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PREFACE

TO THE FIBST EDITION,

THE original work of M. BIOT was for many years

the Text Bouk in the U. S. Military Academy at West

Point. It is justly regarded as the best elementary

treatise on Analytical Geometry that has yet appeared.

The general system of Biot has been strictly followed.

A short chapter on the principal Transcendental Curves

has been added, in which the generation of these

Curves and the method of finding their equations are

given. A Table of Trigonometrical Formula is ulso

appended, to aid the student in the course ol his

study.

The design of the following pages has been to pre

pare a Text Book, which may be readily embraced in

the usual Collegiate Course, without interfering with

the time devoted to other subjects, while at the same

time they contain a comprehensive treatise on the

subject of which they treat

Virginia Military Institute,

JULY, 1840.

(iv)



PREFACE

TO THE SECOND EDITION,

THE application of Algebra to Geometry constitutes ono

of the most important discoveries in the history of mathe

matical science. Francis Vieta, a native of France, and one

of the most illustrious mathematicians of his age, was among
the first to apply Geometry to the construction of algebraic

expressions. He lived towards the close of the fifteenth cen

tury. The applications of Vieta were, however, confined to

problems of determinate geometry; and although greater

brevity and power were thus attained, no hint is to be found

before the time of DCS Cartes, of the general method of repre

senting every curve by an equation between two indetermi

nate variables, and deducing, by the ordinary rules of algebra,

all of the properties of the curve from its equation.

RENE DES CARTES was born at Rennes in France in 1596.

At tho early age of twenty years, he was distinguished by
his solutions to many geometrical problems, which had defied

the ingenuity of the most illustrious mathematicians of his

age.

Generalizing a principle in every-day practice, by which

the position of an object is represented by its distances from

others that are known, Des Cartes conceived the idea that by

referring points in a plane to two arbitrary fixed lines, as

axes, the relations which would subsist between the distances

1* (v)



vi PREFACE.

of these points from the axes might be expressed by an alge
braic equation, which would serve to define the line connect

ing these points. If the relation between these distances, to

which the name of co-ordinates was applied, be such, that

there exist the equation x = y, x and y representing the co

ordinates, it is plain that this equation would represent a

straight line, making an angle of 45 with the axis of x

Intimate as is the connection between this simple principle

and that applied in Geography, by which the position of places

is fixed by means of co-ordinates, which are called latitude

and longitude, yet it is to this conception that the science of

Analytical Geometry owes its origin.

Having advanced thus far, Des Cartes assumed the possi

bility of expressing every curve by means of an equation,

which would serve to define the curve as perfectly as it could

be by any conceivable artifice. Operating then upon this

equation by the known rules of algebra, the character of the

curve could be ascertained, and its peculiar properties de

veloped. The application of algebra to geometry would no

longer depend upon the ingenuity of the investigator. The

sole difficulty would consist in solving the equation represent

ing the curve; for, as soon as its roots were obtained, the

nature and extent of the branches of the curve would at once

be known.

Many authors of deservedly high reputation have treated

upon Analytical Geometry. Among the most distinguished

is J. B. Biot, the author of the treatise of which the following

is a translation.

The work of M. Biot has more to recommend it than the

mere style of composition, unexceptionable as that is. The

mode in which he has presented the subject is so peculiar and

felicitous, as to have drawn from the Princeton Review the

high eulogium upon his work, of being
&quot; the most perfect sci

entific gem to be found in any language&quot; His discussion

of the Conic Sections is the finest specimen of mathematical

reasoning extant. He introduces his book, by showing how
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the positions of points may be fixed and defined, first as

relates to a plane, and then in space ; and by a series of ex

amples, shows how analysis may be applied to determine

solutions to various problems of Indeterminate Geometry

In these discussions, a simple and general principle is applied

for determining all kinds of intersections, whether of straight

lines with each other or with curves, curves with curves

planes with each other or with surfaces, and, finally, of sur

faces with surfaces. The principle is simple, inasmuch as it

involves nothing more than elimination between the equations

of the lines, curves, or surfaces which are considered ; and

it is general, since it is applied to every kind of intersection.

In discussing the Conic Sections, two methods suggested them

selves. Shall their equations be obtained by assuming a

property of each section; or, from the fact of their common

generation, shall the principle previously established, for deter

mining any intersection, be applied to deduce their general

equation ? Most authors adopt the former method, which,

though apparently more simple, tends really to obscure the

discussion, since it assumes a property not known to belong
to a Conic Section ;

and if this be afterwards proved, the

proof is postponed too long to enable the student to realize,

while he is studying these curves, that they are in fact sec

tions from a Cone. Biot, on the other hand, assumes nothing
with regard to these sections. He presumes, from their com

mon generation, that they must possess common or similar

properties, since, by a simple variation in the inclination of

the cutting planes the different classes of these curves are

produced.
And so it is with the student. If he find that the circum

ference of a circle has all of its points equally distant from

its centre, analogy leads him at once to seek for correspond

ing properties in the other sections. He finds in the Ellipse

the relation between the lines drawrn from the foci to points

of the curve, and that this relation rec uces to the property

in the circle, when the eccentricity is zero. Corresponding
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results are also found in the Parabola and Hyperbola. Could

a student anticipate such a connection between these curves,

.by following the method of discussion usually adopted ? Why
should he examine the Hyperbola any more than the Cycloid
for properties similar to those deduced from the Circle ? They
are treated as independent curves, and their equations are

found and properties developed, upon the general principles

of analysis, without the slightest reference to their common

origin. Further, the purely analytic method adopted by
Biot, prepares the mind for the discussion of the general

equation of the second degree in the sixth chapter, and that

of surfaces in the seventh, and certainly gives the student a

better knowledge of his subject than any other.

This edition has been most carefully revised. Some slight

changes have been made in the mode of discussing one or

two of the subjects, arid copious numerical examples in illus

tration have been added. The appendix also contains a full

series of questions on Analytical Geometry, which it is be-

ieved will be of great service to the student.

Virginia Military Institute,

AUGUST, 1846.
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ANALYTICAL GEOMETRY

CHAPTER I.

PRELIMINARY OBSERVATIONS.

1. ALGEBRA is that branch of Mathematics in which quan

tities are represented by letters, and the operations to be

performed upon them indicated by signs. It serves to ex

press generally the relations which must exist between the

known and unknown parts of a problem, in order that the

conditions required by this problem may be fulfilled. These

parts may be numbers, as in Arithmetic, or lines, surfaces, or

solids, as in Geometry.

2. Before we can apply Algebra to the resolution of Geo

metrical problems, we must conceive of a magnitude of

known value, which may serve as a term of comparison with

other magnitudes of the same kind. A magnitude which is

thus used, to compare magnitudes with each other, is called

a unit of measure, and must always be of the same dimension

with the magnitudes compared.

3. In Linear Geometry the unit of measure is a line, as a

foot, a yard, &c., and the length of any other line is ex

pressed by the number of these units, whether feet or yards,

which it contains

2 13



14 ANALYTICAL GEOMETRY. [CiiAr. L

C.ZTA Let CD and EF be two lines, \vhich we wish to

compare with each other; AB the unit of measure.

The line CD containing AB six times, and the line

EF containing the same unit three times, CD and

EF are evidently to each as the numbers 6 and 3.

4. In the same manner we may compare surfaces

with surfaces, and solids with solids, the unit of measure for

surfaces, being a known square, and for solids a known cube

5. We may. now readily conceive lines to be added to,

subtra^e.fj .from, or multiplied by, each other, since these

operations have only to be performed upon the numbers

which represent them. If, for example, we have two lines,

whose lengths are expressed numerically by a and b, and it

were required to find a line whose length shall be equal to

their sum, representing the required line by x, we have from

the condition.

x = a + by

which enables us to calculate arithmetically the numerical

value of x, when a and b are given. We may thus deduce

the line itself, when we know its ratio x to the unit of

measure.

6. But we may also resolve the proposed question geo

metrically, and construct a line which shall be equal to the

sum of the two given lines. For, let I represent the absolute

length of the line which has been chosen as the unit of mea

sure, and A, B, and X, the absolute lengths of the given and

required lines. The numerical values a, b, x, will express

the ratios of these three lines to the unit of measure, that is,

we have,
A , B X= _, 6=

.

x =
T

.
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These expressions being substituted in the place of a, 6, x,

in the equation
x = a + b,

the common denominator I disappears, and we have

X = A + B.

Hence, to obtain the required line,

draw the indefinite line AB, and lay
*_c ?

off from A in the direction AB the dis

tance AC equal to A, and from C the distance CB equal to B,

AB will be the line sought.

7. The construction of an analytical expression, consists

in finding a geometrical figure, whose parts shall bear the

same relation to each other, respectively, as in the proposed

equation.

8. The subtraction of lines is performed as reaaivv as their

addition. Let a be the numerical vame of tne sr^.vcr of the

two lines, b that of lue iess ;
ana x tne required difference,

we have,

x = &amp;lt; , b)

an expression Vhicp. enables us to calculate the numerical

value 0^ .f. wnen a and b are known. To construct this

value, substitute as before, for the numerical values a, b, x,

A B X
the ratios , , , of the corresponding lines to the unit of

measure ; the common denominator Z disappears, and the

equation becomes

which expresses the relation between the absolute lengths of

these three lines. Drawing the inde

finite line AC, and laying off from A A_p s c

a distance AB equal to A, and from
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B in the direction BA, a distance BD equal to B, AD will

express the difference between A and B.

9. Comparing this solution with that of the preceding

question, we see by the nature of the operations themselves,

that the direction of the line BD or B is changed; when the

sign which affects the numerical value of B is changed. This

analogy between the inversion in position of lines, and the

changes of sign in the letters which express their numerical

values, is often met with in the application of Algebra to

Geometry, and we shall have frequent occasion to verify it,

in the course of this treatise.

10, From the combination of quantities by addition and

subtraction, let us pass to their multiplication and division.

Let us suppose, for example, that an unknown line X depends

upon three given lines A, B, C, so that there exists between

their numerical values the following relation,

ob
x =

c

This relation enables us to calculate the value of x, when

a, b, and c are known. To make the corresponding geome
trical construction, substitute for a, b, c, and x, the ratios

A Tl C* ~5C

__, _, _, __, of the corresponding lines to the unit of measure ;

I disappears from the fraction, and we have

\ = AB
&quot;&quot;C&quot;

from which we see that the required line

is a fourth proportional to the three lines

A, B, C. Draw the indefinite lines MB
and MX, making any angle with each

other; Lay off MC = C, MB = B, and MA = A, join C and
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A, and draw BX parallel to CA, MX is the required line

For, the triangles MAC, MXB, being similar, we have

MC : MB : : MA : MX
C : B : : A : X

A R
and consequently X =

C

which fulfils the required conditions.*

11. In the example which we have just discussed, as well

as in the two preceding, when we have passed from the nu

merical values of the lines, to the relations between their ab

solute lengths, we have seen that the unit of measure / has

disappeared; so that the equation between the absolute

lengths was exactly the same as that between the numerical

values. We could have dispensed with this transformation

in these cases, and proceeded at once to the geometrical con

struction, from the equation in a, b, and x, by considering

these letters as representing the lines themselves. But this

could not be done in general. For, this identity results from

the circumstance that the proposed equations contain only

the ratios of the lines to each other, independently of their

absolute ratio to the unit of measure. This will be evident

if we observe that the equations

x = a + b, x a b, x=
c

may be put under the following forms,

i a
,
b

,
a b -. ab

1 = -f- , 1 = , 1 =XX XX CX

* In this example, as well as those which follow, the large letters, A, B,

C, D, &c., are used to express the absolute lengths of the lines
;
and the

small letters, a, b, c, d, &c., their numerical values, the ratio of the unit

of measure to the lines.

2* c
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which express the ratios of a, b, c, and T, with each other,

and whose form will not be changed, if we substitute for these

letters the equivalent expressions , , , .

L L L L

12. But it will be otherwise, should the proposed equation

besides containing the ratios of the lines A, B, C and X, with

each other, express the absolute ratio of any of them to the

unit of measure. For example, if we had the equation

x ab,

the numerical value of x can be easily calculated, since it is

the product of two abstract numbers, and this value being

known, we can easily construct the line which corresponds

to it. But, if we wished to pass from this equation to the

analytical relation between the absolute lengths of the

lines A, B, X, by substituting for #, b, x, the expressions
A B X

, , , / being of the square power in the denominator of
L L L

the second member, and of the first power in the first mem

ber, it would no longer disappear, and we should have, after

reducing,

V _ABT
in which the line X is a fourth proportional to the lines /, A,

B In this, and all other analogous cases, we cannot suppose

the same relation to exist between the absolute lengths of the

lines as between their numerical values ; and this impossibility

is shown from the equation itself. For, if a, b, and x, repre

sented lines, and not abstract numbers, the product a b would

represent a surface, which could not be equal to a line x.

13. By the same principle, we may construct every equa
tion of the form.
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a b c d .

x =
b c d ...

in which a, b, c, d, b , c , d , &c., are the numerical values of

so many given lines. If we suppose the equation homoge

neous, which will be the case if the numerator contain one

factor more than the denominator, then substituting for the

numerical values their geometrical ratios, we have

A B C D . . .

B C 1) ...

But the first part - may be considered as representing a

line A&quot;, the fourth proportional to B , A, and B. Combining

C A&quot;C
this line with the following ratio , the product _

C C
will represent a new line A&quot; , the fourth proportional to C ,

A&quot;, and C. This being combined with
r
would give a

A&quot; D
product , which may be constructed in the same man

ner. The last result will be a line, which will be the value

of x.

14. We have supposed the numerator to contain one more

factor than the denominator. If this had not been the case,

I would have remained in the equation to make it homoge

neous. For example, take the equation

x = a b cd

the transformed equation becomes

_ ABCD
~l~

an expression which may be constructed in the same manner

as the preceding.

15. Besides the cases which we have just considered, the
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unknown quantity is often given in terms of radical expres

sions, as

, x=

The first V ab, expresses a mean proportional between a

and b, or between the lines which these

values represent. Laying off on the line

AD, AB = A, BD = B, and on AD as

a diameter describing the semi-circle

AXD, BX perpendicular to AB at the point B, will be the

value of X. For, from the properties of the circle, the line

BX is a mean proportional between the segments of the

diameter.

16. If we take the example,

x= V a2 + 6
2

it is evident that the required line is the hypothenuse of a

right angled triangle, of which the sides

are AB = A, and BD = B ; for we have

AD2 = AB2
-f BD2

or X2 = A2 + B2

X = V A 2 + B2

17. We may also construct by the right angled triangle,

the expression

* = v~^br

the required line being no longer the hypothenuse, but one of

the sides. Making BD = A, and DA = B, we have

AB2 = AD2 BD2

or X2 = A2 B2

X= v/A2 B2

18. Let us now apply these principles to the example,
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*

Solving the equation with respect to r, we get the two

toots,

x = a + V a
2

6
2

,
x = a ^ a2

b\

The radical part of these expressions may be evidently

represented by a side of a right angled triangle, of which the

line A is the hypothenuse, and the line B the other side.

Draw the indefinite line

ZZ ; at any point B

erect a perpendicular,
2 -

and make BC = B. From x\
the point C as a centre

with a radius equal to A,

describe a circumference of a circle, which will cut ZZ ,

generally, in two points X, X , equally distant from B. The

segment BX, or BX , will represent the radical v/A2 B2
,

and if from the point B we lay off on ZZ
, a length BA = A,

A.X= VA 2 B2 + A will represent the first value of X
md AX A \/A2 B2

will represent the second value.

19. If B = A, it is evident that the circle will not cut the

ine ZZ , but be tangent to it at B. The two lines BX and

3X will reduce to a point, and AX and AX will be equal to

&amp;lt;ach other, and to the line A. This result corresponds

itrictly with the change which the Algebraic expression

jndergoes; for a = b causes the radical \/ a2
b

2
to dis

appear, and reduces the second member to the first term, and

the two roots become equal to a.

20. If
B&amp;gt; A, the circle described from the point C as a

centre will not meet the line ZZ , and the solution of the

question is impossible. This is also verified by the equation,
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for
b^&amp;gt;

a makes the radical V a2
b* imaginary, and con

sequently the two roots are impossible.

21. If the second member of the equation had been posi

tive, the construction would have been a little different. In

this case we would have,

3,2 ^ ax = 6
2

and the roots would be,

x = a b, x = a V a* + b\

Here the radical part is repre

sented by the hypothenuse of a

right angled triangle, whose sides

are A and B. Take DB = B ; at

the point B, erect a perpendicular

BC = A: DC will be the radical

part common to the two roots. If,

then, from the point C as a centre, with a radius CB = A,

we describe a circumference of a circle, cutting DC in E
and its prolongation in E, the line DE will be equal tq

A + V A2 + B2

,
which will represent the first value of x

but the second segment DE = V A2
-f B2 A will onlj

represent the second root, by changing its sign, that is, the

root will be represented by DE .

22. Here the change of sign is not susceptible of anv

direct interpretation, since, admitting that it implies an in

version of position, we do not see how this happens, as there

is no quantity from which DE is to be taken. But the diffi

culty disappears, if we consider the actual value of x as a

particular case of a more general problerr, in which the

roots are,
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x = a + c + V a
2
-f b\ x = a + c ^ a

2

-i- b
2
.

c, representing the numerical value of a new line, which is

also given. This form of the roots would make x depend

upon another equation of the second degree, which \vould be,

a*_ 2 (a + c) x = b
2 2 a c c

2
;

in which, if we make c = o, we obtain the original values

of x.

In the new example, the construction of the radical part

is precisely the same, for, taking DB = B and BC = A, the

hypothenuse DC will repre

sent V A2 + B2
. From the

point C as a centre with a

radius equal to A, describe j J^^ /
a circumference of a circle,

DE = A + V A2 + B2 and

DE = A x/AT + FT To

obtain the first root, we have only to add C to DE, which

is done by laying off DF = C, and FE will represent

C + A + V A2 + B2
. To get the second root, it is evident

DE must be subtracted from DF. Laying off from D to
E&quot;,

in a contrary direction, DE&quot; = DE , FE&quot; will be the root,

and will be equal to C 4- A V A 2 + B2
, and this value

will be positive, if the subtraction is possible; that is if C or

Its equal DF is greater than DE , and negative, if less.

23. In general, when a negative sign is attached to a

result in Algebra, it is always the index of subtraction. If

the expresssion contain positive quantities, on which this sub

traction can be performed, the indication of the sign rs satis

fied. If not, the sign remains, to indicate the operation yet
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to be performed. To interpret the result in this case, we

must conceive a more general question, which contains

quantities, on which the indicated operation may be per

formed, and discover the signification to be given to the

result.

EXAMPLES.

i r&amp;lt;
abc + def ghi.

1. Construct L_J. S
/ m

2. Construct V a.

3. Construct V or + b* + c* 4-
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CHAPTER II.

DETERMINATE GEOMETRY.

24. ANALYTICAL GEOMETRY is divided into two parts .

1st. Determinate Geometry, which consists in the applica

tion of Algebra to determinate problems, that is, to problems

which admit of only a finite number of solutions.

2dly. Indeterminate Geometry, which consists in the in

vestigation of the general properties of lines, surfaces, and

solids, by means of analysis.

25. We will first apply the principles explained in the first

chapter, to the resolution and construction of problems of

Determinate Geometry.

Prob. 1. Having given the base and altitude of a triangle,

it is required to find the side of the in

scribed square. Let ABC be the pro

posed triangle, of which AC is the base,

and BH the altitude. Designate the

base by b, and the altitude by //, and

let x be the side of the inscribed square. The side EF, being

parallel to AC, the triangles BEF and ABC are similar; and

we have,
AC : BH : : EF : BI,

or b : h : : x : h x.

Multiplying the means and the extremes together, and put

ting the products equal to each other, we have,

bh bx = hx

bh
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from which the numerical value of x may be determined,

when b and h are known.

26. We may also from this expression find the value of x

oy a geometrical construction, since it is evidently the fourth

proportional to the lines b + h, b, and L
Produce AC to B , making CB = h, erect

the perpendicular B H = h, join A and

H , and through C draw CI parallel to

H B , it will be the side of the required square, and drawing

through I a parallel to the base, DEFG will be the inscribed

square. For, the triangles AB H , ACI being similar, we have.

AB : B H : : AC : CI

or b + h : h : : b : x;

bh
hence a? = 7 r-rb + 11

27. There are some questions of a more complicated nature

than the one which we have just considered, but which when

applied to analysis lead to the most simple and satisfactory

results.

Prob. 2. Draw through a given point a straight line, so

that the part intercepted between two given parallel lines

shall be of a given length.

Let A be the given point, BC and DE the given parallels

It is required to draw the line AI so that the part KI shall

be equal to C. Draw AG perpendicular to DE, AG and FG
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will be known ; and designating AG by a, FG by b, and GI

by xt we have,

AI . AG : : KI : FG
crc

or AI : a : : c : 6, hence AI = -T-

But

hence ~
AI = a2 +

+ x2 and x = V c
2

From which we see that the problem admits of two solutions,

but becomes impossible when b
]&amp;gt;

c, that is, when FG ^&amp;gt;

KI.

Construction. From F as a centre, with a radius equal to

J, describe the arc HH ; GH will be equal to V c
2

b*,

and AI parallel to FH will be the required line. For the

similar triangles FGH, AGI, give

FG : AG : : GH : GI,

or V c
2

b
2

: x, hence x = -7- vx
c~ 6

2
.

o

The second solution is given by GI = GI.

28. Prob. 3. Let it be required to draw a common tangent

to two circles, situated in the same plane, their radii and the

distance between their centres being known.

Let us suppose the problem solved, and let MM be the

common tangent. Produce MM until it meets the straight

line joining the centres at T. The angles CMT and C M T

being right the triangles CMT and C M T will be similar

and give the proportion,
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CM : C M : : CT : C T.

Designating the radii of the two circles by r and r , the

distance between the centres by a, and the distance CT by

x, the above proportion becomes,

r : r : : x : oc a,

or rx ra = r x ;

, ar
hence x = 7

r r

which shows that the distance CT x is a fourth propor

tional to the three lines r r , ,
and r.

To draw the tangent line*

Through the centres C and C , draw any two parallel

radii CN, C N , the line NN joining their extremities will cut

the line joining the centres, at the same point T, from which,

if a tangent be drawn to one circle, it will be tangent to the

other also. For the triangles CNT, C N T, will still be

similar, since the angles at N and N are equal, and will give

the same proportion. But to show the agreement of this

construction with the algebraic expression for x, draw

through N , N D parallel to CC , N D will be equal to a, and

ND to r r ; the triangles N DN, CNT, being similar, give

the proportion,

ND : DN : : NC : CT,

or r r : a : : r : CT;

hence CT = r
r r
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which is the same value found before. TMM drawn tangent

to one circle, will also be tangent to the other. As two

tangents can be drawn from the point T, the question admits

of two solutions.

29. If we suppose, in this example, the radius r of the

large circle to remain constant, as well as the distance be

tween the centres, the product ar will be constant. Let the

radius r of the small circle increase, as r increases, the de

nominator r r will continually diminish, and will become

zero, when r = r . The value of x then becomes ^L. ~
o

infinity. This appears also from the geometrical construe

tion, for when the radii are equal, the tangent and the line

joining the centres are parallel, and of course can only meet

at an infinite distance.

If r continue to increase, the denominator becomes nega

tive, and since the numerator is positive, the value of x will

no longer be infinite, but negative, and equal to CT, which

shows that the point T is changed in position (Art. 9), and

is now found on the left of the circle whose radius is r.

30. Prob. 4. To construct a rectangle, when its surface

and the difference between its adjacent sides are given:

Let x be the greater side, 2a the difference, x 2a will be

the less. Let b be the side of the square, whose surface is

equal to that of the rectangle. This condition will give

x (x a)
= b

2
or x2

2&amp;lt;wr = 6
2

:

irom which we obtain the two values,

x = a + N/~? + 6
8
, x = a V a2

+~b*

These are the same values of x constructed in Art. 18, the

3*
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first being represented by DE, the second by DE. But

we can easily verify this, and show that DE - a + V a
2
-f b

2

is the greater side of the rectangle. For, if we subtract from

this value the difference 2, the remainder a + V a* + b*

multiplied by the greater side, is equal to b
2

, the surface of the

rectangle, a + V a2 + b
2

is therefore the smaller side.

31. We see also that the second value of x taken with a

contrary sign, represents the smaller side of the rectangle.

Hence the calculation not only gives us the greater side,

which alone was introduced as the unknown quantity, but

also the less. This arises from the general nature of all

algebraic results, by virtue of which the equation which ex

presses the conditions of the problem, gives, at the same

time, every value of the unknown quantity which will satisfy

these conditions. In the example before us we have repre

sented the greater side by + x, and have found that its value

depended upon the equation

If we !iad made the smaller side the unknown quantity, and

repr-y/ented its value by a1

, which we were at liberty to

do, ,i would have depended upon the equation

x
(

x + 20) = b
2
, or x2 Zax = b\

which is the same equation as the preceding. Hence, this

equation should not only give us the greater side, which was

at first represented by -f x, but also the less, which in this

instance is represented by x.

32. The preceding examples are sufficient to indicate gene

rally the steps to be taken, to express analytically the con

ditions of geometrical problems :
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1st. We commence by drawing a figure, which shall re

present the several parts of the problem, and then such other

lines, as may from the nature of the problem lead to its

solution.

2d. Represent, as in Algebra, the known and unknown

parts by the letters of the alphabet.

3d. Express the relations which connect these parts by
means of equations, and form in this manner as many equa
tions as unknown quantities ; the resolution of these equations
will determine the unknown quantities, and resolve the pro
blem proposed.

EXAMPLES.

1. In a right-angled triangle, having given the base, and

the difference between the hypothenuse and perpendicular;
find the sides.

2. Having given the area of a rectangle, inscribed in a

given triangle ; determine the sides of the rectangle.

3. Determine a right-angled triangle; having given the

perimeter and the radius of the inscribed circle.

4. Having given the three sides of a triangle; find the

radius of the inscribed circle.

5. Determine a right-angled triangle, having given the

hypothenuse and the radius of the inscribed circle.

6. Determine the radii of the three equal circles, described

in a given circle, which shall be tangent to each other, and
also to the circumference of the given circle.
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7. Draw through a given point taken in a given circle, a

chord, so that it may be divided at the given point into two

segments, which shall be in the ratio of m to n.

8. Having given two points and a straight line; describe

a circle so that its circumference shall pass through the

points and be tangent to the line.

9. Draw through a given point taken within a circle, a

chord whose length shall be equal to a given quantity.

10. Having given the radii of two circles, which inscribe

and circumscribe a triangle whose altitude is knowrn ; deter

mine the triangle.

11. Draw through a given point taken within a given tri

angle, a straight line which shall bisect the triangle.

12. Find the distance between the centres of the inscribed

and circumscribed circles to a given triangle.



CHAP. Ill] ANALYTICAL GEOMETRY. 83

CHAPTER III.

INDETERMINATE GEOMETRY.

33. IN the questions which we have been considering, thfj

conditions have limited the values of the required parts.

We propose now to discuss some questions of Indeterminate

(joometry, which admit of an infinite number of solutions.

For example, let us consider any line .

AMM . From the points M, M , let fall

the perpendiculars MP, M P , upon the

line AX taken in the same plane. These
&amp;gt;^

perpendiculars will have a determinate

length, which will depend upon the nature and position of

the line AMM , and the distance between the points M, M ,

&c. Assuming any point A on the line AX, each length

AP will have its corresponding perpendicular MP, and the

relation which subsists between AP, PM; AP , P M ; for

the different points of the line AMM will necessarily deter

mine this line. Now, this relation may be such as to be

always expressed by an equation, from which the values of

AP, AP , &c., can be found, when those of PM, PM , are

known. For example, suppose AP = PM, AP = P M , &c.,

representing the bases of these triangles by x, and the per

pendiculars by y, we have the relation

In this case, the series of points M, M , &c., forms evidently

the straight line AMM , making an angle of 45 with AX.

E
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34. Again, suppose that the condition established was

such, that each of *he lines

PM, P M
, should be a mean

proportional between the dis

tances of the points P, P , &c.,

from the points A and B taken

on the line AB. Calling PM, y, AP, x, and the distance AB
2fl, we would have,

y
z = x (2# x), or, y

z = %ax a;
2
.

This equation enables us to determine y when x is known,

and reciprocically, knowing the different values of x, we can

determine those of y. It is evident that this line is the cir

cumference of a circle described on AB as a diameter.

35. The equations

y = x and y*
= %ax x2

are evidently indeterminate, since both x and y are unknown.

If values be given to one of the unknown quantities, the cor

responding values of the other may be determined. Such

equations, therefore, lead to infinite solutions. But since we
can determine every value of y for every assumed value of x,

these equations serve to determine all the points of the straight

line and circle, and may be used to represent them.

36. Generalizing this result, we may regard every line as

susceptible of being represented by an equation between

two indeterminate variables ; arid, reciprocally, every equa
tion between two indeterminates may be interpreted geo

metrically, and considered as representing a line, the dif

ferent points of which it enables us to determine. It is this

more extended application of Algebra to Geometry, that

constitutes the Science of Analytical Geometry.
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Of Points, and the Rigid Line in a Plane.

37. As all geometrical investigations refer to the positions

of points, our first step must be to show how these positions

are expressed and fixed by means of analysis.

38. Space is indefinite extension, in which we conceive all

bodies to be situated. The absolute positions of bodies cannot

be determined, but their relative positions may be, by refer

ring them to objects whose positions we suppose to be known.

39. The relative positions of all the points of a plane are

determined by referring them to two straight lines, taken at

pleasure, in that plane, and making any angle with each

other.

Let AX and AY be these two lines, /
,

every point M situated in the plane of T/ J
these lines, is known, when we know

its distances from the lines AX and AY&quot;

measured on the parallels PM and QM
to these lines, respectively.

The lines QM, QM , or their equals AP, AP , are called

abscissas, and the, lines PM, P M , or their equals AQ, AQ ,

ordinates. The line AX is called the axis of abscissas, or

simply the axis qfx s, and the line AY the axis of ordinates,

or the axis ofy s. The ordinates and abscissas are designated

by the general term co-ordinates. AX and AY are then the

co-ordinate axes, and their intersection A is called the origin

of co-ordinates.

40. It may be proper here to remark, that the terms line

and plane are used in their most extensive signification,

that is, they are supposed to extend indefinitely in both

directions.
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41. Let us represent the abscissas by x, and the ordinatea

by y, x and y will be variables,* which will have different

values for the different points which are considered. If, for

example, having measured the lengths AP, PM, which deter

mine the point M, we find the first equal to a, and the second

equal to b, we shall have for the equations which fix this

point,
x = a, y = b.

These are called the equations of the point M.

42. If the abscissa AP remain constant, while the ordinate

PM diminishes, the point M will continually approach the

axis AX; and when PM = o, the point M will be on this

axis, and its equations become

x = a, y = o.

If the ordinate PM remain constant, while the abscissa

AP diminishes, the point M will continually approach the

axis AY, and will coincide with it when AP = o ; the equa

tions will then be,

x = o, y = b.

finally, if AP and PM become zero at the same time, the

point M will coincide with the point A, and we have,

for the equations of the origin of co ordinates.

43. From this discussion we see that, in giving to the

variables x and y every possible positive value, from zero to

* Quantities whose values change in the same calculation are called

variables ; those whose values remain the same are called constants. The

first letters of the alphabet are generally used to designate constants, the

last letters variables.



CHAP. IU.] ANALYTICAL GEOMETRY. 37

infinity, \ve may express the position of every point in the

angle YAX. But how may points situated in the other

angles of the co-ordinate axes be expressed I

Instead of taking YA for the

axis of y, take another line, Y A ,

parallel to YA and in the same

plane, at a distance AA = A,

from the old axis.

Calling x the new abscissas, -

counted from the origin A , we

have for the point M, situated in the angle Y A X,

AP = AA + AT,

x = A + xf

.

But if we consider a point M in the angle Y A A, we

have,

AP = AA AT .

x = A x\

Hence, in order that the same analytical expression,

x = A + x,

may be applicable to points situated in both these angles, we

must regard the values of a? as negative for the angle AA Y ,

so that the change of sign corresponds to the change of posi

tion with respect to the axis A Y .

44. To confirm this consequence, and show more clearly

how the preceding formula can connect the different points

in these different angles, let us consider a point on the axis

A Y . For this point we have x = o, and the formula

x = A -f of

4
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This is the value of the abscissa AA with respect to AX,

AY. But if we wish that this equation suit points on the

axis AY, for any point of this axis x = o, and the preceding

formula will give,

x = A,

which is the same value of the abscissa AA referred to the

axis A Y . The analytical expression for this abscissa be

comes then positive for the axis AY, and negative for the

axis A Y , when we consider the different points of the plane

connected by the equation

x = A + x .

This result applies equally to the negative values of #, and

proves that they belong to points situated on the opposite

side of the axis AY to the positive values.

45. Moving the axis AX parallel to itself, and fixing the

new origin at A&quot;, making

AA&quot; = B, and calling y the

new ordinates counted from

A&quot;, we have for the point M

AY = AA&quot; + A&quot;Y,

or y B + y,

and AY&quot; = AA&quot; A Y&quot;,

or y = B y

for the point M . To express points situated on both sides
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of the axis A&quot;X&quot; by the same formula, we must regard those

points corresponding to negative values of y
1

as lying on the

opposite side of the axes of A&quot;X&quot; to the positive values; and

as this applies equally to the axes AX and AY, we conclude

that the change of sign in the variable y corresponds to the

change of position of points vyith respect to the axis of ab

scissas.

46. From what has been said, we conclude, that if the

abscissas of points lying on the right of the axis of y be

assumed as positive, those of points lying on the left of this

axis will be negative; and also if the ordinates of points

ying above the axis of a? be assumed as positive, those below

this axis will be negative. We shall have, therefore,

In the first angle, x positive arid y positive;

In the second angle, x negative and y positive;

In the third angle, x negative and y negative;

In the fourth angle, x positive and y negative;

and the equations

x = a, y = ft,

which determine the position of a point in the angle YAX,
become successively,

x = 0, y = + b ;

x = a, y = b;

x = + a, y b.

47. Let us resume the equations x = a, y = b, which de

termine the positions of a point in a plane, a and b being

any quantities whatever.
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The equation x a considered by

itself, corresponds to every point whose

abscissa is equal to a. Take AP = a.

Every point of the line PM drawn

parallel to AY, and extending inde

finitely in both directions, will satisfy

this condition, x = a is therefore the

equation of a line drawn parallel to the axis of y, and at a

distance from this axis equal to a. In like manner y = b is

the equation of a straight line parallel to the axis of x. The

point M, which is determined by the equations

x = a, y b,

is therefore found at the intersection of two straight lines

drawn parallel to the co-ordinate axes. The line whose

equation is x -= a will be on the positive side of the axis oft/

if a is positive, and the reverse if a is negative. If a = o, it

will coincide with the axis of y, and the equation of this axis

will be
x = o.

The straight line whose equation is y = b will be situated

above or below the axis of x, according as y is positive or

negative. When y = o, it will coincide with the axis of x,

and the equation of this axis is therefore

Finally, the origin of co-ordinates being at the same time

on the two axes, will be defined by the equations

as we have before found.
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48. The method which we have used to express analyti

cally the position of a point, may be therefore used to de

signate a series of points, situated on the same straight line

parallel to either of the co-ordinate axes. Generalizing this

result, we see, that if there exist the same relation between

the co-ordinates of all the points of any line whatever, the

equation in x and y which expresses this relation, must cha

racterize the line. Reciprocally, the equation being given,

the nature of the line is determined, since for every value of

x or y we may find the corresponding value of the other co

ordinate.

49. An equation which expresses the relation which exists

between the co-ordinates of every point of a line, is called the

equation of that line.

Let it be required to find the equation of a straight line

passing through the origin of

co-ordinates, and making an

angle a with the axis of x.

Let the angle which the co

ordinate axes make with each

other be called ,3. From any

point M draw PM parallel to the axis of y, we will have,

PM : AP : : sin a : sin (-3 a)

hence = __ JL. or y = x
sn *

AP sin
(j3 a) sin (,3 a)

As the same relation between y and x will exist for every

point of the line AM, the equation

4* F
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y = x *}&quot;-? (1)
sin (/3 a)

is the equation of a straight line referred to ollique axes.

The value of a is the same for every point of the line AM,
but varies from one line to another. If we suppose a to

diminish, the line AM will incline more and more to the axis

of x, and when a = o coincides with this axis. In this case

the analytical expression becomes y o, which is the same

equation for the axis of x which Was found before.

Again, let a increase. The line AM approaches the axis

AY and coincides with it when a {3. In this case the sin

(j8 a)
= o, and the equation becomes x = o, which is the

equation of the axis of y.

If a continue to increase, (ft a) becomes negative, and

the equation becomes

Sin &quot;

sin
(j8 )

and is the equation of the line AM . When a = 180,

sin a = o, and the line coincides with the axis of x, and we

have again y = o.

Finally, for a
&amp;gt;

180 sin a is negative, as well as

sin (/3 a), and the equation becomes

sin (/3 )

and represents the line MAM&quot;. Hence the formula

sin
((3 a)

is applicable to every straight line drawn through the origin

of co-ordinates, when referred to oblique axes.
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50. Let us now consider a line A M making the same

angle a with the axis of x,

but which does not pass

through the origin; and as

its inclination to the axis of a?

does not determine its posi

tion, suppose it cut the axis

of y at a distance AA from

the origin, equal to b. The

equation of a line parallel to A M , and passing through the

origin, will be
sin a

The value of any ordinate PM will be composed of the

,

part = sin^li_!__ and MN = AA = b. Hence
sin (,3 a)

sin a

sin (,3 a)

which is the most general equation of a straight line con

sidered in a plane.

51. To find the point in which this line cuts the axis of x,

make y = o, which is the condition for every point of this

axis ; and making x o, determines the point in which it

cuts the axis of y.

Should the line A M cut the axis of y below the origin of

co-ordinates, the value of the new ordinate would be less

than that of the ordinate of the line passing through the

origin, by the distance cut off on the axis of y; hence we

have for the equation of the line,

sin a
^ v

sin (/3 a)
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52. In this discussion we have supposed the co-ordinate

axes to make any angle /3 with each other. They are most

generally taken at right-angles, since it simplifies the calcu

lation. If therefore (3
= 90

sin (/3 a)
= sin (90 a;

=- &?#.,

and the equation (1) becomes

sin a
y = x 1-

= x tan a f b.y cos a

Representing the tangent of a by a, this equation becomes

y = ax + b, (2)

which is the equation of a right line referred to rectangular

axes. In this equation a represents the tangent of the angle

which the line makes with the axis of x, and b the distance

from the origin at which it cuts the axis of y.

53. If the line passed through the origin of co-ordinates,

b is zero, and the equation (2) becomes

y = ax,

which is the equation of a right line passing through the

origin of co-ordinates when referred to rectangular axes.

By making y = o in equation (2) we determine the point

in which the line cuts the axis of x, the abscissa of which is

it therefore meets this axis on the left of the axis of y, and

at a distance from the origin.

By finding the value of x in equation (2) we get

x = y , (3)a y a v
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as a represents the tangent of the angle a which the line

makes with the axis of x, will be the cotangent of a, or
a

the tangent of the complement of a
; but the complement of

a is the angle which the line makes with the axis of y;

hence, to find the angle which a line makes with the axis of

ordinates, we find the value of x in the equation of this line

referred to rectangular axes, and the co-efficient of y will be

the tangent of this angle.

54. The equation

y = + ax + b

representing a straight line which cuts the axis of y at a

distance + b from the origin, and makes an angle whose

trigonometrical tangent is + a

with the axis of x, its posi

tion will be as indicated by
the line A M, the distance

AA being equal to + b, and

the angle ABM represent- &/

But the position of the line A M will evidently vary with

the signs of a and b, since the angle a will be acute for a

positive tangent, but obtuse for a nega

tive one. And the line A M will cut

the axis of y above the axis of x for a

positive value of b, but below this axis

for a negative value. We therefore

conclude that for the equation

y = + ox b

the line has the position A M (fig. 1).

Fig. 1
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Fig. 2.

\
Fig. 3.

When we have

y &amp;lt;v,r + 6

it assumes the direction A M
(fig. 2), and when

y o# - 5

it is situated as in fig. 3.

M&quot;

55. Should the line be

parallel to the axis of x

(fig. 4), the angles a = o

and a = o, and the equa
tion becomes

for the line A M , and

Fi - 4- for the line A&quot;M&quot;.

56. If we put the equation of the line under the form
x =ay:b, then, for the foregoing reasons, a will be the tan

gent of the angle the line makes with the axis of y. If the

line be parallel to this axis, a becomes zero, and we have
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A&quot;

x = -f b

for the line on the right of the

axis, and
x = b

for the line on the left of the

axis; because a= GO; therefore -

- and -f
- also become equala a

to o, and the line should coin

cide with the axis of y. The

insufficiency of the text may
be readily overcome, and should be.

57. By giving to the constants a and b particular values,

so many particular lines may be represented. When a = 1

and b = 1, the line cuts the axis of y at a unit s distance

from the origin, and makes an angle of 45 with the axis of

x. Since a = tang a = tang 45 = 1.

58. The most general form of an equation of the first

degree between two variables is

Fig. 5.

