve such that the difference of the

distances of each of its points from two fixed points is constant.

The two fixed points F and F are the foci of the hyperbola.

The hyperbola, like the ellipse, has two axes of symmetry,

the right line, FF* (Fig. 11), and the perpendicular, BB ,
to

this line at its mid-point 0.

It is composed of two distinct

branches. The points of a

branch of a hyperbola can be

constructed by describing a

circle with an arbitrary radius

u about F as a center, and a

second circle with a radius v

equal to 2 a + u about F as a

center. In order that these

circles intersect, it will be necessary that u be greater than

c a. In a similar manner a second branch may be found.

The point 0, the middle of FF
,
is the center of the curve.

The first axis intersects the curve in two points only, namely

A and A
,
which are its vertices and are determined by taking

OA OA = a
;
this axis is for this reason called the transverse

axis.



CHAP. II. EXERCISES. 19

In the first bi-polar system, if u and v represent the distances

of any point of the curve from the foci F and F
}
the two

branches of the curve have respectively for their equations

(1)
v - u = 2 a.

In the second bi-polar system the equations of the two

branches are

(2)

15. If the two axes of the curve are taken as axes of

co-ordinates, the equation of the hyperbola in rectangular

co-ordinates will be

V/ + (c + a?)

2 -V/ + (c
- xf = a.

By repeating the transformation of ( 13), one obtains the

integral equation a2/ + (
2

c
2

)
x~ = ^ (a

*
&quot; c2

)&amp;gt;

wnicn we nave

already obtained for the ellipse.

This equation, as has been remarked, is equivalent to four

distinct equations v u = 2 a, u + v = 2 a
;
but in the

given case 2 a being smaller than 2 c the last two equations

have no real solution. Placing c
2 a2 = b

2 the equation

becomes

It is well to observe that, in the rectilinear system, the two

branches of the hyperbola are embraced in the same equation

(3), while in the first bi-polar system, one of the branches is

represented by the equation v u = 2a, the other by u v

2 a. It is also necessary to have two distinct equations in the

second bi-polar system.

PAEABOLA.

16. TJie parabola is a curve every point of which is equally

distant from a fixed point called the focus and a fixed line called

the directrix.
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The perpendicular drawn through the focus to the directrix

is an axis of symmetry of the curve. The

point A, middle of DF, is the vertex of

the parabola. The curve lies wholly to

the right of a line drawn through A,

parallel to the directrix. Any point of

the curve can be found by drawing a

line MM1

parallel to the directrix, at the

distance DP greater than AD and describ

ing a circle with a radius equal to this

distance DP about the focus as center

(Fig. 12).

Fig. 12.

17. The definition of the parabola suggests a system of co

ordinates, .which has not yet been considered. Any point, M,
of the plane can be determined by the dis

tances MF and ME from the fixed point

^and fixed line DD (Fig. 13). The posi

tion of the point M will be determined by
the intersection of a circle described about

F as a center and a right line parallel to

DD . If we call u and v the two co-ordi

nates of the point M, the parabola will

have for its equation, in this system,

Fig. 13. u = v.

18. Let A, the vertex of the parabola, be, taken for the

origin of rectangular co-ordinates, the axis of the parabola for

the a^axis and the perpendicular AY for the i/-axis. Kepre-

sent the distance FD of the focus from the directrix byp:
then is

.

(1) v =

and the equation of the parabola becomes

P.

or (2)
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19. Before proceeding further the definition of a tangent to

any curve whatever will be given. In elementary geometry,

a line is said to be tangent to a circle when it has but one point

in common with the circumference, but this definition cannot

be generalized aiuHt will be convenient to define a tangent in

another manner. Let M be a

given point on a curve (Fig.

14) ; through this point and a

neighboring point M draw an f

indefinite right line
;
in the figure which we study, the direc

tion MM has, in general, a limiting position MT, as the point

M approaches the point M as a limit. The right line MT is

called a tangent to the curve at the point M. The perpendicular

to the tangent at this point Mis called the normal to the curve.

From this definition, it follows that the tangent to the circle

at the point M is perpendicular to the radius OM at its ex

tremity (Fig. 15) ; because, in the isosceles

triangle MOM ,
the angle OMM is equal

to a right angle less half the angle MOM .

When the point M approaches contin

uously toward the point M, the angle at

the center approaches zero, and the angle

OMM becomes right-angled. The normal

to the circle in M is the radius MO. Fig&amp;gt; 15&amp;lt;

ClSSOID OF DlOCLES.

20. If one be given a circle, a diameter AB, a tangent BC
at the extremity of this diameter (Fig. 16), and if a secant

AE be made to revolve about the point A, on which a length

AM be then equal to the distance DE comprised between the

circle and the fixed tangent, the locus of M is a curve which is

called the cissoid.

If the movable secant start from the position AB and

revolves about the point A, from AX toward the perpendicular

AY, the length DE, and consequently AM, increase indefi

nitely, and the pointM will describe an infinite branchMM of

the curve. By revolving the movable secant from the other side
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of AB, a second branch of the curve equal to the first is

obtained. The line AB is an axis of

the curve, since the two branches are

symmetrical to this right line.

The tangents to the two branches

at the point A coincide with the axis.

Because, if the secant revolves about

the point A in such a manner that

the chord AM or DE becomes zero,

it tends toward the limiting position

AB] therefore AB is the tangent at

A. The point A is called a cusp or

turning point. It is also apparent
that the two branches of the curve

continually approach the line CC .

In fact, consider the secant in the

position AE ;
if from the line AE

the equal lengths AM and D E be

subtracted alternatively, then will ME = AD . The chord

AD diminishes continually and approaches zero; it is equal

in length to ME
,
therefore for a greater reason does the per

pendicular MH approach zero. The right line CC
,
which

the curve continually approaches, is called the asymptote.

The cissoid was conceived by the Greek geometer, Diocles,

to solve the problem, to construct two mean proportionals

between two given lines.

21. Let us seek the equation of the

cissoid in polar co-ordinates; take the

point A as pole and the right line AB
for the polar axis. Call a the diameter

of the given circle, p and &amp;lt;o the co-ordi

nates of any point M of the curve (Fig.

17). In the right-angled triangles ABE,
ABD, one has

Fig. 16.

Fig. 17.

whence, P
=

AE = (I

COS w

= AE -AD =

AD = a cos a)
;

a
a cos o&amp;gt;

=
COS w cosw
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Hence the cissoid has for its polar equation,

a sin
2

o&amp;gt;

Let us now derive the equation in rectangular co-ordinates
;

take the point A for the origin, the right line AB for the

o-axis, and a perpendicular for the ?/-axis. From the triangle

MAP, one gets

T* 77

if, in equation (1) cos w be replaced by _, sinw by ,
it

P P

becomes p*x
= ay

2

,
then P

2

by x~-\-y*, the equation of the

cissoid in rectangular co-ordinates will be

(2) y\a -x)-x* = Q.

22. Having already derived the equation of the cissoid in

rectangular co-ordinates from its geometric definition, it is

proposed to construct the curve from its equation. Solving

the equation (2) with respect to y, one has

x

The ordinate is real for all values of the abscissa comprised

between x = and x = a and for those values only ;
therefore

the curve lies wholly between the y-axis and the parallel &amp;lt;7C&quot;

erected at the distance a (Fig. 16). As x increases from to

a, the numerical value of y increases from to GO
,
which

determines a branch of the curve beginning at the origin A
and ascending indefinitely. At the same time the distance

j^fiff_ a _ x Of a point on the curve to the line BC approaches

zero, which shows that the line BC is an asymptote of the

curve. Since to each value of x there corresponds two equal

values of y opposite in sign, the curve is composed of two

branches symmetrical with respect to the axis AX.

STROPHOID.

23. A right angle YOX (Fig. 18) and a fixed point A on

one of the legs, being given in a plane, draw from the fixed



24 PLANE GEOMETRY. BOOK I.

point A any line AD, which cuts the side Y in D, and begin

ning at D, lay off to the one side and to the other on this line,

the lengths DM and DN equal to

OD
;
the locus of the points M and

N is the strophoid.

When the movable line occupies

the position AO, the two points M
and N fall together in 0. If the

line moves so that the point D
ascends continually on OF, OD in

creases and the point N describes

the infinite branch ON of the curve.

The pointM approaches continually

the point A, because the points M
and N are obtained by describing

a circle with radius DO about D
as a center

;
as the point D recedes continually from 0, the

angle 0AM approaches a right angle and the point M coin

cides with A. The curve has evidently another branch sym
metrical to the first with respect to the axis OX.

The point 0, in which the two branches of the curve cross,

is a double point. The tangents to the two branches of the

curve at this point coincide with the bisectors of the angles

FOX and FOX . Because the angle ODE, exterior to the

isosceles triangle DOM, is equal to the sum of the two oppo

site interior angles and, consequently, to two times the angle

DOM; similarly the angle ODA is equal to two times the angle

DON. As the line AD approaches OA, the obtuse angle ODE
decreases and tends toward a right angle ;

therefore the half

angle YOM decreases and tends toward
j-

The acute angle

ODA increases and tends toward a right angle ;
hence the half

angle FO^ increases and approaches ^
as its limit. Whence

it follows that OM and ON are perpendicular to each other

in their limiting positions as tangents at 0. It is to be noticed

further that the arc OMA is below, while the arc AON is

above its tangent.
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The tangent at A is perpendicular to the axis OX, because

as the point D is continually elevated, the chord AM becomes

finally perpendicular to OX.

On AO produced take OG == OA, and at the point G erect

the perpendicular HH . This line is an asymptote to each of

the infinite branches of the curve, for the distance NE, equal

to AM, approaches zero.

24. To derive the equation of the curve in polar co-ordi

nates, take the point as pole and the line OA as polar axis
;

the polar co-ordinates of the point M are p = OM, o&amp;gt;
= MOA ;

in the isosceles triangle DOM, each of the angles DOM, DM0
is equal to -

o&amp;gt;,

and the angle ODM to 2 o&amp;gt;

;
the angle AM,

complement of the preceding, equals ^ 2 o&amp;gt;.

a

If a represent the length OA, it follows from the triangle

OMA that

whence

_ a cos 2 a&amp;gt;

(1) p == *

COS w

The co-ordinates of the point N satisfy the same equation.

To derive the equation of the curve in rectangular co-ordi

nates, take for axes the two lines OX and OF. If, in the pre

ceding equation, put under the form p cos o&amp;gt; =a (cos
2

o&amp;gt; sin
2

&amp;lt;o),

x y
cos o) and sin o&amp;gt; be replaced by their values -&amp;gt; -, one gets

xp
2 = a(x

2

y
2

)-, putting in the place of p
2
its value x2 + y

2
,
the

following equation of the third degree is obtained :

25. The curve can now bs constructed by means of its equa
tion in rectangular co-ordinates. Equation (2), solved with

respect to y, becomes

la x
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In order that the ordinate y be real, it is necessary that the

quantity under the radical be positive. If x be given positive

values, the denominator being positive, the numerator will also

be positive so long as x is less than a. If x be given negative

values, the numerator being positive, the denominator will

be positive so long as the absolute value of x is less than a.

Thus the abscissa x can vary from a to + a. If, therefore,

we begin at the origin and lay off on the ip-axis, to the right

and to the left, the distances OA and OG equal to a, and at

the points G and A erect HH, KK parallel to the y-axis, the

curve will be wholly comprised between these two parallels.

The form of the curve will vary in accordance with the varia

tion of the function

la x
y = x\ /*a + x

As x varies from to a, the ordinate y takes finite values.

It is zero for x = and also for x = a. This furnishes the

branch 03/J. of the curve, beginning at the point and end

ing in the point A. As x varies from to a, the ordinate y

is negative and varies from to oo . This furnishes the

branch ON
,
which begins at the origin and descends con

tinually, approaching indefinitely the line HH1

,
which is an

asymptote. This branch ON is a continuation of the branch

AMO.
By changing the sign of the radical, the branch AM ON,

symmetrical to the first with respect to the #-axis.y is obtained.

LIMAOON OF PASCAL.

26. Through a point A on a circle, draw any secant AD, on

which beginning at D, where it cuts the circle again, lay off a

constant length DM or DN; the locus of the points M and N
(Fig. 19) is a curve called the Lima$on of Pascal

The entire curve will be traced by supposing the radius

vector to coincide with the diameter AB of the circle and then

to revolve through an angle TT in either direction. The whole

curve will also be traced by giving the radius vector a com.
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Fig. 19.

plete revolution, and laying off a constant length in the direc

tion of radius vector, beginning with the point in which this

radius vector or its pro

longation intersects the

circle. The curve takes

three different forms ac

cording as the constant

length a is greater,,equal

to, or less than the diam

eter 6 of the circle.

1 The first case con

sidered is when the length

a is greafcer^than b. If

the radius vector coin

cides with AB, it will be

necessary to start from the point B. Construct on AB a length

BG equal to a, which determines the point G of the locus (Fig.

19). If the radius vector revolves from the point A and takes

the direction AD, the point M is determined. When the

radius vector has revolved through a right angle, the point D
coincides with A, and the point M with M . Continuing the

revolution of the radius vector to the position AD and pro-

. longing it, it intersects the circle in Dl ;
it is necessary to start

from this point Dlf
and lay off in the same direction AD ,

a

length DlMl equal to a. When the radius vector having

revolved through the two right angles occupies the position

AX 1

,
the point A coincides with B and the point Ml with H;

thus the arc, MA^H, a continuation of GMM
,
is constructed,

and is, moreover, exterior to the circle. The radius vector

revolving beyond AX through two more right angles returns

to its initial position AX] the moving point describes the arc

HN G, symmetrical to the arc GMH, with respect to the line

XX . In this manner, by a continuous movement, the point

describes the entire curve.

2 Suppose that the length a be equal to 6. When the

radius vector, starting from the initial position AX, moves

through two right angles, the point M describes the arc

GMMA (Fig. 20), which ends in the point A. The tangent
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at A is the right line AX
, limiting position of the secant

The point A is called a cusp.

3 As the last case to be considered, let a be less than b.

When the radius vector, starting from the initial position, has

Fig. 20.

revolved through one right angle, the point M describes the

arc GMM (Fig. 21). If now the radius vector takes the di

rection AD 1

,
the point D moves to Dl} the point M falls in M^.

But when the radius vector assumes a direction
AD&quot;, such

that the chord D2A is equal to a, the point Ml falls then in A,

Fig. 21.

and the curve will be tangent to the right line AD&quot;. As the

radius vector continues its motion, the chord D3A becomes

greater than a, and, if the length DSM3 is taken equal to a,

one has a point M3 situated within the circle. Finally, as the
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radius vector takes the direction AX
,
the point M3 falls in H.

Thus the interior arc AM3H is the prolongation of the exterior

arc GM A. The other half of the rotation gives the arc

HNAN G symmetrical to the first with respect to the line

X X, and completes the curve.

27. Let us obtain now the equation of the curve in polar

co-ordinates. Take the point A as pole, and the line AX
as polar axis. Call w the angle which the radius vector

makes with the direction AX. When the radius vector has

the position of the line ADM, the right triangle ADB gives

AD = b cos
o&amp;gt;, and, consequently,

p = DM-}- AD = a + b cos &amp;lt;o.

When the prolongation of the radius vector intersects the

circumference, as is the case in the position AD ,
the angle o&amp;gt;

is the angle XAD ;
the right triangle BADl gives

D^A = b cos w.

and hence,

p = DlMl D^A = a -+- b cos &amp;lt;o.

But, if the radius vector, in Fig. 21, has the direction AD
&quot;,

the length is measured in the opposite direction to AD &quot;.

Therefore, the radius vector of the point M will be AM3

affected with the sign ; whence, one has

p = AM3
= D3M3 AD3

= a + b cos o&amp;gt;.

Thus, the entire curve is, in any case, represented by the

equation

(1) p = a + b cos o&amp;gt;.

If the point A is taken as origin, the diameter AB as axis

of x, and a perpendicular to it at A as the axis of y, then the

equation of the curve in rectilinear co-ordinates will be

(2) (tf + f- to? = &amp;lt;*(& + ft.
/y

Equation (2) is derived from (1) by putting
- for cos o&amp;gt; and

x2
-\-y

2 for pi ( 20), and squaring in order to remove the

radical.
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28. The same curve may be obtained by another process.

Being given a circle GH and a fixed point A, think of a mov
able tangent CM revolving on the circumference of the circle,

and drop from the point A a per

pendicular AM on this tangent

(Fig. 22); find the locus of the

point M. There will be three cases

to consider,- according as the point

lies within, on, or without the cir

cumference of the circle. Suppose,
for example, that the point A lies

without the circumference. When
the tangent touches the circumfer

ence at G, the perpendicular from

A coincides with the diameter AG and the point G is a point

of the locus. As the tangent revolves about the quadrant
GCC

j
the point M describes the arc GMM1 of the curve.

When the tangent descends to the position C&quot;A, the point M
describes the arc MA. The tangent continuing its motion

along C&quot;H, the foot of the perpendicular falls below the

diameter and describes the arc ANH of the curve. The tan

gent has revolved about the semi-circumference GC H\ when

the tangent revolves about the lower semi-circumference, the

point M will trace a portion of the curve symmetrical to the

first half.

In order to get the equation of this curve in polar co-ordi

nates, represent the radius of the given circle by-ft, the dis

tance AB by b, and draw through the center Z?, of the circle, a

line BD parallel to the tangent CM. Whence it follows

p = AD -f DM= b cos w + a.

This equation is identical with equation (1) of 2G
;
therefore

the curves which they represent are identical.

Moreover it is easy to verify geometrically this identity.

The angle D being a right angle, the locus of the point D is the

circumference described on AB as a diameter. The point M
will therefore be obtained by prolonging the chord AD till DM
is equal to BC.
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Tig. 23.

THE ROSE OF FOUR BRANCHES.

29. Being given two lines OX and Y at right angles to

each other, 011 which the extremities of a right line PQ of con

stant length are free to move,

find the locus of the foot of

the perpendicular OMdrawn

from to PQ (Fig. 23).

When the line PQ coincides

with Y, the point M coin

cides with and the chord

03/takesthe direction OX] /
therefore the tangent to the

arc OM at coincides with

OX. The point J, the mid

point of PQ, describes a cir

cumference of which the cen

ter is 0, and the radius equal

to a
;

if the constant length

be represented by 2a, the perpendicular OM is less than the

oblique line 01
;
therefore the distance OM is a maximum

when the right line PQ is perpendicular to the bisector OA.

As the movable line PQ continues its motion, it will assume a

position P Q symmetrical to PQ with respect to the bisector

OA, and one finds the arc OM A the symmetrique of the arc

OMA with respect to OA. The same curve is reproduced in

each of the other right angles. Hence the curve has four axes,

the two fixed right lines OX, OF, and the two bisectors A A,

B B. The point is the center of the curve.

30. If the point be taken as pole and OX as the polar

axis, it follows from the right-angled triangles OMP, OPQ,
that

p = OP cos o), OP = 2 a sin to
;

therefore

(1) p = a sin 2 &amp;lt;o.

In rectangular co-ordinates the curve is represented by an

equation of the sixth degree

(2) (aj* + 2/

2

)
3 -4a 2zy = 0,
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which follows at once from equation (1) by substituting re-

/V &amp;lt;*l

spectively for cos
c&amp;gt;,

sin w and p, -&amp;gt; -, and p =V x? + if&amp;gt;
squaring

and transposing.

TANGENTS.

31. The preceding examples show how to construct a curve

from its geometric definition and to derive finally its equation.
It is possible also in some cases to deduce from the geometric
definition of a curve a simple construction of a tangent to it.

Two remarkable examples will be given, the curves described

by the various points of a plane figure, which moves in a plane,

and the locus of the feet of perpendiculars drawn from a fixed

point to the tangents to a given curve. The construction be

longing to the first class of curves depends on the following

proposition :

LEMMA. Every plane figure can be brought from one position

to another in its plane by a rotation about a fixed point.

It is first to be noted that the position of a plane figure in a

plane is determined when one knows the position of two of its

points. Let A and B be the two points of the figure in its first

position (Fig. 24), A and B the same points in a second posi

tion
;
the line AB, of constant length,

is transferred to A B . Erect perpen-
diculars to AA

,
BB at their mid

points; the perpendiculars intersect in

a point 7. The two triangles AIB,
A IB are equal, since their sides are

equal each to each, AB equal to A B
,

IA and IA 1 are equal, being oblique

lines drawn from a point in a perpendicular cutting off equal

distances from its foot, and similarly IB and IB 1 are equal ;

therefore the two angles AIB and A lB are equal; by sub

tracting the common angle AIB, it follows that the angles

AIA, BIB are equal. Suppose now that the figure is revolved

about the fixed point 7, through the angle AIA ,
the radius IA

will fall on IA and the point A on A
-,

in the same manner
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the line IB, revolving through the angle BIB equal to AIA
,

will fall on IB and the point BonB . Therefore this rotation

about the point / brings the figure from its first position to the

second.

32. THEOREM. If one considers the curves described by the

different points A, B, (7, , of an invariable plane figure which

moves in a plane, the normals to these curves, at points which

correspond to the same position of the figure, intersect in the

same point.

Suppose A, B, C,-- ,
to be different points of the figure in any

position whatever. A ,
B

,
C

, ,
these same

points in a new position. After what has

been said, we can bring the figure from the

first position to the second by revolving it

about a certain point Ii ; by this motion the

lines IiA, ^B, IC ,
describe angles respec

tively equal, and finally coincide with ^A ,

I.B , W, (Fig. 25). The lines MI19
NI

} , Figt25 ,

P/j, , perpendicular to the chords AA
,

BB
,
CC

, ,
at their mid-points, all intersect in the point Jj.

Suppose now that the second position approaches continu

ally the first, and that the point 7: tends toward a limiting

position/; the chords AA\ BB
,
CC ,~-, prolonged, become

tangents to the curves in A, B, C., ;
the perpendiculars

MIu NIi, P/i, ,
to the chords coincide with the perpendicu

lars to the tangents at A, B, C, ;
that is, with the normals

to the curves. Hence the normals to the curves described by

A, B, &amp;gt;,

at these points all intersect in the same point /.

COROLLARY. If one could draw the normals to the curves

described by the two points A and B of the movable figure,

these two normals determine by their intersection the point

J; by joining the point / to any third point C, one will have

a normal to the curve described by C
;
a perpendicular to the

normal at C will be a tangent. This is the case if the two

points describe straight lines or circumferences of circles.

In the next section some applications of this method will

be given.
c
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33. In case two points of the movable figure describe right

lines, it will be shown that the curve described by any other

point is an ellipse ;
the preceding method will enable one to

construct a tangent to the ellipse.

Suppose, then, that the two extremities of a straight line

CD of constant length lie on two lines OX, Y at right angles

to each other, find the locus traced

by a point M of this line (Fig. 2G).

When the line CD coincides with

OX, the point M will fall on A at

a distance A equal to DM-, as the

extremity D slides along Y start

ing from the point 0, the point C

approaches the point 0, and the
Fig 26

point M describes the arc AMB.
When the line CD coincides with Y, the point M will fall

on B at a distance MB equal to CM. The same arc is repro

duced in each of the four right angles, and the curve thus

described is an ellipse.

For, take the two fixed lines OX, OTas axes of co-ordinates,

and call a and b the two constant lengths DM and CM, x and

y the co-ordinates of the point M, then the similar triangles

MFC,
MP_CM m _jf== ^ or ^ I

which is equation (5) of 13. Thus, the curve is an ellipse

whose axes 2 a and 2b coincide with the two given rectangular

axes.

34. It is not necessary that the point M be restricted to

lying on the movable line between the points C and D
;

it can

be situated on the prolongation. Consider the line C D of

which the two points C and D slide on the two perpendicular

lines OX and OY, and find the locus described by the point

M. If a and b be put for the distances DM and C M, the

similar triangles MFC ,
D QM will give, as in the preceding,

_

D Q MD 1

or
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The construction of a small instrument called an elliptical

compass depends upon this property.

The two feet are placed on the points C and D, taken at

wish on the line CD, and a pencil point at the point M\ the

two feet slide in grooves placed on the perpendicular lines OX
and OY-j the pencil point M describes by a continuous move

ment an ellipse.

It is evident that a straight line is its own proper tangent.

The points C and D of the movable plane describe the lines

OX and OF; the perpendiculars CI and DI to these lines

determine the point / through which pass the normals to the

curves described by the various points of the movable figure

for every position of this figure. The line IM is therefore

normal to the ellipse at M described by this point ;
the line

drawn through M perpendicular to the normal to the ellipse

at that point will be a tangent.

35. Imagine two points E and F of the movable plane to

slide on any two fixed straight lines OA and OB (Fig. 27).

The perpendiculars to these lines at

the points E and F determine the

point of intersection I of the nor

mals. The circle described on 01
as a diameter passes through the

points E and F; the line EF and

the angle EOF being constant, the

diameter of the circle is constant.

Suppose that the circle is situated

in the movable plane, and controlled

in its movement by the motion of the line EF; this circle

will always pass through the point 0; every point D of the

circumference will describe a straight line OF, since the

inscribed angle FOD, which corresponds to the constant arc

FD, is itself constant.

Consider any point M of the movable plane ;
draw a line

through this point and the center K of the circle; the

two points, C and D, the extremities of the diameter MK,
describe two perpendicular lines OX and OF; whence it fol-
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lows that the point M describes an ellipse whose axes are two

times the distances CM and DM, and have the same directions

as OX and Y. The line IM is normal to the ellipse at M.

CONCHOID.

36. Being given a point A and a

straight line
CC&quot;,

draw through the

point A any secant AD, and, begin

ning at the point D where it meets

the line CC
, lay off on either side a

given length DM and DN; the locus

of the points M and N is the con

choid (Fig. 28). It can easily be

seen that this curve has two infi

nite branches, one on each side of

the line CC
,
and asymptotic to this

line. The left branch will have dif

ferent forms according as the given

length DM is less, equal to, or greater

than the perpendicular drawn from

A to the line CC .

This curve belongs to the preceding category : one can regard,

in fact, the line AD as revolving in the plane, in the following

manner, one of its points D describes the line CC
,
while the

line itself passes through the point A, about which it revolves
;

a pointM of this line describes a branch of the conchoid. Con

sider the point of the movable line which is in A, when the

line occupies the position AD ;
this point describes a branch

of the conchoid passing through the point A and tangent to

the line AD in this peiiit ;
the normal to this particular branch

of the curve is the line AT, perpendicular to AD. The normal

to the curve described by the point D is the line DI, perpen

dicular to the line CC
; by drawing a straight line from the

point of intersection / of the two normals to the point M,
one obtains the normal IM to the curve described by the

point M j
the perpendicular to IM at M is a tangent to the

curve.

Fig. 28.
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The limaqon ( 26) is a curve analogous to the conchoid;

it is sufficient to replace the line CC on which the point D

slides, by the circumference of a circle

(Fig. 29). Consider then the point of

the movable line which is in A, when

the line occupies the position AD. This

point describes a curve passing through

the point A and tangent to the straight

line AD at this point; the normal to this

curve is the perpendicular AL The nor

mal to the circumference described by the

point D is the diameter DJ; the point of intersection I of the

normals is therefore the extremity of the diameter which passes

through the point D ;
the straight line IM is a normal to the

curve described by the point M.

37. The same construction is also applicable to the cissoid

and strophoid; but it is necessary beforehand to give these

curves another geometrical defi

nition. Consider a right angle

ABC (Fig. 30), of which a side

BA passes through a fixed point

A, and a point C on the other

side slides on the line EE
;

it is

further supposed that the length

BC is equal to the distance AO
of the point A from the line

EE
;
the point M, mid-point of

,
describes a cissoid, and the Fig. 30.

vertex B of the right angle a strophoid.

In fact, the two right triangles ABC, AOC being equal, the

angles CAL, ACL are equal, and the triangle ALC isosceles
;

since AB is equal to CO, one has also LB = LO
,
therefore

the locus of the point B is a strophoid ( 23).

The triangle ACP is also isosceles
; join the point Mto the

mid-point D of AO and prolong this line till it is intersected

in /i by O/i&quot;,
drawn parallel to AO. The triangle CMK being

isosceles, it follows that CK= CM= AD. Finally, describe
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a circumference about the point as a center with a radius

OD
;

let F be the extremity of the diameter DO and 77 the

point of intersection of the circumference with DK. The isos

celes triangle MCK is equal to DOH, DH=MK, whence
DM= KH; moreover, the line FG is tangent to the circum

ference at F. Therefore the locus of the point M is a cissoid

having the point M for vertex and the line GG for an asymp
tote

( 20).

Consider now the point of the movable figure which is in

A, when the right angle occupies the position ABC; this

point describes a curve passing through the point A and tangent
to the line AB at this point ;

the line AI, perpendicular to AB,
will be a normal to this curve. Further, the line (77, perpen
dicular to EE

,
is a normal to the curve described by the point

(7; the point of intersection I of the two normals is the common

point of intersection of all the normals. Therefore the lines

IB and IM are normals, the one to the strophoid, the other to

the cissoid.

PEDALS.

38. The pedal of a given curve AB is the locus of the foot

P of the perpendicular dropped from a fixed point upon any
line MP tangent to this curve (Fig. 31). A neighboring tan

gent MP will give a second point P of the pedal. Let D be

the point of intersection of these two tangents ;
the circle

described on OD as a di

ameter passes through the

points P and P
,
and the

line PP is a secant of

the circle. Suppose now
that the point M ap

proaches indefinitely the

point M, the point D will

ultimately coincide with M,
and the diameter OD with 03/; the secant PP will at the

same time become tangent to the circle and to the pedal ;
the

normal to the pedal will therefore coincide with the normal to

the circle constructed on OM as a diameter, and this normal

Fig. 31.



CHAP. II. EXAMPLES. 39

may be found by joining the point P to the point (7, the mid

point of OM.
This construction may also be applied to the limaqon, which

is the pedal of a circle ( 28). But it is seen later ( 307)

that the construction of the tangents to pedals is reduced to

the general method sketched in 32.

EXERCISES.

1. A variable triangle ABC, whose vertex A is fixed and

the angle A constant, is inscribed in a given circle. Show

that the locus of the center of the circle inscribed in and

escribed about the triangle is represented by two limaqons.

2. Show that the locus of the vertices of angles of given

magnitude, whose sides are tangents to two given circles, is

represented by two limaQons.

3. A variable circle touches a given circle in a given point,

and a tangent is drawn common to the two circles. Show that

the locus of the point of contact of this tangent with the vari

able circle is a cissoid.

4. A variable plane moves in a fixed plane in such a manner

that two straight lines of the variable plane remain respectively

tangent to two circles of the fixed plane. Show that a point

on the fixed plane traces an ellipse on the movable plane.

5. Construct the curves which, in the first system of bi-polar

co-ordinates, are defined by the equation u -f nv = a. Show that

of the three equations u + nv = a, u nv = a, u-\-nv = a, in

which the two constants a and n have the same values, two

alone define geometrical loci. These loci are closed curves,

the one within the other
;
one calls them the conjugate ovals

of Descartes. They are represented by the same integral alge

braic equations in rectangular co-ordinates. On the line which

passes through the two poles there exists a third point, such

that by taking this point and one of the first as poles, the

equation preserves its form.

6. If, being given two circles, any secant be drawn through
a fixed point taken on the line of centers, and each center be

joined to one of the points of intersection of the secant with
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the circle, show that the point of intersection of these two
lines describes the ovals of Descartes.

7. The projection of the curve of intersection of two cones
of revolution, whose axes are parallel to a plane perpendicular
to the axes, is a system of the ovals of Descartes.

8. Construct the curve which, in the first bi-polar system,
is represented by the equation u . v = a2

,
2 a being the distance

between the two poles. This curve is called the lemniscate.
^-9. Find the locus of the vertex of a triangle whose base a

remains fixed, and in which the other two sides b, c, and the

corresponding median m satisfies the relation b - c = m V2
(lemniscate).

10. A straight line and a circumference each revolve with
a uniform motion about a fixed point common to the two lines,
the ratio m of the two angular velocities, is affected with the
-f or - sign, according as the rotations are in the same or

opposite sense; required to find the locus described by the
second point of intersection of the two lines.

Discuss the following particular cases :

m =
f ,

or m = f,
the limaQon of Pascal

;

m = 1? r wz- =
|, rose of four branches

;

or m =
m = 2, or m =

|.

11. Solve the same problems, taking for the revolving curves
two equal circumferences which revolve about a fixed point
common to them.

Discuss the cases :

m = 2, limaQon of Pascal
;

m = 3, rose of four branches
j

m= -2;
m= 3.
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CHAPTER III*

CONCERNING HOMOGENEITY.

39. DEFINITION. The function /(a, b, c, )
is said to be

homogeneous with respect to the letters a, b, c, , when, on re

placing a by Tea, b by kb, ,
one has

the exponent m being the degree of the homogeneous function.

The following are examples of such functions :

c
sm

q a4-Va& a

a + b a + c a3 + W

the degree of the first is 2, of the second i, of the third 0, of

the fourth -2.

One can easily see :

1 That the sum or difference of two homogeneous functions

of the same degree is a function of the same degree as the given

function
;

2 That the product of several homogeneous functions of

any degree whatever is a function whose degree is equal to the

sum of the degrees of the given functions
;

3 That the quotient of two homogeneous functions is a

homogeneous function whose degree is equal to the excess of

the degree of the dividend over that of the divisor;

4 That the power of a homogeneous function is a homo

geneous function whose degree is equal to the degree of the

given function times the exponent of the power;
5 That the root of any homogeneous function is a homo

geneous function whose degree is equal to the degree of the

given function divided by the index of the root
;
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G That a transcendental function of a homogeneous func

tioii of degree 0, is a homogeneous function, and of the degree 0.

For example, the functions

sin

are homogeneous and of the degree ;
because if a and b are

replaced by ka and kb, the letter k disappears under the

transcendental sign. But if the quantity placed under the

transcendental sign, though homogeneous, were not of the de

gree 0, the letter k could not be removed from under the

transcendental sign and the function would not be homoge

neous.

Thus, the function sin (a -f V&c)_is
not homogeneous, for

here sin (ak + V&cfc
2

)
= sin (a + V&c)fc.

When a monomial is rational and integral with respect to the

letters a, 6, c, -,
the degree of the monomial with respect to a

letter will be the exponent of this letter in the monomial : the

degree of the monomial with respect to several letters is the

sum of the exponents of these letters. A monomial is always

a homogeneous function, of a degree equal to the degree of the

monomial
;
therefore the sum of several monomials of the same

degree is a homogeneous polynomial of this same degree. For

example, the polynomial

a3 _ 4 a2
fe + 5 a62 _2b3

is a homogeneous function of the third degree, with respect to

the letters a and b.

40. In seeking the relations which exist between the lengths

of the various lines A, B, C, ,
of a figure, one thinks of these

lines as being expressed in terms of a unit of length, which

usually is not specified and remains to be chosen at will. Re

present by a, &, c, ,
the numbers which thus express the meas

ures of the lines of the figure and suppose that one has found

between the numbers the relation

(1) /(a,M,-) = -
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The steps made in arriving at this result being independent of

the unit of length, it is evident that this relation exists what

ever be the unit of length. Call a, ft y, ,
the particular values

of a, b, c, ,
for the first unit; a

, /? , y , ,
the values of these

same quantities for another unit
;

the two sets of numbers

satisfy the relations

(2) /(,fty,-) = &amp;gt;

(3) /( , , /,-) = &amp;lt;&amp;gt;

But as the unit is changed the numbers vary proportionately,

of the sort that, if k designate the ratio of the first unit to the

second, one has

- = P= y&amp;gt; - =*
a ft y

~

whence a -

ka, ft
= &ft y = ky:

If these values are substituted in the relation (3) it becomes

(4) f(ka,kp,ky,...) = 0.

Consider that the first unit is fixed and the second varies
;

, (3, y, ,
will be constant numbers and equation (4) will be

satisfied whatever this number k may be.

Thus, if equation (1) is satisfied when the letters a, 6, c, ,
are

replaced by , (3, y, ,
it will be satisfied when the letters are

replaced by ka, k(3, &y, ,
whatever the number k may be.

41. The preceding condition is evidently fulfilled when the

first member of equation (1) is a homogeneous function of the

letters a, b, c, ;
because then one has

f(ka, k(3, ky, )
= &/(, ft y, -) 5

if the expression /(, ft y, ) is zero, the same will be true of

f(ka, 7cft /by, )
whatever k may be.

Conversely, in order that the previous condition be fulfilled,

it is necessary that the equation be homogeneous. The only
case considered here is that in which the equation is algebraic.

Suppose that /(a, b, c, ) be an integral polynomial; if all

the terms are not of the same degree, there will be groups of
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them which will be of the same degree; call
&amp;lt;}&amp;gt;(a, b, c, ) the

collection of all the terms of the degree ??i, the highest,

i/f(a, b, c, )
the collection of all terms of the next degree n,

etc., the equation (4) becomes

fc&quot;&amp;lt;K, A 7, &quot;)
+ *;&amp;gt;(, ft y, ) + = 0.

In order that this equation be verified, k being arbitrary, it is

necessary that there exist separately

&amp;lt;K, Ay, -) = &amp;lt;&amp;gt;, *(/Ay, -) = 0, -

If the unit to which the numbers
, /?, y, ,

are referred is

arbitrary, then there must exist between the lines of the fig

ures the homogeneous relations

&amp;lt;K, A 7&amp;gt; -) = &amp;gt; *(&amp;lt;*&amp;gt;,

b
&amp;gt; c, )

= 0, .-.

Therefore, if equation (1) is wo homogeneous it is equivalent

to several equations, separately homogeneous.

42. It can happen that a homogeneous equation may be

satisfied, where a particular unit has been chosen, without the

parts which compose it being zero separately ; however, if the

unit be changed, the equation will no longer be satisfied.

This is illustrated by the example : Determine the dimen
sions of a cylinder whose total surface shall be equivalent to

that of a sphere of radius A and its volume to that of a sphere
of radius B.

f

Let X be the radius and Y the height of the cylinder ;
call

a, b, x, y, the measure of the lines A, B, X, Y, referred to any
unit whatever; the unknown quantities will satisfy the two

equations :

(5) 2x2 + 2^-4a2 = 0,

(6) c*-iP-a
Each of these equations is homogeneous ;

the one is of the

second degree, the other is of the third. If they are satisfied

when the lines are measured in a certain unit, the same will

be true when they are referred to another unit.
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The unknowns x and y satisfy also the non-homogeneous

equation

(7) (2 x
2 + 2 xy

- 4a2

) + (aty
-

| 63
)
= 0,

which is obtained by adding equations (5) and (6) member to

member.

Consider now equation (7), disregarding its origin. Four

lines, A, B, X, Y, can be found such that, if they be measured

in a particular unit, the numbers obtained verify this equation

without annulling separately the two parts. Suppose, for

example, that the lines referred to a first unit have for meas

ures the four members a = 1, b = 3, x = 2, y = 4, of which

three have been taken arbitrarily and the fourth determined

by equation (7) ;
if the lines are measured in a unit half as

large, then one gets the numbers twice as large, a = 2, b = 6,

x __
4^ y=8, which do not satisfy the equation. The cyl

inder constructed with the lines X and Y thus determined

enjoys the property, that the sum of the numbers, which, with

the unit chosen, express the measures of its surface and of its

volume, is equal to the sum of the numbers which express the

measure of the surface of a sphere and of the volume of

another sphere ;
but the same relation does not exist when the

linear unit changes. Equation (7) can only be satisfied by the

measures of the same lines when the unit of length is changed

arbitrarily, provided these lines satisfy equations (5) and (6)

taken singly. In the solution of problems of geometry, one

never uses combinations of equations analogous to the pre

ceding. The equations which give immediately the theorems

of elementary geometry, are homogeneous; and when equa

tions are added member to member it is to obtain a new equa

tion more simple than the proposed ;
for this it is necessary

that the equations added be of the same degree. The prin

ciple of homogeneity serves in each instance to verify the

algebraic transformation deduced.

43. In case one of the lines of the figure is taken as the unit

of length, the equations cease to be homogeneous; but it is

easy to re-establish homogeneity. Let

(8) F(b ,
c

, .) =
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be the equation which is obtained when a line A is taken for

the unit; the letters &
,
c

, , represent the measures of the

lines B, C, ,
with respect to A. Choose an arbitrary unit,

and call a, 6, c, ,
the measures of the lines A, B, C, ;

then
will

i_?y_c _
a~b~~c

whence

and equation (8) is transformed into the following :

which is homogeneous.

Thus, for example, if the sides of the right angle of a right

triangle be referred to the hypotenuse of this triangle taken

for the unit of measure, the measures of the sides satisfy the

non-homogeneous equation

from which is deduced the homogeneous equation

-2 + -2
= 1

&amp;gt;

or &
2 + c

2 = a2
,

a2 a2

b c

by replacing b by - and c by

The curves, ellipse, hyperbola, parabola, cissoid, etc., studied

in the preceding chapter, are represented by homogeneous

equations. Any homogeneous equation

f(x, y, a, 6, c, )
= 0,

between the variable co-ordinates x and y of a point of the

plane and the lengths a, 6, c, of the various given lines,

determine a curve, of which the position and dimensions are

independent of the unit with which the lines are measured.

Consider, on the contrary, a numerical equation in x and y,
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that is, an equation which does not involve other letters than

x and y, and suppose their equation to be non-homogeneous.
In order to represent by points of the plane the real solution

of this equation, it is necessary to begin by choosing arbitrarily

a scale, or the line to be employed as the unit. When the

scale varies, the curve is no longer the same. It will be seen

later that the various curves obtained in this manner have

remarkable analogies ; they are called homothetic curves.

44. REMARK I. It frequently happens that one considers

the numbers which represent the measures of lines, surfaces,

and volumes. The units of surface and of volume, as well as

the unit of length, remain indeterminate
;
but one habitually

assumes that there exists among them this relation, that the

unit of surface is the square constructed on the unit of length,

and the unit of volume is the cube constructed on the same

line. In this case, in order to verify the homogeneity of a rela

tion in which certain letters S and V represent the measure of

a surface and a volume, these letters are replaced by p
2 and g

3
,

where p and q represent a side of the square and an edge of

the cube equivalent to the surface and the volume considered.

By this change the equation will contain only the lines. More

over, their substitution may be dispensed with, namely, in

evaluating the degree of each term the exponent of a letter

which designates a surface is doubled, and a letter representing
a volume is tripled.

II. In general, when angles enter into a calcula

tion, these angles are referred to a unit definitely determined,
and their measures are fixed numbers. In evaluating an angle,

an arc of a circle is described about its vertex as a center with

an arbitrary radius, and the ratio of this arc to the radius is

taken as the measure of the arc
;
the unit arc is the arc which

is equal to the radius. The trigonometric functions of angles
are therefore numbers. In the application of the principle of

homogeneity, one introduces the abstraction of letters which

represent the angles or their trigonometric functions.
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CONSTRUCTION OF FORMULAS.

45. In solving, if it be possible, the equations of a definite

problem, one determines the formulas which represent the

arithmetical operations that it is necessary to perform on these

numbers which measure the known magnitudes in order to

find the numerical values of the unknown. But can one not

deduce from each formula, or what is the same from each

equation, an appropriate graphical construction to give, not

merely the numerical value of the unknown, but the unknown
itself? In a word, is it possible to replace the numerical

operations by graphical ? In elementary geometry, the con

structions are considered which can be accomplished by means
of a limited number of straight lines and circles, and which,

consequently, can be made with the use of a rule and a com

pass. Since the circle is the most simple of curves and the

most easily constructed, the ancient geometers set a great price
on this sort of construction

;
on the other hand, being ignorant

of algebraic analysis, they did not have the means to decide if

the questions which they had in view were susceptible of this

kind of a solution, and it was not until they had made many
fruitless efforts that they decided finally to investigate other

curves. Their investigations have made certain problems
celebrated which can be shown to-day not to be solvable by the

straight line and circle. Examples of such are the duplication
of the cube, the trisection of an angle, etc.

The unknown quantity is assumed to be a straight line;

when the unknown is a surface or a volume, it is represented

by ax or a?x, a being a line taken arbitrarily ;
the construction

of the line x gives a rectangle or a parallelepiped equivalent
to the surface or volume sought. The determination of an

angle given by one of its trigonometrical lines is reduced also

to that of a straight line. It can be assumed then that every

letter, such as x, designates a straight line.

46. BATIOXAL FORMULA. The formula which gives the

unknown x ought to be homogeneous and of the first degree ;
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it can, however, be integral, rational, or irrational. When it is

integral, it takes the form

and the length x is found by measuring one after the other,

in one direction or in another, the lengths a, b, c, .

The fractional formula is the most simple :

_ab
c

The unknown is a fourth proportional, which can be con

structed by two parallels or by a circle.

In the same manner may be constructed the formula

by means of the series of fourth proportionals,

cd by _a(3
y =

^&amp;gt;

= p -?

By the aid of the preceding construction, a monomial

abc-~ghi ~ I

of the degree m may
. ^e reduced to the form

a b c y

ai Z, or, further, to the form \m
~ l

t, \ being any length and t

a line determined by the formula

ai - I
=^rr

Consider now the formula

A-B+C~ B - C

in which A, B, C designate monomials of the degree m + 1?

A
,
B

,
C monomials of the degree m: each monomial may

be reduced to the simple forms

Xma, \m b, \m c, -., AW-V, \m
~ l
b

,
\m

~ l
c

;

whence it follows that

_ X(a b + c) __ .

x ~
a + b -c

~ A
/f
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That is, the unknown x can be determined by a fourth pro

portional between the lines /?, ,
A.

If the fraction were of the degree m, the preceding opera
tions would reduce it to the form

X 1 A &amp;gt;*,

P

47. IRRATIONAL FORMULA OF THE SECOND DEGREE. Let
the formula in this case be

x = Va&, or - = - .

a; 6

The unknown # is a mean proportional between the lines a and
b

;
it is constructed by a right triangle, or by a tangent to a

circle. When the quantity under the radical is a rational func

tion of the degree m, the formula is transformed as follows :

Consider next an irrational formula of the second degree, in

which the quantities are supposed to be connected by the +
or sign, are homogeneous, and of the same degree. For the

sake of clearness, suppose that the value of x is reduced to the

form

x- N
~D&amp;gt;

N and D representing functions in which the sign of division

does not enter, neither do fractional nor negative exponents ;
it

can also be assumed that neither the product of two radicals

nor the product of a radical by an integral quantity enters the

expression. In order to find the value of the numerator N, it

is necessary to perform certain operations in a definite order
;

the first radical sign affects an integral expression, it will reduce

to the form A2
u

;
if this quantity be added to the others, they

will be reduced to the same form, and consequently their sum

also. A new radical sign may now be introduced affecting

either an integral quantity, or a quantity with the exponent ,
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m being odd. In every case, the radical will reduce to the
m

form \*v
;
this term is added to the others of the same form,

and so on. Thus, it is seen that the numerator N will take
m

the form \2p
t. The denominator can be discussed in the same

manner. The unknown x being of the first degree, it can be

found as a fourth proportional.

One can demonstrate that the hypotheses which have been

.assumed in constructing the formula are necessary in order

that it be homogeneous.

Thus, every homogeneous expression of the first degree con

structed in any arbitrary manner by means of the symbols of the

simple operations, addition, subtraction, multiplication, division,

involution to an integralpower, the extraction of a square root; in

a word, every expression, rational and irrational, containing square

roots only, can be constructed by means of a finite number of

straight lines and circles.

It can also be shown that only expressions of this sort are

susceptible of construction by the method just indicated
;
but

this demonstration cannot appropriately be given here. Tor

example, the edge x of a cube which is the double of another

whose edge is a, is given by the formula

x = v 2c?,

and cannot be constructed by a rule and a compass. In like

manner, it is, in general, true of roots of equations of the third

and fourth degree, since cubical radicals enter in the expression

of these roots.

48. CONSTRUCTION OF THE ROOTS OF THE EQUATION OF THE

SECOND DEGREE. The equation of the second degree in one

unknown quantity is reducible to the form x2 +px + q = 0;

in order that it be homogeneous, it is necessary that the

quantity p be of the first degree, and q of the second
;
whether

these quantities be rational or irrational of the second degree,

it will be possible to construct a straight line a equivalent to

the first and a square b
2

equivalent to the second, and the
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equation of the second degree will assume one of the four

following forms :

x2 + ax + b 2 =
0,

a? + ax -b 2 =
0,

tf - ax -f b
2 =

0,

#2 _ aa. _ 2 = Q

The roots of the first and second equation are equal to those

of the third and fourth, taken with contrary signs ;
it suffices,

therefore, to consider those of the latter
;

if they be put under
the form

x (a x)
= b

2

,
x (x a)

= b
2

,

it is evident that it suffices to construct a rectangle equivalent
to a square 6

2

,
and of which the sum or difference of the edges

is equal to a given line a, problems which can be solved by
elementary geometry. The solution of equations and the con

struction of formulas necessitate the discovery of theorems of

geometry.
The bi-quadratic equation may be reduced in a similar man

ner to one of the types

x4 + abx2
c
2d2 = 0,

x4 abx2
4- c

2
d~ = 0,

because it is useless to consider the equation x4
-f abx2

-f c
2d2= 0,

which has imaginary roots. If one put x2 =
cz, these equations

become

32+^2-# = 0, Z
2-Z + d2 =

)
z
2 - Z-d2 = 0.

c c c

One solves these equations for z, then finds x by means of a

mean proportional between c and z.
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CHAPTER IV

TRANSFORMATION OF CO-ORDINATES.

The equation of a curve in terms of certain co-ordinates

being given, it is important to be able to deduce the equation

of the same curve in terms of other co-ordinates.

In order to discuss the problem in a general manner, it is

necessary to deduce the formulas which express the co-ordi

nates of any point of the plane in a certain system in terms

of the co-ordinates of the same point in another system. These

formulas are, moreover, useful in the investigation of a large

number of other questions.

First will be discussed the transformation of rectilinear

co-ordinates of one kind into other rectilinear co-ordinates.

TRANSPOSITION or THE ORIGIN.

49. Suppose that the two axes OX and Y be replaced by
other axes O X and O Y1

,
which are respectively parallel to the

first (Fig. 32) and have the same direction. The position of

the new axes will be determined by the co-ordinates a and 6

of the new origin with respect to the

primitive axes. Let x and y be the co

ordinates of any point M of the plane

with respect to the primitive axes
;
x 1

and y the co-ordinates of the same point ^/
with respect to the new axes. Imagine the

ft
-7 j~

point to be moved along the straight /

line OM or the broken line OOM to M,
and project, parallel to OF, these two lines upon the axes OX.

The projection of the line OM with the proper sign is the

abscissa x of the point M] the projection of the line 00 is

the abscissa a of the point ;
the projection of the line OM
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011 OX, or on the parallel axis O X
,

is the new abscissa x .

The projections of the two lines OM, OO M, being equal, one

has x = a + x . By projection parallel to OX on the axis OF,
one has in a similar manner y=b + y . Thus are obtained the

two relations,

(1) x = a + x
, y = b + y ,

between the old and the new co-ordinates of the point M.
These relations are satisfied, whatever be the position of the

point M in the plane. One may deduce from (1),

(2) x = x a, y = y-b.

CHANGE IN THE DIRECTION OF THE AXES.

50. Preserving the same origin, suppose now that the direc

tion of the axis is changed. Consider a particular case which

has frequent application, the case

when the two axes are rectangular.

Suppose that the direction of the axes

is changed by revolving the right

angle XOY (Fig. 33) through an angle
a about the origin till it attains the

position X OY ,
and consider the angle

a as positive if the rotation takes place
from OX toward OF, and negative if the rotation be accom

plished in an opposite direction.

Through any point M of the plane draw MP and MP par
allel respectively to F and Y

;
let x and y be the co-ordi

nates of the point M with respect to the first axes, and x

and y the co-ordinates of the same point with respect to the

new axes. The projections of the two paths 0PM, OPM on

any axis are equal. Project then these two paths on the axis

OX-, the projection of the length OP is the line itself, affected

with the + or sign, according as it is measured in the direc

tion OX, or in the opposite direction
;
that is, in every case,

the abscissa x; PM being perpendicular to OX, its projection

is zero; the projection of the first path reduces, therefore, to x.

Project now the path OP M, projecting first the portion OP ;
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if the length OP is measured 011 OX
,
it is necessary to mul

tiply by cos a, which gives for the projection OP cos
;
should

this length be measured in an opposite direction, it is necessary

to multiply by cos (TT -f- ),
which gives OP - cos (TT -f- )

or

OP - cos a
;
but in the first case one has x = OP

,
and in

the second x = OP : thus the projection of the line OP is

always expressed by x cos a. Consider the second line P M.

If it be constructed in the direction F, it makes the angle

a -f-^ with OX, and its projection is PM cos
(

a + ^ )
;

if it be

measured in an opposite direction, it makes the angle a + ^ + TT

with OX, and its projection is PM- cos a +
J ;

but one has,

in the first case y = P M, in the second, y = PM
, hence,

the projection of PM is always expressed by y cosf a + -

Consequently, the projection of the path OPM is always

x cos a + y cos (a +- ],
or x cos a y sin a. By equating the

projection of the two paths 0PM, OP M, one gets the relation

x = x cos a y sin a.

Project now the two paths on OF. The projection OP is

zero
;
that of PM, affected with the proper sign, is y ;

thus the

projection of the first path reduces to y. The two directions

OX and Y1 make respectively the angles -\- a and -f- a&amp;gt;

with OF, which furnishes for the projection of the second

path x cos f - + a
J
+ y cos a, or x sin a + y cos a, and one

has the relation y = SB sin a -f y cos a. Therefore the formulas

souht are

(3) x = x cos a y sin a, y = x sin a + y cos a,

which express the old co-ordinates as functions of the new.

51. Next the general question will be investigated. Let

OX and Y be any two axes inclosing an angle 0, OX and

OF
,
two new axes whose directions are defined by the angles

a, and
ft,

which they make with OX (Fig. 34) ;
one considers



56 PLANE GEOMETRY. BOOK I.

Fig. 34.

the angles and
ft as positive, when a movable straight line,

starting from the position OX, gen
erates them in revolving from OX
toward OF, and as negative in case

the line revolves in an opposite di

rection. From any point M of the

plane draw the lines MP and MP
respectively parallel to the axes Y
and OF . To get x, project the two

paths 0PM, OPM on OH, perpen
dicular to Y, so that a line, start

ing from the position Y, revolving

in the direction OX through an angle equal to -, will arrive

finally in the position OH. Since the line OX makes with

OH the angle ~0, and the direction OF is perpendicular to

OH, the projection of the first path reduces to x sin 6. The
line OX makes with OH an angle equal to the angle IIOX
increased by the angle XOX ,

which together make f- $\+ a.

In the same manner the line OF makes with OH an angle

/
j

+ ft; one has, therefore, for the projection of the sec

ond path

x cost- 9 -f a

or

+ y cos -
*

which furnishes the relation

x sin 6 x sin (0 a) + y sin (6 /?).

To calculate y, project the two paths 0PM, OPM on a line

OK perpendicular to OX, so that a straight line starting from

OX and revolving through the angle ^ toward Y will coincide
A

with OK. Since the line OX is perpendicular to OK and the

line OF makes with this line the angle ^ + 0, the projection

of the first path reduces to y sin 0. The angles which the lines
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OX and OY form with OK are equal to the angles which

they make with, OX diminished respectively by
|,

which

gives -| + a, and - + /3; the projection of the second

path is therefore x cos - +
J

-f y cos - +

or a; sin +# sin /?,

and one has the relation

y sin = x sin -f y sin /?.

Thus are derived the formulas

a; sin (0 -)+# sin (0-
sin0

a? sin a -f y sinf!

sinO

for the transformation of oblique co-ordinates into other

oblique co-ordinates.

It is a simple process to deduce the formulas serving to

return from the new to the old co-ordinates. The angle

between the new axes is /? a; the axes OX%and OF form

with OX the angles
- a and - a + 0; it suffices therefore to

replace in the preceding formulas the angle 6 by ft a, a by

a, j8 by a, which gives

&amp;lt;f _ x sin /? + y sin (ft 0)

sin (/? )

f

x sin a -f y sin (0 a)
(5)

sin (/3 )

Let the angle /?
a between the new axes be represented by

;
then the determinant of the coefficients x and y

1 in

formulas (4) is

sin sin (0 )
sin a sin (6 (3) _sin0

sin
2

and the determinant of the coefficients x and y in formulas

(5) is the reciprocal of the preceding,
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52. The general formulas furnish certain special formulas

which are of frequent use,

1 The case when the primitive axes are rectangular. Here

will be equal to
|,

and formulas (4) will become

C
x x cos a 4- y cos /?,

[y= # sin 4 ?/ sin
/?.

2 T/^e case ir/ie/i the new axes are rectangular. Let J3
= a-f- 9?

then formulas (4) reduce to

_ a r sin (0- )- ?/ cos (0
-

ft)

&quot;shit&quot;

x sin 4- ?/ cos a

sin0

One could also put /?
ft ,T? which would amount to

changing the direction of the axis Y
, and, consequently, the

sign of y in formulas (7).

3 The case when the two systems of axes are rectangular.

If, in formulas (6), one put (8
= a +

|,
one deduces formulas

(3), already found,

x = x cos y sin ft,

(3)
y = x sin ft 4- ?/ cos .

These formulas can also be derived by putting in formulas

(7)
=
^
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GENERAL TRANSFORMATION.

53. Suppose that the origin and the direction of the axes

are changed at the same time. The new system of axes will

be determined by the co-ordinates a and Y/ \Y&amp;gt;

b of the new origin ,
with respect to

the old axes, and by the angles a and

ft
which the new axes O X and O Y

make with OX (Fig. 35). Through the

point draw the two axes OXX and /
OYl respectively parallel to OX and Fig. 35.

Y. Then will in one case

and in the other case, by virtue of formulas (4),

x 1 sin (6 a) -f- ?/ sin (0 /3)
x 1

sin a -f y sin /3 1- yi= ~

substituting the values of x^ and ylt
the general formulas of

transformation become

;

f sin (0 a) + y
1 sin (0x = a -\-

_
fr

a; sin -f-?/ sin/?
(8)

The old co-ordinates x and y are expressed as linear integral

functions of the first degree in the new co-ordinates x and y .

THE TRANSFORMATION OF RECTILINEAR CO-ORDINATES

INTO POLAR CO-ORDINATES.

54. Let OX and Y be the rectangular Y

axes
;
take the origin as pole, and the x-axis

as the polar axis (Fig. 36) ; by projecting

the line OM on the axes OX and OF, one

obtains the relations

(9)
Fig. 36.
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Conversely, one can pass from polar co-ordinates to rec

tangular co-ordinates by means of the formulas

p = Va,-
2 + y\ tan o&amp;gt;

=
x

Several transformations of this kind have been made, namely,
when the equations of the cissoid, strophoid, limaQon of Pascal,
and rose ( 21, 24, 27, 30) were derived in rectangular co

ordinates.

DISTANCE BETWEEN Two POINTS.

55. Assume the axes to be rectangular and seek the distance

of the origin from the point M, whose co-or

dinates are x and y. From the right triangle
0PM (Fig. 37) one has

OM2 = OP 2 + PM2 = x2 + y
2
,

Fig. 37.
whatever be the position of the point M in

the plane ;
whence it follows, by putting

I for the distance OM,

(io) i = v^FF.

Seek, next, the distance between two points M and M
,
situ

ated anywhere in the plane ;
call x and y the co-ordinates of

the point M, x and y those of the point M with respect to the

rectangular axes OX, OY. Through the

point M (Fig. 38) draw the axes MX
,

MY1

parallel to the given axes. The co

ordinates of the point M with respect to

the new axes are equal to x x, y y, by
~*~ virtue of formulas (2) of 49. The dis-

Fig. 38. tance of the new origin M from M will

therefore be, owing to formula (10),

/&quot;I &quot;1 \ 7 f? ~t \~2 i 7 ~t \1T~
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56. In case the axes are oblique and the angle included

by them is represented by 0, the

expression will be somewhat more

complicated.

Seek now the distance of the origin

from any point M of the plane.

In the triangle 0PM (Fig. 39), what

ever be the position of the point M,
one has

QM2
== OP2

+ PM2 -%-OP- PMcos 0PM.

In case the point M is situated within the angle FOX&quot;, the co

ordinates x and y of this point are equal to -f OP and + PM,
and the angle 0PM is the supplement of

;
one has therefore

(12) I = Vor + if + 2xy cos 0.

If the point M is situated within the angle YOX ,
the co-ordi

nates x and y being equal to OP and PM, and the angle

OPMj the supplement of 0, the same formula (12) is deduced.

When the point Mis situated within one of the angles YOX ,

Y OX, the angle 0PM is equal to 0, but one of the co-ordinates

is positive and the other negative, which reproduces formula

(12). This formula is, therefore, universal.

In order to obtain the distance between two points MandM
,

one imagines, as above, axes drawn through the pointM parallel

to the first, and obtains the formula

(13) I = -V(x
-

x)
9 + (y

-
2/)

2 + 2 (x
1

-x)(y -y) cos 0.

57. It is frequently useful to know the co-ordinates of a point

which divides the distance between two given points in a given

ratio. In case several segments are situated on the same line,

one calls the direction of the segment the

direction in which a movable point travels

that starts from the first pointM and goes

toward the second M . The algebraic

value of the ratio of two segments is then

the absolute value of their ratio, preceded

by the + or sign, according as the two
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segments are measured in the same or opposite direction. Thus,

in Fig. 40, the ratio ^^ is positive, the ratios MMl
,
*$M M.2 M2M MM

are negative.

Being given two points M and M
,
on an indefinite straight

line, having the co-ordinates x and y, x and y ,
find on this line

a point 3/i with the co-ordinates xl and y1}
such that the ratio

l has in magnitude and sign the value . If the axes are
m

transferred parallel to themselves to the point M the new
co-ordinates of the points M and M will be x xt and y ?/j,

x xl and y y^ In case the given ratio is negative, the
m

point sought, Mlt ought to lie between M and M
;

this is the

case in the figure. The differences x x
1 and x xl or y y l

and y y l have opposite signs ;
their ratio is negative, and the

absolute value of their ratio is equal to the absolute value of

or . One has, therefore, in magnitude and in signm

Xj y - yl

(14)
x Xi y y1 m

When is positive, the point sought, M1}
lies without the seg-m

ment MM
;

the differences x x1 and x x or y y and

y y 1
have the same sign ;

their ratio is plus and equal to the

ratio
l or to . Therefore equations (14) are also appli-m

cable to this case. Whence one has the following formulas

m
which solve the problem for every value of the ratio

,m
mx m x

m m 1

EEMARK. The co-ordinates of the point M2,
x2 and y2, may

be deduced from the preceding by changing the sign of m .

mx -}- m x my + wiV
^2 =

;
r~ ^ 2/2

;
r~

m4- m m + m r
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From the position of this point it follows that

M2M m

the points Ml and M2, corresponding to values, equal and

m
opposite in sign, of the ratio

,
are called harmonic conjugatesm

m i

with respect to the segment MM . In case the given ratio -

m
is equal to 1, the point M will bisect the segment MM and

has the co-ordinates

_~

the point M.2 is removed to infinity.

If !^L is put equal to A, it follows at once that the two
m

conjugate points have respectively the co-ordinates

x- \x i,
- \y

2 1-A J 2 1-A

CLASSIFICATION OF PLANE CURVES.

58. Rectilinear co-ordinates are especially adapted to the

study of the general properties of plane curves. In this

system plane curves are classified in the following manner:

They are distinguished as algebraic and transcendental, accord

ing as the equations which represent them are algebraic or

transcendental. An equation is said to be algebraic when the

co-ordinates x and y enter affected only by the symbols of

algebraic operations. If, however, one of the co-ordinates

enters affected by a transcendental symbol, as a sin, logarithm,

tan, etc., the equation is said to be transcendental. Algebraic

equations can always be put under an integral form by remov

ing the radicals and the denominators.

One classifies algebraic curves according to the degree of

their equations. Curves of the first degree (straight lines) are
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those which are represented by equations of the first degree in

x and y; the equation of the second degree furnishes curves

of the second degree, etc.

It is very plain that the degree of any curve remains

unaltered whatever may be the position of the axes of co-ordi

nates in the plane. In fact, let/(#, y)
= be the equation of a

curve referred to certain axes OX and OY, m the degree of

this equation supposed to be integral. To refer this curve

to other axes O X and O Y
,
it is necessary to substitute for

x and y in the proposed equation the values given by the

formulas of transformation (8) ;
these formulas being of

the first degree in the co-ordinates x and y ,
it is impossible

that the equation in x and y be of a degree greater than m.

The equation will not be of a degree less, because in that case

the inverse transformation would increase the degree, which is

impossible. Thus, the new equation is of the same degree as

the primitive.

The degree of a curve is the same as the number of points

of its intersection with a straight line. In fact, let m be the

degree of a curve whose equation is f(x, y)
= when the

straight line has been chosen as the a&amp;gt;axis
;

if in this equa
tion one makes y =0, the equation thus obtained in x will give

the abscissas of the points common to the curve and the

x-axis. Since the first member of the equation is not identi

cally zero, and is at most of the degree m, the equation cannot

have more than m roots, and consequently the line has at most

?7i points in common with the line. If the equation were

satisfied by more than m values of x, the first member would

be identically zero, and consequently the line would be a part

of the locus; in this case, the polynomial f(x,y) vanishing

identically when y is put equal to zero would contain y as a

factor, and the equation f(x, y)
= could be decomposed into

two equations, one y = of the first degree, the other of the

degree m 1.

Accordingly, curves of the first degree cannot be cut by a

straight line in more than one point ;
therefore the curves are

straight lines. Curves of the second degree cannot be cut by
a straight line in more than two points ;

those of the third
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degree, in more than three points. The circle, ellipse, hyper

bola, and the parabola are curves of the second degree ( 10,

13, 15, 18). These curves can be cut by a straight line in

two points. The.cissoid and strophoid (
21 and 24) are of

the third degree. They can be cut in three points by a straight

line. The limacon of Pascal ( 27) is of the fourth degree ;

the rose of four branches ( 30) is of the sixth degree.

First, one studies curves of the first, then those of the

second, and finally those of any degree whatever.

When an algebraic integral equation of the degree m is said

to represent a curve of the degree w, it is assumed that the

first member cannot be decomposed into integral factors
;
other

wise the equation could represent two or a greater number of

curves of lower degrees. Thus, for example, an equation of the

second degree, whose first member is the product of two inte

gral factors of the first degree, represents two lines of the first

degree; that is, two straight lines. Similarly, an equation of

the third degree may represent three straight lines, or one

curve of the second degree and a straight line. It is for this

reason that certain properties of curves of the mth order are -

applicable to a system of m straight lines
;
that is, to a polygon

of m sides. Thus is learned that the properties of curves of

the second degree are applicable to a system of two straight

lines, since this system can be considered as a locus of the

second degree.





BOOK II

STRAiaHT LINE AND CIRCLE

CHAPTER I

STRAIGHT LINE.

CONSTRUCTION OF THE EQUATION OF THE FIRST

DEGREE.

59. The general equation of the first degree between two
variables x and y has the form

(1) Ac + By +0=0.

It has already been noticed that the line represented by this

equation cannot be cut by a straight line in more than one

finite point, and is necessarily straight. Y ,

However, it is best to show directly that 7
this equation represents a straight line. J ,

It is impossible that the coefficients A and
B be zero at the same time, for then C
must also be zero, and the equation is /

reduced to an identity. But it is possible
Fig&amp;gt; 41&amp;lt;

that one of the coefficients be zero. If, for example, the coeffi

cient A be zero, the equation takes the form By + (7=0,
ri

whence y = =b. This equation represents the locus of a
J3

point M whose ordinate is constant and equal to b, whatever
the abscissa may be

;
the locus is a straight line parallel to the

67

zzz
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axis OX (Fig. 41). This line is constructed by laying off on

Y, beginning at the origin, a length equal in absolute value

to b, in one direction or the opposite, according to the sign

of b, then drawing GG through the point B parallel to the

axis OX. As a special case, the equation y = represents the

axis OX.
When the coefficient B is equal to zero, the equation reduces

to Ax + C = 0, or x = -- = a. This equation represents

the locus of the point M, whose abscissa is constant and equal

to a, whatever the ordinate may be. It is a

straight line HH parallel to the axis OY
(Fig. 42). This line can be constructed by

laying off on the axis OX, beginning at the

origin, a length OA equal to the absolute

~oj~~ ~~1I
I

* value of a, in one direction or the opposite,

according to the sign of a, then drawing HH
Figt

through the point A parallel to OY. As a

special case, the equation x represents the axis Y.

In case the coefficient B is not zero, all the terms of the

equation can be divided by B and it may be written

or (2) y = ax + b,

by putting, for brevity, a = ~ b = .

Consider next the particular case when b = 0.

The equation then reduces to the form

y
y = ax, or - = a.

If a be a positive number, every point of the locus, having

co-ordinates with the same sign, lies in the angle YOX or its

vertically opposite (Fig. 43). Take an arbitrary abscissa OP,

and draw through the point P a line parallel to the axis of y ;

MP
if a point M can be found on this parallel, such that a,
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it will be a point of the locus.

Let M, M ,M&quot;, ,
be points

of the locus constructed by the

preceding rule
;

it follows from

the equal ratios

MP=MP = - M&quot;P&quot;=
OP

~
OP

~
-

OP&quot;

that the triangles 0PM, OPM ,

OP&quot;M are similar, and

Y,

Fig. 43.

hence the angles MOP, MOP 1

,

M&quot;OP&quot;, &amp;gt;~,
are equal; there

fore the points M, M , M&quot;, ,
all lie on the straight line A A

passing through the origin. If x varies continuously from

oo to -f oo
,
the point M will move

continuously and describe an indefi

nite straight line AA .

When a is negative, all points of

the locus, having co-ordinates of _

opposite signs, lie in the angles

YOX and YOX (Fig. 44). Let M,
M

, M&quot;, -, be different points of the

locus
; then, as above, it follows from

the relations

MP MP -M&quot;P&quot;

Fig&amp;gt; 44&amp;gt;

-OP - OP OP&quot;

that all these points are on the same straight line A A passing

through the origin. Thus, in every case, the equation y ax

represents a straight line A A passing through the origin.

Let us return now to the equation y=ax + b. By compar

ing the two equations y = ax -f b, y = ax, one sees that the

ordinates corresponding to the same abscissa differ by a con

stant b
;

if therefore the ordinates of all the points of the

straight line A A are increased or diminished according to

the sign of b by the lengths MN, MN , M&quot;N&quot;, , equal to the

absolute value of b (Fig. 43), the points N, N , N&quot;, ,
thus

obtained, form evidently the right line B B parallel to A A.
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It follows from what precedes that any equation of the first

degree between two variables x and y represents a straight line.

60. It can be shown, reciprocally, that any straight line is

represented by an equatin of the first degree. If the straight

line be parallel to the axis OX, then all of its points have the

same ordiiiate, and the equation has the form y = b (Fig. 41).

If it be parallel to the axis OF, all of the points have the

same abscissa and the equation will have the form x = a

(Fig. 42). In case the straight line passes through the origin,

it occupies one or the other of the two positions indicated in

the figures 43 and 44, and the similar triangles give

MP MP
OP

~

OP
~
-

OP&quot;

MP MP -
M&quot;P&quot;

- OP - OP OP&quot;

If a be this constant ratio, the equation of the right line is

^ = a, or y = ax. Suppose, finally, that the straight line is
x
not parallel to either of the axes nor passes through the origin

(Fig. 43) ; according to what precedes, a line drawn through
the origin parallel to this straight line will have the equation

y = ax
;
now the excess of the ordinate of a point on the pro

posed line over the ordinate of the corresponding point on the

parallel is a constant quantity b
;
therefore the proposed straight

line has for its equation y = ax + b.
r

,

MEANING OF THE COEFFICIENTS.

61. The equation of every straight line which is not parallel

to the axis of y can be put in the form

(2) y = ax + b.

The constant b is the ordinate of the point // (Fig. 43)

where the straight line cuts the axis of y\ it is called the

ordinate of the origin.

The constant a determines the direction of the line; it is

the same for all parallel straight lines and is called the angular

coefficient or coefficient of direction.
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Draw through the origin a line A OA parallel to the proposed

straight line and situated with respect to the axis XX on the

same side as the line OF. Let be the angle XOF, a the

angle AOX, an angle which can vary from to TT; it follows

from Fig. 43 that

y MP^sinMOP

_y __ MP sinMOP sin (IT a) _= - ~- ~

x OP sinOMP sin(&amp;lt;9-)

and from Fig. 44 that

_ _ sin a

-smOMP
=

-sin(a- 0)~~sin(0-a)

one has, therefore, in every case,

(3)
Bin

8i

g&quot;tt

=a

If the axes are rectangular, this relation reduces to

(4)
tan a = a,

and determines the angle a which A makes with the axis OX.

When the axes are oblique, one deduces from the relation

(3) the formula

sin a = a sin cos a a cos sin a,

a sin#
or (5)v 1 + a cos

In order that this formula may be solved by logarithms, the

following transformation is made. It follows from (3),

/ ff

tan
(
a -

a 1 sin a sin (0 ) _ \ 2

a + 1
~~

sin a + sin (0 )

or (6)

62. In constructing the straight line represented by the

equation of the first degree, with numerical coefficients, one

usually seeks the points in which the straight line cuts the

axes and draws a straight line through them.
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Suppose that the equation 2 x 3 y = 5 be given ;
for y = 0,

one has x = f ;
for x = 0, y = -

f; starting from the origin!
one lays off on the o-axis the length f in the direction OX, on
the y-axis the length | in the direction OF

; through these
two points the line is to be drawn. If the equation be free
from an additive constant, the straight line passes through
the origin. One determines then a second point, by giving
to x a particular value; let, for example, 2y + 3x = Q; the

equation being satisfied for a,- = 0, y = 0, the line passing
through the origin ;

if one makes x = 2, then one has y = - 3
;

construct the point whose co-ordinates are x = 2, y = 3, and
draw a line through it to the origin.

63. The general equation of the straight line,

contains but two arbitrary coefficients or parameters ;
because

one can divide the equation by one of the coefficients, then the
other two will be replaced by their ratios to the divisor. When
the equation is put under the form y = ax + b, the two param
eters are a and b. In order to fix the position of the straight
line in the plane, it will be necessary to give a value to each of
the two parameters or to be given two relations between them.

64. PROBLEM I. To find the general equation of straight
lines which pass through a given point.

Let x and y be the co-ordinates of the given point,M. The
equation of any line is

y = ax + 6.

If this line pass through the given point M, the co-ordinates
of this point must satisfy the equation to the line

;
if therefore

the variable co-ordinates x and y are replaced by the co-ordi

nates x and ?/ of the point M, one will have the equation of

condition,

?/
= ax + b.

This relation between the two parameters a and b determines
one of them as a function of the other

;
for example, the pa

rameter b as a function of a. By replacing b in the equation
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of the straight line by its value y ax deduced from the

equation of condition, one obtains the equation

(7) y y = a(x x
).

Equation (7), in which the angular coefficient a is arbitrary,

represents all the straight lines which pass through the point

M. When the parameter a is varied, the line revolves about

the point M.

It has been assumed that every straight line is represented

by an equation of the form y = ax + b, whatever its position

in the plane may be. But there is one exception, viz., when
the straight line is parallel to the y-axis ; because, in this case,

the angular coefficient a is infinite, and the ordinate at the

origin is b. Accordingly, if in equation (7) a is replaced by

the ratio
,
the equation may be put under the form

fi

n (y y )
= m (

x x
) ;

and letting n = 0, one gets the equation x x
,
which represents

a straight line, drawn through the point M, parallel to the ?/-axis.

65. PROBLEM II. Through a given point draw a straight

line parallel to a given straight line.

Let y = ax -\- b be the equation of the given straight line

AB, x and y ,
the co-ordinates of the

given point M (Fig. 45). Since the line

is to pass through the given point M, its

equation, as we have seen above, will

have the form

y y = a (x x 9

).

This line will be parallel to the line AB Figt 45&amp;lt;

when the angular coefficient a is equal to the angular coeffi

cient of the line AB. One will have, therefore, a = a, and

the parallel required will have for its equation

66. PROBLEM III. Draw a straight line through two given

points..
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Let M and M1

(Fig. 46) be the two given points, x and y
the co-ordinates of M, x&quot; and

y&quot;
those

of M1

. The line JOT, passing through
the point M, is represented by an equa
tion of the form

to

Fig. 46.

(7) y-y = a(x-x r

).

It is a simple matter to determine the

coefficient a so that this line may pass through the point M .

For this, it is necessary that the co-ordinates of the point M
satisfy equation (7), which gives the relation

y&quot; y = a
(x&quot;

X 1

),

whence one deduces a = y&quot;-y

x&quot;
- x 1

Thus, the angular coefficient of the line MM is equal to the

ratio of the difference of the ordinates to the difference of the

aoscissas of the two given points. If in equation (7) a be

replaced by its value, one obtains the equation of the line MM
,

(8)
y&quot; -y
x&quot; x

an equation which can be written in the form

x x

When the point M is at the origin, one has x = 0, y = 0,

and equation (8) reduces to

67. It is sometimes useful to define a line by the points

where it cuts the axes (Fig. 47). Call a

the abscissa of the first point, b the ordi-

nate of the second, and let

be the equation of the line sought. If one

makes successively ?/
= and x = 0, one

obtains the points where the line cuts the

r \
Fig. 47.
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axes : one has a =

,
6 = : whence A =

,
B =

A B a b

By replacing A and B by their values, the equation takes the

simple form,

(9)
2 + -L

68. PROBLEM IV. Find the point of intersection of ttvo

given lines.

Let Ax + By + C = 0,

A x + B y + C =
0,

be the equations of the two given lines AB and CD (Fig. 48),M the point of intersection of these two

lines. The point M being common to

each of the two lines, its co-ordinates will

satisfy at the same time the two equa
tions

; if, therefore, one solves these two

simultaneous equations for the two un- -b
-f

x
known quantities, x and y, we obtain the / /
co-ordinates of the point M9

X = BC
- CB = CA - AC 1

AB -BA 1
y AB -BA 1

When the denominator AB 1 BA is different from zero, the

formulas furnish finite and determinate values for x and y,

and the two lines intersect in a finite point M. But when the

denominator is zero and the numerators different from zero,

the values of x and y are infinite; in this case, the two lines

are parallel, and, in fact, they have equal angular coefficients

A 1 1 72 C11

= _ __. if one has =
&amp;gt;

the two numerators

and denominators will be zero at the same time, and the values

of x and y will take the form -
;
the intersection will be inde

terminate, and, in fact, the two proposed lines coincide
;
because

if one puts ^ = =^ = *; then is A = AK, B = BK
9
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C&quot;
= CK\ substitute these values in the second equation, and

divide by K, the resulting equation will be identical with the

first.

69. PROBLEM V. To find the general equation of a straight

line which passes through the point of intersection of two given

straight lines. Let

(10) Ax +By +(7=0,

(11) A x + B y + C = Q,

be the equations of two given straight lines. One could first

find the point of intersection of the proposed lines by solving

equations (10) and (11) ;
then find the equation to any line

through this point ( 64). But one can arrive at the same

result in a more rapid manner.

If one multiplies equation (11) by an arbitrary quantity,

then adds it member by member to equation (10), one gets an

equation of the first degree,

(12) (Ax +By+ C) + X (A x + B y + C
)
= 0,

which represents a third line passing through the point of

intersection of the first two; for, in fact, the co-ordinates

of this point satisfy the two equations (10) and (11), annulling

the two quantities put in parentheses, and consequently, satisfy

equation (12). This equation (12), in which the coefficient X

is arbitrary, represents any straight line which passes through

the point of intersection of the two given lines
; because one

can determine this coefficient X so that the line may pass

through any point M of the plane having as co-ordinates

x and y \
for this it suffices that the equation of condition,

(Ax + By + C) + X (A x 1 + B y + C
)
=

0,

be satisfied, which gives

A x + B y +C 1

In case one makes X = 0, the equation (12) becomes



CHAP. I. STRAIGHT LINE AND CIRCLE. 77

m
this is the first straight line. If one replace A by ,

after hav

ing multiplied by n, place n = 0, one gets the second line,

If in equation (12) one replace X by the value (13), one gets

the equation

Ax + By + C _ A x + B y + C
Ax + By

1 + C~~A x + B y + C

which represents the line passing through the point M and

the point of intersection of the two given lines. The numera

tors are the first members of the given lines, the denominators

are these same polynomials when x and y are replaced by the

co-ordinates of the given point. One recognizes at once, from

inspecting this equation, that the line it represents passes

through the given point and through the point of intersection

of the two given lines.

When the two lines (10) and (11) are parallel, equation (12)

represents all the lines parallel to them.

An equation of the first degree in x and y, which contains

an arbitrary constant A, represents an infinity of lines
;
when

this parameter appears in the first degree in the equation, one

can put the equation in the form (12) ;
one sees then that all

the lines pass through the same point, the point of intersec

tion of the lines (10) and (11).

KEMARK. Suppose that four concurrent lines d, d
,
d

l}
and

dj are given ;
then the lines d

l
and d2 are called harmonic con

jugates of the lines d and d
,
when the two points where a

secant cuts the lines d and d2 are harmonic conjugates of

the two points where it cuts d and d ( 57). It is easy to

see then that the two lines d and d2, whose equations are :

(dj) Ax + By + C+\ (A x + B y + C )
= 0,

(^ Ax + By + C- \(A x + B y + C 1

)
= 0,

are harmonic conjugates of the given lines (10) and (11). In

fact, cut the three lines (10), (11), and (12) by a secant hav

ing the equation y mx -\- n and meeting these lines in the

points Mj M1

,
and Mv
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The abscissas of the three points are

x = Bn + C
x ,= B n + C

x = ^

A 4 Bm A 4 B m
&quot;

A+Bm+ \(A +B m)

and, according to the formulas of 57, one has in magnitude
and in sign,

_x-x, x A 4 B m

Similarly, calling M2 the point where the same secant cuts

the line d2, M2M = A +B m
M2M

~
A + Bm

as one can easily see by changing A. into A. Therefore,

finally,

which shows that the two points 3fb M2 are harmonic conju

gates of the points M, M ( 57).

70. PROBLEM VI. The condition that three lines pass

through a point.

Let Ax + By + C = 0,

A x + B y 4- C = 0,

A&quot;x + B&quot;y + C&quot; = 0,

be the equations of three given lines. One finds the point

of intersection of the first two lines, and substitutes the

co-ordinates of this point in the third equation. This fur

nishes the equation of condition

A&quot; (BC - CB ) -f- B&quot; (CA - AC } + C&quot; (AB - A B) = 0,

or C&quot;(AB -A B)+C (A&quot;B-AB&quot;) -f C(A B&quot;-A&quot;B
r

)= 0.

The lines will not only intersect, but also be parallel if

AB -A B, A B&quot;-A&quot;B
)

A&quot;B - AB&quot;

are all three zero.
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Otherwise, the general equation of the lines which pass

through the point of intersection of the first two is

(Ax + By+C) + \(A x + B y + C )
= 0,

or (A + \A*)x + (B + \B )y + (C+ AC&quot;)
- 0.

If the lines have a common point, by assigning a suitable value

to A, this equation will represent the third line
;
therefore we

ought to have

where Kis arbitrary,

A + \A = B + \B = C 4- AC&quot;

A&quot; B&quot; C&quot;

By eliminating A, one gets the equation already obtained.

71. EXAMPLE. Consider the three medians of a triangle GAB
(Fig. 49) ;

take the vertex as origin, the two

sides OA and OB as co-ordinate axes, and

designate by a and b the two lengths OA
and OB. The median AE, cutting the axes

at the distances a and - from the origin, has

for its equation,

a
+
~b~

similarly, the median BF has for its equation,

.

a b

The mid-point of AB has the co-ordinates OF -, 01? = -; the line
2 2

OD, which joins the origin and this point, has the equation,

=T
By solving the first two equations, one gets the co-ordinates

-=f -I
of the point C the intersection of AE and BF. These co-ordinates satisfy

the third equation ;
hence the third median OD passes through the point C.

By applying the second method, we see at once that the three medians

pass through the same point ; for, by subtracting the second equation,

member by member, from the first, we get the third equation.
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72. PROBLEM VII. Find the condition that three points lie on a

straight line.

Let x and y ,
x&quot; and

y&quot;,
x &quot; and y &quot;,

be the co-ordinates of three

given points M , M&quot;, M &quot;. If the points lie on

a line, the preceding pairs of co-ordinates satisfy

the equation Ax + By -f (7 = 0, and the deter

minant
?; 1

i // 1

l

Fig. 50.
is zero.

The lines M M&quot;, MM &quot;, coincide, and their angular coefficients are

equal, then will

ytt yl ylll
_

yl

x&quot;
- x ~x&quot; -x 1

73. EXAMPLE. If the four sides of a quadrilateral OACB are pro

longed (Fig. 51), a complete quadrilateral OACBA B is formed; the

sides intersect two by two in six

points or vertices
; by joining the

vertices one obtains the diagonals

AB, A B , 0(7; it will be proven
that the mid- points F, E, D, of

the three diagonals 0(7, A B ,

AB, lie on a straight line.

Choose the sides OA and OB
~x as co-ordinate axes

; represent

Fi 51 by a and a the abscissas of the

points A and A
; by b and b

the ordinates of the points B and B . The point D, middle of AB, has

the co-ordinates x = -, y
1 = -. The point E, middle of A B

,
has the

2 2

co-ordinates x&quot; .
y&quot;
=

2 2

In order to get the co-ordinates of the point F, the middle of AC, seek

those of the point C, which is the intersection of the lines AB
,
A B,

whose equations are

By solving these equations, the co-ordinates of the point (7 are found

to be

ab-a b 1
y =

ab - a b
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The point F being the middle of the line OC, its co-ordinates x
&quot;, y&quot;&amp;gt;

are the halves of those of the point C ;
one has, therefore,

x &quot;
_ aa (b

- 6 )
i

, = && (a - ) .

2 (a&
- a fc ) 2 (a&

- a b )

Having the co-ordinates of the points D, E, F one can easily show that

they lie on a straight line. The lines DE and DF have the following

angular coefficients :

W (a
- a }

y&quot;-y _b -b
y&quot;

- y _ ab - a b

x&quot;
- x

~
a - a x&quot;

1 -x
~

aa (b
- b )

ab - a b 1

- b
b -b

a

these two angular coefficients being equal to each other, it follows that

the points D, E, F lie on a straight line.

74. PROBLEM VIII. Find the angle between two lines.

Let y = ax-\-b, y = a x + b
,
be the

equations of two given lines. Draw

through the origin, and on the same

side of the axis as OF, two lines OA
and OA parallel to the given lines

(Fig. 52) ;
call a and a the angles which

they form with OX, Fthe angle which

they inclose, and, to be definite, let

a
&amp;gt;

a. Evidently one has F= a a, whence

Fig. 52.

(15) tan V tana tana

+ tan a tana

When the axes are rectangular, one knows that

tan a = a, tan a = a
,

if those values be substituted in the preceding formula,

a a
(16) tanF=

+ oa
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In case the axes are oblique, one has ( 61) :

a sin#
tan a = a sin

and, hence,

(17)

l+acos0 I4a cos0

(a
1

a) sin0
tan V=

1 + aa -f (a 4 a
)
cos

One can deduce from these formulas the relation which must

exist between the angular coefficients of two lines which are

perpendicular to each other. In fact, in case the angle V is

right, its tangent becomes infinite
;
one has, if the axes are

rectangular,

(18) 1 + aa =
0,

and, if they are oblique,

(19) 1 4 aa 4 (a 4- a
1

)
cos = 0.

75. PROBLEM IX. From a given point draw a perpendicular
to a given line, and find the length of this perpendicular.

Let (2) y = ax 4 b

be the equation of the given line AB, x

and y the co-ordinates of the given point
M (Fig. 53). Suppose the axes to be rec

tangular. Any line passing through the

pointM has an equation of the form ( 64)

y-y = a (x x 1

).

e

Fig. 53.

In order that this line be perpendicular to the line AB, it is

necessary that the relation 1 4 aa = 0, be satisfied ( 74) ;

whence it follows that a = . On replacing a by its value,
Cl&amp;gt;

one gets the equation of the perpendicular MP

(20) ,,_y =_!(*_*-).

The co-ordinates x and
?/
of the foot P of the perpendicular, or

the point of intersection of the two lines AB and MP, are
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found by solving the simultaneous equations (2) and (20) ;
but

it is necessary to calculate the differences x x and y y

in terms of quantities which do not contain x and y ( 55).

Equation (2) can be written in the form

y y = a(x x
) (y ax b) ;

if, in this equation, y y is replaced by its value derived from

equation (20), one finds

(?/ ax b)
1 _l_ 2 J

and hence, by virtue of equation (20),

By applying the formula for the distance between two points

( 55), one gets the length I of the perpendicular MP,

whence (21) l = *L^ l.
V 1 + a2

The sign is so chosen that I will have a positive value. It

is easy to see that the numerator is positive or negative, accord

ing as the point M is situated on the opposite or origin side of

the line AB. For, let N be the point where the line AB is

intersected by a line drawn from the point M parallel to the

axis of y ;
the point N being on the line AB, the ordinate y of

this point will equal ax + b, so that the formula (21) becomes

l
_ ?/

-
y\

The difference, y ylf is positive in the first case and negative

in the second.

It is to be noticed that the length of the perpendicular under

this last form may be obtained immediately, by noticing that

the right-angled triangle MNP gives

MP = MNsin MNP =
(?/ ,) cos a

= y ~
-?/i =

sec a VI + a2
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76. Suppose that the axes are oblique; the lines AB and
MP will be perpendicular if their angular coefficients a and
a satisfy the relation 1 + aa 1 + (a 4- a

)
cos = (by 17) ;

whence a = - 1 + a cos.0
Therefore the equation of the

a -f cos

perpendicular MP is

(22) y_y
a + cos

By solving the two simultaneous equations (2) and (22), one

gets the co-ordinates x and ?/ of the point P. If, as above, one

seeks the differences x x
, y y ,

one finds

x - x = (?/
- ax -

&) (a + cos
(9)

1 + a? + 2 a cos

_ i_ (y
f ax b) (1 + a cos 0) .

substituting these differences in the formula for the distance

between two points ( 56),

I = -V(x
- xj + (y- y )

2 + 2 (x
- x

) (y
- y )

cos 0,

one gets

_ (1 + cos0)
2

2(a
1 + 2 a cos -f a2

By developing, one remarks that the quantity under -the radical

contains the factor 1 cos 2 or sin2

0, and is equal to

(y ax b} sin
hence (23) 1= -^7= ==

VI -f- 2 a cos + a-

The numerator will be positive or negative according as the

point M is situated on the side of AB opposite to, or on the

same side as the origin. The sign is so chosen that / is positive.

77. In what precedes, we have supposed that the equation

of the given line has the form y = ax 4- 6. If the equation has

the general form

(i)
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the angular coefficient a of the given line being equal to -,

one will have, in case of rectangular co-ordinates, a = -- =
,

66 -ti

and the perpendicular let fall from M will be represented by

the equation

y - y =
\ (x

- x
)&amp;gt;

x x y y
or (24)

_ yL
Formula (21), in which one substitutes for a and b their

A C1

values --
,

--
,
becomes

,

(25}
Ax + By +C
V1F+S2

This formula is an expression for the distance of a point

from a straight line in rectangular co-ordinates : the numerator

is the first member of the equation of the line, in which x and

y are replaced by the co-ordinates of the point ;
the denomina

tor is the square root of the sum of the squares of the coeffi

cients of x and y.

When the axes are oblique, one has

the equation of the perpendicular will be

(26)
x ~ x = y ~ yl

A-BcosO B-AcosO
and formula (23) becomes

/OTN 7 (AX -{- JjlJ
-

(27)
l =

/ .p . ^

It is easy to determine the sign of the numerator, according

to the position of the point M with respect to the line AB.
Let N (Fig. 53) be.the point where the line AB is intersected

by MQ drawn parallel to the axis of y; imagine a movable

point, having x and y for co-ordinates, to travel along this
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parallel, and consider the values of the polynomial Ax+By+C
for the various positions of the movable point. If the movable

point be at N, the value of the polynomial is zero. If the

coefficient B is positive when one travels in the direction of

positive ?/ s, the term By increases, and the function takes

greater and greater positive values
;
when one travels in the

opposite direction, it takes negative values; the contrary is

true when B is negative.

78. PROBLEM X. Through the point of intersection -of two

given lines, draw a line perpendicular to a given line.

Let Ax +By + C =
0,

A x + B y + C = 0,

A&quot;x + B&quot;y + C&quot; = 0,

be the equation of three lines in rectangular co-ordinates.

Every line passing through the intersection of the first two is

represented by an equation of the form

in order that it be perpendicular to the third, one must have

1
A&quot;

r
B&quot;

whence one finds

= AA&quot; + BB&quot;

A A&quot; H- B B&quot;

On replacing X by its value, one obtains the equation sought,

(28) (A A&quot; 4- B B 1

) (Ax + By + C)
=

(A&quot;A + B&quot;B) (A x + B y + C&quot;).

79. The three given lines form a triangle whose vertices are

the intersections of these lines two by two. Equation (28)

represents the perpendicular let fall from one of the vertices

to the side opposite. By permuting the accents, one gets the

equation of the perpendiculars let fall from each of the other

two vertices to its opposite side, i.e.,

(A&quot;
A + B&quot;B) (A x + B y + C )

= (AA +BB 1

) (A&quot;x + B&quot;y + C&quot;),

(AA +BB*) (A&quot;x + B&quot;y +C&quot;)
= (A A&quot; + B B&quot;) (Ax + By+C).
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By adding the first two of these equations member to mem
ber, one obtains the third. Hence one infers ( 70) that the

three altitudes of a triangle pass through a common point.

80. PROBLEM XI. To find the locus of all points equally distant

from two given points.

Suppose the axes to lie rectangular, and let x and y ,
x&quot; and

y&quot;
be the

co-ordinates of the two given points. If x and y are the co-ordinates of

any point whatever of the locus, the equation of the locus will be

or, more simply,

(29) (x&quot;

- x ) x -

This locus is a straight line perpendicular to the line joining the two

given points at its mid-point.

81. PROBLEM XII. To find the locus of all points which are

equally distant from two given lines.

Let us suppose the axes to be rectangular. Let

Ax + By + C =
0,

A x + B y + C = 0,

be the equations of the two given lines. If one represent the

co-ordinates of any point of the locus by x and
?/,

the equation
of the locus will be

= A x + B y + C

4- B 2

Owing to the double sign, this equation represents two lines,

which are the bisectors of the angles which are formed by the

given lines.
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EQUATION OF THE STRAIGHT LINE IN POLAR
CO-ORDINATES.

82. Let be the pole and OX the polar axis. The position
of a line AB can be determined by the

length a of the perpendicular let fall from
the origin on this line, and by the angle
a which this perpendicular makes with

.
the polar axis, this angle having the limits

\ J

and 2 TT. Let p and w be the co-ordinates
Fig. 54. of any point of this line; by projecting

the radius vector OM on the perpendicular OD, one has

(31) p cos (w )
= a

;
or p =

cos (w )

Since a and a are constants, this equation can be given the

form, by developing cos (w ),

(32)
C

A cos o&amp;gt; -f- B sin w

Conversely, every equation of this form represents a

straight line
; for, by referring it to rectangular co-ordinates,

i.e., by taking the polar axis as the a-axis, and a perpendicu
lar to it at the pole as the ?/-axis, then using the transforma
tion formulas x = p cos

&amp;lt;o, y = p sin
o&amp;gt;,

the new equation is

Ax+By= C.

KEMARK. If the line pass through the pole, then a = and

p, in equation (31), is not zero
;
therefore cos (w a) = 0, or

&amp;lt;o
= constant.
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ANOTHER FORM OF THE EQUATION TO A
STRAIGHT LINE.

83, Equation (31) developed becomes :

p cos oj cos a -f p sin &amp;lt;o sin a = a,

or, in rectangular co-ordinates,

(33) x cos a + y sin a a = 0.

The equation of the line being put under this form, its first

member has a very simple geometric meaning. Let any point

M of the plane, whose polar co-ordinates are p and
o&amp;gt;,

and rec

tangular co-ordinates x and
^,

be consid

ered
;
from this point drop a perpendicu

lar MP 011 the line AB (Fig. 55). The

projection of the radius vector OM on

the line OD is p cos
(&amp;lt;o ) ;

but this

projection is equal to OD, increased or

diminished by the perpendicular PM,
according as the point M and the origin

are situated on opposite sides or on

the same side of the line
;

if therefore this perpendicular be

represented by p, affected with the 4- sign in the first case,

and by the sign in the second, one will have, in general,

a -f p = p cos (w a)
= x cos a -f- y sin a,

whence p ( x cos + y sin a a).

Thus, the first member of tne equation (33) represents the

distance from any point of the plane, whose co-ordinates are

x and
?/,

to the line represented by this equation, this distance

affected with the proper sign.

It is easy to deduce the co-ordinates x and yl
of the foot P

of the perpendicular ;
the differences x x

lt y y^ being the

projections of the line PM 011 the two axes, we have

x xl
= p cos a = (x cos a + y sin a a) cos

,

y yi=p sin a = (x cos a + y sin a a) sin a.
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The form (33), under which the equation of the line can

always be put, is useful in a large number of investigations.

83. 2. The equation of a line passing through tico points.

Let

be the co-ordinates of the two points ;
the equation of the line

joining these two points is

cos to sin w

cos
o&amp;gt;!

sin

Pi

cos to_, sn o&amp;gt;2

= 0;

in fact, this equation represents a straight line since it can

be put under the form of (32), and it is evidently verified by
=

u&amp;gt;
= a and =

2 w = w2 .
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CHAPTER II

THE CIRCLE.

84. We seek first the equation of the circumference of a

circle in rectangular co-ordinates. Eepre-
T

sent by a and b the co-ordinates of the

center C (Fig. 56), and by r the radius
;

the circumference, being the locus of the

points whose distance from the center

is equal to the radius, has for its equa

tion
Fig. 56.

this equation developed may be written

Hence, the equation of the circle, in rectangular co-ordinates,

is an equation of the second degree, which does not involve the

product xy of the variables, and in which the terms in x2 and y
2

have the same coefficient.

85. Conversely, every equation of this form, in rectangular

co-ordinates, represents a circumference of a circle, if it repre

sents a locus. In fact, equation (2) can be written in the form

L_^
A

The center C will, therefore, by (1), have the co-ordinates

-- and
;
the first member represents the square of

A A
the distance of any point M of the plane, having the co

ordinates x and y, from the point (7; if the second member

is positive, the equation will be satisfied by the co-ordinates
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of all the points of the plane whose distance from C is equal

V
ry* i w^ TF

: it represents therefore a circumference
A- A

of a circle. When the second member is zero, the distance

MC becomes zero, the point M will coincide with the point C,

and the equation will still be satisfied by the co-ordinates of

this point ;
the locus will be reduced therefore to a single

point.

Finally, in case the second member is negative, the equation
cannot be satisfied by any point of the plane; because the

square of the distance of the point M from the point C is a

positive quantity ;
the equation cannot therefore, in this case,

represent a geometrical locus.

86. Suppose now that the co-ordi

nate axes are oblique, and inclose an

angle $ (Fig. 57) ; by expressing that

the distance of any point of the locus

from the center is equal to the radius,

one will have the equation of the

Fig. 57. circumference,

(3) (%
_

cCf -f- (y b)
2

-\- 2 (x a) (y b) cos = r2
.

This equation may be written in the form

(4) A(x&quot; + y- + 2 xycos 0) + 2 Dx + 2 Ey + F= 0.

Hence, the equation of a circle, in oblique co-ordinates, is an

equation of the second degree, in which the terms in x2
,
in y

2
,
and

in 2 xy cos have the same coefficients.

On dividing by A, one reduces, as in (3), the coefficients of

x2
, if, 2 xy cos to unity.

87. Conversely, every equation of this form represents a

circumference of a circle, if it represent a locus. In fact, one

can determine the three constants, a, b, arid r2
, by comparing

equations (3) and (4). Equation (3), developed, becomes

a-2 _|_ y2 + 2 Xy Cos 2 (a + b cos &)x 2 (b + a cos ff)y
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Equations (3) and (4) will become identical by placing

7) 7f

a -f b cos = --
-&amp;gt; b -f- a cos = --

-&amp;gt;

A A

a2 + b
2 + 2 ab cos 0-r =

A

The first two relations give finite values for a and 6, since

the determinant 1 cos2 or sin
2

is different from zero.

The third gives
-pi

r2 = a2
-}- 6

2
-f- 2 ab cos --

A

Notice the point (7, which has the co-ordinates a and b. The

first member of equation (3) represents the square of the

distance of any point M of the plane, whose co-ordinates are

x and y, from the point C. If r
2

is found to be a positive

quantity, the equation will be satisfied for every point of

the plane whose distance from C is equal to r
;

it represents

therefore the circumference of a circle. If r2 has the value

zero, then the distance MC equals zero, and the equation will

be satisfied by the co-ordinates of the point C; it will repre

sent a single point. Finally, if r
2 have a negative value, the

equation will not be satisfied by a single point of the plane.

Instead of determining the center C of the circle by its

co-ordinates a and b, it is more convenient to determine it.by
the orthogonal projections of the line OC on the two axes.

Call these two projections OD and OE, a and b (Fig. 57),

affected by proper signs, and express the fact that the projec

tion of the line OC on the one or on the other axis is equal to

that of the broken line OPC or OQC; one has

whence, a =
,

& =. After having laid off the
A A

lengths a and b on the axes, beginning at the origin, one

erects perpendiculars to the axes at the points D and E
;
the

intersection of the two perpendiculars will determine the

center (7.
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88. The equation of the circumference of a circle, as has

been found, is

(5) (a?
-

a)
2 + (y

-
b)

2 + 2 (x
-

a) (y
-

b) cos - r* = 0.

The first member has a geometrical signification which it is

well to notice. Consider a point M of the plane having the

co-ordinates x and y j
the expression

represents the square of the line MC, which joins the pointM with the center (Fig. 58) ;
the first member of the equation

is, therefore, equal to MC- r2
,
that is, to the product of the

two factors MC + r and MG r, which are

the two segments MA and MB of the diam

eter drawn through the point Jf, the seg
ments being affected by the same or contrary

signs, according as they are measured in

the same or in opposite directions. Thus the

first member of equation (5) represents the

product of two segments of any secant drawn from the point

M, that is, the power of this point with respect to the circle.

When the point M is without the circumference, this product
is equal to the square of the tangent.

