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This book is a development from courses which I have given in

Princeton for a number of years. During this time I have come to

feel that more would be accomplished by my students if they had an

introductory treatise written in English and otherwise adapted to the

use of men beginning their graduate work.

Chapter I is devoted to the theory of twisted curves, the method

in general being that which is usually followed in discussions of this

subject. But in addition I have introduced the idea of moving axes,

and have derived the formulas pertaining thereto from the previously

obtained Frenet-Serret formulas. In this way the student is made

familiar with a method which is similar to that used by Darboux in

the first volume of his Lemons, and to that of Cesaro in his Geometria

Intrinseca. This method is not only of great advantage in the treat

ment of certain topics and in the solution of problems, but it is valu

able in developing geometrical thinking.

The remainder of the book may be divided into three parts. The

first, consisting of Chapters II-YI, deals with the geometry of a sur

face in the neighborhood of a point and the developments therefrom,

such as curves and systems of curves defined by differential equa

tions. To a large extent the method is that of Gauss, by which the

properties of a surface are derived from the discussion of two quad

ratic differential forms. However, little or no space is given to the

algebraic treatment of differential forms and their invariants. In

addition, the method of moving axes, as defined in the first chapter,

has been extended so as to be applicable to an investigation of the

properties of surfaces and groups of surfaces. The extent of the

theory concerning ordinary points is so great that no attempt has

been made to consider the exceptional problems. For a discussion

of such questions as the existence of integrals of differential equa

tions and boundary conditions the reader must consult the treatises

which deal particularly with these subjects.

In Chapters VII and VIII the theory previously developed is

applied to several groups of surfaces, such as the quadrics, ruled

surfaces, minimal surfaces, surfaces of constant total curvature, and

surfaces with plane and spherical lines of curvature.

iii
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The idea of applicability of surfaces is introduced in Chapter III

as a particular case of conformal representation, and throughout the

book attention is called to examples of applicable surfaces. However,
the general problems concerned with the applicability of surfaces are

discussed in Chapters IX and X, the latter of which deals entirely

with the recent method of Weingarten and its developments. The

remaining four chapters are devoted to a discussion of infinitesimal

deformation of surfaces, congruences of straight lines and of circles,

and triply orthogonal systems of surfaces.

It will be noticed that the book contains many examples, and the

student will find that wrhereas certain of them are merely direct

applications of the formulas, others constitute extensions of the

theory which might properly be included as portions of a more ex

tensive treatise. At first I felt constrained to give such references as

would enable the reader to consult the journals and treatises from

which some of these problems were taken, but finally it seemed best

to furnish no such key, only to remark that the Encyklopadie der

mathematisclicn Wissenschaften may be of assistance. And the same

may be said about references to the sources of the subject-matter of

the book. Many important citations have been made, but there has

not been an attempt to give every reference. However, I desire to

acknowledge my indebtedness to the treatises of Darboux, Bianchi,

and Scheffers. But the difficulty is that for many years I have con

sulted these authors so freely that now it is impossible for me to say,

except in certain cases, what specific debts I owe to each.

In its present form, the material of the first eight chapters has

been given to beginning classes in each of the last two years; and

the remainder of the book, with certain enlargements, has constituted

an advanced course which has been followed several times. It is im

possible for me to give suitable credit for the suggestions made and

the assistance rendered by my students during these years, but I am

conscious of helpful suggestions made by my colleagues, Professors

Veblen, Maclnnes, and Swift, and by my former colleague, Professor

Bliss of Chicago. I wish also to thank Mr. A. K. Krause for making

the drawings for the figures.

It remains for me to express my appreciation of the courtesy

shown by Ginn and Company, and of the assistance given by them

during the printing of this book.

LUTHER PFAHLER E1SENHART
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DIFFERENTIAL GEOMETRY

CHAPTER I

CURVES IN SPACE

1. Parametric equations of a curve. Consider space referred to

fixed rectangular axes, and let (x, y, z) denote as usual the coordi

nates of a point with respect to these axes. In the plane 2 =

draw a circle of radius r and center (a, b). The coordinates of a

point P on the circle can be expressed in the form

(1)
x a -{- r cos u, y = b H- r sin u, 2 = 0,

where u denotes the angle which the radius to P makes with the

positive o&amp;gt;axis. As u varies from to 360, the point P describes

the circle. The quantities a, 5, r determine the position and size

of the circle, whereas u determines the position of a point upon it.

In this sense it is a variable or parameter for the

circle. And equations (1) are called parametric

equations of the circle.

A straight line in space is determined by a

point on it, PQ (a, 6, c),
and its direction-cosines

a, /3, 7. The latter fix also the sense of the line.

Let P be another point on the line, and let the

distance P
Q
P be denoted by u, which is positive

or negative. The rectangular coordinates of P
are then expressible in the form

(2) x = a + ua, y = b + u(B, z c + wy.

To each value of u there corresponds a point

on the line, and the coordinates of any point on the line are

expressible as in (2). These equations are consequently parametric

equations of the straight line.

When, as in fig. 1, a line segment PD, of constant length , per

pendicular to a line OZ at D, revolves uniformly about OZ as axis,

FIG. 1
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and at the same time D moves along it with uniform velocity, the

locus of P is called a circular helix. If the line OZ be taken for the

2-axis, the initial position of PD for the positive a&amp;gt;axis, and the angle

between the latter and a subsequent position of PD be denoted by

u, the equations of the helix can be written in the parametric form

(3)
x = a cos u, y a sin u, z = bu,

where the constant b is determined by the velocity of rotation of

PD and of translation of D. Thus, as the line PD describes a

radian, D moves the distance b along OZ.

In all of the above equations u is the variable or parameter.

Hence, with reference to the locus under consideration, the coordi

nates are functions of u alone. We indicate this by writing these

equations

The functions /x , /2 , / have definite forms when the locus is a

circle, straight line or circular helix. But we proceed to the gen

eral case and consider equations (4), when /r /2 , / are any func

tions whatever, analytic for all values of u, or at least for a certain

domain.* The locus of the point whose coordinates are given by (4),

as u takes all values in the domain considered, is a curve. Equa
tions (4) are said to be the equations of the curve in the parametric

form. When all the points of the curve do not lie in the same plane

it is called a space curve or a twisted curve ; otherwise, a plane curve.

It is evident that a necessary and sufficient condition that a

curve, defined by equations (4), be plane, is that there exist a

linear relation between the functions, such as

(5) ofi+ 5f2+ c/3+ d = 0,

where a, b, c, d denote constants not all equal to zero. This con

dition is satisfied by equations (1) and (2), but not by (3).

If u in (4) be replaced by any function of v, say

(6) *fc*^(*0,

equations (4) assume a new form,

*
E.g. in case u is supposed to be real, it lies on a segment between two fixed values;

when it is complex, it lies within a closed region in the plane of the complex variable.
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It is evident that the values of x, y, z, given by (7) for a value

of i
,
are equal to those given by (4) for the corresponding value

of u obtained from (6). Consequently equations (4) and (7) define

the same curve, u and v being the respective parameters. Since

there is no restriction upon the function
&amp;lt;/&amp;gt;, except that it be ana

lytic, it follows that a curve can be given parametric representation

in an infinity of ways.

2. Other forms of the equations of a curve. If the first of equa
tions (4) be solved for w, giving u $(#), then, in terms of x as

parameter, equations (7) are

(8)
x = x, y = F2 (x), z = F

8 (x).

In this form the curve is really defined by the last two equations,

or, if it be a plane curve in the o?y-plane, its equation is in the

customary form

(9) y =/(*)

The points in space whose coordinates satisfy the equation

y = Fz (x) lie on the cylinder whose elements are parallel to the

2-axis and whose cross section by the xy-pl&ne is the curve y = F2 (x).

In like manner, the equation z = F
3(x) defines a cylinder whose

elements are parallel to the #-axis. Hence the curve with the

equations (8) is the locus of points common to two cylinders

with perpendicular axes. Conversely, if lines are drawn through

the points of a space curve normal to two planes perpendicular

to one another, we obtain two such cylinders whose intersection

is the given curve. Hence equations (8) furnish a perfectly gen
eral definition of a space curve.

In general, the parameter u can be eliminated from equations (4)

in such a way that there result two equations, each of which in

volves all three rectangular coordinates. Thus,

(10) Qfa y, z)
= 0, &amp;lt;S&amp;gt;

a (a;, y, z)
= 0.

Moreover, if two equations of this kind be solved for y and z as

functions of x, we get equations of the form (8), and, in turn, of

the form (4), by replacing x by an arbitrary function of u. Hence

equations (10) also are the general equations of a curve. It will

be seen later that each of these equations defines a surface.
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It should be remarked, however, that when a curve is defined

as the intersection of two cylinders (8), or of two surfaces (10), it

may happen that these curves of intersection consist of several

parts, so that the new equations define more than the original ones.

For example, the curve defined by the parametric equations

(i)
x = w, y = w2

,
z = w3

,

is a twisted cubic, for every plane meets the curve in three points. Thus, the plane

ax + by -f cz + d =

meets the curve in the three points whose parametric values are the roots of the

e(luation CM* + &n&quot; + an + d = 0.

This cubic lies upon the three cylinders

y = x2
,

z = x3
, y3 = z2 .

The intersection of the first and second cylinders is a curve of the sixth degree,

of the first and third it is of the sixth degree, whereas the last two intersect in a

curve of the ninth degree. Hence in every case the given cubic is only a part of

the curve of intersection that part which lies on all three cylinders.

Again, we may eliminate u from equations (i), thus

(ii) xy = z, y* = xz,

of which the first defines a hyperbolic paraboloid and the second a hyperbolic-

parabolic cone. The straight line y = 0, z = lies on both of these surfaces,

but not on the cylinder y = x2
. Hence the intersection of the surfaces (ii) consists

of this line and the cubic. The generators of the paraboloid are defined by

x = a, z = ay ; y 6, z = bx
;

for all values of the constants a and 6. From
(i)

we see that the cubic meets each

generator of the first family in one point and of the second family in two points.

3. Linear element. By definition the length of an arc of a curve

is the limit, when it exists, toward which the perimeter of an

inscribed polygon tends as the number of sides increases and their

lengths uniformly approach zero. Curves for which such a limit

does not exist will be excluded from the subsequent discussion.

Consider the arc of a curve whose end points m ,
ma ,

are deter

mined by the parametric values U
Q
and #

,
and let mv m2 , , be

intermediate points with parametric values u^ w
2 ,

. The length

lk of the chord mkmk+l is

=V2,r/;.^, L1)-/v(oi
2

.
= i, 2, 3
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By the mean value theorem of the differential calculus this is

equal to

where ft
. = wt+ 0&amp;lt;(

w*+i
~ %) &amp;lt; ^ &amp;lt; *

and the primes indicate differentiation.

, As denned, the length of the arc m ma is the limit of 2Z4 , as the

lengths inkmk+l tend to zero. From the definition of a definite

integral this limit is equal to

r a n

Hence, if s denotes the length of the arc from a fixed point (u )

to a variable point (u), we have

This equation gives s as a function of w. We write it

(12) =(w),

and from (11) it follows that

which we may write in the form

(14) ds2 =dx i

As thus expressed ds is called the element of length, or linear

element, of the curve.

In the preceding discussion we have tacitly assumed that u is

real. When it is complex we take equation (11) as the definition

of the length of the arc.

If equation (12) be solved for u in terms of s, and the result

be substituted in (4), the resulting equations also define the curve,

and s is the parameter. From (11) follows the theorem :

A necessary and sufficient condition that the parameter u be the

arc measured from the point U = U
Q
is

(15) /,
2

+/r+/s
2 = l-

An exceptional case should be noted here, namely,

/r+/2&quot;+/a
2 =o.
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Unless//, /2 , /3
be zero and the curve reduce to a point, at least one

of the coordinates must be imaginary. For this case s is zero. Hence

these imaginary curves are called curves of length zero, or minimal

curves. For the present they will be excluded from the discussion.

Let the arc be the parameter of a given curve and s and s + e

its values for two points M(x, y, z) and M^(x^ y^ z^. By Taylor s

theorem we have

(17)

^ = z -f z e

where an accent indicates differentiation with respect to s.

Unless x1

, y ,
z

!

are all zero, that is, unless the locus is a point

and not a curve, one at least of the lengths x
l x, y^y, z

l
z is

of the order of magnitude of e. If these lengths be denoted by

&u, %, Sz, and e by 8, then we have

where 1
2
denotes the aggregate of terms of the second and higher

orders in 8s. Hence, as M
l approaches M the ratio of the lengths

of the chord and the arc MM
l approaches unity ;

and in the limit

we have ds
2 = dx2+ dy

2 + dz2
.

4. Tangent to a curve. The tangent to a curve at a point M is

the limiting position of the secant through M and a point Ml
of

the curve as the latter approaches M as a limit.

In order to find the equation of the tangent we take s for par

ameter and write the expressions for the coordinates of M
1
in the

form (17). The equations of the secant through M and M
l
are

If each member of these equations be multiplied by e and the

denominators be replaced by their values from (17), we have in

the limit as M
1 approaches M

y
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If #, /3, 7 denote the direction-cosines of the tangent in conse

quence of (15), we may take

When the parameter u is any whatever, these equations are *

ft f! ft

(20) a= /

Jl =, 0= .

/2 = &amp;gt; y = -= 3

*
9 / nt *i ^ * o . /wo / /*o . /*-&amp;gt;. /!*) * //

They may also be written thus :

/oi\ dx dy dz
21) a = :T

= / V =
T&quot;ds ds ds

From these equations it follows that, if the convention be made

that the positive direction on the curve is that in which the par

ameter increases, the positive direction upon the tangent is the

same as upon the curve.

A fundamental property of the tangent is discovered by con

sidering the expression for the distance from the point M^ with

the coordinates (17), to any line through M. We write the equa
tion of such a line in the form

(22)
*= = !=* = =,

a b c

where a, 5, c are the direction-cosines.

The distance from M
l
to this line is equal to

(23) {[(bx&amp;gt;- ay )e + \(bx&quot;- ay&quot;)e*+ ]

2

bz )e + -]

2 + [(az
1- cx )e + .

-]

2

}*.

Hence, if MM
l
be considered an infinitesimal of the first order,

this distance also is of the first order unless

in which case it is of the second order at least. But when these

equations are satisfied, equations (22) define the tangent at M.

Therefore, of all the lines through a point of a curve the tangent
is nearest to the curve.

* Whenever the functions x
, y ,

z appear in a formula it is understood that the arc s is

the parameter ;
otherwise we use /{, /2 , /3 , indicating by accents derivatives with respect

to the argument u.
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5. Order of contact. Normal plane. When the curve is such

that there are points for which

(24) ^=4x y z

the distance from M
l
to the tangent is of the third order at least.

In this case the tangent is said to have contact of the second order,

whereas, ordinarily, the contact is of the first order. And, in gen

eral, the tangent to a curve has contact of the wth order at a point,

if the following conditions are satisfied for n = 2, ,
n 1, and n :

xw i(0jyV V 5&amp;gt;V&quot;y

&amp;lt;

25
) ^=^=^rr
When the parameter of the curve is any whatever, equations

(24), (25) are reducible to the respective equations

fl ~jTf // -f(.n-\) f (rt-1) f(n-l)
Jl J% J% J\ J 2, Ja

The plane normal to the tangent to a curve at the point of

contact is called the normal plane at the point. Its equation is

(26) (X x) a + (Y y} ft + (Z z) 7 = 0,

where a, /3, 7 have the values (20).

EXAMPLES

1. Put the equations of the circular helix (3) in the form (8).

2. Express the equations of the circular helix in terms of the arc measured from

a point of the curve, and show that the tangents to the curve meet the elements of

the circular cylinder under constant angle.

3. Show that if at every point of a curve the tangency is of the second order,

the curve is a straight line.

4. Prove that a necessary and sufficient condition that at the point (x , 2/o) of

the plane curve y f(x) the tangent has contact of the nth order
is/&quot;(x )

= / &quot;(BO)

= . . . r=/()(z )
=

; also, that according as n is even or odd the tangent crosses the

curve at the point or does not.

5. Prove the following properties of the twisted cubic :

(a) Of all the planes through a point of the cubic one and only one meets the

cubic in three coincident points ;
its equation is 3 u*x - 3 uy + z - w3 = 0.

(6) There are no double points, but the orthogonal projection on a plane has a

double point.

(c) Four planes determined by a variable chord of the cubic and by each of

four fixed points of the curve are in constant cross-ratio.
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6. Curvature. Radius of first curvature. Let Jf, Ml
be two

points of a curve, As the length of the arc between these points,

and A0 the angle between the tangents. The limiting value of

A0/As as M
l approaches Jf, namely dd/ds, measures the rate of

change of the direction of the tangent at M as the point of con

tact moves along the curve. This limiting value is called the

first curvature of the curve at M, and its reciprocal the radius of

first curvature ; the latter will be denoted by p.

In order to find an expression for p in terms of the quantities

defining the curve, we introduce the idea of spherical representa

tion as follows. We take the sphere
* of unit radius with center

at the origin and draw radii parallel to the positive directions of-

the tangents to the curve, or such a portion of it that no two

tangents are parallel. The locus of the extremities is a curve

upon the sphere, which is in one-to-one correspondence with the

given curve. In this sense we have a spherical representation, or

spherical indicatrix, of the curve.

The angle A# between the tangents to the curve at the points

M, M^ is measured by the arc of the great circle between their

representative points m, m
l
on the sphere. If ACT denotes the

length of the arc of the spherical indicatrix between m and m^
then by the result at the close of 3,

dO v A&amp;lt;9= lim = 1.
da Ao-

Hence we have

(27)
! = ,

p ds

where da- is the linear element of the spherical indicatrix.

The coordinates of m are the direction-cosines a, /3, 7 of the

tangent at M\ consequently

When the arc s is the parameter, this formula becomes

(28)
^.jji+yw+gw

* Hereafter we refer to this as the unit sphere.
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However, when the parameter is any whatever, u, we have

from (12), (13), (20),

and W-fifl+JSJf*flfr

Hence we find by substitution

(30)

which sometimes is written thus :

\ _(d*x}*

f-

The sign of p is not determined by these formulas. We make

the convention that it is always positive and thus fix the sense of

a displacement on the spherical indicatrix.

7. Osculating plane. Consider the plane through the tangent to

a curve at a point M and through a point M^ of the curve. The

limiting position of this plane as M
l approaches M is called the

osculating plane at M. In deriving its equation and thus establish

ing its existence we assume that the arc s is the parameter, and

take the coordinates of M
l
in the form (17).

The equation of a plane through M (x, y, z)
is of the form

(32) (X- x)a + (Y- y)l + (Z-z)c = Q,

X, Y&quot;,
Z being the current coordinates. When the plane passes

through the tangent at Jf, the coefficients a, &amp;gt;,

c are such that

(33) x a + y b + z c = 0.

If the values (17) for a; , y^ z^ be substituted in (32) for X, F, Z,

e*

and the resulting equation be divided by , we get

where 77 represents the aggregate of the terms of first and higher

orders in e. As M
1 approaches Jf, 77 approaches zero, and in the

limit we have

(34) x&quot;a +
y&quot;b

+ z&quot;c
= 0.
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Eliminating a, &amp;gt;,

c from equations (32), (33), (34) we obtain, as

the equation of the osculating plane,

(35)

X-x
x1

x&quot;

Y-y
y
y&quot;

Z-z
= 0.

From this we find that when the curve is defined by equations (4)

in terms of a general parameter w, the equation of the osculating

plane is x_ x Y
(36)

y z_ z

// /,&quot; fi

The plane defined by either of these equations is unique except

when the tangent at the point has contact of an order higher than

the first. In the latter case equations (33), (34) are not independent,

as follows from (24); and if the contact of the tangent is of the wth

order, the equations ^ +^ + ^G = 0?

for all values of r up to and including n are not independent of

one another. But for r = n + ~\.,
this equation and (33) are inde

pendent, and we have as the equation of the osculating plane at this

singular point, X-x
x

Y-
y

Z-z
= 0.

When a curve is plane, and its plane is taken for the rry-plane,

the equation (35) reduces to Z = 0. Hence the osculating plane

of a plane curve is the plane of the latter, and consequently is the

same for all points of the curve. Conversely, when the osculating

plane of a curve is the same for all its points, the curve is plane,

for all the points of the curve lie in the fixed osculating plane.

The equation of the osculating plane of the twisted cubic (2) is readily

reducible to

where JT, F, Z are current coordinates. From the definition of the osculating plane

and the fact that the curve is a cubic, it follows that the osculating plane meets

the curve only at the point of osculation. As equation (i)
is a cubic in w, it follows

that through a point (o, 2/o, ZQ) not on tne cnrve there pass three planes which

osculate the cubic. Let MI, w2 ,
u3 denote the parameter values of these points.

Then from (i) we have

= 3 XG, 3 ?/o,

2t i \ n
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By means of these relations the equation of the plane through the corresponding
three points on the cubic is reducible to

(X - XQ) 3 7/0
-

(
Y - y )

3 x + (Z
- z

)
= 0.

This plane passes through the point (x , 2/0, ZQ) 5
hence we have the theorems :

The points of contact of the three osculating planes of a twisted cubic through a

point not on the curve lie in a plane through the point.

The osculating planes at three points of a twisted cubic meet in a point which lies

in the plane of the three points.

By means of these theorems we can establish a dual relation in space by mak

ing a point correspond to the plane through the points of osculation of the three

osculating planes through the point, and a plane to the point of intersection of the

three planes which osculate the cubic at the points where it is met by the plane.

In particular, to a point on the cubic corresponds the osculating plane at the point,

and vice versa.

8. Principal normal and binormal. Evidently there are an in

finity of normals to a curve at a point. Two of these are of par

ticular interest : the normal, which lies in the osculating plane at

the point, called the principal normal; and the normal, which is

perpendicular to this plane, called the binormal.

If the direction-cosines of the binormal be denoted by X, /&amp;gt;t, z&amp;gt;,

we have from (35)

X : / : v = (y z&quot;- z
y&quot;)

: (z x&quot;~ z
z&quot;)

: (*/ - y x&quot;).

In consequence of the identity

the value of the common ratio is reducible by means of (19) and

(28) to p.* We take the positive direction of the binormal to

be such that this ratio shall&quot; be -f- p ;
then

(37) \ = p(y
f

z&quot;-z
y&quot;), ^ = P (z

x&quot;~ x
z&quot;),

v = p(x y

When the parameter u is general, these formulas are

(38) x= 282
or in other form :

/oof dycPz dzcfy dzd*xdxd?z dxd y dyd^x~ P ~~df~
^~ P

~

ds3
~ P

ds*

*For SV/ =
0, as is seen by differentiating 2x&quot;*= 1 with respect to s.
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By definition the principal normal is perpendicular to both the

tangent and binormal. We make the convention that its positive

direction is such that the positive directions of the tangent, prin

cipal normal and binormal at a point have the same mutual ori

entation as the positive directions

of the x-, y-, z-axes respectively.

These directions are represented in

fig. 2 by the lines MT, MC, MB.

Hence, if Z, m, n, denote the direc

tion-cosines of the principal normal,

we have*

(39) m
/JL

=4-1,

FIG. 2
from which it follows that

I

a = mv nu, ft n\ Iv, 7 = Z/i m\,

I = fjij vft^ m = va \7, n = Xp yuo:,

\ = ftn 777*, /Ji
= yl #n, i^ = am ftl.

,

Substituting the values of #, /3, 7; X, /u-,
i^ from (19) and (37) in the

expressions for
, m, w, the resulting equations are reducible to

Hence, when the parameter u is general, we have

(42) l=-(W-
or in other form,

_
2
2 dzd2

s

In consequence of (29) equations (42) may be written:

da dft dj
ds ds ds

or by means of (27),
da dft dy

(43)

m
do- da-

Hence the tangent to the spherical indicatrix of a curve is parallel

to the principal normal to the curve and has the same sense.

*C. Smith, Solid Geometry, llth ed., p. 31.
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9. Osculating circle. Center of first curvature. We have defined

the osculating plane to a curve at a point M to be the limiting

position of the plane determined by the tangent at M and by a

point Ml
of the curve, as the latter approaches M along the curve.

We consider now the circle in this plane which has the same tan

gent at M as the curve, and passes through M{
. The limiting posi

tion of this circle, as M
l approaches 7I/, is called the osculating circle

to the curve at M. It is evident that its center C is on the prin

cipal normal at M. Hence, with reference to any fixed axes in space,

the coordinates of (7 , denoted by XQ,
F , ZQ , are of the form

X =x + rl, Y y -f rm, Z^=z + rn,

where the absolute value of r is the radius of the osculating circle.

In order to find the value of r, we return to the consideration

of the circle, when M
l
does not have its limiting position, and we

let X, F, Z\ Zj, m^ n^ r^ denote respectively coordinates of the cen

ter of the circle, the direction-cosines of the diameter through M
and the radius. If xv yv z

l
be the coordinates of M^ they have the

values (17), and since M
l
is on the circle, we have

rl = 2(A - xtf = 2(7-^- ex - i
e*x&quot;.

-)

2
.

If we notice that ^x ^ = 0, and after reducing the above equation

divide through by e
2

,
we have

1-r^Z/ +*? = (),

where 77 involves terms of the first and higher orders in e. In the

limi-t r
l
becomes r, ^x\ becomes 2z 7, that is - ,

and this equation

reduces to

so that r is equal to the radius of curvature. On this account the

osculating circle is called the circle of curvature and its center the

center of first curvature for the point. Since r is positive the center

of curvature is on the positive half of the principal normal, and

consequently its coordinates are

(44) X =x + pl, Y =y + pm, Z
Q
= z + pn.
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The line normal to the osculating plane at the center of curva

ture is called the polar line or polar of the curve for the corre

sponding point. Its equations are

/45\
X-x-pl = Y-y-pm = Zz pn

^

\
JJL

v

In fig.
2 C represents the center of curvature and CP the polar

line for M.

A curve may be looked upon as the path of a point moving under the action of

a system of forces. From this point of view it is convenient to take for parameter

the time which has elapsed since the point passed a given position. Let t denote this

parameter. As t is a function of 8, we have

dx _dx ds _ ds dy _ ds dz _ ds
~

ds~dt~
C

*dt dt~ ~dt ~dt~
y

~dt

Hence the rate of change of the position of the point with the time, or its velocity,

may be represented by the length laid off on the tangent to the curve. In like
dt

manner, by means of (41), we have

d^ _ d?s n /ds\ 2

~ 7

From this it is seen that the rate of change of the velocity at a point, or the

acceleration, may be represented by a vector in the osculating plane at the point,

through the latter and whose components on the tangent and principal normal

d*s , 1 /dY- and -
I )

df* P \dtj
EXAMPLES

1. Prove that the curvature of a plane curve defined by the equation M (x, y)dx

cy ex

p
(J/

2 + N
2. Show that the normal planes to the curve,

x a sin2 it, y = a sin u cos w, z = a cos M,

pass through the origin, and find the spherical indicatrix of the curve.

3. The straight line is the only real curve of zero curvature at every point.

4. Derive the following properties of the twisted cubic :

(a) In any plane there is one line, and only one, through which two osculating

planes can be drawn.

(6) Four fixed osculating planes are cut by the line of intersection of any two

osculating planes in four points whose cross-ratio is constant.

(c) Four planes through a variable tangent and four fixed points of the curve

are in constant cross-ratio.

(d) What is the dual of (c) by the results of 7 ?
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5. Determine the form of the function so that the principal normals to the

curve x = w, y = sin w, z -
&amp;lt;f&amp;gt; (u) are parallel to the yz-plane.

6. Find the osculating plane and radius of first curvature of

x a cos u -f 6 sin w, y = a sin u + 6 cos w, z = c sin 2 u.

10. Torsion. Frenet-Serret formulas. It has been seen that, un

less a curve be plane, the osculating plane varies as the point

moves along the curve. The change in the direction depends

evidently upon the form of the curve. The ratio of the angle A^
between the binormals at two points of the curve and their curvi

linear distance As expresses our idea of the mean change in the

direction of the osculating plane. And so we take the limit of

this ratio, as one point approaches the other, as the measure of

the rate of this change at the latter point. This limit is called

the second curvature, or torsion, of the curve, and its inverse the

radius of second curvature, or the radius of torsion. The latter

will be denoted by r.

In order to establish the existence of this limit and to find an

expression for it in terms of the functions defining the curve,

we draw radii of the unit sphere parallel to the positive binormals

of the curve and take the locus of the end points of these radii as

a second spherical representation of the curve. The coordinates of

points of this representative curve on the sphere are X, /*, v. Pro

ceeding in a manner similar to that in 6, we obtain the equation

(46)
i_
r2

ds*

where dcr
l

is the linear element of the spherical indicatrix of the

binormals.

In order that a real curve have zero torsion at every point, the cosines X, /*, v

must be constant. By a change of the fixed axes, which evidently has no effect

upon the form of the curve, the cosines can be given the values X = 1, /*
= v = 0.

It follows from (40) that a = 0, and consequently x const. Hence a necessary

and sufficient condition that the torsion of a real curve be zero at every point is

that the curve be plane.

In the subsequent discussion we shall need the derivatives with

respect to s of the direction-cosines a, & 7; I, m, w; X, p, v. We
deduce them now. From (41) we have

(4T) a =i, /3 =, y-.
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In order to find the values of X
, /* , i/, we differentiate with

respect to s the identities,

X2

+At2+z,
2 = 1? a\ + /A + 7* = 0,

and, in consequence of (47), obtain

XX + fjLfj,

1+ vv 1= 0, \ + /V+ yv
r= 0.

From these, by (40), follows the proportion

X :
fjL

f :v r =l:m:n,

and the factor of proportionality is 1/r, as is seen from (46).

The algebraic sign of r is not determined by the latter equation.

We fix its sign by writing the above proportion thus :

(48)
V ,: - -A = &amp;gt;

l*&amp;gt;

= t V =
T T T

If the identity I = ^7 vfi be differentiated with respect to s

the result is reducible by (40), (47), and (48) to

(49) I

Similar expressions can be found for m and n . Gathering to

gether these results, we have the following formulas fundamental in

the theory of twisted curves, and called the Frenet-Serret formulas :

(50)
Y

^-/l+2),v \^ v

As an example, we derive another expression for the torsion.

If the equation \ = p(y z
&quot;

z
y&quot;)

be differentiated with respect to s, the result may be written

If this equation and similar ones for WI/T, rz/r be multiplied by ?, wz,

n respectively and added, we have, in consequence of (50) and (41),

x

(51)

y
y&quot;

z

z&quot;

x &quot;

y
&quot;

z
&quot;



18 CUKVES IN SPACE

The last three of equations (50) give the rate of change of the

direction-cosines of the osculating plane of a curve as the point of

osculation moves along the curve. From these equations it follows

that a necessary and sufficient condition that this rate of change
at a point be zero is that the values of s for the point make the

determinant in equation (51) vanish. At such a point the osculat

ing plane is said to be stationary.

11. Form of curve in the neighborhood of a point. The sign of

torsion. We have made the convention that the positive directions

of the tangent, principal normal, and binormal shall have the same

relative orientation as the fixed x-, y-, 2-axes respectively. When we

take these lines at a point MQ
for axes, the equations of the curve

can be put in a very convenient form. If the coordinates be ex

pressed in terms of the arc measured from M^ we have from (19)

and (41) that for s =

P

When the values of I and X from (41) and (37) are substituted in

the fourth of equations (50), we obtain

(5 2) x &quot; =----
(y z&quot;

- z
y&quot;)

- -
x&quot;.

p r p

From this and similar expressions for y
&quot; and z&quot;

1 we find that

for s = -i f -i

P* p
2

PT

Hence, by Maclauriri s theorem, the coordinates #, y, z can be ex

pressed in the form / -i

(^%\ &amp;lt; v = s
3
-f---,

\&amp;lt;JO
I v Ct J 2

2 p b p

z s -f- ,

6 pr

where p and r are the radii of first and second curvature at the

point s = 0, and the unwritten terms are of the fourth and higher

powers in s.

From the last of these equations it is seen that for sufficiently

small values of 8 the sign of z changes with the sign of s unless
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I/T = at M . Hence, unless the osculating plane is stationary at

a point, the curve crosses the plane at the point.* Furthermore,

when a point moves along a curve in the positive direction, it

passes from the positive to the negative side of the osculating

plane at a point, or vice versa, according as the torsion at the

latter is positive or negative. In the former case the curve is

said to be sinistrorsum, in the latter dextrorsum.

As another consequence of this equation, we remark that as a

variable point M on the curve approaches Jf , the distance from M
to the osculating plane at M

Q
is of the third order of magnitude in

comparison with MM
Q

. By means of the other equations (53) we

find that the distance to any other plane through M is of the

second order at most. Hence we have the theorem :

The osculating plane to a twisted curve at an ordinary point is

crossed by the curve, and of all the planes through the point it lies

nearest to the curve.

From the second of (53) it is seen that y is positive for suffi

ciently small values of
, positive or negative. Hence, in the

neighborhood of an ordinary point, the curve lies entirely on one

side of the plane determined by the tangent and binomial on

the side of the positive direction of the principal normal.

These properties of a twisted curve are discovered, likewise,

from a consideration of the projections upon the coordinate planes

of the approximate curve, whose equations consist of the first

terms in (53). The projection on the osculating plane is the

parabola x = *, y = s
2

/2 p, whose axis is the principal normal

to the curve. On the plane of the tangent and binomial it is

the cubic x = s, z = s
8

/6 pr, which has the tangent to the

curve for an inflectional tangent. And the curve projects upon

the plane of the binormal and principal normal into the semi-

cubical parabola y = s
2

/2 /o,
z= s

3

/Q pr, with the latter for

cuspidal tangent.

These results are represented by the following figures, which picture the pro

jection of the curve upon the osculating plane, normal plane, and the plane of the

tangent and binormal. In the third figure the heavy line corresponds to the case

where r is positive and the dotted line to the case where r is negative.

*This result can be derived readily by geometrical considerations.
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The preceding results serve also to give a means of determining; ue variation in

the osculating plane as the point moves along the curve. By r ns of (50) the

direction-cosines X, /u,,
v can be given the form

where the subscript null indicates the value of a function for s = and the un

written terms are of the second and higher terms in s. If the coordinate axes are

those which lead to (53), the values of X, p, v for the point of parameter 5s are

X = =-, v = \

TO

to within terms of higher order, and consequently the equation of this osculating

plane at this point MI is .

Y- + Z = 0.

TO

If we put Y = po, we get the z-coordinate of the point in which this plane is cut by
the polar line for the point s =

;
it is po5s/T . Hence, according as TO is positive

or negative at Jf, the osculating plane at the near-by point MI cuts the polar line for

M on the negative or positive side of the osculating plane at M.

12. Cylindrical helices.

As another example of the use of formulas (50) we derive several properties of

cylindrical helices. By definition, a cylindrical helix is a curve which lies upon a

cylinder and cuts the elements of the cylinder under constant angle. If the axis of

z be taken parallel to the elements of the cylinder, we have 7 = const. Hence,

from (50),

from which it follows that the cylindrical helices have the following properties :

The principal normal is perpendicular to the element of the cylinder at the point,

and consequently coincides with the normal to the cylinder at the point ( 22).

The radii offirst and second curvature are in constant ratio.

Bertrand has established the converse theorem : Every curve whose radii of first

and second curvature are in constant ratio is a cylindrical helix. In order to prove

it, we put T = icp, and remark from (50) that

dvda_d\
ds ds

dp _ dfj. dy _
ds~ ds ds ds

from which we get a K\ + a, /3
= */* + 6, 7 = KV + c,

where a, 6, c are constants. From these equations we find

a2 + 52 + C2 _ i + K^ aa + bp + cy =
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Hence the ta -ents to the curve make the constant angle cos- * =; with the

lines whose lin 3n-cosines are V
*

Consequently the curve is a cylindrical
Vl + K2

helix, and t .u e ts of the helix have the above direction.

EXAMPLES

1. Find the length of the curve x = a (u sin w), y = a cos w, between the points

for which u has the values TT and IT
;
show that the locus of the center of curva

ture is of the same form as the given curve.

2. Find the coordinates of the center of curvature of

x = a cos M, y = a sin w, z a cos 2 u.

3. Find the radii of curvature and torsion of

x = a (u sinw), y = a (1 cosw), z = bu.

4. If the principal normals of a curve are parallel to a fixed plane, the curve

is a cylindrical helix.

5. Show that the curve x eu
, y = er M

,
z V% u is a cylindrical helix and that

the right section of the cylinder is a catenary ;
also that the curve lies upon a cylin

der whose right section is an equilateral hyperbola. Express the coordinates in terms

of the arc and find the radii of first and second curvature.

6. Show that if 6 and denote the angles which the tangent and binormal to a
sin 6 dd r

curve make with a fixed line in space, then- = - -

sin
&amp;lt;/&amp;gt; d&amp;lt;p p

7. When two curves are symmetric with respect to the origin, their radii of

first curvature are equal and their radii of torsion differ only in sign.

8. The osculating circle at an ordinary point of a curve has contact of the sec

ond order with the latter
;
and all other circles which lie in the osculating plane

and are tangent to the curve at the point have contact of the first order.

9. A necessary and sufficient condition that the osculating circle at a point have

contact of the third order is that p = and I/T = at the point ;
at such a point

the circle is said to superosculate the curve.

10. Show that any twisted curve may be defined by equations of the form

where p and r are the radii of first and second curvature at the point s 0.

11. When the equations of a curve are in the form (4), the torsion is given by

/I /2 /3
f fff f/f

f
where has the significance of equation (12).
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12. The locus of the centers of curvature of a twisted curve of constant first

curvature is a curve of the same kind.

13. When all the osculating planes of a curve pass through a fixed point, the

curve is plane.

14. Determine f(u) so that the curve x = a cosw, y = a sin w, z =f(u) shall be

plane. What is the form of the curve ?

13. Intrinsic equations. Fundamental theorem. Let C^ and C
z
be

two curves defined in terms of their respective arcs s, and let points

upon each with the same values of s correspond. We assume,

furthermore, that at corresponding points the radii of first curva

ture have the same value, and also the radii of second curvature.

We shall show that C
l
and C

z
are congruent.

By a motion in space the points of the two curves for which

s = can be made to coincide in such a way that the tangents,

principal normals, and binomials to them at the point coincide

also. Hence if we use the notation of the preceding sections and

indicate by subscripts 1 and 2 the functions of C
l
and C

2, we have,

when s = 0,

(54) x
l
= x

z ,
a

l
= a

z , ^ = Z
2 , \ = \

z ,

and other similar equations.

The Frenet-Serret formulas for the two curves are

ds ds r ds

= =
&amp;gt;

=
( -|

--
I -=- = -&amp;gt;

ds p ds \p T/ ds r

the functions without subscripts being the same for both curves.

If the equations of the first row be multiplied by 2 , Z
2 , X2 respec

tively, and of the second row by a^ l^ X
: , and all added, we have

(55) ^(,.H*,+
xi\)=0.

and consequently a^+ IJ2+ \\ = const.

This constant is equal to unity for s = 0, as is seen from (54), and

hence for all values of s we have
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Combining this equation with the identities

we obtain (a t

- a
2)

2 + ft
-

&amp;gt;)

2+ (X,
- X

2)

2= 0.

Hence a
l
= a# ^ = Z

2 ,
X

t
= X

2
. Moreover, since in like manner

& = & 7i
= 72

we nave

1(^-^=0, ^-^=0, I &amp;lt;*,-,)
= o.

Consequently the differences 2^ #
2 , y^y^ z

l
z
2
are constant.

But for s = they are zero, and so we have the theorem :

Two curves whose radii of first and second curvature are the same

functions of the arc are congruent.

From this it follows that a curve is determined, to within its

position in space, by the expressions for the radii of first and second

curvature in terms of the arc. And so the equations of a curve

may be written in the form

(56) /&amp;gt;=/,&amp;lt;),
T =/,(.).

They are called its intrinsic equations.

We inquire, conversely, whether two equations (56), in which f^

and/2
are any functions whatever of a parameter s, are intrinsic

equations of a curve for which s is the length of arc.

In answering this question we show, in the first place, that the

equations

/trrv du v dv /u w\ dw v
(pi)

- = -, = /--| ,
__

ds p ds \p T/ ds r

admit of three sets of solutions, namely :

(58) u = a, v = 1, w = \; u = fi, v = m, w = /JL ; u y^ v = n, w = v;

which are such that for each value of s the quantities a, fi, 7;

/, 7?z, n ; X, /-i,
v are the direction-cosines of three mutually perpen

dicular lines. In fact, we know * that a system (57) admits of a

unique set of solutions whose values for s = are given arbitra

rily. Consequently these equations admit of three sets of solutions

*
Picard, Tralte d Analyse, Vol. II, p. 313; Goursat, Cours d Analyse Mathematique,

Vol. II, p. 356.
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whose values for s = are 1, 0, ; 0, 1, ; 0, 0, 1 respectively.

By an argument similar to that applied to equation (55) we prove
that for all values of s the solutions (58) satisfy the conditions

(59) aft + Im + \p = 0, 7 + mn + pv = 0, ya + nl + v\ = 0.

In like manner, since it follows from (57) that

du dv dw A
u-r+v + w =

(),

as as as

we prove that these solutions satisfy the conditions

(60) oa +Za+Xa = l, /3
2 + m2

+/x
2 = l, y+n +i/^l.

But the conditions (59), (60) are equivalent to (40), and conse

quently the three sets of functions a, & 7; Z, TH, w; X, /z, v are

the direction-cosines of three mutually perpendicular lines for all

values of s.

Suppose we have such a set of solutions. For the curve

(61) x I ads, y= I fids, z=* I yd*,

the functions a, /3, 7 are the direction-cosines of the tangent, and

since ds*= dx2 + dy*+ dz
2

,
s measures the arc of the curve. From

(61) and the first of (57) we get

d?x_l_ ofy^m d^z^n. /d*x\*
/^&amp;gt;\

2

/^\
2

= 1
ds*~p ds2

~
p* df~~p W/ W/ W/ p*

Hence if p be positive for all values of s, it is the radius of curva

ture of the curve (61), and Z, m, n are the direction-cosines of the

principal normal in the positive sense. In consequence of (40) the

functions X, yu.,
v are the direction-cosines of the binomial; hence

from (50) and the third of (57) it follows that r is the radius of

torsion of the curve. Therefore we have the following theorem

fundamental in the theory of curves :

Given any two analytic functions, f^s),f2 (s), of which the former

is positive for all values of s within a certain domain ; there exists a

curvefor which p =/j(s), r =/2 (), and s is the arc, for values of s in

the given domain. The determination of the curve reduces to the find

ing of three sets of solutions of equations (57), satisfying the conditions

(59), (60), and to quadratures.
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We proceed now to the integration of equations (57). Since each

set of integrals of the desired kind must satisfy the relation

(62)
u2

we introduce with Darboux * two functions cr and &), defined by

(63)

1 w u iv

u iv 1 + w
\ w u + iv ft)

It is evident that the functions cr and - are conjugate imaginaries.

Solving for u, v, w, we get

1 o-ft) ,1 + o-ft) cr + co

(64) u = 1 v = i i w =

If these values be substituted in equations (57), it is found that

the functions cr and co are solutions of the equation

(65)
Miieip.
ds 2 r p 2 r

And conversely, any two different solutions of (65), when substi

tuted in (64), lead to a set of solutions of equations (57) satisfying

the relation (62). Our problem reduces then to the integration of

equation (65).

14. Riccati equations. Equation (65) may be written

(66) ^ = L + 2 MO + NP,

where L, M, N are functions of s. This equation is a generalized

form of an equation first studied by Riccati,f and consequently

is named for him. As Riccati equations occur frequently in the

theory of curves and surfaces, we shall establish several of their

properties.

Theorem. When a particular integral of a Riccati equation is

known, the general integral can be obtained by two quadratures.

* Lemons sur la Thdorie Generate des Surfaces, Vol. I, p. 22. We shall refer to this

treatise frequently, and for brevity give our references the form Darboux, I, 22.

t Cf . Forsyth, Differential Equations, chap, v
;
also Cohen, Differential Equations,

pp. 173-177.
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Let O
l
be a particular integral of (66). If we put = l/c -f 0^

the equation for the determination of
&amp;lt;/&amp;gt;

is

(67)
- + 2(M+2WJ&amp;lt;l&amp;gt;+N**Q.

As this equation is linear and of the first order, it can be solved by
two quadratures. Since the general integral of (67) is of the form

&amp;lt;=/1 (s)+ 0/2(3), where a denotes the constant of integration, the

general integral of equation (66) is of the form

-Sri-
where P, (), R, S are functions of s.

Theorem. When two particular integrals of a Riccati equation are

known, the general integral can be found by one quadrature.

Let
l
and

2
be two solutions of equation (66). If we effect the

substitution 6 --\-6 , the equation in ^ is

If this equation and (67) be multiplied by 1/^r and
!/&amp;lt; respec

tively, and subtracted, the resulting equation is reducible to

ty/&amp;lt;l&amp;gt;)=N(0 1 2 )^/&amp;lt;t&amp;gt;. Consequently the general integral of
cts

(66) is given by
00, -v|r fv(0t-0c/

&amp;lt;

69
&amp;gt;

where a is the constant of integration.

Since equation (68) may be looked upon as a linear fractional

substitution upon a, four particular solutions V 2 ,
#

3 , 4 , corre

sponding to four values av a
z , a3 ,

a of a, are in the same cross-ratio

as these constants. Hence we have the theorem :

The cross-ratio of any four particular integrals of a Riccati

equation is constant.

From this it follows that if three particular integrals are known,

the general integral can be obtained without quadrature.
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15. The determination of the coordinates of a curve defined by
its intrinsic equations. We return to the consideration of equation

(65) and indicate by
a.P+O bP+Q

(70) o\
= -^ -^i

(o
i
=

T&amp;gt; -v (i
= l,2,3)

six particular integrals of this equation. From these we obtain

three sets of solutions of equations (57), namely

(71)

*1 I

and similar expressions in cr
2 ,

&&amp;gt;

2 ;
&amp;lt;7

3 ,
&&amp;gt;

3 respectively for /8, m, ft;

7, n, ZA These expressions satisfy the conditions (60). In order

that (59) also may be satisfied we must have

CT ft),, ft), ft),

which is reducible to

(72)
= -1.

z. _ 1 9 q
* ^

A/ JL
^ ^ O

5
X ; 2 ,

J
2 ;

a
3 ,Hence each two of the three pairs of constants

form a harmonic range.

When the values (70) for
&amp;lt;T.,

&)
t

. are substituted in the expressions

for a, /3, 7, it is found that

(73)

7 =
,1+a,
a

where, for the sake of brevity, we have put

(74)

RS PQ
PS-QR
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The coefficients of U, F, and W in (73) are of the same form as

the expressions (71) for cr, Z, X ; , ra, /* ; 7, n, z&amp;gt;. Moreover, the

equations of condition (59) are equivalent to (72). Hence these

coefficients are the direction-cosines of three fixed directions in

space mutually perpendicular to one another. If lines through the

origin of coordinates parallel to these three lines be taken for a new
set of axes, the expressions for #, /3, 7 with reference to these axes

reduce to U, V, ^respectively.* These results may be stated thus :

If the general solution of equation (65) be

(68) &quot;
=STVaii -f- o

the curve whose radii of first and second curvature are p and T

respectively is given by

f\ T)v I/

w-K )

/~r&amp;gt;

ciRS--
PS- QR

It must be remarked that the new axes of coordinates are not

necessarily real, so that when it is important to know whether the

curves are real it will be advisable to consider the general formulas

(73). An example of this will be given later.

We shall apply the preceding results to several problems.

When the curve is plane the torsion is zero, and conversely. For this case equa

tion (65) reduces to = - of which the general integral is

ds p

-if= ae
1

J P = ae~ i&amp;lt;r

,

where a is an arbitrary constant, and by (27) &amp;lt;r is the measure of the arc of the

spherical indicatrix of the tangent. This solution is of the form (08), with

O -I

Therefore the coordinates are given by

(75) x=Ccos&amp;lt;rds, y=Csir\&amp;lt;rds, 2 =

Hence the coordinates of any plane curve can be put in this form.

* This is the same thing as taking

ai &i = l, c*2= b^ i, 3 oo, &3=0.

t Scheffers, Anwendung der Differential und Integral Rechnung auf Geometrie,

Vol. I, p. 219. Leipsic, 1902.
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We have seon that cylindrical helices are characterized by the property that the

radii of first und second curvature are in constant ratio. If we put T = pc, equation

(65) may bj written
^ = _l(l_2c0-02).
ds 2 T

V

Two particular integrals are the roots of the equation
2 + 2 cd - 1 = 0. These

roots are real and unequal if c is real
;
we consider only this case, and put

(76) el = -c -Vc2 + 1, 2 = - c + Vc2 + l, 01&2 = - 1.

From (69) it follows that the general solution of the above equation is

(77)

where we have put

(78)

Since &amp;lt;r and -- in (63) are conjugate imaginary, if we take

then a and 6 must be such that

aeit _ i &oe
-
my _

0j

where 6 denotes the conjugate imaginary of 6. This reduces, in consequence of

(76) to
n 4- M

(79,
;

, * =-|=-*
One solution of this is given by taking &amp;lt;x&amp;gt; and for a and 6; we put as = GO,

63 = 0. If these values be substituted in (72), we get a 4- k - 0, where i = 1, 2. So

that equation (79) becomes && = 0^, where i = 1, 2. The solutions of this equation

are 61 = 1? 62 = - i0i- From (77) P = e02 , Q = -
0i, R = e r

,
S = - 1, so that

W==-
Vc2 + l

When the foregoing values are substituted in (73), and the resulting values of

a, /3, 7 in (61), we get

(80) x- C - Ccoslds, y= -
fstafdt, g = =

Vc2 + 1
J Vc2 + 1

J Vc2 + 1

From the la ie expressions we find that the tangent to the curve makes

a constant ang c -v\ the z-axis the direction of the elements of the cylinder.

And the cross-section of the cylinder is defined by

Xi = fcos t dsi, y\ = J
sin t dsi,

where Si denotes the arc of this section measured from a point of it. If pi denotes

the radius of curvature of the right section, we find that pc
2 = pi(c

2 + !)



30 CURVES IN SPACE

EXAMPLES

1. Find the coordinates of the cylindrical helix whose intrinsic equations are

p = T = S.

2. Show that the helix whose intrinsic equations are p = T = (s
2 + 4)/V2 lies

upon a cylinder whose cross-section is a catenary.

3. Establish the following properties for the curve with the intrinsic equations

p = as, r = 6s, where a and b are constants :

(a) the Cartesian coordinates are reducible to x=Aeht
cos, y= Aeht sm

t, z Behi
,

where J_, B, h are functions of a and 6
;

(6) the curve lies upon a circular cone whose axis coincides with the z-axis and

cuts the elements of the cone under constant angle.

16. Moving trihedral. In 11 we took for fixed axes of refer

ence the tangent, principal normal, and binormal to a curve at a

point MQ
of it, and expressed the coordinates of any other point of

the curve with respect to these axes as power series in the arc s

of the curve between the two points. Since M is any point of the

curve, there is a set of such axes for each of its points. Hence,

instead of considering only the points whose locus is the curve,

we may look upon the moving point as the intersection of three

mutually perpendicular lines which move along with the point,

the whole figure rotating so that in each position the lines coin

cide with the tangent, principal normal, and binormal at the point.

We shall refer to such a configuration as the moving trihedral.

In the solution of certain problems it is of advantage to refer the

curve to this moving trihedral as axes. We proceed to the con

sideration of this idea.

With reference to the trihedral at a point Jf, the direction-

cosines of the tangent, principal normal, and binormal at M
have the values

a=l, /3
= 7 = 0; I = 0, m=l, n = 0; X = p = 0, i/ = l.

As the trihedral begins to move, the rates of change of these

functions with s are found from the Frenet formulas (50) to

have the values

da _ ft
d{$ _ 1 dy _ ft

dl _ 1 dm _ ~= o =
, o j

-
5 u,

ds ds p ds ds p ds

dn 1 d\ n dfJL 1 dv
ft= j r~ = &quot;i ~T~

= ~
7~
= U *

ds r ds ds r ds
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Let f, 77, f denote coordinates referring to the axes at Jf, and

f, 77 , f those with reference to the axes at Jf
, and let JfJf = As

(see fig. 4). Since the rate of change of a is zero and a =1 at Jf,

the cosine of the angle between the - and f -axes is 1 to within

terms of higher than the first order in As. Likewise the cosine of

the angle between the f- and Tj -axes is As/p. We calculate the

cosines of the angles between all

the axes, and the results may be

tabulated as follows:

f v S

(81)

As ., _ As

FIG. 4

Let P be a point whose coordinates with respect to the trihedral

at M are f, 77, f. Suppose that as Jf describes the given curve (7,

P describes a path T. It may happen that in this motion P is fixed

relatively to the moving trihedral, but in general the change in the

position of P will be due not only to the motion of the trihedral

but also to a motion relative to it. In the latter general case, if P
denotes the point on T corresponding to M on (7, the coordinates

of P relative to the axes at M and M may be written

?4Af Tj+A^, f+A^; f + A2f, 17 +A^, f+A 2 ?.

Thus A
2
# indicates the variation of a function relative to the

moving trihedral, and A^ the variation due to the latter and to

the motion of the trihedral.

To within terms of higher order the coordinates of M are

(As, 0, 0) with respect to the axes at Jf, and with the aid of (81)

the equations of the transformation of coordinates with respect

to the two axes are expressible thus :

.
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These reduce to

As As o As As

. . .

H
As As

/a
T

In the limit as Jtf approaches M these equations become

ds c?s p ds ds p T ds ds T

80 d0
thus -T- denotes the absolute rate of change of 0, and -=- that

relative to the trihedral.*

If t denotes the distance between P and a point P^ (f^ rj^ fj),

that is ^
2 =

(?1 -f)
2

+(7? 1 -7;)
2+ (? 1 -?)

2
, we find by means of the

formulas (82) that

If a, 5, &amp;lt;? denote the direction-cosines of PP^ with respect to

the axes at Jf, then

When we express the condition that f1? 77 L , ft
as well as f, ?/, f

satisfy equations (82), we are brought to the following fundamental

relations between the variations of a, 6, c:

&a da b &b db a c $c
__

dc b

(83) ~T~
~

~7
---

T&quot;

==
~T I

---
1 * ~r ==

&quot;T

*

c?s ds p ds ds p T ds ds r

If the point P remains fixed in space as M moves along the

curve, the left-hand members of equations (82) are zero and

the equations reduce to

(84) --l, =
ds p ds \p T/ c?s T

Moreover, the direction-cosines of a line fixed in space satisfy

the equations
or .

- da b db (a c\ dc b

(85)
- = - = (- + -

)i
_ = _.

c?s
/)

c?s \p T) ds r

* Cf. Cesaro, Lezioni di Geometria Intrinseca, pp. 122-128. Naples, 1896.
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These are the Frenet-Serret formulas, as might have been

expected.

We shall show that the solution of these equations carries with

it the solution of (84). Suppose we have three sets of solutions

of (85), a, I, X ; & m, /JL ; 7, n, v, whose values for s = are

(86) 1, 0, 0; 0, 1, 0; 0, 0, 1.

They are the direction-cosines, with respect to the moving trihedral

with vertex M, of three fixed directions in space mutually perpen

dicular to one another. Let be a fixed point, and through it

draw the lines with the directions just found. Take these lines

for coordinate axes and let #, y, z denote the coordinates of M
with respect to them. If f, ??, f denote the coordinates of

with respect to the moving trihedral, then f, ?;, f are the

coordinates of M with respect to the trihedral with vertex at

and edges parallel to the corresponding edges of the trihedral

at M. Consequently we have

f = - (ax -f &y + 7*)&amp;gt;

(87) rj=-(lx+my + m),

If these values be substituted in (84) and we take account of

(50) and (85), we find that the equations are identically satisfied.

If fo ^o ?o Denote the values of f, ?;, for s = 0, it follows from

(86) and (87) that they differ only in sign from the initial values

of x, y, z. Hence if we write, in conformity with (21),

(88) x

and substitute these values in (87), they become the general solu

tion of equations (84). We have seen that the solution of equa
tions (85) reduces to the integration of the Riccati equation (65).

17. Illustrative examples. As an example of the foregoing method we consider

the curve which is the locus of a point on the tangent to a twisted curve C at a

constant distance a from the point of contact.

The coordinates of the point MI of the curve with reference to the axes at M
are a, 0, 0. In this case equations (82) reduce to

(i) ^-l^- a ^-
ds~ ds~ P ds~
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Hence if Si denotes the length of arc of C\ from the point corresponding to s =
on C, we have

and the direction-cosines of the tangent to Ci with reference to the moving axes

are iven bare given by

7a2 + p
2 Va2

4- p
2

Hence the tangent to Ci is parallel to the osculating plane at the corresponding

point of C.point

By means of (83) we find

d / p \_ aSa:\ d /

ds ds yV(i2 + p
2

p Va2 + p
2

(
2 + P

2
) P Va2 + p

2

Proceeding in like manner with 0i and 71, and making use of (ii),
we have

d(*i &2
pp d 5/3i ftp

2
p p_

(a
2 + p

2
)
2 a2 + p

2
5Si

~
(a

2 + p
2
)
2 a2 + p

2

871 _ ap

From these expressions and (21 }
we obtain the following expression for the square

of the first curvature of C\ :

app/
-II -t

Pi
2 a2 + p

2 \a2 +

The direction-cosines of the principal normal of C\ are

5/?i 571

By means of (40) we derive the following expressions for the direction-cosines of

the binormal :

r (a
2 + p

2
)^

r (a
2 + p

2
)^

&amp;gt;

ft2 + ? Va2 + p
2

In order to find the expression for TI, the radius of torsion of Ci, we have only to

substitute the above values in the equation

_ S\i _ p /d\i _ MI\~
5i Va2 + p

2 \ ds P

We leave this calculation to the reader and proceed to an application of the

preceding results.

We inquire whether there is a curve C such that Ci is a straight line. The

necessary and sufficient condition is that I/pi, be zero (Ex. 3, p. 15). From (iii)
it

follows that we must have
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From the second of these equations it follows that C must be plane, and from

the former we get, by integration,

log (a* + ,*) = + ,

where c is a constant of integration. If the point s = be chosen so that we may
take c = log a2

,
this equation reduces to

= a \e - 1.P

If 6 denotes the angle which the line C\ makes with the -axis, we have, from (i),

8rj a 1
tan 6 = = - =

e - 1

Differentiating this equation with respect to s, we can put the result in the form

dd__ 1

ds p

consequently

(89)

When these values are substituted in equations (75), we obtain the coordinates of C
in the form

x =
i \ 1 e as, y = ae

or, in terms of 0,

(90) x = a log tan - + cos 6
, y = a sin 0.

The curve, with these equations, is called the tractrix. As just seen, it possesses

the property that there is associated with it a straight line such that the segments
of the tangents between the points of tangency and points of intersection with the

given line are of constant length.

Theorem. The orthogonal trajectories of the osculating plane of a twisted curve can

be found by quadratures.

With reference to the moving axes the coordinates of a point in the osculating

plane are (, 77, 0). The necessary and sufficient condition that this point describe

an orthogonal trajectory of the osculating plane as M moves along the given curve

is that and in (82) be zero. Hence we have for the determination of and 77

ds ds
the equations ?*_+ ^ + = 0,

da- da-

where a is given by (89). Eliminating ,
we have

d?-t]^ +
&quot;

= -

Hence 77 can be found by quadratures as a function of
&amp;lt;r,

and consequently of S,

and then is given directly.
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Problem. Find a necessary and sufficient condition that a curve lie upon a sphere.

If
, ??, f denote the coordinates of the center, and R the radius of the sphere,

we have 2
-f if* + f

2 = R2
. Since the center is fixed, the derivatives of

, 17, f are

given by (84). Consequently, when we differentiate the above equation, the result

ing equation reduces to = 0, which shows that the normal plane to the curve

at each point passes through the center of the sphere. If this equation be differen

tiated, we get 77
= p ;

hence the center of the sphere is on the polar line for each

point. Another differentiation gives, together with the preceding, the following

coordinates of the center of the sphere :

When the last of these equations is differentiated we obtain the desired condition

(92)
-

-f (rp Y = 0.

Conversely, when this condition is satisfied, the point with the coordinates (91) is

fixed in space and at constant distance from points of the curve. A curve which

lies upon a sphere is called a spherical curve. Hence equation (92) is a necessary

and sufficient condition that a curve be spherical.

EXAMPLES

1. Let C be a plane curve and Ci an orthogonal trajectory of the normals to C.

Show that the segments of these normals between C and Ci are of the same length.

2. Let C and Ci be two curves in the same plane, and say that the points corre

spond in which the curves are met by a line through a fixed point P. Show that

if the tangents at corresponding points are parallel, the two curves are similar

and P is the center of similitude.

3. The locus of the point of projection of a fixed point P upon the tangent to

a curve C is called the pedal curve of C with respect to P. Show that if r is the

distance from P to a point M on (7, and 6 the angle which the line PM makes

with the tangent to C at M, the arc Si and radius of curvature pi of the pedal

curve are given by

where s and p are the arc and the radius of curvature of C.

4. Find the intrinsic and parametric equations of a plane curve which is such

that the segment on any tangent between the point of contact and the projection

of a fixed point is of constant length.

5. Find the intrinsic equation of the plane curve which meets under constant

angle all the lines passing through a fixed point.

6. The plane curve which is such that the locus of the mid-point of the seg

ment of the normal between a point of the curve and the center of curvature is

a straight line is the cycloid whose intrinsic equation is p
2

-f- s2 = a2.

7. Investigate the curve which is the locus of the point on the principal normal

of a given curve and at constant distance from the latter.
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18. Osculating sphere. Consider any curve whatever referred

to its moving trihedral. The point whose coordinates have the

values (91) lies on the normal to the osculating plane at the

center of curvature, that is, on the polar line. Consequently
the moving sphere whose center is at this point, and whose

radius is Vp
2
-f- r

2

//
2

,
cuts the osculating plane in the osculating

circle. This sphere is called the osculating sphere to the curve at

the point. We shall derive the property of this sphere which

accounts for its name.

When the tangent to a curve at a point M is tangent likewise

to a sphere at this point, the center of the sphere lies in the normal

plane to the curve at M. If R denotes its radius and the curve is

referred to the trihedral at M, the coordinates of the center C of the

sphere are of the form (0, yv z
t )
and yl + z* = ^2

. Let P(x, y, z)

be a point of the curve near M, and Q the point in which the line

CP cuts the sphere. If PQ be denoted by 8, we have, from (53),

6/r

which reduces to

Hence 8 is of the second order, in comparison with JMTP, unless

?/1 =/3, that is, unless the center is on the polar line; then it is

of the third order unless z
l
= p r, in which case the sphere is

the osculating sphere. Hence we have the theorem :

The osculating sphere to a curve at a point has contact with the

curve of the third order ; oilier spheres with their centers on the

polar line, and tangent to the curve, have contact with the curve of

the second order ; all other spheres tangent to the curve at a point
have contact of the first order.

The radius of the osculating sphere is given by

(93) JS* =,! + TV,
and the coordinates of the center, referred to fixed axes in space, are

(94) x
l
= x + pi p

f

T\, y^
= y + pm p rfji, z

l
= z + pn p rv.
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Hence when p is constant the centers of the osculating sphere
and the osculating circle coincide. Then the radius of the sphere is

necessarily constant. Conversely, it follows from the equation (93)

IP that a necessary and sufficient condition that E be con

stant is

[P,

that is, either the curvature is constant, or the curve

is spherical.

If equations (94) be differentiated with respect to s,

we get

(96)- #1
=

From these expres

sions it is seen that

the center of the

osculating sphere is

fixed only in case

of spherical curves.

Also, the tangent to

the locus of the cen

ter is parallel to the

binormal. Combin

ing this result with

a previous one, we

have the theorem:

The polar line for a point on a curve is tangent to the locus of the

center of the osculating sphere to the curve at the corresponding point.

This result is represented in fig. 5, in which the curve is the

locus of the points M\ the points (7, C^ C
2 , are the correspond

ing centers of curvature ; the planes MCN, M^C^N^ are normal

to the curve ; the lines CP, C^P^ are the polar lines ;
and the

points P, Pj, P2 ,
are the centers of the osculating spheres.

FIG. 5
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19. Bertrand curves. Bertrand proposed the following problem :

To determine the curves whose principal normals are the principal

normals of another curve. In solving this problem we make use of

the moving trihedral. We must find the necessary and sufficient

condition that the point Ml (
= 0, TJ

= k, ? = 0) generate a curve C^

whose principal normal coincides with the ?;-axis of the moving
trihedral. Since the point M1

remains on the moving ?/-axis, we

have d% = d% = 0. And since M
l
tends to move at right angles to

this axis, Brj
= 0. Now equations (82) reduce to

(96) }Ll-, vO, 5--*.
ds p ds &amp;gt;

ds r

From the second we see that k is a constant. Moreover, if co denotes

the angle which the tangent at M
l
makes with the tangent at M,

we have, from the first and third of these equations,

8? kptan co = -^r =
or Sf T (k p)

sin co cos co sin co

(97)
k

We have seen
( 11) that according as r is positive or negative,

the osculating plane to a curve at a point M near M cuts the

polar line for M below or above the osculating plane at M. From

these considerations it follows that when r &amp;gt; 0, co is in the third,

fourth, or first quadrants according as k
&amp;gt; ^, &amp;lt; k &amp;lt; p, or k &amp;lt;

;

and when r &amp;lt; 0, co is in the second, first, or fourth quadrant,

accordingly. It is readily found that these results are consistent

with equation (97).

By means of (97) it is found from (96) that

the negative sign being taken so that the left-hand member may
be positive.

Thus far we have expressed only the condition that the locus

of M^ cut the moving T^-axis orthogonally, but not that this axis

shall be the principal normal to the curve C
l
also. For this we

consider the moving trihedral for C
l
and let a

x , b^ c^ denote the
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direction-cosines with respect to it of a fixed direction in space,

as M^D in fig. 6. They satisfy equations similar to (85), namely

M

(99 )
l

If a, 6, c are the direction-cosines of the

same direction, with respect to the mov

ing trihedral at M, we must have a
l

a cos &&amp;gt; -f- c sin &),

b
l
=

6, ^ = a sin eo + &amp;lt;? cos
a&amp;gt;,

for all possible cases,

as enumerated above. When these values are sub

stituted in the above equations, we get, by means

of (98),

P

sin &)

sin tw

_l_
_

T p

COS ft)

sm
cos ft) a sin &))

- = 0,
as

[T

sin G) cos &amp;lt;w sin &)1 Tsin to sin &) cos &)1 _ ~
-

I
\d -\- I

-
I (

I c u,

*/&amp;gt; PI T
I J L

* PI T
I J

[sin

&) cos &) k
~| ,

,

, .
x
dco ~

. 6 -h
(&amp;lt;?

sm &) + a cos &))- = 0.

/3
T r

t
r sin

&)J
as

Since these equations must be true for every fixed line, the coeffi

cients of a, 6, c in each of these equations must be zero. The

resulting equations of condition reduce to

&) = const.,

(100) sm &) cos &) sm &amp;lt;w ~

1 ;;

= &quot;

Since &) is a constant, equation (97) is a linear relation between

the first and second curvatures of the curve C. And the last of

equations (100) shows that a similar relation holds for the curve Cr

Conversely, given a curve C whose first and second curvatures

satisfy the relation

(ioi) p
+ 7

=
c&amp;gt;

where -4, B, C are constants different from zero ;
if we take

A B
k = , COt ft) =

;&amp;gt;
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and for p l
and r

l
the values given by (100), equations (99) are sat

isfied identically, and the point (0, k, 0) on the principal normal

generates the curve Cv conjugate to C. We gather these results

about the curves of Bertrand into the following theorem:

A necessary and sufficient condition that the principal normals

of one curve be the principal normals of a second is that a linear

relation exist between the first and second curvatures; the distance

between corresponding points of the two curves is constant, the oscu

lating planes at these points cut under constant angle, and the torsions

of the two curves have the same sign.

We consider, finally, several particular cases, which we have

excluded in the consideration of equation (101).

When C = and A=Q, the ratio of p and T is constant. Hence

the curve is a helix and its conjugate is at infinity. When A = 0,

that is, when the curve has constant torsion, the conjugate curve

coincides with the original. When A = C = 0, k is indeterminate ;

hence plane curves admit of an infinity of conjugates, they are

the curves parallel to the given curve. The only other curve

which has more than one conjugate is a circular helix, for since

p and T are constant, A/C can be given any value whatever ;
both

the given helix and the circular helices conjugate to it are traced

on circular cylinders with the same axis.

20. Tangent surface of a curve. For the further discussion of

the properties of curves it is necessary to introduce certain curves

and surfaces which can be associated with them. However, in con

sidering these surfaces we limit our discussion to those properties

which have to do with the associated curves, and leave other con

siderations to their proper places in later chapters.

The totality of all the points on the tangents to a twisted curve C
constitute the tangent surface of the curve. As thus defined, the sur

face consists of an infinity of straight lines, which are called the

generators of the surface. Any point P on this surface lies on one

of these lines, and is determined by this line and the distance t from

P to the point M where the line touches the curve, as is shown in

fig. 7. If the coordinates x, y, z of M are expressed in terms of the

arc , the coordinates of P are given by

(102) f
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where the accents denote differentiation with respect to s. When
the equations of the curve have the general form

the coordinates of P can be expressed thus :

(103) =./+/, ?=/,()+./, f -/,()

where v =--
From this it is seen that v is equal to the distance MP only when s

is the parameter.

As given by equations (102) or (103), the coordinates of a point

on the tangent surface are functions of two parameters. A rela

tion between these parameters,

such as

(104) f(s, t)
= 0,

defines a curve which lies upon
the surface. For, when this

FIG. 7 equation is solved for t in terms

of s and the resulting expres

sion is substituted in (102), the coordinates f, ?;, f are

functions of a single parameter, and consequently the

locus of the point (f, 77, f) is a curve (1).

By definition, the element of arc of this curve is given by
da-

2=
di;

2
-f drf+ c?f

2
. This is expressible by means of (102) and

(41) in the form

(105) d&amp;lt;r

z = l + -
2

ds2+ 2dsdt + dt\

where t is supposed to be the expression in s obtained from (104),

and p is the radius of curvature of the curve (7, of which the sur

face is the tangent surface. This result is true whatever be the

relation (104). Hence equation (105) gives the element of length

of any curve on the surface, and do- is called the linear element of

the surface.

According as t in equations (102) has a positive or negative

value, the point lies on the portion of the tangent drawn in the
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positive direction from the curve or in the opposite direction. It

is now our purpose to get an idea of the form of the surface in the

neighborhood of the curve.

In consequence of (53) equations (102) can be written

1 \ L 1
-^r+.-.u,

6 pr

The plane f = cuts the surface in a curve F. The point MQ
of (7,

at which s = 0, is also a point of F. From the above expression

for f it is seen that for points of F near

M
Q
the parameters s and t differ only in

sign. Hence, neglecting powers of s and

t of higher orders, the equations of F in

the neighborhood of J/ are

f=0 , ,=-., r=_ &amp;lt;

2/o 3 pr

By eliminating t from the last two equa

tions, we find that in the neighborhood of

M
Q
the curve F has the form of a semi-

cubical parabola with the T^-axis, that is

the principal normal to (7, for cuspidal

tangent. Since any point of the curve C

can be taken for Jf ,
we have the theorem :

The tangent surface of a curve consists of two sheets, corresponding

respectively to positive and negative values of t, which are tangent to

one another along the curve, and thus form a sharp edge.

On this account the curve is called the edge of regression of the

surface. An idea of the form of the surface may be had from fig. 8.

21. Involutes and evolutes of a curve. When the tangents of a

curve C are normal to a curve Cv the latter is called an involute of

(7, and C is called an evolute of Cr As thus defined, the involutes

of a twisted curve lie upon its tangent surface, and those of a



44 CURVES IN SPACE

plane curve in its plane. The latter is only a particular case of the

former, so that the problem of finding the involutes of a curve is

that of finding the curves upon the tangent surface which cut the

generators orthogonally.

We write the equations of the tangent surface in the form

Assuming that s is the parameter of the curve, the problem reduces

to the determination of a relation between t and s such that

By means of (50) this reduces to dt + ds = 0, so that t c s,

where c is an arbitrary constant. Hence the coordinates x^ yv z
l

of an involute are expressible in the form

(106) 2^= x + a(c s), #!
= # + (&amp;lt;?),

z
x
= z +

?(&amp;lt;? s).

Corresponding to each value of c there is an involute ; consequently

a curve has an infinity of involutes. If two involutes correspond

to values c^ and c
2
of c, the segment of each tangent between the

curves is of length c
l

c
2

. Hence the involutes are said to form a

system of parallel curves on the

tangent surface.

When s is known the involutes

are given directly by equations

(106). Hence the complete de

termination of the involutes of a

given curve requires one quad
rature at most.

From the definition of t and

its above value, an involute can

be generated mechanically in the following manner, as represented

in fig. 9. Take a string of length c and bring it into coincidence

with the curve, with one end at the point s = ; call the other

end A. If the former point be fixed and the string be unwound

gradually from the curve beginning at A, this point will trace out

an involute on the tangent surface.

By differentiating equations (106), we get

7 I (c s} j , m (c s) j , n (c s) ,

dx
l
= ds, dyl

= ds, dz
l

- ds.

FIG. 9
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Hence the tangent to an involute is parallel to the principal nor

mal of the curve at the corresponding point, and consequently the

tangents at these points are perpendicular to one another.

As an example of the foregoing theory, we determine the involutes of the cir

cular helix, whose equations are

x = a cos te, y = a sin M, z = au cot 0,

where a is the radius of the cylinder and 6 the constant angle which the tangent to

the curve makes with axis of the cylinder. Now
sin u, cos M, cot

s a cosec 6 - u, a, /3, 7 =-:--
cosec

Hence the equations of the involutes are

Xi = a cos u + (au c sin 0)sin M, yi = a sin u (aw c sin 0) cos u, zi = c cos 0.

From the last of these equations it follows that the involutes are plane curves

whose planes are normal to the axis of the cylinder, and from the expressions for

x\ and yi it is seen that these curves are the involutes of the circular sections of

the cylinder.

We proceed to the inverse problem :

Given a curve C, to find its evolutes.

The problem reduces to the determination of a succession of

normals to C which are tangent to a curve G . If M
Q
be the point

on C corresponding to M on (7, it lies in the normal plane to C at

If, and consequently its coordinates are of the form

where p and q are the distances from M
Q
to the binomial and prin

cipal normal respectively. These quantities p and q mi^t be such

that the line M
Q
M is tangent to the locus of Jf at tiis point, that

is, we must have

,,

where /c denotes a factor of proportionality. &quot;When the above

values are substituted in these equations, we et

P

and two other equations obtained by replacing a, Z, X by /3, m, ft

and 7, n, v. Hence the expressions in parentheses vanish. From
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the first it follows that p is equal to /o; consequently MQ
lies on

the polar line of C at M. The other equations of condition can be

written , ,

dp q da pJ:+ 1 + p a,
* _ + 0&amp;gt;

ds r ds T

Eliminating /c, we get

p

For the sake of convenience we put &amp;lt;o
= I -

&amp;gt; and obtain by

integration
- = tan

(o&amp;gt;
+ c),

P

where c is the constant of integration. As c is arbitrary, there is

an infinity of evolutes of the curve C\ they are defined by the

following equations, in which c is constant for an evolute but

changes with it:

x
Q =x+lp + \p tan(o) + c), yQ =y + mp + fip tan(o&amp;gt;

-f c),

Z
Q
= z -f np + vp tan

(o&amp;gt;
-f- c).

From the definition of q it follows that q/p is equal to the tangent

of the angle which MM
Q
makes with the principal normal to C at M.

Calling this angle 0, we have 6 = &&amp;gt; + c. The foregoing results give

the following theorem :

A curve C admits of an infinity of evolutes; when each of the

normals f&quot; (7, which are tangent to one of its evolutes, is turned

through the sa^g angle in the corresponding normal plane to C, these

new normals are
tangent to another evolute of C.

In fig. 5 the locus of the points E is an evolute of the given
curve.

Each system o; normals to C which are tangent to an evolute C
constitute a tangent surface of which C is the edge of regression.

Hence the evolves of C are the edges of regression of an infinity

of tangent svffaces? all of which pass through C..

From tbe definition of w it follows that w is constant only when the curve C
is plane. jn this case we may take w equal to zero. Then when c we have

the evol\te C in the plane of the curve. The other evolutes lie upon the right
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cylinder formed of the normals to the plane at points of Co, and cut the elements

of the cylinder under the constant angle 00 c, and consequently are helices.

Hence we have the theorem :

The evolutes of a plane curve are the helices traced on the right cylinder whose

base is the plane evolute. Conversely, every cylindrical helix is the evolute of an

infinity of plane curves.

EXAMPLES

1. Find the coordinates of the center of the osculating sphere of the twisted

cubic.

2. The angle between the radius of the osculating sphere for any curve and the

locus of the center of the sphere is equal to the angle between the radius of the

osculating circle and the locus of the center of curvature.

3. The locus of the center of curvature of a curve is an evolute only when the

curve is plane.

4. Find the radii of first and second curvature of the curve x = a sin u cos w,

y = a cos2
it, z = asinw. Show that the curve is spherical, and give a geometrical

construction. Find its evolutes.

5. Derive the properties of Bertrand curves
( 10) without the use of the moving

trihedral.

6. Find the involutes and evolutes of the twisted cubic.

7. Determine whether there is a curve whose bmormals are the binormals of a

second curve.

8. Derive the results of 21 by means of the moving trihedral.

22. Minimal curves. In the preceding discussion we have made

exception of the curves, defined by

z =/! (w), y =/a (u), z =/8 (u),

when these functions satisfy the condition

As these imaginary curves are of interest in certain parts of the

theory of surfaces, we devote this closing section to their discussion.

The equation of condition may be written in the form

_ f f __ ifJ3 Jl V2

where v is a constant or a function of u. These equations are

equivalent to the following :

(108) ^ :^lz* SI.&amp;lt;l+*&amp;gt;:..
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At most, the common ratio is a function of M, say f(u). And so

if we disregard additive constants of integration, as they can be

removed by a translation of the curve in space, we can replace

the above equations by

(1 09) x =.f(u)du, y =if(n)du, z =

We consider first the case when v is constant and call it a. If

we change the parameter of the curve by replacing I f(u) du by a

new parameter which we call w, we have, without loss of generality,

1-a2 .1+a2

(110) x = ^ut y = i^--u, z = au.

For each value of a these are the equations of an imaginary

straight line through the origin. Eliminating #, we find that the

envelope of these lines is the imaginary cone, with vertex at the

origin, whose equation is

(111) z2

+2/
2 +z2 =0.

Every point on the cone is at zero distance from the vertex, and

from the equations of the lines it is seen that the distance between

any two points on a line is zero. We call these generators of the

cone minimal straight lines. Through any point in space there are

an infinity of them ; their direction-cosines are proportional to

&amp;gt;

where a is arbitrary. The locus of these lines is the cone whose

vertex is at the point and whose generators pass through the circle

at infinity. For, the equation in homogeneous coordinates of the

sphere of unit radius and center at the origin is 3?+ y
2+ z

2= w2
,

so that the equations of the circle at infinity are

Hence the cone (111) passes through the circle at infinity.

We consider now the case where v in equations (109) is a function

of u. If we take this function of u for a new parameter, and for

convenience call it it, equations (109) may be written in the form

(112) g_ll~p &amp;gt;()&amp;lt;**, y=i^^F(u)du,
z= CuF(u)du,
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where, as is seen from (108), F(u) can be any function of u different

from zero.

If we replace F(u) by the third derivative of a function f(u),

thus F(u)=f &quot;(u], equations (112) can be integrated by parts and put
in the form

uf (u)-f(u),

(113) 1y-4

Since F must be different from zero, f(u) can have any form other

than c
lu*+ c

2
u -f c

8 ,
where ^, c

2 ,
c
3
are arbitrary constants.

EXAMPLES

1. Show that the tangents to a minimal curve are minimal lines, and that a

curve whose tangents are minimal lines is minimal.

2. Show that the osculating plane of a minimal curve can be written (X x) A
+ (Y-y)B + (Z-z)C = Q, where A 2 + B2 + C2 = 0. A plane whose equation is

of this sort is called an isotropic plane.

3. Show that through each point of a plane two minimal straight lines pass
which lie in the latter.

4. Determine the order of the minimal curves for which the function /in (113)
satisfies the condition 4/ &quot;/

v - 5/iv2 = 0.

5. Show that the equations of a minimal curve, for which /in (113) satisfies the

condition 4/ &quot;/

v 5/iv2 = a////3
,
where a is a constant, can be put in the form

8 8 . 8i,x = - cos
, y - sin

,
z = t.

GENERAL EXAMPLES

1. Show that the equations of any plane curve can be put in the form

x=J*cos0/(0)d0, y
-
J

sin 0/(0) d0,

and determine the geometrical significance of 0.

2. Prove that the necessary and sufficient condition that the parameter u in the

equations x =fi(u), y =f2 (u) have the significance of in Ex. 1 is

3. Prove that the general projective transformation transforms an osculating

plane of a curve into an osculating plane of the transform.

4. The principal normal to a curve is normal to the locus of the centers of

curvature at the points where p is a maximum or minimum.
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5 . A certain plane curve possesses the property that if C be its center of curva

ture for a point P, Q the projection of P on the x-axis, and T the point where the

tangent at P meets this axis, the area of the triangle CQT is constant. Find the

equations of the curve in terms of the angle which the tangent forms with the x-axis.

6. The binormal at a point Mot a curve is the limiting position of the common

perpendicular to the tangents at M and M
,
as N approaches M.

7. The tangents to the spherical indicatrices of the tangent and binormal of a

twisted curve at corresponding points are parallel.

8. Any curve upon the unit sphere serves for the spherical indicatrix of the

binormal of a curve of constant torsion. Find the coordinates of the curve.

9. The equations

r Idk - kdl r hdl - Idh r kdh ~ hdk
x a I
-

i y a I z d I

J #2 + 2 + 12 J hZ + fc2 + 1-2 J h2 +
where a is constant and h, k, I are functions of a single parameter, define a curve

whose radius of torsion is a.

10. If, in Ex. 9, we have

k = sm/i0 + -%sinX0 I = 2 - cos
\/ 2

where X and /x are constants whose ratio is commensurable, the integrands are

expressible as linear homogeneous functions of sines and cosines of multiples of 0,

and consequently the curve is algebraic.

11. Equations (1) define a family of circles, if a, &, r are functions of a parameter

t. Show that the determination of their orthogonal trajectories requires the solution

of the Riccati equation,

*! = l*?,__L*
( i-&quot;),

dt r dt 8rdr
where 0=tanw/2.

12. Find the vector representing the rate of change of the acceleration of a

moving point.

13. When a curve is spherical, the center of curvature for the point is the foot

of the perpendicular upon the osculating plane at the point from the center of the

sphere.

14. The radii of first and second curvature of a curve which lies upon a sphere

and cuts the meridians under constant angle are in the relation 1 + ar +
fy&amp;gt;

2r = 0,

where a and b are constants.

15. An epitrochoidal curve is generated by a point in the plane of a circle which

rolls, without slipping, on another circle, whose plane meets the plane of the first

circle under constant angle. Find its equations and show that it is a spherical curve.

16. If two curves are in a one-to-one correspondence with the tangents at

corresponding points parallel, the principal normals at these points are parallel

and likewise the binormals
;
two curves so related are said to be deducible from

one another by a transformation of Combescure.

17. If two curves are in a one-to-one correspondence and the osculating planes

at corresponding points are parallel, either curve can be obtained from the other

by a transformation of Combescure.
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18. Show that the radius of the osculating sphere of a curve is given by
E2 T2p

4
[x&quot;&quot;

2 + y&quot;

/z + z ///2
]

r2
,
where the prime denotes differentiation with

respect to the arc.

19. At corresponding points of a twisted curve and the locus of the center of

its osculating sphere the principal normals are parallel, and the tangent to one

curve is parallel to the binorinal to the other
;
also the product? of the radii of

torsion of the two curves is equal to the product of the radii of first curvature,

or to within the sign, according as the positive directions of the principal normals

are the same or different.

20. Determine the twisted curves which are such that the centers of the spheres

osculating the curve of centers of the osculating spheres of the given curve are points

of the latter.

21. Show that the binormals to a curve do not constitute the tangent surface

of another curve.

22. Determine the directions of the principal normal and binormal to an involute

of a given curve.

23. Show that the equations

x = a
C&amp;lt;f&amp;gt; (u) sin u du, y = a \ $ (u) cos u du, z a f

4&amp;gt;(u)\l/(u)du,

where (u) (1 4- ^2
4- ^/2

)- (1 4- ^2
)

* and
\f/ (u) is any function whatever, define a

curve of constant curvature.

24. Prove that when ^ (u)
= tan w, in example 23, the curve is algebraic.

25. Prove that in order that the principal normals of a curve be the binor-

mals of another, the relation a I h
)
= - must hold, where a and 6 are con

stants. Show that such curves are defined by equations of example 23 when

(1 4. ^2 _|_ ^/2)3 _|_ (1 _|_ ^2)3(^&quot; _j_ ^,\2= .

(1 4. i//

2
)^(l 4- 1//

2
4- 1//

2
)^

26. Let \i, /ii, *i be the coordinates of a point on the unit sphere expressed as

functions of the arc
&amp;lt;TI

of the curve. Show that the equations

x = ek I \idffi k cot w / (MI^I

y = ek
j mdai

k cot w \ (v\\{ v{\\] d&amp;lt;?i,

z = ek I vida-i k cot w
| (\i/4

where k and w are constant, e = 1, and the primes indicate differentiation with

respect to o-i, define a Bertrand curve for which p and T satisfy the relation (97) ;

show also that X 1? /t1? v\ are the direction-cosines of the binormal to the conjugate
curve.



CHAPTER II

CURVILINEAR COORDINATES ON A SURFACE* ENVELOPES

23. Parametric equations of a surface. In the preceding chapter

we have seen that the coordinates of a point on the tangent surface

of a curve are expressible in the form

(1) x

where fl (u), ?=/(*),

are the equations of the curve, and v is proportional to the distance

between the points (f , 77, f), (x, y, z) on the same generator. Since

the coordinates of the surface are expressed by (1) as functions of

two independent parameters w, v,

the equations of the surface may
be written

Consider also a sphere of radius

a whose center is at the origin

(fig. 10). If v denotes the angle,

measured in the positive sense,

which the plane through the z-axis

and a point M of the sphere makes

with the #z-plane, and u denotes the angle between the radius OM
and the positive z-axis, the coordinates of M may be written

FIG. 10

(3) x = a sin u cos v, y = a sin u sin v, z = a cos u.

Here, again, the coordinates of any point on the sphere are ex

pressible as functions of two parameter^, and the equations of the

sphere are of the form (2)*.

* Notice that in this case /^ is a function of u alone.
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In the two preceding cases the functions fv /2 , /3
have par

ticular forms. We consider the general case where /1? /2 , /3
are

any functions of two independent parameters w, v, analytic for all

values of u and v, or at least for values within a certain domain.

The locus of the point whose coordinates are given by (2) for all

values of u and v in the domain is called a surface. And equa
tions (2) are called parametric equations of the surface.

It is to be understood that one or more of the functions / may
involve a single parameter. For instance, any cylinder may be

defined by equations of the form

x =fiM y =/2M z =/a (
u

^
v
)-

If we replace u and v in (2) by independent functions of two

other parameters uv vv thus

(4) u = F
l (uv v,), v = F

z (ul9 vj,

the resulting equations may be written

(5) x = fa (u^ VJ, y = fa K, vj, z = fa (ut , vj.

If particular values of ^ and v
l
be substituted in (4) and the result

ing values of u and v be substituted in (2), we obtain the values

of #, y, z given by (5), when u^ and t^ have been given the par
ticular values. Hence equations (2) and (5) define the same sur

face, provided that F
l
and F

2
are of such a form that fa, fa, fa

satisfy the general conditions imposed upon the F s. Hence the

equations of a surface may be expressed in parametric form in

the number of ways of the generality of two arbitrary functions.

Suppose the first two of equations (2) solved for u and v in

terms of x and y, and let u = F
t (x, y), v = F

2 (x, y) be a set of

solutions. When these equations are taken as equations (4),

equations (5) become

x = x, y = y, z =f(x, y},

which may be replaced by the single relation,

(6) 2 =/(*, y).

If there is only one set of solutions of the first two of equations (2),

equation (6) defines the surface as completely as (2). If, however,

there are n sets of solutions, the surface would be defined by n

equations, z =ft (x^ y).
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It may be said that equation (6) is obtained from equations (2)

by eliminating u and v. This is a particular form of elimination,

the more general giving an implicit relation between x, y, z, as

(7) F(x,y,z)=0.

If we have a locus of points whose coordinates satisfy a relation

of the form (6), it is a surface in the above sense. For, if we take

x and y equal to any analytic functions of u and v, namely f^ and

/2 , and substitute in (6), we obtain z =/8 (w, v).

In like manner equation (7) may be solved for z, and one or more

equations of the form (6) obtained, unless z does not appear in (7).

In the latter case there is a relation between x and y alone, so that

the surface is a cylinder whose elements are parallel to the z-axis,

and its parametric equations are of the form

x =/iW y =/2M 2 =/3 (w, v).

Hence a surface can be denned analytically by equations (2),

(6), or (7). Of these forms the last is the oldest. It was used

exclusively until the time of Monge, who proposed the form (6);

the latter has the advantage that many of the equations, which

define properties of the surface, are simpler in form than when

equation (7) is used. The parametric method of definition is due

to Gauss. In many respects it is superior to both of the other

methods. It will be used almost entirely in the following

treatment.

24. Parametric curves. When the parameter u in equations (2)

is put equal to a constant, the resulting equations define a curve on

the surface for which v is the parameter. If we let u vary continu

ously, we get a continuous array of curves whose totality consti

tutes the surface. Hence a surface may be considered as generated

by the motion of a curve. Thus the tangent surface of a curve is

described by the tangent as the point of contact moves along the

curve ;
and a sphere results from the revolution of a circle about

a diameter.

We have just seen that upon a surface (2) there lie an infinity

of curves whose equations are given by equations (2), when u is

constant, each constant value of u determining a curve. We call

them the curves u = const, on the surface. In a similar way,
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there is an infinite family of curves v = const.* The curves of

these two families are called the parametric curves for the given

equations of the surface, and u and v are the curvilinear coordinates

of a point upon the surface.f We say that the positive direction

of a parametric curve is that in which the parameter increases.

If we replace v in equations (2) by a function of w, say

(8)
v =

&amp;lt;t&amp;gt;(u),

the coordinates #, y, z are functions of a single parameter w, and

consequently the locus of the point (#, y, z) is a curve. Hence

equation (8) defines a curve on the surface (2). For example,

the equation v = au defines a helix on the cylinder

x = a cos w, y o&amp;gt; sin u, z = v.

Frequently equation (8) is written in the implicit form,

(9) F(u, v)
= 0.

Conversely, any curve upon the surface is defined by an equation

of this form. For, if t be the parameter of the curve, both u and v in

equations (2) are functions of t\ thus w = ^ 1 (Q, v =
(j&amp;gt;z (t).

Elimi

nating t between these equations, we get a relation such as (9).

We return to the consideration of the change of parameters,

defined by equations (4). To a pair of values of u^ and v
l
there

correspond unique values of u and v. On the contrary, it may
happen that another pair of values of u^ and v

l give the same

values of u and v. But the values of x, y, z given by (5) will be

the same in both cases ;
this follows from the manner in which

these equations were derived. On this account when equations (4)

are solved for u^ and v
l
in terms of u and v, and there is more

than one set of solutions, we must specify which solution will

be used. We write the solution

(10) u^
=

&amp;lt;$&amp;gt;! (w, v), v^
=

4&amp;gt;

2 (u, v).

In terms of the original parameters, the parametric lines u^= const.

and v
l
= const, have the equations,

* On the sphere defined by equations (3) the curves v const, are meridians and
u const, parallels.

t When a plane is referred to rectangular coordinates, the parametric lines are the

two families of straight lines parallel to the coordinate axes.
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where a and b denote constants. Unless u or v is absent from

either of these equations the curves are necessarily distinct from

the parametric curves u = const, and v = const. Suppose, now, that

v does not appear in ^j then u^ is constant when u is constant,

and vice versa. Consequently a curve u^
= const, is a member of

the family of curves u = const. Hence, when a transformation of

parameters is made by means of equations of the form

or ^=(2,, ^(M),
the two systems of parametric curves are the same, the difference

being in the value of the parameter which is constant along a curve.

EXAMPLES

1 . A surface which is the locus of a family of straight lines, which meet another

straight line orthogonally and are arranged according to a given law, is called a

right conoid
;

its equations are of the form x = u cos v, y = u sin u, z =
&amp;lt;j&amp;gt; (v). Show

that when (v)
= a cot v + b the conoid is a hyperbolic paraboloid.

2. Find the equations of the right conoid whose axis is the axis of z, and which

V2 z2

passes through the ellipse x a,
&quot;

-\
-- 1.

3. When a sphere of radius a is defined by (3), find the relation between u and

v along the curve of intersection of the sphere and the surface x4 -f y* + z4 = a4
.

Show that the curves of intersection are four great circles.

4. Upon the surface x v w2 +
-J-

cos
t&amp;gt;, y Ma

4- sin v, z = w, determine the

curves whose tangents make with the z-axis the angle tan- 1 \/2. Show that two

of these curves pass through every point, and find their radii of first and second

curvature.

25. Tangent plane. A tangent line to a curve upon a surface

is called a tangent line to the surface at the point of contact. It is

evident that there are an infinity of tangent lines to a surface at a

point. We shall show that all of these lines lie in a plane, which

is called the tangent plane to the surface at the point.

To this end we consider a curve C upon a surface and let

M(XJ y, z) be the point at which the tangent is drawn. The

equations of the tangent are
( 4)

f-s = t)-y _ ?-g = ^
dx dy dz

ds ds ds
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where f, 77, f are the coordinates of a point on the line, depending

for their values upon the parameter X. If the equation in curvi

linear coordinates of the curve C is v =
&amp;lt;f&amp;gt;(u),

the above equations

may be written . * \ j(^
,
dx\ du

, dvl ds

^ ^^= \ -f-
4&amp;gt; )-r

\du cv/ ds

where the prime indicates differentiation. In order to obtain the

locus of these tangent lines, we eliminate $ arid X from these

equations. This gives

(U) = 0,

which evidently is the equation of a plane through the point M.

The normal to this plane at the point of contact is called the

normal to the surface at the point.

As an example, we find the equation of the tangent plane to the tangent surface

of a curve at any point. If the values from (1) be substituted in equation (11),

the resulting equation is reducible to

(12) /i fi fi

fi fi fs

Hence the equation of the tangent plane is independent of u, and depends only

upon u. In consequence of (I, 36)
* we have the theorem :

The tangent plane to the tangent surface of a curve is the same at all points of a

generator; it is the osculating plane of the curve at the point where the generator

touches the curve.