Ay + Ex + C = o,

from which we have
B

B P
By making a = -r- and b = -r- this equation reduces to

-A. A.

y = ax + ft,

which is the equation of a straight line referred to rectan

gular axes as before found

EXAMPLES.

1. Construct the line whose equation is
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2. Construct the line whose equation is

%y = 4x 2.

3. Construct the line whose equation is

2.7- 3y l = 6x y

4. Construct the line whose equation is

\y 3a? + J
= ia: +2.

59. From what precedes we may find the analytical ex

pression for the distance

between two points, when

we know their co-ordinates

referred to rectangular axes.

Let M , M&quot;, be the given

points ; draw M Q parallel

to the axis of x t the triangle

M M&quot;Q gives

M M&quot; = J M Q
2

+ M&quot;Q

2

.

Let x , y -

9 represent the co-ordinates of the point M , x&quot;, y

those of the point M&quot; ;
M Q = x&quot; x , and M&quot;Q

=
y&quot; y ,

and representing the distances between the two points by D,

we have

D = V
(x&quot;

x
)

2 + (if y )

2
.

If the point M were placed at the origin A, we should have

x = o y =
o,

and the value of D reduces to

D - V x&quot;

2 +
y&quot;\

which is the expression for the distance of a point from the
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origin of co-ordinates. This value is

easily verified, for the triangle AMP
being right-angled gives

AM2 = AP
2

+ PM2

,

49

D = V x&quot;

2 +
y&quot;

2
.

60. Let it be required to find the equation of a straight

line, which shall pass through a given point.

Let x, y , be the co-ordinates of the given point M. As

the line is straight, its equation will be of the form (Art. 52)

y = ax + b.

Since the required line must pass

through the point M, whose co-or-

ainates are x, y , its equation must

be satisfied when x and y are sub

stituted for x and y; hence we
have the condition

y = ax + b.

But, as it is in general impossible for a straight line to pass

through a given point M, and cut the axis of y at a required

point P, (the distance AP being equal to &,) and make an

angle with the axis of x, whose tangent shall be a, one of the

quantities a or b must be eliminated. By subtracting the

second of the above equations from the first, this elimination

is effected, and we have

y-y = a(x-x ) (4)

for the general equation of a straight line passing through one

point. This equation requiring but two conditions to be ful

filled, may be always satisfied by a straight line.

5 G



50 ANALYTICAL GEOMETRY. [CHAP. TIL

61. If the given point be on the axis of x, then y = o and

the equation (4) becomes

y = a(x x)

should the point be upon the axis of y, x = o, and we have

y y ax,

y = ax + y .

In the same manner, by giving particular values to x and y ,

the equation of any line passing through a given point may
be determined.

EXAMPLES.

1. Find the equation of a line which shall pass through a

point whose co-ordinates are x = 1 y = + 2.

2. Find the equation of a straight line which shall pass

through a point on the axis of x whose abscissa is equal to

3.

62. Let us now find the equation of a straight line which

shall pass through two given points.

Let x t y be the co-ordinates of one of the points, x&quot;,
y&quot;

those of the other. The line being straight, its equation will

be of the form

y = ax -f b.

Since the line must pass through the point whose co-ordinates

are x , y , these co-ordinates must satisfy the equation of the

line, and we have

y = ax + b.

But it also passes through the point whose co-ordinates are

x&quot;,
y&quot;,

and we have the second condition,

y&quot;

= ax&quot; + b.
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The line having to fulfil the two conditions of passing through

the two given points, the two constants a and b must be eli

minated. By subtracting the second-equation from the first,

and the third from the second, we have

y y = a (* *
)

y y&quot;

= a(x x&quot;),

and by dividing these two last equations the one by the

other, we have

which is the equation of a straight line passing through two

given points, in which x and y are the general co-ordinates

of the line, and a? , y , and x&quot;,
y&quot;,

the co-ordinates of the two

points. The angle which it makes with the axis of a? has for

a tangent

It is easy to show that the above equation fulfils the required

conditions; for, by supposing x = x&quot; the line will become

parallel to the axis of y, and the value for the tangent becomes

the tangent being infinite, the angle which the line makes

with x is 90.

If y =
y&quot;,

we have

which is the condition of the line, being parallel to x; since

the angle being o, the tangent is o.
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EXAMPLES.

1. Find the equation of a line passing through two points

he co-ordinates of which are x = 1, y 2, x&quot;
= o

y&quot;

= 1.

2. Find the equation of a line which shall pass through a

point on the axis of x, the abscissa of which is 2, and

another on the axis of y, the ordinate of which is + 1, and

construct the line.

63. To find the conditions necessary that a straight line

be parallel to a given straight line.

Let

y = ax + b

be the equation of the given line, in which a and b are

known. That of the required line will be of the form

y = a x + b ,

in which a and b are unknown.

In order that these lines should be parallel, it is necessary

that they should make the same angle with the axis of x.

Hence
OL == Q t

and the equation of the parallel, after substitution, becomes

y = ax + b ,

in which b is indeterminate, since an infinite number of lines

may be drawn parallel to a given line.

64. To find the angle included between two lines, given

by their equations.

Let

y = ax + b be the equation of the first line,

jj
a x + b the equation of the second line.
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The first line makes with the axis of x an angle, the trigo

nometrical tangent of which is a ; Y

the second, an arigle whose tan

gent is a. The angle sought is

ABC = a , since BAX =
ACB + CBA. But we have from S/7
Trigonometry,

tang OL tang a
tang (a a)

=
TJ

2--- -2--
1 + tang a tang a

Calling ABC = V, and putting for tang a and tang a a and

a , we have

,
r

*
tang V = v --

,

1 -f- aa

If the lines be parallel, V = o ; and the tang V = o, which

gives a a = o and a = a , which agrees with the condition

before established (Art. 63).

If the lines be perpendicular to each other, V = 90 and

IT
^- a

tang V =
, ;

--
;
= oo,

1 + aa

which gives

1 -f aa = o,

which is the condition that two straight lines should be per

pendicular to each other. If one of the quantities a or a be

known, the other is determined by this equation.

EXAMPLES.

1. Find the angles between the lines represented by the

equations

5*
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2. Find the angles between the lines

y = ff*

y=l.

3. Find the angles between the lines

y = x.

4. Find the angle of intersection of two straight lines, the

tangent of the angle which one makes with the axis of x

being + 1, that of the other 1.

Ans. tang V = oo.

5. Find the angle of intersection when a = o a = 1.

65. To find the intersection of two straight lines, given

by their equations.

Let

y= a x+ b
y

y = a x + b ,

be the equations of the two lines. As the point of intersec

tion is on both of the lines, its co-ordinates must satisfy at

the same time the two equations. Combining them, we

shall deduce the values of x and y which correspond to the

point of intersection. We have by elimination,

b b ab a b
x = --

y =-a a a a

When a = a , these values become infinite. The lines are

then parallel, and can only intersect at an infinite distance.
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EXAMPLES.

1. Find the co-ordinates of the point of intersection of

two lines, whose equations are

y = 3r + 1,

y = 2x + 4.

Ans. x = 3, y = 10.

2. Find the co-ordinates of the point of intersection of

two lines, whose equations are

y X = 0,

3y 2x= 1.

Ans. x = 1, y = 1.

66. The method which we have just employed is genera.,

and may be used to determine the points of intersection of

two curve lines, situated in the same plane, when we know

their equations ; for, as these points must be at the same

time on both curves, their co-ordinates must satisfy the equa

tions of the curves. Hence, combining these equations, the

values we deduce for x and y will be the co-ordinates of the

points of intersection.

Of Points, and the Straight Line in Space.

67. A point is determined in space, when we know the

length and direction of three lines, drawn through the point,

parallel to three planes, and terminated by them.

68. For more simplicity we wr
ill suppose three planes at right

angles to each other, and let them be represented by Y AX
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z XAZ, ZAY. Suppose
*^

. ^f the Doint ~tyL at a dis-

tance MM from the

first plane, MM&quot; from

\-.p ^__ second, and MM &quot;

from

the third. If we draw

through these lines three

planes parallel to the

rectangular planes, their intersection will give the point M.

The rectangular planes to which points in space are referred,

are called Co-ordinate Planes. They intersect each other in

the lines AX, AY, AZ, passing through the point A and per

pendicular to each other. The distance MM of the point

M from the plane YAX may be laid off on the line AZ, and

is equal to AR. Likewise the distance MM may be laid offon

AY, and is AQ. Finally, AP laid off on AX is equal to MM &quot;.

69. The lines AX, AY, AZ, on which hereafter the re

spective distances of points from the co-ordinate planes will

be reckoned, are called the Co-ordinate Axes, and the point

A is the Origin.

70. Let us represent by x the distances laid off on the

first, which will be the axis of x, by y those laid off on At/,

which will be the axis of y, and by z those laid off on AZ,

which will be the axis of %.

If then the distances AP, AQ, AR, be measured and found

equal to a, b, c, we shall have to determine the point M, the

three equations

x a, y = b, z c.

These are called the Equations of the point M.

71. The points M , M&quot;, M &quot;,
in which the perpendiculars
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from the point M meet the co-ordinate planes, are called the

Projections of the point M.

These projections are determined from the three equations

given above, for we obtain from them

y = b, x = a, which are the equations of the projection M ,

x = a, z = c,
&quot; &quot; &quot; of the projection M&quot;,

z = c, y = b,
&quot; &quot; &quot; of the projection M &quot;

;

and we see from the composition of these equations, that two

projections being given, the other follows necessarily.

In the geometrical construction they may be easily deduced

from each other. For example, M&quot;, M &quot;, being given, draw

M&quot; Q, M&quot;P, parallel to AZ, and QM , PM , parallel respect

ively to AX and AY, M will be the third projection of the

point M.

72. There results from what has been said, that all points

in space being referred to three rectangular planes, the points

in each of these planes are naturally referred to the two

perpendiculars, which are the intersections of this plane

with the other two.

The plane YAX is called the plane of x s t and y s, or

simply xy ;

The plane XAZ, that of x s, and % s, or xz ;

And the plane ZAY, that of z s, and y s, or zy ;

The same interpretation is given to negative ordinates, as

we have before explained, and the signs of the co-ordinates

x, y, z, will make known the positions of points in the eight

angles of the co-ordinate planes.

73. Let us resume the equations,

x = a, y = b, z = c;

a, bt c, being indeterminate.
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The first x a considered by itself, belongs to every

point whose abscissa AP is equal to a. It belongs therefore

to the plane MM PM&quot;, supposed indefinitely extended in

both directions. For every point of this plane, as it is pa

rallel to the plane ZAY, satisfies this condition. The equa

tion y = b corresponds to every point of the plane MM &quot;

QM , drawn through the point M parallel to ZAX, and

finally z c corresponds to every point of the plane MM&quot;

RM &quot; drawn through M parallel to the plane XAY. Hence

the equations

x = a t y = b, z = c,

show that the point M is situated at the same time on three

planes drawn parallel respectively to the co-ordinate planes

and at distances represented by a, b, c.

When these distances are nothing, the equations become

x = o, y = o, 2 = 0,

which are the equations of the origin. The first of these

x = o corresponds to the plane ?/z, the second y = o to the

plane xz, and the third z = o to the plane xy. Since for every

point of these planes, these separate conditions exist.

74. To find the expression for the distance between two

points in space. Let M, M , be the two points, the co-ordi

nates of the first being a/, y , z , those of the second, x&quot;,
y&quot;,

z&quot;.

Draw MQ parallel to the plane of xy, and ([united by the

ordinate M N , we shall have) ^-
tr u.^ * . L

or since MQ - NN ,

MM =
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Draw NR parallel to the

axis of x, we shall have

NN - NR + N R .

But

IN 1C X X f

and N R =
y&quot; y ,

hence

\&amp;lt;*
=

(
x x )*+ (y y

&amp;gt;

And we have also

QM = M N MN -
z&quot; z .

Substituting the values of NN and QM , we have

&quot;MM&quot;

2 =
(x&quot;

x
)

2 +
(y&quot; yj +

(z&quot;
z

)

2

,

or MM = D = V
(x&quot;

a;
)

8 +
(y&quot; y )

2 +
(z&quot;

z
)

2
.

75. If one of the points, as for example that whose co-or

dinates are x, y, z , coincide with the origin, the preceding

formula becomes

D= V x&quot;

2 + y
2 + z&quot;

2

,

which expresses the distance of a point in space from the

origin of co-ordinates. In fact,

the triangles MAM , AM P being

right-angled at M and P, give

AM4 = MM- + AM ,

AM2 -
z&quot;

2 + y
2 + x&quot;

2
,

as we have just found.

We see by this result, that the square of the diagonal of a

rectangular parallelopipedon is equal to the sum of the squares

of its three edges.
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76. This last result gives a relation between the cosines of

the angles which any line AM makes with the co-ordinate

axes. For, let these three angles be represented by X, Y, Z ;

call r the distance AM, in the right-angled triangle AMM
we have

MM = 2, AMM = MAZ = Z.

Hence
z = r cos Z.

Reasoning in the same mariner we have

y = r cos Y,

x = r cos X.

Squaring these three equations and adding them together we

have

z* 4. f 4. = r
2

(cos
2 X + cos

2 Y + cos
2

Z),

but x2 + y
2 + * = r

2
.

Hence cos
2 X + cos

2 Y + cos
2 Z = 1,

which proves, that the sum of the squares of the cosines of the

angles which a straight line in space makes with the co-ordi

nate axes is always equal to unity.

77. Let us now determine the equations of a straight line

in space.

To do this, we will remark that, if a plane be drawn

through a straight line in space, perpendicular to either of

the co-ordinate planes, its intersection with this plane will be

the projection of the line on that plane. The perpendicular

plane is called the projecting plane. There are therefore

three projecting planes, and also three projections ; and as

each of the projecting planes contains the given line and one

of its projections, knowing two of the projections, we may
draw two projecting planes whose intersection will determine
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the line in space. Hence, two projections of a line in space

are sufficient
fo determine it.

As these projections are straight lines, their equations will

be of the form,

x = az + , for the projection on the plane of xz,

y = bz + /3,
&quot; &quot; on the plane of yz.

These equations fix the position of the line in space, since

they make known the projecting planes, whose intersection

determines the line.

If the given line passed through the origin of co-ordinates,

we should have a = o and /3
= o, and the above equations

would become
x = az,

y = bz.

78. These results are easily verified; for the equation

x = az +

being independent of y, is not only the equation of the pro

jection of the given line on the plane of xz, but corresponds

to every point of the projecting plane of the given line, of

which this projection is the trace. It is therefore the equa

tion of this plane.

Likewise the equation

y = bz + fi

being independent of x, not only represents the equation of

the projection of the given line on the plane of yz, but is the

equation of the plane which projects this line on the plane

of yz. Consequently the system of equations

x = az + a, = bz + 3
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signifies that the given line is situated at the same time on

both these planes. Hence they determine its position.

79. Eliminating z from these equations, we get,

r a y$ o b
,- = ^j &amp;gt; or y p = (x o),^

wnich is the equation of the projection of the given line on

the plane of yx, and also corresponds to the plane which

projects this line on the plane of xy.

80. We conclude from these remarks that, in general, two

equations are necessary to fix the position of a line in space,

and these equations are those of the two planes, whose inter

section determines the line. When a line is situated in one

of the co-ordinate planes, its projections on the other two are

* * ru
jj.

*. in the axes.A If, for example, it be in the plane of xz, we

ifou** Ur: have for any line of this plane,

.f. b = o, fi
= o;

and its equations become

y = o, x = az 4- a.

The first shows that the projection of the line on the plane

of yz is in the axis, and the second is the equation of its pro

jection on the plane of xz, which is the same as for the line

itself, with which it coincides.

81. Let us resume the equations

x = az + a, y = bz + j3.

So long as the quantities, a, b, a, /3, are unknown, the posi

tion of the line is undetermined. If one of them, a for ex

ample, be known, this condition requires that the line shall

have such a position in space, that its projection on the plane

of xz shall make an angle with the axis of z, the tangent of
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which is a. If a be also known, this projection must cut the

axis of x at this given distance from the origin, and these

two conditions will limit the line to a given plane.

If b be known, a similar condition will be required with

respect to the angle which its projection on the plane of yz

makes with the axis of z ; and finally, if all four constant?

be known, the line is completely determined.

82. The determination of the constants a, b, a, fi, from

given conditions, and the combination of the lines which

result from them, lead to questions which are analogous to

those we have been considering.

Before proceeding to their discussion, we will remark, that

the methods which wre have just used, may be applied to

curve as well as straight lines. In fact, if we know the

equations of the projections of a curve on two of the co

ordinate planes, we can for every value of one of the varia

bles x, y, or z, find the corresponding values of the other two,

which will determine points on the curve in space.

83. The projection of a curve on a plane is the intersection

with this plane by a cylindrical surface, passed through the

curve perpendicular to the plane.

If we know the equations of two of its projections, these

equations show that the curve lies on the surfaces of two

cylinders, passing through these projections, and perpendi

cular to their planes respectively. Hence their intersection

determines the curve.

The term Cylinder is used in its most general sense, and

applies to any surface generated by a right line moving pa

rallel to itself along any curve.

84. To find the equations of a straight line passing through

a given point.
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Let x , y ,
z , be the co-ordinates of the given point. The

equations of the line will be of the form

&amp;gt;t Ikin f&amp;lt;h.i. TU
&amp;lt;jrl*

f 1

*&quot;**- u &amp;gt;! x = OZ + a,

But since the line must pass through the given point, these

equations must be satisfied when x , y , and z are substituted

for x, y, and z. We have therefore the conditions

y = bz + ft
?

Eliminating^ and ft by subtracting the two last equa

tions from the two first, we have

x x = a (z z ),

for the equations of a straight line passing through the point

EXAMPLES.

1. Find the equations of a straight line passing through

the point whose co-ordinates are x = o, y = o, z 1.

2. Find the equations of a straight line passing through

the point whose co-ordinates are x = 1, y = o, z = + 1.

85, To find the equations of a right line passing through

iwo given points.

Let x , y , z , x&quot;, y&quot;, z&quot;,
be the co-ordinates of these points.

The equations of the required line will be of the form

x = az -f

y = bz + ft

c, b, a, ft being unknown. In order that the line pass through
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the point whose co-ordinates are x , y y z , it is necessary

that these equations be satisfied when we substitute x , y

and z , for x, y, and z. Hence

x = az
1 + ,

y = bz + p.

For the same reason, the condition of its passing through

the point whose co-ordinates are x&quot;9
y&quot;,

z&quot; t requires that we

have
x&quot; = az&quot; + ,

y&quot;

= bz&quot; + 0.

These equations make known a, b, a, /3, and substituting

their values in the equation of the straight line, it is deter

mined. Operating upon these equations as in Art. 84, we

have

(x X
)
= a(z z ), (* X

&quot;)

= a(z z&quot;),

(y
-

y )
= b (z

- z ), (y
-

y&quot;)

= &(*
-

z&quot;),

from which wre get

The two last equations are those of the required line, the

other two make known the angles which its projections on the

planes of xz and yz make with the axis of s.

EXAMPLES.

1. Find the equations of a straight line passing through

the points, whose co-ordinates are x = o, y = o, z = 1 ;

and x&quot;
= I,

y&quot;

= o, z&quot;
=

o, and construct the line.

2. Find the equations of the line passing through the origin

6*
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of co-ordinates, and a point, the co-ordinates of which are

86. To find the angle included between two given lines.

Let

x = az + a ;

be the equations of the first line.

x = az
those of the second.

We will remark in the first place, that in space, two lines

may cross each other under different angles without meeting,

and their inclination is measured in every case by that of

two lines, drawn parallel respectively to the given lines

through the same point.

Draw through the origin of co-ordinates two lines respec

tively parallel to those whose inclination is required, their

equations will be

x = az
)

I
for the first,= bz )y

x= a z

y= b z
for the second

Take on the first any point at a distance r from the origin,

the co-ordinates of this point being x, y
f

, z ; and on the

second line take another point at a distance r&quot; from the origin,

and call the co-ordinates of this

point x&quot;,
y&quot;,

z&quot;, and let D repre

sent the distance between these

two points. In the triangle formed

by the three lines r, r&quot;,
and D,

the angle V included between r

and r&quot; will be (by Trigonometry),

given by the formula,
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^ Ms y = 7- +r &quot;i

l)
*

We have only to determine r, r&quot;,
and D.

Designating by X, Y, Z, the three angles which the first

line makes with the co-ordinate axes, respectively, and by
X , Y , Z, those made by the second line, we have by Art. 76,

x = r cos X, \f
= r cos Y, z = r cos Z,

x&quot;
=

r&quot; cos X ,
y&quot;

=
r&quot; cos Y , z&quot;

=
r&quot; cos Z .

Besides, D being the distance between two points, we
have

D 2 =
(x&quot;

* )* + (y&quot;

- yY + (z&quot;

- z
)

or

D2 = x 2 + y
2 + z* + x&quot;

2 +
y&quot;

2 + z&quot;

2 2 (x x + y y&quot;
+ z

z&quot;).

Putting for x t y, z, &c. their values in terms of the angles

we have

D2 = r
2

|
cos

2 X + cos
2 Y + cos

2

Zj + r&quot;

2

Jcos
2 X + cos

2 Y
+ cos2 Z

I
2 r r&quot; _|cos X cos X + cos Y cos Y + cos Z

cos Z
|

.

But we have (Art. 76),

cos
2 X + cos

2 Y + cos
2 Z = 1, cos

2 X + cos
2 Y + cos2 Z = 1 ;

hence

D2 - r
2 + r&quot;

2
2r r&quot; (cos X cos X + cos Y cos Y + cos Z

cos Z
).

Substituting this value of D2
in the formula for the cosine

V, and dividing by 2r
r&quot;,

we have

cos V = cos X cos X -f cos Y cos Y + cos Z cos Z ;

which is the expression for the cosine of the angle formed in

space.
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87. We may also express cos V in functions of the co-effi

cients a, b, a, b , which enter into the equations of the lines

x = az, x == a z,

y = bz, y = b z.

For this purpose let us consider the point which we have

taken, on the first line, whose co-ordinates are x, y, zr

These co-ordinates must have between them the relations

expressed by the equations of the line ; hence

x = az
^
& t

y =
bz&quot;;

and as we have always for the distance r

2 2
i

2 f 2 M*^*r = x -t- y -t- z , 4 . ;/

these three equations give

ar br ,_ r

But we have

x u z
cos X = 7- cos Y = -^-- cos Z = r ;

r r r

cos Z = =
+a2 + b

2

Reasoning in the same manner on the equations of the

second line, we shall have

a V
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and these values being substituted in the general value of

cos V, it becomes

1 + aa
1 + bb

1

cos V =
/T~4^ 2 I 12 /

i
,

73
_|_

7/2&quot;

This value of cos V is double, on account of the double

sign of the radicals in the denominator. One value belongs

o the acute angle, the other to the obtuse angle, which the

lines we are considering make with each other.

88. The different suppositions which we make on the angle

V being introduced into the general expression of cos V,

we shall obtain the corresponding analytical conditions. Let

V = 90.

Cos V = o, and then the equation which gives the value of

cos V will give
I + aa + bb

1 = o,

which is the condition necessary that the lines be perpendicular

to each other.

89. If the lines be parallel to each other, cos V = rh 1, and

this gives

1 + aa -f bb

VI +az + b
2 V 1 + a 12 + b

2

Making the denominator disappear, and squaring both mem
bers, we may put the result under the form

(a a)
2 + (V b)

3 + (aV a b)
2 = o.

But the sum of the three squares cannot be equal to sero,

unless each is separately equal to zero, which gives
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a = a, b = b , ah = a b.

The two first indicate that the projections of the lines on

the planes of xz and yz are parallel to each other; the third

is a consequence of the two others.

EXAMPLES.

1. Find the angle between the lines represented by the

equations

x~ 2 + 2 x = 2z 3
and

y = + z1 y = z + 2

Ans. 90.

2. Find the angle between the lines represented by the

equations
= Zz 3 ^ = 2 z y

3. Find the angle between the lines represented by the

equations

x = 2l x = z + 2

r-s
and

y = 2z-i

90. It is evident that the angles X, Y, Z, which a straight

line makes with the co-ordinate axes, are complements of the

angles which the same line makes with the co-ordinate planes

respectively perpendicular to the axes. Hence, if we desig

nate by U, U r

, U&quot;,
the angles which this line makes with the

planes of yz, xz, and xy, we shall have (Art. 87),

cos X sin U = =?, cos Y = sin U =

1

cos Z = sin U&quot; =
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91. Let it be required to find the conditions necessary that

two lines should intersect in space- and also find the co-ordi

nates of their point of intersection.

Let
x = az + a, x = a z + a

y = bz + (3, y = b z + (3 .

be the equations of the given lines. If they intersect, the

co-ordinates of their point of intersection must satisfy the

equations of these lines at the same time. Calling x , y , z t

the co-ordinates of this point, we have

x = az + a, x = a z + a ,

y = bz + /3, y = b z + 13 .

These four equations being more than sufficient to deter

mine, the three quantities x , y , z , will lead to an equation

of condition between the constants a, b, a, /3, a , /3 , a , b ,

which fix the positions of the lines, which condition must

be fulfilled in order that the lines intersect. Eliminating x

and y , we have

(a a )z + a a = o, (b b )z + @ (3
= o,

and afterwards z , \\Q get

(a a ) (3 j3 ) (a a
) (b b

)
= o,

which is the equation of condition that the two lines should

intersect. If this condition be fulfilled, we may, from any

three of the preceding equations, find the values of x , y , z,

and we get

a a Q 3 aa a oi bS b j3
z =

,
or z = -, TT x =

r&amp;gt; y = ; =-;

a a b b a a y b b

These values become infinite when a = a and b = b .
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The point of intersection is then at an infinite distance. In

deed, on this supposition the lines are parallel.

92. The method which has just, been applied to the inter

section of two straight lines, may also be used to determine

the points of intersection of two curves when their equations

are known. For these points being common to the two

curves, their co-ordinates must satisfy at the same time, the

equations of the curves. This consideration will generally

give one more equation than there are unknown quantities.

Eliminating the unknown quantities, we obtain an equation

of condition wnich must be satisfied, in order that the two

curves intersect. As the determination of these intersections

will be better understood when we have made the discussion

of curves, this subject will be resumed.

EXAMPLES.

1. Find the equations of a straight line in space, which

shall pass through a given point, and be parallel to a given

line.

2. Find the co-ordinates of the points in which a given

straight line in space meets the co-ordinate planes.

Of the Plane.

93. We have seen that a line is characterized when we

have an equation which expresses the relations between the

co-ordinates of each of its points. It is the same with sur

faces, and their character is determined when we have an

equation between the co-ordinates x, y, and 2, of the points

which belong to it; for by giving values to two of these

variables, the third can be deduced, which will give a point

on the surface.
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94. The Equation of a Plane is an equation which ex

presses the relations between the co-ordinates of every point

of the plane.

Let us find this equation.

A plane may be generated by considering it as the locus

of all the perpendiculars, drawn through one of the points

of a given straight line. Let x, y , z , be the co-ordinates

of this point, we have (Art. 84),

x x = a (z z )
. for the equations of the given line.

y y = b
(
z O )

Those of another line drawn through the same point,

will be

x x = a (z z
)

y y = b (z z
).

If these two lines be perpendicular, we have (Art. 88)

the condition

1 + aa + bb = o,

a and b being constants for one perpendicular, but variables

from one perpendicular to another. If we substitute for a

and b
1

their values drawn from the above equations, the

resulting equation will express a relation which will corre

spond to all the perpendiculars, and this relation will be that

which must exist between the co-ordinates of the plane which

contains them. The elimination gives

z z + a (x x
) + b (y y )

= o,

which is the general equation of a plane, since a and b are

entirely arbitrary, as well as x t y , and z .

95. If \ve make x = o, and y = o, we have

7 K
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z = z + ax + by

for the ordinate of the

point C, at which the

plane cuts the axis of z.

Representing this dis

tance by c, the equation

of the plane becomes

z i- ax + by c = o,

and we see that it is linear with respect to the variables

x, y, and z. It contains three arbitrary constants, a, b, c,

because three conditions are, in general, necessary to deter

mine the position of a plane in space. If c = o, the plane

passes through the origin.

96. To find the intersection of this plane with the plane

of xz, make y = o, and we have

y = o, z + ax c = o,

for the equations of the intersection CD.

The first shows that its projection on the plane of xy is in

the axis of x, and the second gives the trigonometrical tan

gent of the angle which it makes with the axis of x.

97. Making x = o, we obtain the intersection CD , the

equations of which are,

x = o, z + by c = o;

and z = o gives

z = o, ax + by c = o,

for the equations of the intersection DD .

The intersections CD, CD , DD , are called the Traces of

the Plane.
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98. The projections of the line to which this plane is per

pendicular, have for their equations

(x
_ x

&amp;gt;

)
= a(z

_ z
) ) (y y) = b (z % ).

Comparing them with those of the traces CD, CD , put

under the form

1 c I c

We see (Art. 64) that these lines are respectively perpen

dicular to each other, since

1 + a X --- = o,

and

1 + b X = o.
o

Hence, if a plane be perpendicular to a line in space, the

traces of the plane will be perpendicular to the projections of

the line.

99. Making z = o in the equations of the traces CD, CD ,

we have
c

z = ot y = o, x &amp;gt;

a

and
c

2 = 0, a? = o, y= 9

for the co-ordinates of the points D, D , in which the traces

meet the axes of x and y. These equations must satisfy the

equations of the third trace DD , because this trace passes

through the points D and D .

100. Let us put the equation of the plane under the form

Ax + By + Cz + D = o,

which is the same form as the preceding, if we divide by C.
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We wish to show that every equation of this form is the

equation of a plane.

From the nature of a plane, we know that if two points

be assumed at pleasure on its surface, and connected by a

straight line, this line will lie wholly in the plane. If we

can prove that this property is enjoyed by the surface repre

sented by the above equation, it will follow that this surface

is a plane.

x = az H- a,

y = bz + /3,

be the equations of the line, and let x , y , z , be the co-ordi

nates of one of the points common to the line and surface.

They must satisfy the equations of the line as well as that

of the surface, and we have

a? = az + a, y = bz + /3,

and
Aa? + By + Cz + D = o.

Substituting for x and y their values az -f , bz + /3, we

have

(Aa + Eb + C) z + Aa + B/3 -f D = o,

which is the equation of condition in order that the line and

surface have a common point.

Let x&quot;,
y&quot;

z&quot;,
be the co-ordinates of another point common

to the line and surface. We deduce the corresponding con

dition

(Aa + Eb + C) z&quot; -f Aa + B/3 + D =o.

Now, these two equations cannot subsist at the same time,

unless we have separately

Aa + Eb + C = o, and Aa + B/3 + D = o.
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These are, therefore, the necessary conditions that the line

and surface have two points common.

If the values of
&amp;lt;z, b, a, /3, are such that these two condi

tions are satisfied, every point of the line will be common to

the surface. For, if x&quot; , y &quot;,
z

&quot;,
be the co-ordinates of an

other point, in order that it be on the surface, we must have

(A&amp;lt;7
+ B6 + C) z&quot; + AOL + ES + D = o.

But this equation is satisfied whenever the two others are,

and consequently this point is also common to the line and

surface.

As the same may be proved for every other point, it fol

lows that every straight line which has two points in common

with the surface whose equation is

Az + Ey + Cz + D = o,

will coincide with it, and consequently this surface is a plane.

101. If we make y o, we have

Ax + Cz + D = o

for the equation of the trace CD, on the plane xz. If the

plane be perpendicular to the plane of yz, this trace will be

parallel to the axis of x, and its equation wr
ill be of the form

z = a, which requires that A = o, and the equation of the

plane becomes

By + Cz + D = o.

We should in like manner have B = o, if the plane were

perpendicular to the plane of xz. Its trace on the plane of

t/z would be parallel to the axis of y, and its equation

would be

Ax + Cz f D = o.

For a plane perpendicular to the plane of xy, we have the

equation
7*
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Ax + Ey + D = o,

This condition requires that we have C o.

We may readily see that these different forms result from

the fact that
-^ ^ represent the trigonometrical

tangents of the angles which the traces on the planes of xz

and yz make with the axes of x and y.

102 There are many problems in relation to the plane

which may be resolved without difficulty after what has

been said. We will examine one or two of them.

Let it, be required to find the equation of a plane passing

through three given points.

Let x , y , z ; x&quot;,
y&quot;,

z&quot; ; x
&quot;, y &quot;,

z&quot; ; be the co-ordinates

of these points,
Ax + Ey + Cz + D = o,

will be the form of the equation of the required plane.

Since this plane must pass through the three points, we will

have the relations

. A* + By + Cz + D = o,

Ax&quot; +
Ey&quot; + Cz&quot; + D = o,

Ax&quot; + Ey
&quot; + Cz&quot; + D = o.

Then these equations will give for A, B, C, expressions of

the form
A = A D, B = B D, C-C D,

A , B , C , being functions of the co-ordinates of the given

points.

Substituting these values in the equation of the plane, we
have

A x + E y + C z + 1 = o,

for the equation of a plane passing through three given

points.
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103. To find the intersection of two planes represented

by the equations

Ax + By + Cz + D = o,

A x + B y + C z + D = o.

These equations must subsist at the same time for the

points which are common to the two planes. We may then

determine these points by combining these equations.

If we eliminate one of the variables, z for example, we
have

(AC A C) x + (EC B C) y + (DC D C) = o.

This equation being of the first degree, belongs to a

straight line. It represents the equation of the projection
of this intersection on the plane of xy.

By eliminating x or y, we can in a similar manner find

the equation of its projection on the planes of yz and xz.

104. Generalizing this result, we may find the intersections

of any surfaces whatever. For, as their equations must

subsist at the same time for the points which are common,

by eliminating either of the variables, the resulting equations

will be those of the projections of the intersections on the

co-ordinate planes.

Of the Transformation of Co-ordinates.

105. We have seen that the form and position of a curve

are always expressed by the analytical relations which exist

between the co-ordinates of its different points. From this

fact, curves have been classified into different orders from

the degree of their equations.
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106. Curves are divided into algebraic and transcendental

urves.

Algebraic Curves are those whose equations are purely

algebraic.

Transcendental Curves are those whose equations are ex

pressed in terms of logarithmic, trigonometrical, or expo

nential functions.

if
= a2

x* is an algebraic curve.

y = sin x, y cos x, y = ax
, &c., are transcendental

curves.

107. Algebraic Curves are classified from the degree of

their equation, and the order of the curve is indicated by the

exponent of this degree. For example, the straight line is

of the first order, because its equation is of the first degree

with respect to the variables x and y.

108. The discussion of a curve consists in classifying it

and determining its position and form from its equations,

This discussion may be very much facilitated by means of

analytical transformations, which, by simplifying the equa

tions of the curve, enable us more readily to discover its

form and general properties. The methods used to effect

this simplification consist in changing the position of the

origin, and the direction of the co-ordinate axes, so that the

proposed equations, when referred to them, may have the

simplest form of which the nature of the curve will admit.

109. When we wish to pass from one system of co-ordi

nates to another, we find, for any point, the values of the old

co-ordinates in terms of the new. Substituting these values

in the proposed equation, it will express the relations be

tween the co-ordinates of the same points referred to this
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new system. Consequently the properties of the curve will

remain the same, as we have only changed the manner of

expressing them.

110. The relations between the new and old co-ordinates

are easily established, when

the origin alone is changed

without altering the direc

tion of the axes. For, let

A be the new origin, and

A X , A Y, the new axes,

parallel to the old axes, AX,
AY . For any point M, we

have

AP = AB + BP, PM = PP + P M = A B + P M.

Making AB = a, and A B = 6, and representing by x and

y the old, and x , y the new co-ordinates, these equations

become
x = a + x , y = b + y 9

wnich are the equations of transformation from one system

of co-ordinate axes, to another system parallel to the first.

111. To pass from one system of rectangular co-ordinates

to another system oblique to the first, the origin remaining

the same.

Let AY, AX, be two axes at

right angles to each other, and

AY , AX , two axes making any

angle with each other. Through

any point M, draw MP, MP ,

respectively parallel to AY and

AY , and through P draw P Q, P R parallel to AX and AY,
we shall have
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a? = AP = AR + P Q, y = MP = MQ + P R.

But AR, P R, MQ, PQ, are the sides of the right-angled

triangles APR, P MQ, in which AP = x, and P M = y
f

.

We also know the angles P AR = a and MP Q = a . We
deduce from these triangles

x = x cos a + y cos a , y = xf

sin a + y sin a
,

which are the relations which subsist between the co-ordi

nates of the two systems.

112. If we wished to pass from the system whose co-ordi

nates are x and y to that of x and y, we have only to de

duce the values x and y from the two last equations. We
find by elimination these values to be

x sin a 11 cos a v cos a x sin a
,/ -- J - J

.__
sin (a a) sin (a a)

If the new axes of x and
?/ be rectangular also, we have

a a = 90 and a = 90 + a, sin (a a)
= sin 90 = 1.

sin a = sin (90 + a)
= sin a cos 90 -f cos a sin 90 = cos a,

cos a = cos 90 cos a sin 90 sin a = sin a.

Substituting these values, we have for the formulas for

passing from a system of rectangular co-ordinates to another

system also rectangular, the origin remaining the same,

x = x cos a y sin a, y = x sin a + y cos a.

113. To pass from a system of oblique co-ordinates to

another system also oblique, the origin remaining the same.

Let AX , AY be the axes of x , y, and AX&quot;, AY&quot;, the new

axes whose co-ordinates are
x&quot;,

y&quot;.
Let us take a third

system at right angles to each other as AX, AY, the co-or-
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dinates being x, y. Calling a, a ,\n i* ^

8, p , the angles which the axes of

a:
, y, x&quot;,

y&quot;,
make with the axis of

x, we have (Art. Ill) for passing

from this system to the two systems

of oblique co-ordinates, the formulas

x = x cos a + y cos a , y = x sm a + y sin a ,

x = x&quot; cos J3 + y cos /3 , ?/
=

a?&quot; sin ,3 +
y&quot;

sin /3 .

Eliminating a: and y from these equations, we shall obtain

the equations which will express the relations between the

co-ordinates x t y , and x&quot;,
y&quot;,

which are

x cos a + y cos a = a;&quot; cos /3 + y&quot;
cos j3

x sin a + y sin a = a?&quot; sin /3 + y&quot;
sin /3 .

Multiplying the first by sin a, and subtracting from it the

second multiplied by cos a, we obtain the value of y .

Operating in the same manner, we get the value of x t and

the formulas become

, _ x&quot; sin (a /3) -f
y&quot;

sin (a
f

/3
f

)X ;
- - --r- j

sin (a a)

, _ x&quot; sin (g a) + y&quot;
sin (.3 a)

sin (a a)

114. Generalizing the foregoing remarks, we may easily

find the formulas for the transformation of co-ordinates in

space. We have only to find the value of the old co-ordi

nates in terms of the new, and reciprocally. If the trans

formation be to a parallel system, and a, b, c, represent the

co-ordinates of the new origin, we have the formulas

x = a + x
, y = b + y , z = c + z ,
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in which x, y, and z, are the old, and x , y , and z , the new

co-ordinates.

115. Let us now suppose that the direction of the new

axes is changed. As the introduction of the three dimen

sions of space necessarily complicates the constructions of

the problems, if we can ascertain the form of the relations

which must exist between the old and new co-ordinates, this

difficulty may be obviated.

Now it can be proved, in general, that in passing from any

system of co-ordinates, the old co-ordinates must always be

expressed in linear functions of the new, and reciprocally.

This has been verified in the system of co-ordinates for a

plane, since the relations which we have obtained are of the

first degree. To show that this must also be the case with

transformations in space, let us conceive the values of #, y, z,

expressed in any functions of a? , y, z
, which we will designate

by &amp;lt;p,
if, -^, so that we have

x =
&amp;lt;p (x , y , z ), y = (x , y , z ), z = ^ (x

1

, ?/ , z ).

If we substitute these values in the equation of the plane,

which is always of the form

Ax + By + Cz + D =- o,

it becomes

A.
&amp;lt;p (a? , y , z ,) + B. (x , y, z

,) + C. (x, y, z
,) + D = o.

But the equation of the plane is always of the first degree,

whatever be the direction of the rectilinear axes to which it

is referred, since the equations of its linear generatrices are

always of the first degree. Hence, the preceding equations

must reduce to the form

AV+ By + C z + D = o,
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in which A , B , C D , are independent of x , \j , z , but de

pendent upon the primitive constants A, B, C, D, and the

angles and distances which determine the relative positions

yf the two systems.

This reduction must take place whatever be the values of

the primitive co-efficients A, B, C, D, and without there re

sulting any condition from them. Hence this reduction

must exist in the functions 9, *, 4,, themselves, for if it were

otherwise, the terms of
&amp;lt;p

which are multiplied by .A, would

not, in general, cause those of t and ^ to disappear, which

are multiplied by B and C. It would follow from this, that

the powers of x , y , z, higher than the first, would necessa

rily remain in the transformed equation, if they existed in

the functions
&amp;lt;p,

cr, 4,. These functions are therefore limited

by the condition that the new co-ordinates x, y, z, exist

only of the first power, and consequently the most general

form which we can suppose, will be

x = a + mx + m y + m&quot;z ,

y = b + nx + riy
1 + ri z ,

z = c + px + p y +
p&quot;z 9

in which the co-efficients of x , y , z, are unknown constants

which it is required to determine. But since they are con

stants, their values will remain always the same, whatever

be those of x , y , z . We can then give particular values to

these variables, and thus determine those of the constants.