Fig. 58.

89. PROBLEM I. To find the equation of the tangent to any
curve.

We have already given the definition of a tangent at a point
M of a curve ( 19). Through
the point M and a neighboring

point M1 on the curve draw a se

cant MM
,
and allow the point M

to continually approach the point
M. The secant MM will revolve

about the point M, and if it tends

toward a limiting position MT,
Fig. so. this line MT is called the tan

gent to the curve at the point M (Fig. 59).
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Let x and y be the co-ordinates of the point of contact M
;

x -f- h and ?/ + k those of the neighboring point M ;
the angu

lar coefficient of the secantMM is the ratio - of the difference
h

of the ordinates of the two points M and M to the difference

of their abscissas. As the point M approaches indefinitely

toward the point M, the two increments h and k tend simulta

neously toward zero; we study here curves defined by equa

tions such that the ratio - tends toward a limit, which is the
h

derivative of the ordinate regarded as a function of its abscissa.

If the equation of the curve is solved with respect to y, and

put under the form y=f(x) }
the tangent will have for its

angular coefficient y =f (x). In case the equation of the

curve /(#, y) cannot be solved, the derivative y of

the implicit function y can be derived from the equation

/ x + ?/ / = 0, in which / x and / represent the partial

derivatives of the function f(x, y), with respect to x and y.

Whence it follows

(6)
--

J y

Thus, if X and Y be the co-ordinates of any point of the tan

gent, the equation of this line will be

90. PROBLEM II. To find the equation of the tangent to the

circle.

Let the preceding formula be applied to the circle, suppos

ing that the axes are rectangular and the origin is at the center

of the circle. The equation of the circle is

(8) x2 + y
2 - r- = 0.

The equation, solved for y, becomes y = Vr2 x~
;
on tak

ing the derivative of this function, one has

y =
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By leaving the equation unsolved and applying formula (6),

the same value y = - is obtained. Thus the equation of the

tangent is

Y-y = --(X-x), or xX + yT= y? + f.
y

Since the point M is on the circle, its co-ordinates satisfy

the equation of the circle, and one has x2
-f- 2/

2 = r2
. The equa

tion of the tangent is simplified and becomes

(9) xX + yY=i*.

Since the angular coefficient of the radius drawn to the

point of contact is ?, it follows that the tangent is perpendicu-
x

lar to this radius.

91. PROBLEM III. To draw a tangent to a circle from an

exterior point.

Suppose that the circle is always referred to rectangular

axes drawn through the center, and represented by the equa
tion

(8) z2 + 2/

2 = r2

;

call XL and y1 the co-ordinates of the given point P (Fig. 60).

Let MP be a tangent drawn from this point ;
the question is

now to determine the point M, whose unknown co-ordinates

are assumed to be x and y. ,
The point

M being on the circle, its co-ordinates

satisfy equation (8). The tangent at

the point M has the equation xX + yY
= r2. This tangent passes through the

point P, and the equation must be satis

fied by the co-ordinates of this point,

which furnishes the relation

Fig. 60.

(10)

By solving the two simultaneous equations (8) and (10), the

values of the unknown x and y will be obtained.
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The solving of the two equations (8) and (10) results in

finding the point of intersection of the two lines. The first

equation represents the given circle
;

the second a straight

line. To find the values of x and y, which satisfy at the same

time these two equations, is to find the points of intersection

of the line and circle. This line cuts the circle in two points

M and M and is the line of contact. It is to be noticed that

equation (10) of the line of contact has the same form as

equation (9) of the tangent; only, that the co-ordinates of the

point of contact are replaced by those of point P.

92. Qne knows that, in case one has two equations

A = 0, B = 0,

simultaneous with respect to two unknown quantities x and y,

if one of the equations be replaced by mA + nB = 0, which is

obtained by multiplying the equations by the arbitrary quan
tities m and ?i, and then adding them member to member, one

forms a new system of equations

equivalent to the given system. This signifies geometrically

that the points of intersection of the two curves represented

by the two given equations are the same as the points of inter

section of one of them with the third curve.

It has been stated that the points of contact M and M are

given by the intersection of the given circle and the line of

contacts. By subtracting the two equations (8) and (10) mem
ber from member, one obtains the new equation

a2 + f - #i
-

y\y = o,

which may replace equation (10). This new equation repre

sents a circle whose center is the mid-point of the line OP and

has the co-ordinates ?2 and ?L Since the equation has no con-
2 2

stant term, the circle passes through the origin and is, there-
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fore, described on OP as a diameter. The points in which the

circle cuts the given circle are the points of contact. In this

manner the construction of elementary geometry is verified.

93. PROBLEM IV. To draw a tangent parallel to a given line.

To the circle

it is required to draw a tangent parallel to the line OA, which
is supposed to be drawn through the origin, and to be repre

sented by the equation y = mx (Fig.

Gl). If x and ?/ be the co-ordinates

of the point of contact M, one knows
that the angular coefficient of the

tangent is equal to -. In order
y

that the tangent MT be parallel to

the given line, the angular coefficient

must be equal to ra, i.e. - =m, or
V

Fig. 61,

(11) y = m

Further, the co-ordinates of the point M satisfy the equation
of the circle. These co-ordinates are therefore determined by
the two simultaneous equations (9) and (11), and, consequently,
the points of contact M and M are given by tl^e points of

intersection of the circle and the line represented by equation

(11). It may easily be shown that the line MM is perpen
dicular to the line OA.

94. This problem may be discussed in another manner, and

this will give us the opportunity of presenting the equation of

the tangent to the circle in a new form. Let us therefore seek

the points of intersection of the circle x2
-f- ?/ = r2

, by the line

y = mx -f & On eliminating y, one gets the equation of the

second degree, x2 + (mx -f fc)

2 = r2
,
or

(m
2 + 1) x

2 + 2 mkx + k2 - r2 = 0.
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When this equation has real roots, the line cuts the circle in

two real points whose abscissas are the roots of the equation.

In case the roots of the equation are equal, the points of inter

section will coincide, and the line becomes a tangent to the

circle. Finally, when the roots are imaginary, the line does

not cut the circle.

Thus, the condition that the line be tangent to the circle is

m%2 = (m
1 + 1) (fc

2 - r2
),

or k2 = r* (m
2 + 1).

Substituting for k its value, the equation of the line becomes

(12) y = mx r Vm2 + 1.

This equation, which involves a single arbitrary parameter

m, represents all the tangents to the circle.

95. PROBLEM V. To find the locus of the points whose distances from
two fixed points are in a given ratio.

Let A and B be the two given points

(Fig. 62). Take the line AB as the

z-axis, and for the ?/-axis a perpendicular

to AB at its middle point. If one calls

2 a the distance AB, the given ratio,
n

and if x and y designate the co-ordinates

of any point in the locus, the equation

of this locus will be

+ (x + ff)
2 _

Fig. 62.

or (13)
n
l -f a2 = 0.

This is a circle whose center lies on the axis of X. The two extremities

of the diameter DE are the points which divide the_line AB in the ratio

m to n.

96. PROBLEM VI. To find the points of intersection of two

circles.

Let (14) y? + jf + 2 Dx + 2 Ey + F = 0,

(15) a? -f f + 2 D x + 2 E y + F = 0,

be the equations of two circles in rectangular co-ordinates, the

coefficients of y? + f being equal to unity. The points of
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intersection will be given by these two simultaneous equations.

One can replace the second circle by the line

(16) 2 (D - D 1

)
x + 2 (E - E 1

) y -f (F- F^ = 0,

which is obtained by subtracting the equations member from

member, and the question is reduced to finding the points of

intersection of the first circle with this line. If the line cuts

the circle, the circles have two points of intersection, and

equation (16) represents the common secant. If the line

becomes tangent to the circle, the points of intersection coin

cide, and the two circles will be tangent ; equation (16) will in

this case represent the common tangent. Finally, when the

line does not cut the circle, the two circles do not have a

common point.

Moreover, the equation (16) has in every case a remarkable

geometrical signification. The first members of equations (14)

and (15) represent respectively ( 88) the powers of any

point M of the plane, having the co-ordinates x and y, with

respect to the two given circles; whence equation (16) may be

obtained by equating these two expressions, the terms of the

second degree canceling; equation (16) represents, therefore,

the locus of points of equal power with respect to two

circles
;
this locus is a straight line, which is called the radical

axis of the two circles. The portion of this line external to

the circles is the locus of the points from which any pair of

tangents drawn to the two circles are equal each to each. It

is clear that the radical axes of three circles meet in a point ;

this point is called the radical center of the three circles.

When it is exterior to the three circles, the tangents emanating
from this point have the same lengths. The circle described

about this point as center with a radius equal to the common

length of the tangents is orthogonal to the three circles con

sidered.

REMARK. If the coefficients of or + y
2 be not equal to

unity, and if the equation of the two circles are of the form

(17) /(, y)
= A (a? + ?/) 4- 2 Dx -f 2 Ey + F= 0,
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the equation of the radical axis can be derived by eliminating

the terms of the second degree between the two equations, that

is to say, by multiplying the first by - A the second by A,

and adding; thus is found the equation

(18) A* - Af= 2 (AD
1 - DA 1

)
x + 2

(AE&amp;lt;

-

+ AF - FA = 0.

More clearly does this equation represent the radical axis,

because the power of the point (a?, y) with respect to the first

circle &&$, with respect to the second, ^l); by equating
A A

these two powers and clearing of fractions, one gets equa

tion (18).

97. PROBLEM VII. To find the general equation of the

circles which pass through the points of intersection of two given

circles.

The totality of these circles is called a pencil of circles.

Their equation may be found by a method identical with that

employed in the analogous problem of straight lines ( 69).

Let the two circles be represented by equations (17), the

equation

(19) f(x,y)

that is to say,

(A + \A ) (x* + if} + 2(D+ \D )x + 2(E + \E )y +F+XF = 0,

where X plays the role of an arbitrary constant, represents a

circle passing through the points of intersection of the two

given circles ; for the co-ordinates of each of the points of inter

section reducing / and &amp;lt; to zero, evidently make /+ X6 = 0.

Equation (19) is the most general equation of the circle sought,

that is to say, for every value of A, it represents some circle S

passing through the points common to the given circles. In

fact, choose a point (aj1? y^ on the circle S, and determine A by

the equation of the first degree
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which expresses the condition that the circle (19) passes
through the point (xlt y^. The coefficient A being thus de

termined, the circle (19) and the circle S coincide, because

they have in common three points at finite distances, namely,
the two points of intersection of the given circles and the given
point (!, ft).

All of the circles of the pencil (19), taken two by two, have
the same radical axis, which is 110 other than the radical axis
of the given circles (18). This radical axis is to be reckoned

among the circles of the pencil, for it is derived by giving the

particular value -- to A, which causes the terms of the

second degree to disappear.

LIMITING POINTS. Take, for simplicity, the line through
the centers of the given circles as the ie-axis and their radical

axis as the y-axis; the equations of the two circles take the

form

(20) a* + y*-2ax + c = 0,

a and a being the abscissas of the centers of the two circles

and c the power of the origin with respect to each of the two

circles, the power being the same for the two circles, because

by hypothesis the origin is on the radical axis. The general

equation of the circles passing through the points common to

the two circles is

/) - 2(a + Aa&amp;gt; + (1 + A)c - 0,

or more simply on dividing by (1 -f- A) and calling the ratio

a + Aa

T+T-*
(21) flj + 3*-2 A 3+ &amp;lt;;

= 0,

where
/z represents an arbitrary coefficient. This last equa

tion could have been deduced a priori, because it is the general

equation of the circles, which, associated with either of the

given circles, has Y as the radical axis.
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Among the circles (21), there are two, each of which reduces

to a point real or imaginary, or, in other words, has a radius

equal to zero
;
these two circles are the limiting points. Equa

tion (21) can be written

Therefore, for /x
= Vc, this circle reduces to the point

x = H,y = Q. If c is positive, that is, if the origin is exterior

to the two circles, or what amounts to the same thing, if the

two circles intersect in imaginary points, the values of /x
are

real and the two limiting points are real. In this case, Vc

represents the common length of the two tangents drawn from

the point to the given circles
;
the limiting points are there

fore the intersections of the line of centers, Ox, with the circle

described about the foot of the radical axis as center, with a

radius equal to the length of the tangent drawn from to any

one of the given circles. If, on the other hand, the two given

circles (20) intersect in real points, O being within the two

circles, c is negative and the two limiting points are imaginary.

If the two given circles are tangent, is their point of contact,

c = 0, [L
= 0, and the two limiting points coincide with

97. 2. PROBLEM VII. Find the condition that two circles

intersect orthogonally.

When two circles intersect at right angles, the radii drawn

to the point of intersection M are perpendicular, because they

are perpendicular to tangents which are perpendicular by

hypothesis. The triangle, which has as vertices the point M
and the two centers, is therefore right angled at M, and the

square of the distance between the centers is equal to the sum

of the squares of the radii. Suppose that the two circles are

represented by equation (17) ;
then by using the expressions

given in 85 for the co-ordinates of the center of a circle

and the square of its radius, the condition that the two circles

cut orthogonally in rectangular co-ordinates will be

(22) AF + FA - 2 (DD
1 + EE )

= 0.
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The same result can be derived without the assistance of

geometry. Let (x, y) be a point common to the two circles (17) :

the angular coefficients of the tangents to the two circles at

this point being respectively ( 89)
- and -

^f, the neces-
J y &amp;lt;Py

sary and sufficient condition that the two circles be orthogonal
at the point (#, y) is

; *=&amp;lt;&amp;gt;,

which becomes by substituting and developing

(23) AA (x* + if) + (AD + DA )x + (AE
1 + A E)y

+ DD +EE 1 = 0.

If ^, y be regarded as current co-ordinates, this last equation
represents a circle, and, as it should be satisfied by the points
of intersection of the two given circles (17), it ought to repre
sent a circle passing through the points of intersection of these
two circles. Moreover, the three circles (17) and (23), taken
two by two, should have the same radical axis. The radical

axis of circle (23) and the first circle, /= 0, of (17) has the

equation

(AD - DA )x + (AE
1 - EA )y + DD + EE - FA =

;

the equation of the radical axis of circle (23) and the second
circle

&amp;lt;/&amp;gt;

= 0, of (17), is

(AD 1 - DA )x + (AE 1 -
EA*)y - DD 1 - EE + AF = 0.

Expressing the condition that these two equations should
be identical, one gets equation (22).
The condition expressed in (22) may be verified by suppos-

ing ^. = 0; the second circle becomes a straight line, and
the condition of orthogonality ought to express the condition

that this straight line pass through the center of the first

circle.

EEMARK. The condition of orthogonality is linear and

homogeneous with respect to the coefficients of each of the
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circles. Conversely, if between the coefficients A, D, E, F
of the equation of a circle

A(x&amp;gt; -f y
2

)+ 2 Dx + 2 JSfy + F= 0,

any linear and homogeneous equation

ZJ. -f MD + JV.E + P^ =

be established, this relation compared with condition (22)

shows that the circle considered is orthogonal to the fixed

circle

APPLICATIONS. To find the equation of a circle which cuts orthogo

nally three given circles

f(x, y}
=

A(x&amp;gt; + y*)+2Dx + 2Ey +F = 0,

0(, y)
= A (x* + yi)+2D x + 2E y + F = 0,

$(x, 20= A&quot;(x
2 + y

2
) -f 2 D&quot;a; + 2 Jy + -F&quot; =

Let (24) (x
2 + ?/)

be the circle sought ;
one should have, after condition (22) has been

applied to circle (24), associated with each of the other three in order

and been arranged with respect to a, of, e, and /.

(25) aF -2dD -2eE +fA =0,

aF&amp;lt;
- 2cW - 2 eE +fA = 0,

aF&quot;
- 2 dD&quot;

- 2 eE&quot; -f fA&quot;
= 0.

If the three given circles taken two by two do not have the same radical

axis, these equations give a single system of values for the ratio of any

one of the coefficients a, d, e, / to the other three
;

there is, therefore,

one circle only cutting the proposed circles at right angles ;
it is called

the orthotomic circle. Its equation is obtained by eliminating a, 2 d, 2 e,

f between equations (24) and (25), which gives in determinant form

F, D, E, A
F

,
D 1

,
E

,
A

F&quot;, D&quot;, E&quot;, A&quot;

= 0.

It is admissible to suppose that any one of the coefficients A, A ,
A&quot; is

zero
;
the corresponding circle is then replaced by a straight line.



106 PLANE GEOMETRY. BOOK II.

NET OF CIRCLES. Let /(#, ?/),
&amp;lt; (x, ?/), $(x, y), be the first

members of the equation of the three preceding circles, which,
taken two by two, do not have the same radical axis; the

equation

(26) A/ (x, y) + n&amp;lt;t&amp;gt; (x, y) + ^ (x, y)
= 0,

where A, /*, v are arbitrary coefficients, represents an infinitude

of circles, forming what is called a net. It is desired to

determine the condition that every circle of the net be

orthogonal to some fixed circle, that is, orthotomic to a circle.

In fact, by adding equations (25), member to member, after

having multiplied the first by A, the second by //,,
the third by

v, a relation is obtained which expresses precisely that the

circle (26) is orthogonal to the orthotomic circle (24).

Conversely, the totality of the circles which are orthogonal

to a fixed circle forms a net. For the condition that a

circle S be orthogonal to a fixed circle leads to a linear homo

geneous relation with respect to the four coefficients of the

equation of the circle S. One of these coefficients is therefore

a linear homogeneous function of the other three, which are

arbitrary and which may be called A, /*,
v

;
the equation of the

circle S arranged with respect to A, /w,,
v takes then the form

of (26), and the circle S forms a net.

EQUATION OF A CIRCLE IN POLAR CO-ORDINATES.

97. 3. Let be the pole and OX the polar axis (Fig. 63) ;

call a and a the co-ordinates of the center (7, r the radius,

and p and w the co-ordinates of any

-^ point M of the circumference. In the

triangle OCM, one has

(27) p
2 2 ap cos

(&amp;lt;&amp;gt; a) + or r2 = 0.

When the pole is situated on the

~*
circumference, one has a = r, and the

equation reduces to

(28) p = 2 r cos
(&amp;lt;o a).
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As an application of this equation, consider two circles which

intersect; through one of the points of intersection 0, draw

any secant
;
this secant meets the circles in two other points

M and M
;
find the locus of the mid-point of the line MM .

If the point be taken as pole, the two circles are represented

by the equation

p = 2r cos (a) a), p = 2r cos
(&amp;lt;&amp;gt;

a
),

and one obtains immediately the equation of the locus

p = r cos (co ) + r cos
(&amp;lt;&amp;gt;

a
) ;

this equation can be put under the form

p = 2?-1 cos(o&amp;gt;- aO,

and the locus is a circle passing through the point of intersec

tion of the two given circles.
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CHAPTER IIP

GEOMETRICAL LOCI.

98. Geometrical loci may be defined in various ways.
Whenever a property common to all points of a locus is given,

it is by interpreting this property by means of algebraic

symbols that the equation of the locus is obtained. In this

manner, the circumference of a circle was defined as the locus

of points whose distances from a given point are equal to the

same given quantity; it wras by expressing this property,
common to every point of the locus, that the equation of the

circumference was obtained ( 84). Thus, also, has been

found the locus of the points whose distances from two given

points are in a given ratio
( 95) ;

the expressing of this

property gives the equation of the locus. Likewise, by the

same process, the equation of the perpendiculars erected at

the mid-point of the straight line which joins two given points

( 80), and those of the bisectors of the angles formed by
two given lines ( 81). ,

But, usually, a curve PQ (Fig. 64) is defined by the motion

of a point in the plane. Each position of the variable point

M is determined by the construction of a figure whose various

parts depend on an arbitrary parameter a. Consequently the

two co-ordinates x and y of the point M are functions of this

variable parameter a : let

be the two functions
;
one sees that the equation of the locus

described by the point M is found by eliminating the param
eter a between the two equations.

More generally, the geometric construction determines every
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point of the locus by the intersection of the variable curves

which depend on the parameter a; let

(1) F(x, y, a)
= 0,

(2) FI(X, V&amp;gt;

a
)
=

&amp;gt;

be the equations of the two curves. If a particular value be

assigned to this parameter, two curves A and B are obtained

which intersect in a point M, whose

co-ordinates x and y satisfy the two

simultaneous equations (1) and (2).

If another value a be assigned to the

parameter, the two lines will occupy

the positions A and B
,
and the point

of intersection will be at M
;
a third

value a&quot; assigned to the parameter ^
will give the two curves A&quot; and B&quot;

and their point of intersection M&quot;,
and so on. Allow the

parameter a to vary in a continuous manner; then the two

curves A and B will be displaced in the plane in a continuous

manner, and the point of intersection M will describe the

line PQ.
The equation of the curve PQ, the locus of the point M,

will be found by eliminating the parameter a between the two

equations (1) and (2).
In fact, the elimination of a between

the two equations (1) and (2) amounts to finding a system of

two equations

(3)
F2 (x, y, a)

= 0,

(4) /0, y)
= 0,

equivalent to the system of two equations (1) and (2), and

such that one of them does not contain the symbol a. Two

systems of equations are said to be equivalent, when they

are satisfied by the same assigned values of the variables.

When a particular value is assigned to a, the co-ordinates x

and y of the point M associated with this value of a form

a system of three quantities, x, ?/, a, which satisfy at the

same time the two equations (1) and (2); since the system
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of equations (3) and (4) is equivalent to the preceding, these

values satisfy also equations (3) and (4); equation (4), which

does not involve a, is therefore satisfied by the co-ordinates

of every point of the locus.

Conversely, every point M, whose co-ordinates x and y

satisfy equation (4) belongs to the locus. Because, if one

determines a value a which satisfies equation (3), in which

one gives to x and y the preceding values, one gets a system
of values of three quantities, x, y, a, satisfying the system of

equations (3) and (4). Equations (1) and (2), constituting

a system equivalent to this system, will be satisfied by the

same values
;
one will thus obtain two lines A and B passing

through the point M.

It can happen, moreover, that to a system of real values

of x and y satisfying equation (4) corresponds a value of a,

for which equations (1) and (2) do not represent real curves
;

one will have this kind of a locus, for example, if the value

of a were imaginary. But, in every case, the values of x, y,

a will satisfy the two equations (1) and (2).

99. Although the construction of each of the positions of

the figure, which gives the various points of the locus, de

pends upon the value given to the arbitrary parameter, it is

frequently more convenient to introduce into the discussion

several variable parameters a, fr, c, ;
but these parameters

are then so connected with one another that the value of one

only is arbitrary, and that the variation of this parameter

determines moreover the value of the others. If these param
eters are n in number, they will be connected by n 1 equa

tions of condition.

Suppose, for example, that only two variable parameters

a and b connected by the equation of condition

(5) 4&amp;gt;(a, &)=0

are employed, and let

(6) F(x,y,a,b)=0,

(7) Fi(x,y,a&amp;gt;,V)=0,
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be the equations of two variable curves A and B, whose inter

sections furnish every point of the locus. If the parameter

a varies in a continuous manner, the parameter b which de

pends upon a by reason of the relation (5) will vary also in

a continuous manner; the two curves A and B, whose equa
tions contain the two parameters, vary also in a continuous

manner, and their point of intersection M will describe a

curve PQ.
The equation of this curve will be obtained by eliminating

the two parameters a and b between the three equations (5),

(6), (7).
In fact, to eliminate a and b between these three

equations is to find a system of three equations

(8) F*(x,y,a,V)=0,

(9) Fafay, a, ty=0,

(10) /(*,y)=0,

equivalent to the given system, and such that one of them

no longer contains a and 6. When values are assigned to

a and b which satisfy equation (5), the co-ordinates x and y

of the point 3f, associated with these values of a and b, form

a system of values of four quantities , y, a, b, satisfying at

the same time the three equations (5), (6), (7). The three

equations (8), (9), (10) forming a system equivalent to the

preceding system will also be satisfied by the same values;

equation (10), being independent of a and 6, will therefore

be satisfied by the co-ordinates x and y of each point of the

locus.

Conversely, every point M whose co-ordinates x and y

satisfy equation (10) belongs to the locus; because if one

determines the values of a and b which satisfy the two equa

tions (8) and (9), in which x and y have been assigned the

preceding values, one has a system of values of four quantities

x, y, a, b satisfying the system of three equations (8), (9), (10).

The three equations (5), (6), (7), forming a system equivalent

to the former, will also be satisfied, and one will have two

curves A and B passing through the point M.
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100. Suppose, in general, that one employs n variable pa
rameters a, 6, c, ..., h connected by n 1 equations of condition,

(11)

, 7i)=0,

, 7i)=0,

&amp;lt;j&amp;gt;
n -i(a, &, c, , 7i)=0,

and let

(12) F(x,y,a,b,c, ...,)=0,

(13) *i(, y, , 6, c, -, ft)
= 0,

be the equations of two variable curves J. and B, whose inter

sections give every point of the locus. When the parameter a

is allowed to vary, the remaining parameters vary simultane

ously, and the point M describes the locus. The equation of

this locus is obtained by eliminating the n parameters between

n + 1 equations (11), (12), (13).

101. It has been asserted that the construction of the

figure depends upon a single arbitrary parameter a. If the

figure should depend upon two arbitrary parameters a and b,

the two co-ordinates x and y of the point M would be func

tions of these two parameters, i.e.,

x = /(, ft), y =/i(, b).

Such values could be assigned .to these parameters that the

point M might be made to coincide with any point of the

plane, having the co-ordinates xl and y^ To accomplish this,

it suffices to determine a and b by means of the equations

x,=f(a, b), y1 =fl (a, b).

The point M may describe the entire plane and not any defi

nite curve in the plane.

One sees very clearly, then, why it is necessary, when n

variable parameters are employed, that these n parameters be

connected by n 1 distinct equations of condition
; because,
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if these equations of condition could be reduced to a smaller

number, two parameters at least would be arbitrary.

It is possible that the two variable curves A and B inter

sect in several points ;
the preceding process gives the locus

described by the totality of these points.

102. KEMARK. It often happens that one of the two vari

able curves A and B, whose intersection furnishes a point M
of the locus, passes through a fixed point P. In this case, the

co-ordinates of this point P satisfy the equation found by elim

ination. In fact, suppose that the equations of the two curves

contain n variable parameters connected by n 1 relations

( 100) ;
if the co-ordinates x

l
and y l

of a fixed point P sat

isfy the equation of the line A, whatever be the values of the

parameters, by replacing x and y in the equation of the curve

B by a?! and ?/,,
one will get an equation, which, combined with

the n 1 equations of condition between the parameters, will

form a system of n equations which will determine the values

of these parameters. This point P will, properly speaking,

be foreign to the geometrical locus, if imaginary curves corre

spond to the values found.

In this case, it frequently happens that the point P enters

in the equation through a particular factor which, can be

removed. After this factor has been suppressed, the equa

tion represents the geometrical locus itself. But often it is

impossible to decompose the first member of the equation into

two factors, and the point P must be considered as an isolated

point connected with the curve.

103. PROBLEM I. Being given in the plane (Fig. 65) an angle XOY,

and a fixed point P, draw through the point P the fixed secant PBA and

the variable secant PDC ;
draw also

the lines AD, EC ; find the locus of their

point of intersection M.

Take the lines OX and OT as co

ordinate axes, and represent by x\ and y\

the co-ordinates of the point P. The

fixed secant PBA will have an equation

of the form -^f ^

_ n=.(- 1),
/

in which the parameter a has a constant
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value. Similarly, the variable secant PDC will be represented by the

equation
y yi = w (x ari),

in which m is a variable parameter. If one puts successively in these

equations y 0, x = 0, one gets the co-ordinate of the points in which

these lines intersect the axes of co-ordinates.

a

B, x . 0, y yi axi,

m
D, x 0, y y\ mxi.

By applying the formula of 67, one gets the equations of the lines

AD, CB,

m X +-
Xl - ^ yi

~
a

x

The values of x and y, which satisfy the two simultaneous equations

(1) and (2), are the co-ordinates of the point of intersection M of the two

lines AD and BC
;
these co-ordinates vary with the arbitrary parameter

m. By subtracting the equations member from member one obtains the

equation

,(_J---L_U ,

\Vi-mxi y\ ax\i

or more simply

(3)
-^^--

(yix + x,y} = 0,

which, combined with equation (1), forms a system equivalent to the

system of two equations (1) and (2). So long as the parameter m has a

value different from a, the first factor being different from zero, the

co-ordinates x and y of the point M must reduce the second factor to

zero. Therefore the co-ordinates of each of these points of the locus

satisfy the equation
yix + xiy = 0,

or

(4) U-fi.
x xi

This locus is a straight line passing through the origin.

When m = a, the system of two equations (1) and (2) reduces to equa

tion (1) ;
the two lines AD and BC coincide, and their point of inter

section is any point of the fixed secant PA.
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Suppose the elimination had been made in another manner
;

if for

example the value of m deduced from equation (1) were substituted in

equation (2), an equation of the second degree would be obtained, the first

member of which would be decomposable into two linear factors of the first

degree, and which, consequently, would represent two straight lines, the

locus OL and the straight line PA. This equation would have the form

+ xtfj) [y
-

2/1
- a (x

- XA)] = 0.

It is to be noticed that equation (4) does not contain the constant pa

rameter a
;
therefore the locus is independent of the particular position

assigned to the fixed secant PA. Whence the following theorem may be

deduced: When an angle XOY and a fixed point P, in the same plane

are given, if any two secants PA, PC be drawn through this point P, the

point of intersection M of the two straight lines AD and BC is always

situated on the same straight line OL.

Further, it is to be noticed that equation (4) depends upon the ratio

y\

ft that is, upon the angular coefficient of the straight line OP. Hence,

the locus OL will remain the same, if the point P be moved along the

line OP passing through the origin.

104. This question can be discussed more quickly in another manner.

Suppose that any two axes have been drawn in the plane. Represent,

for brevity, the equations of the given straight lines OA and OB by

a = 0, = 0, and the fixed secant PA by y = 0. The given point P will

no longer be determined by its co-ordinates, but by the intersection of

the two given straight lines PA and OP; the latter, passing through the

point of intersection of the lines OA and OB, has an equation of the

form /3 + aa = 0. The movable secant PC, drawn through the point of

intersection P of the two lines /3 + aa = 0, y = 0, is represented by an

equation of the form

(1) /3 + aa + my = 0,

in which m represents an arbitrary parameter. The point C, in which

this secant cuts the line OA, is given by the two simultaneous equations

a = 0, |8 + aa + my = 0, or more simply a = 0, J3 + 7717 = ;
the last

equation represents a line passing through the point C, and also through

the point of intersection B of the lines |8
= 0, y = ;

it is, therefore, the

equation of the line P.C. Similarly, the point D, where the movable

secant intersects the line OB, is given by the two simultaneous equations

/3
= 0, |8 + aa + my = 0, or more simply /3

= 0, aa -j- my =
;

the line

represented by the last equation, passing also through the point of inter

section A of the lines a = 0, 7 = 0, is none other than the line AD. The
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two movable lines BC and AD, whose intersection determines the point

M of the locus, have therefore the equations,

(2) |8 + my = 0,

(3) aa + my = 0.

The equation of the locus will be found by eliminating m between the

two equations ;
if the equations be subtracted member from member, one

obtains the equation

(4) |8
- aa = 0.

Whence it follows that the locus is a straight line passing through the

point 0. This line is independent of y, that is, of the fixed secant PA,
and is the same whatever be the position of the point P on the line OP.

It has been assumed that the parameter m has a finite value
;

if m be

replaced by -, and after multiplying by g, one makes q = 0, the equations
&amp;lt;2

(1), (2), (3) reduce to y = ;
the movable secant coincides with the fixed

secant PA, so also the two lines BC and AD.

105. PROBLEM II. The sides of a variable triangle ABC revolve

about three fixed points P, P ,
P 1

,
situated in a straight line, while the

two vertices A and B slide on the two

fixed lines ID and IE ; find the locus

described by the third vertex C (Fig. 66).

Draw in the plane any two axes,

and, for brevity, represent, as in the

preceding discussion, the equations of

the given lines ID, IE, by a = 0, ft
= 0,

and the line PP P&quot; by y = ;
each of

the fixed points P, 7&quot;, P&quot;, can be de

fined by the intersection^ bf this line

and of a line passing through the point

/; the point I being the point of in

tersection of the lines a = 0, = 0, the

lines IP, IP
,

IP&quot; have equations of the form

/3 + aa. = 0, j3 + a a = 0, /3 + a&quot;a = 0,

in which a, a
,

a&quot; designate constant coefficients. In order to construct

a particular position of the variable figure, draw through the point P an

arbitrary line PA, then construct the lines AP and P,P&quot;, whose inter

section will determine a point C of the locus. The point P being the

intersection of the two lines 7 = 0, + aa. = 0, the line PA, drawn

through this point, will have an equation of the form

(1) /3 + aa + my = 0,
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in which m is an arbitrary parameter. The point A, in which the line

PA cuts the line ID, is given by the two simultaneous equations

a = 0, /3 + a* + my - 0, or more simply a = 0, /3 + my = 0.

The line AZ&quot;, passing through this point, has an equation of the form

+ W7 + m a
;

it is necessary to determine the coefficient m 1 in such a

manner that the line passes also through the point P determined by the

two equations 7 = 0, |8 + a a = ;
if 7 be put equal to zero in the equation

of this line and = -a a, then will
(m&amp;lt;

- a ) a =
;
as a is not zero, since

the point P&amp;gt; is not on the line a = 0, therefore must m - a = 0, orm = a .

Thus the line AP will be represented by the equation

(2) |8 + a a + wi7 = 0-

Similarly, the point 1?, in which PB cuts the line IE, is given by the

two equations |8
= 0, /3 + + 7 = &amp;gt;

or more simply ft
= 0, a + my =0 ;

the line J3P&quot;, passing through this point, has an equation of the form

aa + my + m&quot;/3
=

;
determine now the coefficient &quot; in such a manner

that this line may pass through the point P&quot;,
the intersection of the lines

7 = 0, /3 + a&quot;a = ;
if in this equation 7 be put equal to zero and

p=-a&quot;a, then will (a
-

m&quot;a&quot; )
a =

; therefore, choose m&quot; =~
hence the line BP&quot; is represented by the equation

Equations (2) and (3) are the equations of the two movable lines AP

and JBP&quot;, whose intersection is any point C of the locus
;
the equation of

the locus will be obtained by eliminating m between these two equations ;

subtracting them member from member, one gets the equation

(4) (a
1 - a) a&quot;a + (a&quot;

-
a) |S

= 0.

Therefore, it follows that the locus is a straight line passing through

the point /.

106. COROLLARY I. The solution of the following problem maybe

deduced from what precedes. Inscribe in a triangle IED a second triangle

whose edges pass respectively through the three given points P, P ,
P&quot;

lying in the same straight line.

If a variable triangle be constructed whose sides are conditioned to pass

through the points P , P&quot;, P &quot;,
while the two vertices A and B slide on

the straight lines ID and IE, the locus of the third vertex is a straight

line 1C. The point of intersection d of the lines 1C and DE is therefore

one of the vertices Ci of the triangle sought ;
the lines dP , CiP&quot; give

the other two vertices A^ and J5i. It is worthy of notice that this solution

requires the use of no other instrument than the rule.
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COROLLARY II. The preceding problem may be easily generalized.
Consider a quadrilateral whose four sides pass through the four points
P, P , P&quot;, P &quot;

lying in a straight line, in such a manner that the three
vertices A, B, C slide on three fixed straight lines 7?, S, T; find the
locus described by the fourth vertex (Fig. 67) .

Fig. 67.

The three sides of the triangle BCE passing through the three fixed

points P, P&quot;, P&quot;
,
revolve in such a way that the two vertices B and C

slide on the fixed lines 8 and T; the vertex E describes therefore a

straight line EF. Accordingly, the three sides of the triangle AED pass
ing through the three fixed points P, P , P&quot;, revolve in such a manner
that the two vertices A and E slide on the two lines K and EF; the
vertex D describes therefore a straight line.

From the quadrilateral one may pass to the pentagon. Moreover,
when the n sides of a polygon pass through n fixed points lying in a

straight line and revolve so that n I of its vertices slide on n 1 fixed

lines, the nth vertex will describe a straight line.
,.

107. PROBLEM III. Being given a triangle ABA , draw through O
taken on the side AA a variable secant

OCC ; pass a circumference of a circle

through the three points O, A, C, and a

second through the three points 0, A , C ;

find the locus of the point of intersection M
of these two circumferences (Fig. 68).

Take the line OA for the x-axis and a

perpendicular OF, drawn through 0, for

the y-axis. If a and a be chosen as the

abscissas of the points A and A
, the two

fixed lines AB and A B will have the

equations
Fig. 68.
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(1) y = c(x-a),

(2) ^c (x-a ),

and the variable secant the equation

(3) y = mx,

in which m represents a variable parameter. The co-ordinates of the

point C are found by solving the two simultaneous equations (1) and (3),

which gives
ca mca

x =

Every circle passing through the points and A has an equation of

the form
y? + ?/

- ax - by = 0,

in which the parameter b is arbitrary. This parameter is determined by

the condition that the circle passes through the point C, which gives

__a(cm
c m

the circle which passes through the three points 0, A, C has therefore the

equation
a(cm + 1) A

(4) x2 + y
i _ ax - \_ m y = 0.

If, in this equation, a and c be replaced by a and c
,
the equation of the

circle which passes through the three points 0, A ,
will evidently be

In order to find the equation of the locus of the point of intersection M
of the two circles, it is necessary to eliminate the variable parameter m
between the two equations (4) and (5). By equating the values of m
deduced from (4) and (5), one gets the equation

c(x
2 + y

2 - ax} - ay _ c (x- + y
2 - a x)

- a y

(x* + y2 -
ax) + cay

~
(x- + y

1 - a x} + c a y
1

which may be written

(c
- c ) [(x

2 + y
2 -

ax) (x
2 + y

2 - a x) + aa y
2
] +

(1 + ccM (z* -f-?/
2 - ax)

- a(x
2 + & - a x)] = 0,

or (c
- c )[O2 + ?/

2
)
2 -

(a + a )x(x
2 + ?/) + aa (x

2 + 2/
2
)]

+ (1 + cc )(a
-

a)?/(x
2 + ?/) = ;

by putting (x
2 + ?/

2
) without a bracket, and dividing by c c

,
one

obtains the equation

(G) (x
2 + jO [x

2 + 7/
2 -

(a + a ) x
- ( l + K- a \ + aa

]
= 0.
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This equation is decomposed into two : the one x2 +
y&quot;

1 = gives the
fixed point O in which the two variable circles intersect

;
the other

(1 + cc )(q-q )

c c
r -r(7)

2 + y
1

(a + a ) x -

is the equation of the locus of the point M. This locus is a circle.

It can be seen a priori that the three points B, A, A belong to the
locus. Because, if the variable secant pass through the point B, the two
circles intersect in B

;
this point constitutes a part of the locus. Suppose

now that the secant becomes parallel to the line A B
;
the point C&quot; is

removed to infinity, the second circle coincides with the line OA
,
which

cuts the first circle in A. In a similar manner the point A is found by
supposing the secant to be made parallel to AB. It is also easy to show
that the co-ordinates of the points B, A, A satisfy equation (7). Thus
the locus required is a circle circumscribing the triangle ABA.

108. PROBLEM IV. Being given a circle and a fixed point P, revolve
about the fixed point Pa right angle APB; join by a straight line the two

points A and B, in which the sides of the right

angle produced meet the circle, and draw from
the point P a perpendicular PM to the line AB

;

find the locus of the foot M of the perpendicu
lar (Fig. 09).

Take the diameter OP for the x-axis and
the diameter perpendicular to OP for the

2/-axis ;
the given circle is represented by the

equation

Fig. 69.
(1)

Let (2)

x- + y
2 - r2 .

y = ax + b

be the equation of the secant AB. If y be eliminated between the two

equations (1) and (2), one gets an equation of the second degree,

(3) (1 + a 2
) x* + 2 abx + 62 - r2 = 0,

whose roots are the abscissas x 1 and x&quot; of the points A and B and the

values of the ordinates will be ax + 6, ax&quot; -f b. If c represent the con

stant length OP, the two lines PA, PB have the angular coefficients

y y&quot;
ax -f b ax&quot; + b

._. or .

x&quot; -c x&amp;gt;

-X - C X&quot;
- C

the angle APB being right, one has the condition

(ax
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which may be written

(1 + a^x x&quot; + (db-c)(x + z&quot;) + 62 + c2 =
;

if the values of x + x&quot; andx ic&quot; be replaced by their values deduced from

equation (3), one obtains the relation

(4) (1 + 2
) (c

2 - r2) + 26 (ac + 6) = 0,

which connects the two parameters a and 6.

The perpendicular PM, drawn from the point P to the line AB, has

the equation

(5) y =-l(*-c).

The point I/ is determined by the equations (2) and (5), in which the

variable parameters a and b satisfy equation (4); the equation of the

locus of the point M is found by eliminating these two parameters be

tween the three equations (2), (4), (5). From equation (5) it follows

that a = - ; whence from equation (2) one deduces b =

On substituting these values in equation (4), one gets the equation

(6) [*/
2 + (x

-
c)

2
] (x- -f y

2 - ex +
C ~ r = 0,

which decomposes into two : the one, y* + (x
-

c)
2 = 0, gives the point

P; the other,

(7) z2 + if- -cx + g
= 0,

represents the locus sought.

It is evident that the point P does not belong to the geometrical locus

according to its definition
;
but it is easy to understand how analysis has

introduced it into the result, The co-ordinates x = c, y = of the point

P satisfy equation (5), whatever the parameters may be; one could

therefore deduce from equations (2) and (4) the corresponding values of

the two parameters a and b
;
thus one finds a i, b = ac. This is

an application of the remark made in 102.

Equation (7) shows that the locus is a circle having its center on the

line OP. To construct it, it suffices to determine the extremities of the

diameter CD ;
if AB

,
BA be drawn making angles of 45 with the diam

eter OP, the chords AA ,
BE 1

, being perpendicular to this diameter, will

give the two points C and D.

109. The same circle may be found by seeking the locus of the mid

point M&amp;gt; of the chord AB. In fact, the mid-point is determined by the

intersection of the chord AB and the perpendicular drawn from the center

to this chord. Since these two lines have the equations

y = ax + &, y = x
1

a
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the equation of the locus will be obtained by eliminating the two variable

parameters a and 6 between these two equations and equation (4). We
thus have the equation

= 0,

which decomposes into two, the one giving the point O foreign to the

geometrical locus, the other the circle.

110. PROBLEM V.

y

Fig. 70.

circumference and a fixed point P are given,

a right angle revolves about

its vertex placed in P; find the

locus of the point of concur

rence M of the tangents drawn

to the circumference at the

points of intersection A and

B with the sides of the right

angle (Fig. 70).

Take the diameter OP as

the x-axis and the diameter

perpendicular to it as the y-

axis
;

let r be the radius of

the circumference and c the

distance OP; the equation of

the given circumference is

X/2 4- ?/2 &amp;lt;fi

(1)

Represent by Xi and //i the co-ordinates of any point M of the plane.

The chord of contact of the tangents drawn from this point will have the

equation

(2) + y\y =

The co-ordinates of the points of contact will be found by solving the

simultaneous equations (1) and (2). If x, y be considered a solution of

this system, the value m of the angular coefficient of the line which joins

the corresponding point to the point P has the equation

(3) x c

The elimination of x and y from the equations (1), (2), (3) gives the

equation which determines the angular coefficients of the two lines drawn

from the point Pto the points of intersection of line (2) with the circum

ference. In order to accomplish this elimination, solve equations (2) and
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(3) for x and y, and substitute their values in (1) ;
thus is found the

equation of the second degree

(4) [ (,.2
_ CXl)2 + (C

2 _ r2

)2/i
2
] m2 + 2 r-?/i(c

-
xi)ro + r2 (r

2 - xi
2
)
= 0.

In order that the point M, chosen arbitrarily in the plane, be a point

of the locus, it is necessary and sufficient that the directions, which cor

respond to the two roots of equation (4), be rectangular. On expressing

that the product of the roots is equal to 1, the equation of the locus

is found to be

(i2 + ?/i
2
) O 2 - c2 ) -{- 2 r-cxi - 2 r4 = 0,

which, suppressing the indices, may be written

2

c2)

The locus is a circle which can be constructed by the method indicated

in the preceding problem.

The radii R and r of the two circumferences and the distance D
between their centers satisfy the relation

(G) (J?
2 -

Z&amp;gt;

2
)
2 = 2 rz(R2 + &amp;gt;

2
)-

If the sides of the right angle APS be prolonged, and tangents be

drawn at A and B
,
the points of intersection of the consecutive tangents

are the vertices of a variable quadrilateral, which is at one and the same

time circumscribed about the given circle and inscribed in circle (5).

Hence, when the radii R and r of the two circles 0\ and and the dis

tance D between their centers satisfy relation (6), a quadrilateral can be

constructed, inscribed in Oi and circumscribed about O, by taking as an

edge of the quadrilateral any tangent to the circle O.

111. PROBLEM VI. Find the locus of the points, such that the feet

of the perpendiculars drawn from each of them to the sides of a triangle

lie in a straight line.

Let
f x cos a + y sin a p\ = 0,

(1)
J ZCOS/3+ y sin ft

-
p-2 = 0,

[XCOS7 + y siuy -p3 = 0,

be the equation of the three sides of the triangle, referred to any two

rectangular axes, and, for the sake of brevity, represent by ai, ft, 71, the

first members of these equations. Calling x and y the co-ordinates of the

point M of the locus, xi and y lf x* and ?/2 ,
a;3 arid ys those of the feet of

the perpendiculars drawn from the point M to the sides of the triangle,

one has ( 83)

x - xi = a t cos a, x - a-o = ft cos j8, x - xs = 7i cos 7,

y-yi = ai sin B
, y - y2 = ft sin ft y

-
ys = 71 sin 7.
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The equation of the locus will be found by expressing the condition

that the three points .lie on a straight line. For this purpose it is neces

sary to equate the two ratios ?/2
~

^ 1 and ^3
~ ^ 1

,
which can be put under

xz -Xi xs
- xi

the form

(yg
-

y)
-

(y\
-

y) _ (2/3
-

y)
-

(yi
-

?/)

(s2
-

x)
-

(si
-

x) (a* -SB)- (zi
-

)

By substituting from the preceding equation, this equation becomes

01 sin ai sin a _ 71 sin y ai sin a

01 COS ai COS a 71 COS 7 ai COS a

or (2) ai 0i sin (
-

a) + ft 71 sin (7
-

0) + 7ii sin (a
-

7) = 0.

The letters ai, 0i, 71, representing polynomials of the first degree in x

and y, it follows that equation (2) is of the second degree. The coeffi

cient of xy is

sin (a + j8) sin (0 - a) + sin (0 + 7) sin (7
-

0) + sin (7 + a) sin (a
-

7) ;

if the product of sines be transformed into the difference of cosines, this

coefficient becomes

(cos 2 a cos 2 0) -f (cos 2 cos 2 7) + (cos 2 7 cos 2 a)

2
.

it is identically zero. The coefficients of x2 and y
2 are

M = cos a cos sin (0 a) + cos cos 7 sin (7 /3) + cos 7 cos a sin (a 7) ,

jV = sin a sin /3 sin (|8 a) -f sin sin 7 sin (7 /3) -f sin 7 sin a sin (a 7) .

If their sum and difference be calculated, one has

M - y = cos (a + 0) sin (0
-

a) + cos (/3 + 7) sin (7
-

0)

4- cos (7 + a) sin (a 7)

_ sin 2 18 sin 2 a + sin 2 7 sin 2 + sin 2 a sin 2 7 _ Q

Jf + JV=cos(a-/3)sin(j8-a) + cos (/3
-

7) sin (7~/3)
+ cos (7 a) sin (a 7)

_ sin 2(0 - a) + sin 2(7 - 0) + sin 2 (a -7)
~2

= 2 sin (0 a) sin (7 0) sin (a 7) ;

whence it follows that

M = Ar sin (0 a) sin (7 0) sin (a 7).

Therefore the locus is the circumference of a circle. Equation (2) being

satisfied when one puts 0i 71 = 0, it follows that the point A belongs to

the locus
; similarly with the points B and C

;
the locus is therefore the

circle circumscribed about the triangle ABC.



CHAP. III. GEOMETRICAL LOCI. 125

112. From equation (2), which represents the circle circumscribed

about a triangle whose sides are represented by equations (1), may easily

be deduced an important property of a special system of two circles.

Suppose that the sides (1) be tangents to a circle of radius r having its

center at the origin of co-ordinates. It will be necessary in equations

(1) to make p^ = p2 = Pz - r. If equation (2) of the circle be developed,

it may be written

(3) M (x- + 2/-)
- Px - Qy + F = 0.

Let E be the radius of this circle and D be the distance of its center

Oi from the center of the first circle
;
one will have

whence

The radii of the circle 0, determined by the angles a, 0, 7, form two

by two the supplementary angles of the angles A, B, C of the triangle

formed by the three tangents. One has, therefore,

or

M = sin A sin B sin C =
t

-
;,

F = r2 (sin A + sin B + sin O) = 4 f2 cos ^ cos - cos - =
-^

S,

S representing the area of the triangle ABC. From these results follows

Tjl

that = 2 Rr, and consequentlyM
(4) D2 = R* - 2 Rr.

Now it is proposed to determine all the triangles which are at the

same time inscribed in the circle Oi and circumscribed about the circle 0,

whose radii and the distance between the centers satisfy relation (4). It

will be no restriction to suppose that the point 0\ is situated on the

o-axis, and the angles a, |8, 7 to fulfill the conditions

f\ f) 7?2 _ ^*2 F
7)2 _ P

,

=0&amp;gt;
1 ~~~ ~

But, owing to relation (4), which the given quantities J?, r, and D
satisfy, these three relations may be replaced by the two following :

(5) g = 0, =-2^r.

Let, in fact, E be the radius of a circle circumscribed about the tri

angle A B C ,
determined by the angles a

, |8 , 7 ,
which satisfy equations
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(5), D 1 the distance of its center from the point 0. From the preced
ing, it will follow

Moreover, by hypothesis

,M
whence it follows that R is equal to II, and D equal to D. One of the

three angles a
, /3 , 7 ,

which must fulfill only the two conditions (5), can

therefore be taken arbitrarily. Hence, when the radii R and r of the two

circles OL and and the distance D between their centers satisfy relation

(4), a triangle can be constructed inscribed in 0\and circumscribed about

by taking any tangent to the circle as a side of the triangle.

The theorems analogous to the preceding and to 110 exist for

polygons of any number of sides.

113. Form (2) of the equation of the circle circumscribing a triangle

is worthy of notice. The first member has a very simple geometrical

meaning. To be precise, suppose that the origin of co-ordinates be situ

ated within the triangle ABC (Fig. 71), and that

the angles a, /3, 7, varying between and 2 ?r, be

arranged according to their increasing order of

magnitude. Consider a point M having the co-or

dinates x and y and situated also within the tri

angle ;
draw from this point perpendiculars to the

sides, and join the feet of these perpendiculars

forming the triangle DEF. The letters a 1? ft, y\

designate the length of these perpendiculars
Fig. 71. affected in this position by the sign these per

pendiculars are constructed in the same direction as those which have

been drawn from the origin, and which have served to determine the

angles a, j8, 7. The term ai ft sin (/3 a) being equal to MD ME
sin DME represents double the area of the triangle DME \

the two

remaining terms represent in a similar manner double the triangles

EMF, FMD
;
thus the first member of equation (2) represents double

the area of the triangle DEF.
Consider next a point M situated without the triangle AB C. It follows

from the figure that BI = - M D
, ft = - M E

, 71 = + M F
;
the first

member of the equation represents double the difference between the tri

angle D ME and the sum of the two triangles E M F ,
FM D

;
which

is, moreover, double the area of the triangle D E F . Whatever the posi

tion of the point M in the plane may be, the first member of the equation

represents double the area of the triangle DEF affected by the + or -
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sign. Equation (2) expresses, therefore, that the area of the triangle

DEF is zero
;
that is, that the three points Z&amp;gt;, E, F lie in a straight line.

If r be the radius of the circle circumscribing the triangle ABC, and

d the distance of a point, whose co-ordinates are x and y, from the center

of the circle, the first member of equation (2) can be written in the form

and is equal to A(d2 r2 ). This expression preserves the same sign, so

long as the distance d is less than r, that is, while the point 3/lies within

the circle, and takes the contrary sign as soon as the point M falls without.

It follows from the preceding that the locus of points such that the

area of the triangle whose vertices are the feet of the three perpendiculars

is a constant quantity k, is represented by two circles whose equations are

oi/3i sin (0
_ a ) + /3i7i sin (7

-
)8) + 7ii sin (a

- 7) = 2 k\

These two circles are concentric to the circle circumscribing the triangle

ABC: the one lies without and is always real, whatever be the given

area
;
the other lies within, and is not real unless the given area is less

than the absolute value of *.

2

EXERCISES.

1. Express the area of a triangle and of any polygon as a

function of the co-ordinates of its vertices.

2. Find the area of a triangle formed by lines whose equa
tions are given.

3. Being given n points A, B, C, in a plane and n quan
tities m

, m&quot;,
m

&quot;j

which correspond to these n points; on

the line AB take a point NI, so that the distances from this

point to the first two points are in the ratio m&quot; to m
;
then on

the line N^C, which joins JVj to the third, take a point N2,
so

that its distances from the points ^ and C are in the ratio

m &quot; to m -f m&quot;; further, on the line N2D which joins the point

2̂ to the fourth point D, a point N3,
so that its distances from

the points N2 and D are in the ratio m&quot;&quot; to m 1

-f m&quot; + m
&quot;,

and so on, till the last given point is reached. Find the

co-ordinates of the last point of division, which is called the

center ofproportional distances.

When the multipliers m , m&quot;,
m &quot; are all equal to the

same quantity, the last point of division is called the center of
mean distances.
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As an application, find the quantities m , m&quot;,
m

&quot;,

which

give, in case of a triangle, the center of gravity, the center

of the inscribed circle, the point of intersection of the three

altitudes, the center of the circumscribed circle.

4. Find the locus of the points such that the sum of the

products of the squares of the distances of each of them from

n given points, by the quantities m , m&quot;,
m &quot;

,
is equal to

a given quantity.

5. Find the locus of the centers of circles which, viewed

from two fixed points, subtend constant angles.

6. Find the locus of the centers of circles which intersect

each of two given circles in diametrically opposite points.

7. Find the locus of points such that the sum of the dis

tances of each of them from two given straight lines, and in

general from several given straight lines, is constant.

8. Construct on two perpendicular lines OX, OF a variable

rectangle OABC having a given perimeter 2 a. Show that the

perpendicular drawn from the vertex C to the diagonal AB

passes through a fixed point.

9. Being given the figure used in demonstrating the

theorem concerning the square of the hypotenuse of a right

triangle, show that the two straight lines, which join the ex

tremities of the hypotenuse to the vertices of the squares

constructed on the opposite sides, meet in a point on the per

pendicular drawn from the vertex of the right angle to the

hypotenuse.
10. From a fixed point P draw tangents to the circles which

pass through two given points; find the locus of the point

in which the chord of contacts intersects the diameter which

passes through P.

11. Being given a regular hexagon ABODEF, draw the

straight lines AC and AE; through the center draw any

secant which cuts the two straight lines AC and AE in G

and H\ draw BG and FH
;
find the locus of the point of inter

section of these two lines.

12. The circumferences described on the three diagonals of

a complete quadrilateral as diameters, have two by two the

same radical axis.
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13. Being given five straight lines, four are chosen to form

a complete quadrilateral, and the mid-points of its three diago

nals are in a straight line
;
the five lines thus obtained meet

in the same point.

14. Being given three points A, B, C and two straight lines

X,Y; on AB as a diagonal, construct a parallelogram whose

sides are parallel to X and F; proceed in the same manner

with B, C and C, A ;
the second diagonals of the three paral

lelograms pass through the same point.

15. Being given four straight lines A, B, C, D, construct a

triangle with any three and determine the common point of

intersection of its altitudes
;
the four points thus determined

lie in a straight line.

16. Two variable circles, which are tangent to each other,

&quot;are tangent to two given circles
;
find the locus of the point of

contact of the two variable circles.

17. Four points are chosen arbitrarily on the circumference

of a circle
;
the bisectors of the three pairs of angles formed

by the lines which pass through these four points are parallel

two by two.

18. Find the locus of the point such that the chords of

contact of the tangents drawn from this point to three given

circles meet in the same point.

19. One is given a fixed angle AOA 1 and a fixed point C on

its bisector. An angle of constant magnitude revolves about its

vertex placed at 0; join by a straight line the points of inter

section B and B of the sides of the movable angle with the

sides of the fixed angle and drop a perpendicular from the point

C upon BB ;
find the locus of the foot of the perpendicular.

20. One is given four straight lines A,B, C, D, which taken

three by three form four triangles. The line A belongs to

three of these triangles ;
the center of the circle circumscribed

about each of them is joined to the vertex which is not situated

on A
;
the three lines thus constructed intersect in the same

point J; the four points analogous to I and the centers of the

four circles lie on the same circumference.

21 . A series of circles are given, which taken two by two

have the same radical axis
;

if a variable circle cut two of these

i
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circles with constant angles, it will cut similarly each of the

remaining circles with a constant angle.

22. The locus of the centers of circles orthogonal to two
fixed circles is the radical axis.

23. Show that the circle, cutting orthogonally three given
circles

/=0, $ = 0, $ = &amp;lt;),

which, taken two by two, do not have the same radical axis, is

the locus of the points of which the polars, with respect to

f these three circles, are concurrent.

24. Show that each of the limiting points of a pencil of

circles and also the point at infinity on the radical axis, has

the same polar with respect to all circles of the pencil.
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CURVES OF THE SECOND DEGREE
^

* ^
I &amp;gt;

CHAPTER I

CONSTRUCTION OF CURVES OF THE SECOND DEGREE.

114. The general equation of the second degree between

the variables x and y is of the form

(1) Ax2
*+2Bxy + Cif + 2Dx + 2Ey + F=0;

A 1

it involves five arbitrary parameters, the ratios of five coeffi

cients to the sixth.

In order to give an account of the different forms of the

curves which can be represented by this equation, solve it

with respect to y.

Two cases are to be distinguished, according as y appears

in the equation to the second, or only to the first degree ;
that

is, according as C is different from zero or equal to zero.

Suppose that the coefficient C is not zero, and solve the

equation with respect to y ;
one gets the equation

Bx + Ey= TT

by putting M= B2 - AC, N = BE - CD, P = E2 - CF.

Construct the straight line DD represented by the equation

Bx + E
!- .

G
131
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Fig. 72.

In order now to construct the points of the locus represented

by equation (2) for each value of x, it is necessary, starting

from the straight line DD
,
to lay off from either side along

the ordinate a length equal to

F=i
G

The line DD (Fig. 72), which bisects the chords parallel

to the axis OY, is a diameter of the

curve
;
the quantity Y is the length

of the ordinate measured from the

diameter. The construction of the

locus is thus reduced to the study

of the trinomial

MX* + 2Nx + P

and, as the form of the locus depends

principally on the sign of the co

efficient M, there will be three prin

cipal cases to be discussed.

GENUS ELLIPSE.

115. Consider the case when the coefficient M, that is,

B2 AC, has a negative value. The ordinate is not real unless

the trinomial has a positive value. The case investigated here

is subdivided into three others, according to the nature
of the

roots of this trinomial.

1 7^2 MP &amp;gt;
0. The two roots of the trinomial are real

and unequal. Represent by x the smaller, and by a;&quot;.
the

larger root
;
the trinomial can be written

M(x - x
) (x

-
x&quot;),

or - M(x - x
) (x&quot;

-
a?);

the trinomial is positive, and, consequently, the ordinate Y is

real, for every value of x taken between the limits x and
a;&quot;;

the trinomial is, on the contrary, negative, and the ordinate

imaginary for every value of x less than x or greater than a?&quot;.

Take on the o%axis two points P and P&quot; having the abscissas

x and
x&quot;,

and draw through these points the lines P A, P&quot;A&quot;
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parallel to the y-axis ;
the curve will He wholly between these

two parallels. As the abscissa x varies from x to
x&quot;,

the ordi-

nate Y preserves a finite value, and begins with the value zero

and returns to zero
;
the locus is therefore a closed curve, which

passes through the points A and A&quot;,
and to which has been

given the name ellipse.

A value of x taken between x and x&quot; will be the abscissa of

a point P situated between P and
P&quot;,

and the corresponding

value of T will be equal to

The variable product PP -PP&quot; of the two segments of the line

P P&quot; is equal to the square of the rectangular ordinate of the

circle described on P P&quot; as a diameter
;
when the point P moves

from P 1 to I, the mid-point of P P&quot;,
the rectangular ordinate of

the circle, and consequently the quantity Y, which is propor

tional to it, will continually increase
;

it diminishes continually,

on the contrary, as the point moves from I to P&quot;. The quantity

Fhas therefore a maximum value, when the point P is at /, that

is, when x ==
x&amp;lt; + x &quot;

= -
;
this maximum value is equal to

(x&quot;

-
Beginning at the point 0, the middle of the

diameter A A&quot;
} lay off along the ordinate, in opposite directions,

a length equal to this maximum value
;
two points B and B&quot;

of the curve will be found, and, by drawing through these

points parallels to the diameter, a parallelogram will be formed,

which will circumscribe the ellipse.

It is clear that to the two points P and Q, equally distant

from the mid-point I, correspond equal values of F; these

values, laid off in opposite directions from the diameter DD ,

give the four points M, M , N, N . The two triangles CRM,

CSN being equal, the three points M, C, N lie in a straight

line, and the point C is the mid-point of MN
;
hence all the

points of the curve are two by two symmetrical with respect to

the point 0, the mid-point of the diameter A A&quot;
;
the point C

is, therefore, the center of the ellipse. It follows also that the
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lines MN, MN are parallel to the diameter A
A&quot;,

and each
is divided into two equal parts by the line B B&quot; this line

is a second diameter. The diameters A
A&quot;,

B
B&quot;, each of

which bisects the chords parallel to the other, are called con

jugate diameters of the ellipse.

2 N2 -MP=0. The two roots x and x&quot; are equal, and it

follows that

N

the coefficient M being negative, the quantity Y is imaginary
for all values of x excepting x = x

}
and then Y= 0; the equa

tion has 110 longer a real solution, excepting the single point
C situated on the straight line DD .

3 N2
-MP&amp;lt; 0. The trinomial

is negative, and consequently Y is imaginary for every value

of x
-,

the equation, having no real solution, does not represent
a geometrical locus.

GENUS HYPEEBOLA.

116. Consider next the case when the coefficient M has a

positive value
;
this case subdivides into three.

1 N*-MP&amp;gt; 0. The trinomial

which one writes in the form

is positive, and consequently Y is real as x varies from x&quot; to

4- co, and from x to co
; moreover, Y varies at the same

time from to GO. Choose, as before, on the #-axis two points
P and P&quot; with the abscissas x and

x&quot;,
and draw through

these two points the lines PA
,

P&quot;A&quot; parallel to the y-axis;

the curve will be situated to the right and left of these par-
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allels; it is composed of two dis

tinct branches extending to infinity J\

(Fig. 73). This curve has been given

the name hyperbola. If, beginning at

the point I, the mid-point of P P&quot;,

one lay off in opposite directions 011

the x-axis two equal lengths IP and

JQ, the corresponding values of Y
are equal; the point C, the mid-point

of A A&quot;,
is the center of the curve,

and the two lines DD and 1C are

two conjugate diameters.

117. Consider the following value of y :

Bx+ E ~
7-.

135

JVV MP -N 2

-Q^CV&quot;^*) M
In case a; has a very large numerical value, the first term of

the quantity under the radical sign is very large as compared

with the absolute value of the second. If the first term only

of the quantity be considered, an approximate value of y

will be

The preceding equation defines two distinct straight lines

which intersect in a point of the diameter DD ,
whose abscissa

N
;
that is, equal to the half-sum of the abscissas

Mis equal to

of the points P and P&quot;
;
this point is, therefore, the center C

of the curve. Consider the branch A&quot;M of the curve
;

if C be

positive, this branch is represented by the equation

y = - --(]+ c\
M
(?
+
M)*~ M

in which allow x to vary from x&quot; to -f oo
;
consider at the

same time the line CL, which has the equation
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For any value of x greater than
x&quot;,

the ordinate of the curve
is less than the corresponding ordinate of the straight line;
hence the branch A&quot;M is comprised within the angle LCD .

The difference yl yoi the ordinates which correspond to the
same abscissa has the value

CM

As x increases indefinitely, the denominator increases indefi

nitely, and, consequently, the difference yl y approaches the
limit zero. The straight line CL, which continually approaches
the branch A&quot;M of the curve, is called the asymptote of this

branch of the curve, which is comprised within the angle
LCD . In a similar manner it can be shown that the branches
A&quot;M

,
A N, A N are comprised within the angles L CD

,

II CD, IICD, and have as asymptotes the straight lines CL
,

CH
, CH, and each of the indefinite lines HL, HL is asymp

totic to two branches of the curve.

It is well to notice that the angular coefficients of the

asymptotes are given by the equation

(4) m = =

or (5) Cm2 + 2Bm + A = 0,

which may be obtained by substituting in the terms of the
second degree of equation (1), 1 for x and ra for y.

118. 2 ^2 -
MP&amp;lt; 0. The trinomial

MJ M
being the sum of two positive quantities, the value of Fis real

for every value of x, and never becomes zero
;
Y attains its
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minimum value M x= __ m Let /(Fig. 74)M
N

be the point of the ic-axis whose abscissa is
;
draw 1C parallel

to the axis OY, and take the lengths

CB and CB&quot; equal to the minimum
value of F; the two points 5 and B&quot;

belong to the locus. As x varies from

to + oo, or from to GO,M
.
M

the value of Y increases indefinitely.

If, therefore, one draw through the

points B and B&quot; parallels to the

diameter DD
,
the curve is composed

of two distinct portions, situated respectively above and below

the parallels, and extending to infinity in opposite directions.

The name hyperbola is also given to this curve.

If the two values x = a be assigned to #, and the twoM
distances IP = IQ = a be laid off, starting from /, the corre

sponding values of Y are equal ;
whence it follows that the

point C is the center of the curve, and that the two straight

lines DD
,
1C are conjugate diameters.

It is also easily seen that the two straight lines

Fig. 74..

which intersect at the center, are asymptotes of the two infinite

branches.

119. 3 N2-MP= 0. One has then

and
Bx + E

9 a o

The locus is represented by two straight lines which intersect

on the diameter
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GENUS PARABOLA.

120. Suppose finally that the coefficient M or jB
2 AC be

zero. The value of Y reduces to

This case may be subdivided into several others.

p
1 N

&amp;gt;
0. By putting ^

= x
,
the expression for Y may

be written

Y=~
G

When x varies from x r to + ce, the quantity Y is real and

varies from to + co
;
but it is imaginary for

all values of x less than x . If, therefore,

the line PA be drawn through the point P ,

whose abscissa is x , parallel to the y-axis,

the curve is situated wholly to the right of

this parallel ;
it passes through the point A 1

and extends, on either side of the diameter

DD
,
to infinity (Fig. 75). This curve is

given the name parabola.

2 N&amp;lt;0. The quantity Y is real when x varies from x

to oo
;
the curve passes through the point A , lies.wholly to

the left of the parallel PA ,
and extends to infinity ;

this curve

is also called the parabola.

3 N= 0. The value of y reduces to

If P is positive, this equation represents two real straight

lines, parallel to the diameter DD
,
and situated at equal dis

tances from this diameter. If P = 0, these two parallels

coincide with the diameter
; finally, if P is negative, the equa

tion does not have a real solution.



CHAP. I. CURVES OF THE SECOND DEGREE. 139

121. In what precedes, it has been assumed that the co

efficient C differed from zero. In case the coefficient C is zero

and the coefficient A different from zero, one can solve the

equation with respect to x and construct the locus as in the pre

ceding discussion; the first term of the trinomial under the

radical has the coefficient M= B2
,
a positive quantity or zero,

and the locus belongs to the genus hyperbola or the genus

parabola. - In case a variable appears in the first degree, it is

preferable to solve the equation with respect to it
; moreover,

this method is only applicable when the two coefficients A and

C are zero at the same time.

It follows, by arranging equation (1) with respect to y, that

2 (Bx + E) y + Ay? -f- 2 Dx + F= 0,

whence y= -
2 (Bx + E)

Suppose now that B be different from zero, and after arrang

ing with respect to the decreasing powers of x, that one divides

till a remainder is found which does not contain x. Two cases

are distinguished, according as the remainder is different from

or equal to zero. In the first case one will obtain a result of

the form

y=ax +
2 (Bx + E)

ax -f b -f
x d

In order to fix the ideas, assume c
&amp;gt;

0.

iary locus defined by the equation

Construct the auxil-

y = ax -f- b, and put Y= The
x d

equation y = ax -f- b represents a

straight line HL (Fig. 76) ;
for each

value of x, it is necessary to increase

the ordinate of this line by a quantity

QM equal to the value of Y. This

quantity becomes infinite for x = d
;

take, therefore, a point J having the

abscissa d and draw H L parallel to

OY. If a value d + x 1 be given to x, x being positive, Y will

have a positive value, and as x tends toward zero, I^will increase

Fig. 76.
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indefinitely ; if, on the contrary, x increase indefinitely, Y
tends towards zero

;
thus is obtained a curve comprised within

the angle L CL and composed of two infinite branches, asymp
totic to the two lines CL, CL . To values of x less than

d correspond negative values of Y, and a second curve is

obtained which is comprised within the angle HCH ,
and com

posed of two infinite branches asymptotic to the lines CH and

CH1

. To two equal values of x with contrary signs, correspond

two values of Y which are also equal and of contrary signs, and,

consequently, two points M and M symmetrical with respect

to the point C, which is the center of the curve. If the con

stant c were negative, one would still obtain a curve consisting

of two distinct parts, situated in the angles HCL 1

,
H CL. The

curve is a hyperbola in both cases.

If the remainder after division be zero, one has

Ax? + 2Dx + F=-2 (Bx + E) (ax + 6),

and the equation takes the form (y ax &) (Bx + E) ;

it resolves into two others, y ax b = 0, Bx -\- E = 0, which

represent two lines, one of which is parallel to the y-axis.

When A and C are zero at the same time, it is sufficient to

put a = in the preceding discussion
;
the line DD becomes

parallel to the z-axis
;
thus is found, in one case the hyperbola

having its asymptotes parallel to the co-ordinate axes, in the

other two straight lines respectively parallel to the axes.

In case the coefficients B and C are zero, the value of y has

the form y = as? + to + c
;

it is real whatever real value x

may have; by causing x to vary from -co to + GO, one gets

a curve which extends to infinity in two directions
;
this is a

parabola.

122. RESUME. In discussing the equation of the second

degree, three species of curves have been found
;
closed curves,

curves composed of two distinct parts extending to infinity

in two directions, curves composed of a single branch extending

to infinity in two directions. To these three species of curves

have been given the names ellipse, hyperbola, and parabola.
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In the beginning of this work (Book I., Chapter II.) it has

been noticed that the curves designated by the same names in

elementary geometry are represented by equations of the

second degree. Conversely we shall see hereafter that all

the curves represented by the equation of the second degree

possess the properties which are characteristic of the definitions

in elementary geometry, and hence that the two modes of

definitions are equivalent.

On reviewing the discussion, it is seen that it is the sign of

the quantity M= B2 AC which determines the species

of the curve represented by the equation of the second degree ;

the curve is an ellipse, a hyperbola, or a parabola, according

as the quantity M is negative, positive, or zero.

Moreover, it is important to recall that the equation does

not always represent a curve, or what is the same, a locus;

when the quantity M is negative, the equation represents an

ellipse or a point, or does not admit of a real solution
;
in case

this quantity is positive, the equation represents an hyperbola,

or two straight lines which intersect; finally, when M= 0,

the equation represents either a parabola, or two parallel

straight lines, or a single straight line, or it does not have a

real solution.

VARIOUS FORMS OF THE POLYNOMIAL OF THE SECOND

DEGREE IN TWO VARIABLES.

123. The preceding discussion shows that the first member

of the equation of the curve can be put under various forms

which it is important to characterize. Two principal cases

are distinguished, according as C is different from zero or

equal to zero.

1 (7^0. By solving the equation with respect to y, as

has been done, transposing and removing the radical from

VMx2 + 2 NX + P by squaring, the equation can be put under

the form

(6) (Cy
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If M differ from zero (genus ellipse or hyperbola), and the

trinomial My? -f- 2 NX -{- P be resolved into a square, one has

the form
/ 7V\2 -\T2

Jlff&amp;gt;

(7) (Cy + Ex + Ef-Xx + L + -=-= 0.

If one suppose M=0 (genus parabola), it follows from (6)

that

(8) (Cy + Bx + E)
2 -(2Nx + P) = 0.

Thus, when M^ 0, the first member of the equation is decom

posed into three squares (7), of which the last is a constant,

these squares being affected by the signs + or
,
the first

square is affected by the + sign, the second is multiplied by
- M, which can be positive or negative, the third can be posi

tive or negative. The different combinations of signs corre

spond to the cases which have been met in the preceding general

discussion. They are classified in the table given below, where

the positive square

is represented by a2

,
the square M x + - by + (3

2 or /3
2

,

according as the coefficient M is positive or negative ; finally,

the constant by -f k2 or A;
2

, according as it isM
positive or negative.

When M= 0, the equation takes the form (8) of a square
2

followed by a linear function (2 NX + P), which is represented

by y when N is different from zero
;

if N be zero, this linear

function is reduced to a constant P, which is designated by

+ k2 or A:
2
, according as it is positive or negative.

Thus will arise the following table, in which it is not neces

sary for the moment to regard the results written in the third

column which refer to the case (7 = examined farther on.

The constant c, which appears in the third column, has the

value _L (_ AE- -FB2 + 2 BDE).

This table shows that, if the inequalities M &amp;lt; 0, and

N2 MP &amp;lt;
exist at the same time, the equation does not
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represent a locus, because the first member of the equation is then

the sum of three squares
2 + (? + 2

,
which cannot be zero for

any real values of the co-ordinates : in this case the curve is said

to represent an imaginary ellipse. Similarly, one sees at once

that, ifM &amp;lt;
and^2 -MP= 0, the equation represents a point,

because its first member a2 + ft
2
, being the sum of two squares,

can only be reduced to zero by the co-ordinates of the point

whose co-ordinates reduce to zero at the same time these two

squares, that is, Cy +Bx + E and x+. In case of the genus

hyperbola, the equation represents always a locus: if

N2 MP = 0, it represents, as has been seen, two straight lines

which intersect; this follows at once from the preceding

equation, because the equation, having then the form a2

ft
2
=0,

decomposes into a product of two real factors of the first degree

( 4. 0) (
_

/?)
=

;
it is therefore equivalent to the system of

two equations
+ /?

= 0, a - = 0,

which represents two straight lines passing through the point

of intersection of a = and = 0. In analogy with this case,

it is sometimes said, that a point-ellipse is an ensemble* of

* The French expresses the idea better than a translation.



144 PLANE GEOMETRY. BOOK III.

imaginary straight lines which intersect, because the equation

takes then the form 2 + /5
2 = 0, and is algebraically equivalent

to the ensemble of two linear equations

^ = 0, a- ft V = 0,

which represent nothing more than what one is accustomed for

convenience to call the equations of conjugate imaginary straight

lines. These two equations are satisfied by the co-ordinates of

the point which reduce at the same time a and ft to zero, that

is, of the point to which the ellipse is reduced. The two

imaginary straight lines are said to intersect in this point.

2 (7=0. The curve can never belong to the genus ellipse.

If B be different from zero, the equation can, as has been

seen in 121, be put under the form

y = ax + b +
x d

where the constant c, which is the remainder of the division of

- (Ax
1 + 2Dx + F)

by 2 B (
\

x -f- has the value
B

BDE) ;

by clearing of fractions the equation may therefore be written

(jj
_ ax _ 5) (x

- d)- c = 0.

The first member is a product of linear factors in x and y.

It can also be thrown into the form of a difference of squares

a2

ft
2

by writing

_ ax - b + x - cf\
2

_ (y
- ax - b - x + d\ 2

_
) \ 2

&amp;gt;

an equation of the form a2 -
/3

2 - c = 0, c designating a con

stant which may be positive, negative, or zero.

If c be different from zero, one has a real hyperbola. If

c = 0, the first member of the equation resolves into the
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product of two linear factors, and the curve is represented by
two straight lines which intersect.

If B be zero at the same time as (7, E being different from

zero, the equation becomes

Ay? + 2Dx + 2 Ey + F= 0.

It represents a parabola, and can be written in the form

a2

y = 0, a and y being two linear functions, the first of

which reduces to x. If, further, E be zero, the equation is a

trinomial in x equal to zero, and can be written

It represents two parallel straight lines real, imaginary, or

coincident, according as D2 AF is positive, negative,, or zero.

J~\
~Tl1 A ~UI

The term x + is a linear function a
;
the constant -

A A
is of the form A;

2
. The equation takes therefore the form

a2 k2 = 0.

These results are given in the table on page 143
;
the different

hypotheses corresponding to the case (7=0 are arranged in

the third column.

EEMAKK. If the quantity N2 MP be constructed by re

placing M, Nj P by their values as functions of the coefficients

A, B, C, D, E, F, it follows that

(9) N2-MP= - C(ACF-AE2 - CD* - FB2 + 2 BDE).

The quantity within the parenthesis, which plays an important

role in the theory, is called the discriminant of the curve : it is

designated by A :

A = ACF- AE2 - CD2 - FB2 + 2 BDE.

It follows from the discussion which has been given, and

the results of which have been arranged in the preceding table,

that the necessary and sufficient condition in order that the curve

be a system of two real, imaginary, or coincident straight lines is

A = 0.
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In fact, if neither C nor M be zero, the necessary and suffi

cient condition in order that the equation may represent two

straight lines is N2 MP = 0, this is, according to (9), A ;

if C be different from zero andM zero, this condition is N=
0,

that is, still A= 0.

If (7 = 0, and B be different from zero, the condition is C = 0,

that is, by reason of the value of c, A = 0.

If C and B are zero, this condition is E = 0, that is, still

124. Seek directly the condition necessary and sufficient, in

order that the general equation of the second degree may rep

resent two real or imaginary straight lines, that is, in order

that its first member may be resolved into a product of factors

linear in x and y :

(10) Ayr + 2Bxy + Cif + 2Dx + 2Ey + F
=

(Ix + my + p) (I x + m y + p ).

Substitute in this identity for x and y,
- and ^, then by

removing the denominator z
2

,
one will get a new identity of

the form

(11) f(x, y, z)
= QR,

where f(x, y, z)
= Ax2 + 2 Bxy + Cy

2 + 2 Dxz + 2Eyz + Fz\

Q = lx+my + pz, R = l x + m y +p z.

Conversely, in case the identity (11) is given, ono may return

to the identity (10) by making 2 = 1. Take the successive

partial derivatives of the two members of the identity (11) with

respect to x, y, z, then one has

f, = 2 (Ax + By + Dz) = IR + I Q,

(12) /, = 2 (Bx + Cy + Ez) =mR + m Q,

f, = 2 (Dx + Ey + Fz) =pR +p Q.

There exists evidently at least one system of values of x, y, z,

x = a, y = 6, z = c, which reduces to zero at the same time the

linear functions R and Q, a, 6, c not all three being zero.

According to the identities (12), the same values a, b, c reduce
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simultaneously fx , fy , fz to zero. Hence, when the conic is

decomposed into two straight lines, the three linear and homo

geneous equations in x and y

Ax -f By + Dz = 0,

(13) Bx+Cy+Ez = 0,

admit at least of one solution x = a, y = &, z = c, in which the

three unknown quantities are not zero at the same time.

Therefore the determinant of the coefficients

A B D
B C E
D E F

is zero. This determinant is none other than the discriminant

written above (REMARK) in a developed form.

The condition A = is therefore necessary. It is sufficient.

In fact, suppose it fulfilled : there exists then a system of

values
, b, c, of x, y, z, of which all three are not zero, satis

fying equations (13), that is, reducing to zero/ z,/ y , ff Let,

for example, c differ from zero : making the change of variables,

x az + x
}

(14) y=bz + y ,

z = cz
,

the function /(cc, y, z) will become

f(az&amp;gt; + a
,

bz + y ,
cz

1

),

that is, by developing and recalling that the function is homo

geneous, and of the second degree in x, y, z, and that conse

quently its derivatives are homogeneous and of the first degree,

f(x9 y, z)
= z

2

f(a, 6, c)+ x z fa + y z fb + Ax 2 + 2 Bx y + Cy
2
.

The derivatives fa andfb are zero : /(a, 6, c) is also zero by
virtue of the identity easily verified (theorem of homogeneous

functions),

2/(o, b, c)
= afa + 6/ + c/c .
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The function f(x, y, z) is therefore identical with the

expression Ax 2
-f 2Bx y -f- Cy2

,
which evidently decomposes

into the product of two linear factors (Xx
1 + py

1

) (\ x -+- //?/ ),

and one has identically

f(x, y, z)
= (Xx +M 1

) (\ x + fi y
1

).

Returning to the variables x, y, z by aid of equations (14),

which give
z a b

, .-, x =x--z, y = y
e

*,

one gets for / an expression of the form

f(x, y, z)
=

(Ix + my + pz) (I
x -f m y + p z).

REMARK. Designate by a, b, c, d, e, f the minors of the

discriminant A, with .respect to the elements A, B, C, D, E,

F; thus

a=CF-E 2
,

b =

CD, e = BD-AE, i = AC-B2
.

The genns of the conic depends on the sign of f : when

f is zero, the curve belongs to the genus parabola.

From this notation, one has, on developing, the determinant

A with respect to the elements of a row,

A = Aa + Bb + Dd = Bb + Cc + Ee = Dd + EQ + Ft.

124. 2. As a special case, determine the necessary and

sufficient conditions, in order that the conic be formed of two

coincident straight lines. The first member of the equation

is then a perfect square of a linear function of the co-ordinates,

and one has the identity

(15) f(x,y,z) = (lx + my+pz)\

On taking the partial derivatives of this identity, it is seen

immediately that the three linear equations (13) are replaced

by a single equation,

(16) lx + my+pz = Q.
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Their coefficients are therefore proportional, which shows

that all the minors of A are zero.

(17) a = 0, b = 0, c=0, d = 0, e = 0, f = 0.

For example, the conditions

A = B = D
B~ C E

give, when the denominators are removed, f = 0, d =
;

etc.

These conditions may also be verified directly, because the

identity (15) gives

B = lm, D = lp, E = mp.

It will be found on constructing the minors a, b, ,, that

they are all zero.

These conditions are, moreover, sufficient in order that the

first member of the equation be a perfect square. In fact, if

they be fulfilled, the three coefficients, A, C, F, cannot all be

zero, because conditions (17) require that B, D, E should also

be zero and all the coefficients would be zero. Assume then

that A be different from zero, one will have

Af(x, y, z)
= AW + 2 ABxy + AOtf + 2 ADxz + 2 AEyz + AFz2

.

Supposing that the conditions are fulfilled, one has

AC=B2

,
AE = BD, AF=D2

;

and the preceding relation gives

Af(x, y, z)
= (Ax +By+ Cz)

2
.

This subject will be considered more in detail at the end

of Book III.
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TANGENT TO CURVES OF THE SECOND DEGREE.

125. Let /(a?, y)
= be the equation of a curve

;
if x and y

be the co-ordinates of the point of contact M, X and T the

co-ordinates of any variable point of the tangent, one has seen

( 89) that the tangent is represented by the equation

or ,+ ,- X ,

When the curve is of the second degree, one has

/(a?, y)
= Ay? + 2 Bxy + Cf + 2 Dx + 2 Ey + F ;

The point of contact M being situated on the curve, its

co-ordinates x and y satisfy the equation

It follows that

and, consequently,

/ + yfv = ~ 2 (Dx

The equation of the tangent, at the point whose co-ordinates

are x and y, becomes

(2) (Ax+ By+D)X+(Bx+Cy+E)Y+(Dx+Ey+F)=Q.
One notices that the co-ordinates x and y of the point of con

tact enter only to the first degree. As this equation can be

put in the form

(3) (AX+BY+D)x + (BX+CY+E)y

it is to be noticed that it does not change, in case X and x,

Y and y are permuted.
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It is proposed now to draw tangents to the curve from a

given point P, not situated on the curve, and having the co

ordinates %! and
2/j.

Call x and y the unknown co-ordinates of

one of the points of contact M. These co-ordinates should

satisfy equation (1). The tangent at the point M is repre

sented by equation (2). Since this tangent passes through the

point P, the co-ordinates of this point satisfy equation (2) or

equation (3), and one will have

(4) (Axi + Byl + D)x+(Bxl + Cy1 + E)y + Dx1 + Eyl + F=Q.

The co-ordinates x and y are therefore determined by the

two simultaneous equations (1) and (4). The one being of the

second, the other of the first degree, this system of two equa
tions has two solutions, and two tangents can be drawn from a

given point P to a curve of the second degree. The solution of

these two equations amounts to finding the points of intersection

of the curves defined by each of them
;
the first is the given

curve, the second, a straight line passing through the two points

of contact. One notices that equation (4) of the chord of con

tacts has the same form as equation (2) of the tangent. It is

sufficient to replace in the latter the co-ordinates of the point
of contact by those of the point P.

126. Find the condition that the straight line y = mx + k

be tangent to a curve of the second degree. If y in equation

(1) be replaced by mx -f- fc,
an equation will be found of the

second degree in
a?,

which furnishes the abscissas of the points
of intersection of the straight line and the curve. The straight

line will be a tangent when the two roots are equal. Thus is

found the equation of condition

am2 - 2 bm -f c + 2 dwfc - 2 efc + fA:
2 = 0.

When the equation of the line has the form

ux + vy -f 1 = 0,

the equation of condition becomes

(5) aw2 + 2 bwi? -f cv
2 + 2 dw -f- 2 ev + f = 0.
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The calculation may be made more symmetrical by proceed

ing as follows :

Consider the line uX+ vY+ 1 = 0,

and suppose that it be tangent to the curve at the point whose
co-ordinates are x and y. Then the latter equation ought to be

identical with that of the tangent at this point, and one should

have, on representing a coefficient of proportionality by \ :

(6)

By multiplying the first of these equations by x, the second

by ?/, and adding to the third, one has

ux + vy + l = \ (Ax
2
-f 2 Bxy -f Of + 2 Dx + 2 Ey + F) ;

since the point x, y is on the curve, the second member is zero,

and one has
ux + vy + 1 = 0,

or A (MOJ + w/ + 1)
= 0.

This equation, combined with equations (6), gives a system
of four equations of the first degree in \x, \y, and A. The
elimination of these three quantities gives the condition sought
in the form of a determinant :

B
a
E

D
E
F
1 = 0,

whose development leads to equation (5).
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CHAPTER II

CENTER, DIAMETERS, AND AXES OF CURVES OF THE
SECOND DEGREE.

127. The center of a curve has been defined as a fixed point

C, with respect to which all the points of the curve are sym
metrical two by two. In the discussion of the general equa

tion of the second degree, it was found that the ellipse and

hyperbola have a center. It is proposed now to determine

directly the center of a curve of the second degree without

solving the equation. The method which will be used depends

on the theorem : when the origin of co-ordinates is the center

of a curve of the second degree, the equation of the curve does

not contain the terms of the first degree.

Let

(1) Ax2
-f 2 Bxy 4- Cy~ + 2 Dx + 2Ey + F=Q

be the equation of a curve of the second degree having the

origin at the center (Fig. 77) ;
the equation of a straight line

MM drawn through the origin

has the form y=mx. The elim- V *
&amp;lt;

ination of y between this equa

tion and that of the curve gives

the equation

(2) (A-

Fig. 77.

u

which determines the abscissas

of the two points of intersec

tion. The origin being the mid-point of the line MM
,
the

preceding equation ought to have equal roots with contrary

signs, and this will be the case if the coefficient of the first

power of x be zero
;
one has, therefore, D + Em = 0, and,
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since this condition should hold for an infinity of values of

m, one should have separately I) = 0, E = 0. Conversely,
when these conditions are fulfilled, equation (2) has two equal
roots with contrary signs, whatever be the value of m, and,

consequently, the origin is the center of the curve.

128. In order to know if a locus of the second degree have

a center, keeping the axes parallel to themselves, transfer the

origin to an arbitrary point whose co-ordinates are a and 6,

then examine whether these quantities can be so determined

that the new equation does not contain the terms of the first

degree.

The formulas for transferring the axes parallel to themselves

are x = a -f a;
, y = b 4- y . On substituting in equation (1),

the new equation will be

(3) Ax 2+2Bx y +Cy 2

+2(Aa+Bb+D)x +2(Ba+Cb + E)y

+Ac&amp;lt;? + 2 Bab + Cb2 + 2Da + 2Eb+F=0,
whose composition should be carefully noted. Represent, for

brevity, the first member of equation (1) by f(x, ?/),
which is

an integral function of the second degree in x and y ;
in equa

tion (3), the terms of the second degree are the same as in

equation (1) ;
the terms of the first degree have as coefficients

the partial derivatives of the function /(#, y), taken with respect

to the variables x and ?/, and in which the variables have been

replaced by a and b
; finally, the constant term is the value

which the polynomial f(x, y) takes for x = a and y = ft,
and

equation (2) can therefore be written

(4) Ax 2 + 2Bx y +Cy 2 +fa (a, b) x +fb (a,V)y +/(a,6)= 0.

On equating to zero the coefficients of x and y ,
one obtains

the two equations of the first degree,

fAa + Bb + D = Q,

\Ba + Cb + E=Q.

It follows, therefore, that the center of a curve of the second

degree is determined by solving the two equations which are

found by equating to zero the partial derivatives of the first

member of the given equation, taken tvith respect to x and y.
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129. If a and b be regarded as variable co-ordinates, each of

the equations (5) defines a straight line, and there is occasion

to distinguish several cases, according as the denominator,

common to the values of the unknown quantities, or the

determinant AC B2

,
which has been represented by M or

f, is different from zero or equal to zero.

1 When the determinant f is different from zero, the sys

tem of equations is satisfied by one system of values of a and b

and by one only ;
the two straight lines intersect

;
the curve

has a center and a definite center, whose co-ordinates are, accord

ing to 124,

2 In case the determinant f is equal to zero (genus parab

ola), the lines are parallel, or coincide. In the first case, the

curve does not have a center
;
in the second case, every point

of the straight line defined by one of equations (5) is a center.

It is easy to see that, in the latter case, the locus, if it exist, is

necessarily composed of two parallel straight lines. Let, in

fact, CC be the straight line which is

the locus of the centers (Fig. 78), and

M a point belonging to the locus
; join

the point M to the various points of

the straight line CC
,
and prolong each

of these straight lines till IN is equal
-

to IM, etc. The points JV, N1

, N&quot;, , Fig 78&amp;gt;

thus obtained, will belong to the locus.

Now all of these points are situated on a line parallel to CC .

Proceeding in the same manner with the point N, a second

parallel MM will be determined. Moreover, equation (1) can

not represent other points than those of these straight lines
;

otherwise a straight line could intersect the locus in more than

two points. If the point M were situated on the line CC
,
the

two parallels would coincide with the locus of the centers.
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130. If the curve have a center, and the origin be trans

formed to this point while the axes remain parallel to them
selves, the equation simplifies and becomes

(7) Ax 2 + 2 Bx y + Cy
2 + //= 0,

since the terms of the first degree disappear. The constant

term H of the new equation has the value

H= Aa 2 + 2Bab+Cb2 + 2Da + 2Eb + F,

a and b representing the co-ordinates of the center. But the

quantities a and b satisfy equations (5) : if the members of

each of them be multiplied respectively by a and 6, and added

together, they become

Aa2 + 2 Bab + Cb2 + Da + Eb = 0,

whence Aa2 + 2 Bab + Cb2 = - (Da + Eb),

and, consequently, // = Da + Eb + F;

and by replacing a and b by their values (6)

(8) tf=|.

When the discriminant A is zero, the equation reduces to

(9) Ax K

whence

(10) y^
c

If the quantity I?
2

^4(7 be negative, the equation has the

real solution x = 0, ?/
= 0. If it be positive, the equation

represents two straight lines passing through the origin. In

this case equation (7), in which any arbitrary value may be

assigned to H, defines a hyperbola ;
it has been found ( 117)

that the asymptotes of a hyperbola pass through its center,

and that their angular coefficients are given by the formula

B V732 - AC
-c~

these asymptotes are none other than the straight lines repre

sented by equation (10) or by equation (9). Thus, when an
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equation of the second degree represents a hyperbola referred

to its center, the equation of the asymptotes is found by sup

pressing the constant term in the given equation.

From this it follows that if the general equation of the

second degree,

f(x, y)
= Ax* + 2Bxy + Cf + 2Dx + 2 Ey + F= 0,

represent a hyperbola, the equation

(ii) /(s,y)-f=o

represents the ensemble of two asymptotes. In fact, if the ori

gin be transferred to the center of the curve, f(x, y) becomes

therefore, equation (11) becomes

which is the equation of the asymptotes.

DIAMETERS.

131. If a curve of the second degree be cut by a system of

parallel straight lines, the locus of the mid-points I of the

chords MM ,
determined by the two points of intersection, is

a diameter of the ciirve. Let m be the angular coefficients of

the chords, and

(1) f(x, y)
= Ax2 + 2Bxy+Cy2 + 2Dx + 2Ey + F=0

be the equation of the curve. If the axes be kept parallel to

themselves, and the origin be transferred to the arbitrary point

/ of the plane, whose co-ordinates are a and b, the equation of

the curve becomes ( 128)

(4) Ax 2 + 2 Bx y + Cy
2 +A (, &) * +A (, *0 2/ + /(&amp;gt;

&)
= -

Draw through this point I a line MM1

parallel to the given

direction; the equation of this parallel is y = mx . The
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elimination of y between this equation and that of the curve

leads to the equation of the second degree,

(11) [A + 2 Bm -f Cm*] x 2 + [/a(a, &) +fb (a, b) m] x

+/(a, 6)
= 0,

which gives the abscissas of the points of intersection. So

long as the value assigned to m does not

reduce A -f 2 J3w -f- Cm2

,
the coefficient

of cT
2
,
to zero, each of the secants inter

sects the curve in two points ;
if it be

assumed that the origin / be placed at

the mid-point of the chord MM (Fig.

79), equation (11) having its roots equal
with contrary signs, one has the relation

(12) /&amp;gt;,

this equation being satisfied by the co-ordinates of the mid

point of any of the chords considered, is the equation of the

locus. If a and b be replaced by x and y, it becomes

(13) f,(x,y) + f,(x,y) = o,

or

(14) (Ax + By + D) + m (Bx + Oy + E) = 0.

Since this equation is of the first degree, it follows that the

diameter, which corresponds to any system of parallel chords,

is a straight line DD . Call m the angular coefficient of the

diameter
;
we shall have the relation

f

(15) m
B+ Cm

or

(16) Cmm + B(m + m 1

) + A= 0.

132. REMARK I. The values of x and y, which satisfy the

simultaneous equations

Ax -f By + D = 0, Bx + Cy + E = 0,

satisfy equation (14), whatever be the value of m; therefore

if the locus have a definite center, all of the diameters pass

through the center, and, if it have an infinity of centers, all of

the diameters coincide with the locus of the centers.
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The two equations, which determine the center, represent

two diameters
;
the first corresponds to the chords parallel to

the #-axis, the second to chords parallel to the y-axis. They
are formed by putting m = or m = oo.

133. REMARK II. In case the curve be an ellipse, the

trinomial A+2 Bm + (7m2
,
which has imaginary roots, is always

different from zero
;

to eveiy direction of the chords cor

responds a diameter defined by equation (14).

This equation (14), if m be regarded as an arbitrary param

eter, represents all of the straight lines which pass through

the center
;
whence it follows that every straight line passing-

through the center is a diameter.

REMARK III. In case of the hyperbola, the trinomial

A + 2 Bm -f Cm2 becomes zero for two real values of m which

are the angular coefficients of the asymptotes. If one of these

values be given to m, equation (11) is depressed to the first

degree; each of the secants intersects the curve in but one

point. If, further, the co-ordinates a and b of the point 7,

through which the secant is drawn, satisfy relation (12), equa

tion (11), having its first two coefficients zero, has no longer a

solution
;
the straight line represented by equation (14) is then

the locus of the points / such that the parallels drawn through

each of its points with the given direction do not intersect the

curve; but, by reason of relation (16), the value of m being

equal to m, all of these parallels coincide with line (14) itself.

Since this line passes through the center, it is one of the

asymptotes.
If m be regarded as an arbitrary parameter, equation (14)

represents all of the straight lines which pass through the

center
;
whence it follows that all of these straight lines, except

ing the two asymptotes, are diameters.

134. REMARK IV. In case of the parabola, we have

AC B2 = 0, or =
;
whence it follows that the value of

B C
m

, given by equation (15), is independent of m and equal to
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7&amp;gt;

;
thus all of the diameters of the parabola are parallel to

C
each other.

The trinomial A + 2 Bm -f- Cm2 has its two roots equal to
TD

,
the angular coefficient of the diameters. If parallel

C
secants be drawn in this direction, each of them will intersect the

T&amp;gt;

curve in but one point. On the other hand, if the value
O

be assigned to m, the coefficients of x and y in equation (14)

become zero and the equation . ceases to represent a straight

line.

Equation (14), in which m is regarded as an arbitrary

parameter, represents all of the straight lines parallel to the
Tt

direction
;
whence it follows that every straight line

C

parallel to this direction is a diameter of the parabola.

If at the same time AC - B2 = and BE - CD = 0,

or == =
,
the locus of the second degree is represented

by two parallel straight lines; if m represent the common
value of the preceding ratios,

Ax + By + D = - m (Bx + Cy + E),

and equation (14) reduces to

(m -m 1

) (Bx+Cy + E) = 0.

Thus, in this case, all of the diameters coincide.

CONJUGATE DIAMETERS.

135. Assume that AC B* differs from zero. The two

coefficients m, and m are connected by the relation

(16) Cmm + B(m+m r)+A = Q.

Imagine secants to be so drawn that the chord MM&quot; be

parallel to the diameter DD (Fig. 79) ;
let m&quot; be the angular

coefficient of the diameter EE which bisects these chords,
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then the relation between the direction m f of the chords and

the direction m&quot; of the corresponding diameter EE
,
will be

Cm m&quot; + B (m
1 + m&quot;) +^4 = 0;

this and the preceding equation being of the first degree with

respect to m&quot; and m, it follows that m&quot; = m. The two diameters

DD and EE
,
whose angular coefficients are m and m, have the

property, that each of them bisects the chords parallel to the

other
; they are for this reason called conjugate diameters.

The ellipse and the hyperbola have an infinity of systems of

conjugate diameters. One can take for the first diameter any

straight line drawn through the center, provided that, if the

curve be a hyperbola, it does not coincide with one of the

asymptotes.

136. It has been seen ( 130) that the equation of the

curve, referred to axes parallel to the primitive axes and drawn

through the center, is

(17) Ay? + 2Bxy + Cy* + H = 0.

If any two diameters be taken as axes of co-ordinates, and as

this transformation may be accomplished by aid of formulas (4)

of 51, the homogeneous polynomial of the second degree

Ay? + 2 Bxy + Cy
2

transforming into a homogeneous polynomial
of the second degree A x 12 + 2 B x y + C y

2

,
the equation

becomes
A x 2 + 2 B x y

1 + C y
2 + H=0.

In case the two diameters are conjugate, since to each value of

x two equal values of y with opposite signs correspond, the

coefficient B 1

is zero, and the equation reduces to the simple

form

(18) A x 2 +C y
2 + H=0.

In case of the parabola, if a point on the curve be taken as

the origin, which causes the constant term to vanish, the

diameter which passes through this point as the x -axis, a line

through this point parallel to the chords which the diameter

bisects as the
^/ -axis, since to each value of x correspond two

L



162 PLANE GEOMETRY. BOOK III.

equal values of y with opposite signs, one ought to have
B x +E = 0, and, consequently, separately B = 0, E =

;
on

the other hand, since the curve is a parabola, the condition

A C B 2 = ought to be satisfied, which gives A = 0; thus

the equation reduces to the simple form

(19) C y
2 + 2 D x = 0.

From which it is seen that the y -axis coincides with the

tangent at the origin.

AXES.

137. In curves of the second degree, the diameters perpen
dicular to the chords which they bisect are the axes of sym
metry.
The parabola having all its diameters parallel, if one imagine

a series of chords MM (Fig. 80) perpen
dicular to the common direction of the

diameters, the diameter AA
,
which bisects

the chords, will be an axis of the curve and

it will be the only one. The angular co

efficient of the diameter is
Y ; therefore,
O

if the co-ordinates are rectangular, the axis

Fig. 80. of the curve is the diameter of the chords

C
having the angular coefficient

;
its equation ( 131) is

(20)

In case of oblique co-ordinates, the angular coefficient of the

chords perpendicular to the axis being

C - B cos

B-CeosO

this straight line is determined by the equation

(Ax + By~+D) (B- Ccos 0) + (Bx + Cy -f- E) (C-Bcos 0) =0.

The equation of the parabola referred to its axis AA and to

the tangent at the vertex A, is of the form (19).



CHAP. II. CENTER, DIAMETERS, AND AXES. 163

When the curve is an ellipse or a hyperbola, referred to the

axis AA 1

(Fig. 81), and a second BB cor

responding to it, forming with the first a

system of conjugate diameters, the ques

tion is then reduced to finding a pair of _|

perpendicular conjugate diameters. If

the co-ordinates be rectangular, the angu
lar coefficients of the axes are found by

combining the relation mm = 1 with
/ Y _ A

equation (16) which gives m + m 1 =-
; thus, m and m

are the roots of an equation of the second degree,

(21) Bif +(A-C)u-B = 0.

Should the origin of co-ordinates coincide with the center,

the equation

(22) By
2 + (A - C) xy - Bx* = 0,

which is deduced from equation (21) by substituting
^ for u,

represents the ensemble of the two axes.

In case of oblique co-ordinates, the angular coefficients of

the axes are the roots of the equation

(23) (B

The equation of the curve, referred to these two axes, is of

the form (18).

Let u be a root of one of the equations (21) or (23) ;
the

equation of the corresponding axes will be

/.+/,=&amp;lt;&amp;gt;.