When the surface is defined by an equation of the form F(x, y, z)
= 0, we

imagine that x, y. z are functions of u and v, and differentiate with respect to

the latter. This gives

Hx du dy du dz du
~

dx dv dy dv dz dv

* In references of this sort the Roman numerals refer to the chapter.
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By means of these equations the equation (11) of the tangent plane can be given
the form

(l-^+fo-jO^+tf-*)?^.ex cy cz

When the Monge form of the equation of a surface, namely z =/(x, y\ t
is used,

it is customary to put
dz cz

(
14

r-
=

-P
=

9-
dx cy

Consequently the equation of the tangent plane is

(15) (*
- x)p + (77

- y)q -(f-z) = 0.

In the first chapter we found that a curve is defined by two equations of the form

(16) Fl (x,y,z) = J
F2 (x, y, z) = 0.

Hence a curve is the locus of the points common to two surfaces. The equa
tions of the tangent to the curve are

g-X^q -y_- Z
^

dx dy dz

where cfcc, dy, dz satisfy the relations

5*1* + ^dy + ?*& = 0, ?**, + ^dy + ?** = 0.
dx cy cz dx cy dz

Consequently the equations of the tangent can be put in the form

- z 77
- y $ - z

(17)

dy .
dz dz dy dz dx dx dz dx dy dy dx

Comparing this result with (13), we see that the tangent line to a curve at a pointM
is the intersection of the tangent planes at M to two surfaces which intersect along
the curve.

*&quot;

EXAMPLES

1. Show that the volume of the tetrahedron formed by the coordinate planes and

the tangent plane at any point of the surface x = w, y = u, z = as/uv is constant.

2. Show that the sum of the squares of the intercepts of the axes by the tan

gent plane to the surface

z = w3 sin 3
u, y = M3 cos3 v, z = (a

2 - it
2
)*,

at any point is constant.

3. Given the right conoid for which 0(u) = a sin 2 u. Show that any tangent

plane to the surface cuts it in an ellipse, and that if perpendiculars be drawn

to the generators from any point the feet of the perpendiculars lie in a plane

ellipse.
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4. Show that the tangent planes, at points of a generator, to the right conoid for

which (u)
= a Vtan u, meet the plane z in parallel lines.

5. Find the equations of the tangent to the curve whose equations are

ax2 + by* + cz2 = 1, 6x2 + cy
2 + az2 = 1.

6. Find the equations of the tangent to the curve whose equations are

z(x + z)(x a) = a3
, z(y + z)(y a) = a3

,

and show that the curve is plane.

7. The distance from a point M of a surface to the tangent plane at a near-by

point M is of the second order when MM is of the first order
;
and for other planes

through M the distance from M is ordinarily of the first order.

26. One-parameter families of surfaces. Envelopes. An equation

of the form

(18) F(x, y, z,a) = Q

defines an infinity of surfaces, each surface being determined by a

value of the parameter a. Such a system is called a one-parameter

family of surfaces. For example, the tangent planes to the tangent

surface of a twisted curve form such a family.

The two surfaces corresponding to values a and a of the param
eter meet in a curve whose equations may be written

&amp;gt;
* a) = o.

a a

As a 1

approaches a, this curve approaches a limiting form whose

equations are

(19) ^(W,)=0, *(**.)-().

The curve thus defined is called the characteristic of the surface of

parameter a. As a varies we have a family of these characteristics,

and their locus, called the envelope of the family of surfaces, is a

surface whose equation is obtained by eliminating a from the two

equations (19). This elimination may be accomplished by solving

the second of (19) for a, thus:

a = $ (#, y, z),

and substituting in the first with the result
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The equation of the tangent plane to this surface is

For a particular value of a, say a
, equations (19) define the curve

in which the surface F(x, y, z, a
)
= meets the envelope ; and from

the second of (19) it follows that at all points of this curve equa
tion (20) of the tangent plane to the envelope reduces to

This, however, is the equation of the tangent plane to the surface

F(x, y, z, a
)
= 0. If we say that two surfaces with the same tan

gent plane at a common point are tangent to one another, we have :

The envelope of a family of surfaces of one parameter is tangent
to each surface along the characteristic of the latter.

The equations of the characteristic of the surface of parameter al
are

(21)

This characteristic meets the characteristic (19) in the point whose

coordinates satisfy (19) and (21), or, what is the same thing, equa
tions (19) and

F(x,y, z, a
l)-F(x,^z, a)

As a
l approaches 0, this point of intersection approaches a limiting

position whose coordinates satisfy the three equations

(22) F-0, ^=0,
!&quot; 0.

da da
2

If these equations be solved for a;, y, z, we have

(23) * =/, y=/,(a), *=/.(a).

These are parametric equations of a curve, which is called the

edge of regression of the envelope.
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The direction-cosines of the tangent to the edge of regression

are proportional to - -^, -. If we imagine that x, y, z in (19)
da da da

are replaced by the values (23), and we differentiate these equa
tions with respect to a, we get, in consequence of (22),

dx da dy da dz da

tfF dy*r **
,

- - -
|

da d# c?# da dy da da dz da

dz
== &quot;

From these we obtain

But from (17) it follows that the minors of the right-hand mem
ber are proportional to the direction-cosines of the tangent to the

curve (19). Hence we have the theorem:

The characteristics of a family of surfaces of one parameter are

tangent to the edge of regression.

27. Developable surfaces. Rectifying developable. A simple ex

ample of a family of surfaces of one parameter is afforded by a

family of planes of one parameter. Their envelope is called a

developable surface ; the full significance of this term will be

shown later (43). The characteristics are straight lines which

are tangent to a curve, the edge of regression. When the edge of

regression is a point, the surface is a cone or cylinder, according
as the point is at a finite or infinite distance. We exclude this

case for the present and assume that the coordinates x, y, z of a

point on the edge of regression are expressed in terms of the arc s.

We may write the equation of the plane

(24) (X- x)a + (Y-

where
, 5, c also are functions of s. The characteristics are defined

by this equation and its derivative with respect to s, namely :

(25) (X- x)a +(Y- y)V+(Z- z)c
- ax - by

- cz = 0.



62 ENVELOPES

Since these equations define the tangent to the curve, they must

be equivalent to the equations

X-x _Y-y =Zz
x y z

Hence we must have

(26) ax + % + cz
r= 0, a x + Vy + c z = 0.

If the first of these equations be differentiated with respect to s,

the resulting equation is reducible, in consequence of the second

of (26), to
if E jf , IT A

ax&quot;+
by&quot;

+ cz&quot;= 0.

From this equation and (26) we find

a : b : c = (y z&quot;- z
y&quot;)

: (z x&quot;- x
z&quot;)

: (x y&quot;- y x&quot;}.

Hence by ( 7) we have the theorem:

On the envelope of a one-parameter family of planes the planes

osculate the edge of regression.

We leave it to the reader to prove that the edge of regres

sion of the osculating planes of a twisted curve is the curve

itself.

The envelope of the plane normal to the principal normal to

a curve at a point of the curve is called the rectifying develop

able of the latter. We shall find the equations of its edge of

regression.

The equation of this plane is

(27) (X- x) I + (Y- y)m + (Z
-

z) n = 0.

If we differentiate this equation with respect to the arc of the curve,

and make use of the Frenet formulas (I, 50), we obtain

(28) (I- +

From these equations we derive the equations of the character

istic in the form
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t being the parameter of points on the characteristic. In order to

find the value of t corresponding to the point where the character

istic touches the edge of regression, we combine these equations

with the derivative of (28) with respect to s, namely :

and obtain (jL--J\t+ - s*Q.
VP PT/ P

Hence the coordinates of the edge of regression of the rectifying

developable are

(29 ) t= x ,

p p r TP pr T p pr

Problem. Under what conditions does the equation F(x, y, z) = define a devel

opable surface ?

We assume that x, y, z are functions of two parameters w, u, such that the curves

u = const, are the generators, and v = const, are any other lines. The equation of

the tangent plane is

This equation should involve u and be independent of u. Its characteristic is

given by (i) and

where we have put, for the sake of brevity,

.t.^.^w+y, _
ax2 dxdy dxdz dx

Since equation (i) is independent of u, we have

(iii) A* + B* + c = 0.
dv dv at)

Comparing equations (ii) and (iii) with (13), we see that

^-X^=0, B-\^=0, C-X^
3x dy oz



64 ENVELOPES

where X denotes a factor of proportionality. If we eliminate X x, Y y, Z z,

and X from these equations and (i),
we obtain the desired condition

2F d2F d^F dF

z2 dxdy dxdz dx

2F d2F dzF dF

dx dy dy
2

dx dz dy dz

d_F_
aF

dx dy

dy dz dy

?
az2

&quot;

~fa

**

dz

= 0.

EXAMPLES

1. Find the envelope and edge of regression of the family of planes normal to

a given curve.

2. Find the rectifying developable of a cylindrical helix.

3. Prove that the rectifying developable of a curve is the polar developable of

its involutes, and conversely.

4. Find the edge of regression of the envelope of the planes

x sin u y cos u -f z au = 0.

5. Determine the envelope of a one-parameter family of planes parallel to a

given line.

6. Given a one-parameter family of planes which cut the xy-plane under con

stant angle ;
the intersections of these planes with the latter plane envelop a

curve C. Show that the edge of regression of the envelope of the planes is an

evolute of C.

7. When a plane curve lies on a developable surface its plane meets the tangent

planes to the surface in the tangent lines to the curve. Determine the developable

surface which passes through a parabola and the circle, described in a perpendicular

plane, on the latus rectum for diameter, and show that it 4s a cone.

8. Determine the developable surface which passes through the two parabolas

y2 = 4 ox, z = 0; x2 = 4 ay, z = 6, and show that its edge of regression lies on the

surface y*z = x3
(6 z).

28. Applications of the moving trihedral. Problems concern

ing the envelope of a family of surfaces are sometimes more

readily solved when the surfaces are referred to the moving
trihedral of a curve, which is associated in some manner with

the family of surfaces, the parameter of points on the curve

being the parameter of the family.

Let

(30) F(& 77, , *)
=
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define such a family of surfaces. Since f, 77, f are functions of *,

the equations of the characteristics are (30) and

^-^^ +^^ + ^^4.^=0
ds
~

d% ds dr) ds 0f ds ds
~

But the characteristics being fixed in space, we have (I, 84)

Hence the equations of the characteristics are

(32) ,_ ,
/i

If, for the sake of brevity, we let $(, ??, f, *)
= denote the second

of these equations, the edge of regression is defined by (32) and

&amp;lt;

8S
&amp;gt; !(
For example, the family of osculating planes of a curve is defined with refer

ence to the moving trihedral by f = 0. In this case the second of (32) is rj
= 0, and

(33) is - 4- - = 0. Hence the tangents are the characteristics, and the edge of regres

sion is the curve
; for, we have =

??
= f = 0.

In like manner the family of normal planes is defined by = 0. Now the second

of .(32) is 17 p=0 ; consequently the polar lines are the characteristics. Equation (33)

reduces to f -f p r =
;
hence the locus of the centers of the osculating spheres is

the edge of regression (cf. 18). The envelope is called the polar developable.

The osculating spheres of a twisted curve constitute a family

of surfaces which is readily studied by the foregoing methods.

From
( 18) it follows that the equation of these spheres is

The second of equations (32) for this case is

which, since spherical curves are not considered, reduces to = 0.

And equation (33) is ??
= 0, so that the coordinates of the edge of

regression are f = 77
= f= 0. Hence :

The osculating circles of a curve are the characteristics of its oscu

lating spheres ; and the curve itself is the edge of regression of the

envelope of the spheres.
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29. Envelope of spheres. Canal surfaces. We consider now any

family of spheres of one parameter. Referred to the moving tri

hedral of the curve of centers, the equation of the spheres is

By means of (32) we find that a characteristic is the circle in

which a sphere is cut by the plane

The radius of this circle is equal to rVl rn . Hence the char

acteristic is imaginary when r
n

&amp;gt; 1, reduces to a point when

r = s + const., and is real for r f*
&amp;lt; 1.

By means of (33) we find that the coordinates of the edge of

regression are given by

(34) f = -n- , , = [l-(rr ) ]p, r
Hence the edge of regression consists of two parts with corre

sponding points symmetrically placed with respect to the oscu

lating plane of the curve of centers (7, unless

When this condition is satisfied the edge is a single curve, and its

points lie in the osculating planes of C. We have seen that this

is the case with the osculating spheres of a curve. We shall show

that when the above condition is satisfied the spheres osculate

their edge of regression &amp;lt;7r

We write the above equation in the form ^

(35) p[l~-(rr ) ]
= er^l-r \

where e is + 1 or 1, so that p may be positive.

We have seen
( 16) that the absolute and relative rates of change

with s of the coordinates f, ?;, f of a point on C
t
are in the relations

M = ^_?? + i,
^ = ^Z + l + f, ^ == ^_!?.

Ss ds p &s ds p T Ss ds T

When the values (34) are substituted in the right-hand members

of these equations, we obtain, in consequence of (35),
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Hence the linear element Ss^ of C
l
is given by

cs
1
=

and

(36) Uo,

Since these are the direction-cosines of the tangent to C^ we see

that this tangent is normal to the osculating plane to the curve of

centers C. Moreover, these direction-cosines must satisfy (cf. I, 83)

the equations

/37\
8a _da b 8b _ db a c 8c do b

8s ds p 8s ds p T 8s ds r

Hence we have

from which it follows that the radius of curvature p l
of C

l
is

(38) Pl =eerVT^,
where e

r

is + 1 or 1
, so that

/o 1 may be positive. Since, now, the

direction-cosines of the principal normal have the values

it follows that the principal normals to C and C
l

are parallel.

Furthermore, since these quantities must satisfy equations (37),

we have
g3 g

3 , ^^ -.

where p[ denotes the derivative of p l
with respect to sr By means

of (I, 51) we find that the radius of torsion r
l
of C

l
is given by

.From (38) we find p[= - so that the radius R^ of the oscu

lating sphere of C^ is given by R* p?+ p[
2

TI
= r

2
,
and consequently

the osculating spheres of C
l
are of the same radius as the given

spheres.
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The direction-cosines of the tangent, principal normal, and binor

mal to C
l
are found from (36) and (39) to be

Hence the coordinates (I, 94) of the center of the osculating sphere
of C

l
are reducible, in consequence of (34), to

+ liPi
-

P(TI\ = *? + miPi
~
friPi = &amp;gt; ?+ W

1p 1

-XT^ = 0.

Therefore we have the theorem :

When the edge of regression of a family of spheres of one param
eter has only one branch, the spheres osculate the edge.

Since r does not appear in equation (35), it follows that when
r is given as a function of s, the intrinsic equations of the curve of

are

where the function/(s) is arbitrary. Moreover, any curve will serve

for the curve of centers of such an envelope of spheres. The deter

mination of r requires the solution of equation (35) and consequently
involves two arbitrary constants.

When all the spheres of a family have the same radius, the

envelope is called a canal surface. From (34) it is seen that in

this case a characteristic is a great circle. Moreover, equation (35)

reduces to p = r. Hence a necessary and sufficient condition that

the edge of regression of a canal surface consist of a single curve

is that the curve of centers be of constant curvature and the radius

of the sphere equal to the radius of first curvature of the curve.

GENERAL EXAMPLES

1. Let MN be a generator of the right conoid

x = u cos u, y = u sin
i&amp;gt;,

z = 2 k cosec 2 D,

M being the point in which it meets the z-axis. Show that the tangent plane at N
meets the surface in a hyperbola which passes through M, and that as N moves

along the generator the tangent at M to the hyperbola describes a plane.

2. A point moves on an ellipsoid
--h H-- = 1, so that the direction of its

a2
ft
2 c2

motion always passes through the perpendicular from the center on the tangent

plane at the point. Show that the path of the point is the curve in which the ellipsoid

is cut by the surface xlymzn = const.
,
where 1: m : n --- :

--
:
---
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3. If each of the generators of a developable surface be revolved through the

same angle about the tangent to an orthogonal trajectory of the generators at the

point of intersection, the locus of these lines is a developable surface whose edge
of regression is an evolute of the given trajectory.

4. Show that the edge of regression of the family of planes

(1
- w2

)z + i(l + u*)y + 2uz +f(u) =
is a minimal curve.

5. The developable surface which passes through the circles x2
-f y* = a2

,
z = 0;

x2
-f z2 62

, y = meets the plane x = in an equilateral hyperbola.

6. Find the edge of regression of the developable surface which envelopes the

surface az = xy along the curve in which the latter is cut by the cylinder x2 = by.

7. Find the envelope of the planes which pass through the center of an ellipsoid

and cut it in sections of equal area.

8. The first and second curvatures of the edge of regression of the family of

planes ax + /3y + yz p, where
&amp;lt;r, /3, 7, p are functions of a single parameter

u and a2 + /3
2
-f y2 =

1, are given by

1 A3 A2

where

A =
a a a&quot;

p p p p
Of off -r\ oc. a a&quot; a &quot;

P P P ,
D=

ft

,

p, p,,

y Y y&quot; y
&quot;

9. Derive the equations of the edge of regression of the rectifying developable

by the method of 28.

10. Derive the results of 29 without the aid of the moving trihedral.

1 1 . Find the envelope of the spheres whose diameters are the chords of a circle

through a point of the latter.

12. Find the envelope and edge of regression of the spheres which pass through
a fixed point and whose centers lie on a given curve.

13. Find the envelope and edge of regression of the spheres which have for

diametral planes one family of circular sections of an ellipsoid.

14. Find the envelope and edge of regression of the family of ellipsoids

(3^2

&amp;lt;j/2\ -j2

1 H - =
1, where a is the parameter.

15. Find the envelope of the family of spheres whose diameters are parallel

chords of an ellipse.

16. Find the equations of the canal surface whose curve of centers is a circular

helix and whose edge of regression has one branch. Determine the latter.

17. Find the envelope of the family of cones

(ax + x + y + z - 1) (ay + z)
- ax (x + y + z - 1) = 0,

where a is the parameter.



CHAPTER III

LINEAR ELEMENT OF A SURFACE. DIFFERENTIAL PARAMETERS.
CONFORMAL REPRESENTATION

30. Linear element. Upon a surface
,
defined by equations in

the parametric form

(1) x =fi (i*, v), y =/a (w, v), 2 =/, (M, v),

we select any curve and write its equations $ (u, v) 0. From 3

we have that the linear element of the curve is given by

(2) d?

fa j t foj j dij ,
t dy , , dz ,

,

dz
where ax = du -\

--
av, ay = au + -^ vf

2 = aw H---
^M ^v ^w 9 du dv

the differentials
&amp;lt;^w,

dv satisfying the condition

2$ , a^ ,
c?w + dv = 0.

^w dv

ifweput

du dv cu cv du dv

or, in abbreviated form,

equation (2) becomes

(4) oV2 = Edu? + 2 Fdudv + G dv2
.

The functions E, F, G thus denned were first used by Gauss.*

When the surface is real, and likewise the curvilinear coordinates

*
Disquisitiones generates circa superficies curvas (English translation by Morehead

and Hiltebeitel), p. 18. Princeton, 1902. Unless otherwise stated, all references to Gauss

are to this translation.

70
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w, v, the functions Vj, # are real. We shall understand also that

the latter are positive. There is, however, an important excep
tional case, namely when both E and G are zero (cf. 35).

For any other curve equation (4) will have the same form, but

the relation between du and dv will depend upon the curve.

Consequently the value of c7s, given by (4), is the element of arc

of any curve upon the surface. It is called the linear element of
the surface (cf. 20). However, in order to avoid circumlocution,
we shall frequently call the expression for ds2

the linear element,
that is, the right-hand member of equation (4), which is also called

the first fundamental quadratic form. The coefficients of the lat

ter, namely E, F, G, are called the fundamental quantities of the

first order.

If, for the sake of brevity, we put

(5)
d(u, v)

du du

dz d(u, v) d(u, v)

dv dv

it follows from (3) and (5) that

(6) EG - F2 = A2+ B2+ C2
.

Hence when the surface is real and likewise the parameters,
the quantity EGF2

is different from zero unless J, B, and C
are zero. But if A, B, and C are zero, it follows from (5) that u
and v are not independent, and consequently equations (1) define

a curve and not a surface. However, it may happen that for

certain values of u and v all the quantities J, B, C vanish.

The corresponding points are called singular points of the sur

face. These points may be isolated or constitute one or more

curves upon the surface ; such curves are called singular lines.

In the following discussion only ordinary points will be con

sidered.

From the preceding remarks it follows that for real surfaces,

referred to real coordinate lines, the function H defined by

(?) 1

is real, and it is positive by hypothesis.
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31. Isotropic developable. The exceptional case, where the surface is imaginary

and H is zero, is afforded by the tangent surface of a minimal curve. The equa

tions of such a surface are (cf . 22)

/I
w2 1 w2

(u) du + (M) u,

=
ju(f&amp;gt;(u)

du +
u&amp;lt;j&amp;gt; (u) v,

where 0(w) is a function of u different from zero. It is readily found that J=v2 2
(w),

F = G 0, and consequently EG F2 = 0. This equation is likewise the sufficient

condition that the surface be of the kind sought. For, when itjs satisfied, the equa

tion of the linear element can be_written ds2 = (Vjdw + V(?dw)
2

. If X denote an

integrating factor of \^Edu -f- V(?du, and a function MI be defined by the equation

\(\fEdu + VGdv) dwi, the above equation becomes ds2 = duf. Hence, if we
A&quot;**

take for parametric curves u\ const, and any other system for vi = const.
,
we

have FI = 0, GI = 0. In other form these equations are

3v

In accordance with the last equation we put

01?! 2 8i?i

where A; is undetermined.

By integration we have

r

X, M, v being functions of HI alone. When these values are substituted in the first

of the above equations of condition, we get

to be satisfied by X, /A, and v.

The equation of the tangent plane to the surface (i)
is reducible to

(1
-

W]l

2
) (X - x) + i (1 + w-2

) (
Y -

y) + 2 Ml (Z
-

z)
= 0.

Hence the surface is developable. Since its edge of regression is a minimal curve

(Ex. 4, p. 69), the theorem is proved. The surface is called an isotropic developable.

32. Transformation of coordinates. It is readily found that the

functions E, F, G are unaltered in value by any change of the

rectangular axes. But now we shall show that these functions

change their values when there is a change of the curvilinear

coordinates.
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Let the transformation of coordinates be defined by the equations

(8) u = u(u^ Vj), v = v(ul,vl);

then we have

dx _ dx du dx dv dx _ dx du dx dv

du, du du, dv du. dv. du dv, dv dvi i i i 11
we find the relations

(9) E
du dv

fa
dv du dv

dv. dv, du,1 11 d^ dv
l

Hence the fundamental quantities of the first order assume new
forms when there is a change of curvilinear coordinates.

From (8) we have, by differentiation,

du du dv dv
du = du

l -\ aVj, dv du. + - dv..
du. dv. du, dv,11 11

Solving these equations for duv dv^ we get

l/dv , du , \ 1 / dv , .
du

where

(10)

Hence we have

d(u, v)

du 8 dv
l

dv

(du

\ &quot;du

so that

(12) 1 ^
From (9) we find the relation
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By means of this equation and the relations (11), we can transform

equations (9) into the following :

(13)

^^\^2F^ l + G(1

du

EG I*

E
fa

1
to

1 __F (faito1
&amp;lt;

i-

0V,

du

cu^ ct\

cu cu

r^
1

EG-

cv CM
,T /&quot; Jj&amp;lt;2 Tfi S~1 WA
1^1 1

JG/Cr .T

33. Angles between curves. The element of area. Upon a para

metric line v = const, we take for positive sense the direction

in which the parameter u increases, and likewise upon a curve

u = const, the direction in which v increases. If
efe,,

and e?sM denote

the elements of arc of curves v const, and u = const, respec

tively, we find, from (4),

(14) ds
v
= ^Edu, dsu

= ^Gdv.

Hence, if a
w , #, yv

and
M , /9M , yu denote the direction-cosines of the

tangents to these curves respectively, we have

fa

du

1 dx

cu
&quot;*&amp;lt;/E du

cy &amp;lt; 1 dz

We have seen that through an ordinary point of a surface

there passes one curve of parameter u and one of parameter v.

If, as in fig. 11, &) denotes the angle, between and 180,

formed by the positive directions of the tangents to these curves

at the point, we have

(15)

and

(16)

cos ft) = aa + , + 77 W
= -7==

sin &) = VJSQ--F* H
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When two families of curves upon a surface are such that

through any point a curve of each family, and but one, passes,

and when, moreover, the tangents at a point to the two curves

through it are perpendicular, the curves are said to form an

orthogonal system. From (15) we have the theorem:

A necessary and sufficient condition that the parametric lines upon
a surface form an orthogonal system is that F = 0.

Consider the small quadrilateral (fig. 11) whose vertices are

the points with the curvilinear coordinates (u, v), (u -f du, v),

(u, v + dv), (u + du, v + dv). To within terms of higher order the

opposite sides of the figure are equal. Consequently it is approxi

mately a parallelogram whose sides

are of length vE du and \ G dv and

the included angle is o&amp;gt;. The area

of this parallelogram is called the

element of area of the surface. Its

expression is

(17) d^ = sin CD VEG dudv =H dudv.

/(u+du.v)

FIG. 11

If C is any curve on a surface, the direction-cosines a,

its tangent at a point have the form

dy /dy du dy dv
/-/ __ _. __ ^ ,-^--

I ^4^n ,_ __1
g&amp;lt; _

ds \cu ds dv ds

7 of

dx /dx du dx dv_ _ I _ __ _
I ___ _

ds cu ds dv ds

dz _ /dz du cz dv
J ~

ds~\^uds dv ~ds

If we put dv/du = X and replace ds by the positive square root of

the right-hand member of (4), the above expressions can be written

dv

(18) du dv

7 =
du dv
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From these results it is seen that the direction-cosines depend
not upon the absolute values of du and dv, but upon their

ratio X. The value of X is obtained by differentiation from the

equation of (7, namely

(19)

Let C
l
be a second curve meeting C at a point M, and let

the direction-cosines of the tangent to C
l

at M be av /3V yr

They are given by

&quot;

l
du 8s dvW

and similar expressions for /3t and 7^ where 8 indicates variation

in the direction of Cr
If 6 denotes the angle between the positive directions to C and

C
l
at M, we have, from (18) and (20),

Eduu + F(du 8v -f dv 8u] +Gdv8v
(21) cos = #tf

x+ ppj+ 77j
= i

j-^

and
sin 9 = Vl - cos = H

(8u

dv 8v du

8s ds 8s ds

This ambiguity of sign is due to the fact that 6 as denned is one

of two angles which together are equal to 360. We take the

upper sign, thus determining 6. This gives

/nft . . Q Tr /8udv 8v du\
(22) sm6 = H -_ -__.

\09 d8 08 ds/

The significance of the above choice will be pointed out shortly.

When in particular C
l

is the curve v = const, through M, we

have 8v = and 8s = VE 8u, so that

/00 . ~ 1 { -^du T,dv\ . a If dv
(23) cos&amp;lt;9 = = j + .F U 81X100=-=

ds ds/

From these equations we obtain

(24) tan* =
Edu+Fdv

The angle co between the positive half tangents to the para

metric curves has been uniquely denned. Hence there is, in
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general, only one sense in which the tangent to the curve v = const,

can be brought into coincidence with the tangent to the curve

u = const, by a rotation of amount co. We say that rotations in

this direction are positive, in the opposite sense negative. From

(23) it is seen that is the angle described in the positive sense

when the positive half tangent to the curve v = const, is rotated

into coincidence with the half tangent to C. And so in the general

case 6, defined by (22), is the angle described in the positive rota

tion from the second curve to the first.

From equations (15), (16), and (23) we find

(26)

These equations follow also directly from (20) and (21) by consid

ering the curve u = const, as the second line.

As an immediate consequence of equation (21) we have the

theorem :

A necessary and sufficient condition that the tangents to two curves

upon a surface at a point of meeting be perpendicular is

(26) E du Su + F(du Sv + dv 8u) + G dv $v = 0.

EXAMPLES

1. Show that when the equation of a surface is of the form z =/(, y), its linear

element can be written

ds2 = (1 + p2
)
dx2 + 2pqdxdy + (l + q

2
) dy

2
,

where p = dz/dx, and q = cz/dy. Under what conditions do the lines x = const.
,

y = const, form an orthogonal system ?

2. Show that the parametric curves on the sphere

x = a sin u cos v, y = a sin u sin u, z = a cos u

form an orthogonal system. Determine the two families of curves which meet the

curves v = const, under the angles ir/4 and 3 7r/4. Find the linear element of the

surface when these new curves are parametric.

3. Find the equation of a curve on the paraboloid of revolution x = wcosu,

y = itsinu, z = w2
/2, which meets the curves v = const, under constant angle a

and passes through two points (MO , i&amp;gt;o), (MI, i). Determine a as a function of

4. Find the differential equation of the curves upon the tangent surface of a

curve which cut the generators under constant angle a.
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.

5. Show that the equations of a curve which lies upon a right cone and cuts all

the generators under the same angle are of the form x = ce &quot;

cosu, y cesinw,

2 = 6e&quot;,
where a, 6, and c are constants. What is the projection of the curve upon

a plane perpendicular to the axis of the cone ? Find the radius of curvature of

the curve.

6. Find the equations of the curves which bisect the angles between the para

metric curves of the paraboloid in Ex. 3.

34. Families of curves. An equation of the form

(27) &amp;lt;(w, v)=c,

where c is an arbitrary constant, defines an infinity of curves, or a

family of curves, upon the surface. Through any point of the sur

face there passes a curve of the family. For, given the curvilinear

coordinates of a point, when these values are substituted in (27)

we obtain a value of c, say C
Q ; then evidently the curve $ = c

passes through the point. We inquire whether this family of

curves can be defined by another equation. Suppose it is possible,

and let the equation be

(28) ^(U,V) = K.

Since c and K are constant along any curve and vary in passing

from one curve to another, each is necessarily a function of the

other. Hence i|r
is a function of fa Moreover, if

ifr
is any

function of fa equations (27) and (28) define the same family of

curves.

From equation (24) it is seen that the direction, at any point, of

the curve of the family through the point is determined by the

value of dv/du. We obtain the latter from the equation

36 , d&amp;lt;f&amp;gt;

_

(29 ) g*H.2*.i.&amp;lt;*

which is derived from (27) by differentiation.

Let $ (u, v)
= cbe an integral of an ordinary differential equation

of the first order and first degree, such as

(30) M(u, v)
du 4- N(u, v) dv = 0.

The curves defined by the former equation are called integral curves

of equation (30). From the integral equation we get equation (29)

by differentiation. It must be possible then to obtain equation (30)
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from the integral equation and (29). But c does not appear in

(29), consequently the latter equation differs from (30) by a factor

at most. Hence M N = 0. Suppose, now, that we have
dv du o . o ,

another integral of (30), as ^Hw, v)
= e. Then M -^- N -^- = 0.

dv cu

The elimination ofM and N from these equations gives
^ ^ =

;

d(u,v)
from which it follows that ty is a function of

&amp;lt;/&amp;gt;.

Moreover, ^r can

by any function of &amp;lt;. But we have seen that if ^ is a function

of
&amp;lt;,

the families of curves
&amp;lt;/&amp;gt;

= const, and
-fy
= const, are the same.

Hence all integrals of equation (30) of the form
&amp;lt;f&amp;gt;=c

or ^ = e

define the same family of curves. However, equation (30) may
admit of an integral in which the constant of integration enters

implicitly, as F(u, t&amp;gt;, c)
= 0. But if this be solved for

&amp;lt;?,

we obtain

one or more integrals of the form (27). Hence an equation of the

form (30) defines one family of curves on a surface. Although
the determination of the curves when thus defined requires the

integration of the equation, the direction of any curve at a point

is given directly by means of (24).

If at each point of intersection of a curve C
l
with the curves

of a family the tangents to the two curves are perpendicular to

one another, Cl
is called an orthogonal trajectory of the curves. Sup

pose that the family of curves is defined by equation (30). The
7 r\

relation between the ratios and &amp;gt; which determine the direc-
du ou

tions of the tangents to the two curves at the point of intersection,
r\

~~\/T

is given by equation (26). If we replace by , we obtain
cu A

(31) (EN- FM) du + (FN GM) dv = 0.

But any integral curve of this equation is an orthogonal trajectory

of the given curves. Hence a family of curves admits of a family
of orthogonal trajectories. They are defined by equation (31),

when the differential equation of the curves is in the form (30).

But when the family is defined by a finite equation, such as (27),

the equation of the orthogonal trajectories is

(32)
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As an example, we consider the family of circles in the plane with centers

on the x-axis whose equation is

(i) x2 + y2 - 2 ux - a2
,

where u is the parameter of the family and a is a constant. In order to find the

orthogonal trajectories of these curves, we take the lines x = const.
, y = const.

for parametric curves, in which case

E = G = 1, F = 0,

3?
and write the equation (i)

in the form (27), thus

x + i
(y

2 - a2
)
= 2 u.

x

Now equation (32) is 2 xy dx (x
2 y2 + a2) dy = 0, of which the integral is

where v is the constant of integration. Hence the orthogonal trajectories are circles

whose centers are on the y-axis.

An ordinary differential equation of the second degree, such as

(33) H (u, v) du
2+ 2 S(u, v) du dv + T(u, v) dv

2 = 0,

is equivalent to two equations of the first degree, which are found

by solving this equation as a quadratic in dv. Hence equation (33)

defines two families of curves upon the surface. We seek the con

dition that the curves of one family be the orthogonal trajectories

of the other, or, in other words, the condition that (33) be the equa
tion of an orthogonal system, as previously defined. If &

x
and Jc

2

denote the two values of - obtained from (33), we have
du

From (26) it follows that the condition that the two directions at

a point corresponding to K
I
and K

Z
be perpendicular is

E + FK + tc + GK = 0.

If the above values are substituted in this equation, we have

the condition sought; it is

(34)
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35. Minimal curves on a surface. An equation of the form (33)

is obtained by equating to zero the first fundamental form of

a surface. This gives

Edv?+ ZFdudv + Gdv2= 0,

and it defines the double family of imaginary curves of length

zero which lie on the surface. In this case equation (34) reduces

to JSG F2 =0; hence the minimal lines on a surface form an

orthogonal system only when the surface is an isotropic develop

able
( 31).

An important example of these lines is furnished by the system
on the sphere. If we take a sphere of unit radius and center at

the origin, its equation, x2+ y*+ z
2 = l, can be written in either of

the forms

1 z x -f iy

where u and v denote the respective ratios, and evidently are conju

gate imaginaries. If these four equations are solved for z, ?/, z, we find

u -h v i(v u) uv 1
s** -, A i i -.--, \ f_ A ,

9

~uv+l uv +\ uv+1

From these expressions we find that the linear element, in terms

of the parameters u and v^ is given by

,o 4:dudv
(36)

(1 +

Hence the curves u = const, and v const, are the lines of length
zero.

Eliminating u from the first two and the last two of equations

(35), we get
x 4- (1 v*)y 2 iv = 0,

(37) 1

i(i? + l)z + 2vy+i(l-v
z

)
= 0.

Hence all the points of a curve v = const, lie on the line

v
z

)Y 2iv = Q,
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where X, F, Z denote current coordinates. In consequence of (35),

these equations can be written

X-x, Y-y. Z-z,

where #
, y^ z are the coordinates of a particular point. In like

manner the curves u = const, are the minimal lines

X-x. Y-y. ,= Z-z,

EXAMPLES

1 . Show that the most general orthogonal system of circles in the plane is that

of the example in 34.

2. Show that on the right conoid x = ucosv, y = usinv, z = au, the curves

dw2
(w

2
-f a2

)
dv2 = form an orthogonal system.

3. When the coefficients of the linear elements of two surfaces,

ds 2 = Erfu* + 2 Fidudv + Gidv2
,

ds* = E2du? + 2 F2dudv + G2di;
2

,

are not proportional, and points with the same curvilinear coordinates on each of

the surfaces are said to correspond, there is a unique orthogonal system on one

surface corresponding to an orthogonal system on the other; its equation is

(Fi^a
- FzEi)du* + (EaGi - EiGz) dudv +(GiFz - G2Fi)du

2 = 0.

4. If 61 and 2 are solutions of the equation

a^
At/ _ u,

dag/3 2 da 8?

where X is any function of a and /J,
the equations

+*5 3 2* .

define a surface referred to its minimal lines.

36. Variation of a function. Let S be a surface referred to any

system of coordinates ?/, v, and let
&amp;lt;j&amp;gt; (w, v) be a function of u and v.

When the values of the coordinates of a point Tlif of the surface are

substituted in
&amp;lt;,
we obtain a number c

;
and consequently the curve

(38)
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passes through M. In a displacement from M along this curve the

value of
(f&amp;gt;

remains the same, but in any other direction it changes

and the rate of change is given by

d d$ k
dc) du dv

where k dv/du determines the direction. As thus written it is

understood that the denominator of the right-hand member is

positive.

For the present we consider the absolute value of ~-t and write
ds

(39)
ds

du dv

where e is 1 according as the sign of the numerator is positive or

negative. The minimum value of A is zero and corresponds to the

direction along the curve (38). In order to find the maximum value

we equate to zero the derivative of A with respect to Jc. This gives

From (32) it follows that this value of k determines the direction

at right angles to the tangent to $ = c at the point. By substituting

this value of k in (39) we get the maximum value of A. Hence:

The differential quotient
-^-

of a function &amp;lt;f&amp;gt; (w, v) at a point on a
ds

surface varies in value with the direction from the point. It equals

zero in the direction tangent to the curve
&amp;lt;f&amp;gt;=

c, and attains its greatest

absolute value in the direction normal to this curve, this value being

m^\-ZF-z-z-+G
dv du dv

&amp;lt;

4
&amp;gt;

;

S
A means of representing graphically the magnitude of the differ

ential quotient A for any direction is given by the following theorem :

If in the tangent plane to a surface at a point M the positive half

tangents at M, corresponding to all values of k, positive and negative,
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be drawn, and on them the corresponding lengths A be laid offfrom M,

the locus of the extremities of these lengths is a circle tangent to the

curve &amp;lt;= const.

The proof of this theorem is simplified if we effect a transfor

mation of curvilinear coordinates. Thus we take for the new coor

dinate lines the curves
(f&amp;gt;

const, and their orthogonal trajectories.

We let the former be denoted by u
v

const, and the latter by
v
l
= const., and indicate by subscript 1 functions in terms of these

parameters. Now F
l
= 0, so that

-t J. 7

where \ denotes the value of dvjdu^ which determines a given

direction, and the maximum length is (J&\)~*. From (23) we have

cos =
. sin =

where 6
Q

is the angle which the given direction makes with the

tangent to the curve v
l
= const. Hence if we regard the tangents

at M to the curves v
l

const, and u
l
= const, as axes of coordinates

in the tangent plane, the coordinates of the end of a segment of

length A are

The distance from this point to the mid-point of the maximum

segment, measured along the tangent to v
t
= const., is readily

found to be -=&amp;lt;&amp;gt; which proves the theorem.

37. Differential parameters of the first order. If we put

(41) A^ =

equation (40) can be written

(3) -**

where now the differential quotient corresponds to the direction

normal to the curve &amp;lt;&amp;gt;

= const. The left-hand member of this
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equation is evidently independent of the nature of the parameters
u and v to which the surface is referred. Consequently the same

is true of the right-hand member. Hence A^ is unchanged in

value when there is any change of parameters whatever. The

full significance of this result is as follows. Given a new set of

parameters defined by M=/I (M I , i^), v=/2 (w 1 , v^\ let ^(u^ vj
denote the result of substituting these expressions for u and v in

&amp;lt;

(w, v), and write the linear element thus :

ds2 = E
l
du* + 2Fl

du
l
dv

l + G
l
dv*.

The invariance of A^ under this transformation is expressed by
the identical equation ,

EG-F

We leave it to the reader to verify this directly with the aid of

equations (9). The invariant A^ is called the differential parame
ter of the first order ; this name and the notation are due to Lame.*

Consider for the moment the partial differential equation

(42) A^ =

and a solution
&amp;lt;/&amp;gt;

= const. From the latter we get, by differentiation,

d&amp;lt;l&amp;gt;

,
, 3$ , A- du -f dv = 0.

du dv

O J O J

If we replace and in (42) by dv and du, which are evi

dently proportional to them, we obtain

Edu*+ 2 Fdudv + Gdv*= 0.

Hence the integral curves of equation (42) are lines of length zero,

and conversely if
(/&amp;gt;

= const, is a line of length zero, the function
&amp;lt;/&amp;gt;

is a solution of equation (42).

Another particular case is that in which A^ is a function of
&amp;lt;, say

(43) A,* = *&amp;lt;*).

* Lemons sur les coordonnees curvilignes et leurs diverses applications, p. 5. Paris, 1859.
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From (41) it is seen that when we put

equation (43) becomes

(44)
A

1
l9=l.

As denned, 6 is a function of $; hence the family of curves

6 const, is the same as the family &amp;lt;/&amp;gt;

= const. Suppose we have

such a family, and we take the curves 9 const, for the curves

u = const, and their orthogonal trajectories for v = const., thus

effecting a change of parameters. Since Aj%=l, it follows from

(41) that ^ = 1, and consequently the linear element is

(45) ds
2 =du? + Gdv2

.

Since now the linear element of a curve v const, is du, the length

of the curve between its points of intersection with two curves

u = u and u = u^ is u^ U
Q

. Moreover, this length is the same for

the segment of every curve v const, between these two curves.

For this reason the latter curves are said to be parallel. Con

versely, in order that the curves u = const, of an orthogonal sys

tem be parallel, it is necessary that the linear element of the

curves v = const, be independent of v. Hence E must be a func

tion of u alone, which, by a transformation of coordinates, can be

made equal to unity. Hence we have the theorem :

A necessary and sufficient condition that the curves of a family

(/&amp;gt;

= const, be parallel is that
\(f&amp;gt;

be a function of &amp;lt;f&amp;gt;.

Let
(f)
= const, and ^ = const, be the equations of two curves

upon a surface, through a point M, and let 6 denote the angle

between the tangents at M. If we put

E _ F + G
dv dv \dv du du dv / du du

(46) \(*,*)=--EG -I&quot;

the expression (21) for cos 6 can be written

(47) cos ,
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Since cos 6 is an invariant for transformations of coordinates, it

follows from this equation that A
x(0, ^r) also is an invariant. It is

called the mixed differential parameter of the first order. An imme

diate consequence of (47) is that

A,(*. *)
=

is the condition of orthogonality of the curves
(f&amp;gt;

= const, and

i/r
= const.

Now equation (22) can be written

r \du dv dv c

which by means of the function &amp;lt;e) (w, v), defined thus by Darboux,*

can be written in the abbreviated form

(49) sin 6 =

Since all the functions in this identity except (&amp;lt;^, ^r) are known

to be invariants, we have a proof that it also is an invariant. It

is a mixed differential parameter of the first order. From (47)

and (49) it follows that

(50) A,
2

(&amp;lt;, f ) +
2

((/&amp;gt;, t) - A^ A^ ;

consequently the three invariants denned thus far are not inde

pendent of one another.

From (41) and (46) it follows that

ri _
Tf&amp;lt; jfi

^U =W A^ ^=l^ AlV =^
and from these we find

(51)
2

(u, v)
= A,H V - A

i

2

(. )
=^

Consequently

@2

(w, t;)

2

(w, v)

Hence i, ^, and G1 are differential invariants of the first order.

* Lemons, Vol. Ill, p. 197.
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Another result of these equations is the following. If the param
eters of the surface are changed in accordance with the equations

Ui
=

Ui(u, v), v^v^u, v),

and the resulting linear element is written,

ds* = E
l
du*+ 2 F

l du^dv^+ 6^ dv*,

the value of E
l
is given by

and 7^ and 6^ are found in like manner. In consequence of (51)

these equations are equivalent to (13), which were found by direct

calculation.

38. Differential parameters of the second order. Thus far we

have considered differential invariants of the first order only. We
introduce now one of the second order, discovered by Beltrami.*

To this end we study the integral

n =

for an ordinary portion of the surface bounded by a closed curve C

(cf. 33). For convenience we put

Gz_ F d Ez_ F 3
*
du dv dv du

(53) M=---
, N=- - ,

so that, in consequence of (46), we have

This may be written

If we apply Green s theorem to the first integral, this equation

reduces to

(54) n= C(j&amp;gt;(Mdv-Ndu)- ff$(^+
(

j^}
dudv

&amp;gt;

*Ricerche di analisi applicata alia geometria, Giornale di matematiche, Vol. II

(1864), p. 365.
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where the first integral is curvilinear and is taken about C in the

customary manner. Evidently du and dv refer to a displacement

along C. If we indicate by 8 variations in directions normal to C

and directed toward the interior of the contour, then from (23)

and (25) it follows that

Edu + Fdv _-H8v F du + G dv __

~dT ~ST ds 8s

Hence Mdv
du Ss dv 8*/ 8s

All of the terms in this equation, with the exception of
(
- h -r

)
&amp;gt;

H\du dv J

are independent of the choice of parameters. Hence the latter is

an invariant. It is called the differential parameter of the second

order and is denoted by A2i/r.
In consequence of (53) we have

.....

(56)

In the foregoing discussion it has been assumed that only real

quantities appear. But all these results can be obtained directly

from algebraic considerations of quadratic differential forms *

without any hypothesis regarding the character of the variables ;

hence the differential parameters can be used for any kind of

curvilinear coordinates.

In addition to A
2 c/&amp;gt;

there are other differential invariants of the

second order, such as

And AA Q, i/r), A, (A^, A^), (A

are mixed invariants of the second order. In like manner we can

find a group of invariants of the third order ;
for instance,

AAM&amp;gt;, AA(4&amp;gt;.M&amp;gt;)&amp;gt; A.A,*, AA*.

* Cf. Bianchi, Lezioni di geometria differenziale, Vol. I, chap. ii. Pisa, 1902.
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These invariants and others, which can be obtained by an evident

extension of this method, involve functions
c/&amp;gt;, A/T,

.

, E, F, G, and

their derivatives.

Conversely, we shall show * that every invariant of the form

T ftw v r dE dG *W I ^/==/(A ^ tr, -, -, 0, -^-, -, i/r, -^L, ),dw di&amp;gt; dw du

where
&amp;lt;, -^,

. . . are independent functions, is expressible by means

of the symbols A and . Already we have seen that E, F, and G
can be expressed in terms of A

xw, A xv, and A 1 (w, v). Moreover, from

(48) it follows that

when X is any function whatever. Hence all the terms in / can be

expressed in terms of the symbols A and
, applied to

Since u and v do not appear explicitly in /, we can effect a change
of parameters, replacing u and v by &amp;lt;/&amp;gt;

and ty respectively, and con

sequently we express / in terms of
(/&amp;gt;, ^, , and the differential

invariants obtained by applying the operators A and &amp;lt;*) to these

functions. In case $ is the only function appearing in /, we can

take for
i/r,

in the change of parameters, any invariant of
c/&amp;gt;,

such as

A^ or A
2 &amp;lt;,

so long as it is not a function of
(/&amp;gt;,

E, F&amp;gt;
or G.

EXAMPLES
4

1 . When the linear element of a surface is in the form

ds2 = \(du^ + dv^),

where X is a function of u and D, both u and v are solutions of the equation A2 =
0,

the differential parameter being formed with respect to the right-hand member.

2. Show that on the surface

x = u cos u, y = u sin v, z = av -f- (u),

the curves it = const, are parallel.

3. When the linear element is in the form

ds2 = cos^adu2 + sin2 a: eh?2
,

where a is a function of u and u, both u and v are solutions of the equation

* Cf. Beltrami, I.e., p. 357.
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4. If the curves = const., \p
= const, form an orthogonal system on a surface,

the projection on the x-axis of any displacement on the surface is given by

dx d\b dx dd&amp;gt;

dx = - = + 2= ,

* A0

where ds and da- are the elements of length of the curves = const., ^ = const.

respectively.

5. If /and are any functions of u and u, then

. a/ a0 i if a0 /3A A . , a/a0.
, 0) = ^-

--^ AIU + (^
- + - - A! (w, u) + ^ ^ Aii&amp;gt;,

du du \cu cv cv du/ cv cv

A2/ = ^A2w + ^A2u + ^AlW + 2^- Ai(u, v) + ^AiU.
CM CU SU2 0ttCtJ SV2

39. Symmetric codrdinates. We have seen that through every

point of a surface there pass two minimal curves which lie entirely

on the surface, and that these curves are defined by the differential

equation Edv?+2 Fdudv + G dv
2= 0.

If the finite equations of these curves be written

a (w, v)
= const., fi (w, v)

= const.,

it follows from (42) that

(5T) A, ()=&amp;lt;),
A

1 (/3)
= 0.

Since for any parameters

/^\ w =

when the curves a ~ const., ft = const., are taken as parametric,

the corresponding coefficients E and G are zero, and consequently
the linear element of the surface has the form

(59) ds
2 = \ dad/3,

where, in general, X is a function of a and {3. Conversely, as fol

lows from (58), when the linear element has the form (59) equa
tions (57) are satisfied and the parametric curves are minimal.

Hence the only transformations of coordinates which preserve this

form of the linear element are those which leave the minimal lines

parametric, that is

(60) or
a = -
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where F and F
l
are arbitrary functions. Whenever the linear ele

ment has the form (59), we say that the parameters are symmetric.

The above results are given by the theorem :

When a and ft are symmetric coordinates of a surface, any two

arbitrary functions of a and ft respectively are symmetric coordi

nates, and they are the only ones.

The general linear element of a surface can be written as the

product of two factors, namely

(61) d**:

If t and t
1
denote integrating factors of the respective terms of the

right-hand member of this equation, a pair of symmetric coordinates

is given by the quadratures

(62)

When these values are substituted in (61), and the result is com

pared with (59), it is seen that X =
tt

l

The first of equations (62) can be replaced by

, da ^FiH da&amp;gt;=
&amp;gt;

t

du

Eliminating t from these equations, we have

E^-F^
dv du . ccc,

&amp;lt;

63
&amp;gt;

-
IT =l

Tu

If this equation be multiplied by
:

~ Z

the result can be

reduced to

r*-o
dv cu . dec
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From these equations it follows that

or, by (56),

(65) A
2
tf = 0.

It is readily found that /3 also satisfies this condition.

40. Isothermic and isometric parameters. When the surface is

real, and the coordinates also, the factors in (61) are conjugate

imaginary. Hence the conjugate imaginary of t can be taken

for tr In this case a and fi are conjugate imaginary also. In

what follows we assume that this choice has been made, and write

(66) a =
&amp;lt;+ty,

=
&amp;lt;/&amp;gt; iyfr.

If these values be substituted in (59), we get

(67) ds* =
\(d&amp;lt;t&amp;gt;

2

+d^).

At once we see that the curves
c/&amp;gt;

= const, and ^r
= const, form

an orthogonal system. Moreover, the elements of arc of these

lines are V\d-*fr and
^\d(f&amp;gt; respectively. Consequently when the

increments
d&amp;lt;f&amp;gt;

and d^ are taken equal, the four points (&amp;lt;, i/r),

(&amp;lt;f)
-f c?&amp;lt;, i/r), ($, i/r -f efo/r), (&amp;lt;

-f tity, ^ -f eityr)
are the vertices of a

small square. Hence the curves
(f&amp;gt;

= const, and
^|r
= const, divide

the surface into a network of small squares. On this account

these curves are called isometric curves, and
&amp;lt;f&amp;gt;

and ty isometric

parameters. These lines are of importance in the theory of heat,

and are termed isothermal or isothermic, which names are used

in this connection as synonymous with isometric.

Whenever the linear element can be put in the symmetric form,

equations similar to (66) give at once a set of isometric parameters.

And conversely, the knowledge of a set of isometric parameters leads

at once to a set of symmetric parameters. But we have seen that when

one system of symmetric parameters is known, all the others are

given by equations of the form (60). Hence we have the theorem :

Given any pair of real isometric parameters &amp;lt;, -v/r for a surface ;

every other pair &amp;lt;

x , ty 1
is given by equations of the form

where F and F
Q
are any functions conjugate imaginary to one another.
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Consider, for instance, the case

(68) * 1+^ 1
= ^(0+i.

From the Cauchy-Riemann differential equations

(69) ?*i = *i, ?& = _?*i,
d&amp;lt;l&amp;gt; c^ 3^ 8&amp;lt;f&amp;gt;

it follows that
(f) l

and ^ l
are functions of both &amp;lt; and

T/T.
Hence

the curves
&amp;lt;/&amp;gt; 1
= const., ^ 1

= const, are different from the system

&amp;lt;f&amp;gt;
const., T/T

= const. Similar results hold when + i is replaced

by i in the argument of the right-hand member of (68). Hence

There is a double infinity of isometric systems of lines upon a sur

face; when one system is known all the others can be found directly.

If the value (66) for a be substituted in the first of equations (57),
the resulting equation is reducible to

Since
&amp;lt;f&amp;gt;

and ^r are real, this equation is equivalent to

(70) A^A.VT, A
1(^,f) = o.

From (58) it is seen that these equations are the condition that

E G, F= 0, when
&amp;lt;f&amp;gt;

and
i/r

are the parameters. Hence equations

(70) are the necessary and sufficient conditions that $ and
i/r

be

isometric parameters.

Again, when a in (65) is replaced by &amp;lt;/&amp;gt;+ i^r, and all the func

tions are real, we have
f

(71) A 2*=0,

Conversely, when we have a function
(f&amp;gt; satisfying the first of these

equations, the expression

cu cv , on ov ,

dv

is an exact differential. Call it d^r ; then

jr^ E G F
du_dv^_c^r du c)v

H ~~du H
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If these equations be solved for we get
du dv

/r
_ ox dv du dd&amp;gt; dv du

d&amp;lt;f&amp;gt;

(&amp;lt;o)

=
&quot;&amp;gt;

=
H du H dv

When we express the condition ( )
=

( )
&amp;gt; we find that

dv\duj du\dvj

A
2-/r=0. Moreover, these two functions

(f&amp;gt;

and ^ satisfy (70),

in consequence of (72) and (73), and therefore they are isometric

parameters. Hence :

A necessary and sufficient condition that
&amp;lt;f&amp;gt;

be the isometric param
eter of one family of an isometric system on a surface is that A

2 c/&amp;gt;

=
;

the isometric parameter of the other family is given by a quadrature.

Incidentally we remark that if u and v are a pair of isometric

parameters, equations (72) and (73) reduce to (69).

41. Isothermic orthogonal systems. If the linear element of a

surface is given in the form (67) and the parameters are changed
in accordance with the equations

the linear element becomes

where the accents indicate differentiation. However, this trans

formation of parameters has not changed the coordinate lines ;

the coefficients are now no longer equal, but in the relation

&amp;lt;&amp;gt; i-f
where U and V denote functions of u and v respectively.

Conversely, when this relation is satisfied the linear element

may be written

and by the transformation of coordinates,

(75) 4&amp;gt;

= C^/lfdu, ^ = C



96 LINEAR ELEMENT OF A SURFACE

it is brought to the form (67), whatever be U and V\ and the coor

dinate lines are unaltered. Hence :

A necessary and sufficient condition that an orthogonal system of

parametric lines on a surface form an isothermic system is that the

coefficients of the corresponding linear element satisfy a relation of

the form (74).

We seek now the necessary and sufficient condition which a

function o&amp;gt; (w, v) must satisfy in order that the curves o&amp;gt;
= const.

and their orthogonal trajectories form an isothermic system.

Either
o&amp;gt;,

or a function of it, is the isothermic parameter of the

curves o&amp;gt;
= const. We denote this parameter by &amp;lt;/&amp;gt;;

then
&amp;lt;/&amp;gt;=/()

.

Since
&amp;lt;/&amp;gt;

must be a solution of equations (71), we have, on substitution,

(76) A
2

o&amp;gt; ./ (G&amp;gt;)
+

\a&amp;gt; ./&quot;(a&amp;gt;)

= 0,

where the primes indicate differentiation with respect to &&amp;gt;. If this

equation is written in the form

we see that the ratio of the two differential parameters is a func

tion of co. Conversely, if this ratio is a function of
o&amp;gt;,

the function

/(a&amp;gt;),
obtained by two quadratures from

(77) / (*&amp;gt;)

=
*-/&amp;gt;,

will satisfy equations (71). Hence:

A necessary and sufficient condition that a family of curves

a) = const, and their orthogonal trajectories form an isothermic sys

tem is that the ratio of A 2
&&amp;gt; and AjO) be a function of &&amp;gt;.

Suppose we have such a function w
;
then the orthogonal tra

jectories of the curves &&amp;gt;
= const, can be found by quadrature ; for,

the differential equation of these trajectories is

(78^

\~ dv
-

du/
&quot;-

\~ dv
-
Su

If equation (76) be written in the form

I *f&amp;gt;
dv du v i

, . wu t/i/ n
f (&)) H I r (ft)) = u,O I *^ \ / TT- * r\ I 4/ \ / -TT-

&amp;lt;7V
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it is seen that an integrating factor of equation (78) is f (a))/H,

where f (co)
is given by (77). Hence /() and the function

&amp;lt;f,

obtained by the quadrature

__#&&amp;gt; ^cto s^fo -rJo&amp;lt;*

are a pair of isometric parameters. From these equations and (77)

it follows that

and consequently, by means of (52), the linear element can be

given the form

(80) ds* = (da* +
8/sS d &quot;

ctyA
A^ x

The linear element of the plane referred to rectangular axes is ds2 = dx2
4- dy2

.

Consequently x and y are isothermic parameters, and we have the theorem :

The plane curves whose equations are obtained by equating to constants the real

and imaginary parts of any function of x + iy or x - iy form an isothermal orthog

onal system ; and every such system can be obtained in this way.

c2

For example, consider 4- ty = --
x iy

where c is any constant. From this it follows that

x2 4- yz x2
4- y2

Hence the circles = const., $ = const, form an isothermal orthogonal system,

and and ^ are isothermic parameters.

The above system of circles is a particular case of the system considered in 34.

We inquire whether the latter also form an isothermal system. If we put

u = x 4-
i

(2/
2 - 2

),

1 2d)
we find that AIO&amp;gt;

= (w
2
4- 4 a2

), A^u =
x2 x2

Hence the ratio of AIW and A2W is a function of w, and consequently the system of

circles is isothermal. From (77) it follows that the isothermic parameter of the

first family is = tan- 1
,
and the parameter of the orthogonal family is

2 a 2 a

1 w x2 4- a2

\b tanh-1 &amp;gt;

w = y 4
2 a 2 a y
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EXAMPLES

1. Show that the meridians and parallels on a sphere form an isothermal orthog
onal system, and determine the isothermic parameters.

2. Show that a system of confocal ellipses and hyperbolas form an isothermal

orthogonal system in the plane.

3. Show that the surface

x _ I (a
2 - u) (a^v) y _ I (b*

- u) (b
2 -

v) z _ !

a
~
\ (a

2 - &2
) (a

2 - c2
)

b
~
\ (6

2 - a2
) (6

2 - c2
) c

~~

\
(
C2 _ U

) (
C2 _

f(c
2 -a2

)(c
2 -62

)

is an ellipsoid, and that the parametric curves form an isothermal orthogonal system.

4. Find the curves which bisect the angles between the parametric curves on

the surface % _ u + v y _ u _ v _ uv

a~ 2 b~&quot;~2~
=

2

and show that they form an isothermal orthogonal system.

5. Determine (v) so that on the right conoid x u cos v, y = u sin v, z =
&amp;lt;f&amp;gt; (v)

the parametric curves form an isothermal orthogonal system, and show that the

curves which bisect the angles between the parametric curves form a system of

the same kind.

6. Express the results of Ex. 4, page 82, in terms of the parameters and ^
defined by (66).

42. Conformal representation. When a one-to-one correspond

ence of any kind is established between the points of two sur

faces, either surface may be said to be represented on the other.

Thus, if we roll out a cylindrical surface upon a plane and say

that the points of the surface correspond to the respective points

of the plane into which they are developed, we have a representa

tion of the surface upon the plane. Furthermore, as there is no

stretching or folding of the surface in this development of it upon
the plane, lengths of lines and the magnitude of angles are unal

tered. It is evidently impossible to make such a representation of

every surface upon a plane, and, in general, two surfaces of this

kind do not admit of such a representation upon one another.

However, it is possible, as we shall see, to represent one surface

upon another in such a way that the angles between correspond

ing lines on the surfaces are equal. In this case we say that one

surface has conformal representation on the other.

In order to obtain the condition to be satisfied for a conformal

representation of two surfaces S and Sr

,
we imagine that they are

referred to a corresponding system of real lines in terms of the
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same parameters w, v, and that corresponding points have the same

curvilinear coordinates. We write their linear elements in the

respective forms

ds
2= Edu*+ 2 Fdudv + G dv2

,
ds 2= du*+ 2 F dudv + G dv*.

Since the angles co and to between the coordinate lines at corre

sponding points must be equal, it is necessary that

F F
(81)

y/EG

If and
Q
denote the angles which a curve on S and the corre

sponding curve on Sr

respectively make with the curves v = const.

at points of the former curves, we have, from (23) and (25),

. n H dv . . Q H du
sin = -

, sin
(to
-

)
= =

ds

. a ,
H dv

, , ai\ H du
sm 6 = =, sin

(to
1-

6[)
= -=

s V &amp;lt;&?

By hypothesis a&amp;gt;

r=a) and 6[ Q , according as the angles have

the same or opposite sense. Hence we have

H - H - H du~
ds

~

according to the sense of the angles. From these equations we find

which, in combination with (81), may be written

where t
2
denotes the factor of proportionality, a function of u and

v in general. From (83) it follows at once that

(84) ds *=t*

And so when the proportion (83) is satisfied, the equations (81)

and (82) follow. Hence we have the theorem :

A necessary and sufficient condition that the representation of two

surfaces referred to a corresponding system of lines be conformal is
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that the first fundamental coefficients of the two surfaces be propor
tional, the factor of proportionality being a function of the param
eters ; the representation is direct or inverse according as the relative

positions of the positive half tangents to the parametric curves on the

two surfaces are the same or symmetric.

Later we shall find means of obtaining conformal representations.

From (84) it follows that small arcs measured from correspond

ing points on S and S f

along corresponding curves are in the same

ratio, the factor of proportionality being in general a function of

the position of the point. Conversely, when the ratio is the same

for all curves at a point, there is a relation such as (84), with t a

function of u and v at most. And since it holds for all directions,

we must have the proportion (83). On this account we may say
that two surfaces are represented conformally upon one another

when in the neighborhood of each pair of homologous points corre

sponding small lengths are proportional.

43. Isometric representation. Applicable surfaces. When in par

ticular the factor t is equal to unity, corresponding small lengths

are equal as well as angles. In this case the representation is said

to be isometric, and the two surfaces are said to be applicable. The

significance of the latter term is that the portion of one surface in

the neighborhood of every point can be so bent as to be made to

coincide with the corresponding portion of the other surface with

out stretching or duplication. It is evident that such an applica

tion of one surface upon another necessitates a continuous array of

surfaces applicable to both S and $r This process of transformation

is called deformation, and S
l
is called a deform of S and vice versa.

An example of this is afforded by the rolling of a cylinder on

a plane.

Although a conformal representation can be established between

any two surfaces, it is not true, as we shall see later, that any two

surfaces admit of an isometric representation upon one another.

From time to time we shall meet with examples of applicable sur

faces, and in a later chapter we shall discuss at length problems

which arise concerning the applicability of surfaces. However,

we consider here an example afforded by the tangent surface of a

twisted curve.
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We recall that if #, y, z are the coordinates of a point on the

curve, expressed in terms of the arc, the equations of the surface are

of the form
f = x +^ v = y + y t, =z + z%

and the linear element of the surface is

d&amp;lt;r*
= /I + -\ dsz+ 2 dsdt + dt\

where p denotes the radius of curvature of the curve.

Since this expression does not involve the radius of torsion, it

follows that the tangent surfaces to all curves which have the

same intrinsic equation p =f(s) are applicable in such a way that

points on the curves determined by the same value of s correspond.

As there is a plane curve with this equation, the surface is appli

cable to the plane in such a way that points of the surface corre

spond to points of the plane on the convex side of the plane curve.

The tangents to a curve are the characteristics of the osculating

planes as the point of osculation moves along the curve, and con

sequently they are the axes of rotation of the osculating plane as

it moves enveloping the surface. Instead of rolling the plane over

the tangent surface, we may roll the surface over the plane and bring
all of its points into coincidence with the plane. It is in this sense

that the surface is developable upon a plane, and for this reason

it is called a developable surface (cf. 27). Later it will be shown

that every surface applicable to the plane is the tangent surface of

a curve
( 64).

44. Conformal representation of a surface upon itself. We return

to the consideration of conformal representation, and remark that

another consequence of equations (83) is that the minimal curves

correspond upon S and S r

. Conversely, when two surfaces are

referred to a corresponding system of lines, if the minimal lines on

the two surfaces correspond, equations (83) must hold. Hence :

A necessary and sufficient condition that the representation of two

surfaces upon one another be conformal is that the minimal lines

correspond.

If the minimal lines upon the two surfaces are known and taken

as parametric, the linear elements are of the form

(85) ds
2 = X dadfr ds 2= \ da^dftv
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Hence a conformal representation is defined in the most general

way by the equations

W l
=

F(a), ft = *;(),
or

(87) ^ = F(ft), ft = *;(),

where F and F
1
are arbitrary functions which must be conjugate

imaginary when the surfaces are real.

Instead of interpreting (85) as the linear elements of two sur

faces referred to their minimal lines, we can look upon them as

the linear element of the same surface in terms of two sets of

parameters referring to the minimal lines. From this point of

view equations (86) and (87) define the most general conformal

representation of a surface upon itself. If we limit our considera

tion to real surfaces and put, as before,

a = $ + i^, =
&amp;lt;-ty,

a
1 =&amp;lt;^1 +i&amp;gt;1 , ft=01 -*^1 ,

the functions fa i/r
and fa, ^ are pairs of isothermic parameters.

Now equations (86), (87) may be written

(88) &amp;lt;#&amp;gt;1+i&amp;gt;1
=7^^).

Consequently we have the theorem :

When a pair of isothermic parameters fa ty of a surface are known

and the surface is referred to the lines
&amp;lt;j&amp;gt;

= const., ^r
= const., the

most general conformal representation of the surface upon itself is

obtained by making a point (fa \fr) correspond to the point (fa, i^),

into which it can be transformed in accordance with equation (88).

As a corollary of this theorem, we have :

When a pair of isothermic parameters is known for each of two

surfaces, all the conformal representations of one surface upon the

other can be found directly.

Consider two pairs of isothermic parameters fa ty and fa, ^ for

a surface S, and suppose their relation is

(89) &+*+! = F(t + i+).

If two curves C and C
l
are in correspondence in this representa

tion, their parametric equations must be the same functional rela

tion between the parameters, namely,

*,) =0.
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Denote by 9 and
l
the angles which C and C^ make with the

curves ^ = const, and ^ 1
= const, respectively. If we write the

linear element of S in the two forms

it follows from (23) that

a deb . a
cos = y = , sin =

cos = --- =, sin =

From these expressions we derive the following

= ^

d(f&amp;gt;

i
c?i/r

so that in consequence of (89) we have

(90)
..,-= :*^

where 7^ is the function conjugate to 7^, and the accents indicate

differentiation with respect to the argument. If T and F
x
are

another pair of corresponding curves, and their angles are denoted

by 6 and V it follows from (90) that

,,

OI&amp;gt;

For, the right-hand member of (90) is merely a function of the

position of the point and is independent of directions. Hence in

any conformal representation defined by an equation of the form

(89) the angles between corresponding curves have the same sense.

When, now, the correspondence satisfies the equation

the equation analogous to (90) is

Hence
l
-0

l
=0-0

i

consequently the corresponding angles are equal in the inverse sense.
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45. Conformal representation of the plane. For the plane the

preceding theorem may be stated thus :

The most general real conformal representation of the plane upon

itself is obtained by making a point (x, y) correspond to the point

(x^ y^), where x^iy^ is any function of x + iy or x iy.

We recall the example of 41, namely

0) Xl + iyi =
;rrfc

where c is a real constant. This equation is equivalent to

and also to

C2X

Hence the parallels x = const, and y const., in the xy-plane, are represented

in the z^-plane by circles which pass through the origin and have their centers

on the respective axes. Conversely, these circles in the xy-plane correspond to

the parallels in the Xi^/i-plane.

If we put
o;2 + y* = r2

,
x* + y* = rf,

equations (ii)
and (iii) may be written

&amp;lt;*&amp;gt; ?-? f-S-

Hence corresponding points are on the same line through the origin, and their

distances from it are such that rr\ = c2 . On this account equations (iv) are

said to define an inversion with respect to the circle x2 + y2 = c2
, or, since TI = c2/r,

o transformation by reciprocal radii vector-es.

From 44 it follows that corresponding angles are equal in the inverse sense.

For the case
c2

(v) xi + iy\ =
x + iy

the equations analogous to (iv) are

- = ?, V = -Vl.
r n r ri*

Hence the point PI (xi, y\) corresponding to P (x, y) lies on the line which is the

reflection in the x-axis of the line OP, and at the distance OPi = c2/r. Evidently

this transformation is the combination of an inversion and the transformation

*i = *, y\ = -
y-

One finds that the transformations (i) and (v) have the following properties :

Every straight line is transformed into a circle which passes through the origin ;

and conversely.

Every circle which does not pass through the origin is transformed into a circle.
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We propose now the problem of finding the most general con-

formal transformation of the plane into itself, which changes
circles not passing through the origin into circles. In solving it

we refer the plane to symmetric parameters #, fi, where

a = x -f- iy, f$x iy.

The equation of any circle which does not pass through the

origin is of the form

(91) ca(S+ aa + 5/3 + d = 0,

where
&amp;lt;z, 5, c, d are constants ; when the circle is real a and b

must be conjugate imaginaries and c real. Equation (91) defines @
as a function of a. If we differentiate the equation three times

with respect to #, and eliminate the constants from the resulting

equations, we find

(92) 3/3&quot;

2
-2/3 /3 &quot;=0,

where the accent indicates differentiation with respect to a.

Moreover, as equation (91) contains three independent constants,

it is the general integral of (92).

We know that the most general conformal representation of

the plane upon itself is given by

(93) a
1
= A(a), ft

= (),
or

(94) !
= (), 13,

= A (a).

Our problem reduces, therefore, to the determination of functions

A and B, such that the equation

(95) 3 ft
2- 2 ft ft&quot; =0,

where the accent indicates differentiation with respect to av can

be transformed by (93) or (94) into (92).

We consider first equations (93), which we write

Now
ff^*!L*pta_*

30 da da

In like manner we find ft and
ft&quot;.

When their values are sub

stituted in (95) we get, since A( and B are different from zero,

3
ft&quot;

2- 2 ffff&quot;+ -
(3 B&quot;

2- 2 B B
&quot;)

4+ (3 A - 2
A[Al&quot;) ft

2 = 0.
B A

l
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Since equation (95) must be directly transformable into (92), it

follows that

(96) 3 &quot;2- 2 /&amp;gt;&quot;

&quot; = 0, 3 A^~ 2A[A = 0.

As these equations are of the form (92), their general integrals

are similar to (91). Hence the most general forms of (93) for

our problem are

&amp;gt;

Moreover, when, these values are substituted in an equation in

a^ (Sl
of the form (91), the resulting equation in a and ft is of

this form.

Equation (91) may likewise be looked upon as defining a in

terms of ft, so that a, as a function of ft, satisfies an equation of the

form (92) ; similarly for a
l
as a function of ftr Hence if we had used

(94), we should have been brought to results analogous to (97) ; and

therefore the most general forms of (94) for our problem are

(98) i=!4 T ft- 54**-
b
s/3+b^ , + ,

Hence :

When a plane is defined in symmetric parameters a, ft, the most

general conformal representation of the plane upon itself, for which

circles correspond to circles or straight lines, is given by (97) or (98).*

EXAMPLES

1. Deduce the equations which define the most general conformal representation

of a surface with the linear element cZs2 = dv? + (a
2 u^dv2 upon itself.

2. Show that the surfaces

x u cos v, y = u sin u, z = au,

x u cos v, y u sin v, z = a cosh -* -
,

are applicable. Find the curve in which a plane through the z-axis cuts the latter

surface, and deduce the equations of the conformal representation of these surfaces

on the plane.

3. When the representation is defined by (97), what are the coordinates of the

center and radius of the circle in the &amp;lt;n-plane which corresponds to the circle of

center (c, d) and radius r in the or-plane ?

* The transformations (97) and (98) play an important role in the theory of functions.

For a more detailed study of them the reader is referred to the treatises of Picard, Darboux,

and Forsyth.
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4. Show that in the conformal representation (97) there are, in general, two

distinct points, each of which corresponds to itself
;
also that if 7 and 5 are the

values of a at these points, then

K =
ai d a 5 ai + ai + V(ai a4 )

2 + 4 a2a3

5 . Find the condition that the origin be the only point which corresponds to itself,

and show that if the quantities 01, ag, ^3, a are real, a circle in the a-plane through

the origin corresponds to a circle in the a^plane through and touching the other

circle
;
also that a circle touching the x-axis at corresponds to itself.

6. The equation 2 ai = (a b) a -f -- ? where a and 6 are constants, defines a

conformal representation of the plane upon itself, such that circles about the origin

and straight lines through the latter in the a-plane correspond to confocal ellipses

and hyperbolas in the ai-plane.

7. In the conformal representation i
= logo: to lines parallel to the x- and

y-axes in the ai-plane there correspond lines through the origin and circles about

it in the a-plane, and to any orthogonal system of straight lines in the ai-plane

an orthogonal system of logarithmic spirals in the a-plane.

46. Surfaces of revolution. By definition a surface of revolution

is the surface generated by a plane curve when the plane of the

curve is made to rotate about a line in the plane. The various

positions of the curve are called the meridians of the surface, and

the circles described by each point of the curve in the revolution

are called the parallels. We take the axis of rotation for the 2-axis,

and for o&amp;gt;axis and ?/-axis any two lines^perpendicular to one another,

and to the z-axis, and meeting it in the same point. For any posi

tion of the plane the equation of the curve may be written z =
&amp;lt;/&amp;gt;(r),

Avhere r denotes the distance of a point of the curve from the 2-axis.

We let v denote the angle which the plane, in any of its positions,

makes with the #2-plane. Hence the equations of the surface are

(99) x = r cos,v, y = rsinv, z=(f&amp;gt;(r).

The linear element is

(100) ds2=
[1 + &amp;lt;

2

(r)] dr
2+

If we put

a 01
)

the linear element is transformed into

(102)
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where X is a function of u, which shows that the meridians and

parallels form an isothermal system. As this change of parameters
does not change the parametric lines, the equations

x = u, y = v,

define a conformal representation of the surface of revolution upon
the plane in which the meridians and parallels correspond to the

straight lines x = const, and y = const, respectively.

By definition a loxodromic curve on a surface of revolution is a

curve which cuts the meridians under constant angle. Evidently
it is represented on the plane by a straight line. Hence loxodromic

curves on a surface of revolution (99) are given by

C- Vl + $* + bv + c = 0,

where a, ,
c are constants.

Incidentally we have the theorem :

When the linear element of a surface is reducible to the form

where \ is a function of u or v alone, the surface is applicable to a

surface of revolution.

For, suppose that X is a function of u alone. Put r = Vx and
solve this equation for u as a function of r. If the resulting

expression be substituted in (101), we find, bya quadrature, the

function
&amp;lt;f&amp;gt;(r)

y for which equations (99) define the surface of

revolution with the given linear element.
r ,

When, in particular, the surface of revolution is the unit sphere,
with center at the origin, we have

r = sin w, z= Vl r
2 = cos w,

where u is the angle which the radius vector of the point makes
with the positive z-axis. Now

= log tan
|

.

Hence the equations of correspondence are

, u
x = log tan-, y = v.
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This representation is called a Mercator chart of the sphere upon
the plane. It is used in making maps of the earth for mariners.

A path represented by a straight line on the chart cuts the meridians

at constant angle.

47. Conformal representations of the sphere. We have found

( 35) that when the unit sphere, with center at the origin, is

referred to minimal lines, its equations are

a + /3 () a/3-l
(103) &quot;-

where a and j3 are conjugate imaginary. Hence the parametric

equation of any real circle on the sphere is of the form

ca{3+aa + b/3+d=Q,

where a and b are conjugate imaginary and c and d are real.

From this it follows that the problem of finding any conformal

representation of the sphere upon the plane with circles of the

former in correspondence with circles or straight lines of the

latter, is the same problem analytically as the determination of

this kind of representation of the plane upon itself. Hence, from

the results of 45, it follows that

All conformal representations of the sphere (103) upon a plane,

with circles of the former corresponding to circles or straight lines

of the latter, are defined by

a.a + a,, . bfi+b.
*

&amp;lt;104)
***-;{?+ ^ y =^A

We wish to consider in particular the case in which the sphere

is represented on the ^-plane in such a way that the great cir

cle determined by this plane corresponds with itself point for

point.

From (103) we have that the equations of this circle are

* The representation with the lower signs is the combination of the one with the upper

sign and the transformation &i= /3, /Si= ,
which from (103) is seen to transform a figure

bn the sphere into the figure symmetrical with respect to the zz-plane.
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When these values are substituted in (104) it is found that we

must have , r i A
ai=4 b

l
=t&amp;gt;V a

z
=&amp;lt;*

3
=0

Z
=0

3 =i),

so that the particular form of (104)* is equivalent to

*
1=|(+/9), y,

= (-)

From these equations and (103) we find that the equations

of the straight lines joining corresponding points on the sphere

and plane are reducible to

X Y 1-Z

For all values of a and ft these lines pass through the point (0, 0, 1).

Hence a point of the plane corresponding to a given point P upon

the sphere is the point of intersection with the plane of the line

joining P with the pole (0, 0, 1). This form of representation is

called the stereographic projection of the sphere upon the plane.

It is evident that a line in the plane corresponds to a circle on

the sphere ;
this circle is determined by the plane of the pole and

the given line.

We will close this chapter with a few remarks about the con-

formal representation of the sphere upon itself. From the fore

going results we know that every such representation of the

sphere (103) is given by equations of similar form in a^ ftv where

the latter are given by (86) or (87), and that for conformal repre

sentations with circles in correspondence a
l
and ^ have the values

(97) or (98).

We consider in particular the case

a.a

The expressions of the linear elements of the sphere are found

to be reducible to

4 dad/3 4 da^ft, 4 dadft
2 ~

* Here we have used the upper signs in (104).



STEREOGRAPHIC PROJECTION 111

Hence, equations (105) define an isometric representation of the

sphere upon itself. Since angles are preserved in the same sense

by (105), this representation may be looked upon as determining

a motion of configuration upon the sphere into new positions

upon it. The stationary points in the general motion, if there

are any, correspond to values of a and /3, which are roots of

the respective equations

If t
l
and

2
are the roots of the former, those of the latter are l/^

and 1/ 2
. Hence there are four points stationary in the motion;

their curvilinear coordinates are

1-L\ /. -*-
X / j &quot;

\ I J.

Ln i
~

&quot;

From (103) it is seen that the first two are at infinity, and the

last two determine points on the sphere, so that the motion is a

rotation about these points. If the z-axis is taken for the axis of

rotation, we have from (103) that the roots of (106) must be oo and

;
hence #

2
=

3
= 0, so that (105) becomes

If the rotation is real, these equations must be of the form

= e

where o&amp;gt; is the angle of rotation.

EXAMPLES

1. Find the equations of the surface of revolution with the linear element

ds2 = dw2 + (a
2 - w2

)du
2

.

2. Find the loxodromic curves on the surface

i i
u

X = MCOSU, y = usmv, z = a cosh- 1 -,

and find the equations of the surface when referred to an orthogonal system of

these curves.

3. Find the general equations of the conformal representation of the oblate

spheroid upon the plane.

4. Show that for the surface generated by the revolution of the evolute of

the catenary about the base of the latter the linear element is reducible to

ds2 = du&quot;
2 + u dv2 .
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5. A great circle on the unit sphere cuts the meridian v = in latitude &amp;lt;x under

angle a. Find the equation of its stereographic projection.

6. Determine the stereographic projection of the curve x = asinwcosw,
y = acos2

w, z asinw from the pole (0, a, 0).

GENERAL EXAMPLES

1. When there is a one-to-one point correspondence between two surfaces, the

cross-ratio of four tangents to one surface at a point is equal to the cross-ratio of

the corresponding tangents to the other.

2. Given the paraboloid

x = 2awcosu, y=2&Msinv, z = 2 w2
(a cos2 u + 6sin2

u),

where a and b are constants. Determine the equation of the curves on the surface,

such that the tangent planes along a curve make a constant angle with the xy-plane.

Show that the generators of the developable 2, enveloped by these planes, make a

constant angle with the z-axis, and express the coordinates of the edge of regression

in terms of v.

3. Find the orthogonal trajectories of the generators of the surface S in Ex. 2.

Show that they are plane curves and that their projections on the xy-plane are

involutes of the projection of the edge of regression.

4. Let C be a curve on a cone of revolution which cuts the generators under

constant angle, and Ci the locus of the centers of curvature of C. Show that C\
lies upon a cone whose elements it cuts under constant angle.

5. When the polar developable of a curve is developed upon a plane, the curve

degenerates into a point.

6. When the rectifying developable of a curve is developed upon a plane, the

curve becomes a straight line.

7. Determine
&amp;lt;f&amp;gt;(o)

so that the right conoid,

x = ucosv, y=usinv, z =
(f&amp;gt;(v),

shall be applicable to a surface of revolution.

8. Determine the equations of a conformal representation of the plane upon
itself for which the parallels to the axes in the ai-plane correspond to lines through

a point (a, b) and circles concentric about it in the a-plane.

9. The equation a\ = c sin a, where c is a constant, defines a conformal repre

sentation of the plane upon itself such that the lines parallel to the axes in the

a-plane correspond to confocal ellipses and hyperbolas in the ai-plane.

10. In the conformal representation of the plane upon itself, given by ai = a2
,

to lines parallel to the axes in the ori-plane there correspond equilateral hyperbolas
in the a-plane, and to the pencil of rays through a point in the ori-plane and the cir

cles concentric about it there corresponds a system of equilateral hyperbolas through
the corresponding point in the or-plane and a family of confocal Cassini ovals.

11. When the sides of a triangle upon a surface of revolution are loxodromic

curves, the sum of the three angles is equal to two right angles.

12. The only conformal perspective representation of a sphere upon a plane is

given by (104).



GENERAL EXAMPLES 113

13. Show that equations (105) and the equations obtained from (105) by the

interchange of cc. and /3 define the most general isometric representation of the

sphere upon itself.

14. Let each of two surfaces S, S\ be defined in terms of parameters w, u, and

let points on each with the same values of the parameters correspond. If H H\,
where the latter is the function for Si analogous to H for S, corresponding elements

of area are equal and the representation is said to be equivalent.* If H ^ HI and

the parameters of S are changed in accordance with the equations u
&amp;lt;f&amp;gt; (w, v),

v = $ (u, a), the condition that the equations u = M, v = v define an equivalent rep

resentation of S and Si is H
du dv cv du HI (0, \[&amp;lt;)

15. Under what conditions do the equations

x aix + azy + a3 , y = b& + b2y + 63

define an equivalent representation of the plane upon itself ?

16. Show that the equations

determine an equivalent representation of the surface of revolution (99) upon the

plane.

17. Given a sphere and circumscribed circular cylinder. If the points at which

a perpendicular to the axis of the latter meets the two surfaces correspond, the

representation is equivalent.

18. Find an equivalent representation of the sphere upon the plane such that

the parallel circles correspond to lines parallel to the y-axis and the meridians to

ellipses for which the extremities of one of the principal axes are (a, 0), ( a, 0).

* German writers call it
&quot;

flachentreu.&quot;



CHAPTER IV

GEOMETRY OF A SURFACE IN THE NEIGHBORHOOD OF A POINT

48. Fundamental coefficients of the second order. In this chapter
we study the form of a surface in the neighborhood of a point M
of it, and the character of the curves which lie upon the surface

and pass through the point. We recall that the tangents at M to

all these curves lie in a plane, the tangent plane to the surface at

the point.

The equation of the tangent plane at M(x, y, 2), namely (II, 11),

may be written

(1) (f-

where we have put

H

_ _

du du

dy^
dz

~dv dv

H

dz dx

du du

dz dx

do dv

H

dx dy

dti du

dx dy

dv dv

We define the positive direction of the normal
( 25) to be that

for which the functions X, I
7

,
Z are the direction-cosines. From this

definition it follows that the tangents to the curves v const, and

u = const, at a point and the normal at the point have the same

mutual orientation as the #-, ?/-, and 2-axes.

From (2) follow the identities

(3)
F - fl^ 7T u
dv

which express the fact that the normal is perpendicular to the tan

gents to the coordinate curves. In consequence of these identities

the expression for the distance p from a point M (u + du, v + dv)

to the tangent plane at M is of the second order in du and dv.

It may be written

(4) p = ^X dx = 1 (D du
2+2D dudv + &&quot; dv

2

) + e,

lit
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where e denotes the aggregate of terms of the third and higher

orders in du arid dv, and the functions
Z&amp;gt;, D\ D&quot; are defined by

(5) dudv

If equations (3) be differentiated with respect to u and v respec

tively, we get

(6)

dudv
1 = 0,

dv

dv du

dX dx _ ~

dv dv

And so equations (5) may be written

(7)
_V Y~^^ dudv~ Ztdu d

,,_y ^__y^^
** -9* ^ dv dv

dv du

The quadratic differential form

(8)
&amp;lt;1&amp;gt;

= D du* + 2 D dudv -f D&quot;dv
2

is called the second fundamental form of the surface, and the func

tions D, D ,
D&quot; the fundamental coefficients of the second order. We

leave it to the reader to show that these coefficients, like those of the

first order, are invariant for any displacement of the surface in space.

Later we shall have occasion to use two sets of formulas which

will now be derived.

From the equations of definition,

toy~
I

cv)

we get, by differentiation and simple reduction, the following :

a^^_ia^ y^^ = ?^_l?^,

dE v dx &x _ l dG

~2 du

(9) ^ \du] ^ du dv

(10)
dx

dv dudv

2 dv
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Again, if the expressions (9) be substituted in the left-hand mem

bers of the following equations, the reduced results may be written

by means of (2) in the form indicated :

dv
&quot;

du \ du du,

dv du \ dv dv,

Similar identities can be found by permuting the letters x, y, z ;

X, F, Z.

From the fundamental relation

we obtain, by differentiation with respect to u and v respectively,

the identities

These equations and (7) constitute a system of three equations

linear in * and a system linear in -
, ,

-

Solving
du du du dv dv dv

ij. -y O -y

for and for we find, by means of (11),
du dv

dX FD -GDdx FD-ED dx
^

~du~ H* du H* dv

^dX _FD&quot;-GD dx FZ&amp;gt; -RD&quot;dx

dv
&quot;

H* du H* dv

7}V /} 7
The expressions for ,, -- are obtained by replacing x by y

.. , du dv
and z respectively.

By means of these equations we shall prove that a real surface whose first and

second fundamental coefficients are in proportion, thus

D V V&quot;

(14)
= = =\

where X denotes the factor of proportionality, is a sphere or a plane. We assume

that the minimal lines are parametric. In consequence we have

E = G = D = D&quot; = 0,

so that equations (13) become

dX -\ \
du du dv dv



RADIUS OF NORMAL CURVATURE 117

The function X must satisfy the condition

dv \ du/ du \ dv

which reduces to ---- = 0. Moreover, we have two other equations of
dv du du dv

condition, obtained from the above by replacing x by y and z respectively. Since

the proportion
to.ay .

to = to .0y .

to

du du du dv dv dv

is not possible for a real surface, we must have = = : that is, X is a con-
du dv

stant. When X is zero the functions X, F, Z given by (15) are constant, and

consequently the surface is a plane. When X is any other constant, we get,

by integration from (15),

X \x + a, Y = \y 4- 6, Z = Xz + c,

where a, 6, c are constants. From these equations we obtain (\x -f a)
2

4- (\y 4- 6)
2

4- (Xz 4- c)
2 1. Since this is the general equation of a sphere, it follows that the

above condition is necessary as well as sufficient.

v/ 49. Radius of normal curvature. Consider on a surface S any
curve C through a point M. The direction of its tangent, MT,
is determined by a value of dv/du. Let o&amp;gt; denote the angle which

the positive direction of the normal to the surface makes with the

positive direction of the principal normal to C at Jf, angles being

measured toward the positive binormal. If we use the notation of

the first chapter, and take the arc of C for its parameter, we have

In terms of and the derivatives in the parenthesis have
,, . as as
the forms

fo = Zfa/duV

aV
~~

du2
\ds) du dv ds ds dv

2
\ds

so that the above equation is equivalent to

cos w D du2+ 2 D dudv + D&quot;dv
2

(16)
Edu*+ ZFdudv 4- Gdv*

As the right-hand member of this equation depends only upon
the curvilinear coordinates of the point and the direction of MT,
it is the same for all curves with this tangent at M. Since p is

positive, the angle o&amp;gt; cannot be greater than a right angle for one

curve tangent to MT, if it is less than a right angle for any other
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curve tangent to MT; and vice versa. We consider in particular
the curve in which the surface is cut by the plane determined by
MT and the normal to the surface at M. We call it the normal

section tangent to MT, and let pn denote its radius. Since the

right-hand member of equation (16) is the same for C and the

normal section tangent to it, we have

(17)
P Pn

where e is +1 or 1, according as w is less or greater than a right

angle; for p and pn are positive. Equation (17) gives the follow

ing theorem of Meusnier:

The center of curvature of any curve upon a surface is the pro

jection upon its osculating plane of the center of curvature of the

normal section tangent to the curve at the point.

In order to avoid the ambiguous sign in (17), we introduce a

new function R which is equal to pn when &amp;lt; o&amp;gt; &amp;lt; TT/%, and to pn

when
7r/Z&amp;lt;a&amp;gt;&amp;lt;7r,

and call it the radius of normal curvature of the

surface for the given direction MT. As thus defined, E is given by

R Edu2 + 2 Fdudv + Gdv*

Now we may state Meusnier s theorem as follows :

If a segment, equal to twice the radius of normal curvature for a

given direction at a point on a surface, be laid offfrom the point on

the normal to the surface, and a sphere be described with the segment

for diameter, the circle in ivliich the sphere is met by the osculating

plane of a curve with the given direction at the point is the circle of

curvature of the curve.

50. Principal radii of normal curvature. If we put t = &amp;gt; equa
tion (18) becomes

I D+2D t+D&quot;t

When the proportion (14) is satisfied, R is the same for all values

of t, being oc for the plane, and the constant 1/X for the sphere.

For any other surface R varies continuously with t. And so we
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seek the values of t for which 11 is a maximum or minimum.

To this end we differentiate the above expression with respect

to t and pnt the result equal to zero. This gives

(20) (J} +D&quot;t)(E+2Ft+Gt
2

)-(F+Gt)(D + 2D t+ D&quot;t
2

)
= Q,

or

(21) (FD&quot;-GD
l

)t
2

+(FD&quot;-GD)t+(ED -FD) = ().

Without any loss of generality we can assume that the parametric

curves are such that E = 0, so that we have the identity

(22) (ED&quot;- GDf- 4
(FD&quot;

D r

G) (ED -FD)
7T&quot;

2
T 2 F H 2

= 4 (FD -FDf+\ ED&quot;GD--(ED FD)\.E \_ E J

When the surface is real, and the parameters also, the right-hand

member of this equation is positive. Since the left-hand member

is the discriminant of equation (21), the latter has two real and

distinct roots.* When the test (III, 34) is applied to equation (21),

it is found that the two directions at a point determined by the

roots of (21) are perpendicular. Hence:

At every ordinary point of a surface there is a direction for which

the radius of normal curvature is a maximum and a direction for
which it is a minimum, and they are at right angles to one another.

These limiting values of R are called the principal radii of

normal curvature at the point. They are equal to each other for

the plane and the sphere, and these are the only real surfaces

with this property.

From (20) and (19) we have

D +D&quot;t_D + D t _ 1

F+Gt E + Ft~~R

Hence the following relations hold between the principal radii and

the corresponding values of t :

f
E +Ft-R(D + D t)

= Q,

\F+Gt-R(D + D&quot;t)
= 0.

* In order that the two roots he equal, the discriminant must vanish. This is impos
sible for real surfaces other than spheres and planes, as seen from (22). For an imaginary
surface of this kind referred to its lines of length zero, we have from (21) that D or D&quot;

is zero, since F ^ 0. The vanishing of the discriminant is also the necessary and sufficient

condition that the numerator and denominator in (19) have a common factor.
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When t is eliminated from these equations, we get the equation

(24) (DD&quot;
-D 1 2

)
A)2-

(ED&quot;+ GD-2FD )
R + (EG - F

2

)
= 0,

whose roots are the principal radii. If these roots be denoted by pl

and
/32 , we have

(25)

!_ ^^

DD&quot;-D
2

PiP* H

Although equations (14) hold at all points of a sphere and a

plane, and for no other surface, it may happen that for certain par

ticular points of a surface they are satisfied. At such points R,

as given by (19), is the same for all directions, and the equa

tion (21) vanishes identically. When points of this kind exist they

are called umbilical points of the surface.

EXAMPLES

1. When the equation of the surface is z =f(x, ?/), show that

x,Y,z =^J^,
D, D ,

D&quot; =

dz dz 82z d2z
where p = &amp;gt; a &amp;gt;

r = s
dx dy dx* dxdy

2. Show that the normals to the right conoid

along a generator form a hyperbolic paraboloid.

3. Show that the principal radii of normal curvature of a right conoid at a

point differ in sign.

4. Find the expression for the radius of normal curvature of a surface of revolu

tion at a point in the direction of the loxodromic curve through it, which makes the

angle a with the meridians.

5. Show that the meridians and parallels on a surface of revolution, x = u cosu,

y = u sin
i&amp;gt;,

z = (w), are the directions in which the radius of normal curvature is

maximum and minimum
;
that the principal radii are given by

Pl (1 + /2
)

P2 M

and that
/&amp;gt;
2 is the segment of the normal between the point of the surface and the

intersection of the normal with the z-axis.

6. Show that AIX = 1 - X2 and AI (x, y) = - XY, where the differential param

eters are formed with respect to the linear element of the surface.
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51. Lines of curvature. Equations of Rodrigues. We have seen

that the curves defined by equation (21), written

(26) (ED - FD) du
2+ (ED&quot;

- GD) dudv + (FD&quot;
- GDf

)
dvz

=0,

form an orthogonal system. As defined, the two curves of the sys

tem through a point on the surface determine the directions at the

point for which the radii of normal curvature have their maximum
and minimum values. These curves are called

the lines of curvature, and their tangents at

a point the principal directions for the point.

