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PEEFACE.

In the geometrical investigations of the last century, one of the most

fundamental distinctions has been that between metrical and projective

geometry. It is a curious fact that this classification seems to have given

rise to another distinction, which is not at all justified by the nature of

things. There are certain properties of curves, surfaces, etc., which may
be deduced for the most general configurations of their kind, depending

only upon the knowledge that certain conditions of continuity are fulfilled

in the vicinity of a certain point. These are the so-called infinitesimal

properties and are naturally treated by the methods of the differential

calculus. The curious fact to which we have referred is that, but for rare

exceptions, these infinitesimal properties have been dealt with only from

the metrical point of view. Projective geometry, which has made such

progress in the course of the century, has apparently disdained to consider

the infinitely small parts into which its configurations may be decomposed.
It has gained the possibility of making assertions about its configurations

as a whole, only by limiting its field to the consideration of algebraic

cases, a restriction which is unnecessary in differential geometry.
Between the metrical differential geometry of Monge and Gauss,

and the algebraic projective geometry of Poncelet and Plucker, there

is left, therefore, the field of projective differential geometry whose

nature partakes somewhat of both. The theorems of this kind of geometry
are concerned with projective properties of the infinitesimal elements. As
in the ordinary differential geometry, the process of integration may lead

to statements concerning properties of the configuration as a whole. But, of

course, such integration is possible only in special cases. Even with this

limitation, however, which lies in the nature of things, the field of pro

jective differential geometry is so rich that it seems well worth while to

cultivate it with greater energy than has been done heretofore.

But few investigations belonging to this field exist. The most im

portant contributions are those of Halphen, who has developed an ad

mirable theory of plane and space curves from this point of view. The

author has, in the last few years, built up a projective differential geo

metry of ruled surfaces. In this book we shall confine ourselves to the

consideration of these simplest configurations. If time and strength permit,
a general theory of surfaces will follow.

In presenting the theories of Halphen, I have nevertheless followed

my own methods, both for the sake of uniformity and simplicity. In all

cases, I have attempted to indicate clearly those results which are due
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IV PREFACE.

to him or to other authors. The general method of treatment and the

results which are not specifically attributed to others are, so far as I am
aware, due to me. The theory of ruled surfaces has been developed by
me in a series of papers, published principally in the Transactions of

the American Mathematical Society, beginning in 1901. I have

thought it unnecessary to refer to them in detail, the treatment here

given being in many respects preferable to that of the original papers.
In particular, some errors have been corrected; I hope that no serious

mistakes have been allowed to pass over into the present work. To
finish these personal remarks, I may add that Chapter II contains a

number of important additions to the theory as generally presented,
without which it would lack rigor and completeness. The canonical deve

lopment of Chapter III has also been added by the author.

The examples collected at the end of each chapter are of two kinds.

Some of them are mere exercises. Some, however, (those marked with

an asterisk), are of a very different nature. They are essentially suggestions
for such further investigations, as appear to me to be of promise and

importance. I have, also in the body of the book, taken the privilege of

pointing out further problems which seem to be of interest. Many others

will readily suggest themselves. It is my sincere wish that these suggestions

may be helpful toward a further development of this fascinating subject.

The instructor in an American University finds his time fully occupied

by other things besides the advancement of Science. The Carnegie In

stitution of Washington, in recognition of this fact, makes it a part
of its policy to give a certain number of men the opportunity to devote

all of their time and energy to research. For two years I have had the

honor and the good fortune of finding my efforts aided and encouraged by
the support of this magnificent institution. Without this aid, the present
work would not have seen the light of day for several years. I take this

opportunity to express to the Carnegie Institution my fullest gratitude
for its help, and for the generosity with which it has left me free to

act and move, unfettered by unnecessary conditions and regulations.
In these last two years, I have had occasion to make use of libraries

at Gottingen, Paris, Cambridge and Rome. For these privileges I am
indebted to Professors Klein, Darboux, Forsyth and Castelnuovo, who met

my wishes with the greatest of courtesy. It remains for me to express

my thanks to the publishers B. G. Teubner, whose enterprise is a household

word in the mathematical world. For their sake, as well as for my own,
I hope that this little book may prove to be a success.

Rome, March 2 d
,
1905.

E. J. WILCZYNSKI.



INTRODUCTION.
Page

The fundamental theorems of Lie s theory of continuous groups 1

CHAPTER I.

Transformation of systems of linear homogeneous differential equations ... 6

CHAPTER H.

Invariants of the linear homogeneous differential equation of the th order.

1. Fundamental notions 14

2. Seminvariants and semi -covariants 15

3. Invariants and covariants. Fundamental properties 18

4. Canonical form of the differential equation and of its invariants . . 24

5. The Lagrange adjoint equation 40

6. Geometrical interpretation 47

7. The relation of the invariants of a linear differential equation to

Halphen s differential invariants 56

Examples 57

CHAPTER m.

Projective differential geometry of plane curves.

1. The invariants and covariants for n = 3 58

2. The equations of the osculating conic and cubic 61

3. Geometrical interpretation of the semi -covariants 64

4. The eight-pointic cubics, the Halphen point, coincidence points . . 67

5. The curves, all of whose points are coincidence points 69

6. Curves of the third order 72

7. Canonical development for the equation of a plane curve in non-

homogeneous coordinates 82

8. Anharmonic curves 86

9. Discussion of the special case 8S
= 90

Examples 91



VI CONTENTS.

CHAPTER IV.
Page

Invariants and covariants of systems of linear differential equations.

1. Finite transformations of the dependent variables 91

2. Infinitesimal transformations of the dependent variables 94

3. Calculation of the seminvariants for m = n = 2 95

4. Effect of a transformation of the independent variable upon the

seminvariants 103

5. Calculation of some of the invariants. Their general properties . . 106

6. Canonical forms of a system ef two linear differential equations of

the second order 114

7. The complete system of invariants 118

8. The covariants 122

Examples 126

CHAPTER V.

Foundations of the theory of ruled surfaces.

1. Definition of the general solutions, and of a fundamental system of

solutions of a simultaneous system of two linear homogeneous diffe

rential equations of the second order 126

2. Geometrical interpretation. The integrating ruled surface of (A) . . 129

3. Dualistic interpretation. The adjoint system of (A) 134

4. Properties of adjoined systems. Reciprocity 138

5. The fundamental theorem of the theory of ruled surfaces .... 143

Examples 145

CHAPTER VI.

Significance of the covariants P and C.

1. The flecnode curve and the flecnode surface 146

Examples 153

CHAPTER VII.

Elements of line geometry.

1. Line -coordinates, complexes, congruences, ruled surfaces 154

2. The linear complex. Null- system 159

3. The linear congruence 162

CHAPTER VIII.

The equation of the ruled surface in line -coordinates.

1. The differential equation for the line -coordinates 165

2. Conditions for a ruled surface whose generators belong to a linear

complex or a linear congruence 167

3. A function -theoretic application 173

Examples 174



CONTENTS. VII

CHAPTER IX.

The flecnode congruence. Page

1. The developables of the congruence and its focal surface 175

2. Correspondence between the curves on a ruled surface and on its

derivative 184

Examples 190

CHAPTEK X.

The flecnode congruence (continued).

1. The derivative cubic curve 191

2. Null- system of the derivative cubic 202

3. The osculating linear complex 204

4. Relation of the osculating linear complex to the linear complex of

the derivative cubic 209

5. Various theorems concerning the flecnode surface. The principal

surface of the congruence 213

6. The covariant Cs
for e4 =f= 218

Examples 220

CHAPTER XI.

Ruled surfaces whose flecnode curve intersects every generator in tico

coincident points.

1. The covariant C3 221

2. The derivative conic 223

3. The developable surface generated by the plane of the derivative conic 225

Examples 229

CHAPTER XII.

General theory of curves on ruled surfaces.

1. Relation between the differential equations of the surface and of the

curves situated upon it 229

2. On ruled surfaces, one of the branches of whose flecnode curve is given 231

3. On ruled surfaces, one of the branches of whose complex curve is given 236

Examples , 237

CHAPTER XUI.

Projectile differential geometry of space curves.

1. The invariants and covariants for = 4 . . 238

2. Canonical forms 241

3. Geometrical interpretation 243

4. The osculating cubic, conic and linear complex 249

5. Geometrical definition of the fundamental tetrahedron of reference . 255



VIII CONTENTS.

6. Some further properties of the derived ruled surfaces of the second

and third kind 261

7. The principal tangent plane of two space curves. The covariants.

Transition to Halphen s investigations 267

Examples 272

CHAPTER XIV.

Protective differential geometry of space curves (continued).

1. Introduction of Halphen s differential invariants and identification

with the invariants of the preceding chapter 273

2. The osculating quadric surface 278

3. Anhannonic curves 279

4. Relation to the theory of plane curves 285

5. Some applications to the theory of ruled surfaces 288

6. On the order of contact between curves after a dualistic transformation 290

Examples 294

Index 296



INTRODUCTION.

THE FUNDAMENTAL THEOREMS OF LIE S THEORY
OF CONTINUOUS GROUPS.

In the theory to which this work is devoted, Lie s theory of

continuous groups plays a fundamental part. It seems advisable,

therefore, to give a brief account of this important subject: \ve shall

not, however, attempt to do more than to give a clear statement of

those ideas and theorems belonging to Lies theory, which will be

found useful later on, without insisting upon the proofs.
1

)

The n equations

*/ = fi Oi&amp;gt; %&amp;gt;
-

O&amp;gt;
=

1, 2, . . . n),

are said to determine a transformation of xlt
. . . xn into xjt

. . , xn ,
if

they can be solved for xlt . . . xn) i. e. if the Jacobian

does not vanish identically.

The equations may contain r arbitrary constants alt
. . . ar) so

that they may be written

(1) xl = ft (x1} . . . xn
-,

alr ... ar\ (i
=

1, 2, . . . n),

in which case they represent not merely a single transformation, but

a family. The r constants are said to be essential, if it is impossible
to find combinations A

: ,
. . . A, less than r in number such that

Xi, . . . xn appear as functions of xl} . . . xn and Alf . . . A, only. The

family may then be said to contain sc r transformations. It will be

called an r parameter family.
Let the r parameters in (1) be essential. After having made the

transformation (1) converting (art ,
. . . xn} into (a:/, . . . # ),

let us make
another transformation of the same family

(2) x? = ft fc
1

,... *
; &!,...&,)&amp;gt; (/

= l,2,...n)

which converts (#/, . . . # ) into (#/ ,
. . .

#&quot;).

1) The general theory has been made easily accessible by the lucid treatment

in Lie-EngeL Theorie der Transfonnationsgruppen. Teubner. Leipzig 1888 93.

Cf. especially vol. 1. A shorter account is given in Lie -
Sclieffers , Vorlesungen

fiber kontinuierliche Gruppen etc. Teubner. Leipzig 1893. See also Campbell,

Introductory treatise on Lie s Theory, etc.. Clarendon Press, Oxford, 1903.

WlLCZTSSKI
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2 INTRODUCTION.

If, now, we eliminate xl between (1) and (2), i. e. if we make

directly the transformation which converts (xl} . . . #) into (#/ ,
. . .

#&quot;),

it may happen that the resulting equations are again of the same form

as (1) and (2), i. e. of the form

(3) xl = fi (xlt ...xn ] GJ,
. . . cr), (i

=
1, 2, ... w),

where C1; . . . cr are certain functions of ak) bk)

(4) C* = (fk Oi, rj &!&amp;gt; &r), (&
=

1, 2, . . . r).

In that case the transformations (1) are said to form & group. Moreover

to describe these equations more completely we may speak of this

group as an r parameter group in n variables.

Let equations (1) represent such an r parameter group, and

assume that it contains the inverse of each of its transformations.

It will, then, contain also the identical transformation, i. e. a certain

transformation, corresponding to the parameters a^, . . . ar ,
which

reduces to

xl = x
i} (i

=
1, 2, . . . n).

The functions ft being assumed to be analytical functions of their

arguments, the transformation which corresponds to the parameters,

where St is an infinitesimal and ck an arbitrary constant, will convert

Xi into xl where the difference

\KI
&quot;&quot;~&quot;~ JO i

===z O JOi

will be, in general, an infinitesimal of the same order as St. We
shall find, in fact

i
-

where U
j li&amp;lt;(3i,

. .. x} denotes the value of ^- for ak
= ak ,

and

is therefore a function of x
l ,

. . . xn only. The constants cx ,
. . . cr are

arbitrary.

The transformations

(5) Sxi=? ck |H (xif ... x) 6t, (i
=

1, 2, . . . n)

are called by Lie, the infinitesimal transformations of the group. In

some cases they cannot be obtained in the way indicated. But we
.need not insist upon these exceptional cases, as we shall not need
them in the course of this work.
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If we consider an arbitrary function of xl}
. . . xn) say

f(x1} x%)
. . . xn) f

the infinitesimal change in f, which results from the infinitesimal

transformation (5), is

(6) df

where

(7) R/-l,,^ + l,,^+.-+fc.^.
Lie speaks of Uf as the symbol of the infinitesimal transforma

tions (5) of the group. We have

Uf= c^f-f c9 l\f + + crUr f,

U: f, . . . Urf being themselves the symbols of infinitesimal transforma

tions which are contained in the group. In fact Uf reduces to Ukf for

q = C3
= = CAI = d-Li = = cr = 0, ck = 1.

The r infinitesimal transformations, whose symbols are U^f, . . . Ur f,

are said to be linearly independent, if it is impossible to find r non-

vanishing constants, so that for an arbitrary function f(i\, . . . xn\ the

equation
C
1 U1 / + Cjlif + + CrUrf=

will hold.

We then have the following theorem: An r-parameter continuous

group contains precisely r linearly independent infinitesimal trans

formations.

From two expressions U^f and U9f of the form (7) we may form

the commutator, (Klammerausdruck),

(8) UAUJ) - U,(U,n - (U Ut)f,

which is again of the same form. In fact, the second derivatives

of f eliminate, and we find

(9) (Ulf fQf- V[I(&amp;lt;M
-

tf,(!i,)]!-
=i *

Lie has shown that r infinitesimal transformations

are precisely the r infinitesimal transformations of an r parameter group,

if and only if they satisfy the relations

(10) (Ui) Uk)f=^ci

1=1

tcliere the quantities cit i are constants.
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In this case U^f, . . . Urf are said to generate an r-parameter
continuous group.

If a function f(%1} ...#) remains unchanged by all of the trans

formations of the group, it is said to be an invariant. In particular,

an invariant will not be changed by any infinitesimal transformation of

the group; it must, therefore, satisfy the r partial differential equations

V, /
*- / 7 \ ) *) )

Lie has shown that this necessary condition for invariants, is also

sufficient) whenever the group may be generated by infinitesimal

transformations. All invariants of the group may, therefore, be found

by integrating a system of partial differential equations of the form (11).
But in regard to this system (11) we may make the following

remarks. Although U^f, . . . Urf were linearly independent as in

finitesimal transformations, the r equations (11) need not be independent.

For, there may be relations of the form

where
&amp;lt;pl} . . .

&amp;lt;p
r are functions of xi} . . . xn) even though Uf, . . . Urf

be linearly independent in the former sense. Suppose then, that q of

the equations (11) are independent (g &amp;lt; r\ and let these equations be

(12) ^=0, Utf-Q,...Uqf-Q.

Let u be any solution of (12). Then clearly

I

whence

i. e. any solution of (12) will also satisfy all of the further equations
which can be obtained from (12) by the commutator operation. If

the equations (12) are taken at random, we shall obtain in this way
successively new equations which any solution of (12) must satisfy.

We shall find finally a system of the form (12) such that all of the

commutators formed from it will be zero as a consequence of the

system itself. Such a system has been called a complete system by
Clebsch.

1

} The general theory of complete systems is due to Jacobi.*)
From our above considerations it follows that the invariants of an
r parameter group may be obtained by integrating a complete system of

q &amp;lt;i
r partial differential equations of the first order in n independent

variables.

1) Clebsch, Crelle s Journal, vol. 65.

2) Jacobi, ibid. vol. 60. Cf. also the first volume of Lie-Engd, Trans-

formationsgruppen.
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But according to the general theory, a complete system of q equa
tions with n independent variables has precisely n q independent

solutions, of which all other solutions are functions.

If, therefore, an r parameter group in n variables, is generated by

the r infinitesimal transformations U^f, . . . Urf, and if among the

r equations

(13)

q are independent, the group has precisely n q invariants, which are

obtained by integrating the complete system to whicJi (13) is equivalent.

We have defined the term; an r- parameter group. But a system
of transformations may have the group property although its equa
tions cannot be expressed by a finite number of parameter. For

example, the transformations

(14) y -A(*)sr, * = **(*)

where ). and ,u are arbitrary functions of x, clearly have the group

property; i. e. if we make successively two transformations of this

kind, the result is another transformation of the same character.

Following Lie we shall, therefore, distinguish between finite and

infinite continuous groups. The former contain only a finite number
of arbitrary constants in their general equations, while the latter

contain an infinite number of such constants, or arbitrary functions.

The general theory of infinite groups has not been constructed.

There exists, however, an important class of infinite groups for which
a general invariant theory, (due to Lie), exists. Let

be the most general infinitesimal transformation of the group. It

may happen that there exists a system of linear homogeneous partial

differential equations

of which |1; . . . |n are solutions. In that case the group is said to be

defined by differential equations. Such is the case in the above example.
We have

where qp and
i[&amp;gt;

are arbitrary functions of x. The defining differential

equations are

Hi = o ^ -
f\

&quot;&quot; W - 9 V.
oy cy*
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Lie has shown 1

) that the invariants of an infinite continuous group,

which is defined by differential equations, may always be obtained as

the solutions of a complete system of partial differential equations, as in

the case of finite groups.

This complete system will, of course, be obtained by equating
to zero the symbol of the most general infinitesimal transformation

of the group.

CHAPTER I,

TRANSFORMATION OF SYSTEMS OF LINEAR HOMOGENEOUS
DIFFERENTIAL EQUATIONS.

Let there be given a system of n independent linear, homogeneous
differential equations between n unknown functions ylf y2 ,

. . . yn of x,

and let the order of the highest derivative which is present in the

system be m. We may assume that none of these equations are of

the zerotb order, i. e. that no equation of the system has the form,

(free from all derivatives),
n

=
0,

since, by means of such an equation, we could reduce the number n
of unknown functions. We may, for the same reason, assume that

no combination of the equations of the system give rise to an equa
tion of this special form. The system of equations will be assumed

to be written in the form

(i
=

1, 2, . . . A,),

* 2) J-----L ft y _I_
r&amp;gt; U &quot;)

=
- T fllt Vic &amp;lt; -fOJc VV

(1)

k=l

(&amp;lt;3

=
Ai + Ag-i

-----Mm-l 4-1,

where, of course

1) Lie, Math. Annalen, vol.24.



THE MOST GENERAL TRANSFORMATION. 7

The integration of (1) would involve

(2) M= V -f ^(m-l)4-;.3(- 2)+-&quot;+^n

arbitrary constants. In fact according to the fundamental theorem

of the theory of linear differential equations
1

), if for x = XQ the

coefficients pm can be developed in series proceeding according to

positive integral powers of x XQ) convergent for values of x which

make
|

X - XQ I
&amp;lt; Q,

there exists a system of functions ylt . . . yn , expressible by power
series convergent in the same domain, for which the values of the 31

quantities;

(m *) (m *)*

(3)

for x = XQ are arbitrarily assigned constants, and which satisfy the

system of differential equations.

If, for a moment, ylf yg ,
. . . yn , x are interpreted as coordinates

of a point in an n + 1 dimensional space, we may speak of any trans

formation of the form

(0 Vi
=

9i (I; %, %, . ^), ar =
/&quot;(I; %, %, . . . 17,),

where
&amp;lt;/,

and
/&quot;

are arbitrary functions of their arguments which do
drr

not contain the derivatives
-jj&amp;gt;

etc., as a point-transformation. For,

if these functions are independent, i. e. if the Jacobian of glf g^ . . . gn , f
with respect to

i)l} . . .
17,,, | is not identically zero, the point

(ylt yz ,
. . . yn , x) will then be transformed into another point

Oh* % *}*) I) f ^ne w + 1 dimensional space considered, and vice

versa.

We shall assume that the functions f and g f
admit differentiation

up to the order required by the following considerations. We may,

although this restriction is not necessary, assume that they are

analytic functions of their arguments.
A transformation of the form (4) applied to (1), will give rise

to a new system of differential equations, obviously of the same

order, but not in general linear and homogeneous. We wish to find

1) The proof, essentially upon function-theoretic principles due to Cauchy,
for the case of a single linear differential equation was given by Fuchs, Crelle s

Journal vol. 66. It is a very easy matter to extend this proof to the case of a

system of form (1).
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the most general form of the transformation compatible with the

condition that the transformed system may also be linear and homo

geneous; we assume moreover that the coefficients of (1) may be any

analytic functions of x
}
and that the functions f and g-t are not

dependent upon these coefficients. In other words, the transforma

tion (4) when found, is such as to convert every system whatever

of form (1) into another of the same kind, and it is the same trans

formation for all systems of this form. If, for example, t)];
. . . t)w are

solutions of (1), the equations -

yk
=

r)k + 9* (&
=

1, 2, . . . n), x = %,

would transform (1) into another system of the same form, in fact,

into itself. But such transformations are excluded, because the solu

tions
\)k depend upon the coefficients of (1). This transformation is

a different one for different systems of the form (1).

We find, from (4), by successive differentiation

,~ *_* _ 5l ^ _^ *^*i _
Y

i

dx~ a dx*~~6 s

dm fi

mm
.fp-i*

where

(6)

and where Y^, Y^, . . . are defined by these equations as rational

integral functions of ^/, ^&quot;, etc., if we denote derivatives with respect

to by strokes. We have, in particular

.~
H

Let Hi2 1 be the coefficient of
v^&quot;

in this expression. Then

(, I = 1, 2, ... n\

For a fixed value of i, all of these quantities H^?. cannot be

equal to zero for all values of
fjk and

r]k . For, if they were, all of

the Jacobians

would be zero, i. e. the functions f and g{ would not be independent.
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From the equation
d ft

~~ l
y Yi.ui

dx f

we obtain by differentiation

so that

(8)

Let Hi? i denote the coefficient of r^ in Y, u . Then (8) shows that

Hiu i
= 6Hi, u - 1, /, (/i

=
3, 4, . .

.),

whence

(9) Hiu).

=
&amp;lt;?&quot;-

2
tf, 2 ;.,

so that H; U ).
is different from zero if Hi*-,, does not vanish; for

dx
e =

&amp;lt;Tl

cannot be zero.

Let us substitute (5) in (1). We find

(10) Yim
+ piaFil &amp;lt;?

2m- 2
+i&amp;gt;o,-*0*tf

sm- 1

)
=

0,

etc. . . . etc.,

where we imagine the coefficients p-,.u* also expressed in terms of

, iji, n-
Yim is linear in T^, . . . ifi\ and actually contains at least one

of these wth
derivatives, since at least one of the quantities .fl,?;. and,

therefore, at least one of the quantities Himi is different from zero.

It must be possible, if the transformation is of the required

character, to solve (10) for /u derivatives of order m
} say Trf-\ . . . 7^

m)
:

for /, derivatives of order m 1, say rj^~^}
. . .

^JjT^I
e^c. We

shall then have a new system of differential equations of the form (1),

which we may imagine written down replacing the Roman throughout

by the corresponding Greek letters. From this system, which we

may denote by (1) , certainly all of the ?nth derivatives
-rff^

can be

expressed in the form

7j(m 2) _i

m _2,/ ;
t

7
i

where qur o are functions of | alone.
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We have, on the other hand

Y =
-

i-ro

where the terms not written are of order lower than m, and where

Him i is an integral rational function of ij/ of degree m 1.

By hypothesis (10), when solved, gives rise to (1) ,
from which

follows (11). The left members of (10) contain the highest derivatives

only in the combinations

ZH..im

These left members must, therefore, be obtained from (11) by making
precisely these linear combinations. The first equation of (10) can,

therefore, contain ??/, ...?? to the m^ degree only, since Him i is of

degree m 1 in these quantities. But this equation contains the term

which is of degree 2m 1 in ??/, . . .
?? , provided that f depends

upon any of the quantities tj1} . . .
rjn . For m

&amp;gt;
1 this is a contra

diction. Therefore, if m
&amp;gt; 1, we must have f independent of %, . . .

v)n ,
i. e.

We have, therefore,

so that the coefficients of the highest derivatives in (10) are now
free from the derivatives

rjk . Each of the terms of (10) must there

fore be linear in 17* . One of these terms is

j*Fi*f -4
.

But we find

where

y? fc

~&quot;

) 2 1^

so that Yfc 2 is linear in
rjk only if

1) To be sure all of the m^ derivatives, except r/^\ . . . rjj\ may be removed

by means of the other equations of the system (1) . But this does not affect

the conclusion. More symmetrically, system (1) could be replaced by a system
of n equations each of the mth

order, a system of ^ linear relations between

the derivatives up to the m 1th order, a system of 1i
s

relations between the

derivatives up to the m 2 th
order, etc. System (1) could be written in the

same way and thus the conclusion would be rendered more obvious.
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9*1,
y&amp;gt; _ Q
i.u

i. e. if

9k = ii(l)i?i + *s(l)% H-----h *(i)ifii + *o(S)-

But in this case

i. e. the coefficients of the highest derivatives in (10) are mere func

tions of |. Every term of (10) must therefore be linear and homo

geneous in
ijlf . . .

rjn and the derivatives of these quantities. The term

Poik9k&amp;lt;f-

m- 1

is homogeneous, only if

*o(i)
is zero.

If m &amp;gt; 1 the most general transformation of the kind required

is, therefore,

x =
/&quot;(I), y*

=
*id)^ + *2(S)% -I

-----
r-

where
/&quot;()

and *,-() are arbitrary functions of and where the

determinant

is different from zero.

We still have to examine the case m = 1. Let

(12) 3-Jfci* +
be the given system, and suppose that the transformation

z =
/&quot;(^ %, tyO ^ = ^* (li ^i ^)

converts it into

drjt

(12a) -^r
= **ii?iH

-----
\-Xknrjn, (t

=
1, 2, . . . n).

We may write (12) in a different form. If we differentiate each

equation n 1 times, we shall find

d i
yk
-i=pknyi-\

-----
\~PkinV*, (*,1 1,2,... n).

04B

Eliminating the n 1 quantities y,- ; (z=j=/:), from these equations,

we shall find

d n
y, dn

- l
,

(13) rin i + ^.

in special cases some of these equations may be of lower than the

ntb
order, but in general they are not.
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The equations (13) are all integrated if one of them is. We
shall have, in fact

dy, d n~ 1
y. /7 ~ N

s*i -^ -i
-----

f- SM_I-} (k
=

2, 3, . . . n),
Ct 30

4i + + ^-ir* (ft
=

1, 3, . . .
),

-
1),

where the coefficients sk i, tk i, . . . vki as well as the coefficients rki of

of (13) may be obtained from pik by rational processes including
differentiation. The combined systems (13) and (14) are equivalent
to (12), the equations (14) serving to reduce the order of (13), which
would be n2

,
to n. In place of (12 a) we may consider a corresponding

combined system (13 a) and (14 a). The required transformation must
convert (13) and (14) into a system equivalent to (13a) and (14 a).

By the method of the general case we find the same result as before,

provided that n &amp;gt; 1.

There remains the case m = n = 1, so that the differential

equation has the form

It is convenient in this case to write

log2/
=

2/n log^ = ^.

We must then determine those transformations

(15) a =
/i(^i)&amp;gt; ^ = ^(1,^

which transform any equation of the form

into

(16a) ^ + *) = 0.

We find, by applying directly the transformation (15) to (16),

The second term of this equation must be a function of only. The

partial derivative with respect to % must therefore be zero, for all

possible functions p. Therefore, the equation
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^_ J!
dxdjh

+ =o

must be satisfied identically. This is impossible unless the coefficient

of -== is zero, i. e. unless
dx

_ ,

The second factor cannot be zero, since /^ and gl
are independent

functions of | and rn . Therefore

i. e. /i is a function of only, so that instead of (15) we may write

* = /i(), ft =0i (%)
We find in this case, in place of (17),

+ -&

where again the second term must be a function of | alone. Since

p(x) was an arbitrary function of x, we see first that -
:
- - must

^S C
*Jl

be a function of | only, since the second term reduces to this ratio

for p = 0. But if p =f= 0, we see in the second place that ^ must
C fl

be a mere function of
,
and finally also -& gl

is therefore linear

in
i;l7 say

^i
whence

But this latter expression must be a function of | only, so that

where Jl is a constant. We have therefore the following transformation

whence !, i

(18) * = /XO, y^ff&W* * = const.

Therefore (18) is the most general transformation which can convert

a general homogeneous linear differential equation of the first order

into another of the same kind. It is easy to verify that every
transformation of this form actually accomplishes this.
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We may recapitulate our result as follows. The most general

point-transformation, which converts a system of n linear differential

equations into another of the same form and order, is

=
f(x), iqk

= ak i(x)yt + cck2 (x)y2 H-----\- cckn (x)yn ,

(k
=

1, 2, ri),

where f(x) and ccki (x) are arbitrary functions of x, for which the

determinant

ttki(x)\, (i,k
=

l,2,...ri),
does not vanish.

If n= 1, and if the single differential equation, to which the system
then reduces, is of the first order there is an exception. In that case

the most general transformation, which has the required property, is

where f and g are arbitrary functions, and ). an arbitrary constant.

For the case of a single linear differential equation, the trans

formation becomes, (m &amp;gt; 1),

l = f(x), v}=g(a;}y.

The proof, that this is the most general transformation converting

every linear differential equation of the mih order into another, was
first given by StackeU) The generalization to systems of differential

equations is due to the author. 2

)
A shorter, but less elementary

proof than that of Stackel is due to Lie.
3
}

CHAPTER U.

INVARIANTS OF THE LINEAR HOMOGENEOUS
DIFFERENTIAL EQUATION OF THE nih ORDER.

1. Fundamental Notions.

Let us consider the linear differential equation

(1) y(n} + (Dp, y(n-* + g)A y(n~v + + pn y = o,

where the symbol

1) Stackel, Crelle s Journal, vol. Ill (1893), p. 290. Stackel there also gives
the investigation for m = 1 which we have reproduced.

2) Wilczynski, Am. Journ. of Math., vol. 23 (1901), p. 29.

3) Lie, Leipziger Berichte (1894), p. 322. Lie emphasizes the fact that

such results are mere corollaries of his general theory. For the present work,
however, they are of especial importance.
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n( l)(n 2)...(n
*:

represents the coefficient of a;* in the expansion of (1 + x)
n
f
where

and where pt , p3 ,
. . . pn are functions of x.

We have seen that the most general transformation, which

converts (1) into another equation of the same form and order, is

(2) *-A, y = *(i,
where

/&quot;(I)
and yL(|) are arbitrary functions of |. Clearly all of the

transformations of the form (2) form a group, an infinite continuous

group in the sense of Lie, which is denned by differential equations.

If the general transformation (2) be applied to (1) another

equation of the same form will be obtained between
&amp;gt;;

and
,
whose

coefficients will be expressible in terms of plt
. . . pn , f, Ji, and of

certain derivatives of these functions. We shall always supp.ose that

all of these derivatives exist. In fact we may assume for our purposes,

although this involves an unnecessary restriction, that all of these

functions are analytical. Any differential equation, which may be

obtained from (1) by a transformation (2), shall be said to be equi

valent to (1). A function of the coefficients p^,p^, . . .pn of (1) and

of their derivatives, which has the same value as the same function

formed for an equivalent equation, shall be called an absolute invariant.

If such an invariant function also contains y, y , y&quot;, etc., we shall

speak of it as a covariant.

2. Seminvariants and semi-covariants.

The transformation (2) may be conveniently decomposed into

two others. Let us put first

(3) y-a(*),
where Ji(x) is an arbitrary function of x. This gives rise to a

differential equation between
&amp;gt;;

and x. We may then transform the

independent variable by putting

The transformation (3) clearly form a sub-group of (2) which is still,

an infinite continuous group. We shall speak of the functions, which

remain invariant under the transformations of this sub-group, as

seminvariants and semi-covariants, and we shall proceed to determine

them immediately. Since invariants must also be seminvariauts we
shall then be able to determine the invariants as special seminvariants,

namely such as remain unchanged by an arbitrary transformation of

the independent variable as well.
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We find, from (3),

y =
iii,

y -ilr+A^,
(4) ......

y(n)
= l n

(

so that (1) becomes

(5) tf&quot;&amp;gt;

where

(6)

.= { [AW + ()ft^-
1
) + ()A *

as may be found by direct computation. Without computation these

equations may be found by noting that (4) is a linear homogeneous
substitution in n -f 1 variables y, y ,

. . . y^
n
\ that the quantities

constitute a second set of n + 1 variables, and that the transformation

of the latter set must be contragredient to that of the first, so as to

leave the bilinear form (the differential equation)

invariant.

As equations (6) show, we may always choose h(x) so as to

make n^ vanish. We need only put

so that (5) becomes

//M\ //M\
/ 7\ (M\ I / ffj \ ~W~\ (n ft\ I / ft, \ ~j~\ (M O\ I I ~f~\ f\
( I

ryi\ }
[

I I f-^ *K^ I I I r^ ]* I .
[

h*
&amp;lt;yi
^^ II

\2/ \3/

where

(8) Pk
= efpi

We find in particular

(9) P4
=P,

-

I J~\ / i j
GTJC.*
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and it is evident that the exponentials of equation (8) always cancel

each other. We may write, moreover,

(9a) P, = Pi
- 4Plp3 -f 12Pl

s
p,
- 3^ 2 - 6^ -

Pl
W + 3P

2 -,

a formula which we shall need later.

We have seen that any linear differential equation of the

n**
1 order may be reduced to the form (7) in which the n 1

th deri

vative is absent, and which shall be called its semi -canonical form.

As long as the independent variable x is not transformed, the semi-

canonical form is unique. For, although we might more generally

have put

where C is an arbitrary constant, this would not affect the coefficients

Pk of the semi -canonical form of the equation.

Consider now any equation (5) which can be obtained from (1)

by a transformation of the form y = }Lr
t

. If we reduce it to its

semi -canonical form, the coefficients JT, JI
3 ,

. . . TLn of the latter will

of course be precisely the same functions of xlf ;r,, . . . .Tn as P,, . . Pn

are of Pl}Pi ,
- Pn . But, since (1) and (5) can be transformed into

each other, their semi -canonical forms must coincide. Therefore

in other words, the n 1 quantities P2 ,
P3 ,

. . . Pn are sem invariants.

Obviously the same is true of their derivatives of any order, and of

any function of these quantities.

But the converse is also true, i. e. every seminvariant is a function

of P2 ,
P3 ,

. . . Pn and of the derivatives of these quantities.

For, let

Pt, -Pn -, Pi,Pl, . -Pn etc.)

be a seminvariant. It must be equal to the same function of the

coefficients of any differential equation obtained from (1) by a trans

formation of the form (3). In particular it must therefore be equal to

f(0 P P P P &quot;i

/ VUJ **&amp;gt; ^} U
&amp;gt; ^2 ) *

J )t

where P, ... Pn are the coefficients of the semi -canonical form,

i. e. it must be a function of these quantities and of their derivatives,

as we asserted.

Having found all of the seminvariants we proceed to determine

the semi-covariants. We may confine our attention to semi-covariants

which contain no higher derivatives of y than the n 1th . For, if

a semi -covariant contains yM, y(n+1), etc. we may express these higher
derivatives in terms of the lower ones, by means of the differential

equation itself and of others derived from it by differentiation.

WILCZYSSKI, protective differential Geometry. 2
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Put

(10) yk
= yw

and denote by t]k the corresponding expression in y and it. Then it

is clear without any computation that

(11) yk
=

lr)k .

For, equations (4) and (6) show that, just as the equation yn = is

transformed into A^n = 0, so will yk be transformed into A 17*.

We have therefore, the following n 1 semi-covariants

y y

Any semi-covariant must &quot;be a function of these and of seminvariants.

For, in the first place, every absolute semi-covariant must be homo

geneous of degree zero in y, y ,
. . . y^

n~ l
\ since if we take I = const.,

equations (4) and (6) reduce to

(13) y(*)

Any absolute semi-covariant must, therefore, be a function of

~ Pl p*
&quot; Pn] Pl p* Pn&amp;gt;

&amp;gt;

etc

By means of (10) this becomes a function of

nt i)i
yi yn i^

y ~~y~
: Pl P* -

$&amp;lt;&quot;

etc.

But if it is a semi-covariant it must be equal to the corresponding
function for the semi - canonical form, and must therefore reduce to

a function of

ft &-!. p p . pi p i. L

y y
5 *t **! *j| *

|
elt&quot;

This justifies the above statement

3. Invariants and covariants. Fundamental properties.

Before proceeding to the explicit calculation of the invariants

and covariants, it will be useful to deduce a few simple theorems

about them.

We have seen that any absolute semi-covariant must be homo

geneous of degree zero in
?/, / ,... y^

n~ l\ The same must therefore

be true of an absolute covariant.
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An irreducible rational integral expression

i. e. one which cannot be resolved into integral rational factors, is

said to be a relative covariant, if the equation f = has as its con

sequence the same equation in the new variables, i. e.

/fo, . . . tf
1

);
*... *; . .

.)
= o.

Equations (13) show that every covariant must be homogeneous in

y, y ,--- y(n
~

1)
-

We proceed to make a very simple transformation of the form (2)

by putting

y = n&amp;gt; Z
=

cx,

where c is a constant. We find

dx k
dg dxl

If we assign to [t/W]
m the weight km, and to [jp^]

m the weight

we see that every term is multiplied by a power of c whose index

is its weight. We see, therefore, that every covariant must be isobaric,

every absolute covariant isobaric of weight zero. Besides, as we have

seen, it must be homogeneous in y, y ,
, . . y(n

~ 1

\ and of degree zero

if it is an absolute covariant. Invariants are, of course, included

among the covariants as special cases, their degree being zero.

Let &(*&amp;gt;&quot;) be a rational integral covariant of degree k in y, . . . y^
n ~ l

\

and of weight w. Let us make the transformation (3). Equations (4)

and (6) show that

*) = A ft* 10 + ,

where 4i
(* lt ) denotes the same function of the new variables as JJJ(*&amp;gt;

W )

of the old, and where & is a rational function of lower weight than w.

But the equation SS?1 = must be a consequence of Q^ &quot;^ =
0,

which requires that @ shall vanish. If we assume further that ,

(
*&amp;gt;&quot;&amp;gt;)

is irreducible, & cannot vanish as a consequence of &(*&amp;gt;

Il
&amp;gt; =

0, but

must be identically zero. An irreducible rational integral covariant,

of degree K, is therefore transformed in accordance with the equation

if the dependent variable is transformed by (3).

Let the independent variable be transformed by putting

2*
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We find

y , 3 H ^y ,
(3) dy

s H * * * 1 ?

in general

where AmJc is an integral rational function of the derivatives of |(^).
Some of these coefficients we shall have to determine. We find at

once from (14):

D^erentiation of (15) gives

4.*fct d&amp;gt;

&quot;+1
y

whence
= (m + 1)

==
-&quot;-m,m T

From the first and last of these equations, together with An = %, we
deduce at once

From the second equation of (17) we find:
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Multiply the members of these equations successively by

1, (m-l)?, (m-l)(m-2)(r)
2

,...(m-l)(m-2)...4.3(r)&quot;
1- 3

and add. Then substitute the values of Am i
j
m_i, etc. derived

from (18), and the value of A,r The result is

From the third equation of (17) we find

Multiply the members of these equations in order, by

1, (m - 2)6 , (IM
-

2) (m
-

3) (I )
2
, . -

-, (m - 2) (m
-

3) ... 3(6 )&quot;-*,

add, insert the values of J.Jn_i)m_ 2 ,
etc. from (19) and of Aa

t
i

from (16). The result is

,A_ o /wi\ /i\/Om m m~- /
&quot;

\ fcCSJ/fc^m 3 I / \ /fc&quot;\2/fc \m 4
^ / _ ON i \ 3 y

5 \5 y i I 4 / \5 / \5 / &amp;gt;

an equation for whose demonstration the following well-known formulae

may be used.

The substitution of (15) in (1) gives the result of the trans

formation | = K-1 )- Denote the coefficients of the resulting equation

*&amp;gt;--n. Then

i=

Po=^o= 1-

According to (18) this shows that

(21 a) Pr= Pr + q.r-1
(I0

r

where qr i contains only terms of weight lower than r.
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Solving (14), and denoting |r hy ??, we find

^ =~y
d g & &amp;gt;

so that in general

(22a)
^J/ = J_^) + Yr_
d|

r
(IT

where ]Tr_i contains terms of weight no higher than r 1. From

(2la) finally, one finds

jJc

(21 1&amp;gt;) -41 = VT: ^(i) + &+*-!,ji /M\r* -^r :lr1r*

where gr+x- i is of weight no higher than r -j- k 1.

Let ,&(*&amp;gt;

&amp;lt; ) be an integral, rational, irreducible covariant, homo

geneous of degree ~k and isobaric of weight w. The equations (22 a)
and (21b) show that the transformation | = |(#) will convert it into

.&quot;&amp;gt; =
()-&&amp;lt;*.&amp;gt;+

terms of lower weight.

But the equation JP
&quot; = must follow from &&amp;lt;*&quot;&amp;gt;

= 0. The terms

of lower weight cannot vanish in consequence of the latter equation,
since fl^ w

^&amp;gt; is irreducible. They must therefore vanish identically.

We have therefore the following theorem.

If &(*&amp;gt;
) is an integral, rational, irreducible covariant of degree k

and of weight w, the transformation

(T) x = t(x], y = l(x)y,

transforms it in accordance with the equation

(23) Sk**-. flM,
(&\w
\s /

When three such covariants are known, an absolute covariant can

always be constructed.

Intact, let l(ki
&amp;gt;

Wi) for (i
=

1, 2, 3) be three such covariants. Then

is an absolute covariant, if
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From these equations i^ra.,:*/, may be determined, except if

in which case two of the covariants suffice to determine an absolute

covariant. This takes place, in particular, if two of the covariants

are invariants.

Let U and V be two integral rational functions of the quantities

p^ and y
(r
\ without a common factor. Let their quotient I= y be

an absolute invariant, and let c be a constant. Then the equation

/= c is an invariant equation, which, since U and V have no common

factor, may be written

Z7_cF=0.

But this equation, being an invariant integral rational equation, must

be homogeneous in the T/ S say of degree fc, and isobaric, say of

weight w. Therefore

This equation must hold for all values of c, whence

5* 5*

u = u. v= v.
err err

Therefore: if an absolute covariant be a rational function of its argu

ments, iclwse numerator and denominator Jiave no common divisor, the

latter are relative covariants of the same degree and iceight.

Let / be an absolute covariant. Then

*?.!**
dx I dx

i. e. by differentiating an absolute covariant, a relative covariant may
always be obtained of the next higher order. In particular, let (9^, &v

be two invariants, of weight .a and v respectively. Then

(24) n&^-v^
is a new invariant of weight ^ + v + 1 which we may, with Forsytli,

conveniently denote as the Jacobian of @ and v .

We shall have occasion to consider a special case of the trans

formation T, for which

l(x)-C(ft,

where C is an arbitrary constant, while v has a fixed constant value;

in our case, for example v = - Such transformations form a sub-
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group of the infinite group of the transformations T. Let U be a

covariant of degree Jc and of weight w. Then

**
Z7, y-

whence by logarithmic differentiation,

dlgy __ J_ [dlogy |&quot;
I

7 t./ I &quot;T V , , I )ax g \_ dx I J
so that

(25)

is seen to be a covariant for the sub-group

W = eery,

if C7&quot; is a covariant of degree & and of weight w.

4. Canonical form of the differential equation
and of its invariants.

From (21), making use of our expressions for A
m&amp;gt;m , X,m-i, etc.,

we find

i r . w i i ,
&quot;

-Pi
=

*r A + -s- 1? ,
where ^ = ^-,

(26)

whence

According to (9) we shall therefore find

(27) ^-
Being a seminvariant, P2 is not changed by any transformation

y = ly

affecting only the dependent variable. According to (6) and (26), if

we make successively the two transformations

y = ly, x=*l(x),
Pi is changed into

(f&amp;gt;0\ If i
^

i
W 1 1

A-FLA + t + -T-V
Suppose that (1) has been reduced to its semi -canonical form,

so that p:
= 0. Then, as (28) shows, pt

will be zero, if and only if



(29)

i. e. if
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In other words
,

the most general transformation of the form T,

which leaves the semi-canonical form invariant, is

(30) *= !(*), y = CXS )
*

y,

icliere %(x) is an arbitrary function, and C an arbitrary constant.

It is clear from the general theory that the transformations (30)

must form a group, a sub-group of (2). The group -property may
moreover be verified directly.

We may now choose (x) in such a way as to make P.
2
vanish.

According to (27) it is sufficient for this purpose to take for %(x)

such a function of x that y shall satisfy the equation

(3D V-~T = A,

which is of the Eiccati form.

We thus obtain an equation equivalent to (1) for which

That this transformation is possible was first shown by Laguerre.

The canonical form of (1) which is thus obtained was employed by

Forsyth, for the theory of invariants. We shall therefore speak of

this reduction, as the reduction to the Forsyth -Laguerre canonical

form, this form being characterized by the absence of the n 1 th

and n 2 th derivatives.

Let us suppose this reduction made, so that p1
= p* = 0, and

therefore P
2
= 0. The most general transformation which leaves the

canonical form invariant, must, according to (31), satisfy the further

condition

But, if we introduce r
t
= -, into this equation, we find

The expression on the left is nothing more or less than the Schicarzian

derivative of with respect to x. The most general solution of this

equation is
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&amp;lt;. _ ax+p~
yx + S

where a, /3, y, 8 are constants, whose ratios only are of importance.
The relation between k and | is, of course, the same as before.

Therefore, the most general transformation, which leaves the Laguerre-

Forsyth canonical form invariant, is

(32) S

The totality of these transformations constitutes a four -parameter group.
Let us suppose that (1) has been reduced to the canonical form.

Its invariants will assume an exceptionally simple (canonical) form,

owing to the vanishing of the coefficients pi
and p2

. But we have

just seen that this reduction may be accomplished in oo4 different

ways. For any one of these reductions, of course, the absolute

invariants of (1) have the same value. But they also have the same

form; for, no matter how the reduction has been accomplished, in

the resulting canonical form, pt
and p$ are zero. The invariants

of (1) in their canonical form, must therefore be such functions of

the coefficients of the canonical form of (1), as remain invariant

under all transformations which leave the canonical form unchanged,
i. e. under the transformations (32). On the other hand, any function

of the coefficients of the canonical form, which remains invariant

under transformations (3.2), must be the canonical form of an invariant

of (1). For, although (1) can be reduced to any one of oo4 different

canonical forms, this totality of canonical forms is the same for any

equation equivalent to (1). A function of the coefficients of the

canonical form, which remains unaltered by the transformations (32),

has therefore the same significance for (1) as for any equation equi
valent to (1), i. e. it is the canonical form of an invariant.

To find the canonical form of the invariants of (1) is, therefore,

the same as to find the invariants of an equation in its canonical form
under the transformations (32).

Let, therefore

(33) ^&quot;&amp;gt;

be a linear differential equation in its canonical form. We proceed
to determine its invariants under the transformations of the four-

parameter group

These will be the invariants of the general equation in their canonical

form.
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We may assume

(32 a) a8 - p? = 1,

since only the ratios of a, /3, y, 8 hare any significance. It is then

evident that (32) contains only four parameters.

To determine the infinitesimal transformations of (32), put

u = l + c
1
8t

} p = c*8t, y = c
5 8t, 8 = l+c4 8t, C=l + s8t

where dt is an infinitesimal. Then, neglecting higher powers of 8t,

8x = x x = [c% -f (cx c4)# c
2 x~] 8t,

But from (32 a) we find

q 4- c4
= 0.

We may therefore put

so that we obtain the following, as the infinitesimal transformations

of x and yt

8x = ( Q +2alx+ cc*x*} dt, 8y = [a + (n
-

or

(34) 3x

if we put

Let f be any function of x, and
/&quot;

the corresponding function

of x. Then

d^ = df^dx
dx dx dx

Since we have

- 1 t / JB1 j ^*
v1

i Jfr -/*

/Z -7* ^ ^ i / 7

we find

i. e.

&amp;lt;

35
)

If we apply this formula, we shall find
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To find the result of the infinitesimal transformation upon (33)
we must substitute in it,

If we denote | by yp\ (33) becomes, after this substitution,a tC

or

If, therefore, we denote the coefficient of y^ by (
n

\q~k }
and putW A//

QW * In

we shall find

or

The continued application of (35) will then give, by induction,

Set

(^
= 3,4,... w; % = 0,1,2,...).

Let f be a function of y, y ,
. .

., y . . . and of the quantities q(fi up
to weight w, so that i + j &amp;lt;^

w
;
and Z ^ w, if M; &amp;lt; w. If w

;&amp;gt;
w we

shall have i + j &amp;lt;^w, l&amp;lt;^nl, since we shall always assume that
the higher derivatives have been expressed in terms of y, y

1

,
. . . y(

n~V
by means of the diiferential equation. If then we take w &amp;gt; n we
shall have to consider the variables y, y ,

. . . y(n
~ 1

\ and $*) where

i + k&amp;lt;^w, together (n
- 2)w -

n - 8n ~ 2
variables. If f be an

Jt

absolute invariant, containing these variables, we must have 8f= 0, i. e.
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for all values of s, | , |&quot;.
We thus find the following system of

partial differential equations for the absolute invariants and covariants

i=0
w 1 . nwj

i ^ * ^ ^ /? f

( 3 s) o = x
irv=y *yw^ +y y ^ +j)^ ^ ^ &amp;gt;^ ^ /~ *JV ^^^^ ^Hf^f f O

Jt = l

o _ sWf- *(
-

) j&quot;-

1

5
- 4rv,

where

(39) 4*V

_ x . -^.
&amp;gt;

4 i=0

The three equations (38) are independent, and according to the

general theory, form a complete system. Therefore there are

/ r-k\ W&quot; 3 n 2 r, / ~.N n

absolute invariants and covariants involving quantities of weight no

higher than n\ where w &amp;gt; n. Of these, 1 are necessarilv covariants.__ / */

while all others may be taken as invariants. For, if we assume that

f is independent of y, i/, . . . y^
n~ l

\ (38) reduces to a system of two

equations with n variables less than before. This system must there

fore have n 1 solutions less than (38), whence our conclusion that

all of the solutions of (38) except n 1 may be taken as invariants.

Of the n 1 covariants, all but two may be chosen as being in

dependent of the quantities qW. In fact, the complete system obtained

by assuming that f is independent of q
f

.

k
\ contains n variables and

three equations, so that there are n 3 such solutions. Therefore,

n 3 of the covariants, the so-called identical covariants according
to Forsyili, are the same for all equations of the wth

order, while two
of them depend upon the coefficients of the equation. For the latter

two we ma take

(40)
Sfey +fr-Wy and (-l)yy&quot;-(n-2)(yr.

!/2s
S

r23
3

for we can easily verify that these are solutions of (38). The first

equation of (38) merely requires that f shall be homogeneous of
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degree zero in y, y ,
etc. . . . The second equation requires f to be

isobaric of weight zero. q3 and y are obviously solutions of the last

equation of (38). If, therefore, we take any function, homogeneous
of degree m and isobaric of weight w, which satisfies the last of the

equations (38), we can find from it a solution of (38) by dividing by

For, such a quotient will obviously satisfy the first two conditions.

It will also satisfy the last since the quotient of two solutions of

3
(

2

w)
f= will be again a solution. But the numerators of the two

expressions (40) are such homogeneous and isobaric functions which

verify the equation 3c* f=0f
so that our assertion is proved.

It remains to find the n 3 identical covariants and the in

variants. We can establish first, the existence of a system of quadratic
covariants. Put

(41) Ui, - jftlW -V + 1

where
/3 4

- are constants. This expression is homogeneous of degree

two, and isobaric of weight 2j. We shall be able to determine the

coefficients
/3A so as to have

34&quot;% -G.
In fact

^

This will be zero, if we put

whence

For
_;
=

1, we find

21 n-l
if

(43) U.2
= (n-l}y

If we put

(44) *2,
=^k, j =

&amp;lt;

[2,3,...^ odd

we have 2 identical covariants or -
according as n is even or odd.
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From these covariants we can deduce the others. We have

8U
*i - 9 (f 4_

*- 2J-l_.
I . 2 H

-

_ n 1

whence
su;.

~ST
=

Put
Cr /, i \ , . 77 9 ^ 9 ^*

2/+1 v IjyUSj &quot; V* -J
We find

* ITT&quot;

so that C^y+i is a relative covariant of degree 3 and weight 2j-f 1.

This same result might have been obtained by applying the general
formula (25). Therefore

3.- 2/7
SAK.\ ^ y

2&amp;gt;+i / 100 n 1
n 3\

(46) 0&amp;gt;2 , +1 = --i7+f^ (j

=
I, 2, 3, . . .

- 1 or -
2-j

gives 1 or further identical covariants according as n is even

or odd. We have found explicit expressions for the n 3 identical

covariants. For it is evident that G&amp;gt;3} d&amp;gt;4 ,
etc. are independent, since,

taken in this order, &amp;lt;J&amp;gt;k is the first which involves
y*&amp;gt;.

We now proceed to compute the invariants. The first equation
of (38) becomes superfluous. The second is satisfied by any function

of the quantities qW isobaric of weight zero. We shall, therefore,

seek isobaric solutions of

and then, by division with an appropriate power of q3 ,
deduce there

from an absolute invariant.

There are n 2 relative invariants which are linear in the

quantities qf\ In fact, let us put

m 3

(46) flU-Vv.^-. (
= 3,4,... W

).