Therefore, the origin of co-ordinates being chosen in any

manner, one will have an equation of the second degree repre-

/
senting the ensemble of the axes on replacing u by ~, in

J y

(21) or (23), which gives, when the axes are rectangular

(eq, 21),

(24) B (/.
-
//)

- (A - CO/./, = 0.
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137. 2. To determine the position of a point with respect to

a conic.

Let f(x, y)= As? + 2Bxy + Cif + 2Dx + 2Ey + F
be the first member of the equation of a conic. If the point

M(x, y) be displaced in the plane in a continuous manner by

making it follow any arbitrary path, the function /(a?, y) varies

in a continuous manner, and can only change sign when it

becomes zero
;
that is, when the point M crosses the curve.

The sign of f(x, y) is therefore the same for all points of the

plane situated on the same side of the curve
; moreover, this

sign changes when the point M crosses a simple branch of the

curve. In fact, let y = mx -{- h be the equation of a secant

M M&quot; cutting the curve in. two real distinct points M , M&quot;,

with the abscissas x 1 and
a?&quot;; displacing the point M on this

secant, one will have

the function f(x, mx -j- h) is a trinomial of the second degree
in x having the roots x and x&quot;. The trinomial has a certain

sign when x is situated without the interval x
x&quot;,

and the oppo
site sign when x lies within this interval. Therefore, when
the point M is displaced on this indefinite straight line M

M&quot;,

the function f(x, mx + h), or its equal f(x, y\ has a certain sign

so long as the point M is exterior to the segment M M&quot;,
and

the opposite sign when the point is on this segment. The

sign of f(xf y) changes, therefore, when the point t
M crosses

the curve on a secant.

Accordingly, it suffices to know the sign of f(x, y) for one

point of the plane not situated on the curve in order to know
its sign for any portion of the plane. Take, for example, the

function

f(x, y)= x2 + xy + f - 2x + ?/,

which, equated to zero, represents a real ellipse. If one take

a point M(x, y), situated at a sufficient distance, it will be

exterior to the curve
; take, for example, on the axis Oy (x 0,

y sufficiently large); then f(x, y), which is reduced to a tri

nomial in y, is evidently positive. Therefore, in this example,

f(x, y) is positive without the ellipse, and consequently nega-



CHAP. II. CENTER, DIAMETERS, AND AXES. 165

tive within. One can perceive immediately the position

of a point with respect to the curve from the sign of

We come now to the general case, and seek to give simple

rules for the different cases.

1 If the equation /(a?, y)
= represent an imaginary ellipse

or a point-ellipse, or two imaginary parallel straight lines, or

two coincident straight lines, the function /(, y) has the same

sign for every point of the plane ; because, in case of the three

first hypotheses, it reduces to zero for but one point at most,

and in the last (coincident straight lines), the function /(a?, y)

is a perfect square.

2 If /(a;, y)= represent a real ellipse or a hyperbola, it is

convenient to call the region of the plane which contains the

center the interior of the curve
;
the remainder of the plane,

the exterior. The signs of f(x, y) are different for the exterior

and the interior. Let a and b be the co-ordinates of the center,

the function /(a;, y) takes for the center the value ( 130)

the sign of this quantity furnishes therefore the sign of

f(x, y) for the interior of the conic; the sign will be the

opposite for the exterior.

3 If f(x, y)
= represent a parabola or two real parallel

straight lines, the interior of the curve is the region which

contains the focus of the parabola or the region comprised

between the two straight lines. The sign of f(x, y) may be

obtained immediately for the exterior of the curve by taking

the sign of f(x, y) for a point at infinity in a direction not

parallel to the direction of the axis or to that of the two lines.

This particular direction is obtained by equating to zero all of

the terms of the second degree Ax* + 2 Bxy + Of, which is a

perfect square in the case considered. Since one of the two

co-ordinate axes at least is not parallel to this particular

direction, it will suffice to take the sign of f(x, y) for infinity on
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this co-ordinate axis
;
that is, the sign of the coefficient A or C

which is not zero.

4 If the curve f(x, y)= be composed of two straight lines

which intersect, the sign of f(x, y) will be the same in the

vertical angles ;
the signs of f(x, y) are opposite in the adjacent

angles.
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CHAPTER III

REDUCTION OF THE EQUATION OF THE SECOND
DEGREE.

138. In order to study with the most facility the properties

of a curve of the second degree, it is important to simplify as

much as possible its equation by referring it to co-ordinate axes

suitably chosen. It has been seen, in the preceding chapter,

that the equation of the second degree can always be reduced

to one of the two forms

() Aa?+Of + H=Q, 08) Cy* + 2Dx = 0.

In case the curve is an ellipse or a hyperbola, its equation

is reduced to the form (), on taking any two conjugate diame

ters for a system of co-ordinate axes
;
in general, the co-ordi

nates will be oblique ; they will be rectangular, if the curve be

referred to its axes. In case the curve is a parabola, its equa

tion is reduced to the form (/?),
on taking any diameter as the

axis of x, and a tangent at the extremity of this diameter as

the axis of y; in case the co-ordinates are rectangular, one

takes the axis of the curve as the x-axis.

It is by means of these equations (a) and (/3),
in rectangular

co-ordinates, that one demonstrates in most part the properties

of the curve of the second degree. One applies now the method

used to accomplish the reduction of the equation. Let

(1) Ax2 + 2 Bxy + Cy* + 2 Dx + 2Ey + F=Q

be the given equation of the second degree referred to rectan

gular axes
;

if they were not, one would first render them such

by a transformation. On retaining the x-axis and taking for

the 2/-axis the perpendicular erected to the ic-axis at the origin,

the formulas of transformation are
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ELLIPSE AND HYPERBOLA.

139. Consider now the case where the quantity AC B2
is

different from zero; the curve has a definite center, whose
co-ordinates a and b are given by the formulas ( 129)

=
J,

6 = ?.

Keeping the axes parallel to them

selves, transfer the origin to the

center C (Fig. 82). One knows that

.

the terms of the second degree
do not change, that those of the

first degree disappear, and that
the constant term // of the new equation is given by the

formula The equation of the curve, by this change of

co-ordinates, simplifies and becomes

(2) Axf + 2 BXM + Cy,
2 + //= 0.

Fig. 82.

Rotate now the co-ordinate axes, supposed rectangular, about
the center C through the angle ,

in order that they may coin
cide with the axes of the curves. The formulas of trans

formation are

xl
= x cos a y sin

, y1
= x sin a -f y cos p.

Substituting in equation (2), one gets the new equation

(3) (A cos2 a 4- C sin2 + 2 B sin a cos ) x
2

+ (A sin2 a -f C cos 2 a 2 B sin a cos a) y
2

4- 2 [((7 A) sin cos a + B (cos
2 a sin2

)] x y + H=Q.

The angle a may be so determined that the coefficient of the

term x y will be null
;
for this purpose, one will put

(4) (C A) sin a cosa+B (cos
2 a - sin2

)
=

0,

or

(5) 5 tan2
&amp;lt;* + (A - C) tan a - B = 0.
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This equation of the second degree is the same as equation

(21), 137, by which the directions of the axes of the curve

are determined. Equation (4) can be solved more simply by

putting it under the form

(C -A) sin 2 a + 2 B cos 2 a = 0,

whence
9 R

(G) tea 2* =

If the case of the circle be excluded, where one has at the

same time B = and A O, equation (6) gives for 2 a a posi

tive value &amp;lt;D less than TT, and the various values of 2 a which

satisfy this equation are represented by the formula

2 a = a) -f- JCTT,

where k designates any integral number positive or negative ;

whence one deduces a = -\- k -
i Zi

The different values of a furnish no more than four different

directions for the axis CX 1

;
these four directions are two by

two opposite, and determine two perpendicular straight lines.

One gives to a the value -, which is always positive and less

than

140. The term in x y disappears from equation (3) ;
it

remains to calculate the value of the coefficients of the terms

in x 2 and y
K

. If one put

A =A cos2 a -f- C sin2 a -f 2B sin a cos a,

C&quot;
=A sin2a+C cos2 a 2 B sin a cos a,

one will have

(7) A -C =(A- C) (cos
2 a - sin2

) + 4B sin a cos a,

=
(^L
-

O) cos 2 a + 2B sin 2 a.
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Equation (6) gives

sin2=: ~
, cos2 = A--C_

^B2 + (A-C)
2 V4:B2 + (A-Cf

it follows A - C =

The two coefficients A and C can be calculated by means of

the formulas

(8)

on putting E = V4 2 + (A - C)
2

.

The value of 2 was taken positive and less than v. Sin 2

having a positive value, it will be necessary to give the radical

the sign which B has. In this manner the equation of the

curve is reduced to the simple form

(9) A x *+C y&quot; + H=Q.

It represents an ellipse or a hyperbola, according as the two

coefficients A and C have the same or opposite signs.

The preceding formulas (8), squared and subtracted, furnish

the relation

A C = AC-B2
.

The coefficients A and C&quot; of the equation of the curve referred

to its axes are the roots of the equation

(10)
2 - (A + C)S + (AC- B2

)
= 0.

The dimensions of the curve defined by equation (9) depend
JT TT

oii the two parameters
-

,
- In case of the ellipse,A C

these two quotients, which have the same sign, are positive ;
if

they be represented by a2 and b2

,
a and b will be the segments

of CX 1 and CY comprised between the center and the curve.

The lengths 2 a and 2 b are called the axes of the ellipse. The

quantities a2 and b
2 are the roots of the equation of the second

degree

(11) (AC - B2
)
u2 +(A + C)Hu + H 2 =

0,

TT

which is obtained by substituting for S in equation (10).
u
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TT JT
In case of the hyperbola, the two quotients ,

have
A C

opposite signs. If they be represented by a2 and 6
2

,
or a2

and 6
2

, according to the two cases which can occur, these two

quantities are still the roots of equation (11). The quantities

2 a and 2 b are called the axes of the hyperbola.

PARABOLA.

141. When AC B2 = 0, the terms of the second degree in

the given equation form a perfect square. One has, in fact,

on replacing A by its value
,

C

2B_ .B
2

= y

and the equation can be written

Eotate the axes of co-ordinates about the origin through an

angle a (Fig. 83) by means of the formulas of transformation,

x = xl cos a yl sin , y = xl sin a -f- yl cos a
;

the proposed equation becomes

KTt
\ / ID \

~~|2

cos a sinctWj+f sina + cosa\xl

-f 2 (Dcos a -f E sin a) xl + 2 (E cos a D sin a)^ + F= 0.

One can determine the

value of a so that the co

efficient of Xi or yi is zero

in that part of the poly

nomial which is squared.

Put, for example,
TJ

sin a -f cos a =
;

C

whence

(13)

* Fig. 83.
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sin a =
~

cos =

then equation (12) will simplify and become

(14) C yf + 2 D X! + 2 E y! + F= 0,

where

C&quot;
=

C[ cos sin a
j

= (7 (cos + tan a sin a)
2 =I V-/WO 1^* OXli t^/ I \_/ \ V- V- O *V ^ VMU VV DJJU I&amp;gt;V I .

V C J cos2 a

and, consequently,

C

The coefficients D 1 and j& are obtained by replacing sin a and

cos a by their values, which give

n ,
CD -BE CE + BD

JJ = = , _Z!/

One of the values of a given by equation (13) is positive

and less than -. If one take this value, sin a will be positive,

and it will be necessary to give the radical a sign opposite to

that of B. If the coefficient D were zero, equation (14) would

no longer contain a?], and would represent two straight lines

parallel to the axis OD^ In case this coefficient is different from

zero, one transfers the axes parallel to themselves by putting

equation (14) becomes

C y
2 + 2D x + 2 (C b + E ) y + (C b

2 + 2 D a + 2E b + F)= 0.

The co-ordinates of the new origin A are so determined that

the coefficient of y and the constant term are zero,

C b + E = 0, C b
2 + 2D a + 2E b + F=Q,

which give finite values for a and 6, and the equation will

reduce to the simple form

(15) C y
2 + 2D x = 0.



CHAP. III. REDUCTION OF THE EQUATION. 173

The dimensions of the curve depend on the numerical value

D_
G&quot;

r\l

of the quotient ,
or of that of

BE -CD

This quantity is called the parameter of the parabola.

142. The coefficients of the reduced equations can be easily

calculated by employing certain functions of the coefficients

and of the angle between the axes, which do not change in

value when any change whatever of the axes is made. To

form these functions, take formulas (4) of 51 :

(16)

which serve for the transformation of co-ordinates, when the

direction of the axes is changed and the origin remains fixed
;

these formulas express x and y as homogeneous functions of

the first degree in x and ?/ . If these values be substituted for

x and y in the homogeneous polynomial of the second degree

Ax2 + 2 Bxy + Of,

the result will be a homogeneous polynomial of the second

degree in x and y :

A x 2 + 2B x y +C y
12

.

In particular, the trinomial

x2
-f 2 xy cos + if

is transformed into

x 2 + 2x y cosO + 2/

2

,

being the angle between the new axes; because each of these

trinomials gives the square of the distance of the origin from

the same point of the plane.

Consider the polynomial

Ax2 + 2 Bxy + df-S (a? -f 2 xy cos + y*),

or (17) (A - S) x2 + 2 (B
- S cos 0) xy + (C - S) f,
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in which the letter S designates an arbitrary constant
;

it will

evidently furnish the transformed polynomial

A x 2 + 2B x y

or (18) (A
1 -S)x 2 + 2(B -S cos 1

)
x y

1 + (C&quot;

-
S) y

n
.

One notices now that the values of S, for which one of

the polynomials is the square of an integral function of the

first degree in the variables which it involves, are the same.

Assume, for example, that the first polynomial takes for a

certain value of /S the form (ax + &2/)
2

&amp;gt;

a and b being con

stants; when x and y are replaced by their values (16), the

function of the first degree, ax + by, changes into a function

of the first degree a x 1 + b y ,
and the second polynomial takes

the form (a x + b y
1

)
2
. When the polynomials are squares, the

equations which are found by equating their roots to zero

represent the same straight line referred to the two systems of

axes FOX, YOX .

The values of S, for which the polynomial (17) is a square,

are the roots of the equation of the second degree

(A-S)(C-S)-(B-Scos 0)
2 = 0,

or (19)

The roots of this equation are represented by Si and $2 ;
simi

larly, the values of S, for which the polynomial (18) is a

square, are the roots of the equation

(A
1 -S)(C -S)-(B -S cos

)

2 = 0,

or (20) S2
sin

2 - (A + C - 2 B 1 cos 0) S + A C 1 - B 2 =0.

The two equations (19) and (20) have the same roots, whence

it follows

A+ C-2BcosO _A -\- C -2B cosO

(21)

sin
2 sin2 6

AC-B2

= A C -BK

sin
2
6 sin2
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Therefore, the two functions

A + Q - 2 B cos 6 AC - B2

sin2 6 sin2

of the coefficients of the equation of a conic and the angle

between the axes preserve the same values when a transforma

tion of co-ordinates is made.

The quantity possesses the same property. In fact,
sin2

suppose f different from zero
; then, by transforming the origin

of co-ordinates to the center of the conic, one has an equation

whose constant term H has the value ( 130) H=.
Since this constant term // remains the same whatever be

the orientation and the angle between the axes and as .

remains constant when a change of axes is made, it follows that

the same is true of . Thus, the conic being referred to the
sin- 9

axes xOy which include an angle 0, if it be referred to new

axes x O y including an angle ,
and if the new equation be

called

A x 2 + 2 B x y
1 + C y

12 + 2 D x + 2 E y + F = 0,

and the new value of A, A == A (C
1F - E 2

) +, one has

A A
(22)

sin2 sin2

This relation will be satisfied if A
,
B

,
C

,
D

,
E

,
F

,
be

replaced by their values as functions of A, B, C, D, E, F, which

result from the formulas of transformation of co-ordinates. It

still holds whatever A
} B, C, D, E, F may be

;
that is, will be

the same in the case where f is zero, although the argument
used to establish this relation can no longer be applied to this

case.

The three quantities

A + C - 2 B cos f A
sn sn

are homogeneous with respect to the coefficients A, B, (7, Z), E, F;
the first is of the first, the second of the second, the third of
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the third degree. If, therefore, the first member of the conic

Atf + 2 Bxy + Cy- + 2Dx + 2Ey + F=Q
be multiplied by a constant K, that is, if A, B, C, D, E, F be

replaced by KA, KB, KC, ,
the first of the three quantities

(23) will be multiplied by K, the second by K 2
,
the third byK3

;

whence it follows that a combination of quantities (23), homo

geneous and of the zero degree with respect to A, B, C, ,
does

not change if the factor K be introduced. Such, for example,
are the two combinations

,9 ,v f sin2 6 A sin4

(A+C-2BcosOf (A+C-2Bco$Of
found by dividing the second and third of quantities (23) by
the square and cube of the first. One has then the two ex

pressions (24), which do not change when the axes are changed
and all of the coefficients are multiplied or divided by the

same factor.

The condition A = expresses that the conic is reduced to

two straight lines
;
the condition f = 0, that it belongs to the

genus parabola ;
the condition A -f C 2 B cos 0, that it is

an equilateral hyperbola, that is, a hyperbola whose asymptotes
are perpendicular. In fact, call m 1 and m&quot; the angular coeffi

cients of the asymptotes ;
the condition of perpendicularity is

(25) 1 + (m -f m&quot;)
cos -f m m&quot; =

;

further, these angular coefficients are roots of the
, equation

Cm* + 2 Bm + A =
0,

27? A
which gives m + m&quot; =

,
m m&quot; =

,

C C

values which, substituted in relation (25), give the required

condition.

143. The magnitude of an ellipse or of a hyperbola depends

on two numbers which are the lengths of the axes of the

curves; the magnitude of a parabola depends on a single

number, the parameter; finally, the magnitude of a conic

reduced to two straight lines depends on a number which is
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their angle of intersection if they intersect, and the perpendicu

lar distance between them if they be parallel. It is next pro

posed to calculate these different quantities.

Let Ax2 + 2Bxy + Qy
2 + 2Dx+2Ey + F = Q

be the equation of a curve of the second degree referred to axes

inclosing an angle 0. If one put

the three quantities

m
sn sn sii

possess this property that any combination of these three quan

tities, homogeneous and of the degree zero with respect to the

coefficients A, B, (7, ,
has a constant value when the co-ordi

nate axes are changed, and the coefficients of the equation of

the curve are multiplied or divided by the same factor, as has

already been demonstrated.

Assume, now, that the curve be an ellipse or a hyperbola ;

on referring the curve to its center and its axes, its equation

may be written

where, in the case of a real ellipse, a = b
2

, ft
= a2

;
in that of a

hyperbola, = b
2
, (3

= - a2

;
in that of an imaginary ellipse,

a = b
2

,(3 = a2
. It is said in these three cases that a and

p are the squares of the lengths of the axes. The two com

binations

m A A2 sin
2

I2

~~

of quantities (1) being homogeneous and of the degree zero with

respect to the coefficients, will have the same constant value if

they be constructed for the reduced equation. In case of the

reduced equation will

therefore f = -
( + , -^f

= A
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and a and ft are roots of the equation of the second degree,

/Q\ 2 i

cA A2 sin2

A
(3) P

2 +
P-jp+ -fT-

=
&amp;gt;

which is called the equation of the squares of the axes. From
the nature of the problem, this equation should have real roots

;

e
2A2 4 A2 sin2

f)

this is easy to verify, because the quantity
------ - may

then be written

(
2- 4f 8m*0)= \(A - C)

2 sin2 + [(A + C) cos0 - 2] 2

;,

which is necessarily a positive quantity. The roots are equal
when

A=C, B =

the curve is then a circle. The roots will be equal and of

contrary signs when c =
;
the curve is then an equilateral

hyperbola.

Suppose now that the curve of the second degree be a parab
ola

; by referring it to its axis, and to a tangent at its vertex,

its equation will take the form

f - 2px = 0.

What is the value of the parameter p ? The second of the

three quantities (1) is zero. A homogeneous combination of

the degree zero with respect to the coefficients can be formed

from the other expressions in (1) by dividing the last by the

cube of the first, which gives

Asin4

3

This last quantity constructed for the reduced equation is

p
2

;
the equation which gives p is therefore

A sin4

2

144. In case the conic is reduced to a system of two straight

lines which intersect, its equation can be written in the form
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then A = 0, and one has, on forming the expression ,

c
for

i sin u
the reduced equation,

f sin
2
9 m

whence may be deduced two values of m which are reciprocals.

If f be negative, the two straight lines are real and the values

of m are negative : call &amp;lt; the angle formed by the two straight

lines, then will

m== _tan2 and __^_ = 4 cot
2&

2 f sin2

an equation which determines &amp;lt;.

Finally, suppose that the curve is reduced to two parallel

straight lines, and calculate the distance between them. In

this case, two of the three quantities (1), f and A, are zero
;
the

preceding combinations of the three quantities can no longer

be employed. This case will be considered as a limiting case

of the case when the curves have a unique center, and this in

the following fashion. Let

be a conic reduced to two parallel straight lines
;
since A and

C cannot be zero at the same time, on account of the condition

f = 0, suppose that C differs from zero, and consider the auxil

iary curve

(A + \)x* + 2Bxy + Cy
2 + 2Dx + 2Ey + F= 0,

which involves the parameter X. In this curve will

Cl
= A + C + \ - 2 Bcos 0, fj

== (A + A) C - B2
,

The expressions A x and ^ reduce for A. = to A and f, that is,

to zero. When A. is different from zero, the auxiliary curve

has a definite center
;

its equation reduces to the form

where ^ and ft are roots of equation (3), which is written
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When X approaches zero, f x and Aj approach zero, and their

^ np_ 77^
ratio ^ approaches the limit -- . Therefore one of the

1
.

roots /?! of the preceding equation increases indefinitely, and
the other approaches the limit

Further, the reduced equation may be written under the form

which becomes y* a = 0, and the value found for* a is the

square of half of the distance between the two parallel straight

lines to which the auxiliary conic is reduced for X 0.

EXAMPLES.

The curve is an ellipse, since the quantity AC B2
is posi

tive. In order to obtain the co-ordinates of the center, equate
to zero the two partial derivatives

4z-3?/ + 1-0, -3x + 6y-7 = 0,

whence a; = l, y f, H= 1
/-.

If, keeping the axes parallel to themselves, the origin be

transferred to the center C (Fig. 82), the equation peonies

2 xf- 30^ + 33^-^ = 0.

Rotate now the axes through the angle a given by the

formula

A C

The equation solved by the tables gives

2 a = 71 33
54&quot;,

or a = 35 46 57&quot;.

The angle a can also be found by a graphical construction
;

lay off on the axes of x and y, beginning at the origin C, two

lengths respectively equal to 1 and 3; the diagonal of the
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rectangle constructed on these two lengths makes with the axis

of x an angle whose tangent is 3
;
the axis CX 1

is therefore

the bisector of this angle. Whence A and C&quot; are obtained by

the formulas

since B is negative. One has then

5 -Vio ^,_5+VioA ~2 2

and the equation of the curve becomes

(5
_ VlO) x&amp;lt;* + (5 + VlO) if = -2/ ;

the intercepts of the curve on the axes are

CA =
3 (5- VlO)

,
CB =J

f

26

X 3 (o + VlO)

II.

The curve is a hyper
bola (Fig. 84). The co-or

dinates of the center which

are given by the equations

4x-52/ = 0, -5z + 5 =

are x = 1, y = f,

whence //= 1.

By transferring the origin

to the center, the equation

becomes

Fig. 84,
2 ajj

f- 5

The angle a is given by the formula tan 2 a =
-|?

and one

has A +C = 2, A - C = - V29;

whence ,_2-V29 ^,_~~~

The equation of the curve referred to its axes is

(2
- V29)x

2

+(2 + V29) y
2 + 2 = 0.
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The primitive equation does not contain a term in y
2
. One

of the asymptotes is parallel to the axis Y.

III. 4 y? 12 xy -f 9 y*
- 36 x + 100 = 0.

The curve is a parabola (Fig. 83). The terms of the second

degree form a perfect square, and the equation can be written

9 (y
-

|^)2
_ 36a + 100 = 0.

Rotate the axes through an angle a given by the formula

tana = ~^= |= |,
whence a = 33 41

25&quot;,
one will have

G 9 o
C&quot;
= 13, 3 . 2

cos a =
,

sm a =
&amp;lt;-,

VT3 A/13

2) = -
36

VT3 V13

The equation of the curve referred to the axes 0-Xj and TI

is therefore

13 y?- -i^U +-^ + 100 = 0.

V13 V13

The co-ordinates of the vertex are found by combining with

this equation the following

whence one finds

3G 3901

13V13 27.13V13

If the origin be transferred to this point, the equation becomes

V13
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CHAPTER IV

THE ELLIPSE.

145. It is proposed to construct the curve represented by

the equation

in which the coefficients A 1

When the constant H is

by x = 0, y = 0, represents

ordinates.

If the coefficients A and

equation cannot be satisfied

not represent a geometrical

Consider finally the case

signs contrary to that of //,

the equation becomes

(1)

and C&quot; have the same sign.

zero, the equation, being satisfied

a single point, the origin of co

C have the same sign as H, the

by real values of x and y, and does

locus.

where these two coefficients have

and put

P
Zr = ~c ;

On solving it with respect to y, one gets

The ordinate y is real so long

as the values of x are comprised

between a and + a, and the

same is true of x so long as the

values of y are comprised be

tween b and + b
; if, there

fore, starting from the origin, one

lay off on the #-axis to the right

and left two lengths OA, OA&amp;lt; Fig. 85.
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equal to a, and on the y-axis two lengths OB, OB 1

equal to b,
the curve is situated wholly within the rectangle CDEF con
structed on the two straight lines AA

,
BB (Fig. 85).

As x increases from to a, y decreases in absolute value
from b to 0, which, on account of the double sign, furnishes
the two equal arcs BMA, BM A. The same is true when x
varies from to a, which gives the two equal arcs BM^,
B NA

j equal to the preceding. These four equal arcs form
the ellipse.

146. The straight line A A is the axis of the ellipse, because
to each abscissa OP correspond two ordinates PM, PM

,

equal and of contrary signs. The straight line BB is also an
axis of the ellipse; because, if the equation be solved with

respect to x, one can verify in a similar manner that to each
ordinate OQ correspond two abscissas QM, QM1 equal and of

contrary signs. The points A, A , B, B ,
where the axes inter

sect the ellipse, are the vertices of the ellipse. The lengths
A A, B B of the two axes are respectively equal to 2 a
and 2 b.

The ellipse becomes a circle when the axes are equal.
It is easy to see that the origin is the center of the ellipse ;

in fact, let x, y be the co-ordinates of any point M of the

ellipse ;
it is evident that equation (1) is also satisfied by the

values x, y; there is, consequently, a second point N of

the ellipse which has the co-ordinates OP
,

P 1N respec

tively equal to the co-ordinates OP, PM of the point M, but
measured in opposite directions; the triangles 0PM, OPN
are equal; therefore OM= ON, and the line MON is straight
because the angles POM, P ON are equal. Thus the pointsM and N of the ellipse are two by two symmetrical with

respect to the point ;
therefore the point is the center of

the ellipse.

147. In order to study how the distance from the center to

different points of the ellipse varies, or the radius vector of

the ellipse, find the equation of the ellipse in polar co-ordi-
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nates, when the center is taken as the pole and the axis OA
of the curve as the polar axis. If in equation (1) x and y be

replaced by p cos to and p sin w, one has

(3)
cos2

to sin2
to

Suppose a
&amp;gt;

b and write the equation in the form

If to vary from to -, the quantity increases, and, conse-
2 p

quently, p decreases continually from a to b. The maximum
value of p is a, the minimum is b.

148. Represent by x and y the co-ordinates of any point

whatever of the plane and consider the polynomial

The polynomial is equal to zero for a point situated on the

ellipse (Fig. 86). Imagine that a mov
able point P starts from the point
M and moves along the prolongation
of the radius vector OM : the two

co-ordinates x and y increasing in ab

solute value, the polynomial must in

crease indefinitely ;
it takes, therefore,

greater and greater positive values.

On the contrary, if the movable point

travels toward the center, the polynomial diminishes and takes

negative values. Thus, the polynomial

Fig. 86.

is negative for every point situated within the ellipse, zero for

points on the ellipse, and positive for every point situated

without the ellipse.
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149. Tlie squares of the ordinates perpendicular to an axis of
the ellipse are proportional to the products of the corresponding

segments formed on this axis.

In fact, if x and y designate the co-ordinates of any point M
on the ellipse (Fig. 85), one has, on account of equation (2)

^ .= b
or ^/ _ b\

a2 x2 a2

(a x) (a + x) a2

But the two segments AP, A P of the axis AA are equal

respectively to a x and a + x
;
one has, therefore,

MP2
b2

AP x A P a2

Hence the square of the ordinate is to the product of the seg
ments formed on the axis in a constant ratio.

150. The ordinates perpendicular to the major axis of an ellipse

are to the corresponding ordinates of the circle constructed on this

axis as a diameter in the constant ratio of the minor to the major
axis.

Let AA be the major axis of the ellipse (Fig. 87) ;
on this

major axis as a diameter construct a circle; to the ordinate

MP of the ellipse corresponds the ordinate M^P of the circle.

Equation (2) may be written

V &
.

Va2 - x2 a

but Va2 x2

represents the ordinate M^P of the circle; one

has, therefore,
MP b

The minor axis enjoys the same property; the ordinate MQ,
perpendicular to the minor axis, is to the corresponding ordinate

M2Q of the circle constructed on this axis as a diameter in the

constant ratio of the major to the minor axis.

TJie ellipse is the orthogonal projection of a circle. Imagine

that the circle AB^A! be revolved about the axis AA through
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an angle fa such that cos
&amp;lt;j&amp;gt;

= -, the ordinate PMl of the circle
Ch

Avill revolve about the point P, always remaining perpendicular

to the axis AA
;
in this position MP will be the projection of

In order to get the length of the projection, it suffices

to multiply the length PMl by cos fa or by -, which gives the
ct

ordinate PM of the ellipse. Thus the projection of the point

Mi of the circle is the point M of the ellipse. Each point of

the circle projecting thus into the corresponding point of the

ellipse, it follows that the ellipse is the projection of the

circle.

One can also consider the circle as the orthogonal projection

of an ellipse. Imagine the ellipse to be revolved about the

axis BB through an angle &amp;lt;j&amp;gt;

whose cosine is -, the ordinate
Cti

QMoi the ellipse will have for its projection the ordinate QM2

of the circle described 011 BB as a diameter, and the small

circle will be the projection of the ellipse.

151. The construction of the ellipse by points. From what

precedes may be deduced a very simple method for construct

ing the ellipse by points. Construct on each of the axes of the

ellipse, as diameters, a circle (Fig.

87) ;
draw from the center an arbi

trary secant intersecting the two

circles in 3f1? 3/2 ;
draw through

the point Ml a line parallel to the

minor axis; through the point M2

a line parallel to the major axis.

The point of intersection M of

these two lines belongs to the

ellipse. After having determined

in this manner a sufficient number

of points, one connects them by a continuous line, and the

ellipse is thus constructed.

152. Construct the points of intersection of an ellipse and a

straight line. It is useful to be able to construct the points in

Fig. 87.
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Fig.

which a given straight line MM intersects an ellipse denned

by its two axes AA
,
BB (Fig. 88) without tracing the ellipse.

Thus, as has been seen, the ellipse can be considered as the

orthogonal projection of the circle AE^A\ described on the

major axis AA as a diameter, the circle being revolved about

AA through an angle &amp;lt; whose

cosine is -. Find in the plane
a

of the circle the straight line

MiMi, whose projection in the

plane of the ellipse is MM
;

let N be any point of the line

MM
; prolong the straight line

BN till it intersects the axis

AA in //; the line BJI is pro

jected upon BH\ consequently the point Nlt
where the line

BJ1 intersects the ordinate QN, is projected into N. Simi

larly, any other point of the line 3/
1
3/

1
could be found

;
but it

is more simple to begin with the point $, where the line MM
intersects the axis; the line SNt has the given line in the

plane of the ellipse as its projection. This line SNi cuts the

circle in two points Mlt 3V; the ordinates M^P, 3//P will

determine in the given line the two points 3/, 3/ where this

line intersects the ellipse.

TANGENTS.

153. The equation of the tangent to a curve of the second

degree has already been found ( 125) ;
when the equation

of the ellipse is put under the simple form

the equation of the tangent at the point M, whose co-ordinates

are x and
?/, becomes

(4)
*

b
2

b
2x

The angular coefficient of the tanerent has the value --
.
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One sees that at the vertices A and A the tangent is perpen

dicular to the axis A A}
that at B and B it is parallel, and

that, as the point of contact moves along the ellipse from A to

B, the tangent makes with the axisAA an obtuse angle, which

increases from - to TT.

The normal, being perpendicular to the tangent, has the

equation ^y

154. The construction of the tangent at a point of the ellipse.

If in the equation of the tangent one put Y= 0, one obtains

2

the abscissa X = of the point
x

T where the tangent intersects

the prolongation of the major

axis (Fig. 89). Since this value

of 077
is independent of the

minor axis 2 b and of the ordinate

y of the point of contact, it fol

lows, that if several ellipses be

constructed on the axis AA, the

tangents at the points which have the same abscissas pass

through the same point T situated on the prolongation of the

axis AA. Among these ellipses is the circle AB^A ;
to con

struct the tangent to the ellipse at the point M, draw a tangent

to the circle at the point M situated on the same ordinate
;

join the point M with the point T, where the tangent to the

circle intersects the prolongation of the axis AA-, the straight

line MT, thus constructed, is the tangent to the ellipse.

This construction is equivalent to regarding the tangent to

the ellipse at the point M as the projection of the tangent

to the circle at the corresponding point M. In fact, when the

plane of the circle is made to revolve about the axis AA
through an angle &amp;lt;,

the point T, where the tangent M^T meets

the axis, remains fixed; the point Ml projects into M, the line

M^T has for its projection MT\ it is the tangent to the

ellipse.
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155. To draw a tangent through an exterior point P. Let x
and y be the coordinates of the point P (Fig. 90). The equation

of the chord of contact MM has

been found
( 126). The determina

tion of the points of contact depends
therefore on the solution of the two
simultaneous equations

Fig. 90.
(5) +-

By eliminating y, one gets the equation of the second degree

of which the roots are the abscissas of the points of contact M
and M of the two tangents drawn from the point P. This

equation, in which - can be regarded as the unknown, will
a

x 2
?/

2

have real roots if the condition -\ -f 1
&amp;gt;

be satisfied
;a u

that is, if the point P be without the ellipse.

Fig. 91.

It is easy to construct geometrically the tangents drawn

from the point P, by regarding the ellipse as the projection

of the circle AB^ (Fig. 91). Seek in the plane of the circle

the point Plt whose projection in the plane of the ellipse is

the point P. Draw in the plane of the ellipse the straight
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line PB, which is prolonged till it intersects the axis in H-j

the straight line HBlf having HB for its projection, will pass

through the point Pl and determine this point. Draw from

the point Px to the circle the tangents P^, PX, which one

prolongs till they intersect the axis in Tand T
;
the straight

lines PT, PT , projections of the tangents to the circle, will be

tangents to the ellipse, and the points of contact M and M1

will be situated on the ordinates of the points 3/i, Jf/. In

order that these constructions be accomplished, it is not neces

sary that the ellipse be drawn.

156. To draw a tangent parallel to a given straight line. Let

y = mx be the equation of the given straight line OL, which

may be supposed to be

drawn through the center

(Fig. 92). Call x and y

the unknown co-ordinates

of the point of contact M
;

this point being on the el

lipse, one has the equation

Fig. 92.

the angular coefficient of the tangent being equal to m, one

has a second equation
Wx

These two simultaneous equations determine the two un

known quantities x and y\ the first represents the given ellipse ;

the second a straight line passing through the center; the

points where this straight line meets the ellipse are the points

of contact.

It is easy to construct these tangents geometrically. Deter

mine first in the plane of the circle the diameter OL^ whose

projection in the plane of the ellipse is OL
;

it is sufficient to

join the point B with any point L of the line OL, and prolong

the line BL till it intersects the axis in //; then draw

OF THB

UNIVERSITY
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and locate the point of intersection of this line with the ordi-

nate of the point L\ the point L being the projection of the

point LI, the line OL is the projection of OL. One draws to

the circle the tangents M^, M\T , parallel to OLl} and through
the points T and T

,
where three tangents intersect the axis,

the lines TM, TM parallel to the line OL. One has the tan

gents required; because the projections OL, TM of the parallel

straight lines OL1}
TMl are also parallel. The points of con

tact M and M are determined by the ordinates of the points

Ml and M\.

157. The equation of a tangent to the ellipse may be found

in other forms which it will be useful to know.

If one designate by a the angle which the perpendicular let

fall from the center to the tangent makes with the axis of x

and by p the length of this perpendicular, the tangent will be

represented by the equation ( 83)

Xcos a -f Fsin a p = ;

or, comparing it with equation (4), one has the relations

x y
a __ b _1.

a cos a b sin a p

whence p = ~Va? cos2 a -f 6
2 sin2

a.

Then the tangent will have the equation

(6) X cos a -f Fsin a = vVcos2 a + b
2 sin2

a.

The equation of the tangent may also be found by seeking

the points, of intersection of an ellipse and of a straight line,

and then expressing the condition that these two points should

coincide, as has been done in case of the circle ( 94). One

obtains in this way the equation of the tangent in the form

(7)
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158. As an application, it is proposed to find the locus of

the vertex of a right angle which

circumscribes the ellipse. Sup

pose tnat one draw through an

exterior point P (Fig. 93), whose

co-ordinates are x and ?/ , tangents

to the ellipse ;
on account of the

tangent passing through the point

P, one will have the equation of

condition

y =mx -f-

in which the angular coefficient m
is unknown. This equation, written in an integral form,

(a
2 - x 2

)
m2 + 2 x y m + (b

2 -y 2

)
= 0,

is of the second degree ;
its two roots determine the directions

of the two tangents drawn from the point P to the ellipse,

and, consequently, determine these tangents. The two tan

gents drawn from the point P will be rectangular if the prod
uct of the two values of m be equal to 1, which will be the

case if the co-ordinates of the point P satisfy the relation

2 2

a x
= -

1, or x 2 + y
2 = a2 +

Hence the locus of the vertex of a right triangle circumscribed

about an ellipse is the circle circumscribed about a rectangle

constructed on the axes.

DIAMETERS.

159. The general equation of a diameter of a curve of the

second degree has been found in

131. On representing by

/(, V)
=

the equation of the curve, and by m
the angular coefficient of the chords

parallel to MM (Fig. 94), one has

seen that the equation of the diameter Fig. 94.



194 PLANE GEOMETRY. BOOK III.

DD may be written in the form/ z -f mf y
= 0. The equation

of the ellipse being referred to its axes, the equation of the

diameter reduces to

arm

On representing by m the angular coefficient of the diameter

DD
,
one has, between the direction of the chord and that of

the diameter, the relation

(8) mm =-
2̂

.

Qj

It has also been shown that if the chord MM&quot; be drawn par

allel to the diameter DD
,
the diameter OE, which bisects this

chord, has the angular coefficient m; the two diameters DD
,

EE form a system of conjugate diameters, and their angular

coefficients m and m are connected by relation (8).

This relation shows that the two angular coefficients m and

m have opposite signs, and, consequently, that the two semi-

conjugate diameters OD and OE, situated on the same side

of the major axis, are situated on opposite sides of the

minor axis. If the first start from OA and revolve from

OA toward OB, the second starts from OB and revolves

toward OA .

160. The tangent at any point D of the ellipse i^ parallel

to the diameter EE ,
the conjugate of the diameter DD

,
which

passes through the point of contact. In fact, if one call x and

y the co-ordinate of the point D, the diameter OD has the

angular coefficient m = ^; the coefficient of the tangent at the

tfx
x

point D is m = T; these two coefficients satisfy the rela-

62

tion mm = ---

cr

This property may be described more clearly by imagining

that the secant MM
, moving parallel to the diameter EE ,

recedes continually from the center
;
the two points of inter

section M and M approach more and more the middle of the
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chord, and end by coinciding with D
;
then the secant becomes

a tangent at D.

161. The properties of conjugate diameters are exhibited at

once 011 considering the ellipse as the projection of the circle.

Two rectangular diameters OD^ OEl

(Fig. 95), in the plane of the circle,

form a system of conjugate diameters,

because each of them bisects the chords

parallel to the other
;
the parallel chords

are projected into parallel chords in the

plane of the ellipse; the mid-point of

the chord has for its projection the mid

point of the projection of the chord;
each of the diameters OD. OE, the projections of the diame

ters OD^ OE^ bisects therefore the chord parallel to the other
;

they are therefore conjugate diameters of the ellipse. It is

easy to deduce the relation which exists between the angular
coefficients m and m of the two conjugate diameters. If m

1

and m2 be called the angular coefficients of the two conjugate

diameters OD^ OEl of the circle, one has m = -mb m = -m\:
V

a
*

a

whence mm mlm 1 ]
since the conjugate diameters of the

a2

circle are perpendicular, one has m lm\ = 1
;

it follows then

52

that mm =
a2

Being given OD, one can find its conjugate OE, without

drawing the ellipse. One constructs the diameter ODl whose

projection is OD; and draws the diameter OEl perpendicular
to OD^ and projects OE

;
the projection OE will be the

diameter required.

162. The ellipse referred to two conjugate diameters. Owing
to what has been said in 136, when two conjugate diam

eters OD, OE (Fig. 96) are taken as axes of co-ordinates, the

equation of the ellipse can be written

H=0.
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Since the coefficients A&quot; and C&quot; have the same sign, contrary to

that of H, if one put
Y

J&quot;

\K
H

/

Fig. 96-

A&quot; C&quot;

the equation takes the form

which is the same form as

that of the curve referred

to its axes.

It follows that the calculations employed in demonstrating

the properties of the ellipse, when the equation of the curve

was referred to its axes, and in which the co-ordinates were

not supposed orthogonal, could be repeated with the equation

of the curve referred to a system of conjugate diameters.

Thus, the ellipse being referred to a system of conjugate

diameters OD and OE, the tangent will have the equation

E!^!J-^H =I
a 2 b

12

However, the equation of the normal does not preserve the

form which corresponds to the axes OA and OB.

r
&amp;lt;

THEOREM OF APOLLONIUS.

163. The theorem of Apollonius admits of an easy demon

stration by the method of 142. Imagine the ellipse referred

successively to its two axes and to a system of conjugate

diameters forming an angle 0. By the formulas of transfor

mation of co-ordinates, the binomial

is transformed into
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Similarly the binomial y? + y
2

becomes x 2 + y
2
-f 2 x y cos 0,

since each of the two expressions represents the square of

the distance of the origin from the same point of the plane.

Whence it follows that the polynomial

or

in which X plays the role of an arbitrary constant, is trans

formed into

-*+il-\ (ajB + y
a + 2 x y cos *)

tt y A
or

The values of X, which make one of the polynomials (10) or

(11) a perfect square, being the same, the two equations

-r,-;Yn-rVo,a A,

or

(12) (X
- a2

and

or

(13) A2 -
(a

12 + b
2

)
X + a 2

b
2 sin

2 = 0,

have the same roots. It follows, therefore, that the two roots

of equation (13) are equal respectively to a2 and 6
2

,
whence

follow the two relations :

(15) a 2
b 2 sin2 = a2

b
2

,
or a b sin = ab.
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The preceding equations furnish the following theorems :

1 The sum of the squares of any two conjugate diameters of
an ellipse is constant and equal to the sum of the squares of the

axes.

2 The area of the parallelogram constructed on two conju

gate diameters is constant and equal to that of the rectangle con

structed on the axes.

Kelations (21) of 142 give immediately the two equations

(14) and (15).

164. These theorems may easily be demonstrated by con

sidering the ellipse as the projection of a circle.

Two conjugate diameters OD, OE of the ellipse are the pro

jections of two perpendicular diameters OD 1} OEl of the circle

(Fig. 95). The angles AOP, E^OQ being complementary, the

right triangles AOP, E^Q are equal, and one has

OQ = AP; but OA2 = OP2

+ AP2

;

it follows that OP2

+ OQ
2 = a2

.

The lengths OP and OQ being the projections of the two semi-

conjugate diameters OD and OE on the major axis of the

ellipse, the sum of the squares of these two projections is

constant, and one has

on representing by a and (3 the angles which the semi-diameters

OD and OE make with the axis OA.

Similarly for the other axis, one has the projection of the

two semi-conjugate diameters on the minor axis equal to the

ordinates DP and EQ. DP= -D1P, EQ = -E1 Q, and,
a a

consequently,

a*

The lengths E^ and OP being equal, one has

AP2

+ EJ$ = AP2

+ OP2 = a2
,
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and, consequently, DP2

+ EQ* = &
2

,

or a 2 sin2
&amp;lt;* + &

2 sin
2

/3==&
2

.

On adding member to member the two preceding relations,

one obtains

165. In order to demonstrate the property respecting the

area of the parallelogram, one makes use of the following

theorem :

TJie projection of a plane area upon any plane is equal to the

projected area multiplied by the cosine of the angle between the

planes.

For this purpose consider a triangle ABC
(Fig. 97) having an edge AB parallel to the

plane of projection; one can assume that

the plane of projection passes through this

edge AB ;
from the vertex C, drop upon this

plane a perpendicular CO , and, in this plane,

draw CD perpendicular to AB
;
the straight

line CD will also be perpendicular to AB
and the angle CDC is the measure of the

dihedral angle of the two planes. From the

construction it follows that

CD = CD cos
&amp;lt;/&amp;gt;,

Fig. 97.

whence
AB-CD AB-CD

and, consequently,

2

ACB = ACB x

Thus the area of the triangle ACB is equal to that of the

triangle ACB multiplied by cos &amp;lt;.

Suppose now that the triangle ABC (Fig. 98) has no side

parallel to the plane of projection; this plane can be passed

through a vertex A, in such a way that the other two vertices

may lie on the same side
;
the plane of the triangle produced
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intersects the plane of projection in a straight line AI, and the
line CB intersects this plane in the point

*&amp;lt;&amp;gt;

/; the triangles AIC, AIE project into

AIC
,
AIB

,
and one has, after what has

just been proven,

AIC = AIC cos ^

AIB =
AIBcos&amp;lt;f&amp;gt;,

whence, by subtraction,

AB C =
ABCcos&amp;lt;f&amp;gt;.

The theorem, being demonstrated for a triangle, may be
extended to a plane polygon, since it can always be decomposed
into triangles, and similarly to a plane area bounded by any
closed curve

;
because this plane area may be regarded as the

limit of the area of an inscribed polygon, of which the number
of sides is increased indefinitely, in such a way that each

approaches the limit zero.

When the ellipse is regarded as the projection of a circle, the

parallelogram constructed on the two conjugate diameters is

the projection of a square circumscribed about the circle
;
the

square having a constant area equal to 4 a2

,
that of the paral

lelogram is also constant and equal to 4 a2
cos

&amp;lt;,
that is, to 4 ab.

AREA OF THE ELLIPSE.

166. The same theorem furnishes immediately the area of

the ellipse. The ellipse being the projection of a circle, its

area is equal to that of the circle Trcr, multiplied by cos
&amp;lt;/&amp;gt;

or by

-, which gives -nab.
a
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Nfl

EQUAL CONJUGATE DIAMETERS.

167. It has been noticed ( 159) that the two semi-conju

gate diameters OD, OE lie on opposite

sides of the minor axis OB (Fig. 99).

One knows that the radius vector of the

ellipse increases in length as it is rotated

farther from the minor axis
;
in order

that two conjugate diameters may become

equal, it is therefore necessary that

they make equal angles with the minor

axis OB, which will take place when the angles a and ft are

b
2

supplementary. One has, therefore, tan2 a = and, conse-
7 Ct^

quently, tan a = -
;
hence the equal conjugate diameters OG

a
and OH coincide with the diagonals of the rectangle constructed

on the axes.

It follows from the relation a 2 + b 2 = a2 + b
2 that

Fig. 99.

and the equation of the ellipse, referred to its equal conjugate

diameters, is

it has the same form as the equation of a circle, only the co

ordinates are oblique.

This equation shows that the sum of the squares of the dis

tances of each of the points of the

ellipse from two equal conjugate
diameters is constant. In fact,

let be the angle between the

two equal conjugate diameters;
MP and MQ the co-ordinates of

the point M (Fig. 100) ;
ME and

MF the perpendiculars dropped
from M upon these diameters

;

Fi 10 -

one has ME = y sin 0, MF= x sin 6
;
whence

ME
y&quot;)

a2
-f &2
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Fig. 101.

SUPPLEMENTARY CHORDS.

168. Two chords MC, MC in an ellipse are called supple

mentary chords, if they be drawn from any point of the

ellipse to the extremities of a diameter

CO (Fig. 101).

Two supplementary chords are parallel

to the corresponding conjugate diameters.

Draw, in. fact, the diameters OD and OE

parallel to the supplementary chords MC ,

MC. In the triangle CMC ,
the two sides

CC and CM are divided by the line OD,

parallel to C M, into parts which are proportional; the center

being the mid-point of CC ,
it follows that the diameter OD

divides the chord CM into two equal parts, and, consequently,

every chord parallel to the diameter OE. Similarly, the diam

eter OE bisects the chord C M, and, consequently, every chord

parallel to OD. Therefore the two diameters OD, OE, parallel

to the supplementary chords MC , MC, are conjugate.

Conversely, if straight lines be drawn from the extremities

of a diameter CC parallel to two conjugate diameters OD, OE,

these straight lines intersect on the ellipse ;
draw C M] the

supplementary chords MC, MC being parallel to the two con

jugate diameters, the second chord CM will be parallel

to OD.

169. The study of the variation of the angle formed by two

conjugate diameters is thus reduced to the study of the varia

tion of the angle formed by two sup

plementary chords, that is, of the

angle inscribed in a semi-ellipse. In

order to simplify the discussion, one

draws the two supplementary chords

through the extremities of the major

axis (Fig. 102). The angle AMA ,

represented by 0, is equal to the dif

ference between the angles MAX,
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MAX. Since the two straight lines AM, AM have the angu

lar coefficients ^
,

^
. one has

x a

2 ay

and, by replacing a?
2

by its value deduced from the equation of

the ellipse,

(a
2 - b2

) y

If the pointM describe the upper portion of the ellipse ABA,
the tangent being negative, the angle is obtuse

;
when the point

M is at the point A, that is, when y = 0, the angle is right ;

the point M traveling from A toward B, y increases
;
the abso

lute value of tan diminishes
;
the obtuse angle &amp;lt; increases

also, and acquires its maximum value at B; thus one has y = b

and tan 6 =
2

a
. When the point M passes the point B

and traces the elliptical quadrant BA ,
the angle diminishes

from its maximum value to a right angle.

Whence it follows that the angle between the semi-conjugate
diameters OD, OE, situated on the same side of the major axis,

is obtuse, and varies from a right angle to the maximum value

ABA; the conjugate diameters, which embrace the maximum

angle, being respectively parallel to the supplementary chords

A B, AB, and, consequently, forming equal angles with the

minor axis OB, are equal.

The variation of the obtuse angle DOE of two conjugate
diameters has been studied; the acute angle DOE varies in

an inverse manner. This angle is obtained directly by
drawing the corresponding supplementary chords through the

extremities of the minor axis BB . When the point M
describes the quadrant of the ellipse BA, the inscribed angle
diminishes from a right angle to the minimum value BAB

,

the supplement of the obtuse maximum value ABA .
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170. When the ellipse has been drawn, the center and the

axes can be determined graphically. In order to find the

center, one draws two parallel chords sufficiently distant from

each other, and then joins the mid-points of these chords,

which will determine a diameter, whose mid-point will be the

center. If on this diameter a semi-circle be constructed, and

the point where this semi-circle intersects the semi-ellipse be

joined to the extremities of the diameter, one will have two

supplementary chords which are perpendicular; the parallel

diameters, forming a system of perpendicular conjugate diam

eters, will be the axes of the ellipse.

In a similar manner, the two systems of conjugate diameters

which include a given angle having as limits the minimum and

maximum values, can be constructed; it will suffice to con

struct on a diameter a segment which will circumscribe an

angle equal to the given angle.

171. Being given two conjugate diameters, construct the corre

sponding ellipse. Let DD
,
EE (Fig. 103) be the given conju

gate diameters, whose lengths are represented by 2 a and 2b .

The equation of the ellipse, referred to these two conjugate

diameters, is

Draw through the center the line EJ5\, perpendicular to DD
,

and take OE1
= OE; the ellipse which has the,,axes DD ,

EiE\, referred to these axes,

is represented by the same

equation. Whence it follows

that the ordinates MP, M^P,

which correspond to the

same abscissa OP, are equal

to each other. Imagine that

different points of the el

lipse DE\D ,
whose axes are

known, are constructed by the process described in 149;

let Ml be one of these points, M^P its ordinate; if one draw

through the point P, PM parallel to OE and equal to PM^ one

Fig 103
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will have the point M of the ellipse required. Each point of

the first ellipse will give a corresponding point of the second.

The first ellipse is deformed into the second by revolving each

ordinate PM^ about its foot P through a constant angle.

The same method of transformation can be applied to the

tangent. The tangent at the point M is represented by the

equation

written in oblique co-ordinates
;
this equation represents also

the tangent at the point Ml
if written in rectangular co-ordi

nates. These two tangents intersect the prolongation of the

diameter DD at the same point T, the abscissa of which is

found by making Y= 0.

Instead of constructing the ellipse by points, as has been

explained, the axes of the ellipse can first be constructed, and

then the ellipse itself by means of its axes. The determina

tion of the axes depends upon the following theorem :

172. Any two conjugate diameters determine on a fixed

tangent PQ two segments DP, DQ, whose product is constant

and equal to the square of the

semi-diameter OE parallel to the

conjugate (Fig. 104). If one

take as axes of co-ordinates

the diameter OD, which passes

through the point of contact

and its conjugate OE, and if

one calls a and b the lengths

of these semi-diameters, the

equation of the ellipse is

Fig. 104.

Let y = mx, y = m x,

be the equations of two conjugate diameters OA, OB; according

to the remark made in 160, the angular coefficients will be



206 PLANE GEOMETRY. BOOK III.

connected by the relation mm = --- If in these equations

one put x a
,
one finds DP= ma

, DQ = m a
;
whence

DP -D = - mm a 2 = b 2
.

173. This theorem may easily be demonstrated by consider

ing the ellipse as the projection of a

circle. Let OA
1}
OB1 (Fig. 105) be

two perpendicular diameters of the

circle, P^ the tangent at any point

MI ;
draw the radius OM^ and the

radius ON^ parallel to the tangent;
in the right triangle P\OQi, one has

Fig. 105.

= OM? = ON,
2

.

When the figure is projected, the di

ameters OA} , OBi furnish two conjugate diameters of the

ellipse, the tangent P^ a tangent to the ellipse, and the line

ON} a parallel to this tangent ;
the lines M^P^ M^Q,^ ONlt

being parallels, have the projections MP, MQ, ON, which are

proportional to them
;
there also exist, therefore, between these

projections the relation

MP-MQ= ON2
.

174. Suppose that the two conjugate diameters OA and OB
be the axes of the ellipse (Fig. 104). The circle described on

PQ as a diameter passes through the point 0, and the ordinate

DH, perpendicular to PQ, is equal to OE. Whence follows a

simple device for constructing the directions of the axes, when

one knows the two conjugate diameters OD and OE. One

draws through the point D a line parallel to OE; this parallel

will be tangent at the point D ;
on this line one erects a per

pendicular DH equal to OE, and describes a circle having its

center on PQ and passing through the points and H; the

straight lines OP and OQ which connect the center with the

two points P and Q, where the circle intersects the tangent,

will give the direction of the axes.
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175. It remains to determine the magnitudes of the axes.

From the relations

a2 + b
2 = a 2 + b

12

,
ab = a b sin 0,

established in 163, one deduces

(a
-

b)
2 = a 12 + b

2 -2 a b sin 6 = a 12 + b 2 -2a b cos f- -
$},

(a + b)
2 = a 2 + b

2 + 2 a b sin = a 2 + b 2 - 2 a b cos
f|
+

Since one can suppose that 6 designates the angle included by
the conjugate diameters, one sees from these formulas that

a b is the third side of a triangle of which the other two

sides are a and b and the included angle - 0. This triangle

is the triangle ODH (Fig. 104) ;
because the angle ODH is

equal to -
0, and the two sides DO and DH are equal to a

&

and &
;
thus the third side OH will be equal to a b. Simi

larly a -f b is the third side of the triangle of which the other

two sides are a and b
,
and the included angle the supplement

of the preceding ;
this triangle is the triangle ODK, which is

obtained by prolonging the perpendicular DH till the prolon

gation is equal to itself
;
the third side OK will determine

a + b. If about the point as center, with OH as a radius,

one describe a circle, the length KI will be equal to the major
axis 2 a, the length KL to the minor axis 2 b.

One remarks that the major axis, which should lie within

the angle formed by the conjugate diameters, has the direction

OA, the bisector of the angle HOK, the minor axis is the

bisector of the supplementary angle.

EXERCISES.

1. Find the locus of the vertices of the parallelograms

constructed on the conjugate diameters of an ellipse.

2. Find the locus of the mid-points of chords drawn through

the same point in an ellipse.
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3. A chord of a circle moves parallel to itself; straight

lines parallel to two given straight lines are drawn through
the extremities

;
find the locus of the point of intersection of

the parallels.

4. Of all the parallelograms circumscribed about the same

ellipse, the parallelograms constructed on two conjugate diam

eters have a minimum area.

5. Of all the parallelograms inscribed in the same ellipse,

those whose diagonals form a system of conjugate diameters

have a maximum area.

6. Of all the ellipses inscribed in the same parallelogram,

find the greatest.

7. Find the smallest of all the ellipses circumscribed about

the same parallelogram.

8. Among all the systems of conjugate diameters of an

ellipse, the axes form a minimum sum and the equal conjugate

diameters a maximum sum.

9. Inscribe in an ellipse a chord with a given direction

such that the sum of its length and of the distance of its mid

point from the center be a maximum
;

find the locus of the

mid-point of this chord when the direction varies.

10. A straight line moves parallel to itself in the plane

of two others
;

one takes on it a point such that the sum

of the squares of its distances from the intersections with the

fixed lines be constant
;
what is the locus described by the

point ?

11. Being given any two ellipses, one can determine two

directions parallel at the same time to two conjugate diameters

of each of the ellipses ; pass a third ellipse of which the equal

conjugate diameters are parallel to these two directions through

the points common to the two curves.

12. An ellipse revolves about its center; one draws tan

gents to the ellipse at the points in which it intersects a fixed

straight line; find the locus of the point of intersection of

these tangents.

13. Being given a circle and a fixed straight line passing

through its center; a movable straight line equal to the

radius is supported by one of its extremities on the circum-
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fereiice, by the other on the line; find the locus of a point
on the movable straight line.

14. Find the area of the ellipse defined by the equation

Ax2 + 2Bxy + Cf = 1.

15. A triangle being inscribed in an ellipse, if one call R
the radius of the circumscribed circle and d, d

}
d n the semi-

&quot;diameters parallel to the sides, one has

-, dd d&quot;

ao

16. Any rectangle being circumscribed about an ellipse, the

parallelogram whose vertices are the points of contact has a

constant perimeter, and two consecutive sides make, with the

tangent, equal angles.

17. Beginning at any point on the ellipse, one lays off on
7,2

the normal a length equal to -, k being a constant and p the
P

perpendicular dropped from the center upon the tangent;
find the locus of the extremity of this line.

18. Being given an ellipse and the circle constructed on its

major axis or diameter, one draws normals to the circle and to

the ellipse at points situated on the same perpendicular to the

major axis
;
find the locus of the point of intersection of the

normals.
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CHAPTER V

TH^S
HYPERBOLA.

176. Construct/the locus defined by the equation

in which A and C&quot; have contrary signs.

When the constant H is zero, the equation, solved with

respect to y, gives \ / -r,
i -j*vl

*^^
/v

it represents two straight lines passing through the origin.

One gives the coefficient C the same sign as H, and the

coefficient A the opposite. If one put

the equation becomes

m ^-t-\W a* 6a-

Solving the equation with respect to y, one has

The ordinate ?/ is real for values of x greater than a in absolute

value. If, therefore, beginning at the origin, one lay off on

the axis of x, to the right and the left, two lengths OA, OA

equal to a, and draw through the points A andA lines parallel

to the axis of y, no point of the curve will lie between these

parallels.

When x increases from a to + oo, y increases from to + GO

in absolute value, which, on account of the double sign, fur

nishes two infinite arcs AD, AD , symmetrical with respect

to the axis of x. Similarly, when x varies from a to oo,

one gets two infinite arcs A E, A E , symmetrical with respect
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to the axis of y. These four equal arcs form the two branches

of the hyperbola.
The hyperbola has a center and

two axes. The axis AA only in

tersects the curve
;
for this reason

it is called the real or transverse

axis; the other axis does not

meet the curve
;
one calls it the

non-transverse or imaginary a,xis ;

the length AA of the transverse

axis is 2 a
; by analogy, the length

of the non-transverse axis is Fig.ioe.

called 2 b, and on this axis one lays off OB and OB equal in

absolute length to 6. The points A and A are the two vertices

of the hyperbola.

177. The squares of the ordinates perpendicular to the trans

verse axis are proportional to the products of the corresponding

segments on this axis.

In fact, from equation (1) it follows that

= -o, or
b2

(a; -f a) (x
-

a)

therefore
MPZ

A P x AP

178. ASYMPTOTES. It has been found ( 130) that, when
the origin of co-ordinates coincides with the center of the hyper
bola, the equation of the asymptotes is found by suppressing
the constant term in the equation of the curve. The two asymp
totes RR

,
SS 1 will have in this case the equations

(3) , .

= 0, or -.
a

It can be easily verified that the difference MN of the ordi

nates of the straight line OR and the arc AD, has the limit

zero
;
because this difference can be expressed by

&amp;lt;**)=

ab
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The arc AD lies wholly within the angle ROX and ap

proaches indefinitely the line OR, which is its asymptote. The
lines OR

, OS, OS are for a similar reason the asymptotes
of the arcs A E

,
A E, AD . According to equation (3), the

asymptotes R R, S S are the diagonals of the rectangle con

structed on the axes.

179.

(4)

CONJUGATE HYPERBOLAS. Two hyperbolas are said to

be conjugate, when they have the

same center and the same axes,

the real axis of the one being
the imaginary of the other.

Thus the proposed hyperbola has

as conjugate another hyperbola
whose transverse axis is 2 b and

imaginary axis 2 a (Fig. 107).

The equation of this second hy

perbola is

x2

Fig. 107,

lr

Two conjugate hyperbolas have the same asymptotes, since

the rectangle constructed on the axes is the same for both

curves. One of the curves lies wholly within the vertical

angles RO/S
,
R OS, the second within the other vertical angles

ROS, R OS .

,,

180. THE EQUILATERAL HYPERBOLAS. A hyperbola is said

to be equilateral when the axes 2 a and 2 6 have the same length.

In this case, the rectangle of the axes becomes a square, and

the asymptotes are perpendicular to each other; the conjugate

hyperbola is equal to the first
;
for the two curves will coincide

when one revolves the latter through a right angle about its

center.

The condition that the general equations of the second degree

represents an equilateral hyperbola, has been previously given

( 144) ;
this condition is A + C - 2 Bcos = 0.

The hyperbola whose axes are a and b can be constructed

by means of the equilateral hyperbola whose axis is a, just as
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the ellipse having the axes a and b was constructed by means

of the circle of radius a; that is, the first hyperbola can be

regarded as the orthogonal projection of the second. But this

construction has no practical utility in the graphical construc

tion of the hyperbola, inasmuch as the trace of an equilateral

hyperbola is not more simple than that of any other hyperbola.

181. Let x and y be the co-ordinates of any point of the

plane ;
consider the expression

Fig. 108,

b
2

This polynomial is equal to zero for a point M belonging to

the curve
;

if a point P starting from M travels along a line

drawn parallel to the transverse

axis AA (Fig. 108), the term
|-

2

remains constant, while the term

diminishes or increases, accord-
cr

ing as the point P approaches or

recedes from the y-axis. Whence
it follows that the polynomial has

a negative value for every point situated between the two

branches of the hyperbola, and positive for all other points of

the plane.

THE TANGENT.

182. The equation of the tangent at the point M, whose

co-ordinates are x and y, is

a2
b2

In order to construct this line, one can determine the point T
(Fig. 108), where it intersects the axis OX. If, in equation (5)

one make Y= 0, it becomes X OT =
;
this length OT

can be found by a third proportional.
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183. The angular coefficient of the tangent has the value

tfx b

Suppose that the point M describes the arc AD-, at A the

angular coefficient is infinity, and the tangent perpendicular
to the transverse axis

;
as x increases, the angular coefficient

diminishes constantly and approaches the limit -, the angular

coefficient of the asymptote OR ,
the angle MTX diminishes

therefore from ^ to BOX-, at the same time the value of T
2i

diminishes from a to
;
whence it follows that the asymptote

is the limiting position of the tangent, when the point of con

tact is indefinitely removed.

184. To DRAW A TANGENT THROUGH AN EXTERIOR POINT

P. If the co-ordinates of the point P be xl and ylf
the points of

contact are determined by the equation of the chord of contacts

combined with equation (1) of the hyperbola.

By eliminating y, one gets the equation of the second degree

whose roots are the abscissas of the points of contact M and

M of the two tangents drawn from the point P. The condi

tion that the roots are real is

that is, that the point P should be situated between the two

branches of the curve. If the point P lie in the angles of the

asymptotes which embrace the curve, the coefficient
2 -A

being positive, the product of the roots is positive; conse-
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quently the two roots have the same sign, and the two points

of contact on the same branch of the curve. On the contrary,

if the point P be in one of the angles EOS, E OS
,
there

will be a point of contact on each of the branches.

185. TANGENTS PARALLEL TO A GIVEN STRAIGHT LINE.

It is to be noticed that the equation of the hyperbola referred

to its axes differs only from that of the ellipse in that 62
is

replaced by b
2

;
if this change be made in equation (7) of

157 of the tangent to the ellipse, one gets the equation of

the tangent to the hyperbola

(7) y = mx Va2m2
tf.

In order that the problem be possible, it is necessary that

the value of m2 be greater than
;
that is, that in case the

a2

given line passes through the origin, it lie within the angle

EOS. It has already been shown ( 183) that the numerical

value of the angular coefficient of a tangent is greater than -.
Cb

186. One can draw to a hyperbola two perpendicular tan

gents so long as the angle EOE is less than a right angle, that

is, when a is greater than b
;
when this condition is satisfied,

the locus of the vertex of a right angle circumscribed about a

hyperbola has the equation

that is, a circle concentric with the curve.

DIAMETERS.

187. When the hyperbola is referred to its axes, the diameter

which bisects parallel chords whose angular coefficient is m
has the equation

2x 2my _ n~~~

or y = -r x.
arm
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If one designate by m the angular coefficient of the diameter,
there will exist, between the direction of the chords and that

of the diameter, the relation

(8)

Fig. 109.

This relation shows that if one

take m as the angular coefficient

of the chords, one will find m
for the angular coefficient of the

diameter
;
that is, in case the line

DD bisects the chords parallel to

EE (Fig. 109), reciprocally the

line EE bisects the chords paral
lel to DD . Thus the two diame

ters DD
,
EE are such that each

bisects the chords parallel to the

other; they are two conjugate
diameters.

The hyperbola has an infinity of systems of conjugate

diameters, since one can choose at will one of the diameters.

Eelation (8) shows that m and m have the same sign; if one

suppose them positive, m varies from to -, m will vary from
b a

co to
?
the diameter DD revolves from OA toward the asymp

tote OR, and the diameter EE from OB toward,,the same

asymptote. One sees thus, that of the two diameters, one

always intersects the curve while the other never meets it.

The axes form the only perpendicular system of conjugate

diameters, and the angle included between the two conjugate

diameters varies from ^ to 0.

It can be shown, as in the case of the ellipse, that the tangent

FH at the point D of the hyperbola is parallel to the diameter

EE
,
the conjugate of the diameter DD which is drawn to the

point of contact ( 160).
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188. Two conjugate hyperbolas and the system of their

asymptotes possess the same diameter for the same series of

chords
;
because the equations of the three loci

differ only by the constant term which does not enter in the

equation of the diameter fx + mfy
= 0. The three loci possess

also the same systems of conjugate diameters.

62

If the hyperbola is equilateral, the relation mm = becomes

mm = 1, which shows that the angles DOX, EOX are com

plementary, and, consequently, that the asymptotes are the

bisectors of the angles of the conjugate diameters.

189. THE HYPERBOLA REFERRED TO Two CONJUGATE
DIAMETERS. When two conjugate diameters OD, OE (Fig.

109) are chosen as co-ordinate axes, the equation of the hyper
bola becomes ( 136)

The coefficients A&quot; and C&quot; have contrary signs, for example,
C&quot; has the sign of JET, and A&quot; the contrary sign ;

if one put

the equation takes the form

which is of the same form as that of the curve referred to its

axes.

Since one has, by the transformation of co-ordinates,

^~W
=^~V2

for every point of the plane, it follows that the equation of the

conjugate hyperbola, referred to the same diameters
OZ&amp;gt;, OE, is

x^_y&amp;lt;

2 _
a 2 b 2

~
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The diameter OE, which does not meet the first hyperbola,
meets the second in the point E, and the length b of this

semi-conjugate diameter of the first hyperbola is equal to the

length OE of the real semi-diameter of the second.

190. Equation (3) of the asymptotes transforms into the

equation

One deduces, therefore, that the diagonals of the parallelogram

FHGK, constructed on any two conjugate diameters, coincide

with the asymptotes of the hyperbola.

The sides FH, GK, of the parallelogram are tangents to the

first hyperbola, and the sides FK, GH, to the conjugate, in

such a way that the parallelogram is circumscribed to the

curves of the two systems.

THEOREM OF APOLLONIUS.

191. It is sufficient to repeat the reasoning of 163.

By the formulas of transformation of co-ordinates, the two

binomials

-,-&a2 b2

are changed into

!_^!, x* + y
n + 2 x y cos 0.

The polynomial

&amp;lt;

is transformed into

^ ~~

b*
~

x
(x

2 +y 2 + 2 *y cos
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The two polynomials (10) and (11) being perfect squares for

the same values of A, the two equations

(12) (A

and

(13) X2 -
(a

2 - 6 2

)
X - a 2

&
2 sin2 = 0,

have the same roots; whence it follows that the two roots

of equation (13) are equal respectively to a2 and b
2

;
one

deduces the relations

(14) a 2 - b
2 = a2 - b2

,

(15) a 2b
2 sin

2 =
a?l&amp;gt;\

or a b sin = a&,

and, therefore, the two following theorems :

1 The difference of the squares of any two conjugate diameters

is constant and equal to the difference of the squares of the axes.

2 TJie area of the parallelogram constructed on two conjugate

diameters is constant and equal to the area of the rectangle con

structed, on the axes.

It follows from the relation a 12 - b 2 = a2 - b
2 that if a be

different from b, one cannot have a = &
;
the hyperbola can

not have equal conjugate diameters. If, however, the hyper

bola be equilateral, one always has a f = 6
; every system of

conjugate diameters is equal ;
this agrees with the remark of

188, for then the two diameters make equal angles with

the asymptote.

192. Since the hyperbola and its two asymptotes have the

same diameter for the same system of parallel chords, the mid

point I of the chord MM is also the mid-point of the chord

NN (Fig. 109). Therefore the portions MN, MN of a secant

comprised between the hyperbola and its asymptotes are equal

If the secant become tangent, one has DF DH. The

portions of a tangent comprised between the point of contact

and the asymptotes are equal.
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193. Suppose that the hyperbola is referred to two con

jugate diameters DD
,
EE

,
of which EE is parallel to a

given secant MM
;

the curve will have the equation

and the asymptotes y = x 12
.

ct

In Fig. 109 the secant MM
intersects the same branch of the curve in two points, while the

parallel diameter EE does not meet the curve
;
and one has

and, consequently,

NI 2 - MI2 = b 2

,
or (NI- MI) (JV7+ MI) = b

2

;

but NI-MI=MN, NI+MI=MN1

;

therefore MN - MN = b
2

.

In case the secant intersects the two branches of the hyper

bola, the parallel diameter meets the curve, and one will arrive

at an analogous result. Thus, the product of the segments of a

secant, comprised between a point of the curve and the asymptotes,

is equal to the square of the semi-diameter parallel to the secant.

194. Being given the asymptotes RR ,
SS

,
and a point M

of the hyperbola, one can obtain as many points of the
f
curve

as one wishes (Fig. 110). Draw, in fact, through the point M
any straight line NMN

-,

this line

intersects the asymptotes in N and

N
-j

if one take on this line a length

NM equal to NM, one will have

a second point M of the hyperbola.

The direction and lengths of the axes

may also be determined. The curve

being comprised within the angles

R OS
,

the bisector OA ofrig. no.

these two angles will be the transverse axis, and the perpen

dicular OB the imaginary axis. Draw QMQ perpendicular
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to OA
;
the imaginary semi-axis b will be a mean proportional

between MQ and MQ . On laying off on OB a length OB equal

to b, arid drawing BO parallel to OA, BO will be the real

semi-axis a. In order to construct a tangent at a point M of

the curve, one will draw through this .point MP parallel to

an asymptote, taking OG = 2 OP; the straight line M G will

be the tangent required.

195. When one knows the positions and the magnitudes of

two conjugate diameters, one can easily

find the axes. Let, in fact, DD ,
EE 1

(Fig. Ill) be the two diameters, of which

the first is real. The diagonals of the

parallelogram constructed on the two

diameters are the asymptotes. Know

ing the asymptotes and a point D, one

is led to the preceding construction.

196. SUPPLEMENTARY CHORDS. Two chords, MO, MC ,
are

called supplementary chords if they, starting from the same

point of the curve, be drawn to the

extremities of the same diameter

CC (Fig. 112). One can demon

strate, as has been done in 168

for the ellipse, that two supplemen

tary chords are parallel to a system

of conjugate diameters, and that,

reciprocally, if straight lines par- // Fig 112 .

allel to two conjugate diameters be

drawn through the extremities of a diameter, these lines will

intersect on the hyperbola and form a system of supplementary

chords.
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THE HYPERBOLA REFERRED TO ITS ASYMPTOTES.

197. If, after having transferred the origin to the center,

which makes the terms of the first degree disappear, one take

for new axes of co-ordinates the two

asymptotes OX, OY (Fig. 113), a

line parallel to an asymptote will

not meet the curve in more than one

point; the equation should be re

duced to the first degree in y and

also in x
;
that is, that the coefficients

of y
2 and x2 are zero. The equation

will, therefore, have the form

(16)

Fig. 113.

2 B xy -f //= 0, or xy = k.

One deduces the value of A*,
on noticing that the co-ordinates

of the vertex A are

which satisfy the equation of the curve
;
whence

.

198. When the hyperbola is referred to its asymptotes, the

tangent TT at the point M, whose co-ordinates are # and ?/,

has the equation

(17) yX+xY=2k.

The abscissa of the point of intersection of the tangent with

the axis OX is found by putting in this equation Y= 0, whence

y
X= OT= = 2x = 2

one has a second proof that the point of contact M bisects the

portion TT1 of the tangent comprised between the asymptotes

( 192).
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THE AREA OF A HYPERBOLIC SEGMENT.

199. Next is discussed the theorem which concerns the

evaluation of areas. Consider the area bounded by the axis

OX, a curve, a fixed ordinate AB, and a variable ordinate MP
(Fig. 114), corresponding to the abscissa

x. This area, which is represented by S,

is a function of the variable x, whose

derivative is to be determined. Give to x

an increment Ax = PP sufficiently small

so that the ordinate of M may vary in the

same sense as that of M . Draw through
the points M and M

, MC, MD parallel

to the axis OX. The increment AS of the area is greater than

the parallelogram MPP C, and smaller than the parallelogram
DPPM . The measure of the first parallelogram is yAx sin 0,

being the angle between the axes, of the second (y+ Ay) Ax sin 0.

Therefore it follows

yAx sin &amp;lt; A# &amp;lt; (y + Ay) Ax sin 0,

and, by dividing by Ax,

_
&amp;lt; (y 4. Ay) sin 0.

Let, now, Ax approach the limit zero. The ratio lies
MV

between two quantities, the one y sin 6, the other having this

quantity for its limit; therefore the ratio has also the same

limit y sin 0. Thus the derivative of the area considered as a

function of the abscissa is y sin 0. Reciprocally, the area S is

a function of y sin 0, considered as a function of x. In case the

axes of co-ordinates are rectangular, the derivative of the area

is equal to y.

200. Consider a hyperbola referred to its asymptotes, and

determine the value of the area bounded by the asymptote OX,
the hyperbola, the fixed ordinate AB corresponding to the

abscissa a and the variable ordinate MP corresponding to the
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abscissa x (Fig. 115). It follows from equation (16) that

k
y =-, and, consequently,

Fig. 115.

S = y sin = k sin
x

Since - is the derivative of log x
;xx i

therefore k sin 6 -
is the deriv

ative of k sin 6 log x
;
one has,

consequently,

8 = k sin log x + C.

The constant C is determined by the condition that the area be

zero for x = a, which gives C= k sin 6 log a. Hence, it fol

lows

= k sin (log x log a)
= A; sin log

(

-
).(18)

The abscissa a being constant, if x be made to increase indefi

nitely, the area S increases also without limit. The same

occurs when a approaches the limit zero, x remaining fixed.

In the particular case when the hyperbola is equilateral, one

has sin = 1
;

if in addition k be made equal to 1, and the

area be reckoned from the ordinate which corresponds to the

abscissa 1, that is, from the vertex of the curve, the preceding

formula reduces to

It is on account of this property that Napierian logarithms

have also been called hyperbolic logarithms.

If one assume k = 1, a = 1, formula (18) becomes

S sin 6 log x.

The angle could be taken in such a way that S be the loga

rithm of x in any system whatever whose base is greater than e.
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EXERCISES.

1. The base of a triangle is fixed; the difference of the

angles at the base is ~
;
find the locus of the third vertex of

the triangle.

2. What is the locus of the centers of the circumferences

which intercept given lengths on the sides of a given angle ?

3. Being given two fixed straight lines and a movable

straight line which intersects the first two in such a way that

a triangle of constant magnitude is formed, it is required to find

the locus of the centers of gravity of these triangles.

4. Two secants drawn from any point of a hyperbola to

two fixed points taken on the curve intercept on one or the

other asymptote constant lengths.

5. Every chord of a hyperbola bisects the portion of one

or the other asymptote comprised between the tangents at

its extremities.

6. If, on a chord of a hyperbola considered as a diagonal, one

constructs a parallelogram whose sides are respectively parallel

to the asymptotes, the other diagonal passes through the center.

7. Being given a fixed point and a fixed straight line; an

angle of constant magnitude rotates about its vertex placed at

the fixed point ;
find the locus of the center of the circle circum

scribed about the triangle formed by the sides of the angle and

the fixed straight line.

8. A triangle ABO is inscribed in a hyperbola; two of its

sides have fixed directions; find the locus of the mid-point of

the third side.

9. On one of the diagonals of a rectangle used as a chord a

circle is described; find the locus of the extremities of the

diameters parallel to the second diagonal.

10. Being given an angle and a fixed point, one draws through
this point an arbitrary secant, and through the points in which

this secant intersects the two sides of the angle, one draws

straight lines respectively parallel to these sides; find the

locus of the point of intersection of these parallels.

11. Find the locus of a point such that on drawing through
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this point lines parallel to the asymptotes of a hyperbola, the

area of the triangle formed by these parallels and the hyper
bola is equal to a given constant.

12. Find the locus of a point such that one of the bisectors

of the angles formed by the straight lines which join this point

to two fixed points A and B has a given direction.

13. Every equilateral hyperbola circumscribed to a triangle

passes through the point of intersection of the altitudes.

14. Being given an ellipse, one draws any two conjugate

diameters
;
find the locus of the point of intersection of one of

them with a straight line drawn through a fixed point perpen

dicular to the other, or, more generally, with a straight line

making a given angle with the second diameter.

15. Being given two straight lines A A and B B and the

point ;
about the point as center, with an arbitrary radius,

a circle is described
;
at the points of intersection of the circle

with the straight lines perpendiculars are erected to these lines
;

find the locus of the points of intersection of these perpen

diculars.
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CHAPTER VI

CONCERNING THE PARABOLA.

201. The second type to which the equation of the second

degree may be reduced is C y
2
-f 2 D x = 0, or

(1) y
2 = 2px.

The case when p is negative can be treated under the case

when p is positive by reversing the direction in which one

measures the positive abscissas; assume therefore that p is

positive. It follows immediately from the form of equation

(1) that the curve is symmetrical with respect to the axis of x,

and that it passes through the origin. Equation (1), solved

with respect to y, gives

In order that the ordinate be real, it is necessary that the

abscissa be positive ;
if x increase from to -f co

,
the absolute

value of y increases also from to

oo
;
thus it follows that the parabola

consists of two infinite arcs AD
and AD (Fig. 116).

The straight line AX is the

axis of the parabola, the point A
is the vertex, the length p, which

determines the magnitude of the

curve, is called the parameter of

the parabola.

202. Construction of the curve

by points. The ordinate MP of

the point M is a mean proportional between the constant

length 2p and the abscissa AP. Construct on AX, in the

direction of negative abscissas, a length AQ equal to 2p\

Fig. 116
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then describe diverse circumferences whose centers lie on QX,
and pass through the point Q; these circumferences intersect

the axis AX in the points P, P , ,
and the line AY in the

points Nf
JV

,
. Through the points P, P

, ,
draw lines

parallel to AY\ through the points N, N f -, lines parallel to

AX] their points of intersection Jf, M , , belong to the

parabola.

203. From the relations

MP 2 = 2p AP, MT 2 = 2p AP
,

one deduces -
.

:

The squares of the ordinates perpendicular to the axis of a

parabola are proportional to the segments of the axis comprised

between the vertex and the ordinates.

204. Through the point M of the curve, draw a parallel to

the axis, and imagine that a movable point travels along this

parallel. Replace in the function if 2px, x and y by the co

ordinates of the movable point ;
if the point M be situated on

the side of the positive abscissas with respect to the parabola, the

function will be negative, if the point M be on the other side,

the function will be positive. For brevity the first region is

said to be interior and the second exterior to the curve.

205. It has already been shown that the infinite --branches

of the hyperbola have asymptotes ;
the same is not true of the

parabola. For, since y increases indefinitely with x, there

cannot be an asymptote parallel to the axis of the parabola.

In the second place, let y = ax + b be the equation of any

straight line oblique to the axis, the difference of the ordinates

of the points of the line and of the curve which correspond to

the same abscissa is equal to

ax + b

and can be put under the form

,

b /2A---V* X
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When x increases indefinitely, the first factor increases indefi

nitely, and the second approaches the value a different from

zero, the product increases indefinitely. Therefore an asymp
tote oblique to the axis cannot exist.

TANGENT.

206. The tangent at the point M, whose co-ordinates are x

and y, has the equation

(2) yY=p(X+x).

Let T be the point where the tangent intersects the axis of

the parabola (Fig. 117) ;
if in equa

tion (2) one make Y= 0, then will

X= -x-, therefore AT= AP. This

property furnishes a means for con

structing the tangent to the parab- _

ola at a given point M ;
to construct

the tangent draw MP perpendicular
to the axis, take AT= AP, and con

nect the points M and P with a

straight line.
Fig. 117.

207. To draw a tangent through an exterior point M^ Let
x

}
and yl be the co-ordinates of the point MI ;

the points of

contact will be determined by the chord of contact

(3) y\y=p(x + d,

combined with that of the curve (1) ;
whence it follows

these values are real so long as the point Ml is exterior to the

curve.

In order to construct the line JOT, one seeks the points
where it intersects the co-ordinate axes

; if, in equation (3), one

put y = 0, one gets x = x
ly whence AI is equal to AP^ if one
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put x = 0, one finds y =^^; the point K may be found by a

2/i

fourth proportional.

208. To draw a tangent parallel to a given line. If m rep

resent the angular coefficient of the given line, the equation

i)1 = m, and that of the curve, determine the co-ordinates of

f) t)

the point of contact, y = ,
x = j^-s- It follows then that them 2 m2

equation of the tangent will be

209. NORMAL. The normal MN at a pointM of the parab

ola, whose co-ordinates are x and y, has the equation

On putting Y= 0, one obtains the abscissa of the point N
where it intersects the axis

;
one finds

PN=X-x=p.

Thus, in the parabola the sub-normal PN is constant and equal

to the parameter p.

DIAMETERS.

210. By applying the general equation of the dialneters of

a curve of the second degree to the parabola, whose equation

is 2/

2 2px = 0, one obtains the equation

This property has already been demonstrated in 134
;

it is,

that every diameter of the parabola is parallel to the axis.

Since the angular coefficient m of the chords can be so chosen

that can take any value that one chooses, it follows that, con-
m

versely, every straight line which is parallel to the axis is a

diameter,
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Let A be the point of intersection of the diameter with

the curve (Fig. 118); since the ordinate of the point A is

T)

equal to and the angular coefficient of
m

the tangent at this point has the value
(Y\

. that is m. it follows that the tangent at
y
the extremity of a diameter is parallel to

the chords which this diameter bisects.

211. Parabola referred to one of its

diameters and to the tangent at its ex

tremity. It has been proven ( 136) Fig. us.

that, in case a diameter A X and the tangent AY at its ex

tremity be taken as the axes of co-ordinates, the equation of

the parabola will have the form

If a and b be the co-ordinates of the point A with respect to

the primitive axes, and AP be drawn parallel to A T, one

knows that one has A P = AT= AP ( 206); the co-ordinates

A P
,
A T of the vertex A with respect to the new axes are

therefore a and V4 a2
-f- b

2

;
since they satisfy equation (7),

it follows that

One has also
p&amp;gt;

=

If the angle YA X formed by the new axes be represented by

0, it follows from the right triangles NAT, NAP, that

; -, +J. J.I -,
in sinsin

whence
snr sin-
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212. Since the parabola, referred to a diameter A X and
to the tangent A Y (Fig. 119), has the equation y

2 = 2p x, it

is evident that the equation yY= p (X+x) represents either

the tangent at the point M, if x and y be
the co-ordinates of this point, or the chord
of contact of the tangents drawn from an
exterior point whose co-ordinates are x and y.

The tangents at the two extremities M
and M of a chord intersect the diameter

in the same point T, such that A T=A I.

It is also true that the chord of contact

MM1

,
with respect to an exterior point T7

,

is bisected by the diameter TX which passes

through this point, and for a greater reason

is A I=A T.

This furnishes the means for constructing a parabola by
points, in case one knows two tangents TM, TM

,
and the

points of contact M and M . Draw the chord MM
,
and join

the mid-point / with the point T, the mid-point A of the

straight line TI is a point of the curve, and the tangent at

this point is parallel to MM 1

.
I&amp;gt;y

means of the tangent A T
,

which touches the curve at A
,
and of each of the given tan

gents, one can determine two new tangents by their points of

contact, and so on. This method for constructing two parallel

lines by means of an arc of a parabola is frequently used,
when the arc of a circle cannot be employed ;

that is, when the

distances TM and TM 1 are not equal.

Fig. 119.

THE AREA OF A PARABOLIC SEGMENT.

213. It is proposed to evaluate the area S of the triangle
A lM formed by the straight lines A I, IM and the arc AM
of the parabola (Fig. 119). If this area be regarded as a

function of the abscissa of the point Mf
the derivative S is

given by the formula

= y sin 6 =

One deduces

sin =V^7
sin

sin x + C.
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The constant C is zero since the area becomes zero for x 0.

It follows therefore that

S =
-|
x - V2 p x sin = | xy sin 0.

The area S is equal to two-thirds of the parallelogram A IMN,
and, consequently, the area of the composite-line triangle

ANM is one-third of the same parallelogram.

EXERCISES.

1. Find the locus of the vertex of an angle circumscribed

about a parabola, such that the triangle formed by the sides

of the angle and the arc of the parabola has a constant area.

2. Find the locus of points from which two perpendicular
normals can be drawn to a parabola.

3. A secant revolves about a fixed point taken on the axis

of a parabola; normals are drawn to the parabola at the

points in which the secant intersects it; find the locus of

the point in which these normals intersect.

4. A parabola moves parallel to itself, so that its vertex

traces the parabola in its initial position ; tangents are drawn

from the vertex of the fixed to the movable parabola; find the

locus of the points of contact.

5. Find the locus of a point from which the sum of the

squares of the normals drawn to a parabola is constant.

6. Given a curve of the second degree tangent to the sides

of a given angle, one draws an arbitrary tangent to this curve;
find the locus of the point of intersection of the medians or

the altitudes of the triangle formed by the movable tangent
and the sides of the angle; find also the locus of the center

of the circle circumscribed about this triangle.

7. Given an ellipse, one draws through a fixed point any
two straight lines at right angles to each other, and at the

points in which these lines intersect the ellipse, tangents are

drawn to this ellipse; find the locus of the points of inter

section of these tangents.

8. Same problem, when one replaces the perpendicular
lines by lines parallel to the conjugate axes of any other

given ellipse.



234 PLANE GEOMETRY. BOOK III.

9. An angle of constant magnitude revolves about its

vertex situated on a given curve of the second degree ;
at the

points in which the sides of the angle meet the curve again,

tangents are drawn to the curve. Find the locus of the point

of intersection of these tangents.

10. Find the locus of the center of an equilateral triangle

formed by three tangents or by three normals to a parabola.

11. The area of a triangle whose vertices are the points of

contact of three tangents to a parabola is twice the area of the

triangle formed by these tangents, and is represented by the

expression
&quot;&quot;*

where y
1

, y&quot;, y
&quot;

represent the perpendiculars dropped from

the vertices of the triangle to the axis.

12. An arbitrary tangent is drawn to a hyperbola, and the

points in which the tangent meet the asymptotes are respec

tively joined to two fixed points; find the locus of the point

of intersections of the two straight lines.

13. Draw to a parabola a normal so that the area comprised

between this normal and the curve has a minimum value.
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CHAPTER VII

FOCI AND DIRECTRICES.

215. The discussion is begun by proposing the following

question : Given a point F and a straight line DE (Fig. 120),

find the locus of a point whose distances

from a given point and a given straight line

are in a constant ratio.

Draw in the plane any system of rec

tangular axes
;
call a and ft the co-ordinates

of the point F, and let mx -f ny -f li = be

the equation of the line DE; the distances

of any point M of the plane from the point

F and from the line DE are given by the

formulas

if the constant ratio ^^ be designated by k
}
the locus will

have the equation

,
k(mc + ny + h)

This locus is a curve of the second degree. The quantity
AC jB

2
,
which serves to distinguish the species of the curve,

being equal to 1 7c
2

,
the curve is an ellipse, a parabola, or a

hyperbola, according as the ratio k is less, equal to, or greater

than unity.

Conversely, given a curve of the second degree one proposes
to seek if there exist in the plane of the curve a fixed point F
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and a fixed straight line DE, such, that the ratio of the dis

tances of each of the points of the curve from the point F and

the line DE is constant. If one find a point and a straight

line enjoying this property, the point will be called the focus

of the curve, and the straight line the directrix.

The axes of co-ordinates being arbitrary and inclosing an

angle 0, suppose that one has found a point F whose co-ordi

nates are a and
/?,

and a straight line DE whose equation is

mx -f ny + li = 0, such that the ratio is equal to a constant

quantity &; since the distance MP of a point M of the curve

whose co-ordinates are x and y from the directrix DE is repre

sented by the expression

(mx + ny -f Ji)
sin

Vw2
-f- n~ 2 mn cos

one will have

mx + ny

m2
-f n

2 2 mn cos

Thus the distance of any point M of the curve from the focus

F is expressed as an integral function of the co-ordinates x and

y of the point M and is of the first degree.

Conversely, if a point F enjoy the property that its distance

from any point M of the curve is expressed by an integral

function of the first degree in the co-ordinates x and y of the

point Jf, this point F is the focus
;
that is, that there exists a

straight line DE such that the ratio of the distances of each

of the points of the curve from the point F and the line DE is

constant. In fact, assume that one has

FM= (mx + ny -f h),

where mx 4- ny -f h represents an integral function of the first

degree in the co-ordinates x and y of the point M. Consider

the straight line DE which has the equation

mx -f ny -f h =
;
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the distance of the point M from this line is given by the

formula

-i^p (mx 4- ny + ft)
sin

Vw2 + n2 2 mn cos

one has therefore

MF Vm2 + n2 2 m?i cos

sin^

Thus the ratio of the distances of each of the points of the

curve from the fixed point F and the fixed line DE is constant
;

the point F is therefore a focus and the line DE the cor

responding directrix of the curve. Representing the value of

this constant ratio by Jc,
one has

ft sin 9 =Vm2
-f n

2 2 mn cos 0.

216. Therefore the following definition can be substituted

for the first. The focus is a point such that its distance from

any point of the curve can be expressed by an integral function

of the first degree in the variable co-ordinates of a point of the

curve. It is clear, moreover, that this algebraic definition is

independent of the position of the co-ordinate axes in the plane,

because an integral function of the first degree preserves its

character in case the axes are changed. The equation of the

directrix is found by equating this function to zero.

If the ?/-axis be taken parallel to the directrix, the a&amp;gt;axis

being arbitrary, the equation of the directrix will take the form

mx + ft = 0, the coefficient n will be zero and the distance

of the focus from any point M of the same will be expressed

by an integral function (mx + 7i)
of the first degree in the

abscissa x of the point M.

From what precedes it follows that the investigation of the

focus and the directrix of curves of the second degree is

reduced to the determination of a point F, such that its

distance from any point M of the curve is expressed by an

integral function of the first degree in the co-ordinates x and y

of the point M. Suppose that the axes are rectangular, and let

(1)



288 PLANE GEOMETRY. BOOK III.

be the equation of the given curve of the second degree. Call

a and /? the co-ordinates of ~the focus sought ;
then will the

co-ordinates of every point of the curve satisfy the equation

V( -
a)

2 + (y -j3y = (mx + nx + 7i),

or (2) (x
-

a)
2 + (y

-
/3)

2 - (mx + ny + h)
2 = 0.

Equations (1) and (2), representing at the same time the same

curve, are identical, hence the coefficient of corresponding
terms must be proportional; one will have, therefore, to de

termine the five unknown quantities a, /?, w, n, h, the five

equations

(3\
1 m2 _ mn _ 1 n2 _ (a -f mh)ABC D

E F

In order to simplify the calculation, one considers separately
the three curves of the second degree, referred to systems of

rectangular axes which have served to simplify their equa
tions. Later will be given another method for finding the

foci, especially useful for finding the geometrical loci of the

foci.

Foci AND DIRECTRICES OF THE ELLIPSE.

217. Let

be the equation of the given ellipse referred to its axes. This

equation does not have any term in xy ;
it is necessary there

fore that the coefficient 2 mn of the corresponding term in

equation (2) be zero, whence it follows that one has either

n = 0, or m = 0. Suppose that n
;

since the terms of the

first degree are also zero, one will have a + mh = 0, /?
=

0,

and equations (3) reduce to
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Whence one deduces m2 =
72

;
since m can always be sup

posed positive, without changing the signs of the coefficients

m, n, h in equation (2), one takes m =-- If in the
d

equation a2

(1 m2

)
= Ji

2 a2
,

li be replaced by its value de

duced from the equation a + mil = 0, one gets a2 = a2 b
2

,

whence a = Va2 &
2

,
h = T ct.

Thus are obtained the two foci F and F (Fig. 121), situated

on the major axis at equal distances from the center. In order

to determine them, one describes with a radius equal to a about

the extremity B of the

minor axis as center, a

circle
;
the points F and

F where this circle inter

sects the major axis, are

the foci. If, for brevity,

one put a2 b
2 = c

2
,
one

c
has a = c, m = -,

ci

h = ^ a
;
the upper signs

correspond to the focus F, the lower signs to the focus F .

One knows that the equation of the directrix is found by

equating to zero the polynomial mx -\-ny-\-h; this equation
c a2

reduces to -x q= a, = 0, or x = Thus are obtained the
a c a

o

two directrices
;
the directrix whose equation is x = corre-

C

sponds to the focus F, and the directrix whose equation is

x = corresponds to the focus F . These directrices are
c

perpendicular to the major axis and at equal distances from

the center
;
the determination of the point D depends upon a

third proportional ;
one constructs it in the following manner :

describe on the major axis as diameter a circle, draw through
the focus F a perpendicular to this axis and, at the point N
where this perpendicular meets the circle, draw a tangent to

the circle; the point in which this tangent intersects the major
axis is the point D.
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It has also been seen that the constant ratio of the distances

of each of the points of the curve from the focus and from the

corresponding directrix is equal to Vw2 + n2
,
in rectangular

c c
co-ordinates

;
one has therefore k = m = -&amp;gt; The ratio - is

a a
called e, the eccentricity of the ellipse.

218. Suppose now m ;
the coefficients of the first degree

should be zero
;
one will have a = 0, j3 + nh = 0, and equations

(3) reduce to

a2 =6 2 (l-w
2

)=:/i
2

-/2
2

.

Whence may be deduced

In order to obtain these new solutions, it suffices to permute
in the first solutions the letters a and b, m and n, a and p.

Since a has been supposed greater that 6, these two solutions

are imaginary. Thus one can assign to the constants four

systems of values which render equations (2) and (4) iden

tical
;
but two only of these systems of values which give the

foci and the directrices are real.

219. THEOREM I. The sum of the distances of each of the

points of an ellipse from the foci is constant.

The distance of a focus from any point M of the curve is

expressed by (mx + ny -f- 7i),
that is f a -

j;
the sign is

\ a J
so chosen that the quantity will be positive. The abscissas a

and x of the focus, and of a point of the ellipse being less

than a in absolute value, and, consequently, the quantity

within the parentheses is positive for every point of the

ellipse ;
it will be necessary, therefore, to give the parentheses

the sign -f ,
and one will have

MF =a ex, MF = a+ex ;

whence it follows
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220. COROLLARY I. The sum of the distances of a point

within the ellipse from the foci is less than the major axis; the

sum of the distances of a point without is greater than the major

axis.

Consider first the point N (Fig. 122), situated within the

ellipse, join this point to the two foci, and prolong the straight

line FN till it intersects the ellipse in M. Since the point

M belongs to the ellipse, the sum of the two radii vectors

MF + MF is equal to the major axes AA
;
but the straight

line NF is shorter than the broken line NM + MF; by adding

to each of these expressions the same length F N, it follows

that the path FN-\-NF is shorter than FM+ MF, that is,

less than AA . Consider next a point P situated without the

ellipse; the line PF intersects the ellipse at a point M. The

broken line MP+ PF is greater than the straight line MF; on

adding to both the same length F JIf, one sees that the path

FP + PF is greater than FM+MF, p .

that is, greater than AA . It is clear

that the converse propositions are true.

If the sum of the distances of a point

of the plane from the two foci be less

than the major axis, this point will lie

within the ellipse. If the sum be greater

than the major axis, the point will lie

without. Whence it follows that one can consider the ellipse

as the locus of the points of which the sum of the distances

from the two foci is equal to 2 a. Thus is the ellipse con

structed in elementary geometry, and it is on this property

that the construction of the ellipse by points depends, or on a

continuous motion, of which mention has been made at the

beginning ( 11).

221. COROLLARY II. The ellipse in the locus ofpoints equally

distant from the focus F and the circle described about the other

focus F as center with a radius equal to the major axis. If the

foci be joined to any point M of the ellipse with straight lines

(Fig. 123), and if the radius vector FM be prolonged till MH
is equal to MF, one obtains a constant length FH equal to the

q
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major axis
;
the locus of the point H is therefore the circum

ference described about the focus F as center with the major
axis as radius. The portion MH of the radius being the shortest

path from the pointM to the circumference, the point J/of the

ellipse is equally distant from the focus F and the circumfer

ence. The name director circle has been given to this circle.

Fig. 123.

222. THEOREM II. A tangent to the ellipse makes equal

angles with the radii vectores, which are drawn from the point

of contact to the foci.

Take two points M and M (Fig. 124) on the ellipse ;
about

the focus F as center, with FM as radius, construct the arc of

a circle which intersects the radius vector FM at C
;

the

length M C represents the difference

X of the two radii vectores FM and FM ,

or the increment which the radius vec

tor FM receives when the pointM has

been moved to the neighboring point

M . Similarly, if one describe about

the focus F as center with the radius

FM an arc of a circle which intersects

in D the radius vector FM produced,

the length MD will represent the difference of the two radii

vectores FM and FM
,
or the negative increment which the

, Fig. 124.
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radius vector FM receives when the point M has been moved

to the point M . Thus, when the point M moves to the point

M
,
the radius vector FM is increased by the increment M C,

while the other radius vector FM is diminished by the incre

ment M D. Since the sum of the two radii vectores FM+ FM
remains constant, the quantity by which the one is increased is

equal to that by which the other is diminished, and, conse

quently, the two lengths M C and MD are equal.

Draw through the two points M arid M1 the secant MS-,

draw in the two circles previously constructed the two chords

MC and MD. Lay off on the secant MS the arbitrary but

invariable length MG, and through the point G draw GH
parallel to MC, GK parallel to MD] from the preceding

construction it follows that one has the equal ratios

M C =MM =M D
.

MH~~M G MK
since the two lengths M C and MD are equal, it follows that

the two lengths MH and MK are also equal. Suppose now

that the point M approaches continu

ally the point M;
the secant MS will

approach a limiting position MT (Fig.

125), which is a tangent to the ellipse.

The points C and D will at the same

time approach the point M, the chords

MC and MD, prolonged, approach the

tangents to the circles described about

the points F and F as centers with

FM and FM as radii, and, consequently, become perpendicular
to the radii FM and FM; their parallels GH and GK take

also directions perpendicular to the same radii, and, conse

quently, the angles H and K become right. The limits of the

two triangles M GH, M GK (Fig. 124) are two right-angled

triangles MGH, MGK (Fig. 125) ;
these two triangles, having

the common hypotenuse MG and the sides MH and MK, are

equal, since they are the limits of equal lengths; whence it

follows that the two angles GMH, GMK are equal. There

fore the tangent MT to the ellipse bisects the angle FMK
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Fig. 126.

formed by the radius vector MF and the prolongation of the

other F M.
The vertical angles FMT and GMK being equal, one sees

that the tangent TT makes, with the two radii vectores drawn
from the point of contact, the equal angles FMT, FMT.

223. COROLLARY I. At the point M
(Fig. 126) draw to the tangent TT a

perpendicular MN; it will be a normal

to the ellipse. The two angles FMN,
FMN are equal, since they are the com

plements of the equal angles FMT,
FMT; thus, the normal to the ellipse at

the point M bisects the angle FMF formed

by the radii vectores which are drawn from this point to the tico

foci.