They possess another geometric property which

we shall now find.

The normals to a surface along a curve

form a ruled surface. In order that the sur

face be developable, the normals must be

tangent to a curve
( 27), as in fig. 12. If

the coordinates of a point Ml
on the normal

at a point M be denoted by xr y^ z^ we have FIG. 12

where r denotes the length MMr If M^ be a point of the edge of

regression, we must have

dx+rdX+Xdr _dy-{-r dY+ Ydr _dz + r dZ+Zdr
X Y Z

Multiplying the numerators and the denominators of the respec

tive members by X, F, Z, and combining, we find that the common
ratio is dr. Hence the above equations reduce to

or, when the parametric coordinates are used,

( 8x , dx , dX ,
,
dX ,

du H dv + r I du H dv
du dv \du dv

(27)
dv

fa

dv

du dv

du dv
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If these equations be multiplied by &amp;gt; respectively and

dx o- dz
^u ^u ^u

added, and by ^ respectively and added, we get
dv dv dv

Fdu + Gdv r(D du + D&quot; dv)
= 0.

But these equations are the same as (23). Hence:

The normals to a surface along a curve of it form a ruled surface

which is a developable only when the curve is a line of curvature ; in

this case the points of the edge of regression are the centers of normal

curvature of the surface in the direction of the curve.

The coordinates of the principal centers of curvature are

(28)

When the parametric curves are the lines of curvature, equa

tion (26) is necessarily of the form

(29) X dudv = 0,

and consequently we must have ED FD = 0, FD&quot; GD = 0.

Since ED&quot;GD =

0, these equations are equivalent to

(30) ^=0, D =Q.

Conversely, when these conditions are satisfied equation (26)

reduces to the form (29). Hence:

A necessary and sufficient condition that the lines of curvature be

parametric is that F and D be zero.

Let the lines of curvature be parametric, and let p^ and p2
denote

the principal radii of normal curvature of the surface in the direc

tions of the lines of curvature v = const, and u = const, respectively.

From (19) we find

(31) ^
=
f

~ =
^T

and equations (13) become

By dY dz _ dZ

(32)

du du du
ri

du du

These equations are called the equations of Rodrigues.
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52. Total and mean curvature. Of fundamental importance in

the discussion of the nature of a surface in the neighborhood of

a point are the product and the sum of the principal curvatures at

the point. They are called the total curvature * of the surface at

the point and the mean curvature respectively. If they be denoted

by K and Km1 we have, from (25),

1

(33)

K
Mb&quot;

^
JL-i+i-

Pi P* ^
When K is positive at a point J/, the two principal radii have

the same sign, and consequently the two centers of principal curva

ture lie on the same side of the tangent plane. As all the centers

of curvature of other normal sections lie between these two, the

portion of the surface in the neighborhood of M lies entirely on

one side of the tangent plane. This can be seen also in another

way. Since H2
is positive, we must have DD f D 2

&amp;gt; 0. Hence
the distance from a near-by point to the tangent plane at Jf, since

it is proportional to the fundamental form &amp;lt;l&amp;gt;

( 48), does not

change sign as dv/du is varied.

When K is negative at M, the principal radii differ in sign, and

consequently part of the surface lies on one side of the tangent

plane and part on the other. In particular there are two directions,

given by
j&amp;gt;du*+2D dudv + D&quot; dv2 = 0,

for which the normal curvature is zero. In these directions the dis

tances of the near-by points of the surface from the tangent plane,
as given by (4), are quantities of the third order at least. Hence
these lines are the tangents at M to the curve in which the tangent

plane atM meets the surface.

At the points for which K is zero, one of the principal radii is

infinite. At these points &amp;lt; has the form (^/J) du -f^Wdvf and

vanishes in the direction Vl)du + ^/D&quot;dv = 0. But as dv/du passes

through the value given by this equation, &amp;lt;1&amp;gt; does not change sign.

Hence the surface lies on one side of the tangent plane and is tan

gent to it along the above direction.

* The total curvature is sometimes called the Gaussian curvature, after the celebrated

geometerwho suggested it as a suitable measure of the curvature at a point. Cf . Gauss, p. 15.
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An anchor ring, or tore, is a surface with points of all three kinds. Such a sur

face may be generated by the rotation of a circle of radius a about an axis in the

plane of the circle and at a distance b
(&amp;gt; a) from the center of the circle. The

points at the distance b from the axis lie in two circles, and the tangent plane to

the tore at a point of either of the circles is tangent all along the circle. Hence the

surface has zero curvature at all points of these circles. At every point whose dis

tance from the axis is greater than b the surface lies on one side of the tangent

plane, whereas, when the distance is less than 6, the tangent plane cuts the surface.

There are surfaces for which K is positive at every point, as,

for example, the ellipsoid and the elliptic paraboloid. Moreover,

for the hyperboloid of one sheet and the hyperbolic paraboloid the

curvature is negative at every point. Surfaces of the former type
are called surfaces of positive curvature, of the latter type surfaces

of negative curvature.

Later
( 64) we shall prove that when K is zero at all points of

a surface the latter is developable, and conversely.

53. Equation of Euler. Dupin indicatrix. When the lines of

curvature are parametric, equation (18) can be written, in con

sequence of (III, 23) and (31), in the form

(34)
cos

2 # sin
2

6&amp;gt;

I

Pi Pi

where is the angle between the directions whose radii of normal

curvature are R and pr Equation (34) is called the equation of Euler.

When the total curvature K at a point

is positive, p l
and p2

for the point have

the same sign, and R has this sign for all

directions. If the tangents to the lines

of curvature at the point M be taken for

coordinate axes, with respect to which %
FlG - 13 and T? are coordinates, and segments of

length VTIFi be laid off fromM in the two directions correspond

ing to R, the locus of the end points of these segments is the ellipse

(fig. 13) whose equation is &

N +
ra

This ellipse is called the Dupin indicatrix for the point. When, in

particular, p l
and p2

are equal, the indicatrix is a circle. Hence the

Dupin indicatrix at an umbilical point is a circle
( 50). For this

reason such a point is sometimes called a circular point.

= 1.
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When K is negative p l
and p 2

differ in sign, and consequently

certain values of R are positive and the others are negative. In

the directions for which R is positive we lay off the segments

V.Z2, and in the other directions V R. The locus of the

end points of these segments con

sists of the conjugate hyperbolas

(fig. 14) whose equations are

Pl

T]_

Pt

We remark that R is infinite for

the directions given by

(35) tah2

0=-^, FIG. 14

or, in other words, in the directions of the asymptotes to the

hyperbolas. The above locus is the Dupin indicatrix for the point.

Finally, when K = the equation of the indicatrix is of one of

the forms e-2_ i

that is, a pair of parallel straight lines. In view of the foregoing

results, a point of a surface is called elliptic, hyperbolic, or parabolic,

according as the total curvature at the point is positive, negative,

or zero. 1

In consequence of (4) the expression for the distance p upon the

tangent plane to a surface at a point M from a near-by point P of

the surface is given by
Edu2 Gdv2

n+ = 2
,

Pl

to within terms of higher order. But ^/Edu and ^/Gdv are the

distances, to within terms of higher order, of P from the normal

planes to the surface at M in the directions of the lines of curva

ture. Hence the plane parallel to the tangent plane and at a dis

tance p from it cuts the surface in the curve

Evidently this is a conic similar to the Dupin indicatrix at an

elliptic or parabolic point, and to a part of the indicatrix at a

hyperbolic point.
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EXAMPLES

1. Show that the meridians and parallels of a surface of revolution are its lines

of curvature, and determine the character of the developable surfaces formed by
the normals to the surface along these lines.

2. Show that the parametric lines on the surface

a , b
,

uv
X = -(tt-M), y = -(U -v), z = -,

are straight lines. Find the lines of curvature.

3. When a surface is denned by z = /(x, ?/),
the expressions for the curvatures are

and the equation of the lines of curvature is

[(1 + p2) s - pqr] (to* + [(i + p-2) t-(l + g2) r
-j dxdy + [pqt

_
(1 + ?2) s] dy

z = .

4. The principal radii of the surface y cos x sin - = at a point (x, y, z) are

2 i o 2 _i_ n2

equal to Find the lines of curvature.

5. Derive the equations of the tore, defined in 52, and prove therefrom the

results stated.

6. The sum of the normal curvatures in two orthogonal directions is constant.

7. The Euler equation can be written

E = 2plp*

Pi + P2
-

(PI
-

pa) cos 2 6

54. Conjugate directions at a point. Conjugate systems. Two

curves on a surface through a point M are said to have conjugate

directions when their tangents at M coincide with conjugate diam

eters of the Dupin indicatrix for the point. These tangents are

also parallel to conjugate diameters of the conicr in which the sur

face is cut by a plane parallel to the tangent plane to M and very

near it. Let P denote a point of this conic and N the point in

which its plane a cuts the normal at M. The tangent plane to

the surface at P meets the plane a in the tangent line at P to the

conic. Moreover, this tangent line is parallel to the diameter conju

gate to NP. Hence as P approaches 3/this tangent line approaches

the diameter of the Dupin indicatrix, which is conjugate to the

diameter in the direction MP. Hence we have (cf. 27) :

The characteristic of the tangent plane to a surface, as the point

of contact moves along a curve, is the tangent to the surface in the

direction conjugate to the curve.
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By means of this theorem we derive the analytical condition for

conjugate directions.

If the equation of the tangent plane is

f, 77, f being current coordinates, the characteristic is denned by
this equation, and

where s is the arc of the curve along which the point of contact

moves. If &c, 8y, Bz denote increments of #, ?/, z in the direction

conjugate to the curve, we have, from the above equations,

If increments of u and v in the conjugate direction be denoted by
Bu and 8v, this equation may be written

(36) D duBu + D f

(du8v + dvSu) + D&quot;dvv = 0.

The directions conjugate to any curve of the family

(37) &amp;lt;(%, v)
= const.

are given by

(38)
cv du dv du

As this is a differential equation of the first order and first degree,

it defines a one-parameter family of curves. These curves and the

curves
&amp;lt;/&amp;gt;

= const, are said to form a conjugate system. Moreover,

any two families of curves are said to form a conjugate system
when the tangents to a curve of each family at their point of inter

section have conjugate directions.

From (36) it follows that the curves conjugate to the curves

v = const, are defined by D Su + D Sv = 0. Consequently, in order

that they be the curves u = const., we must have D 1

equal to zero.

As the converse also is true, we have :

A necessary and sufficient condition that the parametric curves

form a conjugate system is that D be zero.
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We have seen (51) that the lines of curvature are characterized

by the property that, when they are parametric, the coefficients F
and D are zero. Hence :

The lines of curvature form a conjugate system and the only

orthogonal conjugate system.

If the lines of curvature are parametric, and the angles which

a pair of conjugate directions make with the tangent to the curve

v = const, are denoted by and 6
, we have

a [G dv
ar [GSvtan =

^J , tan 6 = x - ,

MjE&amp;lt; du N^ Su

so that equation (36) may be put in the form

(39) tan0tan0 = -?H,

which is the well-known equation of conjugate directions of a conic.

55. Asymptotic lines. Characteristic lines. When is equal to 0,

equation (39) reduces to (35). Hence the asymptotic directions are

self-conjugate. If in equation (36) we put Sv/Su = dv/du, we obtain

(40) D du2 + 2 D dudv + D&quot; dv2 = 0,

which determines, consequently, the asymptotic directions at each

point of the surface. This equation defines a double family of

curves upon the surface, two of which pass through each point

and admit as tangents the asymptotic directions at the point. They
are called the asymptotic lines of the surface.

The asymptotic lines are imaginary on surfaces of positive curva

ture, real on surfaces of negative curvature, and consist of a single

real family on a surface of zero curvature.

Recalling the results of 52, we say that the tangent plane to

a surface at a point cuts the surface in asymptotic lines in the

neighborhood of the point. As an immediate consequence, we

have that the generators of a ruled surface form one family of

asymptotic lines.

Since an asymptotic line is self-conjugate, the characteristics of

the tangent plane as the point of contact moves along an asymp
totic line are the tangents to the latter. Hence the osculating

plane of an asymptotic line at a point is the tangent plane to the
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surface at the point, and consequently the asymptotic line is the

edge of regression of the developable circumscribing the surface

along the asymptotic line. This follows also from equation (16).

From (40) we have the theorem :

A necessary and sufficient condition that the asymptotic lines upon
a surface be parametric is that

D=D&quot;=Q.

If these equations hold, and, furthermore, the parametric curves

are orthogonal, it is seen from (33) that the mean curvature is zero,

and conversely. Hence :

A necessary and sufficient condition that the asymptotic lines form
an orthogonal system is that the mean curvature of the surface be zero.

A surface whose mean curvature is zero at every point is called

a minimal surface. At each of its points the Dupin indicatrix con

sists of two conjugate equilateral hyperbolas.

By means of (39) we find that the angle between conjugate
directions is given by

P-/&amp;gt;1

If we consider only real lines, this angle can be zero only for sur

faces of negative curvature, in which case the directions are asymp
totic. It is natural, therefore, to seek the conjugate directions upon
a surface of positive curvature for which the included angle is a

minimum. To this end we differentiate the right-hand member of

the above equation with respect to 6 and equate the result to zero.

The result is reducible to

(41) tan 6 = :

Then from (39) we have

From these equations it follows that # = 0, and

Conversely, when = 6 equation (39) becomes (41). Hence:

Upon a surface of positive curvature there is a unique conjugate

system for which the angle between the directions at any point is the
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minimum angle between conjugate directions at the point ; it is the

only conjugate system whose directions are symmetric with respect

to the directions of the lines of curvature.

These lines are called the characteristic lines. It is of interest

to note that equations (35) and (41) are similar, and that the real

asymptotic directions upon a surface of negative curvature are

symmetric with respect to the directions of the lines of curvature.

As just seen, if 6 is the angle which one characteristic line makes

with the line of curvature v = const, at a point, the other charac

teristic line makes the angle 6. Hence the radii of normal curva

ture for these directions are equal, and consequently a necessary

and sufficient condition that the characteristic curves of a surface

be parametric is

(42) f
=
7T

iy=

56. Corresponding systems on two surfaces. By reasoning similar

to that of 34 we establish the theorem :

A necessary and sufficient condition that the curves defined by

fidu2 +2S dudv + T dv2 = form a conjugate system upon a sur-

face *s
RD&quot; + TD 2 SD = 0.

From this we have at once :

If the second quadratic forms of two surfaces S and S
l
are

D du2+ 2 D dudv + D&quot; dv2 and D
l
du2 + 2 D[ dudv + D[

f

dv\ and if a

point on one surface is said to correspond to the point on the other

with the same values of u and tf, the equation

du2

D? D&quot;

(43)
dudv D[ D
dv2

DI D

defines a system of curves which is conjugate for both surfaces.

By the methods of 50 we prove that these curves are real when

either or both of the surfaces S, S
l
is of positive curvature. If the

curvature of S is negative and it is referred to its asymptotic lines,

the above equation reduces to
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Hence the system is real when D
l
and D[ have the same sign, that

is, when the curvature of S
l
is positive.

Another consequence of the above theorem is :

A necessary and sufficient condition that asymptotic lines on one of

two surfaces $, Sl correspond to a conjugate system on the other is

(44) DDJ+ D&quot;Di
- 2D D[= 0.

EXAMPLES

1. Find the curves on the general surface of revolution which are conjugate to

the loxodromic curves which cut the meridians under the angle a.

2. Find the curves on the general right conoid, Ex. 1, p. 56, which are conju

gate to the orthogonal trajectories of the generators.

3. When the equations of a surface are of the form

x=Ul , y=Vi, z=U2 +V2 ,

where U\ and U2 are functions of u alone, and V\ and F2 of v alone, the para

metric curves are plane and form a conjugate system.

4. Prove that the sum of normal radii at a point in conjugate directions is

constant.

5. When a surface of revolution is referred to its meridians and parallels, the

asymptotic lines can be found by quadratures.

6. Find the asymptotic lines on the surface
acosw

x = a(l + cos it) cot v, y = a(l + cosw), z= --

7. Determine the asymptotic lines upon the surface z y sin a: and their orthog

onal trajectories. Show that the x-axis belongs to one of the latter families.

8. Find the asymptotic lines on the surface 2 ?/
3 - 2 xyz + z2 = 0, and determine

their projections on the xy-plane.

9. Prove that the product of the normal radii in conjugate directions is a maxi

mum for characteristic lines and a minimum for lines of curvature.

10. When the parametric lines are any whatever, the equation of character

istic lines is

[D(GD - ED&quot;)
- 2D (FD - ED )] tin* + 2 [D (GD + ED&quot;)

- 2 FDD&quot;] dudv

+ [2D (GD -
FD&quot;)

-
D&quot;(GD

-
ED&quot;)]

dv* = 0.

57. Geodesic curvature. Geodesies. Consider a curve C upon a

surface and the tangent plane to the surface at a point M of C.

Project orthogonally upon this tangent plane the portion of the

curve in the neighborhood of M, and let C 1 denote this projection.

The curve C 1
is a normal section of the projecting cylinder, and C

is a curve upon the latter, tangent to C&quot; at M. Hence the theorem
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of Meusnier can be applied to these two curves. If l/pg
denotes the

curvature of C and -^ the angle between the principal normal to C
and the positive direction of the normal to the cylinder at Jf, we have

(45)
i = c^.
P, P

In order to connect this result with others, it is necessary to

define the positive direction of the normal to the cylinder. This

normal lies in the tangent plane to the surface. We make the

convention that the positive directions of the tangent to the curve,

the normal to the cylinder, and the normal to the surface shall

have the same mutual orientations as the positive or-, y-, and 2-axes.

From this choice of direction it follows that if, as usual, the direc

tion-cosines of the tangent to the curve be dx/ds, dy/ds, dz/ds, then

those of the normal to the cylinder are

(46 ) Y*-Z*/, Z~-*~&amp;gt; *f-4-ds ds ds ds ds ds

The curvature of C f
is called the geodesic curvature of (7, and pg

the radius of geodesic curvature. And the center of curvature of C

is called the center of geodesic curvature of C.

From its definition the geodesic curvature is positive or nega

tive according as the osculating plane of C lies on one side or the

other of the normal plane to the surface through the tangent to C.

From (45) it follows that the center of first curvature of C is the

projection upon its osculating plane of the center of geodesic

curvature. Moreover, the former is also the projection of the

center of curvature of the normal section tangent to C (49).

Hence the plane through a point M of (7, normal to the line

joining the centers of normal and geodesic curvature at M, is the

osculating plane of C for this point, and its intersection with the

join is the center of first curvature.

By definition
( 49) w denotes the angle which the positive

direction of the normal to the surface makes with the positive

direction of the principal normal to (7, angles being measured

toward the binomial. Hence equation (45) can be written

1 sin w
(47)

- =
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These various quantities are represented in fig. 15, for which

the tangent to the curve is normal to the plane of the paper, and

is directed toward the reader. The directed lines MP, MB, MK,
MN represent respectively the positive directions of the principal

normal and binomial of the curve and

the normals to the projecting cylinder

and to the surface.

A curve whose principal normal at

every point coincides with the normal

to the surface upon which it lies, is

called a geodesic. From (45) it follows

that a geodesic may also be defined as

a curve whose geodesic curvature is

zero at every point. For example, the

meridians of a surface of revolution are

geodesies, as follows from the results in 46. A twisted curve is a

geodesic on its rectifying developable, and when a straight line

lies 011 a surface, it is a geodesic for the surface. Later we

shall make an extensive study of geodesies, but now we desire

to find an expression for the geodesic curvature in terms of

the fundamental quantities of the surface and the equation of

the curve.

58. Fundamental formulas. The direction-cosines of the prin

cipal normal are ( 8)

d2x ~ d2

y d2
z

f\ _ Q QH
ds

2 ^
ds2 r

ds
2

.

Consequently, by means of (46), equation (45) may be put in

the form
1 ^\ / dz dy\ d x

(
48

) 7g
=
*\ ds~ ~ds)~ds

2

Expressed as functions of u and v, the quantities -j- -ji
are ^

the form
dx _ fa du dx dv

ds du ds dv ds

_ g
d
2x dudv d*x^Y+ +

~ds
2
~

du2
\ds) dudv ds ds dv

2
\ds) du ds2

dv ds
2
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When these expressions are substituted in (48), and in the reduction

we make use of (10) and (11), we obtain

ds ds

where L and M have the significance

_ ,_ , F (Fv
~ +

ds ds^\dv 29/Vb/ &amp;lt;*r ds^

-- . \\^^ + ~ (\\ F G-~
du
~

2 ~dv) \ds) du ds ds 2 dv \ds) ds*
*

From this it is seen that the geodesic curvature of a curve depends

upon E, F, G, and is entirely independent of D, D ,
D&quot;.

Suppose that the parametric lines form an orthogonal system,

and that the radius of geodesic curvature of a curve v = const, be

denoted by pgu
. In this case F= 0, ds = Vfldu. Hence the above

equation reduces to

(50) r -

In like manner we find that the geodesic curvature of a curve

u = const, is given by
_!

As an immediate consequence c^ these equations we have the

theorem :
f

When the parametric lines upon a surface form an orthogonal

system, a necessary and sufficient condition that the curves v = const,

or u = const, be geodesies is that E be a function of u alone or G of v

alone respectively.

It will now be shown that pgu is expressible as a function of

differential parameters of v formed with respect to the linear ele

ment (III, 4).

From the definition of these parameters ( 37, 38) it follows

that when ^=0
l d IE

~V\G
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Hence, by substitution in (50), we obtain

(52)
JUPAL ./ 1

Pgn [y&^v

In like manner, we find

(53)
-i- =

Thus we have shown that the geodesic curvature of a parametric

line is a differential parameter of the curvilinear coordinate of the

line. Since this curvature is a geometrical property of a line, it is

necessarily independent of the choice of parameters, and thus is

an invariant. This was evident a priori, but we have just shown

that it is an invariant of the differential parameter type.

From the definition of the positive direction of the normal to a

surface
( 48), and the normal to the cylinder of projection, it fol

lows that the latter for a curve v = const, is the direction in which v

increases, whereas, for a curve u const., it is the direction in which

u decreases. Hence, if the latter curves be defined by u = const.,

equations (52) and (53) have the same sign.

If, now, we imagine the surface referred to another parametric

system, for which the linear element is

(54) ds* = Edu2+ 2 Fdudv + G dv\

the curve whose geodesic curvature is given by (50) will be defined

by an equation such as
c/&amp;gt; (u, v)

= const. And if the sign of $ be

such that &amp;lt; is increasing in the direction of the normal of its pro

jecting cylinder, its geodesic curvature will be given by

(55)
p.

where the differential parameters are formed with respect to (54).

If two surfaces are applicable, and points on each with the same

curvilinear coordinates correspond, the geodesic curvature of the

curve &amp;lt;= const, on each at corresponding points will be the same

in consequence of (55). Hence :

Upon two applicable surfaces the geodesic curvature of corresponding

curves, at corresponding points, is the same.
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When the second member of equation (55) is developed by

(III, 46, 56), we have

1 1

ff(V*d

d \ du dv\ d \ dv du

cu H

L 1

cu

dv R

dv du d 1

H

FW\
I I d

I
du dv\ d^\

dv du,

Hence we have the formula of Bonnet*:

(56) i-^

du dv

In particular, the geodesic curvature of the parametric curves,

when the latter do not form an orthogonal system, is given by

(57)
ft.

dv

du

The geodesic curvature of a curve of the family, defined by

the differential equation
Mdu+ Ndv*sQ,

has the value

1 _ 1 f d I FN GM \

pg

&quot; H \ du \^EN*- 2FMN+ GM2
/

d / FM-EN
ZFMN+ GM

*Memoire sur la theorie generale des surfaces, Journal de VEcole Poll/technique,

Cahier 32 (1848), p. 1.
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In illustration of the preceding results, we establish the theorem :

When the curves of an orthogonal system have constant geodesic curvature, the

system is isothermal.

When the surface is referred to these lines, and the linear element is written

dsz = Edu2 + Gdv2
,
the condition that the geodesic curvature of these curves be

constant is, by (50) and (51),

1 dVE
l/i,

- = KI,
VEG fa

where Ui and V\ are functions of u and v respectively. If these equations are

differentiated with respect to D and u respectively, we get

dudv dv cu cucv dv du

&quot;&quot;S 75^

Subtracting, we obtain -
log = 0.

CUCV G

Hence E/G is equal to the ratio of a function of u and a function of u, and the

system is isothermic. In terms of isothermic parameters, equations (i) are of

the form

10X = r
r, J.3X

\2 5U \2 dV
~

and the linear element is

(II)
tf

It is evident that the meridians and parallels on a surface of revolution form

such a system. The same is true likewise of an orthogonal system of small circles

on a sphere.

59. Geodesic torsion. We have just seen that when a curve is

denned by a finite equation or a differential equation, its geodesic

curvature can be found directly. The same is true of the normal

curvature of the surface in the direction of the curve by (18).

Then from (16) and (47) follow the expressions for p and tw. In

order to define the curve it remains for us to obtain an expression

for the torsion.

From the definition of o&amp;gt; it follows that

(59) sin o) =X\ -f Y/JL + Zv,

where X, /Lt,
v are the direction-cosines of the binormal. If this

equation is differentiated with respect to the arc of the curve,

and the Frenet formulas (I, 50) are used in the reduction, we get

(
60

) v ^ _i *- ds
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From (I, 37, 41) Ave have

dx d&quot;*z\

~d~s~dfj

_ /dy d&quot;z dz d*y\ _ /dz d*x _ dx d&quot;*z~~~ ^~ ~ ~~~~

j ds
2

ds ds2

r d
2x -V-K ,

and r- / . 7 .

6?S^

Moreover, from (13), we obtain the identity

ds ds ds ds H\_ \ds/ ds ds

Consequently equation (60) is equivalent to

(61) eos

where l/T has the value

1 (FD- ED }
du2 +(GD ED&quot;)

dudv + (
GD -

FD&quot;)
dv*

&quot;

~T
~

H(Edu
2 + 2 Fdudv + G dv 2

)

When cos w is different from zero, that is, when the curve is not

an asymptotic line, equation (61) becomes

hf-F
As the expression for T involves only the fundamental coeffi

cients and dv/du, we have the following theorem of Bonnet:

The function is the same for all curves which have the same
T ds

tangent at a common point.

Among these curves there is one geodesic, and only one, for it

will be shown later
( 85) that one geodesic and only one passes

through a given point and has a given direction at the point.

At every point of this geodesic w is equal to or 180, and conse

quently T T. Hence the value of T for a given point and direc

tion is that of the radius of torsion of the geodesic with this direction.

The function T is therefore called the radius of geodesic torsion of



GEODESIC TORSION 139

the curve. From (63) it is seen that T is the radius of torsion of

any curve whose osculating plane makes a constant angle with the

tangent plane.*

When the numerator of the right-hand member of equation (62)

is equated to zero, we have the differential equation of lines of

curvature. Hence :

A necessary and sufficient condition that the geodesic torsion of

a curve be zero at a point is that the curve be tangent to a line of

curvature at the point.

The geodesic torsion of the parametric lines is given by

1 _ FD-ED l_ _ GD -FD&quot;

~T~ EH ~T
V

~
GH

When these lines form an orthogonal system Tu and T
v
differ only

in sign. Consequently the geodesic torsion at the point of meeting

of two curves cutting orthogonally is the same to within the sign.

Thus far in the consideration of equation (61) we have excluded

the case of asymptotic lines. In considering them now, we assume

that they are parametric. The direction-cosines of the tangent and

binomial to a curve v = const, in this case are

JL^, =-L^, 7= ;~

where e is +1 or 1. Consequently the direction-cosines of the

principal normal have the values

and similar expressions for m and n.

When in the Frenet formulas

d\ I dfju _m dv _n
ds

~~
T ds T ds r

we substitute the above values, and in the reduction make use

of (11) and (13), we get

(65)

* Thus far exception must be made of asymptotic lines, but later this restriction will

be removed.
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In like manner, the torsion of the asymptotic lines u = const, is

found to be V K. But from (64) we find that the geodesic torsiqn

in the direction of the asymptotic lines is qpV JT. Hence equation

(63) is true for the asymptotic lines as well as for all other curves

on the surface.

Incidentally we have established the following theorem of Enneper :

The square of the torsion of a real asymptotic line at a point is equal to the abso

lute value of the total curvature of the surface at the point; the radii of torsion of the

asymptotic lines through a point differ only in sign.

The following theorem of Joachimsthal is an immediate consequence of (63) :

When two surfaces meet under a constant angle, the line of intersection is a line

of curvature of both or neither; and conversely, when the curve of intersection of two

surfaces is. a line of curvature of both they meet under constant angle.

For, if
&&amp;gt;!,

o&amp;gt;2 denote the values of w for the two surfaces, and Z\, T2 the values

of T, we have, by subtracting the two equations of the form (63), that TI = T2 ,

which proves the first part of the theorem. Conversely, if \/T\ = l/T2 = 0, we

have (wi uz) = 0, and consequently the surfaces meet under constant angle.
ds

EXAMPLES

1. Show that the radius of geodesic curvature of a parallel on a surface of

revolution is the same at all points of the parallel, and determine its geometrical

significance.

2. Find the geodesic curvature of the parametric lines on the surface

a ,
b

/
uv

X = -(u + v), y = -(u-v), z = &amp;gt;

3. Given a family of loxodromic curves upon a surface of revolution which cut

the meridians under the same angle a ;
show that the geodesic curvature of all these

curves is the same at their points of intersection with a parallel.

4. Straight lines on a surface are the only asymptotic lines which are geodesies.

5. Show that the geodesic torsion of a curve is given by

1 1/1 1\ .= -I ) sin 2 0,
T *\fi pj

where 6 denotes the angle which the direction of the curve at a point makes with

the line of curvature v = const, through the point.

6. Every geodesic line of curvature is a plane curve.

7. Every plane geodesic line is a line of curvature.

8. When a surface is cut by a plane or a sphere under constant angle, it is a line

of curvature on the surface, and conversely.

9. If the curves of one family of an isothermal orthogonal system have constant

geodesic curvature, the curves of the other family have the same property.
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60. Spherical representation. In the discussion of certain prop

erties of a surface S it is of advantage to make a representation of

S upon the unit sphere
*
by drawing radii of the sphere parallel to

the positive directions of the normals to S, and taking the extrem

ities of the radii as spherical images of the corresponding points on

S. As a point M moves along a curve on $, its image m describes

a curve on the sphere. If we limit our consideration to a portion

of the surface in which no two normals are parallel, the portions

of the surface and sphere will be in a one-to-one correspondence.

This map of the surface upon the sphere is called the spherical

representation of the surface, or the Gf-aussian representation. It

was first employed by Gauss in his treatment of the curvature of

surfaces.f

The coordinates of m are the direction-cosines of the normal to

the surface, namely X, F, Z, so that if we put

the square of the linear element of the spherical representation is

In 48 we established the following equations :

_f FD 1 GD dx .
FD ED dx

%

(68)
du~ H 2 du H 2

dv

dX FD&quot;GD ex FD ED&quot; dx

]v H z du H 2
dv

By means of these relations and similar ones in F and Z, the func

tions (o, c^, & may be given the forms

(69)

=~ [GIf
- 2H

_

JL
H

F(DD&quot;+D 2

) + ED D&quot;],

- 2

or, in terms of the total and mean curvatures
( 52),

(70)

* The sphere of unit radius and center at the origin of coordinates. t L.c., p. 9.
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In consequence of these relations the linear element (67) may be

given the form

(71) do-
z Itm(Ddu-+ 2D dudv+D&quot;dv

2

) K(Edi?+ 2 Fdudv

and, by (18),

(72) ^=(\ J*

From (70) we have also

(73) ff.

where e is 1, according as K is positive or negative.

Equations (69) are linear in E, F, G. Solving for the latter,

we have

E =

(74)

In seeking the differential equation of the lines of curvature

from the definition that the normals to the surface along such a

curve form a developable surface, we found
( 51) that for a dis

placement in the direction of a line of curvature we have

fa 7 & 7 l^X 3 ,

2X , \ .
du + dv + r( du + - dv = 0,

du dv \du dv /

and similar equations in y and 2, where r denotes the radius of

principal curvature for the direction. If these equations be multi-

o -T7&quot; QT/&quot; Q *7 7} &quot;jf

plied respectively by
- -

&amp;gt;

-- and added, and likewise by
-

&amp;gt;

du du du dv

and added, th
dv dv
?., _ an(l added, the resulting equations may be written

D du +D dv - r(fdu+di&amp;gt;)
= 0,

D du +Dn dv -r(3du + gdv} = 0.

Eliminating r, we have as the equation of the lines of curvature

(75)
- 2 -&quot;dudv D -D&quot;&dv* = 0.
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Again, the elimination of du and dv gives the equation of the

principal radii in the form

(76) (&amp;lt;o

c^
2

) r*(&amp;lt;oD&quot;+ 3D 2 &D
)
r + (DD&quot;

D
)
= 0,

so that

(77)

These results enable us to write equations (74) thus :

(78)

61. Relations between a surface and its spherical representation.

Since the radius of normal curvature R is a function of the direc

tion except when the surface is a sphere, we obtain from (72) the

following theorem :

A necessary and sufficient condition that the spherical representation

of a surface be conformal is that the surface be minimal or a sphere.

As a consequence of this theorem we have that every orthog

onal system on a minimal surface is represented on the sphere by
an orthogonal system. From (70) it is seen that if a surface is

not minimal, the parametric systems on both the surface and the

sphere can be orthogonal only when If is zero, that is, when the

lines of curvature are parametric. Hence we have :

The lines of curvature of a surface are represented on the sphere

by an orthogonal system ; this is a characteristic property of lines

of curvature, unless the surface be minimal.

This theorem follows also as a direct consequence of the theorem :

A necessary and sufficient condition that the tangents to a curve

upon a surface and to its image at corresponding points be parallel is

that the curve be a line of curvature.

In order to prove this theorem we assume that the curve is

parametric, v = const. Then the condition of parallelism is

&.?.- to ;&.*
du du du du du du
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From (68) it follows that in this case (FD ED1

)
must be zero.

But the latter is the condition that the curves v = const, be lines of

curvature
( 51). Moreover, from (32) it follows that the positive

half-tangents to a line of curvature and its spherical representa
tion have the same or contrary sense according as the correspond

ing radius of normal curvature is negative or positive.

In consequence of (7) the equation (40) of the asymptotic
directions may be written

dxdX+ dydY+ dzdZ = 0.

And so we have the theorem :

The tangents to an asymptotic line and to its spherical representa
tion at corresponding points are perpendicular to one another ; this

property is characteristic of asymptotic lines.

It is evident that the direction-cosines of the normal to the

sphere are equal to X, Y, Z, to within sign at most. Let them

be denoted by X&amp;gt;&amp;lt;&amp;gt; I/, ^; then

(79) x&amp;gt;
= ( - ?
#\du dv du dv

When expressions similar to (68) are substituted for the quantities

in the parentheses, the latter expression is reducible to KHX.

Hence, in consequence of (73), we have

(80) x&amp;gt;

= ex, ^ = er, l
= *z,

where e = 1 according as the curvature of the surface is positive

or negative.

From the above it follows that according as a point of a surface

is elliptic or hyperbolic the positive sides of the tangent planes at

corresponding points of the surface and the sphere are the same or

different. Suppose, for the moment, that the lines of curvature are

parametric. From our convention about the positive direction of

the normal to a surface, and the above results, it follows that both

the tangents to the parametric curves through a point M have the

same sense as the corresponding tangents to the sphere, or both

have the opposite sense, when M is an elliptic point; but that

one tangent has the same sense as the corresponding tangent to

the sphere, and the other the opposite sense, when the point is
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hyperbolic. Hence, when a point describes a closed curve on a

surface its image describes a closed curve on the sphere in the

same or opposite sense according as the surface has positive or

negative curvature. We say that the areas inclosed by these

curves have the same or opposite signs in these respective cases.

Suppose now that we consider a small parallelogram on the sur

face, whose vertices are the points (u, v), (u -f du, v), (u, v -f dv),

and (u + du, v + dv). The vertices of the corresponding parallelo

gram on the sphere have the same curvilinear coordinates, and

the areas are Ifdudv and e/tdudv, where e 1 according as the sur

face has positive or negative curvature in the neighborhood of the

point (u, v). The limiting value of the ratio of the spherical and

the surface areas as the vertices of the latter approach the point

(u, v) is a measure of the curvature of the surface similar to that

of a plane curve. In consequence of (73) this limiting value is the

Gaussian curvature K. Since any closed area may be looked upon
as made up of such small parallelograms, we have the following
theorem of Gauss :

The limit of the ratio of the area of a closed portion of a surface to

the area of the spherical image of it, as theformer converges to a point,

is equal in value to the product of the principal radii at the point.

Since the normals to a developable surface along a generator are

parallel, there can be no closed area for which there are not two nor

mals which are parallel. Hence spherical representation, as defined

in 60, applies only to nondevelopable surfaces, but so far as the

preceding theorem goes, it is not necessary to make this exception ;

for the total curvature of a developable surface is zero
( 64),

and the area of the spherical image of any closed area on such a

surface is zero.

The fact that the Gaussian curvature is zero at all points of a developable surface,

whereas such a surface is surely curved, makes this measure not altogether satis

factory, and so others have been suggested. Thus, Sophie Germain* advocated

the mean curvature, and Casorati f has put forward the expression -
[

1 )
2

\Pi fill

But according to the first, the curvature of a minimal surface is zero, and according
to the second, a minimal surface has the same curvature as a sphere. Hence the

Gaussian curvature continues to be the one most frequently used, which may be

due largely to an important property of it to be discussed later
( 64).

*
Crelle, Vol. VII (1831), p. 1. f Acta Mathematica, Vol. XIV (1890), p. 95.
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62. Helicoids. We apply the preceding results in a study of

an important class of surfaces called the helicoids. A helicoid is

generated by a curve, plane or twisted, which is rotated about a

fixed line as axis, and at the same time translated in the direction

of the axis with a velocity which is in constant ratio with the

velocity of rotation. A section of the surface by a plane through
the axis is called a meridian. All the meridians are equal plane

curves, and the surface can be generated by a meridian moving
with the same velocities as the given curve. The particular motion

described is called helicoidal motion, and so we may say that any
helicoid can be generated by a plane curve with helicoidal motion.

In order to determine the equations of a helicoid in parametric

form, we take the axis of rotation for the 2-axis, and let u denote

the distance of a point of the surface from the axis, and v the angle
made by the plane through the point and the axis with the #z-plane

in the positive direction of rotation. If the equation of the gen

erating curve in any position of its plane is z =
&amp;lt;f&amp;gt; (w), the equations

of the surface are

(81) x = u cos v, y = u sin v, z =
&amp;lt;/&amp;gt; (u) + av,

where a denotes the constant ratio of the velocities ; it is called

the parameter of the helicoidal motion. When, in particular, a is

zero, these equations define any surface of revolution. Moreover,

when &amp;lt; (u) is a constant, the curves v = const, are straight lines

perpendicular to the axis, and so the surface is a right conoid.

It is called the right helicoid,

By calculation we obtain from (81)

(82) ^= l + c/)

/2

, F=a&amp;lt;t&amp;gt; , G=u2+a2
,

where the accent indicates differentiation with respect to u. From

the method of generation it follows that the curves v = const, are

meridians, and u = const, are helices on the helicoids, and circles

on surfaces of revolution. From (82) it is seen that these curves

form an orthogonal system only on surfaces of revolution and on

the right helicoid. Moreover, from (57) it is found that the geo
desic curvature of the meridians is zero only when a is zero or &amp;lt;

is a constant. In the latter case the meridian is a straight line

perpendicular to the axis or oblique, according as
(/&amp;gt;

is zero or not.
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Hence the meridians of surfaces of revolution and of the ruled

helicoids are geodesies.

The orthogonal trajectories of the helices upon a helicoid are

determined by the equation (cf. Ill, 31)

afidu + (u
2+ a

2

)
dv = 0.

Hence, if we put v
1
= /

&amp;gt;2

^
2
du + v,

J It -J- Q

the curves v
x
= const, are the orthogonal trajectories, and their

equations in finite form are found by a quadrature. In terms of

the parameters u and v
l
the linear element is

(83) t?s
2

u

As an immediate consequence of this result we have that the

helices and their orthogonal trajectories on any helicoid form an

isothermal system.

From (83) and
( 46) we have the theorem of Bour:

Every helicoid is applicable to some surface of revolution, and

helices on the former correspond to the parallels on the latter.

We derive also the following expressions :

,r a sin v
u&amp;lt;f&amp;gt;

cos v, (a cos v + u$
! sin v), u

(o4) JL, y, z =- -
V^2

(l + f2)+a2

and

(85) /&amp;gt;,/&amp;gt; .!&amp;gt;&quot;=

From (84) it follows that a meridian is a normal section of a sur

face of revolution at all its points, and consequently is a line of

curvature (Ex. 7, p. 140). This is evident also from the equation

of the lines of curvature of a helicoid, namely

(86) a [1 + &amp;lt;/&amp;gt;

2 +
u&amp;lt;t&amp;gt; $ ]

dii
2+ [(u

2+ a2

)
M&amp;lt;&quot;

-
(1 + $ *)u^ ]

dudv

-a[u
2

(t&amp;gt;

-2+u2+a2

]dv
2 =Q.

Moreover, the meridians are lines of curvature of those helicoids,

for which
&amp;lt;/&amp;gt;

satisfies the condition
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By integration this gives

&amp;lt;f)

= Vtf&quot; U2
C log

When the surface is the right helicoid the expressions for D
and D&quot; vanish. Hence the meridians and helices are the asymp

totic lines. Moreover, these lines form an orthogonal system, so

that the surface is a minimal surface
( 55). Since the tan-

gent planes to a surface along

an asymptotic line are its oscu

lating planes, if the surface is a

ruled minimal surface, the gener

ators are the principal normals of

all the curved asymptotic lines.

But a circular helix is the only

Bertrand curve whose principal

normals are the principal normals

of an infinity of curves ( 19).

Hence we have the theorem of

Catalan :

The right helicoid is the only

real minimal ruled surface.

In fig. 16 are represented the asymptotic lines and lines of

curvature of a right helicoid.

For any other helicoid the equation of the asymptotic lines is

(87) ufi du2- Zadudv + uty di? = 0.

As the coefficients in (86) and (87) are functions of u alone, we

have the theorem :

When a helicoid is referred to its meridians and helices, the asymp

totic lines and the lines of curvature can be found by quadratures.

EXAMPLES

1. Show that the spherical representation of the lines of curvature of a surface

of revolution is isothermal.

2. The osculating planes of a line of curvature and of its spherical representa

tion at corresponding points are parallel.

3. The angles between the asymptotic directions at a point on a surface and

between their spherical representation are equal or supplementary, according as

the surface has positive or negative curvature at the point.

FIG. 16
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4. Show that the helicoidal surface

x = u cos v, y = u sin v, z = bv

is minimal.

5. The total curvature of a helicoid is constant along a helix.

6. The orthogonal trajectories of the helices upon a helicoid are geodesies.

7. If the fundamental functions E, F, G of a surface are functions of a single

parameter w, the surface is applicable to a surface of revolution.

8. Find the equations of the helicoid generated by a circle of constant radius

whose plane passes through the axis and the lines of curvature on the surface
;
also

find the equations of the surface in terms of parameters referring to the meridians

and their orthogonal trajectories.

GENERAL EXAMPLES

1. If a pencil of planes be drawn through a tangent MT to a surface, and if

lengths be laid off on the normals at M to the sections of the surface by these

planes equal to the curvature of the sections, the locus of the end points is a

straight line normal to the plane determined by MT and the normal to the

surface at M.

2. If P is a point of a developable surface, P the point where the generator

through P touches the edge of regression, t the length PoP, p and r the radii of

curvature and torsion of the edge of regression, then the principal radii of the

surface are given by -i -i

= 0,
- = -

3. For the surface of revolution of a parabola about its directrix, the principal

radii are in constant ratio.

4. The equations x = a cos it, y = asinw, z = uv define a family of circular

helices which pass through the point A (a, 0, 0) of the cylinder ;
each helix has an

involute whose points are at the distance c from A (cf. I, 106). Find the surface

which is the locus of these involutes
;
show that the tangents to the helices are

normal to this surface
;
find also the lines of curvature upon the latter.

5. The surfaces defined by the equations (cf. 25)

l+p2 + ?
2 = q*f(y), x + pz=&amp;lt;t&amp;gt;(p)

have a system of lines of curvature in planes parallel to the xz-plane and to the

y-axis respectively.

6. The equations

y - ax = 0, a:
2 + y2 + z2 - 2 px - a2 = 0,

where a and ft are parameters, define all the circles through the points (0, 0, a),

(0,0, a). Show that the circles determined by a relation ft=f(a) are the

characteristics of a family of spheres, except when f(a) is a linear function
;

also that the circles are lines of curvature on the envelope of these spheres.

7. If one of the lines of curvature of a developable surface lies upon a sphere,

the other nonrectilinear lines of curvature lie on concentric spheres.
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8. If P is a point on a surface, P the center of normal curvature of the line

bisecting the angle between the lines of curvature, and PI, P2 the centers of normal

curvature in two directions equally inclined to the first, then the four points

P, PI, PO, PZ form a harmonic range.

9. If EI, Ra , R-s, ,
Rm denote the radii of normal curvature of m sections of

a surface which make equal angles 2 tr/m with one another, and m &amp;gt; 2, then

I /-I V--1 + J_\ = * /i + IV
m \Ri R2 RJ 2 Vx

T
PJ

10. If the Dupin indicatrix at a point P of a surface is an ellipse, and through

either one of the asymptotes of its focal hyperbola two planes be drawn perpen

dicular to one another, their intersections with the tangent plane are conjugate

directions on the surface.

1 1 . All curves tangent to an asymptotic line at a point M,
and whose osculating

planes are not tangent to the surface at 3f, have M for a point of inflection.

12. The normal curvature of an orthogonal trajectory of an asymptotic line is

equal to the mean curvature of the surface at the point of intersection.

13. The surface of revolution whose equations are

x = u cos w, y = u sin w, z = a log (u 4-vV2 a2
)

is generated by the rotation of a catenary about its axis
;

it is called the catenoid.

Show that it is the only minimal surface of revolution.

14. When the osculating plane of a line of curvature makes a constant angle

with the tangent plane to the surface, the line of curvature is plane.

15. A plane line of curvature is represented on the unit sphere by a circle.

16. The cylinder whose right section is the curve defined by the intrinsic equa

tion p = a - s2/6, where a and b are positive constants, has the characteristic prop

erty that upon it lie curves of curvature
^l

a + b
,

whose geodesic curvature is

I/Void.
^ a26

17. When a surface is referred to an orthogonal system of lines, and the radii of

geodesic curvature of the curves v = const, and u - const. are p^, pgv respectively,

the geodesic curvature of the curve which makes an angle Q with the lines v = const,

is given by 1 _ dd cos0 sin
&amp;gt;

Pg

~~
dS Pgu Pgv

18. When a surface is referred to an orthogonal system of lines, and pvi s

denote the radius of geodesic curvature and the arc for one system of isogonal

trajectories of the parametric lines, and pj, 8 the similar functions for the

orthogonal trajectories of the former, then whatever be the direction of the first

curves the quantity 4. to constant at a point.

19. If p and p denote the radii of first curvature of a line of curvature and its

spherical representation, and also p, and pg the radii of geodesic curvature of these

curves, then fis dff fa dtr

7
=
7 P~8~P?

where ds and d&amp;lt;r are the linear elements of the curves.
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20. When a surface is referred to its lines of curvature, and
, #o denote the

angles which a curve on the surface and its spherical representation make with

the curves v = const., the radii of geodesic curvature of these curves, denoted by

pg and pg respectively, are in the relation

ds dcr

ddo = d&o ---

Py Pg
21. When the curve

x=f(u)cosu, y=f(u)sinu, z = -

is subjected to a helicoidal motion of parameter a about the z-axis, the various

positions of this curve are orthogonal trajectories of the helices, and also geodesies

on the surface.

22. When a curve is subjected to a continuous rotation about an axis, and at

the same time to a homothetic transformation with respect to a point of the axis,

such that the tangent to the locus described by a point of the curve makes a con

stant angle with the axis, the locus of the resulting curves is called a spiral surface.

Show that if the z-axis be taken for the axis of rotation and the origin for the center

of the transformation, the equations of the surface are of the form

x = f(u) ehv cos (u + v) , y = f(u) ehv sin (u + v) ,
z = (u) e*v

,

where h is a constant.

23. A spiral surface can be generated in the following manner: Let C be a

curve, I any line, and P a point on the latter
;

if each point M on C describes an

isogonal trajectory of the generators on the circular cone with vertex P and axis I

in such a way that the perpendicular upon I, from the moving pointM,
revolves about I

with constant velocity, the locus of these curves is a spiral surface (cf . Ex. 5, 33).

24. Show that the orthogonal trajectories of the curves u = const., in Ex. 22,

can be found by quadratures, and that the linear element can be put in the form

where A is a function of a alone.

25. Show that the lines of curvature, minimal lines, and asymptotic lines upon
a spiral surface can be found by quadrature.



CHAPTER V

FUNDAMENTAL EQUATIONS. THE MOVING TRIHEDRAL

63. Christoffel symbols. In this chapter we derive the necessary

and sufficient equations of condition to be satisfied by six func

tions, E, F, G ; D, D\ D&quot;,
in order that they may be the fundamental

quantities for a surface.

For the sake of brevity we make use of two sets of symbols,

suggested by Christoffel,* which represent certain functions of the

coefficients of a quadratic differential form and their derivatives of

the first order. If the differential form is

andu
2
-f- 2 a^du^du^ + c

the first set of symbols is defined by

R&l !/^ + ^_&amp;lt;HA

[l J 2\duk du
( duj

where each of the subscripts i, k, I has one of the values 1 and 2.f

From this definition it follows that

When these symbols are used in connection ,with the first fun

damental quadratic form of a surface ds
2=E du2 + 2F dudv + G dv2

,

they are found to have the following significance :

(1)

[iriia* [&quot;&quot;L^ia*
L 1 J 2Su L 2 J Su 2

2dv

I ~l I Q/* O ,* I O I

L J- I cv & cu L ^ J ^

2 J 2 di&amp;lt;

2~dv

*
Crelle, Vol. LXX, pp. 241-245.

t This equation defines these symbols for a quadratic form of any number of vari

ables wi, ,
un . In this case i, k, I take the values 1, ,

n.

152
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The second set of symbols is defined by the equation

where A
vl
denotes the algebraic complement of a

vl
in the discrimi

nant ana22
a 2

2
divided by the discriminant itself. With reference

to the first fundamental quadratic form these symbols mean

4i--Jv ^ =:^ A
=-!r*

and

du dv du fill du dv du
f) TT 2 I n I ,&quot; Ti-O

ri2\ ^g^ du I12\_
llJ 2^ l2/~

du dv

f&quot; G 2 G
^v 3t* dv f221 dv du dv

From these equations we derive the following identities :

With the aid of these identities we derive from (III, 15, 16) the

expressions

&amp;gt;

(MVKff}&amp;gt; Sm-K?))-
f^lFrom the above definition of the symbols &amp;lt;! &amp;gt; WQ obtain the

following important relation :

64. The equations of Gauss and of Codazzi. The first two of

equations (IV, 10) and the equation
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form a consistent set of equations linear in ,
-

, and the
2 du2 du2 du2

determinant is equal to H. Solving for -, we get

similar equations hold for y and z. Proceeding in like manner with

the other equations (IV, 10) and

(6)

we get the following equations of G-auss :

a
2* _ri2\az fiaiat ^

awa li/a* la/a*

For convenience of reference we recall from 48 the equations

(8)

dX_FD GDdx FDED dx

~du

=
H 2 a^

4 n 2
dv

dX __
FD&quot;-GD dx FD -ED&quot; dx

3v
~

H 2 du H 2
dv

The conditions of integrability of the Gauss equations (7) are

du\dudv dv \dudv du\dv
2

By means of (7) and (8) these equations are reducible to the forms

&amp;lt;*x v o
^

4. A ?E _i_ x
1
dv

1 2
du

2
v(9)

a

where av a
2 , &amp;gt;,

c
2
are determinate functions of E, F, G ; D, D ,

D&quot;

and their derivatives. Since equations similar to (9) hold for y and

z, we must have

(10) !=0, a
2 =0, &j=0, 6

2 =0, ^=0, &amp;lt;?

2
=0.
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When the expressions for ar a
2 , b^ and 5

2
are calculated, it is

found that the first four equations are equivalent to the following :

1212\ jMlll |12jfl2j
fill

J221

d /in d ri2i
, rni/121 ,

rnif22

fi2i fill ri2i 2

HiAaJ-ta-J
221 d M21

, /221 /121 , /221 Ml

f!2\ a /22\ , fl2\fl2\ f22\/ll

When the expressions for the Christoffel symbols are substituted

in these equations the latter reduce to the single equation

Z?D&quot;-jP
a

= 1 f g r F dE__ 1 3G1

H 2 ~2N \du \_EH dv H du\

j^r 2 dF i _
dv IH du H dv EH du_

This equation was discovered by Gauss, and is called the G-auss

equation of condition upon the fundamental functions. The left-

hand member of the equation is the expression for the total curva

ture of the surface. Hence we have the celebrated theorem of

Gauss *
:

The expression for the total curvature of a surface is a function

of the fundamental coefficients of the first order and of their deriva

tives of the first and second orders.

When the expressions for c^ and c
2
are calculated, we find that

the last two of equations (10) are

(13)

v

du
&quot;

dv

*L.c., p. 20.
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These are the Codazzi equations, so called because they are equiva
lent to the equations found by Codazzi *

; however, it should be

mentioned that Mainardi was brought to similar results some

what earlier. f It is sometimes convenient to have these equations

written in the form

(13 )

D d D
, f22\D f!2\D fin~

&quot;
~~

which reduce readily to (13) by means of (3).

With the aid of equations (7) we find that the conditions of

integrability of equations (8) and similar ones in Y and Z reduce

to (13).

From the preceding theorem and the definition of applicable

surfaces
( 43) follows the theorem :

Two applicable surfaces have the same total curvature at corre

sponding points.

As a consequence we have :

Every surface applicable to a plane is the tangent surface of a

twisted curve.

For, when a surface is applicable to a plane its linear element is

reducible to ds
2 = du2+ dv\ and consequently its total curvature

is zero at every point by (12). From (IV, 73) it follows that

2

Hence X, Y, Z are functions of a single parameter, and therefore

the surface is the tangent surface of a twisted curve (cf. 27).

Incidentally we have proved the theorem :

When K is zero at all points of a surface the latter is developable,

and conversely.

* Sulle coordinate curvilinee d una superficie e dello spazio, Annali, Ser. 3, Vol. II

(18(W) , p. 269.

t Giornale dell Istituto Lombardo, Vol. IX, p. 395.
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65. Fundamental theorem. When the lines of curvature are

parametric, the Gauss and Codazzi equations (12), (13) reduce to

(14)

DP&quot;
_

G dv

2_ (
D

&quot;\ _ ~̂

E du

The direction-cosines of the tangents to the parametric curves,

v = const, and u = const., have the respective values

(15)

2

By means of equations (7) and (8) we find

(16) .

du

( du

D&quot;

V
ax

and similar equations obtained by replacing X^ X^ X by Yv T2 ,
Y

respectively, and by Z^ Z^, Z. From (15) we have

(17)

We proceed to the proof of the converse theorem :

Given four functions, E, G, D, D&quot;, satisfying equations (14); there

exists a surface for which E, 0, G ; Z&amp;gt;, 0, D&quot; are the fundamental

quantities of the first and second order respectively.

= C^EX

= CVflY

= CVEZ
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In the first place we remark that all the conditions of integra-

bility of the equations (16) are satisfied in consequence of (14).

Hence these equations admit sets of particular solutions whose

values for the initial values of u and v are arbitrary. From the

form of equations (16) it follows (cf. 13) that, if two such sets

of particular solutions be denoted by X^ Xz ,
X and Y^ F2 , F, then

I
XI + XI + X*= const.,

Y?+ F 2 + F2 = const.,

X
1
F

x+X2
Y

2+XY= const.

From the theory of differential equations we know that there exist

three particular sets of solutions X^ Xz , X\ Fp F
2 , F; Z^ Z^ Z,

which for the initial values of u and v have the values 1, 0, 0; 0, 1, 0;

0, 0, 1. In this case equations (18) become

X
1

2 + X2

2 + ^2 = 1,

(19) F2 +F2

2 + F 2 = l,

X
i
Y

l+X2
Y

2 + XY=Q,

which are true for all values of u and v. In like manner we have

(19 )

From (16) it follows that the expressions in the right-hand mem
bers of (17) are exact differentials, and that the surface denned by
these equations has, for its linear element and its second quadratic

form, the expressions

(20) Edu?+G dv\ D dy? + D&quot;dv
2

respectively.

Suppose, now, that we had a second system of three sets of

solutions of equations (16) satisfying the conditions (19), (19 ).

By a motion in space we could make these X s, F s, and Z s equal

to the corresponding ones of the first system for the initial values

of u and v. But then, because of the relations similar to (18), they

would be equal for all values of u and v, as shown in 13. Hence,

to within a motion in space, a surface is determined by two quad
ratic forms (20). As in 13, it can be shown that the solution of

equations (16) reduces to the integration of an equation of Riccati.
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Later * we shall find that the direction-cosines of any two per

pendicular lines in the tangent plane to a surface, and of the normal

to the surface, satisfy a system of equations similar in form to (16).

Moreover, these equations possess the property that sets of solu

tions satisfy the conditions (18) when the parametric lines are any

whatever. Hence the choice of lines of curvature as parametric

lines simplifies the preceding equations, but the result is a general

one. Consequently we have the following fundamental theorem:

When the coefficients of two quadratic forms,

Edu*+ 2 Fdudv + G dv\ Ddu2+2D dudv + D&quot;dv\

satisfy the equations of Gauss and Codazzi, there exists a surface,

unique to within its position in space, for which these forms are

respectively the first and second fundamental quadratic forms ; and

the determination of the surface requires the integration of a Riccati

equation and quadratures.

From (III, 3), (5) and (6), it follows that if E, F, G; D, D ,
D&quot; are the funda

mental functions for a surface of coordinates (x, y, z), the surface symmetric with

respect to the origin, that is, the surface with the coordinates ( x, y, z), has

the fundamental functions E, F, G; - D, - D
,

-
D&quot;. Moreover, in consequence

of the above theorem, two surfaces whose fundamental quantities bear such a rela

tion can be moved in space so that they will be symmetric with respect to a point.

Two surfaces of this kind will be treated as the same surface.

EXAMPLES

1. When the lines of curvature of a surface form an isothermal system, the

surface is said to be isothermic. Show that surfaces of revolution are isothermic.

2. Show that the hyperbolic paraboloid

a b uv
x = -(t* + t&amp;gt;), y = -(*-), * = -

is isothermic.

3. When a surface is isothermic, and the linear element, expressed in terms of

parameters referring to the lines of curvature, is ds2 = \2 (du
2 + dv2

), the equations

of Codazzi and Gauss are reducible to

Pl i dp2 a _ PZ i api

4. Find the form of equations (11), (13) when the surface is defined in terms of

symmetric coordinates (cf . 39).

* Cf . 69. Consult also Scheffers, Vol. II, pp. 310 et seq. ; Bianchi, Vol. I, pp. 122-124.
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5. Show that K is equal to zero for the tangent surface of a twisted curve,

taking the linear element of the latter in the form (105), 20.

6. Show that the total curvature of the surface of revolution of the tractrix

about its axis is negative and constant.

7. Establish the following formulas, in which the differential parameters are

formed with respect to the form Edu? + 2Fdudv + Gdv2
:

)=~-
where the quantities have the same significance as in 65.

8. Deduce the identity A2x =
(

1

)
JT,

and show therefrom that the curves in which a minimal surface is cut by a

family of parallel planes and the orthogonal trajectories of these curves form

an isothermal system.

66. Fundamental equations in another form. We have seen in

61 that if X, F, Z denote the direction-cosines of the normal to

a surface, the direction-cosines of the normal to the spherical rep

resentation of the surface are eX, eF, eZ, where e is 1 according

as the curvature of the surface is positive or negative. If, then,

the second fundamental quantities for the sphere be denoted by

A ^ , 3&quot;,
we have

(21) =-&amp;lt; ^ = -e^, ,&&quot;
= -e^

so that for the sphere equations (7) become

rnvax_
12J dv2

2X f

J
2X f12V

+ l2J(22)

F
-^x;

where the Christoffel symbols \
T
?\ are formed with respect to

the linear element of the spherical representation, namely

The conditions of integrability of equations (22) are reducible

by means of the latter to

= 0,
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where A., A2J B^ B
2
are the functions obtained from the quantities

DD&quot;D
2

av a
2 ,

b
lt

b
2 respectively of 64 by replacing &amp;gt; E, F, G

by 1, , &, ^respectively. Since the above equations must be sat

isfied by Y and Z, the quantities A^ A
2 ,
Bv Bz

must be zero. This

gives the single equation of condition

(24} J_rA/^^__L^V-^- -- --^- ^1 = 1J

2 ft [du \ft dv ft du ) toW fa ft 2v &ft du)\

Moreover, the Codazzi equations (13 ) become, in consequence

of (21),

(26).

which vanish identically.

o \ //&quot;/ o V // / I 1 //&quot;

~
* ~* * f ~* * &quot;&quot;

3w W / v \/// \.\jft

dx dx
If equations (IV, 13) be solved for and we get

du cv

f dx _
&quot;

(26)
. i_

dv ft* du

By means of equations (22) the condition of integrability of these

equations, namely g /^\ ^

and similar conditions in y and 2, reduce to

(27)
-

OU v^

^Hu dv

Hence two quadratic forms

(odu
2
-f 2& dudv + dv2

,
D du2

+2Z&amp;gt; dudv + D&quot;dv
2
,

whose coefficients satisfy the conditions (24), (27), may be taken

as the linear element of the spherical representation of a surface

and as the Si3cond quadratic form of the latter. When X, F, Z are
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known, the cartesian coordinates of the surface can be found by

quadratures (26) ; however, the determination of the former requires

the solution of a Riccati equation.

If the equations

D = _^fc*x t

be differentiated with respect to u and v, the resulting equations may be reduced

by means of (7) and (22) to the form :
*

55 (ii

cu ( 1

= [

I2
l

a c i

cD

cu
^-= Jl *

JX +

cv

cu

cv

(V

D

D&quot;

2) -f

D +

D -f

11

2

12

2

12

2

22 )

2

D&quot;.

67. Tangential coordinates. Mean evolute. A surface may be

looked upon not only as the locus of a point whose position

depends upon two parameters, but also as the envelope of its

tangent planes. This family of planes depend* upon one or two

parameters according as the surface is developable or not. We
considered the former case in 27, and now take up the latter.

If W denotes the algebraic distance from the origin to the tan

gent plane to a surface S at the point M(x, y, z), then

(29) W=xX+yY+zZ.

If this equation is differentiated with respect to u and v, the

resulting equations are reducible, in consequence of (IV, 3), to

X dW

*Cf. Bianchi, Vol. I, p. 157.
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The three equations (29), (30) are linear in #, y, z, and in con

sequence of (IV, 79, 80) their determinant is equal to e/ Hence

we have

and similar expressions for y and z. From (IV, 11) we deduce the

identities dz dY e / ^dX , ~dX\Y Z = TH ex
1 r &amp;lt;o

)

01 du du rf \ du dv /

(
dl

)
a - y.v , ~Y zr&amp;lt;

-rr C rrV^ I C^\- j^G-A-

By means of these equations the above expression for x is

reducible to

cv

Hence we have

(32) x = WX+k[(W,X), y = WY+k((W,Y), z = WZ+ &((W,Z],

the differential parameters being formed with respect to (23).

Conversely, if we have four functions X, F, Z, W of u and
i&amp;gt;,

such that the first three satisfy the identity

(33) x2+r2+^2 = l,

equations (32) define the surface for which X, F, Z are the direction-

cosines of the tangent plane, andW is the distance of the latter from

the origin. For, from (33), we have

dv
= 0,

in consequence of which and formulas (22) we find from (32) that

&amp;gt;TA
dx

Moreover, equation (29) also follows from (32). Hence a surface

is completely defined by the functions X, F, Z, W, which are

called the tangential coordinates of the surface.*

* Cf . Weingarten, Festschrift der Technischen Hochschule zu Berlin (1884) ; Bianchi,

Vol. I, pp. 172-174
; Darboux, Vol. I, pp. 234-248.
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When equations (30) are differentiated, we obtain

ffw

_
dv*

By means of (22), (29), and (30) these equations are reducible to

(34) D = -

du2

tfW

\_dudv

When these expressions for D, A &&quot; are substituted in the

expression (IV, 77) for p^+ p2 ,
the latter becomes

By means of (25) this equation can be written in the form

(35) /&amp;gt; 1 4-^2
= -(A;TF4-2^),

where the differential parameter is formed with respect to the

linear element (23) of the sphere.

Moreover, if A^2
denotes the following expression,

_ r22y^__
1 1 J an 2 J

12 12

it follows from (34) that

(3T)
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In passing we shall prove that A22
is a differential parameter

by showing that it is expressible in the form

(38)

Without loss of generality we take

(39) Edu*+Gdv2

as the quadratic form, with respect to which these differential

parameters are formed. Then

1 1 /I dG 1 dE\ 1 dE

dv \du
u =-F

By substitution we find

_

Since the terms in the right-hand member are differential param
eters, their values are independent of the choice of parameters
u and v, in terms of which (39) is expressed. Hence equation (38)

is an identity.

The coordinates #
, y , Z

Q
of the point on the normal to a sur

face halfway between the centers of principal curvature have

the expressions

The surface enveloped by the plane through this point, which

is parallel to the tangent plane to the given surface, is called the

mean evolute of the latter.

If W denotes the distance from the origin to this plane, we have

(40) W,= ZXf
9=W+^(p 1+Pt ).

By means of (35) this^may be written

(41) TF
O =-JA;TF.
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EXAMPLES

1. Derive the equations of the lines of curvature and the expressions for the

principal radii in terms of W, when the parametric lines on the sphere are

(i) meridians and parallels ;

(ii) the imaginary generators.

Show that in the latter case the curves corresponding to the generators lie sym
metrically with respect to the lines of curvature.

2. Let Wi and W2 denote the distances from the origin to the planes through
the normal to a surface and the tangents to the lines of curvature v = const.

,

u = const, respectively, so that we have

Wi = xXl + yYi + zZi, W2 = xX2 + yYz + zZ2 .

Show that

Pi

the differential parameters being formed with respect to Edu* + 2 Fdudv +

3. If 2 q = x2 + yz + z2
,
then we have

4. Show that when the lines of curvature are parametric

= =
Pi cu cu P2 v

~
dv

5. The determination of surfaces whose mean evolute is a point is the same

problem as finding isothermal systems of lines on the sphere.

68. The moving trihedral. The fundamental, equations of con

dition may be given another form, in which they are frequently

used by French writers. In deriving them we refer the surface to

a moving set of rectangular axes called the trihedral T. Its ver

tex M is a point of the surface, the a^-plane is tangent to the

surface at M, and the positive 2-axis coincides with the positive

direction of the normal to the surface at M. The position of the

x- and ?/-axes is determined by the angle U which the tangent to

the curve v = const, through M makes with the z-axis, U being a

given function of u and v.

In Chapter I we considered another moving trihedral, consisting

of the tangent, principal normal, and binormal of a twisted curve.

Let us associate such a trihedral with the curve v const, through
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M and call it the trihedral tu . We have found
( 16) that the varia

tions of the direction-cosines a
,
6

,
c of a line L, fixed in space,

with reference to M ,
as its vertex moves along the curve which

we call (7M , are given by

(42 ) &amp;lt;^=

b
-, fW- +

dsu pu dsu \Pu

where pu ,
ru denote the radii of first and second curvature of Cu1

and dsu its linear element ; evidently the latter may be replaced

by V^
1

du.

The direction-cosines of L with respect to the trihedral T have

the values r a _ a
&amp;gt;

cos jj_^ sjn ^_ c
&amp;gt;

cos^ s jn ^r

(43) I b a sin U + (b
r sin wu c cos o&amp;gt;

M)
cos ?7,

[&amp;lt;7

= 6
f

cos o&amp;gt;w -f c sin o)
tt ,

where wu is the angle which the positive direction of the z-axis

makes with the positive direction of the principal normal to Cu at Jf,

the angle being measured toward the positive direction of the binor-

mal of Cu . From equations (42) and (43) we obtain the following :

(44)
da , db do ,- = br cq,

= cp ar, = aq op,
du du cu

where j9, q, r have the following significance :

(45)

p =

=

cosU
1 . coso)

)-f sin U

rr/ c?&&amp;gt; 1\ rr coso).sm7( 2
I cosU

ds,.

V

If, in like manner, we consider the trihedral tv of the curve

u = const, through M, denoted by Cv , we obtain the equations

da , db do ,

where pv qv r
l
can be obtained from (45) by replacing Vjg; Z7, *M ,

^^ Pui Tu ^7 ^^^ ^ 8
v-&amp;gt; i; Pv TV - AS ^ denotes the angle which the

tangent to the curve Cv at M makes with the a&amp;gt;axis, we have

(46) V-U=G.
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If the vertex M moves along a curve other than a parametric

line, that is, along a curve determined by a value of dv/du, the

variations of a, ,
c are evidently given by

da du da dv

du ds dv ds
^ ^_

du ds dv ds

do du do dv

du ds dv ds

in which the differential quotients have the above values.

69. Fundamental equations of condition. Suppose that we asso

ciate with the trihedral T a second trihedral T
Q
whose vertex is

fixed in space, about which it revolves in such a manner that its

edges are always parallel to the corresponding edges of T, as the

vertex of the latter moves over the surface in a given manner.

The position of T is completely determined by the nine direction-

cosines of its edges with three mutually perpendicular lines Lv L2 ,

L
s through 0. Call these direction-cosines av b

{ ,
c

l ;
a

2 ,
5
2 ,

c
3 ,

&amp;lt;?

3
. These functions must satisfy the equations

(47)

da ,- = 6r-
^w

= br -
dv~ TI

If we equate the
cucv

two of these equations, and in the reduction of the resulting equa

tion make use of (47), we find

Since this equation must be true when b and c have the values

b
,

&amp;lt;?

;
5 , ;

6
3 ,

&amp;lt;?

8 ,
the expressions in parenthesis must be equal

**
^&amp;gt;O T /^9

to zero. Proceeding in the same manner with -

obtain the following fundamental equations
*

:

dp dpi

and
d*c

dudv
we

(48)
dq dql

dr dr
l

* These equations were first obtained by Combescure, Annales de VEcole Normale,

Ser. 1, Vol. IV (1867), p. 108; cf. also Darboux, Vol. I, p. 48.
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These necessary conditions upon the six functions p, - -

, r
1?

in

order that the nine functions a
x , ,

c
s may determine the position

of the trihedral T , are also sufficient conditions. The proof of this

is similar to that given in 65.

Equations (47) have been obtained by Darboux * from a study
of the motion of the trihedral T

Q
. He has called

jt?, q, r
l
the

rotations.

We return to the consideration of the moving trihedrals T and

t
u . Let (x, y, z) and (# , ?/, z

)
denote the coordinates of a point P

with respect to T and tu respectively. Between these coordinates

the following relations hold :

(x

= x f cos U (y sin o&amp;gt;M z cos WM) sin 7,

/
= # sin CT + (# sin Wu 2 cos &&amp;gt;

M)
cos /,

z y
1 cos &amp;lt;WM+ 2 sin o&amp;gt;M .

If in a displacement of P absolute increments with respect to

the trihedral tu at M be indicated by S, and increments relative to

these moving axes by c?, we have, from 16,

^L^-S^+i, = ^_ + - + -, ^. = dzL-y-.
d u dsu pu dsu dsu pu TM C?SM dsu ru

From (49), (50), and (45) we obtain the following! :

$x dx r= 4- VE cos Ury + qz,
du du

-^ = + VfismUpz + ra,
^W ^M

2 dz= ox + PV.
aw a%

Equations similar to these follow also from the consideration

of the trihedral t
v . Hence, when the trihedral T moves over the

surface with its vertex M describing a curve determined by a

value of dv/du, the increments of the coordinates of a point

P(x, y, z), in the directions of the axes of the trihedral, in the

*
L.c., Vol. I, chaps, i and v.

t In deriving these equations we have made use of the fact that equations (49) define

a transformation of coordinates, and consequently hold when the coordinates are replaced

by the projections of an absolute displacement of P.
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absolute displacement of P, which may also be moving relative

to these axes, have the values *

where we have put

The coordinates of M are (0, 0, 0), so that the increments of its

displacements are

(53) Sx =
1;
du + ^dv, y = vidu + ri l dv, Sz = 0.

If fa, yv 2J denote the coordinates of M with respect to the

fixed axes formed by the lines Lv 2 , L3 previously defined, it

follows that

2 , 2and similar expressions for yl
and z^ where a

t , 6
1? ^; 2 ,

6
2

a
g ,

6
8 ,

c
3
are the direction-cosines of the fixed axes with reference

to the moving axes. Since the latter satisfy equations (47), the

conditions that the two values of ^- obtained from (54) be equal,

a
2

d
z
z

cu

and similarly for * and ---1 are
J dudv

(55)

When we have ten functions f , fp ?/, 77^ p, p^ &amp;lt;?, q^ r, r
x ,

satis

fying these conditions and (48), the functions a
1? -, c

s
can be

found by the solution of a Riccati equation, and x^ y# z
l by quad

ratures. Hence equations (48) and (55) are sufficient as well as

necessary, and consequently are equivalent to the Gauss and

Codazzi equations.
* Cf. Darboux, Vol. II, p. 348.
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70. Linear element. Lines of curvature. From (53) we see that

the linear element of the surface is

(56) ds
2 = (%du + ^ dvf +(ndu + r

)i dv}\

Hence a necessary and sufficient condition that the parametric

lines be orthogonal is

(57) ff!+^i==0.

For a sphere of radius c the coordinates of the center are (0, 0,
-

c), it being

assumed that the positive normal is directed outwards. As this is a fixed point, it

follows from equations (51) that whatever be the value of dv/du we must have

du + hdv - (qdu + qidv)c = 0,

ydu + 171 dv + (pdu + pidv)c = 0,
and consequently

i) 1 ^i
/KQ\ zr = = =: C.

q -P qi -Pi

Conversely, when these equations are satisfied, the point (0, 0, c) is fixed in space,

and therefore the surface is a sphere. Moreover, suppose that we have a propor

tion such as (58), where the factor of proportionality is not necessarily constant.

For the moment call it t. When the values from (58) are substituted in (55) and

reduction is made in accordance with (48) we get

dt dt 3t dt

r?

^&quot;
7?1 ^

=
*to~*

l
to

Hence t is constant unless ^ - f^ is zero, which, from (56) and 31, is seen to

be possible only in case the surface is isotropic developable.

By definition (51) a line of curvature is a curve along which

the normals to the surface form a developable surface. When the

vertex is displaced along one of these lines, a point (0, 0, p) must

move in such a way that Bx and % are zero. Hence we must have

f du -h ^dv + (qdu + ql dv)p = 0,

r]du + i] 1
dv (pdu+p l dv)p = 0.

Eliminating p and dv/du respectively, we obtain the equation of

the lines of curvature,

(59) (f du + ^dv) (p du + p v dv) + (17
du + rj^v) (q du + q^v) = 0,

and the equation of the principal radii,

(60) p
z

(pq,
-

qPl) + p (qrj,
-

q,rj +p^-p ) + (fa
- ^) = 0.

From (59) it follows that a necessary and sufficient condition

that the parametric lines be the lines of curvature is

(61) fe&amp;gt;
+ i# = 0, f^i+ih^O.
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We may replace these equations by

P = \rj, ?
= -xf, ^^V?!, ?i

= -\fn
thus introducing two auxiliary functions X and \. When these

values are substituted in the third of (55), we have

If X and \ are equal, the above equations are of the form (58),

which were seen to be characteristic of the sphere and the iso-

tropic developable. Hence the second factor is zero, so that equa
tions (61) may be replaced by

(62) ffi+ ^=0, m+??i=&amp;lt;&amp;gt;

or

(63) ^=17 = 0, P = q 1
=Q-

From (52) it follows that in the latter case the x- and ?/-axes are

tangent to the curves v = const, and u = const. We shall consider

this case later.

From (60) and (52) we find that the expression for the total

curvature of the surface is

where co denotes the angle between the parametric curves. Hence

the third of equations (48) may be written

/g4\
V76rsin co H dr dr.

PiP* PiP

71. Conjugate directions and asymptotic directions. Spherical

representation. We have found
( 54) that the direction in the

tangent plane conjugate to a given direction is the characteristic

of this plane as it envelopes the surface in the given direction.

Hence, from the point of view of the moving trihedral, the direc

tion conjugate to a displacement, determined by a value of dv/du,

is the line in the #?/-plane which passes through the origin, and

which does not experience an absolute displacement in the

direction of the 2;-axis. From the third of equations (51) it is

seen that the equation of this line is

(65) (p du H- p^v) y (q du + q^dv) x = 0.
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If the increments of u and v, corresponding to a displacement in

the direction of this line, be indicated by d^ and d^v, the quan
tities x and y are proportional to (f d^u + f^v) and

(r; d^ 4- rj^v).

When x and ?/ in (65) are replaced by these values, the resulting

equation may be reduced to

(66) (prj
-

gf) dudjU + (pr]l
-

qgj dudy + (p& - qg) d^udv

In consequence of (55) the coefficients of dud^v and d^udv are

equal, so that the equation is symmetrical with respect to the

two sets of differentials, thus establishing the fact that the rela

tion between a line and its conjugate is reciprocal.

In order that the parametric lines be conjugate, equation (66)

must be satisfied by du = and d^v
= 0. Hence we must have

(67)

It should be noticed that equations (61) are a consequence of the

first of (62) and (67). Hence we have the result that the lines of

curvature form the only orthogonal conjugate system.

From (66) it follows that the asymptotic directions are given by

(68) (prj
-

gf)
du*+ (prj l

- q^+p^-q) dudv+ (p^- q^) dv2 = 0.

The spherical representation of a surface is traced out by the

point m, whose coordinates are (0, 0, 1) with respect to the tri

hedral T of fixed vertex. From (51) we find that the projections

of a displacement of m, corresponding to a displacement along the

surface, are

(69) SX=qdu + q ldv, &Y= (pdu+p ldv), &= 0.

Hence the linear element of the spherical representation is

(70) da2 = (qdu + q^v)
2+ (pdu+ p^dv)\

The line defined by (65) is evidently perpendicular to the direc

tion of the displacement of m, as given by (69). Hence the tangent
to the spherical representation of a curve upon a surface is perpen
dicular to the direction conjugate to the curve at the corresponding

point. Therefore the tangents to a line of curvature and its rep

resentation are parallel, whereas an asymptotic direction and its

representation are perpendicular ( 61).
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72. Fundamental relations and formulas. From equations (53)

and (69) we have, for the point M on the surface,

= ^ = =
du

*

(71)
&quot;&quot;

= ?, =i?i,
= 0;

and
5v ~V \7~ ^\ 7

cu du du

(72)
..

Consequently the following relations hold between the fundamental

coefficients, the rotations, and the translations:

F= f + ^, G = f

(73)

When, in particular, the parametric system on a surface is orthog

onal, and the x- and y- axes of the trihedral are tangent to the curves

v = const, and u = const, through the vertex, equations (52) are

(74) f=V5, 17
= =0,

and equations (55) reduce to

(76) r L

Moreover, equations (45) and the similar ones for p lt q^ r
t
become

(76)

P -

&quot;&quot;^ T..

.

The first two of equations (75) lead, by means of (76), to

sin w 1 d^/~E shift\ 1

PU

&quot;

VEG fo PV

which follow also from 58.

The third of equations (75) establishes the fact, previously

remarked in 59, that the geodesic torsion in two orthogonal

directions differs only in sign.
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The variations of the direction-cosines X\, Y\, Z\ of the tangent to the curve

u const, are represented by the motion of the point (1, 0, 0) of the trihedral T
with fixed vertex. From (51) we have

5-5Ti 5^1 dZ\

du cu du

(78)

dv cv

From these equations we see that as a point describes a curve v = const.
, namely

CM ,
the tangent to this curve undergoes an infinitesimal rotation consisting of two

components, one in amount rdu about the normal to the surface and the other,

qdu, about the line in the tangent plane perpendicular to the tangent to Cu .

Consequently, by their definition, the geodesic and normal curvature of Cu are

r/^/E and q/^/E respectively. Moreover, it is seen from (72) that as a point

describes Cu the normal to the surface undergoes a rotation consisting of the com

ponents q du about the line in the tangent plane perpendicular to the tangent, and

p du about the tangent. Hence, if Cu were a geodesic, the torsion would be

p/VE to within the sign at least. Thus by geometrical considerations we have

obtained the fundamental relations (76).

We suppose now that the parametric system is any whatever.

From the definition of the differential parameters ( 37) it follows

that E = G =

Consequently if P, $, ^ denote functions similar to p, q, r, for a

general curve .

v)
= const.

which passes through M and whose tangent makes the angle

with the moving z-axis, we have, from (45),

(79)

T,/^ 1\ , ^ cos ^1
cos &amp;lt;

(

--- + sm &amp;lt;I&amp;gt;

-
,

\ds r/ p
P^VA^T

, T idco 1\
) = H.V A.cf) sin 4&amp;gt; cos &amp;lt;

\ds rj

cos

P

sn

where by (III, 51) ff~
2= A

any other family of curves

Moreover, equations analogous to (44) are

db
__
cP aR dc

ds

A
X

2

((, T|T)
and ty

= const, defines

da _ bE cQ aQ
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T . . da da du da dv
If now in - = - H

as cu as dv as

we replace the expressions for and from (47), and similarly

for db/ds and dc/ds, we obtain

Pd8=H
l
\/A

l (f&amp;gt;(p
du +p 1 dv), Qds=H^/~K^&amp;gt;(qdu + q^dv),

Eds = 7^ VA~C/&amp;gt; (r du -f r^ dv).

From these equations and (79) we derive the following funda

mental formulas :

(80)

(

j
ds = cos

&amp;lt;&(p
du + p l dv) + sin &amp;lt;

(q du + ql dv),
\ as TI

ds = sin &amp;lt;I&amp;gt; (p du + p 1 dv) cos 4&amp;gt;

(&amp;lt;?

c?t* -f q^ dv),
P

sin oj d&amp;lt;& du dv
l

p ds ds ds

By means of the last of equations (80) we shall express the

geodesic curvature of a curve in terms of the functions E, F, G,

of their derivatives, and of the angle 6 which the curve makes

with the curve v = const. If we take the rr-axis of the trihedral

tangent to the curve v = const., we obtain from the last of (80),

in consequence of (45),

1 d0 ^/E du /V G dco\dv

Po~~ ds Pg ds
\Pffv dv/ds

From (III, 15, 16) we obtain

dv If 2 EG \ dv dv/ dv

When this value and the expressions for pgu and pgv (IV, 57) are

substituted in the above equation, we have the formula desired:

- L __ __+
2dvds 2H\du E dv ds

EXAMPLES

1. A necessary and sufficient condition that the origin of the trihedral T be the

only point in the moving zy-plane which generates a surface to which this plane is

tangent, is that the surface be nondevelopable.
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2. Determine p so that the point of coordinates (p, 0, 0) with respect to T shall

describe a surface to which the x-axis of T is normal
;
examine the case when the

lines of curvature are parametric and the x-axis is tangent to the curve v = const.

3. When the parametric curves are minimal lines for both the surface and the

sphere, it is necessary that

or 77
= i, ifji

= ii, q = ip, q\ = ipi\

in this case the parametric curves on the surface form a conjugate system, and the

surface is minimal (cf. 55).

4. When the asymptotic lines on a surface form an orthogonal system, we
must have ^ +^ =

^ ^ +^ =
Q&amp;gt;

in which case the surface is minimal.

5. When the lines of curvature are parametric, and the x-axis of T is tangent
to the curve v = const., equations (80) reduce to

1 dw /I 1\ . cosw cos2* sin2*
-j- = ( )

sin * cos
4&amp;gt;,

= H ,

T as \PI PZ/ p pi PZ

sin w _ d&amp;lt; 1 / q dp\ du p\ dPz dv\

p ds Pz Pi \pi cv ds q du ds)

6. When the second equation in Ex. 5 is differentiated with respect to s, the

resulting equation is reducible to

cos u dp sinw/ dw 2\ _ 2 dp\ /du\ s
2 dPi/du\ 2 dv

P2 ds p \ ds T/ du \ds/ dv \ds/ ds

dpo du /du\2 dp /dv\8

7. On a surface a given curve makes the angle * with the x-axis of a trihedral T;

the point P of coordinates cos
&amp;lt;t&amp;gt;,

sin
&amp;lt;J&amp;gt;,

with reference to the parallel trihedral TO
with fixed vertex, describes the spherical indicatrix of the tangent to the curve

;

the direction-cosines of the tangent to this curve are

sin * sin w, cos &amp;lt; sin w, cos w,

where w has the significance indicated in 49, and the linear element is ds/p; derive

therefrom by means of (51) the second and third of formulas (80).

8. The point #, whose coordinates with reference to T of Ex. 7 are

sin * cos w, cos $ cos w, sin w,

describes the spherical indicatrix of the binormal to the given curve on the surface,

and its linear element is ds/r; derive therefrom the first of formulas (80).

73. Parallel surfaces. We inquire under what conditions the

normals to a surface are normal to a second surface. In order that

this be possible, there must exist a function t such that the point

of coordinates (0, 0, Q, with reference to the trihedral
7&quot;,

describes

a surface to which the moving 2-axis is constantly normal. Hence
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we must have 8z = 0, and consequently, by equations (51), t must

be a constant, which may have any value whatever. We have,

therefore, the theorem :

If segments of constant length be laid off upon the normals to a sur

face, these segments being measuredfrom the surface, the locus of their

other endpoints is a surface with the same normals as the given surface.

These two surfaces are said to be parallel. Evidently there is

an infinity of surfaces parallel to a given surface, and all of them

have the same spherical representation.

Consider the surface for which t has the value a, and call it $.

From (51) it follows that the projections on the axes of T of a dis

placement on S have the values

r f du + ^dv -f (q du + q^dv) a,

(82) =
77 du -f- jj^dv (p du + Pidv) a.

Comparing these results with (53), we see that the displacements

on the two surfaces corresponding to the same value of dv/du are

parallel only in case equation (59) is satisfied, that is, when the

point describes a line of curvature on S. But from a characteristic

property of lines of curvature
( 51) it follows that the lines of curva

ture on the two surfaces correspond. Hence we have the theorem :

The tangents to corresponding lines of curvature of two parallel

surfaces at corresponding points are parallel.

From (82) and (73) we have the following expressions for the

first fundamental quantities of /S
Y

: y

or, in consequence of (IV, 78),

(84)
/ PI p

i
/
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The moving trihedral for S can be taken parallel to T for ,

and thus the rotations are the same for both trihedrals ; and from

(82) it follows that the translations have the values

= + 00, li=i+ fl
?i&amp;gt;

^ = i?-op, *?i=&amp;gt;?i-api-

On substituting in the equations for analogous to (59), (60), (66),

we obtain the fundamental equations for S in terms of the functions

for S. Also from (73) we have the following expressions for the

second fundamental coefficients for S:

(85) D = D-a, D = D -a&, D&quot;= D&quot;
- ag.

Since the centers of principal curvature of a surface and its

parallel at corresponding points are the same, it follows that

(86) Pi
= Pi+ a

&amp;gt; P2
= P2+ a

Suppose that we have a surface whose total curvature is constant

and equal to 1/c
2

. Evidently a sphere of radius c is of this kind,

but later (Chapter VIII) it will be shown that there is a large group

of surfaces with this property. We call them spherical surfaces.

From (86) we have ^_ ^ (^ _ a
)
= ^

so that if we take a = c, we obtain

I+l-i.
Pi P* c

Hence we have the theorem of Bonnet :
*

With every surface of constant total curvature 1/c
2
there are asso

ciated two surfaces of mean curvature 1/ey they are parallel to the

former and at the distances :p c from it.

And conversely,

With every surface whose mean curvature is constant and different

from zero there are associated two parallel surfaces, one of which has

constant total curvature and the other constant mean curvature.

74. Surfaces of center. As a point M moves over a surface S

the corresponding centers of principal curvature M
l
and M

z
describe

two surfaces S
1
and S

2 ,
which are called the surfaces of center of S.

Let C
l
and (7

2
be the lines of curvature of S through M, and D

l
and

7&amp;gt;

2
the developable surfaces formed by the normals to S along C

l

*Nouvelles annales de mathematiques, Ser. 1, Vol. XII (1853), p. 433.
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and C
2 respectively. The edge of regression of Dv denoted by I\,

is a curve on S
l (see fig. 17), and consequently S

l
is the locus of

one set of evolutes of the curves C
l
on S. Similarly $2

is the locus

of a set of evolutes of the curves C
z
on S. For this reason S

1
and

$
2
are said to constitute the evolute of S, and S is their involute.

Evidently any surface parallel to S is also an involute of S
l
and S

2
.

The line M^M^ as a generator of Dv is tangent to I\ at Mv

and, as a generator of D
2 , it is tangent to F

2
at M

z
. Hence it is a

common tangent of the surfaces S
l
and S

z
.

From this it follows that the developable

surface D
1
meets S

{ along T l
and envelopes

S
z along a curve F

2
. Its generators are con

sequently tangent to the curves conjugate
to Fg ( 54). In particular, the generator

-flfjJfg
is tangent to F

2 , and therefore the

directions of F
2
and T

2
at Jf

2
are conjugate.

Similar results follow from the considera

tion of Z&amp;gt;

2
. Hence :

On the surfaces of center of a surface S
the curves corresponding to the lines of cur

vature of Sform a conjugate system.

FIG. 17

Since the developable D1 envelopes *Sf
2 ,

the tangent plane to $ at M
2
is the tangent

plane to D
l
at this point. But the tangent

plane atM
2
is tangent to D

l
all along M1

M
Z ( 25), and consequently

it is determined by M^MZ
and the tangent to C[ at M. Hence the

normal to S at M
2

is parallel to the tangent to C
2
at M. In like

manner, the normal to S
l
at M

l
is parallel to the tangent to C

l
at M.

Thus, through each normal to S we have two perpendicular planes,

of which one is tangent to one surface of center and the other to

the second surface. But each of these planes is at the same time

tangent to one of the developables, and is the osculating plane of

its edge of regression. Hence, at every point of one of these curves,

the osculating plane is perpendicular to the tangent plane to the

sheet of the evolute upon which it lies, and so we have the theorem :

The edges of regression of the developable surfaces formed by the

normals to a surface along the lines of curvature of one family are
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geodesies on the surface of center which is the locus of these edges ;

and the developable surfaces formed ly the normals along the lines of

curvature in the other family envelope this surface of center along the

curves conjugate to these geodesies.

In the following sections we shall obtain, in an analytical manner,

the results just deduced geometrically.

75. Fundamental quantities for surfaces of center. As the trihe

dral T moves over the surface S the point (0, 0, p^ describes the

surface of center Sr Let the lines of curvature on S be parametric,

and the z-axis of T be tangent, to the curve v const. Now

\ / & L J. J. L
f^

-I. A
f\

ri rz

so that the first two of equations (48) may be put in the form

JI, ___,,=,_ -,_ __.
(88)

The projections on the moving axes of the absolute displace

ment of J/J corresponding to a displacement of M on S are found

from (51) to be

(89) Bx
l
= 0, S^ = (rj l p^pj dv = V6r ( 1 )dv, Szj

= dpr

Hence the linear element of S
l
is

/ p V
(90) ds*= dri.+ Q(I-^]dfi

consequently the curves p^= const, on S
l
are the orthogonal tra

jectories of the curves v = const., which are the edges of regression,

I\, of the developables of the normals to S along the lines of

curvature v = const.

Let us consider the moving trihedral T^ for S
l
formed by the

tangents to the curves v = const, and p l
const, at M^ and the nor

mal at this point. From (89) it follows that the first tangent has

the same direction and sense as the normal to S, and that the sec

ond tangent has the same direction as the tangent to u = const, on

S, the sense being the same or different according as (1 pl/p2)
is
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positive or negative. And the normal to S
l
has the same direction

as the tangent to v = const, on ,
and the contrary or same sense

accordingly.

If then we indicate with an accent quantities referring to the

moving trihedral Tv we have

(a =c, l =bj c = ea,

where e is 1 according as (1 pjp^ is positive or negative. From

(89) it follows that

(92)

When the values (91) are substituted in equations for 2\ similar

to equations (47), we find

Since / is zero, it follows from (76) that the curves v = const, are

geodesies, as found geometrically.

The various fundamental equations for S
t may now be obtained

by substituting these values in the corresponding equations of the

preceding sections. Thus, from (73) we have

which follow likewise from (90); and also

Hence the parametric curves on S
l
form a conjugate system

(cf. 54).

The equation of the lines of curvature may be written

and the equation of the asymptotic directions is

^^-41^=0.
p? du pl$u
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The expression for K^ the total curvature of S^ is

(98) ^-L-Jj.
~du

From (80) and (93) it follows that the geodesic curvature atM
l
of

the curve on S
l
which makes the angle &amp;lt;&

l
with the curve v = const,

through M^ is given by

Hence the radius of geodesic curvature of a curve p l
= const., that

is, a curve for which &amp;lt;J&amp;gt;

t
is a right angle, has, in consequence of

(87), the value p l p . In accordance with 57 the center of geo

desic curvature is found by measuring off the distance p l /&amp;gt;2 ,
in the

negative direction, on the 2-axis of the trihedral T. Consequently
M

z
is this center of curvature. Hence we have the following theo

rem of Beltrami:

The centers of geodesic curvature of the curves p^
= const, on S

t

and of p 2
= const, on S., are the corresponding points on $

2
and S

l

respectively.

For the sheet $
2
of the evolute we find the following results :

(90 )
d** =E\- du2+

the equation of the lines of curvature is

(96 )
r**^

the equation of the asymptotic lines is

^ 5* -BS&quot;

the expression for the total curvature is

8ft

*&quot;5FS-5
dv
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In consequence of these results we are led to the following

theorems of Ribaucour,* the proof of which we leave to the reader :

A necessary and sufficient condition that the lines of curvature upon

Sj and S
2 correspond is that p l p2

= c (a constant); then K^ K^
= 1/c

2
,
and the asymptotic lines upon S

1
and $

2 correspond.

A necessary and sufficient condition that the asymptotic lines on S
l

and S
2 correspond is that there exist a functional relation between p^

and p2
.

76. Surfaces complementary to a given surface. We have just

seen that the normals to a surface are tangent to a family of geo

desies on each surface of centers. Now we prove the converse :

The tangents to a family of geodesies on a surface S
l
are normal

to an infinity of parallel surfaces.