We shall find

I 1

(

so that &m is a solution of Af=0, if
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or

(m s) (w s+ 1)

whence

/ (m-2)!m!(2OT-s-2)! m
,

,

-

(w-s-l)!(n-s)!(2m-3)!s! 2

which equation is satisfied also for s = 0. Put W)0
= 2, so that

@ = IV
~~~

W^w X ;
v (w-s-l)!(w-s)!(2m-3)!s!^-=

(w = 3, 4, . . . n).

This gives us w 2 relative invariants, of which the first is simply

3
=

&&amp;gt;

so that the functions

(49) &amp;lt;^

=
%&amp;gt; (m = 4,6,...)

53
?

represent w 3 absolute invariants.

We may easily verify that

(50) /&quot;
. j-t _*&quot;ajW

is a further absolute invariant. These n 2 absolute invariants are

independent, and the remaining invariants,

in number can be derived from these by differentiation. In fact, if J
is an absolute invariant, so is

-37
&quot;

3 dx

If therefore we denote the operator
1 t

~~W d

by #, we shall have the following additional absolute invariants

&Jm ,
&2Jm ,

. . . &w~ mJm ] (m = 4, 5, . . . ),

^ ^ J &J -9--J-

which are independent and
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w 5 -f [to 4 -f- w 5 + w 6 H-----\-tv-n]

in number, so that we have them all. That they are indeed in

dependent may be seen as follows. If there were a relation between

them, it would be a relation between the quantities J3 ,
. . . Jm and

their derivatives up to a certain order, no higher than w 4. Solve

this relation for one of the derivatives of the highest order which

occurs in it, so that we shall have identically (i.
e. for all values of

Pt, Pt, P&quot;,
etc

-)

/?
- T

Since the left member is a total derivative, so is the right member,
and integration would give rise to a relation between the derivatives

of order A 1. Continuing this process would give finally a relation

between J3,J4 ,...Jn . But these are independent. We have there

fore found the functionally complete system of invariants and covariants

in their canonical form.

The numerator of &Jm may be written

3 6&amp;gt;

3 ;- m&m 93

a combination which we have decided to call, with Forsyth, the

Jacobian of &amp;lt;93 and &m .

Our result in regard to invariants, may therefore be expressed
as follows. All relative invariants may be derived from the linear

invariants 6&amp;gt;

s ,
. . . & and from &3 .i

= Qq5

&quot;

q3 7(&amp;lt;?3 )
2
, by first corn-

bitting &3 icith all of the others by the Jacobian process, then combining

3 in flie same way intli the resulting new invariants, etc. . .

An invariant of (1) in its general form can contain the coeffi

cients Pi, Pi, . pn of (1) only in the seminvariant combinations

P,, P3 . . . Pn , P, . . . Pn , etc., and must be an isobaric function of

these quantities. If we form such an invariant of weight m in its

general form, it will contain certain terms of the first degree, certain

terms of the second degree, and so on. But by a transformation of

the form T, we can reduce the equation to the canonical form, which

is characterized by the conditions P, = 0, P3
= q3 ,

. . . Pn
= qn . If

f(P,,Ps ...P: P2 ...P,/;...)

is the general form of the invariant, its canonical form becomes

f(0,q3 ...gM ; 0, q9 . . . qn
-

. .
.),

so that all of the terms of such an invariant in its uncanonical form,

except those which contain
P&amp;gt;, P, ,

P
8

&quot;. ... as factor, may be obtained

WILCZTNSKI, projective differential Geometry. 3
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by substituting Pk in place of qk . If we continue to denote by m

the invariant, which in its canonical form reduces to the expression

which we have computed, we see that the linear terms of m , excepting
a possible term of the form P^

m ~~ 2
\ can be obtained by putting

qk Pk (Jc
=

3, 4, . . . n) in the formulae which give explicitly its

canonical form. We shall continue also, with Forsyth, to speak of

these invariants as linear invariants.

The linear invariants in their uncanonical form contain, beside

those terms which have been &quot;determined explicitly, others which have

P
2 ,
P

2 ,
... as factors. Are these terms also expressible as integral

rational functions of P2 ,
P

3 ,
. . . Pn and of their derivatives?

We observe in the first place that, if the formulae expressing

Pp in terms of P* be derived from (21), these are linear in Pk \

and the coefficients Aki are algebraic functions of the derivatives of |.

The invariant equations could clearly be obtained by eliminating these

derivatives of | from the equations. It must therefore be possible,

by algebraic elimination, to set up a complete system of invariants,

each of which is algebraic in the variables involved. We shall speak
of these as the algebraic invariants, so as to distinguish them from

those whose canonical form we have calculated, and which may be

called the fundamental invariants. Since both systems of invariants

are complete, it must be possible to express the algebraic invariants

as functions of the fundamental invariants and vice -versa. For the

canonical form, we know that the fundamental invariants are them

selves algebraic, and therefore expressible as algebraic functions of

the algebraic invariants. But a relation between invariants is not

changed by any transformation of the form T, such as the reduction

to the canonical form. Therefore, the fundamental invariants are

always algebraic functions of the algebraic invariants, i. e. they are

themselves algebraic.

We may, therefore, assume that , is a root of an irreducible

algebraic equation

(52) ar
r

v -f ar_i P 1

-\ \- at
& v + a =

;

where
,
a1; . . . ar are integral rational functions of P

2 ,
P

3 ,
. . . Pn

and of the derivatives of these quantities. After an arbitrary trans

formation of the form T, (1) is converted into a differential equation,

whose coefficients may be denoted by pk . If we denote by ak and @v

the same function of these quantities pk as ak and are of the

quantities pkf @v must satisfy the equation

ar

r

v + r_i \~ -) \- a^ v + = 0.

On the other hand, if
,, is of weight v, we know that
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/a* op\Jy T&quot; *y\

where is an arbitrary function of x, so that

(53) ^ +a
y

i^ 1)
+ --- +^-M = a

The equations (52) and (53) must be identical. Otherwise 0, would

satisfy an equation of the same form but of lower degree. Therefore,

the coefficients a-: of (52) must be invariants.

For the canonical form however, 0,. becomes an integral rational

function of Pt ,
Pt ,

. . . etc. On reduction to the canonical form, the

equation (52) must therefore reduce to the form

a,& t + a = 0,

where a
t

is merely a numerical factor, and a an integral rational

invariant. But again, since the reduction to the canonical form cannot

change a relation between invariants, this same equation must be

true in general.

Therefore, the fundamental invariants whose canonical form has

been calculated, are in tlieir uncanonical form integral rational invariants.

We may now conclude that tJie non-linear part of the linear in

variant m cannot contain Pm or even Pm i, since each of its terms

must contain P2
or a derivative of P2

as a factor, and its weight
must be equal to m. This remark will be of importance shortly.

In our complete system of invariants we have employed one,

whose canonical form is 6g3 ^3

&quot;

7(&amp;lt;Z3 )
2

. It is one of a system,
whose general form we shall now deduce.

Consider an invariant &m of weight m. Then, after the trans

formation =
i(#),

e
&quot;

=
&amp;lt;ir

&quot;

whence

i rdlogG.,,

and

Between these two -equations, eliminate -=-- We find
a jc

where

3*
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But we have also

P _ J_fp j--*+I _*+*.
2
~~

(I )* L
2 12 6 .

so that

+
-*-&quot;- 9
1

is an invariant. The numerator of this expression, when reduced to

a fractional form, we denote by m .i- It is equal to

(54) m . i
= 2m , m

&quot;

(2m-
&quot;

i

and is called by Forsyth, the quadriderivative of m . Its weight is

2 (m + 1). For w = 3 we get an invariant which, in its canonical

form, coincides with

It is now clear that, if 3 , 4 ,
. . . n and @3 .i are given as

functions of x, the coefficients of the semi-canonical form P2 ,
P

3 ,
. . . Pn

can be expressed in terms of them and of their derivatives, provided that

3 + 0.1)

Upon this theorem a new proof may be founded of the fact that

all invariants can be obtained from these fundamental ones by the

Jacobian process. We shall not insist upon this. We shall show
r

however, that our system of fundamental invariants, together with

the Jacobian process, furnishes a complete system of invariants in a

more special sense. Not only can any rational invariant be expressed

as a function of these invariants, (this we have already shown), but

as a rational function.

Since the quantities P2 ,
P3 ,

. . . Pn can be expressed rationally

in terms of 3 ,
... n and 3.1, and of the derivatives of these

quantities, any invariant which is a rational function of the sem-

invariants Pk , P//, etc. becomes a rational function of these n 1

fundamental invariants and of their derivatives. The numerator and

denominator of this rational function must themselves be invariants.

We shall show that, except for a factor of the form
\, every

invariant, integral, rational function of this form may be converted

into an integral rational function of the fundamental invariants, i. e.

of
3
... n , 3.1 and of the Jacobians of 3 with the others.

In order to prove this, it is clearly permissible to make use of

the canonical form, since a relation between invariants is not changed

by such a reduction. Let

1) This follows from the expressions for the linear part of the linear

invariants, together with the remark that the non-linear part of 0m does not

contain Pm .
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be an invariant, integral and rational, of weight w, containing no

higher derivatives of @3 . . . m , &$.\ than the m th
,
and let ty represent

the aggregate of those terms whose degree u in the wzth derivatives

is the highest. We shall then have

(55) *

where we have denoted the exponent of \ by rs because 6)3.1 is

of weight 8. The other term % of tp will contain the derivatives

of the w th order only to a degree lower than u, and the coefficients A
of ^ can depend only upon derivatives of order lower than m.

The transformation x = %(x), y = %(x)y converts & into 0, ,

where

ev
= 9r ,

(? } = -r- f&amp;lt;9;

m) + terms of lower order!
y ($y

+m L j

while

(56) v^&r9

Let A be the new value of A. Then, the general term of v
will become

7 o(m) r* ft()
r o(n )

r*-^ &quot;.

plus terms of lower degree in the derivatives of highest order.

But, on the other hand, (56) shows that the general term of
^&amp;gt;

will be
1

A o(m)

r* () &quot;( )
&quot;*

-^y
C
A

ri
...

rnra
&3 ...& #3.! .

These two expressions must be identical, since the expression of cp

in terms of these quantities is obviously unique. Therefore A and A
are identical except for a power of | ,

i. e. the coefficients A must
be invariants.

As has been remarked, we may assume that (1) has been reduced

to its canonical form. Since, in that case,

*.i - 66&amp;gt;
3

6&amp;gt;3

&quot; - 7 (037, 6&amp;gt;&quot;
- -

,

#3 &quot;, if*,
. . . 6&amp;gt;

3
m) may be expressed rationally as functions of

3.1, 3.1,... @3V
and of

3 and
./.

In these expressions the denominators will be

mere powers of
3

. If we introduce these expressions into (f, it will

again assume the form cp
= ^ + jj, where
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where the coefficients A will depend upon derivatives of order lower

than m but may contain as denominator a power of
3 ,

and where

1 is of degree lower than fi in the derivatives of highest order. We
conclude as before that the coefficients A are invariants.

Consider the Jacobians

Sl
= 3

s
&v v v 0.J, tfj

= 3@
s

&amp;lt;93 . ! 8 3 . ! 8 ,

S2v == 3 s Si v

(57)

(v
=

4, 5, . . . m)

all of which are invariants Clearly

9

will be an invariant, whose degree in the highest derivatives is no

higher than p 1. By continuing this process upon 9^, we shall

finally obtain for (p an expression of the form

mnm. . . &

^r ?

where
r4 + ----h rM + r8

=
^,

and where the coefficients A, B, . . . F are integral rational invariants

containing only derivatives of order lower than m. Each of these

may be reduced in like fashion until we get an expression for 9 in

terms of the Jacobians

whose coefficients contain only the first derivatives of 3
. . . &

n&amp;gt;

@3 .i.

In this case we cannot, as in the others, remove the term
3

. But, if

(58) 2JC(6&amp;gt;3 )

r3
. . .

( n Y
n
(liY*

is such an invariant expression, we know that it can be only a function

of &quot;the Jacobians s v and t . If therefore, by means of (57), we

express @4 ,
. . .

,
@3 .i in terms of these Jacobians, the terms in

3

must in the aggregate disappear from (58), so that it assumes the form
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where the coefficients D are functions of &amp;lt;93 . . .
, 3.1 only, and

moreover rational functions, since
&amp;lt;p

is a rational invariant.

We have shown, therefore, tlmt tlie fundamental system of invariants,

(chich ice have determined, is complete in the more restricted sense that

every rational invariant is a rational function of the fundamental
invariants. For n = 3 and for n = 4 this theorem was proved by

Halplien, using the notation of differential invariants
,
whose relation

to the invariants which we are considering will appear later on.

We shall conclude this paragraph with a few remarks of a

historical nature. In 1862, Cockle started a series of papers
1

)
in

which he deduced, by finite transformations, a number of the results

which we have found. He found the seminvariants
, essentially by

the method which we have adopted, as well as the semi-covariants,

without proving, however, the completeness of the system. He also

found one function, invariant under transformations of the independent
variable alone. In 1879 Laguerre^) found the invariant &amp;lt;93

of the

equation of the 3d order, and showed that its vanishing is the

condition for a homogeneous quadratic relation between its solutions,

a result which we shall verify later. In a letter to Laguerre, Srioschi 3
},

in the same year, extended Laguerre s investigation to equations of

the fourth order. He notices that the form of the invariants is the

same for both cases, owing to the fact that he uses what we have

called the Laguerre- Forsijtli canonical form, for which the linear

invariants m are independent of the order n of the equation, as we
have seen in general. He also notices that if the invariant

3
vanishes

in the case n = 3, or if both @
3
and @

4
vanish in the case n = 4, the

solutions of the equation are the second and third powers respectively

of the solutions of an equation of the second order. He found later,

in 1890, that, if all of the linear invariants of an equation of the

n*11 order vanish, the general integral is a binary form of the n 1
th

degree formed from the two solutions of a linear differential equation
of the second order. He also found that if only the linear invariants

of odd weight vanish, the equation coincides with its Lagrange adjoint
4
)

These results we shall verify in the next paragraph.
In 1878 Halplien published his thesis on the differential invariants

of plane curves, and in 1880, his paper on the different ial invariants

of space curves?} These differential invariants are entirely different

1) Cockle, Mostly in the Phil. Mag 186275.
2) Laguerre, Comptes Rendus, vol. 88 (1879; pp. 116119 and pp. 224 22T.

3) Brioschi, Societe Math, de France Bulletin, vol 7 1879 pp. 105 108.

4) Brioschi, Acta Mathematica, vol.14 (1890) pp. 233 248.

5) Halphen, Sur les invariants differentials. These, Paris 1878. Sur lea

invariants differentiels des courbes gauches. Journal de FEcole Polyt. vol. 47 (1880 .
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in form from the invariants of Laguerre and Brioschi, but can be

identified with them, for n = 3 and n = 4, as was shown by Halplien
himself. He also proved that his system of invariants is complete in

the sense of our last theorem. These papers, geometrical in nature,
Avill occupy us fully later on. In his prize memoire of 1882, however,

Halphen formally entered the field which we are now discussing. He
there considered the invariants of a linear differential equation, and

applied them to the problem of determining whether a given equation

may be reduced to one of certain types whose integrals are known. 1

)

In 1888, Forsyth*), by the method of infinitesimal transformations,

computed all of the invariants in their canonical form, and some of

those of lower weight in their general form. Bouon*) } by the

application of Lie s general theory to the calculation of these invariants,

gave in 1899, a clearer presentation of the subject. I have preserved

many of Bouton s notations. The reader will find there also, a detailed

appreciation of Cockle s work, as well as further historical remarks.

Finally, in 1900, Fano published a paper
4
), of which the theory of

invariants constitutes only a part, but which explains well the relation

of this theory to other branches of the theory of linear differential

equations, and which also gives an excellent account of the history
of the subject.

5. The Lagrauge adjoint equation.

Write (1) in the form

(59) f(y)
= a^ + a^n~V + a,^~ 2

) + : + any = 0,

so that

(60) a = l, ak

We shall show that there exist certain functions s of x, such

that the product

will be the complete derivative of an expression linear in y} y ,. . .

Such a function z may be called an integrating factor of (59).

We notice first that integration by parts gives

/V*&amp;gt;yC*-*&amp;gt;rf3
= zWy(k-h-l)__ C0V + Vy(*-t

(h
=

0, 1, ... fc-1).

1) Halphen, Memoires des Savants Etrangers, vol.28, 2 d - series (1882).

2) Forsyth, Phil. Trans, vol.179 (1888) pp. 377 489.

3) Bouton, Am. Journ. of Math, vol.21 (1899) pp. 25 84.

4) Fano, Math. Annalen. vol.53 (1900) pp. 493 590.
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If we multiply both, members of this equation by (1)* and form

the sum for all values of h from to /, 1, we shall find

_i)*+i r&+vtf*-*-
J

Cz^dx =^(~ l)*^*-*- 1^ (- 1)* f&yd*.

We have from (59)

whence

(61) zf(y) dx=- ~

where

(62)

Equation (61) shows that
^/&quot;(y)

is a complete derivative, if and

only if

(63) 0(*)
= 0.

For, it is clearly impossible, that the complete derivative of any
linear function of

ij, y, / ,
etc. should be of the form yg(z), if g(z)

is different from zero. The equation (63) is known as the Lagrange

adjoint of (59). It was considered for the first time by Lagrange.
We see, therefore, that every solution of the Lagrange adjoint of a

linear differential equation furnishes an integrating factor for this equation.

If we write

(64)

we notice that this expression is linear of the n 1
th order in z as

well as in y. It may be called the adjoint HI inear expression.

Equation (61) may now be written

(65) [z f(y)
-

yg(z}\ dx = 1&amp;gt; (y, *).

If any solution z of the adjoint equation be known, we find as a first

integral (containing one arbitrary constant), of (59), the equation

^ (y, z)
= const.
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In every case, (65) shows that zf(y} yg(z) is an exact derivative,

for arbitrary functions y and s.

This property is characteristic of the Lagrange adjoint expression,

if we denote as such the left member of the Lagrange adjoint equation.
In other words, if, for all possible functions y and 2, the expression

is an exact derivative, where
&amp;lt;JP(#)

is a linear differential expression
of the nih order in 2, cp(/) mnst necessarily be the Lagrange adjoint
of f(y), i- e.

Let us suppose, in fact, that

y&amp;lt;p(*)~\
dx = ^o (y,

where
i/; (y, #) is a differential expression in y and 0. By subtraction

from (65) we find

op (#) q(s] I dx = tb (y, 0) ^n (?/, ^) .
. / V / t-/ \ / J \*7 / /

~
\) \tS / //

i. e. the derivative of the right member would be a linear function

of the derivatives of s multiplied into y. But this is clearly im

possible. We have, therefore,

&amp;lt;JP(#)

=
#(#)&amp;gt; I[&amp;gt;Q

=
iff + const.,

as we proposed to show.

Suppose now that g(0) were given. Since its adjoint must be

such a function f(y) as satisfies (65), and is therefore uniquely

determined, we see at once that the relation between f(y) and g(z)
is reciprocal. In other words, if of two expressions the second is the

Lagrange adjoint of the first, so is the first of the second.

If, therefore,

we shall have also

corresponding to (59) and (62).
We proceed to show how the solutions of the two equations

can be expressed in terms of each other. It is upon the form of

these expressions that the importance of the adjoint equation, from
a geometrical point of view, will be found to rest.

Let yl} 2/2, . . . yn be a system of linearly independent solutions

f f(v)
=

&amp;gt;

so tnat ^e determinant



5. THE LAGRAXGE ADJOINT EQUATION. 43

(66)

&amp;lt;/ ,

does not vanish identically. Such a system of solutions is called a

fundamental system, because all other solutions can be expressed in

terms of them, as homogeneous functions of the first degree with

constant coefficients.
1

)

Consider the expression

, ,

It is an expression linear and homogeneous in y, ?/ ,... j/
n-1)

;
it

vanishes for y = yk if =f= *&amp;gt;

&&& becomes equal to unity for y= yi-

If, therefore, we substitute into it, for y the most general solution

of f(y)
=

0, i
will assume the value

& = C-v?
l v/,.

The equation
d9

will, therefore, be satisfied by the most general solution of f(y)
= 0.

But it is of the same order as f(y)
=

0, and its left member can,

therefore, differ from f(y) only by a factor zt . We shall have

d9.(v)

(67)
--

Comparison of the coefficients of
y(&quot;\

in the two members of this

equation, gives

But since Zif(y) is an exact derivative, Zi must be a solution of

the adjoint equation. If we give to i all of its values from 1 to n,

we find in this manner n solutions zl} . . . zn ,
of the adjoint equation

which, as we shall see immediately, form a fundamental system. It

is customary to say that the system z { is the adjoint of system */,-.

From (68) we find

(68a)
=

0, y(n-^a
=

1} (
j. = 0; i,... M -2).

1) For a proof of these well-known theorems we may refer to Forsyth s

Treatise on Differential Equations, 71 et sequ.
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Put, with Schlesinger
1

*),

Then, these equations may be written

S00
== S10

== ~ S
2,0
=

0; SM 1,0
= 1-

But
dsa 1,0

i 1,1,

=
s, +

(J)
S,-

Therefore,

s^ = if fr-f fe&amp;lt;*l.

If we put 1 = w 1 in the above equations, we find

Sn-1,0
=

1, S 2,1
=

1, Sn-3,2
= +!,... S^ i-i

so that

Sit = ^ for A + k &amp;lt; w 1,

su- = (- 1? for A + fc = n - 1.

If, in these relations we put A = 0, we find

a =, 1 = 1

whence, if we write

(69) -

we obtain

(70) ft.

We find moreover

so that ^J
i

is finite and different from zero if this is true of A.

This proves that ^ ,
. . . zn form a fundamental system as was stated

before. Equations (68) and (70) serve to express the solutions of the two

equations in terms of each other.

1) Schlesinger, Handbuch der Theorie der linearen Differentialgleiclmngen ;

vol. 1, p. 63.
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If now a transformation of the form

y = l(x)y, x=%(x)

be made, we see easily, that to it corresponds the transformation

for the adjoint equation. It follows at once, that the invariants of
the Lagrange adjoint equation are also invariants of the original equation.

We proceed to determine the exact relation between the invariants

of the two equations
We find, from (62), the following equations expressing the coeffi

cients 6, of the Lagrange adjoint in terms of the coefficients a* of

the original equation, viz.

_
i= n i

whence, in particular

These latter equations show that the reduction to the Laguerre-Forsyth
canonical form is effected simultaneously for any equation together tciih

its Lagrange adjoint.

Let us assume this canonical form, and let us recur to our

customary notation, by writing

Then we shall hare

Pi=?i= P* = r, = 0,

-.-)
1 _ _/_1

-+*)!(-*)! t!^

where the terms not written depend upon ^s of index lower than /.

We can find the canonical form of the linear invariants of the

Lagrange adjoint equation, by merely substituting these values for

the coefficients rf in place of #, in equation (48). The term of highest
index present in O,n) is qm . If we put ,

=
r,- in Sm} and then

express ;, in terms of p f by means of (72), we shall get a linear

invariant 2m of weight m . The coefficient of pm in 2^ will differ

from that in Sm by the factor ( l)
m

. But the linear invariant of

weight w is uniquely determined up to a constant factor, i. e. the

most general linear invariant of weight m is C0m . We must, there

fore, have
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i. e. the linear invariants of even weight are identical for a linear

differential equation and its Lagrange adjoint. The invariants of odd

weight for the two equations, differ only in sign.

If an equation coincides with its adjoint, the invariants of odd

weight must vanish. From equations (48) we see conversely, that if

they vanish, the equation coincides with its adjoint. For, the invariants

of even weight being arbitrary functions of x, this equation for

(m = 3, 4, . . . n) enables us to compute successively and in a unique
fashion qs

=
0, #4 , g3 ,

. . . qn . We see therefore that the theorem of

Brioschi, mentioned in the last paragraph, is true. A linear differential

equation coincides with its Lagrange adjoint, if and only if its invariants

of odd iveight vanish.

If the invariants of even order also vanish, we thus find that

the canonical form of our differential equation becomes

But, in order to reduce (1) to its canonical form, we made the

transformation

x = (x), y = l(x)y,

where (#) was anJ solution of the equations

r
1 9 6 -,-.

4&quot;

y--zV = n-+i
p

*&amp;gt; 9-T
and where

_n 1

* - cr)

We may express this differently. Put

r
r

9 r
,-y.;-yl

so that the Riccati equation for
77
becomes a linear differential equation

of the second order,

for . Let
x
be any solution of this equation. Then, we may take

fc (~\ 2 _ f-n 1

5 [&) T-J&amp;gt;
A

fcj ,

&amp;gt;i

so that the reduction of (1) to its canonical form may also be

accomplished by taking any solution
x
of (73) and putting

(74) ir-fr&quot;
1
*! x
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But, the expression for x may be written

(74a) x =
^&amp;gt;

61

where g, is another solution of (73) such that ^ is not a constant.
1

In fact, if
t
and

2
are two solutions of (73) we find at once

rf^_ rf^_
61 dz* &amp;lt;**

whence

If we choose the constant equal to unity, and divide by ^
2
, integration

gives

Moreover this quotient is not a constant, since 7^ is not zero.

If the invariant of (1) are all zero, the canonical form of (1) is

^y =
dx&quot;

whose general solution is

But this shows that the general solution of the original equation is

i. e. a binary form of tlie n 1th orefer formed from the solutiom of
a li)iear differential equation of the second order. This is the theorem

of Brioschi quoted at the end of the last paragraph.

6. Geometrical interpretation.

Among the Ancients, Mathematics was divided into two distinct

parts, geometry and arithmetic. Not until the time of Descartes and

Femiat were the two streams which had run along separate channels,

united into one. It was then recognized, that geometrical problems
could be converted into problems of algebra, while on the other hand

a great class of algebraic problems was capable of geometric inter

pretation. The transformation of an algebraic into a geometric problem,
and vice -versa, was accomplished by the introduction of an element.

foreign to the problem itself, viz. the system of coordinates. The

points of space were put into one to one correspondence with a

system of three numbers, their coordinates. To a surface was found

to correspond an equation between these three numbers, etc. . . . From
the time of Descartes on, the advances of geometry and analysis have

been closely connected. Every fundamental notion in one field has
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found its important interpretation in the other. Tangent and area

of a curve were closely connected with the ideas of derivative and

integral of a function, etc. . . Examples of this are sufficiently familiar.

But, as we have noticed already, in any problem of geometry
the system of coordinates is really a foreign and arbitrary element.

The geometrical relations which we wish to investigate, have nothing
to do with this foreign element, which nevertheless makes its appearance
in the corresponding equations. If we wish to present a geometrical

theory, in an analytical form&quot; which shall be perfectly satisfactory, it

therefore becomes necessary to write the equations in such a way as

to make it evident that they are independent of the particular system
of coordinates chosen.

We do this by expressing our equations in an invariant form.

No investigation of analytical geometry can, therefore, be considered

satisfactory, unless it lias been put into invariant form.
But why should this valuable aid of a geometrical image be

confined to the case of a system of one, two, or three variables? In

his ,,Ausdehnungslelire&quot; of 1844, Grassmann introduced the idea of

geometry in n dimensional space, a point of such a space being
determined by n coordinates. On the other hand, the notion of duality

in the ordinary three dimensional geometry led to the consideration

of other configurations besides points as fundamental elements of space.

The principle of duality had shown that if the plane be adopted as

element, instead of the point, a new theorem could easily be deduced

from any theorem of point geometry. But this new geometry which

took planes, as its elements, was three-dimensional as well as the

usual point geometry. In 1846 however, Plucker took a long step

in advance, by taking as fundamental element of space the straight

line. Since a straight line is determined by four coordinates, this

line-geometry of PliicJcers, of which we shall have to give some account

later, is four -dimensional. It now became clear at once, that, by

choosing the element of space in an appropriate fashion, a geometry
of any number of dimensions could be constructed in ordinary space,

or even in the plane. If, therefore, the abstract notion of n- dimensional

space should seem to some not to be of a character to assist our

imagination, we must remember that an adequate image of this space

may be constructed in the ordinary space of experience.
We now proceed to explain a few of the notions employed in

this theory of higher spaces. Just, as in plane and solid geometry
we may introduce homogeneous coordinates. We shall say that n quantities

(#!,... #) are the homogeneous coordinates of a point P in a space
or manifold Jtfw_i of n\ dimensions, if the points of this space
can be put into one to one correspondence with the n 1 ratios
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Let (zfp, . . . afU) and (42)
,

. . . a^
2)
) be the coordinates of two points

of Mn i- Then, the quantities

will be the coordinates of a single infinity of points of Jtln -i, which

we shall denote by Mv We may speak of this assemblage of points

as a straight line. The ratio of ^ : ^ acquires all values as the

point (#*) moves along the line. Clearly such a line may also be defined

by n 2 independent homogeneous linear equations between xlt . . . xn .

Let (48)
,

. . . 4S)
) be a third point, which is not on the line M^

Then, the quantities

x
k
=^) + A

24*) + A
843)

&amp;gt; (fc
=

1, 2, . . .
),

will be the coordinates of a double infinity of points of J/&quot;n _i, which

we shall denote by Jl/
2 ,

and whose totality may be called a plane.

A plane may also be defined by n 3 independent homogeneous
linear equations between xl} . . . xn . .

In general, m points (m &amp;lt;[ n) determine in this way a manifold

of m 1 dimensions J/m_i, provided that they do not all lie in a

manifold of fewer than m 1 dimensions. Such a plane manifold

Mm i, of m 1 dimensions, may also be defined by n m independent,

homogeneous, linear equations between xlt ...xn .

If we wish to change the fundamental element of our abstract

geometry by taking as its fundamental conception not the point, but

the manifold J/m_ 1; we must first of all learn how to determine

Mm i by coordinates. This we may do, with complete generality as

follows. Let us consider m points of J3 m i which are not included

in any plane manifold of fewer dimensions, and let the matrix of

their coordinates be:

*F&amp;gt;, ?&amp;gt;,...*&amp;gt;,

ai), 42)
, a^V

(2ft)

From this matrix can be formed

m!

different determinants of the wj.
th order. We define, with Grassmann,

as homogeneous coordinates of J/&quot;m_i, JV quantities proportional to

these determinants. It is not difficult to see that, if we had taken

m other points of Jtf&quot;m_i, we would have obtained the same coordinates.

For, if
*/&amp;lt; ),

. . . j/W, (/
=

1, 2, ... ni) are the coordinates of these other

m points, we must have

WlLCZYXSKI, projective differential Geometry. 4
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(0 = fiatV + c.,4
2

&amp;gt; H-----\-C. a*).
yj 1 *2 & tat c

since they are also points of Mm i. The determinants of the ?/s

would therefore differ from the corresponding determinants of the # s

only by the factor, common to all

I

cit , (i, k = 1, 2, . . . m).

This factor, moreover, is not zero. For, if it were, the m new points

would be included in a plane manifold of less than m 1 dimensions.

We are justified, therefore, in speaking of these N quantities as

the homogeneous coordinates ofMm i. For, to every -M~TO_ i corresponds
one and only one set of their ratios 1

), i. e. the configuration Jfm_i
and its coordinates have been put into one-to-one correspondence.

It should not be forgotten, however, that these coordinates are not,

in general, independent of each other. In fact, the determinants of

the matrix (2K) satisfy certain relations, which we do not, however,
need to develop for our present purpose. A single example, of special

importance to us, may suffice. Let (#1; . . . #4) and (yif . . . /4) be two

points of ordinary space. In accordance with our general definition,

the determinants of the second order, in the matrix,

will be proportional to the homogeneous coordinates of the line

joining the two points. In this case N= 6. Put

&ik = xtyk xkyh

and let A be a proportionality factor. Then we may take

as the homogeneous coordinates of the line. But, the determinant

Vi&amp;gt; %&amp;gt; %; I

L i 2 y 3 y

fit fit A

i&amp;gt; !/2&amp;gt; y$y i

is obviously zero. Upon developing it we find

a homogeneous quadratic relation between the six homogeneous line-

coordinates.

1) And, vice -versa, as may be easily shown.
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We may now apply these notions to our linear differential

equation (1). The general theory of such equations establishes the

following theorem.

Let Pi, Pi, - pn be functions of./:, regular in the vicinity of

./; = a . i. e. developable in series proceeding according to positive

integral powers of x a . Then there exists a system of n regular

functions yl} */,, . . . yn ,
between which there is no relation of the form

with constant coefficients C;., and each of which satisfies the differential

equation. The most general solution of the differential equation,

regular in the vicinity of x = a, can then be expressed in terms of

this fundamental system, in the form

y = c
i

iJi + & H H c
ny&amp;gt;

where the coefficients ck are arbitrary constants.

If the equation (1) be integrated we shall therefore have yl}
. . . yn

expressed as functions of a*. We may interpret y1} . . . y,, as the

homogeneous coordinates of a point Py
in a space Mn i of n 1

dimensions. As x changes, Pu moves along a certain curve, Cy ,
tJie

integral curve of (1). Moreover, this curve is not contained in any

plane manifold of less than n 1 dimensions, since ylf . . . yn satisfy

no homogeneous linear equations with constant coefficients. Cy is

therefore a curve of n 2 pie curvature.

But the curve Cy is not determined uniquely by the differential

equation. If we put

(75) yk
= ckl yi -\

-----
1- ctnyn , (k = 1, 2, ... n),

where the determinant

is different from zero, while the constants cit
- are arbitrary, yt,

. . . yn
will also form a fundamental system of solutions of (1). We may
regard (75) as a transformation of the curve Cy

into another Cy .

Moreover such transformations shall be called projective transforma

tions of n 1 dimensional space. They can be defined geometrically,
in a manner altogether analogous to the definition of projective trans

formations in ordinary space.

We may say, therefore, that the differential equation defines a class

of projectivehj equivalent curves of n 1 dimensional space.

If, on the other hand, n linearly independent functions yl} . . . yn
of x are given, we can always find an equation of form (1) for which

they form a fundamental system. In fact, from the equations

4*
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Jr&quot; +-:+ pny
-

&amp;gt; (* -X * &quot;. ),

which express the fact that y^ . . . ?/w are solutions of (1), p1} p% }
. . . p lt

can be easily computed. For, the determinant

is not identically zero, if the system of n functions yi}
. . . yn is linearly

independent, i. e. if there is no relation of the form

H-----h cnyn = Q

with constant, non- evanescent coefficients.
1

) We shall find

^ (/^
=

1, 2, . . . w),

where ^ denotes the determinant which is obtained from z/, by

substituting for the quantities f/^~
k
\ . . y^

n~ k
\ in it the quantities

y n) y(ri)
ffi ) yn

These expressions show explicitly, that the coefficients of the

differential equation (1) are not changed by any projective trans

formation (75) of the space Jfw _i. In other words, the coefficients

pi ,
, . . p n have the same significance for any curve obtained from Cy by

projective transformation, as for Cy itself.

But, if we have yi: . . . yn expressed as functions of x, these

expressions still contains arbitrary elements, elements which are, so

to speak, accidental and do not belong to the curve itself. In the

first place, only the ratios y : y2
:: yn are of importance, since the

coordinates are homogeneous. A transformation of the form

will therefore not change the curve Cy ,
since it leaves these ratios

unaffected. Further, in place of the parameter x we may take any
other _ . .

x = f(x).

If, therefore, we form combinations of p^ ,
. . pn which are not changed

by such transformations, they will be expressions which have a

significance for the curve itself, independent of the special method of

representation, a significance moreover, which is not disturbed by

any projective transformation. In other words:

1) We have already quoted this theorem. Cf. Forsyth, Treatise on Differential

Equations, 73.
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The invariants of a linear homogeneous differential, equation

characterize the projective properties of its integral curve.

In this connection, the theorem that the coefficients of the semi-

canonical form can be expressed in terms of the linear invariants

and of their derivatives becomes of fundamental importance. Let

6&amp;gt;3 ,
6&amp;gt;4 ,

. . . & be given as functions of ./ . Let, at least one of these

invariants, be different from zero, and let Qm be the first which does

not vanish. Then, by (54), P.2 can be expressed uniquely in terms

of @m and &amp;lt;9m
,
i . From the expressions of the other invariants, whether

they be zero or not, P3 ,
P4 ,

etc. . . . Pn can be expressed in terms of

3 ,
... & and &mt i. The semi -canonical form is therefore uniquely

determined, i. e. these invariants determine completely a class of

projectively equivalent curves. If, on the other hand, all of the linear

invariants 0,n are zero, they also determine a class of projectively

equivalent curves. For, we have seen in the last paragraph that the

differential equation can then be transformed into

whose solutions

!/i
=

1&amp;gt;

1J*
= x, y* = x n~ l

form a fundamental system. This special curve, the so-called rational

normal curve of the n 1
th order is of special importance in the

geometry of n 1 dimensional space.

We have found the following fundamental theorem.

Let the linear invariants &3 ,
. . . &m be given as arbitrary functions

of x. Let &m be the first of these whicli does not vanish identically,

and let the corresponding quadri-derivative &amp;lt;9m,i be also given as an

arbitrary function of x. These n 1 functions determine a curve of
n 1 dimensional space uniquely except for protective transformations.

This theorem corresponds precisely to the fundamental theorem

of the metrical theory of surfaces in ordinary space, which asserts

that a surface is determined, except for its position in space, by the

coefficients of its fundamental quadratic forms. In that case, however,
the formulation of the theorem is far less simple, because the coeffi

cients of these quadratic forms are not independent of each other,

but must satisfy certain relations.

Let the functions ylf . . . yn be regular for x = a, so that for

sufficiently small values of x = a, we may express them in the form

yt
=

yto + yto (x a) + ykQ (x of H---- ,

Avhere ykQ , yk o, yk o, etc. denote the values of yk , yk , yt&quot;,
etc. for x= a.

Put x a = h . Join the point P which corresponds to x = a, to

the point Q, which corresponds to x = a-\- h, by a straight line.
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In accordance with our definition of a straight line, the coordinates

of any point on this line may be written in the form

+

Therefore, the point whose coordinates are

is a point of this line. The limiting position of the line, as h approaches

zero, is called the tangent of Cy at P
y

. We see, therefore, that the

quantities

lim
*

h
=

(yk}x= a , (k
=

1, 2, ... n)

represent the coordinates of a point on the tangent. This point will,

moreover, in general, be different from the point Py
itself. For,

else, we would have for all values of x

// k &quot; f/k y \
~~~

j y
* * * ))

i. e. /!,... yn would all satisfy the same linear differential equation
of the first order. They could, therefore, differ from each other only

by constant factors, i. e they could not form a fundamental system
of (1).

In the same way we may define the osculating plane, and show
that three of its points, not in general collinear, are

lJk i yk t yk&quot;, (k
=

1, 2, ... n).

In general we may take m points upon the curve; P
yf

and

m 1 others. They determine a plane manifold Jfm_i of m 1

dimensions. We allow all of these points to approach Py
as a limit.

The resulting limiting plane manifold Mm i shall be spoken of as

osculating the curve Cy at P
y

. The m points whose coordinates are

given by

y^ yk i yk i if**&quot;&quot;

1

*; (ft
=

l, 2, . . . n),

are in general m distinct points of Jfm_i, which are not included in

a plane manifold of less than m 1 dimensions. The coordinates of

any point of -Mmi may then be written in the form

Let us consider, in particular, the osculating plane manifold of

n 2 dimensions, Jfn_2. In accordance with our general definition,

its coordinates are n in number, and may be taken proportional to

the minors of w^-
1
). y(?~ l

\ . . .
i/&quot;-

1
) in the determinant 4. ButV
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according to (68), the solutions of the Lagrange adjoint of (1) are

also proportional to these same minors of A. We may, therefore,

say that the solutions of (1) and of its Lagrange adjoint correspond
to each other by the principle of duality. That this is true for n= 3

and n = 4 is evident. That it is true in general will become clear

if we formulate the principle of duality for space of n 1 dimensions.

We have seen that n 1 points determine an -3/,,_o. But since

Mn * can also be defined as the locus of points which satisfy one

linear, homogeneous equation between xl} . . . #, it is clear that n 1

plane manifolds Mn will in general determine a point as their one

common element, its coordinates being the one solution of n 1

homogeneous linear equations. Similarly, -n I points determine an

Mn-.tij and this can also be determined by A
1

equations, i. e. as the

locus of points common to 7; manifolds Jf,,?. Therefore, in the

same way n manifolds -3f,,_ 2 have in common a manifold 3ft i-

Consider any theorem in the geometry of JS/,,_ i which is concerned

only with intersections of plane manifolds. We shall be able to

deduce from it another theorem, by putting everywhere for the word

point, the word plane manifold of n 2 dimensions, for the word

plane manifold of fc 1 dimensions, the word plane manifold of
n k 1 dimensions.

If n is even, there is a self-dual plane manifold 31n . Thus in

3

three dimensional geometry, straight lines are the self-dual elements.

We have assumed that y1} . . . yn were point coordinates. The

curve C,j
has been defined as the locus of a moving point. We have

seen, further, that the coordinates of the osculating Mn * may be

identified with z, . . . zn the solutions of the Lagrange adjoint equation.
We may therefore regard this latter equation as having the same

integral curve as (1), the curve however not being regarded as the

locus of a point but as the envelope of its osculating plane manifolds

of n 2 dimensions. We may also, however, interpret glf . . . zn as

point coordinates. Then, the integral curve C3 is in general different

from Cy . Its points will satisfy the same equations which are satisfied

by the osculating plane manifolds of n 2 dimensions of Cy
. The

curves C
y

and C2 are therefore dualistic transformations of each

other.

We have seen in the last paragraph how the invariants of the

two equations were related to each other. Our fundamental theorem

may therefore be completed as follows:

If tlie linear invariants of even weight nave the same values, and

if those of odd weight have opposite values for two curves of the space

J/Mi, tiiese curves are dualistic to each otiier.

If the linear invariants of odd iceiglit are zero, tJie curve is self-dual.
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The dualistic character of the correspondence of the two curves

Cy
and G3 may also be seen by setting up the theory of the polars

with respect to the quadric

X^ + */ + + %,? = 0.

The relations (68 a) show that #17 . . . zn is the pole of the Mn %

osculating Cy
at Py

with respect to this quadric.

7. The relation of the invariants of a linear differential

equation to Halphen s differential invariants.

We have seen that pif ..-pn can be expressed in terms of

y1 ,
. . . yn ,

and that these expressions are unaffected by projective

transformations. The invariants, for the sake of simplicity let us

consider absolute invariants, can only be functions of the ratios

y\.
: 2/2

:
&quot;

: yn since they are not changed by any transformation of

the form y = h(x)y. They are also left unchanged by any trans

formation of the independent variable. We may therefore find a

special form for the expression of these invariants, by introducing
the quotients

and taking Y
1

as independent variable. The invariants will then

become such functions of Ylf Y2 ,
. . . Yn i,

and of the derivatives of

these quantities with respect to Yi} as are left unchanged by any

projective transformation. These functions are Halptieris differential

invariants. Halphen has worked out their theory for n = 3 and for

n = 4, and it is upon this basis that he has constructed his theory
of plane and space curves. We must remember however that he did

not obtain these invariants in this way. His method, applied to the

general case would be as follows. Let Y1} . . . Yn \ be the (un-

homogeneous) coordinates of a point in the space M.n \&amp;gt;
Let

be the equations of a curve in this space. Then it becomes Halplieris
dY, d*Y

k

problem to find functions of Y1} Y2 ,
. . . Yn ,

JY&amp;gt; dY~*
e*c

remain invariant for all transformations of the form

c+c r + ....L C r
~~ ,...,

t-oT &amp;lt;

-i
j; iT -fSi -L^n l

where the coefficients c# and c^ are constants.

This unsymmetrical and unhomogeneous formulation of the problem
is manifestly a disadvantage. It is easy enough to obtain the un-
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homogeneous form when the homogeneous is known, but the inverse

process is far more difficult. We shall, therefore, make little use

of Hdlplierfs differential invariants, but shall deduce Hyphen s theorems

on plane and space curves directly from the differential equation.

Doubtlessly, Halplien would also have done this, if he had noticed

this connection at the time. In his later papers, in which he makes

use of the differential equation and its invariants, his point of view

is no longer geometrical, except iu a secondary way. But even then

the form, into which we shall put this theory in the following chapters,

could scarcely have occurred to Halplien. For, we shall find that the

geometrical theory of the semi-covariants is essential for this purpose.
and. at least for n = 4, this theory requires as prerequisite a general

projective theory of ruled surfaces. But Hcdphen, never mentions

these semi-covariants, and the general theory of ruled surfaces is of

more recent date.

Examples.

Ex. 1. Compute the expression J.m . m_ 3 defined by equation (15).

Ex. 2. Show that in general

Am!: = lim --
[&amp;lt;p (x -f p) (jp (#)]*. (Schlomilch.)

r,= d Q
m

Ex. 3. Making use of the result of Ex. 1, find the general

expression for P3 .

Ex.4. Denote the Schwarzian derivative by {, x}. Prove that
n. 3C 7y

it vanishes if | =
jj^&amp;gt;

a, 6, c, d being constants. Prove the following

formulae:

IW

Ex. 5. Compute the invariants and covariants in their canonical

form for n = 3 and for &amp;gt;?

= 4.

Ex. 6. Compute the invariants and covariants of the equation

Ex. 7. Find the adjoints of the general equations of the third

and fourth order.

Ex. 8. Reduce the following equations to their semi -canonical

form, and then solve
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n - r _ r -c. | tf Q .^
da 2 ^dtf * da 2 x*-l dx ry\(x-l)(

~

, 9 -,\d*y . dy 3 d*y . Z dy . a* r.- = c =

-0
; (1 + *) + * + 2?_ . (Forsyth.)

Ex. 9 If s is the quotient of any two solutions of

then s satisfies the equation

{s, x]
= 21. (Kuramer, Schwarz.)

Ex. 10. Find the linear differential equations of the third order

whose fundamental solutions are

1, x, x2
;

x + y%, x y x, x 2
; sin kx, cos ~kx

}
x.

CHAPTER IH.

PROJECTIVE DIFFERENTIAL GEOMETRY OF PLANE CURVES.

1. The invariants and covariants for n = 3.

The geometrical interpretation developed in outline, in Chapter II,

shows that the general projective theory of plane curves may be

attached to the discussion of the linear differential equation of the

third order

(1) ?/
s ) + Sfry&quot; + 3i^ + ps y = 0. *)

The two seminvariants [Chapter II, (9)] are

(2) P,=P2
-V -

PS, P3
=

P,
- 3^ + 2^ 3 -

Pl &quot;.

For the semi -covariants it seems desirable to change the notation.

We shall denote them by # and p, so that

(3) == y + Pl y, Q
=

y&quot; + 2p^ + p^tj.

We have deduced, in the general case, the canonical form of

the invariants. For our more detailed discussion of the case n = 3

we shall need also their uncanonical form. Moreover it will be

necessary to have at hand explicitly the formulae, which express the

effect upon the coefficients of (1) of the transformation

1) Of course the equation (1) may be interpreted dualistically as the equation
of a cone.
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(4)
* = !(*)

of the independent variable. We find, either directly, or by specializing

the general equations (21),

where

(6) r-jnjj
et

Consequently, we find

* 4-

(7)

so that and are transformed cogrediently with p1
and

dpi d*Pi-
If we denote -r= by ^ , -py by ~p&quot;, etc., we find

1
=
^i [PI

~

whence

P -
1
\P --ul

2 i s
L 3

U
J

(8)

The former of these equations follows at once, if we put n = 3 in

equation (27) of Chapter II. We find further

so that

/a - /./

)
3

if

(9) 3
= P3 -|P2

.

3
is the one linear invariant which exists in this case. For the

canonical form it reduces, of course, to P
3

. The quadri- derivative

6&amp;gt;s .i of
3
we shall denote in this case by 6&amp;gt;8 ,

since there is no

danger of confusion with any other invariant of weight 8. We have,

according to equation (54) of Chapter II,

(10) 8
= 60

3 3

&quot;
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The invariance of &s may also be tested directly. We know by the

general theorem that all invariants are functions of
3 ,
@

s
and of

their successive Jacobians. Of these we shall need

(11) 16
=

8 ei
21
=2X2

between which there is the relation

(12) 0;,+ e
8 81

-
The functions *

(13) 4
-

3 y + 3
s z,

are covariants of weight 2 and 4 respectively. All other covariants

may be expressed as functions of these and of invariants. We shall

later find another covariant, capable of a simple geometrical inter

pretation, to replace C2 .

In our special case, we have to interpret y1} y2 ,y^ the members
of a fundamental system of (1), as homogeneous coordinates of&quot; a

point Py
in a plane. As x varies, Py describes a plane curve Cy .

If we denote by ul} u.
2 ,
ws the coordinates of the tangent to Cy

at Py ,

they form a fundamental system for the Lagrange adjoint of (1),

which is &quot;in this case [cf. equation (62) of Chapter II],

(14) M(3) _ spiU
n + 3 (^ _ 2^/y _ fa - 3^ + 3^&quot;)^

= o.

Its seminvariants are

J7
2
= P2 ,

JT
3
= - P3 + 3P, ,

so that its invariants differ from those of (1) only in having &amp;lt;93

in place of &amp;lt;93 ,
in accordance with the general theory.

The Laguerre-Forsyih canonical form of (1) will be obtained by

making the transformation

y=*l(x)y, x = t(x),

where |(a?) is chosen so as to satisfy the equation

iy-f*-o,
which reduces P

2 to zero, and where

in accordance with the general theory, so that Pi=pa
= 0- The

equation assumes the form

S+-pif-.o,
for which

3
= P3 .

Since
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if we put

6&amp;gt;3 will be equal to unity. We may then choose i. (x) so as to have

2\
= 0. We shall speak of the canonical form which is characterized

by the conditions
s
=

l, A=&amp;lt;&amp;gt;,

as the Halphen canonical form. Equation (1) may always be reduced

to the Halplien canonical form if Q.
A
does not vanish identically.

If &amp;lt;93
=

0, the Laguerre-Forsytii canonical form becomes

*-&amp;lt;&amp;gt;,

so that Cy is a conic. If &amp;lt;9

3 =f= 0&amp;gt;

let 3 and &amp;lt;98 be given as functions

of x. We can solve (10) and (9) for P
2
and P3

. We find very

easily therefore, the special case of our general fundamental theorem.

The invariants &
3 and &s determine a plane curie except for projectice

transformations. If for all pairs of corresponding points of two curves

Cu and Cg ,

6&amp;gt;3
= -6&amp;gt;3 ,

6&amp;gt;8
=

&amp;lt;9

8 ,

the two curves are dualistic to eacfi other.

Let us call a curve identically self- dual, if a dualistic trans

formation exists which converts it into itself point for point, so that

by this transformation, every point of the curve is converted into

the tangent at that point, and every tangent into its point of contact.

Then we can say, that the only identically self-dual plane curves are

tlie conies. For, (93 must vanish for such curves.

2. The equations of the osculating conic and cubic.

Put y = }/i, y^t y-s
in the expressions (4). We find in this way

two other points P. and P,,, which describe two curves C: and C
? ,

semi-covariantly connected with C,,. P. is clearly a point on the

tangent to Cy
at Py ,

while P
?

is some other point of the plane. If

we assume that P,, is not a point of inflection, the three points
P

y ,
Pz , PO will not be collinear. We may, therefore, take these

points as vertices of the triangle of reference. Moreover, we may
choose the unit point of our system of homogeneous coordinates in

such a way that an expression of the form

x\y + ^2* + ^e
shall represent the point whose coordinates are precisely xlf x% , a^.

The geometrical significance of this triangle of reference, which we
have only denned analytically, will appear later, as a consequence of

the developments which we proceed to make.

Let the differential equation be written in the Laguerre-Forsijth
canonical form,
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so that p i
= p% 0, pz

= P3 . Let x a be an ordinary point for

the function P3
of x, so that the members of a fundamental system

may be expressed as series proceeding according to positive integral

powers of x a, convergent for values of x a
\ sufficiently small.

For greater convenience in writing we shall put a = 0. In fact we

may, by the transformation
x a = x

always reduce the developments to this form. We proceed, therefore,

to express the solution Y of our equation as a power series in x,

and we shall actually calculate the coefficients up to the ninth order.

We shall find

an expression which may be written in the form

where y^y^^y^ are themselves such power- series, which will represent

the curve Cy up to terms of the 9th order in the vicinity of the point

P,,, referred to the system of coordinates which has just been defined.

Since p1
=pz

=
0, we find by successive differentiation:

n K
- - 33 - -

Pf&amp;gt;

- 6P.V
8 5

21P3

rP3

&quot;

+ [-6P+ 18PS P,&quot; + 12(P3 &quot;)

2

],^
- (15PW- 9P3P3 &amp;gt;.

If, therefore, we put Y into the form indicated above, we shall have:

p
i 1 _ ^m

p p &quot; p(3) p2 p(4)
5

~
51 6! 7!

- ^ (P^)
- 21P

3Pf - 21P3 P3
&quot; + PJ) x* + -,

Ps 2P , 3P
S

&quot;

,.
4Pl3)-P| 7/V r _ /Vi4: _O /y0 _O /y,J ____ *&amp;gt; _____ _jt&amp;gt; /yi I^ &quot; X X ~~

- 18P3P3

&quot; - 12(P3 )&amp;gt;

P
3^5

3P
S 6P8

&quot;

7

61 6!
&quot;

7! 8!

9!
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We shall find therefore:

(17) j,,
- 2Ms = ip.a. + ip.V+ Lp,&quot;*

1&quot; -504P.1V) *+...-

This equation gives an important result. Consider the conic

g
2 2#

1 a%
= 0.

To find its intersections with the curve C,,, we substitute into its left

member xt
= yk . Equation (17) gives the result of this substitution,

and shows that the development of

& 2 -
2*/,&

coincides with that of

3.9
~~&quot;~

3C* */*

up to and including terms of the 4th order. In other words, this

conic has at P,, a contact of the 4th order with C
t/ ,

or it has five

consecutive points in common with it. It is, therefore, the osculating

conic.

Put

(18) ^ 00 = 5Q/
2 -

2^/3) (21P3?/1
- P3

&quot;

//3)
-

We shall find

63P3
3
]

(19)

so that finally

7 (15P8P?&amp;gt;-
20P3 P3

&quot;-

(20)

=
20^24 PI(1&W ~ 20P3 P3

&quot; - 567P33) (20P3 P3

&quot;

63P3
3
)

+ 100 {6P3P3
&quot; - 7 (P8 )*} {7P3PW - 12(P3 &quot;)

2 - 882P3
2P3 }] + . .

A plane cubic is determined by nine points. We shall speak of the

cubic which has, at P
y ,

nine consecutive points in common with Cy)

i. e. which has with Cy
a contact of the eighth order as the osculating
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cubic. As, in the case of the conic, we find its equation at once

from (20). Uniting the two results, we may recapitulate as follows:

Beferred to the system of coordinates defined ~by the semi-covariants,
tvhen the differential equation is written in the Laguerre-Forsyth canonical

form, the equations of the osculating conic and cubic are respectively

OCa lU 00 -t 0(/n = \J

(21) 7(15P,PJ &amp;gt;

- 20P
3
P

3

&quot; - 567P3
3

)&1 Or)

+ 20[6P3P3&quot;--7(P3
2
]&2 0*0

= 0-

3. Geometrical interpretation of the semi-covariants.

We have already noticed that P- is a point of the tangent
constructed to Cy

at P
y

. Moreover (7) shows that a change of the

independent variable has the effect of displacing Pz along the tangent.
We may even choose the independent variable so, as to make P:

coincide with any point of the tangent. If we mark upon every

tangent of Cy
a point, the function q(x) of equation (7) may be so

chosen as to make the curve Cz coincide with the locus of these

points. Unless, therefore, the independent variable be chosen in some

special way, the curve Cz has no specific relation to Cy
. It may

serve merely as a geometrical image of the independent variable x.

This image does not necessarily change if the independent variable

be transformed. For, as (7) shows, since the coordinates employed
are homogeneous, two values of %(x) which give rise to the same

value of
irj(x)

transform C~ into the same curve C-~. In other words,,

a linear transformation

x = ax + &

of the independent variable, where a and & are constants, has no

geometrical significance.

We may, therefore, look upon the curve Gt as defining the

independent variable of the differential equation, except for such an

inessential linear transformation. The curve CQ will then be determined

uniquely. It remains, therefore, to find the relation between the

points P. and P
?

.

Let us assume now that P
2
=

0, so that the differential equation
is in its canonical form. Let us make all transformations of the

independent variable, which do not disturb this condition. As (8)

shows we must have p = 0, or

I
1

2

v*=jir,

so that the locus of all points P-, as given by (7), becomes

or
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X
l =-rf, JV,

=
i?, 23

=
1,

where
7;
may have any numerical value. The elimination of

? gives

ay 2a-
1
#3
=

as the equation of this locus. In other words: if P2
=

0, the point

PO is upon the osculating conic. If all of the transformations are made,

which do not disturb the condition Po = 0, P
?
assumes successively all

positions upon the osculating conic.

We are now in a position to determine the equation of the

osculating conic
,
referred to the triangle of reference P

yP.Po }
even

if P
2

is not equal to zero. For, if P
2 =f= 0, P

2
will vanish, if

77
is

any solution of the Riccati equation

I
* 9 *

T&amp;gt;

p = n -fV f*V
The points Po which correspond to all of these solutions, are by our

previous result, the points of the osculating conic. We find

so that

are the parametric equations of the conic. Eliminating 17,
we find

(22) xf - 2x
l
xs + P,.v = 0,

the equation of the osculating conic, referred to tiie triangle of reference

PyP.-Po, when this triangle is not specialized.

The polar of any point (a
1

/, ;r2 ,
2&quot;3 ) with respect to this conic is

- xs xl + xjxs + (P2x3 - a:/) jrs
=

0,

so that the polar of P.-, or (0, 1, 0), is a*2
=

0, i. e.: the line PyP? is

the polar of P- with respect to the osculating conic.

