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PREFACE

This book is a development from courses which I have given in
Princeton for a number of years. During this time I have come to
feel that more would be accomplished by my students if they had an
introductory treatise written in English and otherwise adapted to the
use of men beginning their graduate work.

Chapter I is devoted to the theory of twisted curves, the method
in general being that which is usually followed in discussions of this
subject. But in addition I have introduced the idea of moving axes,
and have derived the formulas pertaining thereto from the previously
obtained Frenet-Serret formulas. In this way the student is made
familiar with a method which is similar to that used by Darboux in
the first volume of his Zegons, and to that of Cesaro in his Geometria
Tnirinseca. This method is not only of great advantage in the treat-
ment of certain topics and in the solution of problems, but it is valu-
able in developing geometrical thinking.

The remainder of the book may be divided into three parts. The
first, consisting of Chapters II-V1, deals with the geometry of a sur-
face in the neighborhood of a point and the developments therefrom,
such as curves and systems of curves defined by differential equa-
tions. To a large extent the method is that of Gauss, by which the
properties of a surface are derived from the discussion of two quad-
ratic differential forms. However, little or no space is given to the
algebraic treatment of differential forms and their invariants. In
addition, the method of moving axes, as defined in the first chapter,
has been extended so as to be applicable to an investigation of the
properties of surfaces and groups of surfaces. The extent of the
theory concerning ordinary points is so great that no attempt has
been made to consider the exceptional problems. For a discussion
of such questions as the existence of integrals of differential equa-
tions and boundary conditions the reader must consult the treatises
which deal particularly with these subjects.

In Chapters VII and VIII the theory previously developed is
applied to several groups of surfaces, such as the quadrics, ruled
surfaces, minimal surfaces, surfaces of constant total curvature, and
surfaces with plane and spherical lines of curvature.

11



iv PREFACE

The idea of applicability of surfaces is introduced in Chapter I1T
as a particular case of conformal representation, and throughout the
book attention is called to examples of applicable surfaces. However,
the general problems concerned with the applicability of surfaces are
discussed in Chapters 1X and X, the latter of which deals entirely
with the recent method of Weingarten and its developments. The
remaining four chapters are devoted to a discussion of infinitesimal
deformation of surfaces, congruences of straight lines and of circles,
and triply orthogonal systems of surfaces.

It will be noticed that the book contains many examples, and the
student will find that whereas certain of them are merely direct
applications of the formulas, others constitute extensions of the
theory which might properly be included as portions of a more ex-
tensive treatise. At first I felt constrained to give such references as
would enable the reader to consult the journals and treatises from
which some of these problems were taken, but finally it seemed best
to furnish no such key, only to remark that the Encyklopidie der
mathematischen Wissenschaften may be of assistance. And the same
may be said about references to the sources of the subject-matter of
the book. Many important citations have been made, but there has
not been an attempt to give every reference. However, I desire to
acknowledge my indebtedness to the treatises of Darboux, Bianchi,
and Scheffers. But the difficulty is that for many years I have con-
sulted these authors so freely that now it is impossible for me to say,
except in certain cases, what specific debts I owe to each.

In its present form, the material of the first eight chapters has
been given to beginning classes in each of the last two years; and
the remainder of the book, with certain enlargements, has constituted
an advanced course which has been followed several times. It is im-
possible for me to give suitable credit for the suggestions made and
the assistance rendered by my students during these years, but I am
conscious of helpful suggestions made by my colleagues, Professors
Veblen, MacInnes, and Swift, and by my former colleague, Professor
Bliss of Chicago. T wish also to thank Mr. A. K. Krause for making
the drawings for the figures.

Tt remains for me to express my appreciation of the courtesy
shown by Ginn and Company, and of the assistance given by them
during the printing of this book.

