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PRETACE

TO THE FIRST EDITION.

L RO PN

Tue original work of M. Bior was for many years
the Text Book in the U. 8. Military Academy at West
Point. It is justly regarded as the best elementary
treatise on Analytical Geometry that has yet appeared.
The general system of Biot has been strictly followed.
A short chapter on the principal Transcendental Curves
has been added, in which the generation of these
Curves and the method of finding their equations are
given. A Table of Trigonometrical Formule is also
appended, to aid the student in the course or his
study. ’

The design of the following pages has been to pre-
pare a Text Book, which may be readily embraced in
the usual Collegiate Course, without interfering with
the time devoted to other subjects, while at the same
time they contain a comprehensive treatisc on the
subject of which they treat.

Virginia Military Institute,
Jury, 1840,
@iv)



PREFACE

TO THE SECOND EDITION.

Tue application of Algebra to Geometry constitutes one
of the most important discoveries in the history of mathe-
matical science. Francis Vieta, a native of France, and one
of the most illustrious mathematicians of his age, was among
the first to apply Geometry to the construction of algebraic
expressions. He lived towards the close of the fifteenth cen-
tury. The applications of Vieta were, however, confined to
problems of deierminate geometry; and although gréater
brevity and power were thus attained, no hint is to be found
before the time of Des Cartes, of the general method of repre-
senting every curve by an equation between two indetermi-
nate variables, and deducing, by the ordinary rules of algebra,
all of the properties of the curve from its equation.

Rexe pes Cartes was born at Rennes in France in 1596.
At the early age of twenty vears, he was distinguished by
his solutions to many geometrical problems, which had defied
the ingenuity of the most illustrious mathematicians of his
age.

Generalizing a principle in every-day practice, by which
the position of an object is represented by its distances from
others that are known, Des Cartes conceived the idea that by
referring points in a plane to two arbitrary fixed lines, as
axes, the relations which would subsist betwecn the distances

1+ )
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of these points from the axes might be expressed by an alge-
braic equation, which would serve to define the line connect-
ing these points. If the relation between these distances, to
which the name of co-ordinates was applied, be such, that
there exist the equation x =y, # and y representing the co-
ordinates, it is plain that this equation would represent a
straight line, making an angle of 45° with the axis of x
Intimate as is the connection between this simple principle
and that applied in Geography, by which the position of places
is fixed by means of co-ordinates, which are called latitude
and longitude, yet it is to this conception that the science of
Analytical Geometry owes its origin.

Having advanced thus far, Des Cartes assumed the possi-
bility of expressing every curve by means of an equation,
which would serve to define the curve as perfectly as it could
be by any conceivable artifice. Operating then upon this
equation by the known rules of algebra, the character of the
curve could be ascertained, and its peculiar properties de-
veloped. The application of algebra to geometry would no
longer depend upon the ingenuity of the investigator. The
sole difficulty would consist in solving the equation represent-
ing the curve; for, as soon as its roots were obtained, the
nature and extent of the branches of the curve would at once
be known.

Many authors of deservedly high reputation have treated
upon Analytical Geometry. Among the most distinguished
is J. B. Biot, the author of the treatise of which the following
is a translation. '

The work of M. Biot has more to recommend it than the
mere style of composition, unexceptionable as that is. The
mode in which he has presented the subject is so peculiar and
felicitous, as to have drawn from the Princeton Review the
high eulogium upon his work, of being * the most perfect sci-
entific gem to be found wn any language” His discussion
of the Conic Sections is the finest specimen of mathematical
reasoning extant. He introduces his book, by showing how



PREFACE. vii

the positions of points may be fixed and defined, first as
relates to a plane, and then in space ; and by a series of cx-
amples, shows how analysis may be applied to determine
solutions to various problems of Indeterminate Geometry
In these discussions, a simple and general principle is applied
for determining all kinds of intersections, whether of straight
lines with each other or with curves, curves with curves

planes with each other or with surfaces, and, finally, of sur-
faces with surfaces. The principle is simple, inasmuch as it
involves nothing more than elimination between the equations
of the lines, curves, or surfaces which are considered; and
it is general, since it is applied to every kind of intersection.
In discussing the Conic Sections, two methods suggested them-
selves. Shall their equations be obtained by assuming a
property of each section; or, from the fact of their common
generation, shall the principle previously established, for deter-
mining any intersection, be applied to deduce their general
equation? Most authors adopt the former method, which,
though apparently more simple, tends really to obscure the
discussion, since it assumes a property not known to belong
to a Conic Section; and if this -be afterwards proved, the
proof is postponed too long to enable the student to realize,
while he is studying these curves, that they are in fact sec-
tions from a Cone. Biot, on the other hand, assumes nothing
with regard to these sections. He presumes, from their com-
mon generation, that they must possess common or similar
properties, since, by a simple variation in the inclination of

the cutting planes the different classes of these curves are
produced.

And so it is with the student. If he find that the circum-
ference of a circle has all of its points equally distant from
its centre, analogy leads him at once to seek for correspond-
ing properties in the other sections. Ile finds in the Ellipse
the relation between the lines drawn from the foci to points
of the curve, and that this relation recuces to the property
in the circle, when the eccentricity is zero. Corresponding
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results are also found in the Parabola and Hyperbola. Could
a student anticipate such a connection between these curves,
by following the method of discussion usually adopted ? Why
should he examine the Hyperbola any more than the Cycloid
for properties similar to those deduced from the Circle ! They
are treated us independent curves, and their equations are
found and properties developed, upon the general principles
of analysis, without the slightest reference to their common
origin. Further, the purely analytic method adopted by
Biot, prepares the mind for the discussion of the general
equation of the second degree in the sixth chapter, and that
of surfaces in the seventh, and certainly gives the student a
better knowledge of his subject than any other.

This edition has been most carefully revised. Some shght
changes have been made in the mode of discussing one or
two of the subjects, and copious numerical examples in illus-
tration have been added. The appendix also contains a fall
series of questions on Analytical Geometry, which it is be-
ieved will be of great service to the student.

Virginia Military Institute,
Avcusr, 1B46,
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ANALYTICAL GEOMETRY

CHAPTER I.
PRELIMINARY OBSERVATIONS.

1. Arceera is that branch of Mathematics in which quan-
tities are represented by letters, and the operations to be
performed upon them indicated by signs. It serves to ex-
press generally the relations which must exist between the
known and unknown parts of a problem, in order that the
conditions required by this problem may be fulfilled. These -
parts may be numbers, as in Arithmetic, or lines, surfaces, or
solids, as in Geometry.

2. Before we can apply Algebra to the resolution of Geo-
metrical problems, we must conceive of a magnitude of
known value, which may serve as a term of comparison with
other magnitudes of the same kind. A magnitude which is
thus used, to compare magnitudes with each other, is called
a unit of measure, and must always be of the same dimension
with the magnitudes compared.

3. In Linear Geometry the unit of measure is a line, as a
foot, a yard, &c., and the length of any other line is ex-
pressed by the number of these units, whether feet or yards,
which it contains

2 F 13
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>

Let CD and LF be two lines, which we wish to

ey
&

b 24
compare with each other: AB the unit of measure.
The line CD containing AB six times, and the line
EF containing the same unit three times, CD and
LF are evidently to cach as the numbers 6 and 3.
DI 4. In the same manner we may compare surfaces
with surfaces, and solids with solids, the unit of measure for

surfaceq lse,ng a known square, and for solids a known cube

. ‘We may now readily conceive lines to be added to,
.Sdbll‘&(‘t\(:a froim, or multiplied by, each other, since these
operations have only to be performed upon the numbers
which represent them. If, for example, we have two lines,
whose lengths are expressed numerically by @ and b, and it
were required to find a line whose length shall be equal to
their sum, representing the required line by x, we have from
the condition.
rx=a+ b,

- which enables us to calculate arithmetically the numerical
value of x, when @ and b are given. We may thus deduce
the line itself, when we know its ratio & to the unit of

measure.

6. But we may also resolve the proposed question geo-
metrically, and construct a line which shall be equal to the
sum of the two given lines. For, let [ represent the absolute
length of the line which has been chosen as the unit of mea-
sure, and A, B, and X, the absolute lengths of the given and
required lines. The numerical values a, b, x, will express
the ratios of these three lines to the unit of measure, that is,
we have,
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These expressions. being substituted in the place of a, b, =,
in the equation
r=ua -+ b,

the common denominator / disappears, and we have
X=A+B.
Hence, to obtain the required line,
draw the indefinite line AB, and lay 4 2
off from A in the direction AB the dis-
tance AC equal to A, and from C the distance CB equal to B,
AB will be the line sought.

7. The construction of an analytical expression, consists

&

in finding a geometrical figure, whose parts shall bear the
same relation to each other, respectively, as in the proposed
equation. y

8. The subtraction of lines is performed as readir as their
addition. Let @ be the numer.ca. vaiue of 1ne gres.er of the
two lines, b that of ine .ess, ana « tne renuired difference,
we have,

L= —b,

an expression whicp enables us to calculate the numerical
vatue of . wnen e and b are known. To construct this
vaiue, substitute as before, for the numerical values a, b, x,

the ratios -lli, ?, j_l{, of the corresponding lines to the unit of

measure; the common denominator ! disappears, and the
equation becomes

X=A—B,
which expresses the relation between the absolute lengths of
these three lines. Drawing the inde-
finite line AC, and laying off from A a D B ¢
a distance AB equal to A, and from
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B in the direction BA, a distance BD equal to B, AD will
express the difference between A and B.

9. Comparing this solution with that of the preceding
question, we see by the nature of the operations themselves,
that the direction of the line BD or B is changed; when the
sign which affects the numerical value of B is changed. This
analogy between the inversion in position of lines, and the
changes of sign in the letters which express their numerical
values, is often met with in the application of Algebra to
Geometry, and we shall have frequent occasion to verify it,
n the course of this treatise.

10. From the combination of quantities by addition and
subtraction, let us pass to their multiplication and division.
Let us suppose, for example, that an unknown line X depends
upon three given lines A, B, C, so that there exists between
their numerical values the following relation,

ab
==X
(o

This relation enables us to calculate the value of x, when
a, b, and c are known. To make the corresponding geome-
‘trical construction, substitute for «, &, ¢, and x, the ratios

.‘I:‘, TB’ 19’ %, of the corresponding lines to the unit of measure;

1 disappears from the fraction, and we have
- _AB

C
from which we see that the required line
is a fourth proportional to the three lines
A, B, C. Draw the indefinite lines MB
and MX, making any angle with each
other; Lay off MC = C, MB = B, and MA = A, join C and
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A, and draw BX parallel to CA, MX is the required line
For, the triangles MAC, MXB, being similar, we have
MC:MB:: MA: MX
C:B::A:X
_AB
1
which fulfils the required conditions.*

and consequently

11. In the example which we have just discussed, as well
as in the two preceding, when we have passed from the nu-
merical values of the lines, to the relations between their ab-
solute lengths, we have seen that the unit of measure / has
disappeared; so that the equation between the absolute
lengths was exactly the same as that between the numerical
values. We could have dispensed with this transformation
in these cases, and proceeded at once to the geometrical con-
struction, from the equation in @, b, and z, by considering
these letters as representing the lines themselves. But this
could not be done in general. For, this identity results from
the circumstance that the proposed equations contain only
the ratios of the lines to each other, independently of their
absolute ratio to the unit of measure. This will be evident
if we observe that the equations

x=a+b,x=a—b,x‘=‘l¢3_’
may be put under the following forms,
z z x z cx

* In this example, as well as those which follow, the large letters, A, B,
C, D, &c., are used to express the absolute lengths of the lines; and the
small letters, a, b, ¢, d, &c., their numerical values, the ratio of the unit
of measure to the lines.

2% c
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which express the ratios of «, b, ¢, and x, with each other,
and whose form will not be changed, if we substitute for these
letters the equivalent expressions f}, 1;., L(lz, %

12. But it will be otherwise, should the proposed equation
besides containing the ratios of the lines- A, B, C and X, with
each other, express the absolute ratio of any of ‘them to the

unit of measure. For example, if we had the equation

x = ab,
the numerical value of z can be easily calculated, since it is
the product of two abstract numbers, and this value being
known, we can casily construct the line which corresponds
to it. DBut, if we wished to pass from this equation to the
analytical relation between the absolute lengths of the

lines A, B, X, by substituting for «, b, x, the expressions

é, —B, §, I being of the square power in the denominator of
i 1 =

the second member, and of the first power in the first mem-
ber, it would no longer disappear, und we should have, after
reducing,

in which the line X is a fourth proportional to the lines /, A,
B In this, and all other analogous cases, we cannot suppose
the same relation to exist between the absolute lengths of the
lines as between their numerical values; and this impossibility
is shown from the equation itself. For, if @, b, and , repre-
sented lines, and not abstract numbers, the product @ § would
represent a surface, which could not be equal to a line z.

13. By the same principle, we may construct every equa-
tion of the form.
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a; bvevdl st
LN ST
m which a, b, ¢, d, b', ¢, d’, &c., are the numerical values of
so many given lines. If we suppose the equation homoge-
neous, which will be the case if the numerator contain one
factor more than the denominator, then substituting for the
numerical values their geometrical ratios, we have
‘ Vs g el

E=—gown T .

But the first part _1;_1’3 may be considered as representing a

line A”, the fourth proportional to B, A, and B. Combining

this line with the following ratio g,, the product il

’

will represent a new line A", the fourth proportional to C',

A", and C. This being combined with % would give a

1

Uy » which may be constructed in the same man-

product

ner. The last result will be a line, which will be the value
of x.

14. We have supposed the numerator to contain one more
factor than the denominator. If this had not been the case,
! would have remained in the equation to make it homoge-
neous. For example, take the equation

x—=abed

the transformed equation becomes

an expression which may be constructed in the same manner
as the preceding.

15. Besides the cases which we have just considered, the
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unknown yuantity is often given in terms of radical expres-
sions, as

g=vab, z=VE+Y, z= v I—0.

The first v/ ab, expresses a mean proportional between a

8 and b, or between the lines which these

j l:\ values represent. Laying off on the line

AD, AB=A, BD=B, and on AD as

5. : a diameter describing'-the semi-circle

AXD, BX perpendicular to AB at the point B, will be the

value of X. For, from the properties of the circle, the line

BX is a mean proportional between the segments of the

diameter.
16. If we take the example,
z=Vva&+5
it is evident that the required line is the hypothenuse of a
right angled triangle, of which the sides

»n

are AB= A, and BD = B; for we have
AD*= AP’ + BD*
or X2= A%+ B?
X=vA LB
17. We may also construct by the right angled triangle,

the expression B ol
=V =0
the required line being no longer the hypothenuse, but one of
the sides. Making BD = A, and DA = B, we have
' AB*= AD*—BD*
or X?=A*—PB?
X=VvA B
18. Let us now apply these principles to the example,
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r—2ax=—10

Solving the equation with respect to x, we get the two

100ts, P gy £
r=a+ v dE—b, zr=a—Ja—0

'The radical part of these expressions may be evidently
represented by a side of a right angled triangle, of which the
line A is the hypothenuse, and the line B the other side.
Draw the indefinite line

ZZ'; at any point B ¥ £ /'

erect a perpendicular, A"-.: Kz
z_a % AN

and make BC=B. From 2 B 7X

the point C as a centre \_-/

with a radius equal to A,
describe a circumference of a circle, which will cut ZZ',
generally, in two points X, X', equally distant from B. The
segment BX, or BX', will represent the radical v A*— B,
and if from the point B we lay off on ZZ, a length BA = A,
AX = VAT _B"+ A will represent the first value of X
ind AX' = A — V' A*— B will represent the second value.

19. If B= A, it is evident that the circle will not cut the
ine Z7', but be tangent to it at B. The two lines BX and
3X’ will reduce to a point, and AX and AX' will be equal to
ach other, and to the line A. This result corresponds
trictly with the change which the Algebraic expression
indergoes; for @ = b causes the radical v &*— & to dis-
appear, and reduces the second member to the first term, and
the two roots become equal to a.

20. If B> A, the circle described from the point C as a
centre will not meet the line ZZ', and the solution of the
question is impossible. This is also verified by the equation,
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for b> a makes the radical v «*—#* imaginary, and con-
sequently the two roots are impossible.

21. If the second member of the equation had been posi-
tive, the construction would have been a little different. In
this case we would have,

2 —2 ax = b

and the roots would be,

z=a+VvE+V, z=a—va+ W

Here the radical part is repre-
sented by the hypothenuse of a
right angled triangle, whose sides
are A and B. Take DB = B; at
the point B, ercct a perpendicular
BC = A: DC will be the radical

part common to the two roots. If,

then, from the point C as a centre, with a radius CB = A,
we describe a circumference of a circle, cutting DC in E,
and its prolongation in E, the line DE will be equal tq
A + v AT+ B, which will represent the first value of x
but the second segment DE'= AT+ B*'— A will onlJ)
represent the second root, by changing its sign, that is, the
root will be represented by — DEV. “

22. Here the change of sign is not susceptible of any
direct interpretation, since, admitting that it implies an in-
version of position, we do not see how this happens, as there
is no quantity from which DE' is to be taken. But the diffi-
culty disappears, if we consider the actual value of = as a
parficular case of a more general problerr, in which the
roots are,
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z=at+c+Vd+V, x=at+c—vi+V
¢, representing the numerical value of a new line, which is
also given. This form of the roots would make x depend
upon another equation of the second degree, which would be,
Z2—2@+Jx=0V—2ac—c%
in which, if we make ¢ = o, we obtain the original values
of x.

In the new example, the construction of the radical part
is precisely the same, for, taking DB = B and BC = A, the
hypothenuse DC will repre-
sent v/ A’ + B% From the
point C as a centre with a
radius equal to A, describe

a circumference of a circle,
DE = A+ v A* + B"and
—DE'=A— VA + B To
obtain the first root, we have only to add C to DE, which
is done by laying off DF = C, and FE will represent
C+A+VvA+B. To get the second root, it is evident
DE’ must be subtracted from DF. Laying off from D to E”,

in a contrary directicn, DE" = DE', FE" will be the root,
and will be equal to C + A — v A* + B? and this value
will be positive, if the subtraction is possible; that is if C or
its equal DF is greater than DE’, and negative, if less.