Let the geodesies and their orthogonal trajectories be taken for

the curves v const, and u = const, respectively, and the param

eters chosen so that the linear element has the form

We refer the surface to the trihedral formed by the tangents to

the parametric curves and the normal, the z-axis being tangent to

the curve v = const. Upon the latter we lay off from the point Ml

of the surface a length X, and let P denote the other extremity.

As M
1
moves over the surface the projections of the corresponding

displacements of P have the values

(99) d\ + du, V
X+ X~l dv,

- X
(y,du + q,dv).

In order that the locus of P be normal to the lines J^P, we

must have d\ + du = 0, and consequently

X = u + ,

where c denotes the constant of integration whose value determines

a particular one of the family of parallel surfaces. If the direction-

cosines of M^P with reference to fixed axes be Xv Yv Z^ the

coordinates of the surface /S, for which c = 0, are given by

where x^ y^ z
l
are the coordinates of Mr

* Comptes Rendus, Vol. LXXIV (1872), p. 1399.
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The surface S
1

is one of the surfaces of center of S. In order

to find the other, $
2 , we must determine X so that the locus of P

is tangent at P to the zz-plane of the moving trihedral. The con

dition for this is

Hence S
2

is given by

^L V ^i
y&amp;lt;i y\ i *!&amp;gt; ^2 ^i /

aV^ gVg.

tfM dw dM

and the principal radii of S are expressed by

(
10

)
Pl
= u, Pz =u-

du

Bianchi* calls S
2
the surface complementary to S

l
for the given

geodesic system.

Beltrami has suggested the following geometrical proof of the

above theorem. Of the involutes of the geodesies v const, we
consider the single infinity which meet S^ in one of the orthogonal

trajectories u = U
Q

. We shall prove that the locus of these curves

is a surface S, normal to the tangents to the geodesies. Consider

the tangents to the geodesies at the points of meeting of the latter

with a second orthogonal trajectory u = ur The segments of these

tangents between the points of contact M and the points P of

meeting with S are equal to one another, because they are equal
to the length of the geodesies between the curves u U

Q
and u = ur

Hence, as M moves along an orthogonal trajectory u = u
l
of the

lines JfP, P describes a second orthogonal trajectory of the latter.

Moreover, as M moves along a geodesic, P describes an involute

which is necessarily orthogonal to MP. Since two directions on S
are perpendicular to JfP, the latter is normal to S.

EXAMPLES

1. Obtain the results of 73 concerning parallel surfaces without making use of

the moving trihedral.

2. Show that the surfaces parallel to a surface of revolution are surfaces of

revolution.
*Vol. I, p. 293.
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3. Determine the conjugate systems upon a surface such that the corresponding
curves on a parallel surface form a conjugate system.

4. Determine the character of a surface S such that its asymptotic lines corre

spond to conjugate lines upon a parallel surface, and find the latter surface.

5. Show that when the parametric curves are the lines of curvature of a surface,

the characteristics of the 7/z-plane and zz-plane respectively of the moving trihe

dral whose x-axis is tangent to the curve v = const, at the point are given by

(r du + ri dv) y q (z pi) du = 0,

(r du + r\ dv) x pi(z p%) dv = ;

and show that these equations give the directions on the surfaces Si and S2 which

are conjugate to the direction determined by dv/du.

6. Show that for a canal surface
( 29) one surface of centers is the curve of

centers of the spheres and the other is the polar developable of this curve.

7. The surfaces of center of a helicoid are helicoids of the same axis and

parameter as the given surface.

GENERAL EXAMPLES

1. If t is an integrating factor of ^Edu-\---
dv, and t the conjugate

v^
imaginary function, then A2 log V# is equal to the total curvature of the quadratic

form E du2 + 2 Fdudv + Gdv2
,
all the functions in the latter being real.

2. Show that the sphere is the only real surface such that its first and second

fundamental quadratic forms can be the second and first forms respectively of

another surface.

3. Show that there exists a surface referred to its lines of curvature with the

linear element ds2 = eau (du* + du2
), where a is a constant, and that the surface is

developable.

4. When a minimal surface is referred to its minimal lines

hence the lines of curvature and asymptotic lines can be found by quadratures.

5. Establish the following identities in which the differential parameters are

formed with respect to the linear element :

.

6. Prove that (cf. Ex. 2, p. 1G6)

A2* = - 4k I- + -}- -(- + -}- x(
l

+ -V
VJE^PI f* -VGCV\PI f) \PI PZ/
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7. Show that z2 + ?/
2 + z2 = &quot;FT

2 + Ai TF,

the differential parameter being formed with respect to (23).

8. A necessary and sufficient condition that all the curves of an orthogonal

system on a surface be geodesies is that the surface be developable.

9. If the geodesic curvature of the curves of an orthogonal system is constant

(different from zero) all over the surface, the latter is a surface of constant negative

curvature.

10. When the linear element of a surface is in the form

ds2 = du2 + 2 cos u dudv + dto2
,

the parametric curves are said to form an equidistantial system. Show that in this

case the coordinates of the surface are integrals of the system

du dv du dv du dv

dy dz dz dy cz dx dz dx ex dy _ dx
dy_

cu dv du dv cu dv dv cu cu dv dv cu

11. If the curves v = const., u = const, form an equidistantial system, the tan

gents to the curves v = const, are orthogonal to the lines joining the centers of geo

desic curvature of the curves u = const, and of their orthogonal trajectories.

12. Of all the displacements of a trihedral T corresponding to a small displace

ment of its vertexM over the surface there are two which reduce to rotations
; they

occur when M describes either of the lines of curvature through the point, and the

axes of rotation are situated in the planes perpendicular to the lines of curvature,

each axis passing through one of the centers of principal curvature.

13. When a surface is referred to its lines of curvature, the curves defined by

a2 irl dM3 + 3 g
2 duzdv + 3p? dudv2 + P? dvs =

du dv du dv

possess the property that the normal sections in these directions at a point are

straight lines, or are superosculated by their circles of curvature (cf . Ex. 9, p. 21
;

Ex. 6, p. 177). These curves are called the superosculating lines of the surface.

14. Show that the superosculating lines on a surface and on a parallel surface

correspond.

15. Show that the Gauss equation (64) can be put in the following form due to

Liouville :

pgu du\ pgv ) du dv

where pgu and pgv denote the radii of geodesic curvature of the curves v = const, and

u = const, respectively.

16. When the parametric curves form an orthogonal system, the equation of

Ex. 15 may be written

_!\_J:___L
pgv) p%u P%VVE du\

17. Determine the surfaces which are such that one of them and a parallel

divide harmonically the segment between the centers of principal curvature.
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18. Determine the surfaces which are such that one of them and a parallel

admit of an equivalent representation (cf. Ex. 14, p. 113) with lines of curvature

. corresponding.

19. Derive the following properties of the surface

a2 _ ft2 uv Va2 - 62 v V&2 w2
_ Va2 &2 u Vu2 a2

_

ab u + u b M + U a w + v

(i) the parametric lines are plane lines of curvature
;

(ii) the principal radii of curvature are p\ = i&amp;gt;, p% = u
;

(iii)
the surface is algebraic of the fourth order

;

(iv) the surfaces of center are focal conies.

20. Given a curve C upon a surface S and the ruled surface formed by the tan

gents to S which are perpendicular to C at its points M ;
the point of each generator

M.N at which the tangent plane to the ruled surface is perpendicular to the tan

gent plane atM to S is the center of geodesic curvature of C at M
;
when the ruled

surface is developable, this center of geodesic curvature is the point of contact of

MN with the edge of regression.

21. If two surfaces have the same spherical representation of their lines of

curvature, the locus of the point dividing the join of corresponding points in con

stant ratio is a surface with the same representation.

22. The locus of the centers of geodesic curvature of a line of curvature is an

evolute of the latter.

23. Show that when E, F, G
; D, IX, IX of a surface are functions of a single

parameter, the surface is a helicoid, or a surface of revolution.



CHAPTER VI

SYSTEMS OF CURVES. GEODESICS

77. Asymptotic lines. We have said that the asymptotic lines

on a surface are the double family of curves whose tangents at

any point are determined in direction by the differential equation

D du2+ 2D dudv + D&quot;dv
2 = 0.

These directions are imaginary and distinct at an elliptic point,

real and distinct at a hyperbolic point, and real and coincident at a

parabolic point. If we exclude the latter points from our discussion,

the asymptotic lines may be taken for parametric curves. A neces

sary and sufficient condition that they be parametric is (55)

(1)
D = Dn =Q.

Then from (IV, 25) we have

_ _D^_ !_

where p as thus denned is called the radius of total curvature.

The Codazzi equations (V, 13
) may be written

of which the condition of integrability is

a ri2i d ri2i
&amp;lt;

4
&amp;gt; ail i -hail 2 r

In consequence of (V, 3) this is equivalent to

In 64 we saw that K is a function of E, F, G and their deriva

tives. Hence equations (3) are two conditions upon the coefficients

of a quadratic form

(6) Edu2+ 2 Fdudv + G dv2
,

189
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that it may be the linear element of a surface referred to its asymp
totic lines. When these conditions are satisfied the function D is

given by (2) to within sign. Hence, if we make no distinction be

tween a surface and its symmetric with respect to a point, from 65

follows the theorem :

A necessary and sufficient condition that a quadratic form (6) be

the linear element of a surface referred to its asymptotic lines is that

its coefficients satisfy equations (3); when they are satisfied, the surface

is unique.

For example, suppose that the total curvature of the surface is the same at

every point, thus
j

a2

where a is a constant. In this case equations (3) are

cv cu cv du

which, since H2 ^ 0, are equivalent to

dv du

Hence E is a function of u alone, and G a function of v alone. By a suitable choice

of the parameters these two functions may be given the value a2
,
so that the linear

element of the surface can be written

(7) ds2 = a2
(du

2 + 2 cos o&amp;gt; dudv + dv2
),

where w denotes the angle between the asymptotic lines. Thus far the Codazzi equa
tions are satisfied and only the Gauss equation (V, 12) remains to be considered.

When the above values are substituted, this becomes

(8) sinw.
dudv

Hence to every solution of this equation there corresponds a surface of constant

curvature whose linear element is given by (7).
a2

The equation of the lines of curvature is du2 dv2 = 0, so that if we put
u -f v 2 M!, u v = 2 !, the quantities u\ and v\ are parameters of the lines of cur

vature, and in terms of these the equation of the asymptotic lines is du} dv} = 0.

Hence, when either the asymptotic lines or the lines of curvature are known upon
a surface of constant curvature, the other system can be found by quadratures.

When the asymptotic lines are parametric, the Gauss equations

(V, 7) may be written

^ +^ + 5^1 = 0,

/OX i du du dv
(
y
)

dv
72 ai

fru
l dv~
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where a, 5, a
x ,

b
1
are determinate functions of u and v, and in

consequence of (5)

(10)

da

Jo du

Conversely, if two such equations admit three real linearly inde

pendent integrals f^u, v), fz (u, v), f3 (u, v), the equations

&amp;lt;* =/l(w V), # =/2 (M, V), ^
=/&amp;gt;(!*,

1
)

define a surface on which the parametric curves are the asymptotic

lines. For, by the elimination of a, 6, a^ b
l
from the six equations

obtained by replacing 6 in (9) by x, y, z we get

nju uy v*&amp;gt;

f\

7 7 7
= &quot; = 0,

which are equivalent to (1), in consequence of (IV, 2, 5).*

As an example, consider the equations

of which the general integral is auv + bu + cv + d, where a, b, c, rf are constants.

By choosing the fixed axes suitably, the most general form of the equations of the

surface may be put in the form

From these equations it is seen that all the asymptotic lines are straight lines, so

that the surface is a quadric. Moreover, by the elimination of u and v from these

equations we have an equation of the form z = ax- -\- 2hxy + by
2 + ex + dy. Hence

the surface is a paraboloid.

78. Spherical representation of asymptotic lines. From (IV, 77)

we have that the total curvature of a surface, referred to its asymp

totic lines, may be expressed in the form

(ii)
A=-^

where ff-&quot;
= (o o^

2
,
the linear element of the spherical represen-

tation being da2 = (odu
2 + 2 &dudv +

* Darbonx, Vol. I, p. 138. It should be noticed that the above result shows that the

condition that equations (9) admit three independent integrals carries with it not only

(10) but all other conditions of integrability.
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From this result and (2) it follows that *

5!
#

Hence the fundamental relations (IV, 74) reduce to

/- o\ Jf n^/&quot;&quot; Jf _ r? &quot;-

and equations (V, 26) may be written

&quot; A ^ ^X P / **dX e$X\ 3X__^__ _
/{ \ du cv

Moreover, the Codazzi equations (V, 27) are reducible to

Consider now the converse problem :

To determine the condition to be satisfied by a parametric system

of lines on the sphere in order that they may serve as the spherical

representation of the asymptotic lines on a surface.

First of all, equations (15) must satisfy the condition of integra-

bility. Then p is obtainable by a quadrature. The corresponding

values of x, y, z found from equations (14) and from similar ones

are the coordinates of a surface upon which the asymptotic lines

are parametric. For, it follows from (14) that

du ** dv dv

Furthermore, p is determined to within a constant factor
;
conse

quently the same is true of x,y,z\ therefore the surface is unique

to within homothetic transformations. Hence we have the following

theorem of Dini :

A necessary and sufficient condition that a double family of curves

upon the sphere be the spherical representation of the asymptotic lines

upon a surface is that &, &, $ satisfy the equation

V d ri2

the corresponding surfaces are homothetic transforms of one another,

and their Cartesian coordinates are found by quadratures.

* The choice P = D /ft gives the surface symmetric to the one corresponding to (12),

as is seen from (14), and hence may be neglected.
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When equations (1) obtain, the fundamental equations (V, 28)

lead to the identities

|in = r 11v
2
ri2V

|22
1 = r22V_ r

ri2i

121 ri2v ri2i ri2v
(18)

i

rm
l2/

= -

rny r22j py
\2J llJ- llJ

The third and fourth of these equations are consequences also of

(3) and (15).

79. Formulas of Lelieuvre. Tangential equations. In conse

quence of (V, 31) equations (14) may be put in the form

where e is 1 according as the curvature of the surface is positive

or negative. Hence, if we put

(20) ^ =V-/)X, v
2
= V^epY, v

s
= ^/

we have the following formulas due to Lelieuvre :
*

du dv _ du dv _ dudv~
v
*

v
*

Bulletin des Sciences Mathtmatiques, Vol. XII (1888), p. 126.
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By means of (V, 22) and (15) we find from (20) that the common

ratio of these equations i

, ,. .
, , ,.

solutions of the equation

ratio of these equations is = ^ --
&amp;lt;& Consequently i^,

i/
2 ,

v
s
are

dudv \^/p dudv

Conversely, we have the theorem :

G-iven three particular integrals v^ i&amp;gt;

2 ,
v
s of an equation of theform

d
2

(22)
-^- = X0,

where \ is any function whatever of u and v ; the surface, whose co

ordinates are given by the corresponding quadratures (21), has the

parametric curves for asymptotic lines, and the total curvature of the

surface is measured by

/93\ K~

For, from (21), it is readily seen that v^ i/
2 ,

v
z
are proportional to

the direction-cosines of the normal to the surface. And if these

direction-cosines be given by (20), we are brought to (19), from

which we see that the conditions (16) are satisfied.

Take, for example, the simplest case - = 0, and three solutions

j / \ i / / \ //; 1 9 Q\
V{ 0| (U) -(- Yi(V). (I

=
*j &, &)

The coordinates of the surface are/rj

and similar expressions for y and z. When, in particular, we take

0,- (u)
= a,-w + &, $i (v)

= ato + /S,-,

the expressions for x, y, z are of the form auv + bu + cv + d, and consequently the

surface is a paraboloid.

From equations (V, 22, 34) it follows that when the asymptotic

lines are parametric, the tangential coordinates X, Y, Z, W are

solutions of the equations

HVd0
18^-llJ du

\ I ^2/j
^22&quot;) 30
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EXAMPLES

1. Upon a nondevelopable surface straight lines are the only plane asymptotic

lines.

2. The asymptotic lines on a minimal surface form an orthogonal isothermal

system, and their spherical images also form such a system.

3. Show that of all the surfaces with the linear element ds2 = du* + (u
2 + a2

)
du2

,

one has the parametric curves for asymptotic lines and another for lines of curva

ture. Determine these two surfaces.

4. The normals to a ruled surface along a generator are parallel to a plane.

Prove conversely, by means of the formulas of Lelieuvre, that if the normals to a

surface along the asymptotic lines in one system are parallel to a plane, which

differs with the curve, the surface is ruled.

5. If we take v^ = u, vz = D, j&amp;gt;3 = 0(u), the formulas of Lelieuvre define the

most general right conoid.

6. If the asymptotic lines in one system on a surface be represented on the

sphere by great circles, the surface is ruled.

80. Conjugate systems of parametric lines. Inversions. It is our

purpose now to consider the case where the parametric lines of a

surface form a conjugate system. As thus defined, the character

istics of the tangent plane, as it envelops the surface along a curve

v = const., are the tangents to the curves u = const, at their points

of intersection with the former curve ; and similarly for a plane

enveloping along a curve u = const.

The analytical condition that the parametric lines form a conju

gate system is
( 54)

(25) D =0.

It follows immediately from equations (V, 7) that x, y, z are solu

tions of an equation of the type

(26)
J^ + a^ + 6^0,
cudv du dv

where a and b are functions of u and v, or constants. By a method

similar to that of 77 we prove the converse theorem :

Iffi(u, v),/2 (M, v),/3 (w, v) be three linearly independent real solu

tions of an equation of the type (26), the equations

(27) * =
/&amp;gt;,*), y=fz (u,v), *=ft (u,v)

define a surface upon which the parametric curves form a conjugate

system.*9 * Cf . Darboux, Vol. I, p. 122.
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We have seen that the lines of curvature form the only orthog
onal conjugate system. Hence, in order that the parametric lines

on the surface (27) be lines of curvature, we must have

F^fa + tyty+tete^^
du dv du dv du dv

But this is equivalent to the condition that xz+yz+z2
also be a

solution of equation (26), as is seen by substitution. Hence we

have the theorem of Darboux *
:

If x, y, z, #2
-{- ?/

2
-f- z* are particular solutions of an equation of the

form (26), the first three serve for the rectangular coordinates of a

surface, upon which the parametric lines are the lines of curvature.

Darboux f has applied this result to the proof of the following

theorem :

When a surface is transformed ly an inversion into a second sur

face, the lines of curvature of the former become lines of curvature

of the latter.

By definition an inversion, or a transformation by reciprocal

radii, is given by

*

where c denotes a constant. From these equations we find that

(29) (if+ f+ z*) (x?+ y + z, )
= c ,

and by solving for x, y, z, (
, f

~ &quot;

yt+*l *?+**-- ,

If, now, the substitution Q _ _
&quot;

?+*+?
be effected upon equation (26), the resulting equation in or will

admit, in consequence of (29) and (30), the solutions xv y^ zv c
4

,

and therefore is of the form

(31)

* Vol. I, p. 136. t Vol. I, p. 207.



SURFACES OF TRANSLATION 197

Moreover, equation (26) admits unity for a particular solution,

and consequently x*+ yl+ z? is a solution of (31), which proves

the theorem.

As an example, we consider a cone of revolution. Its lines of curvature are the

elements of the cone and the circular sections. When a transformation by recip

rocal radii, whose pole is any point, is applied to the cone, the transform S has two

families of circles for its lines of curvature, in consequence of the above theorem

and the fact that circles and straight lines, not through the pole, are transformed

into circles. Moreover, the cone is the envelope of a family of spheres whose cen

ters lie on its axis, and also of the one-parameter family of tangent planes ;
the

latter pass through the vertex. Since tangency is preserved in this transformation,
the surface S is in two ways the envelope of a family of spheres : all the spheres

of one family pass through a point, and the centers of the spheres of the other

family lie in the plane determined by the axis of the cone and the pole.

81. Surfaces of translation. The simplest form of equation (26) is

dudv

in which case equations (27) are of the type

(32) x = U
1+r y= u^+V e =

V&amp;gt;+r

where U^ Z7 , Us
are any functions whatever of u alone, and V^ F2 ,

F
3 any functions of v alone. This surface may be generated by

effecting upon the curve

Xl= UV Vl= U 21=^3

a translation in which each of its points describes a curve con

gruent with the curve

*,
=

F,, y,= r,, Z.2
=F

3
.

In like manner it may be generated by a translation of the second

curve in which each of its points describes a curve congruent with

the first curve. For this reason the surface is called a surface of

translation. From this method of generation, as also from equa
tions (32), it follows that the tangents to the curves of one family

at their points of intersection with a curve of the second family

are parallel to one another. Hence we have the theorem of Lie *
:

The developable enveloping a surface of translation along a gener

ating curve is a cylinder.

* Math. Annalen, Vol. XIV (1879), pp. 332-367.
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Lie has observed that the surface defined by (32) is the locus of

the mid-points of the joins of points on the curves

It may be that these two sets of equations define the same curve

in terms of different parameters. In this case the surface is the

locus of the mid-points of all chords of the curve. These results

are only a particular case of the following theorem, whose proof is

immediate :

The locus of the point which divides in constant ratio the joins of

points on two curves, .or all the chords of one curve, is a surface

of translation ; in the latter case the curve is an asymptotic line of

the surface.

When the equations of a surface of translation are of the form

x=U, y = V, 9=Ui+V
the generators are plane curves whose planes are perpendicular.

We leave it to the reader to show that in this case the asymptotic

lines can be found by quadratures.

82. Isothermal-conjugate systems. When the asymptotic lines

upon a surface are parametric, the second quadratic form may be

written X dudv. When the surface is real, so also is this quadratic

form. Therefore, according as the curvature of the surface is posi

tive or negative, the parameters u and v are conjugate-imaginary

or real. r

We consider the former case and put

when u^ and v
l
are real. In terms of these parameters the second

quadratic form is \(du+dvj). Hence the curves M
t
= const.,

v
l
== const, form a conjugate system, for which

(33) D =
D&quot;,

D =0.

Bianchi * has called a system of this sort isothermal-conjugate. Evi

dently such a system bears to the second quadratic form an ana

lytical relation similar to that of an isothermal-orthogonal system

* Vol. I, p. 107.



ISOTHERMAL-CONJUGATE SYSTEMS 199

to the first quadratic form. In the latter case it was only necessary
that EGF* be positive, and the analogous requirement, namely
DD&quot; I)

2
&amp;gt; 0, is satisfied by surfaces of positive curvature. Hence

all the theorems for isothermal-orthogonal systems ( 40, 41) are

translated into theorems concerning isothermal-conjugate systems

by substituting Z&amp;gt;, IX, D&quot; for E, F, G respectively in the formulas.

In particular, we remark that if the curves u = const., v = const.

on a surface form an isothermal-conjugate system, all other real

isothermal-conjugate systems are given by u = const., v
1
= const.,

the quantities u
l
and v

l being defined by

ui+ il\ (
t
)

(
u i w)

where &amp;lt; is any analytic function.

When the curvature of the surface is negative and we put

in the second quadratic form \dudv, it becomes \(du* dv*). In

this case

(34) D =
-!&amp;gt;&quot;,

D =0.

Hence the curves w
1

const, and i\
= const, form a conjugate sys

tem which may be called isothermal-conjugate. With each change
of the parameters u and v of the asymptotic lines there is obtained

a new isothermal-conjugate system. Hence if u and v are parame
ters of an isothermal-conjugate system upon a surface of negative

curvature, the parameters of all such systems are given by

where &amp;lt; and ^r denote arbitrary functions.

It is evident that if the parameters for a surface are such that

(35) = -, Z/=0,
D&quot; V

where U and V are functions of u and v respectively, then by a

change of parameters which does not change the parametric curves

we can reduce (35) to one of the forms (33) or (34). Hence equa
tions (35) are a necessary and sufficient condition that the para

metric curves form an isothermal-conjugate system. Referring to
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77, we see that the lines of curvature upon a surface of constant

total curvature form an isothermal-conjugate system.
When equation (35) is of the form (33) or (34), we say that the

parameters u and v are isothermal-conjugate.

83. Spherical representation of conjugate systems. When the

parametric curves are conjugate, equations (IV, 69) reduce to

- GI? FDD&quot; ., EDm
~-~W^ ~W -Ji-

From these equations and (III, 15) it follows that the angle CD

between the parametric curves on the sphere is given by

,
& F

COS o&amp;gt;
= - =

qp
- ==

if COS O),

where the upper sign corresponds to the case of an elliptic point

and the lower to a hyperbolic point. Hence we have the theorem:

The angles between two conjugate directions at a point on a sur

face, and between the corresponding directions on the sphere, are equal

or supplementary, according as the point is hyperbolic or elliptic.

When the parametric curves form a conjugate system, the

Codazzi equations (V, 27) reduce to

and equations (V, 26) become

(dx D / X dX

du dv

Hence, when a system of curves upon the sphere is given, the

problem of finding the surfaces with this representation of a

conjugate system reduces to the solution of equations (36) and

quadratures of the form (37), after X, Y, Z have been determined

by the solution of a Riccati equation. By the elimination of D
or D&quot; from equations (36) we obtain a partial differential equation

of the second order.
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From the general equations (V, 28) we derive the following,

when the parametric curves form a conjugate system :
*

(38)

(fii\_8ioSD rnv /22\ aiogD&quot; /22V
li/

= ~w ~\ir i2/
=

~fo~ ~i2/

/12\ D&quot; fllV f!2\ D /22V
ilJ

=
&quot;T12/ l2/

=
~I7 ll/

22 D&quot; f!2 ll !2V

84. Tangential coordinates. Projective transformations. The prob
lem of finding the surfaces with a given representation of a con

jugate system is treated more readily from the point of view of

tangential coordinates. For, from (V, 22) and (V, 34) it is seen

that -3T, r, Z, and W are particular solutions of the equation

&amp;lt;&amp;gt;

Hence every solution of this equation linearly independent of

A&quot;, F, Z determines a surface with the given representation of a

conjugate system, and the calculation of the coordinates 2-, y, z

does not involve quadratures ( 67).

Conversely, it is readily seen that if the tangential coordinates

satisfy an equation of the form

d*e 30 00
h a --h b --f-c#=0.

du dv

the coordinate lines form a conjugate system on the surface.

As an example, we determine the surfaces whose lines of curvature are repre

sented on the sphere by a family of curves of ccinstant geodesic curvature and their

orthogonal trajectories. If the former family be the curves v = const., and if the

linear element on the sphere be written da-2 Edu2
-f Gdu2

,
we must have (IV, 60)

where (u) is a function of v alone. By a change of the parameter v this may be

made equal to unity. In this case equation (39) is reducible to

du

*Cf. Bianhi, Vol. I, p. 167.
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The general integral of this equation is

where v denotes a constant value of
t&amp;gt;,

and U and V are arbitrary functions of u
and u respectively. Hence :

The determination of all the surfaces whose lines of curvature are represented on
the sphere by a family of curves of constant geodesic curvature and their orthogonal
trajectories, requires two quadratures.

In order that among all the surfaces with the same represen
tation of a conjugate system there may be a surface for which the

system is isothermal-conjugate, and the parameters be isothermal-

conjugate, it is necessary that equations (36) be satisfied by
iX ssiD, according as the total curvature is positive or negative.
In this case equations (36) are

01og.D_/12\ fllV alocrT) 12V 22V
u

The condition of integrability is

a rri2V my-i z 17121 /22V ]

^Llim2)rdl2mi)J
When this is satisfied D may be found by quadratures, and then

the coordinates, by (37). Hence we have the theorem:

A necessary and sufficient condition that a family of curves upon
the sphere represent an isothermal-conjugate system on a surface,

and that u and v be isothermal-conjugate parameters, is that
, &amp;lt;^, $

satisfy (40); then the surface is unique to within its homothetics,

and its coordinates are given by quadratures. ,-&amp;lt;

The following theorem concerning the invariance of conjugate
directions and asymptotic lines is due to Darboux :

When a surface is subjected to a protective transformation or a

transformation by reciprocal polars, conjugate directions and asymp
totic lines are preserved.

We prove this theorem geometrically. Consider a curve C on a

surface $and the developable D circumscribing the surface along C.

When a projective transformation is effected upon S we obtain a

surface S
19 corresponding point with point to S, and C goes into a

curve CjUpon S^ andD into a developableDl circumscribing Sl along
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Cj ; moreover, the tangents to C and (7
X correspond, as do the gener

ators of D and Dr Since the generators are in each case tangent to

the curves conjugate to C and C
l respectively, the theorem is proved.

In the case of a polar reciprocal transformation a plane corre

sponds to a point and vice versa, in such a way that a plane and a

point of it go into a point and a plane through it. Hence S goes

into Sv C into D
1 ,
D into Cv and the tangents to C and generators

of D into the generators of J\ and tangents to &amp;lt;7r Hence the

theorem is proved.
EXAMPLES

1. Show that the parametric curves on the surface

- ^I + FI _ _

C7AZ2 - u* + Fs
:

U + V
-

u + V* &quot;1TTF&quot;

where the I7 s are functions of u alone and theF s of v alone, form a conjugate system.

2. On the surface x U\V\, y = UZ V\, z F2 ,
where U\, U2 are functions of

u alone and FI, F2 of v alone, the parametric curves form a conjugate system and

the asymptotic lines can be found by quadratures.

3. The generators of a surface of translation form an equidistantial system

(cf. Ex. 10, p. 187).

4. Show that a paraboloid is a surface of translation in more than one way.

5 . The locus of the mid-points of the chords of a circular helix is a right helicoid.

Q. Discuss the surface of translation which is the locus of points dividing in

constant ratio the chords of a twisted cubic.

7. From (28) it follows that
_

2 , , a c4 (dx
2 + dy2 + dz2

)
dx? + dy? + dz? = :

(x* + y* + 22
)
2

consequently the transformation by reciprocal radii is conformal.

8. Determine the condition to be satisfied by the function u so that a surface

with the linear element 9/ &amp;lt;&amp;gt;,79,= a? (cos
2 w du2 +

shall have the total curvature I/a
2

. Show that if the parametric curves are the

lines of curvature, they form an isothermal-conjugate system.

9. A necessary and sufficient condition that the linear element of a surface

referred to a conjugate system can be written

is that the parametric curves be the characteristic lines. Find the condition imposed

upon the curves on the unit sphere in order that they may represent these lines.

10. Conjugate systems and asymptotic lines are transformed into curves of the

same sort when a surface is transformed by the general protective transformationABC
X =

D y = D
* = D

where A, 2&amp;gt;, C, D are linear functions of the new coordinates Xi, y\, z\.
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85. Equations of geodesic lines. We have defined a geodesic to

be a curve whose geodesic curvature is zero at every point ; conse

quently its osculating plane at any point is perpendicular to the

tangent plane to the surface.

From (IV, 49) it follows that every geodesic upon a surface is

an integral curve of the differential equation

(41) ,
ds ds/\ ds

2

ds*/ \ ds

. /V + 7&amp;lt;

T W -- Y Y-4- 4 i f
\ ds ds)l\du 2 to/\ds) du ds ds 2 dv \ds

\\- (\
2

-i- fi -\( Y =
ds/[2 du \ds) dv ds ds \dv 2 du)\ds

~_/
\ ds

If the fundamental identity

+2+
\ds/ ds ds \ds/

which gives the relation between w, v, s along the curve, be differ

entiated with respect to s, we have

du d*u d*v\ dv d*u d*v

L+ 2 4-24- -4--=
dv du)\ds) ds \ dv du) ds \dsj dv

If this equation and (41) be solved with respect to
/ 72 72 \

, T,tfu ~d*v\ ,, .

and F- + G -^ )
we obtain

\ ds2
ds*/

F + F 4- - 1^ Y+ +( - - V V=
ds

2 ds2 2 du \ds) dv ds ds \dv 2 du)\ds/

cFv
(W_lMy&amp;lt;faV

dGdu dv IdG/dv\
2

= Q
dt \9* 2 dv )\ds) du ds ds 2 Bv \ds)

If these equations be solved with respect to - and ^ we have,

in consequence of (V, 2),

(42)

d*u riii/&amp;lt;fov
2 i

12\ ^+{ 22V Y=o

111 /du\* . rt fl21 (fw dv
. f 22-
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Every pair of solutions of these equations of the form u =/j(),
v =/2 (), determines a geodesic on the surface, and s is its arc.

But a geodesic may be defined in terms of u and v alone, without

the introduction of the parameter s. If v =
&amp;lt;f&amp;gt;(u)

defines such a

curve, then dv du d*
v /du\* .,d*u

ct u
Substituting these expressions in (42) and eliminating &amp;gt; we

have, to within the factor (du/ds)
2
,

(43) &amp;lt;//

From (42) it follows that when du/ds is zero,

Hence, when this condition is not satisfied, equation (43) defines

the geodesies on a surface ; and when it is satisfied, equations (43)

and u = const, define them.

From the theory of differential equations it follows that there

exists a unique integral of (43) which takes a given value for

u M
O ,
and whose first derivative takes a given value for u = U

Q
.

Hence we have the fundamental theorem : ,

Through every point on a surface there passes a unique geodesic

with a given direction.

As an example, we consider the geodesies on a surface of revolution. We have

found ( 46) that the linear element of such a surface referred to its meridians and

parallels is of the form

(45) ds2 = (1 + 2
)
du2

-f wW,
where z = (u) is the equation of the meridian curve. If we put

(46)

and indicate the inverse of this equation by u ^(wi), we have

(47) &amp;lt;Zs

2 = d^ + fdw2
,

and the meridians and parallels are still the parametric curves. For this case equa

tions (42) are

(48)
^i -w*y= - + - = -

(
&amp;lt;W

&quot;W &amp;lt;W ds ds
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The first integral of the second is

.do
&amp;lt;//

2 =
c,

ds

where c is a constant. Eliminating ds from this equation and (47), and integrating,

we have

(49) c f -

/
,

= w +
2 _ C2

where Ci is a constant. The meridians v = const, correspond to the case c = 0.

Hence we have the theorem :

The geodesies upon a surface of revolution referred to its meridians and parallels

can be found by quadratures.

It should be remarked that equation (49) defines the geodesies upon any surface

applicable to a surface of revolution.

86. Geodesic parallels. Geodesic parameters. From (43) it fol

lows that a necessary and sufficient condition that the curves

v = const, on a surface be geodesies is that

If the parametric system be orthogonal, this condition makes it

necessary that E be a function of u alone, say E = U
2

. By replacing

I U du by u we do not change the parametric lines, and E becomes

equal to unity. And the linear element has the form

(51) d**=du*+Gdi?,

where in general G is a function of both u and v. From this it

follows that the length of the segment of a curve v = const, between

the curves u = U
Q
and u = u^ is given by

/! X!
I dsu

= I du = u^u^
V0 WO

Since this length is independent of v, it follows that the segments

of all the geodesies v = const, included between any two orthog

onal trajectories are of equal length. In consequence of the funda

mental theorem, we have that there is a unique family of geodesies

which are the orthogonal trajectories of a given curve C. The above

results enable us to state the following theorem of Gauss *
:

If geodesies be drawn orthogonal to a curve C, and equal lengths be

measured upon them from C, the locus of their ends is an orthogonal

trajectory of the geodesies. *
L.C., p. 25.
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This gives us a means of finding all the orthogonal trajectories

of a family of geodesies, when one of them is known. And it sug

gests the name geodesic parallels for these trajectories. Referring

to 37, we see that these are the curves there called parallels,

and so the theorem of 37 may be stated thus :

A necessary and sufficient condition that the curves
&amp;lt;f&amp;gt;

= const, be

geodesic parallels is that

(52) A,* =/(*),

where the differential parameter is formed with respect to the linear

element of the surface, and f denotes any function. In order that
&amp;lt;f&amp;gt;

be the length of the geodesic curves measured from the curve
&amp;lt;/&amp;gt;

= 0,

it is necessary and sufficient that

(53) A,* = l.

Moreover, we have seen that when a function $ satisfies (52), a

new function satisfying (53) can be found by quadrature. When
this function is taken as u, the linear element has the form (51).

In this case we shall call u and v geodesic parameters.

87. Geodesic polar coordinates. The following theorem, due to

Gauss,* suggests an important system of geodesic parameters:

If equal lengths be laid offfrom a point P on the geodesies through P,

the locus of the end points is an orthogonal trajectory of the geodesies.

In proving the theorem we take the geodesies for the curves

v = const., and let u denote distances measured along these geo

desies from P. The points of a curve u = const, are consequently

at the same geodesic distance from P, and so we call them geodesic

circles. It is our problem to show that this parametric system is

orthogonal.

From the choice of u we know that E = \, and hence from (50)

it follows that F is independent of u. At P, that is for u = 0, the

derivatives are zero. Consequently F and G are zero
Zv dv dv

for u = 0, and the former, being independent of w, is always zero.

Hence the theorem is proved.

We consider such a system and two points MQ (u, 0), J/^w, vj

on the geodesic circle of radius u. The length of the arc MQ
M

1

*L.c.,p. 24.
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is given by / ^Gdv. As u approaches zero the ratio
Jo

approaches the angle between the tangents at P to the geodesies

v = and v = v^ If 6 denotes this angle, we have

a ..

6 = lim- =
I dv.

u=o

v r=
I

/o

In order that v be 6, it is necessary and sufficient that - = 1.

L du Ju=

These particular geodesic coordinates are similar to polar coordi

nates in the plane, and for this reason are called geodesic polar

coordinates. The above results may now be stated thus :

The necessary and sufficient conditions that a system of geodesic

coordinates be polar are

(54) =0, -i.
L J=o L Bu J M=0

It should be noticed, however, that it may be necessary to limit the part of the

surface under consideration in order that there be a one-to-one correspondence

between a point and a pair of coordinates. For, it may happen that two geodesies

starting from P meet again, in which case the second point of meeting would be

defined by two sets of coordinates.* For example, the helices are geodesies on a

cylinder ( 12), and it is evident that any number of them can be made to pass

through two points at a finite distance from one another by varying the angle under

which they cut the elements of the cylinder. Hence, in using a system of geodesic

polar coordinates with pole at P, we consider the portion of the surface inclosed

by a geodesic circle of radius r, where r is such that no two geodesies through P
meet within the circle, t

When the linear element is in the form (51), the equation of

Gauss (V, 12) reduces to

(55)

If K
Q
denotes the total curvature of the surface at the pole P,

which by hypothesis is not a parabolic point, from (54) and

(55) it follows that

_ _K
o L &amp;lt;*

~ *

* Notice that the pole is a singular point for such a system, because H* = for u = 0.

tDarboux (Vol. II, p. 408) shows that such a function r exists; this is suggested

also by 94.
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Therefore, for sufficiently small values of w, we have

.

O

Hence the circumference and area of a geodesic circle of radius u

have the values *

/*2

= I

Jo
2 ITU -

+

where e
t
and e

2
denote terms of orders higher than the third and

fourth respectively.

EXAMPLES

1. Find the geodesies of an ellipsoid of revolution.

2. The equations x u, y = v define a representation of a surface with the

linear element ds2 = v (du
2 + dv2

) upon the xy-plane in such a way that geodesies

on the former are represented by parabolas on the latter.

3. Find the total curvature of a surface with the linear element

(a
2 - v2) du? + 2 w&amp;gt; dudv + (a

2 - u2
) dv*

US T XV* -----
9

(a
2 _ W2 _ W2)2

where R and a are constants and integrate the equation of geodesies for the surface.

4. A twisted curve is a geodesic on its rectifying developable.

5. The evolutes of a twisted curve are geodesies on its polar developable.

6. Along a geodesic on a surface of revolution the product of the radius of the

parallel through a point and the sine of the angle of inclination of the geodesic

with the meridian is constant.

7. Upon a surface of revolution a curve cannot be a geodesic and loxodromic

at the same time unless the surface be cylindrical.

8. Upon a helicoid the orthogonal trajectories of the helices are geodesies and

the other geodesies can be found by quadratures.

9. If a family of geodesies and their orthogonal trajectories on a surface form

an isothermal system, the surface is applicable to a surface of revolution.

10. The radius of curvature of a geodesic on a cone of revolution at a point P
varies as the cube of the distance of P from the vertex.

88. Area of a geodesic triangle. With the aid of geodesic polar

coordinates Gauss proved the following important theorem f :

The excess over 180 of the sum of the angles of a triangle formed

by geodesies on a surface ofpositive curvature, or the deficitfrom 180

* Bertrand, Journal de Mathematiques, Ser. 1, Vol. XIII (1848), pp. 80-86. t L.c., p. 30.
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of the sum of the angles of such a triangle on a surface of negative

curvature, is measured by the area of the part of the sphere which

represents that triangle.

In the proof of this theorem Gauss made use of the equation of

geodesic lines in the form

where 6 denotes the angle which the tangent to a geodesic at a

point makes with the curve v const, through the point. This

equation is an immediate consequence of formula (V, 81). When
the parametric system is polar geodesic, this becomes

(57) M = --*.
Let ABC be a triangle whose sides are geodesies, and let a, /3, 7

denote the included angles. From (IV, 7 3) it follows that the inclosed

area on the sphere is given by

(58) d = ff// dudv =
Ipcff

dudv,

where e is 1 according as the curvature is positive or negative,

and the double integrals are taken over the respective areas.

Let A be the pole of a polar geodesic system and AB the curve

v = 0. From (55) and (58) we have

rr
]

Jo Jo

,-- dvdu
o o

In consequence of (54) we have, upon integration with respect to u,

which, by (57), is equivalent to

& = e f dv + e f dd.
Jo Jn-ft

For, at B the geodesic BC makes the angle TT fi with the curve

v = 0, and at C it makes the angle 7 with the curve v = a. Hence

we have
(7i = e(a + /3 + 7 - TT),

which proves the theorem.
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Because of the form of the second part of (58) Ci may be said

to measure the total curvature of the geodesic triangle, so that the

above theorem may also be stated thus :

The total curvature of a geodesic triangle is equal to the excess

over 180, or deficit from 180, of the sum of the angles of the tri

angle, according as the curvature is positive or negative.

The extension of these theorems to the case of geodesic polygons

is straightforward.

In the preceding discussion it has been tacitly assumed that all the points of the

triangle ABC can be uniquely denned by polar coordinates with pole at A. We
shall show that this theorem is true, even if this assumption is

not made.

If the theorem is not true for ABC, it cannot be true for

both of the triangles ABD and ACD obtained by joining A
and the middle point of BC with a geodesic AD (fig. 18). For,

by adding the results for the two triangles, we should have the

theorem holding for ABC. Suppose that it is not true for A BD.

Divide the latter into two triangles and apply the same reason

ing. By continuing this process we should obtain a triangle as

small as we please, inside of which a polar geodesic system

would not uniquely determine each point. But a domain can be chosen about a

point so that a unique geodesic passes through the given point and any other point

of the domain.* Consequently the above theorem is perfectly general.

By means of the above result we prove the theorem :

Tivo geodesies on a surface of negative curvature cannot meet in

two points and inclose a simply connected area.

Suppose that two geodesies through a point A pass through a

second point B, the two geodesies inclosing a simply connected

portion of the surface (fig. 19). Take any geodesic cutting these

two segments AB in points C and D. Since

the four angles ACD, ADC, BCD, BDC are

together equal to four right angles, the sum

/D of the angles of the two triangles ADC arid

BDC exceed four right angles by the sum

of the angles at A and B. Therefore, in

consequence of the above theorem of Gauss, the total curvature

of the surface cannot be negative at all points of the area ADBC.
On the contrary, it can be shown that for a surface of positive

curvature geodesies through a point meet again in general. In

* Darboux, Vol. II, p. 408
;

cf. 94.
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fact, the exceptional points, if there are any, lie in a finite portion

of the surface, which may consist of one or more simply connected

parts.* For example, the geodesies on a sphere are great circles,

and all of these through a point pass through the diametrically

opposite point. Again, the helices are geodesies on a cylinder

( 12), and it is evident tnat any number of them can be made to

pass through two points at a finite distance from one another by

varying the angle under A hich they cut the elements of the cyl

inder. Hence the domain oi a system of polar geodesic coordinates

is restricted on a surface of oositive curvature.

89. Lines of shortest length. Geodesic curvature. We are now
in a position to prove the theorem :

If two points on a surface are such that only one geodesic passes

through them, the segment of the geodesic measures the shortest dis

tance on the surface between the two points.

Take one of the points for the pole of a polar geodesic system

and the geodesic for the curve v = 0. The coordinates of the

second point are (u^ 0). The parametric equation of any other

curve through the two points is of the form v =
^&amp;gt;(w),

and the

length of its arc is

f
Jo

Since G &amp;gt; 0, the value of this in

tegral is necessarily greater than

Wj, and the theprem is proved.

By means of equation (57) we derive another definition of geo

desic curvature. Consider two points M and M upon a curve C,

and the unique geodesies g, g tangent to C at these points (fig. 20).

Let P denote the point of intersection of g and g\ and Sty the

angle under which they cut. Liouville f has called Sty the angle of

geodesic contingence, because of its analogy to the ordinary angle

of contingence. Now we shall prove the theorem:

The limit of the ratio Sty/Ss, as M approaches M, is the geodesic

curvature of C at M.

* For a proof of this the reader is referred to a memoir by H. v. Mangoldt, in Crelle,

Vol. XCI (1881), pp. 23-53.

t Journal de Mathtmatiques, Vol. XVI (1851), p. 132.
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In the proof of this theorem we take for parametric curves the

given curve (7, its geodesic parallels and their geodesic orthogonals,

the parameter u being the distance measured along the latter from C.

Since the geodesic g meets the curve v = v orthogonally, the angle

under which it meets v = v may be denoted by ?r/2 4- SO. As M
approaches Jf, W approaches dd given by y/&amp;gt;7),

and the sum of the

angles of the triangleM PQ approaches 18C. Hence S^/r approaches

dQ, so that we have

Ss ds
v-

which is the expression for the geodesic curvature of the curve C.

90. Geodesic ellipses and hyperbolas. An important system of

parametric lines for a surface is formed by two families of geodesic

parallels. Such a system may be obtained by constructing the geo
desic parallels of two curves C^ and (7

2 , which are not themselves

geodesic parallels of one another, or by taking the two families of

geodesic circles with centers at any two points F^ and F
2

. Let u and

v measure the geodesic distances from C^ and C2 ,
or from F

l
and F

2
.

They must be solutions of (53). Consequently, in terms of them,

we must have ^ Q.

EG-F*~~ EG-F*~

If, as usual, o&amp;gt; denotes the angle between these parametric lines,

we have, from (III, 15, 16),

v n *
T?

COSft)
-U = U = &amp;gt; JF = . ?

sin
2

ft) sin &amp;lt;o

so that the linear element has the following form, due to Weingarten :

/rrix , 9 du2 + 2 cos ft) dudv -f- dv
2

(59) ds*=-
. a

-
sin

2
&)

Conversely, when the linear element is reducible to this form,

u and v are solutions of (53), and consequently the parametric

curves are geodesic parallels.

In terms of the parameters u
v
and v^ denned by u = i^-h v

l
and

v = u
l i\, the linear element (59) has the form

(60) df^^aL + JuL.
. o o
sm S

2



214 GEODESICS

The geometrical significance of the curves of parameter i^ and v
l

is seen when the above equations are written

The curves w
1
= const, and v

l
= const, are respectively the loci of

points the sum and difference of whose geodesic distances from C
1

and Cg, or from F
t
and F

z , are constant. In the latter case these

curves are analogous to ellipses and hyperbolas in the plane, the

points Fl
and F

2 corresponding to the foci. For this reason they

are called geodesic ellipses and hyperbolas, which names are given
likewise to the curves u^

= const., v
l
= const., when the distances

are measured from two curves, C
l
and C

2
. From (60) follows at

once the theorem of Weingarten :
*

A system of geodesic ellipses and hyperbolas is orthogonal.

By means of (61) equation (60) can be transformed into (59), thus

proving that when the linear element of a surface is in the form (60),

the parametric curves are geodesic ellipses and hyperbolas.

If 6 denotes the angle which the tangent to the curve v^= const,

through a point makes with the curve v = const., it follows from

(III, 23) that ft) ... ,

cos u = cos i sin = sin

Hence we have the theorem :

Given any two systems of geodesic parallels upon a surface ; the

corresponding geodesic ellipses and hyperbolas bisect the angles

included by the former.

91. Surfaces of Liouville. Dini f inquired whether there were

any surfaces with an isothermal system of geodesic ellipses and

hyperbolas. A necessary and sufficient condition that such a sur

face exist is that the coefficients of (60) satisfy a condition of the

form (41) ^ 8in2 =
r/i

CQ8
,

| ,

where U^ and V
r
denote functions of u

l
and i\ respectively. In

this case the linear element may be written

V i *\

*Ueber die Oberfliichen fur welche einer der beiden Hauptkrummungshalbmesser
eine Function des anderen ist, Crelle, Vol. LXII (1863), pp. 160-173.

t Annali, Ser. 2, Vol. Ill (1869), pp. 269-293.
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By the change of parameters defined by

1

this linear element is transformed into

(63) ds*=
(
U

2 + r
8 ) (du* + dvt),

where U
2
and V

z
are functions of u

2
and v

2 respectively, such that

Conversely, if the linear element is in the form (63), it may be

changed into (62) by the transformation of coordinates

Surfaces whose linear element is reducible to the form (63) were

first studied by Liouville, and on that account are called surfaces of

Liouville.* To this class belong the surfaces of revolution and the

quadrics ( 96, 97). We may state the above results in the form :

When the linear element of a surface is in the Liouville form, the

parametric curves are geodesic ellipses and hyperbolas ; these systems

are the only isothermal orthogonal families of geodesic conies.^

92. Integration of the equation of geodesic lines. Having thus

discussed the various properties of geodesic lines, and having seen

the advantage of knowing their equations in finite form, we return

to the consideration of their differential equation and derive certain

theorems concerning its integration.

Suppose, in the first place, that we know a particular first inte

gral of the general equation, that is, a family of geodesies defined

by an equation of the form

(64)

From (IV, 58) it follows that M and N must satisfy the equation

_2_
/___FN-GM \

d_
I FM-EN \ =

du \^/EN 2- 2FMN+ GM 2
/ ^ \^EN2- 2 FMN+ GM2

/

* Journal de Mathematiques, Vol. XI (1846), p. 345.

t The reader is referred to Darboux, Vol. II, p. 208, for a discussion of the conditions

under which a surface is of the Liouville type.
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In consequence of this equation we know that there exists a func

tion
&amp;lt;f&amp;gt;

denned by

._.
dc#&amp;gt;

EN-FM
d&amp;lt;f&amp;gt;

FN-GM
(DO ) = ====================== ? ==: -===============================

du ^EN*-1FMN+GM* to VEN*-2FMN+GM*

Moreover, we find that

(66) A^=l.
From (III, 31) and (65) it follows that the curves

&amp;lt;/&amp;gt;

= const, are

the orthogonal trajectories of the given geodesies, and from (66)

it is seen that &amp;lt; measures distance along the geodesies from the

curve $ = 0. Hence we have the theorem of Darboux *
:

When a one-parameter family of geodesies is defined by a differ

ential equation of the first order, the finite equation of their orthogonal

trajectories can be obtained by a quadrature, which gives the geodesic

parameter at the same time.

Therefore, when the general first integral of the equation of

geodesies is known, all the geodesic parallels can be found by

quadratures.

We consider now the converse problem of finding the geodesies

when the geodesic parallels are known. Suppose that we have a

solution of equation (66) involving an arbitrary constant a, which

is not additive. If this equation be differentiated with respect to

a, we get

(67)

where the differential parameter is formed with respect to the linear

element. But this is a necessary and sufficient condition
( 37) that

the curves
&amp;lt;/&amp;gt;

= const, and the curves

(68)
^ = const.= a
da

form an orthogonal system. Hence the curves defined by (68)

are geodesies. In general, this equation involves two arbitrary

constants, a and a
, which, as will now be shown, enter in such

a way that this equation gives the general integral of the differ

ential equation of geodesic lines.

*
Lemons, Vol. II, p. 430; cf. also Bianchi, Vol. I, p. 202.
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Suppose that a appears in equation (68), and write the latter thus :

(69) f (u, v, a)
= a r

,

in which case equation (67) becomes

(70) A
l(*,^)=0.

The direction of each of the curves (69) is given by -^-
/ If this

36 /dd&amp;gt;

ratio be independent of a, so also by (70) is the ratio -^-1

Write the latter in the form

If this equation and (66) be solved for and we obtain values
cu dv

independent of a, so that a would have been additive. Hence /
involves a, and so also does iJL/l_, and therefore a direction at

cu
/

dv

a point (MO ,
v

)
determines the value of a; call it . If then a

Q

be such that
^.(, *,)

= 4,

the geodesic -v/r (%, v, a
)
= ^ passes through the point (w ,

?;
)
and

has the given direction at the point. Hence all the geodesies are

defined by equation (68), and we have the theorem:

Criven a solution of the equation A 1 &amp;lt;^

= 1, involving an arbitrary
r\ II

constant a, in such a way that involves a; the equation
da

da

for all values of a is the finite equation of the geodesies, and the

arc of the geodesies is measured by (/&amp;gt;.*

By means of this result we establish the following theorem due

to Jacobi :

If a first integral of the differential equation of geodesic lines be

known, the finite equation can be found by one quadrature.

Such an integral is of the form

dv
- = ^(u, v, a),du

Cf. Darboux, Vol. II, p. 429.
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where a is an arbitrary constant. As this equation is of the form

(64), the function
c/&amp;gt;,

defined by

(# += P
is a solution of equation (66). As $ involves a in the manner

specified in the preceding theorem, the finite equation of the

d(f&amp;gt; ,

geodesies is = a.

93. Geodesies on surfaces of Liouville. The surfaces of Liouville

( 91) afford an excellent application of the theorem of Jacobi.

We take the linear element in the form *

(71) ds
2= (U- V) (U?du

2 + V?dv
2

),

which evidently is no more general than (63). In this case equa

tion (66) becomes

When this equation is written in the form

u*\du.

one sees that it belongs to the class of partial differential equa

tions admitting an integral which is the sum of functions of u

and v alone, f In order to obtain this integral, we put each side

equal to a constant a and integrate. This gives

(72) &amp;lt;/&amp;gt;

= C l\ -\/Ua du f F!Va Vdv.

Hence the equation of geodesies is

(73)

If 6 denotes the angle which a geodesic through a point makes

with the line v = const, through the point, it follows from (III, 24)

and (71) that y dv
tan 6 = -

* Cf. Darboux, Vol. Ill, p. 9. t Forsyth, Differential Equations (1888), p. 310.
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If the value of dv/du from equation (73) be substituted in this

equation, we obtain the following first integral of the Gauss

equation (56):

(74) ?7sin
2 + Fcos2 = a.

This equation is due to Liouville. *

EXAMPLES

1. On a surface of constant curvature the area of a geodesic triangle is pro

portional to the difference between the sum of the angles of the triangle and

two right angles.

2. Show that for a developable surface the first integral of equation (56) can

be found by quadratures.

3. Given any curve C upon a surface and the developable surface which is the

envelope of the tangent planes to the surface along C; show that the geodesic

curvature of C is equal to the curvature of the plane curve into which C is trans

formed when the developable is developed upon a plane.

4. When the plane is referred to a system of confocal ellipses and hyperbolas

whose foci are at the distance 2 c apart, the linear element can be written

5. A necessary and sufficient condition that be a solution of Ai0 = 1 is that

ds2
d&amp;lt;p

2 be a perfect square.

6. If = did + 62 ,
where 6\ and 62 are functions of u and v, is a solution of

Ai0 =:
1, the curves 0i= const, are lines of length zero, and the curves B\a -j- 62 = const,

are their orthogonal trajectories.

7. When the linear element of a spiral surface is in the form ds2 = e2 &quot;

(du
2

-\- U&quot;

2do2
),

the equation Ai0 = 1 admits the solution e ?

Z7i, where U\ is a function of M, which

satisfies an equation of the first order whose integration gives thus all the geodesies

on the surface.

8. For a surface with the linear element

where V and V\ are functions of v alone, the equation Ai0 = 1 admits the solution

(f&amp;gt; u\fsi (v) -f ^2 (
v ), the determination of the functions

\f&amp;gt;i

and ^ 2 requiring the solu

tion of a differential equation of the first order and quadratures.

9. If denotes a solution of Ai0 = 1 involving a nonadditive constant a, the

linear element of the surface can be written

ca

where (0, $} indicates the mixed differential parameter (III, 48).

*i.c.,p. 348.
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94. Lines of shortest length. Envelope of geodesies. We can go
a step farther than the first theorem of 89 and show that whether

one or more geodesies pass through two points Ml
and M

2
on a sur

face, the shortest distance on the surface between these points, if it

exists, is measured along one of these geodesies.

Thus, let v =f(u) and v =fl (u) define two curves C and C
l passing

through the points M^ M# the parametric values of u at the points

being u^ and u
2

. The arc of C between these points has the length

(75) = 2Fv +Gv 2

du,

where v denotes the derivative of v with respect to u. For con

venience we write the above thus :

(76) s= f *4&amp;gt;(ui v, v )du.
Jiti

Furthermore, we put
f1 (u)=f(u) + ea&amp;gt;(u),

where w(u) is a function of u vanishing when u is equal to u
l
and

M
2 ,
and e is a constant whose absolute value may be taken so small

that the curve C
l
will lie in any prescribed neighborhood of C.

Hence the length of the arc M
1
M

2
of C

l
is

=
fc/tt

(u, v -f- e tw, v -f- e CD
)
C?M.

Thus
j
is a function of e, reducing for e = to s. Hence, in order

that the curve C be the shortest of all the neai?-by curves which

pass through Ml
and J/

2 , it is necessary that the derivative of s
l

with respect to e be zero for e = 0. This gives

On the assumption that admits a continuous first derivative

in the interval (u^ uz),
and

&amp;lt;f&amp;gt;

continuous first and second deriva

tives, the left-hand member of this equation may be integrated

by parts with the result

&quot; 1 /& d
d&amp;lt;l&amp;gt;\

, nwl-2- ^lauaaO:\v du v
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for o&amp;gt; vanishes when u equals u^ and u
2

. As the function &&amp;gt; is arbi

trary except for the above conditions upon it, this equation is

equivalent to the following equation of Euler *
:

(77)
du

When this result is applied to the particular form of
(f&amp;gt;

in equa-

tkm (75), we have

d F+ Gv
__ I / _ 71

I _ ??

dv cv dv _ ~
&quot;

which is readily reducible to equation (43).

Hence the shortest distance between two points, if existent, is

measured along a geodesic through the points. This geodesic is

unique if the surface has negative total curvature at all points.

For other surfaces more than one geo
desic may pass through the points if

the latter are sufficiently far apart. We
shall now investigate the nature of this

problem.

Let v f(u, a) define the family of geo
desies through a point J/ (w ,

v
),
and let

v = g (u) be the equation of their envel

ope (o. We consider two of the geodesies C
l
and C

2 (fig. 21), and

let MI(UV vj and M,,(u , v
z)

denote their points of contact with the

envelope. Suppose that the arc MM
2

is greater than Jf Jfr The

distance from M
Q
to ^ measured along C

l
and &amp;lt;~is equal to

D = f
JttQ

fJ^

If 3/
2

is considered fixed and M
l variable, the position of the latter

is determined by a. The variation of D with M
1
is given by

jda J M=MI

* Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, chap, ii,

21 (Lausanne, 1744) ;
cf. Bolza, Lectures on the Calculus of Variations, p. 22 (Chicago,

1994).
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B ut for u = u., f= g andf = g \ consequently the last term is zero.

f)f

Integrating the first member hy parts, and noting that -f- is zero for

u = u and u = u
x ( 26), we have

Since C^ is a geodesic, the expression in parenthesis is zero, and

hence D does not vary with Mr This shows that the envelope of

the geodesies through a point bears to them the relation which

the evolute of a curve does to a family of normals to the curve.

Moreover, the curve (&quot;is not a geodesic, for at each point of it there

is tangent a geodesic. Hence there is an arc connecting M^ and M
2

which is shorter than the arc of &. In this way, by taking different

points Ml
on & we obtain any number of arcs connecting MQ

and

M
z
which are shorter than the arc of C

2 ,
each consisting of an arc

of a geodesic such as C
l
and the geodesic distance M

VM^ It is then

necessarily true that the shortest distance from M
Q
to a point M of

C
2 beyond M2

is not measured along &amp;lt;7

2
. However, when M lies

within the arc M
Q
M

2 , a domain can be chosen about (7
2
so small

that the arc M
Q
M of &amp;lt;7

2
is shorter than the arc M

Q
M of any other

curve within the domain and passing through these points.*

Another historical problem associated with this problem is the following : t

Given an arc C joining two points A, B on a surface ; to find the curve of shortest

length joining A and B, and inclosing with Co a given area.

The area is given by CClfdudv. It is evident that two functions M and N can

be found in an infinity of ways such that r
&amp;lt;

__ 8N dM
~

du dv

By the application of Green s theorem we have

lldudv=-//
where the last integral is curvilinear and is taken around the contour of the area.

Since CQ is fixed, our problem reduces to the determination of a curve C along

which the integral C *Mdu + Ndv is constant, and whose arc AB, that is, the

/ A

* For a more complete discussion of this problem the reader is referred to Darboux,

Vol. Ill, pp. 86-112; Bolza, chap. v.

tin fact, it was in the solution of this problem that Minding (Crelle, Vol. V (18.30),

p. 297) discovered the function to which Bonnet (Journal de I Ecole Polytechnique,

Vol. XIX (1848), p. 44) gave the name geodesic curvature..
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integral C V2? -f 2 Fv + Gv ^du, is a minimum. From the calculus of variations

we know that, so far as the differential equations of the solution is concerned, this

is the same problem as finding the curve C along which the integral

f
B
VE + 2 Fv + Gv *du + c(M + Nv )du

JA

is a minimum, c being a constant. Euler s equation for this integral is

+ &amp;gt;^+ ^.!?
d / F 4- GV \ cto cu

dy_ _

-f 6rv 2/ VE + 2 .FV -f Crt/ 2

Comparing this result with the formula of Bonnet (IV, 56), we see that C has con

stant geodesic curvature 1/c, and c evidently depends upon the magnitude of the

area between the curves. Hence we have the theorem of Minding :*

In order that a curve C joining two points shall be the shortest which, together with

a given curve through these points, incloses a portion of the surface with a given area,

it is necessary that the geodesic curvature of C be constant.

GENERAL EXAMPLES

1. When the parametric curves on the unit sphere satisfy the condition

12 ) a I 12 ) ( 12

1 J dv - 2

12 )

j
12 )

i n 2 r

they represent the asymptotic lines on a surface whose total curvature is

2. When the equations of the sphere have the form (III, 35), the parametric

curves are asymptotic and the equation (22) is (1 + wu)
2 = -

20, of which the
CU vV

general integral is

^ 2
^(K) + ^(.)_

1 + uv

where (u) and
\f/ (v) denote arbitrary functions.

3. The sections of a surface by all the planes through a fixed line L in space,

and the curves of contact of the tangent cones to the surface whose vertices are

on L, form a conjugate system.

4. Given a surface of translation x = u, y = v, z =f(u) + 0(0). Determine the

functions/ and so that ( Pl + P2)Z = const., where Z denotes the cosine of the

angle which the normal makes with the z-axis, and determine the lines of curva

ture on the surface.

5. Determine the relations between the exponents m&amp;lt;
and n t

- in the equations

x = UmiV ni
, y = Um

*V&quot;*
t

z = Um3VHs
,

so that on the surface so defined the parametric curves shall form a conjugate sys

tem, and show that the asymptotic lines can be found by quadratures.

*Z.c., p. 207.
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6. The envelope of the family of planes

(Ui + Fi)z + (Uz + V2)y + (Us + F8)z + (U* + F4)
= 0,

where the U&quot; s are functions of u alone and the F s of
,
is a surface upon which

the parametric curves are plane, and form a conjugate system.

7. The condition that the parametric curves form a conjugate system on the

envelope of the plane
x cos u + y sin u -f z cot v =/(u, u),

is that / be the sum of a function of u alone and of v alone
;
in this case these

curves are plane lines of curvature.

8. Find the geodesies on the surface of Ex. 7, p. 219, and determine the expres

sions for the radii of curvature and torsion of a geodesic.

9. A representation of two surfaces upon one another is said to be conformal-

conjugate when it is at the same time conformal, and every conjugate system on

one surface corresponds to a conjugate system on the other. Show that the lines of

curvature correspond and that the characteristic lines also correspond.

10. Given a surface of revolution z = ucosu, y = wsinw, zf(u), and the

function defined by

(i)

where A and c are constants
;
a conforjual-conjugate representation of the surface

upon a second surface x\ = MI cosi, y\ MI sin I?!, z\ = &amp;lt;f&amp;gt;(ui)

is defined by

- du
V CUi, C log Ui =

where F denotes the function of M found by solving (i)
for &amp;lt; .

11. If two families of geodesies cut under constant angle, the surface is

developable.

12. If a surface with the linear element

ds* = (aM
2 - bv2 - c) (du? + cto2),

where a, 6, c are constants, is represented on the xy-plane by u = x, v = y, the

geodesies correspond to the Lissajous figures defined by

where A, -Z?, C are constants.

13. When there is upon a surface more than one family of geodesies which,

together with their orthogonal trajectories, form an isothermal system, the curva

ture of the surface is constant.

14. If the principal normals of a curve meet a fixed straight line, the curve is a

geodesic on a surface of revolution whose axis is this line. Examine the case where

the principal normals meet the line under constant angle.
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15. A representation of two surfaces upon one another is said to be a geodesic

representation when to a geodesic on one surface there corresponds a geodesic on

the other. Show that the representation is geodesic when points with the same

parametric values correspond on surfaces with the linear elements

where the IPs are functions of u alone, the F s of v alone, and h is a constant.

16. A surface with the linear element

ds2 = (w*
- v4

) [0 /-

where is any function whatever, admits of a geodesic representation upon itself.

17. A necessary and sufficient condition that an orthogonal system upon a sur

face may be regarded as geodesic ellipses and hyperbolas in two ways, is that when

the curves are parametric the linear element be of the Liouville form
;
in this case

these curves may be so regarded in an infinity of ways.

18. Of all the curves of equal length joining two points, the one which, together

with a fixed curve through the points, incloses the area of greatest extent, has con

stant geodesic curvature.

19. Let T be any curve upon a surface, and at two near-by points P, P draw

the geodesies g, g perpendicular to T; let C be the curve through P conjugate

to
gr,

P&quot; the point where it meets g ,
and Q the intersection of the tangents to g

and g at P and P&quot;
;
the limiting position of Q, as Pf

approaches P, is the center

of geodesic curvature of T at P.

20. Show that if a surface S admits of geodesic representation upon a plane in

such a way that four families of geodesies are represented by four families of par

allel lines, each geodesic on the surface is represented by a straight line (cf . Ex. 3,

p. 209).



CHAPTER VII

QUADRICS. RULED SURFACES. MINIMAL SURFACES

95. Confocal quadrics. Elliptic coordinates. Two quadrics are

confocal when the foci, real or imaginary, of their principal sec

tions coincide. Hence a family of confocal quadrics is defined by
the equation

a) -A+/-+-A-1,a
2 u b

2 u c
2 u

where u is the parameter of the family and a, 6, c are constants,

such that

(2)
a2

&amp;gt; b
2

&amp;gt; c
2
.

For each value of u, positive or negative, less than a2

, equation

(1) defines a quadric which is

Ian

ellipsoid when c
2

&amp;gt; u &amp;gt; oo,

an hyperboloid of one sheet when b
2

&amp;gt; u &amp;gt; c*,

an hyperboloid of two sheets when a2
&amp;gt;
u &amp;gt;

b
2

.

As u approaches c
2
the smallest axis of the ellipsoid approaches

zero. Hence the surface u = c
2

is the portion of the zy-plane,

counted twice, bounded by the ellipse

(4)

2

a2
c
2

b
2

c
2

Again, the surface u = b
2

is the portion of the ^-plane, counted

twice, bounded by the hyperbola

which contains the center of the curve. Equations (4) and (5)

define the focal ellipse and focal hyperbola of the system.



CONFOCAL QUADEICS 227

Through each point (x, y, z) in space there pass three quadries
of the family; they are determined by the values of w, which are

roots of the equation

(6) &amp;lt; (u)
=

(a
2-

u) (b
2-

u) (c
2-

u)
- x2

(b
2-

u) (c
2-

u)

- y
2

(a
2

-u) (c
2-

u)
- z

2

(a
2-

u) (b
2-

u) = 0.

Since
&amp;lt;/&amp;gt; (a

2

)
&amp;lt; 0,

c/&amp;gt; (b
2

)
&amp;gt; 0, &amp;lt; (c

2

)
&amp;lt; 0,

&amp;lt;/&amp;gt; (- oo) &amp;gt; 0,

the roots of equation (6), denoted by u
l9
u

,
w

3 ,
are contained in

the following intervals :

(7) a2
&amp;gt; u, &amp;gt; b

2

,
b
2

&amp;gt;u,&amp;gt;
c
2

,
c
2

&amp;gt; u^&amp;gt; oo.

From (3) it is seen that the surfaces corresponding to uv w
2 ,
u

s
are

respectively hyperboloids of two and one sheets and an ellipsoid.

Fig. 22 represents three confocal quadrics; the curves on the

ellipsoid are lines of cur

vature, and on the hyper-

boloid of one sheet they are

asymptotic lines.

From the definition of uv
w

2 ,
u

s
it follows that &amp;lt; (u) is

equal to (u^u) (u2 u) (us u).

When
(/&amp;gt;

in (6) is replaced

by this expression and u

is given successively the

values a2

,
b
2

,
c
2

, we obtain *
FIG. 22

(8)

or =

=
(*- )(&amp;gt;-?)

These formulas express the Cartesian coordinates of a point in

space in terms of the parameters of the three quadrics which

pass through the point. These parameters are called the elliptic

coordinates of the point. It is evident that to each set of these

* Kirchhoff
, Mechanik, p. 203. Leipsic, 1877.
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coordinates there correspond eight points in space, one in each

of the eight compartments bounded by the coordinate planes.

If one of the parameters
-

t
. in (8) be made constant, and the

others u^ %, where i = j =
Ar, be allowed to vary, these equations

define in parametric form the surface, also defined by equation

(1), in which u has this constant value ur The parametric curves

1^.= const., uk const, are the curves of intersection of the given

quadric and the double system of quadrics corresponding to the

parameters Uj and uk ,

If we put
,r\\ o 12 7* 2 . ng ..

the equation of the surface becomes

(10)
- + ^ + -=1,
a b c

and the parametric equations (8) reduce to

(11)

la(a u)(a v)
&quot;

N (a
-

b) (a
-

c)

fb (b u)(b v)
y ~~~

\ (b
-

a) (b
-

c)

\c(c u) (c v)
Z ~~

N (c a}(c b}

Moreover, the quadrics which cut (10) in the parametric curves

have the equations:

(12)

a u b u c u

av bv cv

= 1,

= 1.

In consequence of (3) and (9) we have that equations (10)

or (11) define

an ellipsoid when a&amp;gt;u&amp;gt;b&amp;gt;v&amp;gt;c&amp;gt;0,

(13)
- an hyperboloid of one sheet when a&amp;gt;u&amp;gt;b&amp;gt;Q&amp;gt;c&amp;gt;v,

an hyperboloid of two sheets when a&amp;gt;0&amp;gt;b&amp;gt;u&amp;gt;c&amp;gt;v.
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96. Fundamental quantities for central quadrics. By direct cal

culation we find from (11)

*.
U (U -V) _A ^_V(V-U)

(14)
/()

where for the sake of brevity we have put

(15) f(0) = 4 (a
-

6) (b
-

0) (c
-

6).

We derive also the following :

(16)

and

(17)

(a-b)(a-

= \

^ a)(c b)

lobe u v
JL&amp;gt; \

abc u v

uv f(u) N uv f(v)

Since F and D are zero, the parametric curves are lines of curva

ture. And since the change of parameters (9) did not change the

parametric curves, we have the theorem :

The quadrics of a confocal system cut one another along lines of

curvature, and the three surfaces through a point cut one another

orthogonally at the point.

This result is illustrated by fig. 22.

From (14) and (17) we have

., 1 lobe 1 _ \abc 1 _ abc

Pl

~
NtfV p2

~
N^3

/&amp;gt;^2
~wV

Hence the ellipsoid and hyperboloid of two sheets have positive

curvature at all points, whereas the curvature is negative at all

points of the hyperboloid of one sheet.

If formulas (16) be written

\abc x

uv a

abc z

uv c
&amp;gt; uv a \ uv b

the distance W from the center to the tangent plane is

(19)
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Hence :

The tangent planes to a central quadric along a curve, at points

of which the total curvature of the surface is the same, are equally

distant from the center.

From (18) we see that the umbilical points correspond to the

values of the parameters such that u = v. The conditions (13)

show that this common value of u and v for an ellipsoid is b,

and c for an hyperboloid of two sheets, whereas there are no real

umbilical points for the hyperboloid of one sheet. When these

values are substituted in (11), we have as the coordinates of

these points on the ellipsoid

\c(b-c)

and on the hyperboloid of two sheets

It should be noticed that these points lie on the focal hyperbola

and focal ellipse respectively.

97. Fundamental quantities for the paraboloids. The equation

of a paraboloid

(22)
2z = ax2

+by*

may be replaced by

(23) a:=V^, y=V^, z = -(au l +bv l ).

Hence the paraboloids are surfaces of translation ( 81) whose

generating curves are parabolas which lie in perpendicular planes.

By direct calculation we find

D = 0, // =--
^VS^ + ftX + l 4 ^

so that the equation of the lines of curvature is

a dv, b dv.
.

b
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The general integral of this equation is

(24) ^

231

where c is an arbitrary constant.

When u
l
and v

1
in (24) are given particular values, equation (24)

determines two values of c, c
l
and

2 ,
in general distinct. If these

latter values be substituted in (24) successively, we obtain in finite

form the equations of the two lines of curvature through the point

/ \ Tf ,1 &quot;U 1/11 A + au\ J A + aV
(., tu. 11 c

l
and c

z
be replaced by (

--
)
and

(

\ on I \ ov

spectively, we have, in consequence of (23), the two equations

re-

(25)

buy2+ (1 + au) x
2 = u (1 + an}

ab

-f (1 -f- av) x
2 = v (1 + av)

b-a
ab

When these equations are solved for x2 and y
1

, we find that equa
tion (22) can be replaced by

a b

b

(26)

1 b ~ a
/i ,

/
=

2&quot;^-
(1+aW +^

and the parametric curves are the lines of curvature.

Now we have

(27)

a b a(a b)uE r (u v)
*

, F = 0,2

b a
G = ~7T5~ (U ~

4 6
2

u(I+au)

a(a b)v

au}(\ + av), Vab

and

(29)

V [a (a b) u b] [a (a b)
v b]

(a-b)(u-v) 11 U3

[
a (a-b)u-b][a(a-b)v-b]

(a b)(u v)

a(a b)u b][a(a b)v- b] v(l+av)
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From (27), (28), and (29) we obtain

(30) W=^Xx = -

[a (a
- b)u- b]*[a(a

- b)v-
and

(31)

From these results we find that the ratio W/z is constant along

the curves for which the total curvature is constant.

We suppose that b is positive and greater than a. From the

first of (26) it follows that u and v at a real point differ in

sign, or one is equal to zero. We consider the points at which

both u and v are equal to zero. There are two such points,

and their coordinates are

(32) ,-0,

=
[
a (a b)u b]~ [

a (a-b)v-

Evidently these points are real only on the elliptic paraboloid.

From (31) it follows that p l
and pz

are then equal, and conse

quently these are the umbilical points. Since at points other

than these u and v must differ in sign, we may assume that u

is always positive and v negative. Moreover, from (26) it is

seen that u and v are unrestricted except in the case of the

elliptic paraboloid, when v must be greater than I/a.

98. Lines of curvature and asymptotic lines on quadrics. From

(14), (27), and 91 we have the theorem :

The lines of curvature of a quadric surface form an isothermal

system of the Liouville type.

Bonnet * has shown that this property is characteristic of the

quadrics. There are, however, many surfaces whose lines of curva

ture form an isothermal system. They are called isothermic sur

faces. The complete determination of all such surfaces has never

been accomplished (cf. Ex. 3, 65).

* Meraoire sur la theorie des surfaces applicables sur une surface donnee, Journal de

V Ecole Polytechnique, Vol. XXV (1867), pp. 121-132.
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From (17), (29), and 82 follows the theorem:

The lines of curvature of a quadric surface form an isothermal-

conjugate system, and consequently the asymptotic lines can be found

by quadratures.

We shall find the expressions for the coordinates in terms of

the latter in another way.

Equation (10) is equivalent to the pair of equations

\vS V&amp;lt;y \ Vo/ \V# V&amp;lt;

or the pair

(34)

where u and v are undetermined. For each value of u equations

(33) define a line all of whose points lie on the surface. And to

each point on the surface there corresponds a value of u determin

ing a line through the point. Hence the surface is ruled, and it is

nondevelopable, as seen from (18). Again, for each value of v

equations (34) define a line whose points lie on the surface (10),

and these lines are different from those of the other system.
Hence the central quadrics are doubly ruled. These lines are

necessarily the asymptotic lines. Consequently, if equations (33),

(34) be solved for z, y, z, thus :

x u + v y uv 1 z . v u

V^i^r+i vP^TT vP ^TT
we have the surface defined in terms of parameters referring to

the asymptotic lines.

In like manner equation (22) may be replaced by

^fax -f i^/by = 2 uz, ^/ax i ^Jby = -
,

or u

V ax + i^Tby
-

&amp;gt;

V ax i Vfo/ == 2 vz.
v

Solving these, we have

I

*
/ \ &quot;1

\ *
C% tJ c\

&quot;&quot;&quot;&quot;

2uv
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As in the preceding case, we see that the surface is doubly ruled,*

and the parameters in (36) refer to the asymptotic system of straight

lines. Hence :

The asymptotic lines on any quadric are straight lines.

EXAMPLES

1. The focal conies of a family of confocal quadrics meet the latter in the

umbilical points.

2. Find the characteristic lines on the quadrics of positive curvature.

3. The normal section of an ellipsoid at a point in the direction of the curve

along which the total curvature is constant is an ellipse with one of its vertices

at the point.

4. Find the equation of the form = Md (cf . 79) when the corresponding
cu dv

surface is a hyperboloid of one sheet
;
when a hyperbolic paraboloid.

5. Find the evolute of the hyperboloid of one sheet and derive the following

properties :

(a) the surface is algebraic of the twelfth order
;

(b) the section by a principal plane of the hyperboloid consists of a conic and

the evolute of a conic
;

(c) these sections are edges on the surface
;

(d) the curve of intersection of the two sheets of the surface is cut by each of

the principal planes in four ordinary points, four double points, and four cusps,

and consequently is of the twenty-fourth order.

6. Determine for the evolute of a hyperbolic paraboloid the properties analogous
to those for the surface of Ex. 5.

7. Deduce the equations of the surfaces parallel to a central quadric ;
determine

their order and the character of the sections of the surface by the principal planes

of the quadric ;
find the normal curvature of the curves corresponding to the asymp

totic lines on the quadric.

99. Geodesies on quadrics. Since the quadrics are isothermic

surfaces of the Liouville type, the finite equation of the geodesies

can be found by quadratures ( 93). From (VI, 74), (14) and (27),

* Moreover, the quadrics are the only doubly ruled surfaces. For consider such a sur

face, and denote by a, b, c three of the generators in one system. A plane a through a

meets 6 and c in unique points B and C
,
and the line B(J meets a in a point A. The line

ABC is a generator of the second system, and the only one of this system in the plane a.

The other lines of this system meet a in the line a. On this account the plane a cuts the

surface in two lines, a and ABC, that is, in a degenerate conic. Hence the surface is of

the second degree.
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it follows that the first integral of the differential equation of

geodesies on any one of the quadrics is

(37) u sin
2 + v cos

2 = a,

where a is a constant of integration and 6 measures the angle

which a geodesic, determined by a value of a, makes with the lines

of curvature v = const. We recall that in equations (11) and (26)

the parameter u is greater than v, except at the umbilical points,

where they are equal. We shall discuss the general case first.

Consider a particular point M (u\ v
). According as a is given

the value u 1 or v
f

, equation (37) defines the geodesic tangent at

M 1 to the line of curvature u = u or v v respectively. It is

readily seen that the other values of a, determining other geo

desies through M.\ lie in the interval between u and v . More

over, to each value of a in this domain there correspond two

geodesies through M r whose tangents are symmetrically placed

with respect to the directions of the lines of curvature. From

this result it follows also that the whole system of geodesies is

defined by (37), when a is given the limiting values of u and v

and all the intermediate values.

We write equation (37) in the form

(38) (u a) sin
2 + (va) cos

2 = 0,

and consider the geodesies on a central quadric defined by this

equation when a has a particular value a . Suppose, first, that a

is in the domain of the values of u. Then at each point of these

geodesies v&amp;lt; a and consequently from (38) u
&amp;gt;

a . We have seen

that these geodesies are tangent to the line of curvature u = a -

From (11) it follows that they lie within the zone of the surface

bounded by the two branches of the curve u = a . When, now,

a is in the domain of the values of v, u a 1

is positive, and con

sequently from (38) v &amp;lt;
a . Hence the geodesies tangent to the

curve v a lie outside the zone bounded by the two branches of

the line of curvature v a f
. Similar results are true for the parabo

loids, with the difference, as seen from (26), that the geodesies

tangent to u a lie outside the region bounded by this curve,

whereas the curves tangent to v = a lie inside the region bounded

by v = a .
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100. Geodesies through the umbilical points. There remains for

consideration the case where a takes the unique value which u

and v have at the umbilical points. Let it be denoted by , so

that the curves defined by

(39) (u a
Q)
sin

2 + (v a
)
cos

2 =

are the umbilical geodesies. We have, at once, the theorem :

Through each point on a quadric with real umbilical points there

pass two umbilical geodesies which are equally inclined to the lines

of curvature through the point.

Hence two diametrically opposite umbilical points of an ellipsoid

are joined by an infinity of geodesies, and no two geodesies through

the same umbilical point meet again except at the diametrically

opposite point. These properties are possessed also by a family of

great circles on a sphere through two opposite points. On the

elliptic paraboloid and on each sheet of the hyperboloid of two

sheets there are two families of umbilical geodesies, but no two

of the same family meet except at the umbilical point common to

all curves of the family.

For the ellipsoid (11)
= b and equations (VI, 72, 73) become

a^_ _1 C \ u
~~

du 1 C \ v _dv
~db~ ~4J ^\(a u)(uc)u b 4 J N(a v)(v c)

v

Similar results hold for the hyperboloid of tw sheets and the

elliptic paraboloid. Hence the distances of a point P from two

umbilical points (not diametrically opposite) are of the form

Hence we have :

The lines of curvature on the quadrics with real umbilical points

are geodesic ellipses and hyperbolas with the umbilical points for foci.

101. Ellipsoid referred to a polar geodesic system. A family of

umbilical geodesies and their orthogonal trajectories constitute

an excellent system for polar geodesic coordinates, because the

domain is unrestricted (87) except in the case of the ellipsoid,
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and then only the diametrically opposite point must be excluded.

We consider such a system on the ellipsoid, and let denote the

pole of the system and , O&quot;,

&quot; the other umbilical points (fig. 23).

If we put

(40)

i r
I , i r r v

&amp;lt;h
= - I A du - l\
2J \(a-u)(u-c) 2J N(a *)(

_ 1 r I u du _
1 C I v

~2 J \(a u)(u c)
u b~2jv(a v)(v

it is readily found that

00

1

dv

C)V (

(
j_. )(&_)

By means of (11) we may reduce the linear element to the form

(41) ds2 = dp + -=

In order that the coordinates be polar geodesic, ^r must be

replaced by another parameter measuring the angles between

the geodesies. For the ellipsoid

equation (39) is

(42) (u-b)s

FIG. 23

As previously seen, 6 is half of

one of the angles between the

two geodesies through a point

M. As M approaches along

the geodesic joining these two

points, the geodesic O MO&quot; ap

proaches the section # = 0. Consequently the angle 2 approaches

the angle MOO 1

,
denoted by &&amp;gt;,

or its supplementary angle. Hence

we have from (42)

(43)
ib-V\

im =
b,r=b \U b/
lim

u=b, ? =

We take &&amp;gt; in place of
t/r

and indicate the relation between them

by ^fr =/(o&amp;gt;).
From (41) we have
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This expression satisfies the first of conditions (VI, 54). The

second is

(44) lim 1 -7=^ [&amp;lt;*

-
*)

-
(
-

&amp;gt; 1
-1

-j
2 7^-6)^-1.) [ ^ *&amp;lt;H

If we make use of the formulas (III, 11) and (40), we find

du n \(a u)(u c)u b dv \(a v)(v c)
b v- = % -yj-

--
i

- = t \\
--

j

d&amp;lt;p

M ^ u vd(f) M v w v

so th.it equation (44) reduces to

limm V(^M^) r
|(c-o(u-

g
) + i(a-^(.-^i =1

u=,r = b U-V \_\ U N V J

By means of (43) we pass from this to

Hence the linear element has the following form due to Roberts *
:

siir&&amp;gt;

The second of equations (40) may now be put in the form

1 fjl HI 1 fjl HI dv

2J \l(ar. u)(p c)
u b 2J \(a v)(v-

b &) ~
log tan - -f (7,

I (a
-

b) (b
-

c)

\vhere C denotes the constant of integration. In order to evaluate

this constant, we consider the geodesic through the point (0, ft, 0).

At this point the parameters have the values u = a, v =
&amp;lt;?,

and the

angle co has a definite value o&amp;gt;. Hence the above equation may be

replaced by

i r r ~^~ du _i r r ~^~ ^

(-*)&amp;lt;*-) ,

2

.
* Journal de Mathematiques, Vol. XIII (1848), pp. 1-11.
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In like manner, for the umbilical geodesies through one of the

other points (not diametrically opposite) we have

i r I u du
[

i r \ v dv

2Ja \(a u)(u c) u b 2jc \(a v)(v c) v

(a-b)(b-c)

It follows at once from these formulas that if M is any point on

a line of curvature u const, or v const., we have respectively

tan --- tan - = const., tan - cot - = const.

102. Properties of quadrics. From (18) it follows that for the

central quadrics Euler s equation (IV, 34) takes the form

By means of (19) and (37) this reduces to

(47) I?R abc

In like manner, we have for the paraboloids

(48)
I =

_J! [& + (&_)].

Hence we have :

Along a geodesic or line of curvature on a central quadric the

product RW* is constant, and on a paraboloid the ratio fiW3

/z
s

.

Consider any point P on a central quadric and a direction

through P. Let a, ft, 7 be the direction-cosines of the latter.

The semi-diameter of the ellipsoid (10) parallel to this direction is

given by

(49) = a- + .

By definition
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and similarly for /3 and 7. When the values of #, /, 2, E, G from

(11) and (14) are substituted, equation (49) reduces to

1 = cos
2
fl sin

2
fl

p* u v

By means of (19) and (37) this may be reduced to

(50) ap
2W 2 =abc.

From this follows the theorem of Joachimsthal :

Along a geodesic or a line of curvature on a central quadric the

product of the semi-diameter of the quadric parallel to the tangent

to the curve at a point P and the distance from the center to the

tangent plane at P is constant.

From (47) and (50) we obtain the equation

for all points on the quadric. Since W is the same for all direc

tions at a point, the maximum and minimum values of p and R

correspond. Hence we have the theorem :

In the central section of a quadric parallel to the tangent plane at

a point P the principal axes are parallel to the directions of the lines

of curvature at P.*

EXAMPLES

1. On a hyperbolic paraboloid, of which the principal parabolas are equal, the

locus of a point, the sum or difference of whose distances frotn the generators

through the vertex of the paraboloid is constant, is a line of curvature.

2. Find the radii of curvature and torsion, at the extremity of the mean diam

eter of an ellipsoid, of an umbilical geodesic through the pokit.

3. Find the surfaces normal to the tangents to a family of umbilical geodesies

on an ellipsoid, and determine the complementary surface (cf. 76).

4. The geodesic distance of two diametrically opposite umbilical points on an

ellipsoid is equal to one half the length of the principal section through the

umbilical points.

5. Find the form of the linear element of the hyperboloid of two sheets or the

elliptic paraboloid, when the parametric system is polar geodesic with an umbilical

point for pole.

6. If MI andM2 are two points of intersection of a geodesic through the umbilical

point with a line of curvature v = const.
,
then

tan -- cot- = const.

* For a more complete discussion of the geodesies on quadrics, the reader is referred

to a memoir by v. Braunmuhl, in Math. Annalen, Vol. XX (1882), pp. 556-686.
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7. Given a line of curvature on an ellipsoid and the geodesies tangent to it;

the points of intersection of pairs of these geodesies, meeting orthogonally, lie on
a sphere.

8. Given the geodesies tangent to two lines of curvature
;
the points of inter

section of pairs of these geodesies, meeting orthogonally, lie on a sphere.

103. Equations of a ruled surface. A surface which can be gen
erated by the motion of a straight line is called a ruled surface.

Developables are ruled surfaces for which the lines, called the

generators, are tangent to a curve. As a general thing, ruled sur

faces do not possess this property, and in this case they are called

skew surfaces. Now we make a direct study of ruled surfaces, par

ticularly those of the skew type, limiting our discussion to the

case where the generators are real.*

A ruled surface is completely determined

by a curve upon it and the direction of the

generators at their points of meeting with

the curve. We call the latter the directrix __

Z&amp;gt;,
and the cone formed by drawing through

a point lines parallel to the generators the
FIG 24

director-cone. If the coordinates of a point
M

Q
of D are #

, y^ 2 , expressed in terms of the arc v measured

from a point of it, and Z, m, n are the direction-cosines of the gen
erator through Jf

, the equations of the surface are

(51) x = x lu, y = yQ +mu, z = z + nu,

where u is the distance from M
Q
to a point M on the generator

through MQ
. If denotes the angle which the generator through

M
Q
makes with the tangent at Jf to

Z&amp;gt;,
then

(52) cos = xJ, + y r
m + z

Qn,

where the accent indicates differentiation with respect to v (fig. 24).

From (51) we find for the linear element the expression

(53) ds* =du2+2 cos dudv + (aV+ 2 bu + 1) dv*,

where we have put for the sake of brevity

* We shall use the term ruled to specify the surfaces of the skew type, and developable
for the others.
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Since the generators are geodesies, their orthogonal trajectories

can be found by quadratures ( 92). We arrive at this result

directly by remarking that the equation of these trajectories is

(HI, 26) du + cos 6 dv = 0,

and that is a function of v alone.

104. Line of striction. Developable surfaces. We shall now con

sider the quantities which determine the relative positions of the

generators of a ruled surface.

Let g and g be two generators determined by parametric values

v and v + Sv, and let X, /*, v denote the direction-cosines of their

common perpendicular. If the direction-cosines of g and g be

denoted by I, m, n ;
I + SZ, m + 8w, n + Bn respectively, we have

( l\ + nifJL + nv = 0,

| (I + 81) \ + (m + &m) A* + (w + Sw) v = 0,

and consequently

(56) \:fji:v = (m$n n$m) : (n&l l&n) : (ISm mSl).

From (54) it follows that

(mn
1- nm

)* + (nl
- ln )*+(lm

- ml * 2

arid by Taylor s theorem,

(57) l+ = l+ rftr+
gW+--.

Hence equations (56) may be replaced by

(58)

where e
t ,

e
2 ,

e
3
denote expressions of the first and higher orders in Sv.

If Mfa y, z) and Jf (z+8s, y + % 2 + ^2) are the points of

meeting of this common perpendicular with # and g respectively

(fig. 24), the length MM ,
denoted by A, is given by

or

(60)
A = \&x + /x% -f
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From (51), after the manner of (57), we obtain

Sjc = (x -+ ul
)
Bv -f IBu -f- &amp;lt;7,

where cr involves the second and higher powers of Bv. When this

and similar values for By and Bz are substituted in (60), we have

(61) ^=p + ,

where

(62) I m .n

I m 1 n

and e involves first and higher powers of Bv. In consequence of

(52) and (54) we have

(63) /= ^.
As Bv approaches zero, the point M approaches a limiting posi

tion C, which is called the central point of the generator. Let a

Denote the value of u for this point. In order to find its value we

remark that it follows from the equations (55) and (59) that

Sx Bl By Bm Bz Bn _ ~

Bv Bv Sv Bv Bv 8v

If the above expressions for these quantities be substituted in this

equation, we have in the limit, as Bv approaches zero,

(64) a*u + b = 0.

Consequently

(65)

The locus of the central points is called the line of striction. Its

parametric equation is (64). Evidently b is a necessary and

sufficient condition that the line of striction be the directrix.

From (61) and (63) it is seen that the distance between near-by

generators is of the second order when

(66) a2 sm2
6&amp;gt; -62

=:0.

Without loss of generality we may take the line of striction

for directrix,, in which case we may have sin# =:0, that is, the
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generators are tangent to the directrix. Another possibility is

afforded by a 0. From (54) it is seen that the only real sur

faces satisfying this condition are cylinders. Hence (cf. 4) :

A necessary and sufficient condition that a ruled surface, other than

a cylinder, be developable is that the distance between near-by genera

tors be of the second or higher orders ; in this case the edge of regres

sion is the line of striction.

105. Central plane. Parameter of distribution. The tangent

plane to a ruled surface at a point M necessarily contains the

generator through M. It has been found
( 25) that for a devel

opable surface this plane is tangent at all points of the generator.

We shall see that in the case of skew

surfaces the tangent plane varies as M
moves along the generator. We deter

mine the character of this variation by

finding the angle which the tangent

plane at M makes with the tangent

plane at the central point C of the gen
erator through M. The tangent plane

at C is called the central plane.

Let g and g l
be two generators, and MM their common per

pendicular (fig. 25). Through the point M of g draw the plane

normal to g ; it meets g^ in Mv and the line through M parallel

to ffl
in M

2
. The limiting positions of the planes M^MM and

M MM, as g^ approaches g, are the tangent planes at M and at C,

the limiting position of M. The angle between these planes, de

noted by (
,

is equal to MMJtt^ and the angle between g and gv
denoted by cr, is equal to MMM

2
. By construction MM

2
M

l
and

MMM
2
are right angles. Hence

., MM. MM ton a-

tan d&amp;gt;
=-- =

MM
In the limit M is the central point (7, and so we have

v ,, (u a)da- ,
(u a)a m

tan&amp;lt;f&amp;gt;=lim tan&amp;lt;f&amp;gt;
=-^ =

for we have

pdv p

da*= lim (SI
2+ 8m2

-f &i
2

)
= aW.
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It is customary to write the above equation in the form

(67)

The function ft thus defined is called the parameter of distribution.

It is the limit of the ratio of the shortest distance between two

generators and their included angle. As it is independent of the

parameter u, we have the theorem :

The tangent of the angle between the tangent plane to a ruled

surface at a point M and the central plane is proportional to the

distance of M from the central point.