LUTHER PFAHLER EISENHART
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DIFFERENTIAL GEOMETRY

CHAPTER I
CURVES IN SPACE

1. Parametric equations of a curve. Consider space referred to
fixed rectangular axes, and let (z, y, z) denote as usual the cotrdi-
nates of a point with respect to these axes. In the plane 2 =0
draw a circle of radius » and center (a, ). The cobrdinates of a
point P on the circle can be expressed in the form

(1) x=a+rcosu, y=>b+rsinu, =z=0,

where u denotes the angle which the radius to P makes with the
positive z-axis. As u varies from 0° to 360°, the point P describes
the circle. The quantities a, b, » determine the position and size
of the circle, whereas » determines the position of a point upon it.
In this sense it is a variable or parameter for the
circle. And equations (1) are called parametric
equations of the circle.

A straight line in space is determined by a
.point on it, B(a, b, ¢), and its direction-cosines &
a, B, v. The latter fix also the sense of the line. | »
Let P be another point on the line, and let the
distance BP be denoted by u, which is positive
or negative. - The rectangular codrdinates of P SAVES
are then expressible in the form ¢ Ojc |-===
Q) z=a+tua, y=>b+uB, z=c+uy. :
To each value of u there corresponds a point
on the line, and the cobrdinates of any point on the line are
expressible as in (2). These equations are consequently parametric
equations of the straight line.

When, as in fig. 1, a line segment PD, of constant length a, per-

pendicular to a line OZ at D, revolves uniformly about 0Z as axis,
1

g

=
pes
.
-

\

N,
S Vg

Fic. 1



2 CURVES IN SPACE

and at the same time D moves along it with uniform velocity, the
locus of P is called a circular helix. 1f the line OZ be taken for the
z-axis, the initial position of D for the positive z-axis, and the angle
between the latter and a subsequent position of PD be denoted by
u, the equations of the helix can be written in the parametric form

(3) z=acosu, y=asinu, z=bu,

where the constant b is determined by the velocity of rotation of
PD and of translation of D. Thus, as the line PD describes a
radian, D moves the distance b along OZ.

In all of the above equations u is the variable or parameter.
Hence, with reference to the locus under consideration, the coordi-
nates are functions of u alone. We indicate this by writing these
equations

(4) z=fu), y=Sfw), z=Sf).
The functions f,, f,» f, have definite forms when the locus is a
circle, straight line or circular helix, But we proceed to the gen-
eral case and consider equations (4), when f,, f,, f, are any func-
tions whatever, analytic for all values of u, or at least for a certain
domain.* The locus of the point whose codrdinates are given by (4),
as u takes all values in the domain considered, is a curve. Equa-
tions (4) are said to be the equations of the curve in the parametric
form. When all the points of the curve do not lie in the same plane
it is called a space curve or a twisted curve; otherwise, a plane curve.
It is evident that a necessary and sufficient condition that a
curve, defined by equations (4), be plane, is that there exist a
linear relation between the functions, such as *

(5) af1+ sz2+0f3+d=0,
where a, b, ¢, d denote constants not all equal to zero. This con-
dition is satisfied by equations (1) and (2), but not by (3).
If u in (4) be replaced by any function of v, say
(6) “tﬂﬁf‘)’ o
equations (4) assume a new form,

(7) x=Fv), y=Fyv), 2= Fy(v).

* E.g. in case u is supposed to be real, it lies on a segment between two fixed values;
when it is complex, it lies within a closed region in the plane of the complex variable.



EQUATIONS OF A CURVE 3

It is evident that the values of z, ¥, 2, given by (7) for a value
of v, are equal to those given by (4) for the corresponding value
of u obtained from (6). Consequently equations (4) and (7) define
the same curve, % and v being the respective parameters. Since
there is no restriction upon the function ¢, except that it be ana-
lytie, it follows that a curve can be given parametric representation
in an infinity of ways.

2. Other forms of the equations of a curve. If the first of equa-
tions (4) be solved for u, giving v = ¢(z), then, in terms of z as
parameter, equations (7) are

®) z=1z, y=Fyr), z=7Fy )

In this form the curve is really defined by the last two equations,
or, if it be a plane curve in the zy-plane, its equation is in the
customary form

) ' y=s(2).