23. In general, when a negative sign is attached to a
result in Algebra, it is always the index of subtraction. If
the expresssion contain positive quantities, on which this sub-
traction can be performed, the indication of the sign Is satis-

fied. If not, the sign remains, to indicate the operation yet
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to be performed. To interpret the result in this case, we
must conceive a more general question, which contains
quantities, on which the indicated operation may be per-

formed, and discover the signification to be given to the
result.

EXAMPLES.
1. Construct abe + 7ef_ ghi.
m

2. Construct  a.

3. Construct + & + b + ¢ + &
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CHAPTER IIL.
DETERMINATE GEOMETRY.

24. Ananvrican GeoMerry 18 divided into two parts.

Ist. Determinate Geometry, which consists in the applica-
tion of Algebra to determinate problems, that is, to problems
which admit of only a finite number of solutions.

2dly. Indeterminate Geometry, which consists in the in-
vestigation of the general properties of lines, surfaces, and
solids, by means of analysis.

25. We will first apply the principles explained 1a the first
chapter, to the resolution and construction of problems of
Determinate Geometry.

Prob. 1. Having given the base and altitude of a triangle
it is required to find the side of the in-
scribed square. Let ABC be the pro-
posed triangle, of which AC is the base,
and BH the altitude. Designate the
base by ¥, and the altitude by %, and
let x be the side of the inscribed square. The side EF, being
parallel to AC, the triangles BEF and ABC are similar; and
we have,

B

N
N

D H

A

AC:BH :: EF : BI,
or bk —
Multiplying the means and the extremes together, and put
ting the products equal to each other, we have,
bh — bx = hx
bh
i Y |
D
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from which the numerical value of ¥ may be determined,
when b and % are known.

26. We may also from this expression find the value of z
py a geometrical construction, since it is evidently the fourth
- o proportional to the lines b + 7, b, and 4.
L s Produce AC to B, making CB' = A, erect
v N /L the perpendicular BH' = £, join A and

R IT', and through C draw CI' parallel to
H'B', it will be the side of the required square, and drawing
through I' a parallel to the base, DEFG will be the inscribed
square. For, the triangles AB'H', ACT being similar, we have.

L AR B A G CI’

or (3 ] (L] I A A e
bh

h e S A

ence £=7rr7

27. There are some questions of a more complicated nature
than the one which we have just considered, but which when
applied to analysis lead to the most simple and satisfactory
results.

Prob. 2. Draw through a given point a straight line, so
that the part intercepted between two given parallel lines
shall be of a given length.

Let A be the given point, BC and DE the given parallels

D G ] E

WL ;

“It is required to draw the line Al so that the part KI shall
be equal to C. Draw AG perpendicular to DE, AG and FG
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will be known; and designating AG by a, FG by b, and GI
by z, we have,

Al . AG :: KI : FG
or Al:a::¢c: 0, henceAI:aT)c-
But Al = v & + 2%,
hence %Ez Jm andx:d:%Jm
* From which we see that the problem admits of two solutions,

but becomes impossible when & > ¢, that is, when FG > KL
Construction—From F as a centre, with a radius equal to

C, describe the arc HH'; GIH will be equal to v &—107,
and AI parallel to FH will be the required line. For the
similar triangles FGH, AGI, give

FG : AG : : GH : G],
or b:a::vc—0V:x  hence m=3\/c2——ﬁ
The second solution is given by GI' = — GI.

28. Prob. 3. Let it be required to draw a common tangent
to two circles, situated in the same plane, their radii and the
distance between their centres being known.

Let us suppose the problem solved, and let MM' be the
common tangent. Produce MM’ until it meets the straight
line joining the centres at T. The angles CMT and C'M'T
being right the triangles CMT and C'M'T will be similar
and give the proportion,
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CM:CM ::CT:CT.

Designating the radii of the two circles by r and 7', the
distance between the centres by a, and the distance CT by
x, the above proportion becomes,

r:r::ix:xr—a,
or T —ra=rwcx;
hence r=—m>
r—r
which shows that the distance CT =z is a fourth propor-
tional to the three lines » —», @, and .

To draw the tangent line.

Through the centres C and C', draw any two parallel
radii CN, C'N’, the line NN’ joining their extremities will cut
the line joining the centres, at the same point T, from which,
if a tangent be drawn to one circle, it will be tangent to the
other also. For the triangles CNT, C'N'T, will still be
similar, since the angles at N and N' are equal, and will give
the same proportion. But to show the agreement of this
construction with the algebraic expression for 2, draw
through N’, N'D parallel to CC’, N'D will be equal to a, and
ND to r—7'; the triangles N'DN, CNT, being similar, give
the proportion,

ND : DN' :': NC : CT,
or r—r ta::r:CT;
ar

hence CT = -
1=t

’
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which is the same value found before. TMM'drawn tangent
to one circle, will also be tangent to the other. As two
tangents can be drawn from the point T, the question admits
of two solutions.

29. If we suppose, in this example, the radius r of the
large circle to remain constant, as well as the distance be
tween the centres, the product ar will be constant. Let the
radius ' of the small circle increase, as 7' increases, the de-

nominator r—r' will continually diminish, and will become

ar
zero, when r = »'. The value of x then becomes = _.
)

infinity. This appears also from the geometrical construc
tion, for when the radii are equal, the tangent and the line
joining the centres are parallel, and of course can only meet
at an infinite distance.

If # continue to increase, the denominator becomes nega-
tive, and since the numerator is positive, the value of z will
no longer be infinite, but negative, and equal to — CT, which
shows that the point T is changed in position (Art. 9), and
is now found on the left of the circle whose radius is r.

30. Prob. 4. To construct a rectangle, when its surface
and the diffcrence between its adjacent sides are given:

Let x be the greater side, 2a the difference, x — 2a will be
the less. Let b be the side of the square, whose surface is
equal to that of the rectangle. This condition will give

z(xr—a) = or 2* — 2ax = b*:
from which we obtain the two values,
r=a+Ja+b0, x=a—v &+ b

These are the same values of z constructed in Art. 18, the

S*
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first being represented by DI, the second by—DE. But

we can easily verify this, and show that DE = ¢ 4- v & + &
is the greater side of the rectangle. TFor, if we subtract from

this value the difference 2a, the remainder —a + v @@ + °
multiplied by the greater side, is equal to &*, the surface of the
rectangle, —a + Vv @ + B is therefore the smaller side.

3l. We see also that the second value of x taken with a
contrary sign, represents the smaller side of the rectangle.
Ilence the calculation not only gives us the greater side,
which alone was introduced as the unknown quantity, but
also the less. This arises from the general nature of all
algebraic results, by virtue of which the equation which ex-
presses the conditions of the problem, gives, at the same
time, every value of the unknown quantity which will satisfy
these conditions. In the example before us we have repre-
sented the greater side by + x, and have found that its value
depended upon the equation

2 — Qaz = .
If we Liad made the smaller side the unknown quantity, and

repr.ented its value by — a, which we were at liberty to
de, .« would have depended upon the equation

—x(—a + 2) =¥, or 2 — 2ax = 1,

which is the same equation as the preceding. Ience, this
equation should not only give us the greater side, which was
at first represented by 4 z, but also the less, which in this
instance is represented by — a.

32. The prccedinv examples are sufficient to indicate gene-
rally the steps to be taken, to express analytically the con-
ditions of geometrical problems:
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Ist. We commence by drawing a figure, which shall re-
present the several parts of the problem, and then such other
lines, as may from the nature of the problem lead to its
solution.

2d. Represent, as in Algebra, the known and unknown
parts by the letters of the alphabet.

3d. Express the relations which connect these parts by
means of equations, and form in this manner as many equa-
tions as unknown quantities ; the resolution of these equations
will determine the unknown quantities, and resolve the pro-

blem proposed.

EXAMPLES.

L. In a right-angled triangle, having given the base. and
the difference between the hypothenuse and perpendicular;
find the sides.

2. Having given the area of a rectangle, inscribed in a
given triangle ; determine the sides of the rectangle,

3. Determine a right-angled triangle; having given the
perimeter and the radius of the inscribed circle.

4. Having given the three sides of a triangle; find the
radius of the inscribed circle.

5. Determine a right-angled triangle, having given the
hypothenuse and the radius of the inscribed circle.

6. Determine the.radii of the three equal circles, described

ma giveh circle, which shall be tangent to each other, and
also to the circumference of the given circle.
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7. Draw through a given point taken in a given circle, a
chord, so that it may be divided at the given point into two
segments, which shall be in the ratio of m to n.

8. Having given two points and a straight line; describe
a circle so that its circumference shall pass through the
points and be tangent to the line.

9. Draw through a given point taken within a circle, a
chord whose length shall be equal to a given quantity.

10. Having given the radii of two circles, which inscribe
and circumscribe a triangle whose altitude is known; deter-
mine the triangle.

11. Draw through a given point taken within a given tri-
angle, a straight line which shall bisect the triangle.

12. Find the distance between the centres of the inseribed
ani circumscribed circles to a given triangle.
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CHAPTER III.

INDETERMINATE GEOMETRY.

33. I~ the questions which we have been considering, the
conditions have limited the values of the required parts.
We propose now to discuss some questions of Indeterminate
Geometry, which admit of an infinite number of solutions.

For example, let us consider any line
AMM'. " From the points M, M’, let fall
the perpendiculars MP, M'P’, upon the
line AX taken in the same plane. These

perpendiculars will have a determinate
length, which will depend upon the nature and position of
the line AMM’, and the distance between the points M, M/,
&c. Assuming any point A on the line AX, each length
AP will have its corresponding perpendicular MP, and the
relation which subsists between AP, PM; AP', P'M’; for
the different points of the line AMM’ will necessarily deter-
mine this line. Now, this relation may be such as to be
always expressed by an equation, from which the values of
AP, AP, &c., can be found, when those of PM, P'M’', are
known. For example, suppose AP = PM, AP' = P'M/, &e.,
representing the bases of these triangles by x, and the per-
pendiculars by y, we have the relation

v

In this case, the series of points M, M', &c., forms evidently
the straight line AMM’, making an angle of 45° with AX.
E
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34. Again, suppose that the condition established was

; such, that each of the lines

i PM, P'M, should be a mean

2 proportional between the dis-

Al p  lances of the points P, P'. &e.,

from the points A and B taken
on the line AB. Calling PM, y, AP, z, and the distance AB
2a, we would have,

' =2 (Ra—a), or,y’ =2axr—a
This eduation enables us to determine y when x is known,
and reciprocically, knowing the different values of x, we can
determine those of y. It is evident that this line is the cir-
cumference of a circle described on AB as a diameter.

35. The equations
y=2x and 3’ = 2ax —2*
are evidently indeferminate, since both x and y are unknown.
If values be given to one of the unknown quantities, the cor-
responding values of the other may be determined. Such
equations, therefore, lead to infinite solutions. But since we
can determine every value of y for every assumed value of z,
these equations serve to determine all the points of the straight
line and circle, and may be used to represent them.

36. Generalizing this result, we may regard every line as
susceptible of being represented by an equation between
two indeterminate variables; and, reciprocally, every equa-
tion between two indeterminates may be interpreted geo-
metrically, and considered as representing a line, the dif-
ferent points of which it enables us to determine. It is this
more extended application of Algebra to Geometry, that
constitutes the Science of Analytical Geometry.
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Of Points, and the Right Line in a Plane.

37. As all geometrical investigations refer to the positions
of points, our first step must be to show how these positions
are expressed and fixed by means of analysis.

38. Space is indefinite extension, in which we coneeive all
bodies to be situated. The absolute positions of bodies cannot
be determined, but their relative positions may be, by refer-
ring them to objects whose positions we suppose to be known.

39. The relative positions of all the points of a plane are
determined by referring them to two straight lines, taken at
pleasure, in that plane, and making any angle with each
other.

Let AX and AY be these two lines,
every point M situated in the plane of
these lines, is known, when we know
its distances from the lines AX and AY
measured on the parallels PM and QM
to these lines, respectively.

The lines QM, Q' M/, or their equals AP, AP, are called
abscissas, and the lines PM, P'M/, or their equals AQ, AQ',
ordinates. The line AX is called the azis of abscissas, or
simply the axis of 2's, and the line AY the axis of ordinates,
or the axis of y's. The ordinates and abscissas are designated
by the general term co-ordinates. AX and AY are then the
co-ordinate azes, and their intersection A is called the origin
of co-ordinates.

40. It may be proper here to remark, that the terms line
and plane are used in their most extensive signification,—
that is, they are supposed to extend indefinitely in both
directions.
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41. Let us represent the abscissas by x, and the ordinates
by y, z and y will be wariables,* which will have different
values for the different points which are considered. If, for
example, having measured the lengths AP, PM, which deter-
mne the point M, we find the first equal to a, and the second
equal to b, we shall have for the equations which fix this
point, o o y

These are called the equations of the point M.

492, If the abscissa AP remain constant, while the ordinate
PM diminishes, the point M will continually approach the
axis AX; and when PM = o, the point M will be on this
axis, and its equations become

z=a, Yy =o.

If the ordinate PM remain constant, while the abscissa
AP diminishes, the point M will continually approach the
axis AY, and will coincide with it when AP = o ; the equa-
tions will then be,

x = o, y=b.

Finally, if AP and PM become zero at the same time, the

point M will coincide with the point A, and we have,

z=0, Y=o,
for the equations of the origin of co-ordinates.

43. From this discussion we see that, in giving to the

variables x and y every possible positive value, from zero to

* Quantities whose values change in the same calculation are called
variables ; those whose values remain the same are called constants. 'The
first letters of the alphabet are generally used to designate constants, the
last letters variables.
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infinity, we may express the position of every point in the
angle YAX. But how may points situated in the other
angles of the co-ordinate axes be expressed !
Instead of taking YA for the

axis of y, take another line, Y'A', b o 7
parallel to YA and in the same
plane, at a distance AA' = A,
from the old axis.

: . Y
Calling «' the new abscissas, iz i
counted from the origin A', we

have for the point M, situated in the angle Y'A'X,
AP = AA’ + AP,
z=A+z.
But if we consider a point M’ in the angle Y'A'A, we
have,
AP’ = AA'— AP
2= A—2x,
Hence, in order that the same analytical expression,
r=A + 2/,

may be applicable to points situated in both these angles, we
must regard the values of 2’ as negative for the angle AA'Y",
so that the change of sign corresponds to the change of posi-
tion with respect to the axis A'Y".

44. To confirm this consequence, and show more clearly
how the preceding formula can connect the different points
in these different angles, let us consider a point on the axis
A'Y'. For this point we have &' = o, and the formula

r=A+4+
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becomes = 4+ A.

This is the value of the abscissa AA’ with respect to AX,
AY. But if we wish that this equation suit points on the
axis AY, for any point of this axis = o, and the preceding
formula will give,

which is the same value of the abscissa AA' referred to the
axis A'Y'. The analytical expression for this abscissa be-
comes then positive for the axis AY, and negative for the
axis A'Y’, when we consider the different points of the plane
connected by the equation

x=A + 2.

This result applies equally to the negative values of z, and
proves that they belong to points situated on the opposite
side of the axis AY to the positive values.

45. Moving the axis AX parallel to itself, and fixing the
new origin at A", making

AA" = B, and calling y’ the

o M new ordinates counted from

A", we have for the point M

M, AY = AA" + A"Y,
Y? o y= B o y:}

and AY"=AA"—A'Y",

/ or y=B—y

for the point M'. To express points situated on both sides
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of the axis A"X" by the same formula, we must regard those
points corresponding to negative values of ¥’ as lying on the
opposite side of the axes of A"X" to the positive values; and
as this applics equally to the axes AX and AY, we conclude
that the change of sign in the variable y corresponds to the
change of position of points with respect to the axis of ab-
scissas.

46. From what has been said, we conclude, -that if the
abscissas of points lying on the right of the axis of y be
assumed as positive, those of points lying on the left of this
axis will be negative; and also if the ordinates of points
ying above the axis of x be assumed as positive, those below
this axis will be negative. We shall have, therefore,

In the first angle, x positive and y positive;

In the second angle, x negative and y positive;

In the third angle, x negative and y negative;

In the fourth angle, x positive and y negative;
and the equations

which determine the position of a point in the angle YAX,
become successively,

r=—a, y=-+b;

= —a, —_

=+ a, y=—2»>.

e  47. Let us resume the equations z = a, y = b, which de
termine the positions of a point in a plane, a and b belnfr
any quantities whatever,
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The equation z = a considered by
itself, corresponds to every point whose
abscissa is equal to @. Take AP = a.
Every point of the line PM drawn
parallel to AY, and extending inde-
finitely in both directions, will satisfy

this condition. a = a is therefore the
equation of a line drawn parallel to the axis of y, and at a
distance from this axis equal to . In like manner y = b is
the equation of a straight line parallel to the axis of . The
point M, which is determined by the equations

Le="00" y=2>,

is therefore found at the intersection of two straight lines
drawn parallel to the co-ordinate axes. The line whose
equation is z = a will be on the positive side of the axis of y
if a is positive, and the reverse if a is negative. If a = o, it
will coincide with the axis of y, and the equation of this axis

will be
z =o.

The straight line whose equation is y = b will be situated
above or below the axis of «, according as y is positive or
negative. When y = o, it will coincide with the axis of ,
and the equation of this axis is therefore

y=o

Finally, the origin of co-ordinates being at the same time
on the two axes, will be defined by the equations

x=0, y=on,

as we have before found.
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48. The method which we have used to express analyti-
cally the position of a point, may be therefore used to de-
signate a series of points, situated on the same straight line
parallel to either of the co-ordinate axes. Generalizing this
result, we see, that if there exist the same relation between
the co-ordinates of all the points of any line whatever, the
equation in x and y which expresses this relation, must cha-
racterize the line. Reciprocally, the equation being given,
the nature of the line is determined, since for every value of
z or y we may find the corresponding value of the other co-
ordinate. ¢

49. An equation which expresses the relation which exists
between the co-ordinates of every point of a line, is called the
equation of that line.