The line P
yPo, which has now a known geometrical significance,

intersects the osculating conic in Pv and in another point Pa ,
whose

coordinates are given by the expression

(23) a = P,,/+2 Q .

As ;/: changes and P
y moves along the curve Cyt the line Pj,P?

will envelop a certain curve Cj. We proceed to determine the

point P.* at which Pj,P touches Cj. In order to do this, we allow x
to increase by dj:, where 8x is an infinitesimal. The line PyP will

assume the position Py+ y dxPq+qdx- As Sx approaches zero, the

intersection of this latter line with P
yPo will approach a certain

limiting position. This limit will be the point Pp.
WlLCZTXSKI, projective differential Gometry. 5
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We find, by differentiation

t--M+ *,

9
= (-P3 + P9 )y-2PtS

whence
y + y dx = y (1 p^Sx) + s dx,

Q + d# = (PJ-PJydx - 2P
2
s

The line joining these points intersects P
y Pg in the point

whose limit is

(25) /J
= 2P

8 y+&amp;lt;&amp;gt;.

The cross -ratio of the four points Py ,
Pa ,

P
Q , Pp is given by

(PiP,,P,;Pf)-4
The point P?

is completely determined by these considerations.

Upon the polar of Pz ,
with respect to the osculating conic, we mark the

points Py
and Pa in which it meets the conic, as well as the point Pp

at ivhich it touches its envelope. The point P^ is then determined by

tfie condition that the cross -ratio of the four points shall be equal to 4.

This construction becomes indeterminate if P
2
= 0. In that case

however, P
?

and P^ coincide with P the second intersection of

P
y
P

Q
with the osculating conic. In this case, therefore, Py

P
4

&amp;gt;

is a

tangent of the curve described by P^ . This gives us the interpretation

of the condition P2
=

0, which is characteristic of the Laguerre-

Forsyth canonical form.

The most general curve C^ depends upon an arbitrary function y (x).

If this function is chosen in a definite manner the curve Cj is deter

mined uniquely, and therefore, by the above construction also the curve CQ.

Among these curves C$ there exists a single infinity such that their

tangents at PJJ pass through the corresponding point Py of Cy . These

are the special curves G^ which are obtained by reducing the differential

equation to the Laguerre-Forsyth canonical form. Moreover, if we

construct all of the points P^, one on each of these oo 1
curves, which

are thus related to a definite point Py of Gy ,
their locus is the conic

which osculates Cy
at Py

. Finally, any four of the curves CT, which

correspond to four of these special curves Cq, intersect all of the tangents

of Cy in point-rows of the same anharmonic ratio.

The last remark results from the fact that the equation

I
1 9 &quot;

T&amp;gt;

v -jr j-P^

which determines these oo 1

curves, is of the Eiccati form. The anharmonic-

ratio of any four solutions of such an equation is always constant. 1

)

1) See for example Forsyth, A treatise on differential equations, p. 190. 3 d edition.
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4. The eight -pointic cubics, the Halphen point,

coincidence points.

Let us again assume that (1) has been written in the Laguerre-

Forsytlt canonical form, so that p }

=
p% = 0, p3

= P3 . We have seen

in 2, equations (19), that each of the cubic curves

.&amp;lt;VX&amp;gt;

=
5(z,

2- 2^*,) (P.A x3
- 3P3 ;r2) + 12P3

2 *3

3 =
0,

2 - - P3 &quot;:r3)
- 42P3

2^^ 2

has eight consecutive points in common with C,, at Py} or has with

C,, at P,j a contact of the seventh order. The same is therefore true

of each of the oo 1 cubics

(27) &!(*) + W*) =
0,

where a and /3 are constants. We shall speak of these cubics as the

eight-pointic cubics of P,,. Among these there is, of course, a nine-

pointic cubic, i. e. the osculating cubic of C,, at P
y

. We have seen,

[cf. equation (21)], that its equation is obtained by putting in (27),

(28) =7(15P3Pf-20P3
P

3&quot;-567P3
3

), /3
= 20[6P3

P3&quot;-7(P3 )
2
].

But, the eight-pointic cubics have a ninth point in common,
which we shall call the Halphen point of P,,. We proceed to find

its expression.

We find from ^ =
0,

^5

This gives further

&quot;&quot; / 2 O ^ so X - zx x ==

01 p _
_-p&amp;gt;&amp;lt;, _(Ps xA -BP8 xt ) .105Ps x,

8 - 10P3

&quot;

a;s ) + 252Pg
8xg

31 -

whence, substituting in 5i
2
=

0,

[60P3P3 P3

&quot; - 1512P3
l

- 180P S
P&quot; + 210PP 8

lr 2 = 0.SS
The solution t/

3
=

gives .r,
=

0, i. e. the point P
y

. The other

solution gives

where 00 is a proportionality factor, and where we have written

P
3
=

3 ,
6P

S
P

3&quot;-7(PS ) =08 ,

since
3 and 8 reduce to these respective quantities under our

assumption P2
= 0. We have moreover assumed P

3 =|= 0, i. e. that

5*
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Cy is not a conic, in which case these considerations would be without

value. Substituting into the expression for x1} we find

7(603

f

8 -75608
4
)
8 +2508

3

Xl
~

210@
S 8

If then we put o = 210 3 8 ,
we find, for the Halphen point of P

y ,

the expression

6 = [7 (5 B &8
- 756 3

4
)
2 + 25 @8%

^-f 15-210
3

2
8
2

0,

under the assumption P2
= 0.

But there must be a covariant, which for P
2
= reduces to 6.

We find that 6 itself is not a covariant. The most general trans

formation of the independent variable converts 6 into

But we have also

382 -

so that

fc = &amp;lt;y + 1575@
3

2@8
2P

2 ?/

is a covariant. We have found therefore the following covariant

expression for the Halphen point which belongs to Py \

(29) h = [7(5@3 @8
- 756 3

4
)
2 + 25 8

3 + 1575@3
2@8

2P
2]i/

This expression shows that the Halphen point coincides with P
y ,

if and only if @
8
= 0. Halphen has called such points of a curve

which coincide with their Halphen point coincidence points. We shall

investigate, in the next paragraph, those curves all of whose points
are coincidence points.

Here we will notice only that, according to (27) and (28), the

osculating cubic in a coincidence point becomes

&i&amp;lt;X)
=

o,

and that this cubic has a double point at P
y

. We have therefore

the remarkable result due to Halphen:
In a point of coincidence, the osculating cubic has a double point.

In such a point there does not exist, as in other points of the curve, a

cubic one of whose branches has a contact of the eighth order with it

In the general case, if @8 =4= 0, the cubic ii
t (a;)

= is also of

special interest. It is the only one of the eight-pointic cubics which
has a double point at P

y
. We shall call it the eight-pointic nodal



5. THE CURVES, ALL OF WHOSE POINTS ARE COINCIDENCE POINTS. 69

cubic. The two tangents of l
t
== at its double point, are the line

PyP: ,
i e. #3

=
0, and

(30) 3P3 x,
-\P3 x3

= 0.

They are always distinct if P3 ={= 0, i. e. the eight -pointic nodal cubic

can have a cusp only at such points of the curve C
y
whose osculating

conic hyperosculates the curve, in which case the cubic degenerates.
If

P,,P? passes through the Halphen point. But we have, in general,

Therefore, if we make a transformation =
|(#), for which

B
^ ~ lo9

s
G6

PyPr, will pass through the Halphen point. The triangle P,,P^Pr, is

determined uniquely by this condition. We have therefore a complete

system of geometrically interpreted covariants, in y, z and Q, provided
that 8 =|= 0, if in the general expressions for 2 and o the above value

of
TJ

be substituted.

The tangent Py
P: intersects the osculating cubic again in a

point, which is easily found to be

(31) r .

By its means we obtain again a set of geometrically interpreted

covariants. The tangent to the cubic at P
t
intersects the cubic again

in a point Pa, and that at Pa in a point P( . The latter must coincide

with the Halphen point, according to the known theory of cubic

curves. 1

) The conditions that the loci of Ph ,
P-/} Pa shall be straight

lines, conies, or special curves of any kind may serve to characterize

special classes of curves Cy .

5. The curves, all of whose points are coincidence points.

If all of the points of Cy are coincidence points, &s vanishes

identically. We shall assume that our differential equation has been

reduced to the Halphen canonical form, so that we have the conditions

whence

1) Py
is the so-called tangential of P For these theorems cf. Salmon s

Higher plane curves, Chapter V.
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The differential equation becomes very simple, viz.:

2/3) + y = 0.

Let w be a third root of unity:

Then we have the following fundamental system of solutions

Vi
= e~ x

, y2
= e-*, y9

=
e-&amp;lt;**,

whence
ijj / j i v

= e
2

(cos y~Sx * sin ]/3#),
Ifi - V /

ft

Put

and we shall find

Let | and
17

be cartesian coordinates. We notice that (32)

represents a logarithmic spiral which intersects all of its radii at an

angle of 30. Thence Halphen s theorem: any curve, all of whose

points are coincidence points, may be obtained by projective transformation

from a logarithmic spiral which intersects all of its radii at an angle

of thirty degrees.

Since we have

and therefore also
y = *, J = 9, &amp;lt;&amp;gt;

= -
y,

we see that each vertex of the triangle Py
Pz P^ describes a curve of

coincidence points as well as Py ; moreover the locus of each of the

vertices of the triangle is at the same time the envelope of one of the

sides which ends there.

In particular, if G
y coincides with (32), we find for C} the cartesian

equations

and for

4jr\

J,

i. e. all of the vertices of the triangle P,jP: P^, which is equilateral in

this case, and whose center is tlie origin, describe congruent logarithmic

spirals which are obtained from each other by rotation through an angle

of 120.
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Since we have P3
=

1, the osculating cubic, which is at the

same time the eight-pointic nodal cubic, becomes

F= 5 O,
2 - 2Vs) x,

- 4V = 0,

where the triangle of reference is equilateral. Since this triangle,

remaining always equilateral, changes its magnitude as P,, describes

the logarithmic spiral, while the equation of the cubic does not

change its from, the cubic always remains similar to itself. We can

make this clearer by introducing rectangular coordinates, | and
17.

We shall hare

so that the equation of the cubic becomes

which shows that the eight-pointic nodal cubic is not a real curve.

Its only real points are

|= 0,i7
=

0; 1= 10,77
=

0; | = - 5, r,
= + 1/75; |= - 5, i?

= -

or in homogeneous coordinates, z^o*,?,,

(1,0,0); (1,10,10); (l,
- 5 + 5 1^3,

- 5 -5//3);

(l,
- 5 5|/3, - 5 + 5?V3).

The rectangular coordinates of a point of the spiral corresponding
to the angle &amp;lt;p

+ ),, are

|
r = e r

3

(| cos I r
{
sin

&amp;gt;.), r/
= e

/-

^
3

(
sin A + ?;

cos A),

and we obtain the rectangular equation of its eight-pointic nodal

cubic by substituting

in jP= 0. We have proved our statement and have moreover found

the ratio of magnification. It is equal to e * .

The cubic ., = becomes in our case, after division by 21,

Sa^Zj
2

10^
2
a;
3 2x,x3

- = 0.

It is an equi-anharinonic cubic, i. e. the double -ratio of the four

tangents, which can be drawn to it from any one of its points, is

equi-anharnionic. This follows at once if the invariants of this ternary
cubic be computed.

1

) We find =
0, which proves our assertion.

This cubic contains the three vertices of the triangle PyP: Po, and

we find that its tangents at Py ,
P: ,

P
Q

are respectively P
y
P: ,

P: Po

1) Salmon, Higher plane curves, 3d edition, p. 191 and p. 200.
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and P()Py ,
i. e. the triangle is at the same time inscribed in, and

circumscribed about the cubic.

We thus find Halphen s further theorem:

Given a logarithmic spiral of 30 degrees. If we construct an equi

lateral triangle which has the pole of the spiral as center, and any point

of the spiral as one vertex, this triangle is at the same time inscribed

in and circumscribed about an equi-anharmonic cubic which has a contact

of the seventh order with the spiral at the point considered.

Of course there are two -other cubics of this kind corresponding
to the other two vertices of the triangle.

We must add however, that these cubics are imaginary, as well

as the eight-point nodal cubic.

The relation of the eight-point cubics to each other and to the

curve C
y
in a coincidence point may possibly give rise to a misunder

standing. It looks as though each of the eight-point cubics would

then be a nine-point cubic, since the nine points of intersection of

any two of them coincide with P
y

. This paradox is easily explained
if we remember that the only cubic, having nine -points of intersection

with Cy coincident at Py ,
is the eight -point nodal cubic. Each of

the other eight -point cubics intersects one of its branches in eight

coincident points and the other branch in the remaining ninth point

which also coincides with P
y

. These cubics have with each other a

contact of the eighth order, but only that one which has a double

point at Py
has nine coincident points of intersection with Cy

at Py)

and may therefore (improperly) be said to have contact of the eighth
order with Cy

.

6. Curves of the third order.

If we assume p^
= p2

=
0, equations (20) shows that the osculating

cubic hyperosculates the curve Cy
at P

?/ ,
i. e. has more than nine

consecutive points in common with it, if

(33) 21(15P3Pf-20P3 P3
f -567P3

3
)(20P3

P
3

f-15P3Pf+ 63P3
3

)

+ 100{6P3P3

&quot; - 7(P3 )
2

}{7P3Pf - 12(P3 &quot;)

2

-882P3
2P

3 }

= 0.

In order that Cy may itself be a cubic, it is clearly necessary
and sufficient that this condition be fulfilled at all points, i. e. for

all values of x.

The left member of (33) must be the special form assumed by
a certain invariant 18 under the assumption P

2
=

0, pi
= 0. We

wish to find the general expression of this invariant.

Since
P^&amp;gt;

is the highest derivative of P3 which occurs in (33),

the left member must be expressible in terms of @3 , 8 ,
&

12 , 16 , 21
.

We find for P
2
=

0,
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to _ -p - - fi P P &quot; 1CP \
z

\yn ^= -i 3 , s ^-^33 ~
\ 3 / &amp;gt;

6&amp;gt;

12
=. 18P3

2Pf - 72P3P3 P3

&quot; + 56(P3 )
3
,

(34)
* = 18P3

3PW - 108P3
2P3 Pf)

- 72P3
2
(P3 &quot;)

2

+ 384P3(P3 )
2P3

&quot; - 224(P3%
^L = 208 [2P3 Pj*) + 4P3 Pf&amp;gt;

- 8(P3 &quot;)

2

] ( 8 )
2

,

whence

(35)
ip16 + a-p8 = 126p3

p(4 _ 756P3 P(
3 ) + 648(P3 &quot;)

2
-

^s

On the other hand, we find

4 1S
= - 21 25 (08 )

2 - 84 567 636&amp;gt;3
6 + 900 496&amp;gt;

3

2
&amp;lt;912

+ 40008 [7P3PW-12(P3 &quot;)

2
J

or

t1B
=

46&amp;gt;18 + 84 567 63 &amp;lt;9

3
6 - 900 49 3

-

12

= - 21
25(6&amp;gt;8 )

2 + 400&amp;lt;98 [7P3PW - 12(P3 &quot;)

2
],

whence

_ 175 0^ _ 50 7016 -f 32e8
8 _ ^

or

(36) 2 2 -3- 3
2

6&amp;gt;18 + 2 2 -3 9
-7-

J @
3
^- 2 2

- 34
-5- 7 2

3
4@

12
- 3 - 5 2 -7

which, on account of the syzygy (12), may also be written

(37) 22 3 2
6&amp;gt;

3

2
&amp;lt;9

18 + 2 2 3 9 7 3
3
8 - 22 34 52 7 2

3

4
6&amp;gt;

12 + 3 5 2

-23 -52 -708 @16 -2

The condition for a cubic is 6&amp;gt;

18
=

0, wliere 18 is given by (36)

or (37).
3

If the absolute invariant -~ is a constant, the differential equation
&quot;s

may be transformed into one with constant coefficients. The curve

is then what Halphen calls an anliarmonic curve (cf. 8). It may

be, at the same time, a cubic. In fact in this case @12
must vanish,

and hence also 16 and @
21

. The condition 6&amp;gt;18
= reduces there

fore to

(38) 24 -5 2
6&amp;gt;8

3 -39 -7 3 @3

* = 0.

The cubic is then a cuspidal cubic; as may be seen by setting up the

corresponding differential equation. We may also verify this directly

as follows. Put the equations of the cubic into the form
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The differential equation, of which these functions form a fundamental

system, is found to be

On computing the invariants we find

5 1 5 2
- 7

_!_

whence we again conclude (38). Therefore (38) is the condition for

a cuspidal cubic.

It will be advisable to set up also the condition for a nodal

cubic. Take the cubic in the form

,,,
1 7y r ,,, r2 4. (\ _ rv-i

yi *; i/2 * i &quot;^ \ */ &amp;gt;

whence we deduce the differential equation

/o\ o M r\

for which
1 f\ f\

It is convenient to write tf (1 x)~
l
,
so that

On computing the invariants we find

whence

_ @8
3 _ 6 6

- 7
s 3

(l-fi
3+ 6

)
3

_ i 2 _ 6 2 -7-3 /I - t
8

*** *-v Q
&quot;

j j-v O /^ l , x Q ? M* ^-| A -&amp;lt;/\ \ 1 I -/-S

V* 10 \1 + *
,10 2

If we put

^Q&quot;!

2 4
- 3 fa

- 7
s 2 3 Z

- 7
^

V / R2 /&amp;gt; r^ K ?

so as to have the same notation as Halphen, we find

where ,e = t
3

. If we eliminate 2 we find

(40) (2
8 3 2

7? -f I
2 - 2 3 3

|
- 3 5

)
2 + 2 fi 3 |

3 =
0,

s &amp;lt;Ae condition for a nodal cubic.

In general a ternary cubic has an absolute invariant. We wish

to find the condition for a cubic curve whose invariant has a given

value. Clearly it must be possible to obtain this condition from

]8
= by integration.

Let us, then, assume 18
=

0, and introduce absolute invariants

by putting



6. CURVES OF THE THIRD ORDER, 75

^ ==
~*~ /*

==
&amp;lt;3~~i

CT, C7.

whence

If we divide (37) by &amp;lt;93
S and introduce these quantities, the condition

&amp;lt;918
= becomes

So as to have the same notation as Halphen, put again

_ 2 4 -3 6 -7 s 2 -8* -7
t

&amp;gt;-

5* n&amp;gt; P- 5 RJ

so that
T S ft S O A

4.1 \ _ *a_, ? = _ &quot;.

2*-s 6 -7 s es
8 5 2-8-7 es

4

Then, the above equation becomes

(42) g,| = 4 [(I
+ 3) (i + 27)

- 2^ -

3,] ,

Put further

so that (42) becomes

Halphen has shown that the general integral of this equation is

(44) Pe 3 =
c&amp;lt;?

3
,

where c is an arbitrary constant, and where

26P = (2
3 + 1

2 - 2 3S
|
- 3 5

)
2 + 26

- 3|
3
,

2*
&amp;lt;?

= 2 6
e
2 + 2 (g + 33

) (|
- 3 2

.

5) g + (| + 33
)*.

The equations P = 0, $ = give special solutions of (41). The case

P = corresponds to the case of a nodal cubic, as we may verify

at once.

We proceed to explain Halphen s integration of equation (43)
The geometrical significance of this equation makes it certain that

its general integral is algebraic. Let

P= g + Jfi
J + JfcT

s
8 + + .!/_! + 3ln = 0,

where Mk is a rational function of |, be an integral of this equation.

Interpret, for a moment, | and as cartesian coordinates of a point
in a plane. Equation (43) determines the ratio of to g for every
value of | and

,
i. e. it determines the direction of the tangent of

any integral curve at any point of the plane. If P= is an integral

curve, the direction of its tangent at any one of its points must

therefore coincide with that found from (43). But the direction of
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the tangent of this curve, at one of its points ,
will be found from

the equations

P ^L-V _i_
Sp

fiu
&amp;gt;

ag
+ d* -

The expression 8P ttt S
Pj.l

dl
? r d^ }

which, on account of (43) ,
is proportional to

must therefore vanish as a consequence of P= 0. Since this expression
is again an integral rational function of of the wth

degree, with

coefficients rational in |, we must have

where A is a function of . In this equation {; and are regarded
as independent variables. Denote by MJ, M%, . . , the derivatives

of Mlf Jf2 ,
. . . with respect to |. We find

Jf,
=

[A + (n
-

1)|] Jf, +
Jf

8
=

\l + (n
-

2)

* =
(^ + S) Jtf.-

=

Suppose that Jfw is a fraction
-^)

where a and
/3

are integral rational

functions of |. The last equation will then give

i. e. the factors of the denominator of A will be simple. But, in that

case, the first equation of our system would make M a transcendental

function of |, contrary to our hypothesis. Therefore, Mn and A must
be integral rational functions of . Moreover, the expression

M
; __ A _?L

3

shows, that A must be of the first degree, since A is quadratic. We
see at once that Jf

t must be of the second, Jf
2
of the 4th

,
. . . Mn of

the 2nih
degree.

We know one solution of (43) corresponding to n = 2. It is

the equation (40) which gives the condition for a nodal cubic. If

we introduce instead of
77, this solution may be written
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The corresponding function / is found to be

11(1+9).
We may find another particular integral, also corresponding to n= 2,

by trial. It is

for which

l= -f(t-f3).
We have, therefore

which equations may be written

But precisely the same equation will be satisfied by

P^-cQ 3
,

where c is an arbitrary constant. Therefore, the general integral of

(43) is

P 3 =
c&amp;lt;?

3
,

which is the result we wished to prove.

We have noticed already that P = corresponds to the case of

a nodal cubic. The significance of Q = will appear very soon.

Another special solution is of importance. For a certain value of c,

P 3
c&amp;lt;?

3 will be a perfect square. In fact

3 + 2 3 -3 5 -
3P=E-,

where

(46) 2*B = 29 3 + 2 15 3 [(|
- 3 2

;- + 24 34
] $-

+ 23
3(| + 33

)
3
(|
- 3 2

5)S + (I + 33
)
6
.

The general solution of (43) may therefore be written

+ *0_Ol
where /j is the arbitrary constant.

We may on the other hand consider the algebraic equation of

the cubic, which we have deduced explicitly under the assumption of

the special choice of coordinates involved in the reduction of the

lifferential equation to the Laguerre-Forsytli form. A ternary cubic
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has two relative invariants S and T of degrees 4 and 6 respectively

in the coefficients of the cubic. The absolute invariant is

and the discriminant is T 2 + 64$ 3
. *) If we observe the explicit

equation of the cubic we notice that the highest derivative of P3

which occurs in it is P^\ which can enter into S and T only by
means of the invariant 12

. Therefore, the highest powers of
12

which can occur in S or T are respectively the fourth and the sixth.

But, of the two quantities | and
77, only | contains 12; and moreover,

linearly. Therefore in terms of | and
??

S must contain no higher

power of than the fourth, and T no higher than the sixth. But

Q and R contain precisely these powers of |, so that except for

numerical factors Q and E must be proportional to S and T respectively.

Finally, since we obtain a nodal cubic if

T* + 64 3 =
0,

and also if P = 0, the case k = 64 must correspond to h = 1.

Since li and 7c can differ only by a numerical factor we find

ft - 647*.

If we apply the known results of the theory of invariants of a ternary

cubic, we find therefore the following result.

Let T and S be the fundamental invariants of a ternary cubic. Put

Then the condition, that the differential equation (1) shall represent a

cubic curve with the absolute invariant h, is

(47) R* + hQ* = 0,

which may also be written

In particular P = 0, $ = 0, R = are the conditions for a nodal, an

equi-anharmonic, an harmonic cubic respectively.

It will be noticed that an extensive theory may be developed for

the general curve Cy ,
based upon the theory of the covariants of

the osculating cubic. Moreover, since we have shown how to compute
the invariants S and T, there remain no serious difficulties to over

come. As x changes, each of the points of inflection of the osculating
cubic describes a curve, its Hessian and other covariants envelope

curves, etc. . . . Special properties of these various covariant curves

will serve to characterize special classes of plane curves Cy
. There

1) Salmon s Higher Plane Curves, Chapter V, Section V.
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are farther the simultaneous covariants of osculating conic and cubic,

all of which promise interesting results. We may also regard the

determination of the osculating cubic as an approximate integration
of the differential equation.

We have seen in 1 that the invariants of the Lagrange adjoint

equation differ from those of (1) only by having 6&amp;gt;3 in place of &.it
and therefore &

IS&amp;gt;

and &n in place of @12 and n . But the

integral curves of a linear differential equation and its Lagrange
adjoint are dualistic to each other. It is a very easy matter, there

fore, to find from the equations of this paragraph, the conditions for

curves of the third class. We may also by considering the adjoint

equation, determine the osculating curves of the third class for an

arbitrary curve, etc. . . .

The curves of the third order without a double point, being of

deficiency unity, may be studied by means of elliptic functions. 1

) We
shall follow Halplicn in giving a brief treatment of the curves from

this point of view, culminating in the determination of the number
of coincidence points upon a cubic curve. This theory rests upon the

following theorem:

Let the coordinates x and y of a point of a plane curve be

given as uniform doubly periodic functions of an argument t, the

periods of these two functions and their poles being identical. The

locus of the point (x, y} will be an algebraic curve, whose degree is

equal to the number of poles of the doubly -periodic functions in a

period
-

parallelogram.
To prove this theorem we make use of a method of representation

for the elliptic functions due to Hermite. Put

m=0

___

making use of the ordinary notation for the Jacobian functions.

Then we shall have

x = u + a Z(t
-

a) + & Z(t ft) + c Z(t
-

y} + -

where a, ft, y, . . . are the poles of the two elliptic functions. The
constants ,&,... a

,
b

,
. .

., which are the residuals of these functions

at their poles, satisfy the conditions

1 Clebsch first indicated the importance of elliptic functions for the theory
of curves of deficiency unity.
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+ & + + = a + &
f + c + = ().

The periods of the elliptic functions will be 2K and 2iK .

In order to find the intersections of the curve, represented in

this way, with an arbitrary straight line

Ax + By + =
0,

we need only find the values of the argument t for which the elliptic

function Ax + By + C vanishes. But this function has the same

periods 2K and SiK
,
and the same poles a, /5, y, . . . as x and y. In

a period -parallelogram a doubly periodic function has a many zeros

as poles; the values of the argument which differ from each other

by mere multiples of the periods correspond to the same point of

the curve. Hence the function Ax + By + C vanishes for as many
non- congruent values of t as x and y have poles in a period-

parallelogram, whence follows the theorem which we were to prove.

Make an arbitrary projective transformation

~

Ax + A y + B Ax + A i

X and Y will be two doubly periodic functions of t with the periods

2K and 2iK . The poles of these functions will be different from

a, /3, y, . . . but equal to them in number: X and Y may, therefore,

be represented by elliptic functions in the same way as before, making
use of the same Z function, only the constants u, a,b, . . . a, ft,

. . .

being changed. Therefore, this representation by elliptic functions has

a projective character. Moreover the quantity q, or the ratio of the

periods, is an absolute invariant.

Let there be only three poles , /3, y, so that the curve is a

cubic. Of the thirteen constants, which appear to enter the equations,

only nine are independent. On the other hand, a plane cubic is

determined by nine conditions. We shall prove that any non -singular

cubic may be represented in this way. In order to do this, it becomes

necessary to study the curve somewhat more in detail.

According to a well-known theorem, due to Liouville, the sum
of the zeros of a doubly periodic function in a period -parallelogram
can differ from the sum of its poles only by multiples of the periods.

We find at once the following theorem:

The three values of t, tvhich correspond to the intersections of the

cubic with a straight line
}
have a sum which can differ from K -f /3 + y

only by multiples of the periods.

This gives rise to the following corollaries:

The nine values of the argument t

3
h-

g
-t

where p and p are integers, correspond to the points of inflection.
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Through an arbitrary point of tJie curve, four straight lines may
be drawn which shall be tangent to it in other points. If t is the

argument corresponding to the first point, the arguments of the four

points of contact are

But these properties of the curve prove it to be of the sixth

class, i. e. a non- singular cubic. To prove, on the other hand, that

every cubic of the sixth class may be represented in this way, we

consider a special case. Write

x = Z(t}-

We proceed to eliminate t. We have

making use of the ordinary notation for the Jacobian & functions.

We find, therefore
d n , ,x dnt

x = ^z (log sn t log en t)
= - -

&amp;gt;

dt^ sntcnt

d /, .x sntdnt
y = -di(l s cnV =

-^r&amp;gt;

whence

where Jc is the modulus of the elliptic functions, which is connected

with q by the equation

The equation, made homogeneous, becomes

xy (x y)
= z* (x

But any non -singular cubic may be reduced to this form if the

vertex x = 0, y = of the triangle of reference be taken as a point
of inflection, while the other two coincide with the points of contact

of two of the tangents which may be drawn through this point.

Such a triangle exists, if and only if the cubic is of the sixth class.

We have shown, therefore, that every cubic of tlie sixQi class may be

represented by elliptic functions in the way indicated.

Consider, now, a function of the third degree in x and y. It is

a doubly periodic function of t, whose poles a, /3, y are triple. We
see, therefore, that the arguments which correspond to the intersections

of the cubic with another cubic differ from 3
( + /3 + j&amp;gt;) only by multiples

of the periods.

WILCZYSSKI, protective differential Geometry. 6



82 in. PROJECTIVE DIFFERENTIAL GEOMETRY OF PLANE CURVES.

Further: if we construct in a point, whose argument is t, the pencil

of all cubics having with the given cubic contact of the seventh order in

the given point, these cubics have a further point in common, whose

argument is

At every point of the cubic, whose argument is of the form

+ |3 + y 2pK+2p iK
~~3~~ ~T~

there exists a pencil of ciibics having contact of the eighth order with

the given cubic at this point. These points are the coincidence points

of the cubic.

Of these 81 points, however, only 72 are truly coincidence points.

For the 9 points of inflection are included among them. The existence

of 72 coincidence points on a non- singular cubic has also been

demonstrated by Halphen in another way.
1

)

The results found so far, enable us to verify the further theorem:

On a cubic the coincidence points may be grouped in triangles which are at

the same time inscribed in, and circumscribed about the curve. For, if we

compute the argument of the point where a tangent at a point of

coincidence again intersects the cubic, we find that this point is again
a coincidence point.

7. Canonical development for the equation of a plane curve

in non-homogeneous coordinates.

If P
2
=

0, the equation of the osculating conic is

/yt
2 _ O

/y&amp;gt; /yt - f\
1//0 JU-l tX/0 - V/J

or if we introduce non-homogeneous coordinates,

where

-.
. Since Cy has contact of the 4th order with this conic, we must

have similarly for Cy
a development of the form

if
= Y*

8 + a^ + a^ + a
1 + --;

where

1) Halphen, Journal de Mathematiques , 3e serie, t. II, p. 376.
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We can easily find this development. We have from (16) and (17)

So f

if we write only the terms up to and including the seventh order.

We have further

so that up to the order of terms here retained,

5 _ ~5 6 ~6 7 - ,7

b -
&amp;gt;

b * J *s *

We find therefore

4.^ r _ l
2 __L P 5 ___L_ Ty 6 __1_

p&quot;
7 I .

7

~&quot;2
b W r 8 120

^ 3$ 840^^
But we can simplify this development considerably. The form

of the series

will not be changed if we make the most general projective trans

formation which converts the osculating conic, as well as the point
Py and the tangent P, P, into themselves. This merely amounts to

taking as triangle of reference the most general triangle of which P
y

shall be a vertex and PyP^ a side and which shall be self-conjugate
with respect to the osculating conic. This projective transformation is

x= H + v~* a P r
i = *

; r= _ ft = ft

l + V2&quot;i + s
ij

v 1 -L /2g + ij
v

where

If we substitute the development (48) for
r],

we find

!-+ &amp;gt;/2a/3 (a5

5 + a |
6
-f a,? +-

,a
= 5 + /3

2

(a,|
5 + a6 |

6 + a7 |
7 + ),

v = r + a2
(aji

5 + 6 i
6 + a7 i

7 + -),

where

and, of course,
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We find therefore

whence

(49)
^ =-2p [a,? + K - 2 /2a5 a)

+ (a 7
- 2 1/2 cca

Further we have

where (*) denotes an aggregate of terms of at least the k th order.

Consequently

so that we shall have, exact to terms of the seventh order,

whence

Substituting in (49) we find

a + ~ a5
a 2

)
X 7

But we have the two constants a and /3 at our disposal. Let us

choose them so that

TFe thus find the canonical form

(50) r=|x 2 + x5

/br ^e development. Since we have
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IT) ^
T&amp;gt; I 15

^5
= ^ $) Qf.

= ~ T^-% &amp;gt; ^7 = oT^ f- i

the value of A- will be:

100800
fe&amp;gt;s 3

J7Z of Hie coefficients will be absolute invariants.

It is clear that such a development always exists, except for such

points of the curve C
tJ
whose osculating conic hyperosculates it. It

only remains to determine the geometrical significance of this cano

nical form. Since we have

the line X = is, in our original system of coordinates

o Jr
3 X? J: 3 X3

=
0,

which is nothing more or less than the polar of the point (P3

f

,
3P3 , 0)

with respect to the osculating conic. But the covariant expression
for this point is

C4
=

&amp;lt;93 t/4-3@3 ,r.

Therefore, if the differential equation be reduced to the Halphen
canonical form (&3 1), the corresponding point Pz icill be the second

vertex of that triangle of reference for whicli the development becomes

canonical. In general, the second vertex of the canonical triangle is

given by the covariant (74.

The transformation of coordinates, which we have just made,

may be written in homogeneous form

fix*

If we apply this transformation to the equation Q^c) = of the eight-

pointic nodal cubic, we find after dividing by a numerical factor

F= r2
3 + 16^3

3 - 2^3^ = 0.

The Hessian of F, again omitting a numerical factor, is

H= - 3^
2
3 - 48^3

3 2x
l
x

z
x s
= 0.

For the three points of inflection of F = 0, we find therefore

^ =
0, ^

2
: xs

= -
|/I6 or - o

&amp;gt;/l6
or -

where o is a cube root of unitv.

1) The Hessian of a plane curve intersects it in its double points and
)ints of inflection, cf. Salmon s Higher Plane curves.
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We have the following result.

In order to obtain the canonical form (50) of the development, the

triangle of reference must be chosen as follows. One vertex is a point

on the curve and one side of the triangle is the tangent at this point.

The second side is the line upon which are situated the three points of

inflection of the eight-pointic nodal cubic. The third side is the polar

of the intersection of the other two with respect to the osculating conic.

The numerical factors, which still remain arbitrary in a protective system

of coordinates after the triangle of reference lias been chosen, must be

determined in such a way that the coordinates of one of the three points

of inflection of the eight-pointic nodal cubic shall be (0, yT6, 1),

and that the coordinates of tlie tangent to the cubic at this point shall

be (2f/l6, 3-jXl6~
2

, 48).

Since this can be done in three ways, it is clear why the cube

root enters into the expression of the coefficients of the canonical

development.
The vertices of this triangle give a fundamental system of covariants,

which is valid whenever 3 =}= 0.

The canonical development is identical for two differential equa
tions whose absolute invariants are identical. We see, therefore, that

tJie condition, that two differential equations have equal absolute in

variants, is not only necessary but also sufficient for their equivalence.

8. Anharmonic curves.

A curve is said to be anharmonic, if the absolute invariant

8
3

: 3
8

is a constant. Let us reduce the differential equation of the

curve to the Halphen canonical form, which may always be done

unless the curve is a conic. Then we shall have

Pi = 0, 3
=

1, @8
=

c,

where c is a constant, so that

The differential equation becomes

(52) y(&amp;gt;-4cy
+ y = 0,

an equation with constant coefficients.

It is evident, on the other hand that, for any linear differential

equation with constant coefficients, @8
3

:&amp;lt;93
8 will be a constant. If

such an equation be reduced to its semi -canonical form, the coefficients

will still be constants. Let
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(53) t,&amp;lt;

3
&amp;gt;

be such an equation in its semi - canonical form, so that P
2
and P3

are constants. Let r
lf r*, r3 be the roots, supposed distinct, of the

cubic equation

(54) r3 + 3P
2
r + P

3
=

0,

so that

(55) fj + &amp;gt;

g + r3
=

0, r
2
r3 + r

3 r1 + r
1
r.
2
= oP,, -

t\ r2
r3
= P3

.

Then the functions

(56) yt =e&quot;*, (k=l, 2, 3)

form a fundamental system of solutions of (53). The homogeneous

equation of the integral curve of (53) may therefore be written

(57a) ^ -r

V*-
r =

&amp;lt;/3

ri
-r

,

or in non -homogeneous form

(57 b) Y= X\
if we put

(58) X= ^, =
%-, Ji=

r-^-
Vi VS r.-r,

Tlie curve, therefore, admits a one-parameter group of projectile

tra)isformations into itself, viz.:

(59a) X = aX Y=aiT
)

where a is an arbitrary constant, or in homogeneous form

(59 b) &=&, &amp;gt;

=
&&amp;gt; Us^^iff

This group clearly enables us to convert any point of the curve into

any other, excepting those vertices of the triangle of reference which

are points of the curve. This property of anharmonic curves, that

they are protectively equivalent to themselves, is characteristic of

them.1
)

We can deduce from this theorem a corollary which justifies

the name which we have given to these curves. Consider any point
P of the curve, not a vertex of the fundamental triangle, together
with its tangent. The latter intersects the sides of the triangle inO 3
three points Pl}

P
3,
P3

. The aidtarmonic ratio of these four points,

the point of contact and tlie intersections with the sides of the triangle,

is tlie same for att tangents of the curve. In fact, a projective trans

formation of the form (59) converts P and its tangent into any other

point Q of the curve and its tangent. The points Pl}
P

2 ,
P

3
are

1) cf. Lie -
Scheffers , Continuierliche Gruppen , p 68 et sequ. where other

properties of these curves are also investigated. The above property is due to

Klein and Lie.
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converted into the three points Qv Q2 , Q3
where the latter tangent

intersects the sides of the fundamental triangle, this triangle being
invariant under the transformation. But a projective transformation

never changes the anharmonic ratio of four collinear points, whence
our conclusion. The same result may, of course, be obtained by cal

culating this anharmonic ratio. It comes out to be equal to
&amp;gt;L,

if

the four points are arranged in the proper order. A is clearly an

absolute invariant of the curve, and it must be possible to express it
&quot;

in terms of the absolute invariant 7-
3

From (55) and (58) we find

whence

_r, +2r,
&quot;ar.+r,

p- r-
f

-
2

(I
-

2)
2 3

~
(I
-

2)

On the other hand, we shall have,

whence
/) S (1 2

-^__ 9 - (&amp;gt;

the equation connecting the invariant @8
3

:
3

8 with the invariant L
For I = 3 we find again, as we should, the condition (38) for a

cuspidal cubic.

This equation might have been derived in another way, which
makes its significance more apparent. If the numerical value of the

invariant 8
3

: 3
8 be given, the curve Cy must be determined except

for projective transformations. We would obtain at once, therefore,
either equation (57 a) or one of those obtained from it by the permu
tation of the indices 1, 2, 3. Corresponding to one value of @8

3
: @

3
8

we would find, therefore, six values of
/I, corresponding to these

permutations, which turn out moreover to be expressible in the same

way as the six values of the double -ratio of four points. In fact we
have seen that K really is a double -ratio. To one value of A, however,
would correspond only one value of &8

3
:

3

8
. The left member of (60)

must therefore be equal to a rational function of I of the sixth

degree, which is not changed by any substitution which consists in

replacing I by any of the functions:

l
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This determines the right member of (60) except for a constant

factor. This factor may be determined by considering the special case

;. = 3.

If (60) is verified, the general solution of (1) is of the form

r= x
-,

where X and I&quot; are expressions of the form

C2 y8 +C3 y3 qyt -f C2 y, +cs ys

apparently containing eight arbitrary constants, the ratios of the nine

coefficients. But there are really only seven arbitrary constants,

owing to the fact which we have already noted, that there exists a

one -parameter group of projective transformations which converts the

curve into itself. In accordance with this, if we express (60) by
nieans of Halphen s differential invariants, it becomes a differential

equation of the 7th order between X and Y.

We have assumed so far that r
l}

r
2
and &amp;gt;

3
are distinct. If two

of these quantities coincide, we find that ). assumes one of the values

0, 1 or oo. Equation (60) retains its significance, and we may deter

mine the character of the integral curve as follows. If ). has a

finite value, a special solution may be taken of the form

Then, since

we see that corresponding to }. = oo, a special integral curve of (1)

may be written in the form

Y=ex
,
or X = log Y.

Since all integral curves of (1) are projectively equivalent, we have

the following result. The anliarmonic curves corresponding to the case

that tico of the roots of the characteristic cubic equation (54) coincide,

are obtained by putting ). equal to 0, 1 or oc. Their general form is

X = log I&quot;,

uhere

The one -parameter projective group of these curves assumes the form

Z = X+logtf, Y=aY.
If all three roots of the cubic (54) are equal, they must be zero,

whence we find P
2
= P

3
=

0, and therefore @
3
= 0. In this case

the integral curve is a conic. The corresponding values of 7. are
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seen to be K = 2, -^
or 1, the harmonic values of a double ratio. We

may therefore describe a conic as an harmonic anharmonic curve.

In the metrical theory of plane curves, the osculating circle

serves to characterize the infinitesimal properties of a curve in the

vicinity of a given point. The osculating anliarmonic curve may serve

a similar purpose in the projective theory. We have seen, in 7, that

any curve, which is not a conic, may have its equation written in

the form
_8_

V l Y2 4- Y5 4- (~ 2 ) 3 8 Y7 4- .--JL -i-A t-iooiooTl-5- +
C^g 3

so that no curve, except conies and straight lines, have any projec

tive infinitesimal properties expressed by derivatives of Y of lower

order than 7. In the language of Halphen s differential invariants, we
would say that there exists no absolute differential invariant of order

lower than seven. We may, however, construct an anharmonic curve

whose absolute invariant shall coincide with that of the given curve

at the given point. Then its development in the canonical form will

coincide with the above, up to and including the terms of the seventh

order. It has contact of the seventh order with Cy at Py . There

fore, the osculating anharmonic gives an adequate representation of

the differential invariant of lowest order. Its determination may be

regarded as an approximate integration of the differential equation (1).

9. Discussion of the special case 3
= 0.

The general theorems in regard to semi -covariants specialize into

well-known properties of conic sections when 3
= 0. Take the

equation in its canonical form

2/
S)

=o,
so that we may put

2/1
=

i, y^
=

*, 2/3
= ^ 2/2

2 -
2/1 2/3

=
&amp;gt;

o 8 1 f 2r
-1 v

; *2 -*?
W3 *&quot;^&amp;gt;

Qi
=

0, 2
=

0, 3
= 2.

The curve C
Q degenerates, therefore, into a point on the conic; Cz is

its tangent. From the general theorems we deduce the well known

property that a moving tangent intersects four fixed tangents of the

conic in a point-row of constant cross-ratio. We need not insist

upon these matters.

The linear covariants, except y, vanish identically. The quadratic

covariant (72 however retains its significance. For the canonical form

we have
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If we put for y the general solution of the differential equation

y = a + 2bx + cx~,

we find

C
2
= 4 (&

2 -
ac),

the discriminant of the quadratic. Therefore, the three values of C2

which correspond to the substitution of y = y% (k = 1, 2, 3) are the

discriminants of the quadratic equations which determine the inter

section of the conic with the three sides of the triangle composed of

two tangents and the polar of their intersection.

Examples.

Ex. 1. Assuming that the differential equation of Cy
is written

in its semi -canonical form, find the differential equations for C:

and CQ.
Ex. 2. Find and discuss the conditions that C2 , Co, Ca may be

straight lines or conies.

Ex. 3. Prove that the third tangential of Py coincides with the

Halplien point of Py (cf. end of 3). Find the conditions that the

loci of the points P/,, P7} P&amp;lt;j
there mentioned may be straight lines

or conies.

Ex. 4, Find the conditions for a curve of the third class, dis

cussing the various special cases.

CHAPTEE IV.

INVARIANTS AXD COVARIANTS OF SYSTEMS OF LINEAR

DIFFERENTIAL EQUATIONS.

1. Finite transformations of the dependent variables.

Consider the system of linear homogeneous differential equations

j=0 *=1
where

dxk

and where the quantities pikj are functions of x. It has been shown,
in Chapter I, that the most general point transformation, which con

verts this system into another of the same kind, is given by the

equations
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where Kki and
/&quot;

are arbitrary functions of |, and where the deter

minant
/-fcM /7 1 10 \aw (|)| (M = 1, 2, . . . w)

does not vanish identically.

A function of the coefficients of (1) and of their derivatives,
which has the same value for (1) as for any system obtained from

it by such a transformation, shall be called an absolute invariant.

If it contains also the functions yk , yk ,
etc. it is called a covariant.

As in the case of a single linear differential equation, we decom

pose the transformation into two others; one, affecting only the

dependent variables, and one transforming the independent variable.

We proceed to determine first those functions which remain invariant

when the dependent variables alone are transformed. We shall speak
of them as seminvariants and semi-covariants. The invariants and
covariants will be functions of the seminvariants and semi-covariants.

We proceed, therefore, to transform (1) by putting

(2) yk=^ Kn (x}^ (fc
= l,2,...n).

/.= !

Then

(3) i--! (=1,2,. ..^ = 0,1,2. ..m),
i=i ?=o

^

where (
)
denotes the coefficient of x (&amp;gt; in the expansion of (1 -j- x)

1

.

Equations (1) become

m 1 n n

l=Q k=\ fl
= l (7=

The coefficient of i in ^ne double sum is

m
a(m

~
v} -

in the quadruple sum, the coefficient of if is
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or
n in 1 r

NT&quot; X1 (V1 2; \
i=l i=Q

Thus, equations (4) may be written

(5)
= 1 =

n m 1

Put

(6)
4 = \n\ ftA = l,2,...),

and denote by J.,i the minor of a,;, in this determinant. Then we

shall find

=l r=0

If the system be written in the form

(8) ^+
i=0 =

we shall, therefore, have

(Jl, /*
=

1, 2, . . . n; v = 0, 1, . . . w - 1).

Thus, if (1) be transformed into (8) by means of the trans

formation (2), the equations (9) furnish the expressions for the new

coefficients in terms of the old.

Equations (9) represent an infinite continuous group, isomor-

phic with the group represented by equations (2). For, they ob

viously have the group property, and to every transformation of the

group (2) corresponds one of the group (9). Both groups can be

defined by differential equations, so that Lie s theory of infinite

groups may be applied.
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2. Infinitesimal transformations of the dependent variables.

The variables yv y%, . . . yn will undergo the most general infinitesi

mal transformation of the form (2), if we put

(10) a/,-
= 1 +

&amp;lt;Pa 0) &amp;lt;H *(#)
=

&amp;lt;j&amp;gt;ik (#) 8t, (i 4= ^ *,
&= 1, 2 . . .

),

where d is an infinitesimal, and the qpa s are arbitrary functions

of x. We wish to find the corresponding infinitesimal transformations

of the coefficients p^.
Neglecting infinitesimals of order higher than the first, we find

(11) J-

and

(12)

These latter formulae may be deduced from the equations

a., A.. = 0, i =4= j,tk .ik ; I iff

r- Vn

which define the minors of the determinant &amp;lt;4.

Substituting these values into (9), we have

rn v

n m 1 v

=l =0

i-= 1 r =

or, omitting terms of higher than the first order in 8t,

**

n m 1 r

k=l r

Dividing by z/ == 1 + (qpn + ...-(- ynn) dt, and denoting the in

finitesimal difference n^lv pi/lv by dpi/Lll)
we find
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(13) %^

i=T r=l

(1, ji
= 1. 2, . . . *: v = 0, 1. 2, ... TO 1).

These are the required infinitesimal transformations of pit.,.

Those of
j&amp;gt;ir, i&amp;gt;i t, etc., may be obtained from (13) by differen

tiation.

3. Calculation of the seminvariants for m = n = -.

We proceed to the special case i = M = 2 to which we shall

confine ourselves. We mar write our system of differential equations

in the form

y
1

where we hare written y and r in place of
i/j

and y2 as this notation

will be more convenient later. We shall have to put in our general
formulae :

C15) li. fc.._i=li-i=lav Pa.^.-j-ft.. a.-

Equations (13) will therefore become

(16)

If
/&quot;

is a seminvariant depending only upon the arguments pi

Pi*, 2i the expression

which represents the increment which the infinitesimal transformation

gives to
/&quot;,

must vanish for all values of the arbitrary functions

&amp;lt;jr-,. ifrt; &amp;lt;fr&quot;- Equating to zero the coefficients of these twelve

arbitrary functions in df. gives a system of partial differential equa
tions for f. The general theory teaches us that it is a complete

system, and that any solution of it is a seminvariant.
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For abbreviation let us put always

Then we have, for the seminvariants depending only upon p^^, p\^
and

#;&amp;gt;/&amp;lt;&amp;gt;

the following complete system of partial differential equations:

(is) 2 p
ra + ? (^pj. -^ ; P;, +^ j =

o,

(r, s
=

l,2).

This contains twelve equations with twelve independent variables. But

we shall see that only ten of the equations are independent, so that

there are two seminvariants containing only the variables p?./i,,p/i/u } 2;.//-

The first four equations of (18) tell us that p^and^-sCan occur only
in the combinations .

Prs 2qrs .

We shall write out the next four equations explicitly. They are:

Pis + l&amp;gt;ai (Pz2 Pii) + pu Qn + P2i $22 = 0,

2PU +jp21P2l -puP[, +^QU +Ain =
0,

^22
-

o,

2Pgl + (&amp;gt;22 -pu) P{ f + jD12 (P^
-

P^2) + 1)U ^u + p., Q9l
= 0.

They show that prs} prs) qrs can occur only in the four combi

nations:
,un = 2^ - 4g

(20)
Ml2
= 2p ~ 4^

i. e. the seminvariants here considered must be functions of un,
u12 ,

W21,
M22 .

Finally we shall write out the last four equations of (18). They are:

#1 = (Pll
-

^22)-Pl2 + JP21 (P22
- Pll) + (Pll

-
^22)

P
i2

-
fti)

-
0,

n ~ ^22) + (Pa
-

Ki) PJ

with the obvious relation

(22) U2 + ff,,
- 0.
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We find

i(n) = - 0i(u) = Us (un)
=

0, ^4(Mn) = + *i 27

7, (M12)
= Mu - Mg,, tf,(M18)

= - M12,
Z7S(O = -I- M18 , ^(O =

0,

! (ttjj
=

0, E/3 (llgj)
= + M81 , C/3 (M81)

= -
21 ,

Z74 (M21 )
= -

ttn ,

With the introduction of these variables (21) becomes

Uif= ~
&quot;21

- +
0&amp;lt;ii

-
&quot;a

is

(23) ?74 /
= + , -

(
- K)

- -
,,

- =
0,

where the relation

(23a) MIZ Z?;/- + 21^ + (MU - ^2) Z72 /-=

is fulfilled, so that (23) will have two solutions. There will be, there

fore, two semiuvariants depending upon the variables prt , prt and

qrt ,
viz.:

(24) /= Mn + UK ,
J = un w

2, tt^tt^.

Let us proceed to obtain next those seminvariants which con

tain also the quantities p&quot;k and q ik . They must satisfy the following

system of partial differential equations:

(a) 2P?, + Qr ,
=

0,

2

(b) 21* . + Qrt +2 farPi. ~ P.lP!l + Pir i.)
=

;

/. = 1

2

(c) 2Prt +2 (^ rP,, - ^P^, - 2^,1&quot;;,

(25) /. = i

+ ftr$. - 3a^- ;. -f P;.r^;.,)
=

0,

(d) ^(p-,
rPit -pt,Pr,^ 1^rFit -p^Pr-,+plrPL

~
p&quot;iP&quot;i -f Sir Qi,

~
q,i Qr, + gir Q\.

~ &. Qri)
=

0,

(r,
=

1, 2).

There are in this system 20 independent variables, and 16 equa
tions. Only 15 of these equations are independent, there being a

relation between the equations (d) which reduces to Ut -f Us
=

when f contains only prt , prt and qrt . In fact the left members of (d)
for r = 1, s = 2 and for r = 2, s = 1 differ only by the factor 1.

We shall see that these 15 equations are actually independent; the

other relation which was found in the previous case does not main-

WILCZYNSKI
, projective differential Geometry. 7
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tain itself. There must, therefore, be five seminvariants of the kind

considered. Of these we know four, namely 7, J, -r-t -r-, which are

obviously independent. It remains to find the fifth.

Put
i duik

Uik = etc &quot;

Then, since according to (20) we have

(26) uik
= 2ptk

-

therefore

(27) uik
= 2plk - 4qik

It is easy to show from equations (25) (a) and (b) that our

seminvariants are functions of the twelve arguments

(28) pit) uik, */*

Denote the left members of (25) (c) by &
1}

ii4,
so that

Then we find:

(29) ^(uik)
= &

2 (ua)
= as (Mf *)

=
4 (tt&amp;lt;*)

=
0;

further

and finally:

Ka) = ~ Mi2^ ^ Ka) = wn -

^W.) - o,

From these equations it is easily seen that the eight independent
functions of the arguments (28), which verify the equations ii;.

=
0,

are the quantities u^k and v^, where
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V21
= 2M

31
-

CPU
- A 2)81 + #!1 fall

-
22);

Denoting by X
15

. . X4 the left members of (25) (d) we find:

*fan)
=

-

the equations for Xi (w.-t) being of precisely the same form. We
have of course

X, + X, = ;

the one relation between the sixteen partial differential equations.
If the variables u ik and i-ik are introduced as independent variables.

our system of equations X;./&quot;=0 becomes therefore:

3f df-+i--

/_ ( a
12

~~
l &quot; 1

-(&quot;u-
&quot;22)^=0,

which three equations are obviously independent; in the case that /*

is independent of rn . . . v22 we find, of course, the same relation

between the left members (23 a) as before, only the notation being

changed.

By integrating this system, or more simply from (33), we
see that

vn + vz2 and vu v^ V12 r21

are solutions of the equations X^ = 0. But

(34) vn + v,2
= 21

,

while
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(35) #=%%-^2%
is obviously a new seminvariant, independent of I, J, 1

,
J .

We might now write down the differential equations satisfied by
the seminvariants involving, besides the quantities already considered,

also p ( and q !
k

. We should find a system of twenty such equations

with one relation between them, and twenty-eight independent variables.

Hence there must be 28 19 = 9 such seminvariants. But we know

eight of these, viz.:

(36) I, I , I&quot;; J, J
,

J&quot;
, K, K -

these are independent, for it is easily seen that from the existence

of a relation between them would follow the existence of a relation

between J, 1
, J, J

,
K. But these quantities are independent.

We may obtain the ninth seminvariant without writing down
and integrating the last mentioned system of twenty equations. The

process which we shall employ is much more instructive, and has

the further merit that it is capable of generalization to cases other

than that here considered of m = n = 2.

We have remarked in connection with (33) that the expressions

X). (it.-*)
and Xi (va} are of precisely the same form. We may express

this by saying that the quantities uik and vik are cogredient.

To make this more evident we may compute duik and dv^. We
find from (16) and (20)

(37) US1 /

M = fa*
~

+
&amp;lt;Pl2 %1?

and from (16), (32) and (37),

Sv
lt

~9t

*^3
st

Now certain combinations of the nik s and pa^s, namely vn -f v22

and vn vn vn v2l are seminvariants. Since the vik s are cogredient
with the UM S, the same combinations with vik in place of uik will

also be seminvariants.
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Let us, therefore, put

12
= 2u

is + On -

% = 24 -
Oil

-

so that the quantities ioik are formed from viic and pik in the same

way as the quantities Vik are formed from u it and pik . Of course ;,*

are cogredient with ,-* and
i*,-*,

so that ivn + tvz2 and ivnw^ w^w^
are seminvariants. But

% + ^22
= 2 (vu + )

= 4I
&quot;&amp;gt;

while

(40) L = tt7u ttk ;
12^21

/s a /if seminvariant. That it is independent of the other eight

seminvariants (36) may be verified by considering the special case

Pit = 0.