The points in space whose codrdinates satisfy the equation
y = F,(z) lie on the cylinder whose elements are parallel to the
z-axis and whose cross section by the zy-plane is the curve y = F,(2).
In like manner, the equation z = F,(z) defines a cylinder whose
elements are parallel to the y-axis. Hence the curve with the
equations (8) is the locus of points common to two cylinders
with perpendicular axes. Conversely, if lines are drawn through
the points of a space curve normal to two planes perpendicular
to one another, we obtain two such cylinders whose intersection
is the given curve. Hence equations (8) furnish a perfectly gen-
eral definition of a space curve.

In general, the parameter » can be eliminated from equations (4)
in such a way that there result two equations, each of which in-
volves all three rectangular cobrdin-ates. Thus,

10) D(z, y,2)=0, D,(z, y, 2) = 0.

Moreover, if two equations of this kind be solved for y and z as
functions of z, we get equations of the form (8), and, in turn, of
the form (4), by replacing = by an arbitrary function of w. Hence
equations (10) also are the general equations of a curve. It will
be seen later that each of these equations defines a surface.



4 CURVES IN SPACE

It should be remarked, however, that when a curve is defined
as the intersection of two cylinders (8), or of two surfaces (10), it
may happen that these curves of intersection consist of several
parts, so that the new equations define more than the original ones.

For example, the curve defined by the parametric equations
) z=u, y=ul z=ud
is a twisted cubic, for every plane meets the curve in three points. Thus, the plane

ar +by +cz+d=0

meets the curve in the three points whose parametric values are the roots of the
equation cud 4-bul + au +d=0.

This cubic lies upon the three cylinders

Yy = a2, 2=k yd =22

The intersection of the first and second cylinders is a curve of the sixth degree,
of the first and third it is of the sixth degree, whereas the last two intersect in a
curve of the ninth degree. Hence in every case the given cubic is only a part of
the curve of intersection — that part which lies on all three cylinders.

Again, we may eliminate » from equations (i), thus
@ - =1z 73 = xz,

of which the first defines a hyperbolic paraboloid and the second a hyperbolic-
parabolic cone. The straight line ¥y =0, z=0 lies on both of these surfaces,
but not on the cylinder ¥ =22 Hence the intersection of the surfaces (ii) consists
of this line and the cubic. The generators of the paraboloid are defined by

=l =l Vi=2b iz =2bich

for all values of the constants @ and b. From (i) we see that the cubic meets each
generator of the first family in one point and of the second family in two points.

3. Linear element. By definition the length of an arc of a curve
is the limit, when it exists, toward which the perimeter of an
inscribed polygon tends as the number of sides increases and their
lengths uniformly approach zero. Curves for which such a limit
does not exist will be excluded from the subsequent discussion.

Consider the arc of a curve whose end points m, m,, are deter-
mined by the parametric values %, and a, and let m;, m, .., be
intermediate points with parametric values u,, u,, ---. The length
l, of the chord mym,_, is

l,= \/(xk+1_ )+ Ys1— ¥ * Prsa™ 2,)"
= "/zi [fi( 1r) —Jfw)] i=1,23
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By the mean value theorem of the differential calculus this is

WAL O TIETIE (),

where Ei=u.+ 0,(u ,— u), 0<8,<1
and the primes indicate differentiation.

. As defined, the length of the arc mm, is the limit of =/,, as the
lengths m,m, ; tend to zero. From the definition of a definite
integral this limit is equal to

f\/ (u)+ S () + £ (w) du

Hence, if s denotes the length of the arc from a fixed point (u,)
to a variable point (u), we have ‘

1 o= [ IR SR,

This equation gives s as a function of u. We write it
(12) § =¢(u)
and from (11) it follows that

(13) & IR,

du
which we may write in the form
(14) ds*= d2*+ dy*+ d2°.
As thus expressed ds is called the element of length, or linear
_element, of the curve.

In the preceding discussion we have tacitly assumed that u is
real. When it is complex we take equation (11) as the definition
of the length of the arc.

If equation (12) be solved for » in terms of s, and the result
be substituted in (4), the resulting equations also define the curve,
and s is the parameter. From (11) follows the theorem:

A necessary and sufficient condition that the parameter u be the
arc measured from the point u = u, 13

(15) =1
An exceptional case should be noted here, namely,
(16) A AE=0
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Unless £}, f1, f1 be zero and the curve reduce to a point, at least one
of the codrdinates must be imaginary. For this case s is zero. Hence
these imaginary curves are called curves of length zero, or minimal
curves. For the present they will be excluded from the discussion.