Let it be required to find the equation of a straight line
passing through the origin of

co-ordinates, and making an

angle « with the axis of z.
Let the angle which the co-

ordinate axes make with each 3 o
A

other be called 8. From any Mﬂ\

point M draw PM parallel to the axis of y, we will have,

PM : AP : : sina : sin (8 —a)

PM sin a . sina
Befiger i doadeg AL A Wy Sy e BN
AP sin (8 — «) i sin (8 — «)
As the same relation between y and = will exist for every
point of the line AM, the equation
4= F
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= b
sin (8 —a)
1s the equation of a straight line referred to oblique axes.

The value of « is the same for every point of the line AM,
but varies from one line to another. If we suppose « to
diminish, the line AM will incline more and more to the axis
of x, and when « = o coincides with this axis. In this case
the analytical expression becomes y = o, which is the same
equation for the axis of & which was found before.

Again, let o increase. The line AM approaches the axis

AY and coincides with it when « = 8. In this case the sin
(B— «) = 0, and the equation becomes x = o, which is the

equation of the axis of y.
If o« continue to increase, (8-—«) becomes negative, and
the equation becomes

sin a
sin (B — &)
and is the equation of the line AM'. When « = 180°,
sin &« = 0, and the line coincides with the axis of x, and we

y=—=

have again y = o.
Finally, for « > 180° sin o is negative, as well as
sin (8 — o), and the equation becomes

sin a
— (Pt SAT e
sin (8 — o)
and represents the line MAM”. Hence the formula
y==x sin o
sin (8 — o)

is applicable to every straight line drawn thfough the origin
of co-ordinates, when referred to oblique axes.



Cuar. IIL] ANALYTICAL GEOMETRY. 43

50. Let us now consider a line A'M' making the same
angle « with the axis of z,
but which does not pass
through the origin; and as
its inclination to the axis of =

does not determine its posi-
tion, suppose it cut the axis
of y at a distance AA’ from /3 rt 7
the origin, equal to &. The £

equation of a line parallel to A’M’, and passing through the

origin, will be ;
smn o
=y —————
Y sin (8 — a)

The value of any ordinate PM will be composed of the
part PN = « R - ad MN = AA’=10. Hence

sin (8 — a)

sin « b
Yy=7*5n (B—a) Fids
which is the most general equation of a straight line con-
sidered in a plane.

51. To find the point in which this line cuts the axis of «,
make y = o, which is the condition for every point of this
axis; and making z = o, determines the point in which it
cuts the axis of y.

Should the line A'M’ cat the axis of y below the origin of
co-ordinates, the value of the new ordinate would be less
than that of the ordinate of the line passing through the
origin, by the distance cut off on the axis of y; hence we
have for the equation of the line,

sin «

S =




44 ANALYTICAL GEOMETRY. {Cuae. IIL

52. In this discussion we have supposed the co-ordinate
axes to make any angle 8 with each other. They are most
generally taken at right-angles, since it simplifies the calcu-
lation. If therefore 8 = 90°

sin (8 — &) = sin (90° — o) = Esv 4
and the equation (1) becomes
sin o
cos «

y=ux +b==zxtana-+ b.

Representing the tangent of « by a, this equation becomes
y=ax + b, ®)

which is the equation of a right line referred to rectangular
axes. In this equation a represents the tangent of the angle
which the line makes with the axis of z, and b the distance
from the origin at which it cuts the axis of .

53. If the line passed through the origin of co-ordinates,
b is zero, and the equation (2) becomes

y = ax,

which is the equation of a right line passing through the
origin of co-ordinates when referred to rectangular axes.

By making y = o in equation (2) we determine the point
in which the line cuts the axis of x, the abscissa of which is

LR

a
It therefore meets this axis on the left of the axis of y, and
b £t
at a distance — — from the origin.

By finding the value of z in equation (2) we get

1 b
x=zy-_—-—-: (3)

a
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as a represents the tangent of the angle « which the line

makes with the axis of z, L will be the cotangent of «, or
a

the tangent of the complement of «; but the complement of
e is the angle which the line makes with the axis of y;
hence, to find the angle which a line makes with the axis of
ordinates, we find the value of x in the equation of this line
referred to rectangular axes, and the co-efficient of y will be
the tangent of this angle.
54. The equation
y=-+ar+b

representing a straight line which cuts the axis of y at a
distance + b from the origin, and makes an angle whose
trigonometrical tangentis 4 a
with the axis of z, its posi-
tion will be as indicated by
the line A'M, the distance
AA’ being equal to -+ b, and
the angle ABM represent-

ing a.

But the position of the line A’M will evidently vary with
the signs of a and b, since the angle « will be acute for a
positive tangent, but obtuse for a nega-

tive one. And the line A'M will cut A

the axis of y above the axis of x for a ¥

positive value of b, but below this axis A % 2

for a negative value. We therefore /

conclude that for the equation A
y=+ar—5b

Fig. 1
the line has the position A'M (fig. 1). -
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Y
\
A
A \”ﬁ
N

When we have
Yy=-—axr+b

it assumes the direction A'M

% (fig. 2), and when

y=—axr—10

= it is situated as in fig. 3.

Fig. 3.
2 55. Should the Tine be
parallel to the axis of «
(fig. 4), the angles a =o¢
& b and @ = o, and the equa-
2 e tion becomes
y=+5b
— AT "
for the line A'M’, and
=—0
Fig. 4. for the line A"M".

66. If we put the equation of the line under the form

@ = ay == b, then, for the foregoing reasons, a will be the tan-
gent of the angle the line makes with the axis of y. If the

line be parallel to this axis, a becomes zero, and we have
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z=+0b
for the line on the right of the

axis, and a”
z=—20
for the line on the left of the

axis; becausea= co; therefore

b b
5 and + = also become equal

to o, and the line should coin-

cide with the axis of y. The
insufficiency of the text may
be readily overcome, and should be.

57. By giving to the constants ¢ and b particular values,
so many particular lines may be represented. When a =1
and b = 1, the line cuts the axis of y at a unit’s distance
from the origin, and makes an angle of 45° with the axis of
z. Since a = tang a = tang45° = 1.

58. The most general form of an equation of the first
degree between two variables is

Ay + Bz + C=o,

from which we have

B DAL
L o
R B O .
By making a = T and b = — — this equation reduces to
A
y=ax+b,

which is the equation of a straight line referred to rectan-
gular axcs as before found

EXAMPLES.

1. Construct the line whose equation is

y=—z—L ”
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2. Construct the line whose equation is
2y =4z —2.

3. Construct the line whose equation is

2w—3y—1=06x—y

4. Construct the line whose equation is

ly—3x+i=3%x+ 2

59. From what precedes we may find the analytical ex-
pression for the distance

MY between two points, when

we know their co-ordinates

B e referred torectangular axes.
Let M', M", be the given
points; draw M'Q’ parallel

to the axis of x, the triangle

MM'Q' gives

MM =Y MQ" +MQ"
Let z', y, represent the co-ordinates of the point M/, 2", y'
those of the point M"; M'Q = 2" —a',and M"Q' =y" —y/,
and representing the distances between the two points by D,
we have

D=y @ —ay+ U —y)
If the point M’ were placed at the origin A, we should have
17} y =o,
and the value of D reduces to
D=va®+y7

which is the expression for the distance of a point from the
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origin of co-ordinates. This value is
easily verified, for the triangle AMP
being right-angled gives

AM' = AP’ + PM,
D=vx ¥y~

60. Let it be required to find the equation of a straight
line, which shall pass through a given point.

Let o, y', be the co-ordinates of the given point M. As
the line is straight, its equation will be of the form (Art. 52)

y=az + b
Y
Since the required line must pass -
through the point M, whose co-or-
ainates are ', y/, its equation must /PA »

be satisfied when «' and y' are sub-
stituted for z and y; hence we
have the condition

Yy =ax' + b

But, as it is in general impossible for a straight line to pass
through a given point M, and cut the axis of y at a required
point P, (the distance AP being equal to b,) and make an
angle with the axis of , whose tangent shall be a, one of the
quantities @ or b must be eliminated. By subtracting the
second of the above equations from the first, this elimination
is effected, and we have

y—y=a@—2z) @
for the general equation of a straight line passing through one
point.  This equation requiring but two conditions to be ful-

filled, may be always satisfied by a straight line.
5 G
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61. If the given point be on the axis of z, then ¢’ = 0 and
the equation (4) becomes

y=a(z—xz)

should the point be upon the axis of y, 2’ = o, and we have
y—y =az,
y=uaxr + .

In the same manner, by giving particular values to «’ and ¥/,
the equation of any line passing through a given point may
be determined.

EXAMPLES.

1. Find the equation of a line which shall pass through a
point whose co-ordinates are ' = —1 ¢y’ = + 2
9. Find the cquation of a straight line which shall pass

through a point on the axis of « whose abscissa is equal to
—3.

62. Let us now find the equation of a straight line which
shall pass through two given points.

Let «', y’ be the co-ordinates of one of the points, 2", y"
those of the other. The line being straight, its equation will
be of the form

y=az + b.
Since the line must pass through the point whose co-ordinates
are ', y/', these co-ordinates must satisfy the equation of the
line, and we have

y' = ax' + b.
But it also passes through the point whose co-ordinates are

2", y", and we have the second condition,

y' =az" + 0.
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The line having to fulfil the two conditions of passing through
the two given points, the two constants @ and b must be eli-
minated. By subtracting the second-equation from the first,
and the third from the second, we have

y—y=a@—z)

y! _yn =a (.l" __xll)’

and by dividing these two last equations the one by the
other, we have

y—y =" @—2),

which is the equation of a straight line passing through two
given points, in which x and y are the general co-ordinates
of the line, and «', y', and 2", y”, the co-ordinates of the two
points. The angle which it makes with the axis of = has for
a tangent

yl — y"

' —x

e

Itis easy to show that the above equation fulfils the required
conditions; for, by supposing ' = 2" the line will become
parallel to the axis of y, and the value for the tangent becomes

y—y

= @
0 ]

the tangent being infinite, the angle which the line makes
with z is 50°.
If ¥ = 4", we have
0

VTR T

x —z
which is the condition of the line, being parallel to z ; since
the angle being o, the tangent is o.



52 ANALYTICAL GEOMETRY. [CHap. IIT

EXAMPLES.
1. Find the equation of a line passing through two points
he co-ordinates of whicharex' =1, ¥ =2, 2" =0 3" = 1.
2. Find the equation of a line which shall pass through a
point on the axis of =, the abscissa of which is —2, and
another on the axis of y, the ordinate of which is + 1, and
construct the line.

63. To find the conditions necessary that a straight line
be parallel to a given straight line.

Let
e y=axr+b
be the equation of the given line, in which ¢ and b are
known. That of the required line will be of the form

y=adx+7?,
in which o' and &' are unknown.
In order that these lines should be parallel, it is necessary

that they should make the same angle with the axis of .
Hence

!

a- =l
and the equation of the parallel, after substitution, becomes
y=az+b,

'in which ' is indeterminate, since an infinite number of lines

may be drawn parallel to a given line.

64. To find the angle included between two lines, given
by their equations.
Let
y'=ax +'b be the equation of the first line,

y=a'z + b the equation of the second line.
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The first line makes with the axis of x an angle, the trigo-
nometrical tangent of which is a;
the second, an angle whose tan-
gent is @'. The angle sought is
ABC = o — a, since BAX =
ACB + CBA. But we have from

Trigonometry,

tang o' — tang o
I + tang o tang o

tang (' —a) =

Calling ABC = V, and putting for tang « and tang o’ a and

@', we have
.a —a
il e
If the lines be parallel, V = o; and the tang V = o, which
gives a — a' = o and a = a’, which agrees with the condition
betore established (Art. 63).
If the lines be perpendicular to each other, V = 90° and

’

tang V = ]a—:a_Z’ = oo,
which gives
1+ aa'=o,

which is the condition that two straight lines should be per-
pendicular to each other. 1If one of the quantities a or a' be
known, the other is determined by this equation. .. & °

EXAMPLES.

I. Find the angles between the lines represented by the
equations
y=xz—1,
y=z+ L
e
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2. Iind the angles between the lines

YETRn

y=1.
3. I'ind the angles between the lines

y=o

Y=

4. Find the angle of intersection of two straight lines, the
tangent of the angle which one makes with the axis of
being + 1, that of the other LU TR

Ans. tang V = oo.

5. Find the angle of intersection whena =0 a' = 1.

65. To find the intersection of two straight lines, given
by their equations.
Let 3
y=a'z+0b, :
y=az+ 0,

be the equations of the two lines. As the point of intersec-
tion is on both of the lines, its co-ordinates must satisfy at
the same time the two equations. Combining them, we
shall deduce the values of « and y which correspond to the
point of intersection. We have by elimination,

b—0 _ab—ab
LY i

= —

When a = a/, these values become infinite. The lines are
then parallel, and can only intersect at an infinite distance.
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EXAMPLES.

1. Find the co-ordinates of the point of intersection of
two lines, whose equations are

y=3x+1,
y=2x+ 4.
Ans. z =3, y=10.

2. Find the co-ordinates of the point of intersection of

two lines, whose equations are

y—zx=o,

y—2z =1
Ans. z=1,y=1.

66. The method which we have just employed is genera.,
and may be used to determine the points of intersection of
two curve lines, situated in the same plane, when we know
their equations; for, as these points must be at the same
time on both curves, their co-ordinates must satisfy the equa-
tions of the curves. Hence, combining these equations, the
values we deduce for x and y will be the co-ordinates of the
points of intersection.

Of Points, and the Straight Line in Space.

67. A point is determined in space, when we know the
length and direction of three lines, drawn through the point,
parallel to three planes, and terminated by them.

68. For more simplicity we will suppose three planes at right
angles to each other, and let them be represented by Y'AX
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z XAZ, ZAY. Suppose
R<--~——Ml the point M at a dis-
1{’// it \/ tance MM’ from the
¢ RSB : first plase, MM" from
,,./'/a \1\? o second, and MM from

| |/ 6/‘ the third. If we draw

/r T ' through these lines three
planes parallel to the

rectangular planes, their intersection will give the point M.
The rectangular planes to which points in space are referred,
are called Co-ordinate Planes. They intersect each other in
the lines AX, AY, AZ, passing through the point A and per-
pendicular to each other. The distance MM’ of the point
M from the plane YAX may be laid off on the line AZ, and
is equal to AR. Likewise the distance MM" may be laid off on
AY,andis AQ. Finally, AP laid off on AX is equal to MM".

69. The lines AX, AY, AZ, on which hereafter the re-
spective distances of points from the co-ordinate planes will
be reckoned, are called the Co-ordinate Axes, and the point
A is the Origin.

70. Let us represent by x the distances laid off on the
first, which will be the axis of «, by y those laid off on Ay,
which will be the axis of y, and by z those laid off on AZ,
which will be the axis of z.

If then the distances AP, AQ, AR, be measured and found
equal to @, b, ¢, we shall have to determine the point M, the

three equations
r=a y=b z=c

These are called the Iiquations of the point M.
71. The points M’', M”, M, in which the perpendiculars
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from the point M meet the co-ordinate planes, are called the
Projections of the point M.

These projections are determined from the three equations
given above, for we obtain from them

y = b, * = a, which are the equations of the projection M,
g e G “ “ of the projection M",
=c,y=b « s & of the projection M";

and we see from the composition of these equations, that two
projections being given, the other follows necessarily.

In the geometrical construction they may be easily deduced
from each other. For example, M”, M, being given, draw
M"Q, M'P, parallel to AZ, and QM', PM/, parallel respect-
ively to AX and AY, M’ will be the third projection of the
point M. '

72. There results from what has been said, that all points
in space being referred to three rectangular planes, the points
in each of these planes are naturally referred to the two
perpendiculars, which are the intersections of this plane
with the other two.

The plane YAX is called the plane of s, and y's, or
simply xy ;

The plasne XAZ, that of 2s, and 2's, or xz ;

And the plane ZAY, that of z's, and y's, or 2y

The same interpretation is given to negative ordinates, as
we have before explained, and the signs of the co-ordinates
%, ¥, z, will make known the positions of points in the eight
angles of the co-ordinate planes.

73. Let us resume the equations,

r=ay y==>b"z='"c;
a, b, ¢, being indeterminate. .
H
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The first x==a considered by itself, belongs to every
point whose abscissa AP is equal to «. It belongs therefore
to the plane MM'PM", supposed indefinitely extended in
both directions. For every point of this plane, as it is pa-
rallel to the plane ZAY, satisfies this condition. The equa-
tion y = b corresponds to every point of the plane MM"
QM’', drawn through the point M parallel to ZAX, and
finally z = ¢ corresponds to every point of the plane MM”
RM" drawn through M parallel to the plane XAY. Hence
the equations

z=a, y=">b, z=c,

show that the point M is situated at the same time on three
planes drawn parallel respectively to the co-ordinate planes
and at distances represented by a, b, c.

When these distances are nothing, the equations become

r=o0, Yy=o0, z=0

which are the equations of the origin. The first of these
x = o corresponds to the plane yz, the second y = o to the
plane xz, and the third z = o to the plane xy. Since for every
point of these planes, these separate conditions exist.

74. To find the expression for the distance between two
points in space. Let M, M’, be the two points, the co-ordi-
nates of the first being 2/, ¥/, 2/, those of the second, z”, y", 2".
Draw MQ parallel to the plane of zy, and limited by the

=7
)
~

ordinate M'IN’, we shall have) s foe fowdieCae ARSI
[V S
1 mr-aw+ar, e 2R
foppd G nge Thee
or since MQ = NN/, 3

MM"™ =NN" + QM".
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Draw NR parallel to the

axis of x, we shall have z m
NN* = NR' + NR. - /
But \
NR =a"—2, &
and N:R:yn_yr, A X
hence /
Al N R
NN’ = (.r"——a:')’—l— (y"—y’)’,
And we have also Vs A

QM = M'N'— MN =" —=2".
Substituting the values of NN' and QM', we have
MM = (2" — ) + (¢ — ¥ + (" — )}
¥ MM =D=v @ —2)Y+ @y —y)+E —2).

75. If one of the points, as for example that whose co-or-

dinates are ', ¥, 2, coincide with the origin, the preceding
formula becomes

D=va™+y +775
which expresses the distance of a point in space from the
origin of co-ordinates. In fact,
the triangles MAM', AM'P being 3
right-angled at M’ and P, give M

AM® = MM® + A, /

i b l P X
AM' = MM” + P + AT, T \/
AN = 2% 4y + 27, Lo i

as we have just found.