Our object, to find all of the seminvariants, is now accomplished.

They are I, J, K, L and the derivatives of these quantities. For,

suppose we wish to find the seminvariants involving the variables con

sidered so far, and pW and qW besides. They are determined by a

complete system of 24 1 = 23 independent equations with 36 in

dependent variables. Therefore, there exist 36 23 = 13 such sem

invariants. But as these we may take the nine which we have

already found, together with 7 (S)

, J, K&quot;,
L . These are certainly

independent. Proceeding in this way, each step introduces eight new

independent variables and four new equations. Each step, therefore,

gives rise to four new seminvariants. But these four may clearly be

obtained by performing an additional differentiation upon J, J, K, L.

Thus, all seminvariants, of the system of two linear h&mogeneoits

differential equations of the second order, are functions of the quantities

I, J, K, L and of their derivatives.

It is interesting to note what would be the result of continuing
our above process for obtaining seminvariants. Suppose we had

formed
tn = 2uj

u + Jp18w21 -p.n wl2 ,
etc.

Then would

*ii
-

22
=

ffi (
Mu - &quot;22) + & On - ^22) + & On - W22)

where gv g^, g$ are seminvariants.

For
&amp;lt;jTj, gr2 , g3

are the quotients of determinants of the third order

formed out of the matrix
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11 22 &amp;gt;

W*

12; W12

L
&quot;ti&amp;gt; &quot;in

&quot;

and on account of the cogredience of the four sets of quantities, such

quotients are seminvariants. More than that, it may be verified at

once that these determinants are themselves seminvariants. One of

these is of special importance, viz.:

&quot;11

(41)

y
22&amp;gt;

&quot;12;

y
!2&amp;gt;

We shall find later that A is also an invariant. Its expression in

terms of J, J) .ZT, i and of the derivatives of these quantities is not

rational and will be given farther on. This remark suffices to

show that the system of seminvariants, consisting of J, J, K, L
and of their derivatives, is not complete in the sense that any rational

seminvariant can be expressed as a rational function of them.

Whether the system, obtained by adjoining A and its derivatives,

is complete in this sense or not is a question which we shall

leave open.
We shall frequently have occasion to make use of the finite

transformations of pik) qik) uik ,
etc. These equations for pik and qik

may be obtained at once from (9) by putting m = n = 2, or else

directly. We prefer to take the transformation (2) in the form

y = ay -f /J?, z = yy + di, ad $y = A
so as to avoid the double indices. The coefficients, itik and jtfi ,

of

the new system will then be given by the following equations:

(42)

and

(43)
(a V - / )

- pu ay pl2 y y + J&amp;gt;2 i a a
2 +
ft*
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The equations for it^ are obtained from (42) by differentiation. Denote

by w, t the values of ,-* for the new system of differential equations.

We shall find

.

This may be deduced from (42) and (43) without computation. For

the equations (37) for the infinitesimal transformations show that w,i

must be a linear homogeneous function of un . . .
ii^S) so that the

terms in (42) and (43) which contain the derivatives of a, ft, y}
d

must eliminate each other. Omitting these terms the quantities H,-*

must be eogredient with
&amp;lt;?,-*,

whence follows (44). The equations for

vik and Wn are, of course, of the same form as (44).

4. Effect of a transformation of the independent variable upon
the seminvariants.

The invariants of the system of linear differential equations must

obviously be functions of the seminvariants, viz. such functions of

the seminvariants as are left unchanged by an arbitrary transformation

of the independent variable x. In order to determine them it becomes

necessary to find the effect of such a transformation upon the sem

invariants.

Let

y&quot;
+ Pn y + Pa z -f &i y

be the given system, as before. Introduce a new independent variable

t - *)
Then (45) becomes

d*y dy ,
dz

,

z y z

-flgi
T

^&quot;21

-^i
+ ^22 51 *- 1 y X-^ 2

where

^11
= F (PU + 1?), ^12

=
! ^21

= FAl ^22
=

7 !

(46)

the quantity TJ being, as in previous chapters, defined by the equation:

(47) ^=
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We proceed to investigate the effect of this transformation upon u tk ,

vik and Wik. For the purpose of merely computing the invariants

we might confine ourselves to the case of infinitesimal transformations.

But, as we shall need to know the result of the general transfor

mation for other purposes later on, we shall deduce the corresponding
equations immediately.

We find, from (46),

an.. l r i
i fi (2 X, ( 1 , ,* ~

.

V

d (T?

whence

(49) Y
W2i
=

7|7Tz
*21, w

22

where

(50) _,_,,_
is the so-called Schwarzian derivative.

We find at once

(51) 1=^(7+4^), J^,^ (J+

whence we may deduce an invariant

(52) @4
= I 2 - 4 J;

for we shall have

From the definitions of the quantities v^ and w^ we may now
deduce the expressions for vik and wik . We find

v12
=

^r, (t&amp;gt;18
- 4 wu i?),

where u denotes^- Furtherax

(54)
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The most general infinitesimal transformation will be obtained

by putting

(55) |(z)
= x -f (f(x]dt, dx = (p(x)dt,

where (p(x) is an arbitrary function and dt an infinitesimal. We
shall then have

I = 1 + (p

1

(x~)
3 t, t]

=
g?&quot; (x) dt, .u

=
&amp;lt;p (x) dt, /*

=
g&amp;gt;W (a;)

d
t, etc. . . .

,

whence, substituting in (46), we find

Spn = (- &amp;lt;p pn + &amp;lt;f&quot;) dt, dpn = -
cp pudt,

(56) dp21
=

&amp;lt;p p.2l dt, dp^ = ( (p p^ -f
&amp;lt;p&quot;)dt,

dqik
=

-2&amp;lt;p qik dt, (i,lc=l, 2).

Similarly we find from (49),

duu = (2 VW - 2 V n ) dt, du l9
= - 2 VX8

*

dM, t
= - Zy

whence

Further
dru
d 12

= (- 4
9)&quot;

w12
- 3

&amp;lt;JP

r12)

&quot;

whence

(60) dK = (8(pWF Sy J1

Q(p K}dt,

where the equation

( fi1 &quot;\ _l_ 9 7

has been used, the truth of which may be easily verified.

We find from (54),

&amp;gt;&quot;r

22
-

4tp w^} dt

and notice the two equations similar to (61),

We shall then find:

(64) dL = [32^
5)r - 16^) (2eT - K) -

20cp&quot;K

1 -
8q&amp;gt; L\dt.
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If f is any function of x and if /(|) denotes the result of sub

stituting for x its value in terms of |, we have

df= df.
&amp;lt;*i.

dl- dx dx

If the transformation is infinitesimal

t
= z + y(x)dt, f=f+8f,

so that

or denoting j^-jgbj
S (), we find

By applying this formula we may easily find the infinitesimal

transformation of the derivatives of I, J, K and L. We find

(66) dl = (4^) - 2y&quot;I- 3
&amp;lt;p

I )dt,

91&quot; = (4yW

Further, we shall have;

-
4&amp;lt;p&quot;

J&quot;

-
5g&amp;gt;

J
)

(67) SJ&quot; = [2^)7+ 4ipWr + 9&amp;gt;(

3

&amp;gt;(2/&quot;

- 4J)

These equations will be applied in the next paragraph.

5. Calculation of some of the invariants. Their general properties.

Before proceeding to the calculation of the invariants and covariants,

it becomes necessary to deduce certain general theorems corresponding
to the general theorems of Chapter II.

In the first place we may confine ourselves to covariants con

taining no higher derivatives of y and z than the first. For, by means

of the fundamental differential equations all higher derivatives may be

expressed in terms of y, ,?, y and g .

The function

which we shall assume to be an integral rational function of all of

its arguments, not resolvable into rational factors, shall be called an
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integral, rational, irreducible covariant if, for all transformations of

the group G, the equation

has as its consequence the equation

r=o,
where F denotes the same function of the transformed quantities

ty &amp;gt;
&amp;gt; KM, . . ., xik . . .,

as does C of the original variables. The transformations of the group G
are the transformations;

Let us make the transformation

|
=

x, r
t

=
(7?/,

=
C.?, (7 = constant,

which belongs to the group G. We shall have (always denoting the

transformed quantities by Greek letters),

Therefore, any covariant must be homogeneous in y, 2, tf, ^. If it

is an absolute covariant it must be homogeneous of degree zero.

Again, denoting by C a constant, make the transformation

t,
= Cx, r

t =y, =
z,

which is also included in the group G. This gives

Let us associate with every quantity an index indicating the power

of C~ by which this special transformation multiplies it, and let us

speak of this index as its weight. Then the weights of yW and #W
are A, those of p. k

and q are 1 and 2 respectively, those of p*k and

q k̂
are I + 1 and

JJL + 2 respectively. Further, the weight of a pro

duct is clearly the sum of the weights of its factors. We see, there

fore, that the weights of all of the terms of a covariant must be

the same. The covariant must be, as we shall say, isobaric. We have

obtained the following result.

A covariant must be an isobaric function of the arguments upon
which it depends, and of weight zero if it is an absolute covariant.

Let d
&amp;gt;w

be an integral, rational, irreducible covariant, homo

geneous of degree ). in
//, z, y ,

z and isobaric of weight w. Let us

consider the effect upon du, of a transformation of the dependent
variables alone.
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If the transformation is

(68) */
=

*? + /3, * = y , + ae,

the corresponding transformation of the coefficients pik and qik is

given by equations (42) and (43). But in these latter equations we
have the new coefficients expressed in terms of the old, while (68)

expresses the old variables in terms of the new. We must, there

fore, solve (68) which gives

(69) 4r] = dy - pg, At&amp;gt;

= -yy + az, 4 = ad - fiy 4= 0.

Let Fi
&amp;gt;w

denote what Cn
&amp;gt;w

becomes when y, #, pik} etc., are re

placed by ri, , jr,*, etc. Since C^ w is a covariant, the equation

r^ w = must be a consequence of C^ w = 0. But the equations

(42), (43), (69) and those deducible from these by differentiation, show

clearly that, in place of every term of weight w in C, we shall have

in F a collection of terms of weight w plus terms of lower weight.
But these latter terms must annihilate each other if C^ w is an irre

ducible covariant, i. e. their sum must be identically zero. For, they
cannot vanish as a consequence of Ci}W

=
0, since their aggregate is

rational and of lower weight than w, while 0;.)W , being irreducible,

cannot be factored into rational factors of lower weight. But it is

clear from equations (42), (43) and (69) that the terms of weight w
in I\M,, when expressed in terms of y, ?,, pik) etc., will contain only
the quantities a, |3, y, 8 themselves and not their derivatives. There

must, therefore, be an equation of the form

r&amp;gt;.,
lv
=

f(a, 0, y} d) Ci, w ,

where f contains no other arguments than those indicated.

Equations (48), (43) and (69) show further that itik and xik are

homogeneous functions of degree zero, and that y and
,
as well as

vf and % are homogeneous functions of degree 1 of the quantities

, /J, y, d. Therefore M\ w and consequently f(a, /3, y, tf)
must be a

homogeneous function of its arguments of degree A. Further, the

same equations show that f(a, j8, y} d) can be written in the form

where y (cr, /3, y, d) is an integral rational function of its arguments,

homogeneous of degree A -f 2[i, since the degree of f (a, ft, y} d)
is A and that of ^/ is 2.

We have, therefore,

(TO) ri,.,=
*

];/*&amp;gt;
ft,..

But we may regard the system of differential equations in y and

as the original system, and that in y and z as the transformed system.
We may therefore write equally well
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where a, ft, y, d are the minors of a, ft, y, d respectively in

z/ = ad fty}

each divided by z/, and where

z/ = ad fty.

We shall have

From (70) and (71) we deduce, therefore, by multiplication

r \ ) i/ fy )

or since
&amp;lt;p

is homogeneous of degree 2/i A,

where, be it remembered, cp is an integral rational function of its

arguments. But this equation is possible only if (p (a, ft, y, d) is a

power of z/, since z/ cannot be factored into two integral rational

factors. Since, moreover, f (a, ft, y, d) must be of degree A, it

must be equal to z/ -
except for a numerical factor A. But A must

be equal to unity, since the identical transformation

must give F = C. We have, therefore,

rA 2 /^
) tr

=== ^-* ^i ic

For our proof it was convenient to take the transformation in

the form solved for
(/
and z. If we write, instead, the transformation

in the form

we know now that a rational covariant C/. )IC ,
of weight w and of

degree )., is transformed in accordance with the equation

Moreover, as the right member must obviously be rational in

a, /J, y, d, we get this theorem:

There are no rational covariants of odd degree for a binary system

of linear homogeneous differential equations.

It is obvious how this theorem will generalize for w-ary
systems. Moreover, since we have not made any transformation of

the independent variable in proving this theorem, it is also true of

all semicovariants which are isobaric.
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Let us now make a transformation of the independent variable

1-1(4
The formulae of 4 show that every term of weight w in r^ w is

equal to a corresponding term of d
&amp;gt;w multiplied by

err
18

,

plus terms of lower weight. But the aggregate of these latter terms

must vanish identically, since it cannot vanish in consequence of

CiiW
= which is an irredubible equation, isobaric of weight w. There

fore we shall have

r*&amp;gt;w=

(gyi
Gi

Combining our results we have the following theorem.

If Ci
&amp;gt;w

is an integral, rational, irreducible covariant of degree I

and of weight w, it is transformed by the transformation

I = l(x\ ri
= a(x)y + p(x)0,

= y(x)y + 8(x)z,

in accordance with the equation

Moreover its degree A is necessarily even.

For invariants I = 0. From two invariants an absolute invariant

can always be formed. Similarly, from three covariants an absolute

covariant may be obtained.

Finally we may show, just as in Chapter II, that an absolute

rational invariant is the quotient of two relative integral rational in

variants of the same weight.

Let v be an integral rational invariant of weight v. Then,

according to (72), the transformations considered will convert it into

v ,
where

(73) v
= &v ,

ctr

or for infinitesimal transformations into &v + d&v ,
where

(74) d v
= -

vg&amp;gt; (x)&v $t.

We may now proceed to calculate some of the invariants. It

is clear that there are no integral rational invariants of weight 1, 2, 3.

An invariant of weight 4 must satisfy the equation

&amp;lt;J 4
=

4g&amp;gt; tdt.

We have already found it [cf. equation (52)], viz.:

(75) 6&amp;gt;4
= P - 4J.
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An invariant of weight 5 must be of the form

fifc-tf/r-f ww+cJ1

and satisfy the equation
d-

3
= -b(p -

a dt.

On applying equations (66) and (67) we find a = b = c = 0, i. e. there

is no such invariant.

An invariant of weight 6 must verify the equation

The most general expression, integral and rational in the seminvariants.

and of weight 6, is

6&amp;gt;

6
= aP + IIJ + cK + dl i} + eJ&quot; + fll&quot; + gT*.

We find from (66) and (67);

4 e(2^5)J+ 4g;(
4

) 4
-f

This must be equal to 6qp @6
for all values of

(p, qp ,
. .

., /, /
,

. .
.,

J, J
1

,
. . . K. We find, therefore, the equations:

d = 0, e + 2/ = 0, 2c + e + 2^ = 0, 6a + Z&amp;gt;-/ =0,
fc
- e = 0, 8c + 9e = 0, 5/&quot; -f 4g = 0,

whence
i , 9

7 n , 1 5
a = -

T c, 6 = e, c = --e, d = 0, f=--e, g = ^e.

Putting e = 8, we find

(76) 6&amp;gt;e
= 27; I2 -

4J&quot;) + b(K - 7
-*) + 4(K - 2 J&quot; + 77&quot;).

There is no invariant of weight 7, and there are two indepen
dent invariants of weight 8, one of which is 6&amp;gt;4

2
,
while the other is

6&amp;gt;

8
= 143 (i

-
47&quot;*)

-
54(7* + 4J)6&amp;gt;4

-
207&quot; 6&amp;gt;4 + 2570;

- 206 7 4
&quot;-

206^)
- 9021(K-I ^- 220(E

1- 2 7f7^- 2 7&quot;

2
).

We may easily find an invariant of weight 10, without going

through this general process We have

&amp;lt;?

~ J&quot;

) =
49)&quot; (77

- 2J )
- 6? (K - 7 2

),

-^ J1}= -
2&amp;lt;p&quot;(r-

- 4J) - 5^(77 - 2J ),
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whence eliminating cp&quot;,
we find

St
where

(78) 10
= (I

2 - 4J} (K - I 2

) + (II
1 - 2JJ.

From two invariants of weight /i and A we can, as in Chapter II

equation (24), always form a new invariant of weight A-f^ + lj viz.

the Jacobian of &
fl

and &,. We thus obtain the following further

invariants :

@n = 3 @6 l 2 4&6 }
#15
= 4 &amp;lt;98 6 3

6 8 ,

(79) 13
== 2 8

@4 @4 8 ,
@

17
= 5 10 &amp;lt;9G 3 6 10 ,

15
= & 10 /

- 2 @4 6&amp;gt;10 , 19
= 5 10 8

- 4
8
@10 ,

from which still others may be derived by a continuation of the

process.
We may also, as in Chapter II, deduce from every invariant of

weight m another, its quadriderivative, of weight 2m -f 2. But its

expression will be slightly different from the expression (54) of that

chapter. If we put again for a moment

_ 9 d* log m Id log 6&amp;gt;m \ 2

O/X \ UX /

we shall have, as before,
1

We have further, from (51)

so that

2% + mU
is an invariant. The numerator of this expression

is the required quadriderivative of m .

Of all of the invariants found so far

4 J 6 y 10 ) 15 ) 4*1

are the only ones which involve no higher derivatives of p^ than the

third, and no higher derivatives of q!k than the second. In other

words these are the only invariants found so far which depend only

upon the seminvariants

(81) 7, T, 7&quot;; J, J , J&quot;; K, A
;

L.

But only four of these invariants are independent. In fact we find

(82) 4^ -f 36@10
4@4 6

= 0.
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In order to obtain all of the absolute invariants depending only upon
the seminvariants (81) we write down the system of partial differen

tial equations which they must satisfy.

In order to find these equations we assume that / is any function

of the nine arguments (81) and form df. We shall find

and the required system of equations is obtained by equating Tkf to

zero for A = 1, 2, 3, 4, 5.

We find in this way the following system of equations:

-
(8 J&quot;

(83)

These five equations are independent and, therefore, have 9 5 = 4

independent solutions, i. e. there must be four independent absolute

invariants, or five independent relative invariants involving the sem-
invariants (81). Of these we have found four, viz.: &, @6 ,

@
10 ,

&amp;lt;9

15 .

The fifth invariant may be found by integrating (83). It may be
taken to be

We may verify directly that the seminvariant d [equation (41)]
is an invariant by means of equations (49 \ (53) and (54\ It clearly

depends only upon the serninvariants (81) and must therefore be

expressible in terms of 94, 96, 1Q , 15 and
1S . Its weight is 9 and

we shall henceforth write

(85) 4 = 0..

We shall find its expression in terms of 6&amp;gt;

4,
. . . 18 in the next

paragraph.
WILCZTSSKI , projective differential Geometry. g
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6. Canonical forms of a system of two linear differential

equations of the second order.

Our system of equations (45) can always be transformed into

another which contains no first derivatives, by a transformation of

the form ., .,
. , n

y = ati + P$, s = yrj + &amp;lt;?,
ad - fiy ={= 0,

where a, ft, y}
S are appropriately chosen functions of x. In fact

upon making this transformation, we find

(2/8

=
0,

If, therefore, we take for (a, y) and
(/3, ^) two pairs of solutions

of the system of equations

Q
= -

(87)

the terms containing if and g in (86) will vanish. Moreover, since

ad fly must not be zero, (a, y) and
(/3, d) must be two independent

systems of solutions of (87), and two such systems always exist.

If one makes use of (87) and the equations obtained from (87)

by differentiation, (86) becomes

a rj + g&quot;

~
j ( u + y ) n + ^ tf &quot;11

+ *) &

(88)
+ (/3w21 -I- ^w22)?,

where the quantities Uu are the same as those which have been pre

viously denoted in this way [cf. equations (20)].

Thus every binary system of homogeneous linear differential equa
tions of the second order may be converted into another, involving

no first derivatives, i. e. into one for which p^ = 0. We shall say

that it has been reduced to the semi-canonical form.

Suppose that the system is given in its semi -canonical form

Vis*
=

0,

The transformation

I = I (#), y = ari + /3, z =
converts it into
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(89)

?7. + * (67

This is again in the semi -canonical form if

*r + 2aT = /?r + 2j8
r

r = ^r + 2-/r = ar
r + 2d r

r = o,

i. e. if ,

a b c a

if &quot;-pf -pf -pf
where a, &, c, d are constants, whose determinant ad be does not

vanish. We see, therefore, that the equations

(90) =
!(*), 7,

= (ay + ^)V?, e
=

(ey + &amp;lt;tyV?

^jfe f/&amp;lt; wosf general transformations icliich leave the semi-canonical

form invariant, %(x) being an arbitrary function and a, b. c, d arbi

trary constants.

Let us put in particular

a = d = 1, & = c = 0,

or
i

.
4=&amp;gt; /3

= y = 0.

Vr
Then (89) becomes

or ,,,.
d-ri , _ , c, f\ , . _[_

e. rv

Now a can be determined in such a way as to make

For this purpose it is only necessary to take for a a solution of

the linear differential equation

If we put again ,

we find for r
t
the Riccati equation

/Q9\ II = i _ r- 2 = fl _|_ n

whose left member in terms of | is the Sclncarzian derivative of |

with respect to x [cf. equation (50)].

8*
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We have proved the following theorem:

Every system of two linear homogeneous differential equations of
the second order can be transformed into a system of the form

jjf
+ Qniji + p,-ai?8

=
(i
=

1, 2),

ivliere

Pll + Q-22
=

-

In order to effect this reduction, it is necessary to integrate a

system of two homogeneous linear differential equations of the first order

(87), an equation of the Riccati type (92) and finally to effect the

quadrature

This canonical form of the system corresponds to the Laguere-Forsyth
canonical form of a single linear differential equation.

%
_! /3

If (#) is any solution of (92), its most general solution is -
~-^-

We see, therefore, that the most general transformations, which leave

the canonical form invariant, are

where a, /3, j&amp;gt;, S, a, b, c, d are arbitrary constants. These transformations

form a seven-parameter group.

There is another canonical form which is of special importance.

Equations (44) show that the coefficients a, /3, y, d of the trans

formation

y = ati + 0g, s = yr} + d

may be chosen so as to make ui2
= un = 0. It suffices to determine

the ratios /3:tf and a:*y as the two roots of the quadratic equation

W21 A
2 + (Un U22 )

I + M18
= 0.

Since ad fly must not be zero
;

the roots of this quadratic must

be distinct, i. e.

(MH Mga)
2 + 4w

12
tt21
= @4 4= 0.

By merely solving a quadratic equation we may therefore reduce our

system to another for which %2
= and u2i

=
0, provided that @4 is

different from zero.

Suppose that the system has been reduced to this form. A trans

formation of the form

y = i?,
=

&amp;lt;?, 1 = 10*0

according to (44) and (49) will not disturb the conditions w12
= w21

=
0,

the functions a, d and | being arbitrary. According to (86) the trans

formed system will be
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=
0,

^- r + (** +A^lf r

a) / -f
(6&quot;

+ As d + fc2 &amp;lt;?)

= 0.

If we choose a and d so that

&amp;gt;J

ir ^

the coefficient of -^ in the first, and of -TIT in the second equation
d| d

will be zero. We may therefore reduce our system, for which

t^ == M21
=

0, further to a system for which also pn = p^ = 0, by the

substitution

e-y/*&quot;**., r A e -y/ft*
rfjr ^y ~~

yy vr
~

where (a:) is an arbitrary function, and where a and b are arbitrary

constants.

The arbitrary function I (a&quot;), finally, may be used to reduce the

invariant 4 to unity. In fact, we have

We shall, therefore, find 6&amp;gt;4
=

1, if we put

1=1 \/Wtdx + const.

Since, moreover, in this case u^ = e/21 =0, &4
=

(&amp;lt;u M22)
s
,
we may

more specifically reduce ?&amp;lt;n &amp;lt;22

to unity, by putting

= I const.

We may also, if we prefer, reduce any of the other invariants
6,

&amp;lt;910 etc.

to unity. Or, we may reduce the seminvariants / or J to zero by

making use of equations (51).

Let us assume that the system of differential equations has been

written so as to make u
12
= un = 0, pn =jf&amp;gt;22

=
0, itn if,,

= 1.

We shall make use of this special form to express z/ = 6&amp;gt;9 in terms

of the seminvariants 7, J, K, L. We find from (41),
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But we shall have, in this case,

% = %u
n&amp;gt;

v12
= - p12 ,

v
2l
= -f p.2l , % = 2w

22 ,

ivn = 4w
,; + 2pv2p2V w

12
= -

2#;2 ,
w

whence

^-^2(ft1pu
Further we have

I = MU + M22 ?
j-= Un M .M ?

/f = % Vs2 4-

whence, according to (84)

u = -(PuPK
so that

(94) z/
2 + 4@18

= 0.

This equation must hold between 4 and
18

whatever may be the

form in which the differential equations are written. For, a relation

between invariants is not changed by any transformation of the kind

which we have made. It is true however that in such a relation

4 would seem to disappear, since this invariant has been made equal
to unity. There might, therefore, be a factor of the form / in one

of the terms of the above equation. But this is impossible in the

present case because ^/
2 and @

18 are both of weight 18. Such a

factor would disturb the condition that the left member of the

equation be isobaric.

7. The complete system of invariants.

Suppose that the invariants @4 , 9 ,
@4 .

t
and 10 are given as

functions of x. We shall show that the corresponding system of

differential equations is determined by these four functions, so far as

it is possible to determine such a system by means of invariants.

For, it is clear that, one such system being given, any other, which

can be obtained from it by a transformation of the form

will have the same invariants.

Let

y&quot;

be such a system of equations, whose invariants 4, 9 ,
@4-1 and

10

are arbitrarily prescribed functions of x, and let us assume that &amp;lt;94

is not identically zero. We may then, as we have seen in 6.
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transform it into another system of the same form, for which

ult
=

MJJ
==pn = p9i

=
0, and we shall assume that this transformation

has already been made, so that we shall have

(96) &quot;l2

=
21=.Pll=J&amp;gt;22

= 0.

We find consequently;

(97) wn = 2rn + ZpuP*! (n - &quot;12), ^12

w = - 4 + 2^2i ( n
-

) %
whence

#4 = 0&amp;lt;n

-
&quot;2*)*&amp;gt;

(98)
4 -

1
= 804 4

&quot;

10
= -

(&quot;ll

-

9
= 2(MU - ,,)

3
(p; 8psi

-

From these equations we find

Mn &quot;22

=
V^i&amp;gt;

* =

+
1 r f~\ O /

&quot;22

= [4 1
- 8

The last two equations give

whence by integration

(ioo) n
where C is an arbitrary constant.

We find further, from (99) and (100),

whence

where = + 1. Since z/18
=

z^j =pn =^2 = ^? we nave further

_ i , _ l .

#13
&quot;

2 ft 2*1
&quot;&quot;

2 ^S1

and

&quot;
= ~ 4

11

so that we may also compute qn and 52 ,
from (99).
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We find, therefore, for the coefficients of (95) the following

expressions

(101)

Pi*
=

C

which contain one arbitrary constant C and two ambiguous signs
and s . But we may get rid of these. In the first place let us

transform this system by putting

where k and I are constants. The coefficients pn , qn , p22 , ^22 f ^ne

new system will be the same as those of the old, while p12 , #12 and

Pn &amp;gt; $21 will be multiplied by T and y respectively. If, therefore,
IV V

we put

the coefficients of the new system will be given by (101) with s = 1

and 0=1. There still remain in (101), the two possibilities:
= 1. Denote the values of the quantities (101) for s = + 1 by

pik , qik ,
and those for s = 1 by pik , qit . Then

= Pu = =
Pas

=
Pia

=

But it is evident that two systems of differential equations, whose coef-

ficents are connected in this way, may be transformed into each other

by putting

Equations (101) are valid only if
10
= 0. The following theorem

is therefore true.

If the invariants &Af 4 . 1;
@9 and &10 are given as arbitrary

functions of x, &amp;lt;9

4 and &amp;lt;9

10 however not being equal to zero, the system

of differential equations whose coefficients are

- - - 1 1

(102)

-f 804 4
&quot; -

9(6&amp;gt;4 )]
-
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is one, whose invariants &4 ,
&

4 . 1}
@

a and &amp;lt;910 coincide ivith these

arbitrarily given functions of x. Moreover, tfie most general system of

differential equations, which has the same property, can be obtained, from

this uniquely determined special one, by a transformation of the form

y = ar, + PS, z = yrt + *& a* - 0y += 0,

where a, /3, y, d are arbitrary functions of x.

We shall hare occasion, later, to complete this theorem, which

is of fundamental importance. For the present we shall merely make

use of it to prove that the invariants 0^ 94 . v 6&amp;gt;

9 ,
#

10, togetlier with

those formed from them by repetitions of the Jacobian process, constitute

a functionally complete set of invariants. Let / be any invariant.

Then the above theorem shows that I can be expressed in terms of

&amp;lt;y^
&4 .

lt &Q, fe&amp;gt;

10
and of the derivatives of these quantities. For, the

system of differential equations can be transformed into one whose

coefficients are given by (102), and the invariant I may be computed
in terms of these. We have

as the infinitesimal transformations of v and , . An absolute in

variant depending upon (9
4 . . . fc&amp;gt;

10 ,
&4 . . . &amp;lt;9

10 must therefore satisfy

the equations:

(103)

There must be 8 2=6 such absolute invariants. Now, we know
that 4, 4-j, 9 ,

&IQ and the three Jacobians of &amp;lt;94 with the other

three are seven independent relative invariants, which give rise to six

absolute invariants. Therefore, in this case, the Jacobian process

gives all of the invariants. If the invariant contains also the second

derivatives of
4,

. . . @10,
we shall have to integrate a complete system

containing one more equation and four more independent variables

than (103). There will, consequently, be three more independent
invariants (absolute or relative). But these can be obtained from the

former three by combining them once more with &
4 by means of

the Jacobian process. If we continue in this way, we see that the

number of invariants, containing the derivatives of &4 ,
. . . &amp;lt;910 up to

the n&quot; order, is precisely greater by three than the number of in

variants containing the derivatives up to the n \ th order. The
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three new invariants are obtained by combining 4 with @
9 , 4 .

17
@10

n times by means of the Jacobian process.

We leave open the question whether all rational invariants can

be expressed as rational functions of these fundamental invariants.

We shall indicate in a different connection, however, how a system of

invariants complete in this higher sense may be constructed.

8. The covariants.

We have seen in 6, that the transformation

y = ay + fi, z = y^ + d

may be chosen in such a way as to make i*12
and w21 vanish for the

transformed system of differential equations. For this purpose it was
/?

necessary and sufficient to take ^ and as the two roots of the

quadratic

(104)
w21 *

2 + (wu w22) A + M12
= 0.

We have, on the other hand,

z/?7
= dy fiz, z/ = yy -f az, A = ad fly,

so that

(105) z/
2
7?
=

(dy
-

0*) (- Vy + as)

is an expression whose linear factors are uniquely determined by the

conditions that w
12

and M21 shall vanish. Except for a factor, in

dependent of y and g, this expression must therefore be a semi-

covariant. We proceed to calculate it. We find from (104)

whence

We may verify directly that

(106) C = u^ - u^f + (wn

is a semi-covariant, in accordance with our prevision.

Since, for transformations of the dependent variables alone, v

and wik are cogredient with w t

-

t, the following expressions

F = w12 #
2 w21 /

2
-f- (wu

will be semi-covariants. The weights of C, E, F are 2, 3 und 4

respectively.

If then we make the transformation
*

y = art + 0, $ = yr) + d, 4 = ccd - fir,

and denote the transformed functions by dashes, we shall have
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C = AC, E = AE, F =

so that the determinants

(C E) = C E - CE (E F) = E F- EF
,

(F C)=F C-FC
are also semi-covariants, obviously of degree four.

We have further

C ~C
,

A
7?=^-^

and from (42)

whence

2^- +Pn + P**_
=&amp;gt; 2-= + Ai + As,

so that

(109) G = 2C + (pn

is a new senii-covariant. Similarly we find two other semi-covariants

(110) H = 2E + (pn +p^E, ]!t=2F + (pu +pn)F.
We have noticed already that we need to consider only those

semi-covariants and covariants which involve no higher derivatives of

y and z than the first. For, if such a function contains higher deri

vatives, we may express them in terms of
?/, z, if, z by means of

the fundamental differential equations and those deduced therefrom by
differentiation.

So as to proceed in an orderly manner, let us first determine

all independent semi-covariants containing besides y, z, i/, 2, merely
the quantities pu, pf t and #,*. We have already found one such,

namely C. We can find another by forming G E. If we make
use of the equations (32) for viln we shall find

N=G-E= {2A,i2 +AI (un- u^)}z*
-

{2pll
u9l
-Ai(wn-M22)}y

(111) + {2Al MIS
-

2j&amp;gt;12 21 + (pu -fAS) (MU - uK)}yg

-f 4 u^zz -lu^yy + 2(wu
- MM) (yz

r + tf z\

a semi-covariant of degree 2 and of weight 3 involving only the variables

mentioned.

The system of partial differential equations, whose solutions are

the semin variants and absolute semi -covariants involving these variables

?/, Z, tf, z
1

p^, pn, g_it, is obtained from (18) by adding to the left

members the terms depending upon the partial derivatives of f with

respect to
//, z, i/ ,

z . These twelve equations are seen to be indepen
dent when these additional terms are written down, although without

these terms only ten of them are independent. There are
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sixteen independent variables, and consequently four solutions, i. e. four

seminvariants and absolute semi - covariants. Of these we know the

seminvariants I and J. The other two solutions must be absolute

semi - covariants. We have found two relative semi -covariants, C and

N. There must be just one more, which might be found by inte

grating the system of partial differential equations just mentioned.

It is more instructive to proceed as follows. Put

Then it may be verified, either by infinitesimal, or by finite trans

formations, that p and 6 are cogredient with y and z. In other words

if y and z are transformed by the equations

y = ay + fig, z = yy + &amp;lt;?,
ccd - fiy 4= 0,

Q and &amp;lt;5 will be transformed by the same equations

p = ay + /3tf,
6 = yg + So.

Therefore,

(113) P = 3Q-yo=* 2(tfg
-

ys } -fp^ - pn f + (pn - pM) yg,

is a semi-covariant of degree 2 and of weight 1. Moreover it is clear

that /, J&quot;, C, P and N are independent of each other, so that all

semi -covariants involving only y, z, y
1

,
z

, pittPikj #a have been found.

Equations (112) enable us to write N more simply. We find

(114) N = 2 (u^z0
- u^yg) + (MU - w22) (gq + y&amp;lt;f).

In order to find the seminvariants and semi -covariants involving

jp/jt
and qik besides the former variables, we may set up the system

of partial differential equations satisfied by them. It is the system

(25) with the terms in y } z, y ,
z added. This system contains 24

independent variables and 16 independent equations. Therefore, there

must be eight such seminvariants and absolute semi -covariants. But

we know them already. They are

T T T T&amp;lt; V P K E
-2

)
2

&amp;gt;

J
)

&quot; }
A

?
~(j (] Q1

for these are independent, as may be verified without any difficulty.

In the same way we notice that there must be 12 seminvariants

and absolute semi -covariants involving the further variables pW and
Tfl

q i k. They are the above with the addition of
I&quot;, J&quot;,

K and L.
-^,

which

obviously also belongs to this same class of semi-covariants, must

therefore be expressible in terms of these twelve quantities.

No new semi -covariants will appear if we continue our search,

and all of the new seminvariants are, as we know, derivatives

of I, J, K, L.
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Put

so that y, s and v are three independent absolute semi-covariauts.

Then any absolute covariant must be a function of the seminvariants

I, J, K} L, of their derivatives and of 7, ,
v. The system of partial

differential equations which they satisfy will be the same as the

system satisfied by the invariants, except for additional terms invol

ving derivatives with respect to the three further variables y, s, v.

This new system, containing as many independent equations as the

old, but three more variables will have three more solutions. There

are, therefore, three independent absolute, or four independent relative

covariants. These may be found without trouble. We verify easily

that C is one. We find further, on making the transformation

g = *(*),

that Q and 6 are converted in 7&amp;gt; and tf, where

(115) ? ^Ot + 43^ G=j,(6 + rjz\ n=^,

whence we see at once that the semi -covariant P is also a covariant.

We find further

so that E + 2-^T is a further covariant. Finally we have

l i

whence

so that

GE- Q^C

is a covariant. These four are clearly independent. We have found
the following four covariants

(116) C\
= P, C,

=
C, C3

= E+ 2N, C, = E - 4 C,

all of ichich are quadratic, and icliere the index indicates the weight.

All others can be expressed in terms of these and of invariants.

As the three fundamental absolute covariants we may take

C,
4 Cs

* C.
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Examples.

Ex. 1. Show that the system of differential equations

y = Pnv + Pnz, z ^p^y+p^z
has no invariants under the transformations

I = f(x)&amp;gt; y = ay + (iz, ~z = yy + dz,

where
cc, ft, y, d, f are arbitrary functions of x.

Ex. 2. Find the invariants and covariants of the above system
for the transformations

y=*ay, g =*
fig, | = f(x),

where a, /3, f are arbitrary functions of x.

Ex. 3. Find the relations between the invariants (79).
Ex. 4. Show that, if z/ = 0, and if the other invariants are

constants, the system may be reduced to one with constant coefficients.

Ex. 5. Find the relation between

/, /
, 1&quot;; J, J

, J&quot;; K, JT; L; P, (7, JV, J0, .F;

making use of the canonical form for which ui2
= w

21
= 0.

CHAPTER V.

FOUNDATIONS OF THE THEORY OF RULED SURFACES.

1. Definition of the general solutions, and of a fundamental

system of solutions of a simultaneous system of two linear homo

geneous differential equations of the second order.

For the sake of brevity we shall speak, hereafter, of the system
of differential equations

,AN ?/ + Putf + Pi^ + 2u2/ + 2i2
=

0,

z&quot; -t- p^y
1 + p^z + qn y + &s* =

as system (A).

According to the fundamental theorem of the theory of differential

equations, the system (A) defines two functions y and s of x, which

are analytic in the vicinity of x XQ if the coefficients are analytic
in that vicinity, and which can be made to satisfy the further con

ditions that y, z, y and g shall assume arbitrarily prescribed values

for x = XQ .

Such a system of solutions, corresponding to these four arbitrarily

prescribed values of y, z, y ,
for x == XQ ,

is said to constitute a

system of general solutions of system (A).
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Then, denoting by c
i} c,, C3, C4 four arbitrary constants,

Now let
(?/,-, z}) for (?

=
1, 2, 3, 4), be any four systems of

solutions of (A), so that

(1)

(2)

will also form a simultaneous system of solutions. Moreover from

(2) and

(3) y =

the constants Cj, . . . C4 can be determined in such a way as to give

arbitrary constant values to yt z, */, /, for x = XQJ provided that the

determinant

(4)
/ ^ *s ^

I
~?
2

~?3 Z*

does not vanish for x = XQ . If, therefore, D is not identically zero,

we can express a general system of solutions in terms of yl}
. . . y4

and *!,... s4 by means of (2). We shall, therefore, speak of four

pairs of solutions (yi} ^.-) for which the determittant D does not vanish,

as a fundamental system of simultaneous solutions.

We may express the condition D =|= in another way. If D = 0,

it is possible to find four functions A, 4u, v, Q of x, so that the four

equations

(5) lyk + nijk + vzk + QZt
=

(A-
=

1, 2, 3, 4)

may be verified.

If (yt ,
^t) form a fundamental system of solutions, it must there

fore l&amp;gt;e impossible to find functions A, pt v, Q so as to satisfy (5), or

what amounts to the same thing, it must be impossible to find func

tions a, fi, -/,
d of x

f
which satisfy the system of equations

(6)
*1 =0,
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and z must not satisfy two conditionsIn particular yv . .

of the form

(7)

where cx ,
. . . C4 are constants, the same in both equations.

Suppose now that four pairs of functions (yi} #,-),
which verify

no relations of the form (5) or (6), are given. Then we may always
determine a system of differential equations of the form (A), of which

these functions form a simultaneous fundamental system. The coef

ficients of this system may be obtained from the eight equations (1)

by solving for pik and qik . If we write

(8)

we shall find

(9)

D(ak ,
lk ,

ck ,
dk~)

=

= - -D (yk ,

-D(y* ,
ek ,

T\ (*. I
&amp;gt;

yk ,

. yk, si

1 dP
P dx

= D
(gk&quot;,

gk , yk ,
gk),

jL&amp;gt;qn = D(yk ,
zk , yk

&quot;,

gk\

Dq2l
= D (yk f

zk ,
zk

&quot;, *),

D = D(y^,

From these equations we find

(10) p,

whence

(11) L
if C denotes a non- vanishing constant.

If we subject the general solutions of system (A) to a trans

formation of the form

where a, /3, y, d are arbitrary functions of x, then q and will be

the general solutions of a system of equations of the same form

as (A). Moreover, if we put

(13) rjt
= ayt + pgif & = yyf + 8git (i

=
1, 2, 3, 4),

the four pairs of functions
(r]i} ,-)

will form a fundamental system
of solutions for the new system of equations, and its general solutions

will be
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Thus, if we consider instead of a pair of general solutions of (A),

four pairs of solutions which form a fundamental system, these are

transformed cogrediently with each other and with the pair of general

solutions.

-

2. Geometrical interpretation. The integrating ruled surface of (A).

Let us interpret (yi} . . . #J and (zlf . . .
4)

as the homogeneous
coordinates of two points Py

and P. of space. If (A) is integrated,

we shall have these quantities expressed as functions of x:

yk
=

ft 0), ** = 9k (x) (k
=

1, 2, 3, 4).

As x changes, Py
and P, will describe two curves Cv and Cz ;

the

points of these curves, moreover, are put into a definite correspon
dence with one another, those being corresponding points which

belong to the same value of x.

But there is a restriction on the point -correspondence between

these curves, owing to the condition that
(/,-, 2,-)

are to be members

of a fundamental system, so that equations (5) must not be verified.

Let us write (5) as follows

*y* + Mk = ~
(vZk + P** ) (k

=
1, 2, 3, 4).

We have seen in Chapter II, 6 that the quantities

Ay* + nyk (k
=

1, 2, 3, 4)

represent the homogeneous coordinates of a point on the tangent of

the curve Cy
at Py

. Similarly vz*, -\- QZk are the coordinates of a

point on the tangent constructed to Gz at Pz . But, if the above

equations hold, these two points coincide, i. e. the two tangents
intersect for all values of x.

In order, then, that the curves Cy and Cz may be the integral

curves of a system of form (A), it is necessary and sufficient that Hie

tangents of these two curves, constructed at corresponding points, shall

not intersect.

In particular, the two curves may be plane curves but they must

be in different planes.

What is the geometrical significance of the transformations (12)
or (13)? Let us mark on the two curves Cy

and Cz the points Py

and Pz corresponding to the same value of x, and let us join them

by a straight line Lyz . Then, it is clear that the transformations (13)
convert the points Py and Pz of the line Lyz into two other points

P,, and P* of the same line. Consider the ruled surface S, which is

the locus of the lines Lyz as x passes through all of its values.

Since a, /5, j&amp;gt;,

d are arbitrary functions of #, this transformation

enables us to convert the curves C
y
and Cz into any other two curves

C
n
and Q upon this ruled surface. The correspondence of the points

WU.CZTXSKI, projective differential Geometry. 9
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Ptj and Pf remains such that the line joining corresponding points

is a generator of the ruled surface S.

A transformation of the form

I - f(*)&amp;gt;

where f(x) is an arbitrary function, changes the parametric represen
tation of the curves in the most general way, without changing
either the curves themselves or their point to point correspondence.

Thus, there belongs to every system of two linear homogeneous

differential equations of the second order a ruled surface, which we

shall call the integrating ruled surface, whose generators are the lines

joining corresponding points of the two integral curves. This ruled

surface is the same for all such systems which can be transformed into

each other by a transformation of the form

where a, /3, y, 8, f are arbitrary functions of x.

There is one important restriction however; if (yif 8?) constitute

a fundamental system D must not vanish, i. e. corresponding tangents
of the two curves Cy and Cz must not be coplanar. Suppose that

they were, so that four functions X, p, v, Q might be found which

satisfy the equations (5). These equations may be written

yk

But pyk + QZk are the coordinates u^ of a point Pu of Lyz . The

right member gives a second point Pv upon Lyz ,
whose coordinates

are vk . As x changes Pu describes a curve Cu ,
whose tangents, as the

above equation shows, are the lines Lyz . In this case, therefore, the

ruled surface is a developable, since its generators are the tangents
of a certain space curve. If, in particular, Pv coincides with Pu we
shall have . .

ft / = CO p, Q V = 03 Q,

where CD is a proportionality factor, i. e.

i
1

L A v = 0.

In this case, as x changes, the point Pu remains fixed, i. e. the curve

Cu degenerates into a point, and the developable into a cone. We
have found the following result.

The integrating ruled surface of a system of form (A) cannot be

a developable. This is the meaning of the condition D =j= 0.

Incidentally we have found a further result, which will be

useful later. If four pairs of functions (yk , k} satisfy a system of

equations of the form
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(14) lyk + wl + vzk + Q^ = 0, (ft
=

1, 2, 3, 4),

aw?
//&quot; ?/i and 2* are interpreted as the homogeneous coordinates of two

points Py and P,, the line, joining corresponding points of the two

curves, generates a developable; the quantities

(15) uk
= pyk + QZk (k

=
1, 2, 3, 4)

are the coordinates of a point Pu of its cuspidal edge, the developable

being the locus of the tangents of the curve Cu described by Pu . If

(16) [i (&amp;gt;-u 9 -(!&amp;lt;&amp;gt;- nv) = 0,

Cu degenerates into a point, and tiie developable into a cone whose

vertex is Cu .

While we shall assume that D is not zero for all values of x,

it may happen that for some particular value x = a,

D = 0.

In the vicinity of a generator of this kind, the ruled surface resembles

a developable, in so far as all of its tangents along such a generator
are coplanar. We may say that, in this case, two consecutive gene
rators of the ruled surface intersect, and speak of the generator as

a torsal generator. More accurately the state of affairs may be

described as follows. If we consider the generators g and g corre

sponding to values of x which differ from each other by an in

finitesimal z/#, the shortest distance between g and g will be, in

general, an infinitesimal of the order zlx. If it is of a higher order,

we mav sav brieflv that the two consecutive generators intersect./// o
Their point of intersection is called a pinch point of the surface.

Both of these names are due to Cayleyty The equation D = 0, there

fore, characterizes those values of x to which correspond torsal gene
rators of the ruled surface.

But this must be taken with a proviso. Since y, . . . i/4 are the

homogeneous coordinates of a point, it is not admissible that they
should vanish or become infinite simultaneously. For, then the point
would be indeterminate. We may therefore express our result as

follows.

If for a certain value of x = a, neither yl} . . . y nor z
l ,

. . . z

become simultaneously zero or infinite, icliile the determinant D vanishes,
flie corresponding generator of the ruled surface is a torsal generator.

After these remarks it becomes a simple matter to understand

an apparent paradox which presents itself in this connection. We
have seen in 1 that

(17) D = Ce ~/(pl1
+*&amp;gt;**.

1) Cayley s, principal papers on ruled surfaces are in the Cambridge and
Dublin Math. Jour. vol. 7 (1852), Phil. Trans. (1863 and 1864), Messenger of
Math. 2d. Series, vol. 12 (1882).
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But we have also seen in the preceding chapter, that the trans

formation

~~9 Pn dx G, v p d *= re 2J = 2 J
y

will convert system (A) into another of the same form for which

pn p22
= 0. This transformation would therefore reduce D to a

mere constant. But, if D is a constant it cannot vanish for any
value of x, unless it is zero identically. The torsal generators seem

to be lost in this process, and this constitutes the paradox just

mentioned. In the light of our previous theorem this becomes quite

clear. If neither ylf . . . y nor #
1?

. . . #4 are simultaneously zero or

infinite for x = a, while D = 0, the exponent in (17) must be infinite.

Therefore, one or both of the exponents in (18) will be infinite, and

either yv . . . % or
1;

. . . 4 or both sets of coordinates will be

indeterminate for x = a. Strictly speaking, therefore, a transformation

of the form (18) is legitimate only for such a portion of a ruled

surface as contains no torsal generator.
We return to the consideration of the ruled surface S. This

surface has been defined, starting from a particular simultaneous fun

damental system of solutions. Since the members of any other

fundamental system (^, Hk) can clearly be expressed in the form

i ai, (fc
=

1, 2, 3, 4)

any surface obtained from S by a projective transformation may be

regarded as integrating ruled surface of (A) as well as S.

By means of equations (13) we associated, with each fundamental

system of the original system of equations (A), a fundamental system
of the transformed system of equations. It is only for such associated

fundamental systems of the two sets of equations that it is true that

they give rise to the same ruled surface. In general the two inte

grating ruled surfaces will be merely projective transformations of

each other. Let us speak of two systems of differential equations as

equivalent, if they can be transformed into each other by a trans

formation of the form (12). We may then state our theorem more

precisely as follows:

If two systems of differential equations of form (A) are equivalent,

their integrating ruled surfaces are projective transformations of each

oilier. Moreover if the fundamental systems of solutions be properly

selected, the ruled surfaces coincide.

Conversely, if the ruled surfaces of two such systems coincide, the

systems are equivalent.

If the ruled surface is not of the second order, this converse is

clear at once. For, the arbitrary functions K, /3, y, d in the trans-
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formation can be chosen so as to convert any pair of curves on the

surface, which are not generating straight lines, into any other pair.

Thus the pair of curves corresponding to the first system may be

converted into the pair corresponding to the second. The independent
variables of the two systems of equations will also be expressible in

terms of each other, since to every generator of the surface corre

sponds a value of | as well as a value of x. The equivalence of the

two systems of equations is therefore ensured, if the ruled surface

is not of the second order. In case of a surface of the second order,

this conclusion appears doubtful because such a surface contains two

distinct sets of generators, and it may happen that the lines joining

corresponding points of Cy and Cz are the generators of one set,

while those joining C, and C: are the generators of the second set.

In that case the relation between x and cannot be established as

before. Since, however, it is always possible to transform the gene
rators of one set into those of the other, by a projective trans

formation, the theorem is true also if S is a quadric.

Let any non- developable ruled surface S be given. There corre

sponds to it a class of mutually equivalent systems of linear differential

equations. In fact it is easy to indicate how a representative of this

class may be found. Trace any two curves, which are not generating

straight lines, upon the surface. Express the coordinates of their

points as functions of a parameter x, in such a way that to the same

value of x correspond points of the two curves which are situated

upon the same generator. The system of differential equations whose

coefficients may now be found from (9), will have S as integrating
ruled surface, and is a representative of the class defined by the

surface S.

Therefore, any non- developable ruled surface may be defined by a

system of form (A). The general theory of such systems of differential

equations is, therefore, equivalent to the general theory of ruled

surfaces.

Any equation or system of equations beticeen pik) qa, pu etc-, which

remains invariant for all transformations of the form (12), expresses a

projective property of the integrating ruled surface.

For, such equations remain unchanged whatever may be the two

curves Cy and C- upon S which are taken as fundamental curves,

and whatever may be the independent variable x. They express,

therefore, properties of the surface itself, independent of any special

method of representation. These properties are projective, because

the coefficients of (A) are left invariant by any projective trans

formation. Conversely, any projective property of a ruled surface

can be expressed by an invariant equation, or system of equations.
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3. Dualistic interpretation. The adjoint system of (A).

Instead of interpreting (yv . . . y^) and (01} . . . #
4) as coordinates

of two points, we may consider them as being the coordinates of

two planes py
and p.. As x changes, these planes envelop two

developables D
y

and Dz . Corresponding planes intersect along a

straight line Lyt whose locus forms a ruled surface S, which is left

invariant by all of the transformations here considered.

We may combine the two interpretations. At corresponding

points Py
and Pz of the two fundamental curves Cy

and C2 ,
let us

construct the planes py
and pg which are tangent to the ruled sur

face S. These will intersect along the straight line Lyz which joins

P
y
and Pz . The four pairs of coordinates, determining these planes

p,j and pg ,
will form a simultaneous fundamental system of solutions

for a new system of differential equations, which we shall now deduce

and which shall be designated as the adjoint of (A). These two

systems of differential equations, (A) and its adjoint, will correspond
to each other by the principle of duality. It is in this way that we

generalize the Lagrange adjoint of a single linear differential equation.

Let

so that
2/4

Al #
*S\ 1

2/2
e
2

2/3 %
2/4 ^4

4

where
Jfe=l

the symbol N

(*%c*)

denoting a determinant of the third order whose main diagonal is

It is evident that the homogeneous coordinates of the planes

tangent to the integrating ruled surface of system (A) at the points

(?/,)
and (X-) respectively, are proportional to (w/) and

(t;,-) (cf. Chapter II,

6).

We shall now prove the following theorem: If the two funda
mental curves Cy and C2 ,

on the integrating ruled surface S are trans

formed into two other curves Cy and C-z on the surface, % the trans

formation
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(21) yk
= a(x)yk + (x} zk,

zk = y (x) yk + d(x)zk (*
=

1, 2, 3, 4),

tlie developable surfaces formed by the planes tangent to tlie surface S

along Cy and C3 are transformed by tlie equations

(22) u k
= A [() Ui + ft (x) vk], vk = 4[y (x) uk + d (x) vk]

(*=1, 2, 3, 4),

where

(22a) z/ = ad /3y,

/. e., except for the factor A, by cogredient transformations.

Proof. We have, the summation everywhere being for J: = 1, 2, 3, 4,

(23) t in
Moreover it is clear that these eight equations are just sufficient to

determine uk and vk . The values (21) of yk and zk being introduced,
the following system, of which again uk) vk are the unique solutions,

is obtained:

2uk (ayk -f ftzk + dyk + fiz*)
=

0, 2uk (ayk + dzk)
=

0,

2vk (yyk + d^k + y yt + d z4)
=

0, 2vk (yyk + dzk]
=

0,

+ ftzk + a ^ + /37t)
= D, 2uk (ayk + ftzk)

= 0.

By direct computation we find

(25) D = 4*D.

Moreover we have the relations (23) between the transformed quan
tities D, uk ,

vk , yk ,
zk ,

i. e.,

^?t5t = 0, Z?,^ = 0.

Multiplying the first four equations of this set in order by
$&amp;gt; 7i &

&amp;gt; y an^ adding, we find the first equation of the following
sstem:

y yt + 3 J,)

(27)
^S* (&quot;** + * * + &quot; ^ + /3 Ji)

^i (yyi
f + dIi + y i/t + d Ji)

=yz, -

-S* (ay* + fit + a yt + /3%) = aD/z/
2
,

^ct (ayk + ftek)
= 0.

From (27) follows very easily a system of precisely the same
form as (24), only with

/3r*) and 4(yuk -f dvk}
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in place of uk and vk . But equations (24) were sufficient to deter

mine uk and vk completely. Therefore we must have

Uk = d (ccuk -f jStJjt), Vk = d (yuk -f dvk] (k
=

1, 2, 3, 4),

which proves the theorem.