224. COROLLARY II. Suppose that a light be placed at the

focus F (Fig. 127) of an ellipse; the rays of light, emanating
from the point F, are reflected on the

ellipse, making the angle of reflection

equal to the angle of incidence. Let

FM be one of these rays; draw to the

ellipse at this point the tangent TT-,

the reflected ray, which makes with MT
Fig 127 an angle equal to FMT, will be reflected

along MF . Thus the reflected rays will

all be concurrent at the second focus F
,
where they form a

very brilliant image of the flame placed at the first focus F.

It is on this account that the points F and F are called

foci.

225. COROLLARY III. Conversely, the ellipse is the only

curve which enjoys the property that the radii vectores which

are drawn from the point of contact to the two fixed points F
and F and make equal angles with the tangent. Seek, in

fact, the equation of the curve in bi-polar co-ordinates ( 4),

and represent by u and v the radii vectores MF, MF (Fig.
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124). When the point M of the curve moves to the point M1

,

the two radii vectores u and v receive the increments,

A-w M D
and one has _=-_=-.
When the point 3f approaches indefinitely the point M, the

straight line MM becomes a tangent and the two angles at

H and K, as has been stated, become right. One supposes,

moreover, the two angles GMH, GMK (Fig. 125) equal to

each other
;
the two right triangles GMH, GMK are therefore

equal; one has MH=MK, and the ratio
|^ approaches a

limit equal to 1. If one consider v as a function of u, one

sees that the derivative of this function is equal to 1
;
on

returning to the primitive function, one has v = u + O, and,

consequently, u + v=C. Therefore the curve is an ellipse.

226. COROLLARY IV. The locus of the projections of the

foci on the tangents to the ellipse is the circle described on the

major axis as a diameter. Prolong the radius vector FM
till MH is equal to MF; the tangent

bisecting the angle FMH is perpendic

ular to the straight line FH at its mid

point (Fig. 128) ; join this point to the

center of the ellipse. The straight

line 01) which bisects the two sides

FF1

,
FH of the triangle FFH, is paral

lel to the third side F H, and equal to

its half; the length F ll being equal

to the major axis AA\ the distance 01 is constant and equal

to OA. Therefore the locus of the point I is the circum

ference of the circle described about the point as center,

with OA as radius.
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227. PROBLEM I. To draw a tangent to an ellipse at a

given point M on the ellipse.

This problem has already been solved, by considering the

ellipse as the projection of a circle. The same questions will

be treated by another method which is

applicable to the hyperbola and the

parabola.

Prolong the radius vector FM (Fig.

129) till MH is equal to the other radius

vector MF, and draw through the point
M a straight line TT perpendicular to

FH-, one will have the tangent required.

Because in the isosceles triangle FMH, the line MT, drawn
from the vertex perpendicular to the base FH, bisects the

vertical angle. This line, being the bisector of the angle

FMH formed by one of the radii vectores and the prolongation
of the other, coincides with the tangent to the ellipse.

228. REMARK. One should notice that all of the points

of the tangent, excepting the point of contact M, lie without

the ellipse. Let P be any point of the tangent; join this

point to the foci and to the point H. The tangent being per

pendicular to FH at its mid-point, the distance PF is equal to

PH, and, consequently, the broken line FP + PF is equal to

the broken line FP -f- PH; but the latter is greater than the

line F H, which is equal to the major axis of the ellipse, since

the radius vector MF was prolonged till Mil is equal to MF.
Since the sum of the distances of the point P from the foci

is greater than the major axis, this point is situated without

the ellipse.

The broken line FM -f MF is the shortest path going from

the point F to a point on the tangent and then to the point F.

A broken line is said to be convex, in case it is situated on

the same side with respect to each of its sides indefinitely pro

longed. Similarly, a curve is said to be convex in case it lies

entirely on the same side of every tangent to it indefinitely

produced. Accordingly, it follows that the ellipse is a closed

convex curve.
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229. PROBLEM II. To draw to an ellipse a tangent from an

external point P.

Assume that the problem is solved, and let PM (Fig. 130)

be a tangent passing through the point P. If the radius

vector FM be prolonged till MH is equal to MF, it follows

that the tangent PM is perpen

dicular to the straight line FH at

its mid-point; it remains there

fore to determine the point H.

Since the line FH is equal to the

major axis AA ,
the point H is on

the circumference described about

the focus F as a center with AA
as a radius. On the other hand,

the distance PH being equal to PF, the point H is on the cir

cumference described about the point P as a center with PF
as a radius

;
the point H is therefore the intersection of these

two circumferences. The following construction may be in

ferred from the preceding: Describe about the focus F as

center, with a radius equal to the major axis, a circle. De

scribe about the point P as center, with a radius equal to the

distance PF of this point from the other focus, a second circle,

which intersects the first in H. Join F and H by a straight

line and draw from the point P a perpendicular to FH; the

perpendicular will be the tangent required. The point of con

tact M will be determined by the intersection of the tangent

with the line F H. The two circles intersect in a second point

H
;
on drawing from the same point Pa perpendicular to FH

,

a second tangent PM will be determined, whose intersection

with the straight line FH will be the point of contact M1

.

These constructions can be accomplished without drawing

the ellipse. It is sufficient that the foci and the major axis

be known.

230. PROBLEM III. To draw to an ellipse a tangent which

is parallel to a given straight line KL.

Assume the problem to be solved, and let ST be a tangent

parallel to KL (Fig. 131). If FM be prolonged till MH is
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Fig. 131.

equal to MF, one knows that the tangent is perpendicular to

FH at its mid-point. Whence the following construction can

be inferred : Describe a circle about

the focus F as center, with a radius

equal to the major axis; draw through
the other focus F a straight line FH
perpendicular to the given line KL

;

this line will intersect the circum

ference in a point //; draw ST
perpendicular to FH at its mid

point; ST will be the tangent re

quired. The point of contact will

be determined by the intersection

of the tangent with the straight

line FH. The straight line FH,
prolonged, intersects the circumfer

ence in a second point H ;
on erecting a perpendicular to FH

at its mid-point, a second tangent S T will be found, whose

point of contact M will be determined by the intersection of

FH with TS .

231. PROBLEM IV. An ellipse is defined by its foci and its

major axis. Determine the points of its intersections with a given

straight line MM .

Let M be one of the points where the given straight line

intersects the ellipse (Fig. 132) ;
connect this point by, straight

lines to the two foci, and pro

long the radius vector FM till

Mil is equal to MF-, the point

\ // belongs to the director circle

\ described about F as a center
;

/
if a circle be described about

/ M as a center with a radius

equal to MF, this circle will be

tangent to the director circle at

H; on dropping from the focus

Fig - 132 - F a perpendicular upon this

given line, and prolonging it till the line is double its origi-
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nal length, a second point Fl is found belonging to this same

circle. The problem is reduced, therefore, to finding the center

M of a circle passing through two given points F and F1 and

tangent to the director circle. For this purpose one constructs

through the two given points F and Fl any circle which inter

sects the director circle in two points K and K
;
draw from

the point I, the intersection of the two lines FFl and KK\ a

tangent to the director circle; the point Jf, where the line

FH intersects the given line, will be the point sought.

One has, in fact,

IH2 = IKx IK =IFx IF,;

therefore, the circle which passes through the three points

F, Flt H, is tangent to the director circle at H. Since two

tangents can be drawn from the point / to the director circle,

there will be two points M and M .

When the point F, which is the symmelrique of the focus F
with respect to the given straight line, is situated within the

director circle, there are practically two solutions. In case

the point F^ is on the circle, the line is tangent to the ellipse.

Finally, when the point FI is situated without the circle, the

line does not intersect the ellipse.

Foci AND DIRECTRICES OF THE HYPERBOLA.

232. Since the equation of the hyperbola referred to its

axes is

it is sufficient to replace b
2

by 6
2 in the results derived for

the ellipse. One has then the two real solutions

= 0, a = Va2 + b
2 =

c,

and the polynomial of the second degree is the square of the

polynomial of the first degree a The remaining two

solutions are imaginary.



250 PLANE GEOMETRY. BOOK III.

The hyperbola has therefore two real foci F and F
,
situated

011 the transverse axis and at equal distances from the center

(Fig. 133). They are found by
drawing through the vertex A a

straight line AG perpendicular
to the transverse axis, meeting
the asymptote in G, and laying
off on the transverse axis the

lengths OF and OF equal to OG.
The equation of the directrix

directrix DEis = -- The

Fig. 133.
corresponds to the focus F, and

the directrix D E to the focus F . Describe about the point

as center, with OA as radius, an arc of a circle which inter

sects the asymptote in the point //; the point belongs to the

directrix. The two triangles OAG, OHF, which have a com

mon angle O, the sides OA and OG respectively equal to OH
and OF, are equal, and the angle OHF is right ;

if a perpen
dicular HD be dropped from the point // on the transverse

axis OA, one has OH 2 = OF x OD, and, consequently,

OD = - Thus the line DH is the directrix,
c

The constant ratio k =Vm2 + n2
is equal to -

;
this is the

a

eccentricity of the hyperbola; it is usually represented by the

letter e.

233. THEOREM III. The difference of the distances of each

of the points of the hyperbola from the two foci is constant

and equal to the transverse axis.

The distance from a focus to any point M of the curve is

ax
represented by (

a
]

The abscissas a and x of the focus

and of a point of the hyperbola being in absolute value greater

than a, the second term is greater in absolute value than a. It

is necessary, therefore, to give the or -f sign to the preced

ing parenthesis, according as this point M is on the right or
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left branch, and as its distance is measured to the one or the

other of the foci. In case of the right branch, one has

MF= a + ex, MF = a + ex
;

whence MF - MF= 2 a.

In case of the left branch

MF=a ex, MF = a ex
,

whence MF- MF = 2 a.

234. COROLLARY I. The difference of the distances of a

point situated between the two branches of a hyperbola from the

two foci is less than the transverse axis; in case the point is

situated in either of the other two portions of the plane, the differ

ence is greater than the transverse axis.

Let P be a point situated between the two branches of the

curve (Fig. 134); the straight line

PF meets the hyperbola at the point

M. Qne has

PF -PM&amp;lt;MF ;

if MF be subtracted from each mem
ber of the preceding inequality, it

becomes

PF1 -
PF&amp;lt; MF - MF-,

Fig. 134.

this last difference is equal to 2 a and

therefore the first is less than 2 a. Suppose now that P is

situated to the right of the first branch of the hyperbola ;
the

straight line NF intersects this branch in M-, one has

NF&amp;lt;NM+MF&amp;gt;

and on adding to each member MF
,

NF+ MF &amp;lt;
NF + MF;

whence NF -NF&amp;gt; MF - MF.

The second difference being equal to 2 a, the first is greater

than 2 a.
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Whence it follows that the hyperbola may be considered as

the locus of the points, such that the difference of their dis

tances from the two foci is equal to 2 a. The construction of

the hyperbola by points or by a continuous motion, given in

the beginning ( 14), depends upon this property.

235. COROLLARY II. The distance of any point M of the

hyperbola from the focus F is equal to one of the normals drawn

from this point to the circle de

scribed about the other focus F as

center ivith a radius equal to the

transverse axis. For a point M
of the first branch (Fig. 135), one

has
MF -MF=2 a = F N,

and, consequently,

Fig. 135. MF= MF - FN= MN.

For a point M1 of the second branch, one has

MF-MF = 2 a = FN
,

and, consequently,

MF= MF + FN= MN .

In the first case, the portion MN of the normal represents

the distance of the point M from the circle, and the first

branch of the hyperbola is the locus of points which are

equally distant from the focus F and from the director circle.

236. THEOREM IV. A tangent to a hyperbola bisects the

angle formed by the radii vectores which are drawn from the

point of contact to the foci.

Let M and M be two consecutive

points on the hyperbola (Fig. 13G).

About the focus F as center describe

with MF as radius the arc of a circle

which intersects the radius vector FM
in 0; about the focus F as center

describe an arc of a circle with a

radius equal to FM which intersects

the radius vector FM in
Z&amp;gt;;

as theFig. 136.
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point M moves to the point M\ the two radii vectores receive

the increments M C and M D
,

since the difference between

the vectores is constant, these two increments are equal to one

another.

Lay off on the secantMM an arbitrary length MG. and draw

through the point G, GH parallel to the chord MC and GK
parallel to the chord MD. From this construction, it follows

M C MM M D
.= =MH M G M K

since the two lengths M C and M D are equal, it follows that

the two lengths MH and MK are also equal. When the

pointM approaches indefinitely the point M, the secant MM
approaches a limiting position and becomes the tangent to the

hyperbola at the point M ;
at the same time, the chords MC

and MD become tangents to the circles described about the foci

as centers and, consequently, perpendicular to FM and FM;
the lines GH and GK, which are parallel to the chords, become

also perpendicular to these same radii vectores, and the angles

// and K become right angles. The two triangles M GII,

M GK, which have a common side M G and a side MH equal

to M K, become therefore right-angled, consequently equal to

each other
;
whence it follows that the angles GM H, GMK

become equal ;
thus the tangent to the hyperbola at the point

3/is the bisector of the angle FMF .

237. COROLLARY I. The hyperbola is the only curve which

possesses this property ;
because on calling the radii vectores

u and v
}
and their increments Aw and Av, one has

Av =M D =MK
AM

~ M C MH
If it be supposed that the angles GM H, GMK become equal

when the pointM approaches indefinitely the point M, the two

triangles GM H, GM K become equal and also the sides MH
and M K\ whence \v

lim = 1.
Aw

On returning to the primitive function, one has

v = u + C
}
whence v u = (7.
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238. COROLLARY II. An ellipse and a confocal hyperbola
intersect at right angles.

Two curves of the second degree are said to be confocal when
their foci coincide

;
the angle at which two curves intersect is

the angle formed by their tangents at the point of intersection.

Let M be the point of intersection of

an ellipse and a hyperbola which has

the same foci F, F (Fig. 137); the

bisector MN of the angle FMF is, on

the one hand, perpendicular to the

ellipse, on the other, tangent to the

hyperbola; therefore the tangents
MT, MN to the curves are perpen
dicular to each other.

Fig. 137.

239. PROBLEM V. To draw a tangent to a hyperbola at a

given point M of the hyperbola.

Take on the radius vector MF a length MH equal to the

other radius vector MF, and draw through the point M a line

MP perpendicular to FH
;
one has the

tangent required (Fig. 138).

REMARK. It should be noticed that

the tangent is wholly situated between

the two branches of the hyperbola.

Let P be any point of this tangent;

one has

PF -PII&amp;lt;F H,
&quot;

and, consequently,

PF -Fig. 138.

therefore the point P lies between the two branches of the

hyperbola. One branch of the hyperbola, lying always on the

same side of any tangent to it, is a convex curve when viewed

from any point of said tangents.

The tangent being perpendicular to FH at its mid-point 7,

the point 7 is the projection of the focus F on the tangent.

The straight line 07, which is parallel to 7&quot;77 and equal to the

half of 7^77, is constant; whence it follows that the locus of
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the projections of the foci on the tangents is the circle

described on the transverse axis as diameter.

240. PROBLEM VI. To draw a tangent to a hyperbola from

any point P situated between its branches.

Let PM be a tangent passing through the point P (Fig. 139).

If MH= MF be subtracted from the radius vector MF\ one

knows that the tangent

PM is perpendicular to

FH at its mid-point. The

problem is reduced to de

termining the position of

the point //; this point

will be the intersection of

the circle described about

the focus F as center, with

a radius equal to 2 a, and

the circle described about

the point P as center, Avith

a radius equal to PF. The tangent will be formed by drawing

from the point P a perpendicular to FH, and the point of

contact M will be determined by prolonging the radius vector

F H. These two circles intersect in a second point H ;
a

second tangent will be found by drawing a line through P per

pendicular to FH1

;
the point of contact of the tangent will be

determined by the prolongation of the straight line FH .

In case the point P is on one of the asymptotes, one of the

tangents drawn from P coincides with this asymptote, and

the point of contact is removed to infinity.

241. PROBLEM VII. To draw to a hyperbola a tangent

which is parallel to a given straight line OL.

One constructs about the focus F as center, with a radius

equal to 2 a, the director circle, and draws from the focus F a

straight line perpendicular to OL (Fig. 140) ;
this straight line

intersects the circle in two points H and H
; straight lines

are drawn through the mid-points of the lines FH and FH
parallel to OL] these parallels will be the tangents required.

Fig. 139.
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The points of contact M and M are determined by the lines

F H, FH .

In order that the problem be

possible, it is necessary that the

given straight line, which can be

assumed to be drawn through
the center, does not intersect the

hyperbola; for, then the perpen
dicular FH drawn from the focus

F will intersect the director circle

in two points.
Fig. 140.

242. PROBLEM VIII. To find the points of intersection of
a straight line and of a hyperbola defined by its foci and its

transverse axis.

The construction is precisely the same as for the ellipse.

THE Focus OF THE PARABOLA.

243. The equation of the parabola, referred to its axis and

to the tangent at the vertex, is

f - 2px = 0.

Since this equation contains neither a term in xy nor one in x2

,

one should have, according to the general relations of 216,

mn=0, 1 m2

=0; whence n= 0, w=l. Because the coefficient

of the term in y and the constant term are also zero, one has

ft
=

0,
2

tf = 0. Moreover, equations (3) of 216 reduce to

1=L_^. that is, + /i=p. The equation a2 - h2 = or

P
( _|- /i)(

a _ h)
= becomes p (a li)

= 0, that is, a h
;

whence it follows that a = h =
^-

Here one has a single solution. Thus the parabola possesses

a single focus situated on its axis at a distance from its ver

tex A equal to the half of its parameter (Fig. 141). The

polynomial of the second degree being the square of the
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polynomial of the first degree x + ~, the dis-

/\-\

tance FM is equal to x + ~- To the focus

corresponds the directrix DE, whose equation D

is x _ P
;
the directrix is perpendicular to

the axis at a distance AD, equal to .4.F, from

the vertex.

The constant ratio I =Vw2 + n2 reduces in Fig. ui.

this case to unity; whence it follows that

every point of the parabola is equally distant from the focus

and the directrix.

244. THEOREM V. The distance of any point within the

parabola from the focus is less than its distance from the direc

trix; on the contrary, the distance of every point ivithout from

the directrix is less than its distance from the focus.

Consider accordingly a point N which lies within the parab

ola; draw a perpendicular from this point to the directrix,

and connect it with a straight line to the focus. The perpen

dicular intersects the curve in a point M which is joined to

the focus. Since the point M belongs to the parabola, the

distances ME and MF are equal. But the straight line NF
is shorter than the broken line NM+ MF; if MF be replaced

by its equal ME, it follows that the distance NF is less than

NE. Thus the internal point N is nearer to the focus than to

the directrix. Consider next an external point P situated

between the curve and the directrix. Connect it with the

focus and draw to the directrix a perpendicular PE which is

prolonged till it intersects the curve in M. Since the point

M belongs to the parabola, the distances MF and ME are

equal ;
the straight line MF, or its equal ME, is shorter than

the broken line MP + PF-, if MP be subtracted from each

member of the inequality, it follows that PE is shorter than

PF. In case the point P lies to the left of the directrix, it is

evidently nearer to the directrix than to the focus.

It follows from the preceding discussion that the parabola

may be regarded as the locus of points, each of which is
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equally distant from the focus and the directrix. It is in this

manner that the parabola is denned in elementary geometry,
and it is by means of this property that the parabola is con

structed point by point, or by a continuous motion, as has

already been described ( 16).

245. THEOREM VI. The tangent to a parabola makes equal

angles with the diameter and focal vector drawn from the point

of contact.

Take on the parabola two consecutive points M and M
(Fig. 142), which we join to the focus and from which we

drop perpendiculars ME and ME upon the

directrix. Construct an arc MC of a circle,

about the focus F as a center, with a radius

FM, and draw from M, MC parallel to the

directrix. The length M C is the difference

of the two radii vectores FM and FM; it is

the increment which the radius vector FM
receives when the point M moves to M .

Similarly, the length M C is the difference

pior
of the two perpendiculars M E 1

, ME] it is

the increment which the perpendicular ME
receives when the point M is removed to M 1

. Since the radius

vector MF is always equal to the perpendicular ME, it follows

that the two increments M C andM C are equal.

Draw through the points M and M the secant MS and con

struct the chord MC in the circle described about the focus as

center. Take on the secant MS an arbitrary length MG, and

draw through the point G, GH parallel to MC, and GK par

allel to MC . On account of these parallels, one has the equal

ratios = =; since the two lengths M C, M CMH M G M K
are equal, the two lengths MH and M K, which are propor
tional to them, are also equal.

Suppose now that the point M approaches indefinitely the

point M ;
the secant MS will approach a limiting position and

be tangent to the parabola ;
the chord MC prolonged will, in a

similar manner, approach a limiting position and be tangent
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Fig. 143.

to the circle, and consequently become perpendicular to the

radius FM\ the parallel GH takes also a direction perpen

dicular to FM. Whence it follows that

the two triangles M GH, MGK have

as limits the two right-angled triangles

MGH, MGK (Fig. 14,3) ;
these two right

triangles, having the common hypotenuse

MG, and the two sides MR and MK
equal to each other since they are the

limits of equal lengths, are equal ;
hence

the two angles GMK and GMH are

equal. Therefore the tangent MT to the

parabola bisects the angle FME, formed

by the radius vector and the perpendicular dropped from the

point of contact to the directrix. If EM be prolonged, the

two vertical angles GMK and TML will be equal and, conse

quently, the two angles FMT, T ML, formed by the tangent

with a line parallel to the axis and the radius vector FM, are

equal.

246. COROLLARY I. Suppose that a light be placed at the

focus F (Fig. 144) of the parabola ;
the rays of light, emanat

ing from the focus F, are reflected on meeting the parabola,

making the angle of reflection equal to the

angle of incidence. Let FM be one of the

rays; draw at the point M a tangent to

the parabola; the reflected ray, making the

angle LMT equal to the angle FMT, will be

parallel to the axis AB of the parabola. Simi- A

larly, every reflected ray will be parallel to

the axis.

It is by means of this property of the

parabola that the reflectors used in reflector

telescopes and coach lamps are constructed.

The interior surface, of well-polished metal, is produced by a

parabola revolving about its axis; a light is placed at the

focus
;
the luminous rays, after reflection, all become parallel

to the axis; the reflector projects a pencil of parallel rays

&quot;Fig. 144.
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which are propagated without dispersing, and which light,

therefore, at the greatest distance.

COROLLARY II. Suppose that luminous rays, parallel to

the axis, fall upon a parabolic mirror
;
after reflection, they

will all converge to the focus.

Parabolic mirrors are used in the construction of telescopes.

The axis is directed toward the star
;
the luminous rays coming

from the star are reflected on the mirror, and form at the focus

a very brilliant image of the star.

The parabolic form is used in the construction of speaking-

trumpets and certain acoustical instruments.

247. COROLLARY III. Conversely, the parabola is the only
curve which enjoys this property that the tangent at any point

of the curve makes equal angles with the radius vector drawn

from a fixed point to the point of contact, and with a straight

line drawn from the point of contact parallel to a fixed straight

line. Imagine that any pointM of the plane be determined by
its distance MF from a fixed point F, and its distance ME
from a straight line DE perpendicular to the fixed straight

line FB (Fig. 142) ; represent these two co-ordinates by u and

v ( 17). As any point M of the curve is moved to a neigh

boring point M ,
these two co-ordinates receive the increments

Aw M C MK
and one has = = ---

A?,t M C MH
As the point M1

approaches indefinitely the point M, the

straight line MM becomes tangent and the angle at // becomes

a right angle. The two triangles GMH, GMK are at the

limit right-angled and equal (Fig. 143), since they have a

common hypotenuse and the angle OMII equal to GMK by

hypothesis. Therefore one has

., Av
hm -= 1,

Ait

and returning to the primitive function v = n -f C. On remov

ing the line DE a distance equal to the constant (7, it follows

that v u.
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248. PROBLEM IX. To draw a tangent at a given point of a

parabola.

FIRST METHOD. Let T (Fig. 145) be the point in which

the tangent prolonged intersects the axis, ME the perpeii^

dicular drawn from the point M to the directrix. It is known

that the tangent bisects the angle FME ;
the angle FTM being

equal to the alternate interior angle TME, and, consequently,

to the angle FMT, it follows that the

triangle TFM is isosceles, and the two

sides FM, FT are equal. Hence, in order

to construct the tangent at the point M,

it is sufficient to lay off on the axis a

length FT equal to the radius vector FM,
and draw TM. This method is not prac

tical in case the point M is very near the

vertex A of the parabola; for then the

two points M and T, being very near to Flg 145&amp;lt;

each other, do not determine the tangent with sufficient

precision. For this particular case the following method is

used.

SECOND METHOD. The tangent MT bisects the angle at

the vertex M of the isosceles triangle FME, and is perpen

dicular to the base FE at its mid-point. Thus, in order to

construct the tangent a perpendicular ME is drawn from the

point M to the directrix, and a second perpendicular is drawn

from the point M to the straight line FE.

It follows from this construction that the tangent at the

vertex A of the parabola is perpendicular to the axis of the

parabola.

EEMARK. Every point of the tangent, excepting the point

of contact M
t
lies without the parabola. Let P be any point

of the tangent; it is perpendicular to FE at its mid-point;

therefore, the distances PE, PF are equal ;
but the oblique

line PE is greater than the perpendicular PK\ therefore, the

distance PF is greater than PK, and, consequently, the point P
is without the parabola. Whence it follows that the parabola

is a convex curve when viewed from any point on a tangent.
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249. COROLLARY. The locus of the projections of the focus

upon tangents to the parabola is the tangent at the vertex.

In fact, it is seen that the point /, mid-point of FE, and the

projection of the focus upon the tangent, lie on a parallel to

the directrix drawn through the point A, the mid-point of FD,
that is, on the tangent at the vertex A.

250. PROBLEM X. To draw a tangent from an external

point P to a parabola.

Assume that the problem is solved, and let PM (Fig. 146)
be a tangent passing through the point P. If a perpendicular
ME be drawn from the point M to the directrix, and the

points E and F be joined, it follows that

the tangent PMis perpendicular to FE at

its mid-point ;
whence it follows that the

distance PE is equal to PF, and one has

the construction required : a circle is

described about P as a center, having a

radius equal to the distance PF of this

point from the focus and intersecting the

directrix in the point E. Join the points
Fig. us. p and E, and draw from P a perpendicular

to FE
;

it will be the tangent required. The point of contact

M is determined by the intersection of the tangent with the

line drawn through the point E parallel to the axis.

The circle intersects the directrix in a second point E 1

. In

a similar manner a perpendicular is drawn from the point P to

FE
,
and a second tangent is constructed.

These constructions can be accomplished without tracing the

parabola. It is only necessary that the focus and directrix be

known.

251. PROBLEM XI. To draw to a parabola a tangent which

is parallel to a given straight line KL.

Assume that the problem is solved, and let MT be the

tangent required. If a perpendicular ME be drawn from

the point of contact to the directrix, and the points E and F
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be joined, then the tangent is perpendicular to FE at its

mid-point.

Whence the following construction is

deducible: Draw through the focus F a

straight line perpendicular to the given

line KL, and produce it till it meets the
^

directrix in E, and at the mid-point of FE
erect a perpendicular TM, which will be

the tangent required. The point of con

tact M will be determined by drawing

through the point E the line ME parallel

to the axis.
Fig. 147.

252. PROBLEM XII. To find the point of intersection of a

given straight line and of a parabola defined by its focus and

directrix.

Let the point Ft be a point which is symmetrical to the focus

with respect to the given line (Fig. 148).

The point M, being equally distant from the

points F, Flf
and the directrix, is the center 7

of a circle passing through these two points E

and tangent to the directrix. In order to

determine the point of contact E, one lays

off on the directrix, beginning at the point /

in which the straight line FJ? intersects the

directrix, to the one side or to the other, a

length IE which is a mean proportional

between the two lengths IF, IFl ;
thus are

the two points of intersection M and M determined.

In case the point F the symmetrique of the focus with

respect to the given line, is situated to the right of the directrix,

there are two solutions. When the point Fl is on the directrix,

the line is tangent to the parabola. Finally, when the point

F, lies to the left of the directrix, the straight line cannot

intersect the parabola.

Fig. 148.



264 PLANE GEOMETRY. BOOK III.

253. THEOREM VII. The limiting case of an ellipse or of a
hyperbola whose parameter remains finite, while the major or
minor axis increases indefinitely, is a parabola.

The ordinate at the focus in

the parabola is equal to the

parameter p ; by analogy, the

ordinate at the focus in the

ellipse and the hyperbola is

called theparameter; it is equal
A- i^

to and is represented by p.

The ellipse, referred to its

major axis and to the tangent
at the left vertex (Fig. 149),
has an equation of the formFig. 149.

f = x - x\ or f = 2px -a a~ a

Assume now that the vertex remains fixed, and the parameter
p remains finite, while the major axis 2 a is allowed to increase

indefinitely ;
the equation of the ellipse is reduced to the equa

tion f = 2px, which represents a parabola. If the points,
which correspond to the same value of

a?, be considered, one
sees that each point of the parabola is the

limiting position
toward which the corresponding point of the ellipse tends when
a is increased indefinitely ;

it is this that is implied in saying
that the parabola is the limit of the ellipse.

The equation of the hyperbola, referred to its major axis and
to the tangent at the vertex A, is

if a be allowed to increase indefinitely, the parameter p remain

ing finite, this equation will also reduce to

f = 2px.
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The parabola is the limit of the branch of the hyperbola to

which the vertex A belongs; the other branch is removed

indefinitely toward the left.

In the preceding discussion we have supposed that the

parameter of the ellipse or the hyperbola remains finite. The

same conclusion is reached, on supposing that the distance AF
of the vertex A from the neighboring focus F remains finite.

In fact, on calling a this distance, one has, for the ellipse,

a a a

since the parameter p has as limit the finite quantity 2 a, the

equation of the ellipse reduces to y
2 4 ax. The same will be

the case for the hyperbola.

254. REMARK. This transformation of the ellipse into the

parabola is important. It allows the deductions of the proper

ties of the parabola from those of the ellipse as particular cases.

Thus, in the ellipse, the diameter, or the locus of a system of

parallel chords, is a straight line passing through the center
;

if it be supposed that the center is removed to infinity, the

ellipse is transformed into the parabola, and the diameters

become parallel to the axis. The ellipse is the locus of points

equally distant from the focus F and from the director circle

described about the focus F as center ( 221). If the focus F
be removed to infinity, the director circle becomes the directrix

of the parabola.

The tangent to the ellipse makes equal angles with the radii

vectores drawn from the point of contact to the foci ( 222) ;

if the focus F be removed to infinity, the radius vector MF
becomes parallel to the axis.

255. THEOREM VIII. If two tangents be drawn to a curve

of the second degree, the straight line FP, ivhich is drawn from
the focus F to the point of intersection P of the two tangents, is

the bisector of the angle formed by the radii vectores FM, FM ,

drawn from F to the points of contact of the tangents, or the
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external angle, according as the two tangents touch the same

branch of the curve or two different branches.

Consider two tangents PM, PM of an ellipse (Fig. 150);

prolong the radius vector FM till

MH is equal to MF, and similarly

FM tin M H&amp;gt; is e(lual to MF
&amp;gt;

tlie tangents being perpendicular at

tne mid-points of FH and FH
,

it

follows that

PH^=PF, PH = PF
,

and the two triangles F PH, HPF
are equal, since the three sides of

the one are equal each to each to the three sides of the other,

namely,
FH=FII = 2a, PH=PF, PF = PH

;

whence it follows that the angles PHM, PFM are equal. But

the angle PHM is equal to the angle PFM, therefore the

angles PFM, PFM are equal and the straight line FP is the

bisector of the angle MFM .

The same discussion holds in case the locus is a hyperbola,

when the two tangents touch the same branch
;
but in case

the tangents touch two different branches, the line FP is the

bisector of the angle formed by one of the radii TTectores FM
and the prolongation of the other.

Consider, finally, the case when the curve is a parabola (Fig.

151). From the points of contact draw the perpendiculars

MH, MH to the directrix; since the tangents are perpen

dicular to FH and FH at their mid-points, the angles PFM,
PFM are equal respectively to the angles PHM, PHM . The

straight lines PH and PH
, being each equal to the straight

line PF, are equal to each other, and the triangle HPH is

isosceles. The angles PHM, PHM
, complements of the

equal angles of the isosceles triangle, are equal to each other
;

therefore the angles PFM, PFM are equal. This result may
otherwise be obtained immediately on regarding the parabola

as the limiting case of an ellipse.
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256. THEOREM IX. Tangents drawn from an exterior point

P to an ellipse or a hyperbola, make equal angles with the straight

lines drawn from this point to the foci.

In the two equal triangles F PH, HPF (Fig. 150), one has

the two equal angles F PH, HPF ,
on subtracting the com

mon part F PF, one has FPH = FPH , and, on taking half

of the remainders, one obtains FPM= FPM .

The same property belongs to the parabola, considered as

the limiting case of an ellipse ;
it suffices to replace the radius

vector PF by a straight line PI

parallel to the axis (Fig. 151). It is

easy, moreover, to demonstrate this

property directly. If about the point /

P as a center, a circle be described
,

with a radius equal to PF, this circle \

will pass through the points H and

//
;
the angles MPI, FHH are equal,

since their sides are respectively per

pendicular ;
but the inscribed angle

FHH is the half of the angle FPH
at the center, and, consequently,

equal to the angle FPM ;
therefore the angles MPI, MPF

are equal.

257. THEOREM X. The straight line FK, which joins the

focus of a curve of the second degree with the point in ivhich any

secant intersects the directrix, is the bisector of the external angle

formed by the radii vectores emanating from the focus to the

points in which the secant cuts the curve or bisector of the angle

included by the same radii vectores, according as the two points

of intersection, M and M
,
are situated on the same branch, or

different branches of the curve.

Draw from the points M and M perpendiculars to the direc

trix (Fig. 152) ;
one has

MF MF

and, consequently,

Fig. 151.

ME
MF = =MF ME MK

ME MK
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Fix. ir&amp;gt;2.

In case the two points M and M1

belong to tlie same branch

of the curve, since the point /L* lies

on the prolongation of the chord

MM
,

the straight line FK is the

bisector of the external angle of the

triangle MFM . In case the pointsM and M belong to two different

branches, since the point K is situ

ated between the points M and J/
,

the straight line FK is the bisector of the angle MFM .

258. THEOREM XI. If tangents be drawn from any point
P on the directrix to a curve of the second degree, the chord of
contact MM passes through the cor

responding focus F, and is perpendic

ular to the straight line FP ivhich joins

the point P to the focus (Fig. 153).

Let the tangentPM be the limiting

position of a secant of the ellipse

whose points of intersection with the

ellipse are made to coincide
;
then it

follows from the preceding theorem

that the line FP is perpendicular to FM
;

it is for the same

reason perpendicular to FM
;
therefore the line MFM will be

a straight line perpendicular to FP.

259. THEOREM XII. The product of the distances of the

two foci from the tangent of an ellipse or a hyperbola is constant.

Let FH, FH be the perpendiculars dropped from the foci

upon a first tangent (Fig. 154), FK, FK1 the perpendiculars

dropped upon a second tangent, P the

point of intersection of the two tan

gents. Then by Theorem IX. it fol

lows that the right triangles FPH,
FPK1 are similar, so also are the

triangles FPK, FPH
,
and one has

FH = FP FK
.~

FP
Fig. 154. whence

Fig. 153.

FK FP FH
FH FH = FK - FK .
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If the curve be an ellipse, in drawing the tangent parallel to

the major axis, it follows that the constant product is equal

to b
2

. When the curve is a hyperbola, if the asymptotes be

regarded as the limiting position of tangents, one sees also

that the product is equal to b
2

.

260. PROBLEM XIII. To construct a curve of the second

degree, given the focus F and three points A, B, C.

Assume that the problem is solved and that the three points

belong to the same branch; the point D, where the secant AB
is met by the bisector of the exterior angle of the triangle

AFB, is on the directrix ( 257) ;
the

secant BC will determine in a simi

lar manner a second point D on the

directrix. The focus F, the direc

trix I)D
,
and the point A define a

curve of the second degree and one

only; it will be an ellipse, a parab

ola, or a hyperbola, according as

the distance AF is less, equal to, or

greater than the distance AE of the point A from the direc

trix. It is easily seen that this curve passes through the two

points B and C
; for, on account of the bisector FD, one has

AF = AD = AE
BF~ BD~ BE 1

,, AF BF
and, consequently, =

;

therefore the curve passes through the point B. It can be

shown in a similar manner that the curve passes through C.

This gives one solution.

It is possible that the three points are not on the same

branch
; if, for example, the two points, A and B, are on the

same branch and the point C on the other branch of the

hyperbola, the bisectors of the angles AFC, BFC will deter

mine two points on the directrix. The three solutions found

in this manner are hyperbolas. One has therefore, in all, four

solutions
;
of these four curves of the second degree to which
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the given focus belongs and on which the three given points

lie, three are always hyperbolas, the fourth is an ellipse, a

hyperbola, or a parabola depending upon the disposition of the

points.

261. A calculation will lead to the same result; let a and

ft be the co-ordinates of the focus, x and y ,
x&quot; and

y&quot;,
x &quot;

and y &quot;,

the co-ordinates of the three given points, 8
, 8&quot;,

8
&quot;,

their distances from the focus
;
the equation of the curve can

be put under the form

(x
-

a)
2 +(y- ft)

2 - (mx + ny + 7i

where mx + ny + h 0, is the equation of the directrix. One
can determine the three constants m, n, h by means of the

three equations of the first degree :

8 = (mx + ny + h),

8&quot; =(mx&quot; + ny&quot; + 7i),

8
&quot; = (mx

&quot; + ny&quot; + /*).

Each combination of signs furnishes a system of equations ;

there are eight combinations ;
but it is to be noticed that, if

the signs be changed in the three equations, the values of w,

n, h change signs, and the curve is the same
;
therefore there

are only four solutions.

The distance of a point from a straight line is expressed by
a formula affected with a double sign ;

the same sign should

be taken for any point lying on one side and the opposite sign

for any point situated on the other side of the line. One

knows that the ellipse lies wholly on the same side with re

spect to each directrix
;
the parabola is also situated on the

same side of its directrix, but, however, the two directrices

of the hyperbola lie between the two branches of the curve.

When the three points lie on the same branch, their distances

from either directrix have the same sign; in case, however,

two of the points lie on one branch and the third on the other

branch, these distances take different signs.
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262. PROBLEM XIV. Construct a curve of the second degree,

when one focus and three tangents are given.

Assume that the problem is solved; if perpendiculars be

dropped from the given focus upon the given tangents, and

each prolonged a length equal to itself, three points, //, H ,

H&quot;,
are determined, belonging to the director circle (Fig. 156)

whose center is at the second focus F
;

the radius FH of this circle is equal to

the axis 2 a which passes through the

two foci. The two foci F, F , along with

the length 2 a, define a curve of the sec

ond degree, and one only. It is easy

to see that this curve is tangent to the

three given lines, for let M be the

point in which the line FH intersects

the straight line MT, the sum or the

difference of the radii vectores MF and
Fi(r 156

MF being equal to FH or to 2 a, the

point M belongs to the curve
; further, the straight line MT,

being perpendicular to FH at its mid-point, is tangent to the

curve at the point M. The problem has thus one, and one

solution only.

If the three points H, H ,
H&quot; should lie on the same straight

line, the curve sought would be a parabola having this line for

its directrix.

TRINOMIAL EQUATION COMMON TO THE THREE CURVES
OP THE SECOND DEGREE.

263. If a point of a curve of the second degree be taken

for the origin, the diameter meeting the curve in this point

for the x-axis, and the tangent at this point for the 2/-axis, the

equation of the curve takes the form

f 2px -f qx*.

In fact, let

Ay? + 2 xy + Of + 2 Dx + 2 Ey + F=
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be the equation of the curve referred to the axes mentioned.

Since the curve passes through the origin and is tangent to

the axis Oy, one has p_ -^ _ Q .

since the axis Ox is the diameter conjugate to the chords

parallel to the axis Oy, the equation should contain only the

second power of y, because to each value of x there should

correspond two equal values of y with opposite signs ;
there

fore B = 0. The coefficient C is not zero, because if it were,

the conic would reduce to two straight lines parallel to the

axis Oy. Hence one can solve the equation with respect to

y
2 and obtain an equation of the form given above. The curve

is an ellipse, a hyperbola, or a parabola, according as q is nega

tive, positive, or zero.

Take, in particular, the point in which the focal axis meets

the curve for the origin, and the direction in which one looks

from this point toward the nearest focus for the positive

direction of the axis Ox. Whence the coefficients p and q will

have the following values :

1 Ellipse. On calling a and b the axes of the ellipse, one

ought to have y0 for x=2 a, and y
z=b2 for x=a. Therefore

pa + qa
2 = 0, 2pa + qa

2 = b
2

;

-,
b2 b2

c
2

-, 9 -iwhence P = ? Q s
= 1 = 6^ 1.

a a2 a2

2 Hyperbola. One should have y = for x = 2 a, and

y
2 = b

2 for x = a. Therefore

pa 4- qa
2 = 0, 2pa -\-qa

2 = b
2

b2 b
2

(? 1 2 -iwhence p = q = = -]_ e* .

a or a2

3 Parabola. Here q is equal to zero, and p is the parameter.

In general, therefore, on taking the point in which the

straight line drawn through the foci intersects the curve for

the origin, and the straight line drawn from this point to

the nearest focus for the .T-axis, one can put the equation of

the three curves under the form
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in which p is the parameter and e the eccentricity, which is

greater than unity for the hyperbola, less than unity for the

ellipse, and equal to unity for the parabola.

THE EQUATIONS OF THE CURVES OF THE SECOND

DEGREE IN POLAR CO-ORDINATES.

264. A focus F is chosen as the pole, and the perpendicular

drawn from this focus to the corresponding directrix DE
is taken for the polar axis.

Consider now the ellipse. The ratio of the distances of any

point M of the curve to the

focus and to the directrix

being constant and equal to

the eccentricity, one has

MF=
e, or MF=ME - e.

ME
The distance FD of the

focus to the directrix is equal Fig. 157.

to _ . On projecting the broken line FME (Fig. 157) upon
c

the axis, one has

b2

p cos w + ME = FD = -, w = Z XFM,

whence ME = p cos to
;

C

on replacing ME by its value

in the preceding equation, one

finds

P
(1) 1 -f- e cos w

If the curve be a hyperbola

(Fig. 158), the same calculation

is applicable to the branch A,
whose vertex is nearer the

focus F taken for the pole. When the point M is on the

Fig. 158.
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branch A
,
situated on the other side of the directrix, the pro

jection of the broken line FME gives

p cos o&amp;gt;

-ME = FD,

which leads to the equation

-P
(2) 1 e cos

Moreover, if the negative radii vectores be constructed in a

sense contrary to the direction indicated by the angle w, it

is easily seen that equation (1) represents the two branches

of the hyperbola. Let M be any point of the second branch,

to the corresponding angle A FM , p the radius vector FM
;

owing to equation (2), one has p = If in equa-
& COS o)

tion (1), the value w -f TT be substituted for the angle &amp;lt;o,

it

will become

P
P 1 e cos

= P

Thus a negative value p is obtained for p.
But the value

w + TT assigned to o&amp;gt; indicates the direction FM opposite to

FM
;

if p have a positive value, it will be necessary to measure

it in the direction FM1 ; p having a negative value p ,
one

measures the absolute value p
1 in the opposite direction; that

is, in the direction FM ,
which determines the

f
point M .

Whence it follows that equation (1) suffices to represent the

two branches of the hyperbola, the first

by the positive values of p, the second by
the negative values.

The calculation given for the ellipse

is applicable to the parabola (Fig. 159) ;

it suffices to put e = l. It follows there

fore that equation (1) represents the

three curves of the second degree; the

curve is an ellipse, a parabola, or a

hyperbola according as the eccentricity

e is less, equal to, or greater than unity.
Tig. 159.
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EXERCISES.

1. If P be the point of intersection of the tangents drawn to

a parabola at the points M and M and F the focus, prove that

PM2

= PM
2

MF M F
2. In case of a curve of the second degree, show that the

perpendicular dropped from the focus upon a chord and the

diameter conjugate to this chord intersect on the directrix.

3. A semi-diameter of an ellipse or of a hyperbola is a mean

proportional between the straight lines which join the foci to

the extremity of the diameter conjugate to the first.

4. Show that the distance of any point of an equilateral

hyperbola from its center is a mean proportional between the

distances of this point from the foci.

5. Find in the plane of an ellipse a circle such that the

length of the tangent drawn from every point of the ellipse to

the circle is a rational, integral function of the first degree in

the co-ordinates of this point.

Prove that the sum or the difference of the tangents drawn

from every point of the ellipse to two circles which enjoy the

preceding property is constant.

6. Find the locus of the vertex of a constant angle which is

circumscribed about a parabola.

7. A chord is drawn through the focus of a parabola, and a

circle is constructed on this chord as a diameter, then tangents

are drawn to the circle parallel to a given straight line
;
find

the locus of the points of contact.

8. A constant angle revolves about the focus of a curve of

the second degree; tangents are drawn to the curve at the

points in which the sides of the angle meet this curve; find

the locus of the point of intersection of the tangents.

9. A tangent is drawn to a given ellipse at any point M and

is prolonged till it intersects the tangents at the extremities of

the major axis in P and Q; find the point of intersection .2V of

the straight lines FP and FQ, and of the point of intersection

N of the straight lines FP and F Q. Show that the two

points N and N are situated on the normal at the point M.
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10. A curve of the second degree is given, and a secant re

volves about a fixed point P; the focus F is joined to the

points M and M in which the secant intersects the curve
;

PJf \f PFM
show that the product tan tan is constant.

11. Show that the portion of a tangent comprised between

two fixed tangents to a curve of the second degree subtends

a constant angle whose vertex is at a focus of this curve.

12. Prove that the point of intersection of the altitudes of a

triangle circumscribed about a parabola is on the directrix, and

that the circle circumscribed about the triangle passes through
the focus.

13. If, at any point J/ of an ellipse, a normal be drawn, the

portion of this normal comprised between the point M and the

minor axis has for its projection on the radii vectores drawn

from the point M to the two foci a length equal to the semi-

major axis.

14. Prove that the portion of the normal comprised between

the point M and the major axis has for its projection on the

radii vectores a length equal to the parameter of the ellipse.

15. Two curves of the second degree have a common focus
;

if radii vectores be drawn from this focus to the extremities

of any diameter of one of the curves, the sum or the difference

of the ratios of these radii vectores to the radii vectores of the

second curve, which have the same direction, is constant.

16. If the radii vectores which are drawn from any point M
of an ellipse be prolonged till they intersect the curve at P and

Q, show that the sum \-
- is constant.

FP F ty

17. A mariner s compass composed of m rays revolves about

its center placed at the focus of an ellipse; show that the

sum of the inverse of the lengths intercepted on each ray be

tween the focus and the point where it intersects the ellipse, is

constant.

18. From any point P situated in the plane of an ellipse,

tangents are drawn to this ellipse; a perpendicular PC is

dropped from the point P to the chord of contact AB
;
the

straight lines PC and AB intersect the minor axis in D and E
;
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show that the circle described on DE as a diameter passes

through the two foci.

19. Being given two confocal ellipses, through a point Pone

draws to one of them tangents which intersect the second, the

one in A and B, the other in C and D
;
demonstrate that

JL _^ :iX
PA PB PC PD

20. A circle is described on the major axis of an ellipse as

a diameter
;
the ordinate of any point M of the ellipse inter

sects the circle in a point N; if o&amp;gt; be the angle which the

radius vector FM makes with the major axis, and U the angle

which the radius vector ON of the circle makes with the

major axis, one has the relations

= a(l-ecosw),
t

* J.

On representing the area of the elliptic sector AFM by S, one.

has also

21. An equilateral hyperbola confocal to an ellipse inter

cepts, on the sides of a right angle circumscribed about an

ellipse, two equal chords.

22. If one call R the radius of the circle circumscribed

about a triangle which is inscribed in a parabola, c, c
,

c&quot; the

chords drawn from the focus parallel to the sides of the tri

angle, 6, ,
0&quot; the angles which the sides of the triangle make

with the axis, one has

R sin - sin 0&quot;=p, SpE2 ^ cc c&quot;.

23. Let A be the vertex, F the focus of a parabola, (p, o&amp;gt;),

(p j
to

)
the co-ordinates of two points M and M of the curve,

the angle MFM 1

,
S the area of the sector AFM, A that of

the sector MFM
,

I the length of the chord MM
;
demonstrate

the following formulas used in astronomy :
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= P + p) X2 = tan + tan2

24. Consider an ellipse referred to its two axes, and an ex

ternal point P whose co-ordinates are a and j3 ;
two tangents

are drawn from the point P to the ellipse, and each of the

points of contact are joined to the two foci. Demonstrate:

1. That the distances of the point P from any of the four

lines thus constructed is equal to - Vcr/?
2 + 6

2 2 aa
&
2
,
a and b

QJ

representing the semi-axes of the curve
;

2. That the sum or

the difference of the tangents drawn from the two foci to the

circumference of the circle described about P as a center, with

a radius S, is equal to 2 a.

25. Calculate the parameter and eccentricity of a curve of

the second degree, defined by its general equation (use the for

mulas of 143).
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CHAPTER VIII

THE CONIC SECTIONS.

265. THEOREM I. The section of a right circular cylinder

made by any plane oblique to the base is an ellipse.

Draw through the axis 00 of the cylinder (Fig. 160) a

plane perpendicular to the secant plane ;
this plane is taken

as the plane of the figure. The

plane intersects the cylinder in

two diametrically opposite gen

eratrices GG
,
HH

,
and the se

cant plane in the straight line

AA . Describe in the plane of

the figure two circles and

tangent to the line AA 1 and the

two generatrices GG
,
HH of

the cylinder; draw the bisec

tors of the angles A and A 1 and

produce them till they inter

sect the axis of the cylinder in

and
; if, about the point as a center with the radius of

the cylinder, a circle be described, this circle will touch the

generatrices in G and H, and the straight line AA at the point

F; the circle described about the point as center will in

a similar manner touch the generatrices in G and H and the

straight line AA at the point F . Imagine that the figure

be revolved about the axis 00
;
the generatrix GG will

generate the surface of the cylinder while the two circles will

generate two spheres inscribed in the cylinder and touching

it internally, the first along the circumference of the great

circle GLH, the second along the circumference of the great

circle G L H . Moreover, the two spheres are tangents to the

Fig. 160.
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given plane, the first at the point F, the second at the pointF1

. In fact, the plane of the figure and the given plane are

perpendicular to each other; the straight line OF, which lies
in the first plane and is perpendicular to their intersection,
is perpendicular to the second plane ;

the plane AMA being
perpendicular to OF at its extremity, is tangent to the sphere

at the point F. It may be shown in a similar manner that
the given plane is tangent to the sphere at the point F .

Let AMA be the curve in which the secant plane intersects
the cylinder; it will be demonstrated that this curve is an
ellipse whose foci are the points F and F1

. Join any point M
of this curve to the two points F and F and draw a generatrix
of the cylinder through the point M ;

this generatrix is tangent
to the upper sphere at the point L, and the lower sphere at the

point L . The two straight lines MF, ML, tangents drawn
from the same point M to the sphere 0, are equal; similarly,
the two straight lines MF

,
ML

, tangents drawn from the

point Mto the lower sphere, are equal. Hence the sum of the
radii vectores MF+ MF is equal to ML + ML ,

that is, equal
to the portion LL of the generatrix comprised between the
two circles of contact

;
this length is constant, because, by the

revolution of the figure about the axis 00
,
the generatrix GG

is made to coincide with LL . Hence it follows that the sum
of the distances of each of the points of the curve from the two
fixed points F and F is constant and equal to GG

,
and conse

quently that the curve is an ellipse whose foci are JR-and F1
.

COROLLARY. The straight lines DE and DE
,
the inter

sections of the secant plane and the planes of the circles OH
and GH

, along which the inscribed spheres touch the cylinder,
are the directrices of the ellipse. In fact, if a plane be drawn

through the point M perpendicular to the axis of the cylinder,
the section of the cylinder by this plane will be a circle NMN .

The straight line DE, the intersection of the two planes, which
are perpendicular to the plane of the figure, is also perpendicu
lar to this plane and, therefore, to the straight line AA

;
in

the same manner it follows that the straight line MP, the in

tersection of the plane of the circle and of the secant plane, is

perpendicular to AA . Since the radius vector MF is equal to
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ML or to NO, and the perpendicular dropped from the point

M upon the directrix DE is equal to PD, the ratio of the dis

tances of the point M from the focus and to the directrix is

; but since P^and GD are parallel, this ratio is equal to

PD
that of AG to AD, or of AK to AA

,
a constant ratio, since

these last two lengths are constant.

The directrix DE corresponds to the focus F and the direc

trix D E to the focus F .

266. THEOREM II. The section of a right circular cone by a

plane is a curve of the second degree.

Draw through the axis of the cone a plane perpendicular to

the secant plane ;
this plane intersects the cone in the two gen

eratrices SO, SH, and the secant plane in the straight line

AA .

1 Consider now the case when the straight line AA inter

sects the two generatrices SO and SH, on the same side of the

vertex S (Fig. 161).

Describe two circles and which are tangent to the

straight line AA and to the two elements SO
,
SH . If the

figure be revolved about the

axis SO
,
so that the element

SO will generate the cone,

the two circles will generate

two spheres, which are tan

gent to the cone along the

circles of contact OH, G H .

The secant plane is tangent

to one of the spheres at the

point F, since it is perpen
dicular to the radius vector

OF at its extremity; it is

also tangent to the other

sphere at the point F .

Let M be any point of the F l%-m -

section made by the secant plane ;
the generatrix SM which

passes through this point is tangent to the spheres at the
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points L and L
;
draw the straight lines MF and MF . The

straight lines MF and ML are equal, since they are tangents
drawn from the same point M to the sphere ;

the .straight

lines MF and ML are equal, since they are tangents drawn

from the point M to the sphere ;
one has, therefore,

MF+ MF = ML + ML = LL .

But the portion LL of the generatrix comprised between the

parallel circles GH, G H is constant and equal to GG
;
there

fore the sum of the distances of each of the points of the curve

from the two fixed points F and F is constant, and, conse

quently, this curve is an ellipse whose foci are F and F .

The constant sum 1&G is equal to the major axis AA . If

AK be drawn through the point A parallel to GH, one de

termines on the generatrix a length AK equal to the focal

distance FF
;
for if from the equal lengths GG ,

AA one sub

tracts on the one hand the equal lengths AG and KG
,
on the

other the equal lengths AF and A F
,

it follows that the

lengths AK and FF are equal.

Let us consider the straight lines DE and D E
,
the intersec

tions of the secant plane with the planes of contact GH, GH 1

.

If from the point M a perpendicular

MP be dropped on the major axis, the

distance of the pointMfrom the straight

line DE is equal to PD. Let NMN
be the parallel circle which passes

through the point 3/; the length MF
or ML is equal to GN on account of

the parallels DG, PN; one has

GN= AG = AK
DP AD AA

Whence the distance of each of the

points of the ellipse from the focus F
and from the straight line DE are to

each other as the distance between the

foci to the major axis. This straight line DE is a directrix

of the ellipse ;
the straight line D E is the second directrix.
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2 When the straight line AA intersects the two gener

atrices SG and SHon opposite sides of the vertex S (Fig. 162),

one has
MF - MF = ML - ML = LL = GG .

The difference of the distances of each of the points of the

curve from the two points F and F is constant
;
this curve is

a hyperbola whose foci are the points F and F . The straight

lines which are the intersections of the secant plane with the

two planes of contact are the directrices of the hyperbola.

3 Finally, suppose that the straight line AA is parallel to

the element SH (Fig. 163). Construct a sphere tangent to the

cone along the circle GH and to the secant plane at F. Let

DE be the intersection of the secant

plane and the plane of the circle of

contact. Through the point M of

the section draw the straight line

ME perpendicular to DE, and the

generatrix SM, which intersects the

curve of contact in L
;
the straight

line ME will be parallel to AA and

to SH; therefore the three straight

lines ME, SM, SH lie in the same

plane, and the three points H, L, E
are on the straight line which is

the intersection of the plane of contact with the plane just

mentioned. The two triangles MLE, SHL are similar
;
since

SL is equal to SH, one has also ML equal to ME
;
but ML

equals to MF, because they are tangents drawn from the point

M to the sphere ; consequently MF is equal to ME. There

fore the curve is a parabola of which the point F is the focus

and DE the directrix.

This elegant method for finding the properties of the foci

and the directrices of the curves of the second degree, is due to

DANDELIN.

267. To plate a curve of the second degree on a given cone.

1 The curve is an ellipse. In the triangle AA K (Fig.

161), one knows the two sides AA
, AK, which are the major

Fig. 163.
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axis and the distance between the foci, and also the angle

opposite AA ,
which is the complement of half the angle at the

vertex of the cone. Since the major axis is greater than the

focal distance, this triangle can always be constructed; the per

pendicular at the mid-point of A K determines the point S,
and consequently all that determines the position of the secant

plane.

2 The curve is a hyperbola. In the triangle AAK (Fig.

162), one knows likewise two sides, and also an angle opposite
one of them, but since the side opposite the given angle is the

shortest, the construction of a triangle is not always possible.

It is necessary that one has a
&amp;gt;

c cos y (2 a being the transverse

axis, 2 c the distance between the foci of the hyperbola, 2 y the

angle at the vertex of the cone) ;
whence cos y &amp;lt;

- and conse-
C

quently cos y &amp;lt;
cos 0, when is the angle between the major

axis and the asymptote; therefore the angle between the

asymptotes should be less than the angle of the cone.

3 The given curve is a parabola. On joining the center

of a sphere to the point G, a right triangle OAG (Fig. 163), in

which one knows the side AG which is the semi-parameter
of the parabola, and the angle OAG the complement of 0.

Having constructed this triangle, one constructs OS perpen
dicular to OA, and produces it until it intersects AG] the

moment the distance SA is known, the problem is solved.

To sum up, one can place on a given cone every ellipse, every

parabola, and every hyperbola in which the angle between the

asymptotes is less than the angle of the cone.

268. REMARK. Suppose that the spheres used in the pre

ceding discussion be always inscribed in the cone so that they
intersect the secant plane ;

for this it is sufficient that the

generating circles be tangent to SA, SA ,
and intersect AA

;

the intersections of the spheres by the secant plane are circles,

and one knows that, in case of the ellipse or of the hyperbola,

the sum or the difference of the tangents drawn to these circles

from any point of the curve is constant; that, in case of the

parabola, the tangent drawn to the circle from any point of
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the curve is equal to the distance of this point from a certain

straight line.

The Greek geometers knew the curves of the second degree

as sections of a cone with circular base by a plane. APOLLO-

NIUS (247 B.C.) wrote a treatise of eight books on conic sections,

in which he gave an account of what had been discovered

before his time, and gave an exposition of his discoveries con

cerning this subject. The treatise of APOLLONIUS contains

the fundamental properties of conic sections; we may men

tion especially in this connection the two theorems concerning

conjugate diameters ( 162, 163, and 191), the properties

concerning the asymptotes of the hyperbola, the elementary

properties of the foci.
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CHAPTER IX*

THE DETERMINATION OF THE CONIC SECTIONS.

269. The general equation of the second degree

contains six coefficients
;

but since all of the terms may be

divided by one of the coefficients, provided that this coefficient

be different from, zero, the equation will involve but five arbi

trary parameters, which are the ratios of five coefficients to

the sixth. In order to determine a curve of the second degree,

it is necessary to assign values to the five parameters, or, better,

that the five parameters should satisfy five relations
;
but in

this case it is necessary to examine whether the five equations

of condition have a system of real solutions, and if, moreover,

the corresponding equation of the second degree represents a

curve. If the five equations of condition have a system of

real solutions possessing this property, there will be a curve of

the second degree satisfying the proposed conditions.

In general, the relations between the parameters correspond

to geometric conditions which the curve must satisfy. Thus,

one can require the curve to pass through given points, to

be tangent to given straight lines, etc. One will express the

condition that the curve pass through a given point on requir

ing that the co-ordinates of the point satisfy the equation of

the curve, which leads to a relation of the first degree between

the coefficients. The condition that the curve is tangent to a

given straight line will be found by requiring that the equation

which determines the abscissas of the points of intersection of

the curve and the straight line has two equal roots, which

gives a relation of the second degree between the coefficients.

A geometric condition which must be expressed by two rela-
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tions will be regarded as double. If, for example, one should

require the curve to touch a given straight line at a given

point, the equation which will furnish the abscissas of the

point of intersection and of the curve, should have two roots

equal to a given quantity ;
whence there will result two rela

tions of the first degree between the coefficients
;
the geometric

condition stated ought, therefore, to be reckoned as two single

conditions. Accordingly, it is necessary to have five geometric

conditions in order to determine a curve of the second degree.

If one know that the curve is a parabola, the coefficients

must satisfy the relation AC- B1 = 0; the equation will con

tain but four arbitrary parameters and the parabola will be

defined by four conditions.

Similarly, if one know that the curve is an equilateral hyper

bola, it will be necessary that the two straight lines repre

sented by the equation Ax2 + 2 Bxy + Cif = 0, straight lines

parallel to the asymptotes ( 130), be perpendicular to each

other, which gives a relation between the coefficients
;
when the

axes of co-ordinates are rectangular this relation is A + C = 0.

Four conditions are sufficient, therefore, to determine an equi

lateral hyperbola.

Before proceeding farther, it is best to generalize the defini

tions, in order to avoid the restrictions, which would introduce

imaginary solutions in the statement of theorems.

POINTS AND IMAGINARY STRAIGHT LINES.

270. A system of real values of x and y determine a point

in a plane; in an analogous manner we call an imaginary

point a system of imaginary values assigned to x and to y. If

two systems of imaginary values be of the form x = a + 61,

y = c + di, and x = a - 61, y = c - di, we say that the two

imaginary points are conjugate.

An equation of the first degree, Ax -f By + C = 0, with real

coefficients, is satisfied by the co-ordinates of an infinite num

ber of real points, whose locus is a straight line; but it is

satisfied also by an infinity of systems of imaginary values

assigned to x and y; because if any imaginary value be
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assigned to x, the corresponding value deduced for y will be

imaginary ;
if two conjugate imaginary values be given to x,

the two corresponding values of y will also be conjugate.

In an analogous manner, we call an imaginary straight line

the ensemble of solutions of an equation of the first degree
with imaginary coefficients. It is to be noticed that an imagi

nary straight line passes through one real point. Let, in fact,

or
(A

1 + A&quot;
i)
x + (B 4 B&quot;i) y+(C + C&quot;i)

= 0,

(A x 4 B y + C&quot;) 4 i
(A&quot;x 4 B&quot;y + C&quot;)

=
0,

be an imaginary straight line. This equation is satisfied by
the co-ordinates of the point of intersection of the two real

straight lines

A x 4- B n + C 1 =
0, A&quot;x 4- B&quot;y 4- C&quot; = 0.

In the case of the general equation of the first degree, involv

ing three coefficients and consequently two arbitrary parameters,

two points, real or imaginary, will determine the straight line.

If x
, y\ x&quot;, y&quot;,

be the co-ordinates of two given points, the

straight line which passes through these points will have as its

equation
x x _ y y

The straight line which passes through two conjugate

imaginary points is real. Let, in fact, x = a 4 bi, y ^= c 4 di,

x&quot; = a bi, y&quot;

= c di\ the equation of the straight line

reduces to

x a _ y c

b d

The point which has the co-ordinates

will be called the mid-point of the straight line which joins

the two given points; in case the two points are conjugate

imaginaries, the mid-point is a real point.
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An algebraic equation /(a-, y)
= 0, with real coefficients, is in

general satisfied by the co-ordinates of an infinitude of real

points constituting a curve; it is also satisfied by the co

ordinates of an infinitude of imaginary points, conjugate in

pairs. If the coefficients be imaginary, the equation has

always an infinitude of imaginary solutions, but only a limited

number of real solutions
;
the totality of these solutions will

form what we call an imaginary curve.

Two equations, the one of the first degree, the other of the

second degree in x and y, have two solutions. It is said, there

fore, that a straight line intersects a curve of the second

degree in two points, real or imaginary. A real straight line

intersects a real curve of the second degree in two points,

which are real or conjugate imaginaries. This suffices to

explain a fact which has already presented itself several

times; when one seeks, for example, the locus of the mid

points of a series of parallel chords in an ellipse, one finds by

calculation an indefinite straight line, and yet the locus which

is defined geometrically is composed only of that position which

lies within the ellipse ;
the external secants intersect the ellipse

in two conjugate imaginary points; the mid-point of the chord

is, moreover, a real point, and the diameter is thus prolonged

without the curve.

CONCERNING THE INTERSECTION OF Two CURVES OF

THE SECOND DEGREE.

271. We remark, first, that if the two curves coincide, that

is, if the two equations are satisfied by the same systems of

the variables x and y, the coefficients are proportional. In

fact, the equations

(1) Cjf + 2(Bx + E)y + (Ax
2 + 2Dx + F) = 0.

(2) Cy + 2 (B x + E )y + (A x2 + 2D x + F) = 0,

have the same roots for the same value of x
;
one has

Q BxE _ Ax2 + 2Dx + F
C&quot; B x + E
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and, since this relation should exist whatever x may be, one

deduces

C_ = B. = iL =A = lL = F.

C ~B E ~A D ~F
The converse is true

;
in case the coefficients are proportional,

the two equations will be identical and the two curves coincide.

We suppose, in what follows, that the curves are different,

that is, that the coefficients are not proportional. We consider

first the case when the two coefficients C and C are different

from zero
j

if the equations be subtracted member from mem
ber, after having been multiplied respectively by C and (7, one

eliminates y
2 and obtains an equation of the form

(3) 2 (Bjx + JE,) y + (Atf + 2 D& + F,)= 0,

which, with equation (1), forms a system equivalent to the

system of the two given equations (1) and (2). The five coef

ficients BH EH AH DH F^ cannot all be zero at the same time
;

because if that were the case the coefficients of the two

equations (1) and (2) would be proportional. If the two

coefficients Bt
and EI were zero, equation (3) would become

AI&amp;lt;X? 4- 2 DiX -f Fl
=

;
it would furnish two values for #; to

each of which, by reason of equation (1), would correspond

two values of y ;
in all, four solutions. Suppose that the two

coefficients Bl and E^ were not zero at the same time
;
in gen

eral, the value x = ---,
which annuls the coefficient of y in.

BI

equation (1), does not reduce the polynomial A$P + 2 D& + F
to zero

;
in this case, the quantity B& + EI being different

from zero for all of the solutions of equation (3), this equation

can be put under the form

on substituting this value of y in equation (1), an equation of

the fourth degree is found,

which, combined with equation (4), forms a system equivalent

to the system of two equations (1) and (3), and, consequently,
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to the proposed system. The five coefficients of equation (5)

cannot all be zero at the same time, because, if that were the

case, equation (5) becoming an identity the two proposed equa
tions would be satisfied by all the systems of values of x and y
which would satisfy equation (4) or equation (3) ;

the two

curves would coincide with the curve represented by equa
tion (3) and, consequently, would have proportional coeffi

cients. Equation (5) gives four values for a;; to each value of

which there corresponds, owing to equation (4), one value of y,

which furnishes four solutions of the given system.
TyT

If the value x= -
1 annul the polynomial AjX* -f 2D& +F19

B\

equation (3) can be put under the form

(Bjx + E^(y + mx + n) = 0,

and decomposes into two distinct equations, B^x -f- E^ = 0,

-p
y -f mx -f n = ;

the first gives the value x =
-,
to which,

owing to equation (1), correspond two values of y ;
from the

second, one gets y = mx n
; and, by replacing y by this

value in equation (1), one obtains an equation of the second

degree in x
y
which furnishes two new solutions; in all, four

solutions. Moreover, it can happen that this last equation of

the second degree in x reduces to an identity ;
in this case, the

co-ordinates of every point of the straight line y -f- mx -f- n =
satisfy the two proposed equations, which represent pairs
of straight lines, two of which coincide.

In case one only of the coefficients C and C is zero, one of

the proposed equations will be of the form (3), and the dis

cussion just given will be repeated.
Let us consider now the case when the two coefficients C

and C are zero at the same time. If the value x
,

which annuls the coefficient of y in equation (2), does not

reduce the polynomial A x2
-f 2 D x -f- F to zero, one finds

from this equation

y= -
2 (B x + E )
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and, by substituting in equation (1), an equation of the third

degree in x will be obtained, which gives three solutions. If the

value x = - reduces the polynomial Ay? + 2D x -f Ff
to

jB
r

zero, equation (2) may be written

(B x + E )(y + mx + n)
= 0,

and represents two straight lines B x + E 1 = 0, y + mx + n = 0,

the first of which intersects the curve (1) in one point, the

second in two points. It happens that one of these straight

lines belongs to curve (1), and in this case the proposed equa

tions represent pairs of straight lines, two of which coincide.

From what precedes, it follows that two curves of the second

degree cannot have more than four points in common, at least

that these curves consist of pairs of straight lines, two of

which coincide. In case the two given equations have real

coefficients, their points of intersection are real or conjugate

imaginaries.

272. It is easy to form equation (5), which, in the general

case, determines the abscissas of the four points of intersection

of two curves of the second degree. Let Atf? + A$ + A2
= 0,

A*$* 4- A fl + A 2 0, represent the two given equations, in

which AQ and A Q designate constants, A^ and A\ polynomials

of the first degree in x, A2 and A 2 polynomials of the second

degree in x. On subtracting these equations, member from

member, having multiplied them respectively by A Q and A
,

one has

(A,A\
- A oAj y + A A 2

- A A2
= 0.

On multiplying by A2 and A2 , subtracting, and suppressing the

factor y, one has, in a similar manner,

(A,A 2
- A A2) y + (A.A

1

,
- A\A2)

= 0.

The elimination of y between the last two equations leads to

the equation of the fourth degree
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273. COROLLARY. An equation of the second degree, with,

imaginary coefficients, cannot have more than four real solu

tions. In fact, the first member of the equation has the form

S -f iSi, S and #1 representing real polynomials of the second

degree ;
if the equation is satisfied by real values assigned to x

and to y, one will have separately $=0, Sl
= Q

;
the real points

of the locus are therefore the points of intersection of the two

real curves S = 0, S^ = 0, and these points are in general four

in number.

There is an exception, namely, the case cited above, when

the curves consist of pairs of straight lines, two of which coin

cide
;
in this case the equation of the second degree represents

two straight lines, one of which is real. Finally, if the two

curves S = 0, Si = coincide, the first member of the given

equation will be divisible by a constant imaginary factor and

the coefficients of the equation become real.

274. LEMMA. Every system of n homogeneous equations of

the first degree involving n -(- 1 unknown quantities, is satisfied by

an infinitude of systems of values of the unknown quantities, one

of which &amp;lt;at least is different from zero.

Let us consider first an equation involving two unknown

quantities,
ax -f by = 0.

If the two coefficients a and b were zero, the equation would be

satisfied by arbitrary values of x and y. Suppose that one of

the coefficients, for example b, be not zero
;
the equation can be

put under the form y = - -
x, and an arbitrary value be as

signed to a;; to each value of x corresponds one value of y.

Thus the given equation is satisfied by an infinity of systems
of values of x and y, one of which at least is different from

zero.

Consider now two equations involving three unknown quan

tities,

ax -f by -f- cz = 0,

a x -f b y -f- c z = 0.
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If the six coefficients be all zero at the same time, the equa
tions would be satisfied by all possible arbitrary values of x,

y, z. Suppose that one at least of the coefficients, for example
c, be not zero

;
the system of the two given equations could be

replaced by the equivalent system

ax + by

c

(ac
1 ca

)
x + (be

1

cb
) y = 0.

In accordance with what we have said, the second equation is

satisfied by an infinity of systems of values of x and y, one of

which at least is different from zero; to each of them corre

sponds one value of z given by the first equation. Thus the

system of the two given equations is satisfied by an infinity of

systems of x, y, z, one of which at least is different from zero.

The same reasoning can be continued indefinitely. Suppose
that we have the following three equations involving four

unknown quantities :

ax + by + cz + dt =
0,

a x + b y + c z + d t = 0,

a &quot;x + v&amp;gt;y + c
&quot;

z + d &quot;

t = o.

If the twelve coefficients were all zero at the same time, the

equations would be satisfied by all possible arbitrary values of

x, y, z, t. Suppose that one of the coefficients at&quot; least, for

example d, be not zero
;
the system of given equations could be

replaced by the equivalent system
ax -f by -+- cz

(ad
- a d)x + (bd

1 - Vd)y + (cd
1 - c d)z = 0,

(ad&quot;
-

a&quot;d)
x + (bd&quot;

-
b&quot;d)y + (cd&quot;

-
c&quot;d)

2 = 0.

By reason of the preceding discussion, the system of the last

two equations is satisfied by an infinitude of values of x, y, z,

one of which at least is different from zero
;
to each of them

corresponds one value of t given by the first equation.
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275. THEOREM I. Through Jive given points, no three of

which lie on a straight line, a curve oj the second degree can be

passed, and one only.

Call (a?,, y,), (x.2, y2), (x3, y3), (x4, ?/4), (a-a , y&)
the co-ordinates

of the five given points. In order that the curve of the second

degree

(1) Ax2 + 2Bxy + Cy
2 + 2Dx + 2Ey + F=0

pass through these five given points, it is necessary and

sufficient that the five equations

Ax* + 2 Bx&t + Cyf + 2 Dx2 + 2Ey2 + F= 0,

/4 + Cy* 4. 2Zte4 + 2Eyt + F=0,
h Cy? + 2Dx5 + 2Ey5 + JF= 0,

be satisfied. We have thus five equations, homogeneous and

of the first degree, between the six unknown quantities A, B,

C, I), E, F. It follows from the preceding lemma that these

equations are satisfied by an infinitude of systems of values

of the unknown quantities A, B, C, D, E, F, one of which at

least is different from zero. We notice that in none of these

solutions, the first five coefficients are all zero at the same time,

because then, by virtue of any one of equations (2), one would

have F= 0. We remark further that if the five given points

be not on a straight line, the first three coefficients A, B, C

cannot be zero at the same time
;
because equation (1) would

be reduced to the first degree, and would represent a straight

line passing through the five points. On assigning to the six

coefficients the values which constitute one of the preceding

solutions, one obtains a curve of the second degree passing

through the five given points. Thus, through five given

points one curve of the second degree at least can be made to

pass.

It follows that if of the five given points no three lie on

a straight line, one can pass through these five points one,

and only one, curve of the second degree 5
because if one could
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pass two, these two curves would have five points in common
;

but we have seen ( 271) that two curves of the second degree,

which are not composed of straight lines, cannot have more
than four points in common.

The different solutions of the system of equations (2), in

order to determine the same curve of the second degree, are

formed from proportional quantities. Having learned that

one of the undetermined coefficients is different from zero, one

seeks the ratios of the other five to it, and will need to solve

a system of five equations of the first degree in five unknown

quantities.

The same conclusions are applicable to the case where three

given points, and only three, are on a straight line. The locus

of the second degree is composed of this straight line and the

one which passes through the other two points.

If four of the points be on a straight line, the problem is

indeterminate. The locus of the second degree is composed of

this straight line, and of any straight line passing through the

fifth point.

276. REMARK. One can, by aid of a determinant, form the

equation of the second degree which passes through five given

points. Consider, for this purpose, the determinant

A =

X

#1

xa

OJg

1

x\ r&amp;lt;\yi V\ KI 2/i
1

1

1

1

1

This is an integral polynomial of the second degree with

respect to the variables x and y. It becomes zero in case

x and y are replaced by a?j and ?/i ;
because then the elements

of the first horizontal line become equal to those of the second.

The same is true if x and y be replaced by x2 and y2,
and so on.

Whence it follows that the equation A = represents a curve

of the second degree passing through the five given points.
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277. COROLLARY I. A quadrilateral abed (Fig. 164) being

given, represent the equations of the two opposite sides

ab, cd by a = 0,
= 0, those of the

other two opposite sides be, ad by

y = 0, 8 = 0; the equation

(3) Aa/3 + B7S
= 0,

in which the coefficients a and b are

arbitrary, represents all the carves of

the second degree which pass through

the four points a, b, c, d. The letters Fig. 164.

a, /3, y, 8 representing polynomials of

the first degree in x and y, the equation is of the second degree ;

the co-ordinates of the point a, the intersection of the straight

lines ab and ad, reduce the two polynomials a and 8 to zero,

and consequently the first member of equation (3) ;
the same

is true of the other three points b, c, d. Whence whatever

the value of the coefficients A and B may be, the curve

represented by equation (3) passes through the four points

a, b, c, d. This equation represents every curve of the second

degree which passes through the four points, because a fifth

point e determines the curve and one can assign to the ratio

of the coefficients such a value that the curve will pass through

this fifth point taken at random in the plane.

Equation (3) has a very simple geometrical signification:

the polynomials a, ft y, 8 being proportional to the distances

of any point (a;, y) from the sides of the quadrilateral, it fol

lows that the product of the distances of any point of the curve

from the two opposite sides ab, cd of the inscribed quadrilateral

is to the product oj the distances of the same point from the two

opposite sides be, ad in a constant ratio. The value of this

ratio determines the curve.

In general, if the equations of two curves of the second

degree be represented by $=0, $1= 0, the equation S+kSi=Ot

in which k is an arbitrary parameter, represents every curve

of the second degree which passes through the four points

common to the first two.
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278. COROLLARY II. We propose to determine a parabola
which passes through four given real points a, b, c, d. If these

points be connected two and two by two straight lines ab, cd,

which intersect and which are chosen as axes of co-ordinates,

the general equation of the second degree which passes through
these four points is

a and b being the abscissas of the points a and 6, c and d the

ordinates of the points c and d. In order that the locus be a

parabola, it is necessary that the parameter k satisfy the con

dition

In case the product abed is negative, one finds two imaginary
values for k, and it is impossible to pass a real parabola

through these four points. If the product be positive, one

concludes that a convex quadrilateral having the four points

as vertices can be formed, and obtains two real and different

values for fc, and, consequently, two real curves of the genus

parabola passing through the four points. In case the points

could be connected two and two by parallel straight lines, each

pair of parallel straight lines would constitute a solution.

279. COROLLARY III. It is easy to form the general equa

tion of curves of the second degree, which pass through three

given points a, b, c. If = 0, J3
= 0, y = 0, represent the

equations of the three straight lines be, ca, ab, the equation

(G) Aj37 + 7*y + Cap =

represents a curve of the second degree passing through the

three given points. This equation involves two arbitrary

parameters, the ratios of two of the coefficients to a third, and

one could so dispose of the two parameters as to make the

curve pass through two additional points chosen at random

in the plane.
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280. THEOREM II. One curve of the second degree can be

drawn tangent to two given straight lines, at two given points, and

made to pass through another given point, and only one.

In order that a curve of the second degree

(7) f(x, y)
= Ax2 + 2 Bxy + Cy

2 + 2 Dx + 2 Ey + F=

be tangent to a straight line

(8) a(x-xl)+b(y-y1)=0,

at a point (xl3 y^, it is necessary and sufficient that the curve

pass through the point (x l9 y^, and that the angular coeffi

cient of the tangent at this point be equal to that of the straight

line, which furnishes two equations,

(9) /(!, 2/1)
= 0, bf ^ (x 2/0

- af yi (x y,)
= 0,

which are homogeneous and of the first degree in the coeffi

cients A, B, C, D, E, F.

We have thus five equations which are homogeneous and of

the first degree. We have learned that such a system of equa

tions has an infinitude of solutions in which one at least of the

coefficients, say F, is different from zero
;
to one of these solu

tions there corresponds a curve of the second degree satisfying

the required conditions.

There cannot exist more than one curve of the second degree

satisfying these conditions, because, if there were two, the

equation of the fourth degree which one obtains when one

seeks their common points would have two double roots and

one single root, which is impossible.

281. COROLLARY I. The equation

(10) aj3
-

fc/
= 0,

in which k is an arbitrary parameter, represents every curve of

the second degree tangent to two lines a = 0, /? 0, at the

points where they are intersected by the straight line y =

(Fig. 165). The curve is tangent to the first straight line;
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for if one makes a = in the equation of the curve, one has

y
2 = 0, and consequently the two points of intersection of

the straight line and the curve coin

cide. The curve is in a similar man
ner tangent to the second straight

line, and the two points of contact

are situated on the straight line

y= 0. Equation (10) represents every
curve possessing these properties ;

because the parameter k can be so

determined that the curve can pass

through any other point chosen at random in the plane.

This equation signifies that the product of the distances of any

point of the curve from two tangents is to the square of the dis

tance of this point to the chord of contact in a constant ratio.

In general, if the equation of a curve of the second degree be

represented by S 0, the equation S ky
2 = will represent

every curve of the second degree tangent to the first at two

points situated on the straight line y = 0.

COROLLARY II. One can determine the parameter k by the

condition that the curve be a parabola. If the two tangents be

chosen as axis of co-ordinates, equation (10) becomes

(11)

In order that the curve be a parabola, it is necessary that the

condition

2
be satisfied

;
which furnishes the two solutions fc = 0, k = -

;

ao

the straight line ab corresponds to the first
;
a parabola, whose

equation can be put under the form

corresponds to the second.
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282. APPLICATION. As an application, form the equation

of the second degree which represents the ensemble of the two

tangents drawn from a point p with the co-ordinates x
lt yl

(Fig. 165) to a conic whose equation is

/(a?, y)=^2 + 2Bxy + Of + 2Dx + 2Ey + F= 0.

The equation of the chord of contact ab is, as we have seen

( 125),

(a) y=(Ax1+By1+D)x+(Bx1+Cfyl+fyy+Dxi+Eyi+F=Q,

the first member of which is designated by y.
The two tan

gents pa and pb represent a conic doubly tangent to the given

conic f(x, y)
= at the points situated on the straight line

;

they are therefore represented by an equation of the form

(6) /(*,?)-V =

where k represents a constant coefficient which remains to be

determined. For this purpose it is sufficient to express the

condition that the curve (b) passes through a point taken on

the conic formed by the two tangents pa and pb\ we express

the condition that it passes through the point p whose co-ordi

nates are (xl9 ?/i),
that is, that equation (b) is satisfied by x = x

lf

y = yv If in y one put x=x ly y = yly y reduces to/(^ y$ ;
one

has, therefore, the condition

which gives for k the value --, and the equation re-

f(i9 y\)

quired is

(c) /fe2/)/(^2/i)-y
2 =

&amp;gt;

where y should be replaced by the expression (a). This equa

tion is called the quadratic equation of the tangents drawn from

the point x
jt y^.

282. 2. We confine ourselves to stating the following re

sults, which it is easy to verify. (See 303 and 331.)
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Let = 0, /3
= 0, y = be the equations of the three sides

of a triangle. The general equation of the conies inscribed in

this triangle is

X-ct? + /r/3
2 + vV - 2 ^y - 2 Avy

- 2 A/m/3 = 0,

X, p., v representing the variable parameter^; This equation
can be written in the irrational form

(VXa + Vju/2 +V

The general equation of the conic inscribed in the quadri
lateral whose sides have the equations

is 4- T-^ y = v,

A being a variable parameter. (See 331, Examples.)

MULTIPLE CONDITIONS.

283. Let us examine the geometric conditions by which a

curve of the second degree may be defined. Thus far we have

mentioned none other than single conditions, such as points

and tangents. The center is equivalent to two conditions;

because if the center be taken for the origin of co-ordinates, the

equation of the second degree, being deprived of the terms of

the first degree, cannot contain more than three arbitrary

parameters ;
thus the curve is defined by its center and three

points.

A diameter, with the direction of the chords, is equivalent

to two conditions; because if the diameter be taken for the

aj-axis and a line parallel to the corresponding chords for the

?/-axis, the equation, being deprived of the two terms of

the first degree in
?/,

does not contain more than three arbi

trary parameters.
A system of conjugate diameters is equivalent to three con

ditions
;
because if they be taken for the axes of co-ordinates,
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the equation being reduced to the form ax- + by* + c = 0, con

tains only two arbitrary parameters. In general, let = 0,

ft
= be the equation of two conjugate diameters

;
the dis

tances and /? of each point from the two conjugate diameters

being proportional to the co-ordinates of this point with respect

to these diameters, the curve will be represented by the

equation

(12) aa2 + 6/3
2 + c = 0,

with two arbitrary parameters.

The equation

(13) a* + A# =

is the general equation of the parabolas of which the straight

line = is a diameter, and the straight line (3
= the tan

gent at the extremity of this diameter.

One knows that the equation of the hyperbola, referred to

its asymptotes as axes, is xy = k. In general, let a = 0, (3
=

be the equations of two asymptotes ;
the hyperbola will be

represented by an equation of the form

(14) aft
- k = 0,

which contains but one arbitrary parameter k. Thus the two

asymptotes are equivalent to four conditions, and the curve is

determined by two asymptotes and a point or a tangent. If

one were given but one asymptote whose equation is a 0, the

equation /?
= of the other asymptote being indeterminate,

equation (14) would contain three arbitrary parameters, so that

one asymptote is equivalent to two conditions.

We have seen that every equation of the second degree has

one focus and one directrix; whence it follows that the

equation

(15) (x
-

a)
2 + (y- )

2 - (mx + ny + h)*
= 0,

by which the focal property is expressed in rectangular co

ordinates, and which involves five arbitrary parameters , /?,

m, n, h, represents every curve of the second degree. A focus

is equivalent to two conditions
; because, if one were given a

focus, its co-ordinates a and j3 being known, equation (15)
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would contain but three arbitrary parameters. Similarly, one

directrix is equivalent to two conditions; because, on being

given the equation of the directrix, the ratio of the three

parameters m, n, h to a third is determined.

The results that we have obtained may be derived in another

manner. It is clear that the two co-ordinates of a special

point of a curve of the second degree, like the center, a focus,

a vertex, etc., are determined when the coefficients of the equa

tion of the second degree are known, and consequently that

there exist two equations between these co-ordinates and the

coefficients
;

if therefore such a point be given, one will have

two relations between the coefficients. A similar discussion

applies to the two parameters of a special straight line, such

as the directrix or axis, etc.
;

if this straight line be given, one

will have, moreover, two relations between the coefficients.

Thus, for example, if f(x, y)
= be the equation of the

curve, one can express the condition that a given point is the

center by requiring that its co-ordinates satisfy the two equa

tions f x
= 0, f y

= 0. In order to express the condition that a

given point is a vertex, it is sufficient to require that its co

ordinates satisfy the equation of the curve and that the normal

at this point passes through the center.

It is to be noticed that the preceding forms under which the

equation of the second degree have been put, reduce to the

form a(3 fcy
2 = 0, composed of three polynomials of the first

degree , /?, y,
of which the first two represent tangents drawn

from an arbitrary point p of the plane, and the third represents

the chord of contact. If the point p coincide with the center

of the hyperbola, the tangents a and /3 are the asymptotes ;
if

the chord of contact be removed to infinity, the polynomial y

reduces to a constant, and the equation a/3 fry
2 = becomes

a;3
_ ft 0. Equation (12), put under the form

(aVa + pV^b) (aVa - /?V^6) + c = 0,

reduces to equation (14).

284. THE DETERMINATION OF THE Foci OF THE CONIC.

Let a, (3 be the co-ordinates of a focus of a conic whose equa-
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tion is f(x, y). We have seen ( 216) that the equation of the

curve in rectangular co-ordinates can be written in the form

(15) (x
-

&amp;lt;x)

2 + (y
-

/?)

2 - (mx + ny + h)
2 = 0.

This equation can be written

[ (y
-

P)
- * 0*

-
) ] L(y

-
ft) + i(*

-
)]
- O* + ny -f A)

2 = o,

which is of the form

PQ-R* = 0,

P, Qt
R representing three linear functions in x and y. It

follows, therefore, that the conic represented by equation (15)

is tangent to the two straight lines

(a) y-p + i(x-a)=Q, y - ft
-

i(x
-

a)=0,

the chord of contact being the directrix

mx + ny -J- 7i = 0.

Two straight lines (a) pass through the focus (a, /5) and have

the angular coefficients + i and i
;
since they are tangent to

the curve, they are the two tangents drawn from the focus

(, ft)
to the conic. It follows, therefore, that the focus is a

point such that the two tangents drawn from this point to the

conic have the angular coefficients i; the directrix is the chord

of contact.

One can say also that the ensemble of the two tangents
drawn from the focus (, /?)

to the conic has the equation, in

rectangular co-ordinates,

an equation identical with that of a circle of radius zero. The
two tangents drawn from the focus form, therefore, a conic

whose equation has the character of the equation of a circle :

the coefficient of xy is zero, the coefficients of x~ and y
2 are equal.

From this follows a new method for determining the foci of

a conic, a method which one can present under the one or the

other of the following forms :
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1 If one put

y =(Aa + Bft + D) x + (Ba + Oft + ^) y + Da + Eft -f F,

the quadratic equation of the tangents drawn from the point

(a, f3)
to the conic f(x, y) = is ( 282)

In order to express that the point (, ft)
is a focus, it is suffi

cient to express the condition that this equation has the charac

teristics of the equation of a circle : in rectangular co-ordinates,

the coefficient of xy is zero, the coefficients of or* and y
2 are

equal. One has thus the two equations

(c) Bf(a, ft)
- (Aa + Bft + D) (Ba

4f (, ft)
- (Aa + Bp + D)

2 = C/(a, ft)
- (Ba + Oft + E)

2

,

which determine a and ft.
If a and /?

be regarded in these

equations as the current co-ordinates, they represent two conies

whose points of intersection are the foci : thus, when the given

curve is an ellipse or a hyperbola, these two conies intersect

in four distinct points at finite distances, which are the two

real foci and the two imaginary foci of the curve. One notices

that the elimination of / (a, ft) between the preceding equa

tions furnishes an equation which can be written in the abbre

viated form
B (f\ -/V- (A - C) faff = 0. /

This equation, which represents a conic passing through the

foci, is the equation of the ensemble of the axis of the conic

[ 1ST, eq. (24)].

2 The investigation of the foci is simplified if one form

the condition

(d) ear + 2 buv + cu
2 + 2 dM + 2 ev + f = 0,

which expresses the condition that the straight line ux + vy

+ 1 = is tangent to the given conic ( 126). Let (a, ft)
be a

focus, the axis being rectangular ;
the straight line
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ought to be tangent to the curve. Whence, for this particular

straight line one has

ft ia (3 ice

Expressing the condition that these values of u and v satisfy

the condition (d), one has, on. developing and replacing i
2

by-1,

(e) f (2 _^ _ 2 d + 2 e/3 + a - c + 2 i (fa/3
- ea - d/3 -f b).

The straight line

y-p + i(x-a)=Q

being tangent to the conic, one gets a second condition which

leads to the preceding by changing i into i. Therefore,

if the real or imaginary point (a, (3) is a focus, the coefficient

of i and the term independent of i ought to be zero separately

in the condition (c),
and one has the two equations

f (
2

/3
s

)
- 2 da + 2 e/J + a - c = 0,

fa/3 ea d/3 + b = 0,

already attained above [eq. (c)] in another form.

In case the axes are oblique and include an angle 0, one

expresses the condition that the two straight lines

y (3
=

(cos i sin 0)(x a)

are tangent to the conic.

INVESTIGATION OF SECANTS COMMON TO Two CURVES
OF THE SECOND DEGREE.

285. We have seen that two curves of the second degree,

S = 0, $! = (),
have in general four points in common

; through
these four points, which we will suppose for the present dis

tinct, one can pass three pairs of straight lines. In case the

curves are real, the common points are real, or conjugate

imaginaries taken by pairs. There are three cases to consider :

1 If the four common points a, b, c, d are real, the three

couples of common secants are evidently real. 2 If the four
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points are imaginary and conjugate in pairs, for example
a and b, c and d, the two straight lines ab and cd, which pass

through two conjugate imaginary points, are real
;
but the

other four straight lines are imaginary ;
because if one of them

ac were real,, the points a and c where the straight line ac in

tersects the two real straight lines ab and cd would be real.

The straight line bd which passes through the two points

b and d which are respectively conjugates of the points a and c,

is conjugate to ac
; similarly the straight line ad is the conju

gate of be
; thus, in this case, one has a couple of real secants

ab and cd, and two pairs ac and bd, and ad and be, each formed

by two conjugate imaginary straight lines. 3 In case two of

the points of intersection a and b are real, the other two c and d

conjugate imaginaries, the two straight lines ab and cd are

still real, and the other four imaginary ;
but the two imaginary

straight lines of the same pair are not conjugates; because

one knows that one imaginary straight line has but one real

point, which belongs also to the conjugate straight line
;
the

two imaginary straight lines ac and bd passing through two

real distinct points a and b are not conjugates.

286. The investigation of the points of intersection of the

two curves depends on the solution of an equation of the

fourth degree; but the question can be reduced to the solution

of an equation of the third degree. The equation S + XS^ = 0,

in which the parameter A is arbitrary, representing every curve

of the second degree which passes through the points common

to the first two, one can determine the parameter A. so that this

equation represents two straight lines; since the two curves

have three pairs of common secants, the value of A. will be

given by an equation of the third degree.

Let

j
Ax&amp;gt; + 2Bxy + Of + 2Dx + 2 Ey + F=0,

(A xz + 2 B xy + C y* + 2 D x + 2E y + F 1 = 0,

be the equations of the two curves. The new equation will be

(17) (A + XA*) x
2 + 2 (B + W) xy . . =

;
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in order that it represent two straight lines, it is necessary

and sufficient that the discriminant be zero ( 124) and con

sequently that the constant A satisfies the equation of the

third degree

(A + XA )(C + XC )(F + XF
) -(A + XA )(E + XE )

2

- (C + XC )(D + \D y
2

-(F+ XF*)(B + XB )
2

+ 2 (B + XB )(D + XD )(E + XE )= 0.

On arranging this equation with respect to X, we *& have

an equation of the form

(18) A + X + A2
-t- A A3 = 0,

where A and A are the discriminants of the curves $ and Si

and where and have the values

= A a + 2B b + C c + 2D d + 2E e + F f,

= Aa

a, b, c, d, e, f being the quantities already used above ( 124)

and a
,
b

,
c

,
d f

,
e

,
f the quantities analogously formed with

the coefficients of the conic S^
One real value of X gives two real straight lines, provided it

makes the quantity

(A + XA )(C + AC&quot;)

- (B + XB
)
2

negative, and two conjugate imaginary straight lines, in case

it makes this quantity positive ;
because the first member of

equation (17) has real coefficients and it decomposes into a

product of two polynomials of the first degree, of which the

coefficients are, in the first case, real, in the second case con

jugate imaginaries ( 123).

One imaginary value of A gives two non-conjugate imaginary

straight lines. In fact, two real straight lines or two conjugate

imaginary straight lines are represented by an equation of the

second degree,

(19) A&quot;a? + 2
B&quot;xy + C&quot;y* + 2D&quot;x + E&quot;y + F&quot; = 0,
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with real coefficients. Equations (17) and (19), representing
the same curve, have proportional coefficients

;
and since A is

an imaginary quantity, one deduces

A B C D E F
The two equations (16) are identical.

Suppose that the three roots of equation (18) are unequal.
The three couples of straight lines being distinct, the two

curves have four distinct points in common. Owing to what

has been said above, in case the three roots are real, the four

points are all real or all imaginary; in case one root only is

real, two points are real and two imaginary. In order to dis

tinguish the first two cases, one examines if three roots or one

only make the quantity f positive ;
in the first case, the

four points are real, in the second they are imaginary.

287. We have supposed thus far that the four common points

are distinct. If the two points a and b coincide, the other

two being distinct, the two curves are tangent at the real point

a
;
the couple (a-6, cd) is composed of the tangent at a which

is real, and the real straight line
;
the other two couples (oc, bd),

(be, bd) coincide. The equation of the third degree has, there

fore, one single root and one double root, both real
;
the first

gives the two real straight lines ab and cd, the second gives

two straight lines, real or conjugate imaginaries, according as

the two points c and d are real or imaginary.

Suppose that the two points a and c coincide, also the two

points b and cZ; the two curves are tangents at the points a

and 6, which are real or conjugate imaginaries. One of the

couples of straight lines consists of tangents at a and 6, which

are real or conjugate imaginaries ;
the other two coincide with

the double straight line ab, which is real. The equation of the

third degree has, moreover, a single and a double root, both

real
;
the first furnishes the two tangents, the second the chord

of contact. (See, for a complete discussion, &quot;Chapter XII.)

288. In order to give an application of what precedes, let

us consider two ellipses having a common focus. These two
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ellipses cannot intersect in more than two real points; be

cause, after what has been said in 260, the two ellipses which

have a common focus and three common points coincide
; they

can have therefore but two real common secants.

Let =0,

be the equations of two ellipses; since the two real common

secants fcy
= fc y pass through the point of intersection / of

the directrices D l, DI (Fig. 166), it is easy to determine them

geometrically. Suppose that

the two ellipses intersect in

two real points A and _B;

one of the real common se

cants is the straight line AB
which passes through these

two points; the other IL

does not intersect the curves.

In order to determine this

second straight line, join the

point A to the focus F and

drop from this point the perpendiculars AE, AE upon the

directrices; one has k =
,
& ==, and, consequently,

lfL = AE_^ prolong the perpendicular AE till EH is equal to

A; AE
AE

; through the point H draw HL parallel to the first direc

trix, and through the point A, AL parallel to the second direc

trix; the point of intersection L of these two parallels will

belong to the second real common secant IL.

289. A circle intersects a curve of the second degree in four

real or imaginary points ;
let

be the equation of the circle, a = 0, (3
= those of a pair of

real common secants
;
the equation of the curve of the second

degree can always be written in the form
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The first member represents the square of the length of the

tangent drawn from any point of the curve to the circle;

whence follows the theorem : A circle being placed in any man
ner whatever in the plane of a curve of the second degree, the tan

gent drawn from every point of the curve to the circle is to the

mean proportional between the distances of this point from the

two real common secants in a constant ratio.

Suppose that the circle be tangent to the curve in two real

or conjugate imaginary points, the chord of contacts will be

real, and the equation of the curve will take the form

(x
-

a)
2 + (y

-
b)

2 - r2 = ka2
.

Thus, in case a circle is doubly tangent to a curve of the second

degree, the tangent drawn from any point of the curve to the circle

is to the distance of this point from the chord of contacts in a con

stant ratio. The focus of a curve of the second degree can be

considered as a circle with a radius zero, which has with the

curve a double imaginary contact
;
the directrix is the chord of

contact.

290. By aid of the preceding theory one determines in a

very simple manner the num
ber of normals that can be

drawn from a given point to

a curve of the second degree.

Let, for example, an ellipse be

defined by the equation

(1) b
2x2 + a2

?/

2 = a2

b\

and P a point whose co-ordi-

iiates are x
}y l (Fig. 167). Let

x and y be the co-ordinates of

the foot M of one of the nor-

Fig - 167&amp;lt; mals
;
these unknown quanti

ties should satisfy equation (1) and also the equation

(2) c
2

xy -f b
2

yLx - a2
x$ = 0,
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which expresses the condition that the normal at the point M
passes through the point P. It follows from the preceding

that the point M is determined by the intersection of the

ellipse (1) and of the equilateral hyperbola defined by equa
tion (2) ;

one of the branches of the hyperbola passes through

the center of the ellipse, and the two curves have at least two

real points in common. The equation of the third degree on

which depends the investigation of secants common to two

curves, is

(3) 4 aW + V + 6V - c
4

)
\ - c

2^ = 0.

If equation (3) have one real root, we have seen ( 286) that

the curves (1) and (2) cannot have more than two real points

in common
;
if equation (3) have its three roots real, the curves

(1) and (2), having at least two real common points, intersect

in four real points. One ought to have, in the first case,

(4) (aV + 1&amp;gt;W

- c
4

)
3 + 27 aWxfy? &amp;gt; 0,

and in the second case,

(5) (aV + 5V - c
4

)
3 + 27 aWxfy? &amp;lt;

0.

If the co-ordinates x
lt yl satisfy the relation

(6) (aV + &V - c
4

)
3 + 27 aWa?!V = 0,

the roots of equation (3) are still real, but it has one double

root, and but three distinct normals can be drawn from the

point P. The points P which satisfy this condition constitute

a curve CDCD which has four cusps (7, C&quot;, D, D . Equation

(6) takes the very simple form

it is plain that for every point within this curve, relation (5) is

satisfied
;
that is, that through this point four real normals can

be drawn, but no more than two real normals can be drawn

through any point lying without this curve.
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EXERCISES.

1. Construct a curve of the second degree, being given the

directrix and three of its points.

2. Construct a parabola, the focus and two of its points

being given, or a point and a tangent.

3. Construct a parabola, when its directrix and two of its

points are given.

4. Construct a hyperbola, if three of its points and the

directions of the asymptotes be given.

5. Construct a hyperbola, when an asymptote, a vertex,

and one of its points are given.

6. Find the locus of a vertex of a parabola which has a

given focus and is tangent to a given straight line.

7. Find the locus of the focus of a parabola whose vertex

is at a given point and which touches a given straight line.

8. Find the locus of the foci of curves of the second degree

inscribed in a given parallelogram.

9. A chord revolves about one of the foci of a curve of the

second degree; find the locus of the point of intersection of

the normals drawn to the curve through its two extremities.

10. Two curves of the second degree have a common focus

and an angle of constant magnitude which revolves about its

vertex situated at the common focus
;

find the locus of the

point of intersection of the tangents drawn respectively to the

two curves at the points where they are intersected by the sides

of the angle.

11. Find the locus of the point of intersection of the straight

lines drawn parallel to two fixed directions through the extremi

ties of a chord of given length inscribed in a given circumfer

ence.

12. Find the locus of the center of an equilateral hyperbola

circumscribed about a given triangle.

13. Find the locus of the foci or the vertices of a hyperbola,

having an asymptote and a directrix given.

14. Find the locus of the centers of curves of the second

degree which passes through the four points of intersection of

two given conies. This locus does not change when each of
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the conies varies, remaining similar and concentric to the

otherv

15. A variable circle touches a given ellipse at a given

point ;
find the locus of the point of intersection of the tan

gents common to the two curves.

16. Find the locus of the center of a hyperbola which has

a given focus and which intersects in a given point a given

straight line parallel to one of the asymptotes.

17. Find the locus of the focus of a parabola which touches

two given straight lines, one of them in a fixed point, the other

in a variable point.