We see by this result, that the square of the diagonal of a
rectangular parallelopipedon is equal to the sum of the squares
of its three edges.
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76. This last result gives a relation between the cosines of
the angles which any line AM makes with the co-ordinate
axes. For,let these three angles be represented by X, Y, Z;
call 7 the distance AM, in the right-angled triangle AMM'
we have

MM =2, AMM = MAZ=27.
Hence
2z =1rcos Z.

Reasoning in the same manner we have

y=rcosY,

= rcos X.

Squaring these three equations and adding them together we

have A

2® 4 4 + 22 =1 (cos* X + cos’Y + cos’ Z),
but ot =
Hence cos’X +cos’Y + cos*Z = 1,

which proves, that the sum of the squares of the cosines of the
angles which a straight line in space makes with the co-ordi-
nate axes is always equal to unity.

77. Let us now determine the equations of a straight line
in space.

To do this, we will remark that, if a plane be drawn
through a straight line in space, perpendicular to either of
the co-ordinate planes, its intersection with this plane will be
the projection of the line on that plane. The perpendicular
plane is called the projecting plane. There are therefore
three projecting planes, and also three projections; and as
each of the projecting planes contains the given line and one
of its projections, knowing two of the projections, we may
draw two projecting planes whese intersection will determine
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the line in space. Hence, two projections of a line in space
are sufficient lo determine it.

As these projections are straight lines, their equations will
be of the form,

x = az + a, for the projection on the plane of xz,

y=bz 48, « <4 on the plane of yz.

These equations fix the position of the line in space, since
they make known the projecting planes, whose intersection
determines the line.

If the given line passed through the origin of co-ordinates,
we should have a =0 and 8 =0, and the above equations
would become

z = az,
y=bz.
78. These results are easily verified; for the equation

r=az -+ a

being independent of y, is not only the equation of the pro-
jection of the given line on the plane of zz, but corresponds
to every point of the projecting plane of the given line, of
which this projection is the trace. It is therefore the equa-
tion of this plane.
Likewise the equation
y=bz+p

being independent of x, not only represents the equation of
the projection of the given line on the plane of yz, but is the
equation of the plane which projects this line on the plane
of yz. Consequently the system of equations

r=az + a, y=>bz+4 B,
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signifies that the given line is situated at the same time on
both these planes. Hence they determine its position.

79. Lliminating 2 from these equations, we get,

r—oa — B b
T Rl y-——B::—a—(m—-a),

whnich is the equation of the projection of the given line on
the plane of yx, and also corresponds to the plane which
projects this line on the plane of xy.

80. We conclude from these remarks that, in general, two
equations are necessary to fix the position of a line in space,
and these equations are those of the two planes, whose inter-
section determines the line. When a line is situated in one
of the co-ordinate planes, its projections on the other two are
in the axes., If, for example, it be in the plane of az, we
have for any line of this plane, :

b=o, Bi=lok
and its equations become
y=o, x=az+a.

The first shows that the projection of the line on the plane
of yz is in the axis, and the second is the equation of its pro-
jection on the plane of xz, which is the same as for the line
itself, with which it coincides.

81. Let us resume the equations

r=az + o, y=bz+4 B.

So long as the quantities, a, b, a, 8, are unknown, the posi-
tion of the line is undetermined. If one of them, « for ex-
ample, be known, this condition requires that the line shall

have such a position in space, that its projection on the plane
of az shall make an angle with the axis of z, the tangent of
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which is a. If « be also known, this projection must cut the
axis of x at this given distance from the origin, and these
two conditions will limit the line to a given plane.

If b be known, a similar condition will be required with
respect to the angle which its projection on the plane of yz
makes with the axis of z; and finally, if all fonr constants
be known, the line is completely determined.

82. The determination of the constants a, b, «, B, from
given conditions, and the combination of the lines which
result from them, lead to questions which are analogous to
those we have been considering.

Before proceeding to their discussion, we will remark, that
the methods which we have just used, may be applied to
curve as well as straight lines. In fact, if we know the
equations of the projections of a curve on two of the co-
ordinate planes, we can for every value of one of the varia-
bles x, y,or 2, find the corresponding values of the other two,
which will determine points on the curve in space.

83. The projection of a curve on a plane is the intersection
with this plane by a cylindrical surface, passed through the
curve perpendicular to the plane. '

If we know the equations of two of its projections, these
equations show that the curve lies on the surfaces of two
cylinders, passing through these projections, and perpendi-
cular to their planes respectively. Ilence their intersection
determines the curve.

The term Cylinder is used in its most general sense, and
applies to any surface generated by a right line moving pa-
rallel to itself along any curve.

84. To find the equations of a straight line passing through

o given poind.
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Let 2, y', #', be the co-ordinates of the given point. The
equations of the line will be of the form

% lkgse 0aputing T 7ml~ Glhe Wdeds = az + o,
9 ; g7 o t Wk Tes ofe
5 Aegl ames ‘tw a  eryte Ly P:,, y= bz B B'

e et deeled iu w
But since the line must pass through the given point, these
equations must be satisfied when ', ¥, and 2’ are substituted

for z, y, and z. We have therefore the conditions
Q@R 0o s 02> bt Weee s e |

(w.\u-h:-‘( to awaet o 4. '=a? oF %y
y =b2 4+ 6.
Eliminating”« and £, by subtracting the two last equa-
tions from the two first, we have

] ‘.'u Qoo ewy

1 .,.,‘..E;. £

ft

Sea Gab. b0

z—z =a(z—2),
g o = bifpina),
#or the equations of a straight line passing through the point
ey A
EXAMPLES.

1. Find the equations of a straight line passing through

art. &4. . . ,
i 2 the point whose co-ordinates are @' =0, y' =0, z' = L.

2. Find the equations of a straight line passing through
the point whose co-ordinates are 2’ = —1, ¢y’ =0, 2' = 4 L.

85. To find the equations of a right line passing through
wwo given points.

Leta', y', 2', 2", y", 2", be the co-ordinates of these points.
‘The equations of the required line will be of the form

r=az -+ a
y=bz+ 5,

a, b, o, 8, being unknown. In order that the line pass through
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the point whose co-ordinates are ', ¥/, 2/, it is necessary
that these equations be satisfied when we substitute «', y'
and 2/, for x, y, and 2. Hence

' =az + a,
y =b+ 8.
For the same reason, the condition of its passing through

the point whose co-ordinates are z", y", 2", requires that we
have
1”
&'’ =az" + a,

y" = bZ" i ‘8.

These equations make known a, b, «, 3, and substituting
their values in the equation of the straight line, it is deter-
mined. Operating upon these equations as in Art. 84, we
have

(x—2z) =a(z—7), (' —a") =a (x'—2"),
G—y)=b(—z), @G—y)=b@—2")

from which we get

() " ’ n
e e RS g

? = ’
z/ =1 zll zl e Z”

@—2) =2 (t—2), yg—y=2" a—2).

2 —z 7 —z
The two last equations are those of the required line, the
other two make known the angles which its projections on the

planes of xz and yz make with the axis of z.
EXAMPLES.
1. Find the equations of a straight line passing through
the points, whose co-ordinates are ' = o, y' =0, 2’ = —1;

and 2" =1, y’" =0, z" =0, and construct the line.

2. Find the equations of the line passing through the origin
6 I
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of co-ordinates, and a point, the co-ordinates of which are
xu.: 1, yu = o0, 2 =-_1.
86. To find the angle included between two given lines.
Let

::Z::;g be the equations of the first line.
z=az+d

Ay g those of the second.

We will remark in the first place, that in space, two lines
may cross each other under different angles without meeting,
and their inclination is measured in every case by that of
two lines, drawn parallel respectively to the given lines
through the same point.

Draw through the origin of co-ordinates two lines respec-
tively parallel to those whose inclination is required, their
equations will be

% Zzg for the first,

= 0z

w—alzg for the second
y=1>bz

Take on the first any point at a distance 7' from the origin,
the co-ordinates of this point being «', ¥/, #’; and on the
second line take another point at a distance »” from the origin,
and call the co-ordinates of this
point z”, 4", 2", and let D repre-
sent the distance between these
two points. In the triangle formed
by the three lines #, ", and D,
the angle V included between »'
and r” will be (by Trigonometry),
given by the formula,
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$j t'r¥ Cos V 2 73 2
e 2 +r7—1
%‘"‘ cO0S Wie— —'—-;2-,—,,-— .
» r

We have only to determine r’, 7, and D.

Designating by X, Y, Z, the three angles which the first
line makes with the co-ordinate axes, respectively, and by
X', Y, Z, those made by the second line, we have by Art. 76,

x = r'cos X, y=rcosY, Z =1 cos Z,
' =7r"cos X/, y' =r"cosY, 2'=r"cosZ.

Besides, D being the distance between two points, we
have

D= (' —a) + (' —y)' + ' —5)

or
’

D2=x12+y:2+zg+wuz+yug+zl/2_2(max:l+y/yu+zz ;

Putting for z, ¥/, 2, &ec. their values in terms of the angles
we have

D*= ¢ {cos* X + cos* Y + cos® Z} + #* jcos* X' + cos* Y
+ cos? Z’} — 27 r”,%cos Xcos X' 4+ cos Ycos Y + cos Z
cos Z'}.

But we have (Art. 76),
cos’* X + cos®Y +cos*Z = 1,cos? X' + cos Y' + cos? Z' = 1;
hence
D?=7" 4+ r"*— 2 r" (cos X cos X' + cos Y cos Y’ + cos Z
cos Z').
~ Substituting this value of D? in the formula for the cosine
V, and dividing by 2/ #”’, we have

cos V = cos X cos X'+ cosYcos Y + cos Zcos Z;

which is the expression for the cosine of the angle formed in
space.
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87. We may also express cos V in functions of the co-efhi-
cients a, b, a, &', which enter into the equations of the lines
xr = az, z=daz,

y = bz, y=1"bz
For this purpose let us consider the point which we have
taken, on the first line, whose co-ordinates are ', y, z
These co-ordinates must have between them the relations
expressed by the equations of the line; hence
x = a7 o 4
yl — bzll;
and as we have always for the distance
7’"2 — w’2 g + y/z + z/!’
these three equations give

ar’ o r
= Sy e = ——y =,
drexl Y JTxaxF " Jite+b

But we have

’

x z
cosX=—-;,—s cosY=%: cosZ=-—;

r
hence
a b
cos X =—— CO Y:—-———-—
vit+a + ¥ : JIT+@+ 7
cos Z = )

JTiasp

Reasoning in the same manner on the equations of the
second line, we shall have
a b

) cos Y =
v1+a®+0b

X’: — T LI 9
o v1+a*+ 568



Caar. 111} ANALYTICAL GEOMETRY. 65

1
Z' e e )
e v1+a®+0*

and these values being substituted in the general value of
cos V, it becomes

1 + aa' + b

V==% - .
- JVitd 1t Jlta +b°

This value of cos V is double, on account of the double
sign of the radicals in the denominator. One value belongs
o the acute angle, the other to the obtuse angle, which the
lines we are considering make with each other.

88. The different suppositions which we make on the angle
V being introduced into the general expression of cos V,
we shall obtain the corresponding analytical conditions. Let
V = 90°.

Cos V = o, and then the equation which gives the value of
cos V will give

1 4 aa' + b = o,

which is the condition necessary that the lines be perpendicular
to each other.

89. If the lines be parallel to each other,cos V = +1, and
this gives
1 4 aa" + 0¥

== s
Vi+ad+8¥ V14 a? 407

Making the denominator disappear, and squaring both mem-
bers, we may put the result under the form

(@ —a) + (' —b)* + (ab' — a'b)’ = o.

But the sum of the three squares cannot be equal to zero,
unless each is separately equal to zero, which gives
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a=a, b=10, abl' = a'b.

The two first indicate that the projections of the lines on

the planes of 2z and yz are parallel to each other; the third
is a consequence of the two others.

EXAMPLES.

1. Find the angle between the lines represented by the
equations

r=—2+4+2 =2 )
and
y=+z—1 Y=z 4+ 2
Ans. 90°.

2. Find the angle between the lines represented by the
equations
z=2:—3 Sy e 22—y
y=3z + 1 y=—2+1
3. Find the angle between the lines represented by the
equations

90. It is evident that the angles X, Y, Z, which a straight
line makes with the co-ordinate axes, are complements of the
angles which the same line makes with the co-ordinate planes
respectively perpendicular to the axes. Hence, if we desig-
nate by U, U’, U’/ the angles which this line makes with the
planes of yz, 2z, and xy, we shall have (Art. 87),

h a lilr b
COSX:‘SIHU:_H-{——?_—-{_-.P’ cosY =sinU =:'/‘-——1—_*:'ﬁ—32‘,
1
cos Z=sinU" =

Vit 16
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91. Let it be required to find the conditions necessary that
two lines should intersect in space and also find the co-ordi-

nates of their point of intersection.
Let

x=az + a, r=a'z+ o

y=1"bz+ B, y=>bz+ 8,

be the equations of the given lines. If they intersect, the
co-ordinates of their point of intersection must satisfy the
equations of these lines at the same time. Calling ', v, 2
the co-ordinates of this point, we have

' =az + a x'=a'z + o,
yl — bzl + ‘3, yl — blz' + 13'.

These four equations being more than sufficient to deter-
mine, the three quantities 2/, y', z', will lead to an equation
of condition between the constants a, b, o, B, o, 8, a', b,
which fix the positions of the lines, which condition must
be fulfilled in order that the lines intersect. Eliminating x
and vy, we have

(a—a)z +a—d =0, (B—0)2+B—F =0,
and afterwards z', we get
(¢—a)(B—B)—(a—a) (b —b) =0,

which is the equation of condition that the two lines should
intersect. If this condition be fulfilled, we may, from any
three of the preceding equations, find the values of z', ¥/, 2/,
and we get

o S B—pB |, ad—ae b3 — b'B

b—0

o — i) == y X' = y Y =
a—a' b— b a—'a’ y

These values become infinite when a = @' and b = b'.
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The point of intersection is then at an infinite distance. In-
deed, on this supposition the lines are parallel.

92. The method which has just been applied to the inter-
section of two straight lines, may also be used to determine
the points of intersection of two curves when their equations
are known. For these points being common to the two
curves, their co-ordinates must satisfy at the same time, the
equations of the curves. This consideration will generally
give one more equation than there are unknown quantities.
Eliminating the unknown quantities, we obtain an equation
of condition wnich must be satisfied, in order that the two
curves intersect. As the determination of these intersections
will be better understood when we have made the discussion
of curves, this subject will be resumed.

EXAMPLES.

L. Find the equations of a straight line in space, which
shall pass through a given point, and be parallel to a given
line.

2. Find the co-ordinates of the points in which a given
straight line in space meets the co-ordinate planes.

Of the Plane.

93. We have seen that a line is characterized when we
have an equation which expresses the relations between the
co-ordinates of each of its points. It is the same with sur-
faces, and their character is determined when we have an
equation between the co-ordinates , y, and z, of the points
which belong to it; for by giving values to two of these
variables, the third can be deduced, which will give a point
on the surface.



Cuap. [11] ANALYTICAL GEOMETRY. 3

94. The Equation of a Plane is an equation which ex-
presses the relations between the co-ordinates of every point
of the p]ane.' '

Let us find this equation.

A plane may be generated by considering it as the Jocus
of all the perpendiculars, drawn through one of the points
of a given straight line. Let ', ¢/, 2/, be the co-ordinates
of this point, we have (Art. 84),

r—a' =a(iz—z2)
y—y=>b(z—=2)

Those of another line drawn through the same point,
will be

for the equations of the given line.

x—ax'=a (z—72)
y—y =b(z—=2).
If these two lines be perpendicular, we have (Art. 88)
the condition
L 4 ad' + bb' = o,
@' and &' being constants for one perpendicular, but variables
from one perpendicular to another. If we substitute for '
and b’ their values drawn from the above equations, the
resulting equation will express a relation which will corre-
spond to all the perpendiculars, and this relation will be that
which must exist between the co-ordinates of the plane which
contains them. The elimination gives

z—z +a(@—2)+b(@y—y)=o,
which is the general equation of a plane, since ¢ and b are
entirely arbitrary, as well as &/, ¥, and 2"

95, If we make z = o, and y = 0, we have
7 K
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z=12 + ax' + by
for the ordinate of the

point C, at which the
plane cuts the axis of z.

Representing this dis-
tance by c, the equation

of the plane becomes

z+ar+by—c=o,

and we see that it is linear with respect to the variables
z, y, and z. It contains three arbitrary constants, a, b, ¢,
because three conditions are, in general, necessary to deter-
mine the position of a plane in space. If ¢ = o, the plane
passes through the origin.

96. To find the intersection of this plane with the plane
of zz, make y = o, and we have

y=0, z+ar—c=o,

for the equations of the intersection CD.

The first shows that its projection on the plane of zy is in
the axis of x, and the second gives the trigonometrical tan-
gent of the angle which it makes with the axis of a.

97. Making x = o, we obtain the intersection CD’, the
equations of which are,
x=0, z+by—c=o;
and z = o gives
z=0, arx+by—c=o,
for the equations of the intersection DD)'.

The intersections CD, CD', DD, are called the Traces of
the Plane.
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98. The projections of the line to which this plane is per-
pendicular, have for their equations

(xz—2)=a(z—12), (y—y)=0>b@—17).
Comparing them with those of the traces CD, CD’, put
under the form
c c
=T i o R

b

We see (Art. 64) that these lines are respectively perpen-
dicular to each other, since

1
l1+aX ——=o,
a
and

1
1+bx——b——0.

Hence, if a plane be perpendicular to a line in space, the
traces of the plane will be perpendicular to the projections of
the line.

99. Making z = o in the equations of the traces CD, CD’,
we have

[+
z=0 =0, I=—)»
y Y f) a
and
c
z=0, x=0, Y=

for the co-ordinates of the points D, D', in which the traces
meet the axes of x and y. These equations must satisfy the

" equations of the third trace DD, because this trace passes
through the points D and D'

100. Let us put the equation of the plane under the form
Az+By+Cz+ D=o,

which is the same form as the preceding, if we divide by C.
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We wish to show that every equation of this form is the
equation of a plane.