Let the arc be the parameter of a given curve and s and s+e
its values for two points M (z, y, 2) and M (z, ¥, 2,). By Taylor’s
theorem we have

2
e
/ /
r,=x+4Te +x’—2+---,

2
@Am <y1=y+y’e+y"%+---,

2
e
' d ’ "
z2,=2 +z7e +z -2—+"',

where an accent indicates differentiation with respect to s.

Unless 2/, y', 2’ are all zero, that is, unless the locus is a point
and not a curve, one at least of the lengths z,— =z, y,—y, 2,— 2 is
of the order of magnitude of e. If these lengths be denoted by
dxz, 8y, 8z, and e by Js, then we have

V&x* + Sy*+ 82° = 8s + 1,
where 7, denotes the aggregate of terms of the second and higher
orders in 8s. Hence, as M, approaches M the ratio of the lengths
of the chord and the arc MM, approaches unity; and in the limit
we have ds’= d2*+ dy*+ d2°.

4. Tangent to a curve. The tangent to a curve at a point M is
the limiting position of the secant through A and a point M, of
the curve as the latter approaches M as a limit.

In order to find the equation of the tangent we take s for par-

ameter and write the expressions for the cotrdinates of 27, in the
form (17). The equations of the secant through 2 and 3/, are

X—2z Y—y Z-—2
z—z Yh—Y 25H—F

If each member of these equations be multiplied by e and the
denominators be replaced by their values from (17), we have in
the limit as 27, approaches
X—2 Y—y Z-—¢

G- Sy e PR ¢

(18)
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If @, B, v denote the direction-cosines of the tangent in conse-
quence of (156), we may take

19) =Vl Iy ey =12
When the parameter » is any whatever, these equations are *
.. Wi AL

3 ,B =) Y= 0
R A N VAR
They may also be written thus:

_dz o _dy __de
e o W e

(21)

From these equations it follows that, if the convention be made
that the positive direction on the curve is that in which the par-
ameter increases, the positive direction upon the tangent is the
same as upon the curve.

A fundamental property of the tangent is discovered by con-
sidering the expression for the distance from the point 27, with
the cotdrdinates (17), to any line through M. We write the equa-
tion of such a line in the form

O R L A

= = ’
a b c

(22)

where a, b, ¢ are the direction-cosines.
The distance from M, to this line is equal to

(23) {[(bm’— ay’)e + }Z(bx"-— ayn) e NI ]2
+ [(ey'— bz’)e ) ,]2+ [(azl_ Cw;>e LR .]2}}_

Hence, if MM, be considered an infinitesimal of the first order,
this distance also is of the first order unless

in which case it is of the second order at least. But when these
equations are satisfied, equations (22) define the tangent at A/
Therefore, of all the lines through a point of a curve the tangent
is nearest to the curve.

*Whenever the functions 2, ¥/, z” appear in a formula it is understood that the arc s is
the parameter; otherwise we use fi, f7, f4, indicating by accents derivatives with respect
to the argument .
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5. Order of contact. Normal plane. When the curve is such
that there are points for which

" " "
(24) 5= %—, =%
the distance from 77, to the tangent is of the third order at least.
In this case the tangent is said to have contact of the second order,
whereas, ordinarily, the contact s of the first order. And, in gen-
eral, the tangent to a curve has contact of the nth order at a point,

if the following conditions are satisfied forn =2,..., n—1, and n:

(n) (n) (n)
(25) R Y

2 —D y(n-—l) s z(n—l)'

When the parameter of the curve is any whatever, equations
(24), (25) are reducible to the respective equations

1//_ 2/1 3/r. fl(n) o fr_,(") f(n)

FriEEm ) R D

The plane normal to the tangent to a curve at the point of
contact is called the normal plane at the point. Its equation is

(26) X—2)a+Y—y)B+(Z—2)y=0,
where a, B, v have the values (20).