18. Find the locus of the point of intersection of two parab

olas, which have a given point as focus, which touch a given

straight line and which intersect at a given angle.

19. Being given three points A, B, C, and an indefinite

straight line, a variable segment MN is taken on this straight

line, and is viewed from the point A at a constant angle ;
find

the locus of the point of intersection of the two straight lines

J5JW and CM.
20. Two angles of constant magnitude revolve about their

vertices placed at the extremities of the major axis of an

ellipse ;
the point of intersection of two of the sides describes

an ellipse ;
find the locus of the point of intersection of the

other two sides.

21. Find the locus of the vertices of an equilateral hyper

bola passing through a given point and having a given straight

line as an asymptote.

22. Being given a system of conies having the foci F and F
,

and a fixed straight line passing through the focus F; the tan

gents to these various conies, at points where each of them is

intersected by this straight line, are tangents to the same

parabola, whose focus is the point F ,
and whose directrix is

the secant.

The portion of each tangent comprised between the conic

and the parabola is viewed from the focus F at a constant

angle.
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CHAPTER X*

THEORY OF POLES AND OF FOLARS.

291. Let us consider an algebraic equation of the degree m,

/(*, y)
= o,

written in an integral form. The tangent, at the point whose

co-ordinates are x and y, is represented by the equation

(i) (x-)A+(r
or Xf x + Yf,

-
(xf x + yf ,)

= 0.

This equation involves, moreover, the co-ordinates of the point

of contact to the degree m ;
but one can, owing to the relation

(1), cause the terms of the mth degree to disappear. This

reduction is easily accomplished by means of a special nota

tion, which we shall presently learn. Suppose that in equa

tion (1) x and y be replaced by
- and

^,
and that every term be

multiplied by z
m

,
the polynomial f(x, y) is transformed into a

homogeneous polynomial of the mth degree with respect to

the three letters x, y, z, a polynomial which we represent by

f(x, y, z).
It is evident that, if one put z = 1 in the last poly

nomial, one will get the given polynomial /(a, y). It is known

that in case a function /(#, y, z) be homogeneous and of the

degree m with respect to the three letters x, y, z, one has

identically

/ . + vfy + */ .
= /fo y, *)

Whence one has

The value of the second member, when one puts z = 1, is equal

to the quantity xfx + yfy ,
which occurs in the equation of the
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tangent ;
but the point of contact being on the curve, the first

term mf(x, y, z)
reduces to zero

;
the expression xf x + yfy

is

therefore equal to the value which zf z takes when one puts

2 = 1. One can thus put the equation of the tangent under

the form

For the sake of symmetry, one writes

(2) Xf x + Yf,+Zf ,= 0.

When one has taken the three partial derivatives of the

homogeneous function f(x, y, z),
one replaces in equation

(2) 2 and Z by unity.

292. We propose now to draw from a given point p, whose

co-ordinates are x^ and yl9 tangents to the given curve. Call x

and y the co-ordinates of one of the points of contact
;
since

the tangent at this point passes through the point p, its equa

tion (2) will be satisfied by the co-ordinates a?x and yl of the

point p, which furnishes the relation

which, for the sake of symmetry, one writes in the form

(3) xj , + y,fy + zj z
= 0,

in which one may replace at will z and ^ by unity. The points

of contact will be determined by the two simultaneous equa

tions (1) and (3). Since one of these equations is of the degree

m and the other of the degree m 1, the number of solutions

will be at most m(m 1). Hence from the point p one can

draw at most m(m 1) tangents, real or imaginary, to a curve

of the degree m.

In case the curve is of the second degree, equation (3) is of

the first degree, and one has two solutions, which are real or

conjugate imaginaries. When the two solutions are real, one

can draw from the point p to the curve two real tangents. In

case the two solutions are conjugate imaginaries, the two tan

gents are conjugate imaginaries, but the chord of contact (3)

remains real. The general equation of curves of the second

degree tangent to a curve of the second degree represented by
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the equation / (a?, y)
= 0, at points where it is intersected by

the straight line (3), is ( 281)

/O, y)-\ (x,f x + yif, + zj zy = 0,

X designating an arbitrary parameter. If A. be determined in

such a way that this curve pass through the point x
lf y^ it will

reduce necessarily to the system of two tangents emanating

from this point which are represented by the equation

HARMONIC PROPORTION.

293. Being given two points A and B, one knows that there

exists on the straight line AB two points C and D so situated

that the ratio of their distances from the two points A and B
is equal to a particular given ratio (Fig. 168). These two points

C and D are called har-

A_o c B D monic conjugates with re-

Fig. leg. spect to the two points

A and B. It follows

that there is an infinity of systems of harmonic conjugate

points with respect to two given points ;
one can choose one

of the points at will. In case the point C approaches the

mid-point of the straight line AB, the conjugate point D
moves toward infinity, and conversely.

We represent by the symbol AB the distance of tl^e point A
from the point B, affected with + sign or sign, according as

the point B is to the right or left of the point A. In accord

ance with this convention it follows that AB BA, and the

position of the points C and D is expressed by the relation

BC BD
This relation can be written in the form

CA = CB.
DA DB

one sees that, conversely, the two points are harmonic conju

gates with respect to the two points C and D.
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If the relative positions of the four points be determined by

the distances of one of them from the other three, the preced

ing relation becomes

ftf\ -^- J- + -i-
AB AC AD

On reckoning the distances from the point 0, the mid-point

of AB, one has

(6)
OC OD= OB\

294. THEOREM I. Being given a conic section, if through a

point p of the plane one draws any secant mm (Fig. 169), the

locus of the point p ,
the harmonic conju

gate of p, with respect to the two points

of intersection m and m of the secant

with the curve, is a straight line. Let

f(x, y)
= 2 Bxy + Cy

2 + 2 Dx

Fig. 169.

be the equation of the curve, x1 and yl

be the co-ordinates of the point p; any secant drawn through

the point p will be represented by the equations

in which a and b are two constants, and p the distance of the

point p from any point m of the straight line, affected by the

-f sign or sign, according as the point m is on the one side or

the other of the point p ;
whence it follows that x = xl + ap,

y = y1 + bp. On substituting these values in the equation of

the curve, an equation of the second degree in p is found,

which determines the distances p and
p&quot;

of the point p from

the two points m and m 1

. The equation developed becomes
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or, if - be regarded as unknown,
P

/( yi)-, + (A +
&A)^

+ (^s + 2 5a6 +^ = a

Call r the distance of the point p from its harmonic conjugate

p . Owing to solution (5), one should have

r p

But, by virtue of the last equation,

i i &quot;

whence

or

The point p belongs to the straight line pmm ,
and the co-ordi

nates # and y satisfy equations (7) of this straight line, that is,

one has x-x^ar, y-yi= br-, on replacing ar and br by these

values in the preceding equation, the variable parameter a and

b will be eliminated, and one gets the equation of the locus

(8) (x
-

*&amp;gt;)A
f

which is of the first degree. Thus the locus sought is a

straight line
;

this straight line P is called the polar of the

point p and the point p the pole of the straight line P.

By calculation it follows that the constant term

reduces to 2Dxl + 2Eyl + 2F and the preceding equation

becomes xf\ + yf\ + (2 Dx,

This reduction can be made in another manner
; suppose, as

above, that in the polynomial f(x, y), x and y be replaced by
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- and ^, and tliat all the terms be multiplied by z
2

;
this poly

nomial will be changed into a homogeneous polynomial of the

second degree, which we will represent by f(x, y, z). By

reason of the theorem of homogeneous functions which has

been used in 291, one has the identity

/ , + 2// , + */ .
= 2/(*,3M);

whence it follows

2f(*,y,*)-xf.-tf,tf
or, on replacing x, y, z by x

lt ylf
z
1?

2/(&i, 2/i, i)
- iA ~

2/iA =^A
Equation (8) can therefore be put under the form

or, more symmetrically,

(9) *A + 2/

in which, after the derivatives have been constructed, 2 and ^
are replaced by unity. If this equation be developed, one sees

that it is not changed when the letters x and x
ly y and y^ z and

z l are permuted, and thus one obtains equation (3) of the chord

of contact. Hence the polar of the point p coincides with the

chord of contact with respect to this point.

295. Next we examine the relative positions of the pole and

of the polar. Through the point p draw a secant mm (Fig.

170) parallel to the chords which

the diameter passing through the

point p bisects
;
the point p being

the mid-point of mm
,

its har

monic conjugate is at infinity on

this secant
;
whence one deduces

that the polar P is parallel to the

chord mm
,
that is, to the direc

tion con-jugate to the diameter
Fig. 170.

passing through the point p.

Let o be the center of the curve and p a point of the polar
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situated on the diameter op, that is, the harmonic conjugate

point of the point p with respect to the two extremities c and

c of the diameter, then one has op op = oc2
. If the pole p

be moved along the diameter oc, the polar P will be moved

parallel to itself
;
when the pole moves from o to c, the polar,

in the first place situated at infinity, moves toward the curve

and becomes tangent to it at c
;

if the pole crosses the curve

and continues its motion toward infinity, the polar intersects

the curve in two real points and moves toward the center of

the curve.

In case the curve is a parabola, the point c being situated

at infinity, the point c is the mid-point of pp
1

.

It is easily seen that the converse is true : every straight

line has one pole and only one, except in the case of the

parabola, when the straight line is parallel to the axis. The

curve being referred to any axes, in order to determine

the co-ordinates x
l
and yl

of the pole p of a given straight

line ux + vy + w = 0, it will be sufficient to identify this equa
tion with equation (9), which represents the polar of

j&amp;gt;,

which

furnishes the two relations,

w
fy

On calling
- the common value of these ratios and devel
A

oping, one gets
DX = u,

t 4- CAv/! + EX = v,

equations of the first degree in Xx
lt Xy lt X. If the conic does

not reduce to two straight lines, the determinant A of the coeffi

cients of the unknown quantities is not zero, and on using the

general formulas for the solution of equations of the first

degree, one has
bv + dw,

AA?/j = bw + cv + ew,

AA. = dw + ev + fw.
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In case the value found for A. is not zero, these equations deter

mine Xi and ?/!. The value of A. is zero in case the coefficients

of the straight line satisfy the condition

du -f QV + fw = 0,

that is, on supposing f different from zero, when the straight

line passes through the center of the conic whose co-ordinates

are -,
-

; or, supposing f to be zero, the case of the parabola,

when the straight line is parallel to the axis of the parabola,

EEMARK. If the curve of the second degree reduce to two

distinct straight lines whose equations are

a = lx + my + n = 0, fj
= l x + m y + n 0,

one will have identically

and on putting

n, ft = l xl 4-

the polar of the point with the co-ordinates x
lf y1 will have the

equation

i/ 4- yify +f M
=

! + aft = 0,

the equation of a straight line passing through the point of in

tersection of the two lines a = 0, (3
=

0, or parallel to these two

straight lines in the case where they are parallel to each other.

It follows from this form of the equation of the polar that :

The polar of any point of the plane other than the point of

intersection of two straight lines passes through this point of

intersection. The polar of the point of intersection is inde

terminate. If the pole describe a straight line (3 ma 0,

passing through the point of intersection of the two straight

lines, the polar remains fixed, its equation being /3 -f ma = 0.

Conversely, a straight line which does not pass through the

point of intersection has this point for pole. A straight line

fj 4- ma = 0, passing through the point of intersection of two
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straight lines, has an infinity of poles situated on the straight

line p-ma = 0. (See 103.)

296. THEOREM II. Tlie polars of all the points of a straight

line pass through the pole of this straight line, and, conversely,

the poles of all the straight lines which

pass through the same point are situated

on the polar of this point.

On the straight line P whose pole is

p, select any point q (Fig. 171) ;
the

straight line pq intersects the conic in

two points m and m
;
these two points p

and q being harmonic conjugates with

respect to the two points m and m
,
the

polar Q of the point q passes through the

point p.

Conversely, let q be the pole of any straight line Q passing

through the point p\ the two points q and p being harmonic

conjugates with respect to the two points m and m in which

the straight line pq intersects the conic, the point q belongs to

the polar P of the point p.

CONJUGATE STRAIGHT LINES. Two straight lines are said

to be conjugates with respect to a conic in case the pole of

either lies on the other. Let

Fig. 171.

be two conjugate straight lines.

On expressing the condition that the pole (xlt ?/i)
of the first

lies on the second, it follows that

u lxl
= 0,

or, writing the preceding values for x
l
and yl9

u (&u + bv + dw) + v (bw + cv + eto) + w (dw + ev + fw)= 0,

&uu + b (uv
1 + vu

) 4- cvv + d (uw
1 + wu 1

)

+ e (vw
1 + wv ) + fww = 0.
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This condition can, moreover, be written as follows, if one put

&amp;lt; (u, v, w)= au 2 + 2 buv + cu
2 + 2 duiv + 2 evw + fw2

,

Fig. 172.

297. THEOREM III. Being given a conic section, if any ttvo

secants pmm , pnn ,
which intersect

the curve in m, m , n, n
,
be drawn

through a point p (Fig. 172), the

ppints of intersection q and q of the

straight lines mm, m n
,
or m n, win ,

belong to the polar of the point p.

We remark in the first place

that Theorem I. holds, in case the

locus of the second degree reduces

to a system of two straight lines
;

in this case the polar of the point p

passes through the vertex of the

angle; for, if the secant which

passes through the vertex be considered, the two points m and

m coincide with this point, p andp being harmonic conjugates.

This being established, let us consider the system of two

straight lines, mn, m n
,
which intersect in q. The straight

line pmm intersects the conic section and the two sides of the

angle mqm in the same points, m and m
;
the point p ,

a har

monic conjugate of the point p, is the same point on the secant

pmm 1 whether one regard this secant as belonging to the conic

section or to the angle. The point p&quot;,
a harmonic conju

gate of p, will remain the same, in both cases, on the secant

pnn
1

. The polars of the point p, with respect to the conic sec

tion and to the angle, having two common points p and
p&quot;,

coincide; but one knows that the polar with respect to the

angle passes through the vertex q, therefore the point q

belongs to the polar of the point p with respect to the curve.

For the same reason, the point q belongs to this same

polar.

COROLLARY. The curve being traced, one gets from this
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theorem the means for constructing the polar of the point p.

Draw through the point p two secants, pmm , pnn , by means
of which two points, q and q\ of the polar are determined.

If the point p lie without the curve, the polar intersects the

curve in two points, which are the points of contact of the

tangents drawn from the point p.

REMARK. In Fig. 172 the polar of the point q is the

straight line pq ,
and the polar of the point q is the straight

line pq. The triangle whose vertices are the points }), q, q ,

possesses, therefore, this remarkable property, that each of its

sides is the polar of the opposite vertex with respect to the

curve of the second degree. It is said that such a triangle

is autopolar or is a conjugate triangle with respect to the curve

of the second degree. Conversely, it is also said that the

curve is conjugate to the triangle.

RECIPROCAL POLAR FIGURES.

298. Being given a plane figure composed of the points a,

6, c, and of straight lines A, B, C, ,
if one construct the

Fig. 173.

polars A ,
B

,
C

,
of the points, and the poles a

,
&

,
c

,

of the straight lines, with respect to a definite conic section,

one forms a second figure composed, like the first, of straight
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lines and of points. On treating the second figure in the

same manner, that is, on taking the poles of the straight lines

and the polars of the points, one gets the first figure. These

two figures have been called for this reason reciprocal polar

figures (Fig. 173).

The straight line ab, which joins the two points a and b of

one of the figures, has as pole the point of intersection of the

two straight lines A and B of the other figure; and con

versely, the point of intersection of the two straight lines A
and B of one of the figures has as polar the straight line ab

of the other figure. If several points a, 6, c, lie on a

straight line in one of the figures, the straight lines ^4
,
B ,

C
,
..-of the other figure pass through the same point, which

is the pole of the straight line. Conversely, if several straight

lines A, B, C,
- pass through the same point in one of the

figures, the points a
,

&
,.

c
,

of the other figure lie in a

straight line.

A plane carve S being given, draw a tangent A to this curve

and determine the pole a of this tangent (Fig. 174). If the

tangent A revolves about the

curve S, the pole a will de

scribe another curve S . Let

A and B be two tangents to

the curve 8, a and b their

poles ; the point of intersec

tion w of the two straight

lines A and B is the pole of

the straight line a b . If the

tangent B approach the tan

gent A. as its limit, the point

Hi will approach the point of contact a of the tangent A ;
at

the same time the secant a b revolves about the point a and

becomes tangent to the curve S at the point a . Hence, con

versely, the curve S is the locus of the pole a of a movable

tangent A 1 of the curve AS&quot;. The points a and a correspond

to each other in such a way that the tangent at one of these

points is the polar of the other. The two curves S and S are

for this reason called reciprocal polars.
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Let

(11) F(x,y)=0

be the equation of an algebraic curve S of the degree m ;
the

tangent A at the point a, whose co-ordinates are x and y, is rep
resented by the equation

(12) XF X + YF
y + ZF 2

= 0.

Call a?! and y1
the co-ordinates of the pole a of the straight line

A, with respect to a curve of reference of the second degree

f(x9 y)= 0; the equation of the polar of the point a is

(13) xf^ + Tf^ + zf.^0.

The two equations (12) and (13), which represent the same

straight line, should be identical, and one has the relations

If, among the three equations (11) and (14), x and y be elimi

nated, one has the equation of the curve S
lt
the locus of the

point a .

Seek, for example, the reciprocal polar curve of the conic

section Ax2 + By
2 1 = 0, with respect to the circle of refer

ence
x- + y-

- 1 = 0.

If x and y be replaced by - and ^, these two equations assume

the homogeneous forms Ax2
-f By- z

2 = 0, ar + y
2 z

2 =
0,

and equations (14) become -~- =
|^-
=
j ;

whence it fol

lows, on putting z = z
1
= 1, x =^ y =^ ^7 substituting

these values in the equation of the given curve, one has the

equation ^-+^ 1 = 0. The polar reciprocal curve is a new
^1 Jj

conic section.

299. The degree or order of an algebraic curve has been

called the degree of the equation by which it is represented in

rectilinear co-ordinates, or the number of points, real or imagi-
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nary, in which the curve is intersected by any straight line.

In like manner, the class of the curve is the number of tan

gents, real or imaginary, which can be drawn to the curve

from any point of the plane. It is known that from any point

two tangents can be drawn to a curve of the second degree ;

curves of the second order belong therefore to the second class.

It is very easily proven that two reciprocal polar curves S

and S (Fig. 175) are such that the order of one is equal to the

class of the other. Any straight line P intersects the curve

S in m points a, ft, c, ;
to these in points correspond m

straight lines A
,
B 1

,
C

, -, tangents to the curve S
,
and pass

ing through the point p ,
the pole of the straight line P; con

versely, to each tangent A drawn from the point p to the

Fig. 1T5.

curve S corresponds a point a belonging to the curve S and

situated on the straight line P. Hence, the number of

tangents which can be drawn from the point &amp;gt; to the curve

S 1

is equal to the number of points of intersection of the

curve S by the straight line P, and, consequently, the class of

the curve S is equal to the order of the curve S. Similarly,

the order of the curve S is equal to the class of the curve S.

A curve of the second order being of the second class, it

follows that the reciprocal polar curve of a curve of the second

order is also of the second order.

In like manner, it is easy in this case to determine the

species of the curve. If the center o of the curve of refer

ence be situated without the curve S, two real tangents A and
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B can be drawn from this point to the curve S (Fig. 176); the

poles of these tangents lying at infinity, it follows that the

curve $ has two infinite

branches with different direc

tions
;

it is therefore a hyper
bola. Let a and b be the

points of contact of the tan

gents A and _B; the polars A
and B

,
of these two points

are tangents to the curve S
at points situated at infinity ;

they are, therefore, the asymp
totes. In case the center o of

the curve of reference is situated 011 the curve S, the points a

and b coincide with the point o, the polar of this point, or the

asymptote is removed to infinity, and the curve S is a

parabola. Finally, if the center o of the curve of reference be

situated within, the curve S is an ellipse.

To any two points a and b of the conic S and the tangents

A and B at these two points correspond two tangents A and

B to the conic S and their points of contact a and b . To the

point of intersection c of the straight lines A and B corre

sponds the straight line a b
,
and to the straight line ab the

point of intersection c of the straight line A and B . Hence,

to a point c and its polar ab in the first figure correspond in

the second figure a straight line a b and its pole c . r(

300. The method of reciprocal polars plays an important

role in the study of conic sections
;

it is possible when a

property of these curves has been found by the method of

reciprocal polars to deduce immediately a correlative property.

It has been demonstrated, for example, in 275, that through

five given points one can pass a conic section, and one only;

whence it follows that a conic section can be drawn tangent to

Jive given straight lines, and one only. Imagine, in fact, that

any conic section be drawn in a plane as the curve of refer

ence, and that with respect to this conic section one locates

the poles a
,
6

,
c

,
d

,
e of the five given straight lines A, B,
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(7, D, E; a conic section S can be drawn through the five

points a
,
b

,
c

,
rf

,
e

;
the polar reciprocal curve of the curve

$ will be a conic section S tangent to the five given straight

lines. Conversely, to every conic section tangent to five

straight lines corresponds a conic section passing through
five points ;

since but one conic section can be passed through
five points, it follows that but one conic section can be drawn

tangent to five straight lines.

Let us consider the polars of a point p with respect to vari

ous conies which pass through four given points ;
if f(x, y)

= 0,

and F(x, y)
= 0, be the equations of two of them, the equation

f+kF = 0, in which k is an arbitrary parameter, will repre
sent the ensemble of these conies. The polar of the point p,

whose co-ordinates are x and y, has the equation

x,(fx + JcF x) + Vl(fy + fcF
,) + Zi(f M + kF x)

=
0,

or (x,f x + yj*, + !/ ,) + k (x,F x + y,F y + z,F z)
=

;

all the polars pass through the point of intersection p
1 of the

two straight lines

%/* + yif, + zif. = 0, x,F x + y,F y + zLF z
= 0.

It is clear that, conversely, the polars of the point p ,
with

respect to the various conies, all pass through the point p.

If the figure be transformed by the method of reciprocal

polars, it follows that the locus of the poles of a straight line

P with respect to the various conies tangent to the four given

straight lines is a straight line. If the straight line P be

moved to infinity in an arbitrary direction, its pole with re

spect to each of the conies is the center of this conic
;
hence

the locus of the centers of conies tangent to four given straight

lines is a straight line. Each of the diagonals of the quadri
lateral formed by four straight lines can be regarded as an

ellipse or a hyperbola infinitely flattened and tangent to the

four straight lines; the mid-points of the three diagonals

belong to the locus and determine this straight line ( 73).

301. THEOREM IV. Two conies are given in a plane:
1 The points of intersection of three pairs of common secants



332 PLANE GEOMETRY. BOOK III.

determine a triangle each vertex of which has as polar, with

respect to each of the conies, the opposite side; 2 The points of
intersection of the four common tangents to the two conies are

situated two by two on the sides of this triangle.

Let a, b, c, d (Fig. 177) be the four points common to the

two conies
;
the points of intersection m, n, p of the three pairs

Fig. 177.

of common secants form a triangle mnp, each vertex of which,

according to Theorem III., has as polar, with respect to each of

the two conies, its opposite side. We notice that these three

points are the only ones which enjoy the same polar property

with respect to the two conies. Let m be a point having the

same polar with respect to the two conies
;
the straight line

m a intersects this polar in a certain point q and each of the

conies in a new point which is the harmonic conjugate of a

with respect to the two points m and
&amp;lt;/;

these two new points

ought to coincide, the straight line m a passes through one of

the common points b, c, d, for example through the point b.

Then the straight line m c will pass through the point d and

the point m 1 will coincide with the point m.

Imagine now that the preceding figure be transformed by

the method of reciprocal polars. To the two conies there will

correspond two other conies
;
to the points a, b, c, d common to

the first two the tangents A 1

,
B

,
C

,
D common to the two new
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conies, which shows that the two conies have four common

tangents.

Consider one of the tangents common to the two given

conies; let g and g be the points of contact and e the point

where it intersects the straight line rip; the straight lines mg,

mg intersect the conies in two other points h and h
;
the point

m, having the same polar np with respect to the two conies, the

tangents at h and h pass through the point e
;
the straight line

np being also the polar of the point m with respect to the two

angles geh, g eh
,
the two straight lines eh, eh coincide, and the

straight line ehh is a second common tangent. For the same

reason, the point of intersection / of one of the other common

tangents with the straight line np belongs to the fourth tangent.

Thus the six points of intersection of the four common tan

gents are situated two by two on the sides of the triangle mnp.

Whence it follows in addition to what precedes that the

chords of contact pass four by four through the points m, n, p.

302. Let us study in particular the case where the curve of

reference is a circle of radius r
;
the polar A of a point a is

perpendicular to oa and at a distance from the center equal

to . The straight lines which join the center to the two
oa

points a and b inclose an angle aob

equal to that included by the polars

A and B of these points (Fig. 178).

Through the center o draw lines

parallel to the straight lines A and

B
;
from the points a and 6 draw

lines perpendicular to these straight

lines
;
the right-angled triangles oae,

obf are similar and give the propor

tions

oa _ae _ ac + ce _ ac + og .

~ob

~
bf

~~

bd + df~ bd + oh

whence follows oa (bd + oh)
= ob (ac + og) ;

but one has

oa - oh = ob og = r
;

Fig. 178.
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whence it follows that oa bd = ob ac. or - Hence the
ob bd

distances of two points from the center are proportional to the

distances of each of them from the polar of the other.

Find the reciprocal polar of a circle of radius r with respect

to a circle o. Let C be the polar of the center c of the given

circle (Fig. 179) ;
draw to this circle

any tangent A and locate the pole a

of this straight line
; owing to the

preceding property, one has

oa _M oa _ oc

~o~c~ r
r
a d r

the ratio of the distances of each of

the points a 1 of the locus from the

point o and the fixed straight line C
is constant; therefore this locus is a-

curve of the second degree, of which the point o is one of the

foci and the straight line C the corresponding directrix.

By means of this transformation, most of the focal proper

ties of curves of the second degree may be deduced from the

properties of the circle. Thus, for example, two tangents A
and B to the circle c form equal angles with the chord of con

tact ab
;
to two straight lines A and B correspond two points

a and b of the conic section; to the two points a and b of the

circle correspond the tangents A and B to this conic section

at the points a and 6
;
to the straight line ab or M corre

sponds the point of intersection m of the straight lines A and

B . The radii vectores drawn from the focus o to the points a f

,

b
,
m 1

forming angles with one another equal to those of their

polars A, B, M, it follows that the straight line om is the

bisector of the angle a ob ( 255).

The locus of the vertex m of a constant angle circumscribed

about a circle is a concentric circle. To the two tangents A
and B drawn from the point m to the circle correspond two

points a and b of the conic, and to the point m the straight

line a b
-j

the angle a ob
, being equal to that of the straight

lines A and B, is also constant
;
since the point m describes a
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circle whose center is c, its polar a b envelopes a conic section,

of which o is one of the foci and the polar of the center c

the corresponding directrix. Hence the chord viewed from a

focus of a conic section and subtending a constant angle envel

opes a conic section which has the same focus and the same

directrix. The chord ab of the circles envelopes a concentric

circle
;
therefore the point of intersection of the tangents to

the conic section at a and b describes a conic section which

has also the same focus and the same directrix.

ENVELOPE CURVES.

303. In what precedes we were led to consider curves which

were tangent to a series of straight lines
;

in case a point
describes a curve, its polar remains tangent to another curve.

The envelope of a mov
able curve is the curve to

which this line remains

constantly tangent.

Let

(1) f(x,y,a)=0
ris m

be an equation involving a variable parameter a. To each

value of a corresponds a definite curve. Give to the param
eter two consecutive values a and a -f- h ;

the curve (1) and the

curve

(2) f(x,y,a + K)=0
intersect in a point M (Fig. 180), whose co-ordinates satisfy at

the same time equations (1) and (2). The system of these two

equations can be replaced by the following :

f(x&amp;gt; y, a)
= o,

which, when h approaches zero, reduces to

(3) /(a,y,a)=0, fa (x,y,a)=0;

hence, when h approaches zero, the point M is displaced on

the curve (1) and approaches a limiting position M ;
it is this
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limiting point which is represented by the system (3). Each

of the curves (1) contains a limiting point ;
the locus of these

points, which is sometimes designated by the name of the

locus of the ultimate intersections of the curve represented by

equation (1), is obtained by eliminating a between equa

tions (3).

Consider the new system of equations (1) and (2), in which

a is regarded as a variable and h as a constant
;
this system

represents the locus of the points in which each curve (a) is

intersected by the curve (a +- h). Two of these points lie on

the curve a
; namely, the point of intersection M of the curves

(a) and (a + 7t),
the point of intersection M&quot; of the curves

(a h) and (a). When h approaches zero, the points M and

M&quot; approach the same limiting position M, and the locus

becomes tangent to the curve (a) at the point M. Hence, the

locus of the ultimate intersections of the curves represented by

equation (1) is tangent to each of these curves.

REMARK. When f(x, y, a) is a polynomial with respect to

a, to eliminate a between equations (3) is to express the condi

tion that the equation in a

f(x, y, a)=0
has a double root.

For example, if a enters to the second degree in f(x, y, a),

and if the equation of the movable curve have the form

Mar + 2 Na + P = 0,

Mj N, P being polynomials in x and yf
the equation of the

envelope obtained by expressing the condition that the equa

tion in a has a double root will be

= 0.

According to this method it can easily be verified that the

envelope of the conies whose equation is

A 1-A
when

, JB, y represent given linear functions in x and y

and A. a variable parameter, is composed of four straight lines

( 282. 2).
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304. Assume now that the movable curve be represented by
an equation

(4) /(a?,y, a, 6)=0,

containing two variable parameters a and b, connected by the

relation

(5) &amp;lt;(, 6)=0.

If b be called the derivative of b considered as a function

of a given by equation (5), one has &amp;lt; a + &amp;lt; &^
f

0; whence

b = ^- But if the derivative with respect to a of the

function /(a?, ?/, a, 6) be equated to zero when b is regarded as

a function of a, one has f a +f bb = 0; whence follows the

relation

(ft) &quot;7T

= ~
TT

J a J b

and in order to find the equation of the envelope, the two

parameters a and b are eliminated by means of the three equa
tions (4), (5), (6).

EXAMPLE I. Find the envelope of the normal to a pa
rabola. The normal to the parabola y

2 = 2px, at the point

M (Fig. 181) whose co-ordinates

are x and ?/,
has the equation

a?)
=

;
if x be

replaced by its value -^-, this equa
tion becomes ^

it involves an arbitrary parameter

y ;
it is necessary to equate to zero

the derivative with respect to ?/,

(8) x-P-^
=

and to eliminate y from equations

(7) and (8). On replacing y- in

Y

Fig. 181.
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equation (7) by its value derived from equation (8), one has

_3pJl_
2(x-Py

substituting this value of y in equation (8), one obtains the

equation of the envelope

This curve takes the form given in the figure ;
it has a cusp

at (7, because the tangent at this point being normal to the

parabola at the vertex A coincides with the axis AX. When
the point M describes the branch AB of the parabola, the

normal revolves about the branch CD of the envelope ; and,

similarly, when the point M describes the branch AB of

the parabola, the normal resolves about the branch CD of the

envelope.

If one wishes to draw the normals to the parabola from a

given point P, it is sufficient to regard X and Y in equation

(7) as co-ordinates of the point Pand the ordinate y of the foot

M of the normal as unknown
;
three normals can be drawn

from the point P to the parabola, or one only, according as this

equation of the third degree in y has three real roots or one

only. This problem is like that of drawing tangents from the

point P to the envelope; hence the envelope, which is of

the third degree, is also of the third class. In case the point

P is situated between the branches of the envelope, three

tangents can be drawn from this point to the envelope, and,

consequently, three normals to the parabola ; but, in case the

point P is situated at P without, one tangent only can be

drawn to the envelope, and, consequently, one normal only to

the parabola.

EXAMPLE II. Let us find the envelope of the normals to

the ellipse
x2

y
2

O l~ 7 O ?

or cr

the equation of the normal at the point (a;, y)



CHAP. X. THEORY OF POLES AND POLABS. 339

(10) ^_^I_(a2 -62

)=0
x y

involves the variable parameters x and y connected by the

relation

Equation (6) of 304 becomes

the third ratio has been found by adding the numerators and

denominators, after having multiplied the two terms of the

first by x, the two terms of the second by y, and using equa
tions (10) and (11) ;

whence follow

~_

Substituting these values in equation (11), one obtains the

equation of the envelope

This curve has four points of inflection (Fig. 182). When the

foot M describes the arc AB of the ellipse, the normal revolves

about the arc CD of the envelope. If one wishes to draw the

normals to the ellipse from a given point P, whose co-ordinates

are X and
Y&quot;,

the two simultaneous equations (10) and (11)

will determine the co-ordinates x and y of the foot of each of

the normals
;
the feet of the normals are the points of inter

section of the given ellipse (11) and of a hyperbola (10) ;
hence

there are four solutions. Moreover, this problem resolves itself

into drawing the tangents from the point P to the envelope ;

it follows that the envelope which is of the sixth degree is of
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the fourth class. In case the point P be situated within the

envelope, four tangents can be drawn from this point to the

envelope, and, consequently,
four real normals to the el

lipse ;
but if the point lie with

out, for example at P
,
two

real tangents only can be

drawn to the envelope, and,

consequently, two normals to

the ellipse ;
thus the results

obtained in 290 are proved
anew.

The envelope of the normals

of a hyperbola has the equation

Fig. 182.

(13) Sf -Pf =
1 c

2

; v c- y

305. In case a variable plane moves in a fixed plane, it can

happen that a curve CD of the variable remains tangent to a

curve AB of the fixed plane ;
this second curve is the envelope

cf the first. Let CD and C D (Fig. 183) be two consecutive

positions of the variable curve,

M 1 a point of intersection of these

two curves. As the curve CD
approaches continuously the curve

CD, the point M approaches a lim

iting position M, which is a point

of the envelope ( 303). Let J/i

be the point of the curve CD which

has arrived at M1

,
when this curve

takes the position C D 1

. We have seen ( 31) that a variable

curve can be brought from one position to another by rotating

it about a fixed point 7j ;
the perpendicular PIlt

erected at the

mid-point of the chord M^M , passes through the point Iv

But the two points J/j. and M1 have the point M as their

limiting position, and the straight line P^ becomes the nor

mal common to the curve CD and its envelope at the point M\
this normal passes therefore through the point /, the limiting

Fig. 1S3.
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position of the point I
lf
whence it follows that the normals to

the various curves situated in the variable plane, at the points

where they touch their envelopes, for one position of the variable

plane, pass through the same point I. For the same position of

the plane, this point is that point through which the normals

to the curves described by the points of the variable plane

pass.

In case a curve of the variable plane remains tangent to a

given curve of the fixed plane, the common normal to the two

curves can be used to determine the point /. The polar of a

curve AB (Fig. 31) with respect to the point ( 38) is none

other than the locus described by the vertex P of a right

angle 0PM situated in the movable plane, which so moves

that one of its sides PM remains tangent to the curve AB,
while the other passes through the fixed point 0; that is,

remains tangent to a circle of radius zero whose center is
;

whence follows the construction that the point / is found by

the intersection of the perpendiculars drawn from the points

and M to the two sides OP and PM of the right angle. (See

construction given in 38.)

TANGENTIAL CO-ORDINATES.

306. A curve may be regarded either as the locus of a point,

or as the envelope of a variable straight line. From the second

point of view, we represent the straight line by an equation

of the form

(14) ux + vy + 1 = 0,

and we say, by analogy, that the two parameters u and v,

which determine its position, are the co-ordinates of the

straight line.

If one be given an equation

(15) &amp;lt;K, &amp;lt;&amp;gt;)

=

between these two parameters, and one of them be allowed

to vary in a continuous manner, the other will also vary in

general in a continuous manner, and the straight line will be
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given a motion in the plane, enveloping a curve. One can

think of equation (15) as representing a curve through a series

of its tangents, by means of a new system of co-ordinates u and

v, which are called for convenience tangential co-ordinates.

In order to get the equations of this curve in linear co-ordi

nates, it suffices, after what has been given in 304, to elimi

nate u and v from equations (14), (15), and

(16)
-*- = JL
* . * .

If equation (15) be algebraic, the equation in x and y, the

equation which we will deduce, will also be algebraic. Make

equation &amp;lt; (u, v)
= homogeneous by replacing u and v by

, and removing the denominators. The equation 6 =
w w
can be replaced by the following

in which one puts, after constructing the derivatives, w = 1.

Therefore on calling X the common value of the ratios in (16),

it is necessary to eliminate w, v, A from the four equations

ux + vy + 1 = 0,

Multiply the first of these equations by w, the second by v,

and using the last two equations, we will have the equation

1 = A* *,

which can replace one of the last two equations, for example
the last. One will have therefore to eliminate u, v, A from

the equations

(17)
=

*&amp;lt;

,
=

*&amp;lt;
,
1 = *&amp;lt;

,

ux -\- vy + 1 = 0.

The degree of equation (15), written in an integral form,

indicates the class of the curve. For if x and y be the
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co-ordinates of any point of the plane, each system of values

of u and v, satisfying the two equations

ux + w/o + 1 = 0, (j&amp;gt; (u, v)
= 0,

will determine a tangent, real or imaginary, passing through

the point in question. In case equation (15) is of the second

degree, the curve, being of the second class, is also of the

second order ( 309).

An equation of the first degree

Au + Bv + C=Q,

in tangential co-ordinates, represents a point, the point which

has the linear co-ordinates x =
9 yo =^ because this equa

tion, put under the form

ux 4- vyQ 4- 1 = 0,

indicates that the variable straight line passes always through

the fixed point (a\ y ) ;
the envelope reduces therefore to a

point.

The properties of the equation of the first degree in linear

co-ordinates, which has been studied in Book II., is here re

produced, with the modification that points are replaced by

straight lines and straight lines by points. Thus the equation

v v = a(u u 1

),

in which the parameter a is arbitrary ( 64), is the general

equation of points situated on the straight line (u ,
v

1

).
The

equation ( 66)

ijt ,r

(18)

represents the point of intersection of the two straight lines

Consider two consecutive tangents of the curve (15), and sup

pose that the second approaches continually the first; their

point of intersection, represented by equation (18), will have
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as a limit the point of contact of the first tangent; the point
of contact is therefore represented by the equation ( 89)

or

(19) (w
- u

) 4&amp;gt; H
. + (v- v 1

) 4 , = 0.

On replacing u and v by - and -, in order to make the equa

tion homogeneous ( 291), this equation is simplified and
written in the form

307. It is well to notice that the investigation of the en

velope of a variable straight line can be reduced to the theory
of reciprocal polars because this envelope curve is the recipro
cal polar curve of the curve S described by the pole of the

straight lino, with respect to a given conic. If one choose as
curve of reference the imaginary circle x 2 + y~ + 1 = 0, and
if one put x

l
=

?/, y^ = v, the straight line xx
1 + yyl -\-l = (),

the polar of the point (x1} y^ coincides with the variable

straight line (14); hence the curve S has the equation
&amp;lt;

(
x

i&amp;gt; y\)
= in linear co-ordinates.

EXAMPLE I. Find the envelope of a straight line such that the prod
uct of its distances from two fixed points F and F1 be equaVto a given
constant quantity. On choosing the straight line FF as z-axis, and a

perpendicular at the mid-point of this straight line as y-axis, calling 2 c
the distance FF1

,
b~ the constant product, and representing the variable

straight line by the equation ux + ^+1=0, one has the relation

(c
2 i b )u* bW- I =0,

connecting the two variable parameters u and v
;

it is necessary to choose
the + sign or -

sign, according as the straight line passes to the right
or left of the two points, or between them. The curve S1

, having the

equation

(c
2 & 2

)x!
2 &Vi -1=0,

the equation of the curve sought S, or of the reciprocal polar ( 298), is

-^_ + J^_l-
c2 62 b*
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This is an ellipse or a hyperbola whose foci are the points F and F .

This property is the converse of the theorem demonstrated in 259.

EXAMPLE II. Being given a quadrilateral abed, find the envelope of

a straight line such that the product of the distances of two opposite

vertices of the quadrilateral from the straight line is to the product of

the distances T&amp;gt;f the other two vertices from the straight line in a constant

ratio. Call Xi and y t ,
x2 and y2 ,

x3 and ys , x* and */4 ,
the co-ordinates

of the four vertices, and represent the variable straight line by the

equation ux + vy + 1 =
;
the two parameters u and v will be connected

by the relation

since this relation is of the second degree, it follows that the envelope

is a curve of the second class or of the second order. The preceding

equation is satisfied when the variable straight line coincides with one

of the sides of the quadrilateral, since a factor in each term becomes

zero. Hence the curve is inscribed in the quadrilateral, and one can

assign to the ratio k a value such that the curve is tangent to any fifth

straight line. Whence follows the general property of conic sections :

a quadrilateral being circumscribed about a conic section, the product of

the distances of two opposite vertices of the quadrilateral from any tan

gent is to the product of the distances of the other vertices from the same

tangent in a constant ratio.

308. TANGENTIAL EQUATION OF A CONIC. If the equation

of a conic be

(21) Ax2 + 2Bxy + Cf + 2 Dx + 2Ey + F=0,

the tangential equation of this curve is the necessary and

sufficient condition that the straight line ux -f 1^ + 1 =
be tangent to it, that is ( 126),

(22) aw2 + 2 }&amp;gt;uv + cvz + 2 du + 2 ev + f = 0,

an equation whose constant term f is zero if the conic be a

parabola.

In case the given conic (21) consists of two distinct straight

lines, one sees that condition (22) ought to require that the

straight line ux -\-vy + I=Q passes through the point of inter

section of the two straight lines. Indeed, if a and b be the
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co-ordinates of this point of intersection, the first member of

the tangential equation (22) is a perfect square, the square of

au + bv -f- 1.

To show this, it is sufficient to impose on this theorem the

condition that the co-ordinates a and b satisfy the relations

(Chapter XII.)

a2 _ ab _ b
2 _ a _ b _ 1

a be d e f

Equation (22) then becomes, on replacing the coefficients a,

b, by the proportional values a2

, ab, ,

(au + bv -f- 1)
2

?

which was to be proved.

In the particular case when equation (21) represents two

parallel straight lines,

d = 0, e = 0, f = 0,

and b2 -ac = -^A:=0;

equation (22) therefore becomes

&u2 + 2 buv + cv
2 = 0,

or (bit + cv)
2 = 0,

which is still a perfect square. It is easy to show that the

condition
bu + cv =

expresses the condition that the straight line ux + vy + 1

is parallel to the two straight lines represented by equation

(21). It further follows that this condition requires that the

straight line ux + vy + 1 = passes through the point of inter

section of the two straight lines represented by equation (21).

When equation (21) represents two coincident straight lines,

the first member of the tangential equation (22) is identically

zero
;
one has in fact in this case
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309. We have seen that the tangential equation of a conic

is of the second degree in u and v. Conversely, an equation of

the second degree between u and v,

(23) 4&amp;gt; (w, v)
= Au2 + 2 Buv + Cv2 + 2 Du + 2 Ev + F=0,

in which the discriminant A = ACF is different from

zero, is the tangential equation of a conic. For, in order

to find the envelope of the straight line

ux

whose coefficients satisfy the equation &amp;lt; (u, v)
= 0, it is suffi

cient to eliminate u, v, and A from equations (17),

E),

where the last of equations (17) is multiplied by A. The result

of the elimination of \u, \v, and A from these equations of the

first degree is the condition

D
E
F

A
B
1)

B
C

E
y

or (24) ax2 + 2 bxy -\- cy
2

the equation of a conic, It is seen that one passes from equa

tion (23) to (24) in the same manner as from equation (21) to

equation (22). It is easy to verify that the tangential equa

tion of the conic (24) is identical with equation (23).

It has been supposed that the discriminant A of equation

(23) is different from zero. If this discriminant be zero with

out all of its minors a, b, , being zero, the function
&amp;lt;f&amp;gt;(u, v)

resolves itself into a product of two factors of the first degree

in u, v. In this case the equation (, v)
= will represent

two points which could, moreover, be real or imaginary, and

UNIVERSITY
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the first member of equation (24) will be a perfect square, the

square of the first member of the equation of the straight line

joining these two points. This can be demonstrated by a

method identical with that given above.

Finally, if the discriminant A be zero, and also all of its

minors, the first member of equation (23) will be a perfect

square. It represents two coincident points. Equation (24)

is identically zero.
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CHAPTER XI*

GENERAL PROPERTIES OF CONIC SECTIONS.

THEOREMS OF PASCAL AND BRIANCHON.

310. THEOREM I. If three conic sections have two points

in common, the three straight lines which join the other points

of intersection of the curves two by two pass through a common

point.

Let S = Q be the equation of one of the conic sections,

a = the equation of the straight line which passes through

the two common points ;
the equations of the other two conic

sections will be of the form S kaft = 0, S - k ya 0. The

three straight lines which pass through the other two points

of intersection of the curves, considered two by two, are

(3
= 0, y 0, k(3 k y ;

the third passes through the point

of intersection of the first two.

311. THEOREM II. If a hexagon be inscribed in a conic

section, the points of intersection of the opposite sides are in

a straight line.

This theorem, which is

due to PASCAL, is an appli

cation of the preceding the

orem. Let abcdef(ig. 184)

be a hexagon inscribed in a

conic section
;
the curve and

the two pairs of straight

lines ab and cd, af and de

can be regarded as three

conic sections having the

common points a and d. Fig.isi.
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Fig. 185.

The straight line be connects the other two points of intersec

tion b and c of the curve and the two straight lines ab and cd;

the straight line e/corinects the other two points of intersection e

and /of the curve and the two straight lines afand de
; moreover,

the two pairs of straight lines intersect

each other in in and p ;
the three straight

lines be, &amp;lt;ef, tnp pass through the same point
n

;
therefore the three points of intersec

tion m, n, p of the opposite sides of the

inscribed hexagon lie in a straight line.

This theorem is not only applicable to

a convex hexagon, but, moreover, to a hex

agon formed in any manner. An inscribed

hexagon is constructed by drawing six

consecutive chords, in such a manner as to return finally to

the point of departure. If the sides be numbered in the order

in which they are constructed, the three points of intersection

of the sides (1, 4), (2, 5), (3, 6) lie 011 a straight line (Fig. 185).

COROLLARY I. If a conic section be defined by five points

a, b, c, d, e, the preceding theorem enables one to construct

as many points of the curve as one may wish. Through the

point a draw any straight line af and seek the point / where

the straight line intersects the curve (Fig. 184) ;
one locates

the point of intersection m of the straight lines ab and de,

the point of intersection p of

the straight line cd and /; the

straight line be intersects the

straight line mp in a point n
;

the point /, where the straight

line ne intersects af, belongs to

the curve.

The tangent at one of these

points can also be constructed.

When two vertices of an inscribed

hexagon, for example a and /,

coincide, the corresponding side

af becomes a tangent to the curve at the point a
;

if the theo-

Fig. 186.
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rem of the inscribed hexagon be applied, on reckoning this

tangent as a side, it follows still that three points lie in a

straight line. One locates therefore the point of intersection

m of the sides ab and de (Fig. 186), the point of intersection

n of the sides be and ae
;
the straight line cd intersects the

straight line mn in a point p ;
the straight line ap will be the

tangent at a.

COROLLARY II. A quadrilateral abed being inscribed in a

conic section, the points of intersection of the opposite sides, and

the points of intersection of the tangents at the opposite vertices

lie in a straight line. If a complete hexagon with the tangents

at a and c be inscribed, one will have three points m, n, p in

Fig. 187.

a straight line (Fig. 187). If a complete hexagon with tan

gents at b and d be inscribed, one will have in a similar man
ner three points m, n, q in a straight line. Therefore the

four points m, n, p, q lie on a straight line.

COROLLARY III. A triangle being inscribed in a conic section,

the points of intersection of the sides with the tangents at the

opposite vertices are in a straight line.

312. REMARK. &quot;We have seen that one conic section, and

only one, can be drawn through five points a, &, c, d, e, no three

of which lie in a straight line. The elements of this curve

can be obtained in the following manner : one begins by con

structing the tangents A, B, C at the three given points a, b, c.

In every curve of the second degree the tangents at the ex-
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tremities of a chord intersect on the diameter conjugate to this

chord; consequently, the straight line which joins the point

of intersection p of the straight lines A and B to the mid

point g of the straight line ab is the diameter of the chords

parallel to ab; similarly, the straight line which joins the

point of intersection q of the straight lines B and C to the

mid-point h of be is the diameter of the chords parallel to be.

Suppose that the two diameters pg and qh intersect in a

point o. The straight line op and the straight line ok par

allel to ab form a system of conjugate diameters. If a be

the length of the semi-diameter with the direction op, one

has a = -Vop - og ;
in a similar manner the length b of the

semi-diameter with the direction ok may be found. It has

been explained (
174 and 195) how to determine the axes,

in case a system of conjugate diameters a and b are known.

If the two diameters be parallel, the curve is a parabola.

In this case, one draws the diameters which pass through

a and b, then the straight lines forming with the tangents

angles which are equal to those formed by the diameters with.

the tangents; these two straight lines intersect at the focus

of the parabola. On dropping from the focus perpendiculars

to the tangents A and B, and prolonging each of the perpen

diculars a length equal to itself, two points of the directrix

are determined.

In case three points and the tangents at two of these points

are given, the tangent at the third point is determined by

means of the property of the inscribed triangle ;
after this one

proceeds as above. The construction relative to the parabola

can evidently be used in case two tangents to the curve and

their points of contact be known.

313. Suppose, finally, it is desired to find the elements of

a parabola determined by four points a, b, c, d. If the two

straight lines ab, cd be chosen as axes of co-ordinates, the

equations of the parabolas passing through the given points

are ( 276)
_ &amp;gt; ti ,.Z

_ . - . 0.

Vo&cd
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Since the angular coefficients of the axes of the parabolas are

\/
C:

-, it follows that these axes are parallel to the diagonals
*o6

of a parallelogram constructed on the axes of co-ordinates and

of which the sides wr
ill have lengths which are mean propor

tionals between a and b, c and (Z. Knowing the direction of the

axis, the theorem concerning the inscribed pentagon will give,

on supposing that the point e be removed indefinitely, that is,

that the straight lines ae and de, for example, become parallel

to the axis (Fig. 180), the tangent at one of the points. In

case two tangents have been determined, the problem will be

reduced to the preceding case. *

314. THEOREM III. If a hexagon be inscribed in a conic

section, the three straight lines ivhich join the opposite vertices

pass through the same point.

This theorem, discovered by BRIANCHON, may be derived from

the preceding by the method of reciprocal polars. Let abcdef

(Fig. 188) be a hexagon circum-
,

scribed about a conic section
;

the inscribed hexagon, which

has as vertices the points of

contact, is the corollative figure

of the circumscribed hexagon,
with respect to the given conic

section; because the vertices

a, ft, c, of the circumscribed

hexagon are the poles of the

sides A
,
B

,
C

,
of the in

scribed hexagon. The diagonal

ad of the circumscribed hexagon
is the polar of the point of in

tersection m of the opposite J / /
sides A 1 and D of the inscribed &amp;lt; / /
hexagon; similarly, the diago- m

\{&amp;lt;

nal be is the polar of the point &amp;lt;

Fjg 188

of intersection n of the sides

23 and E
,
and the diagonal cf the polar of the point of
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intersection p of the sides C&quot; and F . Since the three points

ra
,
n ,p are in a straight line, the three straight lines ad, be,

cf pass through the same point o. the pole of this straight

line.

We make at this point a remark analogous to that which has

been made with respect to the theorem of PASCAL. It is not

necessary that the circumscribed hexagon be convex, it is suffi

cient that it be closed. Suppose that six tangents be drawn to

a conic section
;
in order to construct the hexagon, beginning at

the point of intersection of two tangents, one proceeds along

one of them to the intersection of the next tangent; then

along this second tangent, in either direction, to the intersec

tion of a third tangent, and so on, in a similar manner, till the

point of departure is reached, after having traveled along

the tangents in a continuous manner. The broken line thus

formed is a circumscribed hexagon. If the vertices be num

bered in the order in which they are constructed, the three

diagonals which connect the vertices (1, 4), (2, 5), (3, 6) pass

through the same point (Fig. 189).

COROLLARY. If a conic section be defined by five tangents,

one can, by aid of the preceding theorem, construct as many

tangents as one wishes. Let the five tangents be ab, be, cd,

de, ef (Fig. 188) ;
determine the second tangent which passes

through a point a taken arbitrarily on one of the given tan

gents ;
take the point of intersection o of the diagonals ad and

be, and draw the straight line co and join the point a to the

point/, where the straight line co intersects the tangent ef.
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The point of contact of each of the tangents can also be

determined if two sides of the circumscribed hexagon, for

example the sides ab and be, coincide; the intermediary vertex

b becomes the point of contact
;
in order to find this point of

contact, one connects the vertex e with the point of intersec

tion o of the diagonals ad and cf (Fig. 190).

When the points of contact of the three tangents have been

determined, one obtains the elements

of the curve by the method which we

have described in 312.

The center could also be immedi-

ately obtained by means of the

theorem demonstrated in 300.

The following corollaries may be

deduced from the theorem of BRIAN-

CHON : If a quadrilateral be circum-

scribed about a conic section, the two diagonals and the tivo

straight lutes ivhich join the points of contact of the opposite sides

pass through the same point.

If a triangle be circumscribed about a conic section, the straight

lines wliicli join the vertices to the points of contact of the opposite

sides pass through the same point. It is sufficient to complete

the circumscribed hexagon in the first case with the points of

contact of the two opposite sides, in the second case with the

three points of contact.

HOMOGRAPHIC SYSTEMS.

315. In case we are given on two given straight lines two

systems of points which have a one-to-one correspondence, of

the kind that if x and x 1

represent the distances (affected with

the proper signs) of two corresponding points from two fixed

points taken on the straight lines, one has the relation

(I) Axx + Bx + Cx + D = ;

these two systems of points are said to be homographic.

This equation involves three arbitrary parameters ;
to three

points taken at will on the first straight line there can be made
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to correspond three points taken at will on the second; this

mode of homographic division is therefore perfectly deter

mined.

When the point m of the second straight line is removed

to infinity, the homologous point m of the first approaches a

a
limiting position i given by the formula x = Similarly,

A.

in case the point m of the first straight line is removed to

infinity, the point m of the second approaches a limiting

position j given by the formula x = --- If one lay off the

distances on these two straight lines, beginning with the

points j and i,
the relation is simplified and becomes

(2) Axx + D = 0.

A pencil of straight lines which passes through the same

point o (Fig. 191), determines on any two secants two systems
of homographic points ;

be

cause, on calling xl and y l
the

co-ordinates of the point o

with respect to the two secants,

a and (3 the abscissa and the

/ ordinate of the points m and

m
,
when one of the straight

lines of the pencil intersects the two secants, the variables

and /5
will be connected by the relation ^

Conversely, when one has two systems of homographic

points on two straight lines, the straight lines can be so

placed that one of the systems is the perspective of the other;

it is sufficient to place one of the straight lines so that two

homologous points a and a coincide; the straight lines bb
,

cc
,
which join two pairs of homologous points, intersect in a

point o; the straight line om, Avhich joins the point o to any

point m of the first straight line, will pass through the homol

ogous point m of the second. The straight lines oi and of,
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parallel to the two straight lines, give the points i and f. Two

systems of points homographic to a third are homographic to

each other
;
because the elimination of x from the two equa

tions

(Ax
1 + B) x + (CV +D) = 0,

(A&i + A) a + (C&amp;gt;i + A) = 0,

gives an equation in x and a^ similar in form.

316. Consider the two pencils of straight lines which are

obtained by connecting two fixed points o and o with two

systems of homographic points; these two pencils determine

on any secant systems of homographic points ; accordingly the

two pencils of straight lines are said to be homographic.

Imagine that through a fixed point situated on the ar-axis,

and having the abscissa 1, one draws lines parallel to the

straight lines of the two pencils; these parallels determine on

the ?/-axis two systems of homographic points ;
the ordinate of

each of these points being equal to the angular coefficient

of the corresponding straight line, one infers that the angular

coefficients m and m of the homologous straight lines are

connected by the relation

(3)
Amm + Bm + Cm + D = 0.

Conversely, if in two pencils the angular coefficients of two

homologous straight lines satisfy a relation of this form, the

two pencils are homographic, Such, for example, are the two

pencils which one obtains by. drawing through two fixed points

o and o lines parallel to two conjugate diameters of a conic.

Two pencils homographic to a third are homographic to

each other.

Two systems of homographic points are transformed in the

reciprocal polar figure into two pencils of homographic straight

lines. Let P and Q be the two given straight lines, p and q

their poles with respect to a curve of the second degree whose

center is o
;
to a point a of the first straight line corresponds

a straight line A passing through its pole p ;
to a point b of

the second straight line a straight line B passing through its
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pole q . The straight lines oa, ob form two homographic

pencils ;
the pencil of straight lines A being homographic with

that of the straight lines oa and the pencil of straight lines

B with that of the straight line ob, it follows that the two

pencils A and B are homographic.

REMARK. In the two relations (1) and (3) we have sup

posed that the coefficients A, B, C, D do not satisfy the

condition

AD-CB = 0.

If this condition were fulfilled, the first member of relation

(1), for example, Avould resolve into two linear factors, the

one in x the other in x
,
and this relation (1) would take the

form

A(x - a) (x
1 - a

)
= 0.

To a value assigned to x would always correspond the value

x =
,
and for x = a

,
x would be indeterminate.

317. In case two systems of homographic points lie on the

same straight line, there exist two double points on this line;

that is, two points such that either of them, considered as

belonging to one of the systems, coincides with the other, its

homologous point in the other system. In fact, if one lay off

the distances on the straight line, beginning with the same

point, and put x = x, one has, owing to relation (1), an equa

tion of the second degree,

(4)
Ax2 +(B+C)x + D =

0,

each of whose roots gives a double point. The two double

points are real or imaginary.

Suppose that there have been constructed, as already has

been explained, the two points i and f homologous with respect

to infinity ;
if one lay off the distances beginning with the

point c, mid-point of if, equation (1) becomes

(5)
Axx 1 + B(x x )+D = Q.

Equation (4), which gives the double points, reduces to

(6)
Ax2 + D = 0.
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Call c the point of the second system homologous to the point

c of the first
; equation (5) ought to be satisfied by x = and

x = cc ;
one has

,
D

cc--;

i
-B

moreover, cj ~^
whence it follows - = - cj x cc

,

./I

and equation (6) becomes

(7)
or = cj x cc .

The double points are real in case the two lengths cj and cc

are measured in the same direc- ,,- ,%
-

tion
;
in order to construct them,

a circle is constructed on cj as a

diameter (Pig. 192); a tangent

is drawn from the point c to this

circle
; by revolving the tangent

to the straight line, the two double points e and / are deter

mined, which are situated at equal distances from c.

318. Two homographic pencils having a common vertex have

in like manner two double straight lines, real or imaginary ;

their equations may be obtained by joining the vertex to the

two double points of the homographic division determined by

the pencil and any secant.

In case a constant angle is made to revolve about its vertex,

the two sides form two homographic pencils with this point as

a common vertex, the various positions of one of the sides

constituting the first pencil, those of the second side the other

pencil. Because if the first pencil revolve through a constant

angle about the vertex, it coincides with the second. The rela

tion between the angular coefficient of the homologous straight

lines in rectangular co-ordinates is mm + 1 + c(m m )= ;

the double straight lines are imaginary and have the equation

x- + f ; they are the asymptotes of the circle or -f f = r*.
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These two pencils determine on any straight line two sys-
tems of homographic points, whose double points are imaginary.
Conversely, in case the double points of the two systems of

homographic points on the same straight line are imaginary,
these two systems of points can be obtained by the rotations
of a constant angle about its vertex. The mode of division is

defined by the three pairs of

points (c, c
), (/, oo), (oo, /), the

point c being the mid-point of if ;

co, the perpendicular to the straight

Fig&amp;gt; 193&amp;gt;
line, intersects the circle described

on cj as diameter in a point o;
the angle c oc, on revolving about the point o, will give the

homographic division desired.

319. INVOLUTION. Consider two systems of homographic
points on the same straight line, and suppose that two homo-

graphic points a and a be reciprocal, that is, that if to the

point a of the first system there corresponds the point a in

the second, reciprocally to the point a considered as belonging
to the first system there corresponds the point a in the second.

It follows that equation (1) will be satisfied when the par
ticular values of x and x which belong to these two points are

permuted, which requires that B C; but in this case all of

the homologous points are reciprocal two by two, and the

points are said to be in involution. ,

The equation

(7) Axx + B(x 4- a*)+ D =

containing but two arbitrary parameters, two pairs of conjugate

points (a, a
), (b, b

)
are sufficient to define the involution.

The two points i and f coincide, and if the distances beginning
with this point i be laid off, equation (7) becomes

(8) Axx + D = ;

this point is called the center of involution. There are two
double points e and /, real or imaginary, given by the equation

Ax2
-f D = 0.
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Equation (8) becomes, therefore, xx = ie
;

it follows that the

two double points e and /are harmonic conjugates with respect

to any two conjugate points.

The circles drawn through the two points p and q determine

on a straight line an involution

(Fig. 194). Let i be the point

in which the straight line pq in

tersects the given straight line
;

if _

x and x be the distances of this

point from the two points of inter

section of the secant and of one of

the circumferences, one has xx 1

ip iq ;
the point i is there

fore the center of involution. The double points are real or

imaginary, according as the point i is situated without the

points p and q or between these two points. In the first case,

one obtains the double points on drawing from the point i a

tangent to one of the circles and revolving this tangent.

In case the involution on a straight line is defined by means

of two pairs of conjugate points (a, a
), (6, b

), any two con

jugate points can be easily constructed; construct a circle

through the two points a and a
,
construct also a second circle

through the two points b and b
1 and an arbitrary point p of the

first
;
these two circles intersect in a second point q ;

the circle

which passes through the two points p and q and a point m of

the straight line will determine the conjugate point m .

Let us consider in like manner two homographic pencils

with a common vertex and such that two homologous straight

lines are reciprocal ;
these straight lines determine on any

secant the points of involution
;

all homologous straight lines

are therefore reciprocal two by two and the straight lines are

said to be in involution. Two double straight lines may be

real or imaginary.
We have mentioned ( 318) that, if a constant angle revolve

about its vertex, its sides form two homographic pencils. When
the angle is a right angle the pencils will be in involution

;
the

double straight lines, as has been remarked, are the asymptotes
of a circle.

Conversely, in case the double points of an involution on a
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Fig. 195.

straight line are imaginary, the pairs of conjugate points can

be found by the rotation of a right angle about its vertex. The

involution is defined by the two

pairs of conjugate points (i, oo),

(o, a
) ;

describe a circle on aa

as a diameter (Fig. 195);- erect

a perpendicular to the straight

line at the point i which inter

sects this circle in two points p
and q; a circle passing through

the two points p and q will determine two conjugate points

m and m
,
and the angle mpm is a right angle.

The conjugate diameters of the conic are in involution. The

double straight lines are real in case of the hyperbola, imagi

nary in case of the ellipse.

320. THEOREM I. If two homographic pencils be given, the

locus of the point of intersection of two homologous straight lines

is a conic passing through the vertices of the two pencils.

Determine as many of the points of the locus as are situated

on any straight line D; the two homographic pencils o and o

(Fig. 196) determine on this straight line two systems of

homographic points (, ), (ft /3%

(y? y X-&quot;*&amp;gt;

two homologous straight

lines oe, o e, which intersect on the

D straight line D, determine a double

point e
;
since there cannot be 011 the

straight line D more than two double

points e and /, it follows that this

straight line intersects the locus in

but two points, real or imaginary; hence the locus is of the

second order.

To the straight line o o of the second pencil corresponds a

certain straight line op of the first
;
the point of intersection

falls in o, and the straight line op is tangent to the curve at

this point. Similarly, the curve passes through the point o and

is tangent at this point to the straight line o q of the second

pencil, the homologous line of the straight line oo of the first.
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COROLLARY. This enables us to find the points in which

a given straight line D intersects a conic defined by five

points, o, o
, a, b, c; if the two points o and o be joined to

the other three, one has three pairs of straight lines (oa, o a),

(ob, o b), (oc, o c),
which determine the two homographic

pencils 6 and o
;
the locus of the point of intersection of the

homologous straight lines is the conic passing through the

five given points; the three pairs of points- (a, ), (& /? ),

(y, y
f

)
define the homographic division on the straight line

D; the two double points e and /may be found by the method

described in 317.

If the straight line pass through one of the given points,

for example o, it is sufficient to construct the homologous

straight line in the second pencil. Similarly, as we have

already said, the tangent at o may be found by drawing the

straight line op of the first pencil homologous to the straight

line o o of the second. Thus may be found as many points

and tangents of the conic sought as one wishes.

REMARK. When the straight line oo
,
which passes through

the vertices, corresponds to itself in the two pencils, it evi

dently constitutes a part of the locus which is then composed

of two straight lines
;
in this case, the locus of the point of

intersection of the homologous straight line is, strictly speak

ing, a straight line.

321. THEOREM II. If two systems of homographic points

on two fixed straight lines A and A be given, the straight line

aa
j
which joins any two homologous points, envelops a conic

which is tangent to the two fixed straight lines.

Determine all the tangents to the envelope which pass

through an arbitrary point p of the plane (Fig. 197); the

straight lines pa, pa , which join the point p to two homol

ogous points, form about the point p two homographic pencils ;

in case the variable straight line aa
,
in one of its positions

mm
, passes through the point p, it becomes a double straight

line of the two pencils ;
since there can exist but two double

straight lines pm, pn, it follows that through the point p there
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can be drawn to the envelope curve but two tangents, real or

imaginary; this curve is therefore of the second class, and

consequently of the second order.

At the point of intersection o of the two fixed straight lines

A and A
,
considered as belonging to the second straight line,

Fig. 197.

there corresponds a point h on the first; the variable straight

line coincides with o/i, and the curve is tangent to the straight

line a at the point h. Similarly, the curve is tangent to &quot;the

straight line A at the point g of this straight line homologous
to the point o of the straight line A.

COROLLARY. This theorem enables us to draw through a

given point p tangents to a conic defined by five tangents;

if one join to the point p the points where the two tangents

A and A are intersected by the other three, J5, GY

, Z&amp;gt;,
one

obtains three pairs of straight lines determining two homo-

graphic pencils whose double straight lines are the tangents

required.

If the point p be situated on one of the given tangents, A
for example, the points wrhere the tangents A and A 1

are

intersected by the other three, B, C, D, determine on these

first two tangents two systems of homographic points; one

seeks on the straight line A a point p
7 which is homologous

to the point p on A\ the straight line pp will be tangent to

the conic.
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The point of contact of the tangent A is, as has been men

tioned, the point of this straight line which is homologous to

the point o of A .

REMARK. In case the point of intersection o of the two

fixed straight lines corresponds to itself on the two straight

lines, in the reciprocal polar figure the straight line of the

vertices will correspond to itself in the two pencils ;
the locus

becomes in this case a straight line, the envelope reduces to

a point. Therefore every straight line, such as ao/, passes

through the same point.

322. The two preceding theorems give rise to a large num

ber of remarkable properties. We shall now call attention to

some of them.

For example, if two constant angles revolve about their

vertices in such a way that the point of intersection of two

sides describes a fixed straight line, the other two sides will

form two homographic pencils, and, consequently, the locus

of their point of intersection will be a conic passing through

the two fixed vertices.

Similarly, if, on two fixed straight lines, one begin with the

points where they are intersected by a variable secant drawn

through a fixed point, and lay off in a definite manner two

constant lengths, it is evident that the extremities of these

lengths will form two systems of homographic points, and

consequently that the straight line which connects them will

envelop a conic tangent to two fixed straight lines.

Let us consider a triangle maa
,
of which the three sides

revolve about the three fixed points o, o
, p (Fig. 198), whilst

the two vertices a and a slide

along the two fixed straight lines

A and A
}
the pencils o and p are

homographic ; similarly, p and o .

Therefore the pencils o and o are

homographic, and the point m, the

third vertex of the triangle, de

scribes a conic passing through
the two points o and o . It is easy to see that the point
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of intersection c of the straight lines A and A and the two

points d and e, where these straight lines are intersected by
the straight lines po and po, belong to the locus; thus the

conic is denned by five points.

When the three fixed points o, o
, p lie in a straight line,

the straight line oo corresponds to itself in the two pencils,
and the locus of the vertex m is a straight line

;
this problem

has been discussed in 105.

Similarly, let us consider a variable triangle aba (Fig. 199),
whose three vertices slide on three fixed straight lines A, A ,

B, while the two sides ba, ba re

volve about the two fixed points
o and o

;
the pencil o determines

on the straight lines A and B two

systems of homographic points a

and 6; similarly, the pencil o deter

mines two systems of homographic

Fior 199 points b and a . Therefore the two

systems a and a1

are homographic,
and the third side aa of the triangle envelops a conic tangent

to the two straight lines A and A. It can be easily verified

that the straight lines o c and od, which join the points o and o

to the points where the straight line B intersects the straight

lines A and A
,
touch the conic

;
thus the conic will be defined

by five tangents.

If the three straight lines A, A ,
B pass throug^i the same

point, the point of intersection of the straight lines A
and A corresponds to itself, and the envelope reduces to a

point. Therefore the straight line aa passes through a fixed

point.

This mode of demonstration is applicable to polygons of any
number of sides. Thus, if the n sides of a polygon revolve

about n fixed points, and n 1 vertices describe straight lines,

the last vertex describes a conic. In case n vertices of a

polygon describe straight lines, and n 1 sides revolve about

fixed points, the last side envelops a conic.

Theorems I. and II. make it possible, as we have seen, to

construct a conic defined by five points or five tangents ;
but
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the theorems of Pascal and Brianchon furnish more simple

constructions.

324. THEOREM III. In case, in the general equation of a

pencil of conies subject to four conditions, the arbitrary parameter

appears in the first degree, these conies determine on any straight

line points in involution.

If the straight line be chosen as the a;-axis, and if y be made

equal to zero in the given equation, one obtains an equation of

the form

(A + kA*) x*+(B + KB 1

)
x + (C + fcC&quot;)

= 0,

k being the arbitrary parameter. On calling x and x* the two

roots, one has

x-\-x
J xx 1

__ 1

- B - kff
~
C 4- kC

~~
A + kA

whence it follows

f - A xx + C 1

AB -BA AC -CA

325. THEOREM IV. Conies which pass through four given

points determine on any straight line points in involution.

We have seen ( 277) that the equation of conies, which

pass through four given points a, b, c, d, involves one arbi

trary parameter in the first degree ; according to the preceding

P

theorem these conies determine on any straight line D points

in involution (Fig. 200). The pairs of straight lines (ac, bd),

(dbj cd) determine two pairs of conjugate points (a, a
), ((3, ft ),

which define the involution.
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COROLLARY. The double points of involution are the points
of contact of the conies which pass through the four given

points, and are tangent to the straight line
Z&amp;gt;;

since there

are two double points, it follows that there are two conies,

real or imaginary, which pass through four given points and are

tangent to a given straight line. These points are determined

by the construction described in 319, and then each of the

conies will be defined by five points.

326. THEOREM V. The tangents drawn from a fixed point
to conies tangent to four given straight lines are in involution.

This .theorem may be deduced from the preceding, which

is due to DESARGUES, by the method of reciprocal polars.

To the conies tangent to four given straight lines there cor

respond, in the reciprocal polar figure, conies which pass

through four given points ;
to the two tangents drawn from

a fixed point p to one of the first system of conies corre

spond the two points of intersection of the straight line P
,

the polar of the point p, with one of the second system of

conies; these points of intersection on the straight line P
being in involution, the pencils of tangents emanating from

the point p f are also in involution.

The four given straight lines (Fig. 201) form a quadrilateral ;

the diagonal aaf can be regarded as the limit of an ellipse

tangent to the four straight lines, and of

which the minor axis becomes zero; the

tangents drawn from the point p to this

ellipse, reduced to its major axis, are

pa and pa . A similar discussion applies

to the diagonal bb . One has therefore two

pairs of conjugate straight lines (pa, pa ),

(pb, pU) which define the involution.

COROLLARY. If the conic pass through
the point p, the two tangents pm, pm co

incide and form a double straight line;

since there are two double straight lines

in the involution, it follows that there areFig. 201.

tico conies, real or imaginary, which touch four given straight
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lines and pass through a given point. On. drawing a secant

across the pencil, and determining the double points on the

secant, one will obtain the double straight lines, and each of

the two conies will be denned by five tangents.

327. THEOREM VI. The conies tangent to two given straight

lines at two given points determine on any secant an involution

of which one of the double points is situated on the chord of con

tact.

This theorem is a particular case of Theorem IV. Suppose
that the points a and c coincide, also that the points b and d

(Fig. 200) ;
the two straight lines ac and bd will be tangent

at a and b
;
the two straight lines ab and cd coinciding, the

two conjugate points /3 and ft coincide with one of the double

points of the involution, to which belong the pairs of points

(m, m
1

), (a, ).

COROLLARY. This theorem enables one to construct a conic

which passes through three given points and touches two given

straight lines A and A (Fig. 202V

Pig. 202

Select on the secant ab the two double points e and / of the

involution defined by the two pairs of points (a, b), (a, ).

Select in a similar manner on the secant ac the two double

points e l and ft of the involution defined by the two pairs

of points (a, c), ( 1? a\).

The chord of contact, passing through one of the two points

e and /, and through one of the two points ex and /,, will

coincide with one of the four straight lines which are found

2 A
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by connecting these points two by two in all possible ways.

Any of these four straight lines, for example ee
lf

will give

a solution of the problem-: the straight line ee
l
intersects the

two given straight lines A and A in two points m and w
;

one conic can be drawn through the point a and tangent to

the straight lines A and A at the points m and m ( 280) ;

this conic intersects the secant aa in a second point conjugate

to the point a in the involution defined by the double point

e and the pair of points (a, a
),

will pass through the point b
;

it can be shown in a similar manner that the conic passes

through the point c. Hence there are four conies, real or

imaginary, which pass through three given points and touch

two given straight lines.

328. THEOREM VII. The tangents drawn from a fixed point

to the various conies which touch two given straight lines in two

given points, form an involution of which one of the double

straight lines passes through the point of intersection of the two

given straight lines.

This theorem is a particular case of Theorem V. Suppose

that the two tangents ab and ab coincide (Fig. 201), also that

a b and a b : the points a and a become the points of contact

of the tangents ab and a b
]
the two points b and b coincide;

the two straight lines pb and p// coincide with one of the

double straight lines of the involution, to which belong the

two pairs of straight lines (pm, pin ), (pa, pa
9

).

COROLLARY. The preceding theorem enables one to con

struct a conic passing through two given points a and b, and

touching three given straight lines mn, pm, and pn (Fig. 203).

The point of intersection o of the tangents at a and b is situ

ated on one of the two double straight lines of the involution

denned by the two pairs of straight lines (pa, pb), (pm, pn),

and on one of the two double straight lines of the involution

denned by the two pairs of straight lines (ma, mb), (mn, mp),

will coincide with one of the four points of intersection of

these double straight lines taken two by two. Any one of

these four points, for example the point o, will give a solu-
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tion of the problem; one conic tangent to the two straight

lines oa and ob at the points a and b and to the straight line

pin can be determined
;
the second

tangent which can be drawn from

the point p to this conic will be the

conjugate of the straight line pm
in the involution defined by the

double straight liite po, and the

pair of straight lines (pa, pb) will

coincide with pn ;
in a similar man

ner it can be demonstrated that the

straight line mn is tangent to the

conic. Hence there are four conies,.-IT * 1
S&amp;gt; 203.

real or imaginary, passing through

two given points and touching three given straight lines.

329. REMARK. It has been stated ( 283) that a focus can

be regarded as the point of intersection of two tangents whose

angular coefficients are /, that is, tangents that are parallel

to the asymptotes of a circle
;
to be given a focus is therefore

equivalent to being given two tangents to the conic. Hence,

of the conies which have a given focus in common, there is

one tangent to three given straight lines ( 262), two tangent

to two given straight lines and passing through a given point,

four (of which two are real and two imaginary) tangents to

one given straight line and passing through two given points,

and, finally, four passing through three given points ( 260).

We have learned to construct a conic which satisfies five

simple conditions, points of the curve or tangents ;
four condi

tions are sufficient for the determination of a parabola, and the

discussion can be reduced to one of the preceding by a transfor

mation with the assistance of the method of reciprocal polars.

We know, in fact ( 299), that if the center o of the curve of

reference be situated on a conic, the polar reciprocal curve is a

parabola, and that, conversely, the reciprocal polar curve of a

parabola is a conic passing through the center o of the curve of

reference. In the transformation, the condition that the curve

sought is a parabola, is therefore replaced by the point o, the
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points by the straight lines, the straight lines by the points.
The construction of a parabola tangent to four given straight
lines is thus reduced to the construction of a conic passing

through five given points ;
there is one solution, and one only.

Similarly, there are two parabolas passing through four given

points, or passing through one point and tangent to three given

straight lines; four parabolas passing through three points
and tangent to one straight line, or passing through two points
and tangent to two given straight lines. On drawing the tan

gent to the reciprocal polar curve at o and the conjugate
diameter in the curve of reference, one will have the direction

of the diameters of the parabola, which makes it possible to at

once apply the preceding given theorems.

M. Chasles has conceived an ingenious method for studying
the properties of a system of conies which satisfy four given

conditions, and he showed that these properties depend upon
two integral numbers -which he called the characteristics of the

system ;
these represent the number of conies of the system

which pass through a given point or which touch a given

straight line. For example, the two characteristics of a sys
tem of conies which pass through four given points are 1

and 2
;
those of the system of conies which touch four given

straight lines are 2 and 1
;
those of the system of conies which

pass through three given points, and which touch one straight

line, are 2 and 4; those of the system of conies which pass

through one point, and which touch three straight lines, are

4 and 2; finally, those of the system of conies which pass

through two points, and which touch two straight lines, are

4 and 4.

HOMOGENEOUS CO-OIIDINATES.

330. When an algebraic curve defined by its equation

F(x, #)=0 is investigated, it is an advantage to consider the

homogeneous integral function obtained by replacing the co

ordinates x and y in F(x, y) by -, -I, and multiplying the

result by a suitable power of z. One has an illustration of

this method when one seeks the equation of the tangent at a
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point of the curve ( 291), or the co-ordinates of the point of

contact of the tangents drawn from any point of the plane.

Three numbers x, y, z are called the homogeneous co-ordi

nates of a point, if the ratios -,
^ be respectively equal to the

abscissa and ordinate of this point. Thus a point whose ab

scissa is | and ordinate
-J-
has as homogeneous co-ordinates 9, 2,

12 or 9 w, 2 n, 12 n, n being any number different from zero.

Let, moreover, f(x, y,z)=Q be the equation of an algebraic

curve rendered homogeneous by the method which we have

described; this equation is called the equation of the curve

in homogeneous co-ordinates.

POINTS AT INFINITY. STRAIGHT LINE AT INFINITY.

According to the preceding definition for any point of the

plane, the third of the homogeneous co-ordinates z is never zero.

One considers, nevertheless, the system of values of x, y, z

in which the third variable z is zero, and it is said that such

a system (xlt y^ 0) corresponds to a point at infinity, and that

this point is on a curve whose equation in homogeneous co-ordi

nates is f(x, y, z)= 0, if one have f(x,. yly 0)= 0.

In particular, to say that the point at infinity (xlt yly 0) is on

the straight line y = ax + bz, is to say that one has the condi

tion y l
= a&v It is to be remarked that, in order to justify

this representation of the point at infinity, one is led to the

consideration of such systems of values of x, y, z as when the

point is supposed to be moved continuously along a given

straight line toward infinity. Thus if the homogeneous co

ordinates of the point be

x = Xi Xx2, y = y^ A?/2, z = 1 A,

and, consequently, its Cartesian co-ordinates

Xi \X2 ?/! X?/2

I-A I-A

the point is on the straight line whose homogeneous equation is

x y z

35] 2/1
1

#2 2/2
1
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whose angular coefficient is a = - If A approach the
#1 x

-2

value 1, the point approaches infinity, and for the value X = 1,

the corresponding values of x, y, z are

i
-

?/i
-

2/2, 0,

which satisfy the condition y ax = 0.

Since the homogeneous equation of the first degree in x, y, z

represents, in general, a straight line, and that the co-ordinates

of all the points at infinity satisfy the homogeneous equation
of the first degree 2 = 0, it is said that all the points at in

finity are situated on a straight line (the straight line at

infinity) whose equation is 2=0. Accordingly the two parallel

straight lines

y ax + bz, y ax -f- b z

are said to have a common point at infinity, or intersect on

the straight line at infinity; for the equations of these two

straight lines are satisfied by the same system of values of

x
} y, z:

x = l, y = a, 2 = 0,

in which z Is zero. Similarly it may be said that the two

curves

f(x &amp;gt; y&amp;gt; *)
=

&amp;gt;

&amp;lt; & & 2)
= o

have a common point (xlf yl} 0) at infinity if one have

/C&i,3foO)=0, &amp;lt; (xlf ylf 0)
= 0.

As in 270, an imaginary point is considered as a system of

imaginary values of x, y, z, with the condition that one cannot

make x, y, z real on dividing them by the same imaginary

quantity. An imaginary point at infinity will be an imaginary

point of which the co-ordinate 2 is zero.

EXAMPLE. The general equation of a circle in rectangular

Cartesian co-ordinates x and y is

+ ax + by + c = 0,

therefore in homogeneous co-ordinates,

tx 4- by + cz) z = 0.
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This equation is satisfied by the two systems

whatever values a, 5, c may have. It can therefore be said

that any circle whatever passes through the_points
at infinity

whose homogeneous co-ordinates are (1, V 1, 0), (1, V 1,

0). These twQ points are called the circular points at infinity.

Conversely, every curve of the second order which passes

through the circular points at infinity is a circle. Because

if the general equation of the second degree

Ax2 + 2 Bxy + Cf + 2 Dxz + 2 Eyz + Fz* =

be satisfied by the co-ordinates of these two points, one has

A + 2 J3V17! -0=0, A- 2 J3V^ -(7 = 0,

whence, by adding and subtracting,

A=C, B=0,

which shows that the conic is a circle.

FORMULAS OF TRANSFORMATION.

Suppose that one makes a change of co-ordinates, and that

the formulas of transformation for the Cartesian co-ordinates

are
X 1 = a + mX+nY,
Y =b + pX + qY]

one will take, as homogeneous co-ordinates, the formulas

x 1 = az + mx -f in/,

(2) y =
t&amp;gt;z + px + qy.

If the point (.r, y, z) be at a finite distance (z different from

zero), these formulas are in fact identical with the formulas

(1) according to the definition of homogeneous co-ordinates.

If, on the contrary, z be zero, that is, if the point (a?, ?/, z) be

at infinity, it follows by definition that one will regard the

values a?
,&quot; y ,

z
, given by formulas (2), as the new co-ordinates

of the same point; it is to be noticed that one still has z = 0.
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APPLICATIONS.

Seek the equation in homogeneous co-ordinates of the

straight line which joins the two points Ml
and 3/2,

which
have as co-ordinates (xlf ylt z^, (x2, y2,

z2). This equation is

x y ,

(3) Xl y, ;

x2 y2 *

in fact, the equation which has just been written represents a

straight line, and this straight line passes through the two

points, because the equation is evidently satisfied by the

co-ordinates of the two points. One can express, as follows,
the co-ordinates of any point of the straight line as a function

of a parameter. The determinant (3) being zero, there exists

a linear homogeneous relation between the elements of the

three columns

=
Q, Az

The coefficient A is not zero, because if it were zero the co

ordinates of. a,, ?/b z
l would be proportional to x2, y2, z2,

and the

two points MI, 3/2 would coincide and would not determine
the straight line. The coefficient A being different from

zero, the relations above can be solved with respect to x, y, z,

and one has for x, y, z expressions of the form

x = pxl + vx2, y = ny l + vy2, z = pzl + vz.^ ^

conversely, whatever v and p. be, the point defined by these

expressions lies on the straight line, since these expressions

satisfy expression (3). Since x, y, z can be divided by the

same quantity, one can divide them by p, and on putting
- = A. one will have
/*

x = Xi + Xx2, y = y l + \y.2,
z = z^ + Xz2,

excepting for the point x2, y2,
z2 ,

which corresponds to /x
= 0.

INTERPRETATION OF A. If zl z2 = 1, one has

x _ x
l + Xx2 y _ y 1 + Xy2

&amp;gt;

Z
~ :
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one recalls the formulas already established ( 57), and sees,

on calling M the point (x, yy z),
that

MM2

If z1 and z2 be any quantities different from zero, one could

divide #, y, z by z
lf
and put A = A

;
it follows that

one returns, therefore, to the preceding case, and A is de

fined by

MM,

moreover, A differs from A only by the factor
-*-,

which re-
z

i

mains constant when the co-ordinates (xlf y } , 2j), (x,2, yZ)
z2), re

maining fixed, one imagines that the point m moves along the

straight line. Whence it follows that the two points

X = Xi-\- \X2,
X X

l \X2,

(M) y =

z Zi + Xz2

are harmonic conjugates with respect to the two given points.

It is easily verified that this result is true if one of the two

quantities z
l or z2,

for example z2, approaches zero. Then the

point M 2 becomes a point at infinity, and the point Ml
is

the mid-point of the segment determined by the points M and
M !

;
one can, therefore, still say that the points M, M are har

monic conjugates with respect to the points J/i and M2 . If

the two points M^ M2 be at infinity, Zj = z2 = 0, it still follows

that the two points M and M
,
which are also at infinity, are

harmonic conjugates with respect to M, and M2 .

PROBLEM. Polar of a point M, (x^ y lt 2,) with respect to a

conic

/ (a?, y, z)
= Ax&quot; + 2 Bxy + Cif + 2 Dxz + 2Eyz + Fz* = 0.



378 PLANE GEOMETRY. BOOK III.

Let M
(ic, y, z) be a point of the polar : the co-ordinates of any

point of the straight line M^M will be

Xt + Xx, y^ + Xy, Zi + Xz,

and the values which it is necessary to assign to A in order to

obtain the co-ordinates of the points where the straight line

M
}
M intersects the conic are roots of the equation of the second

degree :

f(xl + Xx, yl -f A?/, zl + Az)
= 0,

Let A and A&quot; be the roots of this equation ;
the co-ordinates of

the points M and M&quot;,
where the straight line 3O/i intersects

the conic, will be

since the pointM is on the polar, the points M and M&quot; should

be harmonic conjugates with respect to Ml and M. For this it

is necessary and sufficient that

A&quot; = -A f

,
A + A&quot; = 0;

that is,

(5) A + 2(f,t
+ *A = &amp;lt;&amp;gt;-

This equation, being satisfied by the co-ordinates of any point

of the polar, is the equation of the polar. Moreover, one can

write it

(5) *i/* + 2/i/ y + z,/ ,
= 0.

If the point 3/: be at infinity, Z L
= 0, the polar of this point is

then the locus of the mid-points of the chords with the angular

coefficient ^-; that is, the conjugate diameter of the direction

Xl

xyi yx{
= 0. The equation of this diameter is therefore

= 0,

as has been found above.
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HOMOGENEOUS CO-ORDINATES OF A STRAIGHT LINK. The

homogeneous co-ordinates of a straight line whose equation is

ux + vy -f wz =

are the coefficients it
t v, 10 of this equation. Thus, the o&amp;gt;axis

has the co-ordinates u = 0, v ^ 0, w = 0. The straight line at

infinity has the co-ordinates u = 0, v = 0, w ^0.

Accordingly a linear, homogeneous equation in u, v, w,

cm -f- bv + cw = 0,

expresses the condition that the straight line (u, v, iv) passes

through the point whose homogeneous co-ordinates are a, b, c
;

this equation is called the equation of this point.

The tangential equation of a curve is the condition which

the co-ordinates u, v, w should satisfy in order that the straight

line with the co-ordinates u, v, iv be tangent to the curve
;
this

tangential equation will be homogeneous in u, v, w. Then the

tangential equation of a circle whose radius is R and whose

center has the co-ordinates a, 6, 1, may be found by expressing

the condition that the distance from the center to the straight

line (u, v, w) is equal to R
;
this gives the homogeneous equa

tion

(ua -[- vb -f- w)
2

R~(iP + v2

}
= 0.

The tangential equation of the conic

f(x, y, z)
= Ax2 + 2 Bxy + Cy

2 + 2 Dxz + 2 Eyz + Fz2 =

is em2 + 2 buv 4- cv 2
4- 2 dzu -f 2 ewo + fMT = 0.

If f = 0, the curve is a parabola, and the tangential equation

is satisfied by the co-ordinates u 0, v = 0, w ^ of the

straight line at infinity : this is what is expressed when one

says that the parabola is tangent to the straight line at infinity.

Let (iii, VD Wi)&amp;gt; (u 2 , v 2 , w$) be the co-ordinates of two distinct

straight lines
;
the equation of their point of intersection will be

u v w

U2 V.2



380 PLANE GEOMETRY. BOOK III.

The co-ordinates u, v, w of any straight line D which passes

through this point can be written

(Z&amp;gt;)

u = u
l -\- \u 2,

v = Vi 4- Av 2 ,
w = Wi + X? 2 ;

these formulas may be verified in the same manner as for

mulas (4). If the sign of A be changed, the co-ordinates of

a second straight line are found to be

(D )
u =

?&amp;lt;!
\u2,

v = v
1 \v2,

w = io
l Xw2)

which is the harmonic conjugate of the first with respect to

the two given straight lines
; for, the equation of the straight

line D is

-f v$ -f = 0,ux + vy -f- wz = U& + v$ -f WjZ -f-

and that of D is, similarly,

V
L
X + v$ + w1^ X (u2x -f

which proves the theorem ( 69).

EXERCISE. Prove that the pole of the straight line (uj, v,, W])
with respect to a curve of the second class ivhose tangential equa
tion is

(f&amp;gt; (u, v, w) = 0, is given by the equation

u t
4-

or

TRILINEAR CO-ORDINATES.

331. DEFINITION. Consider three linear equations

a = ax -|- by + cz,

(6)
= a .r + b y + c z,

where the determinant

a b c

a b c

&quot;

b&quot; ca

= D
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is different from zero. To every system of values of x, y, z in

these equations there corresponds a single system of values of

, /3, y, and, conversely, to every system of values of
, (3, y a

single system of values of x, y, z.

If x, y, z be the homogeneous co-ordinates of a point of a

plane, it follows also that to every system of values of
, /?, y,

all of which are not zero at the same time, there corresponds
a definite point M, and to every point M of the plane there

corresponds a unique system of values of
, ft, y, with the con

dition that systems such as a, (3, y, and pa, pft, py, are not to

be regarded as different systems.
The quantities a, ft, y, are called the trilinear co-ordinates of

the point M with respect to the triangle of reference whose sides

have the equations

ax + fy/ + cz = 0, a x -f b y + c z = 0, a&quot;x + b&quot;y + c&quot;z = 0.

GEOMETRIC INTERPRETATION. If one take z = 1, the tri

linear co-ordinates a, (3, y are equal to the distances of the

point M from the three sides of the triangle of reference

multiplied by factors which have the same sign when the point
M varies. In particular, if one consider the equations

a = (x cos a + y sin a pz),

(7) ft
=

(
x cos 6 H- y sin b qz),

y (x cos c -f- y sin c rz) ;

and if one suppose the origin of Cartesian co-ordinates to be

within the triangle, one sees that for z = 1, a, ft, y are equal
to the distances of the point M from the sides affected with

proper signs. This sign is + for a side AB of the triangle
of reference when the point M under consideration and the

vertex C opposite to AB are situated on the same side of AB
;

it is in the contrary case.

In order to find in trilinear co-ordinates the equation of a

given curve in homogeneous co-ordinates, f(x, y, z)= 0, we

replace x, y, z by the values found by solving equations (6) with

respect to x
t y, z. The values obtained for x, y, z being homo-
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geneous and linear in a, {3, y, the new equation F(a, /?, y)
=

will be homogeneous in a, (3, y, and of the same degree as /.

Conversely, if one be given an equation F(a, (3, y)
= 0, in tri-

linear co-ordinates, it will be sufficient to replace , /8, y by

expressions (6) in order to have the equation of the curve in

homogeneous co-ordinates.

Let, for example,

/(a?, y, z)
= ux -f- vy + wz =

be the equation of a straight line in homogeneous co-ordinates
;

if the preceding substitution be made, one will get for the

equation of this same straight line

F= Ua + F0 + TFy = 0.

One can return to equation (7) by replacing a, /?, y by their

values (6). It is evident also that

u = aU+a V+a&quot;W,

(8) v = bU+b V+b&quot;W,

w = cU + c F + c&quot;W.

The coefficients U, F, TFof equation F are called the tangential

co-ordinates of the straight line in the new system ; equations

(8) express the homogeneous tangential co-ordinates (u, v, w)

as functions of the new
( U, F, TT), and, conversely, they make

it possible to transform every homogeneous tangential,equation

in it, v, w, &amp;lt;(, Vj ?)=(), into another of the same degree

F, W}= 0, and conversely.

THE EQUATION OF THE STRAIGHT LINE AT INFINITY IN

TRILINEAR CO-ORDINATES. The co-ordinates of a point at

infinity have been defined as a system of values x, y, z, in

which z is zero. If formulas (6) be solved with respect to

z, and if the homogeneous linear expression in
, /?, y found

for z be equated to zero, one obtains a condition which is called

the equation of the straight line at infinity. For example, one

deduces from equation (7),

zD = a sin (b c)+/3 sin (c a) + y sin (a 6),
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where D is a constant factor; whence one obtains for the

equation of the straight line at infinity,

a sin A + ft sin B+ y sin C = 0,

where A, B, C are the angles of the triangle of reference.

THE EQUATION OF A STRAIGHT LINE PASSING THROUGH

Two POINTS. Let M and 3/2 be two points whose trilinear

co-ordinates are (a ly ft, y,), (*&&amp;gt; y2),
then will the equation

of the straight line which passes through two points be

a (3 y

i A 7i

2 ft 72

The co-ordinates of a point M of the straight line may be

expressed by the formulas

(M) a = ! + X 2, /3
= ft + A&, 7 = 7i + A

72&amp;gt;

where X has the same meaning as in formulas (4). In fact,

call (a?!, y lt ^), (%, ?/2, z2), (a?, y, z) the homogeneous co-ordi

nates of the points J/b M,, M. One has, according to (6),

since a;=ar 1 + a;2&amp;gt; &quot;&amp;gt;

one has also a a^ + X 2,
and similar expressions for ft and y.

Whence it follows that the point M1 with the co-ordinates

i
- A 2, ft

- X^2, 7l
-

Xy2

is the harmonic conjugate of M with respect to the segment

M,M2 .

By a calculation similar to that which precedes equation (o),

one can show that the polar of the point ( 1? ft, yi),
with

respect to the conic

F(a, ft y)
= Act*+A p*+A&quot;f+2 Bpy+ 2 B ya+ 2

has the equation

ai*&quot;a + ft + ,F = 0, or aF a
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TANGENTS IN TRILINEAR CO-ORDINATES. Let F(a, ft y)
=

be the equation of a curve, and
1? ft, y l

be a point situated

on the curve having the homogeneous co-ordinates x^ y lt 2j.

On replacing , (3, y by their values (6), the equation of the

curve in homogeneous co-ordinates will be obtained: by this

substitution F(a. ft y) is transformed identically into /(a?, y, z),

the first member of the equation of the curve in homogeneous
co-ordinates. The equation of the tangent at the point x

lt y l}
z

1 is

*/% + llfy,
+ 3/v

or the identity

f(x, y, z)
= F(a, ft y)

gives by reason of equations (6),

A = ^ a
t
4- a Fft + &quot;^

yi
,

A = &*\ + ^ ^, + &&quot;^n,

A =^+ ^+&quot;^5

whence a/^ + ?// yi
+ z/\

= a^ + 0F ft
+ y^.

The equation of the tangent at the point a^ fii, yi is there

fore

The tangential co-ordinates of this tangent are given by the

equations

p being a constant different from zero.

One can demonstrate in a similar manner that:

1 The equation of the point of intersection of the two

straight lines Dl
and D2, whose co-ordinates are (C/i, V^ Wi)

and (U2, V2, TFS), is

U V W
U, V, Wl -0;
U, V2 W2

2 The co-ordinates of any straight line D passing through

this point are
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3 The straight line Z)
,
whose co-ordinates are

(D ) U.-XU* F,-AF W^-XW,,

is the harmonic conjugate of 1) with respect to the two straight

lines D! and D.&amp;gt;
;

4 If C/j, FI, TFi be the co-ordinates of a tangent to the

curve whose tangential equation is 3&amp;gt;

( U, V. W) = 0, the equa

tion of the point of contact is

and the co-ordinates of this point are given by the formulas

p
=

&amp;lt;!&amp;gt;

,&amp;gt;

pp = &
Vi

, py = $
HV

Below are given some very simple applications of the pre

ceding considerations.

EXAMPLE I. Form the general equations of conies conjugate

tvith respect to the triangle of reference.

Let

F(a, ft y)
- Atf + A p + A y + 2 Bfiy + 2 B 7a + 2

&quot;/?
-

be the equation of such a conic. The polar of each vertex of

the triangle of reference with respect to this conic ought to be

the opposite side. The polar of the point (,, /5b y,) being

that of the vertex of the triangle whose co-ordinates are : 0,

this polar should coincide with the opposite side y = 0, and

hence B = B = 0. Similarly it may be shown that B&quot; = 0,

and the required equation will be

The tangential equation of these same conies is

72 = 0.

TT2 T7-2

It should be noticed in these formulas that one can suppose
that one of the vertices or one of the sides of the triangle of

reference is at infinity.

2n
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General equation of conies inscribed in the triangle of refer

ence. The most general curve of the second class has in

tangential co-ordinates the equation

AU 2 + A V2 + A&quot;W
2 + 2 BVW+ 2 B 1 WU+ 2 B&quot;UV=

;

on expressing the condition that this curve is tangent to the

three sides of the triangle of reference whose co-ordinates are

respectively

F= and W= 0, W= and U= 0, U= and F= 0,

it follows that A A 1 = A&quot; 0. The tangential equation of

the conies in question is therefore

BVW+ B WU+ B&quot;UV= 0.

Moreover, the equation in trilinear co-ordinates is

B&quot; B a I

B &quot; B P
B B 7

a (3 y

or B2a2+B 2

p
2
+B&quot;

2

y
2-2B B&quot;py-2BB&quot;a7-2 BB ap=0.

The general equation of conies inscribed in a quadrilateral

Let, in homogeneous co-ordinates,

P = lx + I y + l&quot;z = 0, Q = mx + m y + m&quot;z = 0,

E = nx + n y + n&quot;z = 0, S = kx + k y + k&quot;z = 0,

be the equations of the four sides of the quadrilateral. Three

homogeneous linear functions,

= ax + afy + a
&quot;2, @ = bx + b y + 2;

&quot;2, y = cz + c
f

?y + c V,

and four constants p, 7, r, s, can always be found such that one

has identically

(1) pP=a + p + y, qQ = &amp;lt;*-p-y,

rfi = a - J3 + y, sS = a + p-y&amp;gt;
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the identification of the two members of these identities will

give twelve homogeneous equations of the first degree con

necting the thirteen unknown constants

a, a
, a&quot;; b, b

, 5&quot;; c, c
, c&quot;; p, q, r, s.

The calculation can be simplified as follows. The following

equation may be deduced immediately from identities (1) :

(2) pP+qQ-rR-sS = 0,

which will determine p, q, r, s, or, better, the ratios of any
three to the fourth. The constants p, q, r, s being thus de

termined, it follows that one of the identities (1) is deducible

from the other three
;
one can write

2 a =pP -f qQ = rR + sS,

2y =pP~sS = rR qQ;

the functions
, /?, y are therefore known

;
the two expressions

found for each of these linear functions are identical by reason

of the identity (2). The three straight lines =0, /?=0, y=0
are the diagonals of the given complete quadrilateral. In

fact, the equation of the straight line a = can be written in

either of the forms

the first shows that this straight line passes through the vertex

of the quadrilateral which is the intersection of the sides

P= 0, Q = 0, and the second that it passes through the oppo
site vertex R = 0, S = 0.

Thus, on choosing as the triangle of reference the triangle

formed by the three diagonals of a complete quadrilateral, the

equations of the sides of the quadrilateral can be written in

the form

+ /3 + y = 0, ce + /?-y = 0,
- + y = 0, a - /?

-
y = 0.

The vertex P = 0, Q == has the trilinear co-ordinates a 0,

(3 4- y = 0, and the opposite vertex R =
0, S = has the tri-
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linear co-ordinates = 0, /J
=

y.
The first of these points has

the tangential equation F+ TF=0, and the second V 1F= 0:

the ensemble of these two opposite vertices is therefore repre

sented by the tangential equation V 2 W 2 = 0. Similarly,

the ensemble of the two opposite vertices P = 0, S = 0, and

Q = 0, 72 = is represented by the tangential equation

-fj-2
__ yz _ Q rpne generai tangential equation of conies in

scribed in a quadrilateral is, therefore ( 307, Ex. II.),

V*-1V* + \(U 2 - F 2

)=0,

or

The equation of the same system of conies in trilinear co-ordi

nates is

EEMABK. On putting

c c

one obtains the equation

of confocal conies.

EXAMPLE II. Let us consider two reciprocal polar tri

angles with respect to a given conic
;
for simplicity take the

sides of one of the triangles as lines of reference fulfilling

the definition of new co-ordinates, and let

/(a, ft 7)
= i a

+ 2 B&quot;ap)
=

be the equation of the conic. The polar of any point ( , /5 , y )

has the equation ya 4- )8/p + y/ y
= - In particular, the

polars of the three vertices 08 = 0, y = 0), (y
= 0, a =

0),

(a
1 = 0,

= 0) of the triangle have the equations

f a = Aa + B&quot;p + J3 y, //a
= B&quot; + A1

ft + ^y - 0,

- J5 + 5^3 + A&quot;y
= 0.
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These polars are the sides of the second triangle. The co

ordinates of the point of intersection of two corresponding

sides a = 0, f a = satisfy the equations = 0, B&quot;/3 + B y = 0,

or~ = 0, -~-, + - Y
,

- = 0; this point is situated on the straight

line ^L
_|_
A

_j_
JL 0, and similarly for the other two sides.

Thus the three points of intersection of the corresponding sides

of two reciprocal polar triangles lie on a straight line.