From the nature of a plane, we know that if two points
be assumed at pleasure on its surface, and connected by a
straight line, this line will lie wholly in the plane. If we
can prove that this property is enjoyed by the surface repre-
sented by the above equation, it will follow that this surface
is a plane.

X =az + o,

y=bz + f,

be the equations of the line, and let &', 4/, 2/, be the co-ordi-
nates of one of the points common to the line and surface.
They must satisfy the equations of the line as well as that
of the surface, and we have
r=ar+ao y=0b'+5,

and .

Az’ + By +Cz + D =o.
Substituting for 2’ and y' their values a? + «, b2 + 3, we

have
(Aa+Bb+C)z' + Aa+ BB+ D =o,

which is the equation of condition in order that the line and
surface have a common point.

Let 2", y" 2"', be the co-ordinates of another point common
to the line and surface. We deduce the corresponding con-
dition

(Aa+ Bb+ C)z" + Aa+ BB + D =o.

Now, these two equations cannot subsist at the same time,

unless we have separately

Aa+Bb+C=0, and Ao+ BB +D=o.
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These are, therefore, the necessary conditions that the line
and surface have two points common.

If the values of a, b, a, B, are such that these two condi-
tions are satisfied, every point of the line will be common to

the surface. For, if 2", y'", 2", be the co-ordinates of an-
other point, in order that it be on the surface, we must have

(Ac +Bb+C) 2" + Aa+ B8+ D =o.

But this equation is satisfied whenever the two others are,
and consequently this point is also common to the line and
surface.

As the same may be proved for every other point, it fol-
lows that every straight line which has two points in common
with the surface whose equation is

Az 4+ By +Cz+ D=y,

will coincide with it, and consequently this surface is a plane.
101. If we make y = o, we have

Ar+Cz+D=0o¢

for the equation of the trace CD, on the plane xz. If the
plane be perpendicular to the plane of yz, this trace will be
parallel to the axis of z, and its equation will be of the form
z = a, which requires that A = o, and the equation of the
plane becomes
By+ Cz+D=o.

We should in like manner have B = o, if the plane were
perpendicular to the plane of xz. Its trace on the plane of
yz would be parallel to the axis of y, and its equation

would be
Az 4+ Cz + D =o.

For a plane perpendicular to the plane of xy, we have the
equation
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This condition requires that we have C = o.
We may readily see that these different forms result from

A ! :
the fact that — ¢’ ¢’ represent the trigonometrical

tangents of the angles which the traces on the planes of xz
and yz make with the axes of x and .

102 There are many problems in relation to the plane
which may be resolved without difficulty after what has
been said. We will examine one or two of them.

Let it be required to find the equation of a plane passing
through three given points.

Let o', y,2'; 2",y",2"; 2", y",2"; be the co-ordinates
of these points, :

Ar +By+ Cz+ D =o,
will be the form of the equation of the required plane.
Since this plane must pass through the three points, we will
have the relations

Az + By 4+ C2 + D =o,

Az" + By" + Cz" + D = o,

Axr” 4+ By" + Cz” &+ D =o. .

Then these equations will give for A, B, C, expressions of

the form

A —PADEB B P RC =G,
A, By, C, being functions of the co-ordinates of the given
points.

Substituting these values in the equation of the plane, we
have

Az + By +Cz+ 1=o,
for the equation of a plane passing through three given
points.
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103. To find the intersection of two planes represented

by the equations
Ax + By + Cz + D = o,
Az +By+Cz+D =o.

These equations must subsist at the same time for the
points which are common to the two planes. We may then
determine these points by combining these equations.

If we eliminate one of the variables, z for example, we
have

(AC'— A'C)z + (BC'— BC) y + (DC' — D'C) = o.

This equation being of the first degree, belongs to a
straight line. It represents the equation of the projection
of this intersection on the plane of xy.

By eliminating z or y, we can in a similar manner find
the equation of its projection on the planes of yz and zz.

104. Generalizing this result, we may find the intersections
of any surfaces whatever. For, as their equations must
subsist at the same time for the points which are common,
by eliminating either of the variables, the resulting equations
will be those of the projections of the intersections on the
co-ordinate planes.

Of the Transformation of Co-ordinates.

105. We have seen that the form and position of a curve
are always expressed by the analytical relations which exist
between the co-ordinates of its different points. From this
fact, curves have been classified into different orders from.
the degree of their equations.
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106. Curves are divided into algebraic and transcendental
urves.

Algebraic Curves are thuse whose equations are purely
algebraic.

Transcendental Curves are those whose equations are ex-
pressed in terms of logarithmic, trigonometrical, or expo-
nential functions.

y* = a® —a* is an algebraic curve.
y=sinx, y=cosx, y=a% &c., are transcendental
curves.

107. Aigebraic Curves are classified from the degree of
their equation, and the order of the curve is indicated by the
exponent of this degree. For example, the straight line is
of the first order, because its equation is of the first degree
with respect to the variables x and y.

108. The discussion of a curve consists in classifying it
and determining its position and form from its equations,
This discussion may be very much facilitated by means of
analytical transformations, which, by simplifying the equa-
tions of the curve, enable us more readily to discover its
form and general properties. The methods used to effect
this simplification consist in changing the position of the
origin, and the direction of the co-ordinate axes, so that the
proposed equations, when referred to them, may have the
simplest form of which the nature of the curve will admit.

109. When we wish to pass from one system of co-ordi-
nates to another, we find, for any point, the values of the old
co-ordinates in terms of the new. Substituting these values
in the proposed equation, it will express the relations be
tween the co-ordinates of the same points referred to this
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new system. Consequently the properties of the curve will
remain the same, as we have only changed the manner of
expressing them.

110. The relatigns between the new and old co-ordinates
are easily established, when

the origin alone is changed x

without altering the direc- 7/, b

tion of the axes. For, let / 7 g

A’ be the new origin, and X
A'X’, A'Y, the new axes, P / / / 5 / 2
parallel to the old axes, AX, / 7 S

AY'. For any point M, we

have
AP=AB +BP, PM=PP'+ PM=AB + PM.

Making AB = @, and A'B = b, and representing by x and
y the old, and ', y' the new co-ordinates, these equations
become

z=a+2, y=b+y,

whnich are the equations of transformation from one system
of co-ordinate axes, to another system parallel to the first.

111. To pass from one system of rectangular co-ordinates
to another system oblique to the first, the origin remaining
the same.

Let AY, AX, be two axes at ¥ 2
right angles to each other, and
AY’, AX, two axes making any X
angle with each other. Through \"—' z
any point M, draw MP, MP, e ;
respectively parallel to AY and 4 = 2 =

AY’, and through P’ draw P'Q, P'R parallel to AX and AY,
we shall have

L
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2= AP = AR + P'Q,’ y= MP=MQ + PR.

But AR, P'R, MQ, PQ, are the sides of the right-angled
triangles AP'R, P'MQ, in which AP’ = 2/, and P'M = v,
We also know the angles PPAR =« and' MP'Q =«. We
deduce from these triangles

x=2xacosa +ycose, y=2asinae+ysina,

which are the relations which subsist between the co-ordi-
nates of the two systems.

112. If we wished to pass from the system whose co-ordi-
nates are 2’ and ¢’ to that of x and y, we have only to de-
duce the values 2" and ¢/ from the two last equations. We
find by elimination these values to be

Z sin o/ — 7 cos o’ Y €OS o — x sin o
o= 3 = y’ e e R AT B L -
sin (« — o) sin (o — o)

If the new axes of 2" and ¥ be rectangular also, we have

o —a = 90 and &' = 90° + «, sin (¢ — o) =sin 90° = L

sin &' = sin (90° + o) = sin a cos 90° + cos « sin 90° = cos «,
cos o/ = cos'90° cos « — sin 90° sin @ = — sin a.

Substituting these values, we have for the formulas for

passing from a system of rectangular co-ordinates to another
system also rectangular, the origin remaining the same,

x=a cosa—1y sina, y==a'sina+ 3 cosa.
113. To pass from a system of oblique co-ordinates to
another system also oblique, the origin remaining the same.
Let AX', AY' be the axes of &', 3/, and AX"”, AY", the new

axes whose co-ordinates are z”, y’. Let us take a third
system at right angles to each other as AX, AY, the co-or-
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Jinates being z, y. Calling a, o,
8, ‘2_5’, the angles which the axes of
x, o, x”, y’, make with the axis of
z, we have (Art. 111) for passing
from this system to the two systems
of oblique co-ordinates, the formulas

x = 2/ cosa + y cos o, = a'sm a + ¥ sin «,
z=2a"cos B+ y’cos 3, y=x"sin 8+ y"sin '
Eliminating z and y from these equations, we shall obtain

the equations which will express the relations between the
co-ordinates 2', ', and z”, y", which are

x' cos a 4 y' cos o' = " cos 3 + y" cos B

x'sin o« 4 y'sina’ = 2" sin B + ¥y sin B'
Multiplying the first by sin o, and subtracting from it the
second multiplied by cos «, we obtain the value of ¥

Operating in the same manner, we get the value of 2', and
the formulas become

0 x'" sin (o — B) + v" sin (¢' — B')

sin (o' — )
,_x"sin (B—a) + y"sin (8 — %)
LA sin («' — o)

114. Generalizing the foregoing remarks, we may easily
find the formulas for the transformation of co-ordinates in
space. We have only to find the value of the old co-ordi-
nates in terms of the new, and reciprocally. If the trans-
formation be to a parallel system, and a, b, ¢, represent the
co-ordinates of the new origin, we have the formulas

z=a+z, y=b+y, z2=c+7,
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in which x, y, and z, are the old, and «', ', and 2/, the new
co-ordinates.

115. Let us now suppose that the direction of the new

- axes is changed. As the introduction of the three dimen-
sions of space necessarily complicates the constructions of
the problems, if we can ascertain the form of the relations
which must exist between the old and new co-ordinates, this
difficulty may be obviated.

Now it can be proved, in general, that in passing from any
system of co-ordinates, the old co-ordinates must always be
expressed in linear functions of the new, and reciprocally.
This has been verified in the system of co-ordinates for a
plane, since the relations which we have obtained are of the
first degree. To show that this must also be the case with
transformations in space, let us conceive the values of x, 7, 2,
expressed in any functions of «', ¢/, 7', which we will designate
by ¢, =, 4, so that we have

=@,y ), y=7@"y,2), z2=4 (@ ,y,7).
If we substitute these values in the equation of the plane,
which is always of the form

Az + By + Cz + D = o,
it becomes

Ao, y,7) +Bx(@,y,2)) +C.4(«,9,7)) + D=o.

But the equation of the plane is always of the first degree,
whatever be the direction of the rectilinear axes to which it
is referred, since the equations of its linear generatrices are
always of the first degree. Hence, the preceding equations
must reduce to the form

Ad+ By +CZ +D =o,
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in which A’, B,, C' D’, are independent of «, ¢/, 2/, but de-
pendent upon the primitive constants A, B, C, D, and the
angles and distances which determine the relative positions
»f the two systems.

This reduction must take f)lace whatever be the values of
the primitive co-efficients A, B, C, D, and without there re-
sulting any condition from them. IHence this reduction
must exist in the functions ¢, =, 4, themselves, for if it were
otherwise, the terms of ¢ which are multiplied by A, would
not, in general, cause those of « and 4 to disappear, which
are multiplied by B and C. It would follow from this, that
the powers of ', ¥, 2/, higher than the first, would necessa-
rily remain in the transformed equation, if they existed in
the functions ¢, #, 4. These functions are therefore limited
by the condition that the new co-ordinates «, ¥, 2/, exist
only of the first power, and consequently the most general
form which we can suppose, will be

x=a+mc' +my 4+ m'y,

y=1>b + nx' + 2'y' + a'7,

z=c+ px' + py + p',
in which the co-efficients of &', ¥/, 2/, are unknown constants
which it is required to determine. But since they are con-
stants, their values will remain always the same, whatever
be those of 2, y', 2. We can then give particular values to

these variables, and thus determine those of the constants.
If we make

=0, y =0, 2 =o,
we have
r=a y=b, z=c,

which are the co-ordinates of the new origin with respect to

8
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the old. We will suppose for more simplicity that the di-
rection of the axes is changed, without removing the origin;
the preceding formulas become under this supposition
xr = mw’ + myyl + mtrzv,
y = nx' + a'y + a7,
z — Pwl + P'y’ + .pllzl'
To determine the constants, let us consider the points
placed on the axis of «', the equations of this axis are
Yy =o, z =o,
We have then for points situated on it,
t=mx' y=nx, z2=pz.

z Let AX' be this axis,

x and let the old axes AX,

2L AY, AZ, be taken at

- 2 x  right angles, for any point

il M we have AM = «,

P 3 MM’ = z, and the triangle

AMM' will give
2 = x' cos AMM',

The angle AMM' is that which the new axis of x' makes
with the old axis of z. Let us call it Z, and represent by
X and Y, the angles formed by this same axis AX', with AX
and AY. We shall have for points on this axis,

x=a'cosX, y==x'cosY, z=ua cosZ.
This result determines n, m, p, and gives
m=cos X, n=cosY, p=cosZ.

If we consider points on the axis of y', whose equations are

’

a="10} 7z =10, .
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we shall have relatively to these points
T = mlyl’ y i n’y’, 2 :pryr.
Designating by X', Y’, Z', the angles which this axis forms
with the axis of x, y, z, we have
m' =cosX, n'=cosY', p =cosZ.
Reasoning in the same manner with the axis 2/, we have
m’=cosX’, n'=cosY", p’"=cosZ’;
from which we get
=1 cos X + y cos X' 4 2" cos X',
y=a'cosY + y cos Y + 2 cos Y,
z=2a cos Z 4 y' cos Z' 4 2’ cos Z". (1)

116. We must join to these values, the equations of con-
dition which take place between the three angles, which a
straight line makes with the three axes, and which are
(Art. 76), YO

cos’ X + cos!Y + cos*Z =1,
cos’ X' + cos?Y' + cos*Z =1,
cos’ X"+ cos’Y” + cos’Z" = 1. )

These formulas are sufficient for the transformation of co-
ordinates, whatever be the angles which the new axes make
with each other.

117. Should it be required that the new axes make par-
ticular angles with each other, there will result new condi-
tions between X, Y, Z, X', &c., which must be joined to the
preceding equations. If we represent by V the angle
formed by the axis of ' with that of 3/, by U that made by

y with 2, and by W that made by 2z’ with &', we have by
Art. 86, 1Y

<
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cos YV = cos X cos X' + cos Y cos Y + cos Z cos Z,

cos U = cos X' cos X" + cos Y'cos Y’ + cos Z cos Z".
cos W = cos X cos X" 4 cos Y cos Y’ + cos Z cos Z", (3)
And these equations added to those of (1) and (2), will enable

us in every case to establish the conditions relative to the
new axes, in supposing the old rectangular.

118. If, for example, we wish the new system to be also
rectangular, we shall have
cos V= o, cos U = o, cos W = o,

and the second members of equations (3) will reduce to zero;
then adding together the squares of x, y, z, we find
Py +L=a4 y* 4 25

This condition must in fact be fulfilled, for in both sys-
tems the sum of the squares of the co-ordinates represents
the distance of the point we are considering, from the com-
mon origin.

119. If we wished to change the direction of two of the
axes only, as, for example, those of z and y, let us suppose
that they make an angle V with each other, and continue
perpendicular to the axis of z. We have from these con-
ditions,

cos U = o, cos W = o,
cos X' = o, cos Y' = o, cos Z' = 1.
Substituting these values in equations (3), we have

cos Z' = o, cos Z = o,

that is, the axes of &’ and ¥ are in the plane of ay
From this and equations (2), there results

cos Y=sinX, cosY =sinX.
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and the values of x, and y, become
z=acosX +y cosX, y=xsinX +ysinX';

which are the same formulas as those obtained (Art. 1113

Polar Co-ordinates.

120. Right lines are not the only co-ordinates which may
be used to define the position of points in space. We may
employ any system of lines, either straight or curved, whose
construction will determine these points.

For example, we may take for the co-ordinates of points
situated in a plane, the distance AM,
from a fixed point A taken in a plane,
and the angle MAX, made by the
line AM with any line AX drawn in zr'/
the same plane. For, if we have the J
angle MAP, the direction of the line *  *

AM is known; and if the distance AM be also known, the
position of the point M is determined.

121. The method of determining points by means of a
variable angle and distance, is called a System of Polar
Co-ordinates. The distance AM is called the Radius Vector,
and the fixed point A the Pole.

122. When we know the' equation of a line, referred to

> of
e

rectilinear co-ordinates, we may transpose it into polar co-
ordinates, by determining the values of the old co-ordinates
in terms of the new, and substituting them in the proposed
equation. For example, let A’ be taken
as the pole, whose co-ordinates are x= g,
y =b. Draw A’X’ parallel to the axis
of z, and designate the angle MA'X' by
v, the radius vector A'M by r, we have
8% M
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AX=AB +A'Q, PM=AB+ MQ,

or,
z=a+ AQ, y=0b+ MQ.

But in the right-angled triangle A'MQ, we have
‘ A'Q =rcosv, and MQ = r sino.
Substituting these values, we have
rt=a+rcosv, y=b+rsinv, (1)

which are the formulas for passing from rectangular co-ordi-
nates to polar co-ordinates.

123. If the pole coincide with the origin, a =0, b =0,
and we have
x=rcosv, Y=rsino.
If the line AX' make an angle « with the axis of z,
formulas (1) will become

x=a+rcos(v+a), y=>b-+rsin(-+a).

124. By giving to the angle v every value from o to 360°,
and varying the radius vector from zero to infinity, we may
determine the position of every point in a plane. But from
the equation

X =7rcosv
we get
(e
T=Cosv

Now, since the algebraic signs of the abscissa and cosine
vary together, that is, are both positive in the first and fourth
quadrants, and negative in the second and third, it follows
that the radius vector can never be negative, and we conclude
that should a problem lead to negative values for the radius
vector, it is impossible.
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125. Polar co-ordinates may also be used to determine the
position of points in space. For this purpose we make use
of the angle which Ny
the radius vector AM
makes with its pro-
jection on the plane
of ay, for example,
and that which this
projection makes with 0
the axisof z. MAM’
is the first of these
angles, and M'AP the s
second. Calling them

Y
¢ and 4, and repre-

senting the radius vector AM by r, and its projection AM’
by ', we have

- AP =AM cos M'AP,

or x=r7r"cos d;
PM' = AM'sin M'AP,
or y=r'sind;
MM'= AM sin MAM/,
or z =rsinq.