If we put

(28) U*=-&amp;gt; ^=4 (*
=

1, 2, 3, 4),

where the sign of the square root may be chosen at will, (Uk, Vk)

are absolutely cogredient with (yk , #*).

For x = const, we single out a generator of the ruled surface S
and we consider two points P

y
and Pz upon it, together with the

planes tangent to S at these points. The transformation (21) then

transforms P
y
and Pz and their tangent planes into Py and P2

- and

their tangent planes. The transformation (21) is now a linear trans

formation, and from the fact that the tangent planes are transformed

by the cogredient transformations (22) follows the well-known

theorem, known as Chasle s correlation, that the anharmonic ratio of

four points on any generator is the same as the anharmonic ratio of

the corresponding tangent planes.

If yk and #* form a fundamental system of solutions of equations

(A) the determinant D does not vanish, i. e., the ruled surface S is

a non- developable surface. If the corresponding determinant for uk

and vk be formed, its value turns out to be D3

,
and therefore also

different from zero.

We may therefore regard uk and vk as constituting a simul

taneous fundamental system of solutions of a pair of equations of

the same form as (A). We proceed to set up this system of differential

equations.

Denote the minors of #k and yk in D by k and
rjk respectively,

so that
4 4

(29) D

where

(30)
^
i

Then, making use of (A), we shall find

(31) (
yfc
=

l, 2, 3, 4),
Vk = ?ik

whence
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{(.Pa

+
(l&amp;gt;|2 +l

By differentiating (30) we find

W = CPu +^22) &amp;gt;/*

*
= -

CPii + 22) *

and from (31)

Substituting these values in (32) we find that (MA , v*) are simul

taneous solutions of the following system of equations:

u&quot; + (2pn

v&quot;

+ fe + 2n + (l&amp;gt;n + P**)P*&amp;gt;}
v = 0.

Moreover (M*, vt) /brm a simultaneous fundamental system of (33),

since, as we have already seen, their determinant does not vanish.

We shall prefer, in general, to use another system, namely, that

one whose solutions are the functions Uk and V-
f:
defined by equations

(28). Remembering that

(34) D = Ce-^1+pM)dI
,

one sees that this other system may be obtained from (33) by making
the transformation

rr T /Oii + P*)rf* Tr -s- /(Pii-f /)&amp;lt;**

u = Ue
- J

,
v = Ve - J

The resulting system is

V&quot;
+i&amp;gt;u

& +pa T + { 9ll + \ (uu - !) } ?7+ (glt
+ \O F=

(35)
F&quot; +jp21 J7 +^22 F + fe +tt Z7+ fe2 + (

- n)
} F=0,

where
&amp;lt;,i

are the same as the quantities so denoted previously

[cf. Chapter IV, equations (20)].

A third form, which may be convenient, is obtained by putting

u = e
-

Its fundamental solutions are
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The equations which A and /i satisfy are

p&quot; + Al A - Al p +
&amp;lt;j4

-
Sfo) A - Oil

-
211)0

= 0.

We shall speak of system (35) as the system adjoined to (A). Of
course (33) and (36) have essentially the same properties as (35).

But the relation of (35) to (A) is somewhat simpler because its

solutions are absolutely cogredient with the solutions of (A) under

transformation (21), while those of (33) and (36) are cogredient with

(A) except for a factor.

4. Properties of adjoined systems. Reciprocity.

The relation of adjoined systems to each other is a very close

one. In the first place they have the same seminvariants and invariants.

For, if we form the quantities u
i1e)

vilt ,
wik for the system (35)

and denote them by capital letters, we find

(37) Uu = M22 &amp;gt; #18
=

%2&amp;gt; #21
= W

21&amp;gt; #22
= M

ll&amp;gt;

and similarly for Vi k and Wi k .

The relation between systems (A) and (35) is a reciprocal one, i. e.,

if of two systems the second is the adjoined of the first, then the first

is also the adjoined of the second.

For let us denote the coefficients of (35) by Pik and Qik . Then

Pile
=

Pik)

(38)
^n = 2n +

4- (wu ~ u
*z)&amp;gt; Qia

=
2ia +

2&quot;

u

$22
=

#22 +
4&quot;

(
M22
~ H

ll)&amp;gt; Q%\
=

^21 + ^ M21

But this gives, on account of (37),

Pik Pik,

fci
=

$11 + \ (#11
-

#22); 2 =
$12 + \ #12;

fe = $22 + J (^22
~

#ll); 221
=

$21 +
2&quot;

#21 &amp;gt;

i. e., pik and qik are formed from Pik and Qik just as Pik and Qik

are formed from pik and qik . This proves the reciprocity of the two

systems.
From (38) it will be noted that the adjoint system coincides with

the original, if and only if

(39) un u22
= eia

= % t
==

0,

the meaning of which system of equations we shall find as an immediate

consequence of this remark.
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Since u k and vt are the minors of zk and yk respectively, in

D, we have

, ,

=i 1=1 =i =i

If the differential equations for U and F are the same as those for

y and z
}
we must have

4 4

Ui = 2? cik yk , F, =^ c,-^ (A-
=

1, 2, 3, 4),

t=i t=i

where c,-* are constants. But these expressions, when substituted in

the preceding equations, show that the curves Cy
and C. are situated

on the same quadratic surface, and that the line joining the points
Py

and Pt is a generator of this surface.

We can therefore say : a system of two linear differential equations

of the second order is identical with its adjoined system, if and only if

its integrating ruled surface is of the second order.

If the original system has either the semi -canonical or the canon

ical form the same is true of the adjoined system.
From our definitions of the quantities involved we have the follow

ing relations:

(40)
Zek Uk

=
0, Zzk Vk

=
0,

where

(41) D = D(yk , ** ,#, ft).

It follows from the reciprocity of the two systems and may also

be verified directly by differentiation of (40) that

where D in the first place stands for

D(W F. , Ukt F4);
but this is the same as (41), for

(43) D (U*
1

, F;; Ut , FO = D (yk t
zk , yk)

zk}.
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Now let yk and zk be simultaneously transformed into

4 4

yk=j? ckiyit
zk
= cki Zi (k

=
1, 2, 3, 4),

=i

where CK are constants, whose determinant does not vanish. We
may look upon such a transformation as a change of the tetrahedron

of reference, or else as a projective transformation of the integral

curves.

Equations (40) will be satisfied by the transformed quantities as

well. Therefore

2*
4=1 A=

where (7 denotes the determinant of the transformation (44).

These are of exactly the same form as (40), except that Uk and

Vk have been replaced by

respectively. But on the other hand equations (40) are sufficient to

determine 17% and Vk as their solutions.

Therefore we must have

(45) &-&amp;gt; K-tt* * (*
-

1, 2, 3, 4),

*&quot;ffA r
cra

or, solving for Uk and Fj,

(46) V*=
4=1 *==!

where Oi,- is the minor of c^.j in the determinant

C= cki \,
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We may state our result as follows: If the elements y{ and zt of
a simultaneous fundamental system of (A.) are made to undergo cogredient

linear substitutions with constant coefficients and non- vanishing deter

minants, the corresponding solutions of the adjoined system of differential

equations also undergo mutually cogredient linear substitutions with con

stant coefficients. The coefficients of Hie second set of substitutions ore

the minors of tiwse of the first set in their determinant, divided by the

square root of that determinant. In a slightly modified sense then, tiie

quantities (ykt Zt) and (Ut, Vt) are contragredient. The quantities

(yt , Zk) and (Zt , pt)
=

(i*i/D, vJD) are contragredient in the ordinary
sense of the icord.

Upon this theorem rests the simple relation between the mono-

dromic groups and the transformation groups of reciprocal systems
of differential equations.

1

)

We may complete the relations (40) in an interesting manner.

We have

y&quot; + PuVk + pa z* + Vnyt + && =
0,

(K
=

1, 2, o, 4).
** + AiJ + P&*k + 22 i yk -f

If we multiply these equations by 7* and Vt successively and

add, taking into account the relations (40), we shall find

(47)

=
*&quot; v*

= -

Also, if (40) and (47) are used,

1) We sball have no occasion in this work to discuss these notions. They
may be defined by generalizing the corresponding concepts for a single linear

differential equation.
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Finally, treating (35) as we have just treated (A), we obtain

2 uk&quot;yk
= + Pa YD, 2 uk&quot;*k

= - Pn YD,

(49)

Jj
1 vk&quot;yk

= + p., YD, $ vk &quot;gk
= - Al YD,

k= l k=l

as may also be seen from the reciprocity of (A) and (35).

We have seen in Chapter IV that every system of form (A) may
be reduced to a semi -canonical form characterized by the conditions

pik 0. We can now show that this transformation corresponds to

the determination of the asymptotic curves of the integrating ruled

surface. 1

)

As a matter of fact a simpler reduction is sufficient to determine

the asymptotic lines. For, let the given system be transformed into

another for which merely Piz=p&amp;lt;n
= Q, while pn and p22 may be

arbitrary. Then the integral curves Cy
and Cz on S will be such that

/fc= l

-~_
/t= l

i. e., the plane tangent to S at (y1} y%, ys , y^) is the osculating plane
of the curve Cy

at that point, and the plane tangent to S at (#i) t &amp;gt; e &amp;gt;*4)

is the osculating plane of Cz at that point. Therefore Cy
and Gz are

asymptotic lines of the surface, asymptotic curves of the second set,

those of the first set being the generators of the surface.

//, then, in any system of form (A), Pi2 =.^21 0&amp;gt;

^s integral

curves are asymptotic lines on its integrating ruled surface.

If a given system (A) has by a first transformation been con

verted into another for which p12
= p2l

=
0, the semi -canonical form

for which pn and p22 also vanish, may be obtained very easily by

putting
-s- Pudx . Ip-ndx

y = ye
* J

,
z = e

* J

Since such a transformation merely multiplies y1} . . .,y by the same

factor, and similarly #1; . .
.,

#4 ,
it does not affect the significance of

these quantities as the homogeneous coordinates of corresponding

points on two asymptotic lines.

1) A curve is an asymptotic line upon a surface, if its osculating plane,
at each of its points, coincides with the plane tangent to the surface at that

point. A surface has two families of asymptotic curves upon it, which coincide

only if the surface is a developable.
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If the system (A) is written in the semi-canonical form, the most

general transformation which leaves this form invariant was found to

be [Chapter IV, equations (90)]

where | is an arbitrary function of x
}
and where a, &, c, d are arbitrary

constants.

These equations show, in the first place, that there exists upon
the ruled surface a single infinity of curved asymptotic lines. But

further these equations show that the double -ratio of the four points

in which any generator of the surface intersects four fixed asymptotic

curves of the second set, is constant.

This theorem is due to Paul Serret 1

}, and gives a most elegant

generalization of the well-known property of a quadric ruled surface.

5. The fundamental theorem of the theory of ruled surfaces.

In Chapter IY, 7, we have shown that, if the invariants
4 ,

04- 1 9
an^ io are giyen as functions of x, provided that &4 and

10 are not zero, a system of differential equations of the form (A)
can be written down whose invariants coincide with these arbitrarily

given functions of x. Its coefficients were given by the equations

(102) of that paragraph, and all other systems of the form (A) which

have the same invariants were found to be equivalent to this special

system (102). We may now express this theorem in the following

form.

If 4 ,
@4 .i, 9 and 10 are given as arbitrary functions of x,

provided however that 4 and 10 are not identically equal to zero,

they determine a ruled surface uniquely except for projective trans

formations.

This theorem may be regarded as the fundamental theorem of the

tfteory of ruled surfaces.

If we denote the invariants of the adjoint system by 4 , &.\, etc.,

we find from (37) and (38),

fSfA fi ft f$i , (*) t , ft = (*) (*) (*)
^ju; ty

4
t&amp;gt;/4 , &amp;lt;^4.i ^4-15 Wg ^9&amp;gt; ^10 -

&quot;if

We may, instead of interpreting Uk, Vk as coordinates of planes

interpret them as point coordinates. Then, the integrating ruled sur

face of the adjoint system, instead of being the surface S in plane

coordinates, will be a surface S
,
dualistic to S, in point coordinates.

We have, therefore, the following further theorem.

1) P. Serret. Theorie Nouvelle Greometriqne et Mecanique des Lignes a

Double Ccrarbure. (Paris -Bachelier, 1860.)
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If the fundamental invariants of two ruled surfaces S and S

expressed as functions of the same variable x, satisfy the relations (50),

the two surfaces are dualistic to each other.

We notice at once a further consequence. The system (A) and

its adjoint are referred to the same independent variable x. If (A)
and its adjoint are equivalent, it must, therefore, be possible to trans

form (A) into its adjoint by a transformation

(51) U=*ay + p0, V= 7 y + 8z,

involving the dependent variables only. But such a transformation

leaves the invariants, absolutely unchanged. Therefore, (A) and its

adjoint can be equivalent only if

6&amp;gt;

9
= 0.

Moreover, as our fundamental theorem shows, if &amp;lt;94 =}= 0, and &amp;lt;9

10 =j= 0,

this condition &
9
=

0, is not only necessary but also sufficient for the

equivalence of (A) and its adjoint. As (51) shows, the integrating

ruled surface of the adjoint will coincide with S, generator for gene
rator. Let us speak of a ruled surface as being identically self-dual,

if a dualistic transformation exists, which converts it into itself

generator for generator. Then-we have seen, that the necessary and

sufficient condition for an identically self-dual ruled surface is 9
=

0,

provided that @4 and &
lo are not zero.

We shall find, later, a very simple interpretation for the con

dition &g = 0, which will make the truth of this result intuitively

evident.

In the case that

the adjoint system coincides with (A), so that we may put

Therefore, the quadric surface is identically self-dual in a still more

special sense. There exists a dualistic transformation which converts

it into itself, point for point. More strictly speaking, this transforma

tion converts every point of the surface into its tangent plane, and

every tangent plane into its point of contact. It is evident what

this dualistic transformation is; it is merely the pole -polar trans

formation with respect to the quadric itself.

We have proved the fundamental theorem under the assumptions

4 =(= 0, @
10 4= 0. We shall see that theorem actually breaks down

if either @4 or 6&amp;gt;

10 vanishes. We prefer to leave the proof of this

statement for a later chapter, as we shall then be able to interpret

these conditions geometrically.
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Examples.

Ex. 1. The equation of a cubic ruled surface, with distinct

directrices, may be written xzx^ xx2
* = 0. The two curves (straight

line directrices),

ft
= & = * & = x

&amp;gt; y*
= i =

?
i
=

i, ~?
e
= ^ ~r3

= ~?4
= 0;

are upon it. Show that the differential equations of the surface are

Compute its invariants. Show that its asymptotic curves are unicursal

quartics, which intersect every generator in two points harmonic

conjugates with respect to its intersections with the directrices.

Ex. 2. If the directrices of the cubic coincide (Cat/ley s cubic

scroll), its equation may be written #2
3 + x foz, -f #8^4)

= 0. The
curves

01
=

&amp;gt; 02
=

; y*
=

*t y*.
= 1

5 (directrix),

^i
=

I? 3
=

#, ^3
=

0, 24 = j;&quot;;

are upon it. Its differential equations are

Its asymptotic curves are twisted cubics. All of its invariants vanish.

Ex. 3. Find the pinch -points of the above surfaces, and show
that the asymptotic curves pass through them (Snyder).

Ex. 4. If

and

_ , 3
z

l
K -\--

the line PyP4 generates a developable, whose edge of regression is

the cubic

Ex. 5. For the general transformation, the left members of the

adjoint system are cogredient with y and
,?, except for a power of | .

They are absolutely cogredient with the left members of the system

(A). Thence deduce a new proof that C is a covariant.

WILCZTXSKI , projective differential Geometry. 10



146 VI. SIGNIFICANCE OF THE CO-VARIANTS P AND C.

CHAPTER VI.

SIGNIFICANCE OF THE COVARIANTS P AND C.

1. The flecnode curve and the flecnodal surface.

Consider the quantities Q and 6 denned by the equations (112)
of Chapter IV. If we substitute y = yk ,

z = zk , (k
=

1, 2, 3, 4) in

these expressions, we obtain

, 1N .. . n .OO.N
(1) (k = 1. 2, 3, 4),

which quantities may again be interpreted as the homogeneous coor

dinates of two points Pp
and Pa . Clearly P?

is a point of the plane

tangent to the integrating ruled surface S of (A) at Py,
and Pa is a

point of the plane tangent to S at Pz .

If the points Py and Pz be transformed into two other points
Py ,

Pj of the line Lyz which joins them, by the equations

y = ay + pz, 8 = yy + di,

then, as has already been noted in Chapter IV, P^,
and Pa will be

transformed cogrediently into PJJ and P^, where

p = ap + /3(5, tf = yp + tf(7,

i. e. into two other points of the line L^ a which joins P?
to Pa .

Thus, we have, by means of equations (1), a straight line L^ a

corresponding to every generator Lyg of S. Moreover, there is a

one-to-one correspondence between the points of these two lines,

which we now propose to investigate.

For this purpose, suppose that (A) has been reduced to its semi-

canonical form, so that Cy and C, are two asymptotic curves of S,

and pik = 0. We shall then have

Qk
= 2yk ,

6 = 2ek ,

i. e. P
Q
and Pa are points upon the tangents of Cy

and Cz . If there

fore, we consider any point P upon the generator Lyt of S, the point
P of the line L^ a which corresponds to it, is situated upon the

tangent t of the asymptotic curve of S which passes through P.

Now, as P moves along the generator Lyz or g of S, this tangent t

describes a hyperboloid H. For, the asymptotic tangent t of the

point P of g is determined by the condition that it shall also inter

sect g and
g&quot;,

two generators of S infinitesimally close to g. The

hyperboloid H shall be called the hyperboloid osculating S along g.

We shall speak of those generators of H which are of the same kind

as g, as its generators of the first kind. Then, as P moves along g,

t coincides successively with all of the generators of the second kind
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on H. P is a point of t, and its locus is a straight line Loa-

Therefore, L^ a can only be a generator of the first kind upon H.

Tlie line Loa is a generator of the first kind upon the hyperboloid

osculating the ruled surface along g. The correspondence between the

points of g and of Loa is such that the straight lines joining correspon

ding points are the generators of the second kind upon the osculating

hyperboloid.

The position of Lcja upon the osculating hyperboloid changes
when the independent variable x is transformed. We have seen

in chapter IY, equation (115), that if we put

i_-*
Q and 6 are converted into Q and o, where

9 (9 + *l9)i 0=^0 + */4 f=y
Clearly, 77 may be chosen in such a way as to make L^ a coincide

with any generator of the first kind upon H. We shall construct

the line L^ a for every value of x, and thus get a new ruled surface

S associated with S. We shall speak of S as the derivative of S
with respect to x. If S is given, 17

is known as function of x, and

is determined save for a linear transformation. The derivative ruled

surface may, therefore, serve as an image of the independent variable.

This image does not change if x is converted into ax -f- b where a

and b are arbitrary constants fcf. Chapter III).

If the independent variable of (A) is given, the generator L^ a

of the derived surface S may be defined directly by a limit process.

Let us assume pit
= 0, so that Cy

and C, are asymptotic curves

upon S. Then

Q
= 2y ,

&amp;lt;?

= 2/.

Consider the three consecutive generators g \, g , g + \ of 5 as belonging
to the values of x,

respectively, where Ax is an infinitesimal. Construct the tangent to

Cy
at P

y
. It meets the three generators g \, gQ , g + i since Cy is an

asymptotic curve. The coordinates of the three points of intersection,

A, B and C, are

yk yk 4x, yt , yt + yt4x,

so that the point P? whose coordinates are proportional to yt ,
is

the harmonic conjugate of B with respect to A and C. Similarly
for Pa . Therefore the line Loa may be selected as follows. We
consider three generators of the surface S, corresponding to three

values of x forming an arithmetical progression of common difference d.

Upon the hyperboloid, determined by these three lines, we construct

10*
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the generator which is the harmonic conjugate of the middle line

with respect to the other two. As the common difference d approaches
the limit zero, the hyperboloid approaches as a limit the osculating

hyperboloid, and the fourth generator approaches as a limit the line L^ a -

Omitting the subscripts in (1), we find by differentiation

whence, making use of (A),

If the values of t/

f

and # in terms of y, z, Q, 6 be substituted from

(1), the following equations will be obtained:

-R^

5 = 2

where R and /S are merely abbreviations for the left members, and

where the quantities w/j are the same as those which have been

previously denoted by these symbols.
The left members of (2), for Q

=
gk) G = 6k) are clearly the

coordinates of two points, one in the plane tangent to S at PQ and

one in the plane tangent to S at Pa . The equations (2) show, there

fore, that if the planes tangent to S at PQ and Pa are constructed,

they will intersect the generator Lyz of S in the points Mn &amp;lt;/A+%2^

and M21 2/i + u^zk respectively. Or, in other words, the lines joining

gk with un yk + Ui$8k }
and 6k with w81^ + wQ2^ are tangents of the

derivative ruled surface S at P^ and Pa respectively.

In particular then, if w
12
= M21

=
0, the lines which are tangent to

the asymptotic curves of the surface S at P
y
and Pz ,

are also tangents

of the derived ruled surface 8 . But we can find a simpler and more

fundamental interpretation for the conditions u12
= u2l

= 0.

Consider three consecutive generators g \, gQ , g + i of the ruled

surface S. The hyperboloid HQ , osculating S along g ,
is determined

by these three lines. On H we have a line L^ a ,
or for short hQ ,

which is the generator of S corresponding to the generator g of S.

Consider a fourth generator g% of 5, consecutive to gv The lines

ffo&amp;gt; duffs determine the hyperboloid Hlf osculating S along g^ There

is upon it a line h which is the corresponding generator ofS . Any tangent
to S along h must intersect hQ and hv If it is, at the same time,

tangent to an asymptotic curve of S at any point of g ,
it must

intersect also the lines #_i, g , g1
. Such a line must, therefore,

intersect the five lines
&amp;lt;7_i, g , gt

. hot \. But since 7^ is on the

hyperboloid determined by g \, gQ , gl} we may suppress hQ) since any
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line intersecting g~i, gQ , g^ will also intersect hQ . Therefore, we may
say that such a line must intersect the four lines

&amp;lt;7_i, gQ , glf h
l

.

But any line intersecting g i,gQ ^g1 ,
is a generator of the second

kind of the hyperboloid H ,
and any line intersecting gQ} glf hl} is a

generator of the second kind on H
l

.

Therefore any line, which is tangent to an asymptotic curve of

S at a point of g, and which is at the same time tangent to the

derivative surface S at a point of the generator of that surface which

corresponds to g, is common to two consecutive osculating hyper-
boloids of the surface S. Or, in other words, such a line intersects

four consecutive generators of the surface S.

There are, in general, two such lines, since four lines in space
have two real, imaginary or coincident straight line intersectors. In

fact, if I1} lif l3 are three of the given four lines, any line t which

intersects them, is a generator of the second kind on the hyperboloid
H determined by ll} 7,, 73

. The line ?4 intersects H in two points.

Therefore, the required intersectors of Z1? Z
2 ,

7
3 ,

14 are those two gene
rators of the second kind on H, which pass through these two points
of intersection. They coincide if 74 is tangent to H.

We have seen in Chapter IV, 8, that, if the factors of the

covariant C be denoted by 17
and g, so that

u-0
, T * + 8t

n = *y + WM* = * y
- -Er-a

(3)

where

4 i*

*\*

the system of differential equations for
TJ

and will be of the form

(A) and will satisfy the conditions u^ = z&amp;lt;21
= 0. Moreover we may

see from (44) Chapter IV, that the most general transformation of

the dependent variables which leaves the conditions ul2
= un =

invariant, may be compounded from

y = aij, z = d,
and

y = ,
z =

ri;

in other words, the two curves C,, and C* on S are absolutely deter

mined by the conditions Mj2
= u^ = 0.

Therefore, the two curves upon S, which are characterized by the

conditions u 12
= w21

=
0, intersect every generator of tJie surface in tiie

tico points at which tangents can be drawn, which have four consecutive

points in common with the surface.
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In his general theory of the singularities of a surface 1

), Cayley
denotes a point, at which a four -point tangent can be drawn, as a

flecnode. The tangent itself may be called the flecnode tangent, and

the locus of all of the flecnodes of S, its flecnode curve. The ruled

surface of two sheets, the locus of the flecnode tangents of S, shall

be called its flecnode surface.

A. flecnode tangent is clearly tangent to the asymptotic curve

which passes through the flecnode. It is not, in general, tangent to

the flecnode curve. For, if it were, the flecnode curve would be at

the same time an asymptotic curve, i. e. if we identified this curve with

C
y&amp;gt;

we should have simultaneously

But from these conditions, we would find that g12
also must vanish,

so that the first equation of (A) would become

If, however, ylf . . . y are four solutions of this equation, there must
be two homogeneous linear relations, with constant coefficients, between

them. For, such an equation can have only two linearly independent
solutions. In other words, the curve Cy

would be a straight line.

We may recapitulate our main result as follows.

The flecnode curve is determined ~by factoring the covariant C. Its

intersections with the generators of the surface are distinct if (94 =}= 0;

they coincide if 4
= 0. If the coefficients of system (A) are real, and

if the solutions yk and z* are real, the flecnode curve intersects the gene
rators in real, coincident or imaginary points according as

If the curves Cy and Cz themselves are the two branches of the flecnode

curve, system (A) is characterized ly the conditions

wia
= Mai

= 0-
2
)

The flecnode tangent is never tangent to a branch of the flecnode

curve unless that branch degenerates into a straight line. In that

case that branch is also an asymptotic curve, and the corresponding
sheet of the flecnode surface degenerates into a straight line.

The flecnode curve becomes indeterminate if

Wjj ^22
===

^12
===

^21
===

&amp;gt;

1) Cayley. Mathematical Papers, vol. II, p. 29.

2) If we speak of the two branches of the flecnode curve, we must guard

against possible misunderstanding of the term. It is merely a word expressing
the fact that the curve intersects every generator in two points. The curve

need not therefore be a bipartite curve.
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i. e. if S is a quadric. That this must be so, is obvious geometrically.

But even if MH UM,
M12, M, t

do not vanish identically, there may be

particular values of x for which they do.

For such generators, the flecuodes are indeterminate. We may
say that the osculating lujperboloid liyperosculates the surface, a singu

larity of ruled surfaces first mentioned by Voss who, it seems, was

also the first to consider the flecnode curve.1

)

In this connection we notice further that the covariant C vanishes

identically, i. e. for all curves Cy
and C. upon the surface, if and

only if the surface is a quadric.

In order to be able to deduce further results from onr con

siderations, it becomes necessary to set up the system of differential

equations for the derived ruled surface S . It will be, of course, a

system of form (A) between p and &amp;lt;?.

We find from (2), solving for y and z,

Jy = i&amp;lt;

2,E ]2 $,
(5) T j,

~ J= ii
- MU *%

J Z = M21 ll + Mu O,

Further, if (2) be differentiated, and if the values of \j and d
be expressed in terms of y, z, Q, 6 from (1), we shall find

2E = MU Q + z&amp;lt; 12 tf+ (2 un- unpn - 12j&amp;gt;21) y -f (2 ult
- unp12

-

2S = &amp;lt;&amp;lt;21 p + &amp;lt;22 6+ (2 21
-

The quantities u ik may be expressed in terms of the quantities pik

and Vac by equations (32) of Chapter IV. If this be done, if moreover

both members of the equations be multiplied by J, and if use be

made of (5), these equations become

Jun Q
- J 12 &amp;lt;? + tnE + *12 S = 0,

2 JS - Jun Q
- J%2

6 + *21 E + ^22 S = 0,

where we have put

tn = Jp
tl9_
=

J&amp;gt;

Performing the differentiations indicated, inserting the values of

R and 5 from (2), and collecting terms, we find the required system
of differential equations:

1) Voss. Zur Theorie der windschiefen Flachen, Mathematische Annalen,
vol. 8.
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i

=
0,

+ 2(Jft 1

+ taiPu

Let us put

(9)

so that

I VV-t -t fv-t -i ~\ tvn-t Atl Q J l/H 4 m &quot;V M l 1 *91 &quot;T ^01 ^9^\ 11 XI 21 1/ J_i
* \1121 ml 91O/1I ^\ O / 5 J ^ ^

We may then write the system (8) as follows

P22 &amp;lt;? + Qn v + Q^ -
0,

where
P jp 4- A (t,

ft 1,2),

(12)
$11

= Oh +
&quot;2

(
An^ii + ^12^21); $21

=
02i +

$12
=

012 +
2&quot;

(AH-Pl2 + ^12^22); $22
=

022 +
2- (

A2lPl2 +

These equations will be of the greatest importance in a later chapter.

Our present purpose, however, is to eliminate 2, 2
, 0&quot;, 6, ,

0&quot; from

the eight equations (A), (1), (2) and (11), under the assumption

W12 M21
= pn = ^&amp;gt;22

= 0. We shall thus find a system of differential

equations between y and Q, whose integrating ruled surface is one

sheet, F ,
of the flecnode surface of S. We may find in the same

way the equations for the second sheet, F&quot;,
of the flecnode surface.

We assume, therefore, pu =#22 ^ Wi2
= W2i

== 0- We find, from (1),

(13) Pl,0
=

p
-

2^,
whence by differentiation

(14) pl,0
- -

Zp^y&quot; + 2^2^ +Pv&amp;lt;&amp;gt; -Pa*
If we substitute these values into the first equation of (A), we

shall find the equation
-

jp18 y&quot; + 2 (pn - 2l8) y -f p18 ? -f- j)12 gn y
-

(p12
-

which is one of the required differential equations.

From (2) we find

If these values be substituted into the first equation of (11), we

shall find

2
Q&amp;gt;12Pn - 2 12)

-
$u +
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which is the second equation of the required system. If the values

ofPn , QnfP^, Qn under the special assumptions, ^11 =j},2
= M12

=
21 =0,

be introduced, we find finally the following system of differential

equations for the sheet F of the flecnode surface of S:

(15) &amp;lt;/
4 [2(qn

+
[*ii

In precisely the same way we find the equations of the second sheet F1

:

-it
T

(16) 6&quot;

In these equations Cy and (7- are the two branches of the flecnode

curve of 5; CQ and Ca are two arbitrary curves on the two sheets of

the flecnode surface. It has, moreover, been assumed that in (A),

AiJfa 0.

It may easily be verified, that if the two sheets coincide, i. e. if

@4
=

0, the single sheet of the flecnode surface is still given by (15),

if we there put #,
= qu .

Examples.

Ex. 1. Find the system (A) determined by the two conies

/i
=

&amp;gt; & = !&amp;gt; & = * ^ = ^
^ = 1, r

s
=

x, Zs
= j:

2
, ^ = x.

Determine its flecnode curve and flecuode surface.

Ex. 2. Solve the same problem for the ruled surface determined

by the curves

2/i
=

0, #2
=

!, & = ^ !/4
=

*?&amp;gt;

%\
^^

JL. .4 o
~

fci &amp;lt;i Q ^^
i// &amp;lt;6 j

* Js f

Ex. 3. Find the asymptotic curves, flecnode curve and flecnode

surface of the integrating ruled surface of

y&quot;

= ay + Iz, z&quot;
= cy -f dz,

where a, . . . d are constants.

Ex. 4. Set up the differential equations for the various classes

of ruled surfaces of the fourth order (cf. for example Jessop s Treatise

on the Line Complex, Chapter V). Determine their flecnode curves

and surfaces. Also their asymptotic curves.
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CHAPTER VII.

ELEMENTS OF LINE GEOMETRY.

1. Line coordinates, complexes, congruences, ruled surfaces.

A point is determined by three coordinates
,
a fact, which may

be expressed in the language of Lie by saying that there are oo 3

points in space. There are likewise oo 3
planes in space. The older

geometry considered only points as elements, all other configurations

being looked upon as being composed of points. The general formu

lation of the principle of duality by Poncelet in 1822 led necessarily

to the consideration of the plane as a space element, thus giving rise

to a broader view of the problems of geometry. The idea that the

straight line may be employed as a space -element was first formulated

by Plucker in 1846, and has been of inestimable value for the deve

lopment of geometry. Although some of the configurations of line-

geometry were studied by other mathematicians previous to Plucker,

it is from the explicit formulation of this principle that the existence

of line -geometry must be dated. And it is also a consequence of the

large views of Plucker that nowadays geometers are ready to intro

duce as element of space any configuration which may happen to

be especially well fitted for the purpose of the problem in hand.

The first line -coordinates introduced by Plucker were very im

perfect. If x, y, z are cartesian coordinates, a line may be (in general)

represented by the two equations

x rz + Q, y = ss + 6,

where the four constants r, s, Q, 6 are characteristic of the line. These

four quantities may, therefore, be taken as the coordinates of the line.

For, to every line corresponds one set of these four quantities r, s, Q, 6

and conversely. There are, therefore, oo4 lines in space. These quan
tities are the line -coordinates introduced by Plucker in 1846.

If any projective transformation be made, the line is converted

into another

x = r s + $ , y = s g + &amp;lt;? .

Without going into the details of the computation, we must never

theless state the result of such a transformation. It is found that

r
f
s

, (&amp;gt; ,
6 1

are expressed in terms of r
} s, Q, 6 as fractions with a

common denominator, this denominator and the numerators being linear

functions of r
} s, p, 6 and of

ri
= r6 SQ,

with constant coefficients. An equation of degree n between r
} s, p, 6

would therefore have its degree changed by a projective transformation.
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This disadvantage of the above system of four coordinates was

avoided by the introduction of
17

as a fifth, supernumerary, coor

dinate. This step was taken by Pliicker in 1865. The degree of an

equation between r, s, g, 6, r
t
remains invariant under projective trans

formation, and may therefore serve as a characteristic for a con

figuration of line -geometry in the same way as the degree or class

of a surface in point- or plane -geometry.
But these coordinates remain cumbersome, being unhomogeneous.

We have already introduced homogeneous line -coordinates in Chapter II,

6 in accordance with the general notions due to G-rassmann, which

were explained there. Essentially the same line -coordinates were

employed by Cayley, in 1859, who showed that by means of them

it becomes possible to characterize a space -curve analytically, by means

of a single equation. To Cayley, also, is due the quadratic relation

between the six homogeneous line -coordinates.

We repeat the definition. Let ylt . . . y and zl} . . . z be two

points of the line. Put

(1) o, t
= y t zk ykzt (i, k = 1, 2, 3, 4).

Since oo, ,

= 0, and /*
= otl ,

we need retain only six of these

quantities, say
ra12? ^ISJ ^UJ ^3) O

42&amp;gt; ^U
We define these to be the six homogeneous coordinates of the line.

The propriety of this definition has already been explained. There

is a one-to-one correspondence between the lines of space and the

ratios of the above six quantities. There is, of course, a relation

between these six quantities, since there are not oc 5
,
but only oo4

lines in space. This relation has already been found to be (cf.

Chapter II, 6),

(2) & = O^GJ^ -f ol3o^ -f rau co23
=

0,

where & may be used as an abbreviation for the left member. Con

versely any six quantities which satisfy (2) may be interpreted as

homogeneous coordinates of a line.

It is easy to see that, corresponding to any projective trans

formation of space, the six homogeneous line -coordinates co,* undergo
a homogeneous linear substitution which, of course, leaves (2) in

variant.

A line may be determined as the intersection of two planes,
instead of being considered as joining two points. If

?&amp;lt;!,...
M4 and

vlt . . . v4 are the coordinates of two planes which contain the line,

the determinants

may also be defined as coordinates of the line. These new coor

dinates rik are defined in a fashion dual to the definition of the first
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set Oik, and line-geometry is clearly a self-dual field, its element

being self-dual. As a consequence of this we shall see that the

quantities tik are proportional to the quantities eo ;rn ,
the indices being

complementary.
In fact, let the line of intersection of the planes (u}} (v), coincide

with the line joining the points (?/), (#). Moreover, let the plane

coordinates be chosen in such a way that the relation of united

position for a point (x1} . . . #4) and a plane (%, . . . W4) assumes the

form
w

l
x

i + w2 #2 -\- w3 x3 -\- ivx = 0.

Then we shall have

M4 24
=

0,

v^ = 0,

v
1 ^ + v

2 2 + v3 % + v^4
= 0.

If we eliminate successively ul} u2 ,
u3 ,

u from the first two equations,

we find
*

-f 0312 M2 -f C313 M3 + 0)UU4
=

0,

0321% + *
-f OJ23 W3 + 0324M4

=
0,

C331% + 32 W2 + * + C034M4
=

0,

C341% + OJ42M2 + O^Wg + * =
0,

which are the conditions satisfied by a line (coiA)
which lies in a plane

(%). The skew symmetric determinant of this system of equations
is equal to i

2
and, therefore, vanishes. Of course there is a similar

system with v/c in place of %. Thus we shall have

on ii
2 + &amp;lt;o13w3 -f o&amp;gt;14w4

=
0,

G)n V
2 + ti3% + rai4 V4

=
;

whence, eliminating ro12 ,

GJ13 :CJH = ttf ^-
In the same way we find the other terms of the proportion

(4) T
12

: T13 : TJ4 : T23 : T42 : T34
= eas4

: ra42 : 23 : co14 : ra
13 : ra

12 ,

which we were to prove.

The six quantities vi1c satisfy the quadratic relation

(5) T = r
12
r34 + T13 T^ + T14 r23

=
analogous to (2).

Let (&, . . .

y^, (*i, zj, Vi, yl~], (&amp;gt;/, ^ )
be the coor-

dinates of four points which are in the same plane. Then
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y* 2/3 2/4

*

which becomes, after expansion,

(6) a&amp;gt;12 &amp;lt;D^
-f

a&amp;gt;j 2
o&amp;gt;3t + o&amp;gt;13 Gj, 2 4-

where
o,t = y,* #**,-, oit = y!tk yk zi-

Therefore (6) expresses the condition that two lines &it and oik shall

intersect. This condition may be written

()
We have seen that the six quantities o ik determine a line if

they satisfy the condition SI = 0. Let us adjoin to this relation,

which is satisfied by the coordinates of all lines of space, another

equation between the line coordinates. In order that this new equation

may be capable of geometrical interpretation, it must be homogeneous.

For, since the coordinates o ik are homogeneous, the quantities co,*

represent the same line as 00,* if c is an arbitrary constant. The

equation of a line locus must, therefore, remain unchanged if co,-*

is put in place of co, t ,
i. e. it must be homogeneous. Let

(7) &amp;lt;f (o&amp;gt;,0

=

be such a homogeneous equation, distinct from Q = 0. Then it is

clear that the totality of lines, whose coordinates satisfy this equation,

depends upon three independent parameters or, in other words, this

totality consists of cc 3

straight lines. Such a locus of cc 3

straight
lines has been called, by Plticlter, a line complex.

If the equation (7) of the complex is algebraic, of the wth
degree

the complex is said to be of the n^ degree.
We may write (7) as follows.

= 0.

Let us regard yl} . . . j/4 as constants. The equation becomes homo

geneous and of the nth
degree in zlf . . . z4 . Moreover we know that

if (z1} . . . z^) is a point which satisfies this equation, any point of the

line joining it to (ylf . . . t/J will also satisfy it. The equation represents,

therefore, a cone of the n*h order with its vertex at the point (yl . . . t/4).

In other words: the straight lines of a complex of the n^ degree
which pass through a given point of space, are the generators of a

cone of the nih order whose vertex is the given point. By means

of the complex, therefore, there corresponds to every point of space



158 VII. ELEMENTS OF LINE GEOMETRY.

a cone of the nih order with its vertex at that point. This cone may
be called the complex cone of the point.

In place of the coordinates or,* we may introduce into (7) the

coordinates rilt which are proportional to them. We shall then find

an equation of the form

il&amp;gt;(uiVk uk Vi)
=

0,

also of the wth
degree. By the same reasoning as above, we find

that the lines of a complex of the wth
degree, which are situated in

a given plane, envelop a curve of the nih
class, the complex curve of

the plane considered.

The locus of all lines which satisfy two independent equations,

homogeneous in the line coordinates, consists of oo 2

straight lines.

It is known as a congruence. Clearly the lines common to two com

plexes form a congruence. But a congruence need not be the com

plete intersection of two complexes, just as a space curve need not

be the complete intersection of two surfaces. The essential part of

our definition of a congruence is that it contains oo 2
straight lines.

The locus of oo 1

straight lines is a ruled surface, which may or may
not be the complete intersection of three complexes.

We shall have occasion to make use of the expression of the

homogeneous line -coordinates in terms of non- homogeneous point-
coordinates. For this purpose we need merely put

2/i
=

, 2/2
=

V, 2/3
=

*, 2/4
=

*i
= ^

;

so that

=
I/,

C312
= xy x*y, ra13

= xe x z, eou = x x
,

M = yz y z, & = y y&amp;gt;

a&amp;gt;34 =* * .

In particular the two points x, y, z and x
, y

1

,
d may be infinite-

simally close to each other, so that

x = x -f dx, y = y -f dy, 2 = z -f- dz.

Then the line coordinates become

xdy ydx, xdz zdx, dx,

yds - sdy, dy, dz,

in which form they have been employed principally by Lie. If x is

the independent variable, and and -^ are denoted by y and g
,

(.1 OC (AI OC

they become

xy -
y, xz z, 1, yd zy , y , J,

in which form Halphen has made use of them.
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2. The linear complex. Null - system.

Let us consider in greater detail the case in which the equation

of the complex is of the first degree. Such a complex is known as

a linear complex. Let its equation be

(8) o12 a 12 + ois a18 + o14 au -f &amp;lt;D23 a33 + a^a^ + a^a^ = 0.

There is one case, in which the interpretation of this equation

is obvious. Suppose that the coefficients a it satisfy the condition

(9) A= a
12
a34 + a^a^ -f a14a23

= 0.

Then a,-i are the coordinates of a fixed line, and (8) is the condition

that the line
(GJ.-*)

shall intersect the line
(a,- t) [cf. equ. (6)]. There

fore, if condition (9) is satisfied, the linear complex consists of all

of the lines which intersect a given line, its axis. The line-coordinates

of the axis are proportional to the coefficients of the equation (8) of

the complex, taken however with complementary indices. In this

case the linear complex is said to be a special linear complex. The

equation (8) may be regarded as the equation of a straight line in

line -coordinates. In the same way any curve may be represented

analytically by a single equation between line -coordinates, viz.: by
the equation of the complex made up of all the &amp;lt;x&amp;gt;

3 lines which

intersect the curve. It was principally this fact that lead Cayley to

introduce line -coordinates.

Let A be different from zero. According to the general theorems

of 1, we know that the lines of the complex, which pass through

any point P, form a plane pencil with its vertex at P. Let p be

the plane of this pencil. Then the lines of the complex which are

situated in p, intersect in P. The complex determines, therefore, an

involutory one-to-one correspondence between the points and the

planes of space. Moreover, the corresponding elements are in united

position, i. e. P lies in p and p passes through P. p is called the

null -plane of P; P the nidi-point of p. The correspondence itself is

usually spoken of as a null -system.

It is easy to set up the analytical expression for this correspon
dence. If, in (8), we introduce the explicit expressions for GJti and

put a24 in place of a^, we shall find

* -

-f
*

) ^ = 0.

For a fixed point (yl} . . . y4\ this is clearly the equation of the plane
which corresponds to it. If ult . . . u^ are the coordinates of this
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plane, they will be proportional to the coefficients of g1} . . . #4 in

the above equation.
Whenever the coordinates u1} . . . u of a plane are given as homo

geneous linear functions of the coordinates xlf . . . x of a point, we
have a so-called dualistic transformation, giving rise to a one-to-one

correspondence between points and planes. Let

{ i 1 / Owfa
===

Cvfc 1 tv i
i

t*i

fc 2 **/&
&quot;~i ^k 3 ^Q i ^h 4&A \ *v &quot;~

J. *u O ^ )

where g is a proportionality factor, be such a dualistic transformation,
and let us assume that it has the further property that every point
lies in the plane which corresponds to it. Such is the case, as we
have seen, in the point- plane correspondence determined by a linear

complex. We must then have

1 1 *&quot;l 2 2 &quot;i~ 3 3 *&quot; 4 4
~

for all values of xi} . . . x. We find immediately

i. e. the determinant of (11) must be skew -symmetric. But this gives

precisely the point-plane transformation determined by the linear

complex. Therefore:

The point-plane correspondence determined by a linear complex is

the most general dualistic correspondence, for which all pairs of corre

sponding elements are in united position.

We have found that the coordinates (ult . . . w4) of the plane,

which corresponds to the point (x, . . . #4), are given by the equations

I 5fe

. .

^-

i. e. let the point Px describe the line P
yP^ Then we shall find

QUi
= V{ -f Kwi}

where (%,... ?
4) and (w1 ,

. . . W4) are the coordinates of the planes
which correspond to Py and P, respectively; i. e. as a point Px describes

a straight line, the corresponding plane turns about another line as axis.

This relation between the two lines is reciprocal. They are said to

be reciprocal polars of each other with respect to the complex. It

is easy to show further, that every line of the complex is reciprocal

polar to itself, and that every line, which intersects two reciprocal polars,

belongs to the complex.
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The determinant of (12) is equal to

0,
-

12,
- als, 14

(13) ;

=
(o12

a34 + ai3
i

13&amp;gt; 23 &amp;gt;

a34

i 14&amp;gt; 24&amp;gt;

aS4

The equation of the complex may be written

4

(14)

,*=!

if we put a(i
=

0, aik
= aki. A general projective transformation

transforms the line coordinates o,* in accordance with the equations

(15) o&amp;gt;a

The result of this transformation upon the complex (14), will be

to convert it into
4

,*&i&amp;gt;&t.-6&amp;gt;&amp;lt;&amp;lt;r

= 0,

i. e. into another linear complex whose coefficients a (() are given by
the equations:

4

(16) ap ,.
= aitbiu btr , (p, v = 1, 2 3, 4).

If we denote the quantity A for this new linear complex by A, A *

may be written in the form of a skew -symmetric determinant cor

responding to (13). If we denote the determinant of the quantities

bit by ^, and if we make use of equations (16), together with the

rule for the multiplication of determinants, we shall find

A * = 4*A*,

i. e. A is a relative invariant of the complex for projective trans

formations.

That a linear complex has no absolute invariant under projective
transformation may be seen as follows. Let us choose the tetrahedron

of reference in such a way, that two of its non- intersecting edges,

say xt
=

#2
= and xz

= x = are reciprocal polars with respect
to the complex. Then the plane, which corresponds to any point of

the edge ^= ^ = 0, must contain the other edge; i. e. for x
J =x*Q

we must find u^
=

?&amp;lt;

2
=

0, for all values of z3 and ;r4 . But equations

WILCZYXSKI, projective differential Geometry. H
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(12) show that this is possible only if a13
= au = 23

= au = 0. The

equation of the complex reduces to

a
12 cj12 + a34 cJ34

=
or

(17) ra12
-

fca&amp;gt;34
=

0,

the invariant of which is

(18) 4 -JR.

If A = this becomes

(19) o,M = 0.