EXAMPLES

1, Put the equations of the circular helix (3) in the form (8).

2. Express the equations of the circular helix in terms of the arc measured from
a point of the curve, and show that the tangents to the cnrve meet the elements of
the circular cylinder under constant angle.

8. Show that if at every point of a curve the tangency is of the second order,
the curve is a straight line.

4. Prove that a necessary and sufficient condition that at the point (zo, ¥o) of
the plane curve y = f(z) the tangent has contact of the nth order is f*(zo) = f/(o)
= ... = f®(zo) = 0; also, that according as n is even or odd the tangent crosses the
curve at the point or does not.

5. Prove the following properties of the twisted cubic :

(@) Of all the planes through a point of the cubic one and only one meets the
cubic in three coincident points; its equation is 8u%x —8uy + 2z — u2 = 0.

(b) There are no double pomts but the orthogonal projection on a plane has a
double point.

(¢) Four planes determined by a variable chord of the cubic and by each of
four fixed points of the curve are in constant cross-ratio.
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6. Curvature. Radius of first curvature. Let M, M, be two
points of a curve, As the length of the arc between these points,
and Af the angle between the tangents. The limiting value of
AO/As as M, approaches M, namely df//ds, measures the rate of
change of the direction of the tangent at A as the point of con-
tact moves along the curve. This limiting value is called the
first curvature of the curve at M, and its reciprocal the radius of
first curvature ; the latter will be denoted by p.

In order to find an expression for p in terms of the quantities
defining the curve, we introduce the idea of spherical representa-
tion as follows. We take the sphere * of unit radius with center
at the origin and draw radii parallel to the positive directions of-
the tangents to the curve, or such a portion of it that no two
tangents are parallel. The locus of the extremities is a curve
upon the sphere, which is in one-to-one correspondence with the
given curve. In this sense we have a spherical representation, or
spherical indicatriz, of the curve.

The angle A6 between the tangents to the curve at the points
M, M, is measured by the arc of the great circle between their
representative points m, m, on the sphere. If Ac denotes the
length of the arc of the spherical indicatrix between m and m,
then by the result at the close of § 3, '

d_0 = lim A—G =1.
do Ao
Hence we have
1 do
2 ety 1)
89 ! p ds

where do is the linear element of the spherical indicatrix.
The coordinates of m are the direction-cosines a, B, v of the

tangent at M; consequently
1 /da\* [da\’' [dB\', [dy\’
27! = e et d vt L
) P’ <ds> <ds>+<ds>+<ds>
When the arc s is the parameter, this formula becomes

(28) ;_)l§= 2"y 27

* Hereafter we refer to this as the unit sphere.
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However, when the parameter is any whatever, u, we have
from (12), (13), (20),

v w1 gUH phep
(29) &=y a5 (er-9%)
and P =f S+ + S
Hence we find by substitution

1 I/2+f/l"+fl/" (bll‘l

(3 0) P T qu 4

which sometimes is written thus:

l - (d22‘ 2+ (d2y)2+(d2z)2_ (d28)2
pz ds

(31)

The sign of p is not determined by these formulas. We make
the convention that it is always positive and thus fix the sense of
a displacement on the spherical indicatrix.

7. Osculating plane. Consider the plane through the tangent to
a curve at a point M and through a point 2, of the curve. The
limiting position of this plane as M, approaches M is called the
osculating plane at M. In deriving its equation and thus establish-
ing its existence we assume that the arc s is the parameter, and
take the coordinates of M, in the form (17).

The equation of a plane through  (z, ¥, 2) is of the form

(32) (X—2)a+ Y —y)b+(Z—2)c=0,

X, Y, Z being the current cobrdinates. When the plane passes
through the tangent at 1/, the coefficients a, b, ¢ are such that

(33) Za+ yb+2e=0.
If the values (17) for z,, y,, 2, be substltuted in (32) for X, 7, Z,
and the resulting equation be divided by —, we get

(Z”d + yllb + z”c) + = 0,

where 7 represents the aggregate of the terms of first and higher
orders in e. As M, approaches M, 5 approaches zero, and in the
limit we have

(34) 2'a+ y'b +2'e=0.