We have also
AM' = AM cos MAM,,

r' =7 cos g,
from which equations we deduce
Zz=rcosdcosp, y=rcospsind, z=rsing;

formulz which may be applied to every point, by attributing
to the variables 4, ¢, and r, every possible value.
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[Cuaap. IV

CHAPTER IV.

OF THE,CONIC SECTIONS.

126. Ir a right cone with a circular base, be intersected
by planes having different positions with respect to its axis,

the curves of intersection are called Conic Sections.

As this

common mode of generation establishes remarkable analo-

gies between these curves, we shall employ it to find their

general equation.

Let O be the origin of a system of rectangular co-

ordinates OX, OY, OZ. If
the line AC at the distance
OC = C from the origin, re-
volve about the axis OZ,
making a constant angle v
with the plane of ay, it will
generate the surface of a
right cone with a circular
base, of which C will be the
vertex and CO the axis. The
part CA will generate the
lower nappe, CA' the upper
nappe of the cone. To find
the equation of this surface.

The equation of a line passing through the point C, whose

co-ordinates are

/ !

*’ =o,

YE==10%

2 =g,
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is of the form (Art. 84),

z=a(z—c¢), y=b(iz—o);

the co-efficients a and b being constants for the same position
of the generatrix, but variables from one position to another
But we have (Art. 90),

e IS 1

s U—l+a,+b,,
from which we obtain

(a* + &%) tang*v = L.

Substituting for a and b, their values drawn from the equa-
tion of the generatrix, we shall have

(f + &) tang’v = (z — )"
This equatioh being independent of @ and b, it corresponds
to every position of the line AC in the generation: it is there-
fore the equation of the conic surface.

127. Let this surface be intersected by a plane BOY,
drawn through the origin O, and perpendicular to the plane
of xz.. Designating by u the angle BOX which it makes
with the plane of xy, its equation will be the same as that of
its trace BO, that is

z = x tang u.

If we combine this equation with that of the conic surface,
we shall obtain the equations of the projections of the curve
of intersection on the co-ordinate planes. But as. the pro-
perties of the curve may be better discovered, by referring
it to axes, taken in its own plane, let us find its equation re-
ferred to the two axes OB, OY, which are situated in its
plane, and at right angles to each other. Calling ' y' the
co-ordinates of any point, the old co-ordinates of which

hbs

b.e
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were x, Y, z, we shall have in the right-angled triangle
. OPP,

2=0P=x'cosu, 2=PP =ua'sinu;
and since the axes of y and ¥’ coincide, we shall also have
S
Substituting these values for x, y, z, in the equation of the

surface of the cone, we shall obtain for the equation of inter-
section,

y” tang *v + ' cos *u (tang *» — tang *u) + 20z’ sin u = ¢*;
or suppressing the accents,
y* tang *v -+ @’ cos *u (tang *v — tang *u) + 2cx sinu =

128. In order to obtain the different forms of the curves
of intersection of the plane and cone, it is evident that all
the varieties will be obtained by varying the angle » from o
to 90°. Commencing then by making

W= @)

which causes the cutting plane to coincide with the plane of
xy, the equation of the intersection becomes

s S
i < tang *v
which shows that all of its points are equally distant from
the axis of the cone. The intersection therefore is a circle,
described about O as a centre and with a radius equal
c

to tangj.

129. Let u increase, the plane will intersect the cone in
a re-entrant curve, so long as w <v, which will be found
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entirely on one nappe of the cone. But u < v makes tang
u < tang v, and the co-eficients of 2® and y* will be positive
in the equation of intersection. This condition characterizes
a class of curves, called Ellipses.

130. When u = v, the cutting plane is parallel to CD.
The curve of intersection is found limited to one nappe of
the cone, but extends indefinitely from B on this nappe.
The condition # = v causes
the co-efficient of 2* to dis- 8
appear, and the general equa-
tion of intersection reduces
to

y* tan *v + 2cx sin u = .

These curves are called

Parabolas.

131. Finally, when u > v, the
cutting plane intersects both nappes
of the cone, and the curve of inter-
section will be composed of two
branches, extending indefinitely on
each nappe. In this case tang u >
tang v, and the co-efficient of z*
becomes negative. This condition
characterizes a class of curves called

Hyperbolas.

132. If we suppose the cutting plane to pass through the
vertex of the cone, the circle and ellipse will reduce to a

paint, the parabola to a straight line, and the hyperbola to
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two straight lines intersecting at C. This becomes evident
from the equations of these different curves, by making
= o0, and also introducing the condition of u being less
than, equal to, or greater than, v.
We will now discuss each of these classes of curves, and
deduce from their general equation the form and character
of each variety.

Of the Circle.

133. If a right cone with a circular base be intersected
by a plane at a distance c, from the vertex, and perpendicular
to the axis, we have found for the equation of intersection

(Art. 128),

cz

yz+x2=g-—-.

ng-v

Representing the second member

¢
——— by R? we have
tang “v

2+ =R

In this equation, the co-ordinates x and y are rectangular,

the quantity +/a® 4 3 expresses therefore the distance of
any point of the curve from the origin of co-ordinates
(Art. 59). The above equation shows that this distance is
constant. The curve which it represents is evidently the
circumference of a circle, whose centre is at the origin of
co-ordinates, and whose radius is R.

134. To find the points in which the curve cuts the axis
of #, make y = o, and we have

o= AR

which shows that it cuts this axis in two different points,
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one on euch side of the origin, and at a distance R from the
axis of y. Making z = o, we find the points in which it cuts
the axis of y. We get

y==*xR,

which shows that the curve cuts this axis in two points, onc
above and the other below the axis of x, and at the same
distance R from it.

135. To follow the course of the curve in the intermediate
points, find the value of y from its equation, we get

y==xvR —a"

These values being equal and with contrary signs, it
follows that the curve is symmetrical with respect to the
axis of 2. If we suppose x positive or negative, the values
of y will increase as those of x diminish, and when x =0
we have y = = R, which gives the points D and D'. Asx
increases, y will diminish, and when

o)
x = == R the values of y become zero. =
This gives the points B and B'. If

x be taken greater than R, y be- @ A L 1g
comes imaginary. The curve therefore

does not extend beyond the value of

= 52 I D’

136. The equation of the circle may be put under the form,
¥= (R +2) (R—a).

R + x, and R — «, are the segments B'P and BP, into which
the ordinate y divides the diameter. This ordinate is there-
fore a mean proportional between these two segments.

137. Two straight lines drawn from a point on a curve to
9 N
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the extremities of a diameter, are called supplemental chords.

! s " The equation of a line passing through
the point B, whose co-ordinates are
y=o0, =+ R, is (Art. G0)

B A AN,
& y=a (x—R);
and for a line passing through the

point B', for which y =0 and 2 = —R,
y=d (z+R). :

In order that these lines should intersect on the circum
ference of the circle, these equations must subsist at the
same time with the equation of the circle. Combining the
equations with that of the circle, by multiplying the two first
together, and dividing by the equation of the circle, we have
first

Y = ad' (&* —R%;
and the division by 3* = (R* — 2%), gives

ad' = —1, oraa’ +1=0;

but this last equation expresses the condition that two lines
should be perpendicular to each other (Art. 64); hence,
the supplemental chords of the circle are perpendicular to
each other. :

138. The equation of the circle may be put under another
form, by referring it to a system of co-ordinate axes, whose
origin is at the extremity B’ of its diameter B'B. Tor any
point M, we have

AP =2 =BP —=BA =z"—R’

Substituting this value of z in the equation ¥* + 2* = R’,
we get

¥ + = —2Ra' = o.
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In this equation x' = o gives y = o, since the origin of co-
ordinates is a point of the curve. Discussing this equation
as we have done the preceding, we shall arrive at the same
results as those which have just been determined.

139. If the circle be referred to a system of rectangular
co-ordinates taken without the circle, calling x' and ¥ the
co-ordinates of the centre, and x and y those of any one of
its points, we shall have

z—x' =BC,y—y' = BD;

and calling the radius R,
we have (Art. 59),

(z—2) + (y—vy) =R} % g

which is the most general /

equation of the circle, re-
ferred to rectangular axes. |a

EXAMPLES.

1. Construct the equation
¥+ a4+ dy—4rx—8 =o.

By adding and subtracting 8, this equation can be put
under the form
: Y4+4y+44+a2"—40+4—16=o,
or Y+2+ (z—2)° =16
Comparing this equation with that of the general equation
(z—2)+@y—y) =R,
we see that 1t is the equation of a circle, in which the co-

ordinates of the centre are z' =2, y =—2, and whose
radius is 4.
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1G)

L2 W —dy—dx+l=0,2=1 4y =1, R=v3%
Y+ —0y+de—3=09, '=—2,y=3, R=4.

= W

. 6+ 62 —2ly—8x+14=0, a’'=+2, y=1, R=
Y+ +4dy—3r=0, =3 y=—2 R=
LY+ —dy=o, z'=o,.y'=2, R=2

(%]

i
.

Y+ a4 b6 =o, #=—3, y=0, R=3.
.Y+ —6x+8=o, =3, y=0, R=1.

w I

140. To find the equation of a tangent line to the circle,
let us resume the equation

2 +yt =R

Let 2", y", be the co-ordinates of the point of tangency,
they must satisfy the equation of the circle, and we have

xnz + yus . Ri.

The equation of the tangent line will be of the form

(Art. 60),
y—y'=a@—a");
it is required to determine a.

For this purpose, let the tangent be regarded as a secant,
and let us determine the co-ordinates of the points of inter-
section. These co-ordinates must satisfy the three preceding
equations, since the points to which they belong are common

to the line and circle. Combining these equations, by sub-
tracting the second from the first, we have

yz___yIIR + w2___w'rz= o,
or-(y—y) @y +y)+ @—aYe+a)=o
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Putting for y, its value y” + a (x—z") drawn from the
ejuation of the line, we get

W +a@—a)—y) (¢ +a@—a) +y") + (@—1")
(r+z")=a@—2") 2 +a(x—2") + (x—z") (x + 2")
={2ay" + & (z— 2" +z + 2"} (x—z") =o.

This equation will give the two values of # corresponding

to the two points of intersection. The co-ordinates of one
point are obtained by putting . ;

“

z—x" = 0,
which gives
x=2x", and y = y";
and those of the second point are made known by the
equation
2y’ + a*(x—a") + x4+ x" =o,
when @ is given.

If now we suppose the points of intersection to approach
each other, the secant line will become a tangent, when
those points coincide; but this supposition makes

z=ua", and y =y";
and the last equation becomes

2ay" + 2" = o,
from which we get

Substituting this value of @ in the equation of the tangent,
1t becomes

m'l .,
¥ =5 = —lEwes
hence e R A

which is the equation of a tangent line to the circle.
9*
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Putting it under the form

¥y x”‘w + 5}
ST T

and comparing this equation with that of the straight line in

o

TR
Art. 52, we see that T is the tangent of the angle which

the tangent line makes with the axis of .

The val'l‘xe which we have just found for a being single, it
follow's' that but one tangent can be drawn to the circle, at a
given point of the curve.

141, Aline drawn through the point of tangency perpen-
dicular to the tangent is called a Normal. Its equation will
be of the form

i y—y' =a (x—a").

The condition of its being perpendicular to the tangent

gives

1

ada+1=o0,0ra =—-—.

a
But we have found (Art. 140),

"
x
= —_——

"
hence,
Vo yu
a = m*,, ®

Substituting this value in the equation of the normal, it
becomes

yll
y—y' =5 E—a");
and reducing, we have
yl‘” ____ynx = o,

for the equation of the normal line to the circle.
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142. The normal line to the circle passes through its centre,
which, in this case, is the origin of co-ordinates. For, if we
make one of the variables equal to zero, the other will be
zero also. Hence the tangent to a circle is perpendicular to
the radius drawn through the point of tangency.

143. To draw a tangent to the circle, through a point
without the circle, let z' y' be the co-ordinates of this point.
Since it must be on the tangent, it must satisfy the equation
of this line, and we have eq. of tangent yy'’ + a2/’ = R?

Yy tala =R

We have besides,

y”2 + muz — RZ‘

These two equations will determine z” and ", the co-or-
dinates of the point of tangency, in terms of R and the co-
ordinates x' y' of the given point. Substituting these values
in the equation of the tangent, it will be determined.

The preceding equations being of the second degree, will
give two values for z” and y’. There will result conse-
quently two points of tangency, and hence two tangents

may be drawn to a circle from a given point without the
circle.

144. 'We have seen that the equation of the circle referred
to rectangular co-ordinates, having their origin at the centre,

only contains the squares of the variables x and y, and is of
the form

¥ + 2" =R
Let us seek if there be any other systems of axes, to
which, if the curve be referred, its equation will retain the
same form.

Let us refer the equation of the circle to systems having
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the same origin, and whose co-ordinates are represented by
2 and y'. Let a, o/, be the angles which these new axes
make with the axis of . We have for the formulas of trans-
formation (Art. 111),

x =2 cos a + y' cos o, y:w’si\na-{-y’ sin o

Substituting these values for  and y in the equation of
the circle, it becomes

y* (cos’o’ + sin’a’) + 2x'y’ cos (o — «) + x*
(cos’a + sin’a) = R*;
or, reducing,

yvz + Qx/yl Ccos (al N (l) + x;z — Rl.

The form of this equation differs from that of the given
equation, since it contains a term in «'y’. In order that this
term disappear, it is necessary that the angles « «' be such
that we have ~

cos (¢ —a) = o,
which gives (¢ — &) = 90°, or 270°;
hence o = a4 90° or o' = a + 270°,

which shows that the new axes must be perpendicular to
each other.

145. Conjugate Diameters are those diameters to which, if
the equation of the curve be referred, it will contain only the
square powers of the variables.. In the circle, we see that
these diameters are always at right angles to each other ; and
as an infinite number of diameters may be drawn in the
circle perpendicular to each other, it follows that there will
be an infinite number of conjugate diameters.
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Of the Polar Equation of the Circle.

146. To find the equation of the circle referred to polar
co-ordinates, let O be taken
as the pole, the co-ordinates of
which referred to rectangular
axes are ¢ and b; draw OX’
making any angle awith the axis
of . OM will be the radius
vector, and MOX' the variable
anglev. The formulas for trans-
formation are (Art. 123),

x=a+rcos(w+a), y=>4+ rsin (@ + a).
These values being substituted in the equation of the circle

¥+ a2=R’,
it becomes

ﬁ+2;acos(v+a)+bsin(v+a);r+a’+bﬂ—R*=o.

which is the most general polar equation of the circle.

This equation being of the second degree with respect to
r, will generally give two values to the radius vector. The
positive values alone must be considered, as the negative
values indicate points which do not exist (Art. 124).

147. By varying the position of the pole and the angle v,
this equation -will define the position of every point of the
circle.

If the pole be taken on the circumference, and we call a,
b, its co-ordinates, these co-ordinates must satisfy the equation
of the circle, and we have the relation

a@+V¥—R=o.
o
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The polar equation reduces to
7 +2jacos (v + o) + bsin(v+ o) 7} =o.
If OX' be parallel to the axis of , the angle « will be zero,
and this equation becomes
" + 2 (acosv + bsinv) r = o.

This equation may be satisfied by making » = 0. Hence,
one of the values of the radius vector is always zero, and it
may be satisfied by making

r + 2 (acosv + bsinv) = o,
which gives

r=—2(acosv + bsinv);
from which we may deduce a second value for the radius
vector for every value of the angle v.

148. If we have in this last equation r = o, the equation

becomes
‘acosv + bsinv=o,

sin v a
== e ]
cosv
a-
or tangv=—3,

a relation which has been before obtained (Art. 140).

149. If the pole be taken at the centre of the circle, @ and
b would be zero, and the formulas for transformation would be

x=rcosv, y=rsinv.

Of the Ellipse.

150. We have found (Art. 127,) for the general equation
of intersection of the cone and plane,

y* tang *v + #° cos*u (tang v — tang ) + 2exsinu = ¢},
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and that this equation represents a class of curves called
Lllipses, when v <v. We will now examine their peculiar
properties.

To facilitate the discussion, let us transfer the origin of
co-ordinates to the vertex B of the curve.

For any abscissa OP' = x, we would have

xz = OB — BP’;
or calling the new abscissas «’,
x=0B—2a, andy=y.

But in the triangle BOC we
have the angle C = 90°— v,
and the angle B =v + » and
the side OC = ¢, and we get

A in OCB- -
T sin (v u)
¢ cos v
sin (v + u)
¢ cos v
RS sin (v + )
from which results

€ oS v

sin (v + u)

Substituting this value ot «

T = — /.

in the equation of the curve,
we have

y*sin’v + 2% sin (v + ) sin (v — u) — 2z’ sinv
COS v COS u = 05
and suppressing the accents, we have
y*sin’v + 2’ sin (v + ) sin (v — u) — ez sin v
COS ¥ €OS % = 05

which is the general equation of the intersection of the cone
and plane, referred to the vertex B.
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151. To discuss this equation when « <v, let us first find
the points in which it meets the axis of x. Making y=o,
we have

" sin (v + ») sin (v — w) — 2ex sin v cos v cos u = o0;

which gives for the two values of x,

2c sin v cos v cos ©

=0, and 2 = — -
B e sin (v + u) sin (v—1u)

which shows that it cuts the axis of 2 in two points B
and B, one at the origin, the other at the distancq
2cx sin v cos v cos ©
sin (v 4 %) sin (v — u)

A Making x = o0, we have the points
P B in which it cuts the axis of y. This
\___/ supposition gives
¥=o,

which shows that the axis of y is tangent to the curve at B,
the origin of co-ordinates.

on the positive side of the axis of y.

Resolving this equation with respect to 7, we have

y:
1

sin v

\/—x"' sin (v+ %) sin (v—1u) + 2cx sin v cos  cos v.