A vertex of the second triangle being given by the two equa

tions /. = 0, / = 0, the straight line Bfa = Bf ft passes

through this point; since the equation does not contain the

letter y,
this straight line passes through the vertex (

= 0,

=
0) of the first triangle. The straight lines which join the

corresponding vertices being represented by the equations

BJ-I^
_ Bfp = B&quot;f y ,

it follows that these three straight lines

pass through a common point.

EXAMPLE III. A triangle abc is inscribed in a conic
;
two

of its sides ab and ac revolve about two fixed points p and q

(Fig. 205) ;
find the envelope of the third side be. Let y =

be the equation of the straight

line pq, a = and = those

of the tangents at the points

d and e in which this straight

line intersects the curve; the

equation of the conic will have p\

the form aj3
- / = 0. The

points p and q may be regarded

as the points where the straight

line y = is intersected by the

two straight lines a + pft = 0,

a+q/3=Qj which pass through Fig 205

the point of intersection o of

the tangents at d and e. Any point a of the curve can be

determined by the intersection of two straight lines a ay=Q,

p _ I = 0, which pass through the points d and e, a being an
a

arbitrary parameter which defines the position of the point
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a on the curve. On assigning to this parameter another
value 6, one obtains another point b. Any straight line

passing through the point a has an equation of the form
f V \

a ay+ kl /3
-

)

= 0; in order that this straight line pass

through the point b which is represented by the two equations

a by 0, /?
~ =

0, it is necessary to make k = ab; thus

the straight line which connects any two points a and b of the

curve has the equation a + ab/3 (a -f b) y = 0.

Let now a, b, c be the values of the parameter for the three

vertices a, b, c of the triangle ;
since the side ab passes through

the point p, one has ab = p ;
since the side etc passes through

the point q, one has similarly ac = q ;
the side be has the

equation a + bcfi (b + c) y = ;
if b and c be replaced by

rv\ fi

their values - and -, the equation becomes
a a

(p + q) ay = 0.

If the variable parameter a be eliminated between this equa
tion and the following equation,

aa-

which is obtained by equating to zero the derivative of the

preceding equation with respect to a, one obtains the equation
of the envelope of the straight line be, ^

This envelope is a conic which touches the first at the points d

and e.

The tangential co-ordinates U, V, W of the variable straight

line are given by the equations,

the elimination of a and p gives the tangential equation of the

envelope,

UV(p + &amp;lt;/)

2 - W 2

pg = 0.
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If tangents be drawn to the proposed conic at the points

a, b, c, a circumscribed triangle a b c is formed, of which the

two vertices b and c slide on the two fixed straight lines P

and Q, polars of the point p and q ;
the curve described by the

vertex a
, pole of the straight line be, is the reciprocal polar of

the envelope ; therefore, it is also a conic with a double contact

with the first along the line de.

EXERCISES.

1. The eight points of contact of the tangents common to

two given conies are situated on a conic.

2. A triangle is inscribed in a conic; two of its sides pass

through two fixed points or revolve on two conies doubly tan

gent to the first
;
the envelope of the third side is a conic.

The converse theorem.

3. A polygon with n sides is inscribed in a conic; n I

sides revolve about conies doubly tangent to the first;- the

envelope of the nth side is a conic. The converse theorem.

4. Two conies S and S are given, and also two tangents to

the conic S ; the six straight lines which join two by two the

four points in which these tangents intersect the conic S are

two by two tangent to the same conic which passes through

the point of intersection of the conies S and S . The converse

theorem.

5. Being given three conies which have four given points

in common, a triangle inscribed in one of them has two of its

sides tangent respectively to the other two conies
;
the third

side envelops a conic. The converse theorem.

6. Being given n conies which have four given points in

common, a polygon of n sides inscribed in one of them has

n 1 of its sides tangent respectively to the other conies
;
the

nth side envelops a conic, The converse theorem.

7. A polygon in one of its positions is inscribed in a conic

and circumscribed about another conic
;

if a vertex be made to

move on the first conic, in such a way that n 1 sides are tan

gent to the second conic, the nth side will always be tangent to

this second conic.
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The conies which have four common points in Theorems IV.,

V., VI., and VII., can be replaced by homothetic conies having
two common points, and in particular by circles having in

pairs the same radical axis.

8. The envelope of the straight lines which intersect two

given conies in four points, which are harmonically arranged,
is a conic. The converse theorem.

If the two conies have in trilinear co-ordinates the equations
2 + P~ + y

2 = 0, Aa* + Bj3
2 + Cy

y
2 =

0, the necessary and suffi

cient condition in order that the straight line un + v@ -\-ivy
=

intersects the two conies in four points, which are harmonically

arranged, is

(B + C) n* + (C + A) v2 + (A + B)w
2 == 0.

What will happen when A + B = Q? Apply the result to

the particular case where one of the conies is a circle, and the

other an equilateral concentric hyperbola.
9. We know that the polars of a point p, with respect to

all of the conies which have four points in common, pass

through a fixed point q ;
if the point p describe a straight line,

the point q describes a conic. The converse theorem.

10. If two sides of a triangle inscribed in a conic revolve

about any two given curves, the third side envelops a third

curve
;
show that the straight lines which join the vertices of

the triangle to the points of contact of the opposite sides pass

through a fixed point. The converse theorem.

11. Being given a hexagon inscribed in a conic, the points
of intersection of the opposite sides are located, and also the

points of intersection of each of three diagonals with the two

opposite sides
;
the nine points thus determined are situated on

three straight lines which pass through a fixed point.

12. A conic S is given, and a variable conic S 1

is con

structed, which intersects the first in two fixed points and

which touches two fixed straight lines whose point of inter

section is situated on the conic &amp;gt;S

y

;
the envelope of the

straight line which passes through the other two points of

intersection of the conies S and S 1

is a conic. The converse

theorem.
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13. A quadrilateral is circumscribed about a conic; if any

tangent be drawn to the conic, one knows that the ratio of the

product of the distances of this tangent from the two opposite

vertices of a quadrilateral to the product of the distances of

this same tangent from the other two opposite vertices is con

stant. Show that this ratio is equal to the product of the

distances of the first two vertices from one of the foci divided

by the product of the distances of the other two vertices from

the same focus.

14. The six sides of any two triangles inscribed in the same

conic are tangent to another conic. The converse theorem.

15. Three points are said to be conjugate with respect to

a conic, if the polar of one of them is the straight line which

joins the other two; show that the two systems of three con

jugate points with respect to a conic are situated on another

conic. The converse theorem.

16. Find the necessary and sufficient conditions in order

that a conic coincide with its reciprocal polar with respect to

the circle x2
-f- ?/

2 1 = 0.

17. The tangential equation of a conic in rectangular co

ordinates being

&u2 + 2buv + cv2 + 2 dw -f 2 ev + f = 0,

show that the circle which is the locus of the vertices of the

right angles circumscribed about the conic, has the equation

18. Consider a variable conic tangent to four fixed straight

lines. Show that the circle which is the locus of the vertices

of the right angles circumscribed about this conic passes through
two fixed points, real or imaginary.

19. Consider a variable conic tangent to three fixed straight

lines. Show that the circle which is the locus of the vertices of

the right angles circumscribed about this conic is the orthogonal

conjugate to the triangle formed by the three straight lines.

20. Consider a conic whose equation is

f(x, y) (Ix 4- my + n)
2 =

0,
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f(Xj y) being a polynomial of the second degree in x and y.

Show that the tangential equation of this conic is

$ (u, v) (\u + ^v + v)
2
=. 0,

&amp;lt;f&amp;gt; being of the second degree in u and v. Apply the result

to the case where

21. Form the tangential equation of the curve generated

by a point of a circumference rolling within a circumference

of triple radius. (Hypocycloid with three cusps.) On writing

the equation of the tangent to the curve in the form x sin a

y cos a =2J
&amp;gt;

show that p has the form p = a cos (3 a -f ),
a

and Q being constants.

22. Find the envelope of the axes and the tangents at the

vertex of parabolas inscribed in a triangle.

23. Find the envelope of the axes of equilateral hyperbolas
circumscribed about a triangle.

24. Show that the necessary and sufficient condition in order

that two straight lines whose co-ordinates are (u, v), (u ,
v

~)

intersect on a conic

Ax2 + 2 Bxy 2 Dx + 2 =
0,

is

A B D u u

B C E v v

D E F 1 1
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CHAPTER XII*

SECANTS COMMON TO TWO CONICS.

332. We have found above ( 286) an equation of the third

degree

(1) A + A + A2 + A A3 == 0,

giving the value of A, for which the equation

S + \S =

represents two straight lines. It is proposed to investigate the

nature of the roots of equation (1), called equation in A, and

to study the nature of the points common to the two conies

S = 0, JS = 0. We adopt for this purpose a method due to

M. Darboux, which is reproduced in the excellent Treatise

on Analytic Geometry by M. Pruvost. This method is based

on the following lemmas.

(1) If the equation

S = Ax2 + 2Bxy + Cy
2 + 2 Dxz + 2 Eyz + Fz 1 =

represent two parallel or concurrent straight lines, the homo

geneous co-ordinates a, 5, c of the point of intersection, situated

at an infinite or finite distance, satisfy the conditions

/o\ tt
2 _ ab __ lr _ ac __ be _ c

2

a b c d e f

In fact, let

P= ux -f vy + ivz = 0, Q = u x -f v y + w z

be the equations of two straight lines
;
one will have identically
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whence, taking successively the partial derivatives of the two

members with respect to x, y, z:

Ax + By + Dz = I (Pa
1 + Qu),

Bx + Cy + Ez = (Pv
1 + Qv\

Dx + Ey + Fz = % (Pw
1 + Qw).

The homogeneous co-ordinates a, b, c of the point of inter

section of the two straight lines reduce to zero the first mem
bers P and Q of the equation of the two straight lines

; they

satisfy, therefore, the three equations

Aa + Bb + DC = 0,

Ba + Cb + EC = 0,

Da + Eb + Fc =
;

whence may easily be deduced

a_ ?&amp;gt;_c

a
~

b
~&quot;

&amp;lt;T

a_ 6_cbee
a 6_ c

d
=

e
=

f
;

on multiplying the first group of these relations by a, the

second by 6, the third by c, one obtains relations (2), which

was to be proven.

DEDUCTIONS. If the equation S = represent two straight

lines, discriminant A is zero, and equation (1) has one of its

roots equal to zero. If one have further = 0, this root zero

is double
;
and then the point of intersection of the straight

lines P = 0, Q = 0, which constitute the conic S, lies on S 1

.

In fact, one has

= A a + 2 Bt+C c + 2D d + 2 E e + Ft
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Owing to relations (2), the condition = 0, in which a, b, c,

etc., are replaced by the proportional quantities a2

,
2 a&, 6

2

, ,

becomes

A a* + 2 B ab + C c
2 + 2 D ac + 2 ^ 6c + F c

2 = 0,

the condition required that the point (a, 5, c) lies on the conic

= 0.

(2) If, besides the conditions A = 0, = 0, one have further

=i 0, one of the straight lines into which the conic S = is

decomposed is tangent to S . In this case equation (1) has a

triple root zero.

The identity

S = PQ= (ux + vy + wz)(u x + v y + w z)

gives
A = uu

,
2B = uv + vu

,
C=vv

,

2 D =W 4- MM ,
2E = vw + ivv

,
F= ww

;

and, since

= A& + 2 J5b + Cc + 2 Dd f + 2 Ed + ^f,

the condition = becomes

aW + b (MV + M V) + cW + d (uw
1 + wit

)

+ e (vw + v w) + f ww =
;

this condition shows that the pole of one of the straight lines

P= 0, Q = with respect to S lies on the other ( 296), that

is, that these two straight lines are conjugates with respect to

the conic S = 0. Since their point of intersection is situated

on this conic, one of these straight lines is necessarily tan

gent to it.

333. We have to examine what happens in case the conic

S = consists of two straight lines
;
we occupy ourselves first

with the general case. For this purpose, suppose that S and

S are any conies whatever, and call A! a root of equation (1).

The conic

S + XiS = Q

will be decomposed into two straight lines P1
= and Qi = 0.
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Put

(3) S + AjS ^,, aS + pS = S l9

a and (3 being any two constants subject to the condition that

they will not reduce the quantity (ft A,) to zero, which

determines the coefficients of JS and S in relations (3). Then

$! = is the equation of the pair of secants common to the

conies S 0, /S = 0, which correspond to the root A = A
1?
and

S\ = is the equation of any conic, distinct from S^ 0,

which passes through the points of intersection of the given

conies = 0, S = 0. Since identities (3), solved with respect

to S and S
, give

the general equation S + A*S&quot; = can be written

Si ((3
-

A) + /S i (A
-

Aj)
= 0,

or #! + /* !
= 0,

on putting

Thus, IJL being connected with A by relation (4), the two equa

tions

# + AS = 0, ^ +^ 1
=

represent /ie same co?izc. If one seek the value of /x
for

which this conic reduces to two straight lines, one obtains an

equation of the third degree in
//,

:

(5) Aj + ^ + V2 + AV =
?

in which A
L
= 0, since ^ is decomposed into two straight lines.

It follows from relation (4) that to the root A = A! of equation

(1) there corresponds the root
//.
= of equation (5) with the

same degree of multiplicity.

If the root A! be simple, the root
//.
= is also simple ; t

is

therefore different from zero, and the point of intersection of

the straight lines represented by equation Si = is not on the

conic S\.
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If the root A! be double, the root ^ = of equation (5) will

be double
; @j will be zero, and the point of intersection of the

two straight lines /S^
= will be on the conic /S\. It can

happen, as a particular case, that the minors of A! are zero
;

then ! is zero whatever the conic S\ may be
;
the conic ^

reduces to a double straight line.

Finally, if the root A x be triple, the root
/*
= of equation

(5) will likewise be triple; i and ^ will be zero; the point of

intersection of the straight lines ^ = will be on S
i,
and one

of these straight lines will be tangent to S\. It can happen,

as a particular case, that all the minors of A x are zero
;
then

the conic Si = reduces to a double straight line tangent to S\.

Call A!, A2?
A3 the roots of equation (1) in A.

1 If these roots be unequal, each pair of secants consists of

two distinct straight lines, whose point of intersection does not

lie on any of the given conies. These conies intersect there

fore in four distinct points.

In order to learn how many of these points are real, one has

recourse to the following considerations :

(a) The three roots A
]?
A2 , A3 are real, and the pairs of secants

corresponding to two of them are real. These two pairs of

real straight lines intersect in four real and distinct points.

These four points of intersection of the conies are, therefore,

real and distinct. It is plain that the third pair of secants is

also real, since it passes through the points of intersection of

two conies which are real.

(b) The roots A
15

A2 ,
A3 are real, but one pair only of the

secants is real. Then the four points of intersection are imagi

nary. In fact, a pair of imaginary secants with real coefficients

have in common but one real point, the point of intersection of

the secants
;

since this point does not belong to any of the

conies S or S
,
the points of intersection, all four of which are

situated in this imaginary pair, are necessarily imaginary.

(c) One root A! is real, the other two A2 and A3 are imaginary.
Two of the points of intersection are real and two imaginary.
If A2 be imaginary, A2 =p + iq, the corresponding pair
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is composed of two imaginary straight lines, but not imaginary

conjugates. In the first place, this pair is composed of two

imaginary straight lines
;
because if one of these straight lines

were real, the co-ordinates of a point of this straight line would

reduce S+pS to zero on the one hand, and the coefficient S of

i on the other
;
that is, S and S

;
the two conies would have,

therefore, a common straight line, which contradicts the

hypothesis. Moreover, the pair considered does not consist

of conjugate imaginary straight lines
; because, if that were

so, the point of intersection of these straight lines would be

real, and its co-ordinates would reduce to zero, simultaneously,

the partial derivatives of S + (p + iq)S with respect to x, y, z,

that is, the three partial derivatives of each of the polynomials

S and S
;
the two conies S = 0, S = would consist of two

pairs of concurrent straight lines, which contradicts the

hypothesis. The pair corresponding to the root A2 will be

composed of two straight lines whose equations are

and that corresponding to the root A3 of the two straight lines,

These two pairs and, consequently, the two conies intersect

therefore in two real points, the one situated at the intersection

of the straight lines P = 0, Q = 0, the other at the intersection

of the straight lines R = 0, S = 0. The other two* points of

intersection are imaginary, because on one imaginary straight

line there can be but one real point.

2 If the equation in A have a double root Xl and a simple

root X3 ,
the point of intersection 0^ of the two assumed distinct

straight lines of the pair

corresponding to the double root, lies on the conies S and S
,

and, more generally, on all of the conies aS + @S =
;
the

point of intersection O3 of the straight lines of the couple,



CHAP. XII. SECANTS COMMON TO TWO CONICS. 401

does not, on the contrary, lie on any of these conies other than

3 itself. In particular, the point : lies on the pair S& whilst

3 does not lie on the pair Si. The points of intersection of

the two pairs of straight lines Si = 0, S3
= 0, and, consequently,

those of the two conies are therefore disposed in the following

manner: two of these points are coincident with 1? situated on

that straight line D of the straight lines of the couple S3,

which passes through this point ;
the other two points A and

B are at the intersection of the couple Si with the second

straight line D of the couple SA . The two conies S and S are

tangent in Oi to the straight line
Z&amp;gt;,

and intersect in the two

points A and B situated on D 1

.

Since the couple Si = is composed of two distinct straight

lines, their point of intersection Ob that is, the point of con

tact of two conies, is real
;
the pair S3 containing the tangent

to these conies at the point Oi is real; the points A and B
will be real or imaginary according as the couple Si is real

or imaginary.
If the pair Si be a double straight line, the points of inter

section of the conies are coincident, two and two, with the

points where the double straight line intersects the two straight

lines D and D of the pair S3 corresponding to the simple root.

The two conies have a double contact : the double straight line

is the chord of contact, and the two straight lines D and /&amp;gt;

are the tangents at the points of contact
;
these points of con

tact are real or imaginary according as the pair $3 is real or

imaginary.
o The equation in X has a triple root AA . If the pair which

corresponds to this root consist of two distinct straight lines,

their point of intersection lies on the two conies, and one of

the straight lines of this pair is tangent to the two conies at 0.

The two conies intersect therefore in three points coincident

with and in one other point A ;
these points and A are

necessarily real. In this case, it is said that these two conies

osculate each other in 0.

If the couple which corresponds to the triple root A be a

double straight line, this straight line ought to pass through
the points common to the conies and be tangent to the two

2c



402 PLANE GEOMETRY. BOOK III.

conies; it will be tangent to the two conies at the same point 0.

These two curves intersect therefore in four points coincident

with 0; they are said to have a contact of the third order

or to be sub-osculatory!

If the pair corresponding to the triple root AX be indeter

minate, the two conies are coincident.

REMARK. Determine the conditions for which the equa

tion in X is indeterminate
;

it would be necessary for this that

all conies represented by the equation

S + \S =

decompose into systems of straight lines. One will have,

therefore.

A = = = A -=0.

The conditions A 0, A = show that the two conies be

come systems of straight lines. The condition = shows

that the point of intersection O of the straight lines repre

sented by S = is on S 0, and = shows similarly that

the point of intersection of the straight lines S = is on

S = 0. If the points and be distinct, it follows from

the preceding that the straight line 00 ought to belong to

the two conies
;

if coincide with
,
the two conies consist

of pairs of straight lines intersecting in the same point. Con

versely, if one of these conditions be fulfilled, the equation

in A is indeterminate. One has, in fact, A = = = A = 0.

It can be verified that, in these two cases, the equation

represents straight lines whatever A may be. In fact, if the

conies S and S be systems of straight lines having a common

straight line, one has identically

S = PQ, S = PR,

P
} Q, R being linear functions in x, y, z, and the equation

S \S = Q becomes

which represents two straight lines.
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If S and S be systems of straight lines intersecting in the

same point, one has

S = PQ, S = (aP + bQ) (a P + b Q) ;

S -f- A will then be a homogeneous polynomial of the second

degree in P and Q and is consequently, whatever A may be,

resolvable into two factors of the first degree :

EXAMPLE. Consider a conic which, referred to rectangular

axes, has the equation

S = Ax2 + 2 Bxy + Cy* + 2Ey = 0-,

that is, a conic tangent to the a&amp;gt;-axis at the origin ;
find the

radius of the circle osculating this conic at the origin.

The osculating circle, being tangent to the #-axis, will have

the equation
S = x1 + if + 2 Ry = 0.

The equation S +\S = will therefore be

On equating the discriminant of the polynomial to zero, the

following equation in A is obtained :

(A + A) (E + A72)
2 = 0,

Tjl

which has, whatever R may be, the double root Ax
=

,
and

R
the simple root A3

= A. In order that the two conies oscu

late each other, it is necessary and sufficient that the equation
A has a triple root

;
that is, that A:

= A3,
or

E_ A R _ER- A
The ordinate of the center of the osculating circle is there-

E
fore --

-, and the radius of the circle is the absolute valueA
-pi

of - This radius is called the radius of curvature of theA
conic at the origin.
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If we suppose

the circle is the osculating circle; in order that it be sub-

osculatory, or have a contact of the third order, it is necessary
and sufficient that the pair of secants corresponding to the

triple root

-----I
be a double straight line. This couple is

in order that it be a double straight line, it is necessary and

sufficient that B = 0. Whence the equation of the conic

becomes
Ax2 + Cy

2 + 2Ey=: 0,

and the origin is at a vertex. It is therefore only at the

vertices of a conic that the osculating circle becomes sub-

osculatory.

THEOREM. The roots of the equation in A remain the same

when the two conies S and S are referred to other co-ordinate

axes.

In fact, suppose that the two conies $=0, S =0 be referred

to new co-ordinate axes O^T,, 0^. The formulas &amp;lt;for making
this change of co-ordinates are

(6)

and, by the substitution of these values in the equations of

the two conies, S and S will become

S = A&f + 2 B,xiyi + GSJ? + 2 Aa^i + 2 E&fr+Ff? = 0,
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The equation S + \S =

will become therefore

(A, + XA\)x? + 2 (Bl + \B\) x.y, + . . . = 0.

In order that the conic S-\-XS = Q be resolved into two

straight lines, it is necessary and sufficient that the discrimi

nant of this polynomial in #
1? yly

z l be zero, which gives to

determine X a new equation of the third degree

(7) A! + A + A2 + A A3 = 0.

This equation has the same roots as equation (1). For it fol

lows that both of the equations (1) and (7) give the values of A.

for which the equation S + XS = represents two straight

lines. If equation (1) have three distinct roots, equation (7)

will have the same roots, and consequently will

these relations will be identical if the coefficients A19 A\, Bl}

B\, - F
} , F\ be replaced by their values as functions of A,

A
, B, B , F, F ; they will, therefore, still exist when one

of the equations (1) or (7) have multiple roots. Therefore, in

every case these two equations have the same roots.

EXERCISES.

1 . Let Ml (xlf yi) be a point taken on a conic whose equation
is f(x, y)

= 0. Demonstrate :

1 That the general equation of conies which osculate the

conic / at the point Ml is

f(x, y) + [X (x
-

x,) + ^ (y
- y^ (xfXi

+^ +/y = 0,

A. and ^ being two variable parameters.
2 That the general equation of conies which are suboscu-

latory to the conic /= at the same point is

f(x, y)+\ [_xf Xi
+ yf yi +/,J* = 0,

X being a variable parameter.
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2. The equilateral hyperbolas which osculate a given conic

f= at a point J/i pass through a fixed point P. Find:

1 The locus of the center of these equilateral hyperbolas.
2 The locus of the point P when the point M describes

the conic /== 0.

3. Place two equal parabolas whose axes are perpendicular,
so that they will osculate each other.

4. Being given a parabola and a circle passing through its

focus, find where the center of the circle should be in order

that it have four real points of intersection with the parabola,
or two real and two imaginary points, or four imaginary

points. Study the form and the properties of the curve which

separates these different regions (Ecole Polytechnique, 1865).
5. Let

3 = an2 + 2 buv + cv2 + 2 &uw + 2 evw + fw2 =
0,

2 = a w2 + 2 Vuv + c v
2 + 2 dW + 2 e vw + fiv2 = 0,

be the tangential equations of two conies S and S . It is

required :

1 To form the equation of the third degree which gives

the values of p.
in order that the equation

2 + /x2 =
represent two points.

2 Show in what way the roots of this equation in
/x

are

connected with the roots of the equation in A with respect

to the two conies S and S .

RELATIONS CONNECTING THE ROOTS OF THE

EQUATION IN A.

Let S = Ax* + 2 Bxy + Ctf 4-2 Dxz +2Eyz + Fz2 = 0,

= AW + 2 B xy -f Cy + 2 D xz + 2 #tyz + F z
2 = 0,

be the equations of two conies which have been made homo-
or ?/

geneous by replacing x and y by -, -, and multiplying by z
2

.

The values of A in order that the equation
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represent two straight lines, are given by the equation of the

third degree:

(1)
A + A + A2 + A A3 = 0.

We have seen above that the roots of this equation remain

unchanged when the conies S and S are referred to other axes.

Suppose, more generally, that a, /?, y be three linear functions

in x, y, z, namely,
a = ax -{-by + cz,

(2) p = a x + b y + c z,

y = a&quot;x + b&quot;y + c&quot;z,

which, equated to zero, represent three non-concurrent straight

lines
;
one can find from these equations x, y, z as linear homo

geneous functions of
, /?, y,

x = la + m/3 + ny,

(3) y = l a +m j8 +n y,

z = l&quot;a + m&quot;j3 + n&quot;y,

on substituting these values in the equations of the two conies,

their equations will take the form

S = Arf + 2 B,a(3 + C$&amp;gt; + 2 D&p + 2Ey + Frf = 0,

S = AW + 2 BSap + C^ + 2 D. a/l + 2^ /?y + F. y
2 = 0,

and the equation S + X*S&quot; = will become

In order that the conic S + \S = become two straight

lines, it is necessary and sufficient that this new homogeneous

polynomial in
, /3, y decompose into two factors of the first

degree, that is, that its discriminant

(Ai + AA )(Ci + ^CiX*! + A^ ) -h -

be zero
;
one has therefore, in order to determine X, a new

equation of the third degree :

(4) A! H- A + i A
2 + A/A3 = 0.
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This equation lias, moreover, the same roots as equation (1).
Whence it follows from this result that each of equations

(1) and (4) furnishes the values of A, for which the equation
S + XS = represents two straight lines. If the first equation
have three distinct roots, the second will have the same roots.

Therefore,

these relations will be identities if one replace the coefficients

A
lf A\, B

lf
BL , by their values as functions of A, A

,

B, B
,

etc.
; they exist moreover when equation (1) has

multiple roots. Therefore, in every case, equations (1) and (4)
have the same roots.

We see finally how the roots of the equation in A vary when
all the coefficients of the equation S = are multiplied by a

constant factor K, and all of those of S = by a constant

factor K . Then the equations of the two conies become

and the general equation of the conic passing through their

points of intersection becomes

an equation which is identical with S + XJS = if one put

A. = A. Therefore, in order to obtain the values of A
,
for

which the equation KS + X lCS = represents two straight

lines, it will be sufficient to take the three roots of equation
TT-

(1) in A and multiply them by the factor

Summing up briefly, if the equations of two conies be trans

formed by substituting for a;, y, z expressions such as (3) (that

is, on referring them to any triangle of reference), and if the

equations of the two conies be multiplied by constant factors,

the roots of the equation in A remain the same or are multiplied

by a constant factor.
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Whence it follows that :

A homogeneous relation between the roots of the equation in X

expresses a property of two conies independent of the choice of the

co-ordinate axes, or, more generally, of the choice of linear func
tions a, ft, y, that is, of the triangle of reference. Because a simi

lar relation exists when the axes or the functions a, ft, y have

been chosen in a particular way, it will exist for every other

system of axes or linear functions a, ft, y.

For example, if A], A2, A3 be called the three roots of the

equation in A, the relation Xl A2
= or, more symmetrically,

(A1 -A2)
2

(A2 -A3)
2

(A3 -A 1)
2
-0,

which is homogeneous and of the second degree in Ab A2,
A3,

expresses the condition that the equation in A has a double

root; that is, that the two conies are tangent.

We proceed to determine the meaning of certain other

simple relations.

I. The relation \^ -f- A2 + A3
= or = is the necessary and

sufficient condition in order that there exist a triangle inscribed

in the conic S and conjugate with respect to /S&quot;. In case one such

triangle exists, there exists an infinitude of such.

In order to prove this, suppose that there exists a triangle

which is inscribed in /S and conjugate to S . Then, on calling

= 0, /3
=

0, y =
the equations of the sides of this triangle, the equation of the

conic S will be

S = 2 Baft + 2 Day + 2 Efty = 0,

and that of S

It is easily seen, on equating to zero the discriminant of the

polynomial S 4- A/S&quot;,
that one obtains the equation in A

2 BDE - A (A E2 + CD2 + FB2
) + \SA CF = 0,

in which the coefficient of A2
is zero. Therefore, the condi

tion A! + A2 + A3
= is necessary. Conversely, if this condition

be fulfilled in case of two conies S and S
,
of which the second

S is not resolvable into straight lines, there exists an infini-
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tude of triangles which are inscribed in S and conjugate to S .

In fact, take a point P on the conic S and construct the polar
of this point with respect to S (Fig. a) ;

this polar intersects

Fig. a.

the conic S 1 in two points M and M and the conic S at least

in one point Q; let R be the harmonic conjugate of the point

Q with respect to the two points M and J/
;
we shall show

that this point R belongs also to the conic S.

The triangle PQR being conjugate with respect to the conic

/S&quot;,
the equation of this conic will be

S = A a* + C fl
2 + Ff = 0,

on calling a = 0, j3
= 0, y = the equations of the sides QR,

RP, PQ of the triangle. The conic /tf passes through the

point P the intersection of the sides /?
= 0, y = ,0, and the

point Q the intersection of the sides y = 0, a =
;

its equation

will therefore have the form

S = F7
2 + 2 Baft + 2 #y + 2 #/3y = 0.

On forming the discriminant of the polynomial S -f A/S&quot;,
the

coefficient of A2 will be

= A C F.

Since this coefficient must be zero, and that neither A nor C&quot;

can be zero, because the conic S would reduce to two straight

lines, therefore will .F=0, and the conic S is circumscribed

about the triangle PQR conjugate to
;
what we wish to

establish.
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II. The same relation Ax + ^2 + A3
= or is the neces

sary and sufficient condition in order that there exist a triangle

circumscribed about the conic S f and conjugate with respect to S.

Wlien one such triangle exists, there exists an infinitude.

In fact, if there exist one such, and if
, ft, y be called the

first members of the equations of the sides of this triangle, the

equation of S will be

and that of S ( 282. 2),

S = p
2a2 + &amp;lt;fp + iV - 2 qrfty

- 2 rpya
- 2 pqafi = 0.

On forming the coefficient of X2 in the discriminant of

S -f \S ,
it will be readily seen that this coefficient is zero

;
the

condition Xl -f A2 -f A3
=

is, therefore, necessary. Conversely,

suppose this condition fulfilled
;
select any tangent TT ,

a = 0,

to the conic S and its pole P with respect to S from this

pole two tangents P T and P T can be drawn to the conic S
and one tangent at least P Q to the conic S . Let y = be

the equation of this last straight line P Q ,
and (3

= the equa
tion of its conjugate PR with respect to the system of tan

gents P T and P T . Hence the triangle formed by the three

straight lines a 0, /S
=

0, y = will be conjugate to S, and

two of its sides a = 0, y = will be tangent to S 1

;
we shall

show that the third side /3
= is also tangent to /S&quot;. The

equations of the two conies can be written :

S = Aa2 + Cfi
2 + Fy

2 =
0,

S =2* + ?
2 2 + r2

y
2 - 2 qrfty + 2 D ay

-
2pqa(3 = ;

since the first member of the equation of S should reduce to a

perfect square for a = and for y = 0. The coefficient of

A2 in the discriminant of S + \S is C(p~r
2 D 2

),
and this

coefficient should be zero. C cannot be zero, because if C were

zero the conic S would reduce to two straight lines
;
one cannot

have D =pr, because for this value of D one would have
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and the conic S would be a double line. Therefore, D = pr,

and the conic /S&quot; is inscribed in the triangle P Q H conjugate
to S.

REM-ARK. In case the conic S is circumscribed about a

triangle conjugate to
/S&quot;,

it is said, for brevity, that S is har

monically circumscribed about S
; then, according to what pre

cedes, the conic S is also inscribed in a triangle conjugate to S
9

and it is said that S is harmonically inscribed in S.

EXAMPLE. A triangle being given, there exists always a

real or imaginary circle with respect to which the triangle is

conjugate. For, on calling a = 0, ft
= 0, y = the equations

of the sides of the triangle, the general equation of the conies

conjugate to the triangle is

The condition that this equation represents a circle gives two

equations of the first degree, which determine the ratios of the

coefficients A, C, F to any one of them. The circle thus

found is called the circle conjugate to the triangle; its center

is the point of intersection of the altitudes of the triangle,

because if from a point a perpendicular be dropped on the

polar with respect to a circle, the perpendicular passes through

-the center of the circle. v
,

Having proven this, we proceed to demonstrate the following

theorem :

In case a conic is inscribed in a triangle, the power of the

center of the conic with respect to the circle conjugate to the

triangle is equal to the algebraic sum of the squares of the axes of

the conic.

liefer the conic to its axes, and let

be the equation of the conic, A 1 and C being the squares of

the lengths of the axes. Let, moreover,

& = x- + y- + 2 DJC + 2 Ey + F =
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be the equation of the circle conjugate to the triangle. Then
the conic S will be inscribed in a triangle conjugate to

;

therefore, if the discriminant of the polynomial S -\- \S f be

formed, the coefficient of A2

ought to be zero. This coeffi

cient is A C f

(F A
C&quot;);

since A 1 and C are different from

zero, we have
F^A +a,

which proves the theorem.

III. The necessary and sufficient condition that there exist

a triamjle inscribed in a conic S and circumscribed about a

conic S is

& 2 - 4 A = 0,

or Ai
2 + A2

2 + A 3
2 - 2 A aA 2

- 2 A2A3
- 2 A^ = 0,

or VA^ VAo&quot; VAg&quot;
=

;

if tli ere exist one triangle, there exists an infinitude.

Let a = 0, ft
= 0, y = be the equations of the sides of a

triangle inscribed in S and circumscribed about S 1

. The

equations of the two conies can be written

S = 2 Ba/3 + 2 Day + 2 E(3y = 0,

S 1 = p-a
2 + f/fi* + ?Y - 2 qrfty

- 2 rpya
- 2 pqafi = 0.

If the discriminant of /S + A be formed, it follows that the

coefficients of A3
,
A2

,
A are

Dq 4- Brf.

It follows, therefore, that 2 4A =
0, a relation which

can be written, owing to the relation between the coefficients

and the roots,

(A! + A2 + A3)
2 - 4 (AiA 2 + A^ + A2A3)

=
0,

or (5) Aj
2 + A2

2 + A3
2 - 2 A

:
A 2
- 2 A2A3

- 2 X^ = 0.



414 PLANE GEOMETRY. BOOK III.

This last relation being homogeneous with respect to the roots

of the equation in A, will hold, as has been seen, in whatever
form the equations of the two conies may be written. It can

be easily verified that this relation is equivalent to one of the

followin :

v% vx^ = o.

Conversely, if relation (5) hold, there exists an infinitude of

triangles inscribed in S and circumscribed about S . This may
be proven by following the method which has been employed
in the cases of Propositions I. and II.

EXAMPLE I. Consider two ellipses which have the same
center and coincident axes, whose equations are

8=^ + 1-1 = 0, S =-^-^ + l = 0.
or b

2 a 12
b

2

The values of X for which the equation S + XSf = repre
sents two straight lines are

-1 A _! A - 6 2
.Ai- l, A2 --, A3 --,

therefore the necessary and sufficient condition in order that

there exist a triangle inscribed in S and circumscribed about

S 1

is

l2. =ft
a b

EXAMPLE II. Consider two circles whose equations are

S = o*+y2 -#* = (), S = (x
-

d)
2 + if

- r
2 =

;

the coefficients of the equation in A are

A = r
2

,
= R2 + 2 r2 - d\ = 2 R- + r2 - d2

;

the necessary and sufficient condition in order that there exist

a triangle inscribed in S and circumscribed about S is, there

fore,

(2 i* -|- E -
d-)

2 - 4 r2

(2 R- + r8 - d2

}
= 0,

or, simplifying,

(cZ
2 - R2

)
2 - 4 r2R2 =

0,

d2 - E- = 2 rR,
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a well-known relation connecting the radii of the circles arid

the distance between the centers of the two circles, the one

circumscribed, the other inscribed or escribed to the triangle.

EXERCISES.

1. Show that the circle conjugate to a triangle is real when
the triangle has an obtuse angle, and imaginary in case the

angles of the triangle are acute.

2. Prove that the locus of the centers of conies inscribed in

a given triangle, so that the sum of the squares of their axes is

constant, is a circle whose center is the point of intersection

of the altitudes.

3. In case a triangle is circumscribed about a parabola, the

point of intersection of the altitudes is on the directrix.

4. When a triangle is inscribed in an equilateral hyperbola,
the point of intersection of the altitudes lies on the curve.

(In these exercises, the point of intersection of the altitudes

is regarded as the center of the circle conjugate to the tri

angle.)

5. A parabola, y
2

=2px,

and a circle, x2 + if + 2 ax -f 2 by + c = 0,

are given ;
determine the necessary and sufficient condition in

order that there exist a triangle inscribed in the circle and
circumscribed about the parabola. When will the circle pass
through the focus of the parabola ?

6. The equations of two conies being written in the form

S = Aa* + Bp + Cy
2 = 0,

what relation must exist among the coefficients :

1 In order that S be harmonically circumscribed about /S&quot;?

2 In order that S be circumscribed about a triangle circum
scribed about S ?

7. Two conies are tangent to each other at a point M\
demonstrate that the necessary and sufficient condition, in
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order that there exist a triangle inscribed in S and circum

scribed about S
j
is that the radius of curvature of S at the

point M be equal to four times that of S at the same point.

PARTICULAR CASE. If a circle which passes through the

focus of a parabola be tangent to the parabola at a point 3f, the

radius of curvature of the parabola at M is four times that of

the circle.

8. Consider a triangle and the circumscribed circle; there

exists a conic tangent to three sides of the triangle and tangent

to the circumscribed circle at a given point M.

1 Find the center of the circle of curvature of this conic

at M.

2 Find the locus of this center when the point M describes

the circumscribed circle.

9. What relation should exist between the roots of the

equation in A in order that there exist a quadrilateral in

scribed in the. conic $, and circumscribed about the conic S ?

If there be one such quadrilateral, there will be an infinitude.

As a particular case, we apply the relation found to the

case where the conies are two circles. (See 109.)

10. Consider an ellipse E, of which the major axis and the

focal distance are respectively 2 a and 2 c. Describe a circum

ference of a circle C with the radius V2(a
2 + c

2

)
about one of

the foci F of the ellipse as center. A tangent PiP2 is drawn

from any point Pl of the circumference C to the ellipse ;
from

the point P2,
where it intersects the circumference (7 again, a

second tangent P2Ps is drawn to the ellipse ; finally, from the

point P3,
where this second tangent intersects the circumfer

ence C
,
a third tangent P3P4 is drawn to the ellipse which

intersects the circumference in the point P4 . It is required

to prove that the second of the tangents drawn from the point

P4 to the ellipse passes through the initial point Pj. (ficole

Normale, 1885.)
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THE APPLICATION OF THE PROPERTIES OF HOMOGENEOUS
POLYNOMIALS TO THE THEORY OF CURVES OF THE

SECOND DEGREE.

Let f(x, y, z] =-.Ax* + 2 Bxy + Cy
2 + 2 Dxz + 2 Eyz -f Fz

2

be a homogeneous polynomial of the second degree in x, y, z.

It is known that if the discriminant A be different from zero,

the polynomial / is resolvable into a sum of three squares

linearly independent; if this discriminant be zero without all

the minors being zero, the polynomial can be decomposed into

a sum of two squares linearly independent ; finally, if all the

minors of the discriminant are zero, the polynomial is a per
fect square ;

the converse statements are true.

1 Suppose that the discriminant

& = ACF- AE- - CD- - FB2
-f 2 BDE

is zero, and similarly all of its minors a, b, c, d, e, f. Then
the polynomial / is the square of a linear function

f(x, y, z) a (Ix -f- my + nz) ,

a being a constant which is positive or negative ;
and on

representing the function Ix + my -\- nz by ,
it follows that

one has identically f x
= 2 ala, f y

= 2 ama, f z
= 2 ana. In

this case, if
a?, ?/, and z be regarded as the homogeneous co-ordi

nates of a point, the equation

/(*,3M)=0

represents two straight lines coincident with the straight line

Ix -f my + nz = 0, and the three equations

/a = 0,/,= 0,/,=*0

represent this same straight line or are identities, since, for

example, the equation f z
= when n = 0.

2 Suppose that the discriminant A is zero and that its

minors are not all zero. Then the polynomial / can be

resolved into a sum of two squares linearly independent,

(1) /(,y,2)=
2+W

2D
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where a and b are constants and a and
/5 are linear homo

geneous functions of x, y, z :

a = Ix -f my -f- nz, /?
= I x + w ^ + ?i 2.

To say that these functions are linearly independent, is to say
that there do not exist two constant factors k and &

,
both of

which are not zero, and such that A* 4- k ft is identically zero.

The polynomial / may be written in an infinite number of

different ways in form (1); we shall show how all of them
can be obtained. The identity (1) can be written

/(a;, y, z)
= (aVa + ftV^6) (aVa - ftV^T),

or f(v,y,*)=PQ,

where P and Q designate two homogeneous linearly independ
ent functions in x, y, z. These two linear functions are easily

found; in fact, if the three coefficients A, C, F are not all

zero, the polynomial / will be a trinomial of the second degree
in x, y, or z, and this trinomial can be resolved into factors

of the first degree, which will be P and Q ;
if A, C, and F be

zero, the discriminant reduces to 2 BDE, and since it is zero,

one at least of the three coefficients B, D, E is also zero,

and then one of the three variables x, y, or z is a factor, and

the decomposition is immediate. The polynomial being thus

put under the form PQ, all possible decompositions will take

the form of a sum of two squares, on noticing that one has

identically ,-
f

(2) /

where A and
/u. designate constant coefficients different from

zero. On allowing A and /x to vary, there will be an infinitude

of decompositions of / into two squares : one has all of them,
because if one imagines any decomposition

/= %i2 + &i/?i
2 = (iVa : + ftV &i) (iVi ftV 61),

in which al} ft are linear functions, a
x and &]_ constants, one

would have identically

(!Vo~i + ftV
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whence, on designating a constant by ft,

i
= kP,

and finally

an expression which becomes identical with (2) on supposing

x=fc,M=|
The values of #, y, 2;,

a; =
a-,, y = y,, 2 = z,,

which reduce simultaneously to zero the linear functions P and

Q, and, consequently, the functions a and
/?, which are equal to

XP + yu-Q and AP /nQ, reduce to zero the three partial derivar

tives/x, /;,/,.
If the coefficients of the polynomial / be real, the factors P

and Q can be real or imaginary. In order to obtain, in the

decomposition of (2), the squares in case of real coefficients, it

will be necessary, if P and Q be real, to take X and
//,

real
;

then one of the squares which appears in formula (2) has a

negative coefficient, the other a positive ;
if P and Q be imagi

nary, one could put, since their product is real,

where h represents a real constant and p and q are real linear

functions; one puts then A=/i(X + /* ), p=\ l

I/JL ,
and it fol

lows:

/=

where the two squares have the same sign as that of h.

The geometric interpretation of these results is very simple.
On considering x, y, z as the homogeneous co-ordinates of a
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point, it. follows that the identity /(#,#, z) PQ shows that

the equation /= represents two distinct straight lines, real or

imaginary. If zl be different from zero, the two straight lines

intersect in the point whose Cartesian co-ordinates are
,

--

y ?.

the straight lines

pass through this point and are harmonic conjugates with

respect to the two straight lines P = and Q = 0. If z
l be

zero without either of the functions P and Q reducing to the

form nz, the two straight lines are parallel and have as common

angular coefficient ~. The straight lines a = 0, ft
= are

parallel to the same direction and are harmonic conjugates
with respect to the straight lines P = 0, Q = ;

one has iden

tically, in the present case,

P= mQ + nz,

m and n being constants
;

if therefore one put m\ = /*, the

straight line a = becomes the straight line at infinity and its

conjugate (3
= becomes the straight line equi-distant from

the parallel straight lines P = 0, Q :

2mQ + nz = 0;

since f(x, y, z) PQ = (mQ + nz) Q, the two equations

represent this same straight line, provided that neither of them

be identically zero, which would happen, for example, if the

quantity Q y
were zero.

Finally, if one of the two functions P or Q, Q for example,

were of the form nz, the straight line Q = would be removed

to infinity, the equation/= would represent a single straight

line P = at a finite distance, and the two straight lines

a = and /?
= would be parallel to this straight line and

situated at equal distances on either side of it.
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3 Suppose, finally, that the discriminant A be different

from zero. In this case, the polynomial f(x, y, z) can be

decomposed into three linear independent squares,

(3) f(x, y, z)
= aa2 + bfi + cy

2

where a, b, c represent constants different from zero and
, /?, y

linear functions :

a = Ix + my + nz, j3
= I x + m y + n z, y = ux + vy -f wz,

such that the determinant

I m n

V m 1 m
U V W

be different from zero.

In order to obtain all the decompositions of / into three

squares of the form (3), we notice that one of the three linear

functions , /?, y can be chosen arbitrarily., the function y for

example, with the condition that the coefficients u, v, tv of this

function DO NOT REDUCE the following polynomial to zero,

(4) c (u, v, w)= ait
2 + 2 buv + ci

2 + 2 duw + 2 eviu + fw2
.

In fact, w, v, w being chosen arbitrarily, let us consider the

difference

where X is a constant
;
this difference F is a homogeneous poly

nomial of the second degree in x, y, z. Determine A so that the

discriminant of F(x, y, z) be zero
;
we will have the equation

B-Xuv
B Xuv

C-Xv2

D Xmu

E Xvw

D Xuw E Xvw F Xw2

whose development with respect to powers of A is obtained by

putting in the equation in A in 286
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and consequently A =
0, =

0, = -
&amp;lt;(?, v, w\ &amp;lt;f&amp;gt; represent

ing polynomial (4). Equation (5) reduces, therefore, to the

equation of the first degree

which determines X if
&amp;lt;f&amp;gt;(u, v, w) be not zero. Let c be the value

of X deduced from this equation :

&amp;lt;

(tt, v, w)

The discriminant of the function F=fcy2

being zero, this

function can be decomposed into a sum of two squares ;
it can

not be a perfect square a 2

,
because if it were such one would

have

the function / would be a sum of two squares and its discrimi

nant A would be zero, which contradicts the hypothesis. The

polynomial F=fcy2

being decomposable into a sum of two

squares, one can apply to it what has been said in the preceding

paragraph and find all possible ways of putting it in the form
a 2 + bfl

2
. To each of these decompositions of F (x, y, z) into

two squares will correspond one decomposition of/ into three

squares

/= aa?+
Z&amp;gt;/2

2 + cy
2

,

y having been chosen arbitrarily.

If Fl)Q decomposed into two factors

(6) F(x,y,z)=f-cf=PQ,
the values x = x

l} y = y^ z = z
lf which reduce P and Q to zero,

reduce a and ft to zero, and reduce also the partial derivation

F x,
F

y ,
F z to zero.

Since

\ Fx
= $fx

-
CUy,

1 F
y
= l/y

-
&amp;lt;wy, -I

F z
= \fz

-
CWy,

one has, on replacing x, y, z by x
lt y^ z

1}
and representing the

quantity uxi + vy1 -\- wzl by y,,

(7) $fXl
= cuyi , f

yi
= cvn , l/^ = cwn ;
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the constant y l
is not zero, because, if it were, /v /^, /^ would

all be zero, and the discriminant A would vanish. One has

identically

(8) 1 (xj

and, on putting, in this identity, x x
lf y = ylt

z = z
lf
and apply

ing the theorem of homogeneous functions,

Whence it follows that

and, on replacing cy
2 in the identity (6) by this expression, one

gets, after removing the denominator 4/(a;1 , 2/ x, Zj),

(9) 4/(s, y, )/(!, 2/i? !)
-(A + 2// yi

+ zfJ*
= APQf(***&

Finally, if in the relation which determines c,

C&amp;lt;(M, r, w)= A,

w, v, 10 be replaced by their values deduced from relations (7),

iA iA iA
t(^2^ =2^ =2^

it follows, since the polynomial &amp;lt;/&amp;gt;

is homogeneous,

and, on replacing cyf by its value /(a?,, 2/i, i),

(10) &amp;lt;#&amp;gt;a/Xi?
i/yi , t/Zi)

= A/(a?1 , ^ j) ;

which gives a remarkable identity.

GEOMETRIC INTERPRETATION. On considering x, y, z as the

homogeneous co-ordinates of a point, it is plain that the equa-



424 PLANE GEOMETRY. BOOK III.

tion f(x, y, z)
= represents a conic not reducible to two

straight lines, real or imaginary ellipse, hyperbola, parabola.
The identity

f(x, ?/, 2)
= au? +

?&amp;gt;/2

2 + cy
2

represents the first member of the equation of this conic de

composed into a sum of three squares. If the three coefficients

a, b, c have the same signs, the curve is an imaginary ellipse ;

if not, it is a real conic : it is known, moreover, that in all

possible decompositions of / into three squares, the number of

coefficients a, 6, c which have a definite sign is invariable. One
of the functions a, /?, y can be chosen arbitrarily, for example
the function y = ux -f- vy + wz, with the condition that one
does not have

&amp;lt;f&amp;gt;(u, v, iv)= 0, that is, with the condition that
the straight line y == is not tangent to the conic

( 126).

Suppose that this condition is fulfilled, the equation of the
conic could be written in the form

which shows that P = 0, Q = are the equations of the tan

gents at the points where the straight line y =: intersects the

conic. We have called
a;,, y v ,

z
1 the values of x, y, z which

reduce P and Q to zero, that is, the homogeneous co-ordinates

of the point of intersection of the two straight lines P=0,
Q = ;

the straight line y = is the chord of contact of the

tangents emanating from this point, or the polar.of this point ;

owing to the identity (8), the equation of this straight line can
be written

which is the well-known equation of the polar of the point
with the co-ordinates a?j, ?/ 1?

zv Owing. to the identity (9), the

equation PQ = 0, which represents the ensemble of the tan

gents drawn from the point (x^ ylf
z

})
to the conic, can be

written

4/fe y, 3)/(oa, y,, z,)
-

(xf Xi
+ yf Vi

+ zfJ = 0.

Finally, identity (10) shows that the necessary and sufficient

condition in order that
&amp;lt;(/ v /^, /y be zero is that /fa, y z,)
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be zero and conversely, which, means geometrically that the

necessary and sufficient condition in order that the polar of

the point x
lt y, zt be tangent to the curve is that this point be

on the curve.

The straight lines a = 0, /?
= pass through the point of

intersection of the tangents P = 0, Q = 0, and are harmonic

conjugates with respect to these tangents. If z
l
be different

from zero, the two straight lines P = 0, Q = are concurrent

in a point situated at a finite distance, whose Cartesian co

ordinates are , If zl
= 0, these two straight lines are

Z l
Z

l y
parallel with angular coefficient

,
or one of them is at infinity,

i

which happens when one of the functions P or Q reduces to

the form nz
;
in this case (zl

==
0), the straight line y has

the equation

it coincides with the conjugate diameter of the direction of the

two straight lines P = 0, Q = 0, or of that of the two which

is at a finite distance
;
whence it is said that y = is the polar

of the point at infinity (x^ ylt 0).

Thus, if the equation be written in the form

f(x, y,z)
= aa2 + bp + cy

2 = 0,

the straight line y = is the polar of the point of intersection

of the other two straight lines a= 0, ft
=

;
since the same is

true in regard to the straight lines a = 0, ft
= 0, it follows that

the triangle formed by the three straight lines a = 0, fi 0,

y = 0, is a conjugate triangle with respect to the conic.

Application to the reduction of the equation of the second de

gree.

1. Assume that f be different from zero
;
then take y = z,

that is, u = 0, v 0, w = 1, and we obtain

c= A =A
1- f

Identity (6) gives, in this case,

f(x, y,z) -*z2 = PQ=
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The co-ordinates of the point of intersection of the straight
lines P= 0, Q = 0, satisfy the equations

which follows from relations (7), where one supposes u= v= 0;
this point is the center of the curve. The straight lines

P= 0, Q = are the asymptotes : their homogeneous equation
is therefore

or, in Cartesian co-ordinates,

f(x, r,i)-|
= o.

These asymptotes, P = 0, Q = 0, can be real or imaginary. In

the first case the curve is a hyperbola, the coefficients a and b

have opposite signs ;
in the second case it is an ellipse, the co

efficients a and b have the same signs. The straight lines

a = 0, /3
=

0, whose equations have the form

are harmonic conjugates with respect to the asymptotes ; they

are two conjugate diameters
;

if the ratio - be so determined
/x

that these straight lines are perpendicular to each other, they

coincide with the axes. On taking the straight lines a = 0,

ft
= as axes of Cartesian co-ordinates, the equation of the

conic takes the simplified form,

a X 12 + b Y 2 + - = ().

2. Suppose f = 0. Then the preceding method of reduction

is no longer applicable, because
&amp;lt;(0, 0, 1)

= 0. We give a

second method of reduction which is applicable in all cases.

It has been proven that if x
lf ?/ Zj be the homogeneous co

ordinates of any point not situated 011 a conic,

y, )/(i, y* *i)
= C*A + 3(T + A) 2 + PS,

where P = 0, Q = ^ are tne equations of the tangents drawn
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from the point (xlf y^ z^)
to the curve. Take, in particular,

Zi = with the condition f(x^ y^ 0) 0, and notice that

A + yf n + *A = i/ *

we have

4/0, y, *)/(* y,, 0)= (^/ x + ?/i/ y)
2 + PQ ;

the straight lines P = 0, Q = intersecting at the point at

infinity (xlt y^ 0), are parallel, or one of them is at infinity.

One will have, for example,

Q = mP + 712;,

where m is zero, if Q be at infinity. Then the equation/=
can be written

C*j/ , + yifyY + mP2 + nPz = 0.

On putting z 1, one will obtain the equation of the curve in

Cartesian co-ordinates
;
then one chooses the straight line

for the new axis O X 1

,
and the straight line P= for the axis

O
T&quot;,

and the equation will take the reduced form

in the particular case when the straight line Q = is at in

finity, one has m = 0, therefore q = 0, and the equation takes

the very simple form

Y* + 2pX =
0,

which represents parabolas.

The ratio U could be so determined that the straight line
xl

is perpendicular to P =
;
the first straight line will then be

an axis of the conic and the second the tangent at the vertex.



BOOK IV*

THE GENERAL THEORY OF CURVES

CHAPTER I

THE CONSTRUCTION OF CURVES IN RECTILINEAR
CO-ORDINATES.

334. The construction of a curve is simply the graphic

representation of the trace of the real function of a single

variable, when this variable is allowed to change in a con

tinuous manner. If the values of y which correspond to the

various values of x be calculated, a certain number of the

points of the curve can be constructed, but these points are not

sufficient, even for an approximate trace of the curve, because

they can be connected in various different ways, and, more

over,* it can happen that, between two ordinates whic^i are very

nearly equal, the curve has infinite branches. It is, therefore,

indispensable first of all to know by some general method the

trace of the function which represents the variations.

When the equation is solved with respect to one of the vari

ables, y for example, one considers each of the determinations

of y in particular, and examines them for the limits of x for

which ?/ remains real. Let x
(}
and Xi be the two limits

;
if the

value of y remain finite in this interval, it furnishes a finite

branch of the curve
;

if the value of y becomes infinite for one

or more intermediate values a, 6, of the variable, one has

various infinite branches, asymptotic to the straight lines that

correspond to the values of x, which make y infinite
;
in such

a case the interval XQ to x^ is subdivided into several intervals :

428
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the first from x to a, etc., in such a way that in each of them

the ordinate does not become infinite. Afterwards one ex

amines how ~y varies in each of the intervals, for example as x

increases from XQ to a. Sometimes one perceives immediately,

from the expression for
?/,
how this quantity varies, but more

often that is not the case
;
in this case, however, one has recourse

to the derivative. It is known, moreover, that if the function

remains finite, as the variable x increases from a certain value,

the function will vary in the same sense as the variable so long

as the derivative preserves the same sign ;
the function in

creases if its derivative be positive and decreases if its deriva

tive be negative. Let
, /?, y, be the successive values of x

comprised between XQ and a for which the derivative changes

in sign. As the variable x increases from x to
,
the deriva

tive preserves the same sign, for example the sign -f, and the

function increases
;
from a to /?, the derivative is negative and

the function decreases, etc. We have demonstrated that the

angular coefficient of the tangent at any point of the curve is

equal to the value of the derivative at this point. Thus, the

sense in which the ordinate of the curve varies is indicated by
the angular coefficient of the tangent.

When the derivative changes its sign from positive to nega

tive, the ordinate ceases to increase and then decreases
;

it

attains therefore a maximum value. If, on the contrary, the

derivative change from negative to positive, the ordinate ceases

to decrease and then increases
;

it attains therefore a minimum

value. It should be noticed that these terms maximum and

minimum should not be taken with their literal meaning ; they
indicate only the comparison of a particular value of the

ordinate with its neighboring ordinates.

In general, the derivative, remaining finite and continuous,

changes in sign on becoming zero, and consequently the tan

gents at the points whose ordinates have the maxima and

minima values are parallel to the axis OX. Every value of

x which makes the derivative zero does not necessarily give

a maximum or minimum value of the ordinate
;
one must

examine if the derivative change in sign : moreover, in all the

cases, the tangent is parallel to the axis OX&quot;.
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335. EXAMPLE I. The strophoid defined in 23 has the equation

X

a + x

When x varies from zero to
,
the numerical value of y increases

continually from zero to infinity ;
whence one obtains the two infinite

branches ON, ON asymptotic to the straight line HH (Fig. 18). If x

vary from zero to a, the ordinate y begins with the value zero and returns

to zero, passing always through finite values
;

it begins therefore by

increasing, then later it decreases, and consequently it passes through a

maximum value
;
but one does not see if the function does not experience

in the interval several alternatives of increasing and decreasing. The

positive value of y has the derivative

, _ - a2 - ax + a?

The numerator becomes zero for two values of x, the one x
1 positive

and less than a, the other negative. When x varies from zero to xi, the

derivative is positive, the function increases
;
from x\ to a, the derivative

is negative, the function decreases
;
the ordinate is a maximum for the

value

equal to the greater segment of the line a divided in a mean and extreme

ratio.

336. The tangent can often be determined at certain points

of the curve, or, what amounts to the same thing, certain par

ticular values of the derivative, without recourse to the general

expression for this derivative. Consider, for example, the

point of the strophoid; join this point to a neighboring

pointM whose co-ordinates are x and y ;
the angular coefficient

of the secant OMis equal to the ratio -
;
the angular coefficient

&

at the point will be found on seeking the limit of this ratio

as x approaches zero. Here one has

when x approaches zero, this ratio has the limit 1. The two

branches which pass through the point have as tangents at
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this point the bisectors of the angles of the axes. The tangent
y

at the point A would be found by considering the ratio-
;

Ct/
~~* CO

this ratio increasing indefinitely as x approaches a, the tangent
at the point a is parallel to the axis Oy.

337. EXAMPLE II. We propose to study the curves represented by
the equation y

1 Ay? + Bx2 + Cx + D (it can be demonstrated that these

curves, reproduced by projection, represent all the curves of the third

degree). One can assume that the coefficient A is positive without chang

ing the direction of the x-axis. There are several cases to consider :

1 The three roots of the polynomial of the third degree are real arid

unequal ;
let a, ft, c be these roots arranged in order of increasing magni

tude
;
then we may write

2 - A(x - -
c).

The ordinate is imaginary when x varies from co to a
;

real when x

varies from a to b
; imaginary when x varies from b to c

;
real when x

o\ jb c

Fig. 206. Fig. 207.

Fig. 208. Fig. 209.

varies from c to -f co. The curve is composed of a closed oval and an

infinite branch (Fig. 206). 2 When the two roots a and b become

equal, the oval reduces to a point a (Fig. 207). 3 When the two roots

b and c are equal, the oval becomes united to the infinite branch at b

(Fig. 208). 4 If the three roots
, &, c are equal, the curve has a cusp
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at a (Fig. 209). 5 Finally, if the polynomial of the third degree has but

one real root
,
the curve has the form given in Fig. 210.

The angular coefficient of the tangent is given by the formula

,
3 Ax2 + 2 Bx + C _ 3 Ax* + 2 Bx + C

2y/Ax* + Bx* + Cx+D 2 y

lu the first case, the numerator, which is the derivative of the polynomial

of the third degree, becomes zero for a value a comprised between a and

/;, and for a value ?&amp;gt; comprised between b and c
;
to the first corresponds

the maximum value of the ordinate in the oval. In the third case, the

numerator becomes zero for the double root 6
;
the denominator becoming

zero also, the formula assumes the indeterminate form - and no longer

determines the tangents at the double point b
; they may be found by

determining the limit y/A(b a) of the ratio =-=-, as x approaches 6.
X&amp;gt;

338. When the equation, supposed algebraic, is not solved,

whether this solution is possible or not, or whether it is

deemed useless to solve it, we can often, by employing the

theorems concerning the roots of equations, construct the

curve.

Certain properties of the curve can be immediately recog

nized by inspection of its equation. 1 When the equation

has terms all of which are of even degrees, or of odd degrees,

it is clear that, if it be satisfied by x = a, y = ft it will also

be satisfied by x = a, y = /? ;
that is, the two points

(ftj ) ? (, /3)
are situated symmetrically with respect to

the origin; therefore this point is the center of the curve.

2 If the equation contains only even powers of one of the

variables, y for example, the real values of y, which correspond

to a particular value of x, are two by two equal and of contrary

signs ;
if the axis be rectangular, it follows that the points of

the locus are situated symmetrically with respect to the x-axis,

which is an axis of the curve. 3 When the equation of the

curve remains unaltered, when x is changed into y and yiuto x,

if the equation be satisfied by x = a, y = ft it will also be

satisfied by x = ft y = a
;
the two corresponding points are

situated symmetrically with respect to the bisector of the angle

YOX, which is an axis of the curves. It follows similarly
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that, if the equation does not change by substituting y for

x and x for y, the bisectors of the angle YOX is an axis.

Let f(x, y) be the equation of the curve
;

it is known

f (x w)
that the derivative y is given by the formula y = J

*;
-

/ rW 30

The expression for ?/ contains the two variables x and y ;
it

gives the angular coefficient of the tangent at every point

whose co-ordinates are known, excepting at the points where

the two partial derivatives are zero at the same time.

339. EXAMPLE III. Construct the locus of the points such that the

product of their distances from two fixed points F and F is equal to a

given number.

Take as origin the mid-point of the straight line FF
,
this straight

line as the x-axis, and a perpendicular to it as the y-axis ;
let 2 c be the

distance FF
, a

2 the constant product, the equation of the locus is

(1) y* + 2 (x
2 + c2) y

2 + (x
2 - c2)

2 - 4 = 0.

This equation involves only the even powers of each variable
;
each

axis is therefore an axis of symmetry of the curve, and the origin is at

the center. On considering y
2 as unknown, equation (1) is of the second

degree ;
the binomial B2 4 AC reduces in this case to 4 (4 c2x2 + a4

), a

quantity which is always positive : the roots are therefore always real.

When the last term (x
2 c2 )

2 4 is positive, the values of y
2 have the

same sign, and since their sum 2 (x
2 + c2 ) is negative, the two values

of y
2 are negative and the four values of y are imaginary. In order that

equation (1) has real roots, it is therefore necessary that we have

(X
a _ C2)2_ ai

&amp;lt; 0) or (x
2 -c2 - a2

) (x
2 - c2 + a2

) &amp;lt; 0,

and, consequently,

x2
&amp;lt;

a2 -f c2 and x2
&amp;gt;

c2 a2 .

Then one of the values of y
2 is positive, the other negative.

Take OA = OA = Va2 + c2
;
the curve lies between the straight lines

drawn through the point A and A parallel to the y-axis. The second
condition gives rise to the discussion of several cases.

1 a
&amp;lt;

c. Take OB = OB = Vc*~d?, and draw at the points B and
B lines parallel to Y (Fig. 211). The curve consists of two parts, one of

which is comprised between the parallel lines drawn through the points
B and A, and the other between the parallels drawn through the points B
and A . If x be given one of the values OB or OA, one of the corre

sponding values of y
2 is zero, and the other is negative ;

as x increases

2E
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from OB to OA the value of y
2

,
which at first is zero, increases, then de

creases and becomes zero again ;
we obtain thus a closed curve SCAD.

Fig. 211.

The negative values of x give a second curve B C A D , equal to the pre

ceding.

The angular coefficient of the tangent is determined by the formula

(2) _a:(^
+ y

2 -c2
)

?y ( ot i ?/* i c )

At the points ^L and B, y is zero and y is infinite
;
the tangent is there

fore parallel to the y-axis. The numerator of y becomes zero when

x2
-f y

2 = c2 . From the point as center, describe a circle with OF as

radius. The circle intersects the curve in four points (7, D, C ,
Z&amp;gt; , given

by the formulas , f

Since the arc BC lies within the circle, at any of the points of this arc,

the function x* + y
1 - c2 has a negative value, and y is positive. For

points of the arc CA, the factor x2 + ?/
2 - c2 is positive, and y is negative.

Hence from B to C the ordinate increases, and from C to A it decreases
;

the ordinate at the point C is a maximum.

2 a = c. The second condition is satisfied whatever x may be
;
x

may vary from - cV2 to c\/2. When x varies from to c\/2, the posi

tive value of y* begins with zero, increases, then decreases and becomes

zero again; we have a closed curve OCADO (Fig. 212), which passes

through the origin : to the negative values of x there corresponds a curve

which is the symetrique of the preceding with respect to the y-axis. The

circle of radius OF intersects the curve in four points, whose co-ordinates
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have a numerical value
^,

which is a maximum
;
the abscissas of these

points have an ab

solute value .

This curve is called

the lemniscate.

At the origin the

value y takes the

form -; it is easy

to show that this

is the case at the

multiple point of

any algebraic
curve. In fact, the

value of y is given

by the formula

../ / (* ^ Fi&amp;lt;r. 212.

Since f(x, y) is an integral polynomial with respect to x and y, the

partial derivatives f x (x, ?/), f v (x, y} are also integral polynomials with

respect to the same variables. If

these polynomials do not become

zero, when x and y are replaced

by the co-ordinates of the multi

ple point, y will have at this point
a unique value, whereas it should

have as many different values as

there are branches of the curve

which pass through the multiple

point. In the present case, the

equation being a bi-quadratic can

be solved with respect to y ;
to

each value of y there corresponds
a derivative which has a definite

value when x is put equal to zero. This value of the derivative is, as

has been noticed in 330, the limit of the ratio -, when x approachesX
zero. The limit of this ratio can be found without solving the equation.

I3ut - =
t, or y = tx

;
on substituting in equation (1), it becomes

X

xW + 2 (a
2 + c2 ) t

2 + x- - 2 c2 = 0.

When x is very small, one of the values of C- is approximately equal to

unity, the other is negative and very large in absolute value
;
on confining

Fig. 213.
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ourselves to the real values of y, we have lim - = 1. The tangents at

the point bisect the angles formed by the axes.

3 a &amp;gt;
c. The second condition is satisfied, whatever x may be

;
x

can therefore vary from

Vc2 + a 2 to + Vc- + a 1 -

For x equal zero, the positive value of y
z is a2 c2 . Take on the y-axis

OB = 05 - Va2 - c2
,

the curve passes through the points B and B . If a; vary from to

Vc2 + a2
, y

2
begins with a2 c2

, decreases, and becomes zero
;
the locus is

a closed curve whose vertices are

the points A, A , B, B . In order

that the circle intersect the curve,

it is necessary that a&amp;lt;cV2.

When this condition is satisfied,

the ordinate increases from B to

C and diminishes from C to A:
the ordinate of the point B is a

minimum, that of C a maximum.

If, on the other hand, one have

&amp;gt;cV2, the circle lies within

the curve, of which the ordinate

diminishes from B to A; the

In Fig. 214 it is supposed that A

Fig. 214.

ordinate of the point B is a maximum,
is equal to cV2-

340. EXAMPLE IV. Construct the curve

(1) 2 y
5 5 xy* + x5 = 0.

This equation being of the fifth degree with respect to each of the

variables, it cannot be solved with respect to either of the variables
;

it

involves only terms of odd degrees ;
therefore the origin is at the center

of the curve. Examine how many of the roots of the equation, in which

y is regarded as unknown, are real for various values of x.

Suppose in the first place that x is positive, equation (1) will have at

most two real positive roots, since its first member has but two variations

in signs. The derivative of the first member with respect to y is

10 y (y
3

x). This derivative is negative from y = to y vx, positive

from this value to infinity. The first member, which is positive for y 0,

decreases when x varies from to \/x, and increases indefinitely as y

becomes greater. The equation has therefore two positive roots, or it does

not, according as the value y vx renders the first member negative or

positive, that is, according as one has xia
&amp;lt;27,

or 10
&amp;gt;27.

If y be
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changed into
&amp;gt;/,

the first member has but one variation
;
therefore the

equation has one negative root and only one.

For x = 0, the live roots of equation (1) are zero
;

for values of x

between and \/
:

27, the equation has two positive roots, and one

negative; for a; = v^Y, the two positive roots are equal, because^ they

reduce the derivative to zero. When x becomes larger than \/27, the

equation has but one real root, which is negative. The two positive roots

give an oval OABO (Fig. 215), comprised within the angle FOX, and

the negative root a finite branch 00 situated in the angle T OX. To

negative values of x there corresponds

an oval OA B O and infinite branch

00 ,
the symctrique of the preceding

with respect to the center. The maxi

mum value of the abscissa for the oval

OABO is \/27. It corresponds to a

point A, where the tangent is parallel to

r, since the co-ordinates of this point

reduce fy (x, y) to zero. Regarding y as

an arbitrary variable, one finds that the

maximum value of y for the same oval is v/I. This maximum value gives

the point B, where the tangent is parallel to the x-axis.

The preceding method of discussion is applicable in all cases where the

equation does not contain more than three terms
;
because it is always

possible to determine the number of real roots of a trinomial equation

involving one unknown quantity.

THE INTRODUCTION OF AN AUXILIARY VARIABLE.

341. When it is impossible to solve an equation with respect

to one of the variables x or y, it is possible, in certain cases, to

express the two co-ordinates in terms of an auxiliary variable t,

and, on following the simultaneous variation of x and y, as t

varies between the limits which make these quantities real, to

trace the curve.

If y be regarded as a function of x, and x as a function of t,

it follows that, on taking the derivative of y with respect to t,

owing to the theorem of functions,*

whence it follows Dxy = -y ^,JJ
t
x

*To designate the derivative of a function, the letter D is frequently

employed, representing a partial derivative, and the variable with respect
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which gives the angular coefficient of the tangent at the point
which corresponds to any value of t. The values of t which
reduce D

ty to zero determine the points at which the tangent is

parallel to the oj-axis, and the values which reduce D
t
x to zero,

the points at which the tangent is parallel to the y-axis.

342. EXAMPLE V. Construct the curve y* y
3x + ic

3 2 x2
y = 0.

If we put y = tx, it follows that

x = 2t-l 2t-l

The curve is constructed by allowing t to vary from oo to + oo. In

order to follow the variations of x and ?/, construct the derivatives

Dtx=- 4 2 - 5 1

The numerators do not become zero for any real value of t, and do not

therefore change in sign. The values of x and y become zero for t = -,

infinity for t = or t 1. If t vary from oo to 0, x is negative and

decreases from to oo, y is positive and increases from to oo
;
thus

the infinite branch OA is obtained

(Fig. 216). As the variable t increases

from to -i, x and y are positive and

decrease from oo to 0, which gives the

infinite branch BO. As the variable t

increases from to 1, x and y are

negative and decrease from to oo,

which gives the infiniter#ranch OC.

The angular coefficient of the tangent

to the branch BOC at is *-. Finally,

if t vary from 1 to GO, x and y becom

ing positive and decreasing from co to

0, one obtains the infinite branch DO.
If the equation in x and y do not involve more than two groups of

terms, one of the degree m, the other of the degree m 1, and if the ratio

- = t be chosen as an auxiliary variable, the co-ordinates x and y are
x
rational functions of this variable. If the equation contain three groups

to which the derivative is taken is indicated by writing this variable as an

index to the right and a little below the letter D. Thus, Dtx and D ty

indicate the derivatives of the functions x and y with respect to the

variable
,
Dry the derivative of y with respect to r.
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of terms, the first of the degree m, the second of the degree m 1, the

third of the degree m -
2, on using the same auxiliary variable, the

co-ordinates may be expressed by the solution of a quadratic equation,

and their simultaneous variations can still be followed.

EXAMPLE VI. Construct the curve x5
?/
4

xy x 2 = 0.

If one put xy = t, it follows that x = Examine how

x and y vary when the auxiliary variable t varies from -co to + co. For

this purpose construct the derivatives of the two functions
;
one has

The value of Dtx becomes zero for two values a and b of t, comprised, the

first* between f and 2, the second between 1 and 0. The value
O

Dt y becomes zero for three values c, d, e, of t, comprised, the first between

- - and -
2, the second between - 2 and 0, and the third between and

1. It follows from the preceding that a
&amp;lt; c, d

&amp;lt;
b.

Now let us consider the following series of quantities

-
cc, a, c,

-
2,
-

1, d, + 1, ,

arranged in order of magnitude. If t vary from -co to a, * is negative,

begins with 0, and decreases ; y is positive, begins with infinity, de

creases continually ;
one ob- r

tains the branch AB, asymptotic
JL&amp;gt;

iV

to the ?/-axis (Fig. 217). The

variable t varying from a to c,

x is negative and increases, y

is positive and decreases ;
one

obtains the branch BC. The

variable t varying from c to

2, x is negative and increases

to 0, y is positive and increases

to co
;
whence the branch CI.

The variable t varying from - 2

to 1, x increases from to cc,

y increases from GO to
;

whence the doubly infinite

branch DE, asymptotic to OT and OX. The variable t varying from

1 to d, x begins with oo and increases, y begins with and in

creases ;
whence the infinite branch FG, asymptotic to OX1

. As the

variable t varies from d to &, x continues to increase, and y remaining

positive decreases; whence the branch GH. As the variable t varies

\D

Fig. 217.
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from b to e, x and y decrease
;
whence the branch HK, which intersects

OX1

in a point, whose abscissa - 2 corresponds to t = 0. As the variable
t varies from c to + 1, x decreases, y increases

; whence the infinite

branch KL, asymptotic to OX1
. Finally, as t varies from + 1 to + oo,

x decreases from co to 0, and y increases from to &amp;lt;x&amp;gt;

;
whence the double

infinite branch MN, asymptotic to OX and Y.

The tangents at the points C, , 7i, which correspond to the values c,

d, e, of t, which reduce Dty to zero, are parallel to OX; the tangents at

the points B and H are parallel to the ?/-axis.

343. TANGENT CURVES, ORTHOGONAL CURVES. Let

f(x, y} = 0, &amp;lt;(#, y)
= be the equation of two curves. Call

x and y the co-ordinates of a point of intersection of the two
curves

;
in order that they be tangent at this point, it is neces

sary and sufficient that the angular coefficients of the tangent
to the two curves at this point be equal:

or /,* -/,* ,
= o.

The co-ordinates x and y ought therefore to satisfy the three

equations :

on eliminating # and ?/ between these three
equations, that is,

on expressing the condition that they have a common solution,

we get an equation which expresses the condition that the

curves are tangent at the same point.
If the curves should be tangent in k points, it would be

necessary to express the condition that the equations above

have k common solutions.

From a geometric point of view, to express the condition

that equations (1) have k common solutions is equivalent to

expressing the condition that the curve

passes through k of the points of intersection of the given
curves.
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In a similar manner it follows that if the given curves /= 0,

&amp;lt;

_ o be orthogonal at a point (a;, y), one ought to have

(2) f(x, y)
= 0, &amp;lt;/&amp;gt; (x, y)

= 0, frf, +/,* = 0.

On eliminating x and y between these relations, we get a con

dition that the two curves are orthogonal at one of their points

of intersection. In order to express the condition that they

are orthogonal at k of their points of intersection, it is neces

sary to express the conditions that equations (2) have k com

mon solutions.

From the geometric point of view this amounts to expressing

the condition that the curve

A* . +/,*V =

passes through k of the points common to the proposed curves.

EXAMPLE. Suppose that we have two conies/= 0, ;
in order to

express the condition that they are orthogonal at their four points of in

tersection, it is necessary to express the condition that the curve

which is also a conic, passes through the four points common to the two

given conies
;
that is, that its equation can be identified with an equation

of the form / + \&amp;lt;j&amp;gt;

= 0.

Thus it may be easily verified that, whatever be the constants a and

fl, the two conies
2x2 + 2/

2 -a = 0, 3^-2/335 = 0,

are orthogonal at all of their points of intersection.

The same is true of the conies

2 xy - a = 0, x2 - y*
-

13 = 0.

EXERCISES. 1 Construct the general equation of the conies which

intersect at right angles the fixed conic Ax2 + By* 1=0 in four points.

These conies may be divided into several groups; to one of them

belong the conies confocal to the fixed conic.

2 Let f(x, ?/)
= 0, 0(x, ?/)

= be the equations of two algebraic

curves of degrees m and n in rectangular co-ordinates; find the angle at

which the curves intersect.

Let x and y be the co-ordinates of one of the points of intersection
;

the tangents to the two curves at this point intersect at an angle 0, whose

trigonometric tangent is given by the formula

A0 -A0 .

-77-7; Tf &quot;Tr

f x&amp;lt;t&amp;gt; * + f
y&amp;lt;t&amp;gt; it
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By eliminating x and y between this equation and the equation of the

two curves, one gets an equation of the degree inn, giving the tangents of

the angle 0, at which the two curves intersect.

As an application, form the equation of the second degree which

determines the tangents t of the angles at which the straight line

x2 w2

ux + vy + w = intersects the ellipse
-~
z + .^

1 = 0.

One finds :
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CHAPTER II

CONVEXITY AND CONCAVITY.

344. Let AB be an arc of the curve corresponding to a

determination of y and to the values of x comprised between

a and 6; we assume that the second derivative
y&quot;

of y with

respect to x preserves the same sign in this interval, for

example, remains positive. Draw the tangent RS at any

point M of this arc, whose abscissa is a
;

let y be the value

of the derivative at this point, or the angular coefficient of the

tangent, and designate by Y the ordinate of any point of this

straight line, the ordinate denned by the equation

the difference y Y becomes zero for x a?
,
and the same is

true of its derivative y
- Y or y

- y (Fig. 218). When the

abscissa x increases from a to b, the

derivative
y&quot;

of the difference y y

being positive, the function y y in

creases
;
since it becomes zero for x = xw

it is negative from a to cr
, positive from

a- to b. Consider now the function

y Y, which has the derivative y y ;

when x varies from a to xQ,
the deriva

tive being negative, the function de

creases
;
since it becomes zero for x = XQ ,

it would be positive

above
;
as x varies from x to b, the derivative is positive and

the function increases
;
since it becomes zero for x = x

,
it is

also positive from x to 6, whence it follows that the differ

ence y Y remains positive throughout the interval from a to

b. We conclude from this that the arc of the curve ab is situ

ated wholly on the same side of each of its tangents, and is

said to be convex. Similarly, if the second -derivative were
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negative; tlie difference y 1&quot; being negative, the arc would

be situated wholly on the other side of the tangent. It is easy
to distinguish these two cases

;
draw through the point M a

straight line MY parallel to the axis OY, and in the direction

of the positive y s
;
in the first case, the arc is situated on the

same side of the tangent as the half-line MY
;

in the second

case, the arc lies on the other side. In the first case, it is said

that the arc AB is concave in the direction of MY
l ,

in the

second case, in the opposite direction.

We know that the sign of ?/ indicates the kind of variation

of y when x increases. If therefore one imagines that the

point M travels through the arc AB, the angular coefficient

Avill increase if
y&quot;

be positive, and, on the contrary, will

decrease if
y&quot;

be negative.

345. The points of a curve at which its concavity changes
its direction are called points of inflection. At such points

therefore the second derivative changes its sign. The second

derivative may change its sign on passing through zero or

infinity. In general, the quantity y&quot;, being finite and continu

ous, changes sign on passing through zero. Suppose that
y&quot;

changes its sign on passing through zero

for x x
,
it may be verified that the first

derivative y
1

y does not change sign,

but that the function y Y does experi

ence a change in sign ;
of the sort that at

this point the curve passes from one side

to the other of the tangent. If for x = a-
,

y&quot; experiences a change in sign on passing

through infinity, y becoming infinite and y

remaining finite, the point x = x and

y = y is a point of inflection at which the tangent is parallel

to the ?/-axis.

If a neighboring secant of the tangent MT be drawn through

the point of inflection M, this secant will intersect the curve

in two points M and M&quot;;
the tangent MT is the limit of

the secant passing through the three points M&quot;, M, M when

the two points M&quot; and M approach the point M.
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346. EXAMPLE I. Sinusoid. Construct the curve y
- sin x. As

x increases from to ir, the ordinate is positive; if begins with 0,

increases to 1, and then decreases to 0, which gives the arc OA C

(Fig. 220) symmetrical to the ordinate which corresponds to x = - As

x increases from TT to 2 TT, y becomes negative, and one obtains the arc

CBO , equal to the first. From 2 TT to 4 TT, the ordinate passes again

through the same values which it took when x varied from to 2 TT,

\

Fig. 220.

similarly from 4 IT to 6 TT, etc. Thus the curve is composed of an in

finite number of equal undulations.

The angular coefficient of the tangent is y = cos x
;

at the origin,

?/ =+!, and the tangent is the bisector of the angle YOX. At the point

O, y = - 1, and the tangent is parallel to the other bisector. For x ^
the derivative becomes zero and changes from positive to negative ;

the

ordinate of the point A is a maximum. For x = 3 ~
,
the derivative

becomes zero again and changes in sign from negative to positive ;
the

ordinate of the point B is a minimum.

When x varies from to ?r, the second derivative
y&quot;

= sin x is

negative, and the concavity of the curve is turned toward negative T/ S
;

from TT to 2 TT, the second derivative is positive, and the concavity of the

curve is reversed and turned toward positive y s
;
the point C is therefore

a point of inflection.

It is worthy of notice that the curve has an infinity of centers, situated

at equal distances along the cc-axis, the points 0, &amp;lt;7, ,
whose abscissas

are multiples of IT. Each of them is a point of inflection.

347. EXAMPLE II. Construct the curve (y
- 2

)
2 - x5 = 0, or

y = x* x*

The values of y are only real when x is positive. Consider first the

case when the sign before the radical is + ;
the functions y = x2 + x*
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increases from to GO, as x varies from to oo . The derivative

y = 2x + f x
3
begins with zero and increases continually without limit;

one gets therefore one infinite branch OD tan

gent to the x-axis at the point 0, and which

has its concavity turned toward positive y s

(Fig. 221). Investigate now the minus sign

before the radical
;
the value of y is positive

from to 1, and negative for
x&amp;gt; 1. Lay off

jt\ x on OX a length OA equal to unity ;
the curve

passes through A. The derivative y =. 2 x

x 2 is zero at the point 0, remains positive
Fig. 221.

so long as x is less than ||, and becomes negative when x is greater than

this number
;
the ordinate 3/P, which corresponds to |f ,

is a maximum,
and the tangent at M is parallel to the x-axis. The second derivative

2 _
JjS x

$ remains positive for ^ x
&amp;lt;^ but is negative for x

&amp;gt; /V^ ;

the point JV, which corresponds to the abscissa r*5 ,
is a point of inflec

tion
;
from to N, the concavity is turned toward the positive ?/ s, but

for x
&amp;gt; A4

j it is turned toward the negative ?/ s.

The two branches of the curve are tangent to the x-axis at the point

0, without one being the continuation of the other
; points which have

this peculiarity are called cusps. In this curve, the two branches lie

on the same side of the tangent. On considering the curve (y x2
)
2

x3 = 0, there will be two branches, one situated on one side and the

other on the opposite side of the tangent ;
the cissoid has a cusp of this

kind at the vertex (Fig. 16).

348. EXAMPLE III. Let the curve be y = -
(e + e ).

It is supposed that a represents a given length ;
then the equation is

homogeneous and defines a curve, which is called the catenary, for the

reason that it is the curve of the form assumed by a flexible thread of

which the ends are attached to two fixed points.

The equation gives equal values of y for equal values of x with contrary

signs ;
hence the straight line Y is an axis of the curve. If x vary from

to OD, the term e increases, but the term e~ decreases
;
in order to

know how y varies, construct the derivative

Y
, of y with respect to x

; namely,

This derivative is positive for all positive

values of x
;
therefore when x increases from

to oo, the value of y increases constantly

from a to oo, which gives an infinite branch

BC (Fig: 222) ;
the branch BC

,
the sy-
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metrique of EC with respect to OF, is obtained by assigning negative

values to x.

Since the second derivative remains positive as x varies from co to

4-x, the curve turns its concavity toward positive y s.

i

349. EXAMPLE IV. Construct the curve y = e*. For very small

positive values of x, y -is positive and very large ;
as x increases from

to + co, y decreases constantly from co to 1, which gives a branch

AC (Fig. 223), asymptotic on the one hand to the y-axis and on the

other to the straight line G G- drawn parallel to the x-axis and at a

distance from this straight line equal to

unity. When one gives a very small

numerical negative value to x, y is posi

tive and very small
;
as x varies from

to oo, y increases continuously from

to 1, whence we get a branch OD
starting from the origin and asymptotic

to the straight line GG- .

This curve presents a peculiarity

which has not yet been met: the

branch DO stops abruptly at the point

; points of this kind are called points cVarret.

In order to find the direction of concavity, construct first the first

derivative y = e*. When x varies from to co, the two factors
/v*2 30&quot;

and e* diminish, and on account of the sign -, y
1

increases; the con

cavity of the branch AC is turned toward positive i/ s
;^
since, as x varies

from -co to 0, the factor i increases, and the factor e* diminishes, it is

not at first evident how y varies and we construct the second derivative.

i

We get y&quot;
= (2ig + 1 ) e8

. AS x varies from -co to -J, the second deriv

ative is negative ;
take OP = J and let M be the corresponding point of

the curve
;
the arc DM is concave toward the negative y s

;
as x increases

from to 0, y&quot;
is positive and the arc MO turns its concavity toward

the positive y s and the point M is a point of inflection.

EXAMPLE V. Let y = e^x
.

a/- Vx 2
It can be easily shown that

y&quot;
= e Vx J

9x 3

the second derivative changes its sign twice, once on becoming infinite for

x = 0, and a second time on becoming zero for \/x = 2, x = 8. The

curve has therefore two points of inflection.
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350. Consider the cases when the equation

(1) /(*, y)
=

cannot be solved with respect to either of the variables x and

y ;
the derivative y is given by the equation

(
2
) / .fo 20 +/ ,(* 20 -y =0.

Since ?/ and ?/ are both functions of
a?, the first member of

equation (2) is a compound function with respect to the inde

pendent variable x
;
the derivative of this function is

since it is always zero, its derivative is also zero, and we have

the equation

(3) /., + 2f&quot;,,y + /W2 + / / = 0,

which determines the value of
y&quot;.

If in this equation y be

replaced by its value deduced from equation (2), (3) becomes

(f ,r

It is by means of this formula that the direction of concavity
and also the points of inflection are determined.

351. Apply this formula to the curve defined in 339. The equation
of this curve can be written in the form

(1) / GK, y} = I [(z
2 + ?/

2 + c2)
2 - 4 c2x2 - a4

]
= 0.

&quot;

From (1) we deduce

/ X2 = (x
2 + ?/

2 - c2) + 2 x*, f&quot;xu
= 2 ary, /V = (x

2 + ?/
2 + c2 ) + 2 ?/

2
.

If these values be substituted in the preceding formula, we obtain, after

reduction and using formula (1),

y\& + i/
2 + c2)^

Since for each portion of the curve comprised within one of the angles of

the co-ordinate axes, the denominator preserves the same sign, the value

of
y&quot;

cannot change sign other than when the numerator passes through
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zero. The co-ordinates of the points of inflection should therefore satisfy

at the same time equation (1) and the equation

3 cfi

whence it follows that

( ) t+* m
~

In the first case, when a is less than c, the values of x and y given by

equations (2) and (3) being imaginary, the numerator of
y&quot;

has the same

sign for all points of the arc BCA\ it may be easily verified that this

numerator is negative for the points B and A
;
the concavity of this arc is

directed toward the negative y s (Fig. 211). In the second case, a = c, the

numerator of
y&quot;

becomes zero at the point only ;
it is negative from O

to A, and the concavity of the arc OCA is directed toward the negative

y s (Fig. 212) ;
the arc A D OCA has a point of inflection at the point 0.

In the third case, one has a
&amp;gt;

c
;
here the values of x and of y are real

and one has at the same time &amp;lt;c\/2. If a be greater than c\/2, the

numerator is negative for all the points of the arc BA, and the concavity

is directed toward the negative y s (Fig. 214) ;
if a be less than c\/2, the

numerator becomes zero for a certain point G (Fig. 213) situated between

B and C
;
from B to 6r, it has the same sign as at the point B ;

it is posi

tive and the concavity is directed toward the positive y s
;
from G to A,

the numerator has the same sign as at the point A ;
it is negative and the

concavity is turned toward the side of the negative y s. The point G is a

point of inflection.

REMARKS CONCERNING ALGEBRAIC CURVES.

352. Let f(x, y)
= be an integral, algebraic equation of the

degree m with, respect to x and y, and of the degree n with

respect to y ;
to each value of x there correspond n values of

y, which, in general, are different from one another
;

it can be

demonstrated that, when x varies in a continuous manner, each

of these values varies also in a continuous manner
;
we assume

this theorem as we have done in previous discussions. When
the equation is irreducible, it cannot have multiple roots except

ing for a limited number of values of x; among these values of

x, consider only those which are real and suppose them arranged

in order of magnitude. Let a, b, c be three consecutive values
;

when x varies from a to b, the number of real values of y will

remain the same
;
because if, in the interval, an imaginary root
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should become real, its conjugate would also become real, and,

at the moment of transition, the two roots would become equal ;

one obtains also, in the interval considered, a certain number

of real and distinct branches which do not have a common

point. When x passes through the value b, it can happen that

two real roots become imaginary or conversely ;
at the point

which corresponds to the value b and to the real double root,

two branches of the curves begin or end in this case.

Among the real values of y which correspond to the same

value XQ of x, consider a value y which is a simple root
;

if x be

allowed to vary from XQ li to # + h, h being sufficiently small,

this value of y will remain real without becoming equal to any

of the others and will give rise to a real branch. Thus, when,

for a value ofx assigned to x, the equation has a simple real root

2/o,
there passes through the point tvhose co-ordinates are XQ and y^

one real branch, and only one.

Let us consider next a value x b, to which there corre

sponds a multiple value y^ of the order p. Locate the point

M, whose co-ordinates are x = b, y = y l ; among the p values of

y which become equal to y 1
for x = b, there are a certain num

ber which were real arid a certain number which were imagi

nary; the number of the latter being even, the number of the

real roots is p 2q (q can be. zero). Similarly, when x varies

from b to c, the number of real values of y which belongs to

the value y l
for x = b is p 2 q

1

;
of the sort that the total

number of branches of the curve which emanate from the

point M, in one direction or another, is the even number

2p-2q-2q .

353. Let us determine the tangents at the point M\ trans

fer the origin of co-ordinates to this point, and put y = tx
;

we will have an equation &amp;lt; (x, t) 0, which will determine the

angular coefficients t of the secants drawn from the point M
to the points where the curve is intersected by a parallel to

the ?/-axis. Suppose that for x = one has a real root t = ^ ;

this root will determine a straight line, and, on repeating the

same reasoning of the preceding paragraph, one sees that

the total number of real branches emanating from the point



CHAP. II. CONVEXITY AND CONCAVITY. 451

M and tangent to the two directions of the straight line, is

even.

It follows from what precedes that an algebraic curve can

not have a point d arr&t ( 349). It cannot have, moreover, a

point saillant or anguleux; a, point anguleux is a point at which

two branches are tangent to two different straight lines.

354. When the origin is transferred to the point Jf, whose

co-ordinates are x and yQ,
the equation becomes

and the equation

(2)

gives the points in which any straight line y = tx drawn from

the point M intersects the curve. When one of the first

derivatives at least is different from zero, the root x = being

a simple root, the point M is called a simple point of the curve.

For the particular value ^ of t which reduces the first term to

zero, a second root is equal to zero, and the straight line

becomes a tangent to the branch of the curve. The contact is

of the first order if for t = 1
1
the coefficient of x2 be different

from zero
;

it is of the order p if the first coefficient different

from zero is that of xp+l
; among the m 1 other points of in

tersection of the straight line and of the curve, p coincides

with the point M.

Suppose that the two partial derivatives of the first order be

zero, without the three derivatives of the second order being
zero

;
the root x being a double root of equation (2), any

straight line drawn through the point M intersects the curve

in two points coincident with J/, and this point is called a

double point. If all the terms be divided by x2
, equation (2)

reduces to

(3)

When the equation of the second degree

(4)
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has two roots ^ and t2 real and unequal, for a very small abso

lute value of x, equation (3) has two consecutive simple roots,

$! and t2 ;
to these real values of t correspond two branches of

the curve tangent to the straight lines y = ttf:, y t2x (Fig.

208). If equation (4) have two imaginary roots, the two values

of t which are consecutive are also imaginary, and the point M
is an isolated point (Fig. 207). When equation (4) has its two

roots equal to t^ several cases can arise
;

if the two values of t

consecutive to ^ are imaginary for the positive and negative

values of x, the point M is an isolated point ;
if they are real

for the positive values of #, and imaginary for negative values

or conversely, one has a cusp (Figs. 209 and 221) ; finally, if

they are real for positive values, and also for negative values

of Xj one has two branches passing through the point a, from

one side to the other, and tangent to the same straight line.

We notice that the equation which gives the various tangents at

a multiple point is obtained by equating to zero the group of terms

of lowest degree in equation (1).

354. 2. We proceed to define a case in which it is easy to

find the form of an algebraic curve in the neighborhood of one

of its points.

This point being taken as origin, one supposes that the equa
tion in x, found by making y = in the equation of the curve,

has zero for a simple root. Let

be the equation of the curve written in an integral form and

arranged with respect to increasing powers of y. By hypoth

esis
4&amp;gt;Q

contains x as a simple common factor; x can also be a

factor of some of the coefficients following &amp;lt; . Let
&amp;lt;f&amp;gt;

n (x) be

the first coefficient which does not become zero for x = 0, then

the equation can be written

If x be supposed very small, and if one of the very small

values of y be considered, the sign of each of the parentheses
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is the same as the sign of its first term, and each of these

terms, if/ (x), 4&amp;gt;n (
x

)&amp;gt;

can be replaced by the value which it takes

for x = 0.

Finally, in order to find the form of the curve in the vicin

ity of the origin, the equation being arranged with respect to

increasing powers of y, it is sufficient to consider the term in

dependent of ?/,
which contains x as a simple factor, and the

first of the terms following it whose coefficient does not

become ,zero for x = 0. The question is reduced to the consid

eration of a binomial equation

Ax + By
n =

and one can similarly, in each of the coefficients A and B,

neglect the part which becomes zero for x = 0.

355. One can therefore, in seeking the equation of the tan

gent to an algebraic curve and the points of inflection of this

curve, employ the following method, which has the advantage

of applicability to the curves whose equation is given in tri-

linear co-ordinates.

Consider a curve of the order m whose equation in homo

geneous co-ordinates is f(x, y, z)
= 0. Take on the curve a

point J/i(#], ?/!, Zj) and in the plane a second point M(x, y, z).

Seek the points where the straight line M^M, which joins these

two points, intersects the curve. The homogeneous co-ordi

nates of a point of this straight line are ( 330)

(5) Xt + Xx, y, + \y, z^ + \z\

in order that this point belong to the curve, it is necessary and

sufficient that A satisfy the equation

/(a?! + XJB, ft + \y, z, + Az)
= 0,

or (6) f(x y,, z,) + A (xf^ + yf yi + zfJ

On substituting successively all of the roots of this equation

in X into the expressions (o),
one will obtain the co-ordinates

of all of the points of intersection. The point (xlf yl} Zj)



454 PLANE GEOMETRY. BOOK IV.

being on the curve, one has f(xlf ylf z^ = ; equation (6) has

therefore as a root X = 0, which, substituted in expressions (5),

gives no other than the point (xlt ylt z^).
In order that the

straight lineMM be tangent to the curve in MI, it is necessary
that it have two points of intersection coincident with M,
that is, that equation (6) have the double root X2 = : the con

dition for which is

If the co-ordinates of the point M satisfy this equation, the

straight line M^M is tangent at Ml : equation (7), in which one

considers x, y, z as the current co-ordinates, is therefore the

equation of the tangent at the point M^
In what precedes it has been assumed that the three deriva

tives / Zi
, fyj f Zi

are not zero at the same time. If these three

derivatives were zero, the coefficient in X in equation (6) would

be zero, whatever be the position of the point M: every straight

line passing through the point Ml would intersect the curve in

two points at least coincident with M. It is then said that the

point Mi is a singular point. The singular points are therefore

characterized by the following property, that their co-ordinates

reduce the three partial derivatives of / with respect to x, y,

and z to zero, and, consequently, /, by virtue of the theorem

of homogeneous functions.

Suppose that the point Ml is not a singular point, and seek

the condition in order that it be a point of inflection. For

this purpose it is necessary and sufficient that the tangent at

MI intersect the curve not in two but in three points coincident

with Ml ;
in other words, if the point M be taken on the tan

gent (7), it is necessary that the coefficient A.
2 become zero, that

is, that one has

(8) &amp;lt;/&amp;gt; (x, y, z)
=

x&amp;gt;f x
&amp;gt; + ff&quot;y

, + z*f* + 2 yzf ,^

If x, y, z be regarded as the current co-ordinates, equation (8)

represents a conic
;
and since every system of values x, y, z

satisfying condition (7) ought to satisfy at the same time condi

tion (8), this conic should resolve itself into two straight lines
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one of which is a tangent. Therefore if Ml be a point of in

flection, the discriminant of the function of the second degree

&amp;lt;

(a;, y, z) ought to be zero.

A Aft A&amp;lt;

TT f Vl A A
A. A*, A

Conversely, if at a non-singular point Jl/i this function H be

zero, this point is a point of inflection. In fact, we notice that

the conic &amp;lt;

(a;, y,z)=0 passes through the point (^, ?/ Zj) and

is tangent to the curve. It passes through the point, because,

owing to the theorem of homogeneous functions,

4&amp;gt; (i, yi, i)
= x *f\* + ~= m t l -

!)/&amp;lt;&amp;gt;i&amp;gt; y\&amp;gt;

=
5

then, owing to the expression for
&amp;lt;,

it may easily be shown

that

*!* , + 2/i&amp;lt;/&amp;gt; , + i*
r

.
= 2 (

- W*, + 2/A + z
/^&amp;gt;

identically, which shows that the tangent to the conic at the

point Jfj coincides with the tangent to the curve at this point.

Therefore, if the conic
&amp;lt;j&amp;gt; decompose into two straight lines,

one of them ought to pass through Ml and be tangent to the

curve
;
in other words, the polynomial &amp;lt;j&amp;gt; (x, y, z) is resolvable

into two factors of which one is the first member of (7), of the

equation of the tangent. It follows that the point N^ is indeed

a point of inflection.

The determinant H becomes also zero when the point Ml is

a singular point ;
in fact, in this case the three partial deriva

tives of the polynomial &amp;lt;j&amp;gt;(x, y, 2), &amp;lt;f&amp;gt;
x,

&amp;lt; &amp;lt; , become zero for

x = x
l} y = y\, z =

Zi&amp;gt;

since it follows from this that /x^A A
become zero at a singular point ;

the discriminant H of &amp;lt; is

therefore zero.

The determinant H is called the Hessian; if a^, ylt Zj be

regarded as current co-ordinates, equation H=0 represents a

curve of the order 3 (m 2) called Hessian which passes

through the points of inflection and the singular points of the

curve /= 0. We shall see that, conversely, every point com

mon to the two curves /= 0, H=Q, which is not a singular
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point of /= 0, is a point of inflection. Whence one concludes

that, if the curve /= do not have singular points, it has
3 m (m 2) points of inflection real or imaginary. If the

curve /= have singular points, the number of its points of

inflection is diminished.

Thus a curve of the third degree without a singular point
has nine points of inflection

;
if it have a double point, it has

no more than three points of inflection
;

if it have a cusp, it has
no more than one.

EXAMPLE. The curve of the third order which has in Cartesian co
ordinates the equation

JT3 + F3 +1=0,
or in homogeneous co-ordinates

f(x,y, 2)=z3 + ?/
3 + 23 = 0,

does not have singular points ;
because the three partial derivatives

do not become zero for any system of values of x, y, z which are not all

three zero. Here the Hessian is

or xyz = ;
it decomposes therefore into three straight lines x 0, y = 0,

z = 0, which are the two co-ordinate axes and the line at infinity. The
nine points of intersection of the Hessian with the curve will be the

points of inflection. One has, for the co-ordinates of these nine points,
on calling w a cubic imaginary root of unity,

11 11 y
x = v with - = 1, or - = w, or - = w2

,

1

z z z

y = with - = 1, or - = w
,
or - = w2

,

z z z

y 11 y
z = with - = 1, or - = w, or - = w2

,XXX
The last three points are at infinity. The three points

only are real. They lie on the straight line x + y + z = 0.

CLASS OF A CURVE. The class of a curve f(xt y, z) is

the number of tangents which can be drawn from a point of

the plane to this curve. Let M.2 (x2) y.# z2) be a given point;
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on expressing that the tangent at the point M1 (xlj ylt Zi) pass

through M% one has the condition

(9) *J\ + 3fe/ ,1
+ *2/ ,

1

=
0,

which, combined wiihf(xl , y^ z^)= 0, determines the points of

contact of the tangents emanating from the point M2 . Every

non-singular point M whose co-ordinates satisfy these equa
tions is a point such that the tangent at this point passes

through 3/2 ; equation (9) is, moreover, satisfied by the co-ordi

nates of all of the singular points, since these co-ordinates

reduce /^ f y^ / ^ to zero. If x^ y^ z be regarded as current

co-ordinates, equation (9) represents a curve of the order

(m 1), called the first polar of the point M2 with respect to the

curve.