From this it follows that as M moves along a generator from oo

to + oo,
(/&amp;gt;

varies from Tr/2 to 7r/2. Hence the tangent planes at

the infinitely distant points are perpendicular to the central plane.

Since /3=0 is the condition that a surface be developable, the

tangent plane is the same at all points of the generator.

We shall now derive equation (67) analytically. From (51) we find

that the direction-cosines of the normal to the surface are of the form

(mz nyQ ) + (mn m n) u
( )

X=-
2 ^ ;

the expressions for Y and Z are similar to the above. The

direction-cosines JT
,
F

,
Z

Q
of the normal at the central point are

obtained from these by replacing u by a. From this we have

/\Q\ r\o x/\ ^T ~V~V

_ 2 (mz[ ny^f+2 (mz[ nyQ }(mn m n} (u+ a) -f a
2ua

(aV+ 2 bu + sin
2

)* (aV+ 2 ba+ sin
2

)*

which leads to 4/^2^2J _.
a (u a)

From this equation and (67) we have

(70)
._ a -_

( /^~ 2
&quot;

2
I m n

When the surface is defined by its linear element, @ is thus deter

mined only to within an algebraic sign. We shall find, however,

that this is not the case when the surface is defined by equations

of the form (51).
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To this end we take a particular generator g for the z-axis.

Then for g we have

Let also the central plane be taken for the zz-plane and the central

point for the origin. From (68) it follows that yQ
= 0. Since the

origin is the central point, b = and consequently I = 0. Hence

the equation of the tangent plane at a point of g has the simple form

(71) m u% X
OT)
= 0,

f and rj being current coordinates. If the coordinate axes have

the usual orientation, and the angle * is measured positively in

the direction from the positive #-axis to the positive ^/-axis,

from equation (71) we have
m u

(7 2)
tan * =

Comparing this with equation (67), we find for ft the value xJm .

In order to obtain the same value from (70) for these particular

values, we must take the negative sign. Hence we have, in

general, \
/ /

(73)
= -i I m n

2
I m 1 n

It is seen from (72) that, as a point moves along a generator in

the direction of u increasing, the motion of the tangent plane is

that of a right-handed or left-handed screw, according as ft is

negative or positive.

EXAMPLES

1 . Show that for the ruled surface denned by

2 J 2

_ i r ,- . . ^ . -, .
*

y
~2&amp;gt;

=
Cu&amp;lt;t&amp;gt;du

where and
\f/
are any functions of w, the directrix and the generators are minimal.

Determine under what condition the curvature of the surface is constant.

2. Determine the condition that the directrix of a ruled surface be a geodesic.
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3. Prove, by means of (62), that the lines of curvature of a surface F(x, y, z) =
are defined by ^ dy, dz

dF
d_F

cF

dx dy dz

&amp;gt;*, a**, *?*
dx dy dz

4. The right helicoid is the only ruled surface whose generators are the principal
normals of their orthogonal trajectories. Find the parameter of distribution.

5 . Prove for the hyperboloid of revolution of one sheet that :

(a) the minimum circle is the line of striction and a geodesic ;

(6) the parameter of distribution is constant.

6. With every point P on a ruled surface there is associated another point P
on the same generator, such that the tangent planes at these points are perpendicular.
Prove that the product OP OP

,
where denotes the central point, has the same

value for all points P on the same generator.

7. The normals to a ruled surface along a generator form a hyperbolic paraboloid.

8. The cross-ratio of four tangent planes to a ruled surface at points of a gen
erator is equal to the cross-ratio of the points.

9. If two ruled surfaces are symmetric with respect to a plane, the values of

the parameter of distribution for homologous generators differ only in sign.

106. Particular form of the linear element. A number of prop
erties of ruled surfaces are readily obtained when the linear element

is given a particular form, which we will now deduce.

Let an orthogonal trajectory of the generators be taken for the

directrix. In this case

(74) *,=, f,-*.
If we make the change of parameters,

Cv

(75) u = u, v
l
= I a dv,
Jo

the linear element (53) is reducible to

(76) ds*= du*+ [(u
-

a)
2+ /3

2

]
dv*.

The angle 6 which a curve v
l =f(u) makes with the generators is

given by

(77) tan0 = V(w

Also the expression for the total curvature is

(78) JT=-- f*
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Hence a real ruled surface has no elliptic points. All the points

are hyperbolic except along the generators for which /3 = 0, and

at the infinitely distant points on each generator. Consequently

the linear element of a developable surface may be put in the form

(79) ds*= du&quot;+ (u
-

a)
2
dv*.

Also, in the region of the infinitely distant points of a ruled sur

face the latter has the character of a developable surface. As

another consequence of (78) we have that, for the points of a

generator the curvature is greatest in absolute value at the cen

tral point, and that at points equally distant from the latter it

has the same value.

When the linear element is in the form (76), the Gauss equation

of geodesies (VI, 56) has the form

V(M - a)
2+ @*d6 + (u-a) dv

1
= 0.

An immediate consequence is the theorem of Bonnet :

If a curve upon a ruled surface has two of the following properties,

it has the third also, namely that it cut the generators under constant

angle, that it be a geodesic and that it be the line of striction.

A surface of this kind is formed by the family of straight lines

which cut a twisted curve under constant angle and are perpen

dicular to its principal normals. A particular case is the surface

formed of the binomials of a curve. It is readily shown from (73)

that the parameter of distribution of this surface is equal to the

radius of torsion of the curve. ,-

107. Asymptotic lines. Orthogonal parametric systems. The gen

erators are necessarily asymptotic lines on a ruled surface. We
consider now the other family of these lines. From (51) and (68)

we find r
1

(80) i&amp;gt;
= 0, D =- I m nH &quot;

z&quot;+n&quot;u n z + n u

m

Hence the differential equation of the other family of asymp

totic lines is of the form

dv
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where
, Jf, N are functions of v. As this is an equation of the

Riccati t}^pe, we have, from 14, the theorem of Serret:

The four points in which each generator of a ruled surface is cut

by four curved asymptotic lines are in constant cross-ratio.

From 14 it follows also that when one of these asymptotic
lines is known the others can be found by quadratures.

When the surface is referred to an orthogonal system and the linear element is

in the form (76), written

(81) ds2 = du2 + a2
[(u

-
a)

2 + /3
2
] dv

2
,

the expressions (80) can be given a simpler form.

From (73) and (81) we have

From the equations Lxol = 0, Sz6 2 =
1, 2Z2 =

1,

and (54) we obtain, by differentiation,

Zzfceo =
0, ZM = 0, Zatf J = -b,

-Ll l&quot; = aa
,

ZK&quot; = - a2
,

ZJ x6 = & -,
where t is defined by zr 6 = t.

If the expression for D&quot; in (80) be multiplied by the determinant of the right-
hand member of (73), and the result be divided by its equal, a2

/3, we have, in

consequence of the above identities,

D&quot; = - i
[w

2
(to?

- aa
fc) + u (2 tb - aa - 66 ) + t - & ].2

If equations (74) be solved for a and 6 as functions of a and 0, and the resulting

expressions be substituted in this equation, we have

D&quot; = -~{r[(u
-

a)
2 + ^] + ?(u - a) + /3a },

where the primes indicate differentiation with respect to Vi, given by (75), and r

is defined by /

From the above equations it follows that the mean curvature (cf . 52) is express
ible in the form

(82)
J- +

* = -

r ^u ~ a)2 + ^ +
Pi Pz

[(u
-

a-)
2

EXAMPLES

1. When the linear element of a ruled surface is in the form (76), the direction-

cosines of the limiting position of the common perpendicular to two generators are

?&amp;lt;L?,
V* + &amp;lt;

t

z + n

/3 aft o/3
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2. Prove that the developable surfaces are the only ruled surfaces with real

generators whose total curvature is constant.

3. Show that the perpendicular upon the z-axis from any point of the cubic

x _ u^y M2
?
z wa lies in the osculating plane at the point, and lind the asymp

totic lines on the ruled surface generated by this perpendicular.

4. Determine the function in the equations

x = w, y = un
,

z = 0(u),

so that the osculating plane at any point M of this curve shall pass through the

projection P of M on the y-axis. Find the asymptotic lines on the surface gener

ated by the line MP.

5. Show that the equations

x = M sin cos ^, y = wsinflsin^, z = u-fwcos0,

where 6 and ^ are functions of
t&amp;gt;,

define the most general ruled surface with a rec

tilinear directrix, and prove that the equation of asymptotic lines can be integrated

by two quadratures. Discuss the case where is constant.

6. Concerning the curved asymptotic lines on a ruled surface the following are

to be proved :

(a) if one of them is an orthogonal trajectory of the generators, the determina

tion of the rest reduces to quadratures ;

(6)
if two of them are orthogonal trajectories, they are curves of Bertrand

;

(c) if all of them are orthogonal trajectories, the surface is a right helicoid.

7. Determine the condition that the line of striction be an asymptotic line, and

show that in this case the other curved asymptotic lines can be found by quadratures.

8. Find a ruled surface of the fourth degree which is generated by a line pass

ing through the two lines x = 0, y = ;
z = 0, + y-fz = l. Show that these lines

and the line x = 0, x + y + z = 1 are double lines. Find the line of striction.

9. The right helicoid is the only ruled surface each of whose lines of curvature

cuts the generators under constant angle ; however, on any other ruled surface

there are in general four lines of curvature which have this property.

108. Minimal surfaces. In 1760 Lagrange extended to double

integrals the Euler theorems about simple integrals in the calculus

of variations, and as an example he proposed the following problem
*

:

Given a closed curve C and a connected surface S bounded by the

curve; to determine 8 so that the inclosed area shall be a minimum.

If the surface be denned by the equation

z =f(x, y),

the problem requires the determination of f(x, y) so that the inte

gral (cf. Ex. 1, p. 77)

* CEuvres de Lagrange, Vol. I, pp. 354-357. Paris, 1867.
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extended over the portion of the surface bounded by C shall be a

minimum. As shown by Lagrange, the condition for this is

(83)

or, in other form,

(84) (1 + q
z

)r
-

2pqs + (1 + p*)t = 0.

Lagrange left the solution of the problem in this form, and

Meusnier,* sixteen years later, proved that this equation is

equivalent to the vanishing of the mean curvature
( 52), thus

showing that the surfaces furnishing the solution of Lagrange s

problem are characterized by the geometrical property which now
is usually taken as the definition of minimal surfaces; however, the

name indicates the connection with the definition of Lagrange.f
In what follows we purpose giving a discussion of minimal sur

faces from the standpoint of their definition as the surfaces whose

mean curvature is zero at all the points. At each point of such a

surface the principal radii differ only in sign, and so every point

is a hyperbolic point and its Dupin indicatrix is an equilateral

hyperbola. Consequently minimal surfaces are characterized by
the property that their asymptotic lines form an orthogonal sys

tem. Moreover, the tangents to the two asymptotic lines at a

point bisect the angles between the lines of curvature at the point,

and vice versa.

We recall the formulas giving the relations between the funda

mental quantities of a surface and its spherical representation

(IV, 70) :

(85) (o =

From these we have at once the theorem :

The necessary and sufficient condition that the spherical represen

tation of a surface be conformal is that the surface be minimal.

* Memoire sur la courbure des surfaces, Memoires des Savants Strangers, Vol. X
(1785), p. 477.

t For a historical sketch of the development of the theory of minimal surfaces and a

complete discussion of them the reader is referred to the Lemons of Darboux (Vol. I, pp.
267 et seq.). The questions in the calculus of variations involved in the study of mini

mal surfaces are treated by Riemann, Gesammelte Werke, p. 287 (Leipzig, 1876) ;
and by

Schwarz, Gesammelte Abhandlungen, Vol. I, pp. 223, 270 (Berlin, 1890).
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Hence isothermal orthogonal systems on the surface are repre

sented by similar systems on the sphere, and conversely. All the

isothermal orthogonal systems on the sphere are known
( 35, 40).

Suppose that one of these systems is parametric and that the linear

element is *

From the general condition for minimal surfaces (IV, 77), namely

(86) &amp;lt;D&quot;+ 3D - 2 &D f= 0,

it follows that in this case n 1

In consequence of this the Codazzi equations (V, 27) are reducible to

(87) ?-^-0, f + ~?
= -

dv du du dv

By eliminating D or D we find that both D and D 1 are integrals

of the equation ~IQ ^Q

a?
+
^?

= *

Hence the most general form of D is

(88) D = $ (u + iv) + ^(u- iv),

where
&amp;lt;f&amp;gt;

and
i/r

are arbitrary functions. Then from (87) we have

(89) D = ~D&quot;= -
i((j) -ty+c,

where c is the constant of integration. To each pair of functions

&amp;lt;, T/T
there corresponds a minimal surface whose Cartesian coordi

nates are given by the quadratures (V, 26), namely

(90) = -
du \\ du dv dv \ du dv

and similar expressions in y and z. Evidently the surface is real

only when
&amp;lt;f&amp;gt;

and
i/r

are conjugate functions.

In obtaining the preceding results we have tacitly assumed that

neither D nor D 1

is zero. We notice that either may be zero and

then the other is a constant, which is zero only for the plane.

These results may be stated thus:

Every isothermal system on the sphere is the representation of the

lines of curvature of a unique minimal surface and of the asymptotic

lines of another minimal surface.
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The converse also is true, namely:

The spherical representations of the lines of curvature and of the

asymptotic lines of a minimal surface are isothermal systems.

For, if the lines of curvature are parametric, equation (86) may
be replaced by D = p^ D &amp;gt;, = _ pg
where p is equal to either principal radius to within its algebraic

sign. When these values and D =&= are substituted in the

Codazzi equations (V, 27), we obtain

so that /g=*U/V, which proves the first part of the theorem
( 41).

When the asymptotic lines are parametric, we have Z&amp;gt;=D&quot;=c^=0,

and equations (V, 27) reduce to

(&amp;gt;!&quot;)=cu

from which it follows that &amp;lt;~/^= U/V.

109. Lines of curvature and asymptotic lines. Adjoint minimal

surfaces. We return to the consideration of equations (87) and

investigate first the minimal surface with its lines of curvature

represented by an isothermal system. Without loss of generality,*

we may take

(91) D = -D&quot; = 1, &amp;gt; =0.

From (IV, 77) it follows that

=--
2
= ~X2

, E=G =
p,

PiP2 Pi

where
/&amp;gt;

=
|^|

=
|p2 J.

Hence we have the theorem :

The parameters of the lines of curvature of a minimal surface may
be so chosen that the linear elements of the surface and of its spher

ical representation have the respective forms

ds2 = p (du
2+ dv2

),
dd2= -

(du
2+ dv2

),

P

where p is the absolute value of each principal radius.

* Any other value of the constant leads to homothetic surfaces.
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In like manner we may take, for the solution of equations (87),

(92) D = I&amp;gt;&quot;=Q,
D = l.

Again we find .. -,

J- = - = -\\ E=-G = p,

PiP* Pi

so that we have a result similar to the above :

The parameters of the asymptotic lines of a minimal surface may

be so chosen that the linear elements of the surface and of its spherical

representation have the respective forms

ds* = p (du*+ di?), d&amp;lt;r*
= -

(du*+ dv2

),

where p is the absolute value of each principal radius.

From the symmetric form of equations (87) it follows that if

(88) and (89) represent one set of solutions, another set is given by

These values are such that

which is the condition that asymptotic lines on either surface cor

respond to a conjugate system on the other
( 56). When this

condition is satisfied by two minimal surfaces, and the tangent

planes at corresponding points are parallel, the two surfaces are

said to be the adjoints of one another. Hence a pair of functions

&amp;lt;,
-&amp;gt;/r

determines a pair of adjoint minimal surfaces. When, in par

ticular, the asymptotic lines on one surface a*e parametric, the

functions have the values (92), and on the other the values (91).

It follows, then, from (90), that between the Cartesian coordinates

of a minimal surface and its adjoint the following relations hold:

cjx\_ _dx foi = fa.

cu dv dv du

and similar expressions in the / s and z s, when the parametric

curves are asymptotic on the locus of (#, #, z).

110. Minimal curves on a minimal surface. The lines of length

zero upon a minimal surface are of fundamental importance. When

they are taken for parametric curves, the equations of the surface

take a simple form, which we shall now obtain.
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Since the lines of length zero, or minimal lines, are parametric,

we have

(94) ^ = = 0.

From (85) it follows that the parametric lines on the sphere also are

minimal lines, that is, the imaginary rectilinear generators. And
from (86) we find that 1) is zero. Conversely, when the latter is

zero, and the parametric lines are minimal curves, it follows from

(IV, 33) that Km is equal to zero. Hence :

A necessary and sufficient condition that a surface be minimal is

that the lines of length zero form a conjugate system.*

In consequence of (94) and (VI, 26) the point equation of a

minimal surface, referred to its minimal lines, is

ducv

Hence the finite equations of the surface are of the form

where U^ T/
2 , U

s
are functions of u alone, and F

x , F
2 , F

3
are

functions of v alone, satisfying the conditions

(96) U?+ V? + U? = 0, F{
2+ Fi

a + Fj
2 = 0.

From (95) it is seen that minimal surfaces are surfaces of trans

lation
( 81), and from (96) that the generators are minimal

curves
( 22). In consequence of the second theorem of 81 we

may state this result thus :

A minimal surface is the locus of the mid-points of the joins of

points on two minimal curves.

In 22 we found that the Cartesian coordinates of any minimal

curve are expressible in the form

(97) f (1
-

u*)F(u) du, i f(1 + u2

) F(u) du, 2 Cu F(u) du.

*This follows also from the fact that an equilateral hyperbola is the only conic for

which the directions with angular coefficients i are conjugate.
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Hence by the above theorem the following equations, due to

Enneper *, define a minimal surface referred to its minimal lines :

(98)

z=
I
u F(u) du + I v&(v) dv,

where F and 4&amp;gt; are any analytic functions whatever. Moreover,

any minimal surface can be defined by equations of this form.

For, the only apparent lack of generality is due to the fact that

the algebraic signs of the expressions (98) are not determined

by equations (96), and consequently the signs preceding the

terms in the right-hand members of equations (98) could be

positive or negative. But it can be shown that by a suitable

change of the parameters and of the functions F and 3&amp;gt; all of

these cases reduce to (98). Thus, for example, we consider the

surface defined by the equations which result when the second

terms of the right-hand members of (98) are replaced by

In order that the surface thus defined can be brought into coin

cidence, by a translation, with the surface (98), we must have

Dividing these equations, member by member, we have

from which it follows that

Substituting this value in the last of the above equations, we find

*
Zeitschrift fur Mathematik und Physik, Vol. IX (1864), p. 107.
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and this value satisfies the other equations. Similar results fol

low when another choice of signs is made. The reason for the

particular choice made in (98) will be seen when we discuss the

reality of the surfaces.

Incidentally we have proved the theorem :

When a minimal surface is defined by equations (98), the necessary
and sufficient condition that the two generating curves be congruent
is that

(99) ,
( )._1

From (98) we obtain

so that the linear element is

(100) ds
2 =

(l + uv}*F(u)3&amp;gt;(v)dudv.

We find for the expressions of the direction-cosines of the normal

1 H- uv 1 + uv 1 + uv

and the linear element of the sphere is

, 2 4 dudv
d&amp;lt;r
--

&amp;gt;

Alt, (1 + )Also we have

(102) D =

so that the equations of the lines of curvature and of the asymp
totic lines are respectively

(103) F(u) du
2-

3&amp;gt;

(v) dv*
= 0,

(104) F(u) du
2 + &amp;lt;$&amp;gt;

(v)
dv*= 0.

These equations are of such a form that we have the theorem :

When a minimal surface is referred to its minimal lines, the finite

equations of the lines of curvature and asymptotic lines are given by

quadratures, which are the same in both cases.

In order that a surface be real its spherical representation must

be real. Consequently u and v must be conjugate imaginaries, as
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is seen from (101) and 13, and the functions F and &amp;lt; must be

conjugate imaginary. Hence if RO denotes the real part of a

function 9, all real minimal surfaces are defined by

x = fi f (1
- u2

) F(u) du, y = R ft (1 + u2

) F(u) du,

z=R I 2uF(u)du,

where F(u) is any function whatever of a complex variable u.

In like manner the equations of the lines of curvature may be

written in the form

(105) 72 / ^/F(u)du = const., 11 \ iVF(u)du = const.

111. Double minimal surfaces. It is natural to inquire whether

the same minimal surface can be denned in more than one way by

equations of the form (98). We assume that this is possible, and

indicate by uv v^ and F^(u^ ^V^) the corresponding parameters

and functions. As the parameters u^ v
l
refer to the lines of length

zero on the surface, each is a function of either u or v. In order to

determine the forms of the latter we make use of the fact that the

positive directions of the normal to the surface in the two forms of

parametric representation may have the same or opposite senses.

When they have the same sense, the expressions (101) and similar

ones in u
v
and v

l
must be equal respectively. In this case

(106) %!=!*, v^v.

If the senses are opposite, the respective expressions are equal to

within algebraic signs. From the resulting equations we find

(107) u

When we compare equations (98) with analogous equations in

u
l
and vv we find that for the case (106) we must have

and for the case (107)
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Hence we have the theorem :

A necessary and sufficient condition that two minimal surfaces, deter

mined by the pairs offunctions F, &amp;lt;& and Fv &amp;lt;&v be congruent is that

(108) ^w
to the point (u, v) on one surface corresponds the point (

-- -- on
u

the other, and the normals at these points are parallel but of different

sense.

In general, the functions F and F
l
as given by (108) are not the

same. If they are, so also are &amp;lt; and 4&amp;gt;r Ih this case the right-hand
members of equations (98) are unaltered when u and v are replaced

by l/v and 1/u respectively. Hence the Cartesian coordinates

of the points (u, v) and (
--

&amp;gt;

--
j
differ at most by constants. And

so the regions of the surface about these points either coincide or

can be brought into coincidence by a translation. In the latter case

the surface is periodic and consequently transcendental.

Suppose that it is not periodic, and consider a point -ZjJ(w ,
V
Q).

As
u varies continuously from U

Q
to

l/t&amp;gt; ,
v varies from v to l/w ,

and the point describes a closed curve on the surface by returning
to P

Q
. But now the positive normal is on the other side of the sur

face. Hence these surfaces have the property that a point can pass

continuously from one side to the other without going through the

surface. On this account they were called double minimal surfaces

by Lie,* who was the first to study them.

From the third theorem of 110 it follows that double minimal

surfaces are characterized by the property that the minimal curves

in both systems are congruent. The equations of such a surface

may be written

The surface is consequently the locus of the mid-points of the

chords of the curve

f =/,(), i =/,(), ?=/,(),

which lies upon the surface and is the envelope of the parametric
curves.

* Math. Annalen, Vol. XIV (1878), pp. 345-350.
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EXAMPLES

1. The focal sheets of a minimal surface are applicable to one another and to

the surface of revolution of the evolute of the catenary about the axis of the latter.

2. Show that there are no minimal surfaces with the minimal lines in one

family straight.

3. If two minimal surfaces correspond with parallelism of tangent planes, the

minimal curves on the two surfaces correspond.

4. If two minimal surfaces correspond with parallelism of tangent planes, and

the joins of corresponding points be divided in the same ratio, the locus of the

points of division is a minimal surface.

5. Show that the right helicoid is defined by F(u) = im/2 w2
,
where m is a real

constant, and that it is a double surface.

2
6. The surface for which F(u) =- is called the surface of Scherk. Find its

equation in the Monge form z = f(x, y). Show that it is doubly periodic and that

it is a surface of translation with real generators which are in perpendicular planes.

7. By definition a meridian curve on a surface is one whose spherical representa

tion is a great circle on the unit sphere. Show that the surface of Scherk possesses

two families of plane meridian curves.

112. Algebraic minimal surfaces. Weierstrass * remarked that

formulas (98) can be put in a form free of all quadratures. This

is done by replacing F(u) and
&amp;lt;J&amp;gt;(v) by f &quot;(u)

and # &quot;(v),
where

the accents indicate differentiation, and then integrating by

parts. This gives

(109)

x p.
2

+ uf (u) -f(u) + ^- 4&amp;gt;&quot;(v)
+ v$(v)

&quot;(u) iuf(u) + if(u) i - -^- &amp;lt;l&amp;gt;&quot;(v)
-h iv(

=
uf&quot;(u)-) +

v&amp;lt;f&amp;gt;&quot;(v)

-
4&amp;gt; (v).

It is clear that the surface so denned is real when / and
&amp;lt;f&amp;gt;

are

conjugate imaginary functions. In this case the above formulas

may be written :

= R[(l- u*)f&quot;(u) + 2 uf (u)
-

(110) y = Ri [(1 + u*)f&quot;(u)
- 2 uf (u) +

* Monatsberichte der Berliner Akademie (1866), p. 619.
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However, it is not necessary, as Darboux * has pointed out, that

f and
(f&amp;gt;

be conjugate imaginaries in order that the surface be real.

For, equations (109) are unaltered if/and be replaced by

ft (u) =f(u) + A (1
- u2

) + Bi (1 + u*) + 2 Cu,

^(v) = (f&amp;gt;(v)

-
A(l

- v
2

) + Bi
({.-{-

v
2

)- 2 Cv,

where A, B, C are any constants whatever. Evidently, if / and
&amp;lt;/&amp;gt;

are conjugate imaginaries, the same is not true in general of
/,_

and
&amp;lt;f&amp;gt; l ; but the surface was real for the former and consequently

is real for the latter also. It is readily found that /t
and

&amp;lt;/&amp;gt; x

are conjugate imaginary functions only in case J, J5, C are pure

imaginaries.

Formulas (109) are of particular value in the study of algebraic

surfaces. Thus, it is evident that the surface is algebraic when/
and &amp;lt; are algebraic. Conversely, every algebraic minimal surface

is determined by algebraic functions / and
&amp;lt;/&amp;gt;.

In proving this we
follow the method suggested by Weierstrass.f

We establish first the following lemma :

Gttven a function $*(? + *??)
and let

&quot;^(f, 77)
denote the real part

of 4&amp;gt; ; if in a certain domain an algebraic relation exists between M*,

, and 77, 4&amp;gt; is an algebraic function of j~ + irj.

If the point f = 0, rj
= does not lie within the domain under

consideration, this can be effected by a change of variables without

vitiating the argument. Assuming that this has been done, we

develop the function &amp;lt;E&amp;gt; in a power series, thus :

4&amp;gt;
= a + #o +K + ibj (| + irj) + (a2+ ib

2 ) (f + irj)

2+ . . .
,

where the a s and 5 s are real constants. Evidently M* is given by

1
(a,
- ^) (f

- ^) + J (a,
- i6

8 ) (f
-

ii?)

2 + - - - .

Let J^(^, f , ?;)
= denote a rational integral relation between

&quot;SP,

f, and 77. When M* has been replaced by the above value, and the

resulting expression is arranged in powers of | and 77, the coeffi

cient of every term is identically zero. They will continue to be

zero when f and 77 have been replaced by two complex quantities

* Vol. I, p. 293. f Monatsberichte tier Berliner Akademie (1867), pp. 511-518.
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a and /3, provided that the development remains convergent. The

condition for the latter is that the moduli of a and /3 be each one

half the modulus of f + irj. This condition is satisfied if we take

Now we have -
-.

-K- i5
) + -

&amp;lt;

(f

t
irt, f + ti,]

= 0,

which proves the lemma.

In applying this lemma to real minimal surfaces we note from

(101) that X _u + v Y _u v,

l-Z
=
~Y~ l-Z

=
2i

consequently the left-hand members of these equations are equal

to u
l
and v

l respectively, where u = u^+ ivr When the surface is

algebraic there exists an algebraic relation between the functions

X Y
, and each of the Cartesian coordinates.* Since, then,

7 7
.L j A. /j

there is an algebraic relation between u^ v^ and each of the

coordinates given by (110), it follows from the lemma that each

of the three expressions

&amp;lt;k(
M

)
=

(1
-

?/)/ + 2 uf (u)
-

2/(w),

fa(u)
= i (1 + u2

)f&quot;(u)
- 2 iuf (u) + 2 if(u),

4&amp;gt;9(u)
=

2uf&quot;(u)2f(u)

are algebraic functions of w, and so also isf(u) ; for,

Hence we have demonstrated the theorem of Weierstrass :

The necessary and sufficient condition that equation (110) define an

algebraic surface is that f(u) be algebraic.

* For. if the surface is defined by F(x. y, z) = 0, the direction-cosines of the normal

X Y
are functions of x, y, z. Eliminating two of the latter between _ &amp;gt; _ _&amp;gt; and

F(x, y, z)
= 0, we have a relation of the kind described.
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113. Associate surfaces. When the equations of a minimal
surface S are written in the abbreviated form (95), the linear

element is

This is the linear element also of a surface defined by

where a is any constant. There are an infinity of such surfaces,
called associate minimal surfaces. It is readily found that the direc

tion-cosines of the normal to any one have the values (101). Hence

any two associate minimal surfaces defined by (111) have their tan

gent planes at corresponding points parallel, and are applicable.
Of particular interest is the surface S

l
for which a = ?r/2. Its

equations are

i C
i)du

-
I (1 v

2

)
&amp;lt;

(v) dv,

(112) {y = - ^ / (1 + u2

) F(u) du - I& J *

\ = i I uF(u) du i I v&amp;lt;&

(v) dv.

In order to show that S
l
is the adjoint ( 109) of S, we have only

to prove that the asymptotic lines on either surface correspond to

the lines of curvature on the other. For S
l
the equations of the

lines of curvature and asymptotic lines are

iF(u) du
2- i

(v) dv
2 =

0,

respectively. Comparing these with (103) and (104), we see that

the desired condition is satisfied.

From (98) and (112) we obtain the identities

\ dx dxl + dy dy l + dz dz^
= 0.

The latter has the following interpretation :

On two adjoint minimal surfaces at points corresponding with par
allelism of tangent planes the tangents to corresponding curves are

perpendicular.
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From (105) it follows that if we put

u + iv = / ^/F(u) du,

the curves u = const, and v = const, on the surface are its lines of

curvature. Moreover, for an associate surface the lines of curva

ture are given by
ia ttf

R
[e

2
(u + iv)]

= const., R [ie
2

(u -h iv)]
= const. t

or
a - . a - . a _ a

u cos v sin = const., u sin -f- v cos - = const.22 22
From this result follows the theorem :

The lines of curvature on a minimal surface associate to a surface

S correspond to the curves on S which cut its lines of curvature under

the constant angle a/ 2.

Since equations (111) may be written

xa = x cos a + x
l
sin #,

(114)
- ^^ycosa+ ^sina,

.
za z cos a -|- z l

sin #,

the plane determined by the origin of coordinates, a point P on a

minimal surface and the corresponding point on its adjoint, con

tains the point Pa corresponding to P on every associate minimal

surface. Moreover, the locus of these points Pa is an ellipse with its

center at the origin. Combining this result and the first one of

this section, we have *-

A minimal surface admits of a continuous deformation into a series

of minimal surfaces, and each point of the surface describes an ellipse

whose plane passes through a fixed point which is the center of the

ellipse.

114. Formulas of Schwarz. Since the tangent planes to a minimal

surface and its adjoint at corresponding points are parallel, we have

From this and the second of (113) we obtain the proportion

dx
l __ dy l _ dz

l

Zdy Ydz
=
Xdz Z dx~ Y dx X dy
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In consequence of the first of (113) the sums of the squares of the

numerators and of the denominators are equal. And so the com
mon ratio is -|-1 or 1. If the expressions for the various quanti

ties be substituted from (98), (101), and (112), it is found that the

value is 1. Hence we have

(115) dx^Ydz Zdy, dyl
= Zdx Xdz, dz

1
= Xdy Ydx.

From these equations and the formulas (95), (112) we have

Zdy - Ydz,

(116)

and

(117)

1
= x + i

i=y + * (xdz - Zdx,

l
= z-^-i \ Ydx Xdy,

1
=xi \ Zdy Ydz,

i \^z i \Ydx X dy.

These equations are known as the formulas of Schwarz* Their

importance is due to their ready applicability to the solution of

the problem :

To determine a minimal surface passing through a given curve

and admitting at each point of the curve a given tangent plane.\

In solving this problem we let C be a curve whose coordinates

#, y, z are analytic functions of a parameter f, and let JT, Y, Z be

analytic functions of t satisfying the conditions

X 2 + F 2 + Z 2 = 1, Xdx + Ydy + Zdz = 0.

*
Crelle, Vol. LXXX (1875), p. 291.

t This problem is a special case of the more general one solved by Cauchy : To deter

mine an integral surface of a differential equation passing through a curve and admitting
at each point of the curve a given tangent plane. For minimal surfaces the equation is

(84). Cauchy showed that such a surface exists in general, and that it is unique unless the

curve is a characteristic for the equation. His researches are inserted in Vols. XIV, XV
of the Comptes Rendus. The reader may consult also Kowalewski, Theorie der partiellen

Differentialgleichungen, Crelle, Vol. LXXX (1875), p. 1; and Goursat, Cours d Analyse

Mathematique, Vol. II, pp. 563-567 (Paris, 1905).
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If x
uJ yu ,

zu denote the values of x, y, z when t is replaced by a

complex variable u, and x
v , yv ,

z
v
the values when t is replaced

by v, the equations

(118)

l-
f&quot;(Ydx-Xdy)Jv

define a minimal surface which passes through C and admits at

each point for tangent plane the plane through the point with

direction-cosines X, I
7

,
Z. For, when u and v are replaced by ,

these equations define C. And the conditions (96) and

are satisfied. Furthermore, the surface defined by (118) affords

the unique solution, as is seen from (116) and (117).

When, in particular, C and t are real, the equations of the real

minimal surface, satisfying the conditions of the problem, may be

put in the form ,- -i

x = R\x + il (Zdy-Ydz}\,

y = R \y + i C\Xdz - Zdx)] ,

z = R \z + i r\Ydx - Xdy\\

As an application of these formulas, we consider minimal surfaces containing a

straight line. If we take the latter for the z-axis, and let denote the angle which

the normal to the surface at a point of the line makes with the x-axis, we have

x = y = 0, z=t, JT=cos0, Y=sin&amp;lt;t&amp;gt;,
Z = 0.

Hence the equations of the surface are

x = - RiTsm
&amp;lt;f&amp;gt;dt, y =

B{J**C08^ctt,
z = R(u).

Here
&amp;lt;#&amp;gt;

is an analytic function of t, whose form determines the character of the

surface. For two points corresponding to conjugate values of M, the z-coordinates

are equal, and the x- and ^-coordinates differ in sign. Hence :

Every straight line upon a minimal surface is an axis of symmetry.
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EXAMPLES

1. The tangents to corresponding curves on two associate minimal surfaces meet

under constant angle.

2. If corresponding directions on two applicable surfaces meet under constant

angle, the latter are associate minimal surfaces.

3. Show that the catenoid and the right helicoid are adjoint surfaces and deter

mine the function F(u) which defines the former.

4. Let C be a geodesic on a minimal surface S. Show that

(a) the equations of the surface may be put in the form

y =

where f , 77, f are the coordinates of a point on C, and X, /*, v the direction-cosines

of its binomial
;

(6) if C denotes the curve on the adjoint St corresponding to C, the radii of first

and second curvature of C are the radii of second and first curvature of C
;

(c) if C is a plane curve, the surface is symmetric with respect to its plane.

5. The surface for which F(u) = 1 is called the surface of Henneberg ;
it is

u4

a double algebraic surface of the fifteenth order and fifth class.

GENERAL EXAMPLES

1. The edge of regression of the developable surface circumscribed to two con-

focal quadrics has for projections on the three principal planes the evolutes of the

focal conies.

2. By definition a tetrahedral surface is one whose equations are of the form

x = A (u
-

a)
m

(v
- a), y = B(u- b)

m
(v
-

6)
n

,
z = C(u- c)

m
(v
-

c)
n

,

where A, B, 0, w, n are any constants. Show that the parametric curves are con

jugate, and that the asymptotic lines can be found by quadratures ;
also that when

m = n, the equation of the surface isIII
^)&amp;gt;

-
c) +

(|)&quot;(c

-
a) +

(0&quot;&amp;lt;a

-
b)
= (a

-
b) (b

-
c) (a

-
c).

3. Determine the tetrahedral surfaces, defined as in Ex. 2, upon which the

parametric curves are the lines of curvature.

4. Find the surfaces normal to the tangents to a family of umbilical geodesies

on an elliptic paraboloid, and find the complementary surface.

5. At every point of a geodesic circle with center at an umbilical point on the

ellipsoid (10) abc = fW &amp;lt;i

(a + c _ r^
where r is the radius vector of the point (cf. 102).

6. The tangent plane to the director-cone of a ruled surface along a generator

is parallel to the tangent plane to the surface at the infinitely distant point on the

corresponding generator.
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7. Upon the hyperboloid of one sheet, and likewise upon the hyperbolic parab

oloid, the two lines of striction coincide.

8. The line of striction of a ruled surface is an orthogonal trajectory of the

generators only in case the latter are the binormals of a curve or the surface is a

right conoid.

9. Determine for a geodesic on a developable surface the relation existing

between the curvature, torsion, and angle of inclination of the geodesic with the

generators.

10. If h denotes the shortest distance and a the angle between two lines li and

Z2 ,
and the latter revolves about the former with a helicoidal motion of parameter a

(cf . 62), the locus of 12 is a developable surface if a = h cot a. If a = h tan a, the

surface is the locus of the binormals of a circular helix.

11. If the lines of curvature in one family upon a ruled surface are such that

the segments of the generators between two curves of the family are of the same

length, the parameter of distribution is constant and the line of striction is a line

of curvature.

12. If two ruled surfaces meet one another in a generator, they are tangent to

one another at two points of the generator or at every point ;
in the latter case the

central point for the common generator is the same, and the parameter of distribu

tion has the same value.

13. If tangents be drawn to a ruled surface at points of the line of striction

and in directions perpendicular to the generators, these tangents form the conju

gate ruled surface. It has the same line of striction as the given surface. More

over, a generator of the given surface, the normal to the surface at the central

point C of this generator, and the generator of the conjugate surface through C

are parallel to the tangent, principal normal, and binormal of a twisted curve.

14. Let C be a curve on a surface S, and S the ruled surface formed by the

normals to S along C. Derive the following results :

(a) the distance between near-by generators of S is of the first order unless C is

a line of curvature ;

(6) if r denotes the distance from the central point of a generator to the point of

intersection with S, rS (dX)
2 Z dxdX

;

(c) the tangent to C at a pointM is conjugate to the tangent to the surface atM
parallel to the line of shortest distance

;

(d) the maximum and minimum values of r are the principal radii of -S, pi, and

p2 ,
and the above equation may be written r = pisin

2
&amp;lt;/&amp;gt;

-f p2 cos
2

tf&amp;gt;,

where
&amp;lt;f&amp;gt;

is the

angle which the corresponding line of shortest distance makes with the tangent to

the line of curvature corresponding to
pz&amp;gt;

15. If C and 6&quot; are two orthogonal curves on a surface, then at the point of

intersection (cf. Ex. 14) 1111
rB

4
&amp;gt;.* ~tf

+
*|

16. If C and C are two conjugate curves on a surface, then at the point of

intersection (cf. Ex. 14) j j i \ r R
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17. If two surfaces are applicable, and the radii of first and second curvature

of every geodesic on one surface are equal to the radii of second and first curvature

of the corresponding geodesic on the other, the surfaces are minimal.

1 8. The surface for which F in (98) is constant, say 3, is called the minimal sur

face of Enneper ; it possesses the following properties :

(a) it is an algebraic surface of the ninth degree whose equation is unaltered

when x, y, z are replaced by y, x, z respectively ;

(6) it meets the plane z = in two orthogonal straight lines
;

(c) if we put u = a i/3, the equations of the surface are

x = 3 a + 3 ap? - a3
, y = 3 ft + 3 a2

ft -ft3
,

z = 3 a2 - 3 /3
2

,

and the curves a const.
, ft

= const, are the lines of curvature
;

(d) the lines of curvature are rectifiable unicursal curves of the third order and

they are plane curves, the equations of the planes being

x + az -3a-2a3 = 0, y - ftz
-

3ft
- 2 ^ = 0;

(e) the lines of curvature are represented on the unit sphere by a double family
of circles whose planes form two pencils with perpendicular axes which are tangent
to the sphere at the same point ;

(/) the asymptotic lines are twisted cubics
;

(g) the sections of the surface by the planes x = and y = are cubics, which

are double curves on the surface and the locus of the double points of the lines of

curvature
;

(h) the associate minimal surfaces are positions of the original surface rotated

through the angle a/2, about the z-axis, where a has the same meaning as in 113
;

(i) the surface is the envelope of the plane normal, at the mid-point, to the join

of any two points, one on each of the focal parabolas

X = 4 cr, y = 0, z - 2 a2 - 1
;

x - 0, y = 4
ft, z = 1-2 ft

2 -

the planes normal to the two parabolas at the extremities of the join are the planes
of the lines of curvature through the point of contact of the first plane.

19. Find the equations of Schwarz of a minimal surface when the given curve

is an asymptotic line.

20. Let S and S be two surfaces, and let the points at which the normals are

parallel correspond ;
for convenience let S and S be referred to their common con

jugate system. Show that if the correspondence is conformal, either S and S are

homothetic
;
or both are minimal surfaces

;
or the parametric curves are the lines of

curvature on both surfaces, and form an isothermal system.

21. Find the coordinates of the surface which corresponds to the ellipsoid after

the manner of Ex. 20. Show that the surface is periodic, and investigate the points

corresponding to the umbilical points on the ellipsoid.

22. When the equations of an ellipsoid are in the form (11), the curves u + v =
const, lie on spheres whose centers coincide with the origin ;

and at all points of

such a curve the product pW is constant
( 102).



CHAPTER VIII

SURFACES OF CONSTANT TOTAL CURVATURE. W-SURFACES.
SURFACES WITH PLANE OR SPHERICAL LINES OF CURVATURE

115. Spherical surfaces of revolution. Surfaces whose total cur

vature K is the same at all points are called surfaces of constant

curvature. When this constant value is zero, the surface is devel

opable ( 64). The nondevelopable surfaces of this kind are called

spherical or pseudospherical, according as K is positive or negative.

We consider these two kinds and begin our study of them with

the determination of surfaces of revolution of constant curvature.

When upon a surface of revolution the curves v = const, are

the meridians and u = const, the parallels, the linear element is

reducible to the form

(1) d8*=du*+Gdif,

where G is a function of u alone
( 46). In this case the expres

sion for the total curvature (V, 12) is

(2) K =

For spherical surfaces we have 7f=l/a
2

, where a is a real constant.

Substituting this value in equation (2) and integrating, we have

(3)

where b and c are constants of integration. From (1) it is seen

that a change in b means simply a different choice of the parallel

u = 0. If we take 6 0, the linear element is

(4) ds
2 =du2 + c

2
cos

2-^2
.

a

From (III, 99, 100) it follows that the equations of the meridian

curve are -.

u C it c
2

. 9 u
(5) r = cos-&amp;gt; z =

/ \1 jsm-
a J \ a2 a

270
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and that v measures the angle between the meridian planes.

There are three cases to be considered, according as c is equal

to, greater than, or less than, a.

CASE I. c = a. Now

r = a cos-)
a

. u
z a sin - &amp;gt;

a

FIG. 26

and consequently the surface is a sphere.

CASE II. c
&amp;gt;

a. From the expression

for z it follows that sin
2 -

&amp;lt; 1 and con-
a

sequently r &amp;gt; 0. Hence the surface is

made up of zones bounded by minimum

parallels whose radii are equal to the

?/

minimum value of cos - and the greatest parallel of each zone is

of radius c
;
as in

fig. 26, where the curves represent geodesies.

CASE III. c
&amp;lt;

a. Now r varies from to c, the former correspond

ing to the value u = mcnr/2, where m is any odd integer. At these

points on the axis the meridians meet the latter under the angle
v?

sin&quot;
1 -. Hence the surface is made up of a series of spindles
a

(fig. 27). For the cases II and III the expression for z can be

integrated in terms of elliptic functions.*

It is readily found that these two surfaces are

applicable to the sphere with the meridians and

parallels of each in correspondence. Thus, if we

write the linear element of the sphere in the form

ds
2 du2

4- a2
cos

2 - dv 2

,

a

it follows from (4) that the equations

u = u.

FIG. 27
determine the correspondence desired.

It is evident that for values of b other than zero we should be

brought to the same results. However, for the sake of future

*Cf. Bianchi, Vol. I, p. 233.
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reference we write down the expressions for the linear element

when b = 7r/2 and Tr/4 together with (4), thus :

(6)

(i)
ds2 =du*

(ii)
ds2 =du*-

(iii)
ds2 =du* cos

u TT\ ,---
}dv\a 4/

Let S be a surface with the linear element (6, i),
and consider

the zone between the parallels u = const, and rt
1
= const. A point

of the zone is determined by values of u and v such that

The parametric values of the corresponding point on the sphere

are such that 9 _

Hence when c
&amp;lt; ,

the given zone on S does not cover the zone

on the sphere between the parallels M
O
= const, and u^

= const. ;

but when c
&amp;gt;

a it not only covers it, but there is an overlapping.

116. Pseudospherical surfaces of revolution. In order to find the

pseudospherical surfaces of revolution we replace K in (2) by I/a
2

and integrate. This gives

V5 = c. cosh - + &amp;lt;?_ sinh - &amp;gt;

a a

where c
t
and c

2
are constants of integration. We consider first

the particular forms of the linear element arising when either of

these constants is zero or both are equal. They may be written

(i) ds
2 =

(ii)

?/

a

i oU= du + c sinh
2 -
a

(iii) ds^dtf+fe&quot; dv*.

Any case other than these may be obtained by taking for either

of the values cosh - or sinh(- where b is a constant.
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By a change of the parameter u the corresponding linear elements

are reducible to
(i)

or
(ii).

Hence the forms (7) are the most general.

The corresponding meridian curves are defined by

(8)

= c cosh - &amp;gt;
2 =

C . , 2
U ,sum - aw ;

w C \
&amp;lt;? .u

(ii) r = tfsinh- 2= I \ 1 -costf-du;
v a J N a2 a

(iii)
r = ce

a
.

z =

We consider these three cases in detail.

CASE I. The maximum and minimum values of sinh
2 - are a

2

/e
2

a

and 0. Hence the maximum and minimum values of r are Va2+ c
2

and c. At points of a maximum parallel the tangents to the merid

ians are perpendicular to the axis, and at

points of a minimum parallel they are par

allel to the axis. Hence the former is a cus

pidal edge, and the latter a circle of gorge,

so that the surface is made up of spool-like

sections. It is represented by fig. 28, upon
which the closed curves are geodesic circles

and the other curves are geodesies. These

pseudospherical surfaces are said to be of

the hyperbolic type.*

CASE II. In order that the surface be real

c
2 cannot be greater than a2

, a restriction

not necessary in either of the other cases.

If we put e = asino:,f the maximum and

minimum values of cosh2
are cosec

2
o; and 1, and the correspond-

a

ing values of r are a cos a and 0. The tangents to the meridians

at points of the former circle are perpendicular to the axis, and at

the points for which r is zero they meet the axis under the angle a.

Hence the surface is made up of a series of parts similar in shape

FIG. 28

* Cf . Bianchi, Vol. I, p. 223. f Cf. Bianchi, Vol. I, p. 220.
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to hour-glasses. Fig. 29 represents one half of such a part ; one of

the curves is an asymptotic line and the others are parallel geodesies.
The surface is called a pseudospherical surface of the elliptic type.

CASE III. In the preceding cases the

equations of the meridian curve can

be expressed without the quadrature

sign by means of elliptic functions.*

In this case the same can be done by
means of trigonometric functions. For,

if we put
sin d) = ea .

a

FIG. 29

equations (iii) of (8) become

(9) r = asin&amp;lt;, 2 = a (log tan^-f cos(/&amp;gt;).

We find that
c/&amp;gt;

is the angle which the tangent to a meridian at a

point makes with the axis. Hence the axis is an asymptote to the

curve. Since the length of the segment of a tangent between the

point of contact and the intersection with the axis is r cosec
c/&amp;gt;

or a, the length of the segment is independent of the point of

contact. Therefore the meridian curve is a tractrix. The surface

of revolution of a tractrix about its asymptote is called the pseudo-

sphere, or the pseudospherical surface of the

parabolic type. The surface is shown in

fig. 30, which also pictures a family of

parallel geodesies and an asymptotic line.

If the integral (3) be written in the form

u= c, cos - -f- c sin - 1

a a

the cases (i), (ii), (iii)
of (6) are seen to

correspond to the similar cases of (7). We
shall find other marks of similarity between

these cases, but now we desire to call at

tention to differences.

Each of the three forms (7) determines a particular kind of

pseudospherical surface of revolution, and c is restricted in value

FIG. 30

*Cf. Bianchi, Vol. I, pp. 226-228.
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only for the second case. On the contrary each of the three forms

(6) serves to define any of the three types of spherical surfaces of

revolution according to the magnitude of c.

From (IV, 51) we find that the geodesic curvature of the par
allels on the surfaces with the linear elements (7) is measured by
the expressions -.

-, -,1 . , * 1 ., M 1- tann i
- cotn -

a a a a a

Since no two of these expressions can be transformed into the

other if u be replaced by u plus any constant, it follows that two

pseudospherical surfaces of revolution of different types are not

applicable to one another with meridians in correspondence.

117. Geodesic parametric systems. Applicability. Now we shall

show that in corresponding cases of (6) and (7) the parametric

geodesic systems are of the same kind, and then we shall prove
that when such a geodesic system is chosen for any surface

of constant curvature, not necessarily one of revolution, the

linear element can be brought to the corresponding form of (6)

or (T).

In the first place we recall that when on any surface the curves

v = const, are geodesies, and u = const, their orthogonal trajectories,

the linear element is reducible to the form (1), where G is, in

general, a function of both u and v
; and the geodesic curvature

of the curves u const, is given by (IV, 51), namely

-
p ff

When, in particular, the curvature of the surface is constant,

is given by equation (2) in which K may by replaced by l/a
2

.

Hence, for spherical surfaces, the general form of V& is

(11) V& =
&amp;lt;/&amp;gt; (v) cos

- + A/T (v) sin
-

,

a a

and for pseudospherical surfaces

(12) VG = &amp;lt;

(v) cosh
- + i/r (v) sinh

-
,

ci a

where &amp;lt; and
i/r are, at most, functions of v. We consider now the

three cases of (6) and (7).
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CASE I. From the forms
(i)

of (6) and (7), and from (10), it

follows that the curve u = is a geodesic and that its arc is

measured by cv. Moreover, a necessary and sufficient condition

that the curve u = on any surface with the linear element (1)

satisfy these conditions is

=o.

Applying these conditions to (11) and (12), we are brought to the

forms
(i)

of (6) and (7) respectively.

CASE II. The forms
(ii)

of (6) and (7) satisfy the conditions

= 0,

which are necessary and sufficient that the parametric system be

geodesic polar, in which cv measures angles (cf. VI, 54). When
these conditions are applied to (11) and (12), we obtain

(ii)
of (6)

and of (7) respectively.

CASE III. For
(iii)

of (6) the curve u = has constant geodesic

curvature I/a, and for
(iii)

of (7) all of the curves u = const,

have the same geodesic curvature I/a. Conversely, we find from

(11) and (12) that when this condition is satisfied on any sur

face of constant curvature the linear element is reducible to

one of the forms
(iii).

We gather these results together into

the theorem :

The linear element of any surface of constant curvature is reducible

to the forms (i), (ii), (iii) of (6) or (7) according as the parametric

geodesies are orthogonal to a geodesic, pass through a point, or are

orthogonal to a curve of constant geodesic curvature.

When the linear element of a surface of constant curvature is

in one of the forms
(i), (ii), (iii)

of (6) and (7), it is said to be of

the hyperbolic, elliptic, or parabolic type accordingly.

The above theorem may be stated as follows :

Any spherical surface of curvature l/a
z
is applicable to a sphere

of radius a in such a way that to a family of great circles with

the same diameter there correspond the geodesies orthogonal to a



APPLICABILITY 277

given geodesic on the surface, or all the geodesios through any

point of it, or those which are orthogonal to a curve of geodesic

curvature I/a.

Any pseudospherical surface of curvature I/a
2

is applicable to a

pseudospherical surface of revolution of any of the three types ;

according as the latter surface is of the hyperbolic, elliptic, or par
abolic type, to its meridians correspond on the given surface geodesies

which are orthogonal to a geodesic, or pass through a point, or are

orthogonal to a curve of geodesic curvature I/a.

In the case of spherical surfaces one system of geodesies can

satisfy all three conditions ;
for in the case of the sphere the great

circles with the same diameter are orthogonal to the equator, pass

through both poles, and are orthogonal to two small circles of

radius a/V2, whose geodesic curvature is I/a. But on a pseudo-

spherical surface a geodesic system can satisfy only one of these

conditions. Otherwise it would be possible to apply two surfaces

of revolution of different types in such a way that meridians and

parallels correspond.

From the foregoing theorems it follows that, in order to carry

out the applicability of a surface of constant curvature upon any
one of the surfaces of revolution, it is only necessary to find the

geodesies on the given surface. The nature of this problem is

set forth in the theorem :

The determination of the geodesic lines on a surface of constant

curvature requires the solution of a Riccati equation.

In proving this theorem we consider first a spherical surface

defined in terms of any parametric system. It is applicable to

a sphere of the same curvature with center at the origin.

The coordinates of this sphere, expressed as functions of the

parameters u, v, can be found by the solution of a Riccati equa
tion

( 65). To great circles on the sphere correspond geodesic

lines on the spherical surface ; hence the finite equation of

the geodesies is ax + by + cz = 0, where a, b, c are arbitrary

constants.

When the surface is pseudospherical we use an imaginary

sphere of the same curvature, and the analysis is similar.
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118. Transformation of Hazzidakis. Let a spherical surface of

curvature I/a
2 be defined in terms of isothermal-conjugate parame

ters. Then *

D D&quot; 1

and the Codazzi equations (V, 13
)
reduce to

1 dE dG ^dF
T

_ / - - II

dv dv du

From these equations follows the theorem :

The lines of curvature of a spherical surface form an isothermal-

conjugate system.

For, a solution of these equations is

E G = const., F0.
When this constant is zero the surface is a sphere because of (13).

Excluding this case, we replace the above by

(15) E = a2 cosh
2

a&amp;gt;,

F = 0, G = a2 sinh
2

a&amp;gt;.

Now

(16)
D Dn = a sinh a&amp;gt; cosh a&amp;gt;.

When these values are substituted in the Gauss equation (V, 12),

namely

- _ +
2# I a^L^ ^ H ^ HE du \ du ULEjv R

it is found that o&amp;gt; must satisfy the equation

a
2

ft&amp;gt; a
2
o) A

/18} H---- + smh a) cosh o&amp;gt;
= 0.

du
2

dv
2

Conversely, for each solution of this equation the quantities (15)

and (16) determine a spherical surface.

If equations (14) be differentiated with respect to u and v respec

tively, and the resulting equations be added, we have

(19) ^ +
0^

&quot;&quot;

du
2

dv
2

* The ambiguity of sign may be neglected, as a change of sign gives a surface sym

metrical with respect to the origin.
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In consequence of (14) equation (17) is reducible to

4 H 4
( \\du] \dv / J L#ti $v dv du

Equations (14) are unaltered if E and G be interchanged and the

sign of F be changed. The same is true of (17) because of (19)
and (20). Hence we have :

If the linear element of a spherical surface referred to an isothermal-

conjugate system of parameters be

ds2 = E du2+2F dudv + G dv2

,

there exists a second spherical surface of the same curvature referred
to a similar parametric system with the linear element

ds 2 = Gdu2 2F dudv -f E dv2
,

and with the same second quadratic form as the given surface ;

moreover, the lines of curvature correspond on the two surfaces.

The latter fact is evident from the equation of the lines of curva
ture (IV, 26), which reduces to Fdu2 + (G

-
E) dudv -F dv2= 0.

From (IV, 69) it is seen that the linear elements of the spherical

representation of the respective surfaces are

da2 = -(Gdu
2-2F dudv + E dv2

),
CL

da 2 =
(E du

2 + ZFdudv -f- G dv2

).
a/

In particular we have the theorem :

Each solution co of equation (18) determines two spherical surfaces

of curvature I/a
2
; the linear elements of the surfaces are

ds2 = a2

(cosh
2
co du2 + sinh2

co dv2

),

ds 2 = a2

(sinh
2
co du2

-f cosh
2
co dv-),

and of their spherical representations

,9 -, v

{
da2 = sinh2

co du2
-f- cosh

2
co dv\

j d&amp;lt;r*= cosh2
co du2 + sinh2

co dv2

;

moreover, their principal radii are respectively

p l
= a coth &), p2

= a tanh co,

p[
= a tanh co, p2

a coth co.
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Bianchi * has given the name Hazzidakis transformation to the

relation between these two surfaces. It is evident that the former

theorem defines this transformation in a more general way.

119. Transformation of Bianchi. We consider now a pseudo-

spherical surface of curvature I/a
2

, defined in terms of isothermal-

conjugate parameters. We have

D__ # _ _ 1
4

H~ H~~ a

and the Codazzi equations reduce to

^+ -2^=0, ^+-2^=0.
du du dv dv dv du

These equations are satisfied by the values

(22) E= a- cos
2
w, ^=0, G = a2

sin
2

to,

where &&amp;gt; is a function which, because of the Gauss equation (V, 12),

must satisfy the equation
o2 &amp;lt;&quot;2

/c. n ,
&&amp;gt; (0

(23)
___ = 8in coB.

Conversely, every solution of this equation determines a pseudo-

spherical surface whose fundamental quantities are given by

(22) and by

(24) D = D&quot; = a sin w cos to.

Moreover, the linear element of the spherical representation is

(25) do-
2 =sin2

o&amp;gt;c^

2 +cos2
a&amp;gt;dv

2
.

f

There is not a transformation for pseudospherical surfaces sim

ilar to the Hazzidakis transformation of spherical surfaces, but

there are transformations of other kinds which are of great im

portance. One of these is involved in the following theorem of

Ribaucour :

If in the tangent planes to a pseudospherical surface of curvature

I/a
2
circles of radius a be described with centers at the points of

contact, these circles are the orthogonal trajectories of an infinity of

surfaces of curvature 1Ja
2

.

* Vol. II, p. 437.

t This choice of sign is made so that the following formulas may have the custom

ary form.
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In proving this theorem we imagine the given surface S referred

to its lines of curvature, and we associate with it the moving trihe

dral whose axes are tangent to the parametric lines. From (22)

and (V, 75, 76) it follows that

rt n d(0 3(0

P P\
= cos w = sin , t

=s 0, r = , r
1
=

cv vU
= a cos ft), t] l

= a sin
&&amp;gt;, f x

=
77
= 0.

In the tangent z^-plane we draw from the origin M a segment
of length #, and let 6 denote its angle of inclination with the #-axis.

The coordinates of the other extremity M1
with respect to these

axes are a cos 0, a sin 0, 0, and the projections upon these axes of

a displacement of M
l
as M moves over S are, by (V, 51),

a sin 6 dO -f cos oadui du -\
- dv } sin 6 L

L \dv du I J

a cos 6 d6 -f sin &) c?y +( rfw + dv
} cos ,

L \cv du / J

a [cos &&amp;gt; sin c?v sin &) cos du\.

We seek now the conditions which must satisfy in order that the

line MM
l
be tangent to the locus of M

l
denoted by S^ and that the

tangent plane to S
l
at M

1
be perpendicular to the tangent plane to

S at M. Under these conditions the direction-cosines of the tangent

plane to S
l
with reference to the moving trihedral are

(26) sin0, -COS0, 0,

and since the tangent to the above displacement must be in this

plane, we have

(27) dO + (
- sin cos co]du+(+ cos sin a&amp;gt;\ dv = 0.

\dv / \cu )

As this equation must hold for all displacements of
Jtf&quot;,

it is

These equations satisfy the condition of integrability in conse

quence of (23). Moreover, is a solution of equation (23), as is

seen by differentiating equations (28) with respect to u and v

respectively and subtracting.
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By means of (28) the above expressions for the projections of a

displacement of M^ can be put in the form

a cos (cos ft) cos 6 du + sin &&amp;gt; sin 6 dv),

a sin (cos o&amp;gt; cos 9 du + sin o&amp;gt; sin 6 dv),

a (cos &) sin # c?t&amp;gt; sin &) cos $ du).

From these it follows that the linear element of S
l
is

ds? = a2

(cos
2 9 du2+ sin

2
cfrr

2

).

In order to prove that S
l

is a pseudospherical surface referred to

its lines of curvature, it remains for us to show that the spherical

representation of these curves forms an orthogonal system. We
obtain this representation with the aid of a trihedral whose vertex

is fixed, and which rotates so that its axes are always parallel to

the corresponding axes of the trihedral for S. The point whose

coordinates with reference to the new trihedral are given by (26)

serves for the spherical representation of Sr The projections upon
these axes of a displacement of this point are reducible, by means

of (28), to
cog e

^
cos m sin du _ sin a cos dv^

sin #(cos &) sin du sin &amp;lt;w cos dv),

sin &) sin du cos ft) cos 9 dv,

from which it follows that the linear element is

Since is a solution of (23), the surface S
l
is pseudospherical, of

curvature 1/
2

,
and the lines of curvature are parametric. To

each solution 9 of equations (28) there corresponds a surface Sr
Darboux * has called this process of finding S

1
the transformation

of Bianchi. As the complete integral of equations (28) involves an

arbitrary constant, there are an infinity of surfaces
&amp;gt;S\,

as remarked

by Ribaucour. Moreover, if we put

(29) *-tan|.

these equations are of the Riccati type in &amp;lt;. Hence, by 14,

When one transform of Bianchi of a pseudospherical surface is

known, the determination of the others requires only quadratures.

* Vol. Ill, p. 422.
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From (III, 24) it follows that the differential equation of the

curves to which the lines joining corresponding points on S and

$! are tangent is

(30) cos co smddu sin o&amp;gt; cosddv = 0.

Hence, along such a curve, equation (27) reduces to

7/1 da) , d(o i f.

d6-\-- du H-- dv 0.
dv du

But from (VI, 56) it is seen that this is the Gauss equation of

geodesies upon a surface whose first fundamental coefficients

have the values (22). Hence :

The curves on S to which the lines joining corresponding points on

S and S
l
are tangent are geodesies.

The orthogonal trajectories of the curves (30) are defined by

(31) coswcostfdtt + sinw sinflcto = 0.

In consequence of (28) the left-hand member of this equation is an exact differential.

d = a (cos w cos 0du + sin w sin 6dv),

the quantity e~&a is an integrating factor of the left-hand member of (30). Conse

quently we may define a function rj thus :

drj = ae~ /a (cos w sin 6 du sin w cos 6 dv) .

In terms of and i\
the linear element of S is expressible in the parabolic form (7),

(32) &amp;lt;Zs

2 = d 2 + e^A cfys.

Equation (31) defines also the orthogonal trajectories of the curves on Si to

which the lines MMi are tangent, and the equation of the latter curves is

sin w cos 6 du cos w sin 6 dv = 0.

The quantity e*/a is an integrating factor of this equation, and if we put accordingly

d = ae /a
(sin w cos 6du cos a; sin dv) ,

the linear element of Si may be expressed in the parabolic form

(33) ) dsf = dp + e-*/adp.

As the expressions (32) and (33) are of the form of the linear element of a surface of

revolution, the finite equations of the geodesies can be found by quadratures. Hence :

When a Bianchi transformation is known for a surface, the finite equation of its

geodesies can be found by quadratures.

This follows also from the preceding theorem and the last one of 117.
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120. Transformation of Backlund. The transformation of Bianchi

is only a particular case of a transformation discovered by Backlund,*

by means of which from one pseudospherical surface S another S^

of the same curvature, can be found. Moreover, on these two sur

faces the lines of curvature correspond, the join of corresponding

points is tangent at these points to the surfaces and is of constant

length, and the tangent planes at corresponding points meet under

constant angle.

We refer S to the same moving trihedral as in the preceding

case, and let X and 6 denote the length of MM
l
and the angle

which the latter makes with the o&amp;gt;axis. The coordinates of 3/
x
are

X cos 0, X sin 0, 0, and the projections of a displacement of M
l
are

(34)

X sin d0 -f a cos wdu \ sin 6 ( du-\ dv
} ,

\0t&amp;gt;
(?M /

\cosOdO -f a sin&xi*; + X cos#( du -\ dv ),

\dv du I

X (cos ft) sin 6 dv sin o&amp;gt; cos 6 du) .

If cr denotes the constant angle between the tangent planes tP

S and S
l
at M and Jf

t respectively, since these planes are to inter

sect in MMv the direction-cosines of the normal to S
l
are

sin & sin 0, sin a cos 0, cos a.

Hence must satisfy the condition

X sin a- dB a sin or (cos G&amp;gt; sin 6 du sin &&amp;gt; cos dv}

, 7

-f X sin &amp;lt;r du H--- dv
\dv cu

4- X cos cr (sin &) cos 6du cos &) sin 0dv) = 0.

Since this condition must be satisfied for every displacement, it is

equivalent to

X sin a (
--[-) = # sin a- cos &) sin 6 X cos a sin &) cos 0,

\dw fltf/

/Q /I Q \

X sin &amp;lt;r

(
--h )

= a sin &amp;lt;r sin w cos + X cos a cos &) sin 6.

v cu

*Om ytor med konstant negativ krokning, Lunds Universitets Arsskrift, Vol. XIX

(1883). An English translation of this memoir has been made by Miss Emily Coddington

of New York, and privately printed.
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If these equations be differentiated with respect to v and u respect

ively, and the resulting equations be subtracted, we have

a2
sin

2 cr-X2

=0,

from which it follows that X is a constant. Without loss of gen

erality we take X = a sin cr. If this value be substituted in the

above equations, we have

(35)

f
. (d6 dco\ . a a .

sin cr
(

= sin cos co cos & cos 6 sin
o&amp;gt;,

\du dv/

( 1 )
= cos sin &amp;lt;w + cos er sin cos co,

\dv du/
smcr

and these equations satisfy the condition of integrability. If they
be differentiated with respect to u and v respectively, and the

resulting equations be subtracted, it is found that is a solution

of (23).

In consequence of (35) the expressions (34) reduce to

a cos (cos &) cos -f cos a sin &&amp;gt; sin 0) du

+ a sin (sin &&amp;gt; cos cos a cos &&amp;gt; sin 0) dv,

a cos (cos co sin cos cr sin &) cos 0) C?M

+ &amp;lt;* sin #(sin &) sin 6 + cos cr cos &) cos

a sin cr(cosft) sin0o?v sin CD cosOdu),

and the linear element of ^ is

d** = a2

(cos
2

&amp;lt;9 dw2
-f- sin

2

In a manner similar to that of 119 it can be shown that the

spherical representation of the parametric curves is orthogonal,

and consequently these curves are the lines of curvature on S^

Equations (35) are reducible to the Riccati form by the change
of variable (29). Moreover, the general solution of these equations

involves two constants, namely cr and the constant of integration.

Hence we have the theorem :

By the integration of a Riccati equation a double infinity of pseudo-

spherical surfaces can be obtained from a given surface of this kind.

We refer to this as the transformation of Backlund, and indicate

it by Bv , thus putting in evidence the constant cr.
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121. Theorem of permutability. Let S
l
be a transform of S by

means of the functions (0X , o^). Since conversely S is a transform

of Sj, and the equations for the latter similar to (35) are reducible

to the Riccati type, all the transforms of S
l
can be found by quad

ratures. But even these quadratures can be dispensed with because

of the following theorem of permutability due to Bianehi*:

If S1
and S

2
are transforms of S by means of the respective pairs

of functions (0 1? a^ and (02 ,
&amp;lt;r

2 ),
a function &amp;lt;f&amp;gt;

can be found without

quadratures which is such that by means of the pairs ((/&amp;gt;,

&amp;lt;r

2 )
and

(&amp;lt;, o-j)
the surfaces S

l
and S

2 respectively are transformable into a

pseudospherical surface S f
.

By hypothesis &amp;lt;/&amp;gt;

is a solution of the equations

sin o-J -- + *

)= sin $ cos
l

cos cr
2
cos

(/&amp;gt;

sin 0^\H */
/p I ^/l \

sin &amp;lt;T9 ( -^- 4- -^ )
= cos 6 sin 0. + cos cr9 sin 6 cos ^,2

and also of the equations

(37)

pi p

sin
&amp;lt;7,

- 4- - - = sn d&amp;gt; cos 9 cos a. cos 6 sn
l*

= cos &amp;lt;&amp;gt; sn + coso-Sn) cos

The projections of the line If^Tf on the tangents to the lines of

curvature of S
l
and on its normal, where M

l
and M 1

are correspond

ing points on $
l
and S

,
are

(38) a sin &amp;lt;r

2
cos

&amp;lt;/&amp;gt;,

a sin &amp;lt;r

2
sin

(#&amp;gt;,

; 0.

The direction-cosines of the tangents to the lines of curvature

of S
l
with respect to the line JOf

1?
the line MQ^ perpendicular to

the latter and in the tangent plane at J/, and the normal to S are

cos to, cos &amp;lt;r

1
sin

o&amp;gt;,
sin &amp;lt;T

I
sin &),

sin a), cos cr
1
cos w, sin

o-j
cos w.

From these and (38) it follows that the coordinates of M with

respect to MM^ MQ^ and the normal to S are

a [sin a-
l + sin cr

2
cos

(j&amp;gt; a))],
a [sin &amp;lt;r

2
cos

o-j
sin

(&amp;lt;f&amp;gt; &))],

[sin o-
1
sin &amp;lt;r

2
sin

(&amp;lt;/&amp;gt; w)].

* Vol. II, p. 418.
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Hence the coordinates of M 1 with respect to the axes of the moving
trihedral for S are

x = cos 0j sin o-
l
4- cos

l
sin &

2
cos

(&amp;lt; &&amp;gt;)

(39)

sin 0, sin &amp;lt;r

2
cos o^ sin

(&amp;lt; &amp;lt;w),

= sin
l
sin cr

1 + sin 6
l
sin cr

2
cos

((/&amp;gt;

+ cos 0j sin &amp;lt;7

2
cos o^ sin ($ &amp;lt;w),

= sin cr sm & sin (9
a

If $
2
be transformed by means of a

l
and the same function c,

the coordinates
x&quot;, y&quot;,

z&quot; of the resulting surface can be obtained

from (39) by interchanging the subscripts 1 and 2. Evidently z

and z
f are equal. A necessary and sufficient condition that x\ y

be equal to
#&quot;, y&quot; respectively is

cos
1(d x&quot;)

+ sin B^(y y&quot;) 0,

cos
2(x

r

x&quot;)
+ sin

z (y
r

y&quot;)

= 0.

If the above values be substituted in these equations, we obtain

[sin al
cos (#2 0^ sin o-

2 ]
cos

((/&amp;gt; co)

sin a
l
cos cr

2
sin (#2 0^ sin

(^&amp;gt; &&amp;gt;)

= sin a
l

sin cr
2
cos (Qn #J,

[sin &amp;lt;7

2
cos (^2 0j) siu crj cos (&amp;lt;/&amp;gt; o&amp;gt;)

-f- sin &amp;lt;7

2
cos cr

1 sin(^2 ^)sin(^) w)
= sin cr

z
sin a^ cos(#9 6^).

Solving these equations with respect to sin
(&amp;lt;/&amp;gt; )

and cos
(&amp;lt;/&amp;gt; &&amp;gt;),

we get

sin
o-j

sin &amp;lt;7

2
cos (^2 X) + cos

o-j
cos o-

2
1

,. sin o-, sin o-- + (cos &amp;lt;r. coscr9 l)cos(^9 ^.)
cos

(&amp;lt;f&amp;gt; (0)
= --^ /i ^

-----&quot;-r
sin cr

1
sin &amp;lt;r

2
cos (02 c/j) 4- cos ^ cos cr

2
1

These two expressions satisfy the condition that the sum of their

squares be unity, and the function
(j&amp;gt;

satisfies equations (36) and

(37). Hence our hypotheses are consistent and the theorem of

permutability is demonstrated.

We may replace the above equations by
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The preceding result may be expressed in the following form :

When the transforms of a given pseudospherical surface are known,

all the transformations of the former can be effected by algebraic

processes and differentiation.

Thus, suppose that the complete integral of equations (35) is

(41) =/(w, v, &amp;lt;r, c),

and that a particular integral is

^i=/( v
&amp;gt; *v c

i)i

corresponding to particular values of the constants, and let ^
denote the transform of S by means of ^ and &amp;lt;7r All the trans

formations of S
l
are determined by the functions

&amp;lt;f&amp;gt;

and
&amp;lt;r,

where

Exceptional cases arise when cr has the value &amp;lt;rr For all values

of c other than c
l
formula (42) gives $ = to + WTT, where m is an

odd integer. When this is substituted in equations (36) they re

duce to (35). In this case S coincides with S.

We consider now the remaining case where c has the value c
1?

whereupon the right-hand member of (42) is indeterminate. In

order to handle this case we consider c in (41) to be a function of

o-, reducing to c
l
for &amp;lt;r

=
a-^ If we apply the ordinary methods to

the function tan L Ism ~
* which becomes indeterminate

for a = o-v differentiating numerator and denominator with respect

to
&amp;lt;r,

we have

or

/6-w\ . /a/ .
,

tan ^ = sin - 4- c
. /= sin ^

V

where c is an arbitrary constant. It is necessary to verify that this

value of ^ satisfies the equations (36), which is easily done.*

* Cf . Bianchi, Vol. II, p. 418.
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122. Transformation of Lie. Another transformation of pseudo-

spherical surfaces which, however, is analytical in character was

discovered by Lie.* It is immediate when the surface is referred

to its asymptotic lines, or to any isothermal-conjugate system

of lines.

Since the parameters in terms of which the surface is defined in

119 are isothermal-conjugate, the parameters of the asymptotic

lines may be given by

In terms of these curvilinear coordinates the linear elements of the

surface and its spherical representation have the forms

ds
2 = a2

(da
2 + 2 cos 2 &) dad/3 + d/3

2

),

da-
2 = da2 2 cos 2 ft) dad/3 -f-

and equation (23) takes the form

dad/3
sin &) cos ft).

From the form of this equation it is evident that if &&amp;gt;
=

&amp;lt;(#, ft)
be

a solution, so also is co
l
=

(f&amp;gt;(am, ft/m) 9
where m is any constant.

Hence from one pseudospherical surface we can obtain an infinity

of others by the transformation of Lie. It should be remarked,

however, that only the fundamental quantities of the new surfaces

are thus given, and that the determination of the coordinates re

quires the solution of a Riccati equation which may be different

from that for the given surface.

Lie has called attention to the fact that every Biicklund trans

formation is a combination of transformations of Lie and Bianchi.f

In order to prove this we effect the change of parameters (43) upon

equations (35) and obtain

(44)

d
, n . 1 + cos a . Q .

(0 + co)
= - sin (6 &)),

da
v

sin tr

d
, a x

1 cos er . Q x

(6 (w)
=-

:

- sin (9 + &amp;lt;).

d3 V
sin &amp;lt;r

*Archivfor Mathematik og Naturvidenskab, Vol. IV (1879), p. 150.

t Cf. Bianchi, Vol. II, p. 434; Darboux, Vol. Ill, p. 432.
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In particular, for a transformation of Bianchi we have

(B 4- o))
= sin (B o&amp;gt;), (6 &&amp;gt;)

= sin (6 + o&amp;gt;).

ccc dp

Suppose that we have a pair of functions 6 and &&amp;gt; satisfying

these equations, and that we effect upon them the Lie transforma

tion for which m has the value (1 + cos cr)/sin a-. This gives

1 4- cos a 1 cos cr_ a
,

sin or sin cr

/1 +
\ ssin cr sm cr

As these functions satisfy (44), they determine a transformation

Ba . But O
l may be obtained from o^ by effecting upon the latter

an inverse Lie transformation, denoted by Z&quot;

1

, upon this result a

Bianchi transformation, Bn/2 ,
and then a direct Lie transformation,

Za . Hence we may write symbolically

which may be expressed thus :

A Backlund transformation B
ff

is the transform of a Bianchi

transformation ly means of a Lie transformation La
*

EXAMPLES

1. The asymptotic lines on a pseudospherical surface are curves of constant

torsion.

2. Every surface whose asymptotic lines are of the same length as their spherical

images is a pseudospherical surface of curvature 1.

3. Show that on the pseudosphere, defined by (9), the curves

= 0,

where 6 is a constant, are geodesies, and find the radius of curvature of these curves.

4. When the linear element of a pseudospherical surface is in the parabolic

form
(iii)

of (7), the surface defined by

dx dy dz
x = x a y y a z z a

du cu du

is pseudospherical (cf . 76) ;
it is a Bianchi transform of the given surface.

*
Spherical surfaces admit of transformations similar to those of Lie and Backlund.

The latter are imaginary, but such combinations of them can be made that the resulting

surface is real. For a complete discussion of these the reader is referred to chap. v. of

the Lezioni of Bianchi.
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5. The helicoids

X = U COS V. y = u sin u, z= f */ Idu + hv,J \ a k~u z u2

where a, A, fc are constants, are spherical surfaces.

6. The helicoid whose meridian curve is the tractrix is called the surface of Dini.

Find its equations when sin &amp;lt;r denotes the helicoidal parameter and cos &amp;lt;r the con
stant length of the segment of the tangent between the curve and its axis. Show
that the surface is pseudospherical.

7. The curves tangent to the joins of corresponding points on a pseudospherical
surface and on a Backlund transform are geodesies only when &amp;lt;r

= ir/2.

8. Let S be a pseudospherical surface and Si a Bianchi transform by means of

a function d
( 119). Show that

X{ cosw(cos0X1 -f sin0JT2 ) sinwJT,

X% = sin w
(cos&amp;lt;? Xi -f sin0JT2 ) + coswJT,

X =

where .Xi, X2 ,
X are direction-cosines, with respect to the x-axis, of the tangents

to the lines of curvature on S and of the normal to S, and JT{, X%, X are the

similar functions for Si.

123. W-surfaces. Fundamental quantities. Minimal surfaces

and surfaces of constant curvature possess, in common with a

great many other surfaces, the property that each of the prin

cipal radii is a function of the other. Surfaces of this kind were
first studied in detail by Weingarten,

*
and, in consequence, are

called Weingarten surfaces, or simply W-surfaces. Since the prin

cipal radii of surfaces of revolution and of the general helicoids

are functions of a single parameter ( 46, 62), these are TF-surfaces.

We shall find other surfaces of this kind, but now we consider

the properties which are common to TF-surfaces.

When a surface S is referred to its lines of curvature, the

Codazzi equations may be given the form

(45)
glogV^ = 1

dp^
dv P 2 Pi dv d

If a relation exists between pl
and

/&amp;gt;2 , as

the integration of equations (45) is reducible to quadratures, thus :

r dpi r
&amp;lt;/p2

=Ue J
*-*, V^ = Ve J Pl

~
P2

,

Crelle, Vol. LXII (1863), pp. 160-173.
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where U and V are functions of u and v respectively. Without

changing the parametric lines the parameters can be so chosen

that the above expressions reduce to

r dp, f_dpj
/A T \ re I a o r^ I

Thus and ^ are expressible as functions of p l
or

/3 2 , and conse

quently they are functions of one another. This relation becomes

more clear when we introduce an additional parameter K defined by

/
&amp;lt;*pi

(48) * = * *-*

By the elimination of p2
from this equation and (46) we have a

relation of the form
j\( \

When this value is substituted in (48) we obtain

where the accent indicates differentiation with respect to K. From

(47) it follows that
-,

-.

V^=, ^=T,K
&amp;lt;/&amp;gt;

When these values are substituted in the Gauss equation for

the sphere (V, 24), the latter becomes

1/* M
, jL/* aY _1.=

du \
&amp;lt;/&amp;gt;&quot;

du) dv \tc* dv)
K&amp;lt;f&amp;gt;

This equation places a restriction upon the forms of K and
&amp;lt;(),

but it is the only restriction, for the Codazzi equations (45) are

satisfied. Hence we have the theorem of Weingarten :
*

When one has an orthogonal system on the unit sphere for which

the linear element is reducible to the form

there exists a W-surface whose lines of curvature are represented by

this system and whose principal radii are expressed by

(50) ft =*(*), P2
= *(*)- * (*)

Z.c., p. 163.
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If the coordinates of the sphere, namely X, Y, Z, are known

functions of u and v, the determination of the JF-surface with this

representation reduces to quadratures. For, from the formulas

of Kodrigues (IV, 32) we have

r dX , dX ,

x = Pi du + p2 dv,
J cu dv

C dY , dY ,

y = / p i
du + /? 2 ^r~ dv,

r cz 7 a^ ,= ~
/ ft ~^~

^ + P*
v&quot;

dv -

J du dv

The right-hand members of these equations are exact differentials,

since the Codazzi equations (45) have been satisfied. If
A&quot;, F,

Z are not known, their determination requires the solution of a

Riccati equation. The relation between the radii of the form (46)

is obtained by eliminating K from equations (50).

We find readily that the fundamental quantities for the sur

face have the values

(51)

And from (48), (50), and (51) we obtain

t &amp;lt; pi _ r Pi

(52) Ve= p^ &quot;- ft
,

vG =
p,e

J f - p
&amp;gt;.

Consider the quadratic form

(53) [(EJJ -FD) du 1 + (El)&quot;- GD) dudv + (FD&quot;- GD ) dv*],H .

which when equated to zero defines the lines of curvature. When
these lines are parametric, this quadratic form is reducible by

means of (IV, 74) to

But in consequence of (47) this is further reducible for JF-surfaces to

dudv. Since the curvature of this latter form is zero, the curvature

of (53) also is zero, and consequently ( 135) the form (53) is redu

cible by quadratures to dudv. Hence we have the theorem of Lie :

The lines of curvature of a W-surface can be found by quadratures.
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124. Evolute of a W-surface. The evolute of a JF-surface pos

sesses several properties which are characteristic. Referring to the

results of 75, we see that by means of (52) the linear elements of

the sheets of the evolute of a JF-surface are reducible to the form

or, in terms of K,

(55)

From these results and the remarks of 46 we obtain at once

the following theorem of Weingarten :

Each surface of center of a W-surface is applicable to a surface of

revolution whose meridian curve is determined by the relation between

the radii of the given surface.

We have also the converse theorem, likewise due to Weingarten :

If a surface S
l
be applicable to a surface of revolution, the tan

gents to the geodesies on S^ corresponding to the meridians of the

surface of revolution are normal to a family of parallel W-surfaces;

if Sl
be deformed in any manner whatever, the relation between the

radii of these W-surfaces is unaltered.

In proving this theorem we apply the results of 76. If the

linear element of S
l
be r t

i
i*** ?

the principal radii of S are given by

/tM. V
(56) p^u, ft--^7-

Since both are functions of a single parameter, a relation exists

between them which depends upon U alone, and consequently is

unaltered in the deformation of Sr
From (V, 99) the projections upon the moving trihedral for 8^

of a displacement of a point on the complementary surface
2
are

U
(___), 0, (qdu-, ai~/ir
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In consequence of formulas (V, 48, 75) the expression U(q du + q tdv)

is an exact differential, which will be denoted by dw. Hence the

linear element of
2
is

(57) dl = l

from which it follows that S
z
also is applicable to a surface of

revolution.*

The last theorem of 75 may be stated thus :

A necessary and sufficient condition that the asymptotic lines on

the surfaces of center S^ S
2 of a surface S correspond is that S be

a W-surface ; in this case to every conjugate system on S
l
or S

2
there

corresponds a conjugate system on the other.

From (V, 98, 98
)

it follows that when S is a TF-surface, and

only in this case, we have

(58)
. . . ^-E^b-

Hence at corresponding points the curvature is of the same kind.

An exceptional form of equation (46) is afforded by the case where

one or both of the principal radii is constant. For the plane both

radii are infinite ; for a circular cylinder one is infinite and the other

has a finite constant value. The sphere is the only surface with both

radii finite and constant. For, if p r
and p2

are different constants,

from (45) it follows that and ^ are functions of u and v respec

tively, which is true only of developable surfaces. When one of the

radii is infinite, the surface is developable. There remains the case

where one has a finite constant value ; then S is a canal surface
( 29).

In considering the last case we take

then, from (48), we have

and the linear element of the sphere is

do* =~ + dv\
K

Conversely, when the linear element of the sphere is reducible to

this form, the curves on the sphere represent the lines of curvature

on an infinity of parallel canal surfaces.

* Cf. Darboux, Vol. Ill, p. 329.
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125. Surfaces of constant mean curvature. For surfaces of con

stant total curvature the relation (46) may be written

where c denotes a constant. When this value is substituted in (48)

we have, by integration,

(59) P

so that the linear element of the sphere is

(60)

Conversely, when we have an orthogonal system on the sphere for

which the linear element is reducible to the form (60), it serves for

the representation of the lines of curvature of a surface of constant

curvature, and of an infinity of parallel surfaces.

When c is positive, two of these parallel surfaces have constant

mean curvature, as follows from the theorem of Bonnet (73). In

fact, the radii of these surfaces tifcT

(61) p l
=^/K*+cy/~cJ p9

= -=L== V~C .

v K ~r~ c

If we put

(62)
c = a2

,
ic = a csch

&&amp;gt;,

and replace u by au, the linear element (60) becomes

da-- = sinlr co du2 + cosh
2

o&amp;gt; dv2
. r

In like manner, if we replace u by iau, v by iv, and take

(63)
c = a

2

,
K = ai sech CD,

the linear element of the sphere is

da-
2 = cosh

2 w du2 + sinh
2
&) dv*.

For the values (62) we have, from (61),

and the linear elements of the corresponding surfaces are

(65)
&amp;lt;f*

a =ffV aw
(dw

a
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Moreover, for the values (63) the radii have the values

cosh co sinh co

but the linear elements are the same (65). In each case the mean

curvature is l/. We state these results in the following form:

The lines of curvature upon a surface of constant mean curvature

form an isothermic system, the parameters of which can be chosen

so that the linear element has one of the forms (65), where co is a

solution of the equation

(67)
l ^ 4- ^ 4- sinh co cosh co = 0.

du
2

dv
2

Conversely, each solution of this equation determines two pair* of

applicable surfaces of constant mean curvature l/a, whose lines

of curvature correspond, and for which the radii p^ p2 of one surface

are equal to the radii of p 2 , p^ of the applicable surface.

It can be shown that if co = $(u, v) is a solution of equation (67),

so also is

(68) co
1
=

cf)(u cos cr v sin cr, u sin &amp;lt;r + v cos
cr),

where cr is any constant whatever. Hence there exists for spherical

surfaces a transformation analogous to the Lie transformation of

pseudospherical surfaces. This transformation can be given a geo
metrical interpretation if it is considered in connection with the sur

faces of constant mean curvature parallel to the spherical surfaces.

Let S
l
denote the surface with the linear element

(69) ds 2= aV w
&amp;gt;

(du
2 + dv 2

).

If we put

(70) u
v
=u cos cr v sin cr, v

1
= u sin cr + v cos cr,

the solution (68) becomes co
l
=

cf)(ul , v^), and (69) reduces to

Hence if we make a point (u, v) on S with the linear element (65),

in which the positive sign is taken, correspond to the point (uv vj
on 8^ the surfaces are applicable, and to the lines of curvature

u = const., v = const, on S correspond on S
l
the curves

u cos cr v sin a = const., u sin cr -f- v cos cr = const.
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But the latter cut the lines of curvature u = const., v = const, on

S
l
under the angle a-. Moreover, the corresponding principal radii

of S and S
l
are equal at corresponding points. Hence we have tha

following theorem of Bonnet :
*

A surface of constant mean curvature admits an infinity of appli

cable surfaces of the same kind with preservation of the principal

radii at corresponding points, and the lines of curvature on one

surface correspond to lines on the other which cut the lires of

curvature under constant angle.

Weingarten has considered the IF-surfaces whose lines of

curvature are represented on the sphere by geodesic ellipses

and hyperbolas. In this case the linear element of the sphere

is reducible to the form
( 90)

do*=
sm

*2
C S

*2

Comparing this with (49), we have

.to .,
ft)

/c = sin-&amp;gt; &amp;lt; =cos-
.

from which it follows that

to -f- sin ft)

4

Hence
&) -f sin ft) ft) sin

and the relation between the radii is found, by the elimination

of w, to be

(72) 2(^-^)=sin2(^+/) 2).t

* Memoire sur la theorie des surfaces applicables sur une surface donnce, Journal de

VEcole Polytechnique, Cahier 42 (1867) , pp. 72 et seq. In this memoir Bonnet solves com

pletely the problem of finding applicable surfaces with corresponding principal radii equal.

When a surface possesses an infinity of applicable surfaces of this kind, its lines of curv

ature form an isothermal system.

tDarboux (Vol. Ill, p. 373) proves that these surfaces may be generated as follows:

Let C and Ci be two curves of constant torsion, differing only in sign. The locus of the

mid-points M of the join of any points P and PI of these curves is a surface of translation.

If a line be drawn through M parallel to the intersection of the osculating planes of C and

Ci at P and Pi, this line is normal to a IP-surface of the above type for all positions of M.
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126. Ruled W-surfaces. We conclude the present study of

Tr-surfaces with the solution of the problem :

To determine the W-surfaces which are ruled.

This problem was proposed and solved simultaneously by
Beltrami* and Dini.f We follow the method of the latter.

In 106, 107 we found that when the linear element of a

ruled surface is in the form

ds
2 = du2 + [(u

-
a)

2+ /3
2

] dv\

the expressions for the total and mean curvatures are

/3
2

~ =

where r is a function of v at most, and

/=(tt~a)
a
-h^.

In order that a relation exist between the principal radii it is

necessary and sufficient that the equation

1* a* *jr.-l*:-o
du dv dv du

be satisfied identically. If the above values be substituted, the

resulting equation reduces to

2u a d rr
2
+/3

! u-a a l

\

As this is an identical equation, it is true when u = a, in which

case it reduces to /3 =0. Hence /3 is a constant and the above

equation becomes
r (u of + r ft

2+ /3a&quot;
= 0.

Since this equation must be true independently of the value of w,

both r and a&quot; are zero. Therefore we have

(73) a=cv + d, P = e, r = k,

where
&amp;lt;?, d, e, k are constants.

The linear element is

ds
2 = du2+ [(t*

- cv - d)
2 + e

2

]
dv2

.

*
Annali, Vol. VII (1865), pp. 13&-150. t Annali, Vol. VII (1865), pp. 205-210.
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In order to interpret this result we calculate the expression

for the tangent of the angle which the generators v = const,

make with the line of striction

u cv d = 0.

From (III, 24) we have
tan d = -

;

c

consequently the angle is constant. Conversely, if 6 and the param

eter of distribution j3 be constant, a has the form (73). Hence we

have the theorem :

A necessary and sufficient condition that a ruled surface be a

W-surface is that the parameter of distribution be constant and that

the generators be inclined at a constant angle to the line of stric

tion, which consequently is a geodesic.

EXAMPLES

1. Show that the helicoids are ^surfaces.

2. Find the form of equation (49), when the surface is minimal, and show that

each conformal representation of the sphere upon the plane determines a minimal

surface.

3. Show that the tangents to the curves v = const, on a spherical surface with

the linear element (i) of (6) are normal to a TT-surface for which

P-2
-

PI = COt -

4. The helicoids are the only &amp;gt;F-surfaces which are such that the curves

Pi = const, meet the lines of curvature under constant angle (cf. Ex. 23, p. 188).

5. The asymptotic lines on the surfaces of center of a surface for which

Pl + Pz const, correspond to the minimal lines on the spherical representation

of the surface
; and, when

/&amp;gt;i p2 = const., to a rectangular system on the sphere.

127. Spherical representation of surfaces with plane lines of

curvature in both systems. Surfaces whose lines of curvature in

one or both systems are plane curves have been an object of study

by many geometers. Since the tangents to a line of curvature and

to its spherical representation at corresponding points are parallel,

a plane line of curvature is represented on the sphere by a plane

curve, that is, a circle ;
and conversely, a line of curvature is plane

when its spherical representation is a circle.
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We consider first the determination of surfaces with plane
lines of curvature in both systems from the point of view of

their spherical representation.* To this end we must find orthog
onal systems of circles on the sphere. If two circles cut one

another orthogonally, the plane of each must pass through the

pole of the plane of the other. Hence the planes of the circles

of one system pass through a point in the plane of each circle

of the second system, and consequently the planes of each family
form a pencil, the two axes being polar reciprocal with respect to

the sphere.f

We consider separately the two cases : I, when one axis is tan

gent to the sphere, and therefore the other is tangent at the same

point and perpendicular to it
; II, when neither is tangent.

CASE I. We take the center of the unit sphere for origin 0, the

x- and ?/-axes parallel to the axes of the pencils, and let the coor

dinates of the point of contact be (0, 0, 1). The equations of the-

pencils of planes may be put in the form

(74) x + u(z 1)=0, y + v(z 1)
= 0,

where u and v are the parameters of the respective families.

If these equations be solved simultaneously with the equation

of the sphere, and, as usual, X, I
7

,
Z denote coordinates of the

latter, we have

v ^ v
r7_u?-- ~

Now the linear element of the sphere is

(T6) ^=
JtXl?-

CASE II. As in the preceding case, we take for the z-axis the

common perpendicular to the axes of the pencils, and for the x-

and ?/-axes we take lines through parallel to the axes of the

pencils. The coordinates of the points of meeting of the latter

with the z-axis are of the form (0, 0, a), (0, 0, I/a). The equa
tions of the two pencils of planes could be written in forms

*
Bianchi, Vol. II, p. 256; Darboux, Vol. I, p. 128, and Vol. IV, p. 180.

t Bonnet, Journal de I Ecole Polytechnique, Vol. XX (1853), pp. 136, 137.
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similar to (74), but the expressions for X, Y, Z will be found

to be of a more suitable form if the equations of the families

of planes be written

tanw atanhv

Proceeding as in Case I, we find

Vl a2
sin u

(77) Y=-

Z =

cosh v + a cos u

1 a
2
sinh v

cosh v -f a cos u

cos u -\- a cosh v

cosh v -f- a cos w

and the linear element is

(78)
(cosh v + a cos w)

From the preceding discussion we have tacitly excluded the sys

tem of meridians and parallels. As before, the planes of the two

families of circles form pencils, but now the axis of one pencil

passes through the center of the sphere and the other is at infinity.

Hence this case corresponds to the value zero for a in Case II. In

fact, if we put a = in (77), the resulting equations define a sphere

referred to a system of meridians and parallels, namely

_Q sinw sinhv cosw
( I V

)
JL ---

t JL ----
&amp;gt;

Z/ ---
cosh v cosh v cosh v

Since the planes of the lines of curvature on a surface are parallel

to the planes of their spherical images, the curves v const, on a

surface with the representation (79) lie in parallel planes, and the

planes of the curves u = const, envelop a cylinder. These surfaces

are called the molding surfaces.* We shall consider them later.