These two values being equal, and with contrary signs,
the curve is symmetrical with respect to the axis of z. If
we suppose x negative, y becomes imaginary, since this sup-
position makes all the terms under the radical essentially
negative. The curve, therefore, is limited in the direction
of the negative abscissas. If, on the contrary, we suppose x
positive, the values of y will be real, so long as

a*sin (v + %) sin (v — u) < 2cx sin v cos v cos u,
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of,
¢ sin v COS v COS U

sin (v + @) sin (v —u)

and they become imaginary beyond this limit. The curve,
therefore, extends from the origin of co-ordinates a distance

2¢ sin v €OS v €OS ©

B = — : on the positive side of the
R sin (v + u) sin (v —u) i
axis of x.

Let us refer the curve to the D »

point A, the middle of BB'. The /"A\l\
formula for transformation will Bx-__’yB
be, for any point P, BC = AB 557

— AQC, or calling BC, x, and AC, «/,

e € sin v cos v cos «
sin (v + ») sin (v —u)

’

xX.

Substituting this value in the equation of the ellipse,
y*sin’v + a”sin (v + u) sin (v — #) — 2cx sin v cos v cos u = o,
and reducing, we have

c’sin®vcos’vecos’y

sin (v+u) sin (v—u)

which is the equation of the ellipse referred to the.point A.

Making y = o, we find the abscissas of the points Band B,
in which the curve cuts the axis of x.

y*sin*v + x?sin (v + «) sin (v—1u)

0,

csinv cosv cos u
sin (v + u)sin (v—u)’

AIBA—

€ sin v €os v COS
sin (v + «) sin (v — )’

and z = o gives the ordinates AD and AD'.

AB' =

€ COS v COS ¥
Vsin (v + ) sin (v— u)

10
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152. This equation takes a very simple and elegant form
when we introduce in it the co-ordinates of the points in
which the curve cuts the axes. For, if we suppose

A? ¢® sin v cos *v cos *u d
= = s an
sin® (v + w) sin® (v — «)

5 c*cos v cos *u
“ sin (v + u)sin(v—u)’

we have only to multiply all the terms of the equation in y
and &', by
¢’ cos®v cos*u
sin® (v + ) sin® (v—u)’

and putting x for a', we have

¥

¢’ sin v cos *v cos *u fiop ¢ cos *v cos u
St (0 + w) s (v —w) © s (0 4 w)sin (p—w)

¢ sin*v cos *v cos *u ¢ cos *v cos’u
sin* (v + ») sin®(v—u) ~ sin (v + u) sin (v—u)’

and making the necessary substitutions, we obtain
A + B’ = A'BY
The quantities 2A and 2B are called the Axes of the Lllipse.
2A is fhe‘ greater or transverse axis ; 2B the conjugate or less
axis. 'Tne point A is the centre of the ellipse, and the
equation
A% 4+ BP = A’B?
is therefore the equation of the Ellipse referred to its centre
and axes.
153. If the axes are equal we have A =B, and the equa-
tion reduces to

¥+ = A%

which 1s the equation of the circle.



Cuar. IV.) ANALYTICAL GEOMETRY. 111

154. Every line drawn through the centre of the ellipse 13
called a Diameter, and since the curve is symmetrical, it is

easy to see that every diameter is bisected at the centre.
2

2B
155. The quantity TR is called the parameter of the

curve, and since we have
2B

2A:2B::2B:T,

it follows that the parameter of the ellipse is a third propor-
tional to the two axes.

156. Introducing the expressions of the semi-axes A and
B in the equation

y* sin®v + &% sin (v + ) sin (v —u) —2czsinv
COS v COS u = 0,
in which the origin is at the extremity of the transverse axis,.
by multiplying each term by the quantity.
¢ cos v cos *u
sin? (v + w) sin® (v —u)’

it becomes '

A’ + B — 2AB'x = o,

which may be put under the form

0= -l]i—: 2Ax —2°).

If we designate by ', ¥, 2", y”, the co-ordinates of anv
two points of the ellipse, we shall have
gi'z_ _ (A —2)
oY v
which shows that in the -ellipse, the squares of the ordinates
are to each other as the products of the distances from the foot
of each ordinate to the vertices of the curve.
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157. The equation of the ellipse referred to its ceutre and
axes may be put under the form

B!
y= Az (A*—2%).

If from the point A as a
centre with a radius AB = A,
we describe a circumference

of a circle, its equation will
be

= A'— 2,

Representing by y and Y the ordinates of the ellipse and
circle, which correspond to the same abscissa, we have, by
comparing these two equations.

3
y“:Yﬁzlg—:l y=%Y.

According as B is less or greater than A, y will be less
or greater than Y, hence if from the centre of the ellipse with
radit equal to each of its axes, two circles be described, the
ellipse will include the smaller and be inscribed within the
large circle.

158. From this property we deduce, Ist. That the trans-
verse axis is the longest diameter, and the conjugate the
shortest; 2dly. When we have the ordinates of the circle
described on one of the axes, to find those of the ellipse, we
have only to augment or diminish the former in the ratio of
B to A. This gives a method of describing the ellipse by
points when the axes are known.

From the point A as a centre with radii equal to the semi-
axes A and B, describe the circumferences of two circles,
draw any radius ANM, and through M draw MP perpen-



Caar, IV.] ANALYTICAL GEOMETRY. 113

dicular to AB, and through N draw NQ parallel to AB. The
point Q will be on the ellipse, for we have

AN B
PQ:A_MX P.M.=KX PM,
or,
yz%x AT

as in Art. 157.

159. We have seen that for every point on the ellipse,
the value of the ordinate is

v = e (A=),

For a point without the ellipse, the value of y would be
greater for the same value of x, and for a point within, the
value of y would be less. Hence,

For points without the ellipse,  A%* 4 B*2* — A*B*> 0.

For points on the ellipse, A 4+ B — AB* =0

For points within the ellipse, A%? + Ba* — A*B2 <.

160. If through the point B', whose co-ordinates are y = o

z =-—A, we draw a line, its equation will be
y=a(x+ A).
For a line passing through B, T
whose co-ordinates are y = o, ? a1
x= + A, we have ' o ;
g s B!/l/
If it be required that these -

lines should intersect on the el-

lipse, it is necessary that these equations subsist at the same
10 * P
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time with the equation of the cllipse. Multiplying them
together, we have ‘ :
Y= —aa' (A*—2Y);

and in order that this equation agree with that of the ellipse,

B?
Y =23 (AT —a?),

we must have
o : B?
—ad' =75 or ad' = — o
which establishes a constant relation between the tangents of
angles formed by the chords drawn from the extremities of
the transverse axis with this axis. In thecircle B = A, and

this relation becomes

as we have seen (Art. 137).

161. When the relation which has just been established
(Art. 160) takes place between the angles which any two
lines form with the axis of x, these lines are supplementary

; : A
chords of an ellipse, the ratio  of whose axes is = -

B

162. As we proceed in the examination of the properties
of the ellipse, we are struck with the great analogy between
this curve and the circle. We may trace this analogy farther.
In the circle we have seen that all the points of its circum-
ference are equally distant from the centre. Although this
property does not exist in the ellipse, we find something ana-
logous to it; for, if on the transverse axis we take two points

F, F', whose abscissas are =t +/ A2— B2, the sum of the dis-
tances of these points to the same point of the curve is al-
ways constant and equal to the transverse axis. To prove
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this; let = and y be the co-ordinates of any point M of the
ellipse; represent the abscissas of the points F, F' by ==

C*M”
K %
z’ 2 / i b4

Calh.ng D the distance MF, or MF’, we have (Art. 59),
D= (y—y) + (e—),

bat since y=o,

we have D=2 + (x—a)2

Putting for y its value drawn from the equation of the
ellipse, and substituting for 22 its value A?— B?, this expres-
sion becomes

2
D2=B’-——B‘£2 + 1*—2rx' + A2—B*=
22
A—A,L,B x?—Qxx’ + A%;

or, substituting for A?*—B? its value z?,

0
—2xx’ + A= (A—w—

e b T
'~ A

o

Extracting the square root of both members. we have

D=d:(A_-xT?

Taking the positive sign, and substituting for ' its two
values ==/ A?—B?, we have for the distance MF, or MF",
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7 AT
MF=A—‘”‘/AA e MF,=A+x~/AA—B2.

Adding these values together, we get
MF + MF' =24,
which proves that the sum of the distances of any point of the
ellipse to the points F, ¥, is constant and equal to the trans-
verse axis.
163. The points F, F', are called the Foci of the ellipse,

and their distance ‘== v/ A*—DB? to the centre of the ellipse
is called the ILccentricity. When A = B, the eccentricity
=o0. The fociin this case unite at the centre, and the ellipse
becomes a circle. The maximum value of the eccentricity is
when it is equal to the semi-transverse axis. In this suppo-
sition B =0, and the ellipse becomes a right line.

Making x === vV A? — B* in the equation of the ellipse,
we find

B 2B?

y::tK’ OI‘Q_?/::*:T

which proves that the double ordinate passing through the
focus is equal to the parameter.

164. The property demonstrated (Art. 162) leads to a
very simple construction for the ellipse. From the point B

: lay off any distance BK on the
-\‘\ axis BB. From the point F as
K F

B a centre, with a radius equal to

BK, describe an arc of a circle ;

s
-

and from F' as a centre, with a
radius B'K, describe another arc. The point M where these
arcs intersect, is a point of the ellipse. For

MF + MF' = 2A.
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When we wish to describe the ellipse mechanically, we
fix the extremities of a chord whose length is equal to the
transverse axis, at the foci, F, I, and stretch it by means of
a pin, which as it moves around describes the ellipse.

165. To find the equation of a tangent line to the ellipse,
let us resume its equation,

A%p + B = A*B.
Let 2", y", be the co-ordinates of the point of tangency,
they will verify the relation,
A?y”? + B2J:”2 —_ A2B2.

The tangent line passing through this point, its equation
will be of the form

y—y'=a(@—a").

It is required to determine a.

To do this, we will find the points in which this line con-
sidered as a secant meets the curve. For these points the
three preceding equations must subsist at the same time.
Subtracting the two first from each other, we have

AY—y )y +y) +BeE—a")(@+ta)=o

Putting for y its value 3" 4+ @ (x — x") drawn from the
equation of the line, we find

(x—a") 1A Qay" + @ @ —2")) + Bz + 2)} =0

This equation may be satisfied by making

r—2x"=o,
which gives
T = E",
from which we get

y=y';
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and also by making
A’ Ray' + @ (c—a) + B (x+2)=o.

Now when the secant becomes a tangent, we must have
z = 2", which gives
Aay’ + B =03
hence
BQxII

iy o

Y

Substituting this value of « in the equation of the tangent,
it becomes
DL
00 ol &z o ST\
Uheal = Azyn(aj x");
or reducing, and recollecting that A% 4 B%'? = A?B? we
have
Atyy' + Blax" = A*B?
for the equation of the tangent line to the ellipse.
166. If through the centre and the point of tangency we
draw a diameter, its equation will be of the form
' — a! xll’
from which we get

rn
a':y—”.
x

But we have just found the value of a, corresponding to
the tangent line, to be

W T
s
Multiplying these values of @ and a' together, we find
: B
aad = —— ¢

A2
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This relation being the same as that found in Arts. 160, 161,
shows that the tangent and the diameter passing through the
point of tangency, have the property of being the supple-
mentary chords of an ellipse, whose axes have the same

o A
ratio B Q

167. This furnishes a very simple method of determining
the direction of the tangent. For if we draw any two sup-
plementary chords, and designate by «, «’, the trigonometri-
cal tangents of the angles which they make with the axis,
we have always between them the relation

B2

i Sy

£

We may draw one of these chords parallel to the diameter,
passing through the point of tangency. In this case we have
. a = a
from which results also
a=a;
that is, the other chord will be parallel to the tangent.

168. To draw a tangent through a point M taken on the

:llipse, draw through this point AM, and through the ex-
remity B’ of the axis BB’ draw the chord B'N parallel to
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AM; MT parallel to BN will be the tangent required. We
see, by this construction also, that if we draw the diameter
AM' parallel to the chord BN, or to the tangent MT, the
tangent at the point M' will be parallel to the chord B'N, or
to the diameter AM.

169. When two diameters are so disposed that the tangent
drawn at the extremity of one is parallel to the other, they
are called Conjugate Diameters. It will be shown presently
that these diameters enjoy the same property in the ellipse
as those demounstrated for the circle (Arts. 144, 145).

170. To find the subtangent for the ellipse, make y = o in
the equation of the tangent line.

A%yy" + Bax" = A’B?,

we have for the abscissa of the point in which the tangent
meets the axis of x,

which is the value of AT. If we subtract from this ex-
pression AP = 2", we shall have the distance PT, from the
foot of the ordinate to the point in which the tangent meets
the axis of . This distance is called the subtangent. Its
expression is

This value being independent of the axis B, suits every
ellipse whose semi-transverse axis is A, and which is con-
centric with the one we are considering. It therefore cor-
responds to the circle, described from the centre of this
ellipse with a radius equal to A. Hence, extending the
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ordinate MP, until it meets
the circle at M’, and draw-
ing through this point the
tangent M'T, MT will be
tangent to the ellipse at the

point M. This construction
applies equally to the conjugate axis, on which the expression
for the subtangent would be independent of A.

171. To find the equation of a normal to the ellipse, its
equation will be of the form

y— yu' =da (.r—x”).
The condition of its being perpendicular to the tangent,
for which we have (Art. 165),
Bx"

a = —Az—y,, ’
requires that there exist between ¢ and ' the condition

aa +1=o,
which gives
A!yu

==
B

This value being substituted in the equation for the normal,
gives
2,1
s E ok S

172. To find the subnormal for the ellipse, make y = o in
the equation of the normal, and we have for the abscissa of
the point in which the normal meets the axis of x,
A*—PB?
T
11 Q

= o "
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This is the value of AN. Subtracting it from AP, which
is represented by «', we shall have the distance from the
foot of the ordinate to the foot of the normal. This distance
is the subnormal, and its value is found to be

2, .t
B

173. The equation of the ellipse being symmetrical with
respect to its axes, the properties which have just been de-
monstrated for the transverse, will be found applicable also
to the conjugate axis. _

174. The directions of the tangent and normal in the
ellipse have a remarkable relation with those of the lines,
drawn from the two foci to the point of tangency. If from
the focus F, for which y = 0 and x = v A*—B%, we draw
v a straight line to the
£ e point of tangency, its
/ , equation will be of the

« form

F’/A.N I T

If we make for more simplicity v A*— B*= ¢, the con-

dition of passing through the focus will give

NI yn = a (C—-'L'”),
hence,

"

y

C—'x”.

O == ——

But we have for the trigonometrical tangent which the
tangent line makes with the axis of x (Art. 165),
Bzxn

a—_-__m’.
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The angle FMT which the tangent makes with the nne
drawn from the focus will have for a trigonometrical
tangent (Art. 64),

a—u
1+ aa
Putting for @ and « their values, it reduces to
A2y72 + B2x!’2 -_e BZC.I'"
Aey’ — (A*— B) «" y" !

which reduces to

Bﬁ

? ?
in observing that the point of tangency is on the ellipse, and
that A* —B* = c.

In the same manner the equation of a line through the
focus F' is found by making x=-—c, and y=o0 in the
equation

y—y = @—a),
and we have ’

—y' =o' (—e—2a"),
hence

"

PEIE
The angle F'MT which this line makes with the tangent,
will have for a trigonometrical tangent,
a—o B’
e
when we put for @ and o' their values.
The angles FMT, F'MT, having their trigonometrical tan
gents equal, and with contrary signs, are supplements of each
other, hence

FMT + F'MT = 180°;
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but
F'MT 4+ F'M: = 180°,

hence
FMT = F'M¢,

which shows that in the ellipse, the lines drawn from the foci
to the point of tangency, make equal angles with the tangent ;
and it follows from this, that the normal bisects the angle
formed by the lines drawn from the point to the same point of
the curve.

175. The property just demonstrated, furnishes a very
simple construction for
drawing a tangent line
to the ellipse through a
given point. Let M be
the point at which the
tangent is to be drawn.
Draw FM, F'M, and pro-
duce F'M a quantity MK
= FM. Joining K and
F, the line MT, perpen-
dicular to FK, will be the tangent required; for from this
construction, the angles TMF, TMK, F'M¢, are equal to

each other.
We may see that the line MT has no other point common

besides M, since for any point ¢,
Ft + Ft > FMK > 2A.

If the given point be without the ellipse, as at ¢, then
from the point F' as a centre, with a radius F'K = 2A de-
scrihe an arc of a circle; from the point ¢ as a centre, with
a radius ¢F, describe another arc, cutting the first in K.
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Drawing F'K, the point M will be the point of tangency,
and joining M and ¢, M¢ will be the tangent required. For,
from the construction, we have tF' = tK. Besides F'M +
FM = 2A and 'M + MK = 2A. Hence

MF = MK.

The .ine Mt is then perpendicular at the middle of FK.
The angles FMT, F'M¢ are then equal, and tMT is tangent
to the ellipse.

The circles described from the points F' and ¢ as centres,
cutting each other in two points, two tangents may be drawn
from the point ¢ to the ellipse.

Of the Ellipse referred to its Conjugate Diameters.

176. There is an infinite number of systems of oblique
axes, to which, if the equation of the ellipse be referred, it
will contain only the square powers of the variables. Sup-
posing in the first place, that its equation admits of this re-
duction, it is easy to see that the origin of the system must
be at the centre of the ellipse. For, if we consider any
point of the curve, whose co-ordinates are expressed by
+ ', + y', since the transformed equation must contain only
the squares of these variables, it is evident it will be satisfied
by the points whose co-ordinates are + z', —y' ; — ', + Y
that is, by the points which are symmetrically situated 1n
the four angles of the co-ordinate axes. Hence every line
drawn though this origin will be bisected at this point, a
property which, in the ellipse, belongs only to its centre,

since 1t is the only point around which it is symmetrically
disposed.

11 %
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The oblique axes here supposed will always cut the ellipse
in two diameters, which will make such an angle with each
other as to produce the required reduction =~ These lines are
called Conjugate Diameters, which, besides the geometrical
property mentioned in Art. 169, possess the analytical
property of reducing the equation of the curve to those terms
which contain only the square powers of the variables.