OSCULATING PLANE 11

Eliminating @, b, ¢ from equations (32), (33), (34) we obtain, as
the equation of the osculating plane,

(35) # Y et O

xl/ l7/” zll
From this we find that when the curve is defined by equations (4)
in terms of a general parameter u, the equation of the osculating
plane is X—,x Y—/y Z—z ¥
(36) i W 2 e #

f‘lll ’f‘z// . 8/

The plane defined by either of these equations is unique except
when the tangent at the point has contact of an order higher than
the first. In the latter case equations (33), (34) are not independent,
as follows from (24); and if the contact of the tangent is of the nth

order, the equations 27 + Y + 2% = 0,

for all values of r up to and including » are not independent of
one another. But for r =n +1, this equation and (33) are inde-
pendent, and we have as the equation of the osculating plane at this
singular point, e (el 2l
# y' ¢l =0
.’E(" +1) y(n +1) z(u +1)

When a curve is plane, and its plane is taken for the zy-plane,
the equation (35) reduces to Z=0. Hence the osculating plane
of a plane curve is the plane of the latter, and consequently is the
same for all points of the curve. Conyersely, when the osculating
plane of a curve is the same for all its points, the curve is plane,
for all the points of the curve lie in the fixed osculating plane.

The equation of the osculating plane of the twisted cubic (§2) is readily
reducible to
(i) 3utX —3uY + Z —u =0,
where X, Y, Z are current codrdinates. From the definition of the osculating plane
and the fact that the curve is a cubic, it follows that the osculating plane meets
the curve only at the point of osculation. As equation (i) is a cubic in u, it follows
~ that through a point (zo, ¥o, 20) not on the curve there pass three planes which

osculate the cubic. Let uj, ug, us denote the parameter values of these points.
Then from (i) we have

Ug + Ug + Uz = 33y, WUz + UgUs + UgUy = B Yo, UUUZ = Zo.
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By means of these relations the equation of the plane through the corresponding
three points on the cubic is reducible to

(X—:co)3y0—(Y—y0)3zo+ (Z —Zo):().

This plane passes through the point (2o, %o, 25); hence we have the theorems :

The points of contact of the three osculating planes of a twisted cubic through a
point not on the curve lie in a plane through the point.

The osculating planes at three points of a twisted cubic meet in a point which lies
in the plane of the three points.

By means of these theorems we can establish a dual relation in space by mak-
ing a point correspond to the plane through the points of osculation of the three
osculating planes through the point, and a plane to the point of intersection of the
three planes which osculate the cubic at the points where it is met by the plane.
In particular, to a point on the cubic corresponds the osculating plane at the point,
and vice versa.

8. Principal normal and binormal. Evidently there are an in-
finity of normals to a curve at a point. Two of these are of par-
ticular interest: the normal, which lies in the osculating plane at
the point, called the principal normal; and the normal, which is
perpendicular to this plane, called the dinormal.

If the direction-cosines of the binormal be denoted by A, u, »,
we have from (35)

(M

Aipiv=(y'z

| zlyll) : (zlzll_ mlzr/) ] (xl?/r/_ ylxll).

In consequence of the identity
E(ylzll___ zly/I)Z . Exm. Exllﬂ___ (2%’-’1)”)2,
the value of the common ratio is reducible by means of (19) and
(28) to £p.* We take the positive direction of the binormal to
be such that this ratio shall be + p; then '

(37) x o P (y/zll____ z,:l/”), W= p(zlxll___ .73'2”), Y= p(w/yll_ x"]/’).