128. Surfaces with plane lines of curvature in both systems.

By a suitable choice of coordinate axes and parameters the

expressions for the direction-cosines of the normal to a surface

with plane lines of curvature in both systems can be given one

* These surfaces were first studied by Monge, Application de L Analyse a la Geomt-

trie, 17. Paris, 1849.
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of the forms (75) or (77). For the complete determination of all

surfaces of this kind it remains then for us to find the expres

sion for the other tangential coordinate W, that is, the distance

from the origin to the tangent plane. The linear element of

the sphere in both cases is of the form

7 2 du2+ dv2

d(T =---
-&amp;gt;

where \ is such that

(80)
-^- = 0.
cudv

From (VI, 39) we see that the equation satisfied by W is

gfl g log X d6 __ Q
cucv dv du du dv

In consequence of (80), if we change the unknown function in

accordance with B
l
=\0

&amp;gt;

the equation in 6
l

is of the form (80).

Hence the most general value *for W is

where U and V are arbitrary functions of u and v respectively.

Hence any surface with plane lines of curvature in both systems

is the envelope of a family of planes whose equation is of the form

(81) 2 ux + 2 vy + (u*+ v
2

-l)z = 2 (U+V),
or

(82) Vl a&quot; sin ux Vl a2 sinh vy + (cos u + a cosh v) z

= (U+ F)Vl-a
2

.

The expressions for the Cartesian coordinates of these surfaces

can be found without quadrature by the methods of 67. Thus,

for the surface envelope of (81) we have to solve for x, y, z equa

tion (81) and its derivatives with respect to u and v. The latter are

(83) x + uz = Z7
, y + vz = V\

where the accents indicate differentiation. We shall not carry out

this solution, but remark that as each of these equations contains

a single parameter they define the planes of the lines of curvature.
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From the form of (83) it is seen that these planes in each sys

tem envelop a cylinder, and that the axes of these two cylin

ders are perpendicular. This fact was remarked by Darboux,

who also observed that equation (81) defines the radical plane

of the two spheres

These are the equations of two one-parameter families of spheres,

whose centers lie on the focal parabolas

-U, 2/1=0,

and whose radii are determined by the arbitrary functions U and V.

The characteristics of each famity are defined by its equation and

the corresponding equation of the pair (83). Consequently the orig

inal surface is the locus of the point of intersection of the planes

of these characteristics and the radical planes of the spheres.

Similar results follow for the equation (82), which defines the

radical planes of two families of spheres whose centers are on the

focal ellipse and hyperbola

(86)
a;
2 =0, 2/2

=

When in particular a = 0, these curves of center are a circle and

its axis. r
i

From the foregoing results it follows that these surfaces may be

generated by the following geometrical method due to Darboux :
*

Every surface with plane lines of curvature in two systems can be

obtainedfrom two singly infinite families of spheres whose centers lie

on focal conies and whose radii vary according to an arbitrary law.

The surface is the envelope of the radical plane of two spheres S and 2,

belonging to two different families. If one associate with S and 2 two

infinitely near spheres Sf and 2
,
the radical center of these four

spheres describes the surface ; and the radical planes of S and S and

of 2 and 2 are the planes of the lines of curvature.

* Vol. i, p. 132.
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129. Surfaces with plane lines of curvature in one system.

Surfaces of Monge. When the lines of curvature in one system
are plane, the curves on the sphere are a family of circles and

their orthogonal trajectories ; and conversely. Every system of

this kind may be obtained from a system of circles and their

orthogonal trajectories in a plane by a stereographic projection.

The determination of such a system in the plane reduces to the

integration of a Riccati equation (Ex. 11, p. 50). Since the circles

are curves of constant geodesic curvature we have, in consequence
of the first theorem of 84, the theorem :

The determination of all the surfaces with plane lines of curva

ture in one system requires the solution of a Riccati equation and

quadratures.

We shall discuss at length several kinds of surfaces with plane
lines of curvature in one system, and begin with the case where

these curves are geodesies. They are consequently normal sections

of the surface. Their planes envelop a developable surface, called

the director-developable, and the lines of curvature in the other sys

tem are the orthogonal trajectories of these planes. Conversely,
the locus of any simple infinity of the orthogonal trajectories of a

one-parameter system of planes is a surface of the kind sought.

For, the planes cut the surface orthogonally, and consequently

they are lines of curvature and geodesies ( 59). Since these

planes are the osculating planes of the edge of regression of

the developable, the orthogonal trajectories can be found by

quadratures ( 17).

Suppose that we have such a surface, and that C denotes one of

the orthogonal trajectories of the family of plane lines of curvature.

Let the coordinates of C be expressed in terms of the arc of the

curve from a point of it, which will be denoted by v . As the

plane of each plane line of curvature F is normal to C at its point

of meeting with the latter, the coordinates of a point P of F with

reference to the moving trihedral of C are 0, 77, f. Since P describes

an orthogonal trajectory of the planes, we must have (I, 82)

dv
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where r denotes the radius of torsion of C. If we change the

parameter of C in accordance with the equation

the above equations become

The general integral of these equations is

(88) ?;
= U^ cos v

l
U

2
sin v^ f = U^ sin v

l -f ?7
2
cos v

lt

where C^ and ?7
2
are functions of the parameter u of points of F.

When v = we have v
l
= 0, and so the curve F in the plane through

the point v = of C has the equations 77
= U^ ?= Z7

2
. Hence the

character of the functions U^ and U
2
is determined by the form of

the curve ; and conversely, the functions U
}
and U

2
determine the

character of the curve.

By definition (87) the function v
t
measures the angle swept

out in the plane normal to C by the binormal of the latter, as this

plane moves from v = to any other point. Hence equations (88)

define the same curve, in this moving plane, for each value of v^

but it is defined with respect to axes which have rotated through

the angle vr Hence we have the theorem :

Any surface whose lines of curvature in one system are geodesies

can be generated by a plane curve whose plane rolls, without slipping,

over a developable surface.

These surfaces are called the surfaces of Monge, by whom they

were first studied. He proposed the problem of finding a surface

with one sheet of the evolute a developable. It is evident that the

above surfaces satisfy this condition. Moreover, they furnish the

only solution. For, the tangents to a developable along an ele

ment lie in the plane tangent along this element, and if these

tangents are normals to a surface, the latter is cut normally by

this plane, and consequently the curve of intersection is a line of

curvature. In particular, a molding surface
( 127) is a surface

of Monge with a cylindrical director-developable.

Since every curve in the moving plane of the lines of curva

ture generates a surface of Monge, a straight line in this plane
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generates a developable surface of Monge. For, all the normals

to the surface along a generator lie in a plane ( 25). Hence:

A necessary and sufficient condition that a curve F in a plane

normal to a curve C at a point Q generate a surface of Monge as

the plane moves, remaining normal to the curve, is that the . line

joining a point of T to Q generate a developable.

130. Molding surfaces. When the orthogonal trajectory C is a

plane curve, the planes of the curves F are perpendicular to the

plane of C, and consequently the director-developable is a cylinder

whose right section is the plane evolute of C. The surface is a

molding surface ( 127), and all the lines of curvature of the sec

ond system are plane curves, involutes of the right section of

the cylinder. Hence a molding surface may be generated by a

plane curve whose plane rolls without slipping over a cylinder.

We shall apply the preceding formulas to this particular case.

Since 1/r is equal to zero, it follows from (88) that ?; and are

functions of u alone. If u be taken as a measure of the arc of the

curve F, we have, in all generality,

?;
= U, f = I Vl U 2

du,

where the function U determines the form of F. If we take the

plane of the curve C for 2 = 0, and X
Q , yQ

denote the coordinates

of a point of C, the equations of the surface may be written

x = x + U cos v, y = 2/o + u sin v
i

2 = / Vl U 2
du,

where v denotes the angle which the principal normal to C makes with

the a&amp;gt;axis. Since ^x ^ (
,

^ = sin v = cos v,

if V denote the radius of curvature of C, then ds
Q
= V dv, and the

equations of the surface can be put in the following form, given by

Darboux *
: ( r

v -f- I Fsin v dv,
J

(89) = U sin v I V cos v dv,

* Vol. I, p. 105.
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The equations of the right section of the cylinder are

x = X
Q + V cos v = I V cos v dv,

y = yQ -f- V sin v = I V sin v dv.

In passing, we remark that surfaces of revolution are molding sur

faces, whose director-cylinder is a line ; this corresponds to the

case V 0.

EXAMPLES

1. When the spherical representation of the lines of curvature of a surface is

isothermal and the curves in one family on the sphere are circles, the curves in the

other family also are circles.

2. If the lines of curvature in one system on a minimal surface are plane, those

in the other system also are plane.

3. Show that the surface

x au _|_ sin u cosh v, y = v + a cos u sinh v, z V 1 a2 cos u cosh v,

is minimal and that its lines of curvature are plane. Find the spherical representa

tion of these curves and determine the form of the curves.

4. Show that the surface of Ex. 3 and the Enneper surface (Ex. 18, p. 209) are

the only minimal surfaces with plane lines of curvature.

5. When the lines of curvature in one system lie in parallel planes, the surface

is of the molding type.

6. A necessary and sufficient condition that the lines of curvature in one system

on a surface be represented on the unit sphere by great circles is that it be a sur

face of Monge.

7. Derive the expressions for the point coordinates of a molding surface by the

method of 67.

131. Surfaces of Joachimsthal. Another interesting class of

surfaces with plane lines of curvature in one system are those for

which all the planes pass through a straight line. Let one of these

lines of curvature be denoted by F, and one of the other system

by C. The developable enveloping the surface along the latter has

for its elements the tangents to the curves F at their points of

intersection with 0. Since these elements lie in the planes of the

curves F, the developable is a cone with its vertex on the line
Z&amp;gt;,

through which all these planes pass. This cone is tangent to the

surface along (7, and its elements are orthogonal to the latter. Con

sequently C is the intersection of the surface and a sphere with
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center at the vertex of the cone which cuts the surface orthogo

nally. Hence we have the following result, due to Joachimsthal *
:

When the lines of curvature in one system lie in planes passing

through a line D, the lines of curvature in the second system lie on

spheres whose centers are on D and which cut the surface orthogonally.

Such surfaces are called surfaces of Joachimsthal. Each of the

curves of the first system is an orthogonal trajectory of the circles

in which the spheres are cut by its plane. Therefore, in order to

derive the equations of such a surface, we consider first the orthog
onal trajectories of a family of circles whose centers are on a line.

If the latter be taken for the ?;-axis, the circles are defined by

f = r sin 0, 77
= r cos 6 + u,

where r denotes the radius, 6 the angle which the latter makes

with the ?;-axis, and u the distance of the center from the origin.

Now r is a function of u, and 6 is independent of u. In order that

these same equations may define an orthogonal trajectory of the

circles, 6 must be such a function of u that

cos 0^- sin 0^ = 0,
du cu

or

rf^_ sin = .

du

By integration we have

(90) tan|
= F&amp;lt;/

r
,

where V denotes the constant of integration.

Since each section of a surface of Joachimsthal by a plane

through its axis is an orthogonal trajectory of a family of circles

whose centers are on this axis, the equations of the most general
surface of this kind are of the form

x = r sin 6 cos v, y = r sin 6 sin v, z u -f r cos #,

where v denotes the angle which the plane through a point and

the axis makes with the plane y 0, and 6 is given by (90), in

which now V is a function of v.

*
Crelle, Vol. LIV (1857), pp. 181-192.
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When V is constant is a function of u alone, and the surface

is one of revolution. For other forms of Vihe geometrical genera

tion of the surfaces is given by the theorem :

Given the orthogonal trajectories of a family of circles whose cen

ters lie on a right line D ; if they be rotated about D through dif

ferent angles, according to a given law, the locus of the curves is a

surface of Joachimsthal.

132. Surfaces with circular lines of curvature. We consider

next surfaces whose lines of curvature in one system are circles.

Let o- denote the constant angle between the plane of the circle

C and the tangent planes to the surface along C (cf. 59), p the

radius of normal curvature in the direction of C, and r the radius

of the latter. Now equation (IV, 17) may be written

(91) r = p sin a.

As an immediate consequence we have the theorem :

A necessary and sufficient condition that a plane line of curvature

be a circle is that the normal curvature of the surface in its direction

be the same at all of its points.

Since the normals to the surface along C are inclined to its plane

under constant angle, they form a right circular cone whose vertex

is on the axis of C. Moreover, the cone cuts the surface at right

angles, and consequently the sphere of radius p and center at the

vertex of the cone is tangent to the surface along C. Hence the

surface is the envelope of a family of spheres pf variable or con

stant radius, whose centers lie on a curve.

Conversely, we have seen in 29 that the characteristics of

the family of spheres

where x, y, z are the coordinates of a curve expressed in terms of its

arc, and 11 is a function of the same parameter, are circles of radius

(92) r

whose axes are tangent to the curve of centers and whose centers

have the coordinates

(93) x
l
= x - aRR

, y
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where a, ft, 7 are the direction-cosines of the axis, and the accent

indicates differentiation. The normals to the envelope along a

characteristic form a cone, and consequently these circles are lines

of curvature upon it. Hence :

A necessary and sufficient condition that the lines of curvature in

one family be circles is that the surface be the envelope of a single

infinity of spheres, the locus of whose centers is a curve, the radii

being determined by an arbitrary law.

From equations (91), (92) it follows that R cos a. Hence the

circles are geodesies only when R is constant, that is, for canal

surfaces
( 29). In this case, as is seen from (92), all the circles

are equal.

The circles are likewise of equal radius a when

where s is the arc of the curve of centers and c is a constant of

integration. Now equations (93) become

^ = x
(s + c)

a. y l =^y (s + c}IB, z
l
=z

(s + c)y,

which are the equations also of an involute of the curve of centers

( 21). This result may be stated thus* :

If a string be unwound from a curve in such a way that its moving

extremity M generates an involute of the curve, and if at M a circle

be constructed whose center is M and whose plane is normal to the

string, then as the string is unwound this circle generates a surface

with a family of equal circles for lines of curvature.

The locus of the centers of the spheres enveloped by a surface is

evidently one sheet of the evolute of the surface, and the radius

of the sphere is the radius of normal curvature in the direction

of the circle. Consequently this radius is a function of the

parameter of the spheres. Conversely, from 75, we have that

when
2

is a curve H
2
= 0, and consequently

Cf. Bianchi, Vol. II, p. 272.
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Excluding the case of the sphere, we have that p.2 is a function of

u alone. From the formulas of Rodrigues (IV, 32),

2x _ dX dy _ dY dz _ a

d^~~~ Pz ~^
1

fo~~ p2
~fo Tv~~ pz

^v

we have, by integration,

Hence the points of the surface lie on the spheres

(x
-

U, )

a+ (y
- tg

2+ (z
-

P,)
=

ft ,

and the spheres are tangent to the surface.

Since the normals to a surface along a circular line of curvature

form a cone of revolution, the second sheet of the evolute is the

envelope of a family of such cones. The characteristics of such a

family are conies. Hence we have the theorem :

A necessary and sufficient condition that one sheet of the evolute of

a surface be a curve is that the surface be the envelope of a single infinity

of spheres ; the second focal sheet is the locus of a family of conies.

133. Cyclides of Dupin. From the preceding theorem it results

that if also the second sheet of the evolute of a surface be a curve,

it is a conic, and then the first sheet also is a conic. Moreover, these

conies are so placed that the cone formed by joining any point on

one conic to all the points of the other is a cone of revolution.

A pair of focal conies is characterized by this property. And so

we have the theorem :

A necessary and sufficient condition that the lines of curvature in

both families be circles is that the sheets of the evolute be a pair of

focal conies.*

These surfaces are called the cy elides of Dupin. They are the

envelopes of two one-parameter families of spheres, and all such

envelopes are cyclides of Dupin. A sphere of one family touches

each sphere of the other family. Consequently the spheres of which

the cyclide is the envelope are tangent to three spheres.

We shall prove the converse theorem of Dupin f :

The envelope of a family of spheres tangent to three fixed spheres

is a cyclide.

* Cf. Ex. 19, p. 188.

t Applications de geomttrie et de mechanique, pp. 200-210. Paris, 1822.
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The plane determined by the centers of the three spheres cuts

the latter in three circles. If any point on the circumference (7,

orthogonal to these circles, be taken for the pole of a transforma

tion by reciprocal radii
(cf. 80), C is transformed into a straight

line L. Since angles are preserved in this transformation, the three

fixed spheres are changed into three spheres whose centers are on L.

Evidently the envelope of a family of spheres tangent to these three

spheres is a tore with L as axis. Hence the given envelope is trans

formed into a tore. However, the latter surface is the envelope of

a second family of spheres whose centers lie on L. Therefore, if

the above transformation be reversed, we have a second family of

spheres tangent to the envelope, and so the latter is a cyclide of

Dupin. We shall now find the equations of these surfaces.

Let (x^ y^ zj and (#2 , y2 ,
z
2 )

denote the coordinates of the points
on the focal conies which are the curves of centers of the spheres,
and jR

1?
E

2
the radii of the spheres. The condition of tangency is

(94) (Xi
- x

We consider first the case where the evolute curves are the focal

parabolas defined by (85). Now equation (94) reduces to

Since 2i
l
and R

z
are functions of u and v respectively, this equation

is equivalent to

where a is an arbitrary constant whose variation gives parallel

surfaces.

By the method of 132 we find that the coordinates (f, 77, f) of

the centers of the circular lines of curvature u const, and the

radius p are

9-0,
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Hence if P be a point on the circle and 6 denote the angle which

the radius to P makes with the positive direction of the normal to

the parabola (85), the coordinates of P are

x = f H
^ cos 0, ^ = p sin 0, 2 = ?-- cos 9.

v 1 + u2 Vl + if

This surface is algebraic and of the third order.

If the evolute curves are the focal ellipse and hyperbola (86), we have

(96) R
l
= -

(a cos u + *), A
2
= -

(cosh v
/c),

-! -

where /c is an arbitrary constant whose variation gives parallel surfaces.

This cyclide of Dupin is of the fourth degree. When in particular

the constanta is zero, the surface is the ordinary tore, or anchor ring.*

134. Surfaces with spherical lines of curvature in one system.

Surfaces with circular lines of curvature in one system belong evi

dently to the general class of surfaces with spherical lines of curva

ture in one system. We consider now surfaces of the latter kind.

Let S be such a surface referred to its lines of curvature, and

in particular let the lines v = const, be spherical. The coordinates

of the centers of the spheres as well as their radii are functions of

v alone. They will be denoted by (V^ F2 , F3 )
and It. By Joachims-

thal s theorem
( 59) each sphere cuts the surface under the same

angle at all its points. Hence for the family of spheres the expres

sion for the angle is a function of v alone
;

AVC call it V.

Since the direction-cosines of the tangent to a curve u = const, are

dX 3Y 1 dZ

when the linear element of the spherical representation is written

do-
2 = (odu

2
-}- dv\ the coordinates of S are of the form

/07\
(97)

,

R sin VdX
,= VA---=- +XR cos F,

Tr_ T_

y = F2+ + YR cos F,

7 sin F dZ

* For other geomotrical constructions of the cyclides of Dupin the reader is referred

to the article in the Encyklopadie der Math. Wissenschaflen, Vol. Ill, 3, p. 290.
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By hypothesis A, l
r
,
Z are the direction-cosines of the normal to S ;

consequently we must have

YA-- = O, VA-- = O.^ du ^ dv

If the values of the derivatives obtained from (97) be reduced by
means of (V, 22), and the results substituted in the above equa

tions, the first vanishes identically and the second reduces to

(98) XV[ + YVt + ZVZ + (R cos V) R sin FvV= 0,

where the primes indicate differentiation with respect to v. Con

versely, when this condition is satisfied, equations (97) define a

surface on which the curves v = const, are spherical. Hence :

A necessary and sufficient condition that the curves v = const, of an

orthogonal system on the unit sphere represent spherical lines of cur

vature upon a surface is that five functions of v, namely Vr F
2 , F3 ,

R, V, can I e found which satisfy the corresponding equation (98).

We note that F
1?
F

2 , F3 ,
and R cos V are determined by (98)

only to within additive constants. A change of these constants

for the first three gives a translation of the surface. If R cos V be

increased by a constant, we have a new surface parallel to the

other one. Hence *
:

If the lines of curvature in one system upon a surface be spherical,

the same is true of the corresponding system on each parallel surface.

Since equation (98) is homogeneous in the quantities F/, F^, F
3 ,

(R cos F) , R sin F, the latter are determined only to within a factor

which may be a function of v. This function may be chosen so

that all the spheres pass through a point. From these results we

have the theorem of Dobriner f :

With each surface with spherical lines of curvature in one system

there is associated an infinity of nonparallel surfaces of the same

kind with the same spherical representation of these lines of curvature.

Among these surfaces there is at least one for which all the spheres

pass through a point. At corresponding points of the loci of the cen

ters of spheres of two surfaces of the family the tangents are parallel.

* Cf. Bianchi, Vol. II, p. 303. f Crelle, Vol. XCIV (1883), pp. 118, 125.
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If the values of x, y, z from (97) be substituted in the formulas

of Rodrigues (IV, 32),

dx dx dx dx
&amp;lt;99)

&quot;* a^-^
and similarly for y and z, we obtain by means of (V, 22),

=R cos

Conversely, when for a surface referred to its lines of curvature

the principal radius p l
is of the form

-.-*.&quot;

where (^ and $2
are any functions whatever of v, the curves

v = const, are spherical. For, by (V, 22),

dv V~ ov du

Consequently, from the first of (99), in which p l
is given the above

value, we obtain by integration

where V
l
is a function of v alone. Similar results follow for y and z.

As these expressions are of the form (97), we have the theorem :

A necessary and sufficient condition that the lines of curvature

v = const, be spherical is that p l
be of the form (100).

EXAMPLES

1. If the lines of curvature in one system are plane and one is a circle, all

are circles.

2. When the lines of curvature in one family on a surface are circles, their

spherical images are circles whose spherical centers constitute the spherical indi-

catrix of the tangents to the curve of centers of the spheres which are enveloped

by the given surface. Show also that each one-parameter system of circles on the

unit sphere represents the circular lines of curvature on an infinity of surfaces,

for one of which the circles are equal.



EXAMPLES 31T

3. If the lines of curvature of a surface are parametric, and the curves u = const.

are spherical, we have
j j cot F

Pgu B sin F Pi

where pgu, /&amp;gt;i,

E denote the radii of geodesic curvature and normal curvature in the

direction v const, and of the sphere respectively, and F denotes the angle under

which the sphere cuts the surface.

4. When a line of curvature is spherical, the developable circumscribing the

surface along this line of curvature also circumscribes a sphere ;
and conversely,

if such a developable circumscribes a sphere, the line of curvature lies on a sphere

concentric with the latter (cf. Ex. 7, p. 149).

5. Let S be a pseudospherical surface with the spherical representation (25) of

its lines of curvature. Show that a necessary and sufficient condition that the curves

v = const, be plane is
a / 1 a&\ _
du \sin w dv/

show also that in this case w is given by
V -U

COS 0) = ,

where V and V are functions of u and v respectively, which satisfy the conditions

U * = U&quot;

4 + (a
-

2) C72 + 6, F 2 = F* + aF 2
-f (a -f b - 1),

a and b being constants, and the accent indicating differentiation, unless U or

&quot;V is zero.

6. When the lines of curvature v const, upon a pseudospherical surface are

plane, the linear element is reducible to the form

_ a2 tanh2
(u + v) dw2 a2 sech2

(u 4- v} dv
2

~
C -A cosh 2 u -f B sinh 2 u G + A cosh 2 v + B sinh 2 v - 1

where A, B, C are constants. Find the expressions for the principal radii.

7. When the lines of curvature v = const, on a spherical surface are plane, the

linear element is reducible to

_ a2 cot2 (u + v) dw2 a2 esc2 (u + v} di?
2

~
.A sin 2 w -f B - I A sin 2 u - 7?

where J. and J5 are constants. The surfaces of Exs. 5 and 6 are called the surfaces

of Enneper of constant curvature.

GENERAL EXAMPLES

1. The lines of curvature and the asymptotic lines on a surface of constant

curvature can be found by quadratures.

2. When the linear element of a pseudospherical surface is in the form (iii) of (7),
M

the equations x = cw, y = ae~a determine a conformal representation of the surface

upon the plane, which is such that any geodesic on the surface is represented on

the plane by a circle with its center on the ic-axis, or by a line perpendicular to

this axis.
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3. When the linear elements of a developable surface, a spherical surface, and

a pseudospherical surface are in the respective forms

ds~ = du 2 + u-dv2
,

ds 2 = a?(du
2 + sin2 wdu2

), ds2 = 2
(dw

2 + sinh^udw2
),

the finite equations of the geodesies are respectively

Au cos v -f Bu sin v -f C = 0, A tan u cos v -f- B tan u sin v + C = 0,

A tanh u cos v + .B tanh u sin v + C = 0,

where A, Z&amp;gt;,

C are constants
;

if the coefficients of A and B are in any case equated

to x and y, the resulting equations define a correspondence between the surface and

the plane such that geodesies on the former correspond to straight lines on the latter.

Find the expression for each linear element in terms of x and y as parameters.

4. Each surface of center of a pseudospherical surface is applicable to the catenoid.

5. The asymptotic lines on the surfaces of center of a surface of constant mean

curvature correspond to the minimal lines on the latter.

6. Surfaces of constant mean curvature are characterized by the property that

if u = const.
,
v = const, are the minimal curves, then D is a function of u alone

and D&quot; of v alone.

7. Equation (23) admits the solution w = 0, in which case the surface degen

erates into a curve. Show that the general integral of the corresponding equations
M + r cos &amp;lt;r

(35) is tan 0/2 = Ce Bin&amp;lt;r

;
take for S the line x = 0, y

-
0, z = an and derive

the equations of the transforms of -S; shc^w that the latter are surfaces of Dini

(Ex. C, 122), or a pseudosphere.

8. Show that the Backlund transforms of the surfaces of Dini and of the pseudo-

sphere can be found without integration, and that if the pseudosphere be trans

formed by the transformation of Bianchi, the resulting surface may be defined by

2 a cosh u 2 a cosh u .

x = (sinu ucosu), y (cosv + vsm v),V V

(2
sinh u cosh u\

U
cosh2 w + v2 /

Show that the lines of curvature v const, lie in planes through the 2-axis.

9. The tangents to a family of geodesies of the elliptic or hyperbolic type on a

pseudospherical surface are normal to a W-surface
;
the relations between the radii

are respectively . P\ + c ., Pi 4- c

P l PO = a tanh , p l p2 = a coth ,

a a

where a and c are constants (cf. 7(3).

10. Show that the linear elements of the second surfaces of center of the

&amp;gt;F-surfaces of Ex. are reducible to the respective forms

ds.? = tanh4 -
du&quot;

2 + sech2 - dv2
,

ds.? - coth4
U
du2 + csch2 ~ du2

,

a a a a

and that consequently these surfaces are applicable to surfaces of revolution

whose meridians are defined by

where K denotes a constant.
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11. Determine the particular form of the linear element (49), and the nature

of the curves upon the surface to which the asymptotic lines on the sheets of

the evolute correspond, when

p. 11
(a) = const; (6)

-- = const.
Pz Pi Pz

12. When a JF-surface is of the type (72), the surfaces of center are applicable
to one another and to an imaginary paraboloid of revolution.

13. When a IF-surface is of the type (72) and the linear element of the sphere
has the form (VI, GO), the curves u + v const, and u y const, on the spherical

representation are geodesic parallels whose orthogonal trajectories correspond to

the asymptotic lines on the surfaces of center
;
hence on each sheet there is a family

of geodesies such that the tangents at their points of meeting with an asymptotic
line are parallel to a plane, which varies in general with the asymptotic line.

14. Show that the equations

-+ fVsm-dv. y = aUsin- C
a J a a J

where a denotes an arbitrary constant, define a family of applicable molding surfaces.

15. When the lines of curvature in one system on a surface are plane, and the

lines of the second system lie on spheres which cut the surface orthogonally, the

latter is a surface of Joachimsthal.

16. The spherical lines of curvature on a surface of Joachimsthal have constant

geodesic curvature, the radius of geodesic curvature being the radius of the sphere
on which a curve lies.

17. When the lines of curvature in one system on a surface lie on concentric

spheres, it is a surface of Monge, whose director-developable is a cone with its

vertex at the center of the spheres ;
and conversely.

18. The sheets of the evolute of a surface of Monge are the director-developable
and a second surface of Monge, which has the same director-developable and whose

generating curve is the evolute of the generating curve of the given surface.

19. If the lines of curvature in one system on a surface are plane, and two in

the second system are plane, then all in the latter system are plane.

20. A surface with plane lines of curvature in both systems, in one of which

they are circles, is

(a) A surface of Joachimsthal.

(5) The locus of the orthogonal trajectories of a family of spheres, with centers

on a straight line, which pass through a circle on one of the spheres.

(c) The envelope of a family of spheres whose centers lie on a plane curve C,
and whose radii are proportional to the distances of these centers from a straight
line fixed in the plane of C.

21. If an arbitrary curve C be drawn in a plane, and the plane be made to move
in such a way that a fixed line of it envelop an arbitrary space curve T, and at the

same time the plane be always normal to the principal normal to T, the curve C
describes a surface of Monge.
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22. If all the Bianchi transforms of a pseudospherical surface S are surfaces of

Enneper (cf. Ex. 5, 134), S is a surface of revolution.

23. When u has the value in Ex. 5, 134, the surfaces with the spherical

representation (25), and with the linear element

ds* = (HI cos w + Ydu2 + U? sin2 u du2
,

where U\ is an arbitrary function of M, are surfaces of Joachimsthal.

24. If the lines of curvature in both systems be plane for a surface S with the

same spherical representation of its lines of curvature as for a pseudospherical

surface, S is a molding surface.

25. If S is a pseudospherical surface with the spherical representation (25) of

its lines of curvature, and the curves v = const, are plane, the function 6, given by

c2w aw aw . aw .

sin 6 - + cos h sin w = 0,
a 2 aw dv dv

determines a transformation of Bianchi of S into a surface Si for which the lines

of curvature v = const, are plane.

26. A necessary and sufficient condition that the lines of curvature v= const,

on a pseudospherical surface with the representation (25) of its lines of curvature

be spherical is that -\r a.,

cot w = y1 + J ,

sin w dv

where V and V\ are functions of v alone. Show that when w is a solution of (23)

and of
i aw a / i aw\

sin2 w aw aw \sinwatv

a / i aw\ a2 / i aw\

au\sin2wau/ aM2 \sinwau/

the curves v = const, are plane or spherical, and that in the latter case V and V\

can be found directly.

27. Show that when w is a solution of (23) and of

dv aucv2 a 2 awau du \au/

and ( ) ^. 0, the lines of curvature u = const, are spherical on the pseudo-
du \cos w dv/

spherical surface with the spherical representation (25) ;
and that when w is such

a function, upon the surfaces with the linear element

or

/aw\2

\dv/

/ r)w\ 2 I

(sin w + F )
du2 + cos w -f V +V

\ dv/

where F is a function of t&amp;gt; alone, the curves t&amp;gt;
= const, are spherical; in the former

case the spheres cut the surface orthogonally.



CHAPTER IX

DEFORMATION OF SURFACES

135. Problem of Minding. Surfaces of constant curvature. Ac

cording to 43 two surfaces are applicable when a one-to-one

correspondence can be established between them which is of

such a nature that in the neighborhood of corresponding points

corresponding figures are congruent or symmetric. It was seen

that two surfaces with the same linear element are applicable,

the parametric curves on the two surfaces being in correspon

dence. But the fact that the linear elements of two surfaces are

unlike is not a sufficient condition that they are not applicable ;

in evidence of this we have merely to recall the effect of a change
of parameters, to say nothing of a change of parametric lines.

Hence we are brought to the following problem, first proposed

by Minding :
*

To find a necessary and sufficient condition that two surfaces be

applicable.

From the second theorem of 64 it follows that a necessary

condition is that the total curvature of the two surfaces at corre

sponding points be the same. We shall show that this condition

is sufficient for surfaces of constant curvature.

In 64 we found that when K is zero at all points of a surface,

the surface is applicable to the plane. If the plane be referred to

the system of straight lines parallel to the rectangular axes, its

linear element is 797272
ds2 =dx2+ dy*.

Hence the analytical problem of the application of a developable

surface upon the plane reduces to the determination of orthogonal

systems of geodesies such that when these curves are parametric

the linear element takes the above form.

*
Crelle, Vol. XIX (1839), pp. 371-387.
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Referring to the results of 39, we see that in this case the

factor tt
v
must equal unity. Consequently we must find a function

6 such that the left-hand members of the equations

du + -.dv = d(x + iy},

du +
\

are exact differentials, in which case these equations give x and y

by quadratures. Hence we must have

du\ -^E 99

which are equivalent to

du~Hu ZEHdu 2H dv

dd _ J_ d_G_ _ F
d_E_

dv
~
^H ~du 2EH dv

From (V, 12) it is seen that these equations are consistent when

K= 0. In this case 6, and consequently x and y, can be found by

quadratures.

The additive constants of integration are of such a character

that if ar , y are a particular set of solutions, the most general are

x = x cos a yQ
sin a + a, y = X

Q
sin a + yQ

cos a +
/&amp;gt;,

where a, #, 5 are arbitrary constants.

In the above manner we can effect the isometric representation

of any developable surface upon the plane, and consequently upon

itself or any other developable. These results may be stated thus :

A developable surface is applicable to itself, or to any other develop

able, in a triple infinity of ways, and the complete determination of

the applicability requires quadratures only.

Incidentally we have the two theorems:

The geodesies upon a developable surface can befoundby quadratures.

If the total curvature of a quadratic form be zero, the quadratic

form is reducible by quadratures to dad&.
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Suppose now that the total curvature of two surfaces S, S
l

is

I/a
2
,
where a is a real constant. Let P and 7? be points on S

and
/S^ respectively, C and C

l geodesies through these respective

points, and take P and I[ for the poles and C and C
l
for the

curves v = of a polar geodesic system on these surfaces. The

linear elements are accordingly (VIII, 6)

d** = du2+ sin
2 - dv\ ds 2 = du*+ sin

2^ dv 2
.

Hence the equations u u v = v

determine an isometric representation of one surface upon the

other, in which P and C correspond to P and C
l respectively.

According as the upper or lower sign in the second equation

is used, corresponding figures are equal or symmetric. Similar

results obtain for pseudospherical surfaces. Hence we have:

Any two surfaces of constant curvature, different from zero, are in

two ways applicable so that a given point and geodesic through it on one

surface correspond to a given point and geodesic through it on the other.

In particular, a surface of constant curvature can be applied to

itself so that a given point shall go into any other point and a

geodesic through the former into one through the latter. Combin

ing these results with the last theorem of 117, we have:

A nondevelopable surface of constant curvature can be applied to

itself, or to any surface of the same curvature, in a triple infinity of

ways, and the complete realization of the applicability requires the

solution of a Iliccati equation.

136. Solution of the problem of Minding. We proceed to the

determination of a necessary and sufficient condition that two sur

faces S, 8 of variable curvature be applicable. Let their linear

elements be

ds
2 =Edu2+ 2 Fdudv + G dv2

,
ds

2 = E du 2+ 2F du dv + G dv 2
.

By definition S and S are applicable if there exist two independ

ent equations

(1) (/&amp;gt; (U, V)
= $(U

J

,
V 1

), ^ (U, V)
=

^&amp;lt;(U ,
V

),

establishing a one-to-one correspondence between the surfaces of

such a nature that by means of (1) either of the above quadratic

forms can be transformed into the other.
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It is evident that if the two surfaces are applicable, the differen

tial parameters formed with respect to the two linear elements are

equal. Hence a necessary condition is

(2) A^ =
A;&amp;lt;/&amp;gt;

, A^, f)=A!(&amp;lt;#&amp;gt; , f), A
1f=A;t ,

where the primes indicate functions pertaining to S . These con

ditions are likewise sufficient that the transformation (1) change

either of the above quadratic forms into the other. For, if the

curves
(/&amp;gt;

= const., ^r const. ;
&amp;lt;/&amp;gt;

= const., ^ = const, be taken for

the parametric curves on S and Sf

respectively, the respective

linear elements may be written (cf. 37)

,

Hence when equations (1) and (2) hold, the surfaces are applicable.

The next step is the determination of equations of the form (1).

Since the curvature of two applicable surfaces at corresponding points

is the same, one such equation is afforded by the necessary condition

(3) K(u,v) =K (u ,v ).

The first of equations (2) is

(4) A^A;* .

Both members of this equation cannot vanish identically. For, in

this case the curves K const, and K = const, would be minimal

( 37), and consequently imaginary. If these two equations are

independent of one another, that is,

they establish a correspondence, and the condition that it be iso

metric is, as seen from (2),

If, however,

(5) \K
we may take for the second of (1)

(6)

unless

(7) A
2J

fiT
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If this condition be not satisfied, the conditions that
(3), (6) define

an isometric correspondence are

A
1
A

a
JST=

Finally, we consider the case where both (5) and (7) hold. Since

the ratio of \K and A
2
K is a function of JC, the curves K= const.

and their orthogonal trajectories t = const, form an isothermal sys
tem of lines on S

( 41). Moreover, the function t can be found

by quadratures, and the linear element is reducible to

-

(8) ds
2= - (dK

2+ e J &amp;lt;

A
&amp;gt; dt

2

).

J(K )

When in particular A 2
^T= 0, the linear element is

In like manner the linear element of S is reducible to

or, in the particular case A^ = 0, to

In either case the equations

K=K
i

t = t +a,

where a is an arbitrary constant, define the applicability of the

surfaces.

We have thus treated all possible cases and found that it can

be determined without quadrature whether two surfaces are appli

cable. Moreover, in the first two cases the equations defining the

correspondence follow directly, but in the last case the determina

tion requires a quadrature. The last case differs also in this respect :

the application can be effected in an infinity of ways, whereas in

the first two cases it is unique.

* If the surface be referred to the curves &amp;lt;r

= const, and their orthogonal trajectories,

where a C= , equation (6) may be replaced by A2tr = A^ ,
and it can be shown

J ~vf(K)
that

AI(&amp;lt;T, &&amp;lt;&amp;lt;?)

=
Ai(&amp;lt;r , A%&amp;lt;r ) is a consequence of the other conditions. Cf. Darboux,

Vol. Ill, p. 227.
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Furthermore, we notice from (8) that in the third case the sur

face S is applicable to a surface of revolution, the parallels of the

latter corresponding to the curves K= const, of the former. Con

versely, the linear element of every surface applicable to a surface

of revolution can be put in the form (8). For, a necessary and

sufficient condition that a surface be applicable to a surface of

revolution is that its linear element be reducible to

where U is a function of u alone
( 46). Now

U&quot; CduAlW = l, X= --,

From the second it follows that u F(K), and consequently

F^K). When these values are substituted in the above

equations, we have, in consequence of Ex. 5, p. 91,

(9) A
1/C=/(A&quot;), A,JiT =*&amp;lt;*).

Hence we have the theorem :

Equations (9) constitute a necessary and sufficient condition that a

surface be applicable to a surface of revolution.

The equations
K=K, t = t +a

define an isometric representation of a surface with the linear ele

ment (8) upon itself. Therefore we have :

Every surface applicable to a surface of revolution admits of a

continuous deformation into itself in such a way that each curve

K= const, slides over itself.

Conversely, every surface applicable to itself in an infinity of

ways is applicable to a surface of revolution. For, if the curvature

is constant, the surface is applicable to a surface of revolution

( 135), and the only case in which two surfaces of variable curva

ture are applicable in an infinity of ways is that for which condi

tions (5) and (7) are satisfied.
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137. Deformation of minimal surfaces. These results suggest a

means of determining the minimal surfaces* applicable to a surface

of revolution. In the first place we inquire under what conditions

two minimal surfaces are applicable. The latter problem reduces

to the determination of two pairs of parameters, w, v and u^ vv and

two pairs of functions, F(u), &amp;lt;f&amp;gt;(v)*

and Ffa^, ^ &amp;gt;

1 (f 1 ),
which satisfy

the condition

(10) (1 + uvfF(u)(v) dudv = (1 + u^)* f\(uj 4^) du^dvr

From the nature of this equation it follows that the equations which

serve to establish the correspondence between the two surfaces are

either of the form

(11) ^=0(M), V1= ^(V),

or

(12) ,= *(), ,
= *()

If either set of values for u
l
and v

l
be substituted in (10), and if

after removing the common factor dudv we take the logarithmic
derivative with respect to u and v, we obtain

(1 + u^Y (1 + uvf
As this may be written

,.. o du
l
dv

l
dudv

(i + uft)*

~~

(I +^^y
2

the spherical images of corresponding parts on the two surfaces are

equal or symmetric according as (11) or (12) obtains
( 47). The

latter case reduces to the former when the sense of the normal to

either surface is changed. When this has been done, corresponding

spherical images are equal and can be made to coincide by a rota

tion of the unit sphere about a diameter. Hence one surface can be

so displaced in space that corresponding normals become parallel,

in which case the two surfaces have the same representation, that

is, Wj
= u, v

x
= v. Now equation (10) is

which is equivalent to

F
l(u)=cF(u), 3

* no.
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where c denotes a constant. If the surfaces are real, c must be of

the form e
i&amp;lt;x

. Hence, in consequence of 113, we have the theorem :

A minimal surface admits of a continuous deformation into an

infinity of minimal surfaces, which are either associate to it or can

be made such by a suitable displacement.

We pass to the determination of a minimal surface which admits

of a continuous deformation into itself, and consequently is appli

cable to a surface of revolution. In consequence of the interpre

tation of equation (13) it follows that if a minimal surface be

deformed continuously into itself, a point p on the sphere tends to

move in the direction of the small circle through p, whose axis is

the momentary axis of rotation, and consequently each of these

small circles moves over itself. From 47 it follows that if the

axis of rotation be taken for the 2-axis, these small circles are the

curves uv = const. In the deformation each point of the surface

moves along the curve K= const, through it. Hence K is a func

tion of uv. From (VII, 100, 102) we have

A=___^l_ ;

consequently F(u)Q(v) must be a function of uv, and hence

uF (u) __ v&amp;lt;& (v)

F(u) 4&amp;gt;(v)

The common value of these two terms is a constant. If it be

denoted by K, we have
K

,

where c and c
1
are constants. Hence from (VII, 98) we have :

Any minimal surface applicable to a surface of revolution can be

defined by equations of the form

*
c f (1

_ u
*)
u du + | &amp;lt;?j

f(1
- v

1

) v*dv,

-c Cfl + u^u du ^Ci 1(1
2 J

{ 2V/r &amp;lt;+iu ^du +
c^Ji

iv,

ivhere c, c., and K are arbitrary constants.

(14) y
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Since the curves K const, are represented on the sphere by the

small circles whose axis is the z-axis, in each finite deformation of

the surface into itself, as well as in a very small one, the unit sphere

undergoes a rotation about this axis. In 47 it was seen that such
a rotation is equivalent to replacing u, v by ueia

, ve~
ia

, where a
denotes the angle of rotation. Hence the continuous deformation
of a surface (14) is defined by the equations resulting from the

substitution in (14) of ueia
,
ve~ i&amp;lt;z

for u, v respectively.
An important property of the surfaces (14) is discovered when

we submit such a surface to a rotation of angle a about the

z-axis. Let S denote the surface in its new position, and write

its equations in the form

f(1
- tf

and similarly for y and z. Between the parameters u, v and u, v

the following relations hold:

u = ueta
, v = ve~ tar

,

and we have also

x = x cos a y sin a, ~y
= x sin a -f y cos a:, z = z.

Combining these equations with (14), we find

F (u)
= cuK

e~ ia(K + 2)
, 5&amp;gt;

(v)
= c

{
v
K
eia(K + 2)

.

Hence, for the correspondence defined by u = ?/, v = v, the surface S
is an associate of S, unless K -f- 2 = 0, in which case it is the same
surface.

We consider the latter case, and remark that its equations
are (cf. 110)

If u, v be replaced by ueia
, ve~ ia

, and the resulting expressions be

denoted by xv y^ z
x , we have

(15) x
l
= xcosa ysina1 y^

= x sin a + y cos a, z
l
= z + c

lR(iac}.

Hence, in a continuous deformation, the surface slides over itself

with a helicoidal motion. Consequently it is a helicoid. Moreover,
it is the only minimal helicoid. For, every helicoid is applicable
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to a surface of revolution, and each minimal surface applicable to

a surface of revolution with the z-axis for the axis of revolution

of the sphere is defined by (14). But only when ic = 2 will the

substitution of we 1

&quot;,
ve~

ia

give a set of equations such as (15).

Hence we have :

The helicoidal minimal surfaces are defined by the Weierstrass

formulas when F(u)=c/u
2

.

And we may state the other results thus :

If any nonhelicoidal minimal surface, which is applicable to a

surface of revolution, be rotated through any angle about the axis of

the unit sphere whose small circles represent the curves K const.

on the surface, and a correspondence with parallelism of tangent

planes be established between the surfaces, they are associate ; con

sequently the associates of such a minimal surface are supcrposable.

EXAMPLES

1 . Find under what conditions the surfaces, whose equations are

z\ F(r) + av,

can be brought into a one-to-one correspondence, so that the total curvature at

corresponding points is the same. Determine under what condition the surfaces

are applicable.

2. If the tangent planes to two applicable surfaces at corresponding points are

parallel, the surfaces are associate minimal surfaces.

3. Show that the equations

x = eau t y = e- a
v, z aeauz

-f b&amp;lt;y~

a
v 2

,

where a is a real parameter, and a and 6 are constants, define a family of parab

oloids which have the same total curvature at points with the same curvilinear

coordinates. Are these surfaces applicable to one another ?

4. Find the geodesies on a surface with the linear element

duz _ 4 y dudv + 4 u dv2

ds2 =.--
4(w-t&amp;gt;

2
)

Show that the surface is applicable to a surface of revolution, and determine the

form of a meridian of the latter.

5 . Determine the values of the constants a and 6 in

ds* = du2 + [(u + au)
2 + 62 ]

du2
,

so that a surface with this linear element shall be applicable to

(a) the right helicoid.

(&) the ellipsoid of revolution.
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6. A necessary and sufficient condition that a surface be applicable to a surface

of revolution is that each curve of a family of geodesic parallels have constant

geodesic curvature.

7. Show that the helicoidal minimal surfaces are applicable to the catenoid and

to the right helicoid.

138. Second general problem of deformation. We have seen that

it can always be determined whether or not two given surfaces are

applicable to one another. The solution of this problem was an

important contribution to the theory of deformation. An equally

important problem, but a more difficult one, is the following :

To determine all the surfaces applicable to a given one.

This problem was proposed by the French Academy in 1859, and

has been studied by the most distinguished geometers ever since.

Although it has not been solved in the general case, its profound study
has led to many interesting results, some of which we shall derive.

If the linear element of the given surface be

c?s
2 = Edu? + 2 F dudv -f- G dv*,

every surface applicable to it is determined by this form and by a

second, namely Ddu*+ 2 D dudv + D&quot;dv
2
,
whose coefficients satisfy

the Gauss and Codazzi equations ( 64). Conversely, every set of

solutions D, D ,
D&quot; of these equations defines a surface applicable

to the given one, and the determination of the Cartesian coordinates

of the corresponding surface requires the solution of a Riccati equa
tion. But neither the Codazzi equations, nor a Riccati equation, can

be integrated in the general case with our present knowledge of

differential equations. Later we shall make use of this method in

the study of particular cases, but for the present we proceed to

the exposition of another means of attacking the general problem.

When the values of D, D ,
Dn obtained from the Gauss equations

(V, 7) are substituted in the equation H 2K=J)D&quot;D 2

, the result

ing equation is reducible, inconsequence of the identity A^ =1 A 2

(cf. Ex. 6, p. 120), to

(16)

dtf

&quot;

\du dv~\ 1 J ^ I 2 J dv
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This equation, which is satisfied also by y and 2, involves only

E, F, G and their derivatives, and consequently its integration

will give the complete solution of the problem. It is linear in

\tfxtfx / c
2x Yl &x tfx tfx

, , , , , ^,
-

^ri^l^r-sr) oTi 1 T-T- Tl and therefore is of the form
\_du cv \dudv/ J dir ^&amp;lt;7v 0tr

studied by Ampere. Hence we have the theorem:

The determination of all surfaces applicable to a given one requires

the integration of a partial differential equation of the second order

of the Ampere type.

In consequence of (16) and (V, 36) we have that the coordinates

of a surface with the linear element

(17) ds
2 = Edu2+ 2 Fdudv + G dv2

are integrals of

(18) A
22
= (l A^JST,

the differential parameters being
1 formed with respect to (17). We

shall find that when one of these coordinates is known the other

two can be found by quadratures.

Our general problem may be stated thus :

G-iven three functions E, F, G of u and v ; to find all functions

x, y, z of u and v which satisfy the equation

dx2 + dy
1+ dz2= E du*+ 2 Fdudv + G dv\

where du and dv may be chosen arbitrarily.

Darboux * observed that as the equation may be written

(19) dx2+ dy*
= Edu2 +2Fdudv + Gdv2- dz\

whose left-hand member is the linear element of the plane, or of a

developable surface, the total curvature of the quadratic form

(20) \E- p?Y&quot;U + 2\F-
*

**\
L WJ L dudv\

dudv
dv\

must be zero
( 64).

In order to find the condition for this, we assume that z is

known, and take for parametric lines the curves z = const, and their

*L.c., Vol. Ill, p. 253.
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orthogonal trajectories for v = const. With this choice of parame
ters the right-hand member of (19) reduces to (E I)dz

2+ Gdv*.

The condition that the curvature of this form be zero is

tr

where K denotes the curvature of the surface. But this is the

condition also that z be a solution of (18) when the differential

parameters are formed with respect to Edz 2
-}-Gdv

2
. However, the

members of equation (18) are differential parameters ; consequently
z is a solution of this equation whatever be the parametric curves.

By reversing the above steps we prove the theorem :

When z is any integral of the equation (18), the quadratic form (20)

has zero curvature.

When such a solution is known we can find by quadratures

(cf. 135) two functions x, y such that the quadratic form (20) is

equal to dx*+ dy
z

, provided that

that is, Ajg &amp;lt; 1. Hence we have the theorem :

If z be a solution of A 22 (1 A
X0)K such that A^ &amp;lt; 1, it is one

of the rectangular coordinates of a surface with the given linear ele

ment, and the other two coordinates can be obtained by quadratures.

139. Deformations which change a curve on the surface into a

given curve in space. We consider the problem :

Can a surface be deformed in such a manner that a given curve C

upon it comes into coincidence with a given curve F in

Let the surface be referred to a family of curves orthogonal to C
and to their orthogonal trajectories, C being the curve v = 0, and

its arc being the parameter u, so that E \ for v = 0. The same

conditions hold for F on the deform.
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Since the geodesic curvature of C is unaltered in the deformation

( 58), it follows from the equation (IV, 47) for the new surface,

namely

(21) p = pg amw,

that the deformation is impossible, if the curvature of F at any

point is less than the geodesic curvature of C at the corresponding

point. Since both p and pg
are known, equation (21) determines

to, and consequently the direction of the normal to the new surface

along F is fixed. This being the case, the direction of the tangents

to the curves u = const, on the new surface at points of F can be

. 1 dx 1
c&amp;gt;f

1 cz
found, and so we have the values of - r-i = tor v = U,

V&amp;lt;?
to \IG co vV; w

as well as &amp;gt;
for v = 0, the latter being the direction-cosines

cu cu du

of the tangent to F. If these expressions be differentiated with

, tfx c~y d
2
z c

2x tfy c
2
z

respect to u, we obtain the values ot ^ 77, ; T r- &amp;gt; 77-
3u&quot; cu&quot; cu&quot; cudv ducv cucv

for v=0. Since F=Q and E = 1 for v = 0, the Gauss equations

(V, 7) for v = are

tfx 1 SEdx= r JJJL+

du2 2G to to

J. I/ Jjy t/*f J- *y*-* f**-

&quot;

2 &quot;a^ a^ 2G du to

dv* 2 cu du 2 6r 00 dv

All the terms of the first two equations have been determined

except D and D 1

;
hence the latter are given by these equations.

Since the total curvature A&quot; is unaltered by the deformation, it is

known at all points of F; consequently // is given by H*K =

/&amp;gt;/&amp;gt;&quot; /&amp;gt;

2
, unless D is zero, in which case F is an asymptotic line

d
2x

and p =p (J

. When /)&quot; is found we can obtain the value of
5
from

the last of equations (22). From the method of derivation of equa

tion (16) it follows that the above process is equivalent to finding

the value of^ from equation (16), which is possible unless D = 0.

to

Excluding this exceptional case, we remark that if equations (22)
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be differentiated with respect to u, we obtain the values of all the

derivatives of x of the third order for v = except
- The latter

may be obtained from the equation which results from the differ

entiation of equation (16) with respect to v. By continuing this

process we obtain the values for v of the derivatives of x of all

orders, and likewise of y and z. If we indicate by subscript null

the values of functions, when u = U
Q , v = 0, the expansions

fdx\ idx= z + n
\dufy \dvfy 2\#ir/o \dudvh

and similar expansions for y and 2, are convergent in general, as

Cauchy has shown,* and x, y, z thus defined are the solutions of

equation (16) which for v = satisfy the given conditions. Hence :

A surface S can be deformed in such a manner that a curve C upon
it comes into coincidence with a given curve F, provided that the

curvature of F at each point is greater than the geodesic curvature

of C at the corresponding point.

There remains the exceptional case p = pa
. If the desired def

ormation is possible, F is an asymptotic line on the deform, and

consequently, by Enneper s theorem
( 59), its radius of torsion

must satisfy the condition r
2 = 1/JC. Hence when C is given, F

is determined, if it is to be an asymptotic line.

If F satisfies these conditions, the value of D&quot; for v = is arbi

trary, as we have seen. But when it has been chosen, the further

determination of the values of the derivatives of #, y, z of higher

order for v = is unique, it being the same as that pursued in

the general case. Hence equation (16) admits as solution a family

of these surfaces, depending upon an arbitrary function. For all

.of these surfaces the directions of the tangent planes at each

point of F are the same. Hence we have the theorem :

Criven a curve C upon a surface 8 ; there exists in space a unique

curve F with which C can be brought into coincidence by a deforma

tion of 8 in an infinity of ways ; moreover, all the new surfaces are

tangent to one another along F.

* Cf . Goursat, Lemons surTintegration des Equations aux derivees partielles du second

ordre, chap. ii. Paris, 1896.
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If C is an asymptotic line on S, it may be taken for F; hence :

A surface may be subjected to a continuous deformation during

which a given asymptotic line is unaltered in form and continues to

be an asymptotic line on each deform.

This result suggests the problem :

Can a surface be subjected to a continuous deformation in which a

curve other than an asymptotic line is unaltered?

By hypothesis the curvature is not changed and the geodesic

curvature is necessarily invariant; hence from (21) we have that

sin o&amp;gt; must have the same value for all the surfaces. If o&amp;gt; is the

same for all surfaces, the tangent plane is the same, and consequently

the expansions (23) are the same. Hence all the surfaces coincide

in this case. However, there are always two values of W for which

sin o&amp;gt; has the same value, unless w is a right angle. Hence it is

possible to have two applicable surfaces passing through a curve

whose points are self-correspondent, but not an infinity of such

surfaces. Therefore :

An asymptotic line is the only curve on a surface which can remain

unaltered in a continuous deformation.

140. Lines of curvature in correspondence. We inquire whether

a surface S can be deformed in such a manner that a given curve

C upon it may become a line of curvature on the new surface.

Suppose it is possible, and let F denote this line of curvature.

The radii of curvature and torsion of F must satisfy (21) and

1/T dto/ds (cf. 59), where pg
is the same ;for F as for C. If

we choose for w any function whatever, the functions p and r are

thus determined, and F is unique. Since o&amp;gt; fixes the direction of the

tangent plane to the new surface along F, there is only one deform

of S of the kind desired for each choice of w (cf. 139). Hence :

A surface can be deformed in an infinity of ways so that a given

curve upon it becomes a line of curvature on the deform.

This result suggests the following problem of Bonnet*:

To determine the surfaces which can be deformed with preservation

of their lines of curvature.

* Memoire sur la theorie des surfaces applicables sur une surface donnee, Journal de

I Ecole Polytechnique, Cahier 42 (1867), p. 58.
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We follow the method of Bonnet in making use of the funda

mental equations in the form (V, 48, 55). We assume that the lines

of curvature are parametric. In this case these equations reduce to

($&amp;gt;i _ dct-~~ Sr ^
(24)

dv

From these equations it follows that if $ and S are two applicable

surfaces referred to corresponding lines of curvature, the functions

r and r
l
have the same value for both surfaces, and consequently

the same is true of the product qpr Hence our problem reduces

to the determination of two sets of functions pv q ; p[, q , satisfying

the above equations. In consequence of the identity

(25) p(q =P&
we have from the first two of (24)

*- &amp;lt;S?-S-

of which the integrals are pi

2= p?+f(v), q
2 =

&amp;lt;f+ &amp;lt;#&amp;gt;(M),

where f(v)

and
&amp;lt;f&amp;gt;(u)

are functions of v and u respectively. The parameters w,

v may be chosen so that these functions become constants #, /3,

and consequently

(27) ;&amp;gt;I

2 =K+ ?
2

=&amp;lt;Z

2+-
If these equations be multiplied together, the resulting equation is

reducible by means of (25) to either of the forms

(28) pift + (fa + a(3 = 0, p(*P + z *a-a& = b.

From the first we see that a and fi cannot both be positive if S is real,

and from the second that they cannot both be negative. We assume

that a is negative and j3 positive, and without loss of generality write

(29) rf-rf-li ^-tf+l-

The first of (28) reduces to pi q*
= l. In conformity with this

we introduce a function
o&amp;gt;,

thus

p l
= cosh

&&amp;gt;, q
= sinh o&amp;gt;.

Then equations (29) may be replaced by

p[
= sinh ft), ^

= cosh o&amp;gt;.
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Moreover, the fundamental equations (24) reduce to

_
dv du V] du

a
2 o2

o&amp;gt;

,
c o&amp;gt; . , ,

: H-- = smh o&amp;gt; cosh o&amp;gt;.

dt*
a

0v-

Comparing these results with 118, we see that the spherical

representation of lines of curvature of the surfaces S and Sf

respec

tively is the same as of the lines of curvature of a spherical surface

and of its Hazzidakis transform. Conversely, we have that every

surface of this kind admits of an applicable surface with lines of

curvature in correspondence.

The preceding investigation rested on the hypothesis that neither

the first nor second of equations (24) vanishes identically. Suppose

that the second vanishes ; then q is a function of u alone, say $(u).

Since the product p^q differs from the total curvature only by a

factor (cf. 70), p l
cannot be zero ; therefore r = and q ^(u).

Equation (25) is now of the form p l &amp;lt;f&amp;gt;(u)=p[&amp;lt;t&amp;gt; l (u). If p[ be elimi

nated from this equation and the first of (27), it is found that p l

also is a function of u alone. Hence the curves v = const, on the

sphere are great circles with a common diameter, and therefore S

is a molding surface ( 130). The parameter u may be chosen so

that we may take q
= 1 and p^=U\ then from (27) and (25) we

find
/&amp;gt;(

= Vf/2
-h #, q = U/^/U*+ a, where a is an arbitrary constant.

Hence we have the theorem :

A necessary and sufficient condition that a surface admit of an

applicable surface with lines of curvature in correspondence is that

the surface have the same spherical representation of its lines of cur

vature as a spherical surface 2, or be a molding surface ; in the first

case there is one applicable surface, and the spherical representation

of its lines of curvature is the same as of the Hazzidakis transform

of 2 ; in the second case there is an infinity of applicable surfaces.*

141. Conjugate systems in correspondence. When two surfaces

are applicable to one another, there is a system of corresponding

lines which is conjugate for both surfaces (cf. 56). The results

of 140 show that for a given conjugate system on a surface S

* Cf . EX. 14, p. 319.
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there is not in general a surface S
l applicable to S with the corre

sponding system conjugate. We inquire under what conditions a

given conjugate system of S possesses this property.

Let S be referred to the given conjugate system. If the corre

sponding system on an applicable surface S
l
is conjugate, we have

D = D[= 0, Dip?= DD&quot;
;

for the total curvature of the two surfaces is the same. We replace

this equation by the two

D! - tanh 6 D, D[ = coth 6 .

D&quot;,

thus defining a function 6. The Codazzi equations for S are

Since these equations must be satisfied by Dl
and

D&quot;, we have

30 22 D
, c6 fll Z

lz
The condition of integrability of (30) is reducible to

2 D
m

As the two roots of this equation differ only in sign, and thus lead

to symmetric surfaces, we need consider only one. If it be substi

tuted in (30), we obtain two conditions upon E, F, G ; 7), D&quot;, which

are necessary in order that S admit of an applicable surface of the

kind sought. Hence in general there is no solution of the problem.

However, if the two expressions in the brackets of (31) vanish

identically, the conditions of integrability of equations (30) are

completely satisfied, and S admits of an infinity of applicable sur

faces upon which the coordinate curves form a conjugate system.

Consequently we have the theorem :

If a conjugate system on a surface S corresponds to a conjugate

system on more than one surface applicable to S, it corresponds to a

conjugate system on an infinity of surfaces applicable to S.
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We shall give this result another interpretation by considering

the spherical representation of S. From (VI, 38) we have

1-22-1 .D f!2V firi-D&quot;. /12V
ii/^ =

la/ la/3&quot; ~li/

{rtV
&amp;gt; are formed with respect to the linear ele

ment of the spherical representation of S. If we substitute these

values in (30), we get

d6 f!2\ d6 /12V ...= s f tanh 0, =
\ \ coth 0,

a^ 1 2 J 0* 1 1 J

and the condition that these equations have an integral involving

a parameter becomes

a ri2V_ a ri2V py ri2V

Sii/~Sla./ &quot;-iJisr

The first of these equations is the condition that the curves

upon the sphere represent the asymptotic lines upon a certain sur

face 2 (cf. 78). Moreover, if K denotes the total curvature of

S, and we put K= l//&amp;gt;

2 we have

(34)
du 2

Now equations (33) are equivalent to (34), and

& log p

r,&amp;lt;2

which reduces to = 0. As the general integral of this equation
cucv

is p = cf)(u) 4- ^(i ),
where

(/&amp;gt;

and ^ are arbitrary functions of u and

v respectively, we have the following theorem due to Bianchi* :

A necessary and sufficient condition that a surface S admit a con

tinuous deformation in which a conjugate system remains conjugate

is that the spherical representation of this system be that of the asymp
totic lines of a surface whose total curvature, expressed in terms of

parameters referring to these lines, is of the form

* Annali, Ser. 2, Vol. XVIII (1890), p. 320; also Lezioni, Vol. II, p. 83.
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The pseudospherical surfaces afford an example of surfaces with

K of this form. In this case
&amp;lt;/&amp;gt;

and ^r are constants, so that equa-

(&quot;12&quot;) f 12&quot;|

tions (34) reduce to 1
\ ~\ a |

** ^ which, in consequence of

{11&quot;|

f22
&amp;gt;

|

f
=

1
^, f=0. But these are the condi

tions that the parametric curves on S be geodesies. A surface with

a conjugate system of geodesies is called a surface of l
/r
oss. We

state these results thus :

A surface of l^oss admits of a continuous deformation in which the

geodesic conjugate system is preserved ; consequently all the new sur

faces are of the same kind.

EXAMPLES

1. Show that every integral of the equation Ai0 = 1 is an integral of the funda

mental equation (18).

2. On a right helicoid the helices are asymptotic lines. Find the surfaces appli

cable to the helicoid in such a way that one of the helices is unaltered in form and

continues to be an asymptotic line.

3. A surface applicable to a surface of revolution with the lines of curvature

on the two surfaces in correspondence is a surface of revolution.

4. Show that the equations

X=KTCOS-, y = train-, z = /Vl /c
2r 2

c?M,
K K J

define a family of applicable surfaces of revolution with lines of curvature in corre

spondence. Discuss the effect of a variation of the parameter K.

5. Let S denote a surface parallel to a spherical surface S. Find the surface

applicable to S with preservation of the lines of curvature.

6. It Si and S2 be applicable surfaces referred to the common conjugate sys

tem, their coordinates &i, y\,z\\ 2 , ?/2 , 2 are solutions of the same point equation

(cf. VI, 26), and the function xf -f y? + zf (x| + y.| + z|) also is a solution.

7. Show that the locus of a point which divides in constant ratio the join of

corresponding points on the surfaces Si and &amp;lt;S2 of Ex. 6 is a surface upon which the

parametric lines form a conjugate system. Under what condition is this surface

applicable to Si and /S2 ?

8. The tetrahedral surface

x = A(a + u)*(a + )*, y = B(b + u)*(b + v)*, z = C(c + w)*(c + v)
f

,

admits of an infinity of deforms

The curves u = v upon these surfaces are congruent, and consequently each is an

asymptotic line on the surface through it.
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9. If the equations of a surface are of the form

x = U1Vll y = UiV!, z=V* t

the equations

sin 0,

where h denotes a constant, define a family of applicable surfaces upon which the

parametric lines form a conjugate system.

10. Show that the equations of the quadrics can be put in the form of Ex. 9,

and apply the results to this case.

142. Asymptotic lines in correspondence. Deformation of a ruled

surface. We have seen
( 139) that a surface can be subjected to

a continuous deformation in which an asymptotic line remains

asymptotic. We ask whether two surfaces are applicable with

the asymptotic lines in one system corresponding to asymptotic

lines of the other. We assume that there are two such surfaces, S,

S
lt
and we take the corresponding asymptotic lines for the curves

v = const, and their orthogonal trajectories for u = const. In con

sequence of this choice and the fact that the total curvature of the

two surfaces is the same, we have

(36) J9 = D
1 =0, JF=0, D =

D[.

The Codazzi equations (V, 13
)
for S reduce to

&amp;lt;

Q

Because of (36) the Codazzi equation for S
1 analogous to the first

of (37) will differ from the latter only in the last term. Hence we

must have either D&quot;=
Z&amp;gt;&quot;,

or Ef(u}. In the former case the sur

faces S and S
l
are congruent. Hence we are brought to the second,

which is the condition that the curves v = const, be geodesies. As

the latter are asymptotic lines also, they are straight, and conse

quently 8 must be a ruled surface. By changing the parameter w,

we have J5? = l, and equations (37) reduce to



EULED SURFACES 343

By a suitable choice of the parameter v the first of these equations

may be replaced by JX=1/V5, and the second becomes

ra/i=
I ~(-J 9*\&

where
&amp;lt;/&amp;gt;

is an arbitrary function. These results establish the fol

lowing theorem of Bonnet :

A necessary and sufficient condition that a surface admit an

applicable surface with the asymptotic lines in one system on each

surface corresponding is that the surface be ruled; moreover, a

ruled surface admits of a continuous deformation in which the

generators remain straight.

To this may be added the theorem :

If two surfaces are applicable and the asymptotic lines in both

systems on each surface are in correspondence, the surfaces are con

gruent, or symmetric.

This is readily proved when the asymptotic lines are taken as

parametric.

We shall establish the second part of the above theorem in

another manner. For this purpose we take the equations of the

ruled surface in the form
( 103)

(38) x = x
Q +lu, y = yQ +mu, z = z +nu,

where X
Q , y^, z are the coordinates of the directrix C expressed as

functions of its arc v, and I, m, n are the direction-cosines of the

generators, also functions of v. They satisfy the conditions

(39) aJ +jtf-K
1
-!. *

2+wa+na= l,

where the accents indicate differentiation with respect to v.

Furthermore, the linear element is

(40) ds*= du2+ 2 cos dudv + (aV+ 2

-2 n b = l x

Hence if we have a ruled surface with the linear element (40), the

problem of finding a ruled surface applicable to it, with the gener

ators of the two surfaces corresponding, reduces to the determi

nation of six functions of v, namely X
Q , y ,

z
; I, m, n, satisfying
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the five conditions (39), (41). From this it follows that there is an

arbitrary function of v involved in the problem, and consequently

there is an infinity of ruled surfaces with the linear element (40).

There are two general ways in which the choice of this arbi

trary function may be made, either as determining the form of

the director-cone of the required surface, or by a property of the

directrix. We consider these two cases.

143. Method of Minding. The first case was studied by Mind

ing.* He took /, m, n in the form

(42) / = cos &amp;lt; cos
i/r,

m = cos &amp;lt; sin
i/r,

n = sin
&amp;lt;/&amp;gt;,

which evidently satisfy the second of (39). The first of (41)

reduces to

(43) &amp;lt;J&amp;gt;

2+^ 2
cos

2 =aa
.

If we solve equations (39) and (41) for x^ yQ , z , the resulting

expressions are reducible by means of (VII, 63) to

(44) Q
= I cos 6

Q + ^ [I
b (mn

f- m n)VV sin
2 - 6

2

],

and analogous expressions for y[ and z[. Hence, if &amp;lt; be an arbi

trary function of v, and ^ be given by

(46) +=(^f^J COS
(/&amp;gt;

the functions # , # ,
z

,
obtained from (44) by quadratures, together

with /, m, n from (42), determine a ruled surface with the linear

element (40).

Each choice of
(/&amp;gt; gives a different director-cone, which is deter

mined by the curve in which the cone cuts the unit sphere, whose

center is at the vertex of the cone. Such a curve is defined by a

relation
/(c/&amp;gt;, -&amp;lt;fr)

= 0, so that instead of choosing $ arbitrarily we

may take / as arbitrary; for, by combining equations (43) and

/(&amp;lt;, ifr) 0, we obtain the expressions for &amp;lt; and ^r as functions

of v. Hence :

A ruled surface may be deformed in such a way that the director-

cone takes an arbitrary form.

*
Crelle, Vol. XVIII (1838); pp. 297-302.
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When the given ruled surface is nondevelopable, the radicand

in (44) is different from zero, and consequently there are two dif

ferent sets of functions X
QJ yQ1

Z
Q

. Hence there are two applicable

ruled surfaces with the same director-cone. If the parameters of

distribution of these two surfaces be calculated by (VII, 73), they
are found to differ only in sign. Hence we have the theorem of

Beltrami :
*

A ruled surface admits of an applicable ruled surface such that

corresponding generators are parallel, and the parameters of distri

bution differ only in sign.

144. Particular deformations of ruled surfaces. By means of the

preceding results we prove the theorem :

A ruled surface may be deformed in an infinity of ways so that a

given curve becomes plane.

Let the given curve be taken for the directrix of the original

surface. Assuming that a deform of the kind desired exists, we
take its plane for the zy-plane. From (44) we have

a2n cos + bn f

(lm
f

I m) a2
sin

2
6
2 = 0,

which, in consequence of (42) arid (43), reduces to

b
cosc/&amp;gt;.( + a2

sine/) cos# cosc^Va
2

&amp;lt;//

2Va2
sin

2 b2 = 0.

The integral of this equation involves an arbitrary constant, and

thus the theorem is proved.

The preceding example belongs to the class of problems whose

general statement is as follows:

To deform a ruled surface into a ruled surface in such a way that

the deform of a given curve C on the original surface shall possess a

certain property on the resulting surface.

We consider this general problem. Let the deform of C be the

directrix of the required surface, and let , /3 , 7 ; J , TWO , n ;
X , /* , v

denote the direction-cosines of its tangent, principal normal, and

binormal. If &amp;lt;r denotes the angle between the osculating plane to

the curve and the tangent plane to the surface, we have

(46) I = # cos # -f sin
(/

cos &amp;lt;r + X sin
&amp;lt;r),

* Annali, Vol. VII (1865), p. 115.
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and similar expressions for m and n. When these values are sub

stituted in the first two of equations (41), the resulting equations

are reducible, by means of the Frenet formulas (I, 50), to

coscr /-, ,

b

(47)

P

~cos0n ,, .
sin cr sin. n . sincr sin#

~]

2

(cos cr sin
) H

T/ aM COS cr sin
ft&quot;]

2

I2+ (sin cr sin
Q )

\ab.

These are two equations of condition on cr, /o, T, as functions of v.

Each set of solutions determines a solution of the problem ; for,

the directrix is determined by expressions for p and r, and equa

tions (46) give the direction-cosines of the generators.

We leave it to the reader to prove the above theorem by this

means, and we proceed to the proof of the theorem:

A ruled surface may be deformed in such a manner that a given

curve C becomes an asymptotic line on the new ruled surface.

On the deform we must have a = or a = TT, so that from (47)

p

the sign being fixed by the fact that p is necessarily positive. The

second of (47) reduces to

sin
2

6&amp;gt;

If the curve with these intrinsic equations be constructed, and in

the osculating plane at each point the line be drawn which makes

the angle with the tangent, the locus of these lines is a ruled

surface satisfying the given conditions.

When the curve C is an orthogonal trajectory of the generators,

the same is true of its deform. Hence :

A ruled surface may be deformed in such a way that all the gener

ators become the principal normals of the deform of any one of their

orthogonal trajectories.

Having thus considered the deformation of ruled surfaces in

which the generators remain straight, we inquire whether two
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ruled surfaces are applicable with the generators of each corre

sponding to curves on the other. Assume that it is possible, and

let v = const, be the generators of S and u = const, the curves

on S corresponding to the generators of Sr From (V, 13) it

follows that the conditions for this are respectively

where K= \/p\ But equations (48) are the necessary and

sufficient conditions that there be a surface 2 applicable to S
and Sv upon which the asymptotic lines are parametric (cf. VI, 3).

But the curves v = const, and u = const, are geodesies on S and 8^
and consequently on 2. Therefore 2 is doubly ruled. Hence :

If two ruled surfaces S and S
l
are applicable to one another, the

generators correspond unless the surfaces are applicable to a quadric
with the generators of S and S

l corresponding to the two different

systems of generators of the quadric.

EXAMPLES

1. A ruled surface can be deformed into another ruled surface in such a way
that a geodesic becomes a straight line.

2. A ruled surface formed by the binomials of a curve C can be deformed into

a right conoid
;
the latter is the right helicoid when the torsion of C is constant.

Prove the converse also.

3. On the hyperboloid of revolution, defined byxwu.v y u . v v z u- = cos - + sin -
,

- = sin -- cos -
,

- = .

c A c c c A c c d A
where A2 = c2 + d2

,
the circle of gorge is a geodesic, which is met by the generators

under the anle cos-

4. Show that the ruled surface which results from the deformation of the

hyperboloid of Ex. 3, in which the circle of gorge becomes straight, is given by

ud u ud . v uc
x = cos - , y sin -

, z = --\- v.Ad Ad A

5. Show that the ruled surface to which the hyperboloid of Ex. 3 is applicable
with parallelism of corresponding generators is the helicoid

x u v c2 d2
. v y u . v c2 d2 v z u 2 c- = cos - H-- sin -i - = sin ---- cos -

,
- = I

--- v,
c A c C2 + d2 c c A c c2 + d2 c d A A2

and that the circle of gorge of the former corresponds to a helix upon the latter.

6. When the directrix is a geodesic, equations (47) reduce to

Bin * .*; + 6 = 0,
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7. When an hyperboloid of revolution of one sheet is deformed into another

ruled surface, the circle of gorge becomes a Bertraml curve and the generators

are parallel to the corresponding bmormals of the conjugate Bertrand curve.

8. A ruled surface can be deformed in such a way that a given curve is made
to lie upon a sphere of arbitrary radius.

9. When a ruled surface admits a continuous deformation into itself the total

curvature of the surface is constant along the line of striction, the generators meet the

latter under constant angle, and the parameter of distribution is constant (cf. 126).

10. Two applicable ruled surfaces whose corresponding generators are parallel

cannot be obtained from one another by a continuous deformation.

GENERAL EXAMPLES

1. Determine the systems of coordinate lines in the plane such that the linear

element of the plane is ^U2
_j_ ^2=

where U and V are functions of u and u respectively.

2. Solve for the sphere the problem similar to Ex. 1.

3. Determine the functions 0(w) and ^ (u) so that the helicoids, defined by

x = a\/U 2 - 62cos-, y =

shall be applicable to the surface whose equations are

where U is any function of u.

4. Apply the method of Ex. 3 to find helicoids applicable to the pseudosphere ;

to the catenoid.

5. The equations

x = a V2 u 2 cos - , y = a V2 it 2 sin --
, z = -

(u 1)
a a 2

define a paraboloid of revolution. Show that surfaces applicable to it are defined by

id r /* /*

X - /302 ~/203 + J (fzdfz -fsdfz) - J (02^03
~ 03 dfa) ,

-?
2 = -I /201 /102

where a is a real constant, and the / s and s are functions of a parameter a and

/3 respectively such that

6. Investigate the special case of Ex. 5 for which a and /3 are conjugate imaginary

functions, and 2 + a-2a* .2-a-2a*
fl = -7=-- /2 = l

,
-- / = *

2V2a 2V2a
and the s are functions conjugate imaginary to the/ s.
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7. Show that the surface of translation

x a(cosw + cosv), y a(sinw + sinv), z = c(u + v)

is applicable to a surface of revolution.

8. Show that the minimal surfaces applicable to a spiral surface (Ex. 22, p. 151)

are determined by the functions F(u) = cum + in
, 4&amp;gt;(u)

= cio
m ~ in

,
and that the asso

ciate surfaces are similar to the given one.

9. If the coefficients E, F, 6? of the linear element of a surface are homogeneous

functions of u and v of order 2, the surface is applicable to a surface of revolution.

10. If z, y, z are the coordinates of a surface S referred to a conjugate system,

the equations

ctf__
dx

W__pdy_ ^i_p^:. ^L-Q^L ^-Q^y. = Q~
aw

~
aw aw

~
au aw~ aw au au au

~
aw cv

~
au

are integrable if P and Q satisfy the conditions

where the Christoffel symbols are formed with respect to the linear element of S.

Show that on the surface S
,
whose coordinates are x

, y ,
z

,
the parametric curves

form a conjugate system, and that the normals to S and S at corresponding points

are parallel.

11. Show that for the surface

x - f\fi(u)du + 0i(w), y = fA/2 (w)dit + 2 (u), z =j \f3 (u)du + 3 (u),

where \ is any function of u and u, and/!, /2 , /3 ; 0i, 2 , 3*are functions of u and

u respectively, the parametric curves form a conjugate system. Apply the results

of Ex. 10 to this surface, and discuss the case for which X is independent of v.

12. If S and Si are two applicable surfaces, and S{ denotes the surface corre

sponding to Si in the same manner as S to S in Ex. 10 and by means of the same

functions P and Q, then S and S{ are applicable surfaces.

13. If x, ?/, z and i, 2/1, z\ are the coordinates of a pair of applicable surfaces

S and Si, a second pair of applicable surfaces S and S{ is denned by

x = x + h(z + zi)
- k(y + T/J), x[ = x l

- h(z + zi) + k(y + 2/1),

y = y + k(x + xi)-g(z + *i), yi = z/i
- k (x + xi) + g(z + zi),

z = z + g(y + yi)
- h(x + x x ), zi = z t

- g (y + z/i) + h(x + KI),

where #, ^-, and fc are constants. Show that the line segments joining correspond

ing points of S and S are equal and parallel to those for Si and S{ ;
that the lines

joining corresponding points on S and Si meet the similar lines for S and S{ ;
and

that the common conjugate system on S and Si corresponds to the common conju

gate system on S and Si.

14. Apply the results of Ex. 13 to the surfaces of translation

x = w2 - v2 -|- 2 av, y = 2 w2
-I- v2 - 2 au - 2*V&2 + 3 w2

dw, z = 2 6u,

2 u2 - 2 au - 2

Z! = 2 fa2 - 3u2 dv.

Show that when g = h = 0, k = - 1, the surface S is an elliptic paraboloid.
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15. Show that the equations

&quot;a
2

&quot;

&quot; y ~ J

where the accent indicates differentiation with respect to the argument, define a

family of applicable surfaces of translation. Apply the results of Ex. 12 to this case.

16. Show that when S and Si in Exs. 12 and 13 are surfaces of translation, and

their generating curves correspond, the same is true of S / and S{.

17. If lines be drawn through points of a Bertrand curve parallel to the binor-

mals of the conjugate curve, their locus is applicable to a surface of revolution.

18. If a real ruled surface is applicable to a surface of revolution, it is applicable

to the right helicoid or to a hyperboloid of revolution of one sheet (cf. Ex. 9, 144).

19. A ruled surface can be deformed in an infinity of ways so that a curve not

orthogonal to the generators shall be a line of curvature on the new ruled surface,

unless the given curve is a geodesic ;
in the latter case the deformation is unique

and the line of curvature is plane.

20. Let P be any point of a twisted curve C, and MI, M2 points on the principal

normal to C such that
/ / /f

= - PM2 = a sin
( { H

where a, 6 are constants and p is the radius of curvature of C. The loci of the lines

through M\ and 3f2 parallel to the tangent to C at P are applicable ruled surfaces.

21. On the surface whose equations are

x = M, y =f(u)&amp;lt;f&amp;gt; (v) + i//(v), z =
/(u)[0(i&amp;gt;)

- 00 (u)] + t(o)- fl^ (u),

the parametric curves form a conjugate system, the curves u = const, lie in planes

parallel to the yz-plane, and the curves v const, in planes parallel to the x-axis
;

hence the tangents to the curves u = const, at their points of intersection with a

curve v = const, are parallel.

22. Investigate the character of the surfaces of Ex. 21 in the following cases :

(a), (v)
= Vv2 + l

; (b), (u)
= const.

; (c), t(v) = Q; (d), f(u)
= au + b.

23. If the equations of Ex. 21 be written

the most general applicable surfaces of the same kind with parametric curves cor

responding are defined by

where AC is a parameter, and the functions
4&amp;gt;i, $2, ^i, ^2 satisfy the conditions

$2 +
&amp;lt;I&amp;gt;|

= 02 + 0| - K, 4&amp;gt;i* + &amp;lt;J&amp;gt;2
2 = 0{2 + 02,

~ $1(0212

Show also that the determination of
4&amp;gt;i

and 3&amp;gt;2 requires only a quadrature.



CHAPTER X

DEFORMATION OF SURFACES. THE METHOD OF WEINGARTEN

145. Reduced form of the linear element. Weingarten has re

marked that when we reduce the determination of all surfaces appli

cable to a given one to the solution of the equation (IX, 18), namely

(1) J = (\-\6)K,

we make no use of our knowledge of the given surface, and in

reality are trying to solve the problem of finding all the surfaces

with an assigned linear element. In his celebrated memoir, Sur la

deformation des surfaces,* which was awarded the grand prize of

the French Academy in 1894, Weingarten showed that by taking

account of the given surface the above equation can be replaced

by another which can be solved in several important cases. This

chapter is devoted to the exposition of this method. We begin by

determining a particular moving trihedral for the given surface.

It follows from (VII, 64) that the necessary and sufficient con

dition that the directrix of a ruled surface be the line of striction is

(2)
6 = a# +#X+*X=0.

The functions // m/ n are proportional to the direction-cosines of

the curve in which the director-cone of the surface meets the unit

sphere with center at the vertex of the cone. We call this curve

the spherical indicatrix of the surface. From (2) and the identity

ll +mm + nn =

it is seen that the tangent to the spherical indicatrix is perpen

dicular to the tangent plane to the surface at the corresponding

point of the line of striction. This fact is going to enable us

to determine under what conditions a ruled surface 2, tangent

to a curved surface S along a curve C, admits the latter for

its line of striction.

*Acta Mathematica, Vol. XX (1896), pp. 159-200.

351
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We suppose that the parameters w, v are any whatever, and that

the surface is referred to a moving trihedral. We consider the

ruled surface formed by the z-axis of the trihedral as the origin

of the latter describes the curve C. The point (1, 0, 0) of a second

trihedral parallel to this one, but with origin fixed, describes the

spherical indicatrix of 2. From equations (V, 51) we find that the

components of a displacement of this point are

0, r du 4- r^v, (qdu + q^dv).

In order that the displacement be perpendicular to the tangent

plane to 2 at the corresponding point of (7, that is, perpendicular

to the zy-plane of the moving trihedral, we must have

(3) rdu + r
l
dv = Q.

Hence if a trihedral T be associated with a surface S in any man

ner, as the vertex of T describes an integral curve of equation (3),

the 2&amp;gt;axis of T generates a ruled surface whose line of striction is

this curve.

When the parametric lines on S are given, and also the angle U
which the a&amp;gt;axis of T makes with the tangent to the curve v const.,

the functions r and r
l
are completely determined, as follows from

(V, 52, 55). They are

Hll cU

Hence if U be given the value

///
C121

It&quot;)
*+*&amp;lt;&amp;gt;

where
&amp;lt;f&amp;gt; (u) denotes an arbitrary function of M, the function r

t
is zero,

and as the vertex of the trihedral describes a curve u = const., the

z-axis describes a ruled surface whose line of striction is this curve.

Suppose now that the trihedral is such that r
x
= 0. From (V, 48, 64)

it follows that

(6)

consequently

(1) r= C

where ty is an arbitrary function of u.
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Let the right-hand member of (7) be denoted by f(u, v), and change
the parameters of the surface in accordance with the equations

u
l =u, v^

= f(u, v).

From 32 and equation (7) it follows that

i-
dv

Since K is unaltered by the transformation, in terms of the new
coordinates H

V
K is equal to unity, and hence from (6) we have

r = vr Therefore the coordinate curves and the moving trihedral

of a surface can be chosen in such a way tnat

(8) ^=0, r = v, HK=l.

In this case we say that the linear element of the surface is in its

reduced form. It should be remarked that for surfaces of negative
curvature the parameters are imaginary.

146. General formulas. If X^ Y^ Z^ ; A;, F2 ,
Zj&amp;gt;

X, r, Z denote

the direction-cosines of the axes of the moving trihedral with

respect to fixed axes, we have, from (V, 47),

(9)
du

il _ Xa -

dv
&quot;

qi
dv

-

dv

The rotations p,p^ q&amp;lt;&amp;gt; $i satisfy equations (V, 48) in the reduced form

dv du dv du

The coordinates x, y, z of S with reference to these fixed axes are

given by c /

(11)

where

y =

2 = f(^i + ^2)^ + (f1^1 +^2 ) ^N

and

(13) dv du &quot;
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Weingarten s method consists in replacing the coefficients of

f* 77, f t , rj l
in the last of equations (13) by differential parameters

of u formed with respect to the linear element of the spherical

representation of the z-axis of the moving trihedral.

By means of (9) this linear element is reducible to

(14) da2= dX 2+ dY 2 + dZ 2=
(v

2 + q
2

)
du2+ 2 qq^dudv + q

2dv2
.

The differential parameters of u, formed with respect to this

form, have the values *

I _4(y2+ 2
2

)

(15)
^ v*ti

A q q pA (u* A u} = Aoit =
v^ql

v q l vql

Because of the identity (V, 38)

we have also

(16)
A

2^ =
-^--

If the last of equations (13) be divided by q lt
and the values of

i Pi/2i obtained from (15) and (16) be substituted, we have

22
t
3 2

i
4 2 v

In consequence of the first of equations (15), written

(18)
v = -L=,

VAjt*

the coefficients of f, TJ, f v , rj l
in (17) are expressible in terms of

differential parameters of u formed with respect to (14), as was

to be proved.

An exceptional case is that in which q^ 0. Under this condition

the spherical representation of the z-axis reduces to a curve, as is

seen from (14).

*
Previously we have indicated by a prime differential parameters formed with respect

to the linear element of the spherical representation. For the sake of simplicity we dis

regard this practice in this chapter.
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By means of (9) we find that

(19) A, (A,, tO = ^. M^, )
=

^f. \(Z )
= f

and consequently equations (11) may be written

(20) x=[^+ W\ (X *&amp;gt;)]

du + [f^ + v,v\ (X u)] dv,

and similarly for y and 2.

147. The theorem of Weingarten. Equation (17) is the equation
which Weingarten has suggested as a substitute for equation (1).

We notice that f, ?;, f x , T/ I
are known functions of u and v when

the surface S is given. By means of (18) equation (17) can be

given a form which involves only u and differential parameters
of u formed with respect to (14). On account of the invariant

character of these differential parameters this linear element

may be expressed in terms of any parameters, say u and v .

We shall show that each solution of equation (17) determines

a surface applicable to S. We formulate the theorem of Wein

garten as follows :

Let S be a surface whose linear element in the reducedform is

(21 )
ds* = (?

2+ T?

2

)
du*+ 2 (^ + wj dudv + (tf+

then %, rj, fj, ?; 1
are functions of u and v such that

Furthermore, let Xv Yv Z^ le the coordinates of a point on the unit

sphere, expressed in terms of any two parameters u 1 and v
,
the linear

element of the sphere being

(23) da 1 2= & du *+ 2 & du dv + &amp;gt;dv \

Any integral u
l of the equation

(24) Ju, L AMu - Ju, -l= -
u,

A,w

t )= 0,
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the differential parameters being formed with respect to (23), renders

thefollowing expression and similar ones in y and z total differentials:

(25)

where

fAe surface whose coordinates are the functions x, y, z thus defined

has the linear element (21).

Before proving this theorem we remark that the parameters u

and v may be chosen either as known functions of u and v, or in

such a way that the linear element (14) shall have a particular

form. In the former case X^ Yv Z^ are known as functions of u f

and v
,
and in the second their determination requires the solution

of a Riccati equation. However, in what follows we assume that

Xv Yv Zl
are known.

Suppose now that u r and v
f

are any parameters whatever, and

that we have a solution u^ of equation (24), where the differential

parameters are formed with respect to (23). Let v^ denote the

quantity (A^)&quot;*.
Both u^ and v

l
are functions of u and v

,
and

consequently the latter are expressible as functions of the former.

We express X^ Y^ Z
{
as functions of u

l
and v

l
and determine the

corresponding linear element of the unit sphere, which we write

(26) dffl
=

(; dul+ 2^ dujvt+ ^ c(v*.

In terms of u
l
and v

l
we have

, i

From these expressions it follows that if we put

we have

(
27

)
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Hence if we put

x= Y&- Z,Y Y= z&- x&, z=x
1
Y

a
- r^,

the functions A^, Yv - .

,
Z satisfy a set of equations similar to equa

tions (V, 47).

In consequence of (27) the corresponding rotations have the values

dX dX

.dx

r1= 0.

It is readily shown that these functions satisfy equations similar

to (10).

Since the functions f, 77, , ^ are of the same form in (25) as

in (21), equations similar to the first two of equations (13) are neces

sarily satisfied. Hence the only other equation to be satisfied, in

order that the expressions (25) be exact differentials, is

But it can be shown that the coefficients of (26) are expressible in

the form g _ v *\ ^ &amp;lt;% __ ^ _ -2

so that by means of differential parameters of u^ formed with

respect to (26) the equation (28) can be given the form (17).
Hence all the conditions are satisfied, and the theorem of Wein-

garten has been established.

148. Other forms of the theorem of Weingarten. It is readily
found that equations (22) are satisfied by the expressions

(29)

dv

du dv dv

where
(/&amp;gt;

is any function of u and v. Since now

(30) ,7 + ^=0,
equation (17) reduces to
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This equation will be simplified still more by the introduction

of two new parameters which are suggested by the following
considerations.

As previously defined, the functions X^ Yv Z^ are the direction-

cosines of lines tangent to the given surface S in such a way that

the ruled surface formed by these tangents at points of a curve

u = const, has this curve for its line of striction. Moreover, from

the theorem of Weingarten it follows that the functions X^ Yv Zl

have the same significance for the surface applicable to S which

corresponds to a particular solution of equation (17).

But Xv Yv Zl may be taken also as the direction-cosines of the

normals to a large group of surfaces, as shown in 67. In partic

ular, we consider the surface S which is the envelope of the plane

$ + Zj, = u.

Each solution of equation (17) determines such a surface. If x, y, z

denote the coordinates of the point of contact of this plane with S,

we have from (V, 32)

(32) x = uX
l+\(u,X1 ),

which, in consequence of (19), may be written

(32 )
i= wX-f-X.

v

Hence the point of contact of S lies in the plane through the origin

parallel to the tangent plane to S at the corresponding point.

If the square of the distance of the point of contact from the

origin be denoted by 2
^, and the distance from the origin to the

tangent plane by p,* we have

(33) 2g = sa+ya+ia=wa

+^. p = u .

From (V, 35, 37) it follows that the principal radii of 2 are

given by

(34)

* The reader will observe that the functions p and q thus defirfed are different from

the rotations designated by the same letters. As this notation is
generally employed in

the treatment of the theorem of Weingarten, it has seemed best to retain it, even at the

risk of a confusion of notation.
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where the differential parameters are formed with respect to (14).

From these equations we have

(35)

We shall now effect a change of parameters, using p and q

defined by (33) as the new ones. By direct calculation we obtain

y^r *^r I ^*r . ^*r v *r

o - - ^ - _ o _ -i ^ ^ . - -.;? o

(36)

du dp dq dv v* dq

dif dp*

+ P
2

T + ~

a/?a^ ^2

a^

_i
z.

/^
Q^,2-rcudv vdpcq

^-1^ 1
dv

2
~

v
6

dq
2

tf

By means of the equations (33) and (36) the fundamental equa
tion (31) can be reduced to

(37)

This is the form in whicli the fundamental equation was first con

sidered by Weingarten.* The method of 146, 147 was a subse

quent development.
In terms of the parameters p and q the formulas (29) become

dpdq dq
(38)

If these values and the expression for \(u, X^) given by (32) be

substituted in (20), it is reducible to

dp* dpdq/
&quot;

\ &quot;tip tiq cq

* Comptes Rendus, Vol. CXII (1891), p. 607.
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Hence the equations for S may be written

(39)

and consequently the linear element of S is of the form

Since these various expressions and equations differ only in form

from those which figure in the theorem of Weingarten, the latter is

just as true for these new equations. We remark also that the right-

hand member of (40) depends only upon the form of c. Hence we

have the theorem of Weingarten in the form :

When
(j)

in equation (37) is a definite function of p and q,
this

equation defines a large group of surfaces with the same spherical

representation, the functions p l
and p2 denoting the principal radii,

and p and 2q the distance from the origin to the tangent plane and

the square of the distance to the point of contact. Each surface 2

satisfying this condition gives by quadratures (39) a surface with the

linear element (40). Conversely, each surface with this linear element

stands in such relation to some surface satisfying the corresponding

equation (37).

As a corollary to the preceding results, we have the theorem :

The linear element of any surface S is reducible to the form

(41) di~ = du* + 2^ dudv + 2^ dv\
du dv

where ^r is a function of u and v.

For, we have seen that the linear element of any surface is

reducible to the form (40). If, then, we change the parameters by

means of the equations

we have

(43) ds*= du*+2p dudv + 2q dv\
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From (42) it follows that

a
2

, 3
2

&amp;lt;t&amp;gt;

, tf$ ,
,

d
2

4&amp;gt;

,
&amp;lt;fu
=

^ dp + -i-
&amp;lt;fy,

dt&amp;gt;
= i- dp + ^ rfg,

dp
1

ejpdg dp 3 a/

and consequently

A

(44)

where

A =

dp
2

dq
2

\dp dq

From (44) it is seen that ~- =-^j and consequently the inverse
dv cu

of equations (42) are of the form

fAfii W W
(45) = -X, q = ^L.

du
*

dv

Hence equation (43) is of the form (41), as was to be proved.