If we make

x = o, y = o, z = o,

we have

x = a, y = b, z = c,

which are the co-ordinates of the new origin with respect to

8
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the old. We will suppose for more simplicity that the di

rection of the axes is changed, without removing the origin;

the preceding formulas become under this supposition

x = mx + m y + m&quot;z ,

y = nx + riy 4- n&quot;z 9

z = px 4- p y 4-
p&quot;z

.

To determine the constants, let us consider the points

placed on the axis of x 9 the equations of this axis are

y = o, z
1 = o,

We have then for points situated on it,

x = mx y = nx , z = px .

Let AX be this axis,

and let the old axes AX,

AY, AZ, be taken at

right angles, for any point

M we have AM = x
t

MM =
z, and the triangle

AMM will give

z = x cos AMM ,

The angle AMM is that which the new axis of x makes

with the old axis of z. Let us call it Z, and represent by
X and Y, the angles formed by this same axis AX , with AX
and AY. We shall have for points on this axis,

x x cos X, y = x cos Y, z x cos Z.

This result determines n, m, p, and gives

m = cos X, n = cos Y, p cos Z.

If we considei points on the axis of?/ , whose equations are

x o, z = o, .
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we shall have relatively to these points

x = my , y = riy, z =p y.

Designating by X , Y , Z , the angles which this axis forms

with the axis of x, y, z, we have

m = cos X , ri = cos Y , p = cos Z .

Reasoning in the same manner with the axis z , we have

m&quot;
= cos X&quot;, n&quot;

= cos
Y&quot;, p&quot;

= cos Z&quot; ;

from which we get

x = x cos X + y cos X + z cos X 7

,

y = x cos Y + y cos Y + z cos Y&quot;,

z = x cos Z + y cos Z + z cos Z&quot;. (1)

116. We must join to these values, the equations of con

dition which take place between the three angles, which a

straight line makes with the three axes, and which are

(Art. 76), UO
cos

2 X + cos
2 Y + cos

2 Z = 1,

cos
2 X + cos

2 Y + cos
2 Z = 1,

cos
2

X&quot; + cos
2

Y&quot; + cos
2

Z&quot; = 1. (2)

These formulas are sufficient for the transformation of co

ordinates, whatever be the angles which the new axes make

with each other.

117. Should it be required that the new axes make par
ticular angles with each other, there will result new condi

tions between X, Y, Z, X , &c., which must be joined to the

preceding equations. If we represent by V the angle

formed by the axis of x with that of y, by U that made by

if with z, and by W that made by z with x , we have by
-\rt.86
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cos V = cos X cos X + cos Y cos Y + cos Z cos Z ,

cos U = cos X cos X&quot; + cos Y cos Y&quot; + cos Z cos Z&quot;.

cosW = cos X cos X&quot; + cos Y cos Y&quot; + cos Z cos Z&quot;, (3)

And these equations added to those of (1) and (2), will enable

us in every case to establish the conditions relative to the

new axes, in supposing the old rectangular.

118. If, for example, we wish the new system to be also

rectangular, we shall have

cos V = o, cos U = o 9 cos W = o,

and the second members of equations (3) will reduce to zero;

then adding together the squares of x, y, z, we find

T* + ff -f %
2 = x * + y

2 + z
2
.

This condition must in fact be fulfilled, for in both sys

tems the sum of the squares of the co-ordinates represents

the distance of the point we are considering, from the com

mon origin.

119. If we wished to change the direction of two of the

axes only, as, for example, those of x and y, let us suppose

that they make an angle V with each other, and continue

perpendicular to the axis of z. We have from these con

ditions,

cos U = o, cosW = o,

cos X&quot;
= o, cos Y&quot; = o, cos Z&quot; = 1.

Substituting these values in equations (3), we have

cos Z = o, cos Z = o,

that is, the axes of x and y are in the plane of xy

From this and equations (2), there results

cos Y = sin X, cos Y = sin X ,
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and the values of x, and y, become

x = x cos X -f y cos X , y = x sin X + y sin X ;

which are the same formulas as those obtained (Art. !!!)

Polar Co-ordinates.

120. Right lines are not the only co-ordinates which may

be used to define the position of points in space. We may

employ any system of lines, either straight or curved, whose

construction will determine these points.

For example, we may take for the co-ordinates of points

situated in a plane, the distance AM,
from a fixed point A taken in a plane,

and the angle MAX, made by the

line AM with any line AX drawn in

the same plane. For, if we have the
Af ~P

3*

angle MAP, the direction of the line

AM is known ; and if the distance AM be also known, the

position of the point M is determined.

121. The method of determining points by means of a

variable angle and distance, is called a System of Polar

Co-ordinates. The distance AM is called the Radius Vector,

and the fixed point A the Pole.

122. When we know the equation of a line, referred to

rectilinear co-ordinates, we may transpose it into polar co

ordinates, by determining the values of the old co-ordinates

in terms of the new, and substituting them in the proposed

equation. For example, let A be taken

as the pole, whose co-ordinates are x= a,

y b. Draw A X parallel to the axis

of x, and designate the angle MA X by

v, the radius vector A M by r, we have

8*. M
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AX-AB + A Q, PM = A B + MQ,
or,

x = a + A Q, y = b + MQ.

Bat in the right-angled triangle A MQ, we have

A Q = r cos v, and MQ = r sin v.

Substituting these values, we have

x a -f r cos v, y = b -f r sin v, (1)

which are the formulas for passing from rectangular co-ordi

nates to polar co-ordinates.

123. If the pole coincide with the origin, a = o, b = ot

and we have

x = r cos v, y = r sin v.

If the line AX make an angle a with the axis of x,

formulas (1) will become

x = a + r cos (v + a), y = b + r sin (v + a).

124. By giving to the angle v every value from o to 360,

and varying the radius vector from zero to infinity, we may
determine the position of every point in a plane. But from

the equation
x = r cos v

we get
x

r =
COS V

Now, since the algebraic signs of the abscissa and cosine

vary together, that is, are both positive in the first and fourth

quadrants, and negative in the second and third, it follows

that the radius vector can never be negative, and we conclude

that should a problem lead to negative values for the radius

vector, it is impossible.
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125. Polar co-ordinates may also be used to determine the

position of points in space. For this purpose we make use

of the angle which

the radius vector A3I

makes with its pro

jection on the plane

of xy, for example,

and that which this

projection makes with

the axis of a:. MAM
is the first of these

angles, and M AP the

second. Calling them

9 and d, and repre

senting the radius vector AM by r, and its projection AM
by r, we have

AP = AM cosM AP,

x = r cos & ;

= AM sinM AP,

y = r sin 6 ;

MM = AM sin MAM ,

z = r sin 9.

We have also

AM = AM cos MAM ,

r = r cos 9,

from which equations we deduce

or

or

or

formulae which may be applied to every point, by attributing

to the variables 6, 9, and r, every possible value.
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CHAPTER IV.

OF THE .CONIC SECTIONS.

126. IP a right cone with a circular base, be intersected

by planes having different positions with respect to its axis,

the curves of intersection are called Conic Sections. As this

common mode of generation establishes remarkable analo

gies between these curves, we shall employ it to find their

general equation.

Let O be the origin of a system of rectangular co

ordinates OX, OY, OZ. If

the line AC at the distance

OC = C from the origin, re

volve about the axis OZ,

making a constant angle v

with the plane of xy, it will

generate the surface of a

right cone with a circular

base, of which C will be the

vertex and CO the axis. The

part CA will generate the

lower nappe, CA the upper

nappe of the cone. To find

the equation of this surface.

The equation of a line passing through the point C, r
,vh&amp;lt;?3Q

co-ordinates are

x o, y o, z = ,
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Ltt
is of the form (Art. 84),

x = a (z c), y b (z c) ;

the co-efficients a and b being constants for the same position

of the generatrix, but variables from one position to another

But we have (Art. 90), }&amp;gt;

Sin2u = ______

from which we obtain

(a
2 + b

2

) tang
2
v = 1.

Substituting for a and b, their values drawn from the equa

tion of the generatrix, we shall have

(1f + x2)lzngv = (z c)
2
.

This equation being independent of a and b, it corresponds

to every position of the line AC in the generation : it is there

fore the equation of the conic surface.

127. Let this surface be intersected by a plane BOY,

drawn through the origin O, and perpendicular to the plane

of xz. Designating by u the angle BOX which it makes

with the plane of xy, its equation will be the same as that of

its trace BO, that is

% = x tang u.

If we combine this equation with that of the conic surface,

we shall obtain the equations of the projections of the curve

of intersection on the co-ordinate planes. But as the pro

perties of the curve may be better discovered, by referring

it to axes, taken in its own plane, let us find its equation re

ferred to the two axes OB, OY, which are situated in its

plane, and at right angles to each other. Calling x y the

co-ordinates of any point, the old co-ordinates of which



94 ANALYTICAL GEOMETRY. [CHAP. IV.

were x, y, z, we shall have in the right-angled triangle

OPP ,

x = OP = x cos u, z PP = x sin u ;

and since the axes of y and y coincide, we shall also have

Substituting these values for x, y, z, in the equation of the

surface of the cone, we shall obtain for the equation of inter

section,

y
2

tang
2
v + x 2

cos
zu (tang

2
v tang

2

ii) + %cx sin u c
2

;

or suppressing the accents,

y
2

tang
2
v + x2

cos
2
u (tang

2
?; tang

2

u) + %cx sin u = c
2
.

128. In order to obtain the different forms of the curves

of intersection of the plane and cone, it is evident that all

the varieties will be obtained by varying the angle u from o

to 90. Commencing then by making

tt = 0,

which causes the cutting plane to coincide with the plane of

xy, the equation of the intersection becomes

which shows that all of its points are equally distant from

the axis of the cone. The intersection therefore is a circle,

described about O as a centre and with a radius equal

c
}

tang v

129. Let u increase, the plane will intersect the cone in

a re-entrant curve, so long as u
&amp;lt;^ v, which will be found
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entirely on one nappe of the cone. But u
&amp;lt;^

v makes tang

u
&amp;lt;^ tang v, and the co-efficients of a;

2 and if will be positive

in the equation of intersection. This condition characterizes

a class of curves, called Ellipses.

130. When u = v, the cutting plane is parallel to CD.

The curve of intersection is found limited to one nappe of

the cone, but extends indefinitely from B on this nappe.

The condition u = v causes

the co-efficient of a?
2

to dis

appear, and the general equa

tion of intersection reduces

to

y
2 tan 2

v + 2cr sin u = c
2
.

These curves are called

Parabolas.

131. Finally, when u
&amp;gt;

v, the

cutting plane intersects both nappes

of the cone, and the curve of inter

section will be composed of two

branches, extending indefinitely on

each nappe. In this case tang u
&amp;gt;

tang v, and the co-efficient of 3?

becomes negative. This condition

characterizes a class of curves called

Hyperbolas.

132. If we suppose the cutting plane to pass through the

vertex of the cone, the circle and ellipse will reduce to a

point, the parabola to a straight line, and the hyperbola to
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two straight lines intersecting at C. This becomes evident

from the equations of these different curves, by making

c = o, and also introducing the condition of u being less

than, equal to, or greater than, v.

We will now discuss each of these classes of curves, and

deduce from their general equation the form and character

of each variety.

Of the Circle.

133. If a right cone with a circular base be intersected

by a plane at a distance c, from the vertex, and perpendicular

to the axis, we have found for the equation of intersection

(Art. 128),

*f+X
2 = 7-

C2

tang
z

i&amp;gt;

c
2

Representing the second member 5- by R2

,
we have

tang v J

x* + y*
= R2

.

In this equation, the co-ordinates x and y are rectangular,

the quantity \/x
2 + y

2

expresses therefore the distance of

any point of the curve from the origin of co-ordinates

(Art. 59). The above equation shows that this distance is

constant. The curve which it represents is evidently the

circumference of a circle, whose centre is at the origin of

co-ordinates, and whose radius is R.

134. To find the points in which the curve cuts the axis

of oc, make y = o, and we have

which shows that it cuts this axis in two different points,
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one on each side of the origin, and at a distance R from the

axis of y. Making x = o, we find the points in which it cuts

the axis of y. We get

which shows that the curve cuts this axis in two points, one

above and the other below the axis of x, and at the same

distance R from it.

135. To follow the course of the curve in the intermediate

points, find the value of y from its equation, we get

These values being equal and with contrary signs, it

follows that the curve is symmetrical with respect to the

axis of x. If we suppose x positive or negative, the values

of y will increase as those of x diminish, and when x = o

we have y = R, which gives the points D and D . As x

increases, y will diminish, and when

x = zh R the values of y become zero.

This gives the points B and B . If

x be taken greater than R, y be

comes imaginary. The curve therefore

does not extend beyond the value of

*==hR.

136. The equation of the circle may be put under the form,

jf =(R + *)(R x).

R -r x, and R x, are the segments B P and BP, into which

the ordinate y divides the diameter. This ordinate is there

fore a mean proportional between these two segments.

137. Two straight lines drawn from a point on a curve to

9 N
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the extremities of a diameter, are called supplemental chords.

The equation of a line passing through

the point B , whose co-ordinates are

y = o, x = + R, is (Art. 60)

y = a(x R);

and for a line passing through the

point B , for which y = o and x = R,

y = af

(x + R).

In order that these lines should intersect on the circum

ference of the circle, these equations must subsist at the

same time with the equation of the circle. Combining the

equations with that of the circle, by multiplying the two first

together, and dividing by the equation of the circle, we have

first

y
2 = aa (x

2 R2

);

and the division by if (R
2 #2

), gives

aa = 1, or aa -f 1 = o ;

but this last equation expresses the condition that two lines

should be perpendicular to each other (Art. 64) ; he?ice,

the supplemental chords of the circle are perpendicular to

each other.

138. The equation of the circle may be put under another

form, by referring it to a system of co-ordinate axes, whose

origin is at the extremity B of its diameter B B. For any

point M, we have

AP = x = BT B A = x R.

Substituting this value of x in the equation if + x2 = R 2

,

we get

if + x 2
2Ra? = o.
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In this equation x = o gives y = o, since the origin of CCH

ordinates is a point of the curve. Discussing this equation

as we have done the preceding, we shall arrive at the same

results as those which have just been determined.

139. If the circle be referred to a system of rectangular

co-ordinates taken without the circle, calling x and y the

co-ordinates of the centre, and x and y those of any one of

its points, we shall have

x o? = BC, y y =BD;

and calling the radius R,

we have (Art. 59),

which is the most general

equation of the circle, re

ferred to rectangular axes.

EXAMPLES.

1. Construct the equation

if + x* + 4y 4r -8 = 0.

By adding and subtracting 8, this equation can be put
under the form

if + 4y + 4 + a* 4x + 4 16 = o,

or (y + 2) + (a; 2)
2 = 16.

Comparing this equation with that of the general equation

we see that it is the equation of a circle, in which the co

ordinates of the centre are x = 2, y = 2, and whose

radius is 4.
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2. 2y + 2o? 4y 4* + 1 = o, a; = 1, y =
1, R = ^7

3.
2/

2 + z2

6*/+4* 3=o, a? =2, y = 3, R = 4.

4. G^ + Go;
2

21y 8a?+14= o, a? =+f, y = J, R = f f.

5. jf + a^^^y 3a? = o, a/ = f, y^
= 2, R = |.

6. t/

2 + a;
2

4y = o, = o, y = 2, R = 2.

7. y
2 + a?

2 + 6x = o, x = 3, y = o, R = 3.

8. y
2 + ^2 6z + 8 = o, x = 3, y = o, R = 1.

140. To find the equation of a tangent line to the circle,

let us resume the equation

a +
y&quot;

= R2
.

Let x&quot; f
y&quot;,

be the co-ordinates of the point of tangency,

they must satisfy the equation of the circle, and we have

x&quot;

2 +
y&quot;

2 = R2
.

The equation of the tangent line will be of the form

|. (Art. 60),

y y&quot;

= a (x x&quot;) ;

:

it is required to determine a.

For this purpose, let the tangent be regarded as a secant,

and let us determine the co-ordinates of the points of inter

section. These co-ordinates must satisfy the three preceding

equations, since the points to which they belong are common

to the line and circle. Combining these equations, by sub

tracting the second from the first, we have

or (y y&quot;) (y + y&quot;)
+ (x x&quot;)

x +
x&quot;)

= o
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Putting for y, its value
y&quot;
+ a (x x&quot;)

drawn from the

equation of the line, we get

(y&quot;
+ a (x x&quot;) y&quot;) (y&quot;

+ a (x x&quot;)
+

y&quot;)
+ (x x&quot;)

(x + x&quot;)

= a
(
x

x&quot;)(2y&quot;+a (x x&quot;)
+ (x x&quot;) (x + x&quot;)

=
\2ay&quot;

+ a2

(x x&quot;} + x +
x&quot;|

(x x&quot;)

= o.

This equation will give the two values of x corresponding

to the two points of intersection. The co-ordinates of one

point are obtained by putting

x x&quot; o,

which gives
x =

x&quot;,
and y = y&quot;

;

and those of the second point are made known by the

equation

Zay&quot; + a2

(x x&quot;)
+ x + x&quot;

= o,

when a is given.

If now we suppose the points of intersection to approach

each other, the secant line will become a tangent, when

those points coincide; but this supposition makes

x =
x&quot;,

and y = y&quot;;

and the last equation becomes

2&amp;lt;n/&quot;
+ 2x&quot; = o,

from which we get

Substituting this value of a in the equation of the tangent,

it becomes

hence
yy&quot;

-f xx = Rs
,

which is the equation of a tangent line to the circle.

9*
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Putting it under the form

x&quot; W
y = --17 * -\

--
r, .

y y

and comparing this equation with that of the straight line in

x&quot;

Art. 52, we see that ---, is the tangent of the angle which
u

the tangent line makes with the axis of x.

The value which we have just found for a being single, it

fo\\bvfs thrt but one tangent can be drawn to the circle, at a

given point of the curve.

141. A line -drawn through the point of tangency perpen
dicular to the tangent is called a Normal. Its equation will

be of the form

y y&quot;

= a (x x&quot;).

The condition of its being perpendicular to the tangent

gives

da + l = o, or a = -- .

a

But we have found (Art. 140),

x&quot;

hence,

x&quot;

Substituting this value in the equation of the normal, it

becomes

and reducing, we have

yx&quot; y&quot;x
= o,

for the equation of the normal line to the circle.
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14*2. The normal line to the circle passes through its centre,

which, in this case, is the origin of co-ordinates. For, if we

make one of the variables equal to zero, the other will be

zero also. Hence the tangent to a circle is perpendicular to

the radius drawn through the point of tangency.

143. To draw a tangent to the circle, through a point

without the circle, let x y be the co-ordinates of this point.

Since it must be on the tangent, it must satisfy the equation

of this line, and we have eq. of tangent yy
ff

-f- xx&quot; = R2

y y&quot;
+ x x&quot;

= R2
.

We have besides,

y&quot;

2 + x&quot;

2 = R 2
.

These two equations will determine x and
y&quot;,

the co-or

dinates of the point of tangency, in terms of R and the co

ordinates x y of the given point. Substituting these values

in the equation of the tangent, it will be determined.

The preceding equations being of the second degree, will

give two values for x&quot; and
y&quot;.

There will result conse

quently two points of tangency, and hence two tangents

may be drawn to a circle from a given point without the

circle.

144. We have seen that the equation of the circle referred

to rectangular co-ordinates, having their origin at the centre,

only contains the squares of the variables x and ?/, and is of

the form

if + ** = R .

Let us seek if there be any other systems of axes, to

which, if the curve be referred, its equation will retain the

5ame form.

Let us refer the equation of the circle to systems having
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the same origin, and whose co-ordinates are represented by

x and y. Let a, a , be the angles which these new axes

make with the axis of x. We have for the formulas of trans

formation (Art. Ill),

x x cos a + y cos a , y = x sin a + y sin a .

Substituting these values for x and y in the equation of

the circle, it becomes

y
2

(cosV + sin V) + 2a?y cos (a a) + x 2

(cos
2
a + sin

2

a)
= R2

;

or, reducing,

y
2 + 2x y cos (a

-

a) + x 2 = R .

The form of this equation differs from that of the given

equation, since it contains a term in x y . In order that this

term disappear, it is necessary that the angles a a be such

that we have

COS (a a)
= 0,

which gives (a a)
= 90, or 270 ;

hence a = a + 90, or a = a + 270,

which shows that the new axes must be perpendicular to

each other.

145. Conjugate Diameters are those diameters to which, if

the equation of the curve be referred, it will contain only the

square powers of the variables. In the circle, we see that

these diameters are always at right angles to each other; and

as an infinite number of diameters may be drawn in the

circle perpendicular to each other, it follows that there will

be an infinite number of conjugate diameters.



CHAP. IV.] ANALYTICAL GEOMETRY. 305

Of the Polar Equation of the Circle.

146. To find the equation of the circle referred to polar

co-ordinates, let O be taken

as the pole, the co-ordinates of

which referred to rectangular

axes are a and b; draw OX

making any angle a with the axis

of x. OM will be the radius

vector, and MOX the variable

angle v. The formulas for trans

formation are (Art. 123),

x = a + r cos (v + a), y = b + r sin (v + a).

These values being substituted in the equation of the circle

y
2 + tf = R2

,

it becomes

r
2 + 2

ja
cos (v + ) + b sin (v + a)

j

r + a* + 5
2 R1 = o.

which is the most general polar equation of the circle.

This equation being of the second degree with respect to

r, will generally give two values to the radius vector. The

positive values alone must be considered, as the negative

values indicate points which do not exist (Art. 124).

147. By varying the position of the pole and the angle v,

this equation will define the position of every point of the

circle.

If the pole be taken on the circumference, and we call a,

b, its co-ordinates, these co-ordinates must satisfy the equation

of the circle, and we have the relation
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The polar equation reduces to

r
2 + 2

ja
cos (v + a) + b sin (v + a) r

j

= o.

If OX be parallel to the axis of x, the angle a will be zero,

and this equation becomes

r
2 + 2 (a cos v + b sin v) r = o.

This equation may be satisfied by making r = o. Hence,

one of the values of the radius vector is always zero, and it

may be satisfied by making

r 4- 2 (a cos v + b sin v)
= o,

which gives
r = 2 (a cos v + b sin v) ;

from which we may deduce a second value for the radius

vector for every value of the angle v.

148. If we have in this last equation r = o, the equation

becomes

a cos v + b sin v = o,

sinu a
or = r

cosv o

a
or tang v = -7-

a relation which has been before obtained (Art. 140).

149. If the pole be taken at the centre of the circle, a and

b would be zero, and the formulas for transformation would be

x = r cos v, y = r sin v.

Of the Ellipse.

150. We have found (Art. 127,) for the general equation

of intersection of the cone and plane,

if tang *v + x* cos *u (tang *v tang *u) + 2 ex sin u =
&amp;lt;?,
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and that this equation represents a class of curves called

Ellipses, when u
&amp;lt;

v. We will now examine their peculiar

properties.

To facilitate the discussion, let us transfer the origin of

co-ordinates to the vertex B of the curve.

For any abscissa OP = x, we wrould have

* = OB BP;

or calling the new abscissas x f

x = OB x , and y = y .

But in the triangle BOG we

have the angle C = 90 v,

and the angle B v + u and

the side OC = c, and we get

C sin OCBOB =
sin (v -f- u)

C COS V

sin (v + u)

C COS V

sin (v
-

from which results

c cos v
x = x

sin (y + u)

Substituting this value of x

in the equation of the curve,

we have

t/

2
sin *v + x 2

sin (v + u) sin (u u) 2cx sin v

cos v cos u = o ;

and suppressing the accents, we have

y
2
sin

z
v + x2

sin (v + u) sin (v u) 2c# sin v

cos v cos u o;

which is the general equation of the intersection of the cone

and plane, referred to the vertex B.
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151. To discuss this equation when u
&amp;lt;^v t

let us first find

the points in which it meets the axis of x. Making y = o,

we have

x9
sin (v + u) sin (v u) 2cx sin v cos v cos u = o;

which gives for the two values of x,

2c sin v cos v cos u
x = o, and x = - r~- &amp;gt;

sin (v -f- u) sin (v u)

which shows that it cuts the axis of x in two points B

and B , one at the origin, the other at the distance

2ca? sin v cos v cos u
-.

;
: -. r on the positive side of the axis of y.

sin (v + u) sin (v u)

Making x = o, we have the points

)B in which it cuts the axis of y. This

supposition gives

*?
= o,

which shows that the axis of y is tangent to the curve at B,

the origin of co-ordinates.

Resolving this equation with respect to y, we have

y=
rh \ / x2

sin (v + u) sin (v u) + %cx sin v cos u cos v.
sin v V

These two values being equal, and with contrary signs,

the curve is symmetrical with respect to the axis of x. If

we suppose x negative, y becomes imaginary, since this sup

position makes all the terms under the radical essentially

negative. The curve, therefore, is limited in the direction

of the negative abscissas. If, on the contrary, we suppose r

positive, the values of y will be real, so long as

a? sin (v + u) sin (v u) &amp;lt;
%cx sin v cos v cos u,
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cr,

2c sin v cos v cos u
^ sin (v + u) sin (v u)

and they become imaginary beyond this limit. The curve,

therefore, extends from the origin of co-ordinates a distance

2c sin v cos v cos u . . .

BB =
. r ; r on the positive side of the

sin (v + u) sin (u u)

axis of x.

Let us refer the curve to the

point A, the middle of BB . The

formula for transformation will

be, for any point P, BC = AB

AC, or calling BC, x, and AC, x ,

c sin v cos v cos u
x = . x

sin (v + u) sin (v u)

Substituting this value in the equation of the ellipse,

\f sin *v -f x
2
sin (u + u) sin (v u) 2cx sin v cos v cos u = o,

and reducing, we have

. . . 2 / \ / c
2
sin

2
ucos

2
t-cos

2M
y*s\n*v + x sin (v + u) sin (v u)

-

sin (+tt) sin (v it)

which is the equation of the ellipse referred to the .point A.

Making y o, we find the abscissas of the points B and B ,

in which the curve cuts the axis of x.

c sin v cos v cos u

sin (v + u) sin
(i; u)

c sin v cos v cos u

sin (v + u) sin (v u)

and x = o gives the ordinates AD and AD .

c cos v cos u

/sin (v + u) sin (v u)

10
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152. This equation takes a very simple and elegant form

when we introduce in it the co-ordinates of the points in

which the curve cuts the axes. For, if we suppose

c
2
sin

2
v cos

2
v cos

2u
A&quot;
= -. 2-, ;

v
= r; r and

sin (v + u) sin (v u)

c
z
cos

2
v cos

2w

sin (o + u) sin (v u)

we have only to multiply all the terms of the equation in y

and x 9 by
c
2
cos

2
v cos

2u

sin
2

(v + u) sin
2

(v u)

and putting x for a? , we have

, c
2
sin \&amp;gt; cos

2
v cos

2w c
2
cos

2
v cos

2w
^.2

I

,jj
, __

y sin
2

(v + M) sin
2

(u u) sin
(*; + u) sin (u w)

c
2
sin

2
y cos

2vcos
2w c

2
cos

2
u cos

a&

sin
2

(v + u) sin
2

(v u) sin (u + w) sin (v u)

and making the necessary substitutions, we obtain

Ay + BV - A2B2
.

The quantities 2A and 2B are called the Axes ofthe Ellipse.

2A is the greater or transverse axis ; 2B the conjugate or less

axis. The point A is the centre of the ellipse, and the

equation
Ay + BV = A2B2

is therefore the equation of the Ellipse referred to its centre

and axes.

153. If the axes are equal we have A = B, and the equa

tion reduces to

which is the equation of the circle.
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154. Every line drawn through the centre of the ellipse is

called a Diameter, and since the curve is symmetrical, it is

easy to see that every diameter is bisected at the centre.

2B2

155. The quantity r- is called the parameter of the
J\.

curve, and since we have

2B2

2A : 2B : : 2B : -r- ,

A.

it follows that the parameter of the ellipse is a third propor

tional to the two axes.

156. Introducing the expressions of the semi-axes A and

B in the equation

y* sin
2
v + x2

sin (v + u) sin (v u) 2c# sin v

cos v cos u = o,

in which the origin is at the extremity of the transverse axis,

by multiplying each term by the quantity.

, 2 2

sin
2

(v + u) sin
2

(v u)

it becomes

AV + BV
which may be put under the form

If we designate by x , y , x&quot;,
y&quot;

9 the co-ordinates of anv

two points of the ellipse, we shall have

y
2

_ x (2A - x )

y
2 x (2A x&quot;)

which shows that in the ellipse, the squares of the ordinates

are to each other as the products of the distances from thefoot

of each ordinate to the vertices of the curve.
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157. The equation of the ellipse referred to its centre and

axes may be put under the form

If from the point A as a

centre with a radius AB = A,

we describe a circumference

of a circle, its equation will

be
7/ zi^ A i- . _ _ *Y*^

Representing by y and Y the ordinates of the ellipse and

circle, which correspond to the same abscissa, we have, by

comparing these two equations.

According as B is less or greater than A, y will be less

or greater than Y, hence iffrom the centre of the ellipse with

radii equal to each of its axes, two circles be described) the

ellipse will include the smaller and be inscribed within the

large circle.

158. From this property we deduce, 1st. That the trans

verse axis is the longest diameter, and the conjugate the

shortest; 2dly. When we have the ordinates of the circle

described on one of the axes, to find those of the ellipse, we

have only to augment or diminish the former in the ratio of

B to A. This gives a method of describing the ellipse by

points when the axes are known.

From the point A as a centre with radii equal to the semi-

axes A and B, describe the circumferences of two circles,

draw any radius ANM, and through M draw MP perpen-
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dicular to AB, and through N draw NQ parallel to AB. The

point Q will be on the ellipse, for we have

or,

as in Art. 157.

159. We have seen that for every point on the ellipse,

the value of the ordinate is

y
2 /A2

yf\ t

For a point without the ellipse, the value of y would be

greater for the same value of x, and for a point within, the

value of y would be less. Hence,

For points without the ellipse, Ay + BV A2B2

&amp;gt;o.

For points on the ellipse, Ay + BV A2B2 = o.

For points within the ellipse, Ay + BV A2B2

&amp;lt;
o.

160. If through the point B , whose co-ordinates are y = o

*= A, we draw a line, its equation will be

y = a (x + A).

For a line passing through B,

whose co-ordinates are y = o,

x = + A, we have

y = a (x A.)

If it be required that these

lines should intersect on the el

lipse, it is necessary that these equations subsist at the same

10* P
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time with the equation of the ellipse. Multiplying them

together, we have

and in order that this equation agree with that of the ellipse,

B2

tf^p-A
we must have

B2 B2

aa ==
A*

or aa = ,

which establishes a constant relation between the tangents of

angles formed by the chords drawn from the extremities of

the transverse axis with this axis. In the circle B = A, and

this relation becomes

aa = 1,

as we have seen (Art. 137).

161. When the relation which has just been established

(Art. 160) takes place between the angles which any two

lines form with the axis of x, these lines are supplementary

j^
chords of an ellipse, the ratio of whose axes is

^&amp;gt;

162. As we proceed in the examination of the properties

of the ellipse, we are struck with the great analogy between

this curve and the circle. We may trace this analogy farther.

In the circle we have seen that all the points of its circum

ference are equally distant from the centre. Although this

property does not exist in the ellipse, we find something ana

logous to it ; for, if on the transverse axis we take two points

F, F ,
whose abscissas are VA2

B^, the sum of the dis

tances of these points to the same point of the curve is al

ways constant and equal to the transverse axis. To prove
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this, let x and y be the co-ordinates of any point M of the

ellipse; represent the abscissas of the points F, F by

Calling D the distance MF, or MF , we have (Art. 59),

but since

we have

y = o,

D2 =
z/
2 + (x x )

z
.

Putting for y its value drawn from the equation of the

ellipse, and substituting for x 2
its value A2 B2

, this expres
sion becomes

D2 = B 2 ^ + x* 2xx + A2 B2 =

^2
or

2 2*0; + A 2
;

or, substituting for A2 B2
its value a:

2
,

Extracting the square root of both members, we have

Taking the positive sign, and substituting for x its two

values =fc x/A2 B2
, we have for the distance MF, or MF r

,
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MF = A
B2

MF = A +
x B

A A

Adding these values together, we get

MF + MF = 2A,

which proves that the sum of the distances of any point of the

ellipse to the points F, F , is constant and equal to the trans

verse axis.

163. The points F, F , are called the Foci of the ellipse,

and their distance \/A2 B2 to the centre of the ellipse

is called the Eccentricity. When A = B, the eccentricity

= o. The foci in this case unite at the centre, and the ellipse

becomes a circle. The maximum value of the eccentricity is

when it is equal to the semi-transverse axis. In this suppo

sition B = Of and the ellipse becomes a right line.

Making a? = rfc v/A2 B2 in the equation of the ellipse,

we find

B2 2B2

which proves that the double ordinate passing through the

focus is equal to the parameter.

164. The property demonstrated (Art. 162) leads to a

very simple construction for the ellipse. From the point B

lay off any distance BK on the

axis BB . From the point F as

a centre, with a radius equal to

BK, describe an arc of a circle ;

and from F as a centre, with a

radius B K, describe another arc. The point M where these

arcs intersect, is a point of the ellipse. For

MF + MF = 2A.
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When we wish to describe the ellipse mechanically, we

fix the extremities of a chord whose length is equal to the

transverse axis, at the foci, F, F , and stretch it by means of

a pin, w
rhich as it moves around describes the ellipse.

165. To find the equation of a tangent line to the ellipse,

let us resume its equation,

Ay + BV = A2B2
.

Let x&quot;, y
1

, be the co-ordinates of the point of tangency,

they will verify the relation,

Ay /2 + BV a = AsBa
.

The tangent line passing through this point, its equation

will be of the form

y y&quot;

= a(x x&quot;).

It is required to determine a.

To do this, we will find the points in which this line con

sidered as a secant meets the curve. For these points the

three preceding equations must subsist at the same time.

Subtracting the two first from each other, wre have

^ (y y&quot;} (y + y&quot;)
+ B2

(x x&quot;) (x + x&quot;)

= o.

Putting for y its value
y&quot;

+ a (x x&quot;)
drawn from the

equation of the line, w*e find

(x x&quot;) I
A2

(2ay&quot; +
2

(x x&quot;) ) + B2
(x + x&quot;) \

= o

This equation may be satisfied by making

x x&quot;
= o,

which gives

*,
from which we get
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and also by making

A*
\2ay&quot; + a*

(a? a?&quot;)!
+ B2

(x + x&quot;)

= o.

Now when the secant becomes a tangent, we must have

x =
x&quot;,

which gives

Aa

ay&quot; + BV = 0/

hence

BV~

Substituting this value of a in the equation of the tangent,

it becomes

BV
y- y

&quot; -
(x
~

afl)i

or reducing, and recollecting that A2
?/&quot;

2 + BV2 A2 B2
, we

have

A*yy&quot; + B*xx&quot; = A2 B2

for the equation of the tangent line to the ellipse.

166. If through the centre and the point of tangency we

draw a diameter, its equation will be of the form

y = a
1

x&quot;,

from which we get

But we have just found the value of a, corresponding to

the tangent line, to be

BV
ft - ~~~

Multiplying these values of a and a together, we find

B2
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This relation being the same as that found in Arts. 160, 161,

shows that the tangent and the diameter passing through the

point of tangency, have the property of being the supple

mentary chords of an ellipse, whose axes have the same

A
ratio ^-

&amp;gt;

167. This furnishes a very simple method of determining

the direction of the tangent. For if we draw any two sup

plementary chords, and designate by a, , the trigonometri

cal tangents of the angles which they make with the axis,

we have always between them the relation

We may draw one of these chords parallel to the diameter,

passing through the point of tangency. In this case we have

a =a!

from which results also

a = a;

that is, the other chord will be parallel to the tangent.

168. To draw a tangent through a point M taken on the

ellipse, draw through this point AM, and through the ex-

remity B of the axis BB draw the chord B N parallel to
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AM ;
MT parallel to BN will be the tangent required. We

see, by this construction .also, that if we draw the diameter

AM parallel to the chord BN, or to the tangent MT, the

tangent at the point M will be parallel to the chord B N, or

to the diameter AM.

169. When two diameters are so disposed that the tangent

drawn at the extremity of one is parallel to the other, they

are called Conjugate Diameters. It will be shown presently

that these diameters enjoy the same property in the ellipse

as those demonstrated for the circle (Arts. 144, 145).

170. To find the subtangent for the ellipse, make y = o in

the equation of the tangent line.

A*yy&quot; + Wxx&quot; = A2B2
,

we have for the abscissa of the point in which the tangent

meets the axis of a:,

A2

x = &amp;gt;

x 1

which is the value of AT. If we subtract from this ex

pression AP = x&quot; , we shall have the distance PT, from the

foot of the ordinate to the point in which the tangent meets

the axis of x. This distance is called the subtangent. Its

expression is

A 2
,y,&quot;2

PT =
&quot;&quot;

x&quot;

This value being independent of the axis B, suits every

ellipse whose semi-transverse axis is A, and which is con

centric with the one we are considering. It therefore cor

responds to the circle, described from the centre of this

ellipse with a radius equal to A. Hence, extending the
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ordinate MP, until it meets

the circle at M , and draw

ing through this point the

tangent M T, MT will be

tangent to the ellipse at the

point M. This construction

applies equally to the conjugate axis, on which the expression

for the subtangent would be independent of A.

171. To find the equation of a normal to the ellipse, its

equation will be of the form

y y&quot;

= a (x x&quot;).

The condition of its being perpendicular to the tangent,

for which we have (Art. 165),

BV
&quot;AY

requires that there exist between a and a the condition

aa -r 1 = o,

which gives

a&amp;gt;-^.BV
This value being substituted in the equation for the normal,

gives

172. To find the subnormal for the ellipse, make y = o in

the equation of the normal, and we have for the abscissa of

the point in which the normal meets the axis of x,

11
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This is the value of AN. Subtracting it from AP, which

is represented by x&quot;, we shall have the distance from the

foot of the ordinate to the foot of the normal. This distance

is the subnormal, and its value is found to be

&quot;RVx

173. The equation of the ellipse being symmetrical with

respect to its axes, the properties which have just been de

monstrated for the transverse, will be found applicable also

to the conjugate axis.

174. The directions of the tangent and normal in the

ellipse have a remarkable relation with those of the lines,

drawn from the two foci to the point of tangency. If from

the focus F, for which y = o and x = VA2 B2
, we draw

v a straight line to the

3f point of tangency, its

equation will be of the

form

y y&quot;

a. (x x&quot;).

If we make for more simplicity VA2 B2 = c, the con

dition of passing through the focus will give

hence,

y = a (C

A
But we have for the trigonometrical tangent which the

tangent line makes with the axis of x (Art. 165),

BV
AV*
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The angle FMT which the tangent makes with the line

drawn from the focus will have for a trigonometrical

tangent (Art. 64),

+ aa

Putting for a and a their values, it reduces to

A2

*/

2 + BV2 E2
cx&quot;

A2

cy&quot; (A
2 B2

)x&quot;y&quot;

which reduces to

Ba

w
in observing that the point of tangency is on the ellipse, and

that A2 B2 = c*.

In the same manner the equation of a line through the

focus F is found by making x = c, and y = o in the

equation

y y&quot;

=
(* *&quot;)&amp;gt;

and we have

y&quot;

= a
&quot;(

C
X&quot;\

hence

= -?-c -f x

The angle F MT w7hich this line makes with the tangent,

will have for a trigonometrical tangent,

a a!
JB*_

1 -4- aa!
cy&quot;

when we put for a and a their values.

The angles FMT, F MT, having their trigonometrical tan

gents equal, and with contrary signs, are supplements of each

other, hence

FMT + F MT = 180 ;
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but

hence

ANALYTICAL GEOMETRY.

F MT + F M* - 180,

[CHAP. IV

FMT = F Mf,

which shows that in the ellipse, the lines drawn from the foci

to the point of tangency, make equal angles with the tangent ;

and it follows from this, that the normal bisects the angle

formed by the lines drawn from the point to the same point of

the curve.

175. The property just demonstrated, furnishes a very

simple construction for

drawing a tangent line

to the ellipse through a

given point. Let M be

the point at which the

tangent is to be drawn.

Draw FM, F M, and pro

duce F M a quantity MK
FM. Joining K and

F, the line MT, perpen

dicular to FK, will be the tangent required ; for from this

construction, the angles TMF, TMK, F Mf, are equal to

each other.

We may see that the line MT has no other point common

besides M, since for any point t,

Ft _f_ F t
&amp;gt;

F MK
&amp;gt;

2A.

If the given point be without the ellipse, as at t, then

from the point F as a centre, with a radius F K = 2A de

scribe an arc of a circle; from the point t as a centre, with

a radius tF, describe another arc, cutting the first in K,
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Drawing F K, the point M will be the point of tangency,

and joining M and t, Mt will be the tangent required. For,

from the construction, we have tF = tK. Besides FM +
FM = 2A and F M + MK = 2A. Hence

MF = MK.