When the parameter u is general, these formulas are
(38) M= A=A, b= 5 FIRI—FR 0 v=(m AR,
or in other form:
B dyd’z — dzd”y,

dzd’xr— dxd’z ded*y — dyd’z
ds® ¢ MRS AR

itV
A ds® ds®

* For Zx’x’’ = 0, as is seen by differentiating Zx’2=1 with respect to s.
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By definition the principal normal is perpendicular to both the
tangent and binormal. We make the convention that its positive
direction is such that the positive directions of the tangent, prin-
cipal normal and binormal at a point have the same mutual ori-
entation as the positive directions B
of the -, y-, z-axes respectively.
These directions are represented in
fig. 2 by the lines M7, MC, MB.
Hence, if I, m, n, denote the direc-
tion-cosines of the principal normal,

we have *
a B vy
A ouow
from which it follows that / - Fie. 2
a=mv—mnu, B=nrA—Ily, ry=Ilp—m,
(40) l=py—vB, m=va—2\y, n=27AB—pa,

A=PBn—ym, p=nl—an, v=am—pPBL

Substituting the vglues of a, B, ry; A, u, v from (19) and (37) in the
expressions for [, m, n, the resulting equations are reducible to

(41) ' l—px, m=py', n=pd.
Hence, when the parameter u is general, we have
(42) i= @ (A= ")) m=@ @S =" f) n 4),3 (BS'— " fo)

or in other form,
dsd’x — dxd’s Bl dsd*y — dyd®s P dsd’z — dzd’s

42 1 = ) =
) ds® ds’ ds®
In consequence of (29) equations (42) may be written:
da d,8 dry
4 = STk =
(43) l=p st e ey
or by means of (27),
Tde T do do

Hence the tangent to the spherical indicatrix of a curve is parallel
to the principal normal to the curve and has the same sense.

* C. Smith, Solid Geometry, 11th ed., p. 31,
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9. Osculating circle. Center of first curvature. We have defined
the osculating plane to a curve at a point M to be the limiting
position of the plane determined by the tangent at M and by a
point M, of the curve, as the latter approaches 2 along the curve.
We consider now the circle in this plane which has the same tan-
gent at M as the curve, and passes through 27,. The limiting posi-
tion of this circle, as M, approaches 2, is called the osculating cirele
to the curve at M. It is evident that its center €| is on the prin-
cipal normal at 2. Hence, with reference to any fixed axes in space,
the codrdinates of C,, denoted by X, Y, Z,, are of the form

Xy=z+7rl, Yy=y+rm, Z,=z+7rn,

where the absolute value of r is the radius of the osculating circle.

In order to find the value of 7, we return to the consideration
of the circle, when 2, does not have its limiting position, and we
let X, Y, Z; I, m;, n,; r, denote respectively coordinates of the cen-
ter of the circle, the direction-cosines of the diameter through ar
and the radius. If z,, y,, 2, be the cobrdinates of 27, they have the
values (17), and since A/, is on the circle, we have

ri=3(X—a) =3l —e'— % - )2
If we notice that Z2'l, = 0, and after reducing the above equation
divide through by ¢ we have
1—7r3la"+n=0,
where 5 involves terms of the first and higher orders in e. In the

L B ; ;
limit r, becomes 7, £2"l, becomes =a'l, that is z and this equation
reduces to

r
1-%=0,

so that » is equal to the radius of curvature. On this account the
osculating circle is called the circle of curvature and its center the
center of first curvature for the point. Since r is positive the center
of curvature is on the positive half of the principal normal, and
consequently its coordinates are

(44) X,=z+pl, Y,=y+pm, Z,=z+ pn.
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The line normal to the osculating plane at the center of curva-
ture is called the polar line or polar of the curve for the corre-
sponding point. Its equations are

X—ax—pl Y—y—pm Z—z—pn

(45) = A :

In fig. 2 C represents the center of curvature and CP the polar
line for 21

A curve may be looked upon as the path of a point moving under the action of
a system of forces. From this point of view it is convenient to take for parameter

the time which has elapsed since the point passed a given position. Let ¢ denote this
parameter. As ¢ is a function of s, we have

dx _dxds @ dy__ﬁ@ %_ @

BT asa” “a a T oa at
Hence the rate of change of the position of the point with the time, or its velocity,
may be represented by the length % laid off on the tangent to the curve. In like

manner, by means of (41), we have

d%z ad“’s‘_l_ l <ds>2 dzy ﬁd28 7 (ds 2 d% a’s et <ds)
—_—=— -{— —_— = —_=]y —=v—
ae = “ae " p\a)’ ar " Tae T dt) ae” Tae " e \a