If A =]= 0, the transformation

Js^ /,^^ ^ j^^ ;x/2 j ^g
~~~~-

3/g j ^/^
=-=-: 00 1 *

converts the equation into

(20) &amp;lt;DH - 34
= 0.

Therefore, by a projective transformation every special linear complex
can be converted into (19), and every non- special linear complex
into (20).

In other words, every special linear complex can be transformed

protectively into any other, and every non -special linear complex into

any other non- special linear complex. The linear complex , therefore,

has no absolute invariant under projective transformations.

Since the equation of a linear complex depends upon the five

ratios of the coefficients
a-&amp;gt;

it is clear that a linear complex is deter

mined, in general, by five of its lines. The exceptional case, when
five lines do not determine a linear complex, will be easily under

stood after the developments of the next paragraph. The complex is

also determined by a pair of reciprocal polars p,p and one of its

lines I which does not intersect p and p . For any four lines, which

intersect p and p ,
are also lines of the complex. It is also deter

mined by two pairs of reciprocal polars. But not both of these pairs

can be assigned arbitrarily.

For other properties of the linear complex, especially for a

complete discussion of the arrangement of its lines, the reader may
consult: Plilcker s Neue Geometric des Raumes; Clebsch-Lindemann,

Vorlesungen uber Geometric, vol. II; Jessop, A treatise on the Line

complex.

3. The linear congruence.

The lines common to two linear complexes

A = a12 ra12 + a13 ra13 + auo14 + a23 a&amp;gt;23 + a42 c342 -f a34 34
=

0,

M= &12 0312 -1- &13 0&amp;gt;1S + &14 0014 + &23 ra23 + ^S^g + &S4 C334
=

&amp;gt;
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form a linear congruence. They belong also to each of the oo 1

complexes

(22) lA + iiM=Q.
If we denote the invariants of A = and M= by A and B

respectively, and if we put

(23) C = 0,2 &34 + a23 &u + aal bu + a

the invariant of (22) will be

s*A + JLfiC +
If, therefore,

C 2 - 4AS 4= 0,

there will be two linear complexes of the family (22) which are

special. In other words, the lines of the congruence are flie common

intersedors of two straight lines, the directrices of the congruence.

The directrices of the congruence will be skew to each other.

For, suppose that they were coplanar. Then every line of their plane

would belong to all of the complexes (22). But, unless a linear

complex is special, all of the lines of any plane which belong to it,

form a plane pencil. Therefore, under our supposition, all of the

complexes (22) would be special complexes, i. e. we would have

A = B = C = 0.

In this case, the congruence degenerates into two systems of oo*

lines, viz.: the lines of the plane of the two directrices, and the lines

through their point of intersection.

If

&amp;lt;7

2 - 4AB = 0,

we may speak of a congruence with coincident directrices. Such

a congruence will be obtained as a limiting case of a congruence
with distinct directrices if we allow these directrices to approach each

other as a limit without, however, becoming coplanar. This way of

looking at such a congruence shows that its lines may be regarded
as the tangents of a hyperboloid along one of its generators. For,

these tangents intersect two consecutive generators of the same set

upon the hyperboloid. The lines of the congruence may, therefore,

be arranged in a single infinity of plane pencils. The vertices of

all of these pencils lie upon the directrix. As the vertex of the pencil

moves along the directrix, its plane turns around the directrix as axis;

the point- row and the pencil of planes thus generated are projective

to each other. In fact they stand in the same relation to each other

as the points of the generator of a hyperboloid to their tangent planes.

It is clear now that five lines determine a linear complex,

provided that they do not belong to a linear congruence. It is also

evident that four lines, in general, determine a linear congruence, its

ii*
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directrices being the two straight line intersectors of the given four

lines. There is, of course
,
an exception if the given four lines are

generators of the same hyperboloid, or if they intersect.

We give, without proof, a few other theorems which we shall

employ occasionally.

Let A = Q, M=0 be two linear complexes, and consider any
four complexes

A + hM = (i
=

1, 2, 3, 4)

of the pencil of complexes determined by them. To any point of

space there corresponds, in each of these complexes, a plane. These

four planes form a pencil whose double ratio is equal to (ki} &2 ,
&3,

/c4).

To any plane there corresponds, in each of these complexes, a point.

These four points are collinear, and their double -ratio is equal to

(%, #2, &3 , Kjj.

We may, therefore, speak of the double -ratio of the four complexes

A + &&amp;lt;M=0,

defining it to be equal to (k1} &2 ,
Jcs) &4).

Let two of these four complexes be the special complexes of

the pencil (supposed distinct). Let the other two be chosen in such

a way that the double -ratio of the four complexes becomes equal to

- 1. The two latter complexes are then said to be in involution. It

is not difficult to show that the condition for two linear complexes
in involution is nG = 0.

In the cases in which our former definition breaks down, the equation
(7 = may be taken as the definition of the involutory relation

between two linear complexes.
1

)

Finally, we may call attention to the fact that Lie has set up
a geometry whose element is the sphere. This geometry is four-

dimensional as is Pliicker s line -geometry. By making use of a simple
transformation due to Lie, the two geometries may be converted into

each other, a line in one corresponding to a sphere in the other. It

is a mere matter of convenience in most cases, whether a given ana

lytical theorem is to be interpreted in line- or in sphere -geometry.
In place of ruled surfaces we would have surfaces generated by moving
spheres, in place of asymptotic lines, lines of curvature, etc. We
shall not enter into details, but leave it to the reader to re -interpret

the theorems about ruled surfaces in sphere -geometry.
2
)

1) This idea of two linear complexes in involution is due to Klein. Math.

Ann. vol. 2 (1870) p. 198. For a proof of the above theorems cf. Lie-Scheffers,

Geometric der Beruhrungstransformationen, pp. 296 300.

2) For a convenient treatment of this subject, cf. Lie-Scheffers, Geometric

der Beruhrungstransformationen, pp. 463 et sequ.
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CHAPTER Yffl.

THE EQUATION OF THE RULED SURFACE IN LINE

COORDINATES.

1. The differential equation for the line coordinates.

We return to the consideration of a system of differential equations

of the form (A), and put

(1) (oik
=

Vitk ytZi,

so that
o&amp;gt;a

will be the Pliickerian coordinates of the generator Lyz

of the integrating ruled surface. Of course the identical relation

(2) OI^M + rai3ra42 + ^s !*
=

will hold.

Corresponding to the infinite group G composed of all of the

transformations

(3) y = ay + flz, z = yy + 9s, x = | (x),

the functions coa will be transformed in accordance with the equations

(4) to = (aS fly) a = cpa, J = | (x).

Now the six line coordinates co,* will satisfy a linear homogeneous
differential equation of the sixth order, say

(5) P co&amp;lt;

6 ) + PlCo(
5

&amp;gt; + P2 co + Ps a&amp;gt;&amp;lt;

8
&amp;gt; + P4 co&quot; + P

5
co + P6 &amp;lt;o

=
0,

where P , . . . P
6

are functions of the coefficients p i1ct qit of (A).

Clearly, the invariants of tlie linear differential equation of the

sixth order, ichich the line coordinates of a generator of the integrating

ruled surface of system (A) satisfy, icill also be invariants of system (A),

and conversely.

We have found in Chapter II
;

a system of rational invariants

for (5), complete in the sense that every other rational invariant can

be expressed rationally in terms of them. We may, therefore, con

sider the problem of finding such a system of invariants for system (A)
as essentially solved.

We proceed to set up the differential equation (5) in a special
form. Let us assume that the system (A) is written in the semi-

canonical form, arid let (y, z) and
(17, ) be any two simultaneous

systems of solutions of this system, so that
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Then put

(7) a = y 0rj
= (y).

We wish to find the differential equation satisfied by o&amp;gt;. We find

from (6),

where we have put for abbreviation

In general we have denoted by (a/3) the expression

a/3 ab,

obtained from the term actually written by substracting a corresponding

term, in which the Greek and Roman letters are interchanged.
Put

2v = &&quot; + (qu -f

(9)

Then we shall find from (7), by successive differentiation and by

making use of (8) and (9),

If we eliminate the four determinants (^^ ), etc., we find the

required differential equation of the sixth order for
cj, viz.:

(11)

Sin

&amp;gt;

, -1, 0, 0, +1
where p, t, w, v are defined by equations (9).
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? 2. Conditions for a ruled surface whose generators belong to

a linear complex or a linear congruence.

Equation (11) is, in general, of the sixth order, so that the six

line coordinates will be linearly independent. It may, however, reduce

to the fifth order. In that case there must be a linear homogeneous
relation with constant coefficients between the line -

coordinates, i. e. the

ruled surface must belong to a linear complex.
If we recur to equations (9), we see that the only one of the

quantities Q,t,w, r
1

,
which contains o 6

,
is Q. The equation (11) will,

therefore, reduce to the fifth order, if and only if the minor of 9

in (11) is zero, L e. if

!&-&, A.

But the invariant 4 of system (A) reduces to the left member of

(12), except for a numerical factor, if (A) is reduced to its semi-

canonical form.

Therefore, tJie condition that a ruled surface may belong to a

linear complex is

&quot;11

-
&quot;w&amp;gt; &quot;ia&amp;gt; &quot;si i

(13) S
9
= zJ= ru - ru ,

cis ,
rn = 0.

tCn Ifla,, W^, U7M
If the linear complex, to which the generators of the surface

belong, is special, additional conditions must be fulfilled. The surface

has. in that case, a straight line directrix. This straight line directrix

is clearly both a branch of the flecnode curve and an asymptotic
curve upon the surface, so that we shall have

if the directrix be taken as fundamental curve C9 . If the surface

does not belong to a second linear complex, the invariant 4 must
be different from zero. For else the second branch of the flecnode

curve would also be a straight line, coincident with the first, and the

surface would belong to a linear congruence with coincident directrices.

We shall, therefore, have

*tt
=

J&amp;gt;ia

=
0, MU - UK 4= 0, qa = 0,

whence follows r
12
=

0, and therefore

(14) 4
= o. e10

= o.

The conditions (14) are therefore necessary for a ruled surface with a

straight line directrix. Tliey are also sufficient. For, let them be
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satisfied. Then the two branches of the flecnode curve are distinct,

and if we identify them with the integral curves Cy and C, of system

(A), we shall have

2*12
==

^*21
==

V) ^*11 **22 *T* &amp;gt;

so that

If &1Q
= 0, we must, therefore, have either v

12
or vn equal to zero.

But

(15)
12 n

vn = 2un - (pn - p22 ) u2l + p2l (un

We find, therefore, either plz or p^ equal to zero, i. e. either Cy
or

Ct is a straight line.

Of course A also vanishes in consequence of these conditions.

If the ruled surface belongs to a linear congruence with distinct

directrices, it has two distinct straight line directrices upon it, so

that system (A) may be reduced to a form for which

l&amp;gt;ia

= Wi2
=

i&amp;gt;ai

= W2i
=

^
wn
~ M22 4= -

In this case we shall find further

so that all of the minors of the second order in the determinant &amp;lt;d

will vanish, as well as 10 . On the other hand, suppose that all of

the minors of the second order in 4 are zero, while 4 does not

vanish. Identify Cy and Cg with the (distinct) branches of the flecnode

curve. We shall have

u
12
= w21

= 0, un MM =|= 0.

Two of the minors of A reduce to

(MU - ww)
vu and (MU - w22) v9v

so that we must have

% =
21
=

&quot;

But, from (15), we now find j)12 =^21
=

0, i. e. Cy and C2 are two

distinct straight lines.

Therefore, the conditions, necessary and sufficient for a ruled

surface with two distinct straight line directrices, are that all of the

minors of tlie second order in the determinant A shall vanish, while

4 4= o.

This result may be obtained in another way. The equation (12)

shows, that if a ruled surface belongs to a linear complex, and if

the corresponding system (A) is written in the semi -canonical form,

there is a linear relation with constant coefficients
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a fan
-

Sas) + 6 2i2 + cq.2l
=

0,

between the coefficients of the system; and it is for this reason that

the first four equations of (10) suffice for the elimination of the four

determinants (rjz
1

), etc. But, if there is a second linear relation of

this kind, the first three equations of (10) will suffice for this elimi

nation, so that the differential equation for o will reduce to the

fourth order; i. e. the ruled surface will belong to a linear congruence.
On the other hand the conditions for two such linear relations between

#11
~~

&2&amp;gt; #12? #21 are precisely these, that the minors of the second

order in z/ shall all vanish.

If the ruled surface belongs to a linear congruence with coincident

directrices, the minors of 4 must again vanish, as flie last consideration

shows. But 4 must also be zero.

We may show this directly. Of course 4 must be zero, since

the two coincident directrices of the congruence are identical with

the two branches of the flecnode curve, which must therefore coincide.

Let Cy
be this straight line, so that

Let C, be any other curve of the ruled surface.

Since 4 vanishes, we shall have

22

We find as consequences of these relations

ln l&amp;gt;82
=

&amp;gt;

I
i2
=

&amp;gt; ^11 te
= 0, u\9

=
0,

so that, in fact, all of the minors of the second order in 4 must

vanish. The quantity u21
will not also be zero unless the surface

is a quadric.

Conversely let us suppose that all of these minors vanish, and

that &amp;lt;94 also is equal to zero. Take for Cy
the flecnode curve, so that

&quot;12

= n &quot;22

=
i &quot;21 4=

assuming that the surface is Jiot a quadric. One of the minors of

4 reduces to

(*U- l&amp;lt;

22) *21
= 2

Pl2&amp;lt;&amp;gt;

so that j?18
= 0: i. e. Cy is a straight line. Moreover both branches

of the flecnode curve coincide with it. It must therefore be a double

directrix of the ruled surface.

The further case that presents itself in the theory of linear

congruences, in which its directrices are coplanar, has no interest for

us. For the lines of such a congruence are either all of the lines

of a plane, or all of the lines through a point. A ruled surface

belonging to such a congruence would therefore be either a cone, or
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else its generators would envelop a plane curve. In either case the

ruled surface would be developable; but a developable cannot be the

integrating ruled surface of a system of form (A).
If a ruled surface belongs to three independent linear complexes

it is a quadric. We know already that the conditions for this are

In this, as in the preceding case, all of the invariants are zero.

We may recapitulate the results of this paragraph in the following
theorem. \

The necessary and sufficient conditions for a ruled surface belonging
to a single linear complex, tvhich is not special, are

while all of the minors of the second order in d do not vanish. If

io
-

,

while the other conditions remain the same, the complex is special. The

surface belongs to a linear congruence with distinct directrices if all of

the minors of the second order in d vanish, while 4 is different from
zero. The directrices of the congruence coincide if @4 also vanishes.

In this latter case the surface is, or is not a quadric according as the

equations
U\\ M22

== W
12
=

^21
== &quot;

are, or are not satisfied.

Suppose A = and &amp;lt;94
= 0. We may put M12

= wn w22
=

0,

and assume w
21 =|= if the surface is not a quadric. We find from

4 0,

Oil
- V

22) W18
- Oil - W88) U18

= 0,

which equation reduces to

4n3 u* =
*Jriafiii ^&amp;gt;

so that Pi% must vanish, and Cy be, therefore, a straight line. We
have the following theorem, due to Voss.

1

)

If the two branches of the flecnode curve of a ruled surface belonging
to a linear complex coincide, it is a straight line.

This gives a simpler test than that given above for a ruled sur

face belonging to a linear congruence with coincident directrices.

We found in Chapter V, 3 that the identically self-dual sur

faces were those for which (99
= 0. We may, therefore, express this

result by saying: a ruled surface, with two distinct branches to its

flecnode curve, is identically self -dual, if and only if it belongs to a

non- special linear complex.

1) Voss. Mathematische Annalen, Bd. VIII p. 92.
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The proof of this theorem however is not quite complete, since

we had assumed not only &amp;lt;94 =j= 0, but also @
10 =|= 0. We shall now

consider these exceptional cases. We shall see at the same time that

the fundamental theorem, that a ruled surface is determined uniquely

by means of its invariants, actually ceases to be true in these cases.

First, let @4 =}= 0, 10
= 0. The ruled surface S has a single

straight line directrix, which we may identify with Cy . We shall

then have

Pis Mi2
=

0&amp;gt;

&quot;whence qn = 0.

Let Ct be the second branch of the flecnode curve of S distinct from

Cy. Then
&quot;21

=
-

But, multiplying y and z by properly chosen functions of x, we may
further make

Pn = Pt*
=

;

so that the system (A) assumes the form:

y&quot;
+ (iny=o,

The non-vanishing invariants 6&amp;gt;4 ,
&. and &

6 being given as functions

of x do not determine p^, which may still be chosen as an arbitrary

function of ./ . This arbitrariness does not disappear even if the

independent variable of the system, which is still capable of arbitrary

transformation, be chosen in a determined fashion. We may determine

it so that, without disturbing the other conditions,

We shall then have

l^
#11 Q.%* 4^

but p21 remains an arbitrary function. Now, the most general trans

formation, which leaves all of these conditions invariant, is

= + x -f const., y = ay, H = bz,

where a and b are constants. Evidently such a transformation cannot

remove the arbitrary function j;21 . Therefore, if &amp;lt;94 =f= 0, 10
=

0,

the invariants do not suffice to characterize the ruled surface.

The adjoint system of (16) is

V&quot; +
q*&amp;gt;

U = 0,

(17)

The independent variable is the same for both systems. Moreover
both systems are referred to their flecnode curves. Therefore, the
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only transformations, which could transform (16) into (17), must be

of the form either

y = aU, z = 6V,
or

y = K V, z = SU.

Moreover a and d must both be constants, so as to preserve the

conditions pn = #22 which are satisfied in both systems. Since

#22 ^ 2n 1
^ne firsk transformation cannot accomplish this. The second

can, if and only if pzl
= 0, i. e. if Cz also is a straight line. The

ruled surface has two distinct straight line directrices, and therefore

belongs to an infinity of non- special linear complexes. This completes
the proof of our theorem about identically self-dual surfaces, if 4 =f= 0.

If @4
=

0, we must have, in the case of an identically self-dual

surface &9
as in the general case. But this gives either a ruled

surface belonging to a linear congruence with coincident directrices

or else a quadric. In all of these cases the surface belongs to an

infinity of non -special linear complexes.

Therefore, a ruled surface is identically self-dual, if and only if

it belongs to at least one non- special linear complex. The dualistic

transformation which converts it into itself, generator for generator,

is that which consists in replacing every point of space by the plane

which corresponds to it in the complex.
The invariants do not determine the surface, if 4

= 0. We may
assume in this case

wia
= uu - M22 =pn = pn = 0,

so that Cy
is the flecnode curve. We may assume further

Pn = &amp;gt;

so that Gz is an asymptotic curve, and the independent variable

may be chosen so as to make

We find for the coefficients of a system (A) satisfying these conditions

jPll
=

&amp;gt; Pl2
=

f(x)&amp;gt; 211
=

0, 218=
&quot;a

Pis

(18) pn = 0, jp22
=

0, qn = - - w21
= g (x\ fe = 0,

if
6 =|= 0. Of the two functions f and g one remains arbitrary.

Moreover, the most general transformation, which leaves the above

system of conditions invariant, contains only arbitrary constants, and

cannot, therefore, remove this arbitrary function.

1) Equation (51) of Chapter IV shows how this may be done.
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If &6 also vanishes, we find either z/21
= 0, i. e. S is a quadric,

or pa = 0, so that S belongs to a linear congruence with coincident

directrices. In either case all of the invariants vanish.

We may, therefore, complete our fundamental theorem negatively

as follows.

The ruled surfaces, for which Hie, two branches of Hie flecnode curve

coincide, and flwse tchich have a straight line directrix, form an exception

to the fundamental theorem tvhich states that a ruled surface is deter

mined by its invariants, up to a protective transformation.

3. A function -theoretic application.

Consider a homogeneous linear differential equation of the n^ order

(19)

and let ylt
. . . yn form a fundamental system, so that

(20) D(yO = (i
= l,2 f ...).

Let the coefficients pl ,
. . . pn of (19) be uniform functions of x,

and let x = a be a singular point of one or all of the coefficients.

If the complex variable x describes a closed path around one of

these points a u , ylf . . . y will, in general undergo a linear substitution

with constant coefficients, changing into

where the determinant A*! is not equal to zero.
1

) Denote this

substitution by A^ so that we may write

(21) fc-4J&.
Now, put in (20),

(22) *
1= 1

where again the determinant
j
a,-*

|

is different from zero, and where

ati (x) are uniform functions of jr. Then r
tl ,

. . . r
ltl

will satisfy a

system of n linear differential equations of the nth
order, obtained

from (20) by the transformation (22).

This system of differential equations has the special property

that, when x describes a closed path around a,,, %, . . .
;,. undergo the

linear substitution
1S -ApS,

whose coefficients are uniform functions of x.
-ijlt . . . yn are, there

fore, a special case of what the author has called A functions. In

1) Fuchs. Crelles Journal, vol. 66.
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fact, a system of functions lf . . . zn is known as a A function if

#!,...# are uniform, finite and continuous for all values of the

complex variable x, except for certain values, say alf a2 ,
. . . am ;

and

if, when x describes a closed path around one of these points #j ,...#

undergo a linear substitution, whose coefficients are uniform functions

of x.
1

)

In the case n = 2 we can now write down the conditions under

which a system of differential equations of form (A) will have this

property. There must exist a transformation

y = (aOi? + /(*)& z = r (x)rt + d(x}$,

which converts the system into

W= 0,

so that
T?

and satisfy the same linear differential equation of the

second order. But for this latter system we find at once

(24) MU M22
= Mis

= M2i
=

0,

an invariant system of equations, which must therefore hold of the

original system (A) as well. The integrating ruled surface must,

therefore, be a quadric. The curves G
n
and Of are clearly any two

generators of the second kind. It is evident that the conditions (24)
are also sufficient for a system (A) of the required kind, if we do

not insist upon the condition that the coefficients of the substitution

S shall be uniform functions of x, and still speak of the functions

y and z as A functions.

We may, therefore, say that a system of form (A) gives rise to

a binary system of A functions, if and only if its integrating ruled

surface is a quadric.

Examples.

Ex. 1. If a ruled surface belongs to a linear complex, its dif

ferential equations may be put into such a form that

PH =Pv = &amp;gt;

Mi2
=

MBI
=

0, ^ =
const.,

P*\

provided that @4 and 10
do not vanish.

Ex. 2. The points of the straight line y = 1, y.^
=

x, y$
= y = Q,

are joined to those of the conic

**=&quot;a*o + a*i x + ^2^ (&=1, 2, 3, 4).

What are the conditions under which the ruled surface thus generated
has a second straight line directrix?

1) Wilczynski. Am. Jour, of Math. Vol. 21, pp. 85106 (1899).
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CHAPTER IX.

THE FLECNODE CONGRUENCE.

1. The developables of the congruence and its focal surface.

In Chapter VI, the covariant P led to the consideration of the

hyperboloid H, which osculates a given ruled surface S along one of

its generators g. It was found that the generator li of the ruled

surface S
,
the derivative of S with respect to x, was a generator of

the first kind upon H. There is an osculating hyperboloid H for

each generator g of S\ and upon each of these hyperboloids there is

a single infinity of generators of the first kind. The totality of these

generators consists, therefore, of oo 2

straight lines: we shall speak of

this congruence, composed of all of the generators of the first kind

on the osculating hyperboloids of S, as the flecnode congruence of S,

and denote it by the letter F. The reason for choosing this name

for the congruence, will appear in the course of the present chapter.

The ruled surface S
,
the derivative of S with respect to x, is

always a surface of the flecnode congruence, one of its generators

being situated upon each of the osculating hyperboloids of S. Clearly,

unless all of the osculating hyperboloids coincide, i. e. unless S is

itself a quadric, the congruence F does not degenerate into a single

infinity of lines. A transformation | = %(x) of the independent variable

transforms the surface S into another ruled surface of the congruence

r, since it transforms p and 6 into

(!) P=y-(e + ^), *
y(*+ **)i V=Y

Since the coordinates are homogeneous, the factor | is of no im

portance, and two transformations, which give the same value to
17,

give rise to the same ruled surface of I&quot;

1

. In other words, a linear

transformation
I = ax + o,

where a and b are constants, does not affect the derivative ruled sur

face. On the other hand, 17 being an arbitrary function of x, any
surface of the congruence F, which has one generator on each

osculating hyperboloid of S, may be regarded as the derivative of S
with respect to an appropriately chosen independent variable, excepting

only S itself, for which
77
would have to be equal to infinity.

Equations (8) of Chapter VI reduce to the form

+ (* + YQ + S6 = 0,

if J= 0. In that case, therefore, the derivative surface S !

is developable

[cf. Chapter V, equations (14)]. This conclusion would seem to be

doubtful
if, besides J = 0, the conditions
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were satisfied. We may, however, see directly that the condition J=0
always gives rise to a developable surface for S . In fact, we have

O I Is* I

J= Wn W22 M12W21 .

If @4 =f= 0, the two branches of the flecnode curve are distinct. If

we identify them with Cy and Cz ,
we shall have w12

= un = 0. If

J vanishes, we must therefore have either un or u22 equal to zero.

In either case, equations (2) prove that S is developable.
If @4

= 0, the flecnode curve has only one branch, say Cy ,
so

that M12
= 0. But from 4

= J=0 then follows wn =w22
= 0, so

that again S is developable.

In all cases then, if J= the derivative of S with respect to x is

developable. One may easily see that if J =|= 0, S is not developable,
for in that case the planes tangent to S at P

?
and Pa intersect

the line Lyz joining Py
and Pz in distinct points, as is shown by

equations (2).

We shall, therefore, obtain all developable surfaces of the congruence

F, by finding the most general transformation | = (x), which reduces

the seminvariantt7to zero. But according to equation (51) of Chapter IV,
the most general solution of the differential equation

(3) 4{i; *}
2 + 2I{i,*} + J=0,

is the most general independent variable for which J= 0. To reduce

J to zero we may, therefore, take for | the general solution of either

of the two equations

where
@4
= J2 - 4J:

Although each of the equations (3 a) and (3b) is of the third

order, we obtain in this way only two families of oo 1

developable

surfaces, as we should. For, as has already been remarked, all values

of | which give the same value to
iy belong to the same developable

surface S . As a matter of fact, equations (3 a) and (3b) may be

written

and these are of the Riccati form, so that the anharmonic ratio of

any four solutions is a constant.

We have therefore proved the following theorem:

To every ruled surface S there belongs a congruence F detertnined

by its osculating hyperboloids. This congruence contains two families
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of developable surfaces, which coincide if and only if 6&amp;gt;4
=

0, /. e.
y if

and only if the tico brandies of the flecnode curve of S coincide. To
determine any developable surface of flie congruence, it is necessary and

sufficient to find a solution of the equation

and to take this solution | = | (x) as the independent variable of the

defining system of differential equations. The derivative of S with

respect to | will then be a developable surface, and all developable sur

faces of the congruence may be obtained in this way. Moreover, any

four developables of the same family intersect all of the asymptotic

tangents of S in point rows of the same cross-ratio.

Let us suppose that the variable x has been so chosen as

to make JQ. Then the line L^ a , joining PO and Pa generates
a developable surface of the congruence P, and Co and Ca are two

curves on this surface. Let us assume that &4 =}= 0, and that Cy
and

C, are the two (distinct) branches of the flecnode curve on S. Then

w12
= M21

=
0, un ?&amp;lt;

2, 4= 0, J= un ,, z&amp;lt; 12
M
21
=

0,

so that either un or t^,, but not both, will vanish. Suppose that

u = 0. Then, according to (2),

i. e., if p^ =f= 0, Pa is a point on the tangent to the curve CQ described

by P?
. In other words, C is the cuspidal edge of the developable

surface. If pn , together with M12 ,
were zero, Cy would be a straight

line, and the curve Co would degenerate into a point of this line.

The developable surface would be a cone

If wn =j=0, 22 must vanish, and then Ca is the cuspidal edge of

the developable surface. This ambiguity corresponds to the fact that

every line of the congruence belongs to two of its developable surfaces.

But, if P
y
and P. describe the flecnode curves on S, P and Pa

are points on the flecnode tangents. We have called the ruled sur

face of two sheets, generated by the flecnode tangents of S, its

flecnode surface, so that we have proved the theorem: the focal surfaces

of the congruence F are tfie two sheets, F and
F&quot;, of the flecnode

surface of S.

For, the focal surfaces of any congruence are the loci of the

cuspidal edges of its developable surfaces. The theorem is true also

if
4
=

0, only in that case F 1 and F&quot; coincide. 1

)

1) For a clear treatment of the general properties of congruences, the reader

may consult Darboux Theorie des surfaces, t. II, chapter 1. Compare also

Wilczynski . Invariants of a system of linear partial differential equations, and
the theory of congruences of rays. American Jour, of Math, vol XXVI (1904)

pp. 319360.

WiLCZYSSKI, projective differential Geometry. 12
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We may also prove this theorem geometrically. Let gw gl} g2) gs, etc.,

be consecutive generators of the ruled surface /S. The hyperboloids

.Hj, jffj,, etc., osculating S along gl} g%, etc., are determined respectively

by 9v ffit 9t\ 9i&amp;gt; &&amp;gt; 9a&amp;gt;
etc - Tne flecnode tangents ft, ft , along

generator glf
are the two straight lines intersecting gQ , g1} g2 , gs . The

flecnode tangents ft, ft of S, along g9 ,
intersect ft, ft, #,,&; ft, ft

1

intersect ft, g3 , g, #5 ;
etc. Therefore, gz intersects ft, ft, ft, ft as well

as
fi&quot;&amp;gt; /a&quot;&amp;gt; fs&quot; f* &amp;gt;

i- e
-&amp;gt;

f ur consecutive generators of each sheet of the

flecnode surface of S. This shows that each of the sheets F and F&quot;

of the flecnode surface of S
f
has S itself as one of the sheets of its

flecnode surface. The congruence JT is made up of the generators of

the first kind on the hyperboloids H1} H2 ,
etc. S

1
and H

2 intersect

along the four lines glf g%, ft, ft . H
2
and H3 intersect along g2 , ga ,

ft, ft ,
etc. Therefore, a generator of the first kind on H^ can meet

a generator of the first kind on J3&quot;2 only along one of the lines ft
or ft

1

. Moreover, at every point of ft and ft two such lines actually

do meet. It is clear then, that the cuspidal edges of the developable
surfaces of the congruence F must lie on one or the other of the

two sheets of the flecnode surface of S. This completes the synthetic

proof of our theorem.

But we have also seen that each sheet of the flecnode surface of

S, has S itself as one of the sheets of its flecnode surface.

To prove this analytically as well, we recur to the system of

differential equations for F
,
which was set up in Chapter VI, equa

tions (15).

Denote by It,-* the quantities formed from this system in the

same way as are uik from (A). Then we shall find

(4) U12
=

0, U21
= - 4 (qn

-

Un - U22
= 4 (qn - grffl),

which equations are also valid for &amp;lt;94
= 0, in which case #22 = qn .

Therefore, the curve Cy
is flecnode curve on F as well as on S.

If the two branches of the flecnode curve are distinct on S, they are

also distinct on F and
F&quot;,

for gu g22 does not vanish under our

assumptions unless 4
= To complete the proof that S is a sheet

of the flecnode surface of F
,
we have still to show that the flecnode

tangents to F constructed, of course, along Cy
are the generators

of S. But the flecnode tangent to the surface F at a point Py of

the flecnode curve, is the line joining it to the point, whose coordi

nates are obtained from system (15) Chapter VI in the same way as

the coordinates of P
?

are obtained from system (A). But the co

ordinates of this point are
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Pit Pit

i. e.,
this point is on the generator of the surface S which passes

through P
y

. This completes the proof of our theorem if plz =}= 0.

But if pn vanishes, together with *&amp;lt;12 ,
F degenerates into a straight

line, and any ruled surface made up of lines intersecting it may be

called its flecnode surface. The theorem may, therefore, be regarded
as valid in all cases.

The curve Cy
is one branch of the flecnode curve of F . The

other may be found by putting

(5) r=U21y-(U11 -U22) (,,

this being the second factor of the covariant C of the surface F .

The flecnode tangents to F along this curve generate the second

sheet of the flecnode surface of F
]
but this does not in general

belong to the congruence F, never in fact, as we shall see, unless

F degenerates into a straight line.

The flecnode surface F may be of the second order. This is

so if, and only if,

Ha-tt-Hu-Ha-0.
But this requires qn q%t to vanish, which condition, together

with those already fulfilled, gives

M18
= % = Mn - M22

=
0,

i. e., only if the ruled surface S is of the second order, can a sheet of
its flecnode surface be of the second order. Its flecnode surface in that

case is the surface itself, generated however by the generators of the

second set.

If we put

we have seen, in Chapter VI, that the equations of the surface S become

PI,* + QU * + Q^ = o,

P22 &amp;lt;? + Qn g + Q,2
&amp;lt;5

=
0,

where

P.i- = Pik + %ik }

Qn = 2n +
g- (^iPii + *isPai\ Qzi

= 9

Q\l
=

2l2 + Y (*ltP + ^12^22)? ^22
= ^

Let us denote by Uik the quantities which are formed from

system (7) in the same way as are the quantities u ik from (A).

Then we shall find

12*
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JUu Juu + 2 (w12 wu - Wn^ia) 3J A

(9)

12 ,

Ot/ \u &quot;22 /

If we assume ul2
= u21 = 0, 4 =j= 0, the curves C^ and (7* are

the flecnode curves on S, and the curves C^ and Off ,
on the derived

surface S
}
are the intersections of this surface with the flecnode sur

face of S. It may happen that C^ is one branch of the flecnode

curve of S . This is so if, and only if, Z712
= 0. In other words,

the derivative of S has a branch of its flecnode curve on the flecnode

surface of S, if one of the two conditions

M
12
= 712

= or w21
= U2l

=
is satisfied.

There exist two families of oo 2 non- developable ruled surfaces of
the congruence F each of which has one branch of its flecnode curve on

the flecnode surface of S.

This we shall now proceed to prove. Assuming J
=^= 0, Ui2

=
will be a consequence of w12

=
0, if

ji

(10) W12 -3vl2 y=0,
as is shown by (9). The equation w12

= is left invariant by an

arbitrary transformation of the independent variable. If then Cy be

taken as one branch of the flecnode curve on S, the curve C^ will be

a branch of the flecnode curve on S
, provided the independent variable

be so chosen as to satisfy the equation

w12
- 3v12 -_=0,

j

or, making use of (49), (53) and (54) of Chapter IV, if

*} U. *} _/

which equation is of the second order with respect to
77.

This proves
our assertion, that there exists a family of oo 2 ruled surfaces in the

congruence I, each such that one of the branches of its flecnode curve

lies on F . There is another such family connected with the other

sheet F&quot; of the flecnode surface. The surfaces of the second family
are determined by the equation

W +2v -St;
J &amp;gt; + 8

7W -+ .v^rj *V21

which is obtained from (11) by permuting the indices 1 and 2.
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It may happen that the derivative of S has both of the branches

of its flecnode curve on the flecnode surface of S, one on each sheet.

If this is so (assuming 4 =f= 0); we have simultaneously

KJ,
= utl

= U12
= Un = 0,

whence
ji ji

lCli
~ ^ V

li ~J~&amp;gt;
W?l

~ ^ V21 J
= ^

But, since J is not zero, this gives

^12% Wgi^is
=

0,

which together with u^ = un = 0, makes

-
&quot;22

n

But this is the condition under which S belongs to a linear complex

(Chapter VIII). The converse is also true, i. e., if ^/ = and 6&amp;gt;4 =}= 0,

a double infinity of surfaces S exists, each of which has the property
in question. For, equations (11) and (12), will then be identical, the

two (distinct) branches of the flecnode curve on S being taken as

fundamental curves.

If however @4 vanishes, we may still assume 13
= 0, whence

follows in this case MH M2g
= 0. The flecnode surface F of S has

only one sheet, and in order that both of the branches of the flec

node curve of S may be on F, they must coincide. We must then,
in this case, choose the independent variable so as to satisfy the

simultaneous conditions

M12
=

^12
= Mll

~~
&quot;a* Ull

~
^22
= 0.

The first three give

12
= -

2!&amp;gt;f,M21 =0,

so that either ?/21 or plt must vanish, i. e. S is either a quadric or

has at least a straight line directrix. In either case, the other condition

will also be satisfied, without specializing the independent variable

in any way. In other words, not only a double infinity, but all ruled

surfaces of F will have the property in question. The same is true

for 4 4= 0, if i-
12
= rn = 0.

We have the following theorem:

If there exists a ruled surface of the flecnode congruence F, different

from S, which has both of tlie branches of its flecnode curve on the

flecnode surface of S, one on each sheet, flien the surface S belongs to a
linear complex.

Conversely, if S belongs to a linear complex, but not to a linear

congruence, tfiere will be oo 2
-ruled surfaces in its flecnode congruence
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which have the required property. If S belongs to a linear congruence,

this is true not merely of oo 2 but of all ruled surfaces of the flecnode

congruence which, in this case, coincides with the linear congruence to

which S belongs.

If A does not vanish identically, it will, in general, vanish for

particular values of x. If the flecnodes on a generator of S, cor

responding to a particular value of x = a for which z/ = 0, are

distinct, one of two things must take place Either the osculating

hyperboloid hyperosculates the surface along that generator, or else

the two flecnodes corresponding to x = a on the derivative are on

the flecnode surface of S, one on each sheet.
&quot;For,

if we take w12
= u2l

=
0,

the condition that &amp;lt;// vanishes gives either

W12
= W21

= Mll M22 = J
r M12

= W21 = fll8
W

!&amp;gt;l

~ %W12
=

&amp;gt;

for x = a

In the first case, the osculating hyperboloid hyperosculates the

surface. In the second case, any solution of (11) will, for x = a, also

satisfy (12), i. e., for x = a the simultaneous conditions

M12
=

#12
= M21

=
#21
=

will be satisfied, i. e., PQ and Pa ,
two points on the flecnode surface

of S, will be on the flecnode curve of S . One sees at once how
this is to extended to the case when @4

= 0.

Equation (11) can be integrated once. Since we have u
12
= w21

= 0,

we find [Chapter 1Y, equations (32) and (39)];

Divide both members of (11) by i;
12

. We find

o dlog
rj&amp;gt;f&amp;gt;&amp;lt;t ~\ T i 4. It ^21 _ A~ ~
L 7

&quot;T
^

\fe; ^M ~r *
\5&amp;gt; ^) J u -

Moreover, since W12
= w21

=
0, we have

J. = U^i -f- W22 ,
J

Therefore, we obtain by integration

where c is a constant. Of course (12) may be treated in the same

manner.

We have seen that there exist oo 2 ruled surfaces of the con

gruence r, the flecnode curve of each of which has one of its branches
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upon one of the sheets of the flecnode surface of S. The question

arises, whether among these there exists one (there cannot in general

be more than one) whose flecnode surface has one of its sheets in

common with that of S.

Let us suppose that F is at the same time a sheet of the flec

node surface of S and of S . Then Cy
and C

?
are flecnode curves

on S and S respectively, so that we shall have 12
= E712

= 0. But

more than that, the flecnode tangent to S at any point of C
Q
must

be a generator of F
,

i. e., must pass through Py
and P

Q
. In other

words, the conditions

&quot;12

=
^12

=
0&amp;gt; V + Pn 9 + F^ = ly + w

must be simultaneously fulfilled, where ). and 9 are some (as yet

unknown) functions of x. But we have

Pik = Pit + *;*,

so that our second condition becomes

or

But, except for singular values of x, P
y , PQ and Pa are not

collinear. Therefore we must have

which last equation, together with w12
= 0, gives t

12
= if

J&quot;=j=0.

But
12

===== -i 12
= is satisfied by either p^ = 0, in which case F

degenerates into a straight line, or by

M12
= Mu J&amp;lt;23

= 0.

But since U12 must also vanish, we must have also iv12
=

0, which,
if piz 4= 0&amp;gt; gives the additional condition 21

=
0, i. e., S must be a

surface of the second order.

We have proved the following theorem. If the surface S is not

of the second order, and if its flecnode surface lias a sheet F winch-

does not degenerate into a straight line, no other ruled surface of the

congruence F has F also as a sheet of its flecnode surface. Or, in

other words, the second sheet of the flecnode surface of F does not

belong to the congruence F.

If F 1

does degenerate into a straight line, every ruled surface

of JT clearly has this straight line as a degenerate sheet of its flec

node surface.
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We have seen that F may degenerate into a straight line. It

is, in general, a ruled surface. Can it be a developable surface? If

it were developable, according to equations (15) of Chapter VI, pn
would have to vanish. But the simultaneous conditions p12

= u12
=

0,

would make Cy
a straight line. Therefore: if a sheet of a flecnode

surface is developable, it degenerates into a straight line.

This is a generalization of the result which we found in Chapter VI;
that the flecnode tangent is tangent to the flecnode curve only if

the latter is a straight line. For, in that case, the flecnode curve

would be also an asymptotic curve, and the flecnode tangents along
it would form a developable.

2. Correspondence between the curves on a ruled surface

and on its derivative.

Assuming again w12
= w21

=
0, we find

But we can always choose the independent variable so as to

make u
1 -f- w22

= I vanish. According to (51) of Chapter VI, it is

only necessary, for this purpose, to take as the new independent
variable any solution of the equation

(14) 4 {,*} + 7=0,
which gives the condition

(15) 2(2V-V) + 1=0
for

t].
This is of the first order and of the Eiccati form, so that

the anharmonic ratio of any four solutions is constant. The con

ditions P12
= P21

= prove that (7
?
and Ca are asymptotic lines on

S . Moreover, if#12
and pn are not both zero in the above equations,

i. e., if S is not contained in a linear congruence, it is not only

sufficient, but it is necessary to make un -f- w22 vanish so as to have

P12
= P21

= 0. We have the following theorem:

If S is a ruled surface with two distinct branches to its flecnode

curve and not belonging to a linear congruence, there exists just a single

infinity of ruled surfaces in the congruence jT, whose intersections with

the two sheets of the flecnode surface of S are asymptotic lines upon them.

They are the derivatives of S, when the independent variable is so chosen

as to make, the seminvariant I vanish. Moreover, the point-rows, in

which any four of these surfaces intersect the asymptotic tangents of S,

all have the same anharmonic ratio.
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In Chapter IV, 6, we considered a canonical form, to which

system (A) can always be reduced, namely that, for which

We can now say that, if a system (A) is written in its canonical

form, its integral curves are asymptotic lines on its integrating ruled

surface, and its derivative witii respect to x is cut by the tico sheets of the

flecnode surface of S along asymptotic lines.

If &amp;lt;94
=

0, since

4
= P - 4J,

J also will vanish for the canonical form, so that in this case the

surfaces just mentioned idU coincide with tJie (single) family of developable

surfaces of the congruence.

If .Pis
=

jPai
= together with u

12
= M21 =0, the flecnode curve

of S consists of two straight lines, and every ruled surface of the

congruence has the property in question. The reduction to the

canonical form must, therefore, have a different significance in this

case. To find it, let us assume that the curves Cy
and Cz are asymp

totic lines on S, but not at the same time flecnode curves, i. e., let

them be any two asymptotic lines different from the straight line

directrices. Then p^ and ^;21 will vanish, while 12
and M

21 do not.

We may, moreover, also assume pn = p^ = 0, so that system (A) has

been reduced to the semi-canonical form.

The conditions, which are necessary and sufficient to make S

belong to a linear congruence, are that all of the minors of the second

order in A must vanish. Three of these minors are

(&quot;11

-
&quot;22)

i-
i2
-

&quot;12 On -
), (&amp;gt;u

-
&quot;22) 21

~
&quot;21 On -

*M),

M12% WSi yi2-

Since we have assumed pik
=

0,

Inserting these values in the above minors of z/, and equating them

to zero, we find that the ratios 12
: #21 : qu g,, must be constants.

If they are, the other minors will also vanish.

We may, therefore, put

(16) j[12
=

aq, qzl
=

bq, qn q^_
=

cq,

a, b
}
and c being constants, so that our system (A) has the form

=
o,
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If we compute the coefficients P
12 and P21 of the derived system

from (8), we shall find

(18) P12
= a JiaiiajtffrijL, p . i-

P12
will be zero, if and only if the ratio qn : q is a constant, i. e. if

qn = M, q = tit,

where A and /i are constants. We shall then have

qn = apt, qn = bpt, qn = U, #22
=

(A cp)t,

so that P21 also is zero. If, therefore, the independent variable be

chosen in such a way that there is a linear relation between gu and

#22 of the form

(19) 2ll + ftto
=

0,

where ct and
/? are constants, whose ratio only is of importance, the

curves CQ and Ca on S f

,
which correspond to the curves Cy and Cz

on S, will be asymptotic curves. 1

)
But (19) is the special form to

which the equation

(20) auu -f /3M22
=

reduces when (A) is reduced to its semi -canonical form, and -, is

an essential constant. If emu + /3w22 is not zero, the transformation

! = !(#) makes it zero, if !(#) satisfies the equation of the Riccati

form,

%1 + /3%2 + 2( -f ft) (V -^T?
2

)
=

0, i? =|7
-

This equation is of the first order, but contains in its coefficients

an arbitrary constant -* We find, therefore, oo 2 solutions for
17,

i. e.

there are oo 2 ruled surfaces of the congruence which have the property
that two of their asymptotic curves correspond to two of the asymp
totic curves of S.

But we see that, in this case, all of the asymptotic curves of S

correspond to those of S. Therefore : if a ruled surface S is contained

in a linear congruence, there exists a double infinity of ruled surfaces

in this congruence whose asymytotic lines correspond to those of S. They
are obtained ~by taking the derivative of S with respect to an independent

variable, which is chosen so as to make

wn + /3w22
=

0,

where :/3 is an arbitrary constant.

1) If c =4= 0, the ratio K :
/5

cannot be equal to 1, since the equation

glt gJ2
= remains invariant for all transformations | = | (#). We may always

assume c =j= 0, so that the curves Cy , Cz and the directrices do not divide the

generators harmonically.
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Let the independent variable be so chosen. The planes tangent

to S at P
9
and Pa intersect Lyz in the points Pu and Pf respectively,

^VilGrG = 2uy + aqz, v = bqy + q^2 }

[cf. Chapter VI, equ. (2)]. Under the condition (20) the curves Cu

and Cr described by Pu and Pr are again asymptotic curves. According
to Serrefs theorem, the anharmonic ratio of these four curves is

constant. It is found to be
-ab (a + ft*

c8
a/J

a function of the ratio :/3. For the canonical form this double

ratio becomes

The oo- surfaces of the congruence, tchose asymptotic curves correspond

to those of S, may therefore be arranged in a single infinity of one-

parameter families. Each family is characterized by the value of the

ratio a :
/3, i. e. by the double- ratio of tJie four asymptotic curves Cy, Cn Cu, C,.

Any four surfaces of the same family intersect all of the asymptotic

tangents of S in point- rows of the same cross-ratio.

The significance of the reduction to the canonical form has now
been made clear, also in this case.

Let us suppose that the asymptotic curves Co and Ca of S

correspond to Cy
and C., and that the differential equations for S

assume the semi -canonical form simultaneously with those for S. In

other words, let the simultaneous conditions

Pik - Pa =
be verified. Then we shall have

iik = 0,

whence, since 7=J=0, the surface S not being developable,

Vik = 0,

so that the quantities ,- t and, therefore, qik are constants. All the

minors of the second order in ^7 will vanish. We have, therefore,
a special case of a ruled surface 5 contained in a linear congruence,
determined by a system of equations

(21) y&quot; + qu y + q^z = 0, J + qn y -f q^z = 0,

where the quantities q i!; are constants. Conversely, if (A) has the

form (21), the equations of the derivative surface S are actually in

the semi-canonical form. But more than that, the differential equa
tions of S are identical with those of S, so that the surfaces S and S
are protective transformations of each other.
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Denote by 8&quot; the derivative of S with respect to x
}
the second

derivative of S. Then the generator g&quot;
of S&quot; joins the points

(22)
V + Ai C&amp;gt;

+ Pi2~
= wn y 4- w

18 * -f

2&amp;lt;J

f + P21 (&amp;gt;

4- P22
&amp;lt;7

obtained from the equations of S in the same way as are p and o

from the equations of S. But clearly, g&quot;
coincides with g if and

only if A;* = 0. Since we assume J =f= 0, these conditions are equi
valent to Vik = 0. These equations form a seminvariant system;
i. e. if they are satisfied for a pair of curves Cy

and d upon S, they
are fulfilled for any other pair of curves on S, the independent variable

not being transformed. The conditions pik
= may be satisfied

without transforming the independent variable. We shall then find

also Pik
= 0. Every ruled surface S, which has a second derivative S&quot;

coinciding with S itself, may therefore Toe, defined by a system of form

(21) with constant coefficients. If the independent variable is so chosen

that its second derivative S&quot; coincides with S, the first derivative S is

a protective transformation of the original surface, and its asymptotic
lines correspond to those of S.

We proceed to find the explicit equations of these ruled surfaces.

Let us assume that the two straight line directrices of S are

distinct. Since they will be obtained by factoring the covariant C
t

whose coefficients in this case are constants, we may write (21) in

the form

r

22
are non- vanishing constants, and where

ffii
-

fcs 4= &amp;gt;

since we have assumed J =j= and 4 =f= 0. The integral curves of

(23) are the straight line directrices of S. Let the edge #3
= x =

of the fundamental tetrahedron of reference coincide with C
y ,

while

the edge ;%
= #

2
= coincides with Cz . We may then put

where

If we put

where a and /3 are arbitrary functions of x we shall obtain (xl} . . . ;

as the coordinates of an arbitrary point of the surface. We find
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The relation between xlf . . . x, obtained by eliminating a, ft, x

from these equations, will be the equation of the ruled surface S.

It is

*1 4 &quot;^8 *^3
~

*J)

or more briefly

fC)A\ / i /f U ff iff U f\
I ^c } jC-t *^4

&quot;~~

Jsa *.(/*&amp;gt; v/.
V / J. * z 3 7

where / and /i are constants.

If the directrices of the congruence coincide, we may write (21)

in the form

/jrr\ If I /\ ^f |
/~\ l_ /\

\ ^&amp;lt;-^ ) V ~T&quot; V 1 1 / ^
j

* i~ Vvi V &quot;r&quot; CM i
~ \J* (J-t -t I

9

where Cy is the straight line directrix, which we shall again identify

with the edge x5
=

r&amp;gt;:4
= of the tetrahedron of reference. We may

therefore put
w =e+ rx u4 = e~ rx

y =0 y =
where

We shall then find

,, __ ^ii / _ /. \ /&amp;gt;rx ^ *li /___L -r p rx 9 P rx a p

^~&quot;irVar /
-
~

2r \2r
+ ^ e ~

&quot;

~

so that

will be the coordinates of an arbitrary point of the surface. By
elimination we find

(26) 2qn fa x -
XsXs)

= q^x^x^ log
j;4

as the equation of the surface.

From (21) we find that y and z separately satisfy the diiferential

equations

Since any asymptotic line may be found by putting

u = ay + 6*,

where a and 6 are constants, we see that all of the asymptotic curves

of the surface satisfy the same linear differential equation of the fourth

order with constant coefficients. We shall, in the theory of space

curves, speak of such curves as anhannonic curves, and may therefore
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express our result as follows. Every ruled surface, which has a second

derivative coinciding ^vith itself, has the property that all of its asymp
totic lines are anharmonic curves with the same invariants.

Examples.

Ex. 1. Prove that for every ruled surface S there exist oo 2 deri

vative surfaces S
,
such that one asymptotic curve on S corresponds

to one on S. Find the condition that there may be two asymptotic
curves on S and S which correspond to each other.

Ex. 2. Find the conditions that a branch of a flecnode curve

of S may correspond to an asymptotic curve of S; that both branches

of the flecnode curve on S may so correspond to asymptotic curves

of S.

Ex. 3. According to the general theory of congruences, the two

families of developable surfaces intersect F and F&quot; along conjugate
curves. Prove this directly.

Ex. 4 * The cuspidal edges of one of the families of developables
form a family of oo 1 curves on F . Consider the family of oo 1 curves

conjugate to the first. Its tangents will form a congruence, one of

the sheets of whose focal surface is F . Find the other sheet. Simi

larly for F&quot;.

Remark. This problem is a geometrical formulation for the

Laplace transformation of a partial differential equation of the form

d*z dz
, 7 8s . A

for which cf. Darboux, Throne des Surfaces, vol. II, Chapter I. The

repetition of this transformation will give a series of covariants, in

general infinite in number. An extensive theory is thus suggested.
In particular the question arises whether these surfaces thus obtained

from f and F&quot; are, in general, ruled surfaces, and if not, under

what conditions they will be.

Ex. 5.* Another question, closely related to the preceding problem,
concerns the general theory of congruences. We have found a con

gruence F, whose focal surface is a ruled surface. We suggest the

general problem: to investigate the properties of congruences whose

focal surfaces are ruled. For the case of a W- congruence, which is

at the same time a congruence of normals, this problem may be

solved without difficulty (cf.
Bianchi - Lukat. Vorlesungen iiber

Differentialgeometrie, Chapter IX).
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CHAPTER X,

THE FLECNODE CONGRUENCE (CONTINUED).

1. The derivative cubic curve.

If i and s are arbitrary, K\ yk + a^z* will represent the co

ordinates of an arbitrary point on the generator g of the ruled surface,

where (yk , -?*)
for k = 1, 2, 3, 4 are four simultaneous systems of

solutions of our system of differential equations, whose determinant

does not vanish. We shall usually write a^y -\- a*z, suppressing the

index
,
as has been done occasionally in previous chapters. Of course,

this is essentially a form of vector analysis, which enables us to make

one equation do the work of four. The point u
l Q -f c%6 of the cor

responding generator g of S
}
will then be such, that the line joining

it to c^y + a^z is a generator of the second kind on the hyperboloid
H osculating S along g. Therefore, if

/3 X
and

/32
are arbitrary,

Pi Oil/ + *) + & Oi 9 + g&amp;lt;0

will be an arbitrary point of H.

If we choose the tetrahedron Py Pt P?
Pa as tetrahedron of

reference, we may choose the homogeneous coordinates in such a way,
that an erpression of the form ly + pz + VQ -f x6 will represent

the point x
{
=

A, #2
=

/i, xs
=

v, x = x. We have then

as the coordinates of an arbitrary point on H, and therefore

(1) x^Xi x^x3 =
as the equation of H in (his system of coordinates.

Let us consider now the hyperboloid H }
which osculates S

along g
1

. The coordinates of P
?

and Pa were obtained from the

system of differential equations defining S by forming

We shall obtain the coordinates of two points on a generator #&quot;

of the derivative of S with respect to x, by applying the same

process to the equations (8) of Chapter VI, which define S . The
ruled surface

S&quot;,
thus obtained, shall be called the second derivative

of S with respect to #. Its generator g&quot;
is then a generator of the

hyperboloid H1 which osculates S along &amp;lt;/.
The following quantities

(2)
n i2 II &quot;is*

are the coordinates of two points on
&amp;lt;/&quot;

.
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These equations show that
g&quot;

intersects g, if and only if

AU A22 A12 A21
=

0, i. e. ifK = vn v
22

v
12
vn = 0, provided we assume

that S is not developable, so that J =}= 0. By changing the independent

variable one can always change K into K such that K = 0. The

differential equation, which
77
must satisfy so as to make K = 0, is of

the second order. Therefore, there exist oo 2 non- developable ruled sur

faces in the congruence F, each of which, when considered as the first

derivative of S, gives rise to a second derivative whose generators inter

sect tlw corresponding generators of S.

Let us consider any point on g\ whose coordinates are f^-f-^e?.
The corresponding point on

g&quot;
will be given by

Therefore, the expression

+ IA Mil +

will, for arbitrary values of ,, 2 ,
d1? #2 , represent an arbitrary point

of .H
7

. If we introduce again our special system of coordinates,

we have

as the coordinates of an arbitrary point of H . If we eliminate

dlt d
2 , 17 2 ;

we find #&e equation of H :

(.^12^22 &quot;W**l|/^ l i V^J2 W21

(3)
-f- (^W12 X^ ^11^2) L *^8 (^11^*22 ^21 M12/^ 1~

&quot;

C&quot;U**|1 21

We shall mostly assume that P
y
and P^ are the flecnodes of g,

supposed distinct, so that w12
= M21

=
0, and (3) simplifies into

^12^22^1 +^21^11^2 + MU W22(^11 ^22)^1^2

-f- Wj^Wgg (u^x^x^ U^X^XQ)
= u.

It is easy to see from (3 a) that H cannot coincide with H, unless

S is a quadric.

The hyperboloids H and H have the straight line g in common.
The rest of their intersection is therefore, in general, a space cubic.

We shall call it the derivative cubic, and discuss some of its properties.

It is interesting to notice that we obtain in this way associated with

every ruled surface, surfaces containing a single infinity of twisted ciibics.