The .ine Mt is then perpendicular at the middle of FK.

The angles FMT, F M* are then equal, and *MT is tangent

to the ellipse.

The circles described from the points F and t as centres,

cutting each other in two points, two tangents may be drawn

from the point t to the ellipse.

Of the Ellipse referred to its Conjugate Diameters.

176. There is an infinite number of systems of oblique

axes, to which, if the equation of the ellipse be referred, it

will contain only the square powers of the variables. Sup

posing in the first place, that its equation admits of this re

duction, it is easy to see that the origin of the system must

be at the centre of the ellipse. For, if we consider any

point of the curve, whose co-ordinates are expressed by
+ x t + ?/ , since the transformed equation must contain only

the squares of these variables, it is evident it will be satisfied

by the points whose co-ordinates are + x , y ; a? , + y ;

that is, by the points which are symmetrically situated m
the four angles of the co-ordinate axes. Hence every line

drawn though this origin will be bisected at this point, a

property which, in the ellipse, belongs only to its centre,

since it is the only point around which it is symmetrically

disposed.

11*
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The oblique axes here supposed will always cut the ellipse

in two diameters, which will make such an angle with each

other as to produce the required reduction These lines are

called Conjugate Diameters, which, besides the geometrical

property mentioned in Art. 169, possess the analytical

property of reducing the equation of the curve to those terms

which contain only the square powers of the variables.

177. The equation of the ellipse referred to its centre and

axes is

Ay -f BV - A2B2
.

To ascertain whether the ellipse has many systems of con

jugate diameters, let us refer this equation to a system of

oblique co-ordinates, having its origin at the centre. The

formulas for transformation are (Art. Ill),

x = x cos a + y cos a , y = x sin a + y sin a .

Substituting these values for x and y in the equation of the

ellipse, it becomes

c (A
2
sinV + B2

cos V) y
2 + (A

2
sin

2* + B2
cos V) i

\ x 2 + 2 (A
2
sin a sin a + Bz

cos a cos a
) x y )

In order that this equation reduce to the same form as

that when referred to its axes, it is necessary that the term

containing x . y disappear. As a and a are indeterminate,

we may give to them such values as to reduce its co-efficient

to zero, which gives the condition

A2
sin a sin a + B2

cos a cos a = o,

and the equation of the ellipse becomes

(A
2
sin V f B2

cos V) y
2 + (A

2
sin

2a -f B2
cos

8
a)

x 2 = A1 B2
.
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178. The condition which exists between a and a is not

sufficient to determine both of these angles. It makes known
one of them, when the other is given. We may then assume

one at pleasure, and consequently there exists an infinite

number of conjugate diameters.

179. The axes of the ellipse enjoy the property of being

conjugate diameters, for the relation between a and a is

satisfied when we suppose sin a o, and cos a = o, which

makes the axis of x coincide with that of x, and y with that

of y. These suppositions reduce the equation to the same

form as that found for the ellipse referred to its axes. Or,

these conditions may be satisfied by making sin a! = o, and

cos a = o, which will produce the same result, only x will

become y, and
?/ , x.

180. The axes are the only systems of conjugate diameters

at right angles to each other. For, if wre have others, they

must satisfy the condition

a a = 90, or a = 90 + a,

which gives

sin a = sin 90 cos a -f cos 90 sin a = + cos a,

cos a = cos 90 cos a sin 90 sin a = sin a
;

but these values being substituted in the equation of condition

A2
sin a sin a + B2

cos a cos a = o,

it becomes

(A
2 B2

) sin a cos a = o,

which can only be satisfied for the ellipse by making sin a = o,

or cos a = o, suppositions which reduce to the two cases just

considered.
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181. If we make A2 B2 = o, we shall have A = B, the

ellipse will become a circle, and the equation of condition

being satisfied, whatever be the angle , it follows that all the

conjugate diameters of the circle are perpendicular to each

other.

182. Making, successively, x = o, and y = o, we shall

have the points in which the curve cuts the diameters to

which it is referred. Calling these distances A and B , we

find

--~
2 1A2

sin
2 + B2

cos
2

~
A2

sinV + B1
cosV

and the equation of the ellipse becomes

AV2 + BV2 = A/2 B 2

,

2A and 2B representing the two conjugate diameters.

183. The parameter of a diameter is the third propor-

2B 2

tional to this diameter and its conjugate; 7-7- is thereforeA
2A 2

the parameter of the diameter 2A , and
-^7-

is that of its

conjugate 2B .

184. If we multiply the values of A 2 and B 2

(Art. 182)

together, we get
A4 B 4

A iya_ _____
,~~

A4 sinV sin
2a + A2 Ba

(sin
2a cos 2a + cos 2a sinV) + B 4 cos acos^a

By adding and subtracting in the denominator of the

second member the expression

2A2 B2
sin a sin a cos a cos a ,

and observing that

8m*

(a a
)
= sin

s
a cosV 2 sin a sin a cos a cos a +

sin V cos
2
a,
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(A
B
sin a sin a -f B8

cos a cos a)
2 + A2 B2

sin
2

(a a)

But we have, from Art. 180,

A* sin a sin a + B2
cos a cos a = o,

and reducing the other terms of the fraction, we have

A2 B2

A 2B 2 -
sin

2

(a a)

which gives

AB = A B sin (a a).

(a a) is the expression of the angle B AC which the

two conjugate diameters

make with each other

A B sin (a a) expresses

therefore the area of the

parallelogram Ac R B ,

since K sin (a a) is the

value of the altitude of

this parallelogram. This

area being equal to the rectangle AC RB formed on the axes,

we conclude, that in the ellipse, the parallelogram constructed

on any two conjugate diameters is equivalent to the rectangle

on the axes.

185. The equation of condition between the angles a and

of being divided by cos a cos a , becomes

A2

tang a tang a + B2 = o. (1)

We may easily eliminate by means of this equation the

angle a from the value of B 2
, or the angle a from A&quot;. For
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this purpose we have only to introduce the tangents of the

angles instead of their sines and cosines. Since we have

always
. tang

2a 1
sin a = = 5- ; cos

2a = -= =-
;

1 + tang
2
a 1 + tangV

tangV 1
sin a =

-j

- -
g-&amp;gt; ; cos a = = =-

;

1 + tang a 1 -{- tangV

Substituting these values in the expressions for A 2 and B a

lArt. 182), we have

A2 - tang_ a) .
A2 B2

(l + tangV)
a + B2 A2 tan V + BaA2

tang
2a + B2 A2

tang

To eliminate a we have only to substitute for tang a its

B2

value deduced from equation (1), tang a =
-r-^
--

, aridA tang a

after reduction, the value of B 2 becomes

_ A4

tang
2a + B4

~

A* tang
2a + B2

Adding this equation to the value of A 2
, the common nu

merator

A2 B2 + A2 B2

tang
2a + A4

tang
2a + B4

may be put under the form

B2

(A
2 + B2

) + A2

tang
2a (B

2 + A2

),

or (A
2 + B2

) (A
2

tang
2a + B2

),

and the same after reduction becomes

that is, in the ellipse the sum of the squares of any two con*

jugate diameters is always equal to the sum of the squares of

the two axes.
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186. The three equations

A2

tang a tang a + B2 = o,

AB = A B sin(a a),

A2 + B2 = A 2 + B 2

,

suffice to determine three of the quantities A, B, A , B , a, a
,

when the other three are known. They may consequently

serve to resolve every problem relative to conjugate diam

eters, when we know the axes, and reciprocally.

187. Comparing the first of these equations with the rela

tions found in Art. 160 ; when two lines are drawn from the

extremities of the transverse axis to a point of the ellipse,

we see that the angles a, a , satisfy this condition, since in

B2

both cases we have aa =
-r, It is then always pos

sible to draw two supplementary chords from the vertices of

the transverse axis, \vhich shall be parallel to two conjugate

diameters.

188. From this results a simple method of finding two

conjugate diameters, which shall make a given angle with

each other, when we know the axes. On one of the axes

describe a segment of a circle capable of containing the given

angle. Through one of the points in which it cuts the ellipse

draw supplementary chords to this axis. They will be par

allel to the diameters sought, and drawing parallels through

the centre of the ellipse, we shall have these diameters. The

construction should be made upon the transverse axis, if the

angle be obtuse; and on the conjugate, if it be acute. When
the angle exceeds the limit assigned for conjugate diameters,

the problem becomes impossible.
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189. To apply this principle, let it be required to construe

two conjugate diameters making an angle of 45 with each

other.

Upon the congregate axis BB
construct the segment BMM B

capable of containing the given

angle. This is done by draw

ing B E, making EB G = 45.

BO perpendicular to BE will

give O, the centre of the required

segment, the radius of which

will be B O ; for the angle BMB

being measured by half of BAB
= 45. Hence BM and B M will be supplementary chords,

making with each other the required angle ; and the diam

eters CF, CF , parallel to these chords, will be the conjugate

diameters required (Art. 168).

Of the Polar Equation of the Ellipse, and of the measure

of its surface.

190. To find the polar equation of the Ellipse, let o be

taken as the pole, the co-ordinates of

which are a and b. Taking OX parallel

to CA the formulas for transformation

are (Art, 122).

x = a + r cos v, y = b + r sin v.

Substituting these values of x and y,

in the equation of the ellipse,

A2

*/

2 + BV = A2B2
,
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it becomes

A2 sin 2
*;

+ B2 cos *v

r2 + 2A26sin

+ 2B2a cos v

2a2 A2B2 - o,

which is the polar equation of the ellipse.

191. If the pole be taken at the centre of the ellipse, we

shall have

a = o, and b = o ;

and the equation becomes

(A
2 sin 2u + B 2 cos 2

v) r
2 = A2B2

.

192. If the pole be taken on the curve, this condition

would require that

A262 + B2a2 A2 B2 = o,

and the polar equation would reduce to

(A
2 sin *v + B2 cos 2

u) i* + (2A
26 sin v + 2B2a cos v) r = o.

The results in this and the last article may be discussed in

the same manner as in the polar equation of the circle.

193. Let us now suppose the pole to be at one of the foci,

the co-ordinates of which are b = o, a = 4- \/A2 B2
.

These values being substituted in the general polar equation,

it becomes

(A
2 sin 2u + B2 cos 2

r) r2 + 2B2 cos v. r = B4
.

Resolving this equation with respect to r, the numerate, of

the quantity under the radical becomes

B4
(A

2 sin 2u + B2 cos 2
v) + B4 a2 cos 2u ;

and putting for a2
its value A2 B2

, it reduces to

A2B4

(sin
2u + cos 2

u), or A2B4
:

12
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and we have for the two values of r,

B2
(a cos v A)

B2 cos 2u

B2

(a cos v + A)
~A2 sm^ + B cosV

which may be put under another form, for we have

A2 sin * + W cos *v = A2

(A
2 B 2

)
cos 2u = A2 2 Cos

= (A cos
i;) (A + a cos

?;).

Making the substitutions, and reducing, we have

B2 B2

A + a cos v &quot;A a cos v

194. If now the pole be at the focus F, for which a is

positive and less than A, as the cos v is less than unity, the

product a cos v will be positive and less than A, so that

whatever sign cos v undergoes in the different quadrants,
A + a cos v, and A a cos v, will be both positive. The
first value of r will then be always positive and give real

points of the curve, while the second will be always negative,
and must be rejected (Art. 124). The same thing takes place
at the focus F , for although a is negative in this case, a cos v

will be always less than A, and the denominators of the two
values will be positive. The first value alone will give real

points of the curve.

195. If, for more simplicity, we make

A2 B2 _
&quot;&quot;A

2
&quot; ~ e

*

we shall have

B2 =A2

(1 e2
),



CHAP. IV.] ANALYTICAL GEOMETRY. 135

These values being substituted in the positive value of r,

give
A (1-6*)
1 + e cos v

T =
1 e cos v

These formulas are of frequent use in Astronomy.

196. In the preceding discussion we have deduced from

the equation of the ellipse, all of its properties ; reciprocally

one of its properties being known we may find its equation.

For example, let it be required to find the curve, the sum
of the distances of each of its points to two given points

being constant and equal to 2A.

Let F, F , be the two given

points, and A the middle of the

line FF the origin of co-ordi

nates. Represent FF by 2c.

Suppose M to be a point of the

curve, for which AP = x, PM
y, and designate the dis

tances FM, F M, by r, r. We shall have

r2 =
y* + (c a:)

2
; r 2 = f + (c + x)*

r + r = 2A.

Adding the two first equations together, and then subtract

ing the same equations, we shall have

r2 + r 2 = 2 (if + x* + c2

), r
2

?-
2 = 4cx.

The second equation may be put under the form

(r r) (r + r)
= 4cx.

Substituting for r + r its value 2A, we get

r r =
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from which we deduce

,

ex c.v
r

1 = A + -j-
, r = A -r-A A

Putting these values in the equation whose first member is

&quot;*

4- r2
, we have

or A2

(jf + or
2

) cV = A2

(A
2

c*).

When we make x = o, this equation gives

f = A? c2,

which is the square of the ordinate at the origin. As c is

necessarily less than A, this ordinate is real, and representing

it by B, we have

B2 = A2 c3.

If we find the value of c from this result, and substitute it

in the equation of the curve, we have

Ay + B2*2 = A2B2
,

which is the equation of the ellipse referred to its centre and

axes.

197. We may readily find the expression for the area of

the ellipse. For we have seen (Art. 157) that if a circle be

described on the transverse axis as a diameter, the relation

between the ordinates of the circle and ellipse will be

^_B
Y~~ A

The areas of the ellipse and circle are to each other in the

same ratio of B to A.
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To prove this, inscribe in the

circumferenceBMM B any poly

gon, and from each of its angles

draw perpendiculars to the axis

BB . Joining the points in which

the perpendiculars cut the el

lipse, an interior polygon will be

formed. Now the area of the

trapezoid P N NP is

(&amp;lt;/+

The trapezoid P MMP in the circle has for a measure

hence,

P NNP : P M MP : : y : Y : : B : A.

These trapezoids will then be to each other in the constant

ratio of B to A. The surfaces of the inscribed polygons will

also be in the same ratio, and as this takes place, whatever

be the number of sides of the polygons, this ratio will be that

of their limits. Designating the areas of the ellipse and

circle by s and S, we will have

S~ A

that is, the area of the ellipse is to that of the circle as the

semi-conjugate axis is to the semi-transverse. Designating

by ?: the semi-circumference of the circle whose radius is

unity, &amp;lt;rr A2 will be the area of the circle described upon the

transverse axis. \Ve shall then have for the area of the ellipse

s = . AB.

12* s
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The areas of any two ellipses are therefore to each other as

the rectangles constructed upon their axc$.

Of the Parabola.

198. We have found for the general equation of intersec

tion of the cone and plane, referred to the vertex of the cone

(Art. 150),

t/
2 sin 2v + #2 sin (v + u) sin (v u) 2c# sin v cos v cos u o.

This equation represents a parabola (Art. 130) when u = v,

which gives

2c# cos 2y
V
2 sin

2v %cx sm v cos 2v = o, or if : = o ;y sm v

for the general equation of the parabola referred to its vertex.

Making y = o to find the points in which it cuts the axis

of x, we have

x = o,

hence the curve cuts this axis at the origin.

Making x = ot determines the points in which it cuts the

axis of y. This supposition gives

y*
= o,

hence the axis of y is tangent to the curve at the origin.

199. Resolving the equation with respect to y, wre have

y = cosy
/2c#v \ / ---V smu

These two values being equal and with contrary signs, the

curve is symmetrical with respect to the axis of x. If we

suppose x negative, the values of y become imaginary, since

the curve does not extend in the direction of the negative
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abscissas. For every positive value of x, those of y will be

real, hence the curve extends indefinitely in this direction.

200. The ratio between the square of the ordinate r/
2 to

the abscissa x, being the same for every point of the curve,

we conclude, that in the parabola the squares of the ordinatei

are to each other as the corresponding abscissas.

201. The line AX is called the axis

of the parabola, the point A the vertext

2c cos ~v
and the constant quantity = theJ sin v

parameter. For abbreviation make

2c cos 2u
:

=
2p, the equation of the pa-sin v

rabola becomes

202. To describe the pa

rabola, lay off on the axis

AX in the direction AB, a /

distance AB =
2p. From L

any point C taken on the

same axis, and with a radius

equal to CB, describe a cir

cumference of a circle ; from the extremity of its diameter

at P, erect the perpendicular PM; and drawing through the

point Q, QM parallel to the axis of x, the point M will be a

point of the parabola. For by this construction we have

hence,

PM - AQ, and AQ
2 = AB. AP;

MP =
2p. AP,
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203. If we take on the axis of the pa

rabola the point F at a distance from the

vertex equal to
-^&amp;gt;

we shall have for

every point M of the parabola, the re

lation

FM2 = if-

hence,

that is, the distance of any point of the parabola from this

point is equal to its abscissa, augmented by the distance of

the fixed point from the vertex. The point F is called the

focus of the parabola. Hence we see that in the parabola,

as well as the ellipse, the distance of any of its points from

the focus is expressed in rational functions of the abscissa.

It follows, from the above demonstration, that all the points

of the parabola are equally distant from the focus and a line

BL drawn parallel to the axis of y, and at a distance from

the vertex. The line BL is called the Directrix of the

Parabola.

204. From this property results a second method of de*

scribing the parabola when we know its parameter. From

the point A, lay off on both sides of the axis of y, distances

AB and AF, equal to a fourth of the parameter. Through

any point P of the axis erect the perpendicular PM, and

from F as a centre with a radius equal to PB, describe an
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arc of a circle, cutting PM in the two points MM , these

points will be on the parabola. For, from the construction,

we have

FM = AP + AB = x + .

205. The same property enables us to describe the para

bola mechanically. For this purpose, apply the triangle

EQR to the directrix BL. Take

a thread whose length is equal to

QE, and fix one of its extremities

at E, and the other at the focus F.

Press the thread by means of a

pencil along the line QE, at the

same time slipping the triangle EQR
along the directrix, the pencil will

describe a parabola. For,

FM + ME = QM + ME, or QM = MF.

206. If we make x = \p in the equation of the parabola,

we get

y*
=

p*, or y = p, or 2*/
=

2p.

Hence in the parabola, the double ordinate passing through
the focus, is equal to the parameter.

207. Let it be required to find the equation of a tangent
line to the parabola whose equation is

Let x&quot;
y&quot;

be the co-ordinates of the point of tangency,

they must satisfy the equation of the parabola, and we have

y&quot;

2 =
Spa;&quot;.
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The equation of the tangent line will be of the form

y y&quot;

= a(x x&quot;).

It is required to determine a.

Let the tangent be regarded as a secant, whose points of

intersection coincide. To determine the points of intersec

tion, the three preceding equations must subsist at the same

time. Subtracting the second from the first, we have

(y-y&quot;)(y + y&quot;)

= IP (*&quot;)

Putting for y its value drawn from the equation of the

tangent, we get

(2ay&quot; + a2

(x x&quot;) 2p) (x x&quot;)

= o.

This equation may be satisfied by making x x&quot; = o,

which gives x = x&quot; and y = y&quot;
for the co-ordinates of the

first point of intersection, or by making

a2

(x x&quot;) 2p = o.

This equation will make known the other value of x when

a is known. But when the secant becomes a tangent, the

points of intersection unite, and we have for this point also

x = x&quot;, which reduces the last equation to

hence,

-
Substituting this value in the equation of the tangent, it

becomes
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or reducing and observing that
y&quot;

2 =
2px&quot;,

\\e have

for the equation of the tangent line.

208. By the aid of these formulas we may draw a tangent

to the parabola from a point without, whose co-ordinates are

x , y . For this point being on the tangent, we have

y y&quot; =p(x +
x&quot;),

and joining with this the relation

y&quot;

2

=2px&quot;,

we may from these equations determine the co-ordinates of

the point of tangency. The resulting equation being of the

second degree, there may in general be two tangents drawrn

to the parabola, from a point without.

209. To find the point in which

the tangent meets the axis of x,

make y = o in the equation

yy&quot;

=

we get

x = x

which is the value of AT. Adding to it the abscissa AP,

without regarding the sign, we shall have the subtangent,

PT =
2*&quot;,

that is, in the parabola, the subtangent is double the abscissa.

This furnishes a very simple method of drawing a tangent

to the parabola, when we know the abscissa of the point of

tangency.
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210. The equation of a line passing through the point of

\angency is of the form

In order that this line be perpendicular to the tangent, for

which we have (Art. 207),

~
!?

it is necessary that we have

aa + 1 = o,

hence

,._

The equation of the normal becomes

Making y = o, we have

x x&quot;
= p,

which shows that in the parabola the subnormal is constant

and equal to half the parameter.

211. The directions of the tangent and normal have re

markable relations with those of the lines drawn from the

focus to the point of tangency.

The equation of a line passing through the point of tan

gency is

y y = a (x x&quot;),

and the condition of its passing through the focus, for which
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-y&quot;

P= o, x = -~ gives

a?

The angle FMT which this line makes with the tangent

has for a trigonometrical tangent (Art. 64),

Substituting for a its value and for a that foand

above, and observing that
y&quot;

2 =
2px&quot;,

we have

tang FMT = = a;

hence, in the parabola, the tangent line makes equal angles

with the axis, and with a line drawn from the focus to the

point of tangency, so that the triangle FMT is always

isosceles ; consequently, when the point of tangency M is

given, to draw a tangent, we have only to lay off from F

towards T a distance FT = FM. FM will be the tangent

required.

212. If through M we draw MF parallel to the axis, the

tangent will make the same angle with this line as with the

axis, hence in the parabola the lines drawn from the point of

tangency to the focus and parallel to the axis make equal

angles with the tangent. From this results a very simple

method of drawing a tangent to the parabola from a point

without. Let G be the point, F the focus, BL the directrix.

From G as a centre, with a radius equal to GF, describe a

circumference of a circle, cutting BL, in L, L . From these

13 T
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points draw LM, L M , parallel to

the axis. M and M will be the

points of tangency, and GM, GM ,

will be the two tangents that may
be drawn from the point G. For,

by the nature of the parabola ML
= MF, arid by construction GF

= GL, the line GM has all of its points equally distant from

F and L. It is therefore perpendicular to the line FL, con

sequently the angle LMG, or its opposite ZltfF , is equal to

the angle GMF. MG is therefore a tangent at the point M.

The same may be proved with regard to GM .

Of the Parabola referred to its Diameters.

213. Let us now examine if there are any systems of

oblique co-ordinates, relatively to which the equation of the

parabola will retain the same form as when it is referred to

its axis. The general formulas for transformation are

x = a + x cos a + y cos a , y = b + x sin a + y sin a .

These values being substituted in the equation of the

parabola

y
2 = 2px,

it becomes

y
2
sinV + 2x y sin a sin a + x 9

sin
2
a + 6

2

%ap &quot;) _
+ 2 (b sin a p cos a) y + 2 (b sin a p cos a) x 5

In order that this equation preserve the same form as the

preceding, we must have

sin a sin a = 0, sin
2
a = o b sin a p cos a = o, b

3

Sap = Q,
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and the equation reduces to

/*.-*,&amp;lt;,smV

and putting for . 2 ,
&amp;gt; , we have

sin V *

?/

2 = 2/z .

214. The second of the preceding equations of conditionj

shows that sin a. = o, that is, the axis of x is parallel to the

axis of x. Hence, all the diameters of the parabola are

parallel to the axis.

215. The two other equations give

b
2 = Zap,

and

sin p
;

= lang a = -=

cos a o

The first shows that the co-ordinates a and b of the new

origin satisfy the equation of the parabola. This origin is

therefore a point of the curve. The second determines the

inclination of the axis of y to the axis of x, and shows that

this axis is tangent to the curve at the origin, since it makes

the same angle with the axis of x as the tangent line at this

point (Art. 207), for which a = 4,

216. The equation y
* = Vp x , giving two equal values for

y , and with contrary signs for each value of # , each diameter

bisects the corresponding ordinates.

217. The equation of the parabola being of the same form

when referred to its diameters and axis, all of its properties

which are independent of the inclination of the co-ordinates

will be the same in these two systems. Thus, to describe a
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parabola when we know the parameter of one of its diameters,

and the inclination of the corresponding ordinates, describe

a parabola on this diameter as an axis with the given para

meter, and then incline the ordinates without changing their

lengths, we shall have the parabola required.

Of the Polar Equation of the Parabola, and of the

Measure of its Surface.

218. Let us resume the equation of the parabola referred

Lo its axis,

and take for the position of the pole,

the co-ordinates of which are a and b ;

,_. draw OX parallel to the axis. The for-

mulas for transformation are (Art. 122).
A\

x = a + r cos v, y = b + r sin v.

Substituting these values in the equation of the parabola, it

becomes

r*sin
2
i; + 2 (b sin v pcos v) r + b* 2pa = c.

If the pole be on the curve,

und the equation reduces to

r2 sin
z
v + 2 (b sin v p cos v) r = o,

wh\ch may be satisfied by making

r =? o, or r sin *v + 2 (b sin v p cos v) = o.
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The last equation gives

2 (p cos v b sin v)
r =

If this second value of r were zero, the radius vector

would be tangent to the curve. But this supposition requires

that we have

%p cos v 25 sin v = o,

which gives

sin v p= tang v = Y-
cos v o

which is the same value found for the inclination of the tan

gent to the axis (Art. 207).

219. If the pole be placed at the focus of the parabola,

the co-ordinates of which are b = o a -~ &amp;gt; the general

polar equation becomes

r2 sin *u 2p cos v. r = p
2

and the values of r are

p (cos v + 1) p (cos v 1)
T ==

. o ^* : 5
sin v sin v

The second value of r being always negative, since cos

v
&amp;lt;

1 and (cos v 1) consequently negative, must be re

jected. The first value is always positive, and will give

real points to the curve. It may be simplified by putting

for sin *v, 1 cos
2
v, which is equal to (1 -f cos v) (1 cos u),

and this, value reduces to

p (1 + cos v) __ p~

(1 + cos v) (1 cos v)

~
I cos v

13*
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which is the polar equation of the parabola when the pole is

at the focus.

220. If v = o, r = =
infinity. Every other value of v

from zero to 360 will give finite values to r. When

v = 90, cos v = o and r = p. When v = 180, cos v = 1

and r = 4r results which correspond with those already

found.

221. In the preceding discussion we have deduced all the

properties of the parabola from its equation ; reciprocally

we may find its equation when one of these properties is

known.

Let it be required, for example, to find a curve such that

the distances of each of its points from a given line and

point shall be equal. Let F be the

given point, BL the given line. Take

the line FB perpendicular to BL for the

axis of x, and place the origin at A, the

middle of BF, and make BF = p.

For every point M of the curve, we

shall have these relations

FM2 =
y* + ^

j

But by the given conditions we have

FM - LM = BA + AP,
hence

eliminating FM we have

y
2

which is the equation of the parabola.
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222. To find the area of any portion of the parabola, let

APM be the parabolic segment n g ar.

whose area is required. Draw q

MQ parallel and AQ perpen
dicular to the axis. The area

of the segment APM is two-thirds r ^
of the rectangle APQM. \

Inscribe in the parabola any rectilinear polygon MM M&quot;.

From the vertices of this polygon draw parallels to the lines

AP, PM, forming the interior rectangles PPjoM; P PyM&quot;,

and the corresponding exterior rectangles QQ #M . Repre
senting the first by P, P , P&quot;, and the last p 9 p ,

p&quot;,
we

shall have

Pi / i\ . / .*

y \^ &quot;~~ y* )) P * cc ft/ \i )

which gives

P x y y )

but the points M, M , M&quot;, belong to the parabola, and we
have

ff=2px, y
2

=2px ,

which give

-
-&amp;gt;=^-- -g-

Substituting these values, the ratio of P to p becomes

_
p y

2 (yy ) y
1

The same reasoning will apply to all of the interior and

corresponding exterior rectangles, and we have the equations
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P y

_y +
y&quot;

p y&quot;

P&quot;
y&quot;
+ y

&quot;

= ---BT- &c -

p y

The polygon M, M , M&quot;, being entirely arbitrary, we

may place the vertices in such a manner that designating by

u any constant quantity, we have always

y y = uy

y y&quot;

=
uy&quot;

y&quot; y
&quot; = uy &quot;,&.c.

which is equivalent to making y, y ,
y&quot;,

decrease in a geo

metrical progression. But from this supposition we nave, by

adding 2?/ to the members of the first equation, %y&quot;
to those

of the second, &c.,

and the several ratios become

~ = 2 + u,

P&quot;
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Hence these ratios will be equal, whatever be u. By com

position we have

P + P + P&quot; + &c.

but the numerator of the first member is the sum of the in

terior rectangles, and the denominator that of the exterior

rectangles. As u diminishes, this ratio approaches more and

more the value of 2, and we may take u so small, that the

difference will be less than any assignable quantity. But,

under this supposition, the inscribed and circumscribed rec

tangles approach a coincidence with the inscribed and cir

cumscribed curvilinear segments, consequently the limit of

their ratio is equal to the ratio of the segments, and repre

senting the first by S, and the second by s, we have

!-
which gives

and dividing these equations member by member,

S = I (S + .) ;

but S + s is the sum of the inscribed and circumscribed

segments, and is consequently the surface of the rectangle

APMQ. Hence, the area of the parabolic segment APM is

equal to two-thirds of the rectangle described upon its abscissa

and ordinate.

223. Quadrable Curves are those curves any portion of

u



154 ANALYTICAL GEOMETRY. [CHAP. IV

whose area may be expressed in a finite number of alge

braic terms. The parabola is quadrable, while the ellipse

is not.

Of the Hyperbola.

224. We have found (Art. 150) for the general equation

of the conic sections,

t/

2
sin *v + xz

sin (v + u) sin (v u) 2c# sin v cos v cos u = o,

and (Art. 131) that this equation represents a class of curves

called Hyperbolas, when u
&amp;gt; v.

To discuss this curve, let us find the points in which it

cuts the axis of x; make y = o, we have

x2
sin (v + u) sin (v u) 2cx sin v cos v cos u = o,

which gives for the two values of x

2c sin v cos v cos u
X = 9 X 7 ;

r : -. r 9

sin (v + u) sin (v u)

which show that the curve

cuts this axis at two points

B,B , one of which is at the

origin, and the other at a dis-

__, 2c sin v cos v cos u
tance BB = -r-

sin (v+ u) sin
(i&amp;gt; u)

from the origin, and on the negative side of the axis of y,

since sin (v u) is negative. Making x = o, we find

y
= o ;

hence the axis of y is tangent to the curve at the origin.
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225. Resolving this equation with respect to y, we have

1

y ~^~v V x2
sin (v + u) sin (v u) + %cx sin v cos v cos u.

These two values being equal, and with contrary signs,

the curve is symmetrical with respect to the axis of x. For

every positive value of x, we shall have a real value of y,

since sin (v u) being negative, the sign of the first term

under the radical is essentially positive. The curve therefore

extends indefinitely on the positive side of the axis of y. If

x be negative, y will only have real values when or
2

sin

(v -f u) sin (v u) &amp;gt;
%cx sin v cos v cos u. Putting the value

of y under the form

y=
1 / / 2csinucos t?cos w\

- \/ X Sin (V + U) Sin (V U) (X ~r
;

r-^ :

)
sin v V \

Bin(t?+tt)sin(c */

Since sin (u u) is negative, the first factor

x sin (v + u) sin (v u)

will be negative for every negative value of a?. The sign of

the quantity under the radical will then depend upon that

of the second factor

(2c sin v cos v cos u \

sin (v + u) sin (v uy

But this factor will be positive so long as

2c sin v cos v cos u
&amp;lt;

&amp;lt;Q
f

sin (v + u) sin (v u)

since

2c sin v cos v cos u

sin (u + u) sin (u tt

is essentially positive.
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But for negative values of x which are greater than

2c sin v cos v cos u
-.

7 : r--
7
-

r the second factor will be negative,sin (v + u) sin (v u)

and the quantity under the radical positive. The values of

y will therefore be imaginary for negative values of # between

the values

)

2c sin v cos v cos u
X and X = -.-- -r :

-
;
--r ?

sin (v + u) sin (v u)

that is, between B and B
;
and real for all negative values

2c sin v cos v cos u
of x greater than . -.

- r ^ -.
-r

sin (v + u) sin (u u)

There is therefore no part of the curve between B, and B
,

but it extends indefinitely from B negatively.

226. Let the origin of co-ordinates be taken at A, the

middle of BB .

The formula for transformation is,

c sin v cos v cos u
*

sin
&amp;lt;

+ )
dn (,--)

is essentially neSatlve

c sin v cos v cos u
ft s ftf _|_

_________ .

sin ( v -f- u) sin (v u)

Substituting this value of x in the equation of the curve,

and reducing, we have

sin .

s\n(v+ u)sm(v u)

Making y = o, to find the point in which it cuts the axis of

x, we find

c sin v cos v cos u
X AB = -r-T-

;

-r^
;
--

sm (u + w) sin (v u)

but for x o, we find that the values of y are imaginary ;

the curve therefore does not intersect the axis of .
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If we make

2
c
2
sin *v cos *v cos *u

sin
2

(v + u) sin
2

(v u)

_ c
2
cos

2
u cos

2&

sin (v + u) sin (v u)

and multiply the two members of the equation (1) by

c
2
cos

2
t; cos*u

sin
2

(v + u) sin
2

(v u)

and put x for # , we shall have

A2

/ BV = A2B2

for the equation of the hyperbola referred to its centre and

axes.

227. The quantities 2A, 2B, are called the axes of the

hyperbola. The point A is the centre. Every line drawn

through the centre and terminated in the curve is called a

diameter, and there results from the symmetrical form of the

hyperbola that every diameter is bisected at the centre.

228. The equation of the ellipse referred to its centre and

axes, is

Ay + BV = A2B2
.

Comparing this equation with that of the hyperbola, we

see that to pass from one to the other we have only to change

B into B V 1. This simple analogy is important from the

facility it affords in passing from the properties of the ellipse

to those of the hyperbola.

229. When the two axes of the hyperbola are equal, its

equation becomes

t/ -^-A ;

we say then that the hyperbola is equilateral.

14
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When the axes of the ellipse are equal, its equation

becomes

which is the equation of a circle. The equilateral hyper

bola is then to the common hyperbola what the circle is to

the ellipse.

230. It follows from this analogy between the ellipse and

hyperbola, that if these curves have equal axes and are

placed one upon the other, the ellipse will be comprehended

within the limits, between which the hyperbola becomes

imaginary, and reciprocally, the hyperbola will have real

ordinates, when those of the ellipse are imaginary.

231. The equation of a line passing through the point B ,

for which y o, x A, is

y = a (x + A).

That of a line passing through

B, for which y = o,x= + A, is

In order that these lines intersect on the hyperbola, these

equations must subsist at the same time with that of the

hyperbola. Multiplying them member by member, we have

f = oaf (x
2 A2

).

Combining this with the equation of the hyperbola, put

under the form

we have

W
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which establishes a constant relation between the tangents of the

angles which the supplementary chords make with the axis of .r.

232. When the hyperbola is equilateral B = A, and this

relation reduces to

ad 1,

hence

1a= ^
or tang a = cot a

,

which shows that in the equilateral hyperbola, the sum of the

two acute angles which the supplementary chords make with

the transverse axis, on the same side, is equal to a right angle.

233. If we put x in the place of y and y for x in the equa

tion of the hyperbola, it becomes

By AV= A2B2
.

If in this equation we make x = o, y becomes real, and

y = o makes x imaginary. Hence

the curve cuts the axis of y, but does

not meet with that of x. It is then

situated as in the figure, the trans

verse axis being b, b . The curve is

said to be referred to its conjugate

axis, because the abscissas are reck

oned on this axis.

231. The analogy between the ellipse and hyperbola,

leads us to inquire if there are not points in the hyperbola

corresponding to the foci of the ellipse.

In the ellipse the abscissas of these points were

x = VA2 B2
.
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Changing B into B V 1, we have for the hyperbola

Let us for simplicity make

and let F, F , be the points at this

distance from the centre, we will

have

(x cf = (a* A1
) + *a

A.

from which we obtain

In the same manner we will have

F M = f + A,

that is, the distances FM, F M, are expressed in rational

functions of the abscissa x.

Subtracting these equations from each other, we get

F M FM = 2A.

Hence, the difference of these distances is constant and

equal to the transverse axis.

235. To find the position of the foci geometrically, erect

at one of the extremities of the transverse axis a perpen

dicular BE = B the semi-conjugate axis, and draw AE.

From the point A as a centre with a radius AE, describe a

circumference of a circle, cutting the axis in F, F . These

points are the foci of the hyperbola.
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236. The preceding properties enable us to construct the

hyperbola, From the focus

F as a centre with a radius

BO, describe a circumference

of a circle. From F as a

centre with a radius BO =
BB + BO describe another

circumference. The points

M, M , in which they intersect, are points of the hyperbola,

for

FM FM = 2A.

237. By following the same course explained in Art. 165,

for the ellipse, we may find the equation of a tangent line to

the hyperbola. But this equation may be at once obtained

by making B = B \/ 1 in the equation of a tangent line to

the ellipse, and we have

A
*yy&quot;

Wxx&quot; = A2B2

for the equation of a tangent line to the hyperbola.

238. The equation of a line passing through the centre

and point of tangency is

y&quot;

= a
*&quot;,

which gives

a = ^ -

-

!

Multiplying this by the value of a corresponding to the tan-

BV
gent, which is a =

-rv-ja we have
Ay

aa! = -TV

14*
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Comparing this result with Art. 231, we find the same value

for aa. Hence, the angles which the supplementary chords

make with the axis of a?, are equal to those which the tangent

line and the diameter, drawn through the point of tangency,

make with the same axis. The supplementary chords are

therefore parallel to the tangent line and this diameter.

Hence, to draw a tangent line to the hyperbola at any point

M, draw the diameter AM, then through B draw the chord

B N parallel to AM ; MT parallel to BN will be the tangent

required.

Of the Hyperbola referred to its Conjugate Diameters.

239. The properties of the hyperbola referred to its diam

eters may be easily deduced from those of the ellipse. By

making B = B V 1 in the equation of the ellipse (Art.

182), we find

AV BV2 = A 2B 2
.

The quantities 2A
f

, 2B , are called the conjugate diameters

of the hyperbola.
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This equation could be also obtained by the same method

demonstrated for finding the equation of the ellipse.

240. In the same mariner, by making B = B V 1, and

B = B V 1 in the equations Art. 186, we have the

relation

A 2 B 2 = A2 B2

,

A B sin (a a)
= AB,

A2

tang a tang a B2 = o.

The first signifies that the difference of the squares con

structed on the conjugate diameters is always equal to the

difference of the squares constructed on the axes. Hence the

conjugate diameters of the hyperbola are unequal. The

supposition of A = B gives A = B, and reciprocally. The

equilateral hyperbola is the only one which has equal conjugate

diameters.

The second of the preceding equations shows that the

parallelogram constructed on the conjugate diameters is al

ways equivalent to the rectangle on the axes.

The third relation compared with that of Art. 248, shows

that the supplementary chords drawn to the transverse axis are

respectively parallel to two conjugate diameters.

Of the Asymptotes of the Hyperbola, and of the Properties

of the Hyperbola referred to its Asymptotes.

241. The indefinite extension of the branches of the hyper
bola introduces a very remarkable law which is peculiar to

it. The equation of the hyperbola referred to its centre and

axes may be put under the form
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which gives for the two values of y,

Ex

Developing the second member, it becomes

A2 A4 A6

Bo?
and multiplying by -r- &amp;gt; it becomesA

BA BA5 BAS

In proportion as a? augments A, and B remaining constant,

BA BA3

the terms - 5-
&amp;gt; &c., will diminish. The values of y

Ex
will continually approach to those of the first term r- .

As a? is indefinite, we may give it such a value as to make

the difference smaller than any assignable quantity. If,

therefore, we construct the two lines whose equations are

represented by
Bo? Ex

these lines will be the limits of the branches of the hyper

bola, which they will continually approach without ever

meeting. And this may be readily shown, for we have

BV
y

2 = -
A2 B2

for points on the hyperbola;
A.

BV
t/

2 =
r-g- for points on the lines ;A

which shows that the ordmates corresponding to the same

abscissas are always smaller for the curve than for the lines.

These lines are called Asymptotes.
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242. We can easily prove from the preceding expressions

that the asymptotes continually approach the hyperbola;

for, subtracting the first from the second, and designating

the ordinates of the asymptotes by y , we have

^*_y = B,
or,

(&amp;lt;/ -&amp;lt;/) (&amp;lt;/
+ 2/)

=
B&amp;gt;;

hence,

y y is the difference of the ordinates of the asymptotes

and hyperbola. The fraction which expresses this value has

a constant numerator, while the denominator varies with y

and y . The more y and y increase, the smaller will be this

difference. As there is no limit to the values of y and y
1

,

the difference may be made smaller than any assignable

quantity.

243. To construct the asymptotes of the hyperbola, draw

through the extremity of the transverse axis a perpendicular,

on which lay off above and below the axis of # two distances

equal to half of the conjugate axis. Through the centre of

the hyperbola and the extremities of these distances, draw

two lines ; they will be the asymptotes required, for they

make with the axis of x, angles whose trigonometrical tan-

B
gents are d= -r .

244. If the hyperbola be equilateral, B = A, and the

asymptotes make angles of 45 and 135 with the aa.is of x.