Moreover, equations (44) reduce to

(46) = A -= ---- A
2

dpdq

In terms of these parameters w, v equations (39) reduce to

(47) dx = X^du + ^c?v, (#?/
=

I^c^tt + ^^v, dz = Z^du -f ^c?v.

Hence the coordinates of 2 are given by

AQ _ ^C _ 3v ^2
(48) X = T^ y = --

J z =
^&quot;

f

dv dv dv

and the direction-cosines of the normal to 2 are

(49) X.A r
l
= ^, Z1==^,

aw aw ^
that is, the normals to 2 are parallel to the corresponding tangents

to the curves v= const, on S. Hence we have the following theorem :

When the linear element of a surface is in the form (41), the sur

face 2 whose coordinates are given by (48) has the same spherical
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representation of its normals as the tangents to the curves v = const.

on S. If p and 2q denote the distance from the origin to the tangent

plane to S and the square of the distance to the point of contact, they

have the values (45). Moreover, if the change of parameters defined

by these equations be expressed in the inverse form

/cn ,

d&amp;lt;f&amp;gt; d(f&amp;gt;

(50) M =
s

v=
*

dp dq

the principal radii of 2 satisfy the condition

and the coordinates of S are given by quadratures of the form

(52) dx

Moreover, ever// surface with the same representation as 2, and whose

functions pv /? 2 , p, q satisfy (51) for the same
(f&amp;gt;,

determines by equa

tions of the form (52) a surface applicable to S.*

149. Surfaces applicable to a surface of revolution. When the

linear element of a surface applicable to a surface of revolution

is written

(53) d?=du*+ p*(u l)dv*,

and the z-axis of the moving trihedral is tangent to the curve

v const., the function r is equal to zero, as follows from (4).

In order to obtain the conditions (8), we effect the transformation

of variables

u = v^ v = u^

so that the linear element becomes

(54) ds* = p
2 du*+dv2

.

Now r = p
f

, 7^=0, and consequently in order to have the linear

element in the reduced form we must take

(55) u = u, v=p (v).

* For a direct proof of this theorem the reader is referred to a memoir by Goursat,

Sur un theoreme de M. Weingarten, et sur la theorie des surfaces applicables, Toulouse

Annales, Vol. V (1891) ;
also Darboux, Vol. IV, p. 316, and Bianchi, Vol. II, p. 198.
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From these results and (32 )
we find that the coordinates of the

surface 2 are given by

p
f

du^ p dv
l p cu

v p dv
l

i==_lJl + !!l.^,
p cu^ p d Vl

and the direction-cosines of the normals to 2 are

Y 1 fo v 1 fy ~ 1 8*
.A.,
=--

&amp;gt;
JL

1

--
5 Zs* = --

p dv
l p cv

l p dv
1

Also, we have

(56) P =^xX^vv 2 ?=^2=^+~
Hence we have the theorem :

To a curve which i* the deform of a meridian of a surface of revo

lution there corresponds on the surface 2 a curve such that the tangent

planes to 2 at points of the curve are at a constant distance from the

origin, and to a deform of a parallel there corresponds a curve such

that the projection of the radius vector upon the tangent plane at a

point is constant.

For the present case 77
= f 1

=
; consequently we have, from (38),

Sf

This equation is satisfied by

(57) &amp;lt;/&amp;gt;(&amp;gt;, #)=/(2 q jt?

2

),

where / is any function whatever. In terms of this function we

have, from (38),

where the accents indicate differentiation with respect to the

argument, 2qp2
.

By means of (55) the linear element (54) can be transformed into

the function a)(v) being defined by
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Since 77
= fl

= 0, we have

and we know that r = v. Now equations (58) become

and these are consistent because of the relation 2^ p~ = \/v
2

,

which results from (56). Hence we have the theorem :

When &amp;lt; (p, q) is a function of 2 q p\ the corresponding surface S

is applicable to a surface of revolution, the tangents to the deforms of

the parallels being parallel to the corresponding normals to 2.

If we give &amp;lt;j&amp;gt;

the form (57) and put ^ = 2f, the linear element

of Sis

(59) ds2 = (^q p
2

) d^
2 + ^fr

2

dp
2
,

as follows from (40) or (58).

150. Minimal lines on the sphere parametric. In 147 we re

marked that the parametric curves on the sphere may be any what

ever. An interesting case is that in which they are the imaginary

generatrices. In 35 we saw that the parameters of these lines,

say a and /3, can be so chosen that

a/3-1
(60) X,=

Consequently

(61)

- + a/3

da2

=dX?+

a/3

rp

4 dad/3

From (32) we find that the coordinates of 2, the envelope of

the plane Xx + Yy+Zz p =
are

(62)

z =

From these we obtain

(63) 2
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By means of (34) the expressions for pl + p2
and p^ in terms

of p and its derivatives with respect to a and yS can be readily

found, and thus the fundamental equation (37) put in a new form.

However, it is not with the general case that we shall now concern

ourselves, but with a particular form of the function
&amp;lt;j&amp;gt;(p, q).

This function has been considered by Weingarten
*

; it is

(64)

In this case

so that equation (37) reduces to

(65) /&amp;gt;i

+ ft
=

-(2;&amp;gt; +

which, in consequence of (34), may be written

(66)
(P)

dadj3 (l + a/3)
2

When the values from (62) are substituted in (52), we obtain

(67)

where

(68)

z = *&- Cu
1
dZ

l +
J \ occ

From (42) and (64) we have

u qp2
a&amp;gt;

f

(p), v=p.

Hence the linear element (43) of *S is, in this case,

(69) ds
2=du2+2v dudv + 2 [u + v

2+ w
(v)]

dv2
.

*Acta Mathematica, Vol. XX (1896), p. 195.
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However, from (68) it is seen that

v
2

(70) Ul=u + -,

so that (69) may be written

(71) ds
2 = dul+ 2

[MI + (t&amp;gt;)]

*&amp;gt;

a
.

Gathering together these results, we have the theorem :

2%e determination of all the surfaces ivith the linear element (71)

reduces to the integration of the equation

The integral of this equation for o(_p) arbitrary is not known.

However, the integral is known in certain cases. We consider

several of these.

151. Surfaces of Goursat. Surfaces applicable to certain parab

oloids. When we take

(73)
v (p)=im(l-m)p\

m being any constant, equation (72) becomes

m(l-m)p
dadft (l + aj3f

The general integral of this equation can be found by the method

of Laplace,* in finite form or in terms of definite integrals, accord

ing as m is integral or not.

The linear element of the surface S is

(75) ds
1 = du? + [2 u^ H- m (1

-
m) ^] dv\

And the surfaces 2 are such that

(76) p 1 + pt +2p = m(m-I)p,

that is, the sum of the principal radii is proportional to the dis

tance of the tangent plane from a fixed point. These surfaces

were first studied by Goursat,f and are called, consequently, the

surfaces of G-oursat.

*Darboux, Vol. II, p. 66. t American Journal, Vol. X (1888), p. 187.
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Darboux has remarked* that equation (71) is similar to the linear

element of ruled surfaces (VII, 53). In fact, if the equations of a

ruled surface are written in the form

(77) x = x +lul , y

where #
, ; /, w, n are functions of v alone, which now is not

necessarily the arc of the directrix, the linear element of the

surface will have the form (71), provided that

(78) 2J2 = 1, 2a^ = 0, 2X
2 = 2 w

(^), 2a# = l, 2/ 2 =0.

In consequence of the equations

2ft =0,

it follows that a ruled surface of this kind admits an isotropic

plane director. If this plane be x + iy
= 0, that is, if

we have

where V is a function of v. By means of these values and equa

tions (78), we can put (77) in the form

*dv

(79) = %Vu^+% Cv v dv - C~ dv,

/yyt dv-

We shall find that among these surfaces there is an imaginary

paraboloid to which are applicable certain surfaces to which Wein-

garten called attention. To this end we consider the function

_2p^

(80) (_p)=: ^ficp 2 tee
v &quot;

where K denotes a constant. Now equation (66) becomes

_2
A Vic_ 1

* Vol. IV, p. 333.
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In consequence of the identity

the preceding equation is equivalent to

log(l + a/3)V^ = -
dad/3

If we put JL

this equation takes the Liouville form

-20
&amp;gt;

dadIB

of which the general integral is

1 A S

where A and B are functions of a and /3 respectively, and the

accents indicate differentiation with respect to these. Hence the

general integral of (81) is

c
%= 2^ + AS)

VAB (l + a/3)

and the linear element of S is

(82) ds2 = du^2\ul
- V^K - 2

If now, in addition to (80), we take

V

the equations (79) take such a form that

(83) (x+iy)x = icz.

Hence the surfaces with the linear element (82) are applicable to

the imaginary paraboloid (83). The generator x + iy = Q of this

paraboloid in the plane at infinity is tangent to the imaginary
circle at the point (x:y:z = l:i:Q), which is a different point
from that in which the plane at infinity touches the surface,

that is, the point of intersection of the two generators.
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Another interesting case is afforded when m in (73) has the

value 2. Then u&amp;gt; (v)
= v

2
, and equation (71) becomes

(84)
ds

2 = duf + 2
(Ml
-

If we take V=v/^/2^c, we obtain from equations (79)

from which we find, by the elimination of u
l
and v,

(85) (z + i 2 = K (x it/)
.

The generator x + iy
= in the plane at infinity on the paraboloid

(85) is tangent to the imaginary circle at the point (x: y: z 1 : i: 0),

just as in the case of the paraboloid (83), but the paraboloid (85) is

tangent to the plane at infinity at the same point.

GENERAL EXAMPLES

1 . A moving trihedral can be associated with a surface in an infinity of ways so

that as the vertex of the trihedral describes a curve u = const, the z-axis generates

a ruled surface whose line of striction is this curve.

2. The tangents to the curves v = const, on a surface at the points where these

curves are met by an integral curve of the equation

form a ruled surface for which the latter curve is the line of striction.

3. If the ruled surface formed by an infinity of tangents to a surface S has the

locus of the points of contact for its line of striction, this relation is unaltered by

deformations of S.

4 . Show that if D, D
,

D&quot; are the second fundamental coefficients of a sur

face with the linear element (53), the equation of the lines of curvature of the

associated surface S is reducible to

Ddii! + D dvi V dui + D&quot;d

; dui pp dv\
p

5 . Show that the surface S associated by the method of Weingarten with a sur

face S applicable to a surface of revolution corresponds with parallelism of tangent

planes to the surface S complementary to S with respect to the deforms of the

meridians
;
and that the lines of curvature on S and S correspond.
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6. Show that when has the form (57), the equation (51) is reducible to

hence the determination of all the surfaces applicable to surfaces of revolution is

equivalent to the determination of those surfaces S which are such that if MI and
M2 are the centers of principal curvature of 2 at a point I/, and N is the projection

of the origin on the normal at M, the product NMi NM2 is a function of ON.

7. Given any surface S applicable to a surface of revolution. Draw through a

fixed point O segments parallel to the tangents to the deforms of the meridians

and of lengths proportional to the radii of the corresponding parallels, and through
the extremities of these segments draw lines parallel to the normals to S. Show
that these lines form a normal congruence whose orthogonal surfaces 2 have the

same spherical representation of their lines of curvature as S and are integral sur

faces of the equation of Ex. 6.

8. Let fi be a surface applicable to a surface of revolution and S the surface

complementary to S with respect to the deforms of the meridians
;
let also S and

S be surfaces associated with S and S respectively after the manner of Ex. 7.

Show that corresponding normals to S and S are perpendicular to one another,

and that the common perpendicular to these normals passes through the origin and

is divided by it into two segments which are functions of one another.

9. Show that a surface determined by the equation

2 q + K + (PI + pz)p + PIPZ = 0,

where K is a constant, possesses the property that the sphere described on the seg

ment of each normal between the centers of principal curvature with this segment
for diameter cuts the sphere with center at the origin and of radius V K in great

circles, orthogonally, or passes through the origin, according as K is positive, nega

tive, or zero. These surfaces are called the surfaces of Bianchi.

10. Show that for the surfaces of Bianchi the function 0(p, q) is of the form

.

= V2 q
- p2 + /c,

and that the linear element of the associated surface S applicable to a surface

of revolution is
1

Show also that according as /c = 0, &amp;gt; 0, or &amp;lt;
the linear element of S is reducible

to the respective forms

ds2 = dw2 + e2M dv2
,
ds2 = tanh4 u du2 + sech2 w du2

,
ds2 = coth4 u du2

-f csch2 u dv2
.

On account of this result and Ex. 10, p. 318, the surfaces of Bianchi are said to be

of the parabolic, elliptic, or hyperbolic type, according as K = 0, &amp;gt; 0, or
&amp;lt;

0.

11. Let S be a pseudospherical surface with its linear element in the form

(VIII, 32), and Si the Bianchi transform whose linear element is (VIII, 33). Find

the coordinates x, y, z of the surface S associated with Si by the method of Wein-

garten, and show that by means of Ex. 8, p. 291, the expression for x is reducible to

|
x = aea (cos 6X1 + sin 0JT2) 4- fX,

where X\, JT2 ,
X are the direction-cosines with respect to the sc-axis of the tangents

to the lines of curvature of S and of the normal to the latter.
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12. Show that the surfaces S and S of Ex. 11 have the same spherical represen

tation of their lines of curvature, that S is a surface of Bianchi of the parabolic

type, and that consequently there is an infinity of these surfaces of the parabolic

type which have the same spherical representation of their lines of curvature as a

given pseudospherical surface S.

13. Show that if Si and S2 are two surfaces of Bianchi of the parabolic type

which have the same spherical representation of their lines of curvature, the locus

of a point which divides in constant ratio the line joining corresponding points of

Si and S2 is a surface of Bianchi with the same representation of its lines of cur

vature, and that it is of the elliptic or hyperbolic type according as the point divides

the segment internally or externally.

14. When S is a pseudospherical surface with its linear element in the form

(VIII, 32), the coordinates x~i, yi, z\ of the surface S determined by the method

of Weingarten are reducible to

A J-
Xi = (ae

a cos 6 + y sin 6) X\ -f (ae
a sin 77 cos 0} JF2 ,

and analogous expressions for yi and z 1? where JTi, FI, Z x ;
JT2 ,

F2 ,
Z2 are the

direction-cosines of the tangents to the lines of curvature of S. Show also that S

has the same spherical representation of its lines of curvature as the surface Si with

the linear element (VIII, 33).

15. Derive from the equations

xXi + yYi + zZ t =p, X2 + 2 + 2 = 2 g,

by means of (44), (48), and (49), the equations

where x, y, 2 are the coordinates of S.

16. Show that the equations for S similar to (IV, 27) are reducible to

dudv cv* \cu* cucv

and similar expressions in y and z. Derive therefrom (cf. Ex. 15) the equations

D du + D&quot;dv + r(Ddu + lYdv)
-

0,

du
dpdq dp* \dq

2 cpdq

where D, D ,
D&quot; are the second fundamental coefficients of 8.

17. Show that the lines of curvature on S correspond to a conjugate system on

S (cf. Ex. 16).

1 8. Show that for the surface S we have

dx dX\ dx dXi . dXi

2p
~

plp&amp;lt;*

eq dq~ dp dq

19. Let S be the surface defined by (67) and Si the surface whose coordinates are

Xi = x u\X\, yi = y WiFi, z\ z u\L\.

Show that Si is an involute of /S, that the curves p = const, are geodesies on S and

lines of curvature on Si, and that the radii of principal curvature of Si are
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20. Show that when m in (73) is or 1, the function p is the sum of two arbi

trary functions of a and /3 respectively, that the linear element of S is

ds*= dw
1

2 + 2i*idw
2

,

that S is an evolute of a minimal surface (cf. Ex. 19), and that the mean evolute of

S is a point.

21. Show that when m in (73) is 2, the general integral of equation (74) is

where /i and /2 are arbitrary functions of a and respectively. Show also that the

surface 2 is minimal (cf. 151).

22. Show that the mean evolute of a surface of Goursat is a surface of Goursat

homothetic to the given one.

23. Show that when
u&amp;gt;(p)

= ^op
2

,
then

p = a log(l + a/3) +/i(nr) +/2 (/3),

where /i and /2 are arbitrary functions, that the linear element of S is

ds2 = du? + 2 (ui + aw) du2
,

and that the mean evolute of 2 is a sphere.

24. Show that the surfaces S of Ex. 23 are applicable to the surfaces of revolu

tion S whose equations are

v . v

a a

where a is an arbitrary constant. Show also that when a = ia, is a paraboloid.

25. Show that when

c /~17=
I vu* a2

J

the surfaces S are spherical or pseudospherical according as m is positive or nega

tive
;
also that the surfaces &amp;lt;S are applicable to the surface

1)2 M2

x + iy = v, x-iy = TT~~ mu z = w
2 2m

which is a paraboloid tangent to the plane at infinity at a point of the circle at

infinity.



CHAPTER XI

INFINITESIMAL DEFORMATION OF SURFACES

152. General problem. The preceding chapters deal with pairs

of isometric surfaces which are such that in order that one may
be applied to the other a finite deformation is necessary. In

the present chapter we shall be concerned with the infinitesimal

deformations which constitute the intermediate steps in such a

finite deformation.

Let x^y,z\ x
, y\ z respectively be the coordinates of a surface

S and a surface S\ the latter being obtained from the former by a

very small deformation. If we put

(1) x ^x + ex^, y
f=y + cyv z ^z + ez^

where e denotes a small constant and xv y^ z
l
are determined func

tions of u and v, these functions are proportional to the direction-

cosines of the line through corresponding points of S and S f

. From

these equations we have

dx * + dy
* + dzn = da?+ dy

2 + dz
2 + 2e(dx dxl + dy dyl + dz dzj

If the functions satisfy the condition

(2) dx dx
l -f dy dy^ + dz dz

l
= 0,

corresponding small lengths on S and S r are equal to within terms

of the second order in e. When e is taken so small that e
2

may be

neglected, the surface S defined by (1) is said to arise from S by
an infinitesimal deformation of the latter. In such a deformation

each point of S undergoes a displacement along the line through
it whose direction-cosines are proportional to xv yv zr These lines

are called the generatrices of the deformation.

It is evident that the problem of infinitesimal deformation is

equivalent to the solution of equation (2). Since xv y^ z
l
are

373
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functions of u and v, they may be taken for the coordinates of a

surface r Equation (2) expresses the fact that the tangent to

any curve on S is perpendicular to the tangent to the correspond

ing curve on S
l
at the homologous point. We say that in this case

S and S
l correspond with orthogonality of corresponding linear ele

ments. And so we have:

The problem of the infinitesimal deformation of a surface S is

equivalent to the determination of the surfaces corresponding to it

with orthogonality of linear elements.

153. Characteristic function. We proceed to the determination

of these surfaces Sv and to this end replace equation (2) by the

equivalent system

Weingarten
*
replaced the last of these equations by the two

^ ex fix. ^-v dx dx
l

(4) Sssw-** X^w=~*7/

thus denning a function $, which Bianchi has called the character

istic function ; as usual H = VEG F*.

If the first of equations (3) be differentiated with respect to v,

and the second with respect to M, we have

--
dudv ** fa fru $v fa du dv * dv du dv

With the aid of these identities, of the formulas (V, 3), and of the

Gauss equations (V, 7), the equations obtained by the differentia

tion of equations (4) with respect to u and v respectively are

reducible to .

H

v H
*
Crelle, Vol. C (1887), pp. 296-310.
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Excluding the case where S is a developable surface, we solve these

&amp;lt;r-\
dx. TT-\ dx.

equations for &amp;gt;,^ 2*X-zr anc* obtain
*-l du ^ dv

(5)

cu u dv

KH dv

where K denotes the total curvature of S. If we solve equations

(3), (4), and (5) for the derivatives of x^ y^ z
l
with respect to u

and v, we obtain

(6)

v cu

CU

dv

KH

dv dv

KH
and similar expressions in y^ and zr Hence, when the characteristic

function is known, the surface S
l
can be obtained by quadratures.

Our problem reduces therefore to the determination of &amp;lt;.

If equations (5) be differentiated with respect to v and u respec

tively, and the resulting equations be subtracted from one another,

we have

V 1 V i

+4 to du 2j fa. fa.

When the derivatives of Jf, F, Z in the right-hand member are

replaced by the expressions (V, 8), the above equation reduces to

dv u d

KH du

du dv

KH H

Bianchi calls this the characteristic equation.

In consequence of (IV, 73, 74) equation (7) is reducible to

ft
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where
&amp;lt;&quot;, c^, $ are the coefficients of the linear element of the

spherical representation of /S, namely

(9)
da*= &du*+ 2^dudv

and /K

By means of (V, 27) equation (8) is reducible to

where the Christoffel symbols are formed with respect to (9).

Since X, Y, Z are solutions of equations (V, 22), they are solu

tions of (10), and consequently also of equation (7). Therefore the

latter equation may be written

dv

dX
du

KH

du v _

But this is the condition of integrability of equations (6). Hence

we have the theorem :

Each solution of the characteristic equation determines a surface

S^ and consequently an infinitesimal deformation of S.

154. Asymptotic lines parametric. When the asymptotic lines

on 8 are parametric, equation (10) is reducible, in consequence of

(VI, 15), to

where

If we put

dudv 2 dv du 2 du dv

&amp;lt;f,

V- ep
= 6,
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e being +1 or 1 according as the curvature of S is positive or

negative, equation (11) becomes

(12)
**

Since X, Y, Z are solutions of (11), the functions

v
l
= XV

e/j,
v
2
= FV ep,

are solutions of (12).

Now equations (6) may be put in the form

e

(13)

du du

dx,

dv

e

cB

cv

The reader should compare these equations with the Lelieuvre

formulas
( 79), which give the expressions for the derivatives of

the coordinates of S in terms of i/
1?

i/
2 ,

i&amp;gt;

3
.

From these results it follows that any three solutions of an

equation of the form ffQ = MQ,

where M is- any function of u and w, determine a surface S upon
which the parametric curves are the asymptotic lines, and every
other solution linearly independent of these three gives by quad
ratures an infinitesimal deformation of S.

EXAMPLES

1. A necessary and sufficient condition that two surfaces satisfying the condi

tion (2) be applicable is that they be minimal surfaces adjoint to one another.

2. If x, y, z and x l9 T/I, zi satisfy the condition (2), so also do
, 17, f and &, ^j,

ft, the latter being given by
= aix + biy + ciz + di, xi = a^ + a2Tn + as ft + ei,

77
= 2 + &22/ + C2Z + d2 , 2/1

= &ll + &2^?l + &3ft + C2 ,

f = a3x -f 68y + c3z + d8 , Zi = Ci^ + c2 &amp;gt;?i + c3 ft + c8 ,

where a 1? a2 , , ei, e2 ,
e3 are constants.

3. A necessary condition that the locus of the point (xi, ?/i, z\) be a curve is

that S be a developable surface. In this case any orthogonal trajectory of the

tangent planes to S satisfies the condition.

4. Investigate the cases = and =
c, where c is a constant different from zero.

5. If Si and S{ correspond to S with orthogonality of linear elements, so also

does the locus of a point dividing in constant ratio the line joining corresponding

points on Si and S{.
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155. Associate surfaces. The expressions in the parentheses of

equation (10) differ only in sign from the second fundamental co

efficients, D , Z&amp;gt;J,
Z&amp;gt;

&quot;,
of the surface /7 enveloped by the plane

(14)

Hence equation (10) may be written

(15) D&quot;D
Q+DDJ- 2D D[ = 0.

This is the condition that to the asymptotic lines upon either

of the surfaces S, S there corresponds a conjugate system on

the other
( 56). Bianchi applies the term associate to two sur

faces whose tangent planes at corresponding points are parallel,

and for which the asymptotic lines on either correspond to a

conjugate system on the other. Since the converse of the pre

ceding results are readily shown to be true, we have the theorem

of Bianchi f :

When two surfaces are associate the expression for the distance

from a fixed point in space to the tangent plane to one is the char

acteristic function for an infinitesimal deformation of the other.

Hence the problems of infinitesimal deformation and of the

determination of surfaces associate to a given one are equivalent.

We consider the latter problem.

Since the tangent planes to S and S
Q
at corresponding points

are parallel, we have

dzn dx dx dxn dx dx
-2 = X-- fji ,

-5 = 0--- r
du du dv dv du du

and similar equations in yQ
and 2

,
where X, ft, &amp;lt;r,

r are functions

of u and v to be determined. J

If these equations be multiplied by -- and added, and
~y ~Y 2V- $U &M dU

likewise by and added, we obtain
dv dv dv

\D&amp;lt;
-

* Cf. 67. t Lezioni, Vol. II, p. 9.

J The negative signs before p. and r are taken so that subsequent results may have a

suitable form.
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where Z&amp;gt;
,

Z&amp;gt; , D &quot; are the second fundamental quantities for $.

When these values are substituted in (15), we find

(17) X-r=0.

Consequently the above equations reduce to

du du dv dv du dv

If we make use of the Gauss equations (V, 7), the condition of

integrability of equations (18) is reducible to

du dv

where A and B are determinate functions. Since similar equations

hold in y and 2, both A and B must be identically zero. Calculating

the expressions for these functions, we have the following equations

to be satisfied by X, /A, and &amp;lt;r :

JL d\ . f22i . rm .
rii

(19)

da_d\ J22\ 2
fl21 fill

du dv v 1 J I 1 J I 1 J

To these equations we must add

(20) 2 \D -
pl&amp;gt;&quot;

&amp;lt;rZ&amp;gt;
= 0,

obtained from the last of (16). The determination of the asso

ciate surfaces of a given surface referred to any parametric system

requires the integration of this system of equations. Moreover,

every set of solutions leads to an associate surface. We shall now

consider several cases in which the parametric curves are of a

particular kind.

156. Particular parametric curves. Suppose that S is a sur

face upon which the parametric curves form a conjugate system.

We inquire under what conditions there exists an associate sur

face upon which also the corresponding curves form a conjugate

system.
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On this hypothesis we have, from (16),

/*
= a- = 6,

so that equations (19) reduce to

&amp;lt;&amp;gt;

which are consistent only when

that is, when the point equation of S, namely

j^ fi21&amp;lt;tf
ri2|&amp;lt;tf

dudv \l J cu \ZJfo

has equal invariants (cf. 165).

Conversely, when condition (22) is satisfied, the function X

given by the quadratures (21) makes the equations

compatible, and thus the coordinates of an associate surface are

obtained by quadratures. Hence we have the theorem of Cosserat*:

The infinitesimal deformation of a surface S is the same problem

as the determination of the conjugate systems with equal point invari

ants on S.

Since the relation between S and S is reciprocal and the

parametric curves are conjugate for both surfaces, these curves on

also have equal point invariants.

If S be referred to its asymptotic lines, the corresponding lines

on S
Q
form a conjugate system. In this case, as is seen from (16),

X is zero and equations (18) reduce to
.

dxn dx dx
n

dx
.

/24
&amp;gt;

)

2 = u a- ;

du ^dv dv 3u

moreover, equations (19) become

n

Toulouse Annales, Vol. VII (1893), N. 60.



KULED SUEFACES 381

The solution of this system is the same problem as the integra

tion of a partial differential equation of the second order, as is

seen by the elimination of either unknown. When a solution of

the former is obtained, the corresponding value of the other

unknown is given directly by one of equations (25).

We make an application of these results to a ruled surface,

which we suppose to be referred to its asymptotic lines. If the

curves v const, are the generators, they are geodesies, and conse

quently (VI, 50) p 1

12

Now /* can be found by a quadrature. When this value is sub

stituted in the second of equations (25), we have a linear equa

tion in
&amp;lt;r,

and consequently &amp;lt;r also can be obtained by quadratures.

Hence we have the theorem :

When the curved asymptotic lines on a ruled surface are known,

its associate surfaces can be found by quadratures.

If S were referred to its asymptotic lines, we should have

equations similar to (24). These equations may be interpreted

as follows:

The tangent to an asymptotic line on one of two associate surfaces

is parallel to the direction conjugate to the corresponding curve on

the other surface.

EXAMPLES

1. If two associate surfaces are applicable to one another, they are minimal

surfaces.

2. Every surface of translation admits an associate surface of translation such

that the generatrices of the two surfaces constitute the common conjugate system.

3. The surfaces associate to a sphere are minimal.

4. When the equations of the right helicoid are

x u cos v, y u sin u, z cro,

the characteristic function of any infinitesimal deformation is =
(U+ V) (u

2+ 2
)~ ,

where U and V are arbitrary functions of u and v respectively. Find the surfaces

Si and So, and show that the latter are molding surfaces.

5. If S and S are associate surfaces of a surface S, the locus of a point

dividing in constant ratio the joins of corresponding points of So and S6 is an

associate of S.
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157. Relations between three surfaces S, S
1?

S . Having thus

discussed the various ways in which the problem of infinitesimal

deformation may be attacked, we proceed to the consideration of

other properties which are possessed by a set of three surfaces

$, Stf S
Q

.

We recall the differential equation

dxdx
l+ dydyv

+ dzdz
l
= 0,

and remark that it may be replaced by the three

(26) dXi=zQdy yQdz, dy^ x
Q
dz z

Qdx, dz^y^dx x^dy,

if the functions #
, ?/ ,

z are such a form that the conditions of

integrability of equations (26) are satisfied. These conditions are

du dv

du dv

dx dy,

du dv

du dv

dx_d_z_

du dv

dv du

o = fe?5,
dv du

dv du

d_x_dz,

dv du

dy dx
(

du dv dv du dv du

If these equations be multiplied by
- -

respectively and

added, and likewise by i ? and by JT, F, ^, we obtain,

by (IV, 2),

&quot; 0y &quot;

(27)

(28)

From the first two of these equations it follows that the locus of

the point with coordinates X
QJ T/O ,

z corresponds to S with paral

lelism of tangent planes.

In order to interpret the last of these equations we recall

from 61 that

a d(Y, Z}

ft d(u, v)

Y= a d(Z, X)
ft d(u, v)

a d(X, Y)

/if d (u, v)
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where a is 1 according as the curvature of the surface is positive

or negative. If we substitute these values in the left-hand mem

bers of the following equations, and add and subtract ---
dx dX dX

dU dv

and --- from these equations respectively, the resulting
dv du dv

expressions are reducible to the form of the right-hand members

du/ \ du

dv dv \ du dv

By means of these and similar identities, equation (28) can be

transformed into

,_ ^.__D,^ * Y o

Since this equation is equivalent to (15) because of (27), the

quantities a;
, # ,

Z
Q

in (26) are the coordinates of S . Hence

when a surface S
l

is known, the coordinates of the correspond

ing surface S are readily found.

This result enables us to find another property of and Sr
If X^ Y^ Z

t
denote the direction-cosines of the normal to S^

they are given by

1

I d(u, v)

l

HI d(u, v)
l

H^ d(u, v)

where 7/
t
= ^^ F*, E^ F^ G

l being the coefficients of the

linear element of r If the values of the derivatives of xv yv,
z

x ,

as given by (26), be substituted in these expressions, we have,

in consequence of (14),

(30) X^-^ Y

As an immediate consequence we have the theorem :

A normal to S
t
is parallel to the radius vector of S at the corre

sponding point.
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By means of (30) we find readily the expressions for the second

fundamental coefficients J9
t , D[, DJ of $

L
. If we notice that

and substitute the values from (6) and (30) in

du du
1 ^ du dv ^4 dv du

we obtain

(31)

From these expressions follow

(32)

Combining this result with (15), we have :

The asymptotic lines upon any one of a group of three surfaces

S, Sv S
Q correspond to a conjugate system on the other two;

or, in other words:

The system of lines which is conjugate for any two of three surfaces

*S
f

, Sv S corresponds to the asymptotic lines on the other.

If the curvature of S be negative, its asymptotic lines are real,

and consequently the common conjugate system on S
1
and S is

real. If these lines be parametric, the second of equations (32)

reduces to

As an odd number of the four quantities in this equation must

be negative, either S
Q
or S

1
has positive curvature and the other

negative. Similar results follow if we begin with the assumption
that S

l
or S

Q
has negative curvature.

If the curvature of S be positive, the conjugate system common
to it and S

l
is real (cf. 56) ; consequently the asymptotic lines
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on S
Q
are real, and the curvature of the latter is negative. But

we saw that when the curvature of S
Q
is negative, and of S positive,

that of S
1
also is negative. Hence :

Given a set of three surfaces S, S^ S
Q ; one and only one of them

has positive curvature.

Suppose that S is referred to the conjugate system corresponding

to asymptotic lines on S
Q

. The point equation of S is

We shall prove that this is the point equation of S^ also.

If we differentiate the equation

with respect to v, and make use of the fact that y and z are solu

tions of (33), we have, in consequence of (26),

dudv
~~

\dv du~~l)vduj I 1 / #M t 2 J~dv

But the expression in parenthesis is zero in consequence of equa
tions similar to (24), and hence x

l
is a solution of (33).

Since the parametric curves on S are its asymptotic lines, the

spherical representation of and consequently of S must satisfy

the condition ^ f!2V d fl2V

Hence we have the theorem of Cosserat:

The problem of infinitesimal deformation of a surface is the same

as the determination of the conjugate systems with equal tangential

invariants upon the surface.

158. Surfaces resulting from an infinitesimal deformation. We
pass to the consideration of the surface S arising from an infini

tesimal deformation of 8. Its coordinates are given by

where is a small constant whose powers higher than the first are

neglected. Since the fundamental quantities of the first order for

$ , namely J&quot; ,
F f

, G ,
are equal to the corresponding ones for , by
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means of (26) the expressions for the direction-cosines X1

, F ,
Z

of the normal to S are reducible to

and similar expressions for Y and Z .

The derivatives of X with respect to u and v are reducible by
means of (29) to

dX^_d_X / dY_ dZ\ ea /D,^_D 3X

dX dX I OJL vZ\ d I _ .1 uX i vJL
i fly 77 I I -

( T) 7)

dv dv \ dv dv / /i- \ du dv

where a is 1 according as the curvature of $ is positive or negative.

When these results are combined with (26) and (34), we obtain

^^_V V (D -D
du du ^4 du du /if ^ du \ du dv

e +- v
**l \9* 9* du cu) *\du du du du

The last expression is identically zero, as one sees by writing it

fix
1 flX9

out in full. From this and similar expressions for V-
a- aTl , , v/

A ^ ay

X , and V , the values for the second fundamental
dv du ** dv dv

coefficients of S can be given in the form

= -
2)T T- =D + jf** u cu

(30)

We know that ff is equal to UK according as the curvature

of S is positive or negative (cf. 60). Also, by 157, one and only

one of three surfaces S, Sv S has positive curvature. Recalling

that a in the above formulas is 1 according as the curvature of

S is positive or negative, we can, in consequence of (31), write

equations (36) in the form

Z&amp;gt; .*&quot;
= .ZX J&amp;gt;,

where the upper sign holds when S
l
has positive curvature.
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From these equations it is seen that & and D r can be zero sim

ultaneously only when D[ is zero. Hence we have:

The unique conjugate system which remains conjugate in an infini

tesimal deformation of a surface is the one corresponding to a conju

gate system on S^, or, what is the same thing, to the asymptotic lines

on S
Q

.

In particular, in order that the curves of this conjugate system
be the lines of curvature, it is necessary and sufficient that the

spherical representation be orthogonal, and consequently that be

a minimal surface (cf. 55). From this it follows that the spherical

representation of the lines of curvature of S is isothermal. Con

versely, if a surface is of this kind, there is a unique minimal sur

face with the same representation of its asymptotic lines, and this

surface can be found by quadratures. Hence the required infinites

imal deformation of the given surface can be effected by quadra
tures (26), and so we have the theorem of Weingarten

*
:

A necessary and sufficient condition that a surface admit an infini

tesimal deformation which preserves its lines of curvature is that the

spherical representation of the latter be isothermal; when such a

surface is expressed in terms of parameters referring to its lines of

curvature, the deformation can be effected by quadratures.

159. Isothermic surfaces. By means of the results of 158 we
obtain an important theorem concerning surfaces whose lines of

curvature form an isothermal system. They are called isothermic

surfaces (cf. Exs. 1, 3, p. 159).

From equations (23) it follows that if the common conjugate

system on two associate surfaces is orthogonal for one it is the

same for the other. In this case equation (22) reduces to

of which the general integral is

E U
G=r

where U and V are functions of u and v respectively. Hence the

lines of curvature on S form an isothermal system (cf. 41).

*
Sitzungsberichte der Konig. Akademie zu Berlin, 1886.
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If the parameters be isothermic and the linear element written

ds2

=r(du
2 +dv2

),

it follows from (21) that

(37) X = i,

and equations (23) become

du
~~

r du dv
~

r dv

From these results we derive the following theorem of Bour * and

Christoffel :

If the linear element of an isothermic surface referred to its lines

of curvature be ds
*_ r /du*

_|_ dl?\

a second isothermic surface can be found by quadratures. It is asso

ciate to the given one, and its linear element is

1
ds? (du + dv

).
r

From equations (16) and (17) it follows that the equation of the

common conjugate system (IV, 43) on two associate surfaces $, S

is reducible to

(38) fi du
2+ 2 X dudv + a dv2 = 0.

The preceding results tell us that a necessary and sufficient condi

tion that S be an isothermic surface is that there be a set of solu

tions of equations (19) such that (38) is the equation of the lines

of curvature on S. Hence there must be a function p such that

p p (ED* FD), 2 X == p (ED
1

GD), &amp;lt;r

=?&amp;lt;p (FD&quot;
GDf

)

satisfy equations (19).f Upon substitution we are brought to two

equations of the form

S-s- = a;,
- = p\

du dv

where a and ft are determinate functions of u and v. In order that

S be isothermic, these functions must satisfy the condition

dv
~~

du

When it is satisfied, p and consequently p, X, a are given by quad

ratures.
* Journal de I Ecole Polytechnique, Cahier 39 (18G2), p. 118. /

f Cf. Bianchi, Vol. II, p. 30.
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Consider furthermore the form

(39) H(p du* + 2 X dudv + o- dv~).

From (37) it is seen that when the lines of curvature are para

metric, this expression reduces to 2 dudv. Hence its curvature is

zero (cf. V, 12), and consequently the curvature of (39) is zero.

From 135 it follows that this form is reducible to du
1
dv

l by quad
ratures. Hence we have the theorem of Weingarten :

The lines of curvature upon an isothermic surface can be found by

quadratures.

We conclude this discussion of isothermic surfaces with the proof of a theorem

of Ribaucour. He introduced the term limit surfaces of a group of applicable sur

faces to designate the members of the group whose mean curvature is a maximum

or minimum. According to Ribaucour,

The limit surfaces of a group of applicable surfaces are isothermic.

In proving it we consider a member S of the group referred to its lines of cur

vature. Its mean curvature is given by D/E + D&quot;/G. In consequence of equations

(36) the mean curvature of a near-by surface is, to within terms of higher order,

A necessary and sufficient condition that the mean curvature of S be a maximum
or minimum is consequently /j) j&amp;gt;&quot;\

Excluding the case of the sphere for which the expression in parenthesis is zero,

we have that DO is zero. Hence the common conjugate system of S and &amp;lt;S is com

posed of lines of curvature on the former, and therefore S is isothermic.

GENERAL EXAMPLES

1. If x, y, and xi, y\, z\ are the coordinates of two surfaces corresponding with

orthogonality of linear elements, the coordinates of a pair of applicable surfaces

are given by fc = x + tei, m = y + ty\, n = + &amp;lt;zi,

2 = x txi, -r}2 y tyi, f2 = z tei,

where t is any constant.

2. If two surfaces are applicable, the locus of the mid-point of the line joining

corresponding points admits of an infinitesimal deformation in which this line is

the generatrix.

3. Whatever be the surface S, the characteristic equation (7) admits the solu

tion = aX + bY + cZ, where a, 6, c are constants. Show that S is the point

(a, 6, c) and that equations (26) become

xi = cy - bz + d, yi = az ex -\- e, z\ = bx ay + /,

where d, e, /are constants; that consequently Si is a plane, and that the infinitesi

mal deformation is in reality an infinitesimal displacement.
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4. Determine the form of the results of Exs. 1, 2, where has the value of Ex. 3.

5. Show that the first fundamental coefficients EI, FI, GI of a surface Si are of
the form ,

E1 = E&amp;lt;f&amp;gt;*

-

= -F0
2

, _.-
dv

6. Let S denote the locus of the point which bisects the segment of the normal
to a surface S between the centers of principal curvature of the latter. In order
that the lines on 2 corresponding to the lines of curvature on S shall form a conju
gate system, it is necessary and sufficient that S correspond to a minimal surface

with orthogonality of linear elements, and that the latter surface and S correspond
with parallelism of tangent planes.

7. Show that when the spherical representation of the asymptotic lines of a sur

face S satisfies the condition \\y a (92

cu ( 2 } cv ( 1

equations (25) admit two pairs of solutions which are such that /x
=

&amp;lt;r and
/j.
=

&amp;lt;r.

On the two associate surfaces S
, SQ thus found by quadratures the parametric

systems are isothermal-conjugate, and SQ and SQ are associates of one another.

8. Show that the equation of Ex. 7 is a necessary and sufficient condition that

two surfaces associate to S be associate to one another.

9. Show that when the sphere is referred to its minimal lines, the condition of

Ex. 7 is satisfied, and investigate this case.

10. On any surface associate to a pseudospherical surface the curves correspond

ing to the asymptotic lines of the latter are geodesies. A surface with a conjugate

system of geodesies is called a surface of Voss (cf. 170).

11. Determine whether minimal surfaces and the surfaces associate to pseudo-

spherical surfaces are the only surfaces of Voss.

12. When the equations of a central quadric are in the form (VII, 35), the asso

ciate surfaces are given by

2/o = 2 V6Fj Uu du +f Vv dv\
,

z = i

where U and V are arbitrary functions of u and v respectively ;
hence the associates

are surfaces of translation.

13. When the equations of a paraboloid are in the form

x=Va(u + 1&amp;gt;), y=Vb(u-v), z = 2uv,

the associate surfaces are surfaces of translation whose generators are plane curves
;

their equations are

x = Va(U + V), y =Vb(V-U), z = 2fuU du

where U and V are arbitrary functions of u and v respectively.
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14. Show that a quadric admits of an infinitesimal deformation which preserves
its lines of curvature, and determine the corresponding associate surface.

15. Since the relation between S arid Si is reciprocal, there is a surface &amp;lt;S3

associate to Si which bears to S a relation similar to that of SQ to Si. Show that

the asymptotic lines on S and S3 correspond, and that these surfaces are polar

reciprocal with respect to the imaginary sphere z2 + ?/
2 + z2 + 1 = 0.

16. Since the relation between S and So is reciprocal, there is a surface S% cor

responding to S with orthogonality of linear elements which bears to S a relation

similar to that of Si to So. Show that the asymptotic lines on Si and Sz correspond,
that the coordinates of the latter are such that

xi-xz = yzo - zy , yi-yz = zx - zz
, z\ z* = xy - yx ,

and that the line joining corresponding points on Si and S2 is tangent to both surfaces.

17. Show that if S5 denotes the surface corresponding to S3 with orthogonality
of linear elements which is determined by Si, associate to SB, the surfaces S and

S& are related to one another in a manner similar to Si and Sz of Ex. 16.

18. Show that the surface S4 ,
which is the associate to Sz determined by So, is

the polar reciprocal of &amp;lt;S with respect to the imaginary sphere x2 + y2 + z2 + 1 = 0.

19. If we continue the process introduced in the foregoing examples, we obtain

two sequences of surfaces

S, Si, $3, Sj, S7 , Sg, Sn, -

,

S, So, S2 , 84, Se, $8, Sio,

Show that Sn and S10 are the same surface, likewise Si2 and S9 ,
and that conse

quently there is a closed system of twelve surfaces
; they are called the twelve sur

faces of Darboux.

20. A necessary and sufficient condition that a surface referred to its minimal

lines be isothermic is that
j) jj

D&quot; F
where U and V are functions of u and v respectively.

21. A necessary and sufficient condition that the lines of curvature on an iso

thermic surface be represented on the sphere by an isothermal system is that

Pi_U
P*

~
F

where U and V are functions of u and v respectively, the latter being parameters

referring to the lines of curvature. Show that the parameters of the asymptotic
lines on such a surface can be so chosen that E = G.

22. Show that an isothermic surface is transformed by an inversion into an
isothermic surface.

23. If Si and S2 are the sheets of the envelope of a family of spheres of two

parameters, which are not orthogonal to a fixed sphere, and the points of contact of

any sphere are said to correspond, in order that the correspondence be conformal,
it is necessary that the lines of curvature on Si and S2 correspond and that these

surfaces be isothermic (cf. Ex. 15, Chap. XIII).



CHAPTER XII

RECTILINEAR CONGRUENCES

160. Definition of a congruence. Spherical representation. A two-

parameter system of straight lines in space is called a rectilinear

congruence. The normals to a surface constitute such a system ;

likewise the generatrices of an infinitesimal deformation of a sur

face (cf. 152). Later we shall find that in general the lines of a

congruence are not normal to a surface. Hence congruences of

normals form a special class ; they are called normal congruences.

They were the first studied, particularly in investigations of the

effects of reflection and refraction upon rays of light. The first

purely mathematical treatment of general rectilinear congruences

was given by Kummer in his memoir, Allgemeine Theorie der

gradlinigen Strahlensysteme.* We begin our treatment of

the subject with the derivation of certain of Rummer s results by
methods similar to his own.

From the definition of a congruence it follows that its lines

meet a given plane in such a way that through a point of the

plane one line, or at most a finite number, pass. Similar results

hold if a surface be taken instead of a plane ;
this surface is

called the surface of reference. And so we .rrnay define a con

gruence analytically by means of the coordinates of the latter

surface in terms of two parameters u, v, and by the direction-

cosines of the lines in terms of these parameters. Thus, a con

gruence is defined by a set of equations such as

*f\(u i
v
} &amp;gt; y =fz(u -&amp;gt;

v
)-&amp;gt;

z jz(u -&amp;gt;

v
) &amp;gt;

where the functions / and &amp;lt; are analytic in the domain of u and v

under consideration, and the functions
(/&amp;gt;

are such that

*
Crelle, Vol. LVII (1860), pp. 189-230.

302
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We make a representation of the congruence upon the unit

sphere by drawing radii parallel to the lines of the congruence, and

call it the spherical representation of the congruence. When We put

the linear element of the spherical representation is

(3) da2=
&amp;lt;f(^

2+ 2 &dudv

If we put

^A dx dX ,, ex dX dx dX dx=

we have the second quadratic form

(5) ] dxdX= e du2+ (/+/ )
rfwdv + g dv\

which is fundamental in the theory of congruences.

161. Normal congruences. Ruled surfaces of a congruence. If

there be a surface S normal to the congruence, the coordinates

of S are given by

(6) x =x + tX, y =y + tY, z =z + tZ,

where t measures the distance from the surface of reference to S r
.

Since is normal to the congruence, we must have

(7)

which is equivalent to

du du dv 3v

If these equations be differentiated with respect to v and u respec

tively, and the resulting equations be subtracted, we obtain

(9) /=/ .

Conversely, when this condition is satisfied, the function t given

by the quadratures (8) satisfies equation (7). Since t involves an

additive constant, equations (6) define a family of parallel surfaces

normal to the congruence. Hence :

A necessary and sufficient condition for a normal congruence is

that f and f be equal.

The lines of the congruence which pass through a curve on the

surface of reference S form a ruled surface. Such a curve, and
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consequently a ruled surface of the congruence, is determined by a

relation between u and v. Hence a differential equation of the form

(10) Mdu+Ndv =

defines a family of ruled surfaces of the congruence. We consider

a line l(u, v) of the congruence and the ruled surface 2 of this

family upon which I is a generator ; we say that 2 passes through I.

We apply to 2 the results of 103, 104.

If dsQ denotes the linear element of the curve C in which 2 cuts

the surface of reference, it follows from (VII, 54), (3), and (5) that

the quantities a2 and b for 2 have the values

\* da2

^ dX dx~

From (VII, 58) we have that the direction-cosi ies X, //.,
v of the

common perpendicular to I and to the line I of parameters u 4- du,

v + dv, where dv/du is given by (10), have the values

(12) -

\ da da

which, by means of (V, 31), are reducible to

dX ^dX\ ,
,

/ ^dX *&amp;gt;dX\-,- & )du+ {
&amp;lt;?-

- 3 dv
dv du / \ dv du/

(13) \=
&* . da

and similar expressions for /A and v.

From (12) it follows that

.dX
,

dY
t

dZ nX ^~ + ^^~&quot;
hz/ ^~ =0 -

da da da

Since dX/da, dY/da, dZ/da are the direction-cosines of the tangent

to the spherical representation of the generators of 2, we have the

theorem :

Given a ruled surface 2 of a congruence ; let C be the curve on

the unit sphere which represents 2, and M the point of C correspond

ing to a generator L of S ; the limiting position of the common per

pendicular to L and a near-by generator of 2 is perpendicular to the

tangent to C at M.
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162. Limit points. Principal surfaces. By means of (VII, 62)

and (12) we find that the expression for the shortest distance 8

between I and V is, to within terms of higher order,

dx dy dz

dsf

da-
X
dX

Y
dY

dS

z

dZ

When the values (13) for X, /*, v are substituted in the right-hand

member of this equation, the result is reducible to

(14)
/{do-

&amp;lt;odu

e du

+ gdv
du + g dv

If jY denotes the point where this line of shortest distance meets ,

the locus of jVis the line of striction of 2. Hence the distance of

N from the surface $, measured along Z, is given by (VII, 65) ; if

it be denoted by r, we have, from (11),

n . _ edu*+(f+f) dudv + g dv2

V
10

/
r

jC-J.2 i

For the present* we exclude the case where the coefficients of

the two quadratic forms are proportional. Hence r varies with

the value of dv/du, that is, with the ruled surface 2 through I. If

we limit our consideration to real surfaces 2, the denominator is

always positive, and consequently the quantity r has a finite maxi

mum and minimum. In order to find the surfaces 2 for which r

has these limiting values, we replace dv/du by ,
and obtain

(16)

If we equate to zero the derivative of the right-hand member with

respect to , we get

a quadratic in t. Since $&*&amp;gt; 0, we may apply to this equation

reasoning similar to that used in connection with equation (IV, 21),

* Cf. Ex. 1, 171.
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and thus prove that it has two real roots. The corresponding values

of r follow from (16) when these values of t are substituted in the

latter. Because of (17) the resulting equation may be written

r

where t indicates a root of (17) and r the corresponding value of r.

When we write the preceding equations in the form

\
r +

e]
+
[$r

+
\

-o,

and eliminate t, we obtain the following quadratic in r:

If r^ and r
2
denote the roots of this equation, we have

(19)

The points on I corresponding to these values of r are called its

limit points. They are the boundaries of the segment of I upon
which lie the feet of each perpendicular common to it and to a

near-by line of the congruence. The ruled surfaces of the con-,

gruences which pass through I and are determined by equation

(17) are called the principal surfaces for the line. There are two

of them, and their tangent planes at the limit points are determined

by I and by the perpendiculars of shortest distance at the limit

points. They are called the principal planes.

In order to find other properties of the principal surfaces, we

imagine that the parametric curves upon the sphere represent these

surfaces. If equation (17) be written

du

iu +
l

(20) = 0,
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it is seen that a necessary and sufficient condition that the ruled

surfaces v = const., u = const, be the principal surfaces, is

From thes&quot;e it follows that since the coefficients of the two funda

mental quadratic forms are not proportional, we must have

(21) ^=0, /+/ =0.

From the first of these equations and the preceding theorem follows

the result:

The principal surfaces of a congruence are represented on the

sphere by an orthogonal system, and the two principal planes for
each line are perpendicular to one another.

For this particular parametric system equation (13) reduces to

^9X, ^dX.
&amp;lt;o du & dv

(22)

so that the direction-cosines X
x , JJL^

v
l
of the perpendicular whose foot

is the limit point on I corresponding to v = const, have the values

1 ay l dz

Hence the angle GO between the lines with these direction-cosines

and those with (22) is given by
.

7du
cos &&amp;gt;

=

The values of r
1
and r

2
are now

e a

ri=--r r^~Ŝ
so that with the aid of (23) equation (15) can be put in the form

(24) r = r
l
cos

2
&&amp;gt; -f r

2
sin

2
co.

This is Hamilton s equation. We remark that it is independent of

the choice of parameters.
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163. Developable surfaces of a congruence. Focal surfaces. In

order that a ruled surface be developable, it is necessary and suffi

cient that the perpendicular distance between very near generators

be of the second or higher order. From (14) it follows that the

ruled surfaces of a congruence satisfying the condition

(25)
e du -}-fdv, f du + g dv

are developable. Unlike equation (20), the values of dv/du satis

fying this equation are not necessarily real. We have then the

theorem :

Of all the ruled surfaces of a congruence through a line of it two

are developable, but they are not necessarily real.

The normals to a real surface afford an example of a congruence
with real developables ; for, the normals along a line of curvature

form a developable surface
( 51). Since /and/ are equal in this

case, equations (20) and (25) are equivalent. And, conversely, they

are equivalent only in this case. Hence :

When a congruence is normal, and only then, the principal surfaces

are developable.

When a ruled surface is developable its generators are tangent

to a curve at the points where the lines of shortest distance meet

them. Hence each line of a congruence is tangent to two curves

in space, real or imaginary according to the character of the roots

of equation (25). The points of contact are called the focal points

for the line. By means of (25) we find that the values of r for

these points are given by

e du -\-fdv _ f du+g dv

If these equations be written in the form

(p 4- e)du + (&p +f)dv = 0,

(&amp;lt;&!&amp;gt; +/ )
du 4- (gp +g}dv = 0,

and if du, dv be eliminated, we have

(26)
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If p l
and p2

denote the roots of this equation, it follows that

(27)

A= ^-//

From (19) and (27) it is seen that

(28)

These results may be interpreted as follows :

The mid-points of the two segments bounded respectively by the

limit points and by the focal points coincide.

This point is called the middle point of the line and its locus the

middle surface of the congruence.

The distance between the focal points is never greater than that

between the limit points. They coincide when the congruence is normal.

Equation (24) may be written in the forms

cos
2
&) =--

1 sin
2
&) = --

r r r r
i 2

r
i r

i

Hence if a)
1
and &)

2
denote the values of &) corresponding to the

developable surfaces, we have

A* T ^, A*

From these and the first of (28) it follows that

cos
2

ft)
1
= sin

2
&)

2 , sin
2

ft)
1
= cos

2
ft)

2 ,

so that

(29) cos2&)
1 +cos2ft)2 =0,

and consequently

(30) w
1 +o)2=|ww,

jor

(31)
ft)

1
~ft)

2
=
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where n denotes any integer. If the latter equation be true, the

developable surfaces are represented on the sphere by an orthog
onal system, as follows from the theorem at the close of 161. But

by 34 the condition that equation (25) define an orthogonal sys
tem on the sphere is/=/ , that is, the congruence must be normal.

Since in this case the principal surfaces are the developables, equa
tion (30) as well as (31) is satisfied. Hence equation (30) is the

general solution of (29).

The planes through I which make the angles o^, &&amp;gt;

2
with the

principal plane w = are called the focal planes for the line
; they

are the tangent planes to the two developable surfaces through
the line. Incidentally we have proved the theorem:

A necessary and sufficient condition that the two focal planes for
each line of a congruence be perpendicular is that the congruence
be normal.

And from equation (30) it follows that

The focal planes are symmetrically placed with respect to the prin

cipal planes in such a way that the angles formed by the two 2iairs

of planes have the same bisecting planes.

If 6 denote the angle between the focal planes, then

and ^

(32) sin 6 cos 2 a)
l

cos
2
o)

1
cos

2
o&amp;gt;

2
= -l

The loci of the focal points of a congruence are called its focal

surfaces. Each line of the congruence touches both surfaces, being

tangent to the edges of regression of the two developables through it.

By reasoning similar to that employed in the discussion of surfaces

of center
( 74) we prove the theorem :

A congruence may be regarded as two families of developable sur

faces. Eachfocal surface is touched by the developables of one family

along their edges of regression and enveloped by those of the other

family along the curves conjugate to these edges.

The preceding theorem shows that of the two focal planes through
a line I one is tangent to the focal surface S

L
and the other is the
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osculating plane of the edge of regression on
/S\

to which I is tan

gent ; similar results hold for S
z

. When the congruence is nor

mal these planes are perpendicular, and consequently these edges

of regression are geodesies on S
l
and S

z
. Since the converse is

true
( 76), we have:

A necessary and sufficient condition that the tangents to a family

of curves on a surface form a normal congruence is that the curves be

geodesies.

EXAMPLES

1. If JT, Y&quot;,
Z are the direction-cosines of the normal to a minimal surface at

the point (cc, T/, z), the line whose direction-cosines are F, X, Z and which passes

through the point (x, y, 0) generates a normal congruence.

2. Prove that the tangent planes to two confocal quadrics at the points of con

tact of a common tangent are perpendicular, and consequently that the common

tangents to two confocal quadrics form a normal congruence.

3. Find the congruence of common tangents to the paraboloids

x2 + y
2 = 2az, x2 + y* = - 2 az,

and determine the focal surfaces.

4. If two ruled surfaces through a line L are represented on the sphere by

orthogonal lines, their lines of striction meet L at points equally distant from the

middle point.

5. In order that the focal planes for each line of a congruence meet under the

same angle, it is necessary and sufficient that the osculating planes of the edges of

regression of the developables meet the tangent planes to the focal surfaces under

constant angle.

6. A necessary and sufficient condition that a surface of reference of a congru

ence be its middle surface is g
-

(/ +/ )&amp;lt;^+ e& = 0.

164. Associate normal congruences. If we put

dx dx

equations (8) may be replaced by

(34) t = c I 7 du + y^dv,

where c is a constant. Now equation (9) is equivalent to
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In consequence of this condition equation (34) may be written

(36) t = c-$(u^

where u
l
is a function of u and v thus denned. If the orthogonal

trajectories of the curves u^ const, be taken as parametric curves

v
l
= const., it follows from (36) and from equations in u

l
and v

l

analogous to (33) and (34) that

From this result follows the theorem :

The lines of a normal congruence cut orthogonally the curves on

the surface of reference at whose points t is constant.

If denotes the angle which a line of the congruence makes

with the normal to the surface of reference at the point of inter

section, we have

(37) sin *=

where the linear element of the surface is

If S be taken for the surface of reference of a second congruence
whose direction-cosines Xv Yv Zl satisfy the conditions

where
4&amp;gt;i(

u
i)

ig anv function whatever of u^ this congruence is

normal and has the value

Since
1
is any function, there is a family of these normal congru

ences which we call the associates of the given congruence and of

one another. Through any point of the surface of reference there

passes a line of each congruence, and all of these lines lie in the

plane normal to the curve u
l

const, through the point. Hence :

The two lines of two associate congruences through the same point

of the surface of reference lie in a plane normal to the surface.
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Combining with equation (37) a similar one for an associate con

gruence, we have

(38)
E* = &) =/(W)

sin^ #K)
&amp;lt;*&amp;gt;

Hence we have the theorem :

The ratio of the sines of the angles which the lines of two associate

congruences make with the normal to their surface of reference is con

stant along the curves at whose points t is constant.

When in particularf(u^ in (38) is a constant, the former theorem

and equation (38) constitute the laws of reflection and refraction of

rays of light, according as the constant is equal to or different from

minus one. And so we have the theorem of Malus and Dupin :

If a bundle of rays of lightforming a normal congruence be reflected

or refracted any number of times by the surfaces of successive homo

geneous media, the rays continue to constitute a normal congruence.

By means of (37) equation (36) can be put in the form

t = c l \lE sin 6 dur

From this result follows the theorem of Beltrami *
:

Ifa surface of reference of a normal congruence be deformed in such

a way that the directions of the lines of the congruence with respect

to the surface be unaltered, the congruence continues to be normal.

165. Derived congruences. It is evident that the tangents to the

curves of any one-parameter family upon a surface S constitute a

congruence. If these curves be taken for the parametric lines

v = const., and their conjugates for u = const., the developables in

one family have the curves v = const, for edges of regression, and

the developables of the other family envelop S along the curves

u const. We may take S for the surface of reference. If S
l
be

the other focal surface, the lines of the congruence are tangent to

the curves u = const, on Sr The tangents to the curves v = const,

on S
1
form a second congruence of which S

l
is one focal surface,

and the second surface $
2
is uniquely determined. Moreover, the

* Giornale di matematiche, Vol. II (1864), p. 281.
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lines of the second congruence are tangent to the curves u = const.

on S
z

. In turn we may construct a third congruence of tangents

to the curves v const, on S
z

. This process may be continued

indefinitely unless one of these focal surfaces reduces to a curve,

or is infinitely distant.

In like manner we get a congruence by drawing tangents to

the curves u = const, on S, which is one focal surface, and the

other, S_ v is completely determined. The tangents to the curves

u const, on S_ l
form still another, and so on. In this way we

obtain a suite of surfaces

which is terminated only when a surface reduces to a curve, or

its points are infinitely distant. Upon each of these surfaces the

parametric curves form a conjugate system. The congruences thus

obtained have been called derived congruences by Darboux.* It is

clear that the problem of finding all the derived congruences of a

given one reduces to the integration of the equation of its devel-

opables (25); for, when the developables are known we have the

conjugate system on its focal surfaces.

In order to derive the analytical expressions for these results,

we recall
( 80) that the coordinates x, y, z of S are solutions

of an equation of the form

(39) du dv du cv

where a and b are determinate functions of u and v. If the coordi

nates of S
l
be denoted by x^ y^ 2

t , they are given by

dx By
,

, dz

*-x+\-* fc-jr + x,-. v + XiS .

where \^J~E measures the distance between the focal points. But

as the lines of the congruence are tangent to the curves u = const.

on Sv we must have

dx. dx dy. dy dz. dz
(40) 1 = M 1

-^I = u
1

*
i = u ,

dv
Pl

du dv
Pl

du dv
l
du

* Vol. II, pp. 16-22.
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where
/-^

is a determinate function of u and v. When the above

value for x
l
is substituted in the first of these equations, the result

is reducible, by means of (39), to

L^LI _ flX n\te + (1
__ fog

to = 0.
dv V du

l/
dv

Since the same equation is true for y and z, the quantities in paren
theses must be zero, that is,

1 a 1 a

Hence the surface S
l
is defined by

,

1 ex \dy ,

1 dz

and equations (40) become

/42\ i __ __

^y Vav b b]du dv \dv b b/du dv \dv b bjdu

Proceeding in a similar manner, we find that $_i is defined by
the equations

/4 ox -
1 a* -

1 to . . 1 *
V*; -

and that

and similar expressions in y_^ and 2_i.

From (41) and (43) it is seen that the surface S
l
or S.i is at

infinity, according as b or a is zero. When a and 5 are both zero,

S is a surface of translation ( 81). Hence the tangents to the

generators of a surface of translation form two congruences for

each of which the other focal surface is at infinity.

In order that S^ be a curve, x^ y^ z
l
must be functions of u alone.

From (42) it follows that the condition for this is

d 1 _a
~dv 5 ~6*

In like manner the condition that $_i be a curve is

l= i
du a a
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The functions h and &, denned by

h __da ,

if

*

du dv

are called the invariants of the differential equation (39). Hence

the above results may be stated :

A necessary and sufficient condition that the focal surface S
l
or

_i be a curve is that the invariant k or h respectively of the point

equation of S be zero.

166. Fundamental equations of condition. We have seen
( 160)

that with every congruence there are associated two quadratic dif

ferential forms. Now we shall investigate under what conditions

two quadratic forms determine a congruence. We assume that we

have two such forms and that there is a corresponding congruence.

The tangents to the parametric curves on the surface of reference

at a point are determined by the angles which they make with the

tangents to the parametric curves of the spherical representation of

the congruence at the corresponding point, and with the normal to

the unit sphere. Hence we have the relations

,__._+I Zti 7)ti

(44)

and similar equations in y and 2, where #, /3, 7; ar (Sv
r
y l

are functions

of u and v. If we multiply these equations by &amp;gt; respec-

dX dY dZ
du dU 3U

tively, and add; also by * and by A&quot;, Y, Z\ we obtain
dv dv dv

from which we derive

e& j c/ j iy c-c/
a = ^2

* p=- * 7 =^.A &amp;gt;

/ \ f \ (O& ~~
cy (n& ~~~ c/ 01^

(45)

Ctf M* fl CV^ *&amp;gt;2 1

foo/ CA (Q^/ c/
1

yi^^rr
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In order that equations (44) be consistent, we must have

du \dv 2v \du

which, in consequence of equations (V, 22), is reducible to the form

]t?X+S
d-X

du dv

where J?, S, T are determinate functions. Since this equation must

be satisfied by Y and Z also, we must have R 0, S= 0, T= 0.

When the values of a, y3, a^ fiv from (45), are substituted in these

equations, we have

(47)

Conversely, when we have a quadratic form whose curvature

is +1, it may be taken as the linear element of the spherical rep

resentation of a congruence, which is determined by any set of

functions e, f, / , #, 7, 7^ satisfying equations (4T). For, when

these equations are satisfied, so also is (46), and consequently

the coordinates of the surface of reference are given by the

quadratures (44).

Incidentally we remark that when the congruence is normal, and

the surface of reference is one of the orthogonal surfaces, the last

of equations (47) is satisfied identically, and the first two reduce

to the Codazzi equations (V, 27).

We apply these results to the determination of the congruences

with an assigned spherical representation of their principal surfaces,

and those with a given representation of their developables.

167. Spherical representation of principal surfaces and of devel

opables. A necessary and sufficient condition that the principal

surfaces of a congruence cut the surface of reference in the para

metric lines is given by (21).
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If we require that the surface of reference be the middle surface

of the congruence, and if r denote half the distance between the

limit points, we have, from (15),

(48) e
r&amp;lt;o, g = r&

When these values are substituted in (47), the first two become

12, f? a/ / \

(49)
1 d

,

7 =^ (r &amp;lt;

and the last is reducible to *

,50) 2
av

i

al g^ g?
-

i aiog^gTjg iog^,.
dwy dv cu du dv dudv

d
\ \$ d

i f YL a
F W d

{ f l\4-2f+
sLNtfsfe;J

+4N?s\^Jr^ *

Moreover, equations (44) become

ao: ax / ax
,

aa: / ax ax

where 7 and yl
are given by (49) ; and similar equations in y and z.

Our problem reduces, therefore, to the determination of pairs of

functions r and / which satisfy (50). Evidently either of these

functions may be chosen arbitrarily and the other is found by the

solution of a partial differential equation of the second order.

Hence any orthogonal system on the unit sphere serves for the

representation of the principal surfaces of a family of congruences,

whose equations involve three arbitrary functions.

In order that the parametric curves on the sphere represent the

developables of a congruence, it is necessary and sufficient that

as is seen from (25). If the surface of reference be the middle sur

face, and p denotes half the distance between the focal points, it

follows from (15) that e

p
&quot;

c $
* Cf. Bianchi, Vol. I, p. 314.
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Combining these equations with the above, we have

(52) e=-p& f=-f = p& ff
= p&

When these values are substituted in the first two of equations (47)

and the resulting equations are solved for 7 and 7^ we find

and the last of equations (47) reduces to

d ri2V a n 2
=

Each solution of this equation determines a congruence with the

given representation of its developables,* and the middle surface

is given by the quadratures

(54)

and similar expressions in y and 2.

When the values (52) are substituted in (18) the latter becomes

Consequently equation (32) reduces to

a 2 P
sin ^ = -^ =

Referring to equation (III, 16), we have:

The angle between the focal planes of a congruence is equal to the

angle between the lines on the sphere representing the corresponding

developables.

This result is obtained readily from geometrical considerations.

168. Fundamental quantities for the focal surfaces. We shall

make use of these results in deriving the expressions for the funda

mental quantities of the focal surfaces S
l
and $

2 , which are defined by

* This result is due to Guichard, Annales de I Ecole Normale, Ser. 3, Vol. VI (1889),

pp. 342-344.
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From these and (54) we get

The coefficients of the linear elements of ^ and
2 ,

as derived

from these formulas, are

(56)

and

(57)
.

The direction-cosines of the normals to ^ and S
2
denoted by

X^ Yv Z^ JT
2 ,
r

2 ,
^

2 respectively are found from the above equa

tions and (V, 31) to have the values

Si)
=
._

3V ^V

\ d(u, v)

v . ^ _
1 ZJ- 2/^, i\ /~^ ^/^s /./V^ /}?&amp;gt; ^

and similar expressions for Y
t
and Z

{
. If these equations be differ

entiated, and the resulting equations be reduced by means of (V, 22),

they can be put in the form

K \\ fi2Vax I a*t_^/22Vwr
&quot;VL^^lJ&quot;^

x
\ dv-^lif dv^^

&quot;a^&quot;

==
Til2/
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From these expressions and (55) we obtain

(58)

and

411

^ du du
~

V^ \du ^2

D[ = Y ^1 Mi = _y ?i Mi = o,^ dv du ^ du cv

A&quot;=~2 ^r &quot;^7

= *

From the foregoing formulas we derive the following expressions

for the total curvature of S
l
and of S

z
:

(60)

{

22V
1 J

EXAMPLES

1. If upon a surface of reference S of a normal congruence the curves orthog

onal to the lines of the congruence are defined by 0(u, u) = const., and 6 denotes

the angle between a line of the congruence and the normal to the surface at the

point of meeting, then sin2 = AiF(0) where the differential parameter is formed

with respect to the linear element of S. Show that 6 is constant along a line = const.

only when the latter is a geodesic parallel.

2. When in the point equation of a surface, namely

c2
,

c0
,

, 30 n- + a + 6 = 0,
du cv du cv

a or 6 is zero, the coordinates of the surface can be found by quadratures.

3. Find the derived congruences of the tangents to the parametric curves on a

tetrahedral surface (Ex. 2, p. 267), and determine under what conditions the sur

face Si or 5-i is a curve.

4. Find the equation of the type (39) which admits as solutions the quantities

*i, yi, zi given by (41).

5. When a congruence consists of the tangents to the lines of curvature in

one system on a surface, the focal distances are equal to the radii of geodesic

curvature of the lines of curvature in the other system.
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6. Let S be a surface referred to its lines of curvature, let i and s2 denote the

arcs of the curves v = const, and u = const, respectively, ri and r2 their radii of

first curvature, and RI and JR2 their radii of geodesic curvature
;
for the second

focal sheet Si of the congruence of tangents to the curves v = const, the linear

element is reducible to 2

hence the curves Si = const, are geodesies.

7. Show that 2 t of Ex. 6 is developable when n =/(si), and determine the

most general form of r\ so that 2i shall be developable.

8. Determine the condition which p must satisfy in order that the asymptotic

lines on either focal surface of a congruence shall correspond to a conjugate system
on the other, and show that in this case

where denotes the angle between the focal planes.

9. In order that the focal surfaces degenerate into curves, it is necessary and

sufficient that the spherical representation satisfy the conditions

{

12
\ ={ 12

\ = (
12

du \ 1 ) cv \ 2 }

~
\ 1

10. Show that the surfaces orthogonal to a normal congruence of the type of

Ex. 9 are cyclides of Dupin.

11. A necessary and sufficient condition that the second sheet of the congruence
of tangents to a family of curves on a surface S be developable is that the curves

be plane.

169. Isotropic congruences. An isotropic congruence is one whose

focal surfaces are developables with minimal edges of regression.

In 31 we saw that H = is a necessary and sufficient condition

that a surface be of this kind. Referring to (56) and (57), we see

that we must have

From (54) it is seen that if p were zero the middle surface would

be a point, and from (55) that if the expressions in parentheses
were zero the surfaces S

l
and $

2
would be curves. Consequently

(61) &amp;lt;

= g= 0.

Conversely, if this condition be satisfied, S
l
and S.2 are isotropic

developables. Hence an isotropic congruence is one whose devel

opables are represented on the sphere by minimal lines.
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In consequence of (61) we have, from (52),

and since f+f also is zero, it follows that

(62) dxdX+ dydY+ dzdZ= 0.

Therefore r is zero, so that all the lines of striction lie on the

middle surface. Since (61) is a consequence of (62), we have

the following theorem of Ribaucour,* which is sometimes taken

for the definition of isotropic congruences :

All the lines of striction of an isotropic congruence lie on the mid

dle surface ; and, conversely, when all the lines of striction lie on the

middle surface, the congruence is isotropic ; moreover, the middle sur

face corresponds to the spherical representation with orthogonality of

linear elements.

Ribaucour has established also the following theorem : f

TJie middle envelope of an isotropic congruence is a minimal surface.

Since the minimal lines on the sphere are parametric, in order

to prove this theorem it is only necessary to show that on the

middle envelope, that is, the envelope of the middle planes,

the corresponding lines form a conjugate system. If W denotes

the distance of the middle plane from the origin, the condition

necessary and sufficient that the parametric lines be conjugate

is that W satisfy the equation

(63) r + &amp;lt;^0
= 0.

By definition

and with the aid of (V, 22) we find

ft
du dv cu dv

o2

Since equation (53) reduces to - + /&amp;gt;&amp;lt;^=0,
the function W&amp;gt;

satisfies (63).

* Etude des Elassoides ou Surfaces a Courbure Moyenne Nulle, Memoires Couronnts

par rAcademic de Belgique, Vol. XLIV (1881), p. 63. t L.c., p. 31.
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170. Congruences of Guichard. Guichard* proposed and solved

the problem :

To determine the congruences whose focal surfaces are met by the

developables in the lines of curvature.

With Bianchi we call them congruences of Gruichard.

We remark that a necessary and sufficient condition that a con

gruence be of this kind is that F
l
and F

2
of 168 be zero. From

(56) and (57) it is seen that this is equivalent to

Comparing this result with 78, we have the theorem:

A necessary and sufficient condition that the developables of a con

gruence meet the focal surfaces in their lines of curvature is that the

congruence be represented on the sphere by curves representing also

the asymptotic lines on a pseudospherical surface.

In this case the parameters can be so chosen thatf

&amp;lt;F=^=1, c? = COSQ),

where co is a solution of

= sin ft).

dudv

In this case equation (53) is

(65)
- = p cos &amp;lt;0.

In particular, this equation is satisfied by X, F, Z (V, 22). If we

replace p by X in (54), we have

consequently, for the congruence determined by this value of
/&amp;gt;,

the middle surface is a plane.

From (55) it follows that the lines of the congruence are tangent
to the lines of curvature v = const, on *Sy Consequently they are

*L.c., p. 346. f This is the only real solution of (64).
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parallel to the normals to one of the sheets of the evolute of S
l

(cf. 74) ; call it 2
X

. Hence the conjugate system on 2
t
corre

sponding to the lines of curvature on S^ is represented on the

sphere by the same lines as the developables of the congruence.

Referring to (VI, 38), we see that condition (64) is equivalent to

where the Christoffel symbols are formed with respect to the linear

element of 2r But these are the conditions that the parametric

curves on 2
X
be geodesies (cf. 85). Surfaces with a conjugate

system of geodesies were studied by Voss,
* and on this account

are called surfaces of Voss. Since the converse of the above results

is true, we have the following theorem of Guichard :

A necessary and sufficient condition that the tangents to the lines

of curvature in one family of a surface form a congruence of

Guichard is that one sheet of the evolute of the surface be a sur

face of Voss, and that the tangents constituting the congruence be

those which are parallel to the normals to the latter.

If W
l
denotes the distance from the origin to the tangent plane

to the surface of Voss 2
X , then W

l
is a solution of equation (65)

(cf. 84). Hence W^+ Kp is a solution of this equation, provided K

be a constant. But since the tangent plane to 2
X passes through

the corresponding point of Sv the above result shows that a plane

normal to the lines of the congruence, and which divides in con

stant ratio the segment between the focal points, envelopes a sur

face of Voss. In particular, we have the corollary :

The middle envelope of a congruence ofGruichardis a surface of Voss.

171. Pseudospherical congruences. The lines joining correspond

ing points on a pseudospherical surface S and on one of its Backhand

transforms S
1 (cf. 120) constitute an interesting congruence. We

recall that the distance between corresponding points is constant,

and that the tangent planes to the two surfaces at these points

meet under constant angle. From (32) it follows that the distance

between the limit points also is constant.

*Miinchener JSerichte, Vol. XVIII (1888), pp. 95-102.
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Conversely, when the angle between the focal planes of a con

gruence is constant, and consequently also the angle 6 between
the parametric lines on the sphere representing the developables,
we have, from (V, 4),

111112 i

Furthermore, if the distance between the focal points is constant,we
have p = a, and by (60) g jn2 QK

^
=K

*
=

&quot;4^&quot;

Hence the two focal surfaces have the same constant curvature.

Congruences of this kind were first studied by Bianchi.* He
called them pseudospherical congruences.

In order that the two focal surfaces of the congruence be Back-

lund transforms of one another, it is necessary that their lines of

curvature correspond. It is readily found that for both surfaces

the equation of these lines is reducible by means of (66) to

{
12V f12V H2V2 n^v 2!

is\2j dw ~[^+ f\is +n 2 ) J

Moreover, the differential equation of the asymptotic lines on each

surface is dv? ^/di)
2

0. Hence we have the theorems:

On the focal surfaces of a pseudospherical congruence the lines of
curvature correspond, and likewise the asymptotic lines.

The focal surfaces of a pseudospherical congruence are Backlund

transforms of one another.

EXAMPLES

1. When the parameters of a congruence are any whatsoever, and likewise the

surface of reference, a condition necessary and sufficient that a congruence be

isotropic is e f +f g~~
2^

=
^

2. A necessary and sufficient condition that a congruence be isotropic is that

the locus of two points on each line at an equal constant distance from the middle

surface shall describe applicable surfaces.

3. Show that equation (65) admits and as solutions. Prove that in each
3u dv

case one of the focal surfaces is a sphere.

*Annali, Ser. 2, Vol. XV (1887), pp. 161-172; also Lezioni, Vol. I, pp. 323, 324.
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4. Determine all the congruences of Guichard for which one of the focal surfaces

is a sphere.

5. When a surface is referred to its lines of curvature, a necessary and suffi

cient condition that the tangents to the curves v = const, shall form a congruence
of Guichard is

a / 1

3u\^

6. Determine the surfaces which are such that the tangents to the lines of

curvature in each system form a congruence of Guichard.

172. TF-congruences. We have just seen that the asymptotic lines

on the focal surfaces of a pseudospherical congruence correspond ;

the same is true in the case of the congruences of normals to a

JF-surface (cf. 124). For this reason all congruences possessing
this property are called W-congruences. We shall derive other prop
erties of these congruences.
The condition that asymptotic lines correspond, namely

takes the following form in consequence of (58) and (59):

22V

Hence from (60) it follows that a necessary and sufficient condition

for a JF-congruence is

In order to obtain an idea of the analytical problem involved in

the determination of TF-congruences, we suppose that we have two

surfaces
,
S referred to their asymptotic lines, and inquire under

what conditions the lines joining corresponding points on the surfaces

are tangent to them. We assume that the coordinates of the surfaces

are defined* by means of the Lelieuvre formulas (cf. 79), thus:

(68)

dx

du

dx_

du

du du

du du

dx

dx

dv dv

~dv dv

*Cf. Guichard, Comptes Rendus, Vol. CX (1890), pp. 126-127.
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and similar equations in y, z, y, and z. The functions vv

vv i&amp;gt;

2 ,
v
s respectively are solutions of equations of the form

(69)
dudv

and they are such that

(70) v? + l + vl = a, vl + v$+ vl= a,

wliere a and a are defined by

(71) J5T = - ,, K = -~.
a- a2

Since v^ v^ v
s
and vr v

z ,
v
s
are proportional to the direction-

cosines of the normals to S and S, the condition that the lines

joining corresponding points be tangent to the surfaces S and

S is

v^x -z)+ v
z (y -y}+ v^(z

-
z)
= 0.

Hence
x x y v z z

where w denotes a factor of proportionality. In order to find its

value, we notice that from these equations follow the relations

(2 /&amp;gt;)

2= ^(x
-

x)*= 7?i
22(^3

-
iy&amp;gt;2 )

a

= w

where ^ denotes the angle between the focal planes. If this value

of 2p and the values of K and K from (71) be substituted in (67),

it is found that m* = 1. We take w=l, thus fixing the signs of

i/j,
i&amp;gt;

2 ,
i&amp;gt;

3 , and the above equations become

(72) x x = V& vfa y y = v^t *&, z - * = W- v
2
vr

If the first of these equations be differentiated with respect to w,

the result is reducible by (68) to
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Proceeding in like manner with the others, and also differentiating

with respect to v, we are brought to

/- 7 /-

(73) . = 1,2,8)

where Z and & are factors of proportionality to be determined.

If the first of these equations be differentiated with respect to v,

and in the reduction we make use of the second and of (69), we find

In like manner, if the second of the above equations be differen

tiated with respect to u, we obtain

Since these equations are true for i=l, 2, 3, the quantities in

parentheses must be zero. , This gives

cl 3k

du dv
x =-^ +

In accordance with the last we put

and the others become

a , i= IQOT -
*

Hence equations (69) may be written

Bdudv dudv l

dufo\0.i \ if

from which it follows that
l

is a solution of the first of equa

tions (69) and l/0l
of the second. Moreover, equations (73) may

now be written in the form

0, v&amp;lt;

du dv
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Hence if Q
l
be a known solution of the first of equations (69), we

obtain by quadratures three functions v
f , which lead by the quadra

tures (68) to a surface S. The latter is referred to its asymptotic

lines and the joins of corresponding points on S and $ are tangent

to the latter. And so we have :

If a surface S be referred to its asymptotic lines, and the equations

of the surface be in the Lelieuvre form, each solution of the corre

sponding equation ffQ = \0
dudv

determines a surface S, found by quadratures, such that S and S are

the focal surfaces of a W-congruence.

Comparing (74) with (XI, 13), we see that if we put

^1=^1. yi= i i=^8
the locus of the point (x^ y^ zj corresponds to S with orthogo

nality of linear elements. Hence vv v
2 ,

v
s
are proportional to the

direction-cosines of the generatrices of an infinitesimal deformation

of , so that we have :

Each focal surface of a W-congruence admits of an infinitesimal

deformation whose generatrices are parallel to the normals to the

other focal surface.

Since the steps in the preceding argument are reversible, we

have the theorem :

The tangents to a surface which are perpendicular to the genera

trices of an infinitesimal deformation of the latter constitute a W-

congruence of the most general kind ; and the normals to the other

surface are parallel to the generatrices of the deformation.

173. Congruences of Ribaucour. In his study of surfaces corre

sponding with orthogonality of linear elements Ribaucour consid

ered the congruence formed by the lines through points on one

surface parallel to the normals to a surface corresponding with the

former in this manner. Bianchi * calls such a congruence a con

gruence of Ribaucour, and the second surface the director surface.

In order to ascertain the properties of such a congruence, we

recall the results of 153. Let S
l
be taken for the surface of

*Vol. II, p. 17.
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reference, and draw lines parallel to the normals to S. If the latter

be referred to its asymptotic lines, it follows from (XI, 6) that

du dv

Since these values satisfy the conditions

civ du HK

=y dx
l
dX

9 ~^

the ruled surfaces u = const., v = const, are the developables. And
since also p^+ p2

is equal to zero, S
l
is the middle surface of the

congruence. But the parametric curves on 8
t
form a conjugate

system when the asymptotic lines on S are parametric. Hence we
have the theorem :

The developable surfaces of a congruence of Ribaucour cut the

middle surface in a conjugate system.

Guichard *
proved that this property is characteristic of congru

ences of Ribaucour. In order to obtain this result, we differentiate

the first of equations (54) with respect to v, and in the reduction

make use of the fact that X and p satisfy equations (V, 22
)
and

(53) respectively. This gives

/isyy*.
is log p fi2\as.

dv \\ } / du \ iu

From this and similar equations in y v
and z

v
it follows that a

necessary and sufficient condition that the parametric curves form

a conjugate system is
^ f!2V d T12V
du\ 1 S to\ 2 J

When this condition is satisfied by a system of curves on the

sphere, they represent the asymptotic lines on a unique surface S,

whose coordinates are given by the quadratures (VI, 14)

*Annales L Ecole Nonnale, Ser. 3, Vol. VI (1889), pp. 344, 345.
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and similar expressions for y and z. Combining these equations

with (54), we find that

dx _ _
^\ 3x

l
dx ^ dx

l
dx ~ ^\ dx

v
dx

du
= Z du dv ** dv du

=
^~dv~dv

=

Hence S and S
i correspond with orthogonality of linear elements,

and the normals to the former are parallel to the lines of the con

gruence. Hence :

A necessary and sufficient condition that the developables of a

congruence cut the middle surface in a conjugate system is that their

representation be that also of the asymptotic lines of a surface, in which

case the latter and the middle surface correspond with orthogonality

of linear elements.

EXAMPLES

1. When the coordinates of the unit sphere are in the form (III, 35), the para
metric curves are asymptotic lines. Find the IF-congruences for which the sphere
is one of the focal sheets.

2. Let vi =fi(u) + 0i (w), where /; and &amp;lt;/&amp;gt;
t

- are functions of u and u respectively,

and i = 1, 2, 3, be three solutions of the first of equations (09), in which case X = 0,

and let 61 in (74) be unity. Show that for the corresponding ^-congruence the mid

dle surface is a surface of translation with the generatrices u = const., v = const.,

that the functions /t

- and 0,- are proportional to the direction-cosines of the binor-

inals to these generatrices, and that the intersections of the osculating planes of

these generatrices are the lines of the congruence.

3. Show that isotropic congruences and congruences of Guichard are congru
ences of Ribaucour.

4. A necessary and sufficient condition that a congruence of Ribaucour be nor

mal is that the spherical representation of its developables be isothermic.

5. The normals to quadrics and to the cyclidesof Dupin constitute congruences
of Ribaucour.

6. When the middle surface of a congruence is plane, the congruence is of the

Ribaucour type.

7. Show that the congruence of Ribaucour, whose director surface is a skew

helicoid, is a normal congruence, and that the normal surfaces are molding surfaces.

8. Show that a necessary and sufficient condition that a congruence of Ribaucour

be normal is that the director surface be minimal.

GENERAL EXAMPLES

1 . Through each line of a congruence there pass two ruled surfaces of the con

gruence whose lines of striction lie on the middle surface
;
their equation is

edu* + (f + f )dudv

they are called the mean ruled surfaces of the congruence.
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2. Show that the mean ruled surfaces of a congruence are represented on the

sphere by an orthogonal system of real lines, and that their central planes ( 105)

bisect the angles between the focal planes. Let u = const.
,
v = const, be the mean

ruled surfaces and develop a theory analogous to that in 167.

3. If the two focal surfaces of a congruence intersect, the intersection is the

envelope of the edges of regression of the two families of developable surfaces of

the congruence.

4. If a congruence consists of the lines joining points on two twisted curves, the

focal planes for a line of the congruence are determined by the line and the tangent

to each curve at the point where the curve is met by the line.

5. In order that the lines which join the centers of geodesic curvature of the

curves of an orthogonal system on a surface shall form a normal congruence, it is

necessary and sufficient that the corresponding radii of geodesic curvature be func

tions of one another, or that the curves in one family have constant geodesic curvature.

6. Let S be a surface whose lines of curvature in one system are circles; let C
denote the vertex of the cone circumscribing S along a circle, and L the corre

sponding generator of the envelope of the planes of the circles
;
a necessary and

sufficient condition that the lines through the points C and the corresponding lines L

form a normal congruence is that the distance from C to the points of the correspond

ing circle shall be the same for every circle
;

if this distance be denoted by a, the

radius of the sphere is given by _ p /2 / jn \ a2\

where the accent indicates differentiation with respect to the arc of the curve of

centers of the spheres.

7. Let -S be a surface referred to its lines of curvature, Ci and C2 the centers

of principal normal curvature at a point, GI and G2 the centers of geodesic curva

ture of the lines of curvature at this point; a necessary and sufficient condition

that the line joining C2 and G\ form a normal congruence is that p2 be a function

of Pgu ,
or that one of these radii be a constant.

8. Let S be a surface of the kind defined in Ex. 6; the cone formed by the

normals to the surface at points of a circle A is tangent to the second sheet of the

evolute of -S in a conic T (cf. 132). Show that the lines through points of T and

the vertex C of the cone which circumscribes 8 along A generate a normal con

gruence, and that C lies in the plane of F.

9. Given an isothermal orthogonal system on the sphere for which the linear

element is Z _ * + cto2
) ;

on each tangent to a curve v = const, lay off the segment of length X measured from

the point of contact, and through the extremity of the segment draw a line parallel to

the radius of the sphere at the point of contact . Show that this congruence is isotropic.

10. When a congruence is isotropic and its direction-cosines are of the form

(III, 35), equation (53) reduces to

8uBv (1-f-ww)

Show that the general integral is

p = 2 O0(v) - vf(u)](l + uv)

where / and are arbitrary functions of u and v respectively. Find the equations

of the middle surface.
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11. Show that the intersections of the planes

(1
- M2

)x -f i (1 + w2
) y + 2 uz + 4/(w) = 0,

(1- v2)z
-

i(l + vz)y + 2vz +40(u)=

constitute an isotropic congruence, for which these are the focal planes ;
that the

locus of the mid-points of the lines joining points on the edges of regression of the

developables enveloped by these planes is the minimal surface which is the middle

envelope of the congruence, by rinding the coordinates of the point in which the

tangent plane to this surface meets the intersection of the above planes.

12. Show that the middle surface of an isotropic congruence is the most general

surface which corresponds to a sphere with orthogonality of linear elements, and

that the corresponding associate surface in the infinitesimal deformation of the

sphere is the minimal surface adjoint to the middle envelope.

13. Find the surface associate to the middle surface of an isotropic congruence
when the surface corresponding to the latter with orthogonality of linear elements

is a sphere, and show that it is the polar reciprocal, &quot;with respect to the imaginary

sphere x2 -f y
2
-f z2 + 1 = 0, of the minimal surface adjoint to the middle envelope

of the congruence.

14. The lines of intersection of the osculating planes of the generatrices of a

surface of translation constitute a IT-congruence of which the given surface is the

middle surface
;

if the generatrices be curves of constant torsion, equal but of

opposite sign, the congruence is normal to a TF-surface of the type (VIII, 72).

15. If the points of a surface S be projected orthogonally upon any plane A,
and if, after the latter has been rotated about any line normal to it through a

right angle, lines be drawn through points of A parallel to the corresponding nor

mals to -S, these lines form a congruence of Ribaucour.

16. A necessary and sufficient condition that the tangents to the curves v const.

on a surface, whose point equation is (VI, 26), shall form a congruence of Ribaucour is

aa_S6
du dv dudv

17. Show that the tangents to each system of parametric* curves on a surface

form congruences of Ribaucour when the point equation is

where Ui and V\ are functions of u and v respectively, and the accents indicate

differentiation.

18. Show that if the parametric curves on a surface S form a conjugate system,

and the tangents to the curves of each family form a congruence of Ribaucour, the

same is true of the surfaces Si and S_i, which together with S constitute the focal

surfaces of the two congruences.

19. Show that the parameter of distribution p of the ruled surface of a con

gruence, determined by a value of dv/du, is given by

1

P = -f

e du + /du, f du -f g dv
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20. Show that the mean ruled surfaces (cf. Ex. 1) of a congruence are char

acterized by the property that for these surfaces the parameter of distribution

has the maximum and minimum values.

21. If S and SQ are two associate surfaces, and through each point of one a line

be drawn parallel to the corresponding radius vector of the other, the developables of

the congruence thus formed correspond to the common conjugate system of S and SQ,

22. In order that two surfaces S and SQ corresponding with parallelism of

tangent planes be associate surfaces, it is necessary and sufficient that for the

congruence formed by the joins of corresponding points M and MQ of these sur

faces the developables cut S and SQ in their common conjugate system, and that

the focal points M and MQ form a harmonic range.

23. In order that a surface S be isothermic, it is necessary and sufficient that

there exist a congruence of Ribaucour of which S is the middle surface, such that

the developables cut S in its lines of curvature.



CHAPTER XIII

CYCLIC SYSTEMS

174. General equations of cyclic systems. The term congruence

is not restricted to two-parameter systems of straight lines, but is

applied to two-parameter systems of any kind of curves. Darboux *

has made a study of these general congruences and Ribaucourf has

considered congruences of plane curves. Of particular interest is

the case where these curves are circles. Ribaucour has given the

name cyclic systems to congruences of circles which admit of a one-

parameter family of orthogonal surfaces. This chapter is devoted

to a study of cyclic systems.

We begin with the general case where the planes of the circles

envelop a nondevelopable surface S. We associate with the latter

a moving trihedral
( 68), and for the present assume that the

parametric curves on the surface are any whatever.

As the circles lie in the tangent planes to S, the coordinates

of a point on one of them with respect to the corresponding

trihedral are of the form

(1)
a + Rcos0, b+Rsm0, 0,

where a, b are the coordinates of the center, R the radius, and

the angle which the latter to a given point makes with the moving

In 69 we found the following expressions for the projections

of a displacement of a point with respect to the moving axes :

(dx+%du + ^dv + (qdu + q^v) z (rdu + r
tdv) y,

(&quot;) \ dy + 77 du 4- rj^dv + (rdu + r
vdv] x (pdu+ p^dv) z,

\dz +(p du+p 1dv)y (qdu+ qvdv) x,

* Vol. II, pp. 1-10; also Eisenhart, Congruences of Curves, Transactions of the Amer.

Math. Soc., Vol. IV (1903), pp. 470-488.

t Memoire sur la theorie generale des surfaces courbes, Journal des Mathtmatiques,

Ser. 4, Vol. VII (1891), 117 et. seq.

426
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where the translations f , f1? T;, ^ and the rotations
p,q,r-&amp;gt; p^ qv , r^

satisfy the conditions

dp_di_ __ d|__Mi =

(3)

When the values (1) are substituted in (2) the latter are

reducible to

dr dr.

^Wl PH Ph-M^fl-

J du + J^v -|- cos QdR (dd + rdu+ r^dv)R sin ^,

# ^w + ^jrfu + sin 6dR+ (dd+rdu + r^dv] R cos 6,

(p du -f ^^v) (b + R sin 0) (y du + q^dv) (a+R cos

where we have put, for the sake of brevity,

(5)

^
du

The conditions that

(\ = (^
du \dv] dv \du/ du \dv

are reducible, by means of (3), to

\du

(6)
_

dv du

The direction-cosines of the tangent to the given circle at the

point (1) are

(7) sin0, cos0, 0.

Hence the condition that the locus of the point, as u and v vary,

be orthogonal to the circle is that the sum of the expressions (4)

multiplied respectively by the quantities (7) be zero. This gives



428 CYCLIC SYSTEMS

In order that the system of circles be normal to a family of sur

faces this equation must admit of a solution involving a parameter.