We shall consider some of the properties of these surfaces.
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Let us again assume 6&amp;gt;4 =f= and let Py
and P. be the flecnodes

of g. Then, it follows from (1) and (3 a) that we may take

*i
=

txs, Xt
= J(un - UM)*, x3

=
txt,

X4 = Ajjtt*^
2 + ttntljj (In *22X + ^l^fi

as the parametric equations of the cubic. From these, the following

corollaries follow at once. If An A,2
=

0, tlie derivative cubic, and

therefore the hyperboloid H ,
intersects g in two points which are har

monic conjugates with respect to the flecnodes. If

(^11
~~

^82) + 4^12^-21
=

0,

Hie cubic is tangent to g. The congruence F contains oo 2
surfaces S

corresponding to each of these properties of the derivative cubic. For,

the corresponding equations for
T?

are again of the second order.

The equation of a plane which is tangent to H at a point

(x^ x^ ,
X3 , x), Py and P3 being flecnodes, is

[- 2;.12 M|2^ + ttntt^An
-

AJJ)^ + Muttf,*^

(5) + [uuua (An - A^X + SA^uX ~ n̂u^}xt

-
ull u^x2 x3 + UiAxJxi = 0.

Consider the two points of
g&quot;

which correspond to P
y
and P,, viz.,

P/ =
( n , 0, Au ,

A12 ),
P2

&quot; =
(0, un , ^, ^).

The equations of the two planes tangent to S&quot; or H at these points

respectively, are
-

22 A12^ - wn ^8
j?
8 + u

ll
uitxt = 0,

M^AjjiTj -f- MH A^iXz *ii ^22*^3
=

They intersect g, i. e., the line x3
= x =

0, in two points

^i = (w-ii ^. ,

~
&quot;22 ^12 , 0, 0), ^2 = (&quot;11 ^si ,

-
MS* Aj, , 0, 0),

which coincide, if and only if Au/U, /
12 &amp;gt;Ui =0, i. e., if and only

if
g&quot;

intersects g, as is moreover geometrically evident. P
l
and P

2

are harmonic conjugates with respect to the flecnodes if An A^ + A18 A^ =0,
i. e., under this condition the planes, tangent to the second derivative at

the points which correspond to the flecnodes of g, divide these flecnodes

harmonically.
The line Pz P? has, besides PO, another point in common with

H . Its coordinates are found to be (0, 22&amp;gt;^i?0)- Similarly Py
Pa

intersects H1

in a second point (M-U , 0, 0, A
12).

Join these two points.
The coordinates of any point on the line joining them will be

(/iwn , Attj2 ,
AA81 , p-A12),

where Ar/i. determines the position of the

particular point. It is easily seen, by substituting in (3 a), that this

line is entirely on H if Au A,2
=

0, and in no other case, provided

WILCZTKSKI, protective differential Geometry. 13
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that S is not developable. We have therefore the following result.

Corresponding to every point of S we have a point of S . If each of
the two flecnodes on a generator g of S be joined to the point of S which

corresponds to the other, the two straight lines thus obtained intersect the

hyperboloid H osculating S along g in two new points. TJie line join

ing these latter points lies entirely on H
, ifH intersects g in two points

which are harmonic conjugates with respect to the flecnodes. The converse

of the theorem is also true.

Let us introduce the following abbreviations:

A = 2Mu w22 (un w22), t^
= Bt^ + 20^2 + Dt^,

(6) !B = v12 w22 ,
C = -

2
-
(uffa

- M
22
vn\ D = - v

21
un ,

and let us write the parameter t of the cubic curve in homogeneous
form. Then we may write instead of (4),

x,
= At*ti, x3

#2
= At^, x

If the cubic degenerates, each irreducible part will be a plane
curve (a conic or a straight line). If, therefore, the cubic degenerates,
it must be possible to satisfy the equation

a^ -f a%x.2 + as xs + a4 #4
=

0,

for all values of ^: 2 ,
the coefficients being independent of ^:^2

. If

we substitute in this equation the values (7), and equate to zero the

coefficients of ^
3
, ^

2
^
2 , etc., we find

(8) a3B= 0, a4D = 0, a
l
A + 2asC+atS= O

f
a2A+azD + 2a/7= 0.

Let us assume first that neither B nor D vanishes. Then a3
=

4
=

0,

and A = 0; for, if A were not zero, we would have also a
l
= a2 = 0,

i. e.
;
there would be no plane containing the (supposedly) degenerate

cubic. But from A = follows either wn W22
=

0, which would

make S a quadric, or else wn or w22 would vanish, which however

contradicts the assumption that B and D shall not be zero.

Let us now assume B =}= 0, D = 0. Then a3
= 0, and either

wu or % must vanish, i. e., either S is developable or S has a

straight line directrix. Similarly if B = 0, D 4= 0. Finally if B = 0,

D = 0, either S has two straight line directrices, or else it has one

while S is developable. We have, therefore, the following theorem.

If a ruled surface, with distinct branches to its flecnode curve
,
has one

or more straight line directrices the derivative cubic always degenerates.

In oil other cases, the only way to obtain a degenerate derivative cubic

consists in taking as derivative ruled surface of S, one of the developables

of the congruence F.
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Another question at once suggests itself. To every value of x,

i. e., to every generator of S there belongs a derivative cubic. In

general, the cubics belonging to values of x, differing from each

other by an infinitesimal Sx, will not intersect. Their shortest

distance will be an infinitesimal of the same order as dx. It may
happen however that, for an appropriately chosen variable, this

distance becomes infinitesimal of a higher order, or as we may say

briefly, that consecutive cubics intersect. We ask now: is it possible

to choose the independent variable in such a way that every pair of

consecutive derivative cubics may intersect?

By putting y = yk ,
2 = zk (k

=
1, 2, 3, 4) in

we obtain the coordinates of any point P& on the cubic. As x

changes we go from one cubic to another; as t
1
:t

i changes we go
from one point on a certain cubic to another point of the same curve.

Equation (9) gives therefore, if both x and t
l
:t

i
be taken as variables,

the locus of all such points P&amp;lt;j&amp;gt;,
i. e., the surface generated by all

of the derivative cubics of S If t^t^ be chosen as a function of x,

a curve is picked out upon this surface. Let us differentiate

totally, i. e., assuming that t
1
and

t%
are functions of x, and consider

the quantity rf$ -

y/ ~~f~ ~3 o x
dx

where dx is an infinitesimal. This will clearly represent the coor

dinates of a point on the adjacent derivative cubic determined by
the parameters x + dx and tk + dtjdxdx. If the original cubic and

this second one, infinitesimally close to it
; intersect, it must be pos

sible to choose tk as functions of x in such a way, that the corre

sponding points of the two curves shall coincide up to infinitesimals

of higher than the first order. Therefore
d&amp;lt;&/dx

must differ from a

multiple of &amp;lt;I&amp;gt; only by an infinitesimal quantity. Proceeding to the

limit we must therefore have

(10) _-*.We find by differentiation

+ y

(10a) + s

denoting as usual differentiation bv strokes.

13
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If we substitute in (10) we find the following four equations:

(a) [ftV + tit^A* JV2K + At

(b) [ftV +WA + 4

0) 2 M% +

(d) I JJ,*2
2 +

If we multiply both members of (a) by tZ) of (b) by tl} and add,

and if we treat (c) and (d) in the same way, we find

(e) Attf (*/
-
jputi

~
J?**;**)

~ At *t* (V
~

^12^1
-
|

+
-3Wa(-) =

0,

(f) ^#2 ^
f -

puii
- p -

^t, jV - p12 ^ - ^22 ^ = 0.

Let us assume first fy =(= 0. Divide both members of (f) by ijj,

and compare with (e). We find

QtJs (un M22)
=

0,

i. e.,
either S is a quadric, or else either ^ or t2 must vanish iden

tically. Assume ^ = 0. Then (e) is satisfied. From (f) we should

find p2l
=

0, for t
2
cannot be zero, since the ratio t

t
: t2 is the parameter

which determines a point on the cubic. But from u
21
= p21

=
follows further v

zi =0, i. e., D=0, so that in this case ty
=

Btj* 4 2(7^^=0
contrary to our assumption. It is, therefore, impossible to satisfy (11)

except by putting tj&amp;gt;

= 0. According to (c) and (d) this gives either

t
t
=

0, or 2
=

0, or A = 0. Assume A 4= and say ^ = 0. All

equations (11) are now satisfied. But from t
l
=

0, ^ = follows

D = 0, i. e., either un or v
2l

must vanish, i. e., either S has a straight

line directrix or else S is developable. Ife however A = 0, either S
is a quadric or else S is developable.

In connection with our last theorem, we may therefore say: It

is impossible to choose the surface S of the congruence F in such a way
that consecutive derivative cubics may intersect, except in the trivial cases

when the cubics are degenerate.

If in (9) we put ty
=

0, we obtain the locus of the intersections

of the cubic with the generator of S to which it belongs, i.
e.,

a
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certain curve cutting every generator twice. This may be an asymp
totic curve. It is, in fact, if the further conditions

(12) 2ti

are satisfied, where GJ is arbitrary. For, as 10 a) shows, the line

joining P&amp;lt;/&amp;gt;
to

P&amp;lt;*&amp;gt; 4. &amp;lt;*&amp;gt; (?*, i.e., the taugent to this curve, is then a

generator of the second kind on the hyperboloid osculating S along

g. In other words it is a tangent to an asymptotic curve of S.

In general, of course, the conditions (12) and ^ = can not both

be satisfied at once. The question is: when are these conditions

consistent? We find from (12)

V = \ [On + K + PK *2], fs
=
| [p12 1, + O22 +

Let us substitute these values of t
t
and t* in the equation

We shall find

[B + B(pu + ) + Cpnlt* + [D
r + D (p28 + o) -f Cft,]V

+ [2C +Bpa + Dpsi + C(pu +pK + 2o)]^^ = 0,

which compared with $ = gives,

20 + JBft, + D^21 + C(pu + ft,

where T is a proportionality factor. Eliminating T, we find

(a) 2 (.B C -J?C&quot;) + BCQiu -ft,) + (2C
S -BD)pu - ^21

=
0,

(13) (b) 2(J) C-DC ) +DCO22
-

1&amp;gt;11) + (2C
2
-5Djj)21

-D 2
p12
=

0,

(c) D -B D + 5D (Pll
-
A,) + C (DA ,

- BAl )
= 0.

AVe may always assume that our system of differential equations has

been so written that J)n p& = Q- Equations (13) may then be

regarded as three homogeneous linear equations for I9 j&amp;gt;is&amp;gt;JRn*

Their

determinant must therefore be zero. This gives rise to three alter

natives: either C- - BD or C or BD - B D must vanish.

Consider first the case C 2 BD = Q. Equations (13) become

BD -B D + CDp^ - CBpsl
= 0.

If we multiply both members of the first two equations by CD and

CB respectively, add and make use of C 2 = BD, we find

2C-(DB - D B) + C^CDp^ - CBp^ = 0,

whence, if C =4= 0,

- 2 (BD - B D) + CDplt
- CBpn = 0.
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But if Ave consider the last equation of (14), this gives BD B D=
Dplz Bp2l

=
0, which last equation may be written

Pnlhi On - **
22)

2 =
0,

i. e., the surface S has at least one straight line directrix.

In the second place let 0=0. Then (13) becomes

According to the first two equations S must either have at least

two straight line directrices, or else un + w
22 must be zero. The

third condition gives, on substituting the values of B and D,

4

if we assume that S has no straight line directrix, so that % and

% are not zero. By integration we find

- -^- =
const.,

whence, since un + M22
= in this case,

Ip = const.

But if we substitute into the condition 4 = for a surface belonging
to a linear complex the assumptions uiz

= u2l
=pn p22

=
0, which

we have made, we find either un W22
=

0, i. e., S is a quadric, or

PizPzi
~ PisPzi

=
0&amp;gt;

i- e
-&amp;gt; Piz/Pzi

= const. Therefore we see that if

C = 0, S either has straight line directrices, or at least belongs to a

linear complex. Moreover, if S has no straight line directrices, the

independent variable must be so chosen as to make un -f u.22 vanish.

If finally BD -B D =
0, we find from (13 ) either C = 0,

which leads us back to the case just considered, or else Dp^ Bp2l

must vanish, which gives again a surface S with a least one straight
line directrix.

In all of these cases the surface S belongs to a linear complex.
If we leave aside the trivial cases, we may say that if a ruled surface

belongs to a linear complex, and if the independent variable is so chosen

that un + w22
=

0, the surface of derivative cubics determines an asymp
totic curve upon it which intersects every generator twice.

We have seen in Chapter IX, that there exists in the congruence
F a single infinity of ruled surfaces S for which un 4- w22

= 0. They
are those ruled surfaces of I&quot;

1

,
whose intersections with the flecnode

surface of S are asymptotic lines upon them. But we can also

characterize them by saying that such a surface is made up of the

lines of F which intersect any asymptotic curve on the flecnode surface
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of S. In fact, if we assume
t*, 8
= u^ = 0, pn = pK = 0, we may

write the equations of the sheet F of the flecnode surface as follows

[cf. Chapter VI, equ. (15)]:

(15) Q
&quot;

-f [2 (qn + &,)
-

j&amp;gt;ltAlV - 2

If un -f z/,2
=

0, the coefficient of y in the second equation vanishes,

which proves that the curve Co is an asymptotic curve on F . But

from equations (16) of Chapter VI we see that Ca is then also an

asymptotic curve on F&quot;.

The asymptotic curves on F and F 1

must, therefore, correspond to

eacli other. T)ie congruence F is a so-called W- congruence.
1

)

We may now state our theorem as follows: In order thai Hie

surface of derivative cubics may intersect the ruled surface S in an

asymptotic curve, S must belong to a linear complex. Moreover, its

derivative ruled surface must intersect Hie flecnode surface of S along
an asymptotic curve.

The asymptotic curve on S, thus determined, is unique. For the

ratio J5: D, which determines it, cannot be changed by any trans

formation of the variables which preserves the conditions

Pn &quot;-Pas
= Mi2

=
&quot;21

=
&quot;a
+

&quot;22

=
-

We may, therefore, take any asymptotic curve of the flecnode surface

and consider the ruled surface of F made up of the lines which

intersect it. We obtain thus as a consequence a single infinity of

surfaces made up of derivative cubics. All of of these intersect S

along the same asymptotic curve.

But we notice further that (7 = 0. Therefore, this asymptotic
curve intersects every ge&amp;gt;ierator

in two points which are harmonic con

jugates with respect to the flecnodes. We shall meet this special asymp
totic curve again in a later paragraph.

Another question suggests itself. Is it possible to choose the

independent variable of our system in such a way that the derivative

cubics shall be asymptotic lines on the surface generated by them?
In order to answer this question, we must first find the coordi

nates of the osculating plane of the cubic at any one of its points.

For the moment we prefer to take the equation of the cubic referred

to a non- homogeneous parameter t
}

i. e., in the form

x2
= At, x.

3
= Bt* -f 2Ct* + Dt, x4

= Bt- -f 2Ct + D.

1) Cf. Bianchi-Lukat, Vorlesungen iiber Differentialgeometrie, p. 315, for the

general theory of TF-congruenoes.
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Its intersections with the plane 2ufXi = 0, whose coordinates are

(ut ,
. . . %), will be given by solving the cubic equation

Bu3t*+ (Aui + 20% + Bujt* + (Au2 + 2C% -f D%)rf + Z&amp;gt;%
= 0.

The three roots of this cubic must coincide if the plane is an

osculating plane of the cubic curve. They must, therefore, also satisfy

the equations obtained from the above by twofold differentiation

with respect to t. This gives the following conditions:

s t + AUL + 2C% + But = 0,

t 4 2(7% 4 Bu^t 4 Au
z 4 26&quot;% 4 D% = 0,

4 2C% 4 Dua)t + 3Z&amp;gt;%
= 0.

Of course, only the ratios of % ... % are of interest, so that we may
multiply % . . . by a common factor if we please. We find

% = AD,

as the coordinates of the plane osculating the derivative cubic belong

ing to the generator g at the point whose parameter is t, or in

homogeneous form,

% = B*^* - SBDt^ 2 - 2CDt
2

3
, % = ADt2

s
,

* * *
tit
= -ABt*.

We have already made use of the expression

= AtJz fay + ^2^) + # ft p -f #
2
ff)

as giving the coordinates of a point ft : 22) of the cubic curve which

belongs to the argument x, or as giving the coordinates of a point

(x, t
l

: t%) of the surface formed by the aggregate of all of these curves.

The plane which is tangent to this surface at the point (x, t
t

:
t%)

must contain also the point ^ :
t%

of the adjacent cubic, i. e., the

point whose coordinates are given by

*+!*&quot;,

where, in forming B0/dx )
x

)
t
i
and t

2
are regarded as independent

variables. The tangent plane must therefore contain the point whose

coordinates are dQ/dx. We have

= y A1

tftz-At^ (pn t, + p.21 tj + i #MU

+ e + -f
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The point, whose coordinates (|n . . . 4)
are the coefficients of

y,z,Q,6 in this expression, is in the tangent plane of the point

(x, t^-.t^). If, therefore, the cubic curve is an asymptotic line upon
the surface, its osculating plane must contain the point (jjj,

. . . |4),

i. e., we must have

(18) M^ + Mjk + ttjSs + Mj^O.
We find

I,
= unBt^ + (2A + 2 wn C - ApuWt, + (unV - Apn) t^y

Is
= un DU&amp;gt; + (i^S - Ap^t, + (2A + 2w23C -

S,
= (25 -^nX 5 + (A - Spn + 4C -

-2 Cp,,} ttf + (2ZX
-

If these values, and the values (17) for u
t&amp;gt;

. .
., W4 be sub

stituted in (18), and the coefficients of ^
6
, ^

5
^, etc., be succes

sively equated to zero, the following seven equations make their

appearance:

=
0,

B-(unD - ApH)
- 3B*-Dun + 2BC(2A

+ ^BD(ui2B-Apl,}-AB(A-D
- 3BD(2A + 2uu C - Apn)

- 2BCD(un -

(20)

+ AD(2B - Bpn}
- AB(2iy - Dp,,} = 0,

- 35D(uuD - Ap21)
- 2CD(2A + 2 MllO - Ap^

4- 35D2
z&amp;lt;22

- D-(u^B - Ap^
+ ^D(4 - 5p21 -f 4C&quot;

-
2(7pu)

=
0,

- 2 CD (MllD -
JL^i)

- D2

(2^i
f + 2 WK - Ap^)

+ ^D(2D - Dpu - 2CAl)
-

0,

- M2S D3 - ^!D2

p21
= 0.

Let us assume that both B and D are different from zero. Then
the first and last equations give

UuUnVl* + 2M1122 0*ii
-

&quot;22^12
=

0,

!! &quot;1

- 2
11 &quot;22 (Wll

-
W22)l&amp;gt;21

=
&amp;gt;

or
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But all of the possibilities here suggested give zero values to either

B or D, or both, except un w22
=

0, in which case S is a quadric.
But this is only apparently an exception, arising from the fact that

in this case the flecnode curve is indeterminate. If two of the straight
lines of the second set be taken for the curves Cy and Cz ,

we have

in this case also B = D = 0.

There remain two possibilities. If J? = D = all of the equations

(20) are satisfied. If S is not developable, S must belong to

a linear congruence. If S !

is developable, it is sufficient for S to

have one straight line directrix. In either case the derivative cubic

degenerates into a straight line, and is therefore obviously an asymp
totic curve upon the surface of cubics.

Finally, it might happen that one only of the two quantities J5

and D is zero. Say 5 = 0, D ={= 0. Then the first four equations
of (20) are satisfied. The other three become

A2 =
0,

+ 2u22 C - Ap22 ) + A(2D -
Djpu)

=
0,

-u.^D - Ap2l
= 0.

From the last of these we find

whence, since D =f= 0, follows tt22
=

0, and therefore A = 0. The
second equation now gives us C = 0, which also satisfies the first.

We have again S a developable surface, so that the cubic degenerates.
Therefore

The derivative cubics of a ruled surface are asymptotic curves upon
the surface formed by their totality, only in the trivial cases when they

degenerate into straight lines.

2. Null -system of the derivative cubic.

A twisted cubic always determines a null -system, i.
e.,

a point-

to -plane correspondence with incident elements. Geometrically this

correspondence may be constructed as follows. An arbitrary plane inter

sects the curve in three points. The three planes, which osculate

the curve in these points, intersect again in a point which is situated

in the original plane. This is the point which corresponds to the

plane in the null-system of the cubic.

We shall now set up the equations for this null- system. For

this purpose it is more convenient to use the equations of the cubic

referred to a non-homogeneous parameter t.

Let ^, t2 ,
t
3

be the three values of t which correspond to the

three points in which the plane
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^l2! + ^2^2 + ^S^S + ^4^4
=

intersects the cubic. Then t-i,t*,t3 are the roots of the cubic equation

Bvs
t* + (Ai\ + 2O3 + Bvjt* + (Ava + Dv3 + 2CvJt -f Dv = 0.

Therefore we shall have

If we solve these equations for i\/i 3) v$/v3 , vjv3 ,
then make

them homogeneous ,
and multiply r

a
. . . r4 by the common factor A,

we shall find

C21)
2

-f

The coordinates of the planes which osculate the curve in the

three points tlt &amp;lt;

2 , t3 , are, according to (16),

u(f = B*t* - 3BDtk
- 2CD, uf&amp;gt;

= AD

Let xlf ... 2*4 be the coordinates of the point of intersection of

these three planes. We must then have

.W&amp;lt;r o (I- 19 V\U
f Xf U

(h. 1, ^, O).

Solving these equations we find

(22)
4-

and a simple calculation will show that 2!vfXi = 0, i. e., as we have

stated, the point of intersection of the three osculating planes lies in

the plane of the three points of osculation.

In our null-system then, the plane (21) and the point (22) cor

respond to each other. To find the explicit equations for this cor

respondence, we need only eliminate t
1 ,t2 ,t3 between equations (21)

and (22). Denoting by a and ca two proportionality factors, we find:
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ov= * +402 - BDx + ABx -

2
*

ov
3
= - ABx

l 2ACx2

and
Gi x

1
= * -f A*v

2 + ADv.
d

& x = ^ *

ox =
+ * .

But, associated with the null -system, we have a linear complex,
made up of all of the lines which pass through a point and lie at the

same time in the plane corresponding to this point in the null-system.

Introduce line coordinates by putting

where x
t

. . . x and y . . . y are the coordinates of two points on the

line, and where v^ . . . vi} w . . . w are the coordinates of two planes

containing the line. Then the equation of the complex may be written

in either of the forms

* =
0,

(26)

-

- A2o 0.

This complex becomes special if A*BD = 0, i. e., only if the cubic

degenerates.
To the flecnode Py (x%

= x3
=

x^
=

0) corresponds the plane

[0,
- 4 (C

2 - BD\ - AB, 2 AC].

Therefore, if C 2 BD = 0, i. e., if the derivative cubic is tangent to

the generator g, the corresponding plane passes through g. If C = 0,

i. e., Mu/w22 = const, the plane passes through PaPy . Therefore, if

the intersections of the cubic with g and the flecnodes form a harmonic

group on g, the plane corresponding to each flecnode passes through that

point of the derived ruled surface which corresponds to the other.

3. The osculating linear complex.

There is another linear complex associated with every generator
of a ruled surface, even more important than the one just considered.

A linear complex is determined by five of its lines, provided that

these have no two straight line intersectors. Let us consider five
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generators of a ruled surface, g and four others. As these four

generators approach coincidence with g, a definite linear complex will

in general be obtained as a limit. We shall speak of it as the linear

complex osculating S along g.

Instead of determining the complex by five consecutive generators
of S, it will be advisable to determine it by means of two pairs of

lines which are reciprocal polars with respect to it. Two such pairs

are obviously constituted by the flecnode tangent of g and of another

generator infinitesimally close to g. Let us denote by gx) fj, fx
&quot;

} gx
the generator of S, the first and the second flecnode tangents
and the generator of S

,
which belong to the argument x. Similarly

we denote by gz+$ x , etc., the corresponding lines belonging to the

argument x + dx, where dx is an infinitesimal.

Clearly fj and fx
&quot;

are the directrices of the osculating linear

congruence, (determined by four consecutive generators). Therefore,

all lines intersecting fx and
fj.&quot; belong to the osculating linear com

plex, whose equation must, therefore, be of the form

(27) rtra13 + &ra42
= 0.

Change the parameter # by an infinitesimal quantity dx. The
flecnode tangents fx+dx and fx -\-Sx must again be the directrices of

a linear congruence contained in the complex. We have

yx+dx = yx + yx Sx, Qx+tx = Q* + Qx dx, etc.

If we substitute the values of y
1

, (&amp;gt; ,
etc. from Chapter IV equations

(112) and Chapter IX equations (2), we shall find

26x+ s x = 26 + (u^y + UK Z #n0 P**6)dx &amp;gt;

where, of course, ?/ 12 and ?&amp;lt;21 may be equated to zero, since C
y
and Gt

are the two branches of the flecnode curve.

Now clearly, the coefficients of y, z, Q, 6 in the expressions

gx+tx + lyx+dx and &amp;lt;lx+i x + pZx+dx

will be the coordinates of two arbitrary points Px
and P*, situated

on fx+dr and /V+d* respectively. If (27) is the equation of the

osculating complex, the plane which corresponds in it to P
x
must

contain P
2

for arbitrary values of A and p. This consideration will

enable us to determine the ratio a : b,



206 X. THE FLECNODE CONGRUENCE (CONTINUED).

We find first, remembering that U12
= W21

=
&amp;gt;

f r

the coordinates:

p,
p

But, if we denote by ulf . . ., u^

which corresponds to the point x
t ,

. .

we find

the coordinates of the plane
x in the linear complex (27),

we* ~~
&quot;&quot;[&quot;&quot;

3t/ A) Wo

Substituting for the coordinates of P1? and writing
down the condition that P2

shall lie in the plane corresponding to

P1; we find that we must have

a =

for arbitrary values of A and fi, i.e., a:6 =^)12 :p21 .

Therefore, the equation of the osculating linear complex, in the

system of coordinates here employed, is

(28) #12
ra13 +_p21 (D42

= 0.

The point -plane correspondence, determined by this complex, is given

by the equations

(29) % =p12#3 ,
u2
= p^x, us

= -^12^1, % =^21#2
.

Let us consider a point on the generator g. There will corre

spond to it, in this complex, a plane, obviously containing the

generator itself. But to every point of g there also corresponds an

other plane through g, viz., the plane tangent to the ruled surface

at that point. Clearly, there will exist in general two points on g
at which these two planes will coincide. We shall call them the

complex points of g, and their locus on S, the complex curve of the

surface. We proceed to determine the complex points of g.

The plane corresponding to any point of g, (xi} X2 , 0, 0), in the

osculating linear complex, has the coordinates

(30) ^ =
0, w2

=
0, u3

= pl2 x^, u=p2ix2 .

The coordinates of the plane, tangent to S at the same point, are

found most easily by computing the equation of the plane tangent to

the osculating hyperboloid H at that point. They are (0, 0, X2) xt).

This plane and (30) coincide if and only i^ plzx1 :p2l
x
2
=x2

: x11

i.
e.,

if

(31)
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This shows that tfie complex points and Hie flecnodes form a harmonic

group on every generator of the surface.

If in (7) we put Mn 4- U3i
=

0, we find that the derivative cubic

intersects g precisely in the complex points. Therefore: if the sur

face S of the congruence F is so chosen tfiat it intersects the flecnode

surface of S in an asymptotic curve, tlie surface of derivative cubics

will intersect S along its convex curve. If S is contained in a linear

complex, the complex curve is at the same time an asymptotic curve.

This last statement follows from our previous results, but may be

verified directly as follows. We notice in the first place that, under our

assumptions, the factors of the expression p^ z~ p^y~ determine the

complex points. Let us assume pn p^ = 0, which we may do

without affecting the generality of our argument. Then the condition

d = for a linear complex becomes = const. If we now make
fti

the transformation

y = Vp*iy + v5u*&amp;gt;
* = Vp*y - VP^,

we find that, in the transformed system of differential equations,
n&quot;

12
= 3T21

=
0, the coefficients of this transformed system being

denoted by Greek letters. But this proves that C- and C, are

asymptotic lines on S. It is geometrically evident that the tangents
of this asymptotic curve will be lines of the linear complex.

Lie apparently was the first to notice the existence of this

special asymptotic curve on a ruled surface belonging to a linear

complex. He proved, in 1871, that its determination requires no

integration, and that all other asymptotic curves may be obtained by

quadratures.
1

) These latter remarks we can also verify at once from

our theory. Picard found the same theorems independently in 1877.2
)

These results on the determination of all of the asymptotic curves

by quadratures if one of them is known, follow at once from the

fact first noted by Sonnet that their equation is of the Eiccati form,
and had already been explicitly formulated and applied to special

surfaces by Clebsch.
3

) It seems that Foss 4
) was the first to notice

that this asymptotic curve and the flecnode curve divide the generators
of the surface harmonically. Cremona-

} however had already made this

observation in the special case of a unicursal surface with two straight

1) Lie, Yerhandl. d. Ges. d. Wiss. Christiania (1871), Mathematische Annalen,
vol.5 (1872).

2) Picard, These, Paris (1877). See also Darboux Bulletin (1877), p. 335,
and Annales de 1 Ecole Nonnale (1877).

3) Clebsch, Crelle s Journal, voL 68.

4) Voss, Mathematische Annalen, vol.8 (1875).

5) Cremona, Annali di Matematiche (1867 68).
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line directrices. Halphen and Snyder^ extended this theorem of Cre

mona s to all surfaces with two straight line directrices. The general
notion of the complex curve, its relation to the derivative surface and

to the surface of derivative cubics seem to occur for the first time

in a paper by the author.2
)

There always exists a pair of points harmonically conjugate to

each of two given pairs. We see that the pair

(32) Aiy +lto*

is thus situated with respect to the flecnodes and the complex

points. They are, therefore, the double points of an involution of

which the flecnodes and the complex points are two pairs. We will

call them the involute points, their locus the involute curve. Of course

these three pairs cannot be real at the same time.

Consider the covariant of weight 7,

(33) 7
= @4 -(94 a

where

C = w 2 - M/2 + w -uz E= vz* - v + -

We have seen in Chapter IV that C7
is a covariant. Moreover it

reduces to (32) under our special assumptions. Therefore, the factors

of the covariant @E l C give flie expressions for the involute points

in invariant form. If

(34) l w12
-

4 *;
12
=

0, l u,,
- 0v2i

=
0,

the combined locus of Cy
and C- constitutes the involute curve. If

however

(35) MU - M22
=

0, n - v22
=

0,

then Cy
and Cz together constitute the complex curve.

We can also write down a covariant whose factors give the

complex points. It is found by expressing the conditions that a

quadratic in y and z shall represent points which divide the pair

of the flecnodes, and the pair of involute points harmonically. We
find in this way, that the factors of

(36) [(wu - u^ vl9
- (% - ^

22) M12] s* + [(wu - w22)%

represent the complex points.

1) Halphen, Bull. Soc. Math, de France, vol. V (1877). Snyder, Bulletin of

Am. Math. Soc., vol. V (1899).

2) Wilczynski, Transactions of the American Mathematical Society (1904),

vol. 6, p. 243.
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We can easily show that the derivative cubic cannot intersect g
in its involute points unless 5 is a quadric. Moreover, if the deriva

tive cubic intersects g in two points which are harmonic conjugates
with respect to the complex point, S can only be a quadric. The

cubic may, however, intersect g in two points harmonic conjugates
with respect to the involute points, provided that un -f u^ = 0, i. e.,

provided that S intersects the flecnode surface of S in an asymptotic
curve. It then passes through the complex points.

It is further clear, geometrically as well as analytically, that the

two complex points can coincide only if S has a straight line directrix

or if the flecnodes coincide. They become indeterminate if S has two

straight line directrices. The involute points coincide if Q =f= 0, and

if S has a straight line directrix. They are indeterminate for 4
= 0.

To every point P of
&amp;lt;/

there corresponds a plane in the

osculating linear complex, as well as the plane tangent to S at P .

When do these planes coincide?

Let the coordinates of P be (0, 0, c^, a,). The plane, corresponding
to P in the complex, has the coordinates (^p^, a,j&amp;gt;21, 0, 0), so

that it contains g . The coordinates of the plane tangent to S at

P are, of course, the same as those of the plane tangent to H at P
,

which may be obtained from (5), viz.: (M11 J/22
2 o2 , MXI M^OH 0, 0).

These planes coincide if and only if

The corresponding points on g are again harmonic conjugates with

respect to the flecnodes, i. e., those asymptotic tangents of S which

join g to the points of g*, the planes corresponding to which in the

linear complex are the planes tangent to S
,
are harmonic conjugates

with respect to the flecnode tangents.
The planes which correspond to these two points of g ,

in the

null -system of the cubic, do not contain
&amp;lt;/.

4. Relation of the osculating linear complex to the linear

complex of the derivative cubic.

The equations of the two complexes are

&! = 4 ( C- - BD) o19 -f AB&amp;lt;on + A Dra,,

(37) + A 9
-au + 2ACon - *AC&amp;lt;au

=
0,

Their simultaneous invariant is

(38)
- 2 MU M22 (un -

which, leaving aside the cases when S is developable or when S has

one or more straight line directrices, vanishes if and only if MU + 1 32
= 0.

1) Cf. chapter VII, 3.

WILC/YXSKI, protective differential Geometry. j^
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Therefore, the osculating linear complex and the complex of the deriva

tive cubic are in involution if the first derivative ruled surface cuts out

asymptotic curves on the flecnode surface of S, and the cubic passes

through the complex points of g. Some of our previous theorems are

consequences of this.

The two special complexes which are contained in the family

A&! + [l&2
=

0,

where I and (i are constants, are those for which

- 3A2BDl2 2unu22 (un - w22)
2

(un + u22)p^p21 ^(i -\-pnp^^2=
0,

or, discarding again the case when S has a straight directrix,

12wu
3 w22

3
(wn M22)

4 A 2 2wu w22 (wu w
22)

2

(wu + M
22) Aft + ft

2 = 0.

They coincide if

wn
2 w22

2

(MU w22)
4
(MU -f M22)

2
-f 12wn

3 w22
3
(un w22)

4 =
0,

i. e., if S is developable, if S is a quadric, or if

(39) (wu + w22)
2 + 12wuw22

= 0.

We can always choose the independent variable so as to satisfy this

condition. In fact, if we change the independent variable by putting

! = !(#), according to Chapter IV, equations (49), we shall have

(MU + M22)
2

-f- 12MU M28
=

0,

if | be taken as any solution of the equation

(40) 64/i
2 + 32

(Mll + w22) 11 + (un + w22)
2 + 12 un w22

=
0,

where
1 &quot;

= It r \ _ 1^2 = 1_.P 1 5&amp;gt;

*
; v 2 7

I

Therefore, there exist two families of oo 1 non- developable ruled

surfaces in the congruence F such that tlie linear congruence, common
to the osculating linear complex of S and the linear complex of the

derivative cubic, shall have coincident directrices. Any four surfaces of
one family intersect all of the asymptotic tangents of S in a point row

of constant anharmonic ratio. The two families never coincide unless

4
=

0, i. e., unless the flecnode curve intersects every generator in

two coincident points. But in this case the congruence is not defined.

If S has a straight line directrix this congruence is degenerate.
The coordinates of the plane, which corresponds to a point

(xv X2 , 0, 0) of g in the null -system of the cubic, are

This plane contains g if and only if O 2 BD = 0, i. e.,
if the
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derivative cubic is tangent to g. It will coincide with the plane

tangent to S at this point, if further

- ABx
l 2ACx* = coo:,, 2ACx

l + ADx* = axl}

where o is a proportionality factor, or

ABx
v + (2AC+a)xs

=
0, (2AC-\-m)xl + ADxt

= 0,

whence follows GJ = AC or 3AC. We have therefore

xl :x,
= -C:B=-D:C or x

1
:x2

= C:B = D: C.

These points are harmonic conjugates with respect to the flecnodes.

Therefore, if the derivative cubic is tangent to g. there are two

points of g whose tangent planes are the planes corresponding to them

in the null-system of the cubic. These points and the flecnodes form a
harmonic group on g. They never coincide with the complex points
unless the ruled surface has a straight line directrix.

The planes, corresponding to a point of g in the null -system of

the cubic and in the osculating complex, coincide if

C 2 - BD = 0,

(AS- opls)xl + 2ACx* = 0,

2ACXi + (AD-mpsJxt = 0,

where co is a root of the quadratic

(41) ra
2 + 2ttlltt22 (wn

- t/22)
8
(Wll + t*22) o - 12 n

3
M22

3
(wn - M 22)

4 =
0,

neglecting again the case when S has a straight line directrix. These

two points of g coincide if
(&amp;lt;n + ?&amp;lt;22)

2 + 12un uK = 0.

More generally, if we write down the conditions that the same

plane shall correspond to a point (x^ xif iCj, rr4) in the osculating
linear complex and in the complex of the cubic, we shall obtain as

the locus of these points two straight lines, the directrices of the

congruence common to the two complexes. These conditions are as

follows; xl
. . . X4 must satisfy the equations:

+ (AB - opn ) xs
- 2ACx = 0,

- 4(C
2 - BD)xv + * + 2ACx3 -(AD- &amp;lt;op9Jx. = 0,

(42) - (AB - opu) xt
- 2ACxs + + A*x = 0,

(AD - orp21) x*
- A*x& + * =0,

the vanishing of whose skew -symmetric determinant gives for o the

quadratic equation (41), which may also be written

(41 a) (AB - mpu) (AD - apn) $ 4A* (C
2- BD) - 4A*C* = 0.

14*
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Let oi
and co2

be the two roots of this equation. If we eliminate

xa from the first two, x from the last two equations of (42), if we

make use of (41 a) and assume that neither A nor (7
2 BD is zero,

we shall find

-(AS- o*i&amp;gt;12) #!
- 2ACx2 + A*x =

0, ^
-
4(C

2 -
#D&amp;gt;2

- (AB-a)kp12)x3 + 24C^ =
whence

(43)
+ A (

AB- nkPit) ^3 =0, (fc
=

1, 2),

(AS G) k
pi&amp;lt;s) BI 2J.C#2 + J.2^ ==

the equations of the two directrices in simpler form than in (42).

A line joining the point (xv x%, 0, 0) of g to the point (0, 0, xl}
#
2)

of g is a generator of the second kind on H. It is not difficult to

see that it will intersect the directrix (43) if and only if

(44)
- (AB - okp^Xi

2 + 4A*BDxa

* = 0.

Hence, the two points, in which either of the directrices of the

congruence common to the two complexes intersects the osculating

hyperboloid, determine upon this hyperboloid two generators of the

second set which are harmonic conjugates with respect to the flecnode

tangents.
It also follows easily that the two pairs thus obtained, one

corresponding to each directrix, coincide only if

(un + M22)
2 + 12wuM22

=
0,

i.
e.,

if the directrices themselves coincide. Further, if one of these

pairs intersects g in the involute points, the same is true of the other

pair, so that this can only happen if the directrices coincide. Finally,

such a pair of generators of H can pass through the complex points

only if S has a straight line directrix, or if $ is developable.

The line joining the points (xlf 0, #3 , 0) and (0, xv 0, #3) is a

generator of the first set on H. The coordinates of an arbitrary

point of this line are (kxv [ixv &x3 , /& 3).
This line will, therefore,

intersect one of the directrices of the congruence if xly
xa , A, /A can

be determined so as to satisfy the equations

I [- 2 C(AB- okp12)xl + A(AB- ra*|&amp;gt;12)#3]
- ^^ABDx^ = 0,

- I (AB - a&amp;gt;tp19) ! + /*(- 2ACxi + A*x
A)
=

0,

which gives either A = 0, AB C3kp^ = 0, or

(45) 4 (c* - BD^x,
2 - AACx^ + A2x3

2 = 0.

The first two cases give either a surface S with a straight line

directrix, or else a developable surface S . Leaving these cases aside,
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we notice that (45) does not contain 0* so that if the line on H
here considered intersects one of the directrices it intersects the other

also. Combining this with our previous result, we see that the

following theorem holds.

TJte four points in which the directrices of the congruence, common
to tiie osculating linear complex and the linear complex of the derivative

cubic, intersect the osculating hyperboloid can be grouped into two pairs,

such that the line joining the members of each pair shaU be a generator

&amp;lt;&amp;gt;f

the first set upon the hyperboloid Upon tiiis generator this pair of

points, together with tJie intersections of the generator with the flecnode

tangents, form a harmonic group.

The plane, corresponding to a point (xv #2 , 0, 0) of g in the

null-system of the cubic, intersects the flecnode tangents

f in the point [ABx1 -f- 2ACxi} 0, 4(C
2 - BD}xz , 0],

f&quot;
in the point [0, SACx^ + ADxz , 0, 4(C

2 - BDjxJ.

The line joining these points is a generator of H, if either

^ = 0, or C*-BD = 0, or BJ\-
-

Dx&amp;lt;?
= 0.

Therefore, there exist in general tico jioints on g, harmonic con

jugates with respect to the flecnodes, such that tlie planes, corresponding

to them in the null-system of the derivative cubic, pass through a

generator of the osculating hyperboloid. If the cubic is tangent to g
the null -plane of any point of g contains a generator of H, viz.,

g itself. If A = likewise, all points of g satisfy the condition of

the theorem. Their null -planes all pass through of.

5. Various theorems concerning the flecnode surface.

The principal surface of the congruence.

Let us consider the planes which osculate the flecnode curve of

S at P,j and P.. We have, of course, 12
= M21 = 0. If x

ir
.r

2 , x$, x
are the coordinates of an arbitrary point of the plane osculating Cy

at Py, we have for the equation of this plane

1/1 *.i o / / i

//I ./2 ?/3 1/4

-iiii
But

If we assume again 7&amp;gt;u =.p32
=

0, and substitute into the above

equation, it becomes

-f q^yt + g^t, etc.
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But if we introduce again the fundamental tetrahedron P
y
PzP^Pa ,

this reduces to

(46 a) |&amp;gt;12 #2 + #12
2 xa 2 gls #4 = 0.

In the same way we find the equation of the plane osculating C3 at

Pz to be

(46 b) jp21 a?t
2 g21 #3 + p81

*
o?4
= 0.

To these equations must be added the conditions w12
= it21

=
0, if

Cy and (7^ are the two branches of the flecnode curve.

Let us assume that this is the case. The osculating planes at

Py and Pz intersect along a straight line, whose intersections with

the osculating hyperboloid may now be found. If x
1 . . . x are the

coordinates of one of these points of intersection, we find

(47)
&amp;lt;-3&amp;gt;

where the ratio of xt
: xs

is determined by the quadratic

(48) (p^Pn - 4g12 21)^3

2 + 2
( jp12 #21 + p^p^x^ - PUPS&* = 0.

Therefore, if pn q^ +^21^12 ^ i- Q
-&amp;gt; if PnPzi ==

const., the two

generators of the first kind on H which pass through these points are

harmonic conjugates with respect to g and g . If

(49) CPi2&i-.P2i2i2)
2 +PvPn =

0,

the intersection of the two osculating planes is tangent to the hyperboloid.

This latter property is obviously characteristic of a class of ruled

surfaces, and can be expressed in invariant form.

We may find the invariant expression for this condition by

making use of equations (102) of chapter IV. We there found that

the coefficients of system (A) could be expressed as functions of the

invariants, if the system is supposed to be reduced to the form

characterized by the conditions w12
= w

21
= and pn = p22

= 0. This

is precisely the form in which we have supposed system (A) to be

written in deducing (48) and (49). If we substitute the values of

Pn } Pzv #12 &amp;gt; (?2i
fr m the equations just mentioned into (49), we find

(49 a) 4
3

9

2 + 16@
10

3 =
0,

while Pwp2i becomes ^~-
We have, therefore, the following results,

which may also be verified a posteriori.
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9
If tiie independent variable is clwsen so that ^~

= const, the

generator cf of the first derived surface is the harmonic conjugate of g

with respect to the two generators of the same kind on H tchich are

determined by tJie points, in which the line of intersection of Hie two

osculating planes of the fkcnode curve, intersects H.

If 6&amp;gt;4
3

&amp;lt;99
2 + 160

10
3 =

0, the ruled surface S lias the following

cliaraderistic property. The planes, ichich osculate the fkcnode curve at

the two points of its intersection with any generator, intersect in a line

which is tangent to the osculating hyperboloid.

The plane osculating the flecnode curve at Py
intersects the

flecnode tangent f&quot;
which passes through P2 in the point (0,2g12 ,0,_p12).

Similarly, the plane osculating C- at P, intersects f in the point

(SftiyOjjp^jO). Therefore, the line joining these points is a generator
of H if and only if p19 q3l m&amp;lt;?i2

=
&amp;gt;

i- e
-&amp;gt;

^ & belong3 to a linear

complex. In other words: the points in which the two planes, osculat

ing the fkcnode curve at its points of intersection with any generator,

intersect the flecnode tangents are situated upon the same generator of
the osculating hyperboloid if and only if the surface belongs to a linear

complete.

To each of the two planes (46 a) and (46 b) corresponds a point

in that plane by means of the osculating linear complex. These

points have the coordinates

(-PuPtv -2fc2 , 0, -j&amp;gt;12)
and (2 2n&amp;gt; JPuA Ai&amp;gt; )-

We find that the line joining them intersects H in two points, which

form a harmonic group with the first two, if S belongs to a linear

complex. It is tangent to H if (49) is satisfied. Xlierefore, if the

two planes, osculating the flecnode curve at its two points of intersection

with a generator, intersect in a line which is tangent to the osculating

hyperboloid, the line joining the two points of these planes, which

correspond to tJiem in the osculating linear complex, is also tangent to

the osculating hyperboloid, and conversely.
We have seen that, under the assumptions

M
12
= M21 =1&amp;gt;11

=
l&amp;gt;22 =&amp;gt;

the equations of the sheet F of the flecnode surface assume the

form (15). Let us denote by U, t the quantities formed for this

system according to the same law as are the quantities u,-* for the

equations of S. Then we shall have, [cf. equations (4) chapter IX],

i

The curve Cy is a branch of the flecnode curve on F as well as

on S. The other branch is the locus of the point

I
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Now if the transformation | = |(#) is made, Q is converted into

&quot;

Therefore, if a transformation |x
=

^(flj) be made such that the

derivative surface of S with respect to |t may cut out upon F the

second branch of its flecnode curve, |x must be so chosen that

(50a) =

Similarly the second branch of the flecnode curve on F&quot; will be

obtained by putting

(50b) ==

gn-g

The two surfaces of jT thus obtained coincide only if S belongs to

a linear complex, i.
e.,

the second branches of the flecnode curves on the

two sheets of the flecnode surface of S correspond to each other only if
S belongs to a linear complex.

We have seen that the plane osculating Cy at Py intersects
f&quot;

in the point -f- jp12 &amp;lt;?. The corresponding point on
/&quot; , i.e., the

point obtained by finding the intersection of f with the correspond

ing generator of H, is given by 2g12i/+^12 p. We find a surface

of F which intersects f and
f&quot;

in these points by making a trans

formation of the independent variables for which
t?

== 2-- ?
&amp;gt; or if we

denote this special value of
17 by 7?1;

Pi,

If we now denote by y the expression

we find

and similarly

i?
= y

f

_ &amp;gt;

i-i-Oh+%),

1 _

This gives us an important result. For, we have occasionally made

use of a normal form for our system of differential equations, in

which 4
= const. But in order to have 4

=
const., we must make

precisely the transformation determined by 17.
On account of its

importance, we shall call the surface of T which is thus obtained,

the principal surface of the congruence, and the curves in which it

intersects the two sheets of the flecnode surface of S their princi%
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curves. We see then that the principal surface may be constructed

as follows.

We consider the flecnodes Py and P: of g, the planes py and p,

osculating the fkcnode curve at these points, and the points P and P&quot;

upon the flecnode tangents f and
f&quot;

whose loci are the second branches

of the flecnode curves on the two sheets F and F&quot; of the flecnode

surface. Hie plane py intersects
f&quot;

in a certain point to which

corresponds a point on f such that the line joining them is a generator

of flie osculating hyperboloid. This latter point together with P con

stitute a pair, sudi that the harmonic conjugate of Py with respect to

it is the point in which the principal surface intersects f. The inter

section with
f&quot;

is found in the same way.

We might also say, that in this way there is determined, upon
the generators of H

}
an involution whose double elements are g and

the generator of the principal surface.

By combining a number of our previous results with the notion

of the principal surface, we obtain a number of theorems, which

may be easily verified. They provide interpretations for the vanishing
of certain invariants, and therefore furnish characteristic properties

of certain families of ruled surfaces.

To prove these theorems it is sufficient to express the conditions

in terms of the coefficients p^, qa and then introduce the invariants

by means of the equations (102) of chapter IV.

If 15
=

0, 4 =j= 0, the principal surface is the harmonic conjugate

of S with respect to the two ruled surfaces of the flecnode congruence

which cut out the second branches of the flecnode curves on F and F&quot;.

If 4 t
=

0, or 6&amp;gt;6 6&amp;gt;4 96&amp;gt;10
= 0, the principal surface intersects

F and F&quot; along asymptotic curies.

If I.i 64 4
5 =

0, the principal surface is developable.

If 15
2 @

9

2
&amp;lt;94

3 = Hie principal surface intersects one of tiie

sheets of the flecnode surface along the second branch of its flecnode

curve. It thus intersects both sheets if @15
=

9
= 0.

Our construction of the principal surface becomes indeterminate

if S has two straight line directrices. If we assume that Cy and Ct

are two asymptotic curves upon S, we may put, in this case,

Pik
=

0, qls
= aq, 221

= bq, qu &amp;lt;?22
=

cq,

so that 4 is a constant, if and only if q is a constant.

The planes tangent to S at P
?
and Pa intersect P,,P- in the

two points

i

respectively. The point P,/ determined by

is a point upon the tangent of Cu at Pu . If the independent variable
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is transformed by putting | = the curve Cu is converted into

another curve, and the point Pu
r is transformed into another point

of its tangent. But the above equation shows that Pu
r lies in the

plane Py P^Pa if and only if q = 0, i. e. if and only if the indepen
dent variable has been chosen so as to make S the principal surface

of the congruence. Pv
&amp;gt; will then be in the plane PzPQ

Pa . This

property may serve, provisionally, to characterize the principal surface

in this case; another simpler interpretation will be given later.
1

)

6. The covariant C3 for @4 =)= 0-

We have interpreted geometrically all of the fundamental

covariants, except C
3

. With the notions, now at our disposal, we

may also find the significance of this covariant. It is equal to

(51) C3
= E+2N,

[cf. Chapter IV (116)], where E and N are defined by the equations

(107) and (114) of Chapter IV. We may write

(52)

so that

(53)
where

(54)

y

N =

a =

The covariant (73 , therefore, determines a ruled surface 27, whose

generator is obtained by joining the points Pa and Pp determined

by (54). Our interpretation of the covariant C3
will consist in giving

a construction for this surface.

The surface 27 is not like the derivative surface S of S depen
dent upon the choice of the independent variable. In fact, it may
be easily verified that the transformation | = (#) converts a and /3

into a and /3,
where

1 a
/?K 7&\s K ) P 7b&amp;lt;\s P&amp;gt;

so that the points Pa and

of the dependent variables

1) Chapter XIV, 5.

are left invariant. A transformation
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y = ly+ ms&amp;gt;

~
Z = W f/ + t Z

transforms a. and
/3 cogrediently into

= lei -\- wi/3, jfl
!
= na + &amp;gt; ft

so that there is a one-to-one correspondence between the points of

the generators of S and Z1

.

We may, therefore, in order to determine the surface 27 choose

the curves Cy
and C. of S, and the independent variable in any way

that may be convenient. We shall assume 6&amp;gt;4 =J= 0, so that the

flecnode curve of S intersects the generators in distinct points, and

identify Cy
and C . with the two branches of the flecnode curve, so that

M 12
= u.2l

= 0.

We shall further assume that the independent variable is chosen in

such a way as to make
4
=

1, or more specifically (since Mi2
= M2i

=
0),

so that

wn u** = 1.

The derivative surface S of S with respect to x is then the principal

surface of its flecnode congruence. We find, with these assumptions,

(55) a = 2p -

We have, on the other hand,

9 = 2*/ + pn y +
whence

(56) y = 2 y + Pll y
=

Q
-

p^z, 8 = 2z

The point P7 is obviously the intersection of the tangent to the

flecnode curve at Py
with the line Pz Pr,, while Pa is the intersection

of the tangent to the flecnode curve at P. with the line P
yPa .

But we have from (55) and (56)

so that the points P. and P
?

are harmonic conjugates with respect
to Pa and P; on the line P2 Po, while

P&amp;lt;j
and P^ are harmonic

conjugates with respect to P? and P
y

.

The generator of the surface 21 is now completely determined

by the following construction.

Let Py and P, be the two flecnodes, supposed distinct, on a given

generator of the ruled surface S, and lei P
Q

and Pa be the points

corresponding to Py and P, respectively upon the principal surface of
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the flecnode congruence of S. At P
y ,

as well as at Pz ,
three important

lines intersect, viz.: the generator, the flecnode tangent, and the tangent

to the flecnode curve. All of these are in the plane tangent to the sur

face S at their point of intersection. In each of these plane pencils we

construct a fourth line, the harmonic conjugate of the generator with

respect to the other two. Each of these lines meets the line joining the

point of the principal surface, which corresponds to the flecnode con

sidered, to the other flecnode. The line, which joins the two points of

intersection, Pa and Pp, obtained in this way, is the generator of 2
which corresponds to the given generator of S.

Examples.

Ex. 1. If S has two straight line directrices, 2J coincides with

the principal surface of P.

Ex. 2. If a ruled surface belongs to a linear congruence with

distinct directrices, every asymptotic curve intersects each generator
in two points which divide the flecnodes harmonically. (Cremona,

Halphen, Snyder.)
Ex. 3.* Find the conditions that an asymptotic curve, flecnode

curve, involute curve, complex curve of S corresponds to one or the other

of these curves on S . Investigate these correspondences in detail.

Ex. 4. The covariant C
3

can vanish identically, only if S is a

quadric.

Ex. 5.* Set up the differential equations of the surface 2, and

find the conditions that it may belong to a linear complex, a linear

congruence, or be a quadric, etc. . . Express these conditions as

invariant conditions for the surface S.

CHAPTER XI.

RULED SURFACES WHOSE FLECNODE CURVE INTERSECTS

EVERY GENERATOR IN TWO COINCIDENT POINTS.

The formulae and the theorems developed in the preceding

chapter are not directly applicable to the case when 4
=

0, i. e.,

when the flecnode curve intersects every generator in two coincident

points. The general notions, employed there, may however be applied

to this special case as well, and give rise to a number of interesting

and important considerations.
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1. The covariant (73 .

The interpretation of the covariant Cz given in the last chapter

is complete for the case 6&amp;gt;4 =f= 0. It breaks down absolutely for

This covariant is

(1) Cs
= cc2 - /3y,

where

(2)
~

l

/3
= 4 ?&amp;lt;21 p 2 (MU w22) & -f 21

We have

Let us assume that the curve Cy
is the flecnode curve

;
so that M12

= 0.

We shall then have also itn u22
= 0. Further we may assume

Pn = PK = -

We have therefore

whence

(oj cc =
Pi&amp;lt;&amp;gt;it&amp;lt;&amp;gt;iy j /3

= 4j/ 91 p -f- t 9iy P\* M-I~

If a transformation of the independent variable be made by

putting % = %(x], we find that for the new system of differential

equations

Therefore, if w21 =j= 0, i. e., if S is not a quadric, we can always
choose y in just one way so as to take rn = 0. We obtain, therefore

a perfectly definite surface of the congruence jT, which we will call

its principal surface, and which we shall characterize geometrically
farther on.

Let us assume that the variable x has already been chosen in

such a way that S
,
the derivative of S with respect to x, coincides

with the principal surface of F. Then v21
= 0, and (3) becomes

where

/3

We have further in general

p =
whence

1) Chapter IV, equ. (53).
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The point, whose coordinates are yi,--.,yl, is, therefore, obviously
the intersection of the tangent to the flecnode curve with the line

PZ P(). The point Pp whose coordinates are given by /3t
. . . /34 is

also on the line PZPQ ,
and the cross ratio of the four points PQPpP2Py

is -- The point Pa obviously coincides with Py .

The ruled surface which the covariant Cs adjoins to S may there

fore be defined as follows. In the plane tangent to S at its flecnode

Py , construct a line passing through Py such that it, together with the

generator, the flecnode tangent and tlie tangent of the flecnode curve shall

constitute a plane pencil whose anharmonic ratio is The locus of

these lines is the required ruled surface. Moreover the points of any
generator of this surface are, by means of the covariant 3 , put into a

one-to-one correspondence with those of g. The lines joining corresponding

points pass through P^, that point of the principal surface of the con

gruence r which corresponds to Py
.

It only remains to give a characteristic geometric property of

the principal surface of F. For this purpose let us assume, in addition

to our previous hypotheses, that Cz is an asymptotic curve on S, i.
e.,

let = 0. Then.

2 G &quot; = u
9l y un

-
21

and
,% = 2t*
21

.

The first equation shows that the tangent to the curve Cff at Pa

intersects the generator g of S. Denote this point of intersection by
Pa . The locus of the point Pa is therefore a curve on S, Ca . Its

tangent at Pa
&amp;gt; is obtained by joining Pa

&amp;gt; to the point Pa
&quot; defined

by the second equation (4). But this equation shows that Pa
&quot; is in

the plane PzP?
Pa if and only if % = 0. Put

t =

then PI is a point on P^Pa such that the line joining it to P is a

generator of the hyperboloid H osculating S along g. We see that

the tangent to Ca always intersects P1 P^ )
and that Pa

&quot; coincides

with this point of intersection if and only if v2l
= 0.

The principal surface of the congruence JT is therefore defined

by the following statement, which is merely provisional, however, as

we shall find a simpler interpretation later.
1

)

We draw upon the ruled surface S any asymptotic line Cz and,

upon any surface S of the congruence F, the curve Ca which cor-

1) Chapter XIV, 5.
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responds to it, P, and Pa being corresponding points of the two

curves. The tangent to Ca at Pa always intersects the generator g
of S, which passes through P,, in a certain point Pa ,

whose locus

gives a curve Ca upon S. Upon S a point PT is constructed such

that the line PrPa shall be a generator of the hyperboloid osculating
S along g. The tangent to Ca

&quot; at Pa
- intersects the line P:Pr . If

the independent variable has been chosen in such a way that S is

the principal surface of the congruence, the point Pa
&amp;gt; will coincide

with this point of intersection.

2. The derivative conic.

In the general case, where 6&amp;gt;4 =|= 0, the hyperboloid H osculating
S along g and the hyperboloid H osculating S along g intersect

along g and a space cubic, which we have called the derivative cubic.

Moreover, this cubic does not degenerate unless either S has a straight
line directrix or S is developable.

In the present case, however, H and H have besides cf the

straight line f in common, i. e., the flecnode tangent passing through
Py , The rest of their intersection is, therefore, a conic which we
shall call the derivative conic.

We proceed to prove these statements and to derive the equations
of the derivative conic. Taking as tetrahedron of reference the

tetrahedron Py
Pz Pr,Pa ,

the equation of H is

and that of H1

-
(*!

-
JjattuK 4-

as we have shown in Chapter X, equations (1) and (3).

In our case we may put

12
=

Mil
-

22
=

&amp;gt;

J =
fi

whence

(5) vu fa, =
2j&amp;gt;13

M21; f12
=

0, r21
= 2i*

21
-

(j&amp;gt;n -
and

= - M
ii

y
ii 2 J;

-i2
=

0,

=
*&amp;lt;21 r22 itn r21 ,

2J&quot;/
2,
=

z/u v22

We find, therefore, for H the equation

-
{^^[cTa^ Anttna:! + (^n 21

- AnMu)a;2]
= 0,

or
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(7) Juu (x^x^ X2
x3} + w^ (Au A22 ) x^xz