245. The asymptotes are the limits of all tangents drawn

to the hyperbola. In fact, the equation of a tangent line To

this curve being (Art. 237),
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A*yy&quot;
Wxx&quot; = A2

B-,

the point in which it meets the axis of the hyperbola, has for

an abscissa

_ A^X
~x&quot;

In proportion as x&quot; 9 which is the abscissa of the point of

tangency, increases, the value of x diminishes ; and when

x&quot; infinity, x = o. In this supposition the value of
y&quot;

be

comes also infinite and equal to rb -r
&amp;gt; so that, substi-A

tuting this value in the expression for a, which is -r^~7/ we
Ay

find

a = rh -T-,A

which is the value of a, corresponding to the asymptotes.

246. The equation of the hyperbola takes a remarkable

form when wre refer it to the asymptotes as axes. The

general formulas for transformation are

x = x cos a + y cos a, y = x sin a + y sin a .

But, as the asymptotes make with the axis of x angles
T&amp;gt;

whose tangents are -r- &amp;gt; we have

B B
tang a ---r-

&amp;gt; tang a = + -=- -

A A.

Substituting the values of x and y in the equation of the

hyperbola,

Ay BV = A2B2

,

it becomes

(A
2 sinV B2

cosV) ?/
2+ (A

2 sin 2a B2 cos 2

)
~) _

x ~ + 2 (A
2 sin a sin a B2 cos a cos a

)
x y 5
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The co-efficients of x 2
, y

2

disappear in virtue of the pre

ceding values of tang , tang a
, and that of x \j reduces to

4A2 B2

~p^ + ff
and the equation of the curve becomes

A2 + B2

xy = --
,

which is the equation of the hyperbola referred to its asymp
totes.

If we deduce the value of y , we have

as x increases y diminishes, and when x = x, y =
o, which

proves the same property of the asymptotes continually

approaching the curve, which has been just stated.

247. If we take the line BB for the transverse axis of the

hyperbola, and AX , AY , for the asymptotes, BE parallel to

AX , will be equal to VA2 + B2
. But BK drawn perpen

dicular to BB at B is equal to AE. Hence, AK = BE, and

AD = BD. As the same thing may be shown with respect
to the other asymptote, ADBD will be a rhombus, whose

/A2
-f B2

side AD = i AK= \J
- - . Let /3 represent the angle

X AY which the asymptotes make with each other, the pre-
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ceding equation of the hyperbola multiplied by sin ft gives

,.&quot;,-.
A2 + B2

x y sm B = -. sin 8.
4

The first member represents the area of the parallelogram

APMQ, constructed upon the co-ordinates AP, PM, of any

point of the hyperbola; the second member represents the

area of the parallelogram ADBD , constructed upon the co

ordinates AD , D B, of the vertex B of the hyperbola. Hence

the area APMQ is equivalent to that of the figure ADBD .

The rhombus BEB E , which is equal to four times ADBD , is

called the Power of the Hyperbola.

248. When the hyperbola is equilateral A = B, angle

B 90, sin/3 1, and the rhombus ADBD becomes a

square which is equivalent to the rectangle of the co-ordi-

A2 4- B2

nates. For more simplicity, put ^
= M2

, and suppress

the accents of x , y , we shall have

xy M2
,

for the equations of the hyperbola referred to its asymptotes.

249. Let it be required to find the equation of a tangent

line to the hyperbola referred to its asymptotes.

Let x&quot;,
y&quot;

, be the co-ordinates of the point of tangency.

They must satisfy the equation of the hyperbola, and hence

we have

x&quot;
y&quot;

= M2
. (2.)

The general equation of the tangent line is

y-y&quot; =&amp;lt;*-*&quot;).

it is required to determine a.
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Regarding the tangent line as a secant whose points of

intersection coincide, we have by subtracting equation (2)

from

xy = M3
,

the equation

xy x&quot;
y&quot;

= of

which may be put under the form

x (y y&quot;)
+

y&quot; (x x&quot;)

= o.

Putting for y y&quot;,
its value, we have

(x x&quot;) (ax + y&quot;)

= o.

This equation is satisfied when

x x&quot;
= o,

which gives x = x&quot; and y = y&quot;,
and these values determine

the co-ordinates of the first point of intersection. Placing

the other factor equal to zero, we have

ax +
y&quot;

= o,

when the secant becomes a tangent,

x =
x&quot;,

and y = y&quot;,

which gives

ax&quot; +
y&quot;

= o, or a = .

Substituting this value of a in the equation of the tangent,

it becomes

Making y o gives the point in which it cuts the axis of

x, and x = x&quot; will be the subtangent, which we find to be

x x&quot;
=

x&quot;,

that is, the subtangent is equal to the abscissa of the points

15 w
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of tangency. To draw the tangent, take on the asymptote

a length PT = AP =
x&quot;, MT will be the tangent required.

We see by this construction, that if wre produce the line MT
until it meets the other asymptote at t, we shall have M =
MT. The portion of the tangent which is comprehended

between the asymptotes is therefore bisected at the point of

tangency.

250. The equation of a line passing through any point M&quot;,

whose co-ordinates are
x&quot;,

y&quot;,
is

X

y y&quot;

= a (x x&quot;).

The other point M &quot;

in which this line

meets the curve, is determined from the

equation (Art. 249),

ax + if
= o,

which gives

x =

This is the value of the abscissa AP&quot;. But if we make

y = o in the equation of the straight line, it gives also

in which x represents the abscissa AQ&quot; of the point in which

this line meets the axis AX, and x x&quot; is the value of
P&quot;Q&quot;.

Hence P&quot;Q&quot;
= AP&quot;. Consequently if we draw M &quot;Q pa

rallel to AX, the triangles P&quot;M&quot;Q&quot;, QM &quot;Q

&quot;

will be equal,

and the lines M&quot;Q&quot;, M &quot;Q &quot;,
will be also equal ;

that is, if

through any point of the hyperbola, a straight line be drawn

terminated in the asymptotes, the portions of this line compre

hended between the asymptotes and the curve will be equal
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251. This furnishes us with a very simple method of

describing the hyperbola by points, when \ve know one

point M&quot; and the position of its asymptotes, for drawing

through this point any line Q M&quot;Q,

&quot;

terminated by the

asymptotes, and laying off from Q &quot;

to M&quot; the distance Q&quot;M
&quot;

M&quot; will be a point of the curve. Drawing any other line

through either of these points, we may in the same way find

other points of the curve. This construction may also be

used when we know the centre and axes of the hyperbola.

For with these given, we may easily construct the asymptotes.

Of the Polar Equation of the Hyperbola, and of the

Measure of its Surface.

252. Resuming the equation of the hyperbola referred to

its centre and axes,

Ay_ BV = A2B2
,

we derive its polar equation, by substituting for x and y
their values dra\vn from the formulas

x = a + r cos vf

y = b + r sin v.

The substitution gives

A2
sin

2
*; 7 r

2 + 2A2
6 sin v )

2 C oi&amp;gt;2

tr + A*b BV-f A2B2 = o,B2
cos

2
v 3 2B2

a cos v 3

for the general polar equation of the hyperbola.

253. When the pole is at one of the foci, we have a = d=

v A2
-f B2

. b = o ; taking the positive value of a, corres-
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ponding to the point F, the substitution gives for the two

values of r,

B = B2

A a cos v A a cos v

If \ve make v = o, the

radius vector takes the

position FX. Then cos v

= 1, the denominator of/

becomes A a = A

N/ A2 + B2

, a quantity

which is essentially nega*

tive. Hence the curve has no real points in this direction,

and this will be the case until cos v is so small, that the pro

duct a cos v shall be less than A. The condition will be

fulfilled when A + a cos v o, which gives

A A
COS V ~ ==-==: .

This value of the angle v is the same wrhich the asymptotes

make with the axis. The radius vector then becomes real,

and is infinite. For every value of v greater than this limit,

but less than 90, a cos v is positive, and less than A ; when

v
&amp;gt;

90, a cos v becomes negative, and a cos v positive.

In this case A a cos v is positive as well as r. The points

which this value of r gives, correspond then to the branch

of the hyperbola situated on the positive side of the axis of x.

254. But in discussing the second root, we shall see that

it belongs to the other branch. In fact, it gives imaginary

values for all values of the cos v between the limits cos v = 1

and cos v = - All the other values of v greater than
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that of the second limit will give positive values for r, and

when v = 180, the radius vector will determine the vertex B .

255. To put the preceding expressions under the form

adopted in the ellipse, make

a
e = -r- &amp;gt; oreA A

in which e represents the ratio of the eccentricity to the

semi-transverse axis, and the values of r become

1 e cos v 1 + e cos v

These two equations determine points situated on the two

branches of the hyperbola.

256. We have seen that a similar transformation gives

two values for the radius vector in the ellipse, but that one

of these values is constantly negative and consequently

belongs to no point of the curve, while for the hyperbola we

find two separate and rational values for r, corresponding to

the two branches of the hyperbola. Let us examine this

difference. If in the first of the preceding equations, we

count the angle v from the vertex of the curve, it will be

necessary to change v into 180 v, and we have then

r= A (1-6)
1 + e cos v

This value of r will equally give every point of the branch

to which it belongs by attributing suitable angles to v. But

operating in the same way in Art. 194 on the ellipse, that is,

counting the angle v from the nearest vertex, we get

_
A (1 e

2

)

1 4- e cos v

15*
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This equation is therefore absolutely the same for the two

cases, only in the ellipse e is less than unity, wrhile it is

greater in the hyperbola. Besides, the sign of A is changed,

Let us now make e = I and A =
infinity, we shall have,

making A (1 e
2

) p,

1 + cos v

which is the polar equation of the parabola. Hence we see

that the equation

_ A (1 e
2

)

1 + e cos v

may in general represent all the conic sections, by giving

suitable values to A and e.

257. We may deduce the equation of the hyperbola in the

same manner as we have that of the ellipse in Art. 196, by

introducing one of its properties which characterize it. The

method being similar to that of the ellipse, it will be unne

cessary to repeat it here.

258. We have seen that the equilateral hyperbola bears

the same relation to other hyperbolas that the circle does to

the ellipse. In applying here what has been said (Art. 215),

we may compare a portion of any hyperbola, to the corres

ponding area of an equilateral hyperbola having the same

transverse axis, and there results that the-se are to each

other in the ratio of the conjugate axes. The absolute areas

however can only be obtained by means of logarithms.

259. We have found (Art. 156) for the equation of the

Ellipse referred to its vertex,

B2

y - -

A*
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for the equation of the parabola, we have

if
=

2px,

and for the hyperbola

These equations may all be put under the form

if
= mx + ntf,

in which m is the parameter of the curve, and n the square

of the ratio of the semi-axes.

In the ellipse n is negative, in the hyperbola it is positive,

and in the parabola it is zero.
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CHAPTER Y.

DISCUSSION OF EQUATIONS.

260. HAVING discussed in detail the particular equations of

the Circle, Ellipse, Parabola, and Hyperbola, we will apply

the principles which have been established to the discussion

of the general equation of the second degree between two

indeterminates.

Let us take the general equation

A?/
2 + Bxy + Car

2 + Dy + Ex + F = o,

in which x and y represent rectangular co-ordinates. Let

us seek the form and position of the curves which it repre

sents, according to the different values of the independent

coefficients A, B, C, D, E, F. Resolving this equation with

respect to y, we have

B* + D 1 /(B
2 4AC) x

2+2(BD 2AE)*+D2 4AF
~2A~ 2A V
In consequence of the double sign of the radical, there

will, in general, be two ordinates corresponding to the same

abscissa, which we may determine and construct, if the values

given to x cause the radical to be real. If they reduce it to

zero, there will be but one value of y, and if they render it

imaginary, there will be no point of the curve corresponding

to these abscissas.

Hence, to determine the extent of the curve in the direc-
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tion of the axis of x, we must seek whether the values given

to x render the radical, real, zero, or imaginary.

261. In this discussion we will suppose that the general

equation contains the second power of at least one of the

variables x or y. For, if the equation were independent of

these terms, its discussion would be rendered very simple,

and the curve which it represents immediately determined.

The general equation under this supposition would reduce to

Exy + Dy + Ex + F = o,

which may be put under the form

and making

D E

it becomes

DE BF
B2

which is the equation of an hyperbola referred to its asymp

totes (Art. 246).

262. The result would be still more simple if the coeffi

cients A, B, C, reduced the three terms in x*, ]f, and xy, to

zero. In this case the general equation would become of the

first degree, and would evidently represent a straight line,

which could be readily constructed. These particular cases

presenting no difficulty, we will suppose in this discussion

that the square of the variable y enters into the general

equation.

X
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263. Resuming the value of y deduced from the general

equation,

Ex + D J_ /(B
2

4AC)*
2

+2(BD 2AE)*+D
2 4AF

2A~
~
2A V

we see that the circumstances which determine the reality

of y depend upon the sign of the quantity under the radical.

But we know from Algebra, that in an expression of this

kind, we can always give such a value to x, as to make the

sign of this polynomial depend upon that of the first term:

and since x* is positive for all real values of x, the sign will

depend upon that of the quantity (B
2

4AC). We may
therefore conclude,

1st. When B2 4AC is negative) there will be values of x

both positive and negative, for which the values of y will be

imaginary. The curve is therefore limited on both sides of

the axis of y.

2dly. When (B
2

4AC) = o, the first term of the poly

nomial disappears, and the sign of the polynomial will then

depend upon that of the second term (BD 2AE) x. If

(BD 2AE) be positive, the curve will extend indefinitely

for all values of x that are positive. But if x be negative, y

becomes imaginary. The curve is therefore limited on the

side of the negative abscissas. The reverse will be the case

if (BD 2AE) is negative. The curve will in this case

extend indefinitely when x is negative, and be limited for

positive values of x.

3dly. When (B
2

4AC) is positive, there will be positive

and negative values for a?, beyond which those of y will be

always real. The curve will therefore extend indefinitely in

both directions.
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264. \Ye are therefore led to divide curves of the second

order into three classes, to wit,

1. Curves limited in every direction;

Character, . . . B2 4AC
&amp;lt;

o.

2. Curves limited in one direction, and indefinite in the

opposite ;

Character, . . . B2 4AC = o.

3. Curves indefinite in all directions
;

Character, . . . B2 4AC
&amp;gt;

o.

The ellipse is comprehended in the first class, the parabola

in the second, and the hyperbola in the third. We \vill dis

cuss each of these classes.

FIRST CLASS. Curves limited in every direction.

Analytical Character, B2 4AC
&amp;lt;^o.

265. Let us resume the general value of y,

y =

Bx + D
_1_ /(B

2

4ACX+2(BD 2AE)*+D
2 4AF.

2A 2A V
This expression shows, that, to find points in the curve

we must construct for every abscissa AP an ordinate equal

to &amp;lt;

g
. , &amp;gt; which will determine a point N, above

and below which we must lay off the

distance represented by the radical.

From which it follows that each of

the points N bisects the corresponding

line MM , which is limited by the

C Ex + D 7
curve. This quantity &amp;lt; ^-r S-

/ &A. \
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which varies with x, is the ordinate of a straight line whose

equation is

v = &amp;lt;

X
&amp;gt;y

^ QA \

This line is, therefore, the locus of the points N, which we

have just considered. Hence, it bisects all the lines drawn

parallel to the axis of y and limited by the curve. This line

is called the diameter of the curve.

266. Let us now determine the limit of the curve in the

direction of the axis of x. For this purpose we may put the

polynomial under the radical under another form,

and if we represent by x and x&quot; the two roots of the

equation

2
BD 2AE D2 4AF

_L2
B2 4AC

x F B^
=

the value of y will take the form

Ba? + D 1 /
~

~~A~~ 2A V (B
2

4AC) (x x
) (x x&quot;).

Hence we see, the values of y will be real or imaginary

according to the signs of the factors (x x ) and (x x&quot;),

and consequently, the limits of the curve will depend upon

the values of x and x&quot;. These values may be real and un

equal, real and equal, or imaginary. We will examine these

three cases.

267. 1st. If the roots are real and unequal, all the value
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of x greater than x and less than x&quot; , will give contrary

signs to the factors x x , x x&quot;,
and this product will be

negative, but as B2 4AC is also negative, the quantity

(B
2

4AC) (x x
) (x x&quot;)

will be positive, and the ordi-

nate y will have two real values. If we make x = x or

x = x&quot;,
the radical will disappear, the two values of y will

be real and equal to
^r-

In this case the abscissas

x and x&quot; belong to the points in which the curve meets its

diameter, that is, to the vertices of the curve. Finally, for

x positive or negative, but greater than x and
x&quot;,

the two

&quot;actors (x x ), (x x&quot;),
will have like signs, and their

product (x a:
) (x x&quot;)

will be positive; and since B2

4AC is negative, the quantity (B
2

4AC) (x x
) (x x&quot;).

will be negative also, and both values of y will be imaginary.

268. We see from this discussion that the curve is con

tinuous between the abscissas x , x&quot;, but does not extend

beyond them ; and if at their extremities we draw two per

pendiculars to the axis of x, these lines will limit the curve,

and be tangent to it, since we may regard them as secants

whose points of intersection have united.

269. By resolving the equation with respect to x, we

would arrive at similar conclusions, and the limits of the

curve in the direction of the axis of y, would be the tangents

to the curve drawn parallel to the axis of x.

270. Having thus found four points of the curve, we could

ascertain the points in which the curve cuts the co-ordinate

axes. By making x = o, we have

A?/
2 + Dy + F = o,

and the roots of this equation will give the points in which

16
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the curve cuts the axis of y. According as the values of y

are real and unequal, real and equal, or imaginary, the curve

will have two points of intersection with the axis of y, be

tangent to it, or not meet it at all.

271. By making y o, we have

Or2 + Ex + F = o,

and the roots of this equation will in the same manner deter

mine the points in which the curve cuts the axis of x.

272. In comparing this curve with those of the Conic

Sections, we see at once its similarity to the Ellipse. Its

position will depend upon the particular values of the co

efficients A, B, C, &.

273. Let us apply these principles to a numerical example,

and construct the curve represented by the equation

y
z

In this example we have

A= 1, B = 2,

hence

B2 4AC = 4 8
&amp;lt;

o.

The curve which this equation represents belongs to the

first class of curves, which corresponds, as we shall presently

gee, to the Ellipse.

Resolving this equation with respect to y, we have

y = (x + 1) =fc V (x + I)
2 2* (x + 1)

The equation

y = (x + l),
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is that of the diameter of the curve, and laying off on the

axis of y a distance AB equal to

1, and drawing BC making an angle

of 45 with the axis of x, BC will

be this diameter. The roots of the

equation

are

ar= a? = I.

Laying off on both sides of the axis of y distance AC and

AD equal to 1, the perpendiculars CP, DP , will limit the

carve in this direction. Substituting the values of x in the

original equation, we have the corresponding values of y,

y = + 2, y = o.

The first gives the point P , the second the point C.

Making x = o, the equation becomes

which gives

y = o, y= +2,

for the points A and H, in which the curve cuts the axis of y.

For y o, we have

z* + x = o,

and

x = o, x = 1,

corresponding to the points A and C on the axis of x.

274. The following examples may be discussed in the same

manner :
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2.
2 x = o.

3. t
2 %x -t- 2^ + 2y + a; + 3 = o.

275. There is a particular case comprehended under this

class, which it would be well to examine. It is that in whicn

A = C and B o in the general equation. This supposition

gives ,

Ay
2 + Ax2 + Dy + Ex + F = o ;

or dividing by A,

D E

D2 + E2

If we add TT2~ to k tn sides of this equation, it may

be put under the form

E 4AF
4Aa
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If the co-ordinates x, y, are rectangular, this equation is of

the same form as that in Art. 139, and therefore represents a

D E
circle, the co-ordinates of whose centre are

TTT-&amp;gt; ^-r ,2A 2A

r . VD2 + E2 4AF .

and whose radius is -rr In order that this
ZA.

circle be real, it is necessary that the quantity (D
2 + E2

4AF) be positive. If D2 + E 2 4AF = o, the circle reduces

to a point. If the system of co-ordinates be oblique, this

equation will be that of an ellipse.

276. We now come to the second supposition, in which

the roots x ,x&quot; 9 are equal. The product (x x ) (x x&quot;)

becomes (x x )

2

, and the general value of y is

Ex + D x x

Whatever value we give to x which does not reduce x x f

to zero, will give imaginary values for y, since B2 4AC is

negative. But if x = x , there will be but one value for y,

which will be real and equal to &amp;lt;

-
&amp;gt; In this

case the curve reduces to a single point, situated on the

diameter, the co-ordinates of which are

EXAMPLES.

x* + y
2 =

&amp;gt; y* + ff
2 2r + i = o.

277. Finally, when the roots are imaginary. In this case

the product (x x ) (x x&quot;)
will always be positive, what-

16*
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ever value be given to x. For the roots x , and x \ are of the

form

x = rbp + q V 1,

hence,

(a a?
1

) (a; a:&quot;)

= x2

%w? + p +
g&quot;

=
(a?

which last expression is always positive for any real value of

x. The product (a? x
1

) (x a?&quot;) being positive, and (B
2

4AC) negative, the quantity under the radical is negative,

and the values of y become imaginary. There is therefore

no curve.

EXAMPLES.

y
2 + xy + x2 + 1* + y + 1 = o, y

2 + x* + 2a? + 2 = o,

which may be put under the forms respectively

(2y + x + I)
2 + 3^2 + 3 = o, y

2 + (x + I)
2 + 1 = o.

278. There results from the preceding discussion, that the

curves of the second order, comprehended in the first class,

for which B2 4AC is negative, are in general re-entrant

curves as the ellipse, but the secondary conditions give rise

to three varieties, which are the Point, the Imaginary Curve,

and the Circle.

SECOND CLASS. Curves limited in one direction and indefinite

in the opposite.

Analytical Character, B2 4AC = o.

279. In this case the general value of y becomes

2(BD 2AE)a? + D2 4AF.
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Making, for more simplicity,

D2 4AF
x f

2(BD 2AE)

it may be put under the form

Bx + D J_ / 2 (BD 2AE) (x x1

).

y ~
~2A~ 2AV

If BD 2AE is positive, so long as x is greater than x ,

the factor x x will be positive, and the radical will be

real. If x = x , the radical will disappear, and if # be Jess

than x, the factor x x will be negative, and the radical

will be imaginary. The curve therefore extends indefinitely

from x = x to x = + infinity. The ordinate corresponding

to x = x , will be tangent to the curve at this point.

280. The contrary will be the case if BD 2AE is nega

tive. The curve will extend indefinitely on the side of the

negative abscissas, and will be limited in the opposite

direction.

In both cases the straight line whose equation is

will be the diameter of the curve.

EXAMPLES.

= 0.
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A
2. /*

3. tf Zxy + 3* + 2# + I s 9.

4. jf

1=0.
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5. ifZxy + x2

2r = o.

281. If BD 2AE = o, the value of y becomes

Bx + D ) _1_ 7D2 4AF.

The curve becomes two parallel straight lines, which will

be real, one straight line, or two imaginary lines, according

as D2 4AF is positive, nothing, or negative.

EXAMPLES.

if =o.

\
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3. if Zxy + of + 2y 2* f I = o

4. y
2

4xy -f 4ff* = o,

5. if + 2xy + s? 1 = o

6. y* + y + 1 = o.

282. There results from this discussion, that the curves of

the second order, comprehended in the second class, foi

which B2 4AC = o, are in general indefinite in one direc

tion, as the parabola, but include as varieties two parallel

straight lines, one straight line, and two imaginary straight

lines.

THIRD CLASS. Curves indefinite in every direction.

Analytical Character, B2 4AC
&amp;gt;

o.

283. The discussion of this class of curves presents no

difficulty, as the method is precisely similar to that of the

first. class. Resuming the general value of y,
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B.r-f D 1

101

BD 2AE D 2 4AF
a ~

and representing by x , x&quot;,
the roots of the equation

BD 2AE D2 4AF
B2 4AC

the value of y becomes

2A .2A

So long as x and x&quot; are real, the curve will be imaginary

between the limits a? , x&quot;, since (B
2

4AC) is positive, but

for all values of #, positive as well as negative, beyond this

limit, the values of y will be real. The abscissas x , x&quot;, cor

respond to the points in which the curve intersects its dia

meter: and the equation of this diameter is,

Bx + D

EXAMPLES.

I.
2 2r x8 4-2 = 0.

\
/

I
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A
2. t

2
- = o.

\
3 = o.

4. if 2^ % + 60: 3 =
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284. We may find the points in which the curve cuts the

axes by the methods pursued in Arts. 287 and 288.

285. When the roots x y x&quot;,
are equal, the product (# a:

)

(x x&quot;)
would reduce to (a? a/)

2
, and we would have

2A
x x

:

~~2A~
2 4AC.

This equation represents two straight lines, which are

always real, since B2 4AC is positive.

EXAMPLES.

i,y a* + % + 1
L

\l

3. y
2 + xy 2r* + 3* 1 = o.

17
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286, When x and x&quot; are imaginary, the quantity under

the radical will be always positive, since (x x ) (x x&quot;)
is

positive, whatever value be given to x (Art. 293), and B2

44-C is positive for this class of curves. Hence, whatever

value we give to x, that of?/ will be real, and will give points

of the curve. This curve will be composed of two separate

branches, and the line represented by the equation

Ex D
y = 2A

will be its diameter.

As the radical V(B
2

4AC) (x x r

) (x x&quot;}
can never

reduce to zero, this diameter does not cut the curve.

EXAMPLES.

1. 2x x* 2 = o.

x* -f
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3. --2x ** 2ar 2 =

287. If A
becomes

or,

C, and B = o, the general equation

- Ax2 + Dy + Ex + F = o,

D E F

which may be put under the form

D, 2
/ Ev 2 D2 E 2 4AF

Hence we see, that if the co-ordinates x and y are rectan

gular, this equation represents an equilateral hyperbola, the

D E
co-ordinates of whose centre are rrr + s~r and whose2A 2A

D2 E2 4AF
power is - --

jT2
- This case is analogous to that

of the circle (Art. 291).

288. We conclude from this discussion that the curves of

the second order, comprehended in the third class, for which

B2 4AC is positive, are always curves composed of two

separate and infinite branches, as the hyperbola, and that

they include, as varieties, two straight lines and the equilateral

hyperbola.
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GENERAL EXAMPLES.

1. Construct the equation

So;
2

-f 4x 3 = o.

2. Construct the equation

__2__2a;2 4 x+ 10 = o.

3. Construct the equation

2*2
2* + 4 = o.

4. Construct the equation

^ __ fay + 5^ + 2tf + 1
-

.

5. Construct the equation

%y* %xy x* + y + 4# 10 = o.

6. Construct the equation

x + y a; = o.

7. Construct the equation

?/

2 + Zxy + x9

6y + 9 = o.

8. Construct the equation

a:
2 2 4a? + 10 = a

9. Construct the equation

^ 2^ +

10. Construct the equation

4- 1 = o.
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Of the Centres and Diameters of Plane Curves.

289. The centre of a curve is that point through which, if

any line be drawn terminated in the curve, the points of

.ntersection will be equal in number, and the line will be

bisected at the centre.

290. If we suppose this condition satisfied, and that the

origin of co-ordinates is transferred to this point, then it fol

lows, that if -f x , + y , represent the co-ordinates of one of

the points in which the line drawn through the centre inter

sects the curve, the curve will have another point, of which

the co-ordinates will be x , y , that is, its equation will

be satisfied when x , y , are substituted for -f x , + y

This condition \vill evidently be fulfilled if the equation of

the curve contain only the even powers of the variables x

and y, for these terms will undergo no change when x is

substituted for -f x , and y for + y . To determine,

therefore, whether a given curve has a centre, we must ex

amine if it have a point in its plane, to which, if the curve

be referred as the origin of co-ordinates, the transformed

equation will contain variable terms of an even dimension

only.

291. For example, to determine whether curves of the

second order represented by the general equation

Ay
2
-f Exy + Cx2 + Vy + E.r + F = o,

have centres, we must substitute for x and y, expressions of

the form

x = a + x , y = b + y ,

in which a and b are the co-ordinates of the new origin, and

IT*
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see whether we can dispose of these quantities in such a

manner as to cause every term of an uneven dimension to

disappear from the transformed equation. If this substitu

tion be made, the transformed equation will generally con

tain two terms of an uneven dimension, to wit, (2A6 + Ba

+ D) y and (2C + B6 + E) x . And in order that these

terms disappear, a and /; must be susceptible of such values

as to make

2A6 + Ba + D = o, 2Ca + Eb + E = o,

and then the equation referred to the new origin becomes

Ay
2 + B*y + Cx 2 + A62 + Eab + Co2 + Db + Ea + F = o;

and under this form we see that it undergoes no change

when x , y , are substituted for + x , + y .

292. The relations which exist between the co-ordinates

a and b are of the first degree, and represent two straight

lines. These lines can only intersect in one point. Hence,

curves of the second order have only one centre.

In fact these equations give for a and b, the following

values,

2AE BD 2CD BE_ ~

and these values are single. They become infinite when

32 4AC = o, which shows that there is no centre, or that

it is at an infinite distance from the origin, which is the case

with curves of the second class. Here the two lines whose

intersection determines the centre become parallel. If one

of the numerators be zero at the same time with the denomi

nator, the values of a and b become indeterminate. This

arises from the fact, that this supposition reduces the two

equations to a single one, which is not sufficient to determine
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two unknown quantities. For if we suppose

2AE BD = a,

and B2 4AC = o,

we have from the first equation

2AE
-D&quot;

which value being substituted in the second equation, it

becomes

AE2 D2C = o,

hence

AE
DT

Substituting this value of C in the numerator of the value

of b, it becomes after reduction

2AE BD,

which is the same expression as the numerator of the value

of a.

The two equations thus reducing to one, are not sufficient

to make known the values of a and b, and are consequently

indeterminate. There are therefore an infinite number of

centres situated on the same straight line. But when BD
2AE = o, and B2 4AC = o, the curve reduces to two par
allel straight lines (Art. 297), and all the centres are found

on a line between the two.

293. The diameter of a curve is any straight line which

bisects a system ofparallel chords. If? therefore, we take a

diameter for the axis of a?, and take the axis of y parallel to

the chords which are bisected by this diameter, the trans

formed equation will be such, that if it be satisfied by the
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values -f x , + y , it must also be by + x , ?/ , that is, by
the same ordinate taken in an opposite direction. Conse

quently, to ascertain whether a curve has one or more

diameters, we must change the direction of the axes by

means of the general formulas

x = a + x cos a + y cos a , y = b + oc sin a -f y sin a ,

and after substituting these values we must determine a, b

a, a
, in such a manner, that all the terms affected with un

even powers of one of the variables disappear, without the

variables themselves ceasing to be indeterminate. If this be

possible, the direction of the other variable will be a diameter

of the curve.

294. Let us apply these principles to the general equation

A?/
2 + Exy + Co:

2 + D?/ + Ex + F = o.

Making the substitutions, we shall find, that the transformed

equation will generally contain three terms, in which one of

the variables x, y , will be of an uneven degree, and these

terms are

J2A sin a sin a + B (sin a cos a + sin a cos a) +

2C COS a COS a
|

x y ,

+ j(2A6 + Ba + D) sin a + (2C# + B6 + E) cos a\x

+ Ba + D)sina + (2Ca + Eb + E) cos a y.

Now, if we wish to render x a diameter, the co-efficients

of the terms in y must disappear, which requires that w
make

J2A sin a sin a + B (sin a cos a -f sin a cos a) + 2C cos a

cos a
j a?y

= o ;

or, what is the same thing,
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2C + B (tang a! + tang a) + 2A tang a tang a = o, (1)

and that \ve also have

5 (2A6 + Ba + D) sin a + (2Ca + BZ&amp;gt; + E) cos a
j
y = o. (2)

If, on the contrary, we wished the axis of y to be a diam

eter, the co-efficients of the terms in x must disappear. But

this supposition would also require equation (1) to be satisfied

and that, in addition to this, we have

j(2A6 + Ba + D) sin a + (2Ca + Eb + E) cos
aj

x = o. (3)

295. Let us examine what these equations indicate.

We see in the first place, that whichever axis we select for

a diameter, equation (1) must always exist, and it is also

necessary to connect with it one of the equations (2) or (3).

The first equation determines the relation between a and a ,

and when one of them is given, it assigns a real value to the

other. But after this equation is thus satisfied, the second

equation (2) or (3) which is connected with it, can only be

fulfilled by giving proper values to a and b ; so that while

equation (1) assigns a direction to the chords which are

bisected by the diameter, equation (2) or (3) between a and

b, will be the equation of this diameter relatively to the first

co-ordinate axes.

296. Equations (2) and (3) are evidently both satisfied

when we make

2A6 + Btf + D = o, 2C&amp;lt;z + Eb + E = o. (4)

Hence the values of a and b given by these conditions

belong to a point which is common to every diameter. But

these conditions are the same as those which determine the

centre (Art. 307).

2A
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Hence every diameter of curves of the second order passes

through the centre, and reciprocally every line drawn through

the centre is a diameter.

297. If both of the axes x , y , be diameters, the trans

formed equation will not contain the uneven powers of either

of the variables. For equations (1), (2), and (3) must in

this case exist.

298. This condition is always fulfilled in curves of the

second order, when the origin of the co-ordinate axes is taken

at the centre, and their direction satisfies equation (1). For,

in this case, the first powers of x and y having disappeared,

as well as the term in x y , the equation will contain only the

square powers of the variables. These systems of diameters

are called Conjugate Diameters. But the condition of passing

through the centre really limits this property to the Ellipse

and Hyperbola, the only cases in which equation (4) can be

satisfied for finite values of a and b.

299. When the transformed equation contains only even

powers of the variables, it is evident that if this equation be

satisfied by the values + x , -f y , it will also be for x ,

-f y
1

; x , y ; + x , y ; that is, in the four angles

of the co-ordinate axes, there will be a point whose co-ordi

nates will only vary in signs. If the axes be rectangular,

the form of the curve will be identically the same in each of

these angles. In this case, it is said to be symmetrical with

respect to the axes. In the ellipse and hyperbola, for ex

ample, these curves are symmetrically situated, when the

co ordinate axes coincide with the axes of the curves. When

a? and y are at right angles, we have a a + 90, and elimi

nating a! from equation (1), we have
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2C sin a cos a + B (cos
2
a sin

2

) -f- 2A sin a cos a = o,

and

(A G) tang 2a + B = o,

an equation which will always give a real value for tang2,
from which we deduce two real values for tang a. For

2 tang a
tang 2a = r ^j- ,

1 tang
2
a

hence,

and
2 (A C)tanga = B + Btang

2

a,

from which we get

tang
2
a ^ ~ tang a = 1.

This equation will make known the two values of a.

Bat the product of the roots of this equation being equal

to the second member taken with a contrary sign, if we re

present these roots by a and a , we shall have

/
|

Hence the co-ordinate axes are at right angles (Art. 64), and

coincide with the axes of the curve.

300. We may readily ascertain whether any of the curves,

represented by the general equation we have been discussing,

have asymptotes.

For this purpose, extracting the root of the radical part of

the value of y, we have

Bx + V^ VB2 4AC BD 2AE
&quot;= THT 1TA--* + 2A N/B^4AC

K K
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Now, it is obvious that as x increases, all the terms, in

which x enters as a part of the denominator, will diminish,

and that when x is infinite, the value of y will reduce to

BDj 2AEv
2 4AC/-~2A 2A r B2 4AC

This equation represents two straight lines, to which the

curve continually approaches as x increases. They are

therefore the asymptotes.

As this equation can only give two real lines when B2

4AC
^&amp;gt;

o, we conclude that the asymptotes are found only

in the third class of curves.

301. Let us take the equation

since B2 4AC
&amp;gt;

o, the curve belongs to the third class,

corresponding to the hyperbola.

To determine its asymptotes, find the value of y. We obtain

y = x + 1 =fc V 4*2 5x + 2,

= x

Hence the equation of the asymptotes is

y = x + I2x f.

Constructing this equation, we can determine the position

of the asymptotes. The asymptotes being known, if we de

termine the point in which the curve cuts the axis of x or yy

we may construct any number of points of the curve by the

method pursued in Art. 256.



CHAP. V.I ANALYTICAL GEOMETRY. 205

EXAMPLES.

1. Find the asymptotes of the curve represented by the

equation

xy 2y + x 1 = o.

2. Find the asymptotes of the curve represented by the

equation

3. Find the asymptotes of the curve represented by the

equation

y
2 2s2

2z/ + Qx 3 = o.

4. Find the asymptotes of the curve represented by the

equation
2 2x - x3 2x 2 = o.

Identity of Curves of the Second Degree with the Conic

Sections.

302. The curves which have been discovered in the dis

cussion of the general equation of the second degree, have

presented a striking analogy to the Conic Sections. We will

resume this equation, and see how far this analogy extends.

303. We will suppose the equation to contain the second

power of at least one of the variables, and that the system

of axes is rectangular. We have found for the general value

of y (Art. 279),

J^
y ~

~2A _____
i

18
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The expression

1

[CHAP. V.

is the equation of the diameter of the curve, and the radical

expresses the ordinate of the curve counted from this diam

eter. Let us construct these re

sults. The diameter cuts the

axis of y at a distance from the

origin equal to ~-r-&amp;gt; and makes

an angle with the axis of x, the

trigonometrical tangent of which
T&amp;gt;

is
g-r Laying off a length

AD =
Q-T

&amp;gt; and through D draw

ng LDX , making the angle LOX equal to that whose tan

gent is
wjj &amp;gt; LDX will be the diameter of the curve.

Let us now consider any point M whose abscissa AP = x,

and ordinate PM =
y. Produce PM until it meets the di

ameter OX , the distance PP will represent ^ (Ex + D)

and PM the radical part of the value of y. But as the equa

tion of a curve is simplified by referring it to its diameter,

let us refer the curve to new co-ordinates, of which DP = a:

and P M =
y , and call the angle LOX, a, we have

x = x cos a, y = ^-r (Ex + D) + y .

Substituting these expressions in the general value of y
we get
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&amp;lt;/

^

1 /(B
2 4AC) cosW 2

2(BD 2AE)cos cu- +D 2

4AF,

2AV
or, squaring both members,

4A2

*/

2 = (B
2

4AC) cos
2
a . x 2 2 (BD 2AE)

cos a . x 4- D2
4AF, (2)

or

(BD 2AE)
2

Adding-^ , W . x2 2
to the quantity within the paren-c

(o 4AU) COS a

theses, and subtracting without the parentheses its equivalent

(BD 2AE)
2

(B
2 4AC) cos 7b2_ A A Qy

-
2^

tne equation becomes

C BD 2AE 7
2

4Ay = (B
2 - 4AC) cos , - 2

B2 4AC

Let us introduce for x a new variable a?&quot;, such that

BD 2AE

~(B
2 4AC) cos a

~

which is the same thing as transferring the origin of co-ordi-

pr~\ _ o A &quot;P

nates from the point D to D , so that DD =
lI

The equation in y and x&quot; becomes

4A
j/

2= (B -4AC) cosV-o;&quot;
2--^ + D2-4AF. (3)

And since under this form it contains only the square
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powers of the variables, and a constant term, we see that it

can only represent an ellipse or hyperbola, referred to their

centre and axes, or conjugate diameters. It will represent

an ellipse if B2 4AC is negative, arid the hyperbola if it is

positive.

304. This reduction supposes that the last transforma

tion is possible. But this will always be the case, unless

vw TTTTx which represents DD , become infinite.
B2

4AC) cos a J

\vhich can only be the case when (B
2

4AC) cos a = o.

But cos a cannot be zero, for then we should have a = 90,

which would make A = o, and the diameter DX parallel to

the primitive axis of y, a case which we excluded at first ;

hence, in order that DD =
infinity, we must have B2 4AC

= o, and this reduces the transformed equation to

4Ay 2 = _ 2(BD 2AE) cos a . x + D 2

4AF, (4)

which is the equation of a parabola referred to its diameter

DX . Thus, in every possible case, the equation of the

second degree between two indeterminates can only repre

sent one or the other of the conic sections.

305. All the particular cases which the conic sections pre

sent may be deduced from these transformations. For ex

ample, if in equation (4) we suppose BD 2AE = o, the

term in x disappears, and the parabola is changed into two

straight lines parallel to the axis of x . If D 2 4AF = o

also, the equation will represent but one straight line, which

coincides with this axis. If in equation (3), we make diffe

rent suppositions upon the quantities A, B, C, D, and E, we

may deduce all the known varieties of the sections which

this equation represents, which proves the perfect identity

of every curve of the second order with the conic sections.
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Tangent and Polar Lines to Conic Sections.

306. We might find the general equation of a tangent line

to curves of the second order by following the same process

we pursued in discussing these curves in detail. But as the

necessary elimination would be rather long, we shall here make

use of polar co-ordinates to effect the desired solution, tlius :

Refer the curve to polar co-ordinates, the pole being on the

curve, and then find the equation of condition that both values

of the radius vector become zero, when it will, of course, be

tangent to the curve. This equation of condition will enable

us to determine the value of the tangent of the angle made by

the tangent line with the axis of x.