177. The equation of the ellipse referred to its centre and
axes is

A'y* 4+ B = A®B®

To ascertain whether the ellipse has many systems of con-
jugate diameters, let us refer this equation to a system of
oblique co-ordinates, having its origin at the centre. The
formulas for transformation are (Art. 111),

x = &' cosa + ¥y cos o, y=2a'sina 4+ y' sina’.

Substituting these values for x and y in the equation of the

ellipse, it becomes .

(A’sin’a’ + B? cos®a') y® + (A*sin’a + B®cos®a) AR
x"® + 2 (A’sin asin o' + B cos a cos o) =’ ' '

In order that this equation reduce to the same form as
that when referred to its axes, it is necessary that the term
containing 'y’ disappear. As « and o are indeterminate,
we may give to them such values as to reduce its co-efficient
to zero, which gives the condition

A?sin asin o' 4 B?cos a cos o’ = o,

and the equation of the ellipse becomes

(A?sin%’ + B®cos®’) y* + (A%sin®x + B® cos %)
x®= A*B. .
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178. The condition which exists between a and «' is not
sufficient to determine both of these angles. It makes known
one of them, when the other is given. We may then assume
one at pleasure, and consequently there exists an infinile

number of conjugate diameters.

179. The axes of the ellipse enjoy the property of being
conjugate diameters, for the relation between « and o is
satisfied when we suppose sina = o, and cos o/ = 0, which
makes the axis of z’ coincide with that of z, and ¥ with that
of y. These suppositions reduce the equation to the same
form as that found for the ellipse referred to its axes. Or,
these conditions may be satisfied by making sin o’ = 0, and
cos o == 0, which will produce the same result, only a’ will
become ¥, and ¥/, .

180. The axes are the only systems of conjugate diameters
at right angles to each other. For, if we have others, they
must satisfy the condition

o —oa=290°% or « = 90° + q,
which gives
sin &’ = sin 90° cos a + cos 90° sin« = + cos a,

cos o« = cos 90° cos « — sin 90° sin @ = —sina;

but these values being substituted in the equation of condition

A’sinasina’ + B?cosacoso = o,
it becomes
(A* — B’ sin a cos a = o,

which can only be satisfied for the ellipse by making sina = o,
or cos a = o, suppositions which reduce to the two cases just
considered.
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181. If we make A®— B? = o0, we shall have A = B, the
ellipse will become a circle, and the equation of condition
being satisfied, whatever be the angle o, it follows that all the
conjugate diameters of the circle are perpendicular to each
other.

182. Making, successively, ' = o0, and y' = o0, we shall
have the points in which the curve cuts the diameters to
which it is referred. Calling these distances A’ and B', we
find

A2 B2 Ai Bﬁ

A= RIS 2 2 ° B?e= Fim-mmoe ] 3 R
A?sin®« 4 B? cos’a 7 Alsin’a’ 4 B*cos

and the equation of the ellipse becomes
A%y® + B?a® = A”B?,
2A’ and 2B’ representing the two conjugate diameters.
183. The parameter of a diameter is the third propor-
2
g
2

the parameter of the diameter 2A’, and B is that of its

tional to this diameter and its conjugate; is therefore

conjugate 2B'.
184. If we multiply the values of A* and B” (Art. 182)

together, we get

4 4
AmB’2= B 0 A B v ’
A* sin’e’ sin’e + A? B? (sin’a cos?’ -+ cos % sin’a’) 4- B* cos’acos”a

By adding and subtracting in the denominator of the
second member the expression

2A%B?sin a sin o cos a ¢os o,
and observing that
sin® (' — o) = sin *a cos "«’ — 2sin a sin o’ cos a cos o’ +
sin %’ cos %o,
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we have

s e A4 Bt

(A*sina’sina + B cos o’ cos a)® + A*Bsin® (o' — )

But we have, from Art. 180,
A®sin o' sina + B%cos o’ cos a = o,
and reducing the other terms of the fraction, we have

4 R A2B2
AR ==

which gives

AB = A'B’sin («/ — a).

(o' —a) is the expression of the angle B'AC’ which the
two conjugate diameters

make with each other

A'B'sin («' — a) expresses c. A\ n’ "
therefore the area of the %
parallelogram Ac¢ R'B, < R >
since B'sin («— =) is the %\ /
value of the altitude of 2

this parallelogram. This
area being equal to the rectangle AC RB formed on the axes,
we conclude, that in the ellipse, the parallelogram constructed

on any two conjugate diameters is equivalent to the rectangle
on the axes.

185. The equation of condition between the angles « and
o being divided by cosacosa’, becomes

A'tangatanga + B*=0. (1)

We may easily eliminate by means of this equation the
angle o from the value of B?, or the angle « from A”. For
R
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this purpose we have only to introduce the tangents of the
angles instead of their sines and cosines. Since we have
always

tang %« 1
Qe 1) () 2
sin’e = 2—pr; costa = ———p;
1 + tang®a’ 1 + tang’x’
tang % 1
c 9 0 =) 287
sin’e’ = ~———3; cos’d' = ——p.
1 + tang %'’ 1+ tang !

Substituting these values in the expressions for A? and B*?
1Art. 182), we have

A= A?B? (1 + tang®)

B2 — A?B? (1 + tang®a)
A’tang® + B* ~ A?tang® + B

To eliminate o' we have only to substitute for tang « its
B

value deduced from equation (1), tang o = B e and

after reduction, the value of B becomes
B — At tang %a + Bt ;
A? tang %o 4 B?
Adding this equation to the value of A%, the common nu-
merator
A?B? 4 A*B? tang*x + Aftang®x 4 Bt
may be put under the form
B?*(A? + B?) + A*tang®« (B + A%,
or i (A? 4 B?) (A? tang *a + B?),
and the same after reduction becomes
CA? 4 B = A? + B,

that is, in the ellipse the sum of the squares of any two con-
jugate diameters is always equal to the sum of the squares of
the two axes.
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186. The three equations
A’tangatang«’ + B'=o,
AB = A'B'sin (¢ —a),
A*+ B*= A"+ B?,

suffice to determine three of the quantities A, B, A’, B, «, o,
when the other three are known. They may consequently
serve to resolve every problem relative to conjugate diam-

eters, when we know the axes, and reciprocally.

187. Comparing the first of these equations with the rela-
tions found in Art. 160; when two lines are drawn from the
extremities of the transverse axis to a point of the ellipse,

we see that the angles «, o, satisfy this condition, since in
2
both cases we have aa' = — o It is then always pos-

sible to draw two supplementary chords from the vertices of
the transverse axis, which shall be parallel to two conjugate
diameters.

188. From this results a simple method of finding two
conjugate diameters, which shall make a given angle with
each other, when we know the axes. On one of the axes
describe a segment of a circle capable of containing the given
angle. Through one of the points in which it cuts the ellipse
draw supplementary chords to this axis. They will be par-
allel to the diameters sought, and drawing parallels through
the centre of the ellipse, we shall have these diameters. The
construction should be made upon the transverse axis, if the
angle be obtuse; and on the conjugate, if it be acute. When
the angle exceeds the limit assigned for conjugate diameters,
the problem becomes impossible.
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189. To apply this principle, let it be required to construc.
two conjugate diameters making an angle of 45° with eact
other.

Upon the congregate axis BB’

M u construct the segment BMM'B’

= capable of containing the given

angle. This is done by draw-

B% ¢ ing B'E, making EB'G = 45°.

B'O perpendicular to B'E will

give O, the centre of the required

segment, the radius of which
¥ will be B'O; for the angle BMB'

being measured by half of BAB'
= 45.° Hence BM and B'M will be supplementary chords,
making with each other the required angle; and the diam-
eters CF, CF', parallel to these chords, will be the conjugate
diameters required (Art. 168).

Of the Polar Equation of the Ellipse, and of the measure
of its surface.

190. To find the polar equation of the Ellipse, let o be
” taken as the pole, the co-ordinates of
which are ¢ and . Taking OX' parallel

i ‘ to CA’ the formulas for transformation

ﬁhjamme%
A

x=a+rcosv, y==b+rsino.

B

Substituting these values of z and y,
in the equation of the ellipse,

A% + B = AR,
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it becomes

A?sin% ? +2A%sinv | r + AW + B — AB* = o,
+ Bicosw | + 2B% cos v
which is the polar equation of the ellipse.

191. If the pole be taken at the centre of the ellipse, we

shall have
a=o0, and b =o0;

and the equation becomes
(A%sin? + B?cos?)r*= A’B%

192. If the pole be taken on the curve, this condition

would require that
A 4+ B%a?— A2B?* = o,

and the polar equation would reduce to

(A?sin?v + B? cos ) r*+ (2A% sin v 4 2B% cos v) r = o.

The results in this and the last article may be discussed in
the same manner as in the polar equation of the circle.

193. Let us now suppose the pole to be at one of the foci,
the co-ordinates of which are b =0, ¢ = + VA? — B2

These values being substituted in the general polar equation,
it becomes

(A?sin % + B? cos %) 7* 4 2B% cos v.r = B
Resolving this equation with respect to r, the numerato. of
the quantity under the radical becomes
Bt (A?sin® + B? cos %) + B*a? cos v ;
and putting for a® its value A?—B?, it reduces to

ABt (sin % + cos %), or A?B*:
12
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and we have for the two values of r,

B2 (acos v— A)
T A*sin® + Blcos®’

B2 (acosv + A)
T A*sin% + Blcos%’

r=

and r =

which may be put under another form, for we have

A?sin?v 4 B?cos v = A?— (A2— B?) cos % = A?— g2 cos?p
= (A—acosv) (A + acos v).

Making the substitutions, and reducing, we have

BZ B2

r=—_— ., r=— .
A + acosv A —a cos v

194. If now the pole be at the focus F, for which @ is
positive and less than A, as the cos v is less than unity, the
product @ cos v will be positive and less than A, so that
whatever sign cos v undergoes in the different quadrants,
A + acosv, and A — a cos v, will be both positive.  The
first value of » will then be always positive and give real
points of the curve, while the second will be always negative,
and must berejected (Art. 124). The same thing takes place
at the focus I, for although a is negative in this case, a cos v
will be always less than A, and the denominators of the two
values will be positive. The first value alone will give real
points of the curve.

195. If, for more simplicity, we make

A*—B?
—— = &,

A2
we shall have -

= A*(1 —¢?), and q = = Ae.
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These values being substituted in the positive value of r,

give
_A(l—e) _A(d—¢
ek o Sl com s

These formulas are of frequent use in Astronomy.

196. In the preceding discussion we have deduced from
the equation of the ellipse, all of its properties; reciprocally
one of its properties being known we way find its equation.

For example, let it be required to find the curve, the sum
of the distances of each of its points to two given points
being constant and equal to 2A.

Let F, F', be the two given 'l v tp
points, and A the middle of the - /—*\
line FF' the origin of co-ordi- /: %‘:’
nates. Represent FF' by 2¢. [ X
Suppose M to be a point of the ( g '/
curve, for which AP =z, PM fpai AT

=y, and designate the dis- i !
tances FM, F'M, by r, 7. 'We shall have

=1y 4 (c—x)%; =1y + (c + x)*
r+ r' = 2A.

Adding the two first equations together, and then subtract
ing the same equations, we shall have

P+ =2+ a2 + ¢, r? —r? = 4cx.
The second equation may be put under the form
(r'—r) (' +7) = 4cz.
Substituting for # + 7 its value 24, we get

) Yerx
¥—r=—,

A
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from which we deduce i 3
cx

7"=A+'C'A£1 r‘-A——-Xo

Putting these values in the equation whose first member is
“2 4 12 we have

2 2

A2 t g7 =¥+t +
or A?(y + 28 — ' = A (A —
When we make x = o, this equation gives

y¥=A—¢,

which is the square of the ordinate at the origin. As ¢ is
necessarily less than A, this ordinate is real, and representing
it by B, we have

B2= A2

If we find the value of ¢ from this result, and substitute it
in the equation of the curve, we have

A2y2 + B2x2 AQBQ

which is the equation of the ellipse referred to its centre and
axes.

197. We may readily find the expression for the area of
the ellipse. For we have seen (Art. 157) that if a circle be
described on the transverse axis as a diameter, the relation
between the ordinates of the circle and ellipse will be

y B

Ry
The areas of the ellipse and circle are to each other in the
same ratio of B to A.
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To prove this, inscribe in the
circumference BMM'B’any poly-

gon, and from each of its angles
draw perpendiculars to the axis

BB'. Joining the points in which
the perpendiculars cut the el-
lipse, an interior polygon will be

formed. Now the area of the
trapezoid P'N'NP is

(M) PP, or (zr—z) L y+y)
The trapezoid P'M'MP in the circle has for a measure
(PM + P'M) 3 e LNy + Y)

hence,
PNNP : PMMP ::5: Y :: B sl
These trapezoids will then be to each other in the constant
ratio of B to A. The surfaces of the inscribed polygons will
also be in the same ratio, and as this takes place, whatever
be the number of sides of the polygons, this ratio will be that
of their limits. Designating the areas of the ellipse and
circle by s and S, we will have
S
STA’
that is, the area of the ellipse is to that of the circle as the
semi-conjugate axis is to the semi-transverse. Designating
by = the semi-circumference of the circle whose radius is
unity, « A? will be the area of the circle described upon the
transverse axis. Ve shall then have for the area of the ellipse
s =a. AB.
12+ e
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The areas of any two ellipses are therefore to each other as
the rectangles constructed upon their axes.

Of the Parabola.

198. We have found for the general equation of intersec-
tion of the cone and plane, referred to the vertex of the cone
(Art. 150),

y*sin®v + 2?sin (v + %) sin (v —u) — 2cx sinv cosvcosu = o.

This equation represents a parabola (Art. 130) when u = v,

which gives
2cx cos v

— =0

sin v

y*sin % — 2cx sinv cos?v = o, or y* —

for the general equation of the parabola referred to its vertex.
Making y = o to find the points in which it cuts the axis
of x, we have i
x=o0,
hence the curve cuts this axis at the origin.
Making « = o, determines the points in which it cuts the
axis of y. This supposition gives
y¥=o,
hence the axis of y is tangent to the curve at the origin.

199. Resolving the equation with respect to y, we have

y=kcosv gﬂ

sinv
These two values being equal and with contrary signs, the
curve is symmetrical with respect to the axis of z. If we
suppose &« negative, the values of y become imaginary, since
the curve does not extend in the direction of the negative



Caar. IV ] ANALYTICAL GEOMETRY. 139

abscissas. For every positive value of x, those of y will be
real, hence the curve extends indefinitely in this direction.

200. The ratio between the square of the ordinate 3* to
the abscissa x, being the same for every point of the curve,
we conclude, that in the parabola the squares of the ordinates
are to each other as the corresponding abscissas.

201. The line AX is called the axis
of the parabola, the point A the vertex,

.. 2ccos
and the constant quantity ——— the
sin v
parameter.  For abbreviation make a X
2c cos %

B — 2p, the equation of the pa-

rabola becomes
y* = 2pu.
202. To describe the pa-
rabola, lay off on the axis /Q

AX in the direction AB, a
distance AB = 2p. From
any point C taken on the
same axis, and with a radius
equal to CB, describe a cir-

B €

cumference of a circle; from the extremity of its diameter

at P, erect the perpendicular PM; and drawing through the

point Q, QM parallel to the axis of z, the point M will be a

point of the parabola. For by this construction we have
PM = AQ, and AQ" = AB. AP;

hence,

MPD2 = 2p. AP,

¥ = 2pa.
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203. If we take on the axis of the pa-
¥ rabola the point F at a distance from the

; / vertex equal to f%’ we shall have for
? r x every point M of the parabola, the re-
) lation

=y + (o 5) = 2o + ' —

R\

px +1;—’=(x + %)’;
hence,

FM:m+§,

that is, the distance of any point of the parabola from this
point is equal to its abscissa, augmented by the distance of
the fixed point from the vertex. The point F is called the
focus of the parabola. Hence we see that in the parabola,
as well as the ellipse, the distance of any of its points from
the focus is expressed in rational functions of the abscissa.
It follows, from the above demonstration, that all the points
of the parabola are equally distant from the focus and a line

BL drawn parallel to the axis of vy, and at a distance %from

the vertex. The line BL is called the Directrix of the
Parabola.

204. From this property results a second method of de-
scribing the parabola when we know its parameter. From
the point A, lay off on both sides of the axis of ¥, distances
AB and AF, equal to a fourth of the parameter. Through
any point P of the axis erect the perpendicular- PM, and
from F as a centre with a radius equal to PB, describe an
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arc of a circle, cutting PM in the two points M M’, these
points will be on the parabola. For, from the construction.
we have

FM:AP+AB=w+%-

205. The same property enables us to describe the para-
bola mechanically. For this purpose, apply the triangle
EQR to the directrix BL. Take
a thread whose length is equal to L
QE, and fix one of its extremities >/\
at E, and the other at the focus F. Q
Press the thread by means of a /M .
pencil along the line QE, at the ~ B[4 ¥ X
same time slipping the triangle EQR
along the directrix, the pencil will

BN

describe a parabola. For,
FM + ME = QM + ME, or QM = MF.

R06. If we make x =1 p in the equation of the parabola,
we get

y¥=phory=np, or 2y = 2p.

Hence in the parabola, the double ordinate passing through
the focus, is equal to the parameter.

207. Let it be required to find the equation of a tangent
line to the parabola whose equation is

¥ = 2pux.

Let =" y” be the co-ordinates of the point of tangency,
they must satisfy the equation of the parabola, and we have

Y = 2pax”.



142 ANALYTICAL GEOMETRY. [Crar. IV

The equation of the tangent line will be of the form

y—y' =a@x—a").

It is required to determine a.

Let the tangent be regarded as a secant, whose points of
intersection coincide. To determine the points of intersec-
tion, the three preceding equations must subsist at the same
time. Subtracting the second from the first, we have

G—9y) @y +y) =2 (@—a").

Putting for y its value drawn from the equation of the
tangent, we get

(Ray"’ + @* (x— ") — 2p) (x—2") = o.

This equation may be satisfied by making z — 2" = o,
which gives = 2" and y = y" for the co-ordinates of the
first point of intersection, or by making

2ay" + a*(x—a'") —2p =o.
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