From this it is seen that the rate of change of the velocity at a point, or the

acceleration, may be represented by a vector in the osculating plane at the point,
through the latter and whose components on the tangent and principal normal

dzs 1 (ds>
are — and —
dt? dt
EXAMPLES

1. Prove that the curvature of a plane curve defined by the equation M (z, y)dx
+ N(x, y)dy =0 is
MV( M+6N> N2 M?ﬂr
1L oy oT o oy

(2 + N2yt

S

2. Show that the normal planes to the curve,
r=asin?u, y=asinucosu, z=acosu,
pass through the origin, and find the spherical indicatrix of the curve.
3. The straight line is the only real curve of zero curvature at every point.

4. Derive the following properties of the twisted cubic:

(@) In any plane there is one line, and only one, through which two osculating
planes can be drawn.

(b) Four fixed osculating planes are cut by the line of intersection of any two
osculating planes in four points whose cross-ratio is constant.

(c) Four planes through a variable tangent and four fixed points of the curve
are in constant cross-ratio.

(d) What is the dual of (c) by the results of §7?
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5. Determine the form of the function ¢ so that the principal normals to the
curve r = %, ¥ = sinu, z = ¢ (u) are parallel to the yz-plane.
6. Find the osculating plane and radius of first curvature of
z=acosu +bsinu, y=asinu+bcosu, z=csin2u.

10. Torsion. Frenet-Serret formulas. It has been seen that, un-
less a curve be plane, the osculating plane varies as the point
moves along the curve. The change in the direction depends
evidently upon the form of the curve. The ratio of the angle A8,
between the binormals at two points of the curve and their curvi-
linear distance As expresses our idea of the mean change in the
direction of the osculating plane. And so we take the limit of
this ratio, as one point approaches the other, as the measure of
the rate of this change at the latter point. This limit is called
the second curvature, or torsion, of the curve, and its inverse the
radius of second curvature, or the radius of torsion. The latter
will be denoted by .

In order to establish the existence of this limit and to find an
expression for it in terms of the functions defining the curve,
we draw radii of the unit sphere parallel to the positive binormals
of the curve and take the locus of the end points of these radii as
a second spherical representation of the curve. The coérdinates of
points of this representative curve on the sphere are A, g, ». Pro-
ceeding in a manner similar to that in § 6, we obtain the equation

l_do-f_gl]:"’ d_u"‘ dv\?
(45) ? dst <ds> i <ds> i (d_s> s

where do, is the linear element of the spherical indicatrix of the
binormals. o

In order that a real curve have zero torsion at every point, the cosines A, u, »
must be constant. By a change of the fixed axes, which evidently has no effect
upon the form of the curve, the cosines can be given the values A =1, u =» =0.
It follows from (40) that @ = 0, and consequently & = const. Hence a necessary
and sufficient condition that the torsion of a real curve be zero at every point is
that the curve be plane.

In the subsequent discussion we shall need the derivatives with
respect to s of the direction-cosines a, B, v; I, m, n; X, u, v. We
deduce them now. From (41) we have

47) of =2y O R S PR
P P P
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In order to find the values of A/, u/, v/, we differentiate with

respect to s the identities,
A4 i A=1, a\+ Bu + yv =0,
and, in consequence of (47), obtain
A+ pp'+ =0, a\N + Bu' + v = 0.

From these, by (40), follows the proportion

MNipliv'=1:m:n,
and the factor of proportionality is £1/7, as is seen from (46).
The algebraic sign of 7 is not determined by the latter equation.
We fix its sign by writing the above proportion thus:

l m ,

k"-_—"") '=—, _ —
(48) = dekiSe et

If the identity ! = uy—»8 be differentiated with respect to s

the result is reducible by (40), (47), and (48) to
A

4 P L
6

Similar expressions can be found for m' and »'. Gathering to-
gether these results, we have the following formulas fundamental in
the theory of twisted curves, and called the Frenet-Serret formulas:

7
a’=%, ,8’=%a ry’=%a
(50) < l’=— 6_(+} ) m’:—- g<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>