307. Take the general equation, A?/
2 + TZxy -f Cz2 +% +

Ez + F = o (1), and transform it by means of the

formulas, x = xri
-f r cos v, y = y&quot;

+ r sin v; where x&quot;
9 y&quot;9

are the co-ordinates of the pole. Arranging the transformed

equation with reference to r, it will be of the form, Mr2 + Nr

4- P = o (2). In order that the pole may be on the curve,

we must have, P = 0, and then (2) becomes, Mr2
-f 2s&amp;gt;

= o.

Now in order that the values of r derived from this last equa

tion may each be equal to zero, we must have, N = o. Form

ing the value of N&quot; by actual substitution, and placing it equal

to zero, we have, 2A?/&quot; sin v + B (x
rr sin v + y

rf cos ?) -f

2Cx&quot; cos v + D sin v -f E cos v ==
0, which gives, tang v =

By&quot; + 2Cz&quot; + E
9 1 &quot; 4- B &quot;

-4- D ^ r *^e tangent of the angle made by the

tangent line with the axis of x. Therefore the equation of

By&quot; -f ^Cx&quot; -f E
this tangent is, y-y = -~

2 L/&quot; + Ex&quot; + D (
* &quot;~

*&quot;) J r?^
reducing,

18* 2B
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+ Bz&quot; + D) y + (2Gr&quot; -4- By&quot; + E) & + D#&quot; -f

Ex&quot; + 2F = o ....... (3)

308. Having found the general equation of the tangent line

to Conic Sections, we are now prepared to demonstrate a re

markable and beautiful property of these curves, namely ;

That if from any point in the plane of a conic section we

draw any number of secants, and at the points of intersection,

of the curve with these secants, pairs of tangents be drawn to

the curve, then the points of intersection of these pairs of

tangents will all be found upon a straight line; and, con

versely, If we take any right line in the plane of a conic sec

tion, and from every point of this line draw pairs of tangents

to the curve, and connect the points of contact of each pair

ly a right line, all these last lines will meet in a common

point. Let there be a point P without the curve, whose co

ordinates are x f
, y

r
,
and let it be proposed to draw from this

point a tangent to the curve. The question is then reduced

to finding the point of contact, and as this point is upon the

curve, we must have the equation,

A?/&quot;

2 + Bz y + Vx&quot;
2 + Dy&quot; + Ex&quot; + F = o ..... (4)

Because the point P is upon the tangent line, we must have

the equation,

(2A#&quot; + Ba?&quot; + D) y
r + (2Ca/ + B?/&quot; + E) x 1 + D#&quot; +

Ez&quot; + 2F = o ..... (5)

The combination of (4) and (5) would give the desired

values of x&quot; and
y&quot;

. Instead of doing this, however, we

may obtain these points by constructing the geometric loci of

(4) and (5) under the supposition that x&quot; and y
1 are variables.

Under this hypothesis, (4) represents the given curve, and (5)

represents a right line two of whose points are the required

points of contact, and therefore it must be the equation of
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the secant connecting those points. Now if this last line be

required to pass through a point whose co-ordinates are a

and by these co-ordinates must satisfy (5) when substituted for

x&quot; and y
nf

,
and it then becomes,

(2A6 + Btf -f D) y + (2Ca + B6 -f E) x + Db + Ea +
2F = o (6)

N^w in this last equation the co-ordinates x
, y

f

, belong to

a point P, such that if from it two tangents be drawn and

their points of contact connected by a line, this line passes

through the point whose co-ordinates are a and b. Let us

now suppose the point P to change its position ;
it is evident

that of all the positions it can take, there is an infinite num

ber such, that drawing from them pairs of tangents to the

curve, and connecting the points of contact of each pair by a

right line, all these last lines will pass through the point 0;

and all such positions of the point P, and none others, will be

given by those values of x and y
r

,
which satisfy (6). Then,

if in (6) x 1 and y be regarded as variables, (6) will represent

the geometric locus of these positions of the point P. Under

this supposition, however, (6) represents a straight line, and

hence the truth of the first branch of the theorem.

309. Again, if any line L, be given in the plane of a conic

section, this line may be represented by (6), and then the

values of a and b which satisfy (6) without x and y
r

ceasing

to be indeterminate, will fix a point having with the line L
the relation enunciated in the second branch of the proposi

tion. The point is called the pole of the line L, which last

line is called, relatively to the point 0, the polar line. This

nomenclature must not, however, be confounded with polar

co-ordinates.

310. The properties of Poles and Polar Lines are extremely
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valuable in many graphic constructions relating to Conic Sec

tions, but the limits of this treatise do not permit a full inves

tigation of them. We shall therefore confine ourselves to

showing how the Pole may be found when we know the Polar

Line, and reciprocally ;
and then how they may be applied to

drawing tangents to Conic Sections.

311. First, knowing the pole 0, to find the polar line

(Fig. a). From the pole draw any two secants as, OB, OA ;

then draw CD and AB, forming the incribed quadrilateral

ABDC. The intersection of the sides AB and CD gives one

point P on the polar line, and the point H, where its diagonals

BC and AD meet, is another point, so that PH is the polar

line for the pole 0. Had H been the given pole, situated

within the curve, then by drawing through it any two secants,

as AD and BC, and connecting the points A, B, D, C, where

they intersect the curve, so as to form the inscribed quadri-
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lateral ABDC, the intersection of its sides prolonged, -would

have fixed the points P and 0, and PO would have been the

polar line for the pole H.*

312. Let it now be required to draw a tangent to the Conic

Section ATT
,
from the point P without the curve. From P

draw any two lines PA, PC, cutting the curve at A, B, D, C.

Then draw BD and AC, and prolong them till they meet at

0. There will thus be formed the quadrilateral ABDC, in

scribed within the curve. Draw its diagonals AD and BC,

meeting at H. Join and H by the right line OH, which

will cut the curve at the two points T and T . These will be

the points of contact, and by joining them with P we shall

obtain the required tangents PT, PT .

313. In the second case, suppose the given point P (Fig. b)

T
to lie upon the curve. Assume any three other points as, A,

B, D, upon the curve. Draw DP, and AB, intersecting at

* See note at end of this subject.
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M
;
also draw BP intersecting AD prolonged, at R

;
and then

draw RM. Now change one of the three assumed points, as

B, to any other position, as C, an$ go through the same con

struction
;
that is, draw AC meeting DP at S; then draw

CP meeting AD prolonged, at N; and then draw NS, and

prolong it until it meets RM at T, which will be a point of the

tangent, and drawing TP, it will be the tangent line required.

A line from T to A would also be tangent to the curve at A-

314. The student will find it a valuable exercise to examine

and discuss poles and polar lines for each of the varieties of

Conic Sections separately. And we may here mention that in

the case of the Parabola, he will find the directrix to be the

polar line of the focus, and reciprocally, the focus to be the

pole of the directrix. Hence, if any chord be drawn through

the focus of a parabola and two tangents be drawn at its ex

tremities, these tangents will intersect on the directrix. It

will also be found that these tangents are perpendicular to each

other.

315. Note. The construction of Art. 311 presents one of those instances

in which a resort to the ordinary analytic methods, as a means of proof, would

he attended with much disadvantage, on account of the elimination required.

The most convenient and direct demonstration reposes upon the theory of

Harmonic pencils, with which we cannot suppose the pupil familiar, as it has

not yet found its way into our geometries. We may mention, however, for

the benefit of the student acquainted with the principles of Linear Perspective^

that a very simple and elegant proof may be established by its means : de

pending on the fact that pairs of secants uniting the corresponding extremities

of parallel chords of a conic section, meet on the diameter bisecting these

chords. The constructions of Arts. 312, 313, are immediate consequences of

that of Art. 311.
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Intersection of Curves.

316. Before closing this Qiscussion, we will show how the

principles developed in Art. 92 may be applied to determine

the points of intersection of two curves.

If the curves intersect, the co-ordinates of the points of

intersection must satisfy the equations of both curves. These

equations must therefore have common roots, and the deter

mination of these roots will make known the co-ordinates of

the points of intersection.

317. Take the equations

y = ~x, y
2 + ay x* + bx.

Determining the values of x and y by elimination, we find

x = o, y = o ; x = b, y = a.

Hence the straight line meets the curve in two points,

which may be constructed from the values which have been

found for the co-ordinates.

318. Let us take the equation

if

Subtracting the first equation from the second, we have

for the first equation

2y = o,

which gives y = o.

Substituting this value in either of the given equations,

we find

x = o, and x = 1.

The curves therefore intersect in two points.
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319. Let us take for another example,

y
2

2xy + x2 % -1 = o,

y
2

%xy + x* + x o.

Determining the first equation in x by means of the greatest

common divisor, we find

9x2 + Wx + 1 = o,

which gives for the values of x,

x = 1, and x = \.

Substituting these values in the last divisor placed equal to

zero, we have

y = o, y
=

j.

The given curves have therefore two points of intersec

tion, which may be constructed by methods previously ex

plained.

320. As two equations, one of the mth
, and the other of

the nth
degree, may have a final equation of the mn th

degree ;

it follows that the curves represented by these equations may
intersect each other in mn points. As the roots of a final

equation, the degree of which exceeds the 2d, are not readily

constructed, a method is often used, which consists in draw

ing a line which shall be the locus of all the points of inter

section, and thus their situation will be determined.

321. To explain this method. Let

y=f(x) y = &amp;lt;p(ff)*

* A quantity is said to be a function of another quantity, when it depends

upon it for its value. The expressions f(x\ &amp;lt;f&amp;gt; (#), &c., are used to denote

any functions of x, aud are read, /function of x, $ function of x, &c.
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be the equations of two curves. If they intersect, the co

ordinates x and y of their intersection must satisfy these

equations, and we have

=/(* ) V = ?(* ); (i)

adding these equations together, and then multiplying them

by each other, we have

2y- =/(* ) + 9 (*% (2)

/=/(* ) *?(* ) (3)

Now, either of the equations (2) or (3) gives a true relation

between the co-ordinates x , y , of the points of intersection;

and by supposing x and y to vary, this equation will express

the relations between the co-ordinates of a line, one of whose

points will be the required line of intersection

It may be remarked, that in combining the given equations

we should endeavour to lead to equations which are most

readily constructed; the straight line and circle being pre

ferred to any other.

EXAMPLE.

From a given point without an ellipse, draw a tangent tc

the curve.

We have for the equation of the ellipse.

A 2

*/

2 + B2*2 = A2B2
, (1)

and for that of the tangent,

A*yy&quot; + Wxx&quot; = A2B2
.

19 2c
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Let x , y, be the co-ordinates of the given point Q, they

must satisfy the equation of the tangent, and we have

A?y ij&quot;
+ BVa?&quot; = A2B 2

. (2)

From the equations (1) and (2) we can readily find the

values of x&quot; and
y&quot;,

and thus determine P.

Now, equation (2) is not the equation of any straight line,

but only gives the relation between CM and MP. But if we

suppose x&quot; and
y&quot;

to vary, this equation will express the

relation between a series of points, one of which will be P ;

and therefore if the line it represents be constructed, it will

pass through P, and its intersection with the given ellipse

will make known the point P. Constructing the line whose

equation is

A*y y&quot;
+ BVa?&quot; = A2B2

,

we find it to be BPP , and that it intersects the ellipse in two

points. Two tangents can therefore be drawn to the curve,

QP, and QP .
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CHAPTER YL

CURVES OF THE HIGHER ORDERS.

322. HAVING completed the discussion of lines of the second

order, we might naturally be expected to proceed to an inves

tigation of those of the higher orders
;
but the bare mention

of the number of those in the next, or third order (for they
amount to eighty), is quite sufficient to show that their complete
discussion would far exceed the limits of an elementary trea

tise like the present. Nor is such an investigation necessary;
we have examined the Conic Sections at great length, because,
from their connexion with the system of the world, every pro-

perty of these curves may be useful
; but it is not so with

curves of the higher orders
; generally speaking, they possess

but few important properties, and may be considered more as

objects of mathematical curiosity than of practical utility.

The third order is chiefly remarkable from its examination

having been undertaken by Newton. Of the eighty species
now known, seventy-two were discussed by him. and eight
others have since been discovered. The varieties of the next,
or fourth order, are thought to number several thousands. A
systematic examination of curves being thus impossible, all

we can do is to give a selection, confining our attention princi

pally to such as may merit special notice, either on account

of their history, or for the possession of some remarkable me
chanical property. Others we shall notice in order that the

student may not be entirely unfamiliar with them when he
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may meet with some allusion to them in the higher brandies

of analysis. And as this matter of tracing the geometrical

form and figure of a curve from its equation, is one of surpass

ing importance in the practical application of mathematics, we

shall commence by selecting an example well calculated to

exhibit a further illustration of those principles by which we

have already discussed the Conic Sections, as well as to show

clearly the general method of procedure in such cases.

323. We begin then with

The Lemniscate Curve,

represented by the equation,

y* 96y + 100A2 x4 = o (A).

Here let us observe that, in the discussion of any curve, the

sole difficulty consists in resolving the equation by which it is

defined. If this obstacle can be overcome, we may readily

trace its course. For, suppose that the equation of the curve

has been solved, and that X, X , X&quot;, etc., represent the roots

of ?/, these roots being functions of x; the question is at once

reduced to an examination of the particular curves, which are

represented by the separate equations,

y-X, y-X , y = X&quot;,etc.

This examination will be effected by giving to x every pos

sible value, as well negative as positive, which the functions

X, X ,
X r/

, etc., admit of, without becoming imaginary; and

the resulting curves will be the different branches of the curve

denoted by the given equation. The extent and direction of

these branches will depend upon the different solutions which

correspond to their particular equations. If any of the equa

tions y = X, y = X , etc., exist for infinite values of x
9

it fol-
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lows that the corresponding branches extend indefinitely in the

direction of these values.

324. The present example offers no difficulty in the solution

of its equation, which, being effected by the method for qua

dratic equations, gives us,

y = V 48a2
v/2304a4 lOOa2^ + 2:* (B),

or putting, 2304a4 lOOaV + z4 =
1ST, the four values of y

become,

y = N/48a
2 + x/N (1),

y=\/48a2 VN (2),

y = V 48a2 + v/N (3),

(4),

It is now required to ascertain each of the curves which

C0v;se equations represent. We see, in the first place, that the

values (3) and (4) differ from (1) and (2) only in the sign, and

consequently must represent branches similar to those repre

sented by (1) and (2), but differently situated with reference to

the axis of x. Further, as the quantity of N contains only

even powers of x, its value will not be changed by substituting

a negative for a positive value of x. The parts of the curve

which lie on the right of the axis of y, are, then, similar to

those situated on the left of this axis. Hence the curve is

divided by the co-ordinate axis into four equal and svmmetri-

cal parts. Let us now proceed to a more minute examination

of the values (1) and (2), beginning with
(1). This value of

y can only be real so long as N is positive, and we know from

19*
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algebra that in an expression of this kind a change of sign

can only occur by its passing through zero, and therefore we

can find the limits to the real values of y by writing N = x4

lOOaV2

-j- 2304a4 =
o, which equation gives by its solution,

x = 6a, and x = 8#, and hence (1) may be written,

48a2
-f V(x Qa) (x + 6a) (x 8a) (x + 8a) (5).

In this equation, x = o gives y = \/96a2
for the point C

(Fig. 1), in which the curve cuts the axis of y. Between the

f G
limits x o and x 6a, N is positive and y is real, and as x

increases from o to 6a, y diminishes from \/96a2
to \/48a2

,

which last value corresponds to the point D, at which a line

parallel to the axis of y is tangent to the curve. For values

of x greater than Qa and less than 8a, the factor (x So)

alone becomes negative, and consequently renders y imaginary,

so that no portion of the curve is found between the parallels,

FD and GE, to the axis of y at distances AF and AG, from

the origin equal respectively to Qa and 8a. For x = 8
or, we

get y = v/ 48a2
, giving the point E, at which EG parallel to

the axis of y is tangent to the curve. All values of x greater

than Sa render N, and consequently y, positive ; hence, from

E the curve extends indefinitely in the direction EH. Similar

branches will be found on the left of the axis of
/, by attri-
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buting negative values to rr, so that equation (1) represents the

portions of the curve exhibited in Fig. 1. If in the general

equation (A), we make y= v96a2

,
we obtain, x2 =

o, and

x = dz lOfl. The first gives x = db
0, which shows that at the

point C, the parallel I d to the axis of x, is tangent to the

curve, while the other two values of x, viz. 10a, give the

points I and I7 at which the parallel cuts the two indefinite

branches. Now let us examine (2). By a transformation

similar to that used in the discussion of (1),
this second value

of y may be written,

\/48a
2 Viz 6V (x 6a) (x + 6a) (x Sa) (x+ Sd) (6).

G F FGK

In this equation x = o gives y = t&amp;gt;,

which shows that the

curve passes through the origin. As x increases from zero up

to 6c7, y increases from zero to N/48a
2

,
which last value gives

the point D (Fig. 2), at which

this branch joins that of CD

(Fig. 1), and both have a com

mon tangent, DF, parallel to the

axis of y. For all values of x

greater than 6tf, but less than Sa,

the factor (x Sa) alone becomes negative, rendering N nega

tive, and consequently y imaginary, so that no part of the

curve represented by equation (6) is found between the two

lines DF and EG drawn parallel to the axis of y. and at dis

tances AF and AG from the origin equal respectively to Qa

and 8 a. For x = Sa, (6) gives y = v/48a
2
,
for the point E,

in which the branch EK joins the branch EH (Fig. 1), and

both have the common tangent EH parallel to the axis of y.

From the form, of equation (2), it is apparent that a negative
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value for N is not the only circumstance which will render y

imaginary. For y is plainly imaginary whenever x has such

a value as to render &amp;lt;/N&amp;gt;48a

2
. We then obtain the limits

by writing, v/N = v/^^lOOaV -f 2304a4 = 48a2
,
which

equation when resolved gives, x2 = o and x rb 10a. The

first of these values of x corresponds to the origin. The other

two, lOa, give the points K and K at which the branches

EK and E K are cut by the axis of x. Thus, for all values

of x between the limits x = 80, and x =
10&amp;lt;z, equation (6)

gives real values for y, and for all values of x greater than

10a y is imaginary, so that the branches represented by (6)

are limited at K and K by parallels to the axis of y. More

over, as x increases from Sa to 100, y diminishes from v/48a
2

to zero, so that between the points E and K the branch EK
has the form represented in the diagram. Again, if in the

general equation (A) we make x 100, we obtain, y
2

o,

y = V96a2
. The first gives y = =b o, and shows that at K

and K the parallels to the axis of y are tangent to the curve
;

the other value, \/ 96a2

, corresponds to the points I and I

(Fig. 1). By giving negative values to rr, we find similar

branches to exist on the left of the axis of y, so that the por

tions of the curve defined

by (2) are such as are re

presented in Fig. 2. As

we have already remarked,

equations (3) and (4) repre

sent equal branches situated

below the axis of x. In.

Fig. 3 are shown the branches represented by (1) and (2),
and

Fig. 4 exhibits the entire curve.
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Let us now examine if this curve has asymptotes. By ex

tracting the square root of the quantity N, equation (B) may
be &quot;written,

etc.)

or taking the upper sign only,

rt ,
4900a6

- 2a2 - - ---

Extracting the square root again, we have,

etc.

a2 99a* x

5 fir
......

etc.)
...... (7).
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Now as x increases, those terms in this equation which contain

x in the denominator will diminish, and when x = oo, they

may be all neglected after the first; equation (7) then reduces

to y = db x, which is the equation of two rectilinear asymp
totes to the curve, passing through the origin and making

angles of 45 and 135 with the axis of x. By combining

the equation of the asymptote with that of the curve, we find

that the origin is the only point in which they intersect. The

asymptotes are represented in Fig. 4 by the lines RAB/, SAS .

The polar equation of this curve is readily found to be,

r4 4aV) cos 2$ 2aV o.

Its discussion is left as an exercise for the student.

E 325. The Cissoid of Diodes (Fig.

5). Let ADBD be a circle of which

AB is the diameter and EBF an in

definite tangent at the point B ; draw

from A any line AI, cutting the cir-

cumference at o and the tangent at

I, then take on this line the distance
i?

Am = 01; it is required to find the

B locus of the points m, m r

,
etc. Take

A as the origin of a system of rec

tangular co-ordinates, AB being the

axis of x. Then put AB = 2a,

An = z, and mn = y. Now, since

Am = ol, An will be equal to pB,

and the similar triangles Anm and

F Apo give, An :nm : : Ap : po, that is,

=
,
and y
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\/ i
. For the sake of convenience, let us tabulate tho

V () /* &amp;lt;Yx

corresponding values of x and ?/,
thus

From (1) we see that the curve passes through the origin ;

from (2) that it bisects the semicircular arcs ADB and AD B

at the points D and D ;
from (3) that for all values of x less

than 2a there are two real and equal values for y with contrary

signs ;
from (4) that there is an infinite ordinate at B, or that

EBF is an asymptote to the curve. From (5) we perceive

that no point of the curve lies to the right of this asymptote,

and from (6) that no part of it is found to the left of A, and

as the curve is symmetrical with respect to the axis of x, its

form is such as represented in the diagram. This curve was

invented by Diocles, a mathematician of the third century,

and called by him the Cissoid, from a Greek word signifying

&quot;

ivy,&quot;
because he fancied that the curve climbs up its asymp

tote as ivy does up a tree. He employed it in solving the

celebrated problem of inserting two mean proportionals be

tween given extremes.

326. The Conchoid of Nicomedes (Fig. 7). Let BX be an

indefinite right line, A a given point, from which draw ABC

perpendicular to BX, and also draw any number of straight

lines Aom, Ao
m&quot;, etc.; upon each of these lines take om

and om r

,
o m&quot; and o rn

&quot;,
each equal to BC, then the locus

of these points m, m , m&quot;,
m f/r

, etc., is the conchoid. The
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branch HCG is called the superior conchoid, and the other

portion, FADAE, the inferior conchoid: both conchoids form

but one curve, that is, are both defined by the same equation.

Fij.7.

BC is called the modulus, and BX the base or rule. Let us

now find the equation of the curve from its mode of genera

tion. The curve may be regarded as the locus of the points

of intersection of the lines mm
, Am&quot;, etc., with the circles

which have their centres at 0, , etc., and their radii each

equal to BC. The equation of one of these circles would be,

(x x
)

2
-f y

1 = b* (1), and that of one of the lines

Am is, y -f a dx (2). Now the centre of this circle

must be at the point in which Am cuts the axis of x, which

gives, x =
-j. Hence (1) becomes,

f y
2 = b

2

(3).

Now to get the desired locus, we must eliminate d between (2)

and (3), in terms of general co-ordinates, and we thus obtain,

or,
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for the equation of the curve, which we now proceed to dis

cuss, observing that we may distinguish the cases according as

we have, b
&amp;gt; a, b = a, or 5

&amp;lt;

a.

327. CASE I. 6a.

From (1) XX is an asymptote ; from (2) the curve passes

through C
;
from (3) and (4) the curve extends from the base

upwards to C, and no higher; hence the branch HCG. Again,

from (5) and (6) the curve passes through A and D if BD = b;

from (7) there is an indefinite branch AE, to which the base

is an asymptote ; and from (8) the curve exists between A and

D, and since the curve is symmetrical with reference to the

axis of y, its form is as represented in the diagram.

328. CASE II. b = a. The loop Am DA disappears by the

coincidence of the points A and D
; otherwise the curve is of

the same form as in the first case.

CASE III. b
&amp;lt;C

CL In this case the superior conchoid is not

altered, but the inferior conchoid becomes a curve similar to

it, the point D falling between A and B. The point A be

comes what is known as a conjugate or isolated point, that is,

a point whose co-ordinates satisfy the equation of the curve,

and which is therefore a point of the curve, but is entirely

isolated or disconnected from the branches of the curve. The

generation of the conchoid affords a good example of the

20
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nature of an asymptote, for the distances om, o
fm ff

, etc., must

always remain each equal to BC, and this plainly causes the

curve to approach the base without ever admitting of an actual

intersection .with it.

329. This curve was invented by Nicomedes, a Greek geo

meter, who flourished about 200 years B. c. He called it the

conchoid, from a Greek word signifying &quot;a shell&quot;: it was

employed by him in solving the problems of the duplication

of the cube, and the trisection of an angle. To show how

the curve may be applied to the latter problem, let BAG be

the angle to be trisected (Fig.

8): then if CDE be drawn so

that the exterior segment DE
T3

A J? shall be equal to the radius DA
;

it is immediately seen that the arc DG is one-third of the arc

BC. Now it is utterly impossible so to draw CDE by the aid

of the common geometry alone, that is, by employing simply

the straight line and circle, but it may easily be done by re

sorting to the conchoid. Let C be the pole of the inferior

conchoid, BE the asymptote or base, and AC the modulus,

then the intersection of the curve with the circle plainly gives

the desired point D. The superior conchoid may be employed

for the same purpose. The polar equation of the conchoid is

easily found, and is, r = a sec 6 -f b.

330. In the discussion of the two preceding curves, we have

had occasion to allude to the famous problem of the duplica

tion of the cube, the origin of which is well known. As it

deserves some notice, on account of the celebrity to which it

attained among the ancient geometricians, we shall here intro

duce a very simple solution of it, by means of Conic Sections.

Let a denote the edge of the given cube, and x that of the

t,...,J U, ant. ft t

fltr $ c,e A:,
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required cube
;
then the solution of the problem requires the

determination of re so as to satisfy the condition, x
3 == 2a3

(1).

Xo ,v as \vc may regard (1) as the final

equation resulting from the elimination

of y between two other equations y =

f (x), and y = F (x\ and if we can

determine what these equations are,

and then construct the curves defined

by them, the abscissa x of their point of intersection will be

the edge of the required cube. To effect this, multiply (1) by

.r, and we get, z4 = 2a3x (2). Next, assume y-
=

2ax
(3). Combining (2) and (3) we obtain x* = a

?

y~,

or, x- = ay (4). The required equations are then (3)

and (4) ; (3) representing the parabola AYP (Fig. 9), and (4)

representing the parabola ASP, the parameter of the first

being double that of the second. The abscissa AX of their

point of meeting is the edge of the required cube.

The Lemniscata of Bernouilli. (Fig. 10.)

331. This curve was invented by James Bernouilli. It is

the locus of the intersections of tangents to the equilateral

hyperbola with perpendiculars

to them from the centre. Its

polar equation is, r
2 = a2 cos

29
(1). When 6 = o, (1)

gives r = a, which designates

the point A; as 6 increases r

diminishes, and when & = 45, r = o, showing that the curve

passes through the pole. If 6
&amp;gt;

45 but
&amp;lt; 135, 2d

&amp;gt;
90 and

&amp;lt;270, so that cos 2d is negative and r imaginary. Drawing
ihen the two lines SPR and S PK

, making respectively angles
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of 45 and 135 with PA, the curve will not exist in the

angles SPS and RPR
,
but will lie in both the angles SPR

and S PR. From 0=135 to = 180, r increases
;

for

6 = 180, r = a, giving the point A . From = 180 to

& = 225, r diminishes, and for & = 225, r = o. From

& = 225 to 6 = 315, r is imaginary. From = 315 to

4 = 360, r increases till & = 360, when r == #, giving the

point A. The shape of the curve is that of the figure 8, as

shown in the diagram. By the aid of the transcendental

analysis, this curve is found to be quadrable, the entire area

which it encloses being equivalent to the square on the semi-

axis PA.

Parabolas of the Higher Orders.

332. This name designates a class of curves represented by

the equation y
m= a

m~ nxn
(1), or by y

m+ n= a
mxn

(2),

the essential condition being that the sum

of the exponents be the same in each

member. When m = 2, and n = 1,

equation (1) becomes, y*
= ax. the com

mon or conical parabola. When m 2,

and n = 3, (1) gives us ?/
2 = a~ #3

,
which represents the semi-

cubical parabola, so named because its equation may be written,

#| = ay. The form of this curve is shown in Fig. 11. It

is remarkable as being the first curve

which was rectified, that is, the length
- of any portion of it was shown to

be equal to a number of the common

rectilinear unit. Its polar equation

is, r = a tang
2

d, sec 0. When m = 1, and n = 3, (1) gives

a2

?/
= x3

,
which represents the cubical parabola. Its form is

Fia 12.
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exhibited in Fig. 12. Its polar equation is easily found to be,

r2 = a\ tang 6
9
sec

2
d.

333. Transcendental Curves. This appellation designates

a class of curves whose equations are not purely algebraic,

and are so called because it transcends the power of analysis

to express the degree of the equation. As many of these

curves are found to possess remarkable mechanical properties,

we shall proceed to the consideration of some of the most

noted of them, beginning with

The Logarithmic Curve. (Fig. 13.)

334. This curve derives its name from one of its co-ordinates

being the logarithm of the other. If the axis of x be taken

as the axis of numbers, that of

y will be the axis of logarithms ;

and laying off any numbers, 1,

2, 3, 4, etc., on AX, the loga

rithms of these numbers, as

found in the Tables of Loga

rithms, estimated on parallels
r

to the axis of y, will be the cor- A

responding ordinates of the

curve.

From what has been said, the

equation of the curve is, y =

log x ; or, calling a the base of

the system of logarithms, we

have, x = ay
.

If the base of the system be changed, the values of y will

vary for the same value of x; hence, every system of loga

rithms will produce a different logarithmic curve. The equa-
20* 2rc
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tion x = a v
j
enables us at once to construct points of the

curve; for, making successively, /
=

0, y = J-, y f, etc.,

we find, x = 1, x = \/a, x = \/ a
3

,
etc. As y = 0, gives x = 1,

whatever be the system of logarithms., it follows that every

logarithmic curve cuts the axis of numbers at an unit s dis

tance from the origin.

335. If a
^&amp;gt; 1, all values of x greater than unity will give

real and positive values for y ; the curve, therefore, extends

indefinitely above the axis of numbers. For values of x less

than unity, y becomes negative, and increases as x diminishes
;

and when x = o, y = oo. The curve, then, extends indefi

nitely below the axis of numbers, and as it approaches con

tinually the axis of logarithms, this axis is an asymptote to

the curve. If x be negative, y becomes imaginary ;
the curve

is, therefore, limited by the axis of logarithms.

336. If a
&amp;lt; 1, the situation of the curve is reversed, and is

such as is represented by the dotted line in the figure.

337. Taking the axis of y for the axis of numbers, that of

x would be the axis of logarithms, and the curve would enjoy,

relatively to this system, the same properties which have been

demonstrated above.

338. This curve was invented by James Gregory. Huygbens

discovered that if PT be a tangent meeting AY at T, YT is

constant and equal to the modulus of the system. Also that

the whole area PYV&P extending indefinitely towards V, is

finite, and equal to twice the triangle PYT ;
and that the solid

described by the revolution of the same area about AY, is 1J

times the cone generated by revolving the triangle PYT

about AY.
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The Cycloid. (Fig. 14.)

339, If a circle QMG be rolled along the line AB, any

point M of its circumference will describe a curve AMKL,
which is called a Cycloid. This is the curve which a nail in

the rim of a carriage-wheel describes in the air during the

motion of the carriage on a level road. The curve derives its

name from two Greek words signifying &quot;circle-formed.&quot; The

line AL over which the generating circle passes in a single

revolution is called the base of the cycloid, and if I be the

middle point of AL, the point K is called the vertex, and the

line KI the altitude or axis of the curve. To find its equation,

Fig. 14.

CL,

let K be the origin of co-ordinates
; put Kn = x, wM = y,

and SI, the radius of the generating circle,
= a. Then we have,

Mft = M?tt -f mn (1).
And

Mm = QI = AI AQ (2).

Now from the mode of generation, we have, AQ = arc MQ =.

arc 7?? I; and AI = semi-circumference IniK. Hence (2)

becomes, M??z = ImK arc ml= arc Km, and, consequently,

(1) becomes,

y = arc Km + mn = arc Km -f ^/Kn X nl arc Km +

&amp;lt;/2axx* (3).
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Now we have arc Km = a circular arc whose radius is a and

ver sin x = a (an arc whose radius is unity and ver sin -) ; or,

~ l x
introducing the notation, ver sin - to signify

&quot; the arc whose

x
versed sine is

,&quot; (3) may be written,

y = a ver sin - + &amp;gt;/ 2ax a2

(4)

for the equation of the cycloid.

The equation of the curve is frequently to be met with

referred to A as an origin, with AB as the axis of x, and AY
the axis of y. Its equation then is,

~~

y
x = a ver sin

&amp;lt;/2ay y* (5).

The cycloid is not, of course, terminated at the point L, but

as the generating circle moves on, similar cycloids are described

along AB produced. The points A and L, when the consecu

tive curves of the series join each other, are termed cusps or

points of cusp the designation not being restricted to the

cycloid alone, but used as one applied generally to a similar

union between the branches of any curve. We have already

had examples of such points in the cissoid and semi-cubical

parabola.

340. The cycloid, if not first imagined by Galileo, was first

examined by him
;
and it is remarkable for having engaged

the attention of the most eminent mathematicians of the seven

teenth century.

341. With the exception of the Conic Sections, no known

curve possesses so many beautiful and useful properties as the

cycloid. Some of these are, that the area AMKwIA, is

equivalent to that of the generating circle; that the entire
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area AKLA, is equivalent to three times that of the generating
circle

;
that the tangent MG is parallel to the chord mK

; that

the length of the arc MK is double that of the chord Kiw,

and consequently the entire perimeter AMKCL is four times

the diameter of the generating circle ; that if the curve be

inverted, and two bodies start along the curve from any two

of its points, as A and M, at the same time, they will reach

the vertex K at the same moment
;
and if a body falls from

one point to another point not in the same vertical line, its

path of quickest descent is not the straight line joining the

two points, but the arc of an inverted cycloid connecting them.

On account of these last two properties, the cycloid is called the

tautochronal and bracfiystochronal curve, or curve of equal

and swiftest descent.

342. Instead of the generating point being on the circum

ference of the circle, it may be anywhere in the plane of that
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circle, either within or without the circumference. In the

former case, the curve is called the Prolate Cycloid, or Trochoid

(Fig. 15) ;
in the latter case, the Curtate, or shortened,

Cycloid (Fig. 16).

343. To find the equations of these curves, let K (Figs. 15

and 16) be the origin of co-ordinates. Put KM =
x, MP = y,

KO = a, AO = ma, &amp;lt; AOR =
&amp;lt;p.

Then from the figure, MP = FC + QM = arc AR -f QM.

.-.y may+a sin 9, or, y=maver sin -f ^/2ax x\

which equation will represent the common cycloid if m = 1
;

the prolate cycloid when m
&amp;gt;

1
;
and the curtate cycloid when

ro&amp;lt;l.

344. The class of cycloids may be much extended by sup

posing the base on which the generating circle rolls, to be no

longer a straight line, but itself a curve : thus, let the base be

a circle, and let another circle roll on the circumference of the

former
;
then a point either within or without the circumference

of the rolling circle will describe a curve called the EpitrocJioid ;

but if the describing point is on the circumference, it is called

the Epicycloid.

345. If the revolving circle roll on the inner or concave

side of the base, the curve described by a point within or with

out the revolving circle is called the Hypotroclwid ; and when

the generating point is on the circumference of the rolling

circle, the curve is called the Hypocycloid.

346. To obtain the equations of these curves, we shall find

that of the EpitrocJioid, and then deduce the rest from it.

(Fig. 17.)

Let C be the centre of the base ED0. and B the centre of

the revolving circle DF in one of its positions : CAM the
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straight line passing through the centres of both circles at the

commencement of the motion ;
that is, when the generating

A N M

point P is nearest to C, or at A. Let CA be the axis

of x; CM - x, MP = y, CD = a, DB = b, BP = ml, and

&amp;gt;
ACB =

&amp;lt;p.

Draw BN parallel to MP, and PQ parallel to EM. Then,

since every point in DF has coincided with the base AD, we

ctq&amp;gt;

haye DF =
a&amp;lt;p,

and angle DBF = -r ; also angle

Now CM = CN 4- NM = CB cos BCN + PB sin PBQ

(a 4- b) cos 9 4 mb sin
( ? 9

And,
-a 4- b

MP = BN BQ = (a 4 b) sin 9 nib cos ( ^ 9 ^

or,

I , JA I
a + b

x = (a 4 6) cos 9 mo cos r 9,

and, ?/
=

(a 4 3) sin 9 mb sin r 9

Such are the equations which represent the Epitrochoid..

(1)
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Those for the Epicycloid are found by putting b for mb

in (1).

a -f b
.-. x (a + b) cos 9 b cos 7

an(J y = (a + 0) sm &amp;lt;p

6 sin

Those for the Hypotrochoid may be obtained by writing b

for b in (1),
and those for the Hypocycloid are found by putting

b for both b and ra& in (1).

347. The elimination of the trigonometrical quantities is

possible, and gives finite algebraic equations whenever a and b

are in the ratio of two integral numbers. For then cos 9,

cos T~ 9, sin 9, etc., can be expressed by trigonometrical formu

las in terms of cos ^ and sin 4,, when -^ is a common submultiple

of 9 and 7 9 ;
and then cos ^ and sin 4* may be expressed

in terms of x and y. Also since the resulting equation in x

and y is finite, the curve does not make an infinite series of

convolutions, but the revolving circle, after a certain number

of revolutions, is found having the generating point exactly

in the same position as at first, and thence describing the same

curve line over again.

For example, let a = 6, the equations to the Epicycloid

become,

x = a (2 cos
&amp;lt;p

cos 2 9), y = a (2 ,sin 9 sin 2 9) ;

or,

x = a (2 cos 9 2 cos
2

9 + 1)

}
(3)

y = 2a sin 9 (1 cos 9)

From the first of equations (3) we find the value of cos tp ;

and from the second, that of sin 9, and then adding together

the values of cos
2

9 and sin
2

9, and reducing we vrf-
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2:

or,

(3? -f- y* a2

)

2 4a2

\ (x of -f- y* }
= o.

This curve, from its heart-like shape, is called the Cardioide.

If the origin be transferred to A, the polar equation of this

curve becomes,
r = 2a (1 cos

d).

348. If b = Q, the equations of the hypocycloid become,

x = a cos
&amp;lt;p,

and y o ; i. e., the curve reduces to the diameter

of the circle ACE. Under the same supposition, the hypotro-

choid reduces to an Ellipse whose axes are a (m + 1) and

Spirals.

349. S}nrals comprise a class of transcendental curves

which are remarkable for their form and properties. They
were invented by the ancient geometricians, and were much

used in architectural ornaments. The principal varieties are,

the Spiral of Archimedes, the Hyperbolic, Parabolic, and

Logarithmic Spirals, and the Lituus.

Spiral of Archimedes. (Fig. 18.)

350. If a line A0 revolve uniformly around a centre A,

at the same time that one of its points commencing at A, with

a regular angular and outward motion, describes a curve AM0,
and is found at o, when A0 has completed one entire revolu

tion, and at X at the end of the second revolution, and so on,

the curve AMoM X, will be the /Spiral of Archimedes.

From the nature of this generation, it follows that the ratio

of the distance of each of its points from the point A, to the

21 2F
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length of the line Ao, will be equal to that of the arc passed

over by the point o from the commencement of the revolution,

Fig. 18.

to the entire circumference ; or, for any point M ,
we shall

have,
AM o&o +
AN oGo &amp;gt;

and making 0GN = 6, AM = r, AN = 1, the circumference

cGo will be denoted by Zie, and the equation of the spiral be-

A

comes, r = 9- . The variables in this equation are those of

polar co-ordinates. The point A is the pole or eye of the

spiral, AM the radius vector, and the angle subtending oGN

the variable angle.

351. The curve which has just been considered is a par

ticular case of the class of spirals represented by the general

equation, r ab
n
,
where a and n represent any quantities

whatsoever.

The Hyperbolic Spiral. (Fig. 19.)

352. If in the general equation, r = a6
n
,
we have n = 1,

the resulting equation r = -

,
will be that of the Hyperbolic
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Spiral, called also, the reciprocal spiral. This curve has an

asymptote.

In fact, if we make successively, 6 = 1,
=

J,
=

J, etc., we

shall have r = a,
= 2a, = 3a, etc., which shows that as the

Pig. 19.

spiral departs from the point A, it approaches continually the

line DE drawn parallel to AO, and at a distance AB = a. For,

drawing PM perpendicular to AB, we have,

PM = r sin MAP = r sin & = a
sin 6

when r is replaced by its value
-^.

This value of PM ap

proaches more and more to a as 6 diminishes, and when 6 ig

sin &

very small, ^-=1, and PM=a; DE is therefore an

asymptote to the curve. If 6 be reckoned from AB
,
we

shall have a similar spiral to which DE will be an asymptote.

This curve takes its name from the similarity of its equation

to that of the hyperbola referred to its asymptotes ;
r$ = a,

being that of the spiral, and xy = M2

,
that of the hyperbola.

The Parabolic Spiral (Fig. 20.)

353. This spiral is generated by wrapping the axis AX of

a parabola around the circumference of a circle. The ordinates
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PM, P M
,

will then coincide with the prolongations of the

radii ON, ON ;
and the abscissas AP, AP ,

of the parabola,

will coincide with the arcs AN, AN ,

etc. AQQ Q&quot;, etc., is the spiral.

The equation of the parabola being

2/

2 = 2px ; we have, QN= r b = y,

b being the radius of the circle
;
and

AN = 6 = x. The equation of&quot; the

spiral then becomes, (r Vf

2pQ
=

a&j by making 2p = a. If the

origin of the curve be at the

centre of the circle, b o, its

a&.

rig. 20.

equation becomes, r*

The Logarithmic Spiral. (Fig. 21.)