Every point common to this curve and to the given curve

/=0 is a singular point or a point of contact of a tangent

passing through the point M2 . These two curves have

m (m 1) common points ;
if the proposed curve does not

have singular points, these common points are all of the points

of contact of tangents drawn from Jf2 . Therefore, a curve of

the order m ivithout singular points is of the class m(m 1).

If the curve have singular points, the number of tangents

emanating from Mz is equal to m (m 1) less the number of

the points of intersection of the polar (9) and of the curve,

which are coincident with the singular points.

On supposing that the singular points of the curve consist of

double points or cusps, and designating by d the number of

double points, by r the number of points which are cusps, by i

the number of points of inflection, and by c the class of the

curve, the following formulas, due to Plticker, may be demon

strated :

c = m (m 1) 2 d 3 r,

i=3m(m-2)-6d-8r.
EXAMPLE. A curve of the third order without a singular point is

of the sixth class.

Take a curve of the third degree with a double point, for example
a curve whose equation in Cartesian co-ordinates is

(10) F2
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The tangents at the origin are given by the equation

r 2 - aX2 =
;

if therefore a be different from zero, the origin is a double point at

which there are two distinct tangents (real or imaginary, according as

a is positive or negative) ;
if a be zero, the origin is a cusp, and the tan

gent at this point is the x-axis. The equation rendered homogeneous is

whence fx = Bx*-2axs, f y
= 2yz, /* = y

2 - ax2
.

The first polar of the point M (x , y , ) has the equation

(11) x (3 x
2 - 2 axz) + 2 y yz + z (y*

- x2
)
=

;

this polar is a conic passing through the double point situated at the ori

gin x = 0, y - 0, and having a tangent at this point whose equation is

(12) axx -f yy = 0.

If a be different from zero, the origin is a double point with distinct tan

gents, and the tangent (12) varies according to the position of the point

M . The polar conic (11) intersects therefore the curve of the third order

in six points, two of which are coincident with the double point. There

are therefore but four of these points of intersection which do not coin

cide with the singular point, and but four tangents can be drawn from

the point M . The curve is therefore of the fourth class.

If a be zero, the origin is a cusp ;
the polar conic (11) passes through

this point, and the tangent to the conic at this point has the equation

y = as a tangent to the curve. The polar conic is therefore tangent to

the curve at the cusp : it intersects it in three points coincident with this

singular point, and in three other points only, which are the points of con

tact of the tangents drawn from the point M . The curve is therefore of

the third class.

One could, as an exercise, form the tangential equation of curve (10),

that is, the condition that the straight line

MJT + v T -f iv =

be tangent to this curve
;

it can be verified that this equation is of the

fourth degree in w, 17, to, and reduces to the third degree when a is equal

to 0.

356. CURVES IN TRILINEAR CO-ORDINATES. Let

F(a, ft y)
=

be the equation in trilinear co-ordinates of a curve of the
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degree m. Take, on this curve, a point Ml}
whose trilinear

co-ordinates are
1? fa, y1? and, in the plane, a point M(a, /8, y).

Find the points where the straight line M^, which joins

these two points, intersects the curve. The trilinear co-ordi-

riates of a point of this straight line are ( 331)

! -f \a, fa -f yfa yi + Ay ;

in order that this point belong to the curve, it is necessary and

sufficient that A satisfy the equation

or F(a1} fa, 7l) + X(oF ai
+ yF y)

From this equation, which in every respect is similar to equa
tion (6), one deduces results identical with those which one

deduced from equation (6). We find thus that:

1 If the three partial derivatives F
,
F

the tangent at the point M has the equation

,
F

yi
be not zero,

2 If the three partial derivatives F1

,
F^ F1 be zero, the

point J/i is a singular point ;

3 In order that the point Ml be an inflection, it is necessary
that the Hessian

F&quot;, , F&quot;. a F&quot;

ain

= 0:

and, conversely, if at a non-singular point Ml the Hessian be

zero, this point is a point of inflection.

EXAMPLE. Consider the equation of the third degree

F(a, /3, 7)= 3 + /3
3 + 73 + 6 ka$y = ;

it can be demonstrated that the equation of every curve of the third order

without a singular point can be reduced to this form by a suitable choice

of the triangle of reference.
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Here we actually have

or, on developing,

JT= 8 [- Jfe

a

ky

ky

&

ka

k;3

ka

y

a/37 ].

The points of inflection will be the points of intersection, nine in number,
of the given curve F = with the Hessian // = 0. The equations F =
and 11= are homogeneous equations of the first degree with respect to

the two expressions a3 + /3
3
-f 73

, a(3y : the determinant of the coefficients

of these two expressions is 1 + 8 k*
;

if therefore 1 -f 8 A;
3 be not zero,

from the equations F = 0, 11=0 may be deduced the two following :

a3 + 3 + 73 = 0, a/37 = 0,

which give, for the nine points of inflection,

a = with /3 + 7 = 0, or /3 + wy = 0, or /3 + w27 = 0,

/3
= with 7 + a = 0, or 7 4- wa = 0, or 7 + w2a = 0,

7 = with a + /3
= 0, or a + w|3 = 0, or a + a&amp;gt;

2 = 0,

where a&amp;gt; designates an imaginary cubic root of unity. These nine points

are the same whatever k may be. It is easily seen that the straight line

which joins two of these points passes through a third.

If 1 + 8 7t
3 = 0, the equations F = and II =0 represent the same

curve
;
then the Hessian coincides with the given curve : all points of this

curve are points of inflection, which can only happen if it be composed of

three straight lines. In fact, the Aquation fc* = | gives for k three

values :

1 o&amp;gt;

__o&amp;gt;

2

2 ~2 2*

For k = |, the curve F = becomes

F = a3 + /3
3 + 73 - 3 a/37 = (a + j3 + 7) (a + wj8+ ^2

7) (a + &quot;

2
/3 + w?) = 5

it is therefore resolved into three straight lines
; similarly if one put

*=-!- *=--

as is seen on substituting, in the identity above, for a, a&amp;gt;a or a&amp;gt;

2a.
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CHAPTER III

ASYMPTOTES.

357. When a curve has an infinite branch MN (Fig. 224), it

can happen that the distance MH of a point M of this curve

from a straight line CD approaches zero, when the point M is

continuously removed toward

infinity; in this case, the

straight line CD is called an

asymptote of the branch of

the curve.

Consider the differenceMR
between the ordinates of the

curve and of the straight line,

which correspond to the same

abscissa, and let /3 be the angle

which the straight line CD

makes with the y-axis ;
one has MR = MH

sin 8
if either of the

quantities MH and MR approach zero, the other will also

approach zero. An asymptote can therefore be defined as a

straight line such that the difference between the ordinates of the

curve and of the straight line approaches the

limit zero when x is indefinitely increased.

However, this definition is not applicable

if the angle be zero; that is, when the

asymptote is parallel to the ?/-axis. In this

case, if the straight line MR (Fig. 225) be

drawn parallel to the x-axis, the straight

line MR approaches zero, when the ordinate

increases without limit. If a be the abscissa of any point of

the straight line CD, the abscissa of a point M of the branch

Fig. 225.



462 PLANE GEOMETRY. BOOK IV.

JfTV approaches a when y is increased without limit, or con

versely, y increases without limit, when x approaches a.

ASYMPTOTES WHICH ARE PARALLEL TO THE ?/-AXIS.

358. According to the preceding, the asymptotes of this

species are obtained by seeking the finite values of x which
render one of the values of y infinite. When the equation of

the curve is solved with respect to ?/,
one perceives, generally,

these values at once
;
as examples we cite the cissoid and the

strophoid discussed in 20 and 23.

If the equation be algebraic, but not solvable with respect to

y, we proceed in the following manner. Let m be the degree
of the equation, n the largest exponent of ?/ ;

the equation can

be written in the form

&amp;lt;

, &amp;lt;],
&amp;lt; 2, representing polynomials in #, whose degrees are

at most respectively equal to m n, m n -+- 1, m n -f 2, ,

and after dividing by y to the nth power,

(1) &amp;lt;fo (x) + fr (x)
1 + &amp;lt; 2 (z)

1 + . . . +
&amp;lt;f&amp;gt;n (x)

1= 0.

Suppose that a real branch MN be asymptotic to a straight

line CD parallel to the axis of y and having the equation
x= a. As the point M is removed to infinity on this branch, its

abscissa x approaches the finite value a, while - approaches
u

zero. Since the terms of equation (1) beginning with the

second approach zero, it follows that the abscissa a reduces the

polynomial (j&amp;gt;o(x)
to zero. Whence the abscissas of asymptotes

parallel to the y-axis satisfy the equation &amp;lt;

(a;)
= 0.

359. Conversely, let a be a real root of the equation e(x) ;

it is necessary to examine, if it have real branches which

approach continually the straight line x = a and how many
there are of such. Suppose in the first place that a be a single

root of the equation &amp;lt;/&amp;gt; (X)
= 0.
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If x be regarded as a function of - given by equation (1),

1

when - approaches zero, it being either positive or negative,
y

one value of x, and only one, approaches a; this value of x

is necessarily real
; because, if it were imaginary, the conjugate

root would also approach the real quantity a, which would then

be a double root. One infers therefore that there exist two

real branches asymptotic to the straight line x a, one on the

side of the positive ?/ s, the other on the side of the negative ?/s.

Suppose now that a be a double root of the equation &amp;lt; (x) =0.

When - approaches zero, two values of x approach a
;
these

V
values can be real or conjugate imaginaries. If they be real

for very small positive values of -, there exist two real

branches asymptotic to the straight line x a on the side of

the positive ?/ s. If they be also real for very small negative

values of -, there exist two other real branches asymptotic to

y
the same straight line on the side of the negative y s. When
the two roots are imaginary for the positive or negative values

of -, there does not exist any real, branch asymptotic to the

y

straight line x a.

In general, let p be the order of the root a
; among the p

values of x, which approach a when - approaches zero, p 2 q
y i

are real for very small positive values of -, p 2 q for nega

tive values. There will be p 2 q real branches asymptotic

to the straight line x = a on the side of the positive y s, and

p _ 2 q real branches asymptotic to the same straight line on

the side of the negative y s
;
in all, 2p2q 2q real branches

asymptotic to the straight line x = a. It is worthy of notice

that this number is even.

359. 2. In the particular case where a is a simple root of

&amp;lt; (X), it is easy to determine the nature of the curve in the

neighborhood of the asymptote.
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If
&amp;lt;$&amp;gt;p (x) be the first of the coefficients which does not be

come zero for x = a, the equation of the curve can be written

(x
-

a)
|
^o (*) +-*()+ +

^=1^-1
&amp;lt;X&amp;gt;

}

\f/ (x), \f/i(x) ---i/v-i designating integral polynomials in x, the

first of which does not become zero for x = a.

Now, if one assign to x a neighboring value of a, and if one

consider one of the very small p roots of the equation in -,

the sign of each of the parentheses is the same as the sign of

its first term; moreover, ^ (a?)
and

&amp;lt;j&amp;gt; p (x) have respectively

the same sign as ^ (
a
)
and

&amp;lt;fe,(

a
)-

After this, it is sufficient to consider the binomial equation

-
,

and to suppose successively x a little less, and then a little

greater than a.

(We have already employed an analogous process, 354. 2.)

Thus, when the first term of the equation, arranged with

respect to the increasing powers of - has a simple root a, the

equation can be reduced to this term, and to the first of the

following terms whose coefficient does not become zero for

x = a. One can also replace x by a in the factors which do

not become zero for x = a.

360. A\
r
e have, thus far, in equation (1) regarded x as a

function of -; one can, on the contrary, consider - as a func

tion of x. Suppose then that the real root a of the poly

nomial
&amp;lt;o (#) does not reduce fa (x) to zero

;
as x approaches

a, one value only of -
approaches zero, and this value is of

necessity real. There exist, therefore, two real branches,

asymptotic to the same straight line x = a, and one of them
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is given by values of x less than a, the other by values

greater than a; these two branches are situated on opposite

sides of the asymptote.

In order to determine their position, allow x to vary from

a h to a -f- h, assuming h to be sufficiently small so that, in

this interval, the equation &amp;lt; (#)=0 has only the root a, and

the polynomial fa (x) does not become zero
;

it can be supposed,

moreover, that h, and consequently -, be sufficiently small in

absolute value, in order that, when the simultaneous values

which correspond to a point of one of the infinite branches

be assigned to x and -, the value of the polynomial
J

&(*)-+ &amp;lt;fc(s)4+
- + &amp;lt;fc.0*)~

J J *J

has always the sign of its first term fa(x)-, but from equa

tion (1), the value of this polynomial is equal to &amp;lt; (x);

it follows that the two quantities fa (x)
- and fa (#) have
j

the same sign, and consequently that - has the same sign

as &quot;&quot;^pfo). When x varies from a h to a + h, the de-

Fig. 226. fig. 227.

nominator fa(x) preserves the same sign; if a be a simple

root, or more generally a root of even order, of the equation
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(#)=0, the numerator
&amp;lt;f&amp;gt;

Q (x) changes its sign for a? = a;

the value of y changes its sign also, and the two branches

have opposite directions, one approaching one extremity of

the asymptote and the other approaching the other extremity

(Fig. 226), as in case of the hyperbola. When a is a root

of even order, the numerator preserves the same sign, so also

does T/; the two branches are directed toward the same ex

tremity of the asymptote (Fig. 227).

Suppose now that a reduces the successive polynomials &amp;lt;

1?

&amp;lt;/&amp;gt;
2 &amp;lt;#&amp;gt; p_i to zero. As x approaches a, p values of - approach

zero
;
of these values, p 2 q are real for values of x less than

(/&amp;gt;j p 2q for values of x greater than a; there will be there

fore 2p 2q 2q real branches asymptotic to the straight

line x = a.

EXAMPLE I. Consider the curve defined by the equation

a^4 + (a;s

which, expanded, may be written

The biquadratic equation

has two real simple roots with contrary signs,

x = -

Since these values of x do not reduce 0i(x) to zero, each of the straight

lines x = a is asymptotic to two real branches situated on the opposite

sides of the straight line and directed towards its two extremities.

EXAMPLE II. Consider the curve (x
-

I)
2
?/ + 4 - x2 = 0.

The equations (aO = becomes (x
-

1)
2= 0. This equation has the

double root x = 1. When x approaches unity, the two values of y are

imaginary ;
the straight line x = 1 is not therefore asymptotic to a real

branch.
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/

ASYMPTOTES WHICH AKE NOT PARALLEL TO THE ?/-AXIS.

361. Let us consider an infinite branch MN of the curve

(Fig. 228) which has an asymptote CD that is not parallel

to the ?/-axis ;
such an asymptote

has the equation T ,

(1) yl
= CX + d,

Fig. 228.

c and d being two unknown con

stants which are to be deter

mined. Let y and yl
be the

ordinates of the branch of the

curve and of the straight line

which corresponds to the same

abscissa, and 8 the difference

y T/I? that is MR
; according to the definition, 8 is a function

of x whose limit is zero when x is indefinitely increased. The

infinite branch of the curve which we consider is therefore

represented by the equation

(2) y = yl -f- 8 = ex -f- d + 8.

The equation of a branch of the curve can often be easily

put under the preceding form, and then the asymptote is found

as follows. Let, for example, y =
j-^-

be the equation, in

which f(x) and F(x) represent two integral polynomials in x,

the first of the degree m, the second at most of the degree

m + 1. To each real root of the equation /()= correspond

two real infinite branches, asymptotic to the same straight line

parallel to the y-axis, situated on opposite sides of the straight

line, and directed toward its opposite extremities or toward

the same extremity, according as the root a is of an odd or

even order. There are, moreover, two other infinite branches

which are obtained by assigning very large positive or nega
tive values to x. If the division be effected, one obtains, on

arranging the equation with respect to decreasing powers of
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x, an integral quotient ex -f d, which is at most of the first

degree, whence one has

(f)(x) being an integral polynomial of a degree less than m;

since this last fraction approaching the limit zero as x is

indefinitely increased, it follows that the straight line y^cx+d
is asymptotic to the two branches which we consider.

We shall cite in addition, as an example, the transcendental

curve

y = x + x ,

a*

which has an infinite branch situated in the angle YOX and

asymptotic to the straight line y = x.

362. In general, the asymptotes cannot be found so easily.

Let us return to equation (2). We find

Since d has a finite value, and 8 approaches zero when x increases

indefinitely, one has

(3)
c = limit of -

The angular coefficient of the asymptote is equal to the limit

which the ratio -
approaches, when x increases ivithout limit.

x

The ratio
y- being the angular coefficient of the straight line

OM, the relation (3) shows that this straight line approaches

as a limiting position OE parallel to the asymptote CD, when

the point M is removed to infinity on the branch MN. The

same equation gives d = y ex 8, whence

(4)
d the limit of (y ex).

The ordinate at the origin of the asymptote is equal to the limit

of the difference y ex, ivhen x increases without limit.
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The quantity y ex being the ordinate MQ of the curve in

tercepted by the straight line OE parallel to the asymptote,

relation (4) shows that this ordinate approaches a limit OB,

when the point M is removed to infinity on the branch MN.

The two relations (3) and (4) determine the asymptotes

which are not parallel to the y-axis.

Suppose that the equation is solved with respect to y, and

consider a determination of y which gives a real infinite

branch, when x is increased without limit. We take, for this

branch, the ratio
-_;

if this ratio does not approach a finite
*c

limit, the branch does not have an asymptote. If the ratio

approach a finite limit c, the difference y ex is considered
;

when this difference does not approach a finite limit, the

branch does not have an asymptote; if, on the contrary, it

approach a finite limit d, one will have y ex = d + 8, where 8

approaches zero as x increases without limit; therefore the

straight line y l
= ex + d will be an asymptote of the branch

under consideration.

EXAMPLE I. Construct the curve

y = x-

referred to rectangular axes of co-ordinates. The sc-axis is the axis of the

curve. When x varies from o to unity, y

remains finite
;

it is in the first place zero,

then increases and becomes zero again ;

whence we get the oval OAO (Fig. 229).

As x varies from 1 to 2, y is imaginary.

When x becomes greater than 2 by a small

quantity, y is real and very large ; if, there

fore, OB be taken equal to 2, and GG be

drawn parallel to OY, this straight line will

be asymptotic to two branches of the curve.

As x increases from 2, y begins to dimin

ish, and finally becomes very large, when x

is large ;
thus the two branches CND and

C N D are obtained. When x is negative,

y is always real
;
as x varies from to -co,

the numerical value of y varies uniformly

from to oo, and so one gets the two

branches OE, OE . Fig. 229.
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Consider, for example, ND, one of the infinite branches
;

this branch
is found by taking the + sign in the equation, and on supposing that x is

positive and very large. We have

the limit of - is unity. Moreover, one has

and, on multiplying the two terms by the sum of the radicals

V - x =
Vx-2)

therefore the straight line y = x + \.is an asymptote of the
branch considered. On dividing both terms of the fraction by x, one sees
that the difference y x is greater than i, and, consequently, that the
ordinate of the curve is greater than that of the asymptote ; consequently
one infers that the branch ND is situated above the asymptote. One
would discover in a similar manner that the branch OE has the same
asymptote, and that it lies above the branch. The two branches N D
and OE have as asymptote a straight line which is the symetrique of the

preceding with respect to the x-axis.

EXAMPLE II. Consider the curve yi-tfx+ x* 2x-y= 0, constructed
in 342. We have expressed the two co-ordinates x and y in terms of the

auxiliary variable t = - The two branches OA and OB, which are

found by allowing t to approach zero, do not have an asymptote, since y
becomes infinite. The two infinite branches OC and OD are obtained by
making t approach unity. We have, for these branches, tlie limit of

- = 1; test whether the difference y -x has a limit. The formulas, by

means of which x and y are expressed in terms of t, give

this difference approaches unity, when t approaches 1. Whence it fol

lows that the two branches under consideration have the straight line

y = x + 1 as an asymptote. The difference 5 has the value

when t varies from 1 to + &amp;lt;x&amp;gt;,
the difference is negative and the branch

OD is situated below the asymptote. The polynomial t
2 + t 1 has the
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roots t =
~ 1 +v/^

7
t&quot;
= ~ 1 ~

;
when t varies from | to

,
5 is nega-

&quot;

tive, and the arc OE is below the asymptote ;
as t varies from to 1, 5

becomes positive, and the arc EC crosses to the other side of the asymp

tote. The other root t&quot; gives the point F where the branch OA intersects

the asymptote.

363. Let us consider now the case when the equation sup

posed algebraic and integral is not solvable with respect to

the variable y. Collect terms of the same degree ; represent

by &amp;lt;j&amp;gt;(

x
, y) the ensemble of terms of the highest degree m, by

\]/(x, y) the ensemble of terms of the degree m 1, by xfo y)

the terms of the degree m 2, ...
;
the equation may be written

() /(*&amp;gt; y)
=

&amp;lt;fr(

x
&amp;gt; y) + t(x &amp;gt; y) + *(*&amp;gt; y) + = -

Represent the ratio t by u, and substitute ux for y in equa

tion (5) ;
the polynomial &amp;lt;j&amp;gt;(xt y), being homogeneous and of

the degree m, will contain xm as a common factor in all of its

terms, and it will follow that
&amp;lt;f&amp;gt;(x, y)

= xm
&amp;lt;f(l y u), or, for brevity,

xm
&amp;lt;f&amp;gt;(ii).

Similarly the polynomials &amp;lt;j&amp;gt;(x, y), x(x &amp;gt; 2/)&amp;gt;

- wil1 be &quot;

come xm
~ l

\l/(u),
xm -\(u), .... The equation connecting a? and u

will therefore be

xm
&amp;lt;l&amp;gt;(u)

+ xm
- l

f(u) + a;
m
\(u) -\ =0,

and, after dividing by xm
,

(6) &amp;lt;K-w)
+ - ^00 + 4 x( ?

^) + = 0.

^/ iX

Suppose that a real branch MN (Fig. 228) be asymptotic to

a straight line CD which is not parallel to the y-axis. When

the point M is removed to infinity on this branch, u ap

proaches a finite limit c, while - approaches zero. Since the
x

terms of equation (6), beginning with the second, approach

zero, it follows that the value u = c annuls the polynomial

&amp;lt;().
Thus the angular coefficients of the asymptotes satisfy the

equation &amp;lt;/&amp;gt;(

w
)

0-
ni

qj

Take now y cx= v, whence u = -
;

= c -f-
- On substitut-
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ing tliis value for u, and developing each term, equation (6)
becomes

(7) -3+

Since
&amp;lt;f&amp;gt;(c)

= 0, if one multiply by x, it takes the form

When the point M is removed to infinity on the branch MN,
v approaches a finite limit d whilst -

approaches zero. The

terms of equation (8), beginning with the second, approach
zero

;
it follows that the value v = d reduces the first term

V(f&amp;gt; (c) + ^r(c) to zero. If c be a simple root of the equation

&amp;lt;(V)
= 0, the quantity &amp;lt;

(c) being different from zero, one

obtains the following finite value for d :

364. Conversely, let c be a simple real root of the equation
&amp;lt; (u)

=
;

consider the corresponding finite value d given by
equation (9), and construct the straight line CD, whose equa

tion is y = ex -f d. Owing to equation (8), when - approaches

zero, one value of v, and only one,
D

approaches d
;
this value, necessarily

real, represents the ordinate MQ, in

tercepted between the parallels OE
and CD-, it follows that there are

two real branches asymptotic to the

straight line CD, one on the side of

Fig. 230. the positive and the other on the side

of the negative x s (Fig. 230).

Suppose that c be a root of the pih order of
&amp;lt;f&amp;gt; (u) and does

not reduce \j/(u) to zero; according to equation (8), when -

x
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approaches zero, each, value of v becomes infinite; because,

if one value of v preserves a finite value, the coefficients

A, J3, would remain finite, and equation (8) would reduce to

^(c) = 0, which contradicts the hypothesis. Owing to equa

tion (6), when - approaches zero, p values of u become equal
OC

to c
; among these p values, p 2 q are real for very small pos

itive values of -, p 2 q for negative values. Draw the straight
x

line OE, whose angular coefficient is c. To each real value of

u there corresponds a straight line OM
9 making a very small

angle with OE
;
the point 3f, in which this straight line inter

sects the parallel to the y-axis with the abscissa x, belongs

to the curve
;
when - approaches zero, the ordinate v = MQ be-

00

comes infinitely large in absolute value, the branch described

by the point M does not have an asymptote, and is similar to

a branch of a parabola. There corresponds an even number

2p 2 q 2q parabolic branches to the direction c.

Discuss the case when c is a double root of the equation

&amp;lt;(V)
= 0, and annuls

i//(c). Equation (7) becomes

(10)

When _ approaches zero, two values of v approach finite

$/

limits which are roots of the equation

If the two roots d and cl of this equation be real and unequal,

one value of v approaches d, when - approaches zero; it is

CC

real and furnishes two real branches asymptotic to the straight

line y = ex -f- d. The value of v which approaches d fur

nishes in a similar manner two real branches asymptotic to

the straight line y ex -f- d , parallel to the first. If the roots

of equation (11) were equal, one could no longer make the

preceding deduction
;
in this case one would introduce a new

transformation by putting v d + w.
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364. 2. It is easy to find the position of the curve in the

neighborhood of an asymptote, when the ordinate d of this

asymptote corresponding to the origin is a simple root of the

first term of the equation in -.

x i
For this purpose reduce the equation in - to its first term

C

and to the first of the terms following whose coefficient does

not become zero for v = d. One can afterwards replace v by

d in the factors which do not become zero, for v = d (see

359. 2).

365. REMARKS. We have seen that a simple root c of the

equation &amp;lt; (M)
= gives two real branches asymptotic to the

straight line CD, which has the equation y ex -f- d. If a cer

tain value be assigned to v, equation (8), in which - is re

garded as unknown, will determine the points of intersection

of the curve and of a straight line y = ex + v parallel to the

asymptote. Equation (7) being of the degree m with respect

to!, equation (8) is of the degree w 1; whence it follows
x

that a parallel to the asymptote intersects the curve at most in

m 1 points. If the particular value d be assigned to v, the

equation is depressed to the degree m 2
;

the asymptote

intersects t-he curve at most in m 2 points.

Consider next the case when c is a double root and annuls

&amp;lt;K

C
) 5 equation (10) being of the degree m 2 with respect to

-, a straight line parallel to y ex intersects the curve at most
x
in m _ 2 points. If the roots of equation (11) be real and

unequal, the two asymptotes both intersect the curve at most

in ?7i 3 points.

EXAMPLE. Let the curve be, y
4 - y ^x + a 3 - 2 x*y - 0, constructed

as in 342. One has
0(?&amp;lt;)

= u* - ?t
3 = u*(u - 1 ), ^(?t) = 1 - 2 M. The

equation 0(?) = Ohas a triple root zero and a simple root 1. The simple

root c = 1, with the corresponding value for eJ = 1, gives a straight line

y
_ x _j_ i asymptotic to two real branches. The triple root will furnish

asymptotes parallel to the or-axis ;
but it is plain, from the equation of

the curve, that none of the values of y approach a finite limit, when x

is increased indefinitely.
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Equation (8) in this case becomes

(y
_

l)-f (3^2 _2tf)- + 305 -- + &*i = 0.
X X2 X*

If we put v 1, we obtain an equation of the second degree,

1+5+1=0,
X X2

which gives the two points E and F in which the asymptote intersects

the curve (Fig. 216).

366. It is an easy problem to reduce the investigation of the infinite

branches of an algebraic curve to the study of the finite branches of an

algebraic curve of the same degree. Let x and y be the co-ordinates of

any point M of the figure for the first curve
;

let the point M 1 whose

co-ordinates are x 1 and y correspond to the point M, and the co-ordinates

x and y
1

expressed in terms of the co-ordinates of M be

from which follows, conversely,

If the point M describe a straight line Ax + By + C = 0, the point M
describes the straight line Cx + By + ^4 = 0; the angular coefficient of

each of the straight lines is equal to the intercept of the other on the y-axis.

More generally, if the pointM describe a curve of the degree TO, the point

M describes a corresponding curve of the same degree ;
to a secant passing

through two neighboring points of one of the curves corresponds a secant

passing through two neighboring points of the other curve, and, conse

quently, to a tangent there corresponds a tangent. We can assume that

the first curve is referred to axes in such a manner that the equation

involves a term in y
m

;
then the infinite branches are obtained by making

x increase without limit, and all the values of the ratio - approach finite

limits. Whence, if the point M describe an infinite branch of the first

curve, since x 1

approaches zero and y a finite

value c, the point M will describe a branch

intersecting the y-axis at a point A whose

ordinate is c (Fig. 231). In this way the

study of infinite branches of the first curve

is reduced to the investigation of branches

of the second curve in the neighborhood of

points situated on a y-axis.

Let A be a point in which the second

curve intersects the y-axis ;
call d the an

gular coefficient of the tangent at this point ;

Fig&amp;gt; 231&amp;lt;
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for a point M1 consecutive to A one has
,

= d + 5, 5 approaching
9C&amp;gt;

zero with x
;
the branch AM of the second curve is therefore repre

sented by the equation jf
= c + dx + dx

;
to this branch corresponds an

infinite branch of the first curve whose equation is y = ex + d + 5, 5

approaching zero when x is increased without limit
;
to the line y = c+ dx

tangent to the second curve corresponds the asymptote y = ex + d of

the first. We know that an even number of branches having the same

tangent ( 353) emanate always from the point A ;
the first curve pos

sesses therefore an even number of infinite branches having the same

asymptote. Since the tangent at A is the limit of the tangent at J/
,
it

follows that the asymptote is the limit of the tangent at the point 3/,

when this point is removed to infinity.

Suppose, for example, that the point A be an ordinary simple point,

as indicated in Fig. 231
; according to the sign of 5 one sees that to the

branch AM there corresponds an infinite

branch M situated above the asymptote to

the right, and to the branch A N a second

infinite branch JV situated below the asymp

tote to the left. If there be an inflection at

A (Fig. 232), the two infinite branches

would be situated both on the same side of

the asymptote, one to the right, the other

to the left
;

in this case it is said that the

curve has a point of inflection at infinity. If

Fig. 232. the point A be a double point with distinct

tangents, there will be two parallel asymptotes to each of which there

corresponds two infinite branches having one of the preceding positions.

If the point A be a cusp, there will be two branches asymptotic to the

same straight line, but towards the same extremity.

It has been assumed thus far that the tangent at A does not coincide

with the y-axis ;
if this were the case, to the branches which emanate

from the point A correspond, in the first figure, infinite branches without

asymptotes. The direction of the tangent at the point M has as its limit

the direction determined by the angular coefficient c
;
but it is removed to

infinity. The name parabolic branches is given to such infinite branches.

If the point A be an ordinary simple point, the two infinite branches

have the same directions as the branches of the ordinary parabola. If

A be a point of inflection, the two branches have opposite directions.

The curve represented by the equation y* = x presents this arrangement ;

it is composed of two infinite branches without asymptotes, and directed,

one toward the positive x s, the other toward the negative x s.

367. Since to each value of x there correspond at most m real values

of v, the first curve has at most m infinite branches on the side of the
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positive x s, and m infinite branches on the side of the negative re s; this

is, moreover, a consequence of the fact that the second curve is inter

sected at most in m points by the y-axis. Since the number of tangents

to the second curve at these points of intersection is at most equal to m,

the first curve has at most m asymptotes.

The straight lines drawn from the point A transform into straight

lines parallel to the asymptote. If the point A be a simple point ( 354),

a secant drawn from this point intersects the curve in m - I additional

points ;
therefore every straight line parallel to an asymptote intersects the

first curve in m - 1. The tangent at A does not intersect the curve in

more than m - 2 other points ; and, consequently, the asymptote does

not intersect the first curve in m - 2 points. If A be a point of inflection,

since the tangent intersects the second curve in three points, which are

coincident with A ( 345), the asymptote will have three points of inter

section at infinity ; and, consequently, will not intersect the curve in more

than m 3 points.

368. The transformation which we have made is equivalent to taking

the perspective of the figure on a plane. Consider two figures situated

one in the horizontal plane, the other in the vertical plane, intersecting

the horizontal plane in the line LT (Fig. 233), and in such a way that

X

Fig. 233.

one is the perspective of the other, the eye being placed at the point whose

projections are o and o . It is evident that, when a point M is removed

to infinity in the vertical plane, its perspective M falls upon the straight

line o y parallel to la ligne de terre (LT} ;
the study of the infinite

branches of the curve situated in the vertical plane is thus reduced to the

study of the other curves in the neighborhood of points situated on the

straight line o y .
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If one of the curves be referred to the axes ox and oy, the other to the

axes o x 1 and o y ,
one has the formulas of transformation x =

, y = ^,
X

*

T
in which a and b represent the distances ao and ao. These formulas are

identical with those which have been used above when one puts a = 6=1.
Let A 1 be a point in which the second curve intersects the straight line

o y
1

;
the straight line A B tangent at this point has as perspective the

straight line AiA ;
to the two branches M and N

,
which start from the

point A , correspond two infinite branches M and N, asymptotic to AAV
When the tangent at A coincides with the straight line o y , as is the

case at the point C&quot;,
the corresponding asymptote is situated at infinity,

and the two branches P and Q
1

give birth to two infinite parabolic
branches P and Q ;

the straight line drawn from the point o to a point of

either of the branches Pand Q approaches the limiting direction oCi.

369. Transcendental

infinitude of points.

For example, the curve y =
to the other of the straight line OX, to which it is asymptotic, since the
value of y has the limit zero (Fig. 234). The oscillations have a constant

curves can intersect their asymptotes in an

- oscillates perpetually from one side

Fig. 234.,

amplitude which is equal to IT.

The curve y =
sin x2

oscillates perpetually from one side to the other

of its asymptote OX; but in this case the amplitude of oscillation

diminishes continually (Fig. 233).

We have seen ( 360) that, in algebraic curves, if an infinite branch
have ail asymptote, the tangent approaches a limiting position, which is

o

.Fig. 235.

the asymptote itself, when the point of contact is removed to infinity on
the branch of the curve. But this is not true in general in case of trans-
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cenclental curves
; thus, in the preceding example the angular coefficient

of the tangent,

y = 2 cos x2 sinx2
~

5

X2

does not approach a limit
;
because the second term approaches zero, and

the first oscillates between 2 and -f 2.

It can often happen that two infinite branches do not have a rectilinear

asymptote, and notwithstanding the difference of their ordinates ap

proaches zero
;
in this case, it is said that the two curves are asymptotic

to each other; if one of them be a well-known simple curve, it would

serve to trace the other. Consider the equation y = -~
,
and suppose

that the degree of the numerator is at least two units greater than that of

the denominator
;

the ratio - increasing without limit with x, the

branches which correspond to very large values of x, positive or negative,

do not have rectilinear asymptotes. If the y

division of the numerator by the denomina

tor be effected, we have

y = axn + frx&quot;-
1 + ...+

P^

and the two branches considered are asymp
totic to the curve

y axn + bxn~ l
-f + k.

,

When n = 2, the second curve is a parabola.

For example, the curve

=+
x

is asymptotic to the parabola y = x2
(Fig.

236). Fig. 236.
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CHAPTER IV

CONSTRUCTION OF CURVES IN POLAR CO-ORDINATES.

370. Polar co-ordinates have been denned in 3
;
in this

system, any point, taken at random in the plane, can be deter

mined by a value of &amp;lt;o comprised between and 2
TT, and by a

positive value of p ;
however each of the co-ordinates o&amp;gt; and p

may vary from oo to +00.
We have seen ( 263) that if one of the foci of the hyperbola

be taken as pole, its two branches are represented by two

distinct equations, when we confine ourselves to positive radii

vectores; moreover, one of the equations is sufficient, if neg
ative radii vectores be allowed, on agreeing to measure the

absolute value of each of them in the direction opposite to that

indicated by the value of to. We have also seen that this con

vention makes it possible to represent the limaQon of Pascal

by a single equation ( 27).

371. Spiral of Archimedes. A point M has a uniform

motion in the direction G G on an indefinite straight line

G OG which revolves with a

uniform motion about one of

its points 0. The curve de

scribed by the point M is

the spiral of Archimedes (Fig.

237).

Take OX for the polar

axis, the direction which the

straight line OG has when

the movable point M passes

through 0, and reckon posi

tive polar angles in the direction of rotation of the straight
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line; let a be the distance which the movable point has

advanced on the straight line, while it has made a complete
revolution. If the variable point be considered in any of its

positions after its passage through 0, on calling w the angle

through which the direction OX has revolved in order to

coincide with OG, and p the distance of the variable point

from the point 0, one has on putting -^- b,
2ir

(1) =, or p = ^ = io,
a 2, TT TT

Let us consider the movable point before it passes through

0; call a*! the absolute value of the angle through which it is

necessary to revolve the direction OX in order to make it

coincide with OG
;
the pointM being situated on OG , the pro

longation of OG, the radius vector should be regarded as nega

tive, and one has - = -- If one regard those anglesa TT

measured in a direction opposite to the first as negative, one

will have o&amp;gt;
=

a)!, and the preceding relation is identical with

equation (1), which represents an indefinite curve. The values

of w comprised between and 2 TT, 2?r and 4?r, -,
and

2?r, , give the successive helices. If we confine ourselves

to the positive values of p and to the values of o&amp;gt; comprised

between and 2 ?r, it would be necessary to employ a particular

equation in order to represent each of the helices,

p = b&amp;lt;D, p = a -f- froo, , p = a
ba&amp;gt;, p = 2a bw, .

The spiral of Archimedes is composed of two parts

and OB

symetriques of one another with respect to Y perpendicular

to the polar axis. Each portion embraces an infinitude of

helices, and the portions of any straight line drawn through

the pole and comprised between two consecutive helices all

have the length a.

372. REMARK I. Any point M of the plane can be defined

by an infinitude of pairs of values of p and w. If a, represent
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a positive angle less than 2 ?r which the direction OM makes

with the axis OX, and a the distance OM
(Fig. 238), one can select as co-ordinates of the

point M the pairs of values comprised in the

Fig 238.
two formulas

p -f- a, a&amp;gt;
= a -f 2 &TT,

p == a, to = a + (2 jt + I)TT,

where 7c is any integral number. If the point M belong to a

curve defined by an equation /(&amp;lt;o, p)
== 0, its co-ordinates can

be discovered merely by inspection of the point ;
it is necessary,

in order to obtain them, to follow the trace of the curve.

373. REMARK II. In the formulas of transformation es

tablished in Book I., Chapter IV., we have supposed the point

M determined by a positive radius vector and by a polar angle

comprised between and 2 TT. Taking in the first place the

radius vector positive, one can choose as polar angle any of the

angles which have the direction OM with

the axis OX (Fig. 239), on agreeing to

assign to the angle the -f sign or sign,

according as the straight line starting

with the direction OX takes the direc

tion OM by revolving from OX toward

OF, or in the opposite direction. This

results in increasing or diminishing the

angle represented originally by to, by a multiple of 2 -n-
;
since

the sine and the cosine do not change, the formulas remain the

same. Suppose now that the point M is defined by a negative

radius vector
;
the angle to will be one of the angles formed by

the direction OM with OX. Since the projection of OM
on OX is equal to ( p)

- cos (TT + to)
or p.cos to, one has still

x = p cos to, and similarly y = p sin to. Therefore the formulas

are general.

When the polar axis OX does not coincide with OX, the

position of this axis is defined by the angle a which it makes

with OX If w in the formulas x = p cos
o&amp;gt;, y = p sin to,

which
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are referred to the polar axis OX, be replaced by w + a, they
become x cos (a/ + a), y = p sin (V + a).

Suppose now that the axes of co-ordinates

be oblique and take OX for the polar axis

(Fig. 240) ;
the formulas of transformation are

obtained by projecting the two paths OM and

0PM successively on a perpendicular to OX
and on a perpendicular to OY, which gives Fig. 210.

_ p sin (0 o&amp;gt;) p sin &amp;lt;o

~~sm~0 y ~
sin0

374. REMARK III. In the case where the entire curve is

obtained by varying &amp;lt;o from to 2?r, one perceives the sym
metry of the curve with respect to the polar axis OX, if the

values a and 2 ?r a assigned to o&amp;gt; give the same value for p,

or if the values a and TT a give values for p, equal and con

trary in signs. Similarly, the symmetry of the curve with

respect to the perpendicular OY is seen, if the angles a and
TT a give the same value for p, or the angles a and 2 TT a

give values for p equal and contrary in sign. Finally, the

symmetry of the curve with respect to the pole may be seen,
if the angles a and ?r -f- a give the same value for p, or if to

the same angle a there correspond two values of p, equal and

contrary in signs.

But if, in order to obtain the entire curve it be necessary
to give w values greater than 2 ?r, the symmetry of the curve

may be discovered in another manner. For example, if it be

necessary to vary u&amp;gt; from to 4
TT, the symmetry with respect

to the polar axis will exist, if the angles a and 2 TT a, or

a and 4 ?r a, give equal values to p, and moreover if the

angles a and TT a, or a and 3 TT a, give values to p, equal
and contrary in sign. If the limits of o&amp;gt; be farther extended,
the number of comparisons is increased.

Consider, for example, the curve defined by the equation p = cos -

If co be increased two times 2?r, the direction of the radius vector re

mains the same; moreover, if - be increased by multiples of 27r, p takes
2
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Fig. 241.

the same value and one finds a point previously known
;

it is sufficient

therefore that o&amp;gt; vary from to 4 ir. If

u be increased by 2 ?r, the radius vector

returns to the same direction
;
but -

2

being increased only by TT, p takes the

same numerical value with a change in

sign ;
it follows that the portion of the

locus given by the values of &amp;lt;a com

prised between 2 -K and 4 TT is the syme-

trique with respect to the pole of the

portion given by the values of a&amp;gt; com

prised between and 2 TT
;

in other

words, the pole is the center of the curve. For o&amp;gt;
= a and a? = 2ir a,

the values of p are equal with contrary signs ;
here one has two points

situated symmetrically with respect to OY perpendicular to the polar

axes (Fig. 241); this straight line OF is an axis of the curve. The

variable o&amp;gt; varying from to TT, as p diminishes from 1 to 0, one obtains

the arc ABO tangent to the straight line OX at 0. The values of o&amp;gt;

comprised between TT and 2 TT give the arc OBA ,
the symetrique of the

first with respect to O F, and the values w comprised between the values

2r and 4 TT, the curve A B OB A, the symetrique of ABOBA with

respect to the pole. The curve is closed and consists ef four equal

arcs. The polar axis is also an axis of the curve, which is at once evident

on noticing that one gets equal values of p for the values o and 4 TT a

of co.

TANGENT.

375. Let M be a point of a curve referred to polar co-ordi

nates. Consider the tangent MT at a point M (Fig. 242), and

the prolongation MA of the radius

vector in the direction 03/; let V
be the angle through which it is

necessary to revolve the prolonga

tion MA of the radius vector about

the point M, in the positive direc

tion, in order to make it coincide

with the tangent. In order to de

termine V, call p and to the co-ordi

nates of the point of contact M,

p + A/a, o&amp;gt; + Aco those of a neighbor

ing point M of Mj and U the angle formed by MA and the

Fig. 242,
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chord MM1

. When. the point M1

approaches M indefinitely,

the chord MM approaches the tangent MT, and the angle U

approaches V.

^ ^w, OM sinOMM sin(CT-Aoi)
The triangle 030T gives^=^^,= -L_J

Since Ap approaches zero when the point Jf approaches If,

one can suppose it to be sufficiently small that p and p -f- Ap

have the same sign : therefore one has in magnitude and in sign

and the equation above gives

p _sin(C7 Ao&amp;gt;)

p -f- Ap
~~

sin U

Aoo

P sin (17 Ao&amp;gt;)
_

sin (7 AM)
whence -

gin ^_ gin^_ A^
-

_ AU, cos (*7-
sin -77-

Ao) Aw A

When Aw approaches 0, the ratio approaches the derivative

p of p with respect to w, and U approaches F. Therefore one

has

tang V= ^
P

KEMARK. When the radius vector becomes zero for a par

ticular value w of co, one has a branch of

the curve OC passing through the pole

(Fig. 243), and the tangent to this branch

at the pole is the straight line OA de

termined by the angle co . In. fact if a

neighboring point M be taken and if the

secant OM be revolved so that the point Fig&amp;lt;

M approaches the point 0, p becomes zero

and the secant approaches OA as a limiting position.
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376. Equation of the tangent. The equation of the secant

M,M\ (Fig. 244) is ( 83, 2)

1

p

1_

Pi

i+^
Pi Pi

COS co

COS co.

COS ! +

sin co

sin

sin (co l -f-

where p and wj are the co-ordinates of the point Ml and A,
1 pl

Aoo! the increments which and o^ take when one passes from
Pi

the point M to the neighboring point M\.
On subtracting, in the preceding deter

minant, the elements of the second row

from those of the third and dividing all

the elements of the third row of the new
~~

determinant by Awj, one obtains, for the

secant, an equation which gives, when Ao^

approaches zero, the equation of the tan

gent at M^Tig. 244.

cos o&amp;gt; sin

cos co sin oi

j

- Sill
&amp;gt;!

COS coj

=
0,

or, on developing,

- = COS (co coA + ( )
Sill (co wj).

P Pi VPi/

Sub-tangent. The sub-tangent St
is the radius vector of the

tangent which corresponds to the polar angle o&amp;gt;
= ^ -f- ^ne

has therefore
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If, in Fig. 244, Wl be the angle xOM^ the sub-tangent is nega

tive and equal to OT.

Sub-normal The sub-normal Sn is the radius vector of the

normal at the point M which corresponds to the polar angle

In Fig. 244, the sub-normal is positive and equal to -f ON.

Whatever be the arrangement of the figure, the triangle

TMJH is right-angled at 3^ and the point is the foot of the

perpendicular dropped from the point 3^ upon the hypotenuse

TN: this point will lie therefore always between T and JV,

and, consequently, the sub-tangent and the sub-normal will have

opposite signs : since the absolute value of their product is

or- oN=OM? = tf,

it follows that S
t
Sn = p?

and, consequently, from the value of St9

Equation of the normal The normal is a straight line pass

ing through the point M with the co-ordinates (p,, o^), and

through the point N, the extremity of the sub-normal with the

co-ordinates (p\, a&amp;gt;i +^Y The equation of this straight line

is therefore

COS o&amp;gt; Sill

cos o)! sin o^

sin M!

P I

COS

or - = COS
(o&amp;gt;

G&amp;gt;I)
+

,-
Sill

(&amp;lt;o

-

377. EXAMPLE I. The spiral of Archimedes. Since the equation

of this curve is p &w( 371), it follows that p b, whence
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Fig. 215.

If the point M begin with the pole and advance along the curve, the

angle V, at first zero, increases constantly and approaches a right angle.
The sub-normal is constant and equal to b.

EXAMPLE II. Logarithmic spiral. * The curve whose polar equation
is p = aem

&amp;gt;,

a being a given length and m a given number, is called a loga
rithmic spiral. Suppose that the constant m is positive : if u increase from
zero to infinity, p will increase constantly from a to infinity, which gives
an infinite branch ABC- consisting of an infinitude of circumvolutions

about the pole (Fig. 245). If u
~

vary from
to oo, p constantly dimin shes and

approaches 0; a second infinite branch
AB C -&quot; is found which makes an infini

tude of circumvolutions about the pole,

constantly approaching this point. If

the constant m be negative, the positive
values of w would give the branch which

approaches the pole, and the negative
values the branch which recedes from
it. In this case one has p = maem &amp;lt; = mp,

hence tan V Whence it follows that the tangent to the curve makes

a constant angle with the radius vector.

378. EXAMPLE III. Epicycloid. When a circle rolls, without slid

ing, upon a fixed circle, a point of the rolling circle describes in the plane
a curve which is called an epicycloid.

Let us consider the case when the two circles are equal. Let C be the

fixed circle, C the initial

position of the rolling

circle, and a the radius
;

suppose that the point of

contact be A, which, by
the motion of the circle

C
, generates the epicy

cloid (Fig. 246). When
the rolling circle has

taken the position C&quot;,

the point A is at If, and

the two arcs EA, EM
are equal. Take the

point A as pole, and

Fig&amp;lt;
246. C^l prolonged as polar

axis. The straight line

AM, perpendicular to EN the common tangent to the two circles,
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is parallel to CE
;

the angle AEN is a half of the angle ACE, and,

consequently, a half of w
;
the right triangle ANE gives AN =

but AE = 2 a sin
;
one has, therefore,

p = 4 a sin2- = 2 a(l cos w).
2

This curve is a particular case of the limagon of Pascal ( 26). Here

one has
/&amp;gt;

= 2asincj, whence tanF=tan
, and, consequently, F=&quot;.

It is easy to see that the normal to the epicycloid at any point M passes

through the point of contact E of the rolling circle with the fixed circle
;

because the angle MEN being equal to
, and, consequently, to F, the

2

straight line EM is perpendicular to MT.

379. EXAMPLE IV. Construct the curve p = 4 + cos 5 . The radius

vector p is always comprised between 3 and 5
;
construct with radii 3 and

5 two circles about the pole as center
;
the curve will be wholly situated

between these two circumferences

(Fig. 247). When o&amp;gt; varies from

o to
, p diminishes from 5 to 3,

which gives the arc AB. As w

varies from - to
, p increases

5 5

from 3 to 5, which gives the arc

BA the symetrique of the first

with respect to the straight line

OB. The angle 5w has varied

from o to 27T. If w vary from

to
,
the angle 5 u will vary

5 5

from 2 TT to 4 TT, and the same values

of p will be reproduced in the same
order

;
a second arc A B A&quot; is found equal to the first, then a third, and

so on. With the fifth arc one will arrive at the point of departure. By

constructing the derivative one finds tan F= - At the points A
5 sin 5 w

and B one has sin5u&amp;gt; = 0, and, consequently, F = -
2

380. EXAMPLE V. The extremities of a straight line of constant

length slides on two straight lines JT, T which are perpendicular to

each other
j
from a fixed point I on the bisector of the angle XOY one

draws a straight line perpendicular to the variable straight line
;
find the

locus of the foot of the perpendicular (Fig. 248) . It is evident that the
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locus will be symmetrical with respect to the straight line 07. Consider

first the variable straight line in the position PQ perpendicular to the bi

sector
;
a point A of the locus is determined. Make the straight line move

so that the extremity Q descends along the y-axis ;
in some position P1

Q

Tig. 248.

will pass through the point 7, which belongs to the locus
; whence one has

the arc AEI, whose tangent at 7 is perpendicular to P Q
1
. The extremity

Q continuing its descent will coincide with OX, and one has the arc

IFO which passes through the point C, the foot of the perpendicular let

fall from 7 to OX. As the extremity Q slides along T ,
the curve passes

below OX] the straight line will arrive in a certain position P&quot;Q&quot;
such

that the angle IP&quot;
Q&quot;

is right, which gives the point P&quot; of the locus;

whence we have the arc CGP&quot;. If the extremity Q&quot;
continue its descent,

the curve will return above the z-axis, and the straight line will finally

assume the position P&quot; Q &quot;,
which prolonged passes through 7; we get

then the arc P&quot;I whose tangent at 7 is perpendicular to P
&quot;Q

&quot;. If

the extremity P&quot;&amp;gt; continue to approach the point 0, the straight line

will ultimately coincide with the y-axis and we obtain the arc 7777),

which passes through the point D, the foot of the perpendicular

dropped from the point 7 upon the y-axis. If the extremity P &quot; slide

along OX ,
the straight line will assume a position P iv Q iv such that the
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angle IP ivQ io is right ;
the point P iv

belongs to the locus, and we obtain

the arc DP iv
. Finally the straight line, in some position P V QV

,
becomes

perpendicular to the bisector OB of the angle X OY
,
which gives the

arc PivB. If returning to the initial position PQ, the motion of the

straight line be reversed till the final position PVQV is reached, it is clear

that a curve the symetrique of the first with respect to the straight line

AB will be found.

Take as pole the point / and as the polar axis the bisector BA
;
call c

the distance 01 and 2 a the length of the variable straight line PQ ;
the

straight line which joins the point to the middle of the hypotenuse PQ
of the right triangle POQ is equal to a

;
the angle which this straight

line makes with the perpendicular h dropped from the point O upon the

hypotenuse is equal to 2 w
;
one has moreover h = c cos w + p ;

whence
follows the equation of the curve p = a cos 2 w c cos w.

CONVEXITY AND CONCAVITY.

381. Consider on an arc of the curve a point M, whose

co-ordinates are &amp;lt;DO and /DO ;
the tangent at this point will be

represented by the equation r = ~
^-, if q be the lengthCOS (CD p)

of the perpendicular let fall from the pole upon the tangent
and /? be the angle which the perpendicular makes with the

polar axis ( 82). The position of the curve with respect to

the tangent, in the neighborhood of the point M\ depends upon
the sign of the difference r p of the radii vectores for the same

value of
to,

or of the difference : we assume that the radii
p r

vectores are positive. Let z be this last difference
;
the value

of z is evidently zero at the point M ;
its first derivative

IV/iy sin(&amp;lt;o-j8)

P/ ttrW&quot;
1

&amp;lt;?

is also zero
;
because one has, at the point M ( 375),

IV p cot V
-

2
=

,
sm (o) /?)

= cos F, q = pQ sin V.
p po

The second derivative,

-
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has at the point M a value equal to that of the expression

On repeating here the reasoning of 344. it can be
P

easily verified that, if this quantity be positive, the difference

z is also positive in the neighborhood of the point M, and con

sequently the curve is situated on the same side of the tangent
as the pole, and that, if on the contrary this quantity be nega
tive, the difference z is negative, and the curve will lie on the

other side of the tangent.

If the radius vector p be negative, one sees by similar con

sideration that the position of the curve with respect to the

tangent is on the same side as the pole when the quantity

]
is negative and on the other side if this quantity be

positive.

In general, therefore, it may be said that at a point M of a

curve it turns its convexity or its concavity toward the pole accord

ing as

-+(TPLP \P/

is negative or positive at this point.

There is a point of inflection at the point of the curve where

1 /T\&quot;
the quantity

- +
(

-
) changes its sign.

P W
ASYMPTOTES.

382. Consider an infinite branch asymptotic to the straight

line CD (Fig. 249) ;
if the point M of the curve be joined to

the pole, and if the point M be removed

toward infinity on the curve, the radius

vector OM will have for its limit a line

OL parallel to the asymptote. Thus,

ivhen the radius vector p becomes infinite

for a particular value a of o&amp;gt;, if the

branch thus determined have an asymp-

tote, this asymptote is parallel to the direc

tion determined by the angle a which

Fig. 249. makes p infinite.
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To find the distance 00 of the asymptote from the straight

line OL, draw from the point My
MK perpendicular to OL

;

the triangle MOK gives

MK= OMsmKOM= p sin (a
-

o&amp;gt;).

If the product p sin (a co)
do not have a finite limit, the

infinite branch does not have an asymptote. If, on the con

trary, this product approach a finite limit, the branch of the

curve does have an asymptote, the straight line CD, situated a

distance 0(7, equal to this limit, from the line OL
;
because

if the distance MK have the limit 0(7, the distance MH will

have the limit zero.

A second demonstration. Suppose that the infinite branch

is referred to two rectangular axes drawn through the pole,

the y -axis in the direction a, and the a; -axis in the direction

a . If Ox be taken for a new polar axis, it follows that

(o = o)
(

- \ and the abscissa x of the pointM will be, in
2

every case ( 373),

x =

Qne is thus led to seek an asymptote parallel to the ?/-axis.

The abscissa q of the asymptote is

the limit of x
,
when the point M is

removed to infinity on the branch of

the curve
;
one has, therefore,

q lim p sin (a to).

The absolute value of q gives the

distance of the asymptote from the

straight line O?/ ;
the sign shows on

which side it is situated. Fig - 25 -

383. EXAMPLE VI. The Hyperbola. The polar equation of this curve

is ( 263) p =----
,
in which e is greater than 1. Let a be the angle

whose cosine is --
;
when w increases from to a, p increases from

-J? to oo, and one has the infinite branch AE
;
when w varies from a to

1 + e
p

TT, p becomes negative and varies from oo to --=
=-,

which gives the
&quot;*&quot;~

OF THB

UNIVERSITY
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infinite branch E A . The values of comprised between TT and 2 TT give

two branches which are the symetriques of the preceding with respect to

the polar axis.

The distance MK of a point of one of the branches AE, A E 1 from the

line OL is

_ P sin (a w) _ p sin (a

1 -f- e cos w
~

/ 1

|) sin (a w)~
e(cosw cos a)

Substituting a product for the differ

ence cos w cos a, and 2 sin
a ~ u

cos - - for sin (a ), and suppress-

Fig. 251.

ing the common factor sin

has
-, one

p cos

MK=
e sm

This distance has the limit OC = =
;
thus is obtained the asymptote

e sin a

CD. The asymptote of the other two branches is situated symmetrically
with respect to the polar axis.

The difference between MK and its limit is

5

cos

if the product 2 sin a cos- - be replaced by the sum

3 a w -asm [-sm

it becomes =.
2 sin a sin

a +

if the numerator be transformed into a product, one has finally

a w .
a&amp;gt; a

p sin : cos a p sin

sm a sin- e2 sin a sin
&quot; a
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When w varies from to a, the difference 5 is negative ;
thus the

branch AE is comprised between the parallels OL and CD. But, when
w varies from a to ir, the difference 5 is positive, and the branch E A is

situated without the parallels.

384. EXAMPLE VII. Oblique Strophoid. In the construction of

the right strophoid, such as has been given in 23, we suppose the straight

lines OX and OY perpendicular
to each other; suppose now that

these straight lines include an

angle 6 (Fig. 252) ; through the

fixed point A, situated on one of

them, draw any secant AD, on

which take, beginning with the

point D, the lengths DM and DN
equal to DO, and find the locus of

the points M and N. When the

secant revolves in the obtuse angle

XOY till it becomes parallel to

OF, the point M describes the

arc OMB, ending at the point B
on OB perpendicular to OF; the

point N describes the infinite

branch ON. If a distance OG be

taken equal to OA, and a straight

line HH be drawn through the

point G- parallel to OF, one ob

tains the asymptote of the branch

02V
;
because NF is equal to AM,

having the limit AB, the distance of the point N from the straight line

has the limit zero.

Allow the secant to revolve in the adjacent angle XO Y ;
the perpen

dicular erected at the mid-point of OA intersects F at a point C, so

that one has CA CO] when the secant occupies the position AC, one

of the points arrives at A and the other at E
; thus, the secant revolving

from the position AO to AC, one obtains the arc OM A tangent to the

straight line AC at A, and the arc OE. As the secant continues its

motion, the straight line OD becomes greater than AD or D !F
,
and

the point N is situated beyond the asymptote ;
one obtains the infinite

branch EN and the arc AM&quot;B which is a continuation of the arc OMB.
It is easy to see that the tangents at the point are the bisectors of the

angles formed by the straight lines OX and F.

If the point O be taken as pole, the straight line OX as the polar

axis, and if one call the distance OA, a, and the angle YOX, 6, the

Fi - 252 -
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angles DOM and DM0 being equal to d w, the angle OAD to 2w,
the triangle OMA gives the relation,

(1) P =
a sin (d 2

o&amp;gt;)

By aid of the equation, one may easily verify the properties which we
have deduced from the geometric definition of the curve.

If the straight line Y be taken as polar axis, the equation of the

curve becomes

p snw

385. EXAMPLE VIII. To find the locus of the points of contact

of tangents drawn from a given point P to the various curves of the

second degree whose foci are two fixed points F and F .

Take FF as x-axis (Fig. 253), and the perpendicular erected to this

straight line at its mid-point as the ?/-axis ;
the general equation of

conies whose foci are F and F is

(1)

Fig. 253.

where c designates the distance OF, and

a is a variable parameter; when a is

greater than c, the curve is an ellipse ;

when a is less than c, it is a hyperbola.

Let o and be the co-ordinates of the given

point P ;
the equation of the chord of con

tact of the tangents drawn from the point

Pto the conic (1) is ,

f

(2)

The equation of the locus is found by eliminating the parameter a between

equations (1) and (2). If these equations be subtracted member from

member, one obtains

z2 - ax

whence

oa

-ax~)
X2 + ?/

2 - aX -
I

by substituting in equation (2), the equation of the locus is found
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The locus is of the third degree, it passes through the given point P,

through the foci F and F
,
and through the projections of the point P

upon the straight lines OJTahd OF.

If the axes be transferred parallel to themselves to the point P, the

equation of the locus becomes

(4) (x
2 + y- + ax + y) (0x

-
ay} -f c2xy = 0.

Transforming the equation to polar co-ordinates, taking the point P as

pole, and the line PX as polar axis, one has

_ (c
2 + & - a2) Sin 2 a&amp;gt; + 2a/3 COS 2 a&amp;gt;

2 (a sin w cos
a&amp;gt;)

By introducing auxiliary angles and 0i, determined by the formulas

/3 2 a/3
tan = -, tan 0i = -5 -=

-&amp;gt;

a c* + jfcr
a 1

this equation takes the form

() /

sin(o,-0)

where the letter cZ designates the quantity

If the polar axis be revolved through the angle 0, equation (6) becomes

identical with equation (2) of the oblique strophoid ( 384). The angle

being equal to P0^4, the asymptote is parallel to the straight line OP.

Among the confocal curves considered are a hyperbola and an ellipse

which pass through the point P; one infers that the point P belongs to

the locus and that the tangents at this point are the bisectors PQ, PQ of

the angles formed by the straight lines PF and PF . The strophoid is

determined by two straight lines PE, P/, and a point / on one of them.

We know the straight line PE
;
the straight line P7is determined by the

fact that the tangent PQ is the bisector of the angle EPI] the point I

is determined by means of one of the points of the locus, for example,

by the point A ;
the straight line IA should be such that KA = KP

;
the

point Jfis therefore the mid-point of the diagonal OP.
The preceding curve is thus the locus of the feet of the normals drawn

from the point P to the curves of the second degree, whose foci are the

points F and F
;
because in case of an ellipse and a hyperbola which in

tersect at right angles, the tangent to one of them is normal to the other.

2i
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386. EXAMPLE IX. Construct the curve given by the equation

2 (a 1

The value of p becomes zero for o&amp;gt;
= 0, and becomes infinite for u&amp;gt;

= *
;

draw through the pole the straight line Z/L, which makes the angle with

the polar axis (Fig. 254). When
(&amp;gt;) varies from to -, p is nega

tive, and varies from to &amp;lt;x&amp;gt;

;

one obtains an infinite branch

OA B
, tangent to the polar axis

and comprised within the angle

X OL . When o&amp;gt; exceeds | and

increases from \ to co, p becomes

positive and decreases from &amp;lt;x&amp;gt; to

a
;
one obtains an infinite branch

BA, which makes an infinity of

circumvolutions about the circle

described about the pole as center, with a radius a, continually approach

ing the circle. When w varies from to co, p remains positive and

increases from to a, which gives the branch OE within the circle. This

branch makes an infinity of circumvolutions continually approaching the

circle.

Consider the infinite branches A B
, AB; the abscissa of a point of

one of them, with respect to the axes according to 382, is

x = p sin Q w) = au

its limit is -
;
the two branches have therefore as asymptote CD, whose

2

intercept is q = -^-^.

If one put u =
\ + u

,
one has

5 = x 1 - q = O -
(1 + 2 w ) sin ].

2 w

The quantity placed within the parentheses becomes zero for w =0
;
its first

derivative also becomes zero, but its second derivative is negative ;
if w

increase from zero, one infers that the first derivative commences by

decreasing and, consequently, is negative and the same is true of the

quantity itself
;
thus the difference 5 is negative for the positive values of

w made sufficiently small. One perceives in the same manner that the

difference 5 is positive for very small values of w
,
which is evident from

the formula
;
hence the two infinite branches with respect to the asymp-



CHAP. IV. CURVES IN POLAR CO-ORDINATES. 499

tote have the position indicated in the figure. It is evident, moreover,
that this asymptote is intersected by the curve in an infinite number of

points.

387. EXAMPLE X. Construct the

p =
sin w

Since the radius vector takes the same value when u + 2 TT is substituted

for w, it is sufficient to vary w from to 2 ?r. That the radius vector be

real, it is necessary that the quantity under the radical be positive. The

numerator changes its sign for the values -, of w and the denominator

for the values and TT
;
on arranging these angles in order of magnitude

0,
I,

, .. 2,,

it is evident that the quantity under the radical is negative from to -
t

positive from - to --, negative from to IT, positive from TT to 2 TT
;

7T 5 7T

the whole curve is therefore obtained by varying u from 7 to
~^~

and

from TT to 2 TT. We notice, moreover, that the supplementary values of o&amp;gt;

reproducing the same values of
/&amp;gt;, r

the curve is symmetrical with re

spect to Y perpendicular to the

polar axis OX (Fig. 255).

About the pole as center, de

scribe a circle with a unit radius : _

this circle will bisect each of the

chords which pass through

center; when w varies from - to

^, the value of the radical in

creases from to 1, which furnishes

the two arcs AB and AO, either of Fig. 255.

which is the continuation of the other, tangent to the straight line OA
;

the arc AO is tangent to the straight line Y at the point 0. By varying
u&amp;gt; from

I
to

-^p
we obtain the arc BA 0, the symetrique of BAO, with

respect to the straight line Y.

When u varies from TT to ~, the value of the radical decreases from oo

to V3, which gives the two infinite branches EF and CD
; by varying w

from ~ to 27r, the two branches FE and DC
,
the symetriques of the

preceding are determined
;
these infinite branches are asymptotic to the

polar axis.
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388. REMARK. It has been shown ( 382) that if the

radius vector becomes infinite for a finite value a of w, the

position of the asymptote is determined by the formula

q = liin p sin ( w).

The first factor becomes infinite when the second factor ap

proaches zero. In the preceding examples, one can without

difficulty find what the product must be for values of w con

secutive to a. In case there is much difficulty, one may employ

another method.

One may deduce from the preceding formula

1

1 CD a p- = lim
q sin (co )

w a

The limit of the first ratio is equal to unity. If - be regarded
p

a function of
o&amp;gt;,

the numerator of the second ratio is the incre

ment which this function receives when the polar angle varies

from the value a to the value to
;
the limit of the second frac

tion is therefore the derivative of -, and we have
P

f- = - for w = a.

As a rule the value of p assumes the form p
y/~r&amp;gt;

the

denominator becoming zero for w = a, while the numerator

preserves a finite value different from zero. We find for the

derivative

T

which reduces to r f r w= - Tnlls is obtained the formula

F(a)

which is very convenient in practice.
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EXERCISES.

1. Find the locus of the vertex of a variable parabola which has a fixed

focus and which touches a conic which possesses the same focus (limaQon
of Pascal).

2. The vertex of a variable triangle AOB is fixed, the vertex B
slides on a fixed straight line OX

;
find the locus described by the point

of intersection of AB with the perpendicular erected to the side OA at

the point 0.

3. A fixed point and a fixed straight line OP are given ;
find the

locus of the vertex M of a variable triangle MON which fulfills the

following conditions : the side ON is constant and equal to a, the side

MN=a\/
2, finally the angles satisfy the relation cos (MON-2 OMN) =

cos MOP (lemniscate); show that the tangent at any point M of the

locus passes through the center of the circle circumscribed about the

triangle which has given this point.

4. A triangle OAB right-angled at is given, a variable conic

is circumscribed about this triangle so that the normals at the three

points J., 0, B pass through a common point ;
find the locus of this

point.

5. Find the locus of the foci of the parabolas which have a common
chord and a common tangent parallel to this chord.

6. Find the locus of the vertices or of the foci of an equilateral hyper

bola, whose center is fixed and which passes through a fixed point.

7. Find the locus of the center of a given equilateral hyperbola

required to pass through two fixed points.

8. One is given a right angle YOX, and a fixed point P on the bisector

of this angle ;
find the locus of the foot of the perpendicular drawn from

the point P to a variable secant which cuts off in the angle a triangle

whose area is constant.

9. At any point M of a parabola a normal is drawn which is pro

longed till it intersects the axis in the point N; find the locus of the

point of intersection of the tangent to the curve at M with the perpen
dicular to the axis at the point N.

10. Substitute in the preceding problem the hyperbola for the parabola ;

take the point M on one of the axes of the curve
;
find the locus.

11. A parabola revolves about its focus
;
find the locus of the points

of contact of the tangents drawn parallel to a given straight line.

12. Find the locus of the mid-point of a chord normal to a given

hyperbola.

13. An ellipse is given ;
the center of a circle with constant radius

travels on a diameter of the ellipse ;
find the locus of the points of inter

section of the secants common to the circle and the ellipse.
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14. An equilateral hyperbola is given ;
the center of a circle, which

always passes through the center of the hyperbola, touches an asymptote ;

find the locus of the points of intersection of the common secants.

15. Find the locus of the points of contact of tangents drawn from

a given point to the circles which touch a given straight line at a given

point.

16. Find the locus of the points of contact of tangents drawn from

a given point to the circles which pass through a given point and touch a

given straight line.

17. Find the locus of the mid-points of the chords inscribed in a given

hyperbola and tangent to a circle concentric to the hyperbola.

18. Study the loci represented by the equations

?/
4 - x4 + 2 ax-y = 0, x4 + y

4 - 2 a?y - 2 b2
xy = 0,

(a;2 _|_ ^2)2
_ G axif-

- 2 ax3 + 2 a2x2 = 0, y = a + b(x ~ r-)
m

,

x4 + y
1 - 3 x3 - 4 x2 = 0, xV3 + y - x = 0,

yi
- x4 - 2 bxy

2 - 2 ax3 = 0, ?/
4 - x4 - 3 x2

*/
2 - 2 x = 0,

04
_ x \ _ OG a-y

2 + 100 a2x2 = 0, 2 x3 -
y
3 + (y

-
x)

2 = 0.

19. Construct the curves represented by the equations

2 sin y sin x = 0, sin x sin y = |.

x

20. Construct the curves represented by the equations

sin w
., ,

/sin 3 w
P = n T P -1

&quot;V

2 cos w 1 cos w

/&amp;gt;

2 cos u 2 p sin w + cos2
o&amp;gt;
= 0, p

2 cos w 4
/&amp;gt;

sin w tan w = 0,

/I 2
A/
*

2 cos w= COS u&amp;gt;

21. Construct the curve defined by the equation

y = x sin
x

This curve, which passes through the origin, does not have a tangent at

this point.

22. Find the envelope of straight lines such that the segments inter

cepted on them by two fixed conies have the same mid-point. Discuss

the case when the two conies have in common a conjugate diameter with

the same direction as the chords.

23. A variable conic circumscribed about a triangle ABC is such that

the normals to the conic at the points A, B, C are concurrent in a point

M. Find the geometric locus of the point M.
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24. A variable conic inscribed in a triangle ABC is such that the

normals to the conic at the points of contact are concurrent in a point

M. Find the geometric locus of the point N. (This locus is the same as

the preceding.)

25. Find the locus of the points of intersection of tangents common to

a fixed conic S and to a variable conic passing through four fixed points

A, B, (7, D.

(a) The points A, B, C, D being arbitrary, the locus is a curve of the

sixth degree, having as double points the centers of the pairs of straight

lines which pass through the four points.

(6) If two points, A and B for example, be on the fixed conic S, the

locus resolves itself into a conic and a curve of the fourth order.

(c) If the three points A, -B, C be on S, the locus is composed of three

conies.

(d) If the four points A, B, C, D be on 8, the locus is composed of

straight lines.

26. Find the locus of points of contact of tangents common to a fixed

conic S and to a variable conic passing through four fixed points A, B,

C,D.
Discuss, as in the preceding exercise, the reductions which occur when

a certain number of the sides or diagonals of the quadrilateral ABCD
touch the fixed conic 8.

27. The straight line whose equation in rectangular co-ordinates is

x sin a y cos a a cos fca,

has as envelope, when a varies, a and k remaining constant, a hypo-

cycloid or an epicycloid ( 378). Find the locus of the points at which

perpendicular tangents can be drawn to the envelope curve. Examine

the particular cases k = 2, k 3.
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CHAPTER V*

CONCERNING SIMILITUDE.

389. We recall first the definition of two homothetic figures.

Let A
} B, C,

-
(Fig. 256) be any system of points, situated

in a plane ;
these points may be

isolated or arranged on lines

passing through 0, taken arbi

trarily in the plane ;
draw to the

various points of the system the

half-lines OA, OB, OC, ,
and

take on these half-lines the points
A 1

,
-B

,
C

,
&amp;gt; so that we have

Fig. 256.,

== _ == _
OA

~
OB

~
OC

the system of points thus deter

mined is said to be similar to the proposed system and similarly

placed,

If the points A ,
B

,
C

,
were taken on the prolonga

tions of the half-lines in opposite directions, the two systems
would be similar and oppositely placed. By a rotation about

the point through 180 de

grees, the second system will

coincide with one of the sys
tems similar and similarly

placed with respect to A, B,

C,
.

(Fig. 257).

In order to abbreviate the

F .

25? expression, M. Chasles has

called this similitude of form

and of position homothetic, direct in the first case, and opposite

in. the second. The point is called the center of similitude
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or homothetic center of the two systems, the number k is the

ratio of similitude, and the points A and A situated on the

same half-line are called homologous points. If the ratio k

vary from to oo also the position of the center of simili

tude, one obtains all the systems homothetic to the given

system.
A system is similar to a given system, when it is equal to

one of the systems homothetic to the given system.

390. We know that all the curves homothetic to a given
curve S with a single center of similitude 0, taken at random
in its plane, may be found. Consider next some examples.

1 The curve S is a circle. If the center of the circle be

taken as the center of similitude, the second curve will be a

circle, whose radius can have any magnitude we wish.

2 The curve S is a parabola (Fig. 258). The curve being
referred to its axis and to the tangent at its

vertex, the co-ordinates x and y of any pointM of this curve satisfy the equation y
2 = 2px.

If the vertex be taken as center of similitude

and x and y be the co-ordinates of the point
M homothetic to M, one has

x y OM
whence x = kx

, y = ky ;
the homothetic curve

will have the equation y
2 =

- r̂ x ;
it is a parabola whose pa-K

rameter can have as large a magnitude as is desired, on account

of the arbitrary ratio k
;

it follows that any two parabolas are

similar.

3 The curve S is the ellipse + ^=1. If the center of
a2

b2

the curve be taken as center of similitude, the homothetic

curve, represented by the equation

a2
b
2 k2

is an ellipse, whose axes can have any magnitude proportional
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to those of the axes of the first ellipse. It follows that two

ellipses are similar when their axes are proportional.

The same theorem holds for the hyperbola.
4 The curve S is the logarithmic spiral p = aem &quot;. If the

pole be taken as the center of similitude, the homothetic curves

If one put k = e
ma

,
this equation

becomes p = am(u)
~ a)

;
it represents the given spiral which has

been revolved about the pole through the angle a. It follows

that the only curve similar to a logarithmic spiral is this spiral

itself
;
to a point M of the curve corresponds another point M

of the same curve, and this point M can be taken at will, on

account of the arbitrary number k.

have the equation p =
A/

THE EQUATION OF HOMOTHETIC CURVES.

391. Let

(1) /(*,y)=0

be the equation of the curve S. Take the origin as center of

similitude and construct a curve S 1

homothetic to the first with the ratio

k. Let (xj y) be the co-ordinates of

any point M of the first curve, and

(a? , y )
those of the homologous point

M of the second curve, the similar

triangles 0PM, OPM give

x = y = OM = k .

x y OM
if x = x k, y = y k be substituted in equation (1), one has

equation

(2) f(kx ,ky )=V,

which represents all curves homothetic to the given curve and

having the origin as homothetic center. Positive values of k

in this equation will correspond to a direct homothetic trans

formation, and negative values to indirect.

Allowing S to be fixed, transfer the curve S in the plane, in

such a manner that the origin will fall in (p, q),
and that
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the axes will remain parallel to their primitive directions
;
the

curve JS has as equation, referred to the axes O X and OT
,

and, with respect to the fixed axes OX and F,

(3) /[*(* -JP),*& -&amp;lt;?)]==
0.

In this new position, the curve S is homothetic to the curve S
;

because the radii vectores drawn from the points and are

parallel and in the constant ratio k. Equation (3) represents
therefore all the curves homothetic to the given curve, whatever
be the position of the center of similitude.

392. At the same time that the origin is transferred to
,

revolve the axes through the angle a
;
the curve S will then

have an arbitrary position in the plane, and will be simply
similar to the given curve. The curve S referred to the vari

able axes O X and O Y1 has the equation f(kx , ky*)
= 0; by

reason of the formulas of transformation,

x = (x p) cos a+(y q) sin
,

y (x p) sin a + (y q) cos
,

the axes being assumed rectangular, the equation of the curve

with respect to the two fixed axes OX and Y is obtained.

This equation represents all curves similar to the given curve.

393. As an application, determine the conditions for which
the two curves of the second degree,

Ax2 + 2Bxy+Cy2 + 2Dx + 2Ey + F= 0,

A x2 + 2 B xy + C y
2 + 2 D x -f 2 E y + -** =

(),

are homothetic. The general equation of the curve homothetic
to the first curve is ( 391)

2 Btfxy + C%y - 2 (Bk
2

q + Ak*p - Dk)x
- 2 (Bitty + Ctfq - Ek)y + (AJity* + 2 BVpq +
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In order that this equation be identical with the second, one

must have

-Bq-Ap + - - Bp - Cq + ^A _ B = C
A

&quot;&quot;

B C

2D 21
k k

The elimination of the three quantities p, q, k from these five

conditions will give two equations of condition; or the first

A
T&amp;gt; S~1

two equations f

= =
,
which do not involve the parame-A B C

ters to be eliminated, are simply the equations of condition

required. Therefore, in order that two curves of the second

degree be homothetic, it is necessary that the coefficients of the

terms of the second degree be proportioned.

394. It remains to inquire whether the parameters p, q, k

are real or finite; we attack this question in the following

manner : since the coefficients of the terms of the second de

gree are proportional, they can be made equal by multiplying

all the terms of the second degree by a suitable factor; con

sider, therefore, the two equations under the form

(4) Ax2 + 2Bxy + Cf + 2Dx + 2Ey + F= 0,

(5) A x2 + 2 B xy + C y
2 + 2D x + 2 E y + F = Q.

Several cases may arise according to the sign of the quantity

AC-B\
1 AC B2 = 0. The two loci belong to the genus parab

ola; if these loci be parabolas, they are certainly similar,

since all parabolas are similar; further, the axes of the two

curves, having equal angular coefficients -
,
are parallel,

C

and, consequently, the curves are homothetic.

2 AC B2
&amp;gt;

0. The loci belong to the genus ellipse. If,

in case of each curve, the axes be transferred parallel to them-
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selves to the center of the curve, equations (4) and (5) become

(6)
Ax2 + 2 Bxy + Cif + H=Q,

(7)
Ax2 + 2 Bxy + Q/

2 + // = 0.

The axes of the curves, whose directions are determined by
O 7?

the equation tan 2 a = =
( 139), are parallel ;

if the axes
jf\. O

of co-ordinates be revolved through the angle a, equations (6)

and (7) reduce to the form

(8) Ax2 + C y
2 + H = 0,

(9) A x2 + C y
2 + H = 0.

The coefficients A and
C&quot;,

whose values are given by the equa

tions

have the same sign ;
in order that equations (8) and (9) repre

sent two real ellipses, it is necessary that the quantities If

and // have the same sign, and that, further, this sign be con

trary to that of A and C&quot;. When this condition is fulfilled,

the axes of the two ellipses having the same ratio
\/-jj&amp;gt;

the

ellipses are homothetic.

3 AC B2
&amp;lt;0. The two loci belong to the genus hyper

bola. On making the same transformation as in the preceding

case, one is led to equations (8) and (9), in which A and C&quot;

have contrary signs. When the quantities H and // are dif

ferent from zero, each of the equations represents a hyperbola.

If H and // have the same sign, the real axes of the two

curves are parallel ; and, since the ratio of the axes is the same,

the curves are homothetic. When H and H have contrary

signs, one of the hyperbolas is similar to the conjugate of the

other. In the two cases the curves have parallel asymptotes.

It follows from what precedes that, when tivo equations of

the second degree have coefficients of the terms of the second degree

proportional, and represent real curves, these curves are homo

thetic; excepting, ivhen the curves are hyperbolas, it can happen
that one is homothetic to the conjugate of the other.
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GENERAL EQUATION OF A SPECIES OF CURVES.

395. Curves of the same species are curves comprised within

the same geometric definition, and which do not differ from one
another excepting in the values assigned to the parameters which
are involved in the general definition. The general equation
of the curves of the species considered is an equation which, in

a system of co-ordinates, gives all these curves, whatever be

their position in the plane, when various values are assigned
to the variable parameters which it involves. Thus, when the

fixed axes are rectangular, the general equation of the species
circle is (x a)

2 + (y b)
2 = r2

. This equation involves three

variable parameters, namely, the radius r and the two co

ordinates of the center, a and b.

Accordingly, one seeks the equation of the curve with re

spect to particular axes, which are chosen to simplify the

calculation
; then, to obtain the general equation, one refers it

to the fixed axes by a transformation of co-ordinates.

The lemniscate has been defined as the locus of points such

that the product of the distances of each of them from two

points F and F1

is equal to

the square of half of the

distance FF (Fig. 260). If

the mid-point of the

straight line FF be taken

as origin, O F and a per

pendicular to O F as axes

r of co-ordinates, and if the

Pig. 260. distance FF be designated

by 2c, the curve, referred

to these particular variable axes, is represented by the

equation ( 339)

(x
2 + y

2

)
2 + 2 c\y

2 -x 2

)= 0.

The curve may be referred finally to the fixed rectangular
axes OX, Y, by means of the formulas of transformation

x = (x a) cos a + (y b) sin
,

y = (x a) sin a + (y b) cos a,
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in which a and b designate the co-ordinates of the point
with respect to the fixed axes, and a the angle formed by OF
with OX. One is thus led to an equation

F(xy y, c, a, b, )=0

involving four arbitrary parameters, and which represents all

leinniscates
;

it is the general equation of the species.

The general equation of a species of curves, with respect to

fixed axes, contains three parameters more than the equation of

the same curves referred to the axes associated with the curves

in a determined manner. Let n be the total number of param
eters, this system of parameters could always be replaced by
another system, such that the variation of three of them causes

only the curve to be displaced in its plane, while the variation

of the n 3 others gives the different curves.

396. The number of points, and, in general, the number of

conditions necessary to completely determine a curve of given

species, is equal to the number of arbitrary parameters which
the general equation of the species involves. The remarks

made concerning the curves of the second degree ( 283), on

multiple conditions, are applicable here. It is often important
to previously show that the parameters which enter in the

equation cannot be reduced to a smaller number.

Consider, for example, the locus of points such that fohe

ratio of their distances from two fixed points whose co-ordinates

are (a, b), (a ,
b

)
is constant and equal to k. This locus, whose

equation is

(1) (x
-

a)
2 + (y- b)

2 - tf [(a
- a

)
2 + (y

- &
)
2

]
-

0,

is a circle. Equation (1) involves five parameters ;
but by

developing and by arranging the terms, it becomes

o-
,&quot; *

Three of the coefficients only involve the parameters ;
if they

be replaced by A, B, C, equation (2) takes the form

(3) x* + y
2 + Ax + Bij+C=0.
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Three points are sufficient to determine the coefficients A, B,

C, and, consequently, the circumference. If one wish then to

obtain a, 6, a
,
&

, k, one will have a system of three equations

in five unknown quantities ;
the solution will be indeterminate,

and two of the unknown quantities could be chosen at will
;

this signifies that, for the same circumference, one can find an

infinity of pairs of two points such that the ratio of their dis

tances from each of the points of the circumference from these

two fixed points is constant.

397. The geometric definition of a species of curves em

braces within it the number of arbitrary parameters involved

in its general equation. The definition of the circle assumes

that we know its center, whose position is determined by its

two co-ordinates, and by the length oJP the radius, in all three

constants or arbitrary parameters. The definition of the lem-

niscate assumes that two fixed points are given, which are

equivalent to four fixed constants. In case of the ellipse,

since it is necessary to know the sum of the radii vectores,

the curve involves five parameters; in the definition of the

spiral of Archimedes one is given a pole, which is equivalent

to two constants, the position of the straight line at the instant

when the movable point passes through the pole, and a ratio :

in all four constants.

398. An integral polynomial of the degree m ,&amp;gt;n
the two

variables x and y contains -

^
terms

;
it follows

(m _i_ 1
s

) (m _i_ 2^ m (m -1-3) . .

that - - 1 or ~ points are necessary to
2 2

define an algebraic curve of the mth degree. For example,

nine points are necessary to determine a curve of the third

degree, fourteen points to define a curve of the fourth degree.

Consequently, that every equation of the third degree can

be written in the form
/ M\ 7,, o2 (\

where a
lf
a2, 3, (3, y are linear functions of the first degree, and

k is an arbitrary parameter because this equation contains
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eleven arbitrary parameters ;
one can choose at will one of the

five linear functions, since there will still remain nine param
eters. The three straight lines :

= 0, a2
= 0, as

= are tan

gents to the curve at the points where they are intersected by
the straight line (3

= 0; and the points where these tangents

are intersected by the straight line y = belong moreover to

the curve. On taking (3 at will, the following theorem is

deduced : if a curve of the third degree be intersected by any

straight line ft
= 0, and tangents be drawn to the curve at the

three points of intersection, each of the tangents intersects the

curve in one additional point, and these three points lie on a

straight line. On taking y at will, we get another theorem :

if a curve of the third degree be intersected by a straight line

y = 0, and if through each of the points of intersection tan

gents be drawn to the curve, the points of contact of these

tangents lie on a straight line.

Suppose that the straight line /3
= be removed to infinity,

the three tangents :
= 0, a2

= 0, 3
= have as limits the three

asymptotes of the curve
;
each of these asymptotes intersects

the curve in one point only, and these three points lie on a

straight line.

The equation

(5) ajOaOa
- kp = 0,

which involves nine arbitrary parameters, represents all the

curves of the third degree. The three points where the

straight line ft intersects the curve are points of inflection
;

the tangents at these points are the straight lines

! 0, 2 =0, 3
= 0.

All the curves of the third degree can moreover be repre

sented by the equation

(6) a (a
-

ay)(a
-

by)
- k^y = 0,

which involves nine arbitrary parameters. The straight line

y = is the tangent at the point of inflection (a = 0, y = 0) ;

the three tangents a 0, a ay = 0, a by at the points

where the straight line (3
= intersects the curve pass

through this point of inflection. On taking the perspective on
2K
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a plane, any straight line we wish may be removed to infinity ;

for example, the tangent y = at the point of inflection
;

it is

sufficient to make y = 1 in the equation which reduces to the

form a(aa)(a b) k(3
2 =0

,
if the straight line /5

= be

taken as the a&amp;gt;axis and the straight line a= as the ?/-axis, one

obtains the equation ky
2 = x(x a) (x 6), which has been

discussed in 337.

399. Every equation of the fourth degree can be written in

the form

(7) cc1 2a3a4 A;/2
2

&amp;lt;

= 0,

when &amp;lt; is a polynomial of the second degree; because this

equation contains sixteen parameters, one can take (3 at will,

since there will remain fourteen parameters. Thus when a

curve of the fourth degree is intersected by any straight line

/?
= 0, and tangents be drawn to the curve at the four points of

intersection, if the two other points in which each tangent in

tersects the curve be taken, there will be eight points of the

curve situated on the conic &amp;lt;

= 0.

A curve of the fourth degree has four asymptotes ;
each of

them intersects the curve in two points ;
the eight points of

intersection lie on a conic.

CONDITION OF SIMILITUDE OF Two FIGURES.

400. Consider a series of curves of the same species, in

whose definition there enters only the linear parameter A,
whose measure is represented by a, and let

(1) f(x, y, a) =

be the equation which represents all these curves, without

reference to their position in the plane. If equation (1) were

obtained without specifying the linear unit, it is necessarily

homogeneous with respect to x, y, a. When the linear param
eter A changes, which happens, the unit remaining the same,

if the number a vary, equation (1) defines a series of homo-
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thetic curves. In fact, let A$ be a parameter whose measure is

OQ ;
to this parameter corresponds the particular curve

(2) f(x, y, oo)
- 0.

The carves homothetic to curve (2), the origin being the center

of homothetie and k an arbitrary ratio, are represented by the

equation ( 391)

(3) f(Jcx, ky, )
- 0.

Let A be a second parameter which is measured by a: such

that =
k, equation (3) may be written

a\

f(kx, ky, faij)
= kmf(x, ?/, a,)

== 0,

(4) or f(x, y, a,)
= 0,

which shows that the curves homothetic to curve (2) are the

various curves which are obtained by varying the parameter A.

401. In general, suppose that n linear parameters A, B,
fail to define all the curves of the same species, without regard
to their position in the plane ;

let a, b, c, be the measures of

these parameters with respect to an arbitrary unit
;
the equa

tion of the curves of the species

(5) f(x,y, a, &,.) =

will be homogeneous with respect to x, y, a, b, . The curves

defined by equation (5) and which correspond to the two series

of proportional parameters A& B ,&quot;&amp;gt;
and A

lt
B

lf are homo
thetic

; because, if k represent the ratio of the parameters

t&amp;gt;__&0_ _r.
A/.

ttx 6j

the curves homothetic to the curve

f(x, y, ,
6

, ...)
=

are represented by the equation

f(kx, ky, ka
l9
kb

lt )
= kmf(x, y, a

l} b
l} )

= 0,

or xa 6...=0.
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It follows from what precedes that when the curve, without

regard to its position in the plane, is denned by a single mag

nitude, that all the curves of the species are similar. Thus,

the circle being denned by its radius, the parabola by the

distance of the focus from the directrix, the lemniscate by

the distance between the foci, the spiral of Archimedes by the

length intercepted on the ^adius vector between two succes

sive helices, all circumferences are similar, and similarly all

parabolas, all lemniscates, etc.

The ellipse being denned by its two axes, the condition of

similarity of two ellipses is that these axes are proportional,

as we have already learned in 390. The same is true of two

hyperbolas.
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CHAPTER VI*

GRAPHIC SOLUTION OF EQUATIONS.

402. Consider two equations in two unknown quantities

x and y

(1) &amp;lt;f&amp;gt;(x,y)=0, (2) ^,2/) = 0;

each of them defines a curve. For this system of two equa
tions can be substituted an infinity of equivalent systems of

equations ;
consider in particular a system

(3) x fey) = o, W /C*) = o,

one of which only contains the variable y, a system which may
be obtained by eliminating y from the two given equations.

The real roots of equation (4) are the abscissas of the points
common to the two curves (1) and (2). And yet, if the system
of equations (3) and (4) were satisfied by a pair of values of

the form x = a, y J3 -f- yi, in which a, ft, y are real, these

values would satisfy the system of equations (1) and (2) ;
but

the quantity a would not be the abscissa of a real point com
mon to the two curves. The exception which we have pointed
out never occurs when the equation ^ (x, y)

= is an algebraic

equation which involves only y to the first degree.

When one wishes to solve an equation f(x)= in a single

unknown quantity, the curves determined by (1) and (2) may
be selected in an infinity of different ways. The only con

dition to be fulfilled is that the elimination of y between equa
tions (1) and (2) give the proposed equation. A first combina

tion is y =/(#), y = 0, which leads one to consider the values

of the unknown quantity as the abscissas of the points of inter

section of the curve y=f(x) with the x-axis. This combina

tion is rarely the most simple. It is proven in algebra that
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if an unknown quantity y be eliminated from two algebraic

equations in two unknown quantities whose degrees are m
and n, the resulting equation in x is at most of the degree mn.

Consequently, if the proposed equation be algebraic and one

wish to obtain its roots by the intersection of algebraic curves,
the product of the degree of the equation of the two curves

would be equal to the degree of the equation to be solved.

We shall apply this method to the solution of the equation of

the fourth degree.

403. The equation of the fourth degree may be easily re

duced to the form

(5)

it may be regarded as the result of the elimination of y be

tween the two equations of the second degree

(6) x* my = 0, (7) mz

y* + piny + qx + r = Q,

each of which defines a parabola. Since equation (6) involves

y only to the first degree, all the real roots of equation (5) are

the abscissas of real points common to the two curves.

One can substitute for the parabola (7) another curve of the

second degree which passes through the intersection of the

curves (6) and (7). The general equation of the second degree

satisfying this condition ( 277) is

(8) kx2 + mz

y* + qx + m (p fyy + r = Q,

k being an arbitrary parameter. If one put k = m2

,
the curve

(8) would be simply a circle
;
the co-ordinates a and b of the

center and the radius R of this circle are given by the formulas

(9)
= -o^i, b=

r

^V-, j? = a + 6*-
,.2 2m m*

When the value of R2
is positive, equation (8) represents a real

circle, and the real roots of equation (5) are the abscissas of the

points of intersection of this circle and parabola (6). When
the value of 7?

2
is negative, equation (8) cannot have real

solutions ( 85) ;
the same is true of the system of equations
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(6) and (7), or of the equivalent system of equations (5) and

(6) ;
the four roots of equation (5) will be imaginary.

404. Consider next the equation of the third degree reduced

to the form
Xs

-+- px + q = 0.

If this equation be multiplied by x, which introduces the root

x = 0, an equation of the fourth degree is obtained,

x4
-f py? -f- qx = 0,

to which the preceding method is applicable. The value of J2
2
,

being in this case equal to a2
-f- 6

2

,
is always positive. The

circle and the parabola pass through the origin of co-ordinates
;

the abscissa of this point is the root x = 0, which one should

remove.

The same parabola x2 my = may serve for the solution

of all equations of the third or of the fourth degree ;
the circle

only changes depending upon the value of the coefficients of

the proposed equations. This method can be employed with

advantage when one would solve successively a great number
of equations ;

then a parabola having an arbitrary parameter
is traced with great care

; and, in each particular example, it

only remains to determine the circle.

405. When the unknown quantity x is a line, and the unit

of length has not been specified, the equation f(x) = is a

homogeneous equation in the unknown quantity x and the

various known lines. In case the equation is of the fourth

degree, if the coefficients p, g, r be rational functions, or irra

tional functions of the second degree of given lengths, on

taking an arbitrary length for the parameter m of the parabola,
the co-ordinates of the center and the radius of the circle could

be constructed with the rule and the compass.
But if the equation be a numerical equation, that is if the

coefficients be given numbers, a definite value is given to m
;

for example, one would put m = 1, and construct the parabola
and the circle by means of an arbitrary scale

;
the abscissa of
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one of the points of intersection measured by the same scale,

will give the value of the unknown quantity x.

We know that the solution of two equations of the second

degree in two unknown quantities x and y, or the determina

tion of the points of intersection of two curves of the second

degree, reduces to the solution of an equation of the fourth

degree in one unknown quantity. This solution could there

fore be accomplished by means of a definite parabola and a

circle. Accordingly, if one of the curves of the second degree

be already traced, it can be used with the circle.

406. EXAMPLE I. Draw through a given point P whose co-ordinates

are x\ and y\ a normal to a parabola y
1 2px = 0. The co-ordinates x

and y of the foot of the normal are determined by the system of equations

If all the terms of the last equation be multiplied by ?/, and if 2px be

substituted for ?/
2

,
a new parabola x- (xip}x -^-

= is obtained
;
on

adding the equations of the two parabolas member to member, one

obtains the circle x2 + y
2

(#1 + p)x ~ 0. The points where this

circle intersects the given parabola are the feet of the normals ( 306).

407. EXAMPLE II. Solve the numerical equation x3 x 1 0.

Construct by means of an accurately

made scale, the parabola x2 = y ;

describe a circle whose center C has

the co-ordinates a = |, 6 = 1, and

which passes through the origin ;

this circle intersects the parabola in

one additional point M; therefore

the proposed equation has but one

real root, the abscissa OP of the

point M (Fig. 261). By measuring

/ J this length by means of the scale

here employed, we find x = 2.09.

EXAMPLE III. Solve the equa

tion x3 - 5 x + 1 = 0. Construct

the circle whose center C has the

= 3 and which passes through the origin : this

Tig. 261,

co-ordinates a = - \,

circle intersects the parabola in three points ;
it follows that the equation
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has three real roots
;
on measuring the abscissas, one finds that the two

positive roots are 0.20 and 2.13.

408. EXAMPLE IV. Consider the transcendental equation

x tang x = 1.

This equation is the result of the elimination of y between the two equa

tions

y = tangx, xy = 1.

The first represents a curve composed of an infinitude of equal branches

which have asymptotes perpendicular to the z-axis
;
the second an equi

lateral hyperbola (Fig. 262). It is evident that the right-hand branch of

Fig. 262.

the hyperbola intersects, at least once, each of the branches OA, B A ,
...

of the transcendental curve; moreover there is but a single point of

intersection on each branch, because, when x varies, the ordinates of the

two curves vary in contrary directions
;

if these ordinates be equal for a

certain value of x, they are necessarily unequal for every other value.

The roots of the equation are equal in pairs with contrary signs ;
there

is in the first place a root situated between and
,
a second root between

TT and
,
a third between 2ir and ^, etc., ...

;
the number of roots is

infinite. On calling xn the nth root, the difference between x and

(n !)TT is very small when n is very large. The curve gives, for the

value of the first root, 0.86.
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The equations y = tangf- - x
J,

y = x could also be discussed in this

anner on putting - x = x
, y =

would be replaced by a straight line.

manner on putting ~ - x = x
, y = tang x , y = - - x

;
the hyperbola

2

409. EEMARKS. The graphic methods which we have

described do not give the values of the unknown quantities
with any great precision ;

one should not expect an approxi
mation nearer than the hundredth part of the root.

One often attacks the problem by magnifying the traces of

the two curves in order to determine the number of real roots

of an equation. But, so long as the form of the two curves

is not studied with care, no rigorous conclusions can be de

duced from this discussion. In general, the discussion of the

curves and the determination of the points of intersection

offer the same difficulties as the problem proposed.
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CHAPTER VII*

NOTIONS CONCERNING UNICURSAL CURVES.

410. We have learned (page 339) what facilities offer them

selves for studying a curve when the co-ordinates of one of its

points can be conveniently expressed as a function of a param
eter. From this point of view, the most simple algebraic

curves are those whose co-ordinates can be expressed as a

rational function of a parameter. These particular curves

have been called unicursal curves.

The theory of unicursal curves was formed by Chasles and

Clebsch. The results which we give have been taken in most

part from the Memoirs of Clebsch (Crelle Journal, v. LXIV.
and LXXIII.) and from the lectures on geometry by Clebsch,

published by Lindemann.

I. A curve of the order m with a multiple point of the order

m i is unicursal.

If the multiple point be chosen as origin, the equation of

the curve becomes ( 354)

where &amp;lt; m _! and
&amp;lt;f&amp;gt;
m designate homogeneous polynomials in

x and y of the degrees m and m i. A variable straight line

passing through the origin, intersects the curve in m i points

coincident with the origin, and in one other variable point M
whose co-ordinates are given by the equations

-

that is, are rational functions of the parameter t, of the degree

m, with the same denominator. To each value of t corresponds
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on the curve a single point, and conversely to each point M of

the curve distinct from the multiple point x = 0, y = there cor

responds a single value of t,
t = -, equal to the angular coeffi-

x

cient of the straight line OM
;
as for the multiple point x = 0,

y == 0, it is obtained by m 1 values of t, roots of the equation

*b-, (1,9 = 0.

It can still be said that, if x and y be the co-ordinates of a

point of the curve distinct from the multiple point, equation

(1) of the degree m in t has a single common root t = -, and
00

if x = 0, ?/
= 0, these equations have m i given roots common

with the equation &amp;lt; m_! (1, )
= 0.

The following curves enter in this category of unicursal

curves : the conies (m = 2) ;
the curves of the third order with

a cusp or with a double point (m = 3), for example, the cissoid

and strophoid; then the curves of the fourth order with a

triple point, for example, the curve constructed on page
422 etc. . We shall learn later that there exist other

unicursal curves of the fourth order, namely, curves having
three singular points, double points, or cusps.

II. UNICURSAL CURVES OF THE THIRD ORDER.

Let

(1) Ay? + Bxy + Ctf + Dx* + Ea*y + Fxf + of =

be the equation of a curve of the third order having a singular

point at the origin. If one make y = tx, one obtains, for the

co-ordinates of a point M of the curves, the following expres

sions :

A + Bt + Ct2

t(

where
&amp;lt;f&amp;gt;(f)

= D + Et -f Ft2 + Gt\

The values of t, corresponding to the singular point situated at

the origin, are roots of the equation of the second degree
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which give the angular coefficients of the tangents at the

origin ;
the singular point will be a double point or a cusp

according as these roots are unequal or equal ( 354).

A CURVE OF THE THIRD ORDER WITH ONE CUSP.

Suppose first that these roots are equal: let a be their

common value
;
one will have

A + Bt + Ct2 = C(t
-

a)
2
,

whence

(3)
_

*(*) *( )

Take on the curve three points corresponding to the values

t\, t& ^3?
of the parameter, and determine the necessary and

sufficient condition in order that these points be on a straight

line.

Let ux + vy + w =

be the equation of a straight line which does not pass through
the cusp. The values t

it
t2,

tz of the parameter t corresponding
to the points of intersection of this straight line with the curve

are the roots of the equation of the third degree found by

substituting in the equation of the straight line the values of

x and y in expression (3). By this substitution, the trino

mial ux -\- vy + w becomes a rational function in t of which the

denominator is
&amp;lt;jt(t)

and of which the numerator becomes zero

for the values t
ly

t2,
t3 of t. One has therefore by this substitu

tion, identically

K(t t^)(t tz)(t ts)

K being a constant depending on u, v, w. On taking the deriva

tives of the two members of this identity with respect to
t,
we

will have another identity
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Substitute, in this last identity in
t, the value t = a for

t,

which corresponds to the cusp. Since, for this value, x
t
and

y t
become zero and the factors

a -
are not zero, the secant not passing through the cusp, it follows

that

(4)
1

,

a - *j a - *2 a - tz
&amp;lt;j&amp;gt;(d)

Since this relation is independent of u, v, iv it holds neces

sarily between the parameters t
l9

t2,
ts of the three points on

the straight line. Conversely, if this relation be satisfied, the

three corresponding points are on a straight line, for on call

ing t 3 the parameter of a point which is on this straight line

passing through the first two, one has

whence by comparison with (4), t 8
= ts .