Since it is of the form

(9)

the condition that such an integral exist is that the equation

be satisfied identically.
* For equation (8) this condition is

reducible to

In order that this equation be satisfied identically, the expressions

in the brackets must be zero. If they are not zero, it is possible

that the two solutions of this equation will satisfy (8), and thus

determine two surfaces orthogonal to the congruence of circles.

Hence we have the theorem of Ribaucour:

If the circles of a congruence are normal to more than two surfaces,

they form a cyclic system.

The equations of condition that the system be cyclic are

consequently
dR . dR .

The total curvature of S is given by (cf. 70)

* Murray, Differential Equations, p. 137. New York, 1897; also Forsyth, Differential

Equations, p. 257. London, 1888.
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From this and (5) it is seen that equations (12) involve only

functions relating to the linear element of S and to the circle.

Hence we have the theorem of Ribaucour:

If the envelope of the planes of the circles of a cyclic system be

deformed in any manner without disturbing the size or position of

the circles relative to the point of contact, the congruence of circles

continues to form a cyclic system.

Furthermore, if we put Q
t = tan &amp;gt;

z*

equation (8) assumes the Riccati form,

dt + (af +a2
t + a

3)
du + (b/ + bjt + b

3 )
dv = 0,

where the # s and 5 s are functions of u and v. Recalling a funda

mental property of such equations ( 14), we have :

Any four orthogonal surfaces of a cyclic system meet the circles in

four points whose cross-ratio is constant.

Since by hypothesis S is nondevelopable, equations (12) may
be replaced by

(13)

du

d̂v

AB,- -
trf) JBT = 0.

By (5) the first two of these equations are reducible to

(14)
du

a

The condition of integrability of these equations is

(15) ^{ +g,-^f1-g,l-r(f^-J 1)-r1(,-^.
dv cv du cu

Instead of considering this equation, we introduce a function
&amp;lt;j&amp;gt;

by the equation

(16) 24&amp;gt;=,K

2-a2-&2
,
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and determine the condition which
&amp;lt;/&amp;gt;

must satisfy. We take for

a and b the expressions obtained by solving (14); that is

(17)

Now the equation (15) vanishes identically, and the only other

condition to be satisfied is the last of (13); this, by the substi

tution of these values of a, 6, R, becomes a partial differential

equation in &amp;lt; of the form

(18)
-r ^_r _(__r_] -\-J^ + L +M ~ +N= 0,
du dv \dudv/ du ducv du

where 7, X, JHf, JV denote functions of
&amp;lt;&amp;gt;, f ,

r
t ,
and their deriva

tives of the first order. Conversely, each solution of this equation

gives a cyclic system whose circles lie in the tangent planes to S.

EXAMPLES

1. Let S be a surface of revolution defined by (III, 99), and let Tbe the trihedral

whose x-axis is tangent to the curve v = const. Determine the condition which the

function
\f/ (u) must satisfy in order that the quantities a, b in (1) may have the values

a = _*w_. 6 = l,

and determine also the expression for R.

2. A necessary and sufficient condition that all the circles of a cyclic system

whose planes envelop a nondevelopable surface shall have the same radius, is that

the planes of the circles touch their envelope S at the centers of the circles, and

that S be pseudospherical.

3. Let S be a surface referred to an orthogonal system of lines, and let T be

the trihedral whose z-axis is tangent to the curve v = const. With reference to the

trihedral the equations of a curve in the tangent plane are of the form

x = p cos 0, y = p sin 0, z = 0,

where in general p is a function of 0, w, and v. Show that the condition that there

be a surface orthogonal to these curves is that there exist a relation between 0, u,

and v which satisfies the equation

U sin -f prji cos
30

When this condition is satisfied by a function which involves an arbitrary con

stant, there is an infinity of normal surfaces. In this case the curves are said to

form a normal congruence.

4. When the surface enveloped by the planes of the curves of a normal con

gruence of plane curves is deformed in such a way that the curves remain invari

ably fixed to the surface, the congruence continues to be normal.
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175. Cyclic congruences. The axes of the circles of a cyclic sys

tem constitute a rectilinear congruence which Bianchi * has called

a cyclic congruence. In order to derive the properties of this con

gruence and further results concerning cyclic systems, we assume

that the parametric curves on S correspond to the developables of

the congruence.

The coordinates of the focal points of a line of the congruence
with reference to the corresponding trihedral are of the form

a, ft, p^ a, ft,
/&amp;gt;2

. On the hypothesis that the former are the

coordinates of the focal point for the developable v = const,

through the line, we have, from (2),

- + ? +?/i rft = 0,
- + T)pp l +ra = Q.

cu cu

Proceeding in like manner with the other point, we obtain a pair

of similar equations. All of these equations may be written in the

abbreviated form

(19) A + qPl =0, Ji- PPl =Q, ^+ ?lft =0, J?,-^p2 =0,

in consequence of (5). When these values are substituted in the

last of equations (13), it is found that

(20) Sf=-P1pf

Hence the lines joining a point on the circle to the focal points are

perpendicular. If we put

thus indicating by 2 p the distance between the focal points, and by
8 the distance between the center of the circle and the mid-point

of the line of the congruence, we find that

We replace this equation by the two

(21) 8 p cos
&amp;lt;r,

R p sin cr,

thus defining a function a-. Now we have

/5 1 =/E)(coso-+l), /?2 =/o(cos&amp;lt;r 1),

so that equations (19) may be written

A = o.

(22) ^ *
i
= _

qip (cos o- 1), B
l
= prf (cos o- 1).

*Vol. II, p. 161.
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By means of (5) equation (15) can be put in the form

When the values (22) are substituted in this equation, it becomes

Since by (3) the expression in the first parenthesis is zero, the same

is true of the second, and so we have

But these are the conditions (V, 67) that the parametric curves

on S form a conjugate system. Hence we have the theorem of

Ribaucour :

On the envelope of the planes of the circles of a cyclic system the

curves corresponding to the developables of the associated cyclic con

gruence form a conjugate system.

176. Spherical representation of cyclic congruences. When the

expressions (22) are substituted in (6), we obtain

do da.

dp dp,

Since pq l p lq =t= unless Sis developable, the preceding equations

may be replaced by

[/3 (coso--l)]=2 /0 {
1

2

2

}VH-^),
d _ /12V

[/3(cos a -hi)] = 2ps \ + (
a(l\P\) i

cv L 1 J

where the Christoffel symbols are formed with respect to

(24) (pdu+p l dv)
2

-\-(qdu-{-ql dvY,

the linear element of the spherical representation of S.
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When in like manner we substitute in the first two of equations

J?
2 = p

2
sin

2
cr = p

2

(1 cos
2

o-),
(13), taking

we obtain
. dp p cos o- d ,

cos a-)
--- - cos a =pb qa,du 1 4- cos a du

n , \ p
(1 + cos o)

-J-
7

P cos

1 cos o-

From these equations and (23) we find

* r
cos a p o

The condition of integrability of equations (25) is reducible to

If the expression for cos a- obtained from this equation be substi

tuted in (25), we find two conditions upon the curves on the sphere
in order that they may represent the developables of a cyclic con

gruence. A particular case is that in which (27) is identically sat

isfied, when the two conditions are

(28)
ri

O&quot;\ ^ n O&quot;^ n o^ / f 1 o&quot;\ /121 1/121 _ 2
f121 f 121

ll J 0v I 2 J
&quot;

ll J 12 /

It is now our purpose to show that if any system of curves on

the sphere satisfies either set of conditions, all the congruences
whose developables are thus represented on the sphere are cyclic.

We assume that the sphere is referred to such a system and that

we have a solution p of
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By the method of 167, or that hereinafter explained, we find the

middle surface of the congruence. Then we take the point on each

line at the distance p cos a- from the mid-point as the center of the

circle of radius p sin a and for which the line is the axis. These cir

cles form a cyclic system, as we shall show.

In the first place we determine the middle surface with reference

to a trihedral of fixed vertex, whose 2-axis coincides with the radius

of the sphere parallel to the line of the congruence and whose x-

and #-axes are any whatever. If #
, # , z denote the coordinates

of the mid-point of a line with reference to the corresponding tri

hedral, the coordinates of the focal points are

From (2) it is seen that if these points correspond to the develop-
ables v = const, and u = const, respectively, we must have

Since pq l p lq =t= 0, the conditions of integrability of these equa
tions can be put in the form

(30)

It is readily found that the condition of integrability of these equa
tions is reducible to (29).

It will be to our advantage to have also the coordinates of the

point of contact of the plane of the circle with its envelope S. If

x, y, Z
Q p cos a denote these coordinates with reference to the

above trihedral, it follows from (2) that

(z
-

p cos v) + py-qx = 0,

o

(z
-

p cos a) + p^y
-

q,x
= 0.
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If these equations be subtracted from the respective ones of (30),

the results are reducible, by means of (25), to

(cos a -1) - + 2 p cos a-

1 g j
+ p(yQ

-
y)
-

q(x
-

x)
= 0,

(cos cr + 1) + 2 p cos a- V^- y)- ftfo- x)
= 0,

which are the same as (26). For, the quantities x x, yQ y are

the coordinates of the center of the circle with reference to the tri

hedral parallel to the preceding one and with the corresponding

point on S for vertex.

If, then, we have a solution cr of (25) and p of (29), the corre

sponding values of a and b given by (26) satisfy (22), since the

latter are the conditions that the parametric curves on the sphere

represent the developables of the congruence. However, we have

seen that when the values (22) are substituted in (12), we obtain

equations reducible to (25) and (26). Hence the circles constructed

as indicated above form a cyclic system.

Since equations (25) admit only one solution (27) unless the con

dition (28) is satisfied, we have the theorem:

With each cyclic congruence there is associated a unique cyclic sys

tem unless it is at the same time a congruence of Ribaucour, in which

case there is an infinity of associated cyclic systems.

Recalling the results of 141, we have the theorem of Bianchi *
:

When the total curvature of a surface referred to its asymptotic

lines is of the form -

~
[*

it is the surface generatrix of a congruence of Ribaucour which is

cyclic in an infinity of ways, and these are the only cyclic congru

ences with an infinity of associated cyclic systems.

In this case the general solution of equations (25) is

(31) cos &amp;lt;,=&amp;gt;-*

+
*,

&amp;lt;#&amp;gt;

+ ^
where a is an arbitrary constant.

* Vol. II, p. 165.
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177. Surfaces orthogonal to a cyclic system. In this section we

consider the surfaces S
l orthogonal to the circles of a cyclic sys

tem. Since the direction-cosines of the normals to the surfaces

with reference to the moving trihedral in 174 are sin 6, cos 0, 0,

the spherical representation of these surfaces is given by the point

whose coordinates are these with respect to a trihedral of fixed

vertex parallel to the above trihedral. From (2) we find that the

expressions for the projections of a displacement of this point are

cos 0(d0 + rdu + ^ dv),

sin 6 (dd + r du + r
1 dv),

(p du + p^dv) cos 6 -f (q du + q v dv) sin 0.

Moreover, by means of (8), (21), (22), we obtain the identity

(32) sin a- (dd + r du + r^dv)
=

(1 4- cos a) (p cos 6 -f q sin 6) du

+ (1 cos a) (p l
cos 6 +

&amp;lt;?!

sin 0) dv.

Hence the linear element of the spherical representation of ^ is

(33) da*= T -
(p cosO + q sin 0fdu*

-L COS O~

1\ r 1+ COSO-

Since the parametric curves on the sphere form an orthogonal

system, the parametric curves on the surface are the lines of

curvature, if they form an orthogonal system. In order to show

that this condition is satisfied, we first reduce
v
the expressions (4)

for the projections of a displacement of a point on Sv by means

of (21), (22), (25), (26), and (32), to

(34)

Cdu Ddv \cos v sin &amp;lt;r

( )

,1 cos a 1 + cos 07

, Cdu Ddv \

sin sin &amp;lt;T
i

cos &amp;lt;r 1 + cos cr,

Cdu + Ddv,

where we have put

=
pi(b + R sin 0)q1(a+E cos 0).
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Hence the linear element of S
1
is

(36) ds*= 2 .

du
+ 2

D V
,

1 COS (T 1 + COS cr

from which it is seen that the parametric curves on S
l
form an

orthogonal system, and consequently are the lines of curvature.

Furthermore, it is seen from (34) that the tangents to the curves

v = const., u = const, make with the plane of the circle the respec

tive angles
.-. i/l COScrX ./ l-fCOSCT\
(37) tan&quot;

1
: ), tan&quot;

1
!

\ sin cr / \ sin a /

But it follows from (21) that the lines joining a point on the cir

cumference of a circle to the focal points of its axis make the

angles (37) with the radius to the point. Hence we have :

The lines of curvature on a surface orthogonal to a cyclic system

correspond to the developables of the congruence of axes of the circles,

and the tangents to the two lines of curvature through a point of the

surface meet the corresponding axis in its focal points.

178. Normal cyclic congruences. Since the developables of a

cyclic congruence correspond to a conjugate system on the enve

lope S of the planes of the circles, this system consists of the

lines of curvature when the congruence is normal, and only in

this case (cf. 83). If, under these conditions, we take two of the

edges of the trihedral tangent to the lines of curvature, we have

and equations (25) become

d -, 03, d , . cr d

By a suitable choice of parameters we have

&quot; tt

so that if we put &&amp;gt;
= cr/2, the linear element of the sphere is

(39) d(r*= sinW%2+ cosWv2
.

Comparing this result with
( 119), we have the theorem:

The normals to a surface 2 with the same spherical representation

of its lines of curvature as a pseudospherical surface constitute the

only kind of normal cyclic congruences.
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Since the surface 2 and the envelope of the planes of the

circles have the same representation of their lines of curvature,

the tangents to the latter at corresponding points on the two

surfaces are parallel. Hence with reference to a trihedral for 2

parallel to the trihedral for S the coordinates of a point on the

circle are R cos 0, R sin 6, p, where ft remains to be determined

and 6 is given by (32), which can be put in the form

,*(\^ cd d(D . n dO da) . a
(40) H = cos co sm 0, 1

= sin &&amp;gt; cos 6.
du dv dv du

If we express, by means of (2), the condition that all displace

ments of this point be orthogonal to the line whose direction-

cosines are sin 0, cos 0, 0, the resulting equation is reducible,

by means of (40), to

sin 9 (R cos o&amp;gt; fi sin o&amp;gt; f)
du

cos (R sin &&amp;gt; -f- //,
cos &&amp;gt; 77^ dv 0.

Hence the quantities in parentheses are zero, from which we obtain

(41) R =
i;
cos &) -h T] I

sin w, ^ = f sin o&amp;gt; + rj l
cos o&amp;gt;.

When, in particular, 2 is a pseudospherical surface of curvature

-I/a
2
, we have (VIII, 22)

f = a cos &), rj l
= a sin

&&amp;gt;,

so that R= a and /x
= 0. Hence the circles are of constant radius

and the envelope of their planes is the locus of their centers

(cf. Ex. 2, 174). Conversely, when the latter &amp;lt; condition is sat

isfied, it follows from (13) that R is constant. Moreover, in this

case p^ and p 2 , as defined in 175, are the principal radii of the

surface, which by (20) is pseudospherical. When these values

are substituted in (36) and (33), it is found that the linear ele

ment of each orthogonal surface is

ds* = a? (cos
2 6 du* -f sin

2 6 dvz

),

and of its spherical representation

(42) d&amp;lt;r*=sm*0du*+ cos
2

&amp;lt;W.

Hence these orthogonal surfaces are the transforms of 2 by means

of the Bianchi transformation
( 119).
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The expression (42) is the linear element of the spherical rep

resentation of the surfaces orthogonal to the circles associated with

any surface 2, whether it be pseudospherical or not, whose spherical

representation is given by (39). Since these orthogonal surfaces

have this representation of their lines of curvature, they are of the

same kind as 2. We have thus for all surfaces with the same rep

resentation of their lines of curvature as pseudospherical surfaces,

a transformation into similar surfaces of which the Bianchi trans

formation is a particular case ; we call it a generalized Bianchi

transformation.*

179. Cyclic systems for which the envelope of the planes of the

circles is a curve. We consider now the particular cases which have

been excluded from the preceding discussion, and begin with that

for which the envelope S of the planes of the circles is a curve C.

We take the moving trihedral such that its zy-plane, as before,

is that of the circle, and take the z-axis tangent to C. If s denotes

the arc of the latter, we have

ds =
f;
du + ^dv, ??

=
rj 1
= 0,

and by (3)

(43) r^-r^ = Q, rfx-ftf = 0.

From (14), (15), and (16) it follows that a and
&amp;lt;/&amp;gt;

are functions of s,

so that these equations may be replaced by

(44) .K
2=a2+& 2

If the parametric curves on the sphere represent the developables

of the congruence, the conditions (19) must hold. But from (5),

(15), and (43) we obtain ^. _^ _ Q

If the values from (19) be substituted in this equation, we have,

from (43), ^-^=0.

Hence the focal surfaces coincide. If we put

P = Pi=P*

in (19) and substitute in the last of (12), we obtain

(^+^
2

)(^1-^)==0.

*Cf. American Journal, Vol. XXVI (1905), pp. 127-132.
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The vanishing of pql p lq is the condition that there be a single

infinity of planes, which case we exclude for the present. Hence

p = iR ;
that is, the developables of the cyclic congruence are

imaginary.

Instead of retaining as parametric curves those representing the

developables, we make the following choice. We take the arc of C

for the parameter u
; consequently f =1, ^=0. Since 77

= ^ x
=

also, we have, from (3),

.- - 2MB-*
hence we may choose the parameter v so that p = 0, ^=1.
From (3) it follows, furthermore, that

dq dr

i= T
&amp;gt;

B-V

= -*

of which the general integral is

q=Ul
cos v + U

2
sin v, r = U

l
sin v -f Uz

cos v,

where U^ and U
2
are arbitrary functions of u. From (5) we have

A =
j&amp;gt;&quot;(u)+\-rl, ^=0, A =

7T#y

so that the third of equations (12) is reducible by (44) to

(*&quot;+!)-
cv d U sin v U cos v

Hence if we take for a any function of u denoted by &amp;lt;f&amp;gt;

r

(u), equation

(45) gives 6, and R follows directly from (44).

180. Cyclic systems for which the planes of the circles pass

through a point. If the planes of the circles of a cyclic system

pass through a point 0, we take it for the origin and for the

vertex of a moving trihedral whose z-axis is parallel to the axis

of the circle under consideration. In this case equations (14)

may be replaced by

(46)
A&amp;gt;

2 = tf
2 + 6

2

-*,

where c denotes a constant. But this is the condition that all the

circles are orthogonal to a sphere with center at 0, or cut it in
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diametrically opposite points, or pass through 0, according as c is

positive, negative, or zero. Hence we have the theorem :

If the planes of the circles of a cyclic system pass through a point,

the circles are orthogonal to a sphere with its center at the point, or

meet the sphere in opposite points, or pass through the center.

From geometrical considerations we see that the converse of this

theorem is true.

When c in (46) is zero all the circles pass through 0. Then

by (21) we have

(47) a = p sin &amp;lt;r cos 6, b = p sin a sin 6,

and equations (26) become

(cos or 1)
^ = 2 cos a-

\ f + sin a- (p sin 6 q cos

,

(cos &amp;lt;r +1)-S-L. .

2cos&amp;lt;rj f -\-smo-(p l
sm0

These equations are obtained likewise when we substitute the

values (47) in equations (22) and reduce by means of (25) and (32).

Because of (22) the function p given by (26) is a solution of (29),

arid therefore p given by (48) is a solution. But the solution 6 of

(32) involves a parameter. Hence we have the theorem of Bianchi *
:

Among all the cyclic congruences with the same spherical repre

sentation of their developables there are an infinity for which the

circles of the associated cyclic system pass through a point.

If we take the line through and the center of the circle for

the z-axis of the trihedral, equation (11) must admit of the solu

tion = TT, and consequently must be of the form

In order that this equation admit of a solution other than TT, both

L and M must be zero and the system cyclic. We combine this

result with the preceding theorem to obtain the following:

A two-parameter family of circles through a point and orthogonal

to any surface constitute a cyclic system, and the most general spher

ical representation of the developables of a cyclic congruence is afforded

by the representation of the axes of such a system of circles.^

* Vol. II, p. 169. t Bianchi, Vol. II, p. 170.
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We consider finally the case where the planes of the circles

depend upon a single parameter. If we take for moving axes the

tangent, principal normal, and binormal of the edge of regression

of these planes and its arc for the parameter w, we have

and comparing (V, 50) with (2), we see that

p --
&amp;lt;7

= 0, r = -
T p

where p and r are the radii of first and second curvature of the

edge of regression. Now

da
,

b , 8a _#, r&amp;gt;

*b
A = --hi -- A= B = --h- 2?!

=
du p dv du p dv

The equations (12) reduce to two. One of the functions a, b may
be chosen arbitrarily ;

then the other and R can be obtained by
the solution of partial differential equations of the first order.

EXAMPLES

1. Show that a congruence of Ribaucour whose surface generator is the right

helicoid is cyclic, and determine the cyclic systems.

2. A congruence of Guichard is a cyclic congruence, and the envelope of the

planes of the circles of each associated cyclic system is a surface of Voss.

3. The surface generator of a cyclic congruence of Ribaucour is an associate

surface of the planes of the circles of each associated cyclic system.

4. If S is a surface whose lines of curvature have the same spherical representa

tion as a pseudospherical surface, and Si is a transform of S resulting from a gen

eralized Bianchi transformation
( 178), the tangents to the lines of curvature of

81 pass through the centers of principal curvature of S.

5. When the focal segment of each line of a cyclic congruence is divided in

constant ratio by the center of the circle, the envelope of the planes of the circles

is a surface of Voss.

6. The circles of the cyclic system whose axes are normal to the surface S,

defined in Ex. 11, p. 370, pass through a point, and the surfaces orthogonal to the

circles are surfaces of Bianchi of the parabolic type.

7. If the spheres with the focal segments of the lines of a congruence for

diameters pass through a point, the congruence is cyclic, and the circles pass

through the point.

8. Show that the converse of Ex. 7 is true.
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GENERAL EXAMPLES

1. Determine the normal congruences of Ribaucour which are cyclic.

2. If the envelope of the planes of the circles of a cyclic system is a surface of

Voss whose conjugate geodesic system corresponds to the developables of the asso

ciated cyclic congruence, any family of planes cutting the focal segments in con

stant ratio and perpendicular to them envelop a surface of Voss.

3. A necessary and sufficient condition that a congruence be cyclic is that the

developables have the same spherical representation as the conjugate lines of a sur

face which remain conjugate in a deformation of the surface. If the developables

of the congruence are real, the deforms of the surface are imaginary.

4. The planes of the cyclic systems associated with a cyclic congruence of

Ribaucour touch their respective envelopes in such a way that the points of con

tact of all the planes corresponding to the same line of the congruence lie on a

straight line.

5. If the spheres described on the focal segments of a congruence as diameters

cut a fixed sphere orthogonally or in great circles, the congruence is cyclic and

the circles cut the fixed sphere orthogonally or in diametrically opposite points.

6. If one draws the circles which are normal to a surface S and which cut

a fixed sphere SQ in diametrically opposite points or orthogonally, the spheres

described on the focal segments of the congruence of axes as diameters cut SQ in

great circles or orthogonally.

7. Determine the cyclic systems of equal circles whose planes envelop a devel

opable surface.

8. Let Si be the surface defined in Ex. 14, p. 371, and let S be the sphere with

center at the origin and radius r. Draw the circles which are normal to Si and

which cut S orthogonally or in diametrically opposite points. Show that the

cyclic congruence of the axes of these circles is a normal congruence, and that the

coordinates of the normal surfaces are of the form

[1

( -- -) T

j

a?e a -
(r?

2 + K) e cos 6 -f 77 sin 8 \Xi

+ fJL ja
2e~ -

(T;
2 + K)(P I sind - rj cose]X2 + tX,

L2 ( )

where K is equal to r2 or + r2
, according as the circles cut S orthogonally or in

diametrically opposite points, and where t is given by

[1

( - ^) &quot;1

\a
2e a -

(i?
2

-I- K) ea
[
cos 6 + -r\

sin 6 sin du
2a(

[1

( -- -) ~\_
j
a?e a

(j
2
4- K) e&quot;

j

sin 6 t\ cos cos u dv.

9. Show that the surfaces of Ex. 8 are surfaces of Bianchi which have the

same spherical representation of their lines of curvature as the pseudospherical

surface S referred to in Ex. 14, p. 371.

10. Show that the surfaces orthogonal to the cyclic system of Ex. 8 are surfaces

of Bianchi of the parabolic type.
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11. Let S be a surface referred to an orthogonal system, and let T be the trihe

dral whose x-axis is tangent to the curve u = const. The equations .

x = p(l + cos0), y = 0, z =
/&amp;gt;sin0

define a circle normal to S. Show that the necessary and sufficient conditions that

the circles so defined form a cyclic system are

cu

12. A necessary and sufficient condition that a cyclic system remain cyclic

when an orthogonal surface S is deformed is that S be applicable to a surface of

revolution and that

where c is a constant and the linear element of S is ds2 = du2 + 2
(w) dv* (cf . Ex. 11).

13. Determine under what conditions the lines of intersection of the planes of

the circles of a cyclic system and the tangent planes to an orthogonal surface form

a normal congruence.

14. Let Si and S2 be two surfaces orthogonal to a cyclic system, and let MI and
M2 be the points of intersection of one of the circles with Si and S 2 . Show that

the normals to Si and S2 at the points MI and M2 meet in a point M equidistant
from these points, and show that Si and S2 constitute the sheets of the envelope of

a two-parameter family of spheres such that the lines of curvature on Si and S2

correspond.

15. Let -S be the surface of centers of a two-parameter family of spheres of

variable radius JR, and let Si and S2 denote the two sheets of the envelope of these

spheres. Show that the points of contact MI and M2 of a sphere with these sheets

are symmetric with respect to the tangent plane to S at the corresponding point M.
Let S be referred to a moving trihedral whose plane y = is the plane MiMM2 ,

and

let the parametric curves be tangent to the x- and y-axes respectively. Show that

if ff denotes the angle which the radius MMi makes with the x-axis of the trihedral,

the lines of curvature on Si are given by

sin &amp;lt;r (sin &amp;lt;rp
r cos

&amp;lt;r)

du2 + in[qi )
dv2

\ dv/

H fllfl -) I sin &amp;lt;r (cos &amp;lt;rri + p sin
&amp;lt;r)

\dudv = 0.

16. Find the condition that the lines of curvature on S! and S2 of Ex. 15 corre

spond, and show that in this case these curves correspond to a conjugate system on S.

17. Show that the circles orthogonal to two surfaces form a cyclic system, pro
vided that the lines of curvature on the two surfaces correspond.

18. Let &amp;lt;S be a pseudospherical surface with the linear element (VIII, 22), the

lines of curvature being parametric, and let A be a surface with the same spher
ical representation of its lines of curvature as S

; furthermore, let AI denote the

envelope of the plane which makes the constant angle a with the tangent plane

at a point M of A and meets this plane in a line I/, which forms with the tangent

to the curve u = const, at M an angle defined by equations (VIII, 35). If MI



GENERAL EXAMPLES 445

denotes the point of contact of this plane, we drop from MI a perpendicular on L,

meeting the latter in N. Show that if X and p denote the lengths MN and NMi,
they are given by

X = (V2? cos o&amp;gt; + V6? sin
o&amp;gt;)

sin
&amp;lt;r, ^ = ( Vj sin w + Vt? cos w) sin o-,

where E and (? are the first fundamental coefficients of A.

19. Show that when the surface A in Ex. 18 is the pseudospherical surface S,

then AI is the Backhand transform Si of S by means of the functions (0, &amp;lt;r),
and

that when A is other than S the lines of curvature on the four surfaces S, .4, Si,

AI correspond, and the last two have the same spherical representation.

20. Show that as is given all values satisfying equations (VIII, 35) for a given

0-, the locus of the point Jfi, defined in Ex. 18, is a circle whose axis is normal to

the surface A at M.

21. Show that when A in Ex. 18 is a surface of Bianchi of the parabolic type

(Ex. 11, p. 370) the surfaces AI are of the same kind, whatever be a-.



CHAPTER XIV

TRIPLY ORTHOGONAL SYSTEMS OF SURFACES

181. Triple system of surfaces associated with a cyclic system.
Let S

1
be one of the surfaces orthogonal to a cyclic system, and

let its lines of curvature be parametric. The locus 2
t
of the

circles which meet S
l
in the line of curvature v = const, through

a point M is a surface which cuts S
l orthogonally. Hence, by

Joachimsthal s theorem
( 59), the line of intersection is a line of

curvature for 2r In like manner, the locus 2
2

of the circles

which meet S
:
in the line of curvature u = const, through M cuts

S^ orthogonally, and the curve of intersection is a line of curva

ture on S
2
also. Since the developables of the associated cyclic

congruence correspond to the lines of curvature on all of the

orthogonal surfaces, each of the latter is met by 2
X
and 2

2
in a

line of curvature of both surfaces. At each point of the circle

through M the tangent to the circle is perpendicular to the line

of curvature v = const, on 2
t through the point and to u = const,

on 2
a

. Hence the circle is a line of curvature for both 2
X
and 2

2 ,

and these surfaces cut one another orthogonally along the circle.

Since there is a surface 2
X
for each curve v = const, on S

l
and a

surface 2
2
for each u = const., the circles of a cyclic system and

the orthogonal surfaces may be looked upon as a system of three

families of surfaces such that through each point in space there

passes a surface of each family. Moreover, each of these three sur

faces meets the other two orthogonally, and each curve of intersec

tion is a line of curvature on both surfaces. We have seen
( 96)

that the confocal quadrics form such a system of surfaces, and

another example is afforded by a family of parallel surfaces and

the developables of the congruence of normals to these surfaces.

When three families of surfaces are so constituted that through
each point of space there passes a surface of each family and each

of the three surfaces meets the other two orthogonally, they are

446



GENERAL EQUATIONS 447

said to form a triply orthogonal system. In the preceding examples
the curve of intersection of any two surfaces is a line of curvature

for both. Dupin showed that this is a property of all triply orthog
onal systems. We shall prove this theorem in the next section.

182. General equations. Theorem of Dupin. The simplest exam

ple of an orthogonal system is afforded by the planes parallel to

the coordinate planes. The equations of the system are

3 =
1*!, y = M

a , z = i*
8 ,

where u# u^ u
3
are parameters. Evidently the values of these

parameters corresponding to the planes through a point are the

rectangular coordinates of the point. In like manner, the surfaces

of each family of any triply orthogonal system may be determined

by a parameter, and the values of the three parameters for the

three surfaces through a point constitute the curvilinear coordi

nates of the point. Between the latter and the rectangular coor

dinates there obtain equations of the form

(1) x =/1 (w1 ,
i*

8 , i*,), y =/2K, i*
a , i*,),

z =/,(!*!, i*
a , i*

8),

where the functions / are analytic in the domain considered. An

example of this is afforded by formulas (VII, 8), which define space

referred to a system of confocal quadrics.

In order that the system be orthogonal it is necessary and suffi

cient that these functions satisfy the three conditions

v dx dx _ v dx dx y dx dx _
^aST *to

t to.- Zto.dut

Any one of the surfaces u
t

= const, is defined by (1) when u
t

is

given this constant value.

By the linear element of space at a point we mean the linear ele

ment at the point of any curve through it. This is

which, in consequence of (2), may be written in the parametric form

(3)
ds2=Hl du* + H* du* + HI dui,

As thus defined, the functions H# H2 ,
H

3
are real and we shall

assume that they are positive.
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From (3) we have at once the linear element of any of the sur

faces of the system. For instance, the linear element of a surface

U= COnst. is , 2 rrl J.

Now we shall find that the second quadratic forms of these surfaces

are expressible in terms of the functions H and their derivatives.

If X^ F., Zi
denote the direction-cosines of the normals to the

surfaces u
i
= const, we have

(5)
, du.

We choose the axes such that

(6)
= 4-1.

In consequence of (5) the second fundamental coefficients of a sur

face u
{

const, are defined by

dx d*x _, 1 ^ dx d
2

x_ _ 1 y dx d*x

^u
t

H
i

** du
t du?

_ 1~ ,= 1 y dx
4

where t, /c, I take the values 1, 2, 3 in cyclic order, and the sign 2
refers to the summation of terms in #, ?/, 2, as formerly. In order

to evaluate these expressions we differentiate equations (2) with

respect to u^ uv u
2 respectively. This gives

dx

dx

. _JL__ = o,
f

dx

^ du.

0.

If each of these equations be subtracted from one half of the sum

of the three, we have

= o,
dx d*x

^
du

z
du

consequently D-= 0.

du
3
du

l

= 0, V = 0;
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If the first and third of (2) be differentiated with respect to

u
z
and u

s respectively, and the second and third of (4) with

respect to uv we have

dx d*z dx tfx a#
2

2

~~
2

du^

dx tfx y dx tfx 3H
S~

3

J5T
t

Hence we have

Proceeding in like manner, we find the expressions for the other

Z&amp;gt; s, which we write as follows :

where i, K, I take the values 1, 2, 3 in cyclic order. From the sec

ond of these equations and the fact that the parametric system on

each surface is orthogonal, follows the theorem of Dupin :

The surfaces of a triply orthogonal system meet one another in

lines of curvature of each.

183. Equations of Lame&quot;. By means of these results we find the

conditions to be satisfied by Hv H^ Hz ,
in order that (3) may be

the linear element of space referred to a triply orthogonal system

of surfaces. For each surface the Codazzi and Gauss equations

must be satisfied. When the above values are substituted in these

equations, we find the following six equations which it is necessary

and sufficient that the functions H satisfy :

PH
{

1 dH^H, 1
gJgjgjr~̂

/ox

H

where t, /^, I take the values 1, 2, 3 in cyclic order. These are

the equations of Lame&quot;, being named for the geometer who first

deduced them.*

* Lemons sur les coordonntes curvilignes et leurs diverses applications, pp. 73-79.

Paris, 1859.
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For each of the surfaces there is a system of equations of the

form (V, 16). When the values from (7) are substituted in these

equations we have

&amp;lt;

t du,

Recalling the results of 65, we have that each set of solutions

of equations (8), (9) determine a triply orthogonal system, unique
to within a motion in space. In order to obtain the coordinates

of space referred to this system, we must find nine functions

JQ, r;., Zf which satisfy (10) and

1, 2^=0. (=*=*)

Then the coordinates of space are given by quadratures of the form

x = I H^XI du l+H^XZ
du

2 +HZ
X

Z
du

s
.

If p.K denotes the principal radius of a surface u
f

= const, in the

direction of the curve of parameter UK , we have, from (7),

rm 1-
Pi.

Let p l
denote the radius of first curvature of a curve of param

eter ur In accordance with 49 we let w
1
and w[ ?r/2 denote the

angles which the tangents to the curves of parameter u
3
and u

2

respectively through the given point make, in the positive sense,

with the positive direction of the principal normal of the curve

of parameter ur Hence, by (IV, 16), we have

/i o\

Pi Pn Pi Pzi

From these equations and similar ones for curves of parameter u

and u
s ,
we deduce the relations

(13)
1 = 1 + 1, tan5

(
= 6t,

Pi Pl&amp;gt; Pfi P
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where 2, /c, I take the values 1, 2, 3 in cyclic order. Moreover, since

the parametric curves are lines of curvature, it follows from (59)
that the torsion of a curve of parameter u

i
is

(14) l-l^i.
r

{ Hi du,

184. Triple systems containing one family of surfaces of revolution.

Given a family of plane curves and their orthogonal trajectories ;

if the plane be revolved about a line of the plane as an axis, the

two families of surfaces of revolution thus generated, and the planes

through the axis, form a triply orthogonal system. We inquire

whether there are any other triple systems containing a family of

surfaces of revolution.

Suppose that the surfaces u
s
= const, of a triple system are sur

faces of revolution, and that the curves u
2
= const, upon them are

the meridians. Since the latter are geodesies, we must have

From (8) it follows that either

dH. n dff
s ni = 0, or 8 = 0.

du
s

du
2

In the first case it follows from (11) that l//o31
= 0. Consequently,

the surfaces of revolution w
3
= const, are developables, that is, either

circular cylinders or circular cones. Furthermore, from (15) and

(11), we have l//o21 =0, so that the surfaces u
2
= const, also are

developables, and in addition we have, from (13), that l//^ = 0, that

is, the curves of parameter u^ are straight lines and consequently

the surfaces u^= const, are parallel. The latter are planes when

the surfaces u
s
= const, are cylinders, and surfaces with circular

lines of curvature when u
s
= const, are circular cones. Conversely,

from the theorem of Darboux
( 187) and from 132, it follows

that any system of circular cylinders with parallel generators, or

any family of circular cones whose axes are tangent to the locus

of the vertex, leads to a triple system of the kind sought.

We consider now the second case, namely
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From (11) we find that l//o21 =0, and l//o28
= 0; consequently the

surfaces w
a
= const, are planes. Since these are the planes of the

meridians, it follows that the axes of the surfaces coincide, and

consequently the case cited at the beginning of this section is the

only one for nondevelopable surfaces.

185. Triple systems of Bianchi and of Weingarten. In 119

it was found that all the Bianchi transforms of a given pseudo-

spherical surface are pseudospherical surfaces of the same total

curvature, and that they are the orthogonal surfaces of a cyclic

system of circles of constant radius. Hence the totality of these

circles and surfaces constitutes a triply orthogonal system, such

that the surfaces in one family are pseudospherical. As systems

of this sort were first considered by Ribaucour (cf. 119), they

are called the triple si/stems of Ribaucour. We proceed to the

consideration of all triple systems such that the surfaces of one

family are pseudospherical. These systems were first studied by

Bianchi,
* and consequently Darboux f has called them the systems

of Bianchi.

From 119 it follows that the parameters of the lines of curva

ture of a pseudospherical surface of curvature l/a
a can be so

chosen that the linear element takes the form

(1 6) d a = cos
a
o) du* + sin

a
o&amp;gt; dv\

where o&amp;gt; is a solution of the equation

d
a

o&amp;gt; d
a

o&amp;gt; _ sin o&amp;gt; cos a)

In this case the principal radii are given by

1 tan &) 1 cot a)

(18)
Pl a p, a

In general the total curvature of the pseudospherical surfaces

of a system of Bianchi varies with the surfaces. If the surfaces

w
3
= const, are the pseudospherical surfaces, we may write the

curvature in the form 1/f^, where ?/
8

is a function of ?/ alone.

Annali, 8er. 2, Vol. XIII (188,&quot;,), pp. 177-234; Vol. XIV (1880), pp. 115-130; Lezioni,

Vol. II, chap, xxvii.

t 7&amp;gt;vow wr les ni/stemes orthogonaux et les coonlonntes curvilignes, pp. 308-323.

Paris, 18U8.
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In accordance with (11) and (18) we put

_1
1 dff, tan&amp;lt;w

P* ,

1 g// cot &amp;lt;a

s) tf ?) ff
If these values of - - and = be substituted in equations (8) for*

r/r, (K,,

equal to 1 and 2 respectively, we obtain

1 BJf, 3to 1 dlfa do)
l = tan o&amp;gt; ,

= = cot a)

From these equations we have, by integration,

(20) ff
l
=

&amp;lt;

13
cos co, H

z
=

&amp;lt;/&amp;gt;.,3
sin CD,

where $ 13
and $23

are functions independent of w
a
and u

v respectively.

\Vo shall show that both of them are independent of u
3

.

When the values of H
l
and !! from (20) are substituted in (19),

we have respectively

(21)

/. to 3 log &amp;lt;.

jff = fr Cot cw
(
tan to

I

/ da) d log A \
// = fr tan o&amp;gt;

[
cot o&amp;gt;

---
\-
- z

!

\ ,5w, ^3 /

From these equations it follows that

Hence, unless
l;l
and

^&amp;gt;., ;l
are independent of w

3 , tan o&amp;gt; is equal to

the ratio of a function of u
v
and w

3
and of a function of w

2
and ?&amp;lt;

3
.

We consider the latter case and study for the moment a partic

ular surface i/
3
= c. By the change of parameters

(^..(MP cjau^
the linear element of the surface reduces to (16), and (22) becomes

tan co =

where f and V are functions of u and v respectively. When this

is substituted in (17), we obtain

a , I--
/C\^- i *S \ * -w-r-ft . w^Ox V,,, ivn

,

v
(u&quot;T
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If this equation be differentiated successively with respect to u

and v, we find
/U&quot;\

f 1 /V&quot;\
r 1

\u) ~uu~
+
\r) ~vv

=

unless V or V is equal to zero. From this it follows that

where K denotes a constant. Integrating, we have

U&quot;=2icU*+aU, V&quot;=-2tcV
s+ l

a and y3 being constants, and another integration gives

U *=KU*+a(r*+&amp;lt;y, F 2=-*F 4 + /3F
2
+S.

When these expressions are substituted in (23), we find

This condition can be satisfied only when the curvature is zero.

Hence U 1 or V must be zero, that is, &) must be a function of u or v

alone. In this case the surface is a surface of revolution. In accord

ance with 184 a triple system of Bianchi arises from an infinity

of pseudospherical surfaces of revolution with the same axis.

When exception is made of this case, the functions
(f&amp;gt;13

and
&amp;lt;/&amp;gt;23

in (20) are independent of u
s

. Hence the parameters of the sys

tems may be chosen so that we have

/2^x H IT H f7

When these values are substituted in the six equations (8), (9),

they reduce to the four equations
~ 2

&)
2
ft) sin to cos &) = U,

(25)

duf 0M* III

cot ft)
-

-f- tan to = 0,

0/1 g
2
ft) \ 1 d /sinftA 1 g&amp;lt;

2
ft)

=()
cu

v \cos ft) du
1 duj U

3
du

3 \ U
3 / sin G) du

2
du

2
du

3

_d_ / 1 d
2
&) \ 1 d /cos ft)\ 1 do d^co _ Q

du
2 \sin &) du

2 duj U
3
du

3 \ U
3 / cos ft) cu

v
du

l
du

z



TRIPLE SYSTEMS OP WEINGAKTEN 455

Darboux has inquired into the generality of the solution of this

system of equations, and he has found that the general solution

involves five arbitrary functions of a single variable. We shall

not give a proof of this fact, but refer the reader to the investi

gation of Darboux.*

We turn to the consideration of the particular case where the

total curvature of all the pseudospherical surfaces is the same,

which may be taken to be 1 without any loss of generality.

As triple systems of this sort were first discussed by Weingarten,
we follow Bianchi in calling them systems of Weingarten. Of this

kind are the triple systems of Ribaucour.

For this case we have U
3
= 1, so that the linear element of space is

(26) ds2= cos
2
&) dul + sin

2
a) du*

Since the second of equations (25) may be written in either of

the forms c a / \ ffw \ \ cw c
z
a)

)= ,

n ft) du
2
du

s/ cos ft) du
2 du^ dus

du
2 \cos ft) du^ du3 / sin ft) du

l
du

2
du

s

if We pUt /
-j

2 \2 /
-j

o2 \2 /o

ycos ft) du
1 du^l V sin &) du

z
cu

zj \^3

it follows from the last two of (25) and from (27) that

Hence &amp;lt;J&amp;gt; is a function of u
s
alone. But by changing the param

eter u
z ,
an operation which will not affect the form of (26), we can

give &amp;lt;& a constant value, say c. Consequently we have

(28)
---+ ---= c.

\cos ft) Bu
l
du

3J \sm co du
2
du

3 / \^3/

Bianchi has shown f that equation (28) and the first of (25) are

equivalent to the system (25), when Z7
8
= l. Consequently the

problem of the determination of triple systems of Weingarten is

the problem of finding common solutions of these two equations.

*L.c., pp. 313, 314; Bianchi, Vol. II, pp. 531, 532. t Vol. II, p. 550.
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EXAMPLES
1. Show that the equations

x = r cos u cos v, y = r cos u sin u, z =: r sin w

define space referred to a triply orthogonal system.

2. A necessary and sufficient condition that the surfaces us = const, of a triply

orthogonal system be parallel is that Hs be a function of u3 alone. What are the

other surfaces u\ = const., u% = const.?

3. Two near-by surfaces us = const, intercept equal segments on those orthog
onal trajectories of the surfaces w3 const, which pass through a curve Hs = const.

on the former; on this account the curves #3 = const, on the surfaces u3 = const.

are called curves of equidistance.

4. Let the surfaces w3 = const, of a triple system be different positions of the

same pseudosphere, obtained by translating the surface in the direction of its axis.

Determine the character of the other surfaces of the system.

5. Derive the following results for a triple system of Weingarten :

V/8w\2C+U

where the differential parameter is formed with respect to the linear element of a

surface u3 = const., and pg is the radius of geodesic curvature of a curve = const
w3

on this surface. Show that the curves of equidistance on the surfaces us = const.

are geodesic parallels of constant geodesic curvature.

6. Show that when c in (28) is equal to zero, the first curvature l/p8 of the

curves of parameter u3 is constant and equal to unity; that equations similar

to (12) become

2 _ 8&amp;lt;a a2
u&amp;gt; dot= sin o&amp;gt; cos w3 , = cos u sin u&amp;gt;3 ;

that if we put - w3 ,
the last two of equations (25), where U& = 1, may be

written
cd gw dO aw--

1

-- = sm 6 cos w, ^ H-- = cos sin u
;

&d / 1 8*6 \
2

/ 1 8*6 \
2 /de\*--

^
= Sin 6 COS 0, /---

J -f /---
]
= /
-

)
.

8u cos6

and that

When c = in (28) the system is said to be of constant curvature.

7. A necessary and sufficient condition that the curves of parameter us of a

system of Weingarten be circles is that w3 be independent of u3 . In this case

(cf. Ex. 6) the surfaces us = const, are the Bianchi transforms of the pseudo-

spherical surface with the linear element

ds* = cos*0du*
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186. Theorem of Ribaucour. The following theorem is due to

Ribaucour *
:

Griven a family of surfaces of a triply orthogonal system and their

orthogonal trajectories; the osculating circles to the latter at their

points of meeting with any surface of the family form a cyclic system.

In proving this theorem we first derive the conditions to be satis

fied by a system of circles orthogonal to a surface S so that they may
form a cyclic system. Let the lines of curvature on S be parametric
and refer the surface to the moving trihedral whose x- and ?/-axes

are tangent to the curves v = const., u = const. We have (V, 63)

(29) ^=n=p =
qi =0.

If &amp;lt; denotes the angle which the plane of the circle through a

point makes with the corresponding zz-plane, the angle which

the radius to a point P of the circle makes with its projection in

the z^-plane, and R the radius of the circle, the coordinates of P
with reference to the moving axes are

x = R(\ -f cos 0) cos $, y =^(1+ cos 0) sine/), z=lism0.

Moreover, the direction-cosines of the tangent to the circle at P are

sin 6 cos
&amp;lt;,

sin 6 sin $, cos 6.

If we express the condition that every displacement of P must be

at right angles to this line, we have, from (29) and (V, 51),

dB - [sin B(
- + lL^i)+ q cos 0(1 + cos 0)1 du

[_ \R du R / J

f . J\ dR 77, sin&amp;lt;f&amp;gt;\ -.&quot;I
7- sin 6 - + A__ _ p sm 0(i + cos B)\dv
= 0.

[_ \jri cv K / J

The condition that this equation admit an integral is reducible to

cosjAI [sin 4, cose/)

E /J L R

Hence, as remarked before
( 174), if there are three surfaces orthog

onal to a system of circles, the system is cyclic.

* Comptes Rendus, Vol. LXX (1870), pp. 330-333.
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The condition that it be cyclic is

(30)

d_
/i

?1
sin

(f&amp;gt;\ d_

cu \ R / dv\ R
sin

&amp;lt;f&amp;gt;

cos
(/

, d /sin
(f)

\ d
icos&amp;lt;f) \_ /&amp;gt;

Since the principal radii of S are given by

(31)
i =

-|.
i =

J.
the second of equations (30) reduces to the first when S is a sphere

or a plane. Hence we have incidentally the theorem :

A two-parameter system of circles orthogonal to a sphere and to

any other surface constitute a cyclic system.

We return to the proof of the theorem of Ribaucour and apply
the foregoing results to the system of osculating circles of the

curves of parameter u
3
of an orthogonal system at their points of

intersection with a surface u= const.
o

From equations similar to (12) we have, by (11),

cos
&amp;lt;j)

1 d//., sin
&amp;lt;f&amp;gt;

1 dH
z

and the equations analogous to (31) are

1 q 1 211^ 1 _ p l _ 1 3H
Z

pn ^ H^HZ
du

3 /&amp;gt;, 2
//

2
7/

2
//

3
du

s

When these values are substituted in equations (30) the first

vanishes identically, likewise the second, in consequence of equa

tions (8). Hence the theorem of Ribaucour is proved.*

187. Theorems of Darboux. The question naturally arises

whether any family of surfaces whatever forms part of a triply

orthogonal system. This question will be answered with the aid

of the following theorem of Darboux, f which we establish by his

methods :

A necessary and sufficient condition that two families of surfaces

orthogonal to one another admit of a third family orthogonal to both

is that the first two meet one another in lines of curvature.

* For a geometrical proof the reader is referred to Darboux, I.e., p. 77. t L.c., pp. 6-8.
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Let the two families of surfaces be defined by

(32) a(x, y, z)
= a, @(x, y, z)

=
b,

where a and b are the parameters. The condition of orthogonality is

dx ~dx dy^y ~dz~dz~

In order that a third family of surfaces exist orthogonal to the

surfaces of the other families, there must be a function 7(2, y, z)

satisfying the equations

.

, _
dx dx dydy dz dz~

_
~dx dx ~d^ ~dz~dz~

If dx, dy, dz denote the projections on the axes of a displace

ment of a point on one of the surfaces 7 = const., we must have

dx dy dz

da da da

dx dy dz = 0.

Idx ~dy ~dz

This equation is of the form (XIII, 9). The condition (XIII, 10)

that it admit of an integral involving a parameter is

da

dx dz* dz dxdz dx dz* dz dxdz

~^ydxdy~~dx^y*
+
dydxdy

{
^x ty*\~

where S indicates the sum of the three terms obtained by permut

ing x, y, z in this expression. If we add to this equation the identity

d (a, /3) \da ^01*
-^-\

v f~f u f-f ^-\ i/ LV i f*

5 ^ ~i \

=~~

the resulting equation may be written in the form

(34)

da dp J d/3\ ,/p da
T~ T~ a ^~

~ ^l&
dx dx \ dx

da dj3

da d/3

dz dz
S( ill )_ gr/3 _

I r\ I I *1 r\ .

= 0,
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where, for the sake of brevity, we have introduced the symbol

8(0, 4&amp;gt;),

defined by

If equation (33) be differentiated with respect to x, the result may
be written

Consequently equation (34) is reducible to

da df3

dx dx
r\ O /O
ccc cp

(35)

da

dz

dy

dz

=o,

which is therefore the condition upon a and /S in order that the

desired function 7 exist.

A displacement along a curve orthogonal to the surfaces a= const,

is given by ^ = ^_^.
da da da

dx dy dz

Such a curve lies upon a surface /3
= const, and since, by (35),

it satisfies the condition

= 0,

it is a line of curvature on the surface (cf. Ex. 3, p. 247). Hence

the curves of intersection of the surfaces a = const., fi
= const.,

being the orthogonal trajectories of the above curves, are lines of

curvature on the surfaces ft = const. And by Joachimsthal s theo

rem
( 59) they are lines of curvature on the surfaces a = const,

also. Having thus established the theorem of Darboux, we are in

a position to answer the question at the beginning of this section.
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Given a family of surfaces a const. ; the lines of curvature in

one family form a congruence of curves which must admit a family
of orthogonal surfaces, if the surfaces a = const, are to form part
of an orthogonal system. If this condition is satisfied, then, accord

ing to the theorem of Darboux, there is a third family of surfaces

which together with the other two form an orthogonal system.
If Xv Yv Z1

denote the direction-cosines of the tangents to the

lines of curvature in one family on the surfaces a const., the ana

lytical condition that there be a family of surfaces orthogonal to

these curves is that the equation

admit an integral involving a parameter. The condition for this is

In order to find X^ Y^ Z1
we remark that since they are the direc

tion-cosines of the tangents to a line of curvature we must have

and similar equations in Y, Z, where the function X is a factor of

proportionality to be determined arid Jf, Y, Z are the direction-

cosines of the normal to the surface a = const. Hence, if the

surfaces are defined by a = const., the functions Xv Y^ Z^ are

expressible in terms of the first and second derivatives of a, and

so equation (36) is of the third order in these derivatives. There

fore we have the theorem of Darboux*:

The determination of all triply orthogonal systems requires the

integration of a partial differential equation of the third order.

Darboux has given the name family of Lame to a family of

surfaces which forms part of a triply orthogonal system.

188. Transformation of Combescure. We close our study of triply

orthogonal surfaces with an exposition of the transformation of

Combescure,^ by means of which from a given orthogonal system
others can be obtained such that the normals to the surfaces of

one system are parallel to the normals to the corresponding sur

faces of the other system at corresponding points.

*
L.c., p. 12. f Annales de I Ecole Normale Superieure, Vol. IV (1867), pp. 102-122.
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We make use of a set of functions /3iK , introduced by Dar-

boux * in his development of a similar transformation in space of

n dimensions. By definition

In terms of these functions equations (8), (9) are expressible in

the form

&amp;lt;

37
&amp;gt; $-* t +

and formulas (10) become

(38) A.jr.-arr,,

Equations (37), (38) are the necessary and sufficient conditions that

the expression ^^+^^ +^^
be an exact differential. From their form it is seen that if we have

another set of functions H[, 77
2 ,

//
8 satisfying the six conditions

&amp;lt;

39
&amp;gt; *---

where the functions /3tK have the same values as for the given

system, the expression

XJI[ dUl -f JT
2
//

2
du

2 + Xfi du
a ,

and similar ones in F, Z, are exact differentials, and so by quadra
tures we obtain an orthogonal system possessing the desired property.

In order to ascertain the analytical character of this problem,
we eliminate H[ and H^ from equations (39) and obtain the three

equations

n

_ .._ ,

-^ du, cu^

The general integral of a system of equations of this kind involves

three arbitrary functions each of a single parameter u
t
. When one

*L.c., p. 161.
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has an integral, the corresponding values of H^ H^ are given directly

by (39). Hence we have the theorem :

With every triply orthogonal system there is associated an infinity

of others, depending upon three arbitrary functions, such that the

normals to the surfaces of any two systems at corresponding points

are parallel.*
EXAMPLES

1. In every system of Weingarten for which c in (28) is zero, the system of cir

cles osculating the curves of parameter us at points of a surface w3 = const, form a

system of Ribaucour
( 185).

2. If the orthogonal trajectories of a family of Lame&quot; are twisted curves of

the same constant first curvature, the surfaces of the family are pseudospherical

surfaces of equal curvature.

3. Every triply orthogonal system which is derived from a cyclic system by a

transformation of Combescure possesses one family of plane orthogonal trajectories.

4. If the orthogonal trajectories of a family of Lame* are plane curves, the cyclic

system of circles osculating these trajectories at the points of any surface of the

family may be obtained from the given system by a transformation of Combescure.

5. Determine the triply orthogonal systems which result from the application of

the transformation of Combescure to a system of Ribaucour
( 185).

GENERAL EXAMPLES

1. If an inversion by reciprocal radii
( 80) be effected upon a triply orthogonal

system, the resulting system will be of the same kind.

2. Determine the character of the surfaces of the system obtained by an inversion

from the system of Ex. 1, 185, and show that all the curves of intersection are circles.

3. Establish the existence of a triply orthogonal system of spheres.

4. A necessary and sufficient condition that the asymptotic lines correspond on

the surfaces u% = const, of a triply orthogonal system is that there exist a relation

of the form
03 = ?

where 0j, 2 &amp;lt;t&amp;gt;s

are functions independent of w3 .

5. When the condition of Ex. 4 is satisfied, those orthogonal trajectories of the

surfaces us = const, which pass through points of an asymptotic line on a sur

face us = const, constitute a surface S which meets the surfaces us = const, in

asymptotic lines of the latter and geodesies on &amp;lt;S.

6. Show that the asymptotic lines correspond on the pseudospherical surfaces

of a triple system of Bianchi.

7. Show that there exist triply orthogonal systems for which the surfaces in one

family, say u$ const., are spherical, and that the parameters can be chosen so that

HI = cosh 8, Hz = sinh 6, H3 = US .

CUz
Find the equations of Lame&quot; for this case.

8. Every one-parameter family of spheres or planes is a family of Lame .

*Cf. Bianchi, Vol. II, p. 494.
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9. In order to obtain the most general triply orthogonal system for which the

surfaces in one family are planes, one need construct an orthogonal system of

curves in a plane and allow the latter to roll over a developable surface, in which

case the curves generate the other surfaces. When the developable is given, the

determination of the system reduces to quadratures.

10. Show that the most general triply orthogonal system for which one family
of Lame&quot; consists of spheres passing through a point can be found by quadratures.

11. Show that a family of parallel surfaces is a family of Lame .

12. Show that the triply orthogonal systems for which the curves of parameter

3 are circles passing through a point can be found without quadrature.

13. By means of Ex. 6, 185, show that for a system of Weingarten of constant

curvature the principal normals to the curves of parameter w3 at the points of meet

ing with a surface u3 = const, form a normal pseudospherical congruence, and that

the surfaces complementary to the surfaces w3 = const, and their orthogonal tra

jectories constitute a system of Weingarten of constant curvature.

14. By means of Ex. 13 show that for a triple system arising from a system of

Weingarten of constant curvature by a transformation of Combescure the osculat

ing planes of the curves w3 = const., at points of a surface us = const., envelop a

surface S of the same kind as this surface M3 = const.
;
and these surfaces S and

their orthogonal trajectories constitute a system of the same kind as the one result

ing from the Combescure transformation of the given system of Weingarten.

15. Show that a necessary condition that the curves of parameter u\ of a triple

system of Bianchi be plane is that w satisfy also the conditions

d(*t . Set= 023 sm w, = 0i3 sin w,
di/2 dui

where 23 and 0i8 are independent of HI and w2 respectively (cf. Ex. 5, p. 317).

Show that if 0is and 023 satisfy the conditions

where a and b are constants and U& is an arbitrary function of w8 ,
the function w,

given by g023 a0i8

COS W =

determines a triply orthogonal system of Bianchi of the kind sought.

16. When Z73 = 1 and w is independent of u2 ,
the first and fourth of equations

(25) may be replaced by gw = sin w.

dui

Show that for a value of satisfying this condition and the other equations (25)

the expressions / rfadus \ r^cosu,
HI = cos w

(
I
- + 0i )

-
/ :

- du3 -f 0i,
\J sin w / J sin w

Hz = sin w
( C^J^ _(- 0A- r03 cZM8 + 2 ,

\J sin w / J

( ffoduz \ du
HB ~

( I

- + 0i
\J sin w / 5u3
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where 0i, 2 , 3 are functions of MI, u2j w3 respectively, and the accent indicates

differentiation, define a triply orthogonal system for which the surfaces M3 = const,

are molding surfaces.

17. Under what conditions do the functions

d2

sin w

where Z72 and Z7s are functions of M2 and M 3 respectively, determine a triply orthog
onal system arising from a triple system of Bianchi by a transformation of Combes-

cure ? Show that in this case the surfaces w2 = const, are spheres of radius Z72 ,
and

that the curves of parameter M2 in the system of Bianchi are plane or spherical.

18. Prove that the equations

y B(UI b)
m
i(u 2 b)

m
*(us 6)

m
s,

Z = C(Ui C)
wl
i(lt2 C)

w
2(w 3 c) &quot;3,

where A, B, C, a, 6, c, mt
- are constants, define space referred to a triple system of

surfaces, such that each surface is cut by the surfaces of the other two families in

a conjugate system.

19. Given a surface 8 and a sphere S; the circles orthogonal to both constitute

a cyclic system ;
hence the locus of a point upon these circles which is in constant

cross-ratio with the points of intersection with S and S is a surface Si orthogonal

to the circles
; Si may be looked upon as derived from S by a contact transformation

which preserves lines of curvature
;
such a transformation preserves planes and

spheres.

20. When S of Ex. 19 is a cyclide of Dupin, so are the surfaces Si, and also the

surface which is the locus of the circles which meet S in any line of curvature
;

hence all of these surfaces form a triple system of cyclides of Dupin.

21. Given three functions Z7, defined by

Ui = imuf + 2 mm + p^ (i
= 1, 2, 3)

where m t-, Wj, pi are constants satisfying the conditions

Smt
- = 0, Snt

- = 0, Sp t

- =
;

and given also the function

N= tti(M2
- u3)VUi -f a2 (M8

-
MI)VU^ + &amp;lt;*3 (MI

-

+ pZniiUi + 7 (PiMaWa + PZ^UI

where
,-, 0, 7 are constants

;
determine under what condition the functions

TT W2
- US US

- Ui MI -Ma
&l -;= -7= ^33=-p=

N^lfi N^U2 N-VU3

determine a triply orthogonal system. Show that all of the surfaces are isothermic,

and that they are cyclides of Dupin.

22. Determine whether there exist triply orthogonal systems of minimal surfaces.
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The numbers refer to pages. References to an author and his contributions are made
in the form of the first Bianchi paragraph, whereas when a proper name is part of a title

the reference is given the form as in the second Bianchi paragraph.

Acceleration, 15, 60

Angle between curves, 74, 200

Angle of geodesic contingence, 212

Applicable surfaces, definition, 100
;
to

the plane, 101, 156
;

invariance of

geodesic curvature, 135
;

invariance
of total curvature, 156

;
solution of

the problem of determining whether
two given surfaces are applicable,
321-326

; pairs of, derived from a

given pair, 349. See Deformation of

surfaces

Area, element of, 75, 145
Area of a portion of a surface, 145, 250

;

minimum, 222
Associate surfaces, definition, 378

;
de

termination, 378-381; of a ruled

surface, 381; of the sphere, 381; ap
plicable, 381; of the right helicoid,
381

;
of an isothermic surface, 388

;

of pseudospherical surfaces, 390
;
of

.quadrics, 390, 391; characteristic

property, 425

Asymptotic directions, definition, \2S
*Asymptotic lines, definition, 128

; para
metric, 129, 189-194

; orthogonal, 129
;

straight, 140, 234
; spherical represen

tation, 144, 191-193; preserved by
protective transformation, 202

; pre
served in a deformation, 342-347

Backhand, transformation of, 284-290
Beltrami (differential parameters), 88,

90; (geodesic curvature), 183; (ruled

W-surfaces), 299
; (applicable ruled

surfaces), 345
; (normal congruences),

403
Bertrand curves, definition, 39

; proper
ties, 39-41 ; parametric equations, 51

;

on a ruled surface, 250
; deformation,

348
Bianchi (theorem of permutability),

286-288
; (surfaces with circular lines

of curvature), 311; (surfaces with

spherical lines of curvature), 315
;

(associate surfaces), 378
; (cyclic con

gruences of Ribaucour), 435
; (cyclic

systems), 441

Bianchi, transformation of, 280-283,
290, 318, 320, 370, 456

;
surfaces of,

370, 371, 442, 443, 445
; generalized

transformation of, 439 ; triply orthog
onal systems of, 452-454, 464, 465

Binormal to a curve, definition, 12
;

spherical indicatrix, 50
Bmormals which are the principal nor
mals to another curve, 51

Bonnet (formula of geodesic curvature),
136

; (surfaces of constant curvature),
179; (lines of curvature of Liouville

type), 232
; (ruled surfaces), 248 ; (sur

faces of constant mean curvature),
298

IJour (helicoids), 147; (associate isother

mic surfaces), 388

Canal surfaces, definition, 68
;
surfaces

of center, 186

Catenoid, definition, 150
; adjoint sur

face of, 267 ;
surfaces applicable to, 318

Cauchy, problem of, 265, 335
Central point, 243
Central plane, 244
Cesaro (moving trihedral), 8S
Characteristic equation, 375
Characteristic function,, 374, 377
Characteristic lines, 13Q, 131

; paramet
ric, 203

Characteristics, of a fanUly of surfaces,
59-61

;
of the tangent pfones to a sur--/

face, 126

Christoffel (associate isothermic sur

faces), 388
Christoffel symbols, definition, 152, 153

;

relations between, for a surface and
its spherical representation, 162, 193,
201

Circle, of curvature, 14
; osculating, 14

* References to asymptotic lines, geodesies, lines of curvature, etc., on particular kinds of
surfaces are listed under the latter.
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Circles, orthogonal system of, in the

plane, 80, 97
;
on the sphere, 301

Circular lines of curvature, 149, 310,
316, 423, 446

Circular point on a surface, 124

Codazzi, equations of, 155-157, 161, 168,

170, 189, 200
Combescure transformation, of curves,

50
;
of triple systems, 401-465

Complementary surface, 184, 185, 283,

290, 370, 464
Conforinal representation, of two sur

faces, 98-100, 391; of a surface and
its spherical representation, 143

;
of

a surface upon itself, 101-103
;
of a

plane upon itself, 104, 112
;
of a sphere

upon the plane, 109
;
of a sphere upon

itself, 110, 111; of a pseudospherical
surface upon the plane, 317

Conformal-conjugate representation of

two surfaces, 224

Congruence of curves, 426
; normal, 430

Congruence of straight lines (rectilinear),

definition, 392
; normal, 393, 398, 401,

402, 403, 412, 422, 423, 437; associate

normal, 401-403, 411; ruled surfaces,

393, 398, 401
;
limit points, 396

; prin
cipal surfaces, 396-398, 408

; principal

planes, 396, 397; developable*, 398,
409, 414, 421, 432, 437; focal points,

398, 399, 425; middle point, 399;
middle surface, 399, 401, 408, 413,
421-424

;
middle envelope, 413, 415

;

focal planes, 400, 401, 409, 416
;
focal

surfaces, 400, 406, 409-411, 412, 414,
416, 420

; derived, 403-405, 411, 412
;

isotropic, 412, 413, 416; of Guichard,
414,415,417,422,442 ; pseudospherical,
184, 415, 416, 464

; W-, 417-420, 422,
424

;
of Ribaucour, 420-422, 424, 425,

435, 442, 443
;
mean ruled surfaces,

422, 423, 425
; cyclic, 431-445

; spher
ical representation of cyclic, 432-433

;

cyclic of Ribaucour, 435, 442, 443
;

developables of cyclic, 437, 441
;

normal cyclic, 437

Conjugate directions, 126, 173
;
normal

radii in, 131

Conjugate system, definition, 127, 223
;

parametric, 195, 203, 223, 224
; spher

ical representation of, 200
;
of plane

curves, 224
; preserved by projective

transformation, 202
; preserved in a

deformation, 338-342, 348, 349
Conjugate systems in correspondence,- 130

Conoid, right, 56, 58, 59, 68, 82, 98, 112,
120, 195, 347

Coordinates, curvilinear, on a surface,
55

; curvilinear, in space, 447
; sym

metric, 91-93
; tangential, 163, 194,

201; elliptic, 227

Correspondence with orthogonality of
linear elements, 374-377, 390

Corresponding conjugate systems, 130
Cosserat (infinitesimal deformation),

380, 385

Cross-ratio, of four solutions of a Riccati

equation, 26
;
of points of intersection

of four-curved asymptotic lines on a
ruled surface, 249

;
of the points in

which four surfaces orthogonal to a

cyclic system meet the circles, 429
Cubic, twisted, 4, 8, 11, 12, 15, 269

Curvature, first, of a curve, 9; radius

of, 9; center of, 14; circle of, 14;
constant, 22, 38, 51

Curvature, Gaussian, 123
; geodesic (see

Geodesic)
Curvature, mean, of a surface, 123, 126,

145
;
surfaces of constant (see Sur

face)

Curvature, normal, of a surface, radius

of, 118, 120, 130, 131, 150; principal
radii of, 119, 120, 291, 450

;
center of,

118, 150; principal centers of, 122

Curvature, second, of a curve, 16
;
con

stant, 50. See Torsion

Curvature, total, of a surface, 123, 126,
145, 155, 156, 160, 172, 186, 194, 208,
211

;
radius of, 189

;
surfaces of con

stant (see Surface)
Curve, definition, 2; of constant first

curvature, 22, 38, 51; of constant

torsion, 50
;
form of a, 18

Cyclic congruences. See Congruences
Cyclic system, 426-445

; definition, 426
;

of equal circles, 430, 443
;

surfaces

orthogonal to, 436, 437, 444, 457;
planes envelop a curve, 439, 440

;

planes through a point, 440, 441
;

planes depend on one parameter, 442
;

triple system associated with a, 446
;

associated with a, triple system, 457;
458

Cyclides of Dupin, 188, 312-314, 412,

422, 465

D, Z7, 7)&quot;, definition, 115
;
for the mov

ing trihedral, 174

A Jb i &&quot;&amp;gt; definition, 386
Darboux (moving trihedral), 168, 169,

170
; (asymptotic lines parametric),

191
; (conjugate lines parametric),

195
; (lines of curvature preserved by

an inversion), 196
; (asymptotic lines

and conjugate systems preserved by
projective transformation), 202

; (geo
desic parallels), 216, 217

; (genera
tion of new surfaces of Weingarten),
298

; (generation of surfaces with

plane lines of curvature in both sys

tems), 304
; (general problem of
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deformation), 332
; (surfaces appli

cable to paraboloids), 367
; (triply

orthogonal systems), 458-461

Darboux, twelve surfaces of, 391; de

rived congruences of, 404, 405

Deformation of surfaces (see Applicable

surfaces) ;
of surfaces of revolution

(see Surfaces of revolution) ;
of mini

mal surfaces, 264, 269, 327-330
;
of

surfaces of constant curvature, 321-
323

; general problem, 331-333
;
which

changes a curve on the surface into a

given curve in space, 333-336
;
which

preserves asymptotic lines, 336, 342,
343

;
which preserves lines of curva

ture, 336-338, 341
;
which preserves

conjugate systems, 338-342, 349, 350,
443

;
of ruled surfaces, 343-348, 350,

367; method of Weingarten, 353-369
;

of paraboloids, 348, 368, 369
;
of the

envelope of the planes of a cyclic

system, 429, 430

Developable surface, definition, 61
;

equation, 64
; particular kinds, 69

;

rectifying, 62, 64, 112, 209
; polar, 64,

65, 112, 209
; applicable to the plane,

101, 156, 219, 321, 322
;
formed by nor

mals to a surface at points of a line of

curvature, 122
; principal radii, 149

;

total curvature, 156, 250
; geodesies

on a, 224, 268, 318, 322
;
fundamental

property, 244; of a congruence (see

Congruence)
Dextrorsum, 19

Differential parameters, of the first order,

84-88, 90, 91, 120, 160, 166, 186
;
of

the second order, 88-91, 160, 165, 166,
186

Diui (spherical representation of asymp
totic lines), 192; (surfaces of Liouville),
214

; (ruled TF-surfaces), 299

Dini, surface of, 291, 318

Director-cone of a ruled surface, 141

Director-developable of a surface of

Monge, 305
Directrix of a ruled surface, 241

Dobriner (surfaces with spherical lines

of curvature), 315

Dupin (triply orthogonal systems), 449

Dupin, indicatrix of, 124-126, 129, 150
;

cyclide of (see Cyclide) ;
theorem of

Malus and, 403

jE, F, G, definition, 70
;
for the moving

trihedral, 174

&&amp;gt; &&amp;gt; ^ definition, 141 ;
for the moving

trihedral, 174

e,/,/, flr, definition, 393

Edge of regression, 43, 60, 69

Element, of are.a, 75, 145
;
linear (see

Linear element)
Ellipsoid, equations, 228

;
normal sec

tion, 234
; polar geodesic system,

236-238; umbilical geodesies, 236,
267; surface corresponding with par
allelism of tangent plane, 269. See

Quadrics
Elliptic coordinates, 227

Elliptic point of a surface, 125, 200

Elliptic type, of pseudospherical sur

faces, 274
;

of surfaces of Bianchi,
370, 371

Enneper (torsion of asymptotic lines),
140

; (equations of a minimal surface) ,

256

Enneper, minimal surface of, 269; sur
faces of constant curvature of

, 317, 320

Envelope, definition, 59, 60
;
of a one-

parameter family of planes, 61-63,
64, 69, 442

;
of a one-parameter fam

ily of spheres, 66-69
;
of a two-param

eter family of planes, 162, 224, 426,

439; of geodesies, 221; of a two-

parameter family of spheres, 391, 444
* Equations, parametric, 1, 2, 52, 53;

of a curve, 1, 2, 3, 21; of a surface,

52, 53, 54

Equidistance, curves of, 456

Equidistantial system, 187, 203

Equivalent representation of two sur

faces, 113, 188

Euler, equation of, 124, 221

Evolute, of a curve, 43, 45-47
;
of a

surface, 180, 415 (see Surface of

center) ;
of the quadrics, 234

; mean,
of a surface, 165, 166, 372

F. SeeE
& See

// . Seee
Family, one-parameter, of surfaces, 59,

446, 447, 451, 452, 457-461; of planes,

61-64, 69, 442, 463
;
of spheres, 66-69,

309, 319, 463
;
of curves, 78-80

;
of geo

desies, 216, 221

Family, two-parameter, of planes, 162,

224, 426, 439
;
of spheres, 391, 444

Family of Lame&quot;, 461, 463, 464

Focal conic, 226, 234, 313, 314

Focal planes, 400, 401, 409, 416

Focal points, 398, 399, 425
Focal surface, of a congruence, 400

;

reduces to a curve, 406, 412
;
funda

mental quantities, 409-411
; develop

able, 412; met by developables in

lines of curvature, 414
;
of a pseudo-

spherical congruence, 416; infinitesi

mal deformation of, 420 ; intersect, 423

* For references such as Equations of Codazzi, see Codazzi.
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Form of a curve, 18

Frenet-Serret formulas, 17

Fundamental equations of a congruence,
406, 407

Fundamental quadratic form, of a sur

face, first, 7 1
;
of a surface, second,

115; of a congruence, 393
Fundamental quantities, of the first

order, 71; of the second order, 115
Fundamental theorem, of the theory of

curves, 24
;
of the theory of surfaces,

159

G. See E
& 8ee

g. See e

Gauss (parametric form of equations),
60

; (spherical representation), 141
;

(total curvature of a surface), 155
;

(geodesic parallels), 200; (geodesic cir

cles) 207
; (area of geodesic triangle)

209

Gauss, equations of, 154, 155, 187

Generators, of a developable surface,
41

;
of a surface of translation, 198

;

of a ruled surface, 241
Geodesic circles, 207
Geodesic contingence, angle of, 212
Geodesic curvature, 132, 134, 135, 13(5,

140, 213, 223
;
radius of, 132, 150, 151,

174, 170, 209, 411
;
center of, 132, 225,

423
;

invariance of, 135
;

curves of

constant, 137, 140, 187, 223, 319
Geodesic ellipses and hyperbolas, 213-

215, 225
Geodesic parallels, 207
Geodesic parameters, 207
Geodesic polar coordinates, 207-209,

230, 276
Geodesic representation, 225, 317
Geodesic torsion, 137-140, 174, 176

;

radius of, 138, 174, 176
Geodesic triangle, 209, 210
* Geodesies, definition, 133

; plane, 140
;

equations of, 204, 205, 215-219; on
surfaces of negative curvature, 211

;

on surfaces of Liouville, 218, 219

Goursat, surfaces of, 306, 372
Guichard (spherical representation of

the developables of a congruence),
409; (congruences of Ribaucour), 421

Guichard, congruences of, 414, 415, 417,

422, 442

I/, definition, 71

//, definition, 142

Hamilton, equation of, 397

Hazzidakis, transformation of, 278, 279,
338

Helicoid, general, 146-148
; parameter

of, 140
;
meridian of, 140

; geodesies,
149, 151, 209

;
surfaces of center of,

186
; pseudospherical, 291

;
is a IP-sur

face, 300
; minimal, 329, 331

; appli
cable to a hyperboloid, 347

Helicoid, right, 146, 148, 203, 247, 250,
260, 267, 330, 347, 381, 422

Helix, circular, 2, 41, 45, 203
; cylindri

cal, 20, 21, 29, 30, 47, 64

Henneberg, surface of, 267

Hyperbolic point, 125, 200

Hyperbolic type, of pseudospherical sur

face, 273 ;
of surface of Bianchi,371, 379

Hyperboloid, equations, 228
;
fundamen

tal quantities, 228-230; evolute of,
234

;
of revolution, 247, 348

;
lines of

striction, 268
;
deformation of, 347,

348. See Quadrics

Indicatrix, of Dupin (seel)upin); spheri
cal (.see Spherical)

Infinitesimal deformation of a surface,

373, 385-387
; generatrices, 373, 420

;

of a right helicoid, 381
;
of ruled sur

faces, 381
;
in which lines of curva

ture are preserved, 387, 391; of the
focal surfaces of a TF-congruence, 420

Intrinsic equations of a curve, 23, 29,

30, 30

Invariants, differential, 85-90
;
of a dif

ferential equation, 380, 385, 406

Inversion, definition, 190
; preserves

lines of curvature, 190
; preserves an

isotherm ic system of lines of curva

ture, 391
; preserves a triply orthog

onal system, 403. See Transformation

by reciprocal radii

Involute, of a curve, 43-45, 311
;
of a

surface, 180, 184, 300
Isometric parameters. See Isothermic

parameters ,-

Isometric representation, 100, 113

Isothermal-conjugate systems of curves,

198-200; spherical representation, 202 ;

formed of lines of curvature, 147, 203,

233, 278
;
on associate surfaces, 300

Isothermal-orthogonal system. See Iso

thermic orthogonal system
Isothermic orthogonal systems, 93-98,

209, 252, 254
;
formed of lines of curva

ture (see Isothermic surface)
Isothermic parameters, 93-97, 102
Isothermic surface, 108, 159, 232, 253,

269, 297, 387-389, 391, 425, 465

Isotropic congruence, 412, 413, 416, 422-
424

Isotropic developable, 72, 171, 412, 424

Isotropic plane, 49

* See footnote, p. 467.
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Jacob! (geodesic lines), 217
Joachimsthal (geodesies and lines of

curvature on central quadrics), 240

Joachimsthal, theorem of, 140
;
surfaces

of, 308, 309, 319

Kummer (rectilinear congruences), 392

Lagrange (minimal surfaces), 251
Lame (differential parameters), 85

Lame&quot;, equations of, 449
; family of, 401,

463, 464

Lelieuvre, formulas of, 193, 195, 417,
419, 420, 422

Lie (surfaces of translation), 197, 198
;

(double minimal surfaces), 259
; (lines

of curvature of JF-surfaces), 293

Lie, transformation of, 289, 297
Limit point, 396, 399
Limit surface, 389

Line, singular, 71

*Line of curvature, definition, 121, 122,

128; equation of, 121, 171, 247; par
ametric, 122, 151, 186

;
normal cur

vature of, 121, 131
; geodesic torsion of,

139
; geodesic, 140

;
two surfaces inter

secting in, 140
; spherical representa

tion of, 143, 148, 150; osculating plane,
148; plane, 149, 150, 201, 305-314,
319, 320, 463

; plane in both systems,
269, 300-304, 319, 320

; spherical, 149,

314-317, 319, 320, 465
; circular, 149,

310-314, 316, 446; on an isothermic

surface, 389,
Line of striction, 243, 244, 248, 268, 348,

351, 352, 369, 401, 422
Linear element, of a curve, 4, 5

;
of a

surface, 42, 71, 171; of the spherical

representation, 141, 173, 393; reduced

form, 353
;
of space, 447

Lines of length zero. See Minimal lines

Lines of shortest length, 212, 220
Liouville (form of Gauss equation), 187

;

(angle of geodesic contingence), 212
Liouville, surfaces of, 214, 215, 218, 232
Loxodromic curve, 78, 108, 112, 120, 131,

140, 209

Mainardi, equations of, 156
Malus and Dupin, theorem of, 403
v. Mangoldt (geodesies on surfaces of

positive curvature), 212
Mean curvature, 123, 126, 145
Mean evolute, 165, 166, 372
Mean ruled surfaces of a congruence,

422, 423, 425
Mercator chart, 109

Meridian, of a surface of revolution,
107; of a helicoid, 146

Meridian curve on a surface, 260

Meusnier, theorem of, 118
Middle envelope of a congruence, 413,
415

Middle point of a line of a congruence,
399

Middle surface of a congruence, 399,
401, 408, 413, 421-424

Minding (geodesic curvature), 222, 223

Minding, problem of, 321, 323, 326
;

method of, 344
Minimal curves, 6, 47, 49, 255, 257

;

on a surface, 81, 82, 85, 91, 254-265,
318, 391

;
on a sphere, 81, 257, 364-366

390
Minimal straight lines, 48, 49, 260
Minimal surface, definition, 129, 251;

asymptotic lines, 129, 186, 195, 254,
257, 269

; spherical representation,
143, 251-254; ruled, 148; helicoidal,
149, 330, 331

;
of revolution, 160

;

parallel plane sections of, 160
;
mini

mal lines, 177, 186, 254-265; lines of

curvature, 186, 253, 257, 264, 269
;

double, 258-260
; algebraic, 260-262

;

evolute, 260, 372
; adjoint, 254, 263,

267, 377; associate, 263, 267, 269, 330,

381; of Scherk, 260; of Henneberg,
267; of Enneper, 269; deformation

of, 264, 327-329, 349, 381
;
determi

nation of, 265, 266
; geodesies, 267

Molding surface, definition, 302
; equa

tions of, 307, 308
;
lines of curvature,

307, 308, 320
; applicable, 319, 338

;

associate to right helicoid, 381
;
nor

mal to a congruence of Ribaucour,
422

Molding surfaces, a family of Lame&quot; of,

465

Monge (equations of a surface), 64
;

(molding surfaces), 302

Monge, surfaces of, 305-308, 319

Moving trihedral for a curve, 30-33
;

applications of, 33-36, 39, 40, 64-68

Moving trihedral for a surface, 166-170
;

rotationsof, 169; applications of, 171-

183, 281-288, 336-338, 352-364, 426-442

Normal, principal, definition, 12; par
allel to a plane, 16, 21

Normal congruence of lines (see Con

gruence) ;
of curves (see Congruence)

Normal curvature of a surface. See

Curvature
Normal plane to a curve, 8, 15, 65
Normal section of a surface, 118, 234

Normal to a curve, 12

Normal to a surface, 57, 114, 117, 120,

121, 141, 195

* See footnote, p. 467.
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Normals, principal, which are principal
normals of another curve, 41

;
which

are binormals of another curve, 51

Order of contact, 8, 21

Orthogonal system of curves, 75, 77,

80-82, 91, 119, 129, 177, 187; par
ametric, 75, 93, 122, 134

; geodesies,
187

;
isothermic (see Isothermic)

Orthogonal trajectories, of a one-param
eter family of planes, 35, 451

;
of a

family of curves, 50, 79, 95, 112, 147,

149, 150
;

of a family of geodesies,
216

;
of a family of surfaces, 446, 451,

452, 456, 457, 460, 463, 464

Osculating circle, 14, 21, 65

Osculating plane, definition, 10
; equa

tion of, 11
; stationary, 18

;
meets the

curve, 19
; passes through a fixed point,

22
; orthogonal trajectories of, 35

;
of

edge of regression, 57
;
of an asymp

totic line, 128
;
of a geodesic, 133

Osculating planes of two curves parallel,

50

Osculating sphere, 37, 38, 47, 51, 65

Parabolic point on a surface, 125

Parabolic type, of pseudospherical sur

faces, 274
;

of surfaces of Bianchi,

370, 371, 442, 443, 445

Paraboloid, a right conoid, 56
; tangent

plane, 112
; asymptotic lines, 191, 233;

a surface of translation, 203
; equa

tions, 230, 330
;
fundamental quanti

ties, 231
;
lines of curvature, 232, 240

;

evolute of, 234
;
of normals to a ruled

surface, 247
;

line of striction, 268
;

deformation of, 348, 349, 367-369,
372

; congruence of tangents, 401.

See Quadrics
Parallel, geodesic, 86, 207

;
on a surface

of revolution, 107

Parallel curves, 44

Parallel surface, definition, 177
;

lines

of curvature, 178
;
fundamental quan

tities, 178; of surface of constant cur

vature, 179
;
of surface of revolution,

185
Parallel surfaces, a family of Lame&quot; of,

446

Parameter, definition, 1
;
of distribution,

245, 247, 268, 348, 424, 425

Parametric curves, 54, 55

Parametric equations. See Equations
Plane curve, condition for, 2, 16

;
curv

ature, 15
; equations, 28, 49

;
intrinsic

equations, 36

Plane curves forming a conjugate sys

tem,. 224
Plane lines of curvature. See Lines of

curvature

Point of a surface, singular, 71
; elliptic,

125, 200
; hyperbolic, 125, 200

; para
bolic, 125; focal (see Focal) ;

middle

(see Middle); limit (see Limit)
Polar developable, 64, 65, 112, 209

Polar line of a curve, 15, 38, 46

Principal directions at a point, 121

Principal normal to a curve. See Normal

Principal planes of a congruence, 396, 397

Principal radii of normal curvature, lit),

120, 291, 450

Principal surfaces of a congruence, 390-

398, 408

Projective transformation, preserves os

culating planes, 49
; preserves asymp

totic lines and conjugate systems, 202

Pseudosphere, 274, 290

Pseudospherical congruence, 415, 416,
464

; normal, 184

Pseudospherical surface, definition, 270
;

asymptotic lines, 190, 290, 414
;
lines

of curvature, 190, 203, 280, 320
; geo

desies, 275-277, 283, 317, 318
;
defor

mation, 277, 323
;
transformations of,

280-290, 318, 320, 370, 45(5
;
of Dini,

291, 318; of Enneper, 317, 820; evo

lute, 318
; involute, 318

;
surfaces with

the same spherical representation of

their lines of curvature as, 320, 371,

437, 439, 443, 444. See Surface of

constant total curvature

Pseudospherical surface of revolution,
of hyperbolic type, 273

;
of elliptic

type, 274
;
of parabolic type, 274

Pseudospherical surfaces, a family of

Lam6 of, 452-456, 464

Quadratic form. See Fundamental

Quadrics, confocal, 226,401 ;
fundamen

tal quantities, 229
;
lines of curvature,

233, 239, 240
; asymptotic lines, 233

;

geodesies, 234-236, 239, 240
;
associate

surfaces, 390, 391
;
normals to, 422.

See Ellipsoid, Hyperboloid, Paraboloid

Representation, conformal (see Con-

formal); isometric, 100, 113; equiv

alent, 113, 188; Gaussian, 141;
conformal-conjugate, 224

; geodesic,

225, 317
; spherical (see Spherical)

Revolution, surfaces of. See Surface

Ribaucour (asymptotic lines on surfaces

of center), 184
; (cyclic systems of

equal circles), 280; (limit surfaces),

389
; (middle envelope of an isotropic

congruence), 413
; (cyclic systems),

426, 428, 432
; (deformation of the

envelope of the planes of a cyclic

system), 429, 430
; (cyclic systems

associated with a triply orthogonal

system), 457
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Ribaucour, congruence of, 420-422, 424,

425, 435, 442, 443
; triple systems of,

452, 455, 463
Riccati equation, 25, 26, 50, 248, 429

Rodrigues, equations of, 122
* Ruled surface, definition, 241

;
of tan

gents to a surface, 188
; generators,

241; directrix, 241; linear element,
241, 247

; director-cone, 241
;
line of

striction, 243, 244, 248, 268, 348, 351,

352, 309, 401, 422
;
central point, 243

;

central plane, 244
; parameter of dis

tribution, 245, 247, 208, 348, 424, 425
;

doubly, 234; normals to, 195, 247;
tangent plane, 246, 247, 268

;
total

curvature, 247
; asymptotic lines, 248-

250
;
mean curvature, 249

;
lines of

curvature, 250, 268
; conjugate, 268

;

deformation, 343-348, 350, 367; spher
ical indicatrix of, 351; infinitesimal

deformation, 381
;

of a congruence,
393-395, 398, 401, 422, 423. See Right
conoid, Hyperboloid, Paraboloid

Scheffers (equations of a curve), 28

Scherk, surface of, 260

Schwarz, formulas of, 264-267, 269

Singular line of a surface, 71

Singular point of a surface, 71

Sinistrorsum, 19

Sphere, equations, 62, 77, 81
;
minimal

lines, 81
;
conformal representation,

109-111
; equivalent representation,

113
;

fundamental quantities, 116,

171; principal radii, 120; asymptotic
lines, 223, 422

Spheres, family of. See Family
Spherical curve, 36, 38, 47, 50, 149,

314-316, 317, 319, 320, 465

Spherical indicatrix, of the tangents to

a curve, 9, 13, 50, 177
;
of the binormals

to a curve, 50, 177
;
of a ruled surface,

351

Spherical representation of a congruence,
definition, 393 ; principal surfaces, 397,
408

; developables, 409, 412-414, 422,

432-435, 437, 441

Spherical representation of a surface,

definition, 141
;

fundamental quan
tities, 141-143, 160-165, 173; lines

of curvature, 143, 148, 150, 151, 188,

201, 253, 279, 280, 292, 296, 301, 302,

308, 314, 315, 320, 371, 387, 437, 442-
445

; asymptotic lines, 144, 148, 191-

195, 254, 340, 390, 414
;
area of closed

portion, 145
; conjugate system, 200-

202, 257, 385

Spherical representation of an axis of
a moving trihedral, 354

Spherical surface, definition, 270; par
allels to, 179

;
of revolution, 270-272

;

geodesies, 275-279, 318
; deformation,

276, 323
;

lines of curvature, 278
;

transformation, 278-280, 297
;

invo

lute, 300
;
of Enneper, 317

;
surface

with the same spherical representation
of its lines of curvature as, 338. See
Surface of constant total curvature

Spherical surfaces, a family of Lame&quot; of,
463

Spiral surface, definition, 151
; gener

ation, 151
;

lines of curvature, 151
;

minimal lines, 151
; asymptotic lines,

151
; geodesies, 219

; deformation, 349

Stereographic projection, 110, 112

Superosculating circle, 21

Superosculating lines on a surface.

187

t Surface, definition, 53

Surface, limit, 389

\ Surface of center, definition, 179
;
met

by developables in a conjugate sys
tem, 180, 181

;
fundamental quantities,

181, 182
;
total curvature, 183

; asymp
totic lines, 183, 184

;
lines of curva

ture, 183, 184
;
a curve, 186, 188, 308-

314
; developable, 186, 305-308

Surface of constant mean curvature,
definition, 179

; parallels to, 179
;
lines

of curvature, 296-298
;

transforma

tion, 297
; deformation, 298

;
minimal

curves, 318
Surface of constant total curvature,

definition, 179
;
area of geodesic tri

angle, 219
; geodesies, 224

;
lines of

curvature, 317; asymptotic lines, 317;

spherical representation, 372. See

Pseudospherical surface and Spheri
cal surface

Surface of reference, 392
Surface of revolution, definition, 107

;

fundamental quantities, 107, 147
;

loxodromic curve (see Loxodromic) ;

deformation, 108, 112, 147, 149, 260,

276, 277, 283, 326-331, 341, 349-350,

362-364, 369, 370, 372, 444; partic

ular, 111, 160, 320
; equivalent repre

sentation, 113
;
lines of curvature, 126

;

asymptotic lines, 131
; parallel sur

faces, 185
; geodesies, 20.5, 209, 224

Surface of translation, definition, 197,

198; equations, 197; asymptotic lines,

198; generators, 198, 203; deformation,

349, 350
;
associate surface, 381, 390;

* Tim reference is to nondevelopable ruled surfaces. For developable ruled surfaces, see

Developables.
t For references such as Surface of Bianchi, see Bianchi.
I Surfaces of center of certain surfaces are referred to under these surfaces.
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congruence of tangents, 406
;
middle

surface of a &amp;gt;F-congruence, 422, 424
Surface with plane lines of curvature.

See Lines of curvature
Surface with spherical lines of curvature.

See Lines of curvature
Surface with the same spherical repre

sentation of its lines of curvature as a

pseudospherical surface. See Pseudo-

spherical surface
Surface with the same spherical repre

sentation of its lines of curvature as
a spherical surface. See Spherical sur
face

Surfaces of revolution, a family of Lame&quot;

of, 451

Tangent plane to a surface, definition,

50, 114; equation, 57; developable sur

face, 67; distance to, 114
;
meets the

surface, 123
;

characteristic of, 126
;

is the osculating plane of asymptotic
line, 128

Tangent surface of a curve, 41-44, 57;

applicable to the plane, 101, 150

Tangent to a curve, 6, 7, 41), 50, 51)
;

spherical indicatrix of, 9, 13, 50, 177

Tangent to a surface, 112

Tangential coordinates, 103, 104, 201
Tetrahedral surface, definition, 207

;

asymptotic lines, 207
; deformation,

341
Tetrahedral surfaces, triple system of,

465

Tore, 124

Torsion, geodesic, 137-140, 174, 170
Torsion of a curve, definition, 10

;
radius

of, 16, 17, 21; of a plane curve, 10
;

sign of, 19; constant, 60; of asymp
totic line, 140

Tractrix, equations, 35
;
surface of revo

lution of, 274, 290
;
helicoid whose

meridian is a, 291

* Transformation, of curvilinear coordi

nates, 53-55, 73, 74
;

of rectangular
coordinates, 72

; by reciprocal radii,

104, 196, 203 (see Inversion) ; project-
ive (see Projective)

Triply orthogonal system of surfaces,
definition, 447; associated with a cyc
lic system, 440

;
fundamental quan

tities, 447-451
;
with one family of

surfaces of revolution, 451, 452
;
of

Kibaucour, 452, 403
;
of Bianchi, 452-

454, 404, 465
;

of Weingarten, 455,
456, 403, 404

;
transformation of, 462,

463
;
with one family of molding sur

faces, 405
;
of cyclides of Dupin, 405

;

of isothermic surfaces, 405

Umbilical point of a surface, definition,
120

;
of quadrics, 230, 232, 234, 230-

238, 240, 207

Variation of a function, 82, 83

Voss, surface of, 341, 390, 415, 442, 443

W-congruence, 417-420, 422, 424

&amp;gt;F-surface, definition, 291
;
fundamental

quantities, 291-293
; particular, 291,

300, 318, 319; spherical representation,
292; lines of curvature, 293; evolute,
294, 295, 318, 319; of Weingarten,
298, 424; ruled, 299, 319

Weierstrass (equations of a minimal sur

face), 200
; (algebraic minimal sur

faces), 201

Weingarten (tangential coordinates).
103

; (geodesic ellipses and hyperbo
las), 214; (&amp;gt;F-surfaces), 291, 292, 294

;

(infinitesimal deformation), 374, 387
;

(lines of curvature on an isothermic

surface), 389

Weingarten, surface of, 298, 424 ;
method

of, 353-372 ; triple system of, 455, 450,

403, 464

* For references such as Transformation of BJickluud, see Bitcklund.
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