354. The equation of this curve is, 6 = log r, or r = ae
,

when a is the base of the system of logarithms used. Making

= 0, we get, r 1. The curve

therefore passes through the point

0. As r increases, d increases

also
;
there is therefore an infinite

number of revolutions about the

circle OGN. When r
&amp;lt; 1,4 be

comes negative, and its values

give the part of the curve within

the circle OGN. As r diminishes, 6 increases, and when

r = o, 6 = ex. The spiral therefore continually approaches

the pole, but never reaches it.

Fig. 21.
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The Lituus. (Fig. 22.)

355. The Lituus, or trumpet, is a spiral represented by the

equation, r~& = a2
. Its form

is exhibited in the diagram.
.

The fixed axis is an asymp

tote, and the curve makes an infinite series of convolutions

around the pole without attaining it.

Remark.

356. In the discussion of curves there is one point deserving

consideration, namely : it will often happen that the algebraical

equation of a curve is much more complicated than its polar

equation ;
the conchoid is an example. In these cases it is

advisable to transform the equation from algebraic to polar

co-ordinates, and then trace the curve by means of the polar

equation.

We subjoin several examples as an exercise for the student.

1. (z
2
-f y^ = Zaxy ; which gives, r = a sin 26.

2. (z
2 + y-J

= Za xy.

3. x* + y*
= a(x y).

4. (V + 2/

2

)

2 = a2

(z
2

?/

2

).

357. In many indeterminate problems we shall find that

polar co-ordinates may be very usefully

employed. For example : Let the corner

of the page of a book be turned over into

the position BCP (Fig. 23), and in such

manner that the area of the triangle BCP

be constant ;
to find the locus of P. Let

AP = r, &amp;gt;
PAG = 6, and area ABC = a2

Then

21*
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f T 1
CC*

AE ==
g,
AE = AC cos 6, AE= AB sin 6, .-. ^

==
-^

sin 6 cos ;

or,

r2 = a2
sin 23,

for the required equation.

358. In some cases it may be advisable to exchange polar

co-ordinates for algebraic ones, the formulas for which are

(when the new system is rectangular),

y x
sin d =

, cos 6 =
,
and r = \/x* + y

2
.

f f V

359. We have now given a sufficiently extensive discussion

of the curves of the higher orders, and shall next proceed to

give a few examples to be investigated by the student himself,

in order that he may become entirely familiar with the appli

cation of the principles already laid down. And here we may

observe, that while the methods here given will ordinarily

prove sufficient for determining the general outline and form

of most curves, yet there are many which yield a complete

solution only when subjected to the exhausting processes of

the higher calculus ;
and indeed its aid is almost indispensable

for arriving at, and thoroughly discussing, many of the most

valuable and beautiful properties of some of the curves we

have already considered. The methods of Analytical Geome-

*ry are not, however, on this account, less deserving the study

and time of the pupil, since the expedients of the higher

analysis are based upon them
; presupposing, and indeed

requiring, a familiar acquaintance with their details.

EXAMPLES.

2. (a xfif
= x (b x)

2
.
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3. axy = x5 a3
.

4. (x- I)y*= Zx x\

5. y* 2x-y
z z4

-f 1 = o,

6. xY~ xy-
= 1.

7. xy- + yx-
= 1.

8. f x-y-
= x\

9. y- = x3 x4
.

10. (1 -f x)y*= 1.

11. (l-x-)y=l.
12. y = x a; v/2;.

13. y = ^2

-,.

15. r = cos 6 -f 2 sin

2
16 - r =

TTtSjfi

17. ^ = -r -
sin 25 d

18. r = tang 5.

19. r = 1 4- 2 cos 0.

20. r = ,-r.

21. r =

22. r

cos

1 + sin d

1 sinl*

1

3 tang d
J

23. r
2 = a- sec2

4 (1 sin*
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CHAPTER VII.

OF SURFACES OF THE SECOND ORDER.

360. SURFACES, like lines, are divided into orders, according

to the degree of their equations. The plane, whose equation

is of the first degree, is a surface of the first order.

361. We will here consider surfaces of the second order,

the most general form of their equation being

Az2 + Ay + A&quot;*
2 + Ryz + E xz + Wxy -f Cz +

C y + C&quot;x + F = o. (I)

Since two of the variables, x, y, z, may be assumed at

pleasure, if we find the value of one of them, as z, in terms

of the other two, we could, by giving different values to x

and y, deduce the corresponding values of z, and thus deter

mine the position of the different points of the surface. But

as this method of discussion does not present a good idea of

the form of the surfaces, we shall make use of another method,

which consists in intersecting the surface by a series of

planes, having given positions with respect to the co-ordinate

axes. Combining then the equations of these planes with

that of the surface, we determine the curves of intersections

whose position and form will make known the character of

the given surface.

362. To exemplify th.a method, take the equation

x2 + v
2 + ;;

2 = R2
,
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and let this surface be intersected by a plane, parallel to the

plane of xy ; its equation will be of the form (Art. 73),

z = a,

and substituting this value of z, in the proposed equation,

we have

x2
-f y

2 - R2
a\

for the equation of the projection of the intersection of the

plane and surface on the plane of xy. It represents a circle

(Art. 133), whose centre is at the origin, and whose radius

is \/R2
a

2
. This radius will be real, zero, or imaginary,

according as a is less than, equal to, or greater than R. In

the first case the intersection will be the circumference of a

circle, in the second the circle is reduced to a point, and in

the third the plane does not meet the surface.

363. The proposed equation being symmetrical with respect

to the variables x, y, z, we shall obtain similar results by

intersecting the surface by planes parallel to the other co

ordinate planes. It is evident, then, that the surface is that

of a sphere.

332. The co-ordinate planes intersect this surface in three

equal circles, whose equations are,

364. We may readily see that the expression Vx2
-f t/

2 + z
a

represents a spherical surface, since it is the distance of any

point in space from the origin of co-ordinates (Art. 75), and

as this distance is constant, the points to which it corresponds

are evidently on the surface of a sphere, having its centre at

the origin of co-ordinates.
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365. The discussion has been rendered much more simple,

by taking the cutting planes, parallel to the co-ordinate

planes, since the projections of the intersections do not differ

from the intersections themselves. Had these planes been

subjected to the single condition of passing through the origin

of co-ordinates, the form of their equations would have been

Ax + By + Cz = o ;

and combining this with the proposed equation, we should V% ^
have,

(A
2 + C2

)
x2 + 2ABxy + (B

2 + C2

) y
1 = R2C2

,

which is the equation of the projection of the intersection on

the plane of xy. This projection is an ellipse, but we can

readily ascertain that the intersection itself is the circum

ference of a circle, by referring it to co-ordinates taken in

the cutting plane.

366. We may in the same manner determine the character

of any surface, by intersecting it by a series of planes, and

it is evident that these intersections will, in general, be of

the same order as the surface, since their equations will be

of the second degree.

367. Before proceeding to the discussion of the general

equation

Az* -f Ay + A&quot; a;
2 + Eyz + E xz + E&quot;xy + Cz +

C y + C&quot;x + F = o,

let us simplify its form, by changing the origin, so that we

have, between the two systems of co-ordinates, the relations

(Art. 114),

y~ !/ + h * = * + /
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As a, 3, 7, are indeterminate, we may give such values to

them as to cause the terms of the transformed equation

affected with the first power of the variables to disappear.

This requires that we have

2A7 + B/3 + B a + C - o,

2A /3 + B&quot;a + B7 -f C = o,

2A&quot;a + B 7 + B&quot;/3 + C&quot;= o; (2)

and, representing all the known terms in the transformed

equation by L, it becomes

Az 2 + Ay 2 + AV 2 + B~y + E z x + B&quot;x y + L = o. (3)

As all the terms in this equation are of an even degree,

its form will not be changed, if we substitute x , y t

z
,
for -f x , -f y 9 +2 .

If&amp;gt; then, a line be drawn through

the origin of co-ordinates, the points in which it meets the

surface will have equal co-ordinates with contrary signs.

This line is therefore bisected at the origin, which will be

the centre of the surface, if we attribute the same significa

tion to this point in reference to surfaces that wre have for

curves.

368. The equations (2) which determine the position of

the centre being linear, they will always give real values for

a, (3, 7; but the coefficients A, B, C, &c., may have such

relations as to make these values infinite. In this case the

centre of the surface will be at an infinite distance from the

origin, which will take place when

AB 2 + A B2
-f A&quot;B

2 BB B&quot; 4AA A&quot; = o, (D.)

which is the denominator of the values of a, (3, 7, drawn

from equation (2) placed equal to zero.
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369. If this condition be satisfied, and we have at the

same time

C = o, C = o, C&quot; = o,

the values of a, /3, 7, will no longer be infinite, but will be

come which shows that there will be an infinite number
o

of centres. In this case the surface is a right cylinder, with

an elliptic or hyperbolic base, whose axis is the locus of all

the centres.

370. If condition (D) be not satisfied, but we have simply

C = Of C = o, C&quot; = 0,

the values of a, [3, y, become zero, and the centre of the sur

face coincides with the origin. This is evident from the fact

that equations (2) represent three planes, whose intersection

determines the centre
; and these planes pass through the

origin when C, C , C&quot;, are zero.

371. We may still further simplify the equation (2) by

referring the surface to another system of rectangular co

ordinates, the origin remaining the same, so that its equation

shall not contain the product of the variables. The formulas

for transformation are

x =
x&quot; cos X +

y&quot;
cos X + %&quot; cos X&quot;,

y =
x&quot; cos Y -f

y&quot;
cos Y + z&quot; cos Y&quot;,

* = x&quot; cos Z +
y&quot;

cos Z + z&quot; cos Z&quot;,

with which we must add (Arts. 116 and 117),

cos
2X +cos 2Y +cos 2Z =o,

cos
2X -f cos

2Y +cos 2Z =o,

cos X&quot; + cos
2
Y&quot; + cos

2
Z&quot; = o, (A)
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cos X cos X -f cos Y cos Y 4- cos Z cos Z = o,

cos X cos X&quot; 4- cos Y cos Y&quot; 4- cos Z cos Z&quot;
= o,

cos X cos X -f cos Y cos Y&quot; 4- cos Z cos Z&quot;
= o. (B)

Equations (B) are necessary to make the new axes rectan

gular. These substitutions give for the surfa.ce an equation

of the form

Mz&quot;
2 + My 2

4- M V2
4- Nzy -f N z&quot;s&quot; 4- N V

y&quot;
+ P = o.

In order that the terms in
z&quot;y&quot;,

z&quot;x&quot;,
x&quot;y&quot;, disappear, we

must have

N = o, N = o, N&quot; = o.

Without going through the entire operation, we can

readily form the values of N, N , N&quot;, and putting them

equal to zero, we have the following equations :

2A cos Z cos Z 4- B (cos Z cos Y 4- cos Y cos Z )

4- 2A cos Y cos Y 4- B (cos Z cos X 4- cos X cos Z )

.

3-.
4- 2 A&quot; cos X cos X 4- B (cos Y cos X 4- cos X cos Y ) )

2A cos Z cos Z&quot; 4- B (cos Z cos Y&quot;4- cos Y cos
Z&quot;)

4-2A cos Y cos Y&quot;+ B (cos Z cos X&quot;4- cos X cos
Z&quot;)

)&amp;gt;

= o.(C)

4-2A&quot;cos X cos X&quot;4- B&quot;(cos
Y cos X&quot;4- cos X cos

Y&quot;)

2A cos Z cos Z&quot; 4- B (cos Z cos Y&quot;4- cos Y cos
Z&quot;)

4-2A cos Y cos Y&quot; 4- B (cos Z cos X 4- cos X cos Z&quot;
) ^
= o.

4-2A&quot;cos X cos X&quot; 4- B (cos Y cos X 4- cos X cos
Y&quot;)

The nine equations (A) (B) (C) are sufficient to determine

the nine angles which the new axes must make with the old,

in order that the transformed equation may be independent

of the terms which contain the product of the variables

22
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Introducing these conditions, the equation of the surface

becomes

Mz&quot;
2 + My 2 + MV 2 + L = o, (4)

which is the simplest form for the equations of Surfaces of

fhe Second Order which have a centre.

372. We may express under a very simple formula, sur

faces with, and those without a centre. For, if in the general

equation, we change the direction of the axes without moving

the origin, the axes also remaining rectangular, we may dis

pose of the indeterminates in such a manner as to cause the

product of the variables to disappear. By this operation the

proposed equation will take the form

Mz 2 + My2 + MV + Kz + K y + KV + F - o.

If now we change the origin of co-ordinates without

altering the direction of the axes, which may be done by

making

z = z&quot; + a, y =
y&quot;
+ a, z = z&quot; + a&quot;,

we may dispose of the quantities a, a , a&quot;,
in such a manner

as to cause all the known terms in the transformed equation

to disappear. This condition will be fulfilled if the new

origin be taken on the surface, and we have

Ma2 + MV/2 + MV 2 + Ka + KV + KV + F = o. (5)

Suppressing the accents, and making, for more simplicity,

2Mfl + K = H, 2MV/ + K = H , 2MV + K&quot; =
H&quot;,

every surface of the second order will be comprehended in

the equation

Mz2 + My -f MV + Hz + ITy + H&quot;# = o. (6)
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373. In order that equation (6) may represent surfaces

which have a centre, it is necessary that the values of a, a.

a&quot;, reduce this equation to the form of equation (4), which

requires that the terms containing the first power of the

variables disappear. This condition will always be satisfied,

if the equations

2Ma -f K = o, 2M a + K = o, 2M&quot;a&quot; + K&quot;
= o

give finite values for , a , a&quot;. These values are

K Kf K
~2M f a ~ ~

and will always be finite, so long as M, M , M&quot;, are not zero

But if one of them, as M, be zero, the value of a becomes

infinite, and the surface has no centre, or this centre is at an

infinite distance from the origin.

Of Surfaces which have a Centre.

374. We have seen (Art. 340), that all surfaces of the

second order which have a centre are comprehended in the

equation

Mz&quot;
2 + M i&quot;

2 + M&quot;.r&quot;

2 +L = o.

Suppressing the accents of the variables, we have

Mz2 + My + MV + L = o.

Let us now discuss this equation, and examine more par

ticularly the different kinds of surfaces which it represents.

Resolving this equation with respect to either of the vari-

obles, we shall obtain for it two equal values with contrary
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signs. These surfaces are therefore divided by the co-ordi-

riate planes into two equal and symmetrical parts. The

curves in which these planes intersect the surfaces are called

Principal Sections, and the axes to which they are referred,

Principal Axes.

If now the surface be intersected by a series of planes

parallel to the co-ordinate planes, the intersections will be

curves of the second order referred to their centre and axes,

and the form and extent of these intersections will determine

the character of the surface itself. But these intersections

will evidently depend upon the signs of the co-efficients M,

M , M&quot;, and supposing M positive, which we may always do,

we may distinguish the following cases :

1st case, M and M&quot; positive,

2nd &quot; M positive, M&quot; negative,

3d &quot; M negative, M&quot; positive,

4th &quot; M and M&quot; negative.

The three last cases always give two co-efficients of the

same sign; they are therefore included in each -other, and

will lead to the same results by changing the variables in the

different terms. It will be only necessary therefore to con

sider the first and last cases.

CASE I. M, M , M&quot;, being positive.

375. Let us resume the equation

M%2 + My2 + MV + L = o.

Let this surface be intersected by planes parallel to the

co-ordinate planes, their equations will be

X = a, y = /3, 2 = 7.
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Combining these with the equation of the surface, we

have

Mz2 + My + MV + L = o,

Mzs + MV + M /3
2 + L = o,

V + M/ + L = o,

for the equations of the curves of intersection. Comparing

them with the form of the equation of the ellipse, we see

that they represent ellipses whose centres are on the axes of

r, y, and z.

376. To determine the principal sections, make

a = o, /3
= o, 7 = 0,

and their equations are

Mz2 + My + L = o,

Mza + MV + L = o,

which also represent ellipses.

377 If L = o, all the sections as well as the surface re-

duce to a point.

If L be positive, the sections become imaginary, since

their equation cannot be satisfied for any real values of the

variables. The surface is therefore imaginary.

Finally, ifL be negative, and equal to L , the sections

will be real so long as

L + MV, L + M /3
2 L + M/,

are negative ; when these values are zero, the sections and

surface reduce to a point, and become imaginary for all

values beyond this limit.

This surface is called an Ellipsoid.

22* 2fl
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378. If we make y = o

and z = o in the equa

tion of the ellipsoid, the

value of x will represent

the abscissa of the points

in which the axis of x

meets the surface. We
find

The double sign shows that there are two points of inter

sections, symmetrically situated and at equal distances from

the origin.

Making in the same manner y = o, and x = o, and after

wards x = o and z o, we obtain

z = AB = TJT ? = AD = d= \/
L

M V M

The double of these values are the axes of the surface,

and we see that they can only be real when L is negative.

379. The equation of the ellipsoid takes a very simple

form when we introduce the axes. Representing the semi-

axes by A, B, C, we have

L J r_~ M7
~ M7 ~ M

and substituting the values of M, M , M&quot;, drawn from these

equations in that of the surface, it becomes

A2BV + A2CV 4- B2CV = A2B2C2
.

380. If we make the cutting planes pass through the axis

of z, and perpendicular to the plane of xy, their equation
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Al

or, adopting as co-ordinates

the angle NAC =
9, and tne

radius AN= r, we shall have

x = r cos 9, y = r sin 9 ;

and substituting these values

in the equation of the sur

face, we shall have for the

equation of the intersection

referred to the co-ordinates 9, z, and r,

Mz2 + r
2

(M sin
2

9 + M&quot; cos
2

9) + L = o.

This equation will represent different ellipses according to

the value of 9. If M =
M&quot;, the axes AC and AD become

equal, the angle 9 disappears, and we have simply

Mz2 + M r
2 + L = o.

Every plane passing through the axis of z, will intersect

the surface in curves which will be equal to each other, and

to the principal sections in the planes of xz and yz. The

third principal section becomes the circumference of a circle,

and all the sections made by parallel lines will also be circles,

but with unequal radii. The surface may therefore be gene

rated by the revolution of the ellipse BC or BD around the

axis of z.

This surface is called an Ellipsoid of Revolution.

381. The supposition ofM = M , or M =
M&quot;, would have

given an ellipsoid of revolution around the axes of x and y.

882. If M = M = M&quot; the three axes A, B, C, are equal,

and the equation of the surface becomes



260 ANALYTICAL GEOMETRY. [CHAP. VII.

z
2 + y* + x2 + ^ - o,

which is the equation of a Sphere.

383. Generally, as the quantities M, M , M&quot;, diminish, L

remaining constant, the axes which correspond to them aug

ment, and the ellipsoid is elongated in the direction of the

axis which increases. If one of them, as M&quot;, becomes zero,

the corresponding axis becomes infinite, and the ellipsoid is

changed into a cylinder, whose axis is the axis of z, and

whose equation is

Mz2 + My2 + L = o.

The base of this cylinder is the ellipse BD. (See figure,

Art. 378.)

384. If M&quot; = o, and M = M , the ellipse BD becomes a

circle, and the cylinder becomes a right cylinder with a cir

cular base. This is the cylinder known in Geometry.

385. Finally, if M&quot; = o, and M = o, the equation reduces

to

Mz2 + L = o,

which gives

z = d M

This equation represents two planes, parallel to that of xy

and at equal distances above and below it.

CASE II. M positive, M and M&quot; negative.

386. In this case the equation of the surface becomes

Mz2 My MV + L-o,
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and the equations of the intersections parallel to the co-or

dinate planes are

Mz1 My M a* + L = o,

M^2 MV M/3
2 + L = o

f

My + MV My + L = o.

The two first represent hyperbolas ; the last is an ellipse.

The sections parallel to the planes of xz and yz are always

real. The section parallel to xy will be always real \vhen

L is positive. If L be negative and equal to L , it will

be imaginary for all values of y, which make the quantity

(L My) positive : when we have L My = o, it reduces

to a point. Thus, in these two cases, the surface extends

indefinitely in every direction, but its form is not the same.

387. Making a = o, /3 o, y o, we have for the equa
tions of the principal sections,

Mz2 My +L = o,

M%2 MV + L = o,

My + MV L = o.

When L is positive, the

two first, wThich are hyper

bolas, have the axis of z for

a conjugate axis, and are

situated as in the figure.

Every plane parallel to the

plane of xy produces sections

which are ellipses.
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388. Making two of the co-ordinates successively equal to

zero, we may find the expressions for the semi-axes, as in Art.

348; and representing them respectively by A, B, C V i.

and introducing them in the equation of the surface, it

becomes

A2BY A 2Cy A 2B2C2 - o. (I)

389. When L is negative, the principal

sections, which are hyperbolas, have BB for

the transverse axis; the surface is imagi

nary from B to B , and the secant planes

between these limits do not meet the sur

face. In this case, the semi-axes will be

found to be A V 1, B \/ 1, and C,

and the equation of the surface becomes

A2BY A2Cy B2CV A2B2C2 = o. (2)

The surfaces represented by equations (1) and (2) are

called Hyperboloids. In the first, two of the axes are real,

the third being imaginary; and in the second, two are

imaginary, the third being real.

390. If M =
M&quot;, we have A = B, these two surfaces

become Hyperboloids of Revolution about the axis of i.

391. If M&quot; = o, the corresponding axis becomes infinite

and the surface becomes a cylinder perpendicular to the

plane of zy, whose base is a hyperbola. The situation of

the cylinder depends upon the sign ot L. Its equation is

My + L - o.
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If L diminish, positively or negatively, the interval BB

diminishes, and when L = o, we have BB = o. The prin

cipal sections in the planes of zx and yz become straight

lines, and the surfaces reduce to a right cone with an ellip

tical base, having its vertex at the origin of co-ordinates.

In this case, we have the equation

Mz2 My MV - o.

Sections made by planes parallel to the planes of xz and

yz, are still hyperbolas, which have their centre on the axis

of y or x.

392. If M&quot; = o, the cone reduces to two planes perpen

dicular to the planes of yz, and passing through the ongin.

393. The cone which we have just considered, is to the

hyperboloids what asymptotes are to hyperbolas, and the

same property may be demonstrated to belong to them,

which has been discovered in Art. 242. If we represent

by z and z , the respective co-ordinates of the cone and

hyperboloid, we shall have

My + MV My + MV L
f

- .. . .- . *t *

which gives

_
M

,_
&quot; M (z + z

)

The sign of this difference will depend upon that of L,

hence, the cone will be interior to the hyperboloid, when L
is positive, and exterior to it, when L is negative. The dif

ference z z will constantly diminish, as z and z increase,

hence the cone will continually approach the hyperboloid,

without ever coinciding with it.
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Of Surfaces of the Second Order which have no Centre.

394. Let us resume the equation

M*2 + My + M&quot;*
2 + Hz + U y + U&quot;x = o. (2)

We have seen (Art. 372), that this equation represents

surfaces which have no centre when M, M , or M&quot; is zero.

As these three quantities cannot be zero at the same, since

the equation would then reduce to that of a plane (Art. 100)

we may distinguish two cases ;

1st case, M&quot; equal to zero.

2d case, M&quot; and M equal to zero.

CASE I. M&quot; equal to zero.

395. The above equation under this supposition reduces ic

Mz2 + My + Hz + ll y + R&quot;x = o.

If we refer this equation to a new system of co-ordinates

taken parallel to the old, we may give such values to the

independent constants as to cause the co-efficients H and H
to disappear, (Art. 341). The equation will then become

M%2 + My + H x-o.

396. The sections parallel to the co-ordinate planes are

Mr2 + U&quot;x + M /3
2 = o,

My + K&quot;;c + M7
2 = o,

Mz2 + My + H&quot;a = o.

The two first represent parabolas, and are always real

The third equation will represent an ellipse or hyperbola,

according to the sign of M and M .
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397. The principal sections are

Mr2 + My = o, Mr2 + Wx = o, My + H &quot;x
= o.

The first of these equations will represent a point, or two

straight lines, according to the sign of M . The two others

represent parabolas.

398. Let us suppose M and M positive, the sections

parallel to the plane of yz, and whose equation is

Ms2 + My + H&quot;a = o,

will only be real when H&quot; and a have contrary signs. The

surface, therefore, will extend indefinitely on the positive

side of the plane of yz, when H&quot;is negative, and on the

negative side when H&quot;is positive.

399. If M be negative, the equations of the principal

sections are

Mz2 M o, z
2 + Wx = o, My Wx = o.

The two last represent parabolas, having their branches

extending in opposite directions, and their vertex at the
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origin A. The sections parallel to the plane of yz, will be

the hyperbolas B, B
, B&quot;, C, C , C&quot;.

The surfaces which we have just discussed are called

Paraboloids.

CASE II. M and M&quot; equal to zero.
*

400. Equation (2) under this supposition reduces to

Mz2 + Hz + K y + H&quot;x = o.

Moving the origin of co-ordinates so as to cause tne term

Hz to disappear, this equation becomes

Mz2 + H y + H&quot; = o.

The principal sections of this surface are

Mz2 + H y = o, + z
2 + R&quot;x = o, H y + R&quot;x = o.

and the sections parallel to the co-ordinate planes

Mz2 + H ?/ + H&quot;a = o,

Mz2 + H&quot;* + H /3
= o,

ll y + Wx + M/ = o.

The two first equations of the parallel sections represent

parabolas which are equal and parallel to the corresponding

principal sections. The sections parallel to the plane of xy
are two straight lines parallel to each other, and to intersec

tion of the surface by this plane. The surface is, therefore
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(hat of a cylinder with a parabolic base, whose elements are

parallel to the plane of xy. The projections of these ele

ments on the plane of xy, make an angle with the axis of x
TT//

the trigonometrical tangent of
wh4(^y

is -y=-

Of Tangent Planes to Surfaces of the Second Order.

401. A tangent plane to a curved surface at any point is

the locus of all lines drawn tangent to the surface at this

point.

402. Let us seek the equation of a tangent plane to sur

faces of the second order. Resuming the equation

Az2 + Ay + AV + Eyz + E xz + E xy + Cz +
C y + C&quot;x + F = o,

and transforming it, so as to cause the terms containing the

rectangle of the variables to disappear, we have

Az2 + Ay + AV +. Cz + C y + C&quot;x + F = o. (1)

Let x&quot;,
y&quot;,

z&quot;,
be the co-ordinates of the point of tan-

gency, they must satisfy the equation of the surface, and we

have

Az&quot;
2 + A

?/&quot;

2 + A V2 + Cz&quot; + C
y&quot;
+ CV + F = o.

The equations of any straight line drawn through this

point are (Art. 84),

x x&quot;
= a (z z&quot;), y y&quot;

= b (z z&quot;&amp;gt;
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For the points in which this line meets the surface, these

equations subsist at the same time with that of the surface.

Combining them, we have

A (z + z&quot;) (z z&quot;)
+ A (y + y&quot;) (y y&quot;)

+ A&quot; (x + x&quot;)

(
x x

&quot;) + C(z z&quot;)
+ C (y y&quot;)

+ C&quot; (x a;&quot;)

= o.

Putting for y y&quot;
and x

x&quot;,
their values drawn from

the equations of the straight line, we have

j

A (z + z&quot;)
+ A b (y + y&quot;)

+ A&quot;a (x + x&quot;)
+ C + C b +

C&quot;a\

(z z&quot;)

= o.

This equation is satisfied when z z&quot;
= o, which gives

z =
z&quot;,

a: =
x&quot;, and ?/

=
y&quot;. Suppressing (z z&quot;),

we

have

A (z + z&quot;^
J- A * (y + y&quot;)

+ A&quot;a (x + a?&quot;)
+ C + C b + C&quot;a = o.

This equation determines the co-ordinates of the secona

point in which the line meets the surface. But if this line

becomes a tangent, the co-ordinates of the second point will

be the same as those of the point of tangency, we shall have

therefore

a: =
x&quot;, y = y&quot;,

z =
z&quot;,

which gives

2Az&quot; + 2A
by&quot;

+ ZA ax&quot; + C + C b + C&quot;a = o,

for the condition that a straight line be tangent to a surface

vf the second order. Since this equation does not determine

the two quantities a and b, it follows that an infinite number

of lines may be drawn tangent to this surface at any point.

If a and b be eliminated by means of their values taken from
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the equations of the straightjine, the resulting equation will

be that of the locus of these tangents. The elimination gives

(2Az&quot; + C) (z z&quot;)
+ (2A y&quot;

+ C
) (y y&quot;)

+ (2AV +
C&quot;) (or a?&quot;)

= o;

and since this equation is of the first degree with respect to

x, y, and z, the locus of these tangents is a plane which is

itself tangent to the surface.

403. Developing this last equation, and making use of

equation (1), the equation of the tangent plane may be put

under the form

(2Az&quot; + C) z + (2A y&quot;
+ C

) y + (2AV +
C&quot;)

x

+ Cz&quot; + C
y&quot;

+ CV + 2F = o.

404. For surfaces which have a centre, C, C , C&quot;, are zero,

and the .equation of their tangent plane becomes

Azz&quot; + A
yy&quot;

+ A&quot;xx&quot; + F == o.

GENERAL EXAMPLES.

405. &quot;We now proceed to give some general examples upon

Analytical Geometry, the solution of which will prove a

valuable exercise for the student in familiarizing him with the

principles of the science, and in rendering him expert in their

application. The co-ordinate axes are supposed rectangular,

unless the contrary is indicated.

1. Find the equation of a line passing through a given

point and making a given angle with the axis of x.

Find the equations of the lines which shall pass through

23*
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the given points x f

, y ,
z 1

,
and be parallel to the lines whose

equations are given.

1 =
Ja:, ty + z = 2.

Find the line of intersection of these planes :

4

Determine the points of intersection of these lines and

planes :

5. &amp;lt; z x = 5 ;

1 2x \y + 1 = 4z.

{5x
4z = 1,

3# = 2 82;

{15#

2&amp;lt;?2
=

3,

3y = 1160 + 6
;

8. Find the equation of the line passing through the point

x1 = 1, y
f =

2, 3 = J, and parallel to the plane 1J?/ 9 =

9. Also of the line through the point xr =
8, y

f =
1,

2 = 2J, and parallel to the plane 42 + 3 x = Si/.

10. Find the equation of the plane passing through the

three points, x
l
=

J, yi
=

1&amp;gt; S]
= 2

;
#2
=

3, y2
~

t&amp;gt;

i . -t __ ^i ,.,
c

11. Do the lines 8x 22= 1. 2y J^= 4, and Ja; + 3= 62,

Jg 4. 5 = 4y, lie in the same plane ?



=2s 1, ]
f 62; + 13 = 82,

CHAP. TIL] ANALYTICAL GEOMETRY. C71

12. Do these, x z = 1, y + 7* = 3
;
and 1 J.r *z = 2,

5y |
= 22?

Find the equations of the planes containing these lines :

2* + 7 = 3*,1
ig r3*=2z-3,

By = z + 3
; j } 4^ + 1 = 3*.

f 62; + 13 = 82,

I8y = 3z 14.

1 5. Find the equations of a line perpendicular to the plane,
&x -z + t = $y.

16. Find thnt of a plane perpendicular to the line x + 3 =

2z, 3- 4 = 24y.

17. A plane may be generated by a right line moving alo^g
another right line as a directrix, and continuing parallel to

itself in all its positions ; find the equation of the plane from

this mode of generation.

18. Find the equation of a line passing through a given

point in a plane, and making a given angle with a given line
;

find also the distance from the given point to the point of in

tersection of the two lines. Discuss the result, examining the

cases in which the given angle is, 0, 45, and 90.
19. Find the angle included between a line and plane given

by their equations. This problem may be readily solved by
means of the following considerations : the angle made by the

line and plane, is that included between the line and its projec
tion on the plane. If then, a perpendicular to the plane be
drawn from any point on the line, this perpendicular, with a

portion of the given line and its projection on the plane, *ill

form a right angled triangle, of which the angle at the base is

the one sought. The angle included between the given line

and the perpendicular is the complement of the angle at the

base, and may be readily determined, and by means of it tue
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required angle is instantly found. Denoting the required

angle by V, we thus find,

Aa -f B6 + C
sin. v^

~~ ~ ~ &quot; __

Vl -|- az + tf v/A2
-f- BM^C 2

&quot;

20. Find the angle between two planes given by their equa

tions. If from a point within the angle made by the planes,

we draw two lines, one perpendicular to each plane, the angle

made by one of these lines with the prolongation of the other,

will be equal to the angle included between the planes, and

may be easily found. Calling the required angle W, we thus

obtain,
AA + BB + CfC

cos W = =t
+ B2 + C 2 vA 2 + B /2 + C 2

From these last two problems we can easily find the conditions

for parallelism and perpendicularity between a line and plane,

or between two planes.

21. Find the equation of a plane passing through the point

xl

|, y
l =

3, z
l = 2, and perpendicular to the plane

3x = 10 = 4y + z.

22. Show that the three lines drawn from the three angles

of a triangle perpendicular to the opposite sides, all meet at a

common point.

23. Show that the three lines drawn from the three angles

of a triangle to the middle points of the opposite sides, all

meet in a common point.

24. Show that the three perpendiculars erected upon the

sides of a triangle at their middle points, all meet in a common

point.

25. Having given a point in space, and a plane, find th&amp;lt;;

shortest distance from the point to the plane. If the co-ordi

nates of the given point be designated by x
, y ,

z
,
and the
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equation of the plane be, z = Ax -f By -f D, the required

distance is,

D + Ax + By z&amp;gt;

v l + A2
4- B2

26. Find the equation of a line tangent to a circle and

parallel to a given line.

27. Find the equation of the tangent line to the circle by
means of the property that this tangent is perpendicular to

the radius through the point of contact.

28. Find the equation of a tangent line to the circle,

(*/-6)
2 + (z.-a)

2 =R2
.

Ans. (y b) (y&quot; b) + (x a) (x&quot; a)
= R2

.

(Henceforth, in designating points in a plane, we shall

simply give the values of the co-ordinates in the order, x, y ;

thus, the point (2, 5), would signify the point whose co-ordi

nates are x = 2, y = 5. For points in space the co-ordinates

will be given in the order, x, y, z.)

29. Find the equation of the tangent line to the ellipse,

9y* -f fy
2 = 144, at the point (3, 3) ; also that of the normal

at the same point ; likewise the lengths of the subtangent and

subnormal on both axes.

30. Find the equation of the tangent line to the ellipse

parallel to a given line
; also that of the normal subjected to

a similar condition.

31. Find the equation of the ellipse, which, with a trans

verse axis equal to 18, shall pass through the point (6, 7).

32. Find that of the ellipse which passing through tht

point (5J, 8), shall have its conjugate axis equal to 10.

33. Determine the area of the ellipse, 16^ -f 13z2 = 182.

2K
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34. Arc the lines y = 2x 3, y ^= 3x 6, supplemental

chords of the ellipse 9/ -f lx* = 144 ?

35. The equation of one supplementary chord in the ellipse

9?/
2
-f 4z2 = 36, is 2y = x + 3

;
find that of the other.

36. Are the lines 3?/ = 5#, 2J?/
= 4x, conjugate diameters

of the ellipse Sf -f 5z2 = 30 ?

37. In the ellipse 10if + Qxz =
42, find the equation of that

diameter which is the conjugate of the one whose equation is,

6y = Tar.

38. In the ellipse, it is often desirahle to know that pair of

conjugate diameters whose lengths are equal. For this pur

pose take the value of A 2

,
and the second value of B /2

(Art.

: 185) and place them equal to each other. We shall thus

obtain, A2B2
-f A2B2

tang
2

cc = A4

tang
2

cc + B4

,
which gives

-n

tang oc = -r
, henpe, the required diameters are parallel to

the chords joining the extremities of the axis.

39. Show that the angles included by these equal conjugate

diameters, are the greatest and smallest which can be con

tained by any pair of conjugate diameters of an ellipse, and

consequently constitute the limits alluded to in Art. 188.

40. Show that in the ellipse the curve is cut by loth the

diameters conjugate with each other.

41. Show that in the hyperbola, the curve can be cut by

only one of two conjugate diameters.

42. The lines 2y = x + 12, 8y + x = 12, are supplemental

chords of an ellipse whose transverse axis is 24
;
what is the

equation of the curve ? Ans. 16/ -f z2 = 144.

43. Find the equation of the tangent line to the parabola

?/

2 = 4x, at the point (4, 4) ;
also that of the normal : and
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that of a line through the focus and point of tangency ;
and

find the angle included between this last line and the

tangent.

44. Find the equation of a line which shall be tangent to

the parabola y-
= 8x, and parallel to the line y + 1 = ox.

45. Find the equation of the parabola, which with a para

meter equal to 12, shall pass through the point (2, 8).

46. What is the area of the segment cut off from the para

bola 3#
2 = &2x, by the line y = 2x 4 ? Ans. 18;,;.

47. What is the area of the segment cut off from the para

bola 8/ = 2312: 724, by the line 8y = llx 4 ?

Ans. 7;

48. In the hyperbola 9/ 4z2 = 36, find the equation

of the diameter which is the conjugate of the one, y = 2x.

49. In the same hyperbola, are the lines 2# = #, y = os.

conjugate diameters ? 9

50. Are these, 5# = 2z, and 9# = lOx f

51. Are the lines -y = 5x, 4?/
=

x, conjugate diameters of

the circle x1

-f
y&quot;

= 14 ?

52. Are the lines y = 3.r, y = 4z, conjugate diameters of

the ellipse 10/ -f 8^ 2 = 40 ?

53. Find the equation of the ellipse for which they are

conjugate diameters : also the equation of the curve referred

to them.

54. Find the equation of the hyperbola which, with its

transverse axis equal to 16, has the lines 3j/
= 2x, 3j/ + 2x= 0,

for its asymptotes.

55. Find the equation of a hyperbola passing through the

point (1, 2),
and having one of its asymptotes parallel to the

line, 3#
= 2x + 3. Ans. 4z2

9^/
2 = 32.

56. From the equation, b sin cc
1

p cos a 1 =
0, (Art. 213),
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P %Pwe obtain, sin2 a 1 =
9 ; and the parameter 2p

l = -^- ,^t*
f /^ 8111. OC

then becomes, 2p
l = 2(p + 2a)

= 4FM (see figure to Art.

212). Hence, In the parabola, the parameter of any diameter

is four times the distance of its vertex from the focus.

57. In the parabola y
2 = 8x, what is the parameter of the

diameter, y = 16 ? Ans. 136.

r
&amp;gt;8. Show how you may, from Arts. 215, 216, derive a

shnpk graphic construction, for drawing a line tangent to a

j
irabola and parallel to a given line.

59. Demonstrate generally, that in
an&amp;lt;/

conic section the

chords bisected by a diameter are parallel to the tangent at the

extremity of that diameter.

60. Find the equation of a tangent plane to the sphere

(x )

2 + (y 5)
2

-f (z c?
= R2

at the point (x y z
]? ) by

means of the property that this tangent plane is perpendicular

to the radius through the point of contact.

Ans. (xa)(x } a) + (1/ b)^ ] b) + (z c)(z 1 c)
= R2

.

61. Given the base of a triangle and the sum of the tangents

of the angles at the base, to find the locus of the vertex.

Ans. A parabola.

62. Given the base of a triangle and the difference of the

angles at the base, to find the locus of the vertex.

Ans. An equilateral hyperbola.

63. Required the locus of a point P, from which, drawing

perpendiculars to two given lines, the enclosed quadrilateral

shall be equivalent to a given square.
Ans. A hyperbola.

54. Find the locus of the intersections of tangent lines to

the parabola with perpendiculars to them from the vertex.

Ans. A cissoid.
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Fig. 24.

CHAP. TIL]

65. A common carpenter s square CBP (Fig. 24), moves

so that the ends C and B of one ^f its

sides, remain constantly upon the two

sides, AX and AY, of the right angle

TAX. Required the curve traced by

the other extremity P.

Ans. An ellipse.

66. Find the locus of the vertex of a parabola which, with

a given focus, is tangent to a given line. Ans. A circle.

67. Chords are drawn from the vertex of a conic section to

points of the curve. Required the locus of their middle

points.

68. Given the base and altitude of a triangle, to find the

locus of the intersections of per

pendiculars from the angles upon

the opposite sides.

Ans. A parabola.

69. Find the equation of the

surface generated by the line

BC (Fig. 25) moving parallel to

the plane of yz, and constantly piercing the planes of xz, and

xy in the given lines ZX, ?/D, the last line being parallel to AX.

70. Upon the plane AC (Fig.

26) inclined at an angle of 10

to the plane AB of the horizon,

is erected a pole, HD, perpen

dicular to the plane AB : over

the top of this pole is stretched

a rope, CHE, whose entire length is 150 feet, its extremities,

E and C, meeting the plane AC at distances DE, and DC,
24

_/
/&amp;gt;.

26.
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from the foot of tho pole, equal each to 12 feet. Re-quired

the height of the pole DII. Am. 74--J1G feet, nearly.

71. Find the equation of the parabola from the property

exhibited in Art. 211.

72. Show how to describe a parabola when you have given

its vertex and axis, and the co-ordinates of ono of its points.

73. Show that in the hyperbola, the tanyent line to the

curve bisects the angle included between the two linen from the

foci to the point of tanyency.