Point of Inflection. The tangent at a point of inflection

intersects the curve in three points coincident with the point
of contact : if therefore one call 6 the parameter of a point of

inflection, one will have, by putting

t1
= t2

= t3
=

in formula (4)

a
&amp;lt;(a)

The curve has, therefore, a single point of inflection

Points on a conic. A conic whose equation is

f(x, y)= ax2 + ftxy + rf + & + */ + rj
= 0,

and which does not pass through the cusp, intersects the curve

in six points, whose parameters t
lt t% t3,

t4,
ts ,

tG are roots of the

equation of the sixth degree obtained by replacing, in the

equation of the conic, x and y by their values (3). By this

substitution f(x, y) becomes a rational fraction of the sixth

degree in
,
whose denominator is

&amp;lt;f&amp;gt;

2

(f) and whose numerator
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is a polynomial which becomes zero for the values t
ly

t2, t3,
t4, t5,

tQ

of t. Hence follows the identity

fix tA-- iX*-^)&quot; (*-*)
~WT

where H is a certain constant independent of t
; then, on tak

ing the derivatives of both members with respect to t, one has
the identity

and on putting in this last identity t = a, one has

(5) _+__ + ___ __
a - * a - 1 a-t a-t a-t

the necessary condition in order that the six points correspond
ing to these six values of t be on a conic. It may be seen, as

above, that this condition is sufficient.

These considerations are, in particular, applicable to the

pedal or to the inverse curve of a parabola, with respect to a

point of the parabola.

CUKVES OF THE THIRD ORDER WITH A DOUBLE POINT.

Let a and b be the roots of the equation

which gives the angular coefficients of the tangents at the

singular point (page 435); if these roots be imaginary, the

double point is isolated. The expressions for the co-ordinates
x and y of a point of the curve are

(Q\ -Cft-q)(-6) _-Ct(t-a)(t-b)
&amp;lt;KO ~W~

Find the necessary and sufficient condition, in order that the

three points corresponding to the values t
ly

t2,
t3 of the parame-
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ter lie on a straight line. Let ux -f vy -f iv be the first member

of an equation of a straight line which does not pass through

a double point ;
if x and y be replaced by their expressions in

t, this first member becomes a rational fraction, whose denomi

nator is
&amp;lt;(),

and whose numerator becomes zero for the values

t
lt

t ts of t. One has therefore by this substitution the identi

cal equation

Substitute successively for t,
in this identity, the values a

and b corresponding to a double point ;
since x and y become

zero for either of these two values, it follows

_ K(a - fr)(a
- t2)(a

- tB)

K(b - t,)(b
- t2)(b

- tB)~
whence by division

(a -*0(a-
(b
-

t,)(b
- t2)(b

- ts) &amp;lt;/&amp;gt; (b)

This is the necessary condition, that three points in a straight

line lie on the curve
;

it may be shown, as on page 507, that it

is sufficient. ,.

If the double point be real (the pedal of a parabola with

respect to an external point, the inverse curve of a hyperbola

with respect to a point of a curve), the constants a, 6, &amp;lt; (a), &amp;lt; (&)

which enter in relation (7) are real. If the double point is

isolated (the pedal of a parabola with respect to an interior

point, the inverse curve of an ellipse with respect to a point of

the curve) these constants a and b on the one hand, &amp;lt; (a) and

&amp;lt; (b) on the other, are conjugate imaginaries. Kelation (7) can

then be replaced by another which involves only real elements.

For this purpose suppose

a = -Mg, b=p-iq, ^~ = cos 2 X + i sin 2 A.

9 (P)
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when 2X designates the argument of the constant quantity

&amp;gt;

whose modulus is 1, since &amp;lt; (a) and
&amp;lt;f&amp;gt; (b) are conjugate

imaginaries. Put

q b t cos T i sin T

to each value of T corresponds one value of t
;
to each value of

t correspond an infinitude of values of T differing from each

other by multiples of TT. Call TI, r2, TS the three values of T

which correspond to the parameters t
lt

t2,
ts of the three points

on the straight line
;
relation (7) gives us

cos 2 (T! H- T2 -f TO) -f i sin 2 (T! -f- TS + TS)
= cos 2 X + i sin 2 X,

whence

(8) TJ + r2 + r3
= X + for,

where AT is any integer. On making in these formulas (7) and

(8) t1
= t2

= ts
=

t,
or T! = r2

= TS r, one finds the value of the

parameters t or r which correspond to points of inflection.

One can easily demonstrate that : there are three points of

inflection; these points lie on a straight line. If a and b be real,

one only of these points is real; if a and b be imaginary, the three

points of inflection are real.

The necessary and sufficient condition in order that six points

of the curve lie on a conic can be written

(a
-

*i)(a
- t2)(a

- ts)(a
-

t,)(a
- t5)(a

- Q = (a)&quot;

2

(b
- Q(b - t2)(b

- t3)(b
- tA)(b

- t5)(b
-

or if a and b be imaginary,

TI + T2 H- r3 + T4 + r5 + TC
= 2 A

III. The curves which we have thus far studied constitute

all unicursal curves of the third order. In fact, let

m _^(0
,
_(*)-

be the expressions of the co-ordinates of a point of the curve,

where P(f), Q(t), 3R(Q designate polynomials of the third
2L



530 PLANE GEOMETRY. BOOK IV.

degree in t which do not have a common divisor. To each

value of t corresponds a single point of the curve
; suppose that

conversely, save for certain special points finite in number, to

each point (x, y) of this curve corresponds one value only of t.

This is equivalent to saying that the equations

*(0

do not have more than a finite number of solutions in which t

is different from t
, or, moreover, that there is but a finite num

ber of values of x and y for which the equations in t

(9) xR(t)-P(t)=0, yR(t)-Q(t)=0

have two common roots. Then the curve defined by equations

(9) is of the third order and has one singular point; equations

(9) have two common roots when the point (x, y) coincides with

this singular point.

Then the curve is of the third order, for on changing the

values of the parameter corresponding to the points of inter

section of the curve with a straight line, one gets an equation

of the third degree. Whence, the equation of the tangent at

the point with the parameter t is ( 341)

- .

x
t

that is, after introducing the expressions of x an,d y in t

X(RQ - QR )+ Y(PR - RP) + QP - PQ = 0.

In the combination such as EQ QR ,
the term in t

5
disap

pears, and the equation of the tangent contains t to the fourth

power at most. If, therefore, one seek the values of t corre

sponding to the points of contact of the tangents drawn from

a point to the curve, one finds at most four values for t. The

curve considered is therefore, at most, of the fourth class;

it has a singular point, because a curve of the third order

without a singular point is of the sixth class.

IV. The following proposition concerning curves of the

fourth order will be proven:
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The curve of the fourth order with three singular points

(node or cusps) is unicursal. Let A, B, C be the singular

points, and D a fixed point taken on the curves. A variable

conic

S + tSL
=

0,

which passes through the four points A, B, C, D, intersects the

curve in eight points, seven of which are fixed
; namely, two

coincident with A, two with B, two with C, and one with D.

The equation of the eighth degree, which gives the abscissas

of the points of intersection of the conic and of the curve,

has therefore seven fixed roots independent of
;

one could

suppress these roots by division, and there would remain an

equation of the first degree in x expressing x as a rational

function of t. Similarly, y may be obtained as a rational func

tion of t. To each point of the curve different from the points

A, B, C corresponds a value of the parameter t given by the

equation

to the double points correspond two values of the parameter,
which become equal when the double point becomes a cusp.

In this category of curves belong the lemniscate, the hypo-

cycloid with three cusps, the pedals or the inverse curves of

a$ ellipse, and of a hyperbola with respect to a point not

situated on these curves.

It can be demonstrated that, conversely, every unicursal

curve of the fourth order has a triple point or three singular

points (node or cusp).
V. Since a curve of the third order cannot have two and a

curve of the fourth order cannot have four singular points,
the unicursal curves of these orders are those which have the

maximum number of singular points. This theorem can be

made general for unicursal curves of all degrees. In fact, it

can be proven that :

A unicursal curve of the nth order, which does not have

higher singularities than nodes and cusps, may have nodes
fn _ IVn _ 2)

or cusps --
7^
-- in number

; and, conversely, a curve
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of the nth order with - * nodes or cusps is uni-
fi

cursal.

This number,
^ ~

;}

n
,

is the maximum number of
2i

singular points which a curve of the ?ith order can have with

out decomposition.

If one be given the expressions of the co-ordinates of a point

of an unicursal curve as a rational function of a parameter

(ii)
=

*(*)&amp;gt;

=
iKO&amp;gt;

the values of t corresponding to the singular points are found

by seeking the solutions common to the two equations

in which t is different from t .

It is to be noticed that the equation of the curve is obtained by

eliminating t between equations (11) ;
that is, by expressing the

conditions that these equations have a common root in t. If

the point (x, y) be an ordinary point of the curve, equations

(11) do not have more than one common root; if the point

(x, y) coincide with a singular point, they have two or more

roots in common, which are the values of t corresponding to

the singular point. The singular points are therefore found

by seeking the positions of the point (x, ?/)
for which equa

tions (11) in t have two or more roots in common.
,

EXERCISES.

1. A point M is taken on a curve of the third order with a cusp. The

tangent at M intersects the curve in a point M\, the tangent in MI inter

sects it in 3/2, the tangent at Mz intersects it in Ms , etc., -. Show that

the nth point Mn thus determined, when n is indefinitely increased,

approaches the cusp.

From the point M a tangent can be drawn to the curve. Let M be its

point of contact
;
from the point M a second tangent can be drawn to it

;

let J/2 be its point of contact, etc., . Show that the nth point JfCO thus

determined approaches the point of inflection.

2. Let M be a point on a curve of the third order with a double point.

The tangent at M intersects the curve at MI, the tangent at MI intersects

it at M2 , etc., ;
let Mn be the nth point thus determined.
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If the tangents at the double point be real, the point Mn approaches,
when n is increased without limit, the double point. If these tangents

be imaginary, it can happen that the point Mn coincides with the point of

departure M. One will then have a polygon of n sides whose vertices

lie on the curve and the sides tangent to the curve. What positions

is it necessary that the point M should take in order that this should

happen ? Study the particular cases n = 3, 4, 5. (Durege, Math.

Annalen, ErsterBand.)

3. From a point of inflection /, of a curve of the third order, one can

draw, at the double point, a tangent IT7
to this curve having its point of

contact at T. Show that the straight lines which join the two points /
and T to the double point are harmonic conjugates with respect to the

tangents at the double point.
x^ ifi

4 . The co-ordinates of a point of the ellipse \-
J 1=0 can be

a2 b2

expressed as a function of an angle by the formulas x = a cos 0,

y = b sin 0. Show that the necessary and sufficient condition
,
in order

that four points of the ellipse correspond to the values 0i, 2 , 3 , 4 of

should lie on the same circle, is

01 + 02 + 03 + 04 = 2 TCTT.

Through a point M taken on the ellipse three circles osculating the

ellipse can be passed (without intersecting the one which has its point of

contact at M}\ prove that the points of contact of these three circles lie

on a circle which passes through M.

At the point M draw a circle osculating the ellipse ;
let MI be the

point in which this circle intersects the curve
;
the osculating circle at

MI intersects the ellipse at M% ; etc., . What should be the position of

the point M in order that the point Mn obtained by repeating the con

struction n times should coincide with M ? Study the particular cases

n = 1, 2, 3, 4.

5. One is given an ellipse and a point P in its plane. 1 Find the

number of circles osculating the ellipse so that each of the chords com
mon to the ellipse and to the different circles passes through the point.

2 Find, for the different position of the point P, how many of these

circles are real. 3 Prove that the points of contact of the circles oscu

lating the ellipse are on the circle C. 4 Find the envelope E of these

circles when the point P describes the ellipse. 5 The curve E may be

regarded as the envelope of a series of circles which intersect at right

angles a fixed circle and whose centers lie on a conic
;
determine in how

many different ways the curve E may be generated in this way.

6. Express the co-ordinates of a point of a hyperbola as a rational

function of a parameter t. What relation connects the parameters ti, h,

tz, ti of the four points situated on a circle ? How many circles osculating
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a hyperbola can be drawn through a point. The circle osculating the

hyperbola at M intersects it in M\, the osculating circle at M\ intersects

it at Jf2 , etc., ;
what will be the limiting position of the ?ith point Mn

thus constructed, when n is increased without limit ?

7. Consider a conic C whose co-ordinates are expressed as a rational

function of a parameter t in such a way that to each point of the curve

corresponds a single value
,
and let A and B be two fixed points not

situated on the conic.

Prove that the necessary and sufficient condition that the points t\, t%,

ts, t\ of the conic C are situated on a conic passing through A and B is

a and b representing the values of t which correspond to the two points

in which the straight line AB intersects the conic C. In what way is it

necessary to modify this relation when the straight line AB is tangent
to C?

8. One is given a unicursal curve of the fourth order with a triple

point at which the tangents to the curve are distinct
; express its co-ordi

nates x and y as a rational function of a parameter t and call a, 6, c the

three values of t which determine the triple point. Prove that the

necessary and sufficient conditions that the four points (i, t^ 3, t situated

on the curve lie on a straight line are :

being the common denominator of the expressions in x and y

Deduce the number of points of inflection and of double tangents of the

curve.

In what way is it necessary to modify the preceding relations in case

two of the three tangents at the triple point coincide ?

Apply the preceding formulas to the curve constructed in 342
;
and

to the curves whose equations are

(X
2 + 2/2)2

_ ay(x
&amp;lt;l _

,,2)
= 0,

(aja + 2,2)2
_ a(x _ y^y = 0,

(X
2 + 2/2)2

_
2/3
= 0.

9. One is given a unicursal curve of the fourth order having three

double points corresponding respectively to the values (t = a, = 6),

(t=a , $= & ) ($
=

a&quot;,
t=

b&quot;)-
Prove that the necessary and sufficient
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conditions in order that the four points t\, t-2 , 3 , U lie on a straight line,

take the forms

~

= ~,

equations which reduce to two.

Derive the number of points of inflection and double tangents to the

curve.

In what way is it necessary to modify the conditions when one, two,

or three double points become cusps ?

Apply these formulas to the lemniscate ( 339, 2), to the hypocycloid

with three cusps (curve generated by a point of a circumference which

rolls within a circumference with a radius three times that of the rolling

circle) .

10. Two normals which intercept between them a portion of the axis

of the parabola of constant length are drawn to a given parabola. Find

the locus of their point of intersection.

11. Two parabolas whose axes include a constant angle are circum

scribed about a triangle : find the locus of the fourth point of intersection

of these parabolas. (Ecole Polytechnique, 1874.)

12. a and b are the rectilinear rectangular co-ordinates of a point M;
what is, for each position of this point, the nature of the roots of the

equation
3 $ + 8 at* - 12 62 + 4 5 = Q ?

Construct, in particular, the locus of the positions of the point M for

which the equation has a double root, and show that the co-ordinates of a

point of the locus is a function of this root, (fecole Normale, 1884.)

13. Four tangents can be drawn from a point M of a lemniscate to

this curve besides the tangent which touches the curve at M. Prove that

the four points of contact of these tangents are on a straight line, and

find the envelope of this straight line when the point M describes a

lemniscate.

14. The envelope of the normals to a unicursal curve is a unicursal

curve. What is the order and the class of this envelope in case of a

conic
;
a cubic unicursal curve ?

15. One of the foci of a conic inscribed in a given triangle describes a

given conic
; prove that the other focus describes a unicursal curve of the

fourth order. (Astor, Nouv. Annales, 1885.)
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16. A straight line 5 intersects three sides of a triangle ABC in three

points P, Q, R situated respectively on the sides BC, CA, AB. The har

monic conjugate P of P with respect to BC, Q of Q with respect to

CA, R of R with respect to AB are constructed
;
the three straight lines

AP
, BQ , CR f intersect in a point M,

Find the locus of this point :

1 When the straight line 5 passes through a fixed point ;

2 When this straight line envelops a conic.

/.
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NOTE.

We give below a collection of elementary examples for the application

of the principles discussed in the text in giving an exposition of the

theory of the point and straight line, the circle, the parabola, ellipse

and hyperbola.

EXAMPLES I

CONCERNING THE POINT.

1. Find the points whose co-ordinates are (0, 1), (2, 1), ( 5, 0),

(-2, -3).

2. Draw a triangle, the co-ordinates of whose angular points are

(0, 0), (2, 3), (-1, 0), and find the co-ordinates of the middle

points of its sides.

3. A straight line cuts the positive part of the axis of y at a distance

4, and the negative part of the axis x at a distance 3 from the origin ;

find the co-ordinates of&quot; the point where the part intercepted by the axes

is cut in the ratio 3:1, the smaller segment being adjacent to the axis

of x.

4. There are two points P (7, 8), and Q (4, 4); find the distance PQ,

(1) with rectangular axes, and (2) with axes inclined at an angle of 60.

5. Work Ex. 4 when P is (- 2, 0), Q (- 5,
-

3).

6. The co-ordinates of P are x = 2, y = 3, and of Q, x = 3, y = 4
;

find the co-ordinates of B, so that PR : EQ :: 3 : 4.

7. The polar co-ordinates of P are p = 5, = 75, and of Q, p = 4,

6 = 15
;
find the distance PQ.

8. Find the polar co-ordinates of the points whose rectangular co

ordinates are

(1) x = ^3, (2)z = -V3&amp;gt; (3) x = -l,

y= l; y = 1; y= l
&amp;gt;

and draw a figure in each case.

9. Find the rectangular co-ordinates of the points whose polar co-ordi

nates are

(1) /&amp;gt;

= 6, (2) , = -6, (3) p= 5,

-i -
I S

and draw a figure in each case.
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10. Transform the equations

x cos a + y sin a = a, z2 + xy + ?/
2 = &2

,

from rectangular to polar co-ordinates.

11. Transform the equation p
2 = a2 cos 2 from polar to rectangular

co-ordinates.

12. A straight line joins the points (2, 3) and (-2, -3); find the

co-ordinates of the points which divide the line into three equal parts.

13. If ABC be a triangle, and AB, AC are taken as axes of x and y,

find the co-ordinates (1) of the bisection of BC, (2) of the point where

the perpendicular from A meets BC, and (3) of the point where the

line bisecting the angle BAG meets BC.

14. Find the co-ordinates of the same points, when AB is the axis of

x, and a straight line drawn from A perpendicular to AB the axis of y.

15. The rectangular co-ordinates of a point 8 are h and k, and a

straight line PS is drawn, making an angle 6 with the axis of x
;
show

that the co-ordinates of P are

x = h + p cos 0, y = k + p sin 0,

where SP = p.

EXAMPLES II

CONCERNING THE STRAIGHT LINE.

1. Draw the lines whose equations are

(1) y = 5x + 2, (2) ?/-7 = 5z + 3, (3) 7y-3z = 0,

(4)6-* = 2y, (6)f + = 2, (6) 2* + 3 = 0.

oil \-

2. Find the equation to the straight line which passes through the

points (2, 5), and (0,
-

7).

3. The co-ordinates of the angular points of a triangle being given,

find the equations to the three straight lines, each of which bisects two

of the sides.

4. Two straight lines make each of them an angle of 45 with the

axis of x, and their intercepts on the axis of y are 6 and 8
;
find the

equation to the straight line which is equidistant from the two, the

axes being rectangular.

5. Find the equation to a straight line on which the perpendicular

from the origin =6, and makes (1) an angle of 45, and (2) an angle

of 225 with the axis of x, the axes being rectangular.

6. Determine the point of intersection of the two lines (3 y
- x = 0)

and (2 + y = 1).
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7. Find the equation to the straight line which passes through the

point of intersection of the straight lines

x-2y - a = 0, x+ 3y - 2 a =0,

and is parallel to the line 3 x -f 4 y 0.

8. Find the equation to a straight line which is equidistant from the

two lines represented by the equation y = mx + c c .

9. Find the equation to the straight line that joins the points of inter

section of the two pairs of lines

= 0, &amp;gt;

2a = 0. )

10. Find the length of the perpendicular from the origin on the line

a (x _ a ) -f i(y
-

6)
-

0, and the portion intercepted by the axes, which

are rectangular.

11. The rectangular co-ordinates of two points are 3, 5 and 4, 4

respectively ;
find the equation to a straight line which bisects the dis

tance between them and makes an angle of 45 with the axis of x.

12. Find the equation to a straight line which passes through a given

point (a, 6) and makes equal angles with the axes.

13. Find the equations to the diagonals of the parallelogram formed by

the four lines x =
,
x = a

, y = 6, y = & .

14. A straight line, inclined to the axis of x at an angle of 150, cuts

the positive axes of rectangular co-ordinates in A and B
;
find the equa

tion to a straight line bisecting AB and passing through the origin.

15. Find the equations to the four sides of a square, the co-ordinates

of two of its opposite angular points being (2, 3) and (3, 4), the co-ordi

nates being rectangular.

16. Find the distance of the origin of co-ordinates from the line

- + | = 1, the axes being rectangular.
2 o

17. Find the equation to a straight line which passes through the inter

section of the lines x = a, x + y + a = 0, and through the origin.

18. The axes of co-ordinates being inclined to each other at an angle

of 60, find the equation to a straight line parallel to the line (x + y = 3 a)

and a distance from it equal to aV3.

19. Show that the lines y = 2x + o, y = 3x + 4:, y = 4x + 5, all pass

through one point.

20. Find the value of w, in order that the line (y = mx + 3) may pass

through the intersection of the lines (y = x + 1) and (y = 2 x + 2).

21. A straight line cuts off intercepts on the axes, the sum of the

reciprocals of which is a constant quantity ;
show that all straight lines

which fulfill this condition pass through a fixed point.
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22. A straight line slides along axes of x and y, and the difference of

the intercepts is always proportional to the area it incloses
;
show that the

line always passes through a fixed point.

23. If the distance of a point from the origin equals twice its distance

from the axis of x, show that it always lies in one of two straight lines

that pass through the origin ;
axes rectangular.

24. Find the cosine of the angle which the line (Ax + By + (7) makes

with the axis of x, the axes being inclined at an angle of 45.

25. If a straight line cuts the (rectangular) axes of x and y at equal

distances from the origin, and a straight line be drawn from the origin,

dividing it in the ratio m : w, find the tangent of the angle which this latter

line makes with the axis of x.

26. An equilateral triangle, whose side =
,
has its vertex at the

origin, and its sides equally inclined to the positive directions of rectan

gular axes
;
find the co-ordinates of the angles, and thence of the point

bisecting the base.

27. Find the polar co-ordinates of the point of intersection of the lines

|
p =2asQc(e--\ |

and
|p

=

and the angle between them.

28. Trace the line whose polar equation is

p = 2 a cos
(

6 +

29. Show that the polar equation to a straight line, passing through

the points (p , ), G&amp;gt;&quot;, 0&quot;)
is

p p sin (0
-

0) + p&quot;p
sin

(0&quot;

-
) + pp&quot;

sin (0
-

0&quot;)
= 0.

What is the geometrical interpretation of this equation ? r *

EXAMPLES III

CONCERNING THE ANGLES FORMED BY STRAIGHT LINES AND

THE STRAIGHT LINES REPRESENTED BY EQUATIONS OF

SECOND AND HIGHER DEGREES.

1. Find the equation to the straight lines which pass through the point

(1, 3), and make an angle of 30 with the line (2y - x + 1 = 0); axes

being rectangular.

2. Draw the lines represented by the equation

(2 y - x + c) (3 y + x - c) = 0,

and determine (1) where they intersect, and (2) at what angle; the axes

being rectangular.
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3. Find the equation to a straight line which passes through the point

(c, 0), and makes an angle of 45 with the line (bx ay a&) ;
axes

being rectangular.

4. Find the equation to a straight line which is perpendicular to the

line (8 y + 5 x 3 = 0) and cuts the axis of y at a distance = 8 from the

origin ;
axes being rectangular.

5. Find the cosine of the angle between the lines

(y
- 4 x + 8 = 0) and (y

- 6 x + 9 = 0) ;

axes being rectangular.

6. Find the angle between the lines

(4^ + 3x4-5 = 0) and (4* - 3y + 6 = 0) ;

axes being rectangular.

7. Find the equations to the straight lines which pass through the

intersection of the lines (?/-2x + 4), (y = 3x + 6), and bisect the

supplementary angles between them
;
axes being rectangular.

8. What is the geometrical signification of the equations

x2 + ?/
2 = 0, xy = ?

9. Find the equations to the straight lines which bisect the angles

between the lines (12 x + 5 y = 8) and (3 x
- 4 y = 3) ;

axes being

rectangular.

10. Show that the lines represented by the equation

6 y
2
-f xy - 2 x + y - x2 - 1 = 0,

are inclined to one another at an angle of 45
;
axes being rectangular.

11. The equation 2y2 3xy 2 x2 3y + 6x represents two

straight lines at right angles ;
axes being rectangular.

12. The equation y
2 2 xy sec + x2 = represents two straight lines

inclined to one another at an angle 6
;
axes being rectangular.

13. What is the inclination of the co-ordinate axes, when the lines

represented by y
2 x2 = 0, are perpendicular to one another ?

14. The equations to two straight lines are

x + 3y-a=Q ~
(1), y - x + a = ...

(2) ;

find the equations to the straight lines which pass through the intersec

tions of (1) and (2), so that the ratio of the sines of the inclination of

each to (1) and (2) may be as 1 : V5.

15. What must be the inclination of the axes in order that the lines

(xy 3 y 2 x + 6 = 0) may include an angle of 135 ?

16. Find the equations to the two straight lines which pass through

the origin and divide into three equal parts the distance between the

points in which the axes of co-ordinates are intersected by the line
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7. Find the distance of the point of intersection of the lines

(3x + 2?/ + 4 = 0), (2 x + 5y + 8 = 0),

from the line (y = 5 x + 6) ;
the axes being rectangular.

EXAMPLES IV

CONCERNING TRANSFORMATION OF CO-ORDINATES.

1. The equation of a right line is

3x + 5y- 15 = 0;

find the equation of the same line referred to parallel axes whose origin

is at (1, 2). Ans. 3x + 5/=:2.

2. The equation of a locus is

X2 + y
2 _ 4 x _ 6 y

- 18
;

what will this equation become if the origin be moved to the point

(2, 3) ? Ans. x2 + y
2 = 31.

3. The equation of a locus is y- x* = 16
;
what will this equation

become if transformed to axes bisecting the angles between the given

axes ? Ans. xy = 8.

4. Transform the equation 2 x2 - 5 xy + 2 y
2 = 4 from axes inclined to

each other at an angle of 60, to the axes which bisect the angles between

the given axes. Ans. x2 - 27 y* +12 = 0.

5. Transform the equation y
z + 4 ay cot a - 4 ax = from a rectan

gular system to an oblique system inclined at an angle a, the origin

remaining the same, and the new axis of x coinciding with the old.

Ans. t/
2 sin 2 a = 4 ax.

6. The equation of a locus is x4 + ?/ + 6 x2
?/
2 = 2

;
what will be the

equation if the axes are turned through an angle of 45 ?

Ans. at* + y* = 1.

7. Transform x2 + y&quot;

2 = 7 ax to polar co-ordinates, the pole being at the

origin, and the initial line coincident with the axis of x.

Ans. r = 7 a cos 0.

8. Change the equations r2 = a2 cos 2 and r2 cos 2 = a2 into equa

tions between x and y. Ans. (x
2 + y

2
)
2 = a2

(x
2 - y

2
) and x2 -

?/
2 = a 2

.
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EXAMPLES V

CONCERNING THE CIRCLE.

1. To find the center and radius of the circle

2. Investigate the line or lines represented by the equation

x3 + xy
2 - &r - xr2 - ry

2 + r3 = 0.

3. Find the common chord of two circles

(x -1)2 + (y
-

2)2 = 6, (x
-

2)2 + (y
-

3)2 = 8.

4. To find the equation to a straight line which passes through the

centers of the two circles

x2 + 2 x + i/
2 = o,

2 + 2 y + x2 = 0.

5. To find the equation to a circle having for its diameter the straight

line joining the points of intersection of the line y = mx and the circle

y
2 = 2 rx - x2 .

6. Find the equation to the circle the diameter of which is the com
mon chord of the circles

X2 + ?/2 = r2
5 (x

_ a)2 + yZ = r2.

7. What is represented by the equation

8. Find a relation between the coefficients of the equation

A (x
2 + y

2
) + Z)x + jgfy + F = 0,

in order that (1) the axis of x, and (2) the axis of */, may be tangents to

the circle.

9. To find the inclination to the axis of x of the tangents drawn from

any point (x , y } to the circle whose equation is

(x
-

a)
2 + (y

-
&)

2 - i* = 0.

10. To find the relation between the quantities a, 6, r, in order that

the line - + ^
= 1 may touch the circle x2

-f y
2- = r2 .

11. To find the equation to a circle, the center of which is at the origin

of co-ordinates, and which is touched by the line

12. To find the intercepts on the axes of co-ordinates of the tangent
to a circle (x

2 + y
1 = r2), drawn parallel to a given straight line

(xcosa + y sin a = p}.
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13. If 2 a
,
2 a&quot; be the inclination of two radii of a circle x2 + y

2 = r2

to the axis of x, to find the equation to the chord joining the extremities

of the radii.

14. If the pole always lie on a line

and the equation to the circle is z2 + y* = r2
,
the equation to the polar is

of the form
- r2) = 0,

where k is any constant.

15. If the pole of a straight line with regard to the circle x2 + y
2 =

lie on the circle x2 + y
2 = 4 r2

,
the polar will touch the circle

16. Find the equation to the circle which has each of the co-ordinates

of the center = -, and its radius = ,
the axes being inclined at an

3 \/3

angle of 60.

17. Prove that the circles

have only one common tangent, and find its equation.

18. Find the locus of the mid-points of chords drawn from the ex

tremity of the diameter of any circle.

19. Show that the polar of the point (x , y ) with regard to the circle

(x-a) 2 +(y-6) 2 = r2 is

(x
-

a) (x
-

a) + (y
-

6) (&amp;lt;/

- &)= r\

20. Find the locus of the vertices of all triangles which *have a given

base and a given vertical angle.

21. Prove Euc. III. 31, from the resulting equation.

22. Tangents are drawn to a circle x1 + 2/
2 = r2

,
at two points (x , t/ )

O&quot;, */&quot;);
to fmd the distance of a P int (A *) from a straiSht line Pass~

ing through the center and the intersection of the two tangents.

23. To find the equations to straight lines touching a circle

x* + y
* = 10,

at points, the common abscissa of which is unity.

24. Find the equation to a straight line touching the circle

and parallel to a given line y = mx +
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25. To find the equation to the straight line passing through the origin

of co-ordinates, and touching the circle

z2 + y
2 - 3 x + 4 y = 0.

26. To find the length of the common chord of the circles

(x _ a)2 + (y
-

6)2 = r2, (x - 6)2 + (y
-

a)
2 = r2 .

27. Find the area between the two circles

z2 -f 2 x + |/
2 + 4 y = 0, x2 + 2 a; -f ?/ + 4 y = 1.

28. To find the length of the chord of a circle x2 + y
2 = r2

,
made by

the straight line - + ? = !.
a b

29. If from a given point S, a perpendicular be drawn to the tangent

Prat any point Pof a circle, of which the center is
&amp;lt;7, and, in the line

MP at right angles to CS and produced if necessary, a point Q be taken,

such that QM= SY, to find the locus of Q.

30. Given the equation to a circle, and the chord of a circle
;
show

that a perpendicular let fall upon the chord from the center bisects the

chord.

31. Find the diameter of the circle

2 +
y&quot;

1 + 2 xy cos oj = ax + by.

32. In the equation Ax + By + C = 0, if C be constant, and A and B
vary, subject to the condition A2 + -B2 = a constant, the equation repre

sents a series of tangents to a given circle.

33. Find the equation to the circle which passes through the points

(0, 0), (8 a, 0), (0, 6 a), the axes being rectangular.

34. To find the locus of mid-points of chords which pass through a

given point.

35. If on any radius vector through a fixed point 0, OQ be taken in a

constant ratio to OP, find the locus of Q.

36. The circles represented by the equation

(n + l)(a
2 + y

2
)=a;e + nby,

where n is arbitrary, have a common chord.

37. Prove algebraically that the angles in the same segment of a circle

are equal, and that the angle in a semicircle is a right angle.

38. Two sides of a triangle are 6 and c, and they include an angle A ;

if these sides be taken as axes, the equation to the circumscribed circle is

X2 -f y2 _|_ 2 xy cos A bx cy = 0.

39. Given the base and vertical angle, to show that the locus of the

point of intersection of the perpendiculars from the angles on the sides is

a circle.
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40. Given base and ratio of sides of a triangle, show that the locus of

the vertex is a circle.

41. When will the locus of a point be a circle, if the square of its dis

tance from the base of a triangle be in a constant ratio to the product of

its distances from the sides ?

42. When will the locus of a point be a circle, if the sum of the

squares of the three perpendiculars from it on the sides of a triangle be

constant ?

43. Find the locus of a point, the square of whose distance from a

given point is proportional to its distance from a given right line.

44. Given the base of a triangle, and ra times the square of one of its

sides n times the square of the other = a constant
;
find locus of the

vertex, find center and radius of resulting circle, and where it cuts base.

45. Find the equations to the circles which touch the three lines, re

ferred to rectangular axes,

x = a, y = 2b, y = 2b .

46. The locus of the centers of all circles inscribed in all right-angled

triangles on the same hypotenuse is the quadrant described on the

hypotenuse.

47. The equation to a circle is y* + x2 = a(y + x); what is the equa

tion to that diameter which passes through the origin of co-ordinates ?

48. To find the equation to a circle referred to two tangents at right

angles, as axes.

49. If through any point of a quadrant whose radius is It two circles

be drawn touching the bounding radii of the quadrant, and r, r be the

radii of these circles, rr1 = -R2 .

50. To find the equations to the straight lines which touch both the

a; + yi = ra, (x
-

a)
2 + y* = r 2

.

51. To find the equation to the circle which touches the three straight

lines, referred to rectangular axes,

*=o, ,=o, 5+f=i..

52. To find the equations to two circles, which touch rectangular axes

of x and y, and pass through a given point (a, 6).

53. The straight lines joining the angles of a triangle with the points

in which the escribed circles touch the opposite sides, meet in a point.

54. In any circle draw a chord AB
;
from the mid-point E of the

lesser segment draw any straight line cutting AB in (7, and meeting the

circumference in D
; join AD, and in AD take AP = AC

;
find locus

of P.
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55. The axes Ox, Oy cut a circle in points A, A , 13, B respectively ;

to compare the values of x, y at the intersection of the chords AB
,
A B.

56. Determine the magnitude and position of the circle

p
2 2

/&amp;gt;(cos
6 + V3 sin 0)

= 5.

EXAMPLES VI

Transform the following equation, illustrating each transformation

by a figure, as at the end of 144.

1. 1 + 2 x + 3 ?/
2 = to if = -

I x.

2. 3 x2 + 2 f - 2 x + y
- I = to 72 x2

-f 48 ?/
2 = 35.

3. 3 x2 + 2 ary + 3 y-
- 16 y + 23 = to 4xz + 2y2 = l.

4. y
2 - 10 xy + x2 + y -f x + 1 = to 32 r? - 48 //

2 = 9.

5. ?/
2 - 2 a:y + x2 - 6 y

- 6 x + 9 = to
&amp;gt;/

2 = 3 V2 x.

6. ?/
2 + xy + x2 + ?/ + x - 5 = to 9 x2 + 3 y

2 = 32.

7. y
2 2 xy x2 + 2 = to ?/

2 x2 + V2 = 0.

8. ^2
_ X2 _ ^

_ o to 4 x2 - 4 i/
2 + 1 = 0.

9. Show by transformation that the equation

12xy + Sx-27y- 18 =

represents two straight lines parallel to the axes.

10. Show by transformation that the equation

y
2 _ 2 xy + 3 x2 - 2 y - 10 x -f- 19 =

represents two imaginary straight lines passing through the point (3, 4).

11. Show by transformation that the equation

yz -ixij + 5x2 + 2y -4x + 2 =

represents an imaginary ellipse.

12. Show that any point on the line (y = x + 1) is a center of the

locus

y
2 - 2 xy + x1 - 2 y + 2 x = 0.

13. Show by transformation that the equation

?/
2 + 2 xy + x2 + 1 =

represents two imaginary parallel straight lines.

14. What is the equation to the axis in Ex. 5 ?

15. Transform . 7 ?/
2 + 10 xy + 16 x* + 32 y + 64 x + 28 = 0, the axes

being inclined at an angle of 60, to y
2 + 4 x2 = 9, the axes being rec

tangular, and the axis of x remaining the same.
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EXAMPLES VII

CONCERNING THE PARABOLA.

1. Find the intersections of the parabola y
1 = Sx and the line

3y -2x-S=0. Ans. (2, 4) and (8, 8) .

2. Find the equation of the right line passing through the focus of the

parabola y
2 = 4x, and making an angle of 45 with the axis of the curve.

Ans. y x 1.

3. Find the points in which the focal chord y = x 1 intersects the

parabola y
2- 4 x. Ans. (3 2 \/2, 2 2 V2) .

4. Find the equation of the right line passing through the vertex of

any parabola and the extremity of the focal ordinate. Ans. y = 2 x.

5. Find the equation of the circle which passes through the vertex of

any parabola and the extremities of the double ordinate through the focus.

Ans. y
2 = px x1

.

6. Find the equation of the circle which passes through the vertex of

the parabola y
1 12 x and the extremities of the double ordinate through

the focus. Ans. y
1 15 x x 2

-.

7. Find the equations of the tangent and normal to any parabola at

the extremity of the positive ordinate through the focus.

Ans. y = x + \p and y + x=*p.
8. Find the equations of the tangent and normal to the parabola

y
2 = 4x, at the extremity of the positive ordinate through the focus.

Ans. y = x + l-, y + x = ?&amp;gt;.

9. Find the point where the normal in Ex. 7 meets the curve again,

and the length of the intercepted chord.

Ans. (
Q
2 p, 3_p); length of qhord = 4 p VJJ.

10. Find the point where the normal in Ex. 8 meets the curve again,

and the length of the intercepted chord.

Ans. (9,
-

G) ; length of chord = 8 V2:

11. Find the point in a parabola where the tangent is inclined at an

angle of 30 to the axis of x. Ans. Q /&amp;gt;, pV3).

12. Prove that the normal at any point of a parabola bisects the angle

between the focal line and the diameter passing through that point.

13. On a parabola whose latus rectum is 10, a tangent is drawn at the

point whose ordinate is 6, the origin being at the principal vertex ;
deter

mine where the tangent cuts the two co-ordinate axes.

Ans. (-3.6, 0) and (0,3).

14. Determine where the normal in the preceding example, at the

same point, if produced, will cut the two axes.

Ans. (8.6, 0) and (0, 10.3).



EXAM. THE PARABOLA. 549

15 Find the angle which the tangent in Ex. 14 makes with the axis

of Xm
Ans. 39 48 20&quot;.

16. In the parabola ?/ = 12 x, find the length of the perpendicular from

the focus to the tangent at the point whose abscissa is 9. Ans. 6.

17. In the parabola y*-
= 8 x, find the length of the normal at the point

whose abscissa is 6. Ans. 8.

18. The extremities of any chord of a parabola being (x , y ), (x&quot;, ?/ ),

and the abscissa of its intersection with the axis of the curve being x, to

prove that y x&quot; = x2
, y y&quot;

= - 2px.

19. Two tangents of a parabola meet the curve in (V, y
1

) and (x&quot;, ?/&quot;),

their point of intersection being (x, y} ;
show that

y + y&quot;x=Vx x

EXAMPLES VIII

The following problems are enunciated, some for the ellipse and some

for the hyperbola, though many of them are equally applicable to both

curves.

1. Find the semi-axes of the ellipse 3 if- + 2 x2 = 6.

Comparing this equation with ^+ ^ = 1, we find

a V3, and 6 = V2, Ans.

2. Find the semi-axes of the ellipse 4 y
2 + 3 x2 = 19.

Ans. a = V-, b =

3. Find the points of intersection of the parabola y* = 4 x and the

ellipse 3 ?/
2 + 2 x2 = 14. Ans. (1, 2) and (1,

-
2).

4. Find the equation of a tangent to the ellipse 3 \f- -f 2 x2 35, at the

point whose abscissa is 2. Ans. 9 y + 4 x = 35.

5. Find the eccentricity of the ellipse 2 x2 + 3 y
2- = d2

.

Ans. Eccentricity = \/.

6. Find the equation of the tangent to the ellipse at the end of the

latus rectum
; also, find the lengths of the intercepts of this tangent on

the two axes.

Ans. y + ex = a
;
the intercepts are - on the axis of x, and a on the

axis of y.

7. Find the axes of the hyperbola whose equation is 3 y
1 2 x2

-f 12=0 ;

also the eccentricity of the given and the conjugate hyperbola and the

parameter. ^ a ^ VG, 5 = 2
; e=Vf; e =Vf; 2p=-

v6
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8. Find the intersection of the hyperbola 3 y
2 2.x + 12 = and the

circle x2 + y&quot;

= 16. Ans. (2\/3, 2).

9. Find whether the line y=\x cuts the hyperbola 5 y*
1 2 x2 = 15,

or its conjugate. Ans. It cuts the conjugate.

10. Find the equation of an hyperbola of given transverse axis, whose

vertex bisects the distance between the center and the focus.

Ans.
y&quot;-

- 3 x2 = - 3 a2
.

11. Show tan -i tan = - e
,
where P is any point on an ellipse

2 2 1 + e

and H and fl are its foci.

12. Find the points of intersection of an ellipse and hyperbola whose

equations are x2
-f 2 y

2 = 1, 3 ic
2 G if-

= 1, and show that at each of

these points the tangent to the ellipse is the normal to the hyperbola.

13. If CA, CB be the semi-axes of an ellipse, show that, when SBH is

a right angle, CA2
: CB2 = 2:1.

14. Find the condition that the line + ^ = 1
)
should touch the

hyperbola - - ^
;

=
\a2 o-

15. The tangent to an ellipse is inclined to the major axis at an angle

;
show that the area included by this tangent and the axes is

=
(

2 tan0 + ft
2 cot 0).

16. The circle described on any radius vector SP of an ellipse as

diameter will touch the circle on the axis major.

17. Find where the tangents from the foot of the directrix will meet

the hyperbola, and what angle they will make with the transverse axis.

18. Find the equation to the tangent at the extremity of the latus

rectum of an ellipse whose equation is -^ + -^ 1. ,

9 a 4 -

19. A tangent at the extremity of the latus rectum of an hyperbola

meets any ordinate PM produced in E
;
show that SP = MR, where S is

the focus through which the latus rectum passes.

20. Show that the equation to the normal, at the point whose eccentric

angle is 0, is ax sec by cosec = a2 6 2
.

21. Find the radius of a circle inscribed in a semi-ellipse, touching the

axis minor.

22. From the point where the circle on the major axis is intersected by

the minor axis produced, a tangent is drawn to the ellipse; find the point

of contact.

23. If from the extremities of the minor axis two straight lines be

drawn through any point in the ellipse, and intersect the axis major- in Q
and J?, then CQ - CR = CA2

.
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24. If a tangent be drawn to the interior of two concentric ellipses,

the axes of which are in the same straight line, meeting the exterior one

in P, Q and at P, Q tangents be drawn to the latter, intersecting in R,

prove that the locus of E is an ellipse.

25. Show that the locus of one end of a given straight line, whose

other end and a given point in it move in straight linesrat right angles to

one another, is an ellipse.

26. If with the co-ordinates of any point in an elliptic quadrant as

semi-axes, a concentric ellipse be described, the chord of the quadrant of

the one will be a tangent to the other.

27. The locus of the center of a circle touching two circles externally

is an hyperbola.

28. The locus of the center of a circle touched by one circle externally,

and one internally, is an hyperbola.

29. Find the locus of the extremity of the perpendicular from the

center on the tangent to the hyperbola.

30. If 0, be the eccentric angles of two points on an ellipse, the

equation to the chord joining the two points is

a 2 o Z &

Hence deduce the equation to the tangent at the point whose eccentric

angle is
&amp;lt;f&amp;gt;.

31. If 3 AC = 2CS in an hyperbola, find the inclination of the asymp

totes to the transverse axis.

32. If from a point P in an hyperbola, PK be drawn parallel to the

transverse axis, cutting the asymptotes in / and K, then PK PI = a2
,

or, if parallel to the conjugate, PK PI = 62
.

33. Is the point (2, 3) without or within the hyperbola 2 z2 - 3 ?/
2 = 7 ?

Show that the straight line, joining this point with the point (6, 4), cuts

the curve.

34. If A, A be the extremities of the major axis of an ellipse, T the

point where the tangent at P meets AA
, QTE a line perpendicular to

AA ,
and meeting AP, A P in Q and E respectively, then QT = TR.

35. Find the eccentricity and latus rectum of the conic

2y2 + x2_|_4^_2x 6 = 0,

the axes being rectangular.
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36. Find the equations to the asymptotes of the curve

3x2 - IQxy + 3 */
2 - 8 = 0;

and find the angle between the asymptotes of

m y
z - 10xy + x* + y + x + I = 0,

the axes in the latter case being rectangular.

37. In the equilateral hyperbola, the eccentricity is the ratio of the

diagonal of a square to its side.

38. A tangent at any point P of an ellipse meets the axis major pro
duced in IT, and the axis minor produced in t

;
to find the locus of a point

Q in Tt such that QT : Qt = ra : n.

39. To find the locus o-f the intersection of the ordinate of any point in

an ellipse produced with the perpendicular from the center upon the

tangent at that point.

40. If the normal at P meet the axis major of an ellipse in G-, and QK
be drawn perpendicular to SP, GK e - PM, where PM is the ordinate

of P.

41. If SQ be drawn, always bisecting the angle PSC, in an ellipse,

and equal to a mean proportional between SC and SP, find the eccen

tricity of the curve which is the locus of Q.

42. Two straight lines, such that the product of the tangents of their

inclinations to the axis of x is constant, touch an ellipse ;
show that the

locus of their intersection is an ellipse, or hyperbola, according as the

product is negative or positive.

43. Show that the locus of the summit of a movable right angle, one

side of which touches one, and the other side the other, of two confocal

ellipses, is a concentric circle.

44. An ellipse and hyperbola have the same foci and coincident axes
;

they cut each other at right angles.

45. If P be any point in the hyperbola, S and H the foci, find the locus

of the center of the circle which is inscribed in SPH.

46. If a tangent at any point of an hyperbola be intersected by the

tangents at the vertices in H and K, the circle on HK as diameter passes

through the foci.
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EXAMPLES IX

CONCERNING THE ELLIPSE, HYPERBOLA, AND THEIR CONJUGATE

DIAMETERS.

1. If CP, CQbe semi-diameters at right angles to each other,

&amp;lt;7P
2 CQ* a 2 &2

2. If, from the focus S of an ellipse, perpendiculars be drawn on CP,
CD conjugate diameters, these perpendiculars produced backwards will

intersect CD and CP in the directrix.

3. If p, r and p ,
r be respectively the focal distances of two points P,

D, the extremities of a pair of conjugate diameters of an ellipse, then

pr 4- p r - a2
4- b2

.

4. If a tangent to an hyperbola at P cut off (77
,
Ct from the axes,

then PT Pi = &amp;lt;7Z&amp;gt;

2
,
GY

Z&amp;gt;, being the semi-conjugate diameter.

5. In the equilateral hyperbola, the conjugate diameters make equal

angles with the asymptotes.

6. From the extremities P, D of two conjugate diameters, normals are

drawn to the major axis of an ellipse ;
the sum of the squares of these

two = ^(a
2 + &2).

7. If the tangent at the vertex A cut any two conjugate diameters of

an ellipse produced in T and
,
then AT - At = 62 .

8. The lengths of the equal conjugate diameters of an ellipse are

\/2(a
2 + 62), and the eccentric angles of their extremities are 45 and

135.

9. The locus of the mid-points of chords of an ellipse, which pass

through a fixed point, is an ellipse with the same eccentricity ;
and if the

fixed point be the focus, the major axis of the ellipse is SO.

10. The tangent at any point of an hyperbola is produced to meet the

asymptotes ;
show that the triangle cut off is of constant area.

11. If the asymptotes of the hyperbola are axes, show that the equation
to one directrix is x + y a = 0.

12. If any two tangents be drawn to an hyperbola, and their intersec

tions with the asymptotes be joined, the joining lines will be parallel.

13. Show that the locus of the points of quadrisection of all parallel

chords in a circle is a concentric ellipse.
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14. If the angle between the equal conjugate diameters of an ellipse is

60C
,
find the eccentricity.

15. If a be the angle between two conjugate diameters which make

angles 0, 6 with the axis major,

cos a = e1 cos 6 cos 6 .

16. CP, CD are semi-conjugate diameters of an ellipse, and PF is a

perpendicular let fall from P on CD or CD produced ;
determine the

locus of F.

17. The chords joining the extremities of the conjugate diameters of

an ellipse will_all touch, in their mid-points, a concentric ellipse with

axes V2, 6 V2 coincident with those of the original curve.

18. If a circle be described from the focus of an hyperbola, with radius

equal to half the conjugate axis, it will touch the asymptotes in the points

where they are cut by the directrix.

19. Trace the curve, referred to rectangular axes,

~~
4 9

20. The radius of a circle, which touches an hyperbola and its asymp

totes, is equal to that part of the latus rectum produced, which is inter

cepted between the curve and the asymptote.

21. The equation to the diameter conjugate to

s

the hyperbola being referred to its asymptotes, c and s are the cos and

sin of the angle formed by the line and the x-axis.

22. An ellipse being traced upon a plane, draw the axes and the direc

trix, and find the focus.

23. Find the angle between the asymptotes of the hyperbola xy= bx* + c,

the axes being rectangular ;
and write the equation to the conjugate

hyperbola.

24 Tangents are drawn to an hyperbola, and the portions intercepted

by the asymptotes are divided in a given ratio
;
show that the locus .

the point of division is an hyperbola.

25. Draw the asymptotes of the hyperbolas

and place the curves in the proper angles.

26. Find the locus of the intersection of tangents to an ellipse, which

are parallel to conjugate diameters.
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27. Find the equation to the locus of the mid-points of all chords of a

given length, in an ellipse.

28. If two concentric equilateral hyperbolas be described, the axes of

the one being the asymptotes of the other, they will intersect at right

angles.

29. If P be the mid-point of a straight line AB, which is so drawn
as to cut off a constant area from the corner of a square, its locus is an

equilateral hyperbola.

30. If /Sand //be the foci of an equilateral hyperbola, and a circle be

described upon SH, then the quadrantal chord of this circle shall be a

tangent to that described upon the transverse axis.

31. If a be the acute angle between the axes of co-ordinates of the

ellipse (x
2 + y

2 = c2), find the lengths of the axes and the eccentricity.

32. If AA be any diameter of a circle, PQ any ordinate to it, then the

locus of the intersections of AP, A Q is an equilateral hyperbola.

33. In an equilateral hyperbola, focal chords parallel to conjugate diam

eters are equal.

34. If a series of straight lines have their extremities in two straight

lines at right angles to one another, and all pass through a given point,

the locus of their mid-points is an equilateral hyperbola.

35. PQ is an ordinate to the axis major AA of an ellipse, meeting the

curve in P and Q ;
draw AP, A Q intersecting in E

;
the locus of E is an

hyperbola with the same center and axes.

36. If tangents be drawn, making a given angle with the axes of all

ellipses having the same foci, the locus of the point of contact is an

equilateral hyperbola.

37. If normals be drawn to an ellipse from a given point within it, the

points where they meet the curve will all lie in an equilateral hyperbola
which passes through the given point, and has its asymptotes parallel to

the axes of the ellipse.

38. Find the locus of the mid-points of chords in a circle, which

touch a concentric ellipse.

39. If normals be drawn from the extremities of conjugate diameters

to an hyperbola, and the point of their intersection be joined to the

center, this line produced shall be perpendicular to the straight line pass

ing through the extremities of the conjugate diameters.

40. Given in position, a straight line AB and a point P outside it; a

straight line PM is drawn, intersecting AB in (7, from the extremity M
of which a perpendicular MD on AB intercepts CD of a given magni
tude

;
find the locus of M.
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41. The locus of the centers of all circles, which cut off from the direc

tions of two sides of a triangle chords equal to two given straight lines, is

an equilateral hyperbola, having two conjugate diameters in the direc

tions of these sides.

42. A straight line passes through a given point and is terminated in

the sides of a given angle ;
find the locus of the point which divides it in

a given ratio.

43. From a point P perpendiculars are dropped upon the sides of a

given angle, so as to contain a quadrilateral of given area
;
show that the

locus of P is an hyperbola whose center is the vertex of the given angle.

44. Given the base of a triangle and the difference of the tangents of

the base angles ;
show that the locus of the vertex is an hyperbola, of

which the perpendicular through the center of the base is an asymptote.

45. If about the exterior focus of an hyperbola, a circle be described

with radius equal to the semi-conjugate axis, and tangents be drawn to it

from any point in the hyperbola, the straight line joining the points of

contact will touch the circle described on the transverse axis as diameter.

46. If, from the center of an equilateral hyperbola, a straight line be

drawn through any point P, and if and
&amp;lt;/&amp;gt;

be the angles which this line

and the polar of P respectively make with the transverse axis, then

tan tan = 1.

47. Prove that the circle which passes through any three of the four

points in which the equilateral hyperbola

x2 + 2 hxy - y
2 + 2 gx + 2fy + c =

cuts the rectangular co-ordinate axes, is equal to the circle

jja + ya + 2#B + 2/y = 0.

48. Find the locus of the mid-points of a system of parallel chords,

drawn between an hyperbola and the conjugate hyperbola.

49. If, in two concentric hyperbolas, whose axes are coincident, two

points be taken whose abscissas are as the transverse axes of the hyper

bolas, the locus of the mid-point of the straight line joining them is an

hyperbola, whose axes are arithmetical means between those of the given

hyperbolas.

50. If tangents be drawn from different points of an ellipse, of lengths

equal to n times the semi-conjugate diameter at the point, the locus of

their extremities will be a concentric ellipse with semi-axes equal to

aVn* + 1, 6Vu2 + 1.

51. If a length PQ = CD be taken in the normal to an ellipse, the

locus of the point Q is a circle whose radius = a & or a + b, according

as Q is taken within or without the ellipse.
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QUESTIONS PROPOSED FOR VARIOUS
EXAMINATIONS

ECOLE POLYTECHNIQUE.

1860. A parabola P is given ;
let A and B be two variable points on

this curve, but so chosen that the normals at A and B intersect in a point

C situated on P. The tangent at C and the straight line AB intersect in

a point N; find the locus described by this point and construct the curve.

1863. Two circumferences 0, are given in a plane ;
from a point

A situated on 0, tangents are drawn to
,
and the points thus deter

mined are joined. This straight line intersects the tangent at 0, at the

point A, in M
j

find the locus described by M.

Investigate the different forms of this locus according to the relative

magnitudes and position of the two circumferences and
;
indicate

the cases in which the locus is decomposable. Show that the locus of

the points M is tangent to at each of the points which are common to

it and this circumference.

1864. Construct the circle whose equation is

x2 + ?/ = 1,

and the parabola which has the equation

(J3X
-

ay)2 + 2 ax + 2 fty =
3 tt +

jf
&quot;

,

where a and ft are any positive parameters. It is proposed to determine :

1 The number of real points common to the two curves, for the differ

ent values of a and ft.

2 The co-ordinates of the four common points when

or a = 1, and

finally, when we have

j8
= (a

2 - l)(4a
2 -

1).

1865. A parabola P is given in a plane and a circumference C pass

ing through the focus P is considered. It is required to find the regions

of the plane which the center C will occupy in order that this circumfer

ence may have successively in common with P : 1 four real points ;
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2 four imaginary points ;
3 two real points and two imaginary points.

Study the form and the properties of the curve which separate the first

two regions from the third.

1866. Consider the parabola and the equilateral hyperbola which

correspond, respectively, to the equations

2/2
_ 2px = 0, xy - m* = 0.

It is proposed :

1 To construct the equation whose roots are the abscissas or the ordi-

nates of the feet of the normals common to these two curves.

2 To prove from this equation that the number of common normals is

at least equal to one, and at most to three.

3 To demonstrate that if one have

7
j&amp;gt;

4
&amp;gt;

2 w4
,

there can be but one real common normal.

1867. A triangle BOA, right-angled at 0, and a straight line D sit

uated in the plane of this triangle are given ;
it is proposed :

1 To construct the general equation of the equilateral hyperbolas

circumscribed about the triangle BOA ;
2 to calculate the equation

of the locus L of the points of contact where these different hyperbolas

have as tangents straight lines which are parallel to D
;
3 to study the

different forms of the locus L which correspond to the various direc

tions of the straight line D.

1868. Let Pi, P2 be two parabolas whose foci coincide with the fixed

point 0, and, as axis respectively, the fixed straight lines OX, OF,

which are supposed to be perpendicular. A common tangent is drawn

to these parabolas : let J/i and M2 be the points of contact ;
find the

locus described by the mid-point of MM when the straight line passes

through a fixed point.

1869. A right-angled isosceles triangle AOB is given and it is re

quired :

1 To find the general equation of the parabolas P which are tangent

to the three sides of the triangle AOB ;

2 To determine the equation of the axis of any of these parabolas ;

3 To determine the equation and the form of the locus of the pro

jections of the point 0, the vertex of the right angle AOB, upon the axes

of the parabolas P.

1872 Two rectangular axes of co-ordinates and two straight lines

(A) and (P.) , respectively parallel to these axes, are given. It is required :

1 To construct the general equation of the curves of the second

degree which have the origin of co-ordinates as center and whicl

normal to the given straight lines (A), (B);
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2 To demonstrate that in general three of these curves pass through

a point of the plane, namely, two ellipses and one hyperbola ;

3 To find the points of the plane for which this general rule fails.

1873. A circle and a point A are given, and it is required to find the

locus of the centers of the equilateral hyperbolas which pass through the

given point A and touch the given circle in two points.

Discuss the curve determined by the different positions of the point

A and demonstrate that, in the general case, the points of contact of

the tangents which can be drawn to the locus through the point A are

situated on the circumference of the given circle.

1874. A triangle is given, and it is known that, through a point M of

its plane, there pass, in general, two parabolas circumscribed about the

triangle. With this condition it is required to construct and to discuss

the locus of the point M for which the axes of the two corresponding

parabolas inclose a constant angle.

1875. Find the geometrical locus of the intersection of the two nor

mals drawn to the parabola at the two extremities of all the chords whose

orthogonal projections upon a perpendicular to the axis have the same

value.

What will happen in case this value of the projection approaches zero

as a limit ?

Keturning to the general case, draw through any point of the locus

three normals to the parabola.

Special application to the maximum point of the locus.

1875. A conic of given form and magnitude is so displaced that each

of its foci lie on a given straight line. A tangent is drawn parallel to

one of the given straight lines to the conic
;
find the locus of contact.

1878. 1. 1 Give a study of Newton s method, based on the con

sideration of successive derivatives, for determining the superior limit of

the positive roots of an equation.

2 Construct the curve represented in rectangular co-ordinates by the

two equations . / M _ 2 2&amp;gt;

)

X
--T-*

y = I-*
2. A straight line D whose equation with respect to two rectangular

axes ox and oy is

is given.

Consider the various conies whose axes are ox and oy and which are

normal to the straight line D. Each of them intersects this straight line

in two points ;
at these points tangents are drawn to the conic.

Find the locus of the point of contact of these tangents.
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Demonstrate that this locus is a parabola and that the distance of the

focus of this parabola from its vertex is the fourth of the distance of the

point from the directrix D.

Construct geometrically the axis and vertex of the parabola.

1879. 1. 1 Show how to deduce from Sturm s theorem the conditions

for the reality of all the roots of an algebraic equation of a given degree.

2 Construct the curve whose equation in polar co-ordinates is

2 - 3 cos

2. A conic,

referred to its axes and a point M of the conic are given. A circle is

drawn through the extremities of any diameter of the conic and the point

M. Prove that the locus described by the center of this circle is a conic

K which passes through the origin of the axes.

If two lines, which are perpendicular, be made to revolve about the

point 0, they will intersect the conic K in two points ; prove that the

locus of the points of intersection of the tangents drawn at these points

is a straight line perpendicular to the segment OM and passes through

the mid-point of this segment.

Through the point can be drawn, independently of the normal whose

foot is at 0, three other straight lines normal to the conic K.

1 In the particular case where the given conic is an equilateral hyper

bola and where a = 1, & = 1, show that one only of these normals is

real, and calculate the co-ordinates of its foot.

2 Find the equation to the circle, in the general case, which passes

through the feet of these three normals.

NOTE. The foot of the normal is the point at which the normal is

drawn to the curve.

1880. Let M and N be the points in which the x-axis intersects the

circle

consider any of the equilateral hyperbolas which pass through the points

M and N; draw through a point Q, taken arbitrarily on the circle, tan

gents to the hyperbola ;
let A and B be the points in which the circle

intersects the straight line which joins the points of contact.

Demonstrate that, of the two straight lines QA and QB, one has a

fixed direction and the other passes through a fixed point P.

If the point P be fixed, the corresponding equilateral hyperbola which

passes through the points M and N is determined. Construct geometri

cally its center, its asymptotes, and its vertices.

If the point P describe the straight line y = x, what is the locus de-



EXAMINATION QUESTIONS. 561

scribed by the foci of the hyperbola ? Determine its equation and con

struct it.

1881. 1. Consider a parabola P and a straight line AB normal to

this curve at the point A (the point A having the focus as its projection

upon the axis).

Find the locus of the vertices of the sections made by the plane which

passes through AB in the right cylinder whose base is the parabola P.

2. An asymptote and a point P of a hyperbola are given. Suppose
that one of the foci describe the perpendicular drawn from P to the

given asymptote, find the locus of the point M of the intersection of the

second asymptote with the directrix corresponding to the given focus.

1882. Two circles which intersect at the points A and B are given.

Any conic which passes through these points and is tangent to the two

circles intersects the equilateral hyperbola which has these points as

vertices in two other points, C and D.

1 Demonstrate that the straight line CD passes through one of the

centers of similitude of the two given circles.

2 If all the conies which pass through A and B and which are tangent

to the two circles be considered, demonstrate that the locus of their

centers is composed of two circles E and F.

3 Consider a conic which satisfies the conditions of the problem and

which has its center on one of the circumferences E or F; demonstrate

that the asymptotes of this conic intersect this circumference in two fixed

points situated on the radical axis of the two given circumferences.

1883. A parabola and straight line are given. Find the locus of

points such that the tangents drawn from each of them to the parabola

form with the given straight line a triangle of given area.

1884. A conic xi yi

a2 a2 c2

is given. Join the point M of this conic with the two foci F and F .

1 It is required to express the co-ordinates of the circle inscribed

within the triangle MFF ,
in terms of the co-ordinates of the point M.

2 In the case when the given conic is an ellipse, demonstrate that if

one consider the circles inscribed within the two triangles corresponding

to the two points M and M of the conic, the radical axis of these two

circles passes through the mid-point of the segment MM .

3 For each position of the point J/, the radius vector FM touches the

corresponding circle at a point P. Determine in polar co-ordinates the

equation of the points described by P. Take the focus F as the pole,

and the axis of x as the initial line.

1885. The circumference of a variable circle is passed through the

two foci of an ellipse.

2N
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1 What condition should this ellipse satisfy in order that the circum

ference of the circle would intersect it in four real points, and in what

portion of the minor axis must the center of the circle be placed in order

that the four points of intersection be real ?

2 Tangents are drawn to the ellipse at each of the points of intersec

tion
; find, as the circle varies, the locus of the vertices of the quadri

lateral formed by these tangents.

3 What is the locus of the points of intersection of the sides of this

quadrilateral with those of another quadrilateral, the symetrique of the

first with respect to the center of the ellipse ?

4 Consider the tangents common to the ellipse arid to the circle
;
find

the locus of their points of contact with the circle.

1886. A rectangle ABA B is given. Two equilateral hyperbolas A
and B, whose asymptotes are parallel to the sides of the rectangle, pass,

the one (A) through the opposite vertices A and A
,
the other (.#)

through the opposite vertices B and B of the rectangle.

1 Demonstrate that the center of the hyperbola A has with respect

to the hyperbola B the same polar P which the center of the hyperbola

B has with respect to the hyperbola A.

2 The rectangle remaining fixed, allow the two hyperbolas to vary at

the same time in such a manner that they are always equal without being

symmetrical with respect to one of the axes of symmetry of the rectangle.

Examine whether they intersect in real or imaginary points. Find the

locus of the mid-point of the straight line which joins their centers, and

prove that the straight line P is constantly tangent to this locus.

3 If any two of the hyperbolas (A) and (B) be considered, find the

locus of the centers of the infinitude of rectangles formed with sides

parallel to the asymptotes and with two opposite vertices on each of these

hyperbolas.

1887. A fixed point u and two fixed rectangular axes Ox, Oy are

given in a plane. Two straight lines at right angles to each other are

passed through u which intersect O.t in B and D, Oy in A and C. Draw

through A and B a parabola P tangent to Hie axes O.r, Oy at these

points ;
draw through C and D a parabola P tangent to O./-, Oy at these

points.

Allow the perpendicular straight lines AB, CD to revolve about the

point w, and find :

1 The equation of the parabolas P, P
,
of their axes and of their

directrices
;

2 The equation of the locus of the point of intersection of the axes

and of the directrices
;

3 The equation of the locus of the point of intersection of their axes,

which are composed of the two circles.
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1888. A quadrilateral OABC and two series of parabolas are given :

the one tangent to AC at A, having OA as a diameter
;
the other tangent

to BC at B, having OB as a diameter. It is required to find :

1 The locus of the point of contact M of a parabola of the first series

with a parabola of the second series.

2 Indicate, on allowing the triangle OAB to vary, in what region

of the plane must the point C be situated in order that the locus be an

ellipse or in order that it be a hyperbola.

3 Demonstrate that in the hyperbola where OABC is a parallelo

gram, the tangent common to the two parabolas at M revolves about

the point of intersection K of the median of the triangle ABC.
4 Find, under the same hypothesis, the locus of the point of inter

section P of the tangent to the two parabolas at M with the other common

tangent DE which can be drawn to these two curves.

NOTE. One puts OA = a, OB=b.

1889. Two rectangular axes Ox, and On and two series of parabolas

are given : the one P, with the parameter p, tangent to Oij on the side of

the positive x s, and having its axis parallel to Ox
;
the other Q, with

the parameter q, tangent to Ox on the side of the positive y s, and having

its axis parallel to Oy. It is required :

1 To find the locus of the center of a conic C which is displaced with

out change of magnitude while constantly passing through the points

common to the two series of parabolas P and Q.

2 To demonstrate that if a parabola P and a parabola Q be asso

ciated in such a manner that the straight line which joins their respective

foci and remains parallel to a given direction, the sum of the angles which

the tangents common to the two parabolas form with a fixed axis, Ox

for example, remains constant, and to find, under these tonditions, the

locus of the point of intersection of the axes of the two parabolas.

3 To place a parabola P and a parabola Q in such a manner that they

have three common points coincident, and to calculate, for this position

of the curves, the co-ordinates of their common points and the angular

coefficient of the common tangent at this point.

4 To demonstrate that every triangle circumscribed at the same time

about the corresponding parabolas of the series P and Q is inscribed

in a fixed conic, and to find the equation of this conic.

1890. An equilateral hyperbola H, whose equation, taken with respect

to its axes, is x2
?/
2 = a2

,

is given in a plane.

From a point M of the plane whose co-ordinates are x p, y = q,

normals are drawn to this curve. It is required :

1 To pass through the feet of these normals a new equilateral hyper-
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bola to which the normals at these points are concurrent, and to determine

their point of intersection.

2 On representing by A an equilateral hyperbola which satisfies this

condition, to determine in what region of the plane must the point M be

placed in order that there be a hyperbola K corresponding to this point.

3 What line should the point M describe in order that the hyperbola

K be equal to the hyperbola H.

N.B. Preserve the notation indicated.

1891. A parabola P is given and from each of its points is laid off

in opposite directions, parallel to a fixed direction A, lengths equal to

the distance of this point from the focus of the parabola.

1 Find the locus of the extremities of these lengths. It is composed
of two parabolas PI and P2 ; explain the reason for this duplicity.

2 Demonstrate that the axes of PI and P2 are perpendicular to one

another, that they revolve about a fixed point independent of A, and that,

whatever this direction be, the sum of the squares of these parabolas is

constant.

3 Find and construct the locus described by the parabolas PI and P2

where A varies. Choose, as axes, the axis and the tangent at the vertex

of the given parabola of parameter P. Express by the angle which A

makes with the x-axis.

1892. An equilateral hyperbola // and a circumference C described

on a chord DD of this hyperbola as a diameter are given.

1 A chord of this circumference is drawn perpendicular to DD
;

demonstrate that half of this chord is a mean proportional between the

distances of its mid-point from the points in which it intersects the

hyperbola.

2 Indicate the cases in which the points of intersection of the circum

ference and the hyperbola are real.

3 D Find the locus of the points of intersection of the secants common

to the hyperbola and circumference, when the chord DD is displaced

continually parallel to a fixed direction.

4 Let // be one of the points common to the hyperbola and the

movable circle, A the point where the tangent to the circumference at

H intersects the hyperbola, B the point where the tangent to the hyper

bola at II intersects the circumference
; prove that the straight line AB

passes through a fixed point.
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GENERAL ASSEMBLY

SPECIAL CLASS OF MATHEMATICS.

1833. Cut a triangle by a straight line so that the two portions of this

triangle are in a constant ratio and their centers of gravity lie on the

same perpendicular to the secant. Solve the same problem : 1 When
two sides are equal ;

2 when three sides are equal.

1837. Two equal parabolas, tangent at their vertices and having their

axes lying in opposite directions, are given ;
one of the parabolas is sup

posed to revolve about the other so that, in each of the positions which it

successively occupies, the revolving parabola is always tangent to the

fixed parabola, and the point of contact is equally distant from the

vertex of the fixed and revolving parabola ;
find the locus of the vertex

of the revolving parabola.

1844. An ellipse and a point A on the ellipse are given, and a circle

is drawn tangent to the ellipse at this point and two common tangents

(exclusive of the tangent at the point A) are also drawn to the circle and

ellipse ;
find the locus of the intersection of the two tangents when the

point A travels along the ellipse.

1845. A circle and a point situated within it are given, and on every

diameter of this circle an ellipse is constructed which has a diameter or

major axis and which passes through this point. It is required to find :

1 The general equation of these ellipses ;

2 The geometrical locus of their foci
;

3 The locus of the extremities of the minor axes.

1846. A rectangle ABCD being circumscribed about a given ellipse,

it is known that the vertices of this rectangle lie on the same circle, which

is concentric with the ellipse. This being the case, two straight lines are

drawn from two opposite points of contact N and Q of every rectangle to

the point of contact 3/of one of the other sides, and it is required to be

proven :

1 That JfJVand MQ form equal angles with AB;
2 That MN + MQ is constant

;

3 That these straight lines MN, MQ envelop an ellipse which is

confocal to the given ellipse.
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1847. A triangle PQE is circumscribed about a circle, and a second

triangle is so formed that its vertices A, B, C are the mid-points of the

sides of the first. From the vertices of this second triangle, one draws to

the circle the tangents Aa, #6, Cc, which intersect respectively the sides

opposite to these vertices in a, ft, c. Prove that these three points lie on

a straight line.

Test whether or not the theorem still holds if the circle be replaced by

any conic section which is tangent to the three sides of the triangle PQS.

1848. An ellipse and a straight line TS are given in a plane. A
diameter ACS is drawn through the center C of the ellipse and conjugate

to the direction of the line TS, intersecting it in the point 0. The

straight line OC is prolonged a length OM such that OC CM = CA2
.

The line TS is supposed to move so that it is always tangent to a given

curve. It is required to find the curve described by the point M. Make

an application of the method to the following case. The ellipse has the

equation + = 1, and the line TS remains always tangent to the
9 4

curve which is represented by the equation x2 = ay.

1849. An ellipse and a straight line situated without the ellipse are

given. Two points jV, N are taken on the line, conjugate with respect

to the ellipse (that is, two points such that the polar of one passes

through the other). It is required :

1 To prove that there exists in the plane of the ellipse two points 0,

,
from which every segment NN subtends a right angle; 2 Find

the locus of the points 0, when the given straight line moves parallel to

itself.

1850. Two fixed axes ox, oy are given ;
an angle ABP of given con

stant magnitude is rotated about a fixed point P (A being the point in

which one of the sides of the angle intersects the axis ox, and 7?, the

point in which the other side intersects oy}. It is required to prove that

there exists a fixed point A on ox, and a fixed point B on oy such that

the product AA 1 BB is constant for every possible position of the angle.

Discuss the particular case when the lines ox, oy coincide.

1851. A straight line L is given. Two straight lines are drawn from

each of its points M to two fixed points P and P . Two other fixed

points 0, O are the vertices of two angles AOB, A OB of given

constant magnitude, which are rotated about their respective vertices so

that their sides 0.1, O A are respectively perpendicular to the two

straight lines MP, M P . Find the curve described by the point of inter

section Not the two lines OA, O A and the curve which is described by

the point of intersection of the other two sides OB, O B
,
when the point

M slides along the given line L.
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1854. If the portion of the non-transverse axis comprised between the

center and the normal at any point of the curve be taken as the diameter

of a circle, the tangent drawn through this last point to the circle is equal

to half of the real axis.

Whence discuss the following question : The two vertices and any

third point of the hyperbola being given, construct the normal at this

point. Give the analogous construction for the ellipse.

1857. Two conies C and C&quot; are given, and all the possible systems of

conjugate diameters are drawn in the first and through a point of the

periphery of the other parabolas are drawn with the diameters of each

system ;
show that the straight lines which join the second points of

intersection of these parallels with the curve pass through a fixed point.

1862. Two parabolas with the same parameter have their axes at right

angles ;
one of them is fixed and the other is variable. A common chord

AB passes constantly through the foot D of the directrix of the fixed

parabola ;
find the locus described by the vertex of the variable parabola.

1864. Two conies which have a common focus and proportional axes

are given. Let FA, FA be their minima radii vectores ;
these radii

vectores rotate about the focus F, preserving their angular distance, and

let FC. FC be one position. Draw at C and C&quot; tangents to each of the

conies
;
find the locus of their point of intersection.

1865. Two conies tangent at a point are given, and a common tan

gent OR is drawn to them, also the common external tangents AA ,
BB ,

which intersect in Jf. Given this construction, it is required to prove :

1 That the straight line PP&amp;gt;,
which joins the points P and P

diametrically opposite to in the two conies, passes through the point M.

2 That the straight lines AB, A B ,
which join the points of contact

of each conic with the common external tangents, intersect in a point B
which is situated on the common tangent OE.

3 That the tangents drawn to the two conies from the point E touch

the curves in the points which are situated on the straight line MC.

It will be seen, generally, that the point E does not share this property

with another point, and it will be required to determine the condition

which must be fulfilled in order that there exists a line such that the

tangents drawn from each point of this line to the two conies furnishes

four points of contact in a straight line.

1866. Demonstrate that : 1 The four points of intersection of any

two conies inscribed in a given rectangle are the vertices of a parallelogram

whose sides are parallel to the two fixed directions.

2 Find the locus of the points of contact of the tangents drawn from

a point of the plane to all the conies inscribed in a given rectangle ; or,

better, the tangents parallel to a given direction,
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3 Find the locus of the points of all these conies when the tangent
forms a given angle with the diameter which meets it at the point of

contact.

1868. It is proposed :

1 To find a geometrical locus of the points which divide in a given
ratio the portion of the tangents to a fixed conic which are comprised
between two fixed straight lines

;

2 To classify, on considering above all the general cases, the various

forms which this geometrical locus can have;

3 To find the conditions which ought to be fulfilled by the conic and

the two fixed straight lines in order that the geometrical locus required

should decompose into straight lines or into curves of the second order.

1869. A circle whose center is at and a point P in the plane of this

circle and lying without the circumference are given; find the locus

described by the foci of an equilateral hyperbola, doubly tangent to the

circle and passing through the point P.

Construct the locus on supposing the distance PO equal to three times

the radius of the circle.

1870. Two ellipses have their centers at a common point and their

axes lying in the directions of the same straight lines. Determine the

locus of a point such that the cones which have their point as a common

vertex, and the two ellipses as directrices, shall be equal.

1874. Demonstrate that the most general form of a polynomial F(x}

satisfying the relations :

is :

F(x)
=

(y&
- x^p(x

2 -x + l^{AQ (x* -x + I)
3 &quot; + A l (x*,&amp;lt;-

x + l)
3

&amp;lt;

n

(X
2 _ X)2 + A^X2 _ x+ 1)3(-2)(X

2 _
3)4 + ... + A.^X* - *)

2
&quot;},

p, g, n being integral numbers, and A
, AI, A2,~-, An arbitrary constants.

1874. If the function e
-*2 of the variable x be considered and its

successive derivatives be taken, it is seen that the derivative of the nth

order is equal to the product of the function e-*
2

by an integral poly

nomial in x which we represent by n (*)-

1 Demonstrate that the polynomials &amp;lt;f&amp;gt;(x)
satisfy the following rela

tions :

i(x) -2( -l)0n -2(aO,

2 Calculate the coefficients of the polynomial &amp;lt;f&amp;gt;
n(x) arranged accord

ing to the powers of x.
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1880. On a curve of the third order, which has a cusp at 0, the

following points are considered:

A-ni A-(n-l), 1
^ -2, A -l, AQ, Ai, A 2 , ,

An -l, An ]

which are so arranged that the tangent at each of them intersects the

curve in the next.

1 The co-ordinates of the point AQ being given, find the co-ordinates

of the points A-n ,
An ,

and determine the limits which these points have

when n is increased indefinitely.

2 Find the locus described by the first limiting point, when the curve

of the third degree preserving its cusp at and the tangent at this point,

and passing always through three fixed points P, Q, It is deformed.

3 Study the variation of the points of intersection of this locus and

the sides of the triangle PQR, when the vertices of this triangle are dis

placed along straight lines which pass through 0.

1882. Through any point P taken in the place of a given parabola,

whose vertex is at 0, we draw to this parabola three normals which

intersect it in the points A, B, C. Representing the lengths PA, PB, PC,

PO, respectively, by a, 6, c, Z, it is required to form the equation whose

roots are I2 - a2
,

I
2 -

ft
2

,
I
2 - c2

,
and to indicate the signs of the roots

according to the position of the point P in the various regions of the plane.

1887. I. Let (xi, 2/1), (x2 , 2/2), -, (/, 2/0 be the co-ordinr.t-s of the

points of intersection of two algebraic curves whose equations, put in

integral form, are /(x, ?/)
= 0, F(y, ?/)

= 0. It is assumed that the points

of intersection are simple and situated at finite distances.

1 Show that, for each value of z, one can write :

f(x, if) =(* - Xi}a t (x, ?/) + (y
-

l/i)bi(x,

(i=l, 2, ..-, wi),

F(x, 2/)
= (x

-
Xi}Ai(x, ?/) + (?/

- yi)Bt (x, ?/),

the coefficients a t , bi,A t , B, being polynomials in x and y.

2 One puts

and *(SB,-|f)

(i
= l),

and we require to determine the constants d so that the polynomial *

takes, for x = x and y = ?/,-,
a given value. Prove that the polynomial

thus obtained takes, as a particular case, the form of the interpolation

formula of Lagrange.
3 Demonstrate that all the polynomials in x and y which, for x = x

t

and y = yt taking the value ut ,
can be written in the form

4&amp;gt; + Mf+NF,
where M and ^V are polynomials in x and y.
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II. Let / = 0, F = be the equations of two conies u and
7, and

\i, \2, Xg, the roots of the equation found by equating the discriminant of

the function / \F to zero; find the necessary and sufficient condition

in order that one can inscribe, in the conic
,
a quadrilateral circum

scribed about the conic U.

1888. Let C be the curve which is the geometrical locus of the

vertices of the angles of constant magnitude circumscribed about a given

ellipse E ;
and D a given straight line. 1 Demonstrate that there are

three conies tangent to the straight line I) and touching the curve C in four

points. Determine the nature of these three conies. 2 Let ai, a2 ,
a 3 ,

a4 be the points in which the straight line D intersects the curve C
;

through two of these points ai and a2 ,
for example, a series of circles are

passed intersecting the curve C in two variable points M and M
;
and we

require to find the envelopes of the straight lines MM . 3 One supposes
that the straight line D is tangent to the ellipse JE&quot;,

and through the points

01, o2 ,
as , 04, where this tangent intersects the curve (7, tangents besides

D are drawn to the ellipse ;
find the locus described by the vertices of the

quadrilateral formed by these tangents, when the straight line D revolves

about the ellipse E.

1889. A circle whose center is at and a parabola P being given, con

sider all the conies inscribed in the quadrilateral formed by the tangents

common to the circle O and to the parabola P. It is required to find :

1 (a) The envelope of the polars A, of the point 0, with respect to the

conies C; (?&amp;gt;)

the envelopes of the tangents 7* to the conies C, such that

the normals at the points of contact pass through the point O
; (c) the

envelopes of the axes of the conies C. 2 The geometrical loci of the feet

of the perpendiculars dropped from the point 0, upon the polars A,

upon the tangents T, and upon the axes of the conies C.

RESULTS. (1) Find the same parabola for the enveloped (a), (ft), (c) ;

(2) a strophoid for the geometrical loci, polar of the parabola with respect

to a point of its directrix.
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MISCELLANEOUS QUESTIONS

ECOLE NORMALE SUPEHIEURE.

1861. A secant TAB is drawn from a point P which is external to a

conic. At the points A, B, in which the secant intersects the curve, we

draw tangents which intersect at M and we project the point M upon the

straight line AB
;
find the locus of these projections.

Prove : 1 that the locus passes through the point P and is tangent at

this point; 2 that the locus is the same for all confocal conies;

3 that the locus may be regarded as the locus of the projections of the

point P upon certain straight lines which are tangent to a curve whose

equation is required.

1363. Consider the equilateral hyperbolas which are tangent to a

fixed straight line AB at a given point C and which pass through a point D.

From a point P which lies on AB, tangents are drawn to each of the

hyperbolas and the locus of the points of contact is required.

Determine the nature of the locus according to the position of the

point D.

1854. A triangle ABC and a straight line D which passes through the

point A are given ;
there is an infinitude of conies which pass through

the points A, B, C and are tangent to the straight line AD.

To each of these curves tangents are drawn parallel to AD
;
find the

locus of the points of contact.

This locus is a conic
;

it is required to find the curve described by its

foci when the points A, B, C remain fixed and the straight line AD
revolves about the point A.

1866. A parallelogram whose diagonals are any two conjugate diam

eters AA 1

,
BB is inscribed in a given ellipse. The normals are drawn

to the ellipse at the vertices of this parallelogram ; they form a second

parallelogram MNM N.

1 Demonstrate that the diagonals of each of the two parallelograms

ABA B
j
MNMN are respectively perpendicular to the sides of the

other.

2 Find the locus of the vertices of the parallelogram MNM N1 when

the conjugate diameters are varied.
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3 Find the locus of the point of intersection of the diagonal NN and
of the tangent to the preceding locus at J/.

1867. Two perpendicular straight lines AB, CD are given, and the

hyperbolas which have the straight line AB as asymptote and touch the

straight line CD at a fixed point P are given. It is required to find :

1 The locus of the foci of all of these hyperbolas ;

2 The locus of the point of intersection of the second asymptote with
the perpendicular dropped from the fixed point P upon its direction

;

3 The locus of the points of intersection of the asymptote with the

straight line which joins the focus with the point of intersection of the

two given straight lines.

1869. A triangle and a point P in its plane are given ;
we draw

through the point P any straight line PQ, and consider the two conies

which pass through the vertices of the triangles and touch the straight
line PQ. Let

&quot;,

E be the two points of contact and M the mid-point of

the segment KE*
;
find the locus described by the point J/, when the

straight line J Q is rotated about point P.

Construct the locus under the following hypothesis : the rectangle is

reduced to a square of which a side is 2 a, and, if we choose as axes of

co-ordinates the straight lines drawn through its center parallel to the

sides of the square, the co-ordinates of the point P are x = y = -&amp;gt;

1873. An ellipse and a point P in its plane are given ;
from this point

P normals are drawn to the ellipse A, and the conic B, which passes

through the point P and the feet of the four normals, is considered.

1 Find the co-ordinates of the center of this conic B and those of its

foci.

2 Find the locus C of the center and the locus D of the foci of the

conic J5, when the ellipse A varies so that its foci remain fix^d.

3 Find the locus of the -points of intersection of the locus D and of

the straight line OP when the point P describes a circle of given radius

and with its center at the center of the ellipse A.

1874. 1 Parabolas are passed through the three vertices of a right

triangle. Tangents parallel to the hypotenuse of the given triangle are

drawn to these parabolas. Find the locus of the points of contact.

2 The locus sought is a conic which intersects each of the parabolas

in four points. It is required to find the locus described by the center of

gravity of the triangle formed by the common secants which do not pass

through the origin.

1875. An infinitude of ellipses which are similar to each other and

which have a fixed vertex and a common tangent at this point are

considered
;

it is required to find the locus of the feet of the normals

di awn, from a fixed point P, to these ellipses.
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Construct the locus, in the particular case where OP is inclined at 45

degrees to the fixed given tangent and on supposing, successively, that the

ratio of the axes of the ellipses considered is equal to \/3 or equal to 2.

1876. All the parabolas tangent to two perpendicular straight lines

ox and oy are considered, such that the straight line PQ which joins their

points of contact P and Q with the two straight lines, passes through a

fixed given point.

1 Find the locus of the point of intersection of the normal at P to one

of these parabolas with the diameter of the same curve which passes

through Q.
2 It is required to determine the number of real parabolas which

pass through any point of the plane.

3 Find the equation of the locus of the points of intersection which

satisfy the proposed conditions and whose axes inclose a given angle.

Construct this locus in the case when the given angle is an angle of

45 degrees and where the point A is on the straight line ox.

1877. Consider all the conies circumscribed about a triangle ABC,

right-angled at A and such that the tangents to these conies at B and C
intersect on the altitude of the triangle. Find :

1 The locus of the point of intersections of the normals to these

conies at B and C
;

2 The locus of the center of these conies
;
determine the points of the

locus which are centers of the ellipses, and of those which are centers of

the hyperbolas ;

3 The locus of the poles of any straight line D. This locus is a conic.

Study all the straight lines D for which this conic is a parabola and find

the locus of the projections of the point A upon these straight lines.

1878. A conic and two fixed points A and J3 on the conic are given.

Any circumference which passes through the two points A and B inter

sects the conic in two additional variable points C and D
;
the straight

lines AC, BD, which intersect in JIT, and the straight lines AD, BC,
which intersect in JV, are constructed.

Determine :

1 The locus of the points M and N;
2 The locus of the points of intersection of the straight line MN with

the circumference to which it corresponds.

Construct both loci.

1881. Consider the curve
27 y

2 4x3
.

1 Find the condition which the parameters ra and n should satisfy in

order that the straight line y = mx + n should be tangent to this curve.

2 Find the locus of the points at which one can draw to the given
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curve two tangents parallel to two conjugate diameters of the conic repre

sented by the equation

X2 + y
2 + 2 axy = B.

3 Secants are drawn through a point A in this curve, intersecting this

curve in two variable points M and M . Find the locus of the mid-point
of the segment MM1

. Discuss the form of this locus and indicate the

axes which correspond to the secants for which the points Jf, HI are real.

1882. One is given a fixed point P whose co-ordinates are a and b

with respect to two perpendicular axes (Xe, 0#, and A and B are the

feet of the perpendiculars dropped from the point P upon these two axes.

One studies the curves of the second order which are. tangent to the two

axes at the points A and B
;
from the point P one draws to each of these

curves two variable normals PJ/, PM .

1 Determine the equation of the straight line MM1 which joins the

feet of the variable normals, and demonstrate that this straight line passes

through a fixed point.

2 Determine the equation of the curve C locus of the points M and

M . Construct the curve C with the hypothesis a = fr, by means of polar

co-ordinates of which the pole is the point 0.

1884. If a and b be the rectilinear rectangular co-ordinates of a point

M, what is, for every position of this point, the nature of the roots of

the equation
3 4 + 8a3_ I2ta2 + 46 = 0?

One constructs, in particular, the locus of the positions of the point M
for which the equation has a double root, on calculating the co-ordinates

of a point of the locus as a function of this root.

1886. One considers the curves of the third degree C, represented by
the equation

x, = X,

where X represents a variable parameter.

It is required to prove that there exists two curves of this species tan

gent to any straight line D of the plane, whose equation is

y = mx + p,

and to calculate the co-ordinates of the two points of contact M and M1
.

Determine the straight lines
Z&amp;gt;,

for which these two points are real, and

the straight lines for which they are imaginary. Determine the positions

of the straight line D for which the two points Hf and M 1

coincide, and

find in this case the locus described by the point of contact.

Given the co-ordinates (a, /3) of a point of contact M of a conic C with

a straight line
Z&amp;gt;,

find the co-ordinates (a , /3 ) of the second point of
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contact M 1 situated on D. Construct the curve described by the point

M when the point M describes the straight line

1888. A polynomial /(x) of the degree n satisfies the identity

1 Find the coefficients of /(x) arranged according to the powers of

(x-a).
2 Find the conditions of reality of the roots.

3 Prove that if 6 be the absolute value of 5, the roots of /(x) are

situated between

Construct the curve represented by the equation :

x (x
2 -

ifY + 4 xy (x
-

?/)2
- 4 ?/ (2 y

- 3 x) = 0.

1889. 1 Determine an integral polynomial in x of the seventh degree

/(x), with the condition that /(x)+ 1 and /(x) 1 each is divisible by

(x -f I)
4

. What is the number of real roots of the equation /(x) = ?

2 Consider in a plane a parabola (P) and an ellipse (E) represented

respectively by the two equations

(P) ?/
2 -8x = 0, (E) 2/2 + 42_ 4 = o,

and a point M (a, /?). It is required to find on the parabola P a point Q,

such that the pole of the straight line J/$, with respect to the ellipse (E)

is situated on the tangent to the parabola at Q.

Find the number of real solutions of the problem, according to the

position of the point M in the plane.

1890. Between the co-ordinates x, y of a point A, and the co-ordinates

i&amp;lt;,
v of a point P, the following relations are established :

u- + v 2 u2 + vz

where X is a given positive number.

Having found from these relations the equation which furnishes the

angular coefficients a, j3 of the straight lines which connect the origin

with the points A, P., we are required to show that, in general, to each

point A there corresponds three positions of the point P.. Can these points

PI, P2 , PB be real and distinct ? What must be the position of the point
A in order that this be the case ? What position should A have in order

that two of these points (P2 and P3 for example) be coincident ? If A
describe a locus in the preceding case, what are the loci described by the



576 PLANE GEOMETRY.

1891. Let E be an ellipse which, referred to its axes, has the equation

T2 ? ,2

^+^-1=0,a- o*.

and let x
, yo be the co-ordinates of a ponit M of the plane of this ellipse ;

consider the circle C which passes through the point M and the points of

contact P, Q of the tangents drawn through the point M to the ellipse.

1 The circle (C) intersects the ellipse in two additional points

I*
, Q 5 prove that the tangents to the ellipse at these two points intersect

at a point M situated on the circle
;
show that a circle can be passed

through J/, M and the two imaginary foci
; similarly through M, M and

the two imaginary foci.

2 Let 7, /
,

7&quot; be the points in which the straight lines PQ, P Q ,
the

straight lines P Q, PQ ,
and the straight lines PP

, QQ respectively inter

sect
;

it is assumed that the pointM remains fixed and that the ellipse (E)

is deformed, keeping the same foci
;
find the loci described by the points

7, 7
, 7&quot;,

and prove that every circle which passes through 7
,

I&quot; is

orthogonal to the circle described on 37J7 as a diameter.

1892. A circle C is represented in rectangular co-ordinates by the

equation

(O) z2 +?/2 -2x- 1 = 0.

1 Find the general equation of the conies A which are doubly tangent

to the circle O, so that the chord which connects the two points of contact

passes through the origin of co-ordinates, and which are, besides, tangent

to the straight line D which has the equation

y = xV3 + V3.

2 Through any point J7(a, /3) of the plane there pass, in general, two

conies A ,
A&quot; of this kind

;
where must the point M be in order that

these conies be real ?

3 The two conies A ,
A&quot; which pass through the point M have three

other common points, MI, M2 ,
J73 ,

of which it is required to calculate the

co-ordinates as functions of the co-ordinates a, ft of the point M.

4 Find the equation of the equilateral hyperbola 77 which passes

through the four points M, MI, Mz ,
Ms ,

and show that this hyperbola

passes through four fixed points, when the point M is displaced.

5 Find the locus of the points of intersection of the two conies A 1

,

A&quot; and the envelope of their common secants, when the chords of contact

of these two conies with the circle C are perpendicular ;
what is, in this

case, the species of the conies A ,
A&quot; ?

N. B. Take as variable parameter m, the angular coefficient of the

chord of contact of the conic A with the circle (7.
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ECOLE CENTRALE.

1880. Let Ox, Oy be two rectangular axes and take on Ox a point A,

on Oy a point B. Draw through the point A any straight line AR with

the angular coefficient m.

1 Form the equation of a hyperbola A which is tangent to the axis

Ox at the point 0, which passes through the point B, and which has AR
as asymptote.

2 Allowing m to vary, find the locus described by the point of inter

section of the tangent to the hyperbola // at B and of the asymptote All.

3 Consider the circle circumscribed about the triangle AOB ;
this

circle intersects the hyperbola JT at the points and B, and in two addi

tional points P and Q. Form the equation of this straight line PQ ;

then, allowing m to vary, find successively the loci of the points of inter

section of this straight line PQ with the parallels drawn from the point

0, first to the asymptote AR, then to the second asymptote of the

hyperbola II.

1881. Let atif- + 6-x2 = 262 be the equation of an ellipse referred to

its center and to its axes
;

let a and /3 be the co-ordinates of a point P
situated in the plane of this ellipse.

1 Demonstrate that the feet of the normals drawn through the point

P to this ellipse are situated on the hyperbola represented by the equation

c2xy + b*px - a2
ay = 0,

in which c2 = 2 - & 2
.

2 Consider all the conies which pass through the points A, B, C, D
common to this hyperbola and the given ellipse ;

in each of them the

diameter conjugate to the direction OP is drawn and the point is pro

jected upon this diameter
;
find the locus of this projection.

3 Two parabolas can be passed through the points A, B, C, D ;
find

the locus of the vertex of each of them when the point P is situated on a

straight line with the given angular coefficient wi, drawn through the

point O.

Discuss the particular cases when m =
o
and m= ^--

bs 53

1882. Let +2/!=l be the equation of an ellipse referred to its

a2 V2

center and to its axes, and let a and /3 be the co-ordinates of a point P situ

ated in the plane of the ellipse.

Form the general equation of the conies which pass through the points

of contact M and M of the tangents drawn from the point P to the

ellipse and through the points Q and Q
1 where this ellipse is intersected

by the straight line which corresponds to the equation

2o
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Dispose of the parameter /* and of the other variable parameters which

are involved in the general equation in such a manner that it represents

an equilateral hyperbola passing through the point P.

The point P is allowed to move along the straight line represented by
the equation x + y = 1, and it is required to find :

1 The locus described by the projection of the center of the ellipse

upon QQ ;

2 The locus described by the point of intersection of the chords MM
and QQ !

.

Demonstrate that this last locus passes through two fixed points,

whatever I may be, and determine these points.

Find the values of I for which this locus is reduced to two straight lines,

and determine these straight lines.

1884. The equation a2
?/
2 - 62x2 + orb 2 = of a hyperbola referred tb

its center and its axis, and the equation y Kx = of a straight line

drawn through the center of this hyperbola are given.

I. Form the general equation of the conies which pass through the real

or imaginary points common to the hyperbola and to the given straight

line and which, at most, are tangent to the hyperbola at that vertex of

this hyperbola which is situated on the positive portions of the z-axis.

Discuss this general equation, and determine the nature of the conies

which it can represent.

II. Find the locus of the centers of the conies represented by the pre

ceding equation. This locus is a conic A
;

find the number of points

and tangents which suffice to determine geometrically this conic A.

III. Find the locus of the points of contact of the tangents drawn to

the conic A, parallel to the straight line whose angular coefficient is -

when K varies. Prove that the equation of this last locus
,
which is of

the third degree, represents three straight lines.

1885. Two rectangular axes ox, oy, and th circle whose equation is

(x
-

)
2 + (y- &)

2 - r2 = 0,

are given.

Consider the fixed chord AB drawn through the origin and bisected by

it, and a variable chord CD, with constant direction which is equal and

of contrary signs to that of the fixed chord AB.

Two parabolas P, P can be drawn through the four points A, B, (7, D.

Find, the chord being displaced parallel to itself :

1 The locus of the point? of intersection of the axes of the parabolas

P and P
2 The locus of the vertex and the locus of the focus of each of these

parabolas.
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1886. Let OACB be a rectangle whose sides OA = a and OB = &,

prolonged, are taken, the first for the x-axis, the second for the y-axis.

Consider all the conies which pass through the three points 0, A, B and

for which the polar of the point C is parallel to the straight line AB.
1 Form the general equation of the conies. Find the locus of their

centers, and, on their locus, separate the portions which contain the

centers of the ellipses from those which contain the centers of the hyper
bolas.

2 A normal is drawn to each of these conies at the point A and at the

point B ;
find the locus of the point of intersections of these two normals.

3 Let A be any one of the conies considered
;

if the normals be

drawn through the point C to this conic, one knows that the feet of these

normals are the points of intersection of the conic A and of a certain

equilateral hyperbola. Form the equation of this equilateral hyperbola,

and find the locus of the center of this hyperbola, when the conic A
varies.

1887. Two rectangular axes Ox, and Oy, and a point A on Ox and a

point B on O?/, so that

OA = a, OB = 6,

are given.

1 Write the general equation of the parabolas which pass through the

three points 0, A, B. Show that, in general, there pass through each

point M of the plane two of these parabolas. Find the locus of the points

M for which the two parabolas are coincident, and indicate the region of

the plane which contains the points where there pass only real loci.

2 Find the locus of the point M such that the axes of the two parab

olas include a given angle a. Construct the locus for the case a = -.

3 Find the locus of the point of each of these parabolas at which the

tangent is parallel to OB, of the point where the tangent is parallel to OA
,

and of the point where the tangent is parallel to AB.
These loci are three conies. Construct these conies and show that no

two of them have a common real point at a finite distance
;
locate their

centers D, E, F, and compare the triangle DEF with the triangle OAB.
4 Join the origin to the point F, center of the conic, locus of the

point of contact of the tangents parallel to AB
;
and one erects to the

straight line OF, at the point 0, a perpendicular which intersects

the straight line AB at P
;
find the locus of the point P when, the point

A remaining fixed, the point B travels along the ?/-axis.

1888. Two rectangular axes Ox, Oy and a point A on the x-axis are

given ;
consider the pencil of conies of which the z/-axis is a directrix and

the point A a vertex of the focal axis. Then pass through any point M
of the plane of the axes two real or imaginary conies of this pencil.
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1 Determine the portions of the plane which the point M should

occupy in order that the two conies of the pencil which pass through this

point be real, and those which it should occupy in order that the conies bo

imaginary.
2 When the position of the point is determined in order that the two

conies be real, find the genus of these conies.

3 Find the locus of the points of contact of the tangents drawn from

the origin of co-ordinates to all the conies of the pencil considered.

1889. Let Ox, 0&amp;gt;j
be two rectangular axes, and let LL be a straight

line, whose equation is x a = 0, parallel to Oy. Consider the pencil

of the parabolas which pass through the point and which have the

straight line LL as directrix.

1 Find the locus of the focus and the locus of the vertex of these

parabolas.

2 Two of the parabolas considered, real or imaginary, pass through

any point of the plane xOy ;
determine the position of the plane in which

this point must be situated in order that the two parabolas be real.

3 The co-ordinates of any point M of the plane xOy are given ;
form

the equation which has as roots the angular coefficients of the tangents to

the two parabolas of the pencil considered at the point which pass

through this point M. Whence find the equation of the curve 8 on

which the point M must be situated in order that the tangents to the two

parabolas of the pencil at the point which pass through the point M
should be perpendicular.

4 Let M be a point on the curve S, and let F, F be the foci of the

two parabolas of the pencil considered which pass through this point ;

demonstrate that, when the point M is displaced along the curve S, the

straight line FF revolves about a fixed point.

1890. Two rectangular axes x Ox, y Oy and two pqints A and B,

symetriques with respect to the point 0, are given.

1 Any point P is taken on the x-axis and the parabola (P), which is

tangent to the straight lines PA and PB at the points A and B, is con

sidered. The locus of the focus and the locus of the vertex of this

parabola when P travels throughout x Ox are required.

2 One selects any point Q on the y-axis, and considers the parabola

( Q} which is tangent to the straight lines QA, QB at the points A and B.

These two parabolas (P) and (Q), which correspond thus at a point P
taken on x Ox and at a point Q on y Oy, intersect at the points A, B and

in two other points C, D. Form the equation of the straight line CD and

find the locus described by the points O, D, when P, Q are displaced

respectively on x Ox and y Oy, so that the abscissa of the first is always

equal to the ordinate of the second.

1891. Two rectangular axes, and a circle C which passes through the
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origin and whose center has the co-ordinates x = -
|,

y =--, are given.

Two chords, d in length, which pass through the origin are drawn in this

circle. One draws from a point with the abscissap of the #-axis straight

lines perpendicular to these chords.

1 Find the equation A of the locus of the points such that the product

of this distance from the chords be in a given ratio X with the product of

their distances from the straight lines perpendicular to these chords
;
find

the locus of the centers of the conies represented by the equation A, when

X varies.

2 Discuss the nature of the conies represented by the equation A.

3 The ratio X is chosen so that the conic A becomes a circle
;
find the

locus of the center of the curve when the center of the circle C describes

d2
the hyperbola x2 + nxy = .

1892. Two circumferences, whose centers are and O, OC a, are

given.

We draw through the point A(p, q) of intersection of these circum

ferences two secants BAE and DAC having a common length 2 I These

two secants intersect the y-axis and its parallel drawn through C, in the

points 3/, N and P, Q.

1 It is required to form the general equation of the conies which pass

through the four points M, N, P, Q.

2 The conies are required to pass through a point of the plane;

determine the genus of the conic as the position of the point varies.

3 Find the locus of the centers of these conies.

4 Find the locus of the point of intersection of the straight lines BC
and DE, when the length 2 I is allowed to vary.
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