74. Show how you may, from the preceding property, dniw

a tangent line to the hyperbola from a point either without or

upon the curve, by a method analogous to that given for the

ellipse in Art. 175.

75. Take two lines not in the same plane, and pans a plane

through each. Required the locus of the line of intersection

of these planes when they are subjected to the condition of

continuing perpendicular to each other.

An*. A hyperbolic paraboloid.

76. In the ellipse % 2
-f Gz2 = 48, find the equation of the

diameter conjugate with the one whose equation is Zy = 7#,

and also the equation of the curve referred to tho.se diameters.

77. What is the equation of tho hyperbola of which the

lines by = 2x
9 y = 4Jar, are conjugate diameters ?

Construct the following curves, and also the asymptotes and

centres of such as have them.

78. ty 4Xy + x&amp;gt;y + ,^ = 10.

79. %2

2xy x* -f y 6 = x 20.

80. y
1

Qxy -f 9^2 6y -f &r + & =
81. Kxy -f y? y -f \x = J f.

82. i
x&amp;gt; + bx = 6.
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-*y + I* + G = O.

84. 4^/
1

-f ry 6zl
-f 2y a: = 1 . .

. y* + 2xy -f x 1

Oy 6* + 9 = 0.

80. Ly 4- 10./7/ -f :J~V + 8y 13* + 24-0.
ST.

.y
2

r/y :}0^ 4y -f .00^ 21 =

88. if -f 1 \xy -f 3^ 4y
-

l\x -
89. t/

z -
|- :V 2y lOa? -f 19 - 0.

.. L V -ar+1-3^ 5.

91. 4^ + 4^ + ^ 4y 8a?+ 16-0.
- . ^ I-./ ~2z* +

C&amp;gt;y
4Qx= .1.

* ;/ +

98. y* Ixij -f ** -f- 4y 4* -f- 3 0.

99. y* + 2ry -f ** 1 =5 0.

1 00. 5y
v

Or// -f 2** -f y * 1.

101.
-if 1-j-ij -}- 1 Oy* _ -

2// -f 1 ,Jz t

n\ f
-

-)::,
1

] now give Borno rerj useful graphic

relating to conic section*, leaving I|K- .-itiouH HH
-&amp;lt;

- f -r iljc
^tu(]cnt.J

102. Having given a pair
/&amp;lt;f

.

,, ^
of conjugate dknaetern, HO /
and BC (Fig. 27), of ai,

7/

&quot;*/

9
/j&quot;c

tbe curve may be traced by

point*, thua: on AC, AJJ, de

scribe the parallelogram Al&amp;gt;.

Divide- l)&amp;lt;; into May number of jual part, ;ifil A^ into i h

nurjjber of
j&amp;gt;art,

albo c fjuaJ. J&amp;gt;ruw the Jin*.-* JJ1,
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etc., from B to the points of division on DC ;
and the lines

El, E2, etc., from E to the points of division on AC. The

points of intersection of the corresponding lines will be points

of the curve.

103. The following is a good method for describing the

ellipse by points, when we have given a pair of conjugate

diameters. Let AC (Fig. 28) be a diameter, and AB equal

JJ

SEv,

*{
2/

N

. 28

JB 4: & * * J?

and parallel to its conjugate. Through B draw BE parallel

to AC : take BE any multiple of AC : produce BA and take

AD the same multiple of AB : divide BE into any number of

equal parts, and AD into the same number of equal parts :

through A draw lines to the points of division in BE, and

from C, lines to those in AD. The intersections of the corre

sponding lines will be points of the ellipse. If BE be taken

to the right of B, instead of to the left, the points found will

belong to a hyperbola.

104. Having given, in length and position, a pair of con

jugate diameters of an ellipse, to construct the axes. Let

AAr

,
and BB (Fig. 29), be the given conjugate diameters.

Through A draw IAE perpendicular to OB, and on this line

lay off on each side of A, the distances AE, AE
,
each equal
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to the semi-conjugate diameter OB. Through the points E,
and E

, thus determined, draw from the centre the lines

OE, OE . Then the lines D OD, HOH , bisecting the angle

EOE and its supplement,

will give the directions

of the axes; the trans

verse axis being always

situated in the acute angle

formed by the conjugate

diameters. The length

DD of the transverse axis is given by the sum of the lines

OE, OE
; that of the conjugate axis HH

,
is equal to their

difference, OE OE. This construction is readily demon
strated by showing that the loci of the points E, E ,

are two

circumferences of circles concentric with the ellipse, and

having for radii (A B), and (A + B), respectively; and

then showing that the lines OE, OE are diameters of the

curve making equal angles with its axis.

105. Let AA and BB (Fig. 30) be the axes of an ellipse.

Take a ruler Pm, equal in length to the semi-transverse axis
;

from the extremity P, lay off

PH = the semi-conjugate axis;

now move this ruler so that the

extremity m shall remain on the

conjugate axis BB
, while the

point of division H continues upon
the transverse axis AA : then the

point P will describe the ellipse. This principle has been

applied to the construction of a very simple instrument for

describing ellipses, known as the elliptic compasses, or

trammels.

24* 2L
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106. Find the equation of the right line referred to oblique

axes in its own plane, when its position is fixed by the length

and direction of the perpendicular to it from the origin.

An s. p = x cos cc + y cos /3, when ex and fi are the angles

made by the perpendicular, with the axes of x and y

respectively. If the axes are rectangular the equation is,

p = x cos cc + y sin ex.

107. Find and discuss the polar equation of the right line.

108. Find the locus of the centre of a circle inscribed in a

sector of a given circle, one of the bounding radii of the sector

being fixed.

109. Show that, of all systems of conjugate diameters in

an ellipse, the axes are those whose sum is the least, while the

equal conjugate diameters are those whose sum is the greatest.

110. Find the locus of a point so situated upon the focal

radius vector of a parabola, that its distance from the focus

shall be equal to the perpendicular from the focus to the

tangent. Ans. r = a sec Jd, counting 6 from the vertex.

111. Show that, the equation of the tangent line to the

ellipse referred to its centre and axes, may be put under the

form

while that for the hyperbola may be written,

y = mx + N/A2w2 B2
:

and that of the parabola is,

These equations are known as the magical equations of the

tangent.

112. In the focal distance FP of any point P of a parabola,
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J?p is taken equal to the distance of P from the axis
; find

the locus of p.*

Ans. r = c tang J0, estimating 6 towards the vertex.

113. Prove that the right lines drawn from any point in an

equilateral hyperbola to the extremities of a diameter, make

equal angles with the asymptotes.

114. Show that the equation of the plane may be put under

the. form,

p = x cos O, x) + y cos (p, y) + z cos (p, z),

when p is the length of the perpendicular to the plane from

the origin, and the notation

cos (p, x\ cos (p, y), cos (p, z),

is use,d to signify the cosines of the angles made by this per

pendicular with the axes of x, y, z, respectively. Or, it may
written,

p = x sin (P, x) + y sin (P, y) + z sin (P, z),

where

sin (P, x\ sin (P, y\ sin (P, z),

signify the sines of the angles made by the plane with the

axes 2-, y, 2. Using an analogous notation to express the

angles made by the plane with the co-ordinate planes, its

equation may be written,

p = x cos (P, yz) + y cos (P, xz) + z cos (P, xy\

Construction of Surfaces of the Second Order from their

Equations.

406. This consists in constructing, from the equation of the

surface, its principal sections, and its projections, and in de

termining the kind of the surface. Let the general equation
of these surfaces be solved with reference to z, and we shall

obtain,
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Writing z equal to the rational part of its Value, we have,

_

~2A

which represents a plane, above and below which must be laid

1 ...

off ordinates equal to ?nr v/&amp;lt;P (#, /)&amp;gt;

in order to obtain points

of the surface. This plane, (N), is called a diametral plane,

since it bisects a system of parallel chords of the surface, and

passes through its centre. Similar results would ensue from

solving the general equation with reference to each of the other

variables x
9
and y ; and thus we should obtain three of these

diametral planes, which, intersecting at the centre of the sur

face, would enable us to determine and construct that point.

Taking the radical part of the value of 2, and placing it = 0,

we have, &amp;lt;p (x, y)
=*

0, which manifestly represents the projec

tion of the surface upon the plane of xy* Similarly, we may
obtain its projection on xz and yz. These projections being

always conic sections, may be readily constructed.

To enter into a full exposition of the process for determining

the species of the surface, would involve us in much unneces

sary detail and repetition of principles previously discussed,

besides occupying more space than we could afford to it in the

present volume. By the aid of the principles already estab

lished and the examples of their application exhibited in the

methods of discussing curves and surfaces, the student ought

to be able, with a moderate degree of ingenuity, to effect this

investigation for himself. He will experience but little difficulty

in eliminating the necessary analytical criteria for determining

the species of anj surface of the second order, if he will only
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keep in mind the mode in which we accomplished the same

analysis in the case of the general equation of the second degree

between two variables. We subjoin a few examples for

practice.

115. 422

4xy 4 4/ + 5z2 32z 24z -f 96 = 0.

116. x-+ ty + 2z +2xy 2x 4y42 = 0.

117. x- 4 y
1 4 2z- Ixy 2xz 4 lyz 4 2y 3 *= 0.

118. or 2/ 4 z
2 + -2xy

&amp;gt; 4.T2 4 4y + 4z 9 = 0.

119. 3.r
2 4 2/ 2ar + 4^ 4x 8z 8 = 0.

120. x2 +y 2 + 2z*+ 2xy + 2xz + 2yz 2x2y + 2.2 = 0.

121. a;
2

t/

2 2ss
-f 2^ 4yz + 2y + 2z = 0.

122. rr
2 + 3/ + 2^2 + Ixy + 4^ 82: 4y 3^ = 0.

123. rc
s +^ 2 2z

2 + 2^ -f 2xz + 2^2 4a; 2y + 2z = 0.

124. 2:
2

-f y- + 922

2.ry 6r^/ + 6^/2 + 2z 4^; = 0.

Find the equations of, and construct the planes tangent to

these surfaces^ at the points given :

125. \x- 8 (y
2 + z

2

) 4- 100 = 0, at (1, 2, 3).

126. ox- + 6/ 4 z- 30 = 0. at (1, 2, 1).

127. 4.s
2

Qy Six = 0, at (1, 3, 5).

128. 8/ 5z2 + 24x = 0, at (J, 1, 2).

129. Find the equation of a cone having its vertex on the

axis of z at a distance 5 from the origin, its base being a

hyperbola in the plane xy, the axes of this hyperbola being

coincident with those of x and ?/, their numerical values being

8 and 6. Then intersect this cone by a plane through the

axis of y making an angle of 45 with xy and find the equa

tion of the curve of intersection of the plane and cone, referred

to axes in its own plane, and construct it.

130. Discuss and determine the form of the surface defined by
the equation aV + ?/V rV = ; show how it may be gene

rated, and then find its equation from its mode of generation.
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Ans. It is a conoid, having for a plane director the plane

xz, and for directrices the axis of y and a circle x--{-y
i=r 1

^

at a distance a from the origin.

131. CP, CD, are conjugate semi-diameters of an ellipse:

prove that the sum of the squares of the distances of P, D,

from a fixed diameter is invariable.

132. Show that the equation ?/
2

Zxy sec cc -f x* = 0,

represents two right lines passing through the origin and in-

cc(c\45 rh 27.

133. Determine the surface represented by the equation

z = xy.

134. Show that if at any point of a hyperbola a tangent

be drawn, the portion of this tangent included between the

asymptotes will be equal in length to that diameter which

is the conjugate of the one passing through the point of

contact.

135. Find the equation of the parabola in terms of the

focal radius vector and the perpendicular from the focus on

the tangent. Ans. d* ==
%pr, where d is the perpendicular.

136. Find the equations of the sides of the regular hexagon

inscribed in the circle x&quot;

1 + ?/

2 = 4.

137. Show that, if at the extremity of the ordinate passing

through either focus of the ellipse a tangent to the curve be

drawn, and at the point in which this tangent meets the trans

verse axis produced, a perpendicular be drawn to this axis,

then the ratio of the distances of any point of the curve from

the focus and this line is constant and equal to the eccentricity.

These lines are called the directrices of the curve. The same

property belongs to the hyperbola also.

138. In the hyperbola, 16?/
2 9z8 = 144, find the equa-
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tion of the diameter conjugate to the one, 2?/
=

rr,
and find

the equation of the curve referred to these diameters.

139. Find the equations of the ellipse and hyperbola referred

to the focal radius vector and perpendicular on the tangent.

BV BV
Ans. Ellipse, f = zr ; Hyperbola, f =

140. Find the equations of the same curves referred to the

central radius vector and perpendicular on the tangent.

A2B2 A2BJ

Ans. Ellipse,^= A, + B2_
p2

; Hyperbola,/=y_A* + B&quot;



NOTES.

I. Art. 150, p. 107. In the discussion of the equation at the bottom of

this page, the positive abscissas must be reckoned to the left, and the negative

abscissas to the right. This results from the nature of the transformation em

ployed in this article for removing the origin from to B. The formula used for

this purpose is x= OB a/, where x and x/
having contrary signs must be

reckoned in contrary directions, and since the positive values of x were counted

to the right, those of x must, in the transformed equation, be counted to the

left. This becomes more apparent by referring to Art. 110, where we found

the formula for passing from one set of co-ordinates to a parallel set, to be,

x = a -f-
z

,
where the positive values of both x and x are counted in the

same direction, and so these quantities have like signs in the formula. But

had the positive values of a/ been reckoned in a contrary direction to that in

which we estimated those of z, then the formula would have been x= a x
,

the change of direction in zr being indicated by its change of sign. When

the origin is removed from B to A (page 109), the direction of the positive

abscissas is again reversed by the formula employed, and in the resulting

equation they must be reckoned to the right.

II. Arts. 224-5. The same remark holds good here, the origin being at

W, and the negative abscissas counted to the right, that is, from B towards

B. In Art. 226, where the origin is transferred from W to A, the formula

c sin v cos v cos u
should be, : : ; * by which, since x and a/ have

sin (v -f- M) sin (v if)

contrary signs, the direction of the positive abscissas is again reversed, and

must, in the resulting equation, be counted to the right.

(288)
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ni. CHAP. V. The general equation, Ay 4. Bzy -f- Czs
4- Dy-f Ez-f- F=0,

of conic sections contains but five arbitrary constants, since we may divide all

its terms by the coefficient of any one term. Therefore a conic section may

be made to fulfil five distinct conditions (such as passing through five given

points, only two of which lie on the same right line) provided none of these

constants are determined by the analytical condition which determines the

class of the curve. If the curve be an ellipse, we must have, B2 4AC
&amp;lt; 0,

which does not determine any of the constants A, B, C, and therefore the

ellipse can be made to pass through five given points. Also, its most general

equation must contain five arbitrary constants, which are, either directly or

indirectly, the co-ordinates of the centre, the lengths of the axes, and the

direction of one of them. When the ellipse becomes a circle we must have,

A= C, and B= 0, by which two of the constants are determined, leaving only

three arbitary constants in the equation : so that the circle can be made to

pass through but three given points. If the curve be a parabola, we must

have B2 4AC 0, which determines one constant, thus leaving four in the

equation ;
so that the parabola can be made to pass through but four given

points. Its most general equation must contain four independent constants,

which are, either directly or indirectly, the co-ordinates of the vertex, the

parameter, and the direction of the axis. The student can readily apply

these principles to the varieties of this class of curves.

If the curve be a hyperbola, we must have, B7 4AC
&amp;gt; 0, which deter

mines none of the constants, and therefore this curve may be made to pass

through five given points. Its most general equation must contain five arbi

trary constants, the same as for the ellipse. The equilateral hyperbola can be

made to pass through but three given points. When the hyperbola degenerates

into two straight lines, the roots z
,
zx/

, must be equal, which can only happen

when the quantity under the radical is a perfect square. This requires that

the coefficient of the middle term shall be equal to the double product of the

square roots of the coefficients of the extreme terms. The equation expressing

this condition determines one constant, thus leaving but four arbitrary con

stants in the equation of the curve
;
so that two straight lines which intersect

can be made to pass through only /our points.

The close of this discussion would seem to be the proper place for intro

ducing some notice of the origin of the Conic Sections. They were first dis

covered in the school of Plato ;
and his disciples, excited, no doubt, by the

many beautiful properties of these curves, examined them with such assiduity,

25 2M
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that in a very short time several complete treatises on them were published.

Of these, the best still extant is that of Apollonius of Perga, who acquired

from his works the title of the Great Geometrician. His treatise on these

curves has come down to us only in a mutilated form, but is well worth atten

tion, as showing how much could be done by the ancient analysis, and as

giving a very high opinion of the geometrical genius of the age. Apollonius

gave the names of ellipse and hyperbola to those curves Hyperbola, because

the square on the ordinate is equal to a figure
&quot;

exceeding&quot; (&quot;wrsp/JocXXoi &quot;)

the

rectangle on the abscissa and parameter.

Ellipse, because the square on the ordinate is &quot;defective&quot;
(&quot; eAAeiTroi/&quot;)

with

respect to the same rectangle. It is not known who gave the name of para

bola to that curve probably Archimedes, because the square on the ordinate

is equal (

&quot;

Trocpac/JaAW )
to this rectangle.

Thus, the ancients viewed these curves geometrically,, in the same manner

as we are accustomed to express them by the equation, y*= mx-\- nxz
.

IV. Art. 329. In the polar equation of the conchoid here given, the

pole is supposed to be at the point A (Fig. 7), and the line BC is the fixed

axis from which the angle is estimated.

V. Art. 311. We had designed leaving the proof of this construction as

an exercise for the st-udent, but it may not, perhaps, be advisable to omit

establishing the truth of so important a method. Take (Fig. a, page 212)

as the origin, and OB, AO as the axes of x and y. Put OD= d, OB= 6,

xy x y
AO = a, OC -

c. The equation of DC is,
-j

-f = 1
;
of AB, j -f- = 1 ;

of AD,
-| -f -|

= 1
;

of BC,
-| -f- -|

= 1. Then that of PH is,

The equation of the curve is,

Ay -f Bzy-f Cz +Dy-f E*+F= ...... (2).

To get the points B andD, makey= o in (2), which gives, Cz
2
-{-Ea;-f F= 0,

whose roots are the values of 6 and d. Hence by the theory of equations,

^-4.-= -. Similarly, --f- = p.
Hence (1) becomes, Dy-f

Ex 4- 2F = 0, which is the polar line of the origin 0. Similarly OH is the

polar line of P, and PO that of H, which renders the truth of our construc

tions evident.



APPENDIX.

I.

TRIGONOMETRICAL FORMULA

N. B Radius is counted as 1.

sin A .

1. Tang A =-rcos A

2. Cot A = -r r-

sin A

3. Sec A = ---T*
cos A

4. Cosec A = - T
sin A

5. Sin (A + B) = sin A cos B -f sin B cos A.

6. Cos (A + B) = cos A cos B sin A sin B.

7. Sin (A B) = sin A cos B sin B cos A.

8. Cos (A B) = cos A cos B + sin A sin B

9.

10. Tang (A - B) =

B
tang A tang B

ta &quot;2 A ~ tan* B
1 + tang A tang B

11. Tang 2A = -,

ta &quot;g
,.

1 tang A
(291)
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sin A + sin B _ tang (A + B)
*

S in A sin B
~

tang i (A B)

1 cos A
15.

16. Sin 2A = 2 sin A cos A.

.
t .

1 -f tang
2

18. Cos A -
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II.

QUESTIONS ON ANALYTICAL GEOMETRY.

CHAPTER I.

WHAT is Algebra ? May it be applied to the solution of geometrical pro

blems ? What is necessary to such application ? What is an unit of measure ?

In comparing lines, what kind of unit is used ? Surfaces ? Solids ? Would you
use the same linear unit for comparing all lines ? What are some of the linear

units ? What are some of the units for comparing plane surfaces ? Solids ?

How would you compare two lines ? Suppose one contained the unit of 5 times

and the other 10 times, how would they compare ? How would you compare
surfaces? If a surface were represented by the number 10, what would this

number express ? If another were expressed by 20, how would the two com

pare ? If the solidity of a body be represented by 50, what would this number

denote ? How then may we conceive lines, surfaces, &c., to be added to each other?

May all the operations of arithmetic be thus performed upon them ? How ? If

the length of two lines be expressed numerically by a and 6, how might the lines

be added ? What would the sum of the two lines be equal to ? What is meant

by the construction of a geometrical expression ? How might you construct a

line that should be equal to the sum of two given lines ? Their difference ? What
do the numbers which represent the lines denote ? How may you pass from

the equation between the numerical values of the lines to that between their

absolute lengths ? Will the two sets of equations ever be of the same form ?

When ? Is it necessary in such cases to make the transformation ? Why not ?

When will not the two sets of equations be of the same form ? May homoge
neous equations be at once constructed without transformation ? Would the

equation x = ab, express a numerical or geometrical relation ? Why nume
rical ? In order that it should express a geometrical relation, what must the unit

of measure be denoted by ? How may you construct an equation of the form

x = abed? x = \/ab ? x ^/a- 4. II- ? x _=. v/a b- ? When a quad.
atic equation has to be constructed, what does an imaginary value for x denote ?

25* (293)
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Suppose the values of x are equal ? Unequal ? What interpretation is given to

negative solutions ? Is this a common interpretation ? How was the negative

solution interpreted in the problem of the couriers in Algebra?

CHAPTER II.

How is Analytical Geometry divided ? What is Determinate Geometry ? In.

determinate Geometry ? Give an example of the problems embraced in Deter-

ruinate Geometry. What are the general steps to be followed to express analy

tically the condition of geometrical problems ? How many equations must there

be ? How are the solutions obtained ? Who first applied Algebra to Geometry ?

(Vieta.)

CHAPTER III.

What kind of questions are embraced in Indeterminate Geometry ? Why
are such problems called indeterminate ? What does the equation y x ex

press ? Does it define fully a straight line ? Wrhat does the equation y
2 = 2aa;

ar
3 denote ? Why the circumference of a circle? May every line be thus

represented by an equation ? May every equation be interpreted geometrically ?

Who first made this more extended application of Algebra to Geometry ?

(Descartes,}

How do you define space ? Can the absolute positions of bodies be determined ?

May their relative positions ? In what manner ? How may the relative posi

tions of points in a plane be fixed ? What are the assumed lines called ? What

is the origin ? What is an abscissa ? An ordinate ? What is meant by variables ?

Constants ? When is the position of a point fixed ? What are the equations of

a point ? If the abscissa be constant while the ordinate varies, how will the

position of the point be effected ? If the ordinate be constant and the abscissa

vary ? What are the equations of the origin ? How are points in the four

angles of the co-ordinate axes represented? What are the equations of a point

in the 2d angle ? 3d ? 4th ? In the first angle on the axis of x ? on the axis of

y ? In the third angle on the axis of x ? of y? What does the equation x=a
considered alone denote ? y = b ? How is it then that the two combined fix the

position of a point in a plane ? What does the equation of a line express ? Why
is the equation of a straight line in a plane referred to oblique axes ? How do

you know it is the equation of a straight line ? May this equation express a

straight line in every position it may take in tho plane of the axes ? Suppose it

pass through the origin ? If it cut the axis of ordinates above the origin ? below ?

How is it situated if the co-efficient of x be negative ? How is the point deter

mined in which it cuts the axis of x ? of y? What is the equation of a right

line referred to rectangular axes ? What is the reason of the change ? What
does the co-efficient of the variable in the second member express ? The abso

lute term? What will be its equation if it be parallel to the axis ofy? If it be

parallel to the axis of x ? If it pass through the origin ? Which of the quan*
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titles in the equation of a straight line referred to rectangular axes fixes its posi

tion? Must a and b be both known to determine the line ? Ifa be known, and b

be indeterminate, what will the equation denote ? If b be known, and a inde

terminate ? If both a and b be indeterminate ? How many separate conditions

may a straight line be made to fulfil ? What is the equation of a straight line

passing through a given point ? Why must a or b disappear in the process

for obtaining this equation ? What is the equation of a straight line passing

through two given points ? Why do a and b both form this equation ? If the

given points have the same abscissa, what will the equation of the line become ?

If they have the same ordinate ? What is the condition for two parallel straight

lines ? \Vhat is the expression for the tangent of the angle which two straight

lines make with each other in a plane ? What is the condition of two perpen
dicular straight lines in a plane ? How do you ascertain the point of intersec

tion of two straight lines in a plane ? How is the distance between two points

in a plane expressed ? If one of the points be the origin ?

Of Points and Line in Space.

How is a point in space determined ? What are the planes used called ? What
are the co-ordinate axes ? What are the co-ordinates of a point in space ? How
are they measured ? What is the origin ? What are the equations of a point

in space ? What is meant by the projection of a point ? How many projections

will a point have ? What are the equations of the projection of a point on the

plane ofxy? xz ? yz? If the projections of a point on the planes xy and xz

were known, could you determine the equations of the third projection ? How ?

Could you make the geometrical construction for the third projection ? How ?

If one of the equations of a point in space, as x = a, be considered by itself,

what does it express ? What does the equation y = b represent 1 z = c ? If

two of these equations be considered together, what would they represent with

reference to the position of the point ? Would they be sufficient to define it ?

If the third equation be connected with the other two, would the three be suffi

cient ? Why ? What are the equations of the origin ? What are the equations

of a point on the axis of x ? of y ? of z? What signification have negative co

ordinates ? What is the expression for the distance between two points in space ?

If one be the origin of co-ordinates ? To what is the square of the diagonal of

a parallelopipedon equal ? To what is the sum of the squares of the cosines of

the angles which a straight line in space makes with the co-ordinate axes equal ?

How are the equations of a straight line in space determined ? What are they?
What do they represent ? Knowing the equations of two projections of a line,

may you determine the equation of the third projection ? What is meant by the

projection of a line ? How many equations are necessary to fix the position of

a straight line in space ? Why only two ? What quantities in these equations

fix its position ? When the constants are arbitrary, what is the position of the

line ? Do you know it is a straight line ? Suppose one of the constants ceases
&quot;

to be arbitrary, what effect upon the position of the line ? If two ? If all are

known? What is the projection of a curve? How mav its position be fixed
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analytically ? What are the equations of a line passing through two points in

space ? What is the expression for the cosine of the angle between two lines in

space, in terms of the angles which they make with the co-ordinate axes ? In

terms of their constants ? What is the condition of perpendicularity of two

lines in space ? Of parallelism ? How do you determine the intersection of

two lines ? How is the condition that the lines shall intersect expressed ?

Of the Plane.

How do you define a plane ? How is the equation of a plane determined, if

it be regarded as the locus of perpendiculars ? Why do you eliminate the con.

stants in the equations of the perpendiculars ? Why will the resulting equation

be that of a plane ? What are the traces of a plane ? How are the equations

of the traces determined ? If a line be perpendicular to a plane in space, how

will the projections of the line be situated ? What is the most general equation

of the first degree between three variables ? What does it represent ? Why a

plane ? If the plane be perpendicular to ary, what will be its equation ? To
xz 1 to yz ? What is the equation of the plane xz 1 xy ? yz ? Of a plane pa-

rallel to xy ? to xz ? to yz ? Of a plane passing through the origin ? How do

you determine the equation of a plane passing through three given points ? Is

this problem always determinate ? Why ? How do you determine the equations

of the intersections of two planes ? If you eliminate one of the variables, what

does the resulting equation express ?

Transformation of Co-ordinates.

How are curves divided ? What are Algebraic curves ? Transcendental

curves ? Give an example of each. How are Algebraic curves classified ?

What order is the equation of a straight line ? WT

hat is meant by the discussion

of a curve ? How may this discussion be oftentimes simplified ? Do the trans

formations of co-ordinates affect the character of the curve ? In what do they

consist? How is the transformation effected ? What are the equations of trans

formation from one system of rectangular axes to a parallel system ? To an

oblique, the origin remaining the same ? From oblique to oblique ? In what

kind of functions is the relation between the old and new co-ordinates expressed ?

Is the relation linear if the transformation be made in space ? How many

equations for transformation in space ? What does each set of equations ex

press ? If the new axes be rectangular, what condition in their equations does

it require ? What are polar co-ordinates ? What is the pole ? Radius vector ?

What are the polar co-ordinates when the origin is not changed ? When it is ?

If the axis from which the variable angle is estimated is not parallel to x ? What

do negative values of the radius vector indicate ? Why ?

CHAPTER IV.

Conic Sections.

What are the Conic Sections ? How is a right line generated ? How may
its equation be determined ? What is its form ? How may the general equation
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of intersection of a cone and plane be determined ? How many different forms

of curves result from the intersection ? What changes are made on the general

equation cf:r.*.:r::cticn, to deduce the equations of these separate curves? What

is the general character of the curves called Ellipses ? Parabolas ? Hyper-

bolas ? What is the direction of the cutting plane to produce ellipses ? Para

bola ? Hyperbola ? Circle ? What distinguishes the equation of the ellipse

from that of the hyperbola ? Parabola ? If the cutting plane pass through the

&amp;gt;ertex,
what do the ellipse and circle become ? Parabola? Hyperbola? How

qre these results proved by the equations of these curves ?

Of ike Circle.

How is the circle cut from the cone ? What is the form of its equation ?

What property results from the form of its equation ? How do you determine

the points in which the curve cuts the axis of x ? ofy? How do their distances

from the centre compare ? How do you determine intermediate points ? When
do real values for y result ? When imaginary ? What relation between the

ordinate of any point of the circumference, and the divided segments of the

diameter ? What are supplementary chords ? How are they related in the

circle ? What is the equation of the circle referred to the extremity of a diameter ?

To axes without the circle ? How is the equation of a tangent line determined ?

What is its form ? Of a normal line ? Through what point do all the normal

lines of the circle pass? What are conjugate diameters ? Has the circle conju.

gate diameters ? How many ? In what position ? How do you determine the

polar equation of the circle ? How is this equation made to express all the points

of the curve ? Suppose the pole is on the circumference ? At the centre ?

Of the Ellipse.

What direction has the cutting plane when the conic section is an ellipse ?

What is the form of its equation ? How do you discuss this equation ? What
is the equation of the ellipse referred to its centre and axes ? What do A and

B express in this equation ? What is the longest diameter in the ellipse called ?

Shortest ? If its axes be equal, what does the equation become ? What is a

diameter ? a parameter ? What relation between the ordinates of the curves

and the corresponding segments of the diameter ? If two circles be described

upon the axes, what relation will they bear to the ellipse ? What relation will

exist between their ordinates ? How may this property enable you to describe

the ellipse by points ? What relation do the supplementary chords in the ellipse

bear to each other ? What are the foci of the ellipse ? What properties do

these points possess ? What is the eccentricity ? What is its maximum value ?

Minimum ? What does the ellipse reduce to in the first case ? In the second ?

What are the various modes of describing the ellipse ? What is the equation
of a tangent line to the ellipse ? Normal ? What relation exists between the

angles which the tangent line makes with the axis of x, and those which the

supplementary chords make? How may you draw a tangent line by this pro

2N
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perty ? What is a subtangent ? What is its value in the ellipse ? Knowing
the subtangent, how may a tangent line be drawn ? What is the normal ? What

relation between the tangent and normal ? How does this relation enable you
to draw a tangent line ? Has the ellipse conjugate diameters ? How many ?

How many are perpendicular to each other ? What is the rectangle upon the

axes equal to ? Sum of the squares of the axes ? How may you draw two

conjugate diameters, making a given angle with each other? How may the

polar equation define the curve? Suppose the pole at the centre? At one of

the foci ? Upon the curve ? When the radius vector is negative, what does it

signify ? May you determine the equation of the ellipse from one of its pro

perties ? Illustrate this. What is the area of the ellipse equal to ? How do

the areas of two ellipses compare ?

Of the Parabola.

What is the direction of the cutting plane when the conic section is a parabola ?

Its equation ? How do you discuss this equation ? Its parameter ? How do

the squares of the ordinates compare ? How is the curve described 7 Its focus ?

Direction ? What relation between the two ? What method of describing the

parabola results ? What is the double ordinate through the focus equal to ?

Equation oftangent line ? To what is the subtangent equal ? Subnormal ? What
relation between tangent and normal ? How may you draw a tangent line to

a parabola ? Has this curve diameters ? How situated ? What is the position

of a new system of axes, that the curves shall preserve the same form when

referred to them ? What is the polar equation ? How does it define the curve ?

If the pole be at the focus ? On the curve ? May you deduce the equation of

the curve from one of its properties ? Illustrate. What is the measure of any

portion of the parabola? What are quadrable curves ? Is this curve quadrable?

Of the Hyperlola.

What direction has the cutting plane when the conic section is an hyperbola ?

What is the form of its equation ? How is it distinguished from the ellipse ?

How do you discuss this equation ? What is the equation referred to the centre

and axes ? Equilateral hyperbola ? What relation between supplementary
chords ? What is the conjugate hyperbola ? What are the foci of this curve ?

What properties do they possess ? How is the curve constructed ? What is the

equation of its tangent line ? What relation between the tangent lines and sup

plementary chords ? How may you draw a tangent line to the curve ? Has

the hyperbola conjugate diameters ? To what is the difference of the squares

on the conjugate diameters equal ? How are the conjugate diameters of the

equilateral hyperbola related ? What is the rectangle on the axes equal to ?

What are the asymptotes of this curve ? What is their equation ? What lines

do they limit ? How may you construct them ? What is the form of the equa.

non of the hyperbola referred to them ? What is the power of the hyperbola
?

When the hyperbola is equilateral, what does the equation referred to its asymp
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totes become? How is a tangent line to the hyperbola divided at the point of

tangency ? If any line be drawn, intersecting the hyperbola and limited by the

asymptotes, what property exists ? How does this property enable you to con

struct points of the curve? What is the polar equation of this curve? How
does it define the curve ? If the pole be at the centre ? At one of the foci ?

Upon the curve ? May the same polar equation represent each of the conie

sections? In what manner may you pass from one to the other ? Mention the

distinctive characteristics in the forms of the conic sections. Mention their

common properties. Their analogies.

CHAPTER V.

Discussion of Equations

What is the most general form of an equation of the 2d degree with two

variables ? Give an analysis of the mode of discussing it. Why may you
omit in the general discussion the case in which the squares of the variables

are wanting? How are the curves represented by this equation classified?

What suggests this mode of classification? What is the analytical character

of curves of the 1st class? 2d class? 3d class? How do you discuss the

1st class? What results from the discussion? How is the limited nature of

the curves apparent? How apply the principles to a numerical example?
How determine to which class of curves a particular equation belongs ? What
are the particular cases comprehended in the first class ? In the case in which

A = C, and B = 0, what does the equation represent if the co-ordinate axes

be obli-que? (Ans. An ellipse referred to its equal conjugate diameters.) How
do you discuss the 2d class? What part of the equation represents the

diameter of these curves? What are the varieties of this class ? What curves

do they resemble? How do you discuss the 3d class ? What varieties? What
curves do they resemble ? What is the centre of a curve ? Its diameter ?

What conditions must the equation of a curve fulfil when referred to its centre?

Have curves of the 2d order centres ? Which of them ? How many ? Why
only one? In which class are the conditions for a centre impossible? Why?
What conditions must the equation of a curve fulfil when referred to a diam

eter? If both co-ordinate axes are diameters ? If axis of y? Ifxf Which

of the curves of the 2d order have diameters ? How are they situated in the

2d class? Have any of these curves asymptotes? Which? Why only those

of the 3d class? How can you find the asymptotes from the equation of the

curve ? Do these properties show much resemblance between these curves and

the conic sections ? How far does the resemblance extend ? How is the per
fect identity proved ? Then every equation of the 2d degree, with two varia

bles, must represent what? When an ellipse ? Parabola? Hyperbola? How-

many conic sections are there, including the varieties ? Through how many
points may an ellipse be made to pass ? A parabola ? Hyperbola? Equilateral
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hyperbola? How many constants must the most general equation of the

ellipse contain ? What are they ? How many must be contained by that of

the parabola ? What are they ? How many by that of the hyperbola ? How

many by that of the equilateral hyperbola ? What are they ? If the curve

be an ellipse, will the terms involving z* and y2 have the same or different

signs? How is it with the parabola? How with the hyperbola? If, in the

general equation of the 2d degree with two variables, the term involving the

rectangle of the variables be wanting, what must you infer? (Ans. That the

curve is referred to co-ordinate axes parallel to a diameter and the tangent at

its extremity.) Why ? The presence of the term Exy in the equation is due

to what? (Ans. To the directions of the co-ordinate axes.) What if the ab

solute term be wanting ? What if the terms containing the first powers of the

variables be absent? (Ans. That the origin is at the centre.) The presence

of the terms Dy, Ex, is then due to what ? (Ans. To the removal of the origin

from the centre.) What is the most general equation of a tangent line to a

conic section ? How do you find this equation ? By its aid what remarkable

property of these curves is demonstrated ? What is a polar line ? A pole ?

How would you construct the polar line of a given pole ? How the pole of a

given polar line ? How use them for drawing a tangent line to a conic section

from a given point without the curve ? How to draw a tangent from a given

point upon the curve ? What is the peculiar advantage of these methods ?

(Ans. That we can draw the tangent without knowing the species of the sec

tion.) In the parabola, what point is the pole of the directrix? Tangents

which intersect upon the directrix make what angle with each other 9

CHAPTER VI.

Curves of the Higher Orders.

What is the objection to attempting a systematic examination of curves?

What is the 3d order remarkable for ? How many curves does this order com

prise ? How many of them were discussed by Sir I. Newton ? What is the

number of varieties included in the 4th order ? Is a complete investigation

of curves necessary ? Why not ? Give an outline of the general method to

be pursued in determining the form of any curve from its equation. How is

the cissoid generated ? Its equation? Its polar equation ? By whom invented ?

For what purpose ? Whence its name ? Has it an asymptote ? Explain the

generation of the conchoid. Its equation. Its polar equation. How are the

two parts distinguished ? Are they both defined by one equation ? What is

the modulus ? The base, or rule ? How many cases may you distinguish in

its discussion ? What are they ? What remarkable point occurs in the 3d

case ? Has the curve an asymptote ? By whom was it invented ? For what

purpose ? Whence its name ? How may it be applied to trisecting an angle ?

How may you solve the celebrated problem of the duplication of the cube by
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conic sections? What is the polar equation of the Lemniscata of Bernouilli?

This curve is the locus of what series of points ? What is its form ? What

remarkable property does it possess? What are Parabolas of the higher

orders? Their general equation ? What varieties are noticed? The equa
tion of the semi-cubical parabola? From what does it take its name? Its

polar equation ? For what is it remarkable ? Form of the curve ? Equation

of the cubical parabola f Its polar equation ? Form of the curve ? What are

transcendental curves? Whence the name? What is the Logarithmic curve?

Its equation ? What is the axis of numbers ? Of logarithms ? By whom was

thi? curve invented? What are some of its properties? How is the cycloid

generated? Whence its name? What is the base? Axis? Vertex? What

is its equation referred to the axis and tangent at the vertex ? Referred to

the base and tangent at the cusp ? By whom was this curve first examined ?

For what is it remarkable ? Mention some of its properties. What peculiar

appellations does it derive in consequence of two of them ? What is the tro-

choid? Its equation? What is the curtate cycloid? Its equation? How may
the class of cycloids be extended? What is the Epitrochoid ? Epicycloid f

Hypotrochoid f Hypocycloid? How obtain their equations ? What are they?
When may the necessary elimination be effected? Is the number of convolu

tions limited ? What is the cardioide? Its polnr equation ? When does the

hypocycloid become a right line? The same supposition reduces the hypo-
trochoid to what ? What are spirals ? By whom invented ? For what pur

pose? What are the chief varieties? How is the spiral of Archimedes

generated ? What is its equation ? What is the pole, or eye of a spiral ?

What is the general equation of spirals? To what co-ordinates are these

curves referred? Equation of the hyperbolic spiral? Whence its name?
Has it an asymptote ? How is the parabolic spiral generated ? Its equation ?

Equation of the Logarithmic spiral? Does it ever reach the pole? (This

curve is also known as the equiangular spiral, from the fact that the angle

formed by the radius vector and tangent is constant : the tangent of this

angle being equal to the modulus of the system of logarithms used.) What
are the formulas for transition from polar to rectangular co-ordinates? May
the polar equation of a curve sometimes be used to advantage ? When ?

Give an example.

CHAPTER VIL

Surfaces of the Second Order.

How are surfaces divided? General equation of surfaces of the 2d order?

How may they be discussed ? Which is the best mode ? Illustrate this method.

How should the secant planes be drawn ? What preliminary steps are neces

sary before discussing these surfaces? How are these surfaces divided?

What is the form of the equation of surfaces which have a centre? No

26
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centre ? May both classes be represented by a common equation ? What

conditions will give one class and the other ? How many cases of surfaces

which have a centre? What does the 1st case embrace? What are the
prin&quot;

cipal sections ? How do you know they represent ellipsoids ? What varieties ?

What is the equation of a sphere? What conditions give a cylinder? Right

cylinder? Ellipsoid of revolution? What does the 2d case embrace ? What

are hyperboloids ? Hyperboloids of revolution ? What relation to cones ?

How many cases of surfaces of no centre? 1st case ? 2d case? How may
we draw a tangent plane to a surface ? What is the mode in surfaces of the

2d order? General form of the equation? When drawn to surfaces which

have a centre?
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