Ju2i x2 x^

+ LMii^2i un uzi (AU A22)J X2
==

^j

while the equation of J? is

1 4- 2 R

Both equations are satisfied by x
l
= #

2
= 0, as well as by x^

= xi = 0,

which proves that g and f are lines upon both of these hyperboloids.

They must therefore have also a conic in common, whose plane must,

according to (7), have the equation

Uil (*11 ^22)^1 ^11^21^4 i LM11^21 M21 C*U ^22/ J ^2
~ ^

If we put for abbreviation

(8) A = un (An - A22), 5 = - MU Ag! -f M
2 i (^u

~ ^\ c = Wnw2o
whence

(9) n^+l&amp;gt;C
=

0,

we have, therefore, as the equations of the derivative conic

(10) Ax
t Bx2 Cx =

0, x^ x
2
x
s
= 0.

We may also express the coordinates of any point on the conic

in terms of a parameter t. Any point on the hyperboloid H can be

represented in the form

X
1
=

Ut, X%
=

t, Xs
= M, #4 = 1.

This point is, moreover, a point of the conic if the condition

Aut - St- C =
is satisfied, whence

At

If we substitute into the above equations for x
1

. . . x and multiply

by At, we find

(11) Xi
= t(C+ St), xz

= At\ x3
= A + Bt, x = At

as the parametric equations of the conic, or in homogeneous form

(12) x
1
= t^, x2

= At^, x
3 t^, x = AWs,

where

(13) ^ = 5^ + 0^.

The conic, of course, always passes through P(t

. The first question

which we naturally ask is this: when does the conic degenerate into

a pair of lines? Clearly this can only happen if the plane

Ax^ Bx% Cx =

intersects the hyperboloid H in a pair of lines, i. e., if it is tangent
to H. Moreover since this plane contains P^, it must in that case

contain at least one of the two generators of H which pass through
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P
?

. If it contains that one which passes also through P we must
have 0=0, i. e., since un ={= (S not being an quadric), un = 0.

S 1 must therefore be a developable. If, however, this plane contains

the other generator through P
? , namely that one which passes

through P
y ,

we must have A 0, which gives either z&amp;lt;n = as

before or else p12
=

0, in which case the flecnode curve Cy would be

a straight line.

Therefore, the derivative conies degenerate if and only if the sur

face S has a straight line directrix, or else if the derivative of S with

respect to x is one of the developable surfaces of the congruence F.

By an investigation similar to that in Chapter X;
we obtain the

further result:

Tico consecutive derivative conies never intersect unless tliey de

generate.

3. The developable surface generated by the plane of the

derivative conic.

As x changes, the plane of the conic Cx envelops a developable
surface, the equations of whose generator we shall now proceed to

determine.

Let us form C&JGX under the assumption that ^ :f
2

is independent
of x. Then

will represent any point on the derivative conic Cx+d x belonging to

the argument x -\- Sx, where dx is an infinitesimal. The plane of

this conic will be determined by any three points upon it. We have

(again assuming psl
=

0),

^=
y[t1 (B t

i +

(14)

We can obtain three points of the conic Cx+s x by putting
= 0, &amp;lt;g

=
1; tj_

=
1, &amp;lt;2

= 0; ^ = + C, t* = B, which last set of

values corresponds to ty
= 0. Therefore, the equation of the plane

of Cx jr d x is

WrLCzrxSKi, projectiye differential Geometry. 15
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Cun dx 2C+2C dx - Cpi2 dx

2B+2B dx 2A + (2A - Bp l2)dx Bdx Adx

[2C(B C-BC } 2AC* + (2A C
2 -2B(B C -2ABC + (AC

2

-ABCu21]dx -ABCu^dx - BC )dx -2A BtySx

If this determinant be developed, retaining of course only the

terms of the first order in dx, we find that the planes of Cx and of

Cx+Sx intersect along the line

t* _ 7? /y f/ T*
-

-j

JL* tA/O ^- **/
4. ^9

ADx
l
- Ex2

- CFx= 0,

where
- BCpn ,

(16) E=2BCA + 2ACS + 2ABC -AC 2

,

F= 4AC + 2A C- ABu + ^L
2w = 4AC

Equations (15) arc, therefore, the equations of the generator of the

developable surface.

This proof would not be valid if either C or B were zero. For,

then the third of the three points of the conic Cx+d x ,
which we have

used to determine its plane, would coincide with one of the other

two. If C = the conic degenerates. Since, however, we might, in

the case B = 0, choose three other points of 0^4.^0;, as we might also

do in the general case, the result will obviously be obtained from

the general case by substituting 5=0.
We see from (15) that the generator of the developable surface

passes through P
Q

and that it intersects the plane xs
= 0, in the

point Px or

[C(E-BF), AC(D-F), 0, A(E - BD)],

which we may therefore represent by the expression

(17) K
= C(E- BF) y + AC(D-F}z + A(E- BD) 6.

Since the surface generated by this line joining PQ to Px is

developable, it must be possible to find four functions a, /3, y, d of x,

such that

(is) e + p x + jy + *j = o.

Now we have

P
=

2 Kl^-^tf);
and we find

(19) x
= Gry + Hs + MQ + Nt,

where
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G = C(E - BF - B f) + C (E- BF} + ~unA(E- BD),

H = (AC + AC)(D-F)+AC(D -F ) -~p19_C(E - BF)

(20) +

N = A (E - BD) + A(E - BD - B D) +

If we substitute these values of
jr

f

and 9 and also the expression

(17) for i into (18), we find that a, /3, y, 8 must satisfy the equations

A(E- BB)fi--pa r + Xd = 0,

Therefore, the determinant of the first three equations, which

expanded becomes

(22) ~PuC(D - F) [AC - GA + HB],

must vanish identically; i. e., since the other factors do not vanish

identically, we must have

(23) XC - GA + HB = 0.

We may also verify (23) directly. For we find from (20),

NC-GA
- D UCB -\AC*- BAG -

4- A^Bu^ + -^AB 9
-un)

\ &amp;lt;* m m /

= y \F(E - BD) -D(E- BF) + E(D - F}\ = 0.

We can now determine the edge of regression of the developable
surface. If yg -j- d^ is a point on this curve, its tangent constructed

at that point must coincide with the generator of the developable, i. e.,

(24) y Q + d X + y(&amp;gt;
+ dx = ll + H9

or

which is identical with (18) if we put there

a = y
-

.u, /3
= d - I.

15*
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But, on account of (23), we can determine a, /3, y, d so as to satisfy

(18); we can, therefore, determine A, [i, y, d so as to satisfy (24). More

over we find

(25) y:d = - 2GA(D - F) + 2H(E - SF):unA(D - F).

Therefore, the edge of regression of the developable is given by the

expression

x-[- 2GA(D-F) + 2H(E- BF)](&amp;gt;

(26) + *n A(D - F) [C(E-BF)y + AC(D - F)z

We see from (15) that the generator of the developable surface

coincides with one of the generators of H which passes through P^,

only if either A or C vanishes, i. e., either if S is developable or if S
has a straight line directrix, in which cases the derivative conic

degenerates. The generator of the developable is tangent to H at PQ,

neglecting the cases just mentioned, only if D F = 0. As (26) shows,

the cuspidal edge of the developable then coincides with C^. If the

expressions for A, B, C be substituted into the condition D F 0, or

2(A C- AC )
- BCpu + ABun - A2u2l

= 0,
it becomes iff

411 O -^ 12 O 21 __^ f\^ 4 = U,

which gives on integration
M|] - = const.

If E - BF= 0, Px lies in the plane PQ
PzPa ,

and if E
in the plane Py

Pz Pq.
It will clearly be possible to characterize special classes of ruled

surfaces (for @4
=

0) by special properties of the developable surfaces

here considered.

The relation of S to its flecnode surface F is especially close in

this case ( 4
=

0). In fact S is also the flecnode surface of F.

Moreover, the same hyperboloid H which osculates S along g, also

osculates F along the corresponding generator f of F. The con

gruence r&quot;,
which belongs to the surface F in the same way as F

does to S, is therefore made up of the generators of the second set

on the osculating hyperboloids of S, those of the first set constituting

the lines of the congruence J1
. All of these remarks follow easily

from the equations of the flecnode surface which, under the assumptions

pu =pz% =p2i
=

0, assume the form

(28) - 0.
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Moreover, since S is a developable surface of the congruence JT if

qn = 0, and since (28) shows that C
?

is then an asymptotic curve

on F, we see that the developable surfaces of the congruence intersect

its focal surface F along asymptotic lines, as it should according to

the general theory of congruences.

Examples.

Ex. 1. If S belongs to a linear congruence, with coincident

directrices, the results of 1 are modified. Discuss this case.

Ex. 2. Find and discuss the conditions that the developable of

3 shall be a cone.

Ex. 3.* Find and discuss the conditions that the edge of regression
of the developable of 3 may be a curve belonging to a linear

complex; a space cubic.

CHAPTER Xfl.

GENERAL THEORY OF CURVES ON RULED SURFACES.

1. Relation between the differential equations of the surface

and of the curves situated upon it.

Let a ruled surface be given by means of the system of diffe

rential equations

=
0,

&quot;

z = 0,

so that the curves Cy
and Cz will be two curves upon it, the lines

joining corresponding points of these two curves being generators of

the surface.

We shall eliminate once z and once y, so as to obtain the linear

differential equations of the fourth order which each of these func

tions must satisfy.

We have from (1), by differentiation,

,~

where
rn = ^ii

2

,, i2
=

Pis (Pn +Pi*)
-

Pit
~

Sis &amp;gt;

Si2
= Pu^it 4-

n = Pu (Pu +#&amp;gt;2 )
-

Pti
-

fei , 21
=

5 =
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We find by another differentiation

^(4)

where

Zu
= - Pn rn - Pzi ri2 + V + n; *u = - *i! 0H

-

^12
=

.Pl2 ril i^22
r
i2 ~H r!2 ~f~ S

12&amp;gt;

W12
==

*&quot;ll 012 *\2022 S12 &amp;gt;

* ~~
^21 T S21J ^21

~
^ai^ll **22^21 S21 &amp;gt;

If we put further

(6)

we can find from the above equations:

^18
(Tl - J^s

and similarly

Finally we obtain the sought -for differential equations for y

and s, viz.:

and

4*W - (^21^21

(10) + [(^22^21

+ [(022^21
-

1&amp;gt;81

S22)W21
-

(022*21
~

These equations are capable of a vast number of applications.

Any question, in fact, in regard to the existence of curves of a

specified character on a ruled surface must make use of them.

We notice that the conditions z/
x
= or z/

2
= will be necessary

and sufficient to make Gy
or Gz plane curves; the differential equa

tions (of the third order) of these plane curves are found by putting

^ = or z/
2
= in (7) or (8) respectively.

We will merely indicate a few other applications of these

formulae. Let us write (9) more briefly

(9) &*&amp;gt; + 4p,y(V + 6p2 y&quot; + 4p3 y + pty
= 0.
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We shall find, in the next chapter, the conditions that the integral

curve of (9)
f

may belong to a linear complex, or that it may be a

twisted cubic. In one case its invariant of weight 3, and in the other

both of its fundamental invariants must vanish. These two conditions,

which we now find expressed in terms of the coefficients of (1), will be

satisfied only by a particular kind of ruled surface, characterized by
the property of containing such curves. One may impose further

conditions: for example such that special curves shall be flecnode curves

or asymptotic curves on the surface, and then proceed to study the

particular class of surface characterized.

It is not our intention to follow up any of these special problems,

interesting as they are. We shall, however, apply our equations to

the problem of answering some questions of a fundamental nature in

the general theory of ruled surfaces. Some of the special problems

just indicated will be considered in the theory of space curves.

2. On ruled surfaces, one of the branches of whose

flecnode curve is given.

The flecnode curve is so important in the general theory of

ruled surfaces, that it seems essential to investigate to what extent

it may be arbitrarily assigned.

If one of the sheets of the flecnode surface, F of S, is given,

there remain only two possibilities for S, namely one or the other

of the two sheets of the flecnode surface of F 1

.

But, let us suppose that we merely know that a certain curve C
is one of the branches of the flecnode curve on S. Then there are

two questions to answer. Can this curve be chosen arbitrarily? And
how far does it determine the surface S?

Let the curve C be given by means of its differential equation

u +^n + 6*
&quot;^

+^i
where pt) . . . p are given functions of x. In the system of diffe

rential equations (1) defining our surface S, we must regard the

coefficients p^ and qik as unknown functions. We may, however,
assume without exception that u^ = 0, so that C,, is one of the

branches of the flecnode curve on S, that pgi
=

0, so that d is an

asymptotic curve on S, and that
_/&amp;gt;n = ^&amp;gt;,

P = 0. Under these assumptions
we form the differential equation (9) of the curve Cy

. Since Cy is

to be identical with C. it must be possible to transform equation (9)
into (11) by a transformation of the form

(12) y = v(x}y, *=/W
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The functions
&amp;lt;p

and f are not independent however. For, while the

equations M12
= and p2l

= are not disturbed by any transformation

of this form, the conditions pn =p^ = are. In fact, a trans

formation of the form (12) converts (1) into another system of the

same form whose corresponding coefficients pn and pn will be

q/ /&quot;
a,

f&quot;

In order, therefore, that after this transformation pn and p22 may
again vanish, we must have

where C is an arbitrary constant, which may be put equal to unity.

If then we apply the transformation (12) to (11), we shall get
an equation

dy . ~-
o,

which we must identify with (9). Equating coefficients gives us a

system of four equations with five unknown functions of x, viz.:

I) P\2&amp;gt; #11? #217 #22

We find, therefore, the following theorem: An arbitrary space

curve being given, it can be considered as one branch of the flecnode

curve of an infinity of ruled surfaces, into whose general expression

there enters an arbitrary function. One may, therefore, impose another

condition and still obtain an infinity of ruled surfaces.

The most general curve Gz which is capable of being the second

branch of the flecnode curve on a ruled surface, for which Cy is the

first branch, involves therefore, in its expression one arbitrary func

tion of x. It cannot, therefore, be an arbitrary curve, as that would

involve two arbitrary functions.

Therefore, two curves taken at random cannot be connected, point

to point, in such a way as to constitute the complete flecnode curve upon
the ruled surface thus generated.

We may also prove our theorem by purely synthetic considerations.

Let us take points P1;
P

2 ,
P

3 ,
P4 ,

... on an arbitrary curve, corre

sponding for example to equal increments Jx of the parameter.

Through P
A ,
P2 ,

P3 draw three arbitrary lines gv gz) g3 . We can

draw a line ft through Pt intersecting g% and gs , say in Q% and Q3
.

Take an arbitrary point Q on flt and join it to P4 by a line g.
Then ft intersects g1} g2 , g3 , g. Through P

2
we draw a line f2

intersecting gs
and g in points Q3 , Ql and of course g2

in Q2
= P2 .

Take an arbitrary point Q6
on f2 and join it to P5 by a line #5 .

Continue this process. Clearly, we shall get two assemblages of lines
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g1} gz ,
. . . and f1} f\, . . ., which, when P

1}
P

2 ,
. . . are taken closer and

closer together, approach as limits two ruled surfaces having the

given curve as flecnode curve, and which are flecnode surfaces of

each other. The first three lines gv g*,gs are arbitrary, which gives

rise to six constants of integration. Further, the double ratios

(Pi, QZ) Qs, Qi), (Qat Qs, Q*&amp;gt; Qs) etc - mal be chosen arbitrarily

which brings into evidence the arbitrary function involved in the

construction of these surfaces.

The construction, which has just been described, becomes

indeterminate if the given curve C is a straight line. For then Q
coincides with P4 ,

etc. In fact, the most general ruled surface with

a given straight line directrix depends on two arbitrary functions.

If the given curve C is to be at the same time the second

branch of the flecnode curve, i. e. if both of the branches of the

flecnode curve of S coincide with C, g4 must be tangent to the

hvperboloid determined by g1} &amp;lt;72 ,#3 ; g$ must be tangent to the hyper-
boloid determined by &amp;lt;72 ,#3 ,&amp;lt;74 ;

etc. This condition, therefore, clearly

fixes the double ratios (^ Q* Qs $4), etc., i. e. the arbitrary function.

Therefore, this problem has in general oc 6 solutions.

Let us assume that C,, is not a straight line. Let us call the

developable surface formed by the tangents of Cy its primary developable.
There exists another important developable surface containing Cyt

which we shall speak of as its secondary developable, as indicated in

the following theorem.

1. If at every point of the flecnode curve of S there be drawn flu-

generator of the surface, the flecnode tangent, the tangent of tlie flecnode

curve, and finally the line whidi is the harmonic conjugate of the latter

with respect to the other two, the locus of tiiese last lines is a developable

surface, flie secondary developable of the flecnode curve.

2. We can find a single infinity of ruled surfaces, each having
one branch of its flecnode curve in common ivith that of S. This

family of oo 1

surfaces may be described as an involution, of which any

surface of the family and its flecnode surface form a pair. Hie primary
and secottdary developables of the branch of Hie flecnode surface con

sidered. are the double surfaces of this involution. In fact, the generators

of these surfaces, at every point of their common flecnode curve, form
an involution in Hie usual sense.

We proceed to prove these theorems. Since Cy is a branch of

the fleciiode curve, we may assume M12
= pn = p^ == 0. System (1)

assumes the form

(14) y&quot; +p^ + quy + ^ g = 0, 2&quot; + ptly + q.21 y + q^z = 0.

The flecnode tangent at Py is the line joining Py to P
? ,

where
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while the tangent of the flecnode curve joins Py
to P,/. In the

plane pencil formed by these lines, the harmonic conjugate of P
yPy

with respect to P
y
Pz and PyP^ will be the line P

y Pt, where

But from the first equation of (14) we find at once

(15) ^

i. e. PyPt generates a developable surface as asserted in the first

theorem.

Put
e = * + &/ = (1

/=T-Jh/ = (l

where la is a constant. Clearly the lines P
y
Pe and P

yPf form a

pair of the involution whose double lines are Py
Py

- and PyP*.
One finds that y and e satisfy the following system of differential

equations:

y&quot;
+ PH&amp;lt;/ + JV + Qu y + Qa e = o,

e&quot; + P^j + P22 e + Qn y + Q22
e = 0,

where

P
21=

[
\ / \

(lg\ 1 3fr
\&amp;lt;~&amp;gt;j -p _ j. o/i/ //j a

-t 00 7

i-

We find

Ui2
= 2P

12
- 4 Qa + P12 (Pu + P22)

- 0,

i. e. the curve 0^ is flecnode curve on the ruled surface Sk generated

by Pj,Pe . The flecnode surface of Sk is obtained by joining Py
to

the point

a point on the line P
y P/. We see, therefore, that the ruled surfaces

Sk and $_* are flecnode surfaces of each other. We have now proved
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our second theorem, and we may speak of an involution of ruled

surfaces having one branch of their flecnode curve in common. The

double surfaces of the involution are developables, while the members

of each pair of the involution are flecnode surfaces of each other.

We have seen that Py
Pr generates a developable. If

g = ay + $T

represents its edge of regression ,
it must be possible to represent g

1

in the form
,

g = yy + 8v&amp;gt;

since the line Py
Pt must then be tangent to the curve Cg .

We find, by differentiation, making use of (15),

g = ay + 0(1 j^r
-

qn y - |gjV) + *ty + fir,

so that g will be of the required form, if and only if

*sfl**/&*
Therefore

9=s P^y + 2^12 T.

If we express r in terms of y, z and Q, we shall find

(1 9 a) g = p12 Q + pu y + p^ z,

as the expression for tlie edge of regression of the secondary developable

of the branch Cy of the flecnode curve. Similarly, if 4 =f= 0,

(19 b) h =
Pn&amp;lt;s + pn z + Pn* y

will represent the cuspidal edge of the secondary developable of the

branch C: of the flecnode curve, assuming of course 21
= 0.

One easily finds
o o

(20)
- Pu -

where i / M^ = Pi* Pn 4-
2 Pn

-

n - Pufn - Y (fJjTf

II
,

1 9 q O / f\qt

/ =^21^21 +
y#&amp;gt;r

w-s -Ai Aa - ylftiT-

The system of differential equations, of which g and /& are the

solutions, has the coefficients

Pn = - -
[* + J-ifc

(22)
^11= &quot; 12

2ft
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while P21 ,
P22 , Q2l , $22

are obtained from these same equations by

permuting the indices 1 and 2, and consequently also the letters A

and /i.

We see that we obtain, in this way, corresponding uniquely to any
ruled surface, whose flecnode curve intersects every generator in two

distinct points, another ruled surface, which is generated by the lines

joining corresponding points of the edges of regression of the secondary

developdbles of the two branches of the flecnode curve.

Equations (20) show that one of the secondary developables of

C
y
and GZ degenerates into a cone if A or ft vanishes. In that case

our new ruled surface also becomes a cone. If both of the secondary

developables are cones, this ruled surface degenerates into the straight
line joining their vertices.

Equations (22) show that this new ruled surface cannot be

developable except if A or p is zero, i. e. unless it is a cone. For
the possibility p^ = or p2i

= is to be excluded, since we should

then have a ruled surface S with a straight line directrix.

3. On ruled surfaces one of the branches of whose
complex curve is given.

There exists an infinity of ruled surfaces, each of which contain

an arbitrarily given curve as one branch of its complex curve. Into

the general analytical expression of these surfaces there enters an

arbitrary function.

The analytical proof for this statement is precisely similar to

that of the corresponding theorem of 2. We shall give at once a

geometrical construction for these surfaces.

Let us consider five straight lines g1 ,
. . . g5

. Let ft, fa&quot;
be the

two transversals of g1} . . . 4 ,
and fa , fa&quot;

those of g2 ,
. . . gs . Clearly

glf . . .
&amp;lt;?5 determine a linear complex, with respect to which fa , fa&quot;

and fa
1

, fa&quot;
are two pairs of reciprocal polars. Take a point P on gr

The plane, which corresponds to it in the linear complex, passes

through g1
and the line \ which passes through P and intersects

both fa and
fa&quot;.

If gl} . . .
&amp;lt;/5

are made to approach each other, we
shall have, in the limit, five consecutive generators of a ruled surface

and its osculating linear complex. The plane tangent to this ruled

surface at P is the limit of the plane containing g and the line

through P which intersects g2
and y3 ,

i. e. the asymptotic tangent
of the surface at P. If P is a point on the complex curve, \ must
be in the plane tangent to the ruled surface at P.

Now let an arbitrary curve be given, and let us choose points

upon it, P1? P2 ,
P3 ,

. . . according to any law. Through P1} ... P4

draw four arbitrary lines gi} . . . g. Through Pt
draw Jcv the line

which intersects g% and gs
. In the plane of g and \ draw any
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line h
t through Pr The line

g-.., through P5 ,
is to be constructed

in such a way that the two transversals of g* ,
. . . g. shall both

meet h
i

. Now these transversals must be generators of the second

set on the hyperboloid determined by g2 , g3 , g. They must, therefore,

be those two generators of the second set, /V and
/&quot;,&quot;,

which pass

through the two points in which /^ intersects the hyperboloid. There

exists just one line through P5 intersecting both f\ and
/&quot;,&quot;.

It is the

line
&amp;lt;75 . In the same way, starting with gz ,

. . . g5} we can construct

g6 ,
etc. Finally we pass to the limit. There enters an arbitrary

function, fixing the position of the successive lines 1t
l) Jii) . . . in the

planes in which they must lie.

We may easily solve the problem; to determine all ruled sur

faces, an asymptotic curve of which is given. In fact, if Cy
is the given

asymptotic curve, any other curve of the ruled surface will be given by
the expression z = tty -{ $ij -\- yy&quot;.

The equations of this chapter enable us to write down the special

form which z must have, so that C3 may also be an asymptotic curve.

We shall then have the ruled surface referred to its asymptotic curves

in an explicit form; by restricting the functions y: ,
. . . y, etc. to

algebraic values, we shall thus find the most general ruled surface,

all of whose asymptotic lines are algebraic. It is a mere application

of our general equations to deduce these results, which were first

obtained by Koenigs
1

} in 1888. This paper of Koenigs is remarkable

also in so far, as it seems to be the only one in the litterature of

the theory of ruled surfaces, which makes use of a system of dif

ferential equations of the form (AX But even here, no stress is laid

upon this fact, and no further consequences are drawn therefrom.

The system is used merely as an auxiliary, its fundamental importance
for the theory of ruled surface not being recognized.

Examples.

Ex. 1. Express the condition, that one or both of the branches

of the flecnode curve may be plane curves, in terms of the invariants.

Ex. 2.* WTiat are the conditions under which one or both

branches of the flecnode curve may be conies? space cubics?

Ex. 3. Let Cy
be any curve on S. At the point Py

of Cy con

struct the harmonic conjugate of the tangent to Cy with respect to

the generator and the other asymptotic tangent of Py
. Prove that

these lines generate a developable, and find its cuspidal edge (cf.

Chapter IX, Ex. 4).

1) Koenigs. Determination sous forme explicite de toute surface reglee

rapportee a ses lignes asymptotiques, et en particulier de toutes les surfaces

reglees a lignes asymptotiques algebriques. Comptes Rendus, vol. 106 (1888)

p. 51 54.
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PROJECTIVE DIFFERENTIAL GEOMETRY OF SPACE

CURVES.

1. The invariants and covariants for n = 4.

It was shown in Chapter II that the differential geometry of a

space curve could be based upon the consideration of the linear

homogeneous differential equation of the fourth order

(1) yW + 4AyW + 6p,y&quot; + 4p3 y + p,y = 0.

The invariants and covariants of a linear homogeneous differential

equation of the wth order have been computed, in th ir canonical

form, for every value of n. It suffices, therefore, to put n = 4 in

the equations of Chapter II, in order to obtain the canonical expressions
for these functions. But we shall need the un- canonical form of the

invariants for our more detailed discussion of the case n = 4. It

becomes necessary, therefore, to write down explicitly a number of

equations, which are really included as special cases in the equations
of Chapter II. At the same time we obtain, in this way, a verification

of the general theorems of that chapter for this special case, thus

making the theory of space curves independent of that general theory,
at the cost of some repetition.

If we make the transformation

where A is an arbitrary function of x, we shall find for y an equation
of the same form as (1),

where

(2)

_~

whence one may deduce the absolute seminvariants
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PI A-A -A*

(3) P3
= P*

-
P&quot;

-
ZPiP*. + 2

Pi*&amp;gt;

and the relative semi -covariants, besides */, which is obviously itself

a semi -covariant,

The absolute semi-covariants are -&amp;gt; -&amp;gt;

- All other semi -covariants
y y y

and seminvariants are functions of these and of the derivatives of

P P PL
*&amp;gt;

-1-

3&amp;gt;

-1- 4

From (4) we deduce the following equations, which we shall

use later:

p = - (P3
- P2 )i/

- 2P
tz-p l Q -f tf.

tf
1-- (P,

- P,\v - 3(P,
-

P, )-?
- 3P2(&amp;gt;

and also

- 6A*) y + (- 3A

We now proceed to make a transformation of the independent

variable |
=

|(.r). We find, denoting the coefficients of the trans

formed equation by |&amp;gt;t,

^ -
7^1 FA + 27?^ + 1 (4/t + 9,

2

)],

where we have put

(8)
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We find further

1 / . 3

(9)

80 that are c Sredient wi

Making use of these equations, we find

p -.
2
~

(10)

. 15
,

15
2+ -JfW* --S-Vf*

~

whence

P
2
=

/1 1\
(11)

25 25

We find, therefore, the following invariants and covariants

3
= P

3 -fP2 , 4
= _6_

25
108

(12)

-
9(5&amp;lt;?

-f

where the index indicates the weight. In denoting one invariant of

weight 8 by 3 .i, we follow the general notation explained in

Chapter II equ. (54). An invariant may be regarded as a covariant

of degree zero. With this understanding, it suffices to say that the

effect of the complete transformation
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y = l(x)y, I = (),

upon a covariant of degree d and of weight ic, is to transform it

into C, where
i
d

n __i n
\J w

(ir

The general theory shows that all other invariants and covariants

may be deduced from these by algebraic and differentiation processes.

2. Canonical forms.

Equations (2) show that, if we make the transformation

y = e-/P* dx
y,

the coefficients of the resulting equation for y will be

We shall say that the equation has been put into the semi-canonical

form.

From (10) we see that if %(x) be chosen so that

2 o

in the resulting equation P2
will be zero. Since P, is a seminvariant,

anv transformation of the form

will not disturb the equation P2
=

0, and we may again choose &quot;k so

as to make the coefficient of -^ vanish. It is, therefore, always

possible to reduce the equation to the form

which we shall call the Laguerre- Forsytli canonical form. This is

equivalent to assuming p^
= p* = in the original equation.

If &amp;lt;9

3 =|= 0, we may transform the independent variable so as to

make
3
= 1. In fact, we have for an arbitrary transformation

If, therefore, we put

(14) |

&
3

will be equal to unity. We may again, by a transformation of

the form y = ly, make px
vanish. The canonical form, which is

characterized by the conditions

WILC/YSSKI, projective differential Geometry. 16
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we may properly denote as the Halphen canonical form.
In our geometrical discussions, only the quantity

S&quot;

n=Y }

not | itself will be of importance. A also is an unimportant
factor which has no geometrical significance. Equation (13) shows,

therefore, that the reduction to the Laguerre-Forsytli form can always
be accomplished in oo 1

essentially different ways. It is important to

remark that (13) is an equation of the Riccati form, so that the cross-

ratio of any four solutions is constant.

The Halphen form, on the other hand, can be obtained in just

one way, if it exists at all, i. e. if 3 =]= 0. If @
3 vanishes, 4 may

be reduced to unity unless it also is equal to zero. The case when
both 3

and 4 vanish, is especially simple. The Laguerre- Forsytli

form reduces to

If two equations of the form (1) can be transformed into each

other by a transformation of the kind here considered, we shall call

them equivalent. Clearly, for equivalent equations, the corresponding
absolute invariants are equal.

If equation (1) is given, the invariants 3 ,
@4 , 3.1, etc. are

known functions of x. Conversely, equations (12) show that if

3, 4, 3.1 are given as arbitrary functions of x, provided that

3
==

0, P
2 ,
P3

and P4 are determined uniquely. If
3
= 0, then

3 !
= also, and we must assign a further condition. The function

an

(15) 4.1 = 8@4@/ - 9( 4 )
2 -yP2 4

2

is also an invariant. If 3
= 0, and 4, 4.1 are given, P2 ,

P3 , P,
are determined uniquely. If both

3
and @4 vanish, all invariants

are zero, and the equation may be reduced to the form

As we may always assume that pl
=

0, we see that the differential

equation (1) is essentially determined when its invariants are given as

functions of x.

The Lagrange adjoint of (1) is
1

)

tt(4) _ ^ttW + Q(p2
- 2JPl )&quot;

- 4(^3
- 3^2 + 3A &amp;gt;

+ O* - 4j&amp;gt;3 + Qp,&quot;

- 4p )t
= 0.

If y1} . . . y constitute a fundamental system of (1), the minors of

X . . . # in the determinant

1) Cf. Chapter H, 5.
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Vi, Us, 2/3 , y

11
&quot;

11
&quot;

11
&quot; n

y\ ) y* &amp;gt; Vs ) y

multiplied by a common factor, which does not interest us, form a

fundamental system of (16).

If we denote the seminvariants of (16) by I7
2 ,

JT
3

. JTj, we have

(17) JL = P
2 ,

JT
3
= - P3 + 3P.

r

,
I74 = P4

-

whence follows reciprocally

P
2
= JT

2 ,
P3
= - JT

3 + 377,
,
P4
= 7I4

- 477
3 -f 6JT2 &quot;.

The invariants of (16) differ from the invariants of (1) only in this

that the sign of 6&amp;gt;3
is changed.

.3. Geometrical Interpretation.

If the functions yif . . . y constitute a fundamental system of (1),

we may interpret them as the homogeneous coordinates of a point
Py

of a curve Cy in ordinary space. The coefficients
2h&amp;gt; P*&amp;gt; Ps&amp;gt; Pi

of (1) are invariants of the general projective group. The trans

formation
y = ]L

-

does not change the ratios y} y* yz y, and therefore leaves the curve

Cy
invariant. The transformation | = ^(jc] merely changes the parameter

in terms of which the coordinates are expressed. It is clear, therefore,

that any system of equations, invariant under these transformations,

expresses a projective property of the curve Cy .

The Lagrange adjoint of (1) may be taken to represent the same

curve in tangential coordinates, or else a reciprocal curve in point
coordinates.

We may, therefore, state the results of 2 as follows. If the

invariants of a curve are given as functions of x, the curve is determined

except for projective transformations. If the invariants of tico curves,

except those of weight three, are respectively equal to each otiier, icliile

the invariants of weight three differ only in sign, the two curves are

dualistic to each other. Those curves are self-dual for which &amp;lt;9

3
= 0.

Moreover, these latter curves are the only curves which are identically

self-dual; i. e. for which a dualistic transformation exists which

converts every point of the curve into the osculating plane of that

point, and vice versa, while every tangent is transformed into itself.

If we put y = yt (k
=

1, 2, 3, 4) into the expressions for
, Q, 6

we obtain three other points P,, Pe ,
Pa which, as x varies, describe

16*
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curves CZ} CQ, Ca ,
curves which are closely connected with C

y
. Pz is

clearly a point on the tangent of Cy constructed at P
y ;
P

Q
is in the

plane osculating Cy at P
y ,

while Pa is outside of this plane. These

four points are never coplanar except at those exceptional points

of Cy, whose osculating planes are stationary, i. e. have more than

three consecutive points in common with the curve.

In order to study the curve Cy
in the vicinity of Py ,

it will,

therefore, be convenient to introduce the tetrahedron PyPzP^Pa as

tetrahedron of reference, with the further convention that, if any

expressions of the form

(k = 1, 2, 3, 4)

present themselves, the coordinates of the corresponding pointPu shall be

(X, Og, 3 , 4).

In writing u^ the index Ic may be suppressed, so that the single expression

represents the point ( l; cc2} a3 , a^\ adequately.

If the independent variable x is transformed, the tetrahedron of

reference is changed in accordance with equations (9). Py of course

remains the same; Pz is changed into Pj?
which may obviously be

any point on the tangent; etc. Thus, while an arbitrary transformation

of the parameter x does not affect the curve Cy itself, it does very

materially affect the semi-covariant curves Cz ,C^ }
Ca . It is clear,

however, that two transformations of x, which give rise to the same

7],
are geometrically equivalent. We may also, without affecting the

position of the points PZ) P^, Pa ,
assume that (1) is written in the

semi -canonical form, so that pi
= 0. For, in order to put (1) into

the semi -canonical form, we need only multiply y by a certain factor

JL,
which will then also appear multiplied into the semi- covariants 8,

Q and 6.

Let us then assume pi
==

. We shall have z = y . If we diffe

rentiate (1) and eliminate y between the resulting equation and (1),

we shall find

(P4 + 3P
2
2
)^)

-
(P; + 6P

2
P

2V3) + 6P
2 (P4 + 3P,V

(18) + [(6P2

f + 4P3 ) (P4 + 3P
2

2

)
- 6P2 (P; + 6P

2
P

2 )y

if P4 + SP^ 4= 0. If P4 + 3 P
2
2 = we find

(19)
(3) + 6P2 # + 4P3 ^

= 0.

Equation (18) determines the curve Ct in the same way as (1)

determines Cy
. But if P4 + 3P

2

2 =
0, g satisfies (19) showing that
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the curve Cz is in this case a plane curve. Therefore, if the variable

| be so chosen as to make P4
4- 3P

2
2 =

0, the corresponding curve

C: is a plane section of the developable surface whose cuspidal edge
is Cy

. In harmony with this, equations (10) show that the most

general value of
TJ, which satisfies the condition P4 -{-3P2

* =
0,

contains three arbitrary constants, as it should since there are oo 5

planes in space.

We shall need to consider the ruled surfaces generated by those

edges of our tetrahedron which meet in Py . Of these we know one

immediately, namely the developable which has Cy as its edge of

regression, and of which Py P_- is a generator. The ruled surface

generated by PyPo clearly has Cy as an asymptotic curve; for, the

plane PyPoP3 is both osculating plane of Cy at Py ,
and tangent plane

of the surface at Py . If we assume ft = 0, this ruled surface may
be studied by means of the equations

(20)
* + **-*-*

&amp;gt;&quot; + (4PS
-

2P/);/ + (Pt
-

P,&quot;
-

2P,&amp;gt;),i + oP, Q = 0,

in accordance with the general theory of ruled surfaces as developed
in the preceding chapters of this book. To prove (20) we need only
differentiate the expression for Q twice, express ?/

3) and ?/
4) in terms

of T/, , p, &, and eliminate z and 6.

The ruled surface generated by PyPa is especially important.
We have

(21) 6 =^ + 3i^&amp;gt; + 3ft*/ + ft y,

whence

(3ft

= &amp;lt;*&amp;gt;

&quot;

-f

From (21) we find

y(8) -
1

^) - -
fttf

- ^ + ft
-

-
(p s

r -
3ftft)y.

If we substitute these values in (1), we obtain the equation

(24) ~
Pa) !/

where the coefficient of
y&quot;

is 3P2 .

Let us differentiate both members of this equation, and eliminate

y&quot;
and ^ by means of ^23) and (24). We shall find
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(25)

where

= -
Ih, & = %Pi

4- 9jP2
2 -

(26) & = -
(i&amp;gt;4

- p3

&quot;

r = - 3 - -

Equations (24) and (25) define the ruled surface generated by

PyPa - If we assume pt
=

0, we find

= 0,

=
0,

where

p 12 3p il
~

3p

(28) p22 ,

If (1) is written in the Laguerre-Forsyth form, P2
= 0. In that

case, the two equations (27) reduce to the single equation

(29) . P
3 &amp;lt;/+|tf +|(P4 -P3 )&amp;lt;/

=
0,

which proves that, in this case, the surface generated by Py
Pa is develop

able. For, the tangents constructed to Cy
at Py

and to Ca at Pa are

then coplanar.
1

) Moreover, only if P
2
= will the surface generated

by PyPa be a developable.

Let
t = ky + [i&amp;lt;5

represent the point in which P^P^ intersects the edge of regression
of the developable. Then, since Py

Pa must be tangent to the edge
of regression, we shall have

T
r =

&amp;lt;n/ + /3tf,

or

(A
-

a)y + (/*
-

/3)tf + W + ^ = 0.

1) cf. Chapter V, equ. (15).
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But according to (29)

so that

(i! a)y + (/* ft} & + ktf ,&quot; [(P
~

PS ) y + 3P3/] = 0,

where for y
1 we could also write z. Such a relation between P^,P,,Pa

would, however, make these three points collinear, and therefore

Py,Pz,P ,Pa co -planar, unless all of the coefficients are zero. We
have seen, however, that these four points are coplanar only at points Py

whose osculating plane is stationary. Consequently

whence

We see, therefore, that

(30) r

represents the edge of regression of Hie developable to ichicli the ruled

surface generated by PyPa reduces tchen P, =0.
If 2)t

= and P = 0. equations (2) and (10) show that the most

general transformations of the variables, which do not disturb these

conditions, satisfy the equations

*
4 r\ f 2 A

T + TT=&amp;gt;
t
i = 1

i -y 7
/ =&amp;gt;

which give on integration
C -2c

If we transform t under this assumption, we find that it is converted

into

where
r; may have any numerical value.

Let us recapitulate. TJie ruled surfaces generated by PyPa are

infinite in number. Their general expression involves an arbitrary function

rj. Among these surfaces there exists a single infinity of developables.

If P2
=

0, the surface generated by Py
Pa is one of these, and the locus

of PT is its edge of regression, where

(30) r = 3Pa y + tf,

PT being the point tcliere PyPa intersects the edge of regression. If
ice construct all of the oc 1

lines Py Pa through Py ,
which are generators

of the above mentioned family of developables, and mark upon each of
them the point P; wliere it intersects the cuspidal edge of the developable
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to which it belongs, the locus of these points is a twisted cubic curve.

The equations of this curve, referred to a parameter rj
and to the funda

mental tetrahedron PyPzPyPa ,
are

/Q-J \ Q T) l^ 3 2 ^
1

We shall see later that this cubic has five consecutive points in

common with the curve Cy at P
y ,

i. e. that it has at this point with
Cy

a contact of the fourth order. We shall speak of it as the torsal

cubic of Py, on account of its connection with the developables which
we have just been considering.

Equations (31) give the parametric equations of the torsal cubic

referred to a special tetrahedron of reference for which P2
= 0. We

shall need its equations in a more general form. These may be easily

obtained. Consider the expression

(32) A =

in which t may, for the moment, be regarded as a parameter independent

of x. Denote by I the corresponding expression formed from the

quantities P
2 ,
P

3 , etc., y, ~z
} p, G after the general transformation

| = |(#). We shall find that (| )
3 I is equal to an expression of the

form (32) in which, however, ^ takes the place of t, where t% -}- y = tv

But, of course, this transformation may be chosen so as to make

P2
=

0, which would make A identical with T except for the notation.

We see, therefore, that the expression I, or the equations

(33)

represent the torsal cubic referred to the fundamental tetrahedron P
y
PzP^Pa

when this is chosen in as general a way as is compatible with its

definition.

If, in (32), t is chosen as a function of x, as x varies we obtain

a curve on the surface formed by the totality of torsal cubics. If

in particular t satisfies, as function of x, the differential equation

/ A/s_ 6
-p~

2
~

5 2

we obtain the cuspidal edge of one of the developables.
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4. The oscillating cubic, conic and linear complex.

A space cubic is determined by six of its points provided tbat

no four of these points are coplanar. If, therefore, we take upon Gy,

besides P
y ,

five other points, we shall in general obtain a perfectly

definite space cubic determined by these six points. As these points

approach coincidence with Py ,
the cubic will in general approach a

limit, which shall be called the osculating cubic. We proceed to find

its equations.

Let P,, correspond to the value of x = a, which we shall suppose
to be an ordinary point for our differential equation. Then y may be

developed by Taylor s theorem into a series proceeding according to

powers of x a. By putting x a = xj the development will be in

powers of x . We may, therefore, assume in the first place that a= 0.

Let us assume further that p^ = and P9 = 0. Then we shall have

from (5) and (6),

= - P^j - (P, + 4P3 ),
- 4P3 9 .

In accordance with the definition of our coordinates, we denote

the coefficients of y, z, Q, 6 in this expansion carried as far as x*, by
Vv y*&amp;gt; Vsi Vi- ^e mav

&amp;gt;

f course, multiply these quantities by a common

factor, since the coordinates are homogeneous. We shall multiply by
120 so as to clear of fractions. This gives

ft
= 120 -20PS^-5P^-P4V+..-

y,
= 120x - 20P3 x*

- (4P3 + P4&amp;gt;*
+ . - -

7/3
=

We see at once that the following equations are exact up to

terms no higher than the fifth order,

- 2y* = 0,

These same equations must be satisfied by the coordinates of any
point of the osculating cubic, since this must have contact of the

fifth order with Cy
at P

y
. TJiey are, therefore, its equations, referred

to this special tetrahedron of reference. In terms of a parameter t ice

may write

(37) x
1
= lb + 12P3 &amp;lt;

3
, x^

= 30t, x3
= 30* 2

, ^ = 20* 3
.

The equation 3^^ _ %x * = Q

is that of a cone; whose vertex is Py
and which contains the osculating

cubic. It may also be obtained by determining that cone of the
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second order, with its vertex at P
y) which has the closest possible

contact with Cy
viz. contact of the fifth order. We shall speak of

it as the osculating cone. We notice at once that the torsal cubic

also lies upon the osculating cone. This is shown by equations (31),
which are referred to the same system of coordinates as that employed

here. If we put in (31) rj
= and if we multiply by 20 1

3
, (31)

becomes

(31a) x
t
= 15 + 60P

3 *
3
,

#
2
= 302, xz

= 30* 2

,
x = 2CM 3

,

which differs from (37) only in having 5P3 in place of P3 .

By a method of reasoning precisely similar to that of the last

paragraph, we find that the expression

(38) (12P8
- 12P2 + 24P2

r + 15*%

200

represents an arbitrary point of the osculating cubic, when the tetrahedron

of reference is not restricted to the condition P2
= 0. For, this expression

remains invariant under the general transformation | = (#), and

reduces to (37) for P
2
=

0, if t =

The equation of the plane, which osculates the osculating cubic

at the point whose parameter is r, turns out to be

11* tJO-t ~T~ wo t^o
i&quot; 3 3 &quot;i 4 4

===
9

where
u = -

20, M2
= 30r, % = 16P2 30T2

,

M4
= 12P3

- 12P
2
- 36P

2
r + 15r3

.

For every value of T, this intersects the osculating plane, x =
0, in

a straight line
- 20^ + 30T

2 + (16P2
- 30Tr2

)^3
= 0.

The envelope of these lines will be obtained by eliminating T between

this equation and that obtained from it by partial differentiation with

respect to t\ the latter equation is

30 2
60 T #3

= 0.

We thus find

(40)
- 40^3 + 15#

2

2 + 32P2 #3

2 -
0,

the equation of the osculating conic, which may be defined as a part of

the intersection of the developable of the osculating cubic with the

osculating plane. The other part of this intersection is the tangent,

which must be counted twice.
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It is not without interest to verify that (37) represents the

osculating cubic by another method. We find, from (35), that the

nonhomogeneous coordinates of the points of Cy
in the vicinity of P

y

are
1* =3_JL

v. 30

(41)

fe-+.*+.., --
From (37), we find for the points of the osculating cubic

^-2*-4-P,* 4 + ---,
^ = 2* 2 -4P3

*
5
+---, ^- =

x
1

o x
t

o x
l

If we put

the two expansions coincide up to terms of the fifth order. For the

torsal cubic we have, according to (3 la),

If we put into these equations

we find that these expansions will agree with (41) up to terms of

the fourth order if

=
0, 6 = 0, c = yP3 ,

but that it is impossible to make them agree with (41) any further

unless P3
= 0. In general, therefore, the torsal cubic has with Cy a

contact of the fourth order. Only if &amp;lt;93
= may the order of contact

be higher. In that case the torsal and osculating cubics coincide.

We proceed to deduce the equation of the osculating linear

complex, i. e. of that linear complex determined by five consecutive

tangents of the curve. We assume again pl
= and P

2
= 0. Denote

by Y and Z the expansions of y and z in the vicinity of P
y

. Then
we have up to terms of the fourth order
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If we denote the coefficients of y, 8, Q, &amp;lt;3 in these two expressions

by 2/i&amp;gt; y and ^, . . . z respectively, the Pliickerian line-coordinates

of the tangent will be

*
= y^k y^i,

whence

G)13 X
1

12

2 i 2 i== ~~ x
&amp;gt; ^ZS

~ ~~ x

Therefore, /ie equation of the osculating linear complex, referred to the

special tetrahedron of reference, is

(42) co14
-

&amp;lt;o23
= 0.

We might have obtained this complex in another way. For, it

is clear that the null -system of the osculating cubic will be the

same as that determined by the osculating linear complex. We shall,

instead, set up the null-system of the torsal cubic in its general
form. We shall see that the linear complex determined ~by the torsal

cubic coincides with the osculating linear complex.
We have the equations of the torsal cubic

x,
=

606&amp;gt;3 -f 6P2

x2
= 24P

2 + 3&amp;lt;V,
x3
=

307?, x = 20.

The coordinates of the plane, which osculates the torsal cubic at the

point whose parameter is
17,

are

Ul
= - 180, u

2
= 270^, u3

= 144P
2
-

270??
2
,

w4 = 540
3 -f 54P2

- 324P
2 77 + 1357?

3
.

If we put in (43) ^ = 77*, (k
=

1, 2, 3), we obtain three points
on the cubic. The coordinates of their plane must be proportional to

vt
= -

180, v2
= 90 (^ + % + %),

(45) v3
= 144P

2 -90(%% + % 7
?1

v = 540 3 -f 54P2
- 108P2

for, each of these expressions must be a symmetric function of

^u %&amp;gt; % f n ^ higher than the third order, and for ^1
= % = % = i7

we must have vk proportional to uk . Similarly, the point in which

the three osculating planes at %, 7?2 , % intersect, must have its

coordinates proportional to
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cox,
= 60@3 + 6P

2 + 8P
2 fa + % + %) + 16%%%,

(46) ax2
= 24P2 + 10 (%% + %% 4- %%),

Gj#3
= 10 fa + % + %), oa:4

= 20.

If we eliminate %, %, % between (45) and (46), and change slightly

the factor of proportionality, we find

coi\
= xi} a3r3

=
a&quot;, + 2P2#4 ,

(47 a)
ot2

= 4- 2
3 ,

or4
= + x

l 2P*x3 ,

or

o ^ = + 2P2 r2 + v, cj x3
= -f i\,

n x* = 2P
2
r
1

t?
3 ,

o ^4
=

t-j,

as the equations of the null -system defined by the torsal cubic.

A point ylf y2 , y3 , y lies in the plane corresponding to

^1) %2&amp;gt; ^-&quot;35 ^4 ^
4

vk yk
- 0.

Therefore, the lines which pass through the point xl} X2 ,
xs ,

x and

lie in the plane corresponding to it in the null-system, satisfy the

equation

(48) eDu -2P2
cD34 -&amp;lt;D

23
= 0.

If the tetrahedron of reference be so chosen as to make P
2
=

0, this

equation is identical with (42). Therefore, (48) represents the osculating

linear complex when the tetraliedron of reference is general. The

osculating and torsal ciibics are curies of this complex.

If P2
is finite, the complex (48) is not special. We see, therefore,

that only those values of x, for which P
2
= oo, can give points of

the curve at which five consecutive tangents have a straight line

intersector.

Let us proceed to deduce the equation of the osculating linear

complex, belonging to a point of Cy infinitesimally close to Py . If

we change x by an infinitesimal amount dx, we find for the coordinates

of the vertices of the new tetrahedron of reference

~z = z -f ^ dx = P%dx- y
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Therefore, if a point has the coordinates xl} . . . x in the new system
of coordinates, and x

l
. . . x^ in the old, we shall have

P
2
dx-x

2 (P3
P

2 )Sx x
3
-

(P4 P3 }8x xv

Therefore, the infinitesimal changes in the coordinates, in the sense

new minus old, will be

dx, = [P& + P,X, + (P,
- P

2 &amp;gt;3 + (P4
- P3 &amp;gt;4]&amp;lt;^,

(49)
SX

*
=

[~^ +
dx3

=
( x2 +

^^4 = ( ^3 +
Referred to the new tetrahedron of reference, the equation of the com

plex, osculating Cy
at the point corresponding to x -f Sx, will be

(50) 14 2P2
ra84 23

=
0,

where -^ T,-rf^P
2
= P

2 + P2 tf, M ik
= xiyk xkyi ,

oci
= Xi 4- *,-, & = y + ^2/o

if ^/ and yf denote the coordinates of two points on a line of the

complex referred to the new tetrahedron of reference. Making the

calculations, we find

u = rou + [- o&amp;gt;13 + 2jp!CJu - P2 42 + (Ps
- P

2 ) 34]d^,

23
- 3P2

0342
&quot; 0313

- 3 (Ps
- P2V 34]^^.

If we substitute in (50), we find as the equation of the linear complex

osculating Cy at a point infinitesimally close to Py ,

(51) (o&amp;gt;14
- 2P2 34

-
23) (1 + 2p,dx) + 4

3
co34(^ = 0.

This coincides with the linear complex osculating C9
at Py ,

if and

only if 3
= 0.

Therefore, if the invariant 3
vanishes identically, the tangents of

the curve Cy belong to a linear complex. If it does not vanish iden

tically, those values of x, for which it does vanish, correspond to points

of the curve at which the osculating linear complex hyperosculates

the curve.

This result may also be obtained by setting up the linear differential

equation of the sixth order satisfied by the six line coordinates of the

tangent o,a = yfyk ykyl,

and noting that this reduces to the fifth order if and only if @3
= 0.

This is the method of Halphen.
1

}

1) Acta Mathematica, vol. 3 (1883).
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A former result may now be stated as follows. The osculating

and torsal ciibics of all points of a curve coincide, if and only if tlie

curve belongs to a linear complex.

5. Geometrical definition of the fundamental tetrahedron

of reference.

We have seen that there exists for every point of the curve Cy

a tetrahedron whose vertices Py ,
P: , PO, P are determined by the

choice of the independent variable x. In order that we may be able

to obtain a clear insight into the geometry of the curve, it is necessary
that we may be able to define this tetrahedron by purely geometrical
considerations. As a consequence of our preceding results we are

now able to do this.

We have already noticed that P: is a point on the tangent, and

that by a properly chosen transformation =
(#) it may be trans

formed into any other point of the tangent. &quot;When the independent
variable has been definitively chosen, we obtain, therefore, a

point P. on the tangent which is not, in general, distinguished by

any geometrical property from any other point of the tangent. Its

position may serve as a geometrical image of the independent variable.

Consider the osculatin conic.

#4 = 0, 40.^3 32P,z3
2 - 15xf = 0.

The polar of any point (x, x*, X3 , 0) of the osculating plane
with respect to it, is the straight line

x =
0, 20a;/^

- 15z2 #2 + (20x^
- 32Pzx9 )x3

= 0.

Therefore, the polar of P: ,
whose coordinates are (0,1,0,0), is the

line a*2
=

0, #4
= 0. In other words:

The line PyPo is the polar of P, icifh respect to the osculating

conic.

We shall speak of the curves Ct , CQ, Ca as the derivative curves

of Cy with respect to x, of the first, second and third kind respectively.

The ruled surfaces, which are obtained by joining the points of Cy

to the corresponding points of Ct ,
C

? , Ca ,
shall be called derivative

ruled surfaces of the first, second and third kind respectively. Then,
the derivative ruled surface of the first kind is unique. It is simply
the developable whose cuspidal edge is Cy . Let us consider the

derivative ruled surface S of the second kind generated by Py
P .

The curve Cy is, of course, an asymptotic curve upon it. This sur

face is characterized by the equations (20), where p has been assumed

equal to zero.
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According to the general theory of ruled surfaces 1

), the asymp
totic tangents to S at the points Py

and PQ are obtained by joining

these points to 2g and 2&amp;lt;?
- 4P

2
,s + 2P

3 ?/

respectively. Therefore, the asymptotic tangent to S at any point

(!, 0, 3 , 0) of PyP$ joins this point to

Hence, the equation of the plane tangent to S at
( 1; 0, 3 , 0) is

a3#2 + (i 2P2
a
3)#4

= 0.

To the same point of P
yPq there corresponds a plane in the osculating

linear complex According to (47 a), this is the plane

aax2 + (! - 2P
2
a3);r4

= 0.

Therefore, if at any point of the generator of the derived ruled sur

face of the second kind we construct the tangent plane as well as

the plane which corresponds to it in the osculating linear complex,

these planes form an involution. The double planes of this involution

are the osculating plane (#4
=

0), and a plane (a?2
= 0) which contains

P
a&amp;gt;

the point of the derivative curve of the third kind which corre

sponds tO Py.
The point which corresponds to this latter plane, is

(52) /3

According to (47 a) we have further, corresponding to the point

Pz or (0, 1, 0, 0), the plane x3
=

0, which also contains Pa . The line

PyPa is now completely determined, as follows.

The generator of the derived ruled surface of the third kind is the

intersection of the following two planes; 1 st - the plane corresponding to

Pz in the osculating linear complex; 2 d that plane which is tangent to

the derived ruled surface of the second kind at the same point which

corresponds to it in the osculating linear complex.

It still remains to determine the position of P
?
and Pa on the

lines PyPQ
and P

y
Pa .

The osculating conic intersects P
y P^ in P

y
and in Pa where

(53) a = 4P2 2/ + 5p.

The cross-ratio of the four points Py)
P

? ,
Pa , Pp, is

(a, y, ft, Q}
= y

If, upon the generator of the derived ruled surface of the second

kind, there be marked its intersections with the osculating conic, and the

1) Cf. Chapter VI.
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point Pp whose tangent plane coincides with the plane corresponding to

it hi the osculating linear complex, the point P?
is determined ~by the

condition that the cross -ratio of these four points sliall be equal to
|

If P2
= this definition of P

?
breaks down. In that case,

however, Pa and Pp coincide with P
?

. Therefore, if the derived ruled

surface of the third kind is a developable, P? is that point on the

generator of the derived surface of the second kind where this generator
intersects the osculating conic for the second time. At this point the plane,

tangent to the ruled surface, and the plane, corresponding to it in the

osculating linear complex coincide.

If we use the notations of the theory of ruled surfaces 1

),
we

find from (20),

MIS
= 4, &quot;si

= 8P3
- 4P4 + 8P2

2
,

MU - u,,
= 16P

2 ,

(&quot;n

-
)* + 4 u 21

= - 64 (P,
- 2P3

- 6P
2

2
).

But wn w22
= is the condition that Cy and C shall be harmon

ically divided by the branches of the flecnode curve of the ruled sur

face, while (wn M2 )
2

-)- 4H 12
?&amp;lt;21
= is the condition under which

the two branches of the flecnode curve coincide. 2
) Therefore, we

obtain the following theorem.

If the derived ruled surface of the third kind is a developable, the

intersections of the generator of the derived ruled surface of the second

kind with the osculating conic give rise to tico curves upon this surface

harmonically conjugate with respect to the tico branches of its flecnode

curve.

If 4
=

0, tlie second intersection of the generator of this surface
with the osculating conic is a point of its flecnode curve. Moreover, the

tico branches of the flecnode curve must then coincide.

It is to be noted that we have here a geometrical interpretation for
the invariant equation 4

= 0. We shall find two other, quite different,

interpretations for this condition later on.

We may, if we wish, make use of the torsal cubic in our further

constructions. For, it is now defined entirely by geometrical con

siderations. If, in fact, we trace upon the developable, whose edge
of regression is Cy ,

an arbitrary curve Q-tJ we now know how the

corresponding ruled surfaces of the second and third kind may be

constructed. They depend upon an arbitrary function of x, as does

the curve C,. Among the surfaces of the third kind there exists a

single one -parameter family of developables. Upon that generator
of each of these developables which passes through Py) we mark the

1) Chapter IV, equ. (20).

2) Cf. Chapter VI.

WILCZYSSKI, projective differential Geometry. 17
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point where it intersects the cuspidal edge of the developable to which

it belongs. The locus of these points is the torsal cubic.

We notice incidentally that the reduction of equation (1) to the

Laguerre- Forsyth canonical form is equivalent to the determination of

one of the developables of the third kind. Since this reduction is made

by solving an equation of the Riccati form, we notice further the

following theorem. The four curves on the developable of Cy} which

correspond to any four of the developables of the third kind, intersect all

of the tangents of C
y
in point-rows of the same cross -ratio.

Let us consider the developable surface of the torsal cubic, which

is given by equations (44). We are going to find its intersection

with the plane Py
PzPa ,

or xa
= 0. The intersection of the plane

MJ, . . . w4 ,
which osculates the cubic at the point whose parameter

is 17,
with the plane x3

= is the line

- 180^ + 270^ + (540, + 54P
2
- 324P

2 7? + 135^)^ =

of this plane. As
?? changes, this line envelops a curve, the required

intersection. Its equation will be found by eliminating rj
between

the above equation and this other one

270#2 + (- 324P
2 + 405VK =

obtained from it by differentiation with respect to
??.

This elimination

may be easily performed. The result is

(54) F=S (5^2
- 6aJ (5^ - 6^4)

2

+ 15^(10^- (30 @3 -f 3P2 &amp;gt;4 }

2 = 0.

This plane cubic together with the tangent PyPz gives the complete
intersection of the plane PyPzPa with the developable of the torsal

cubic. It has a cusp at Pz ,
and the equation of its cusp tangent is

5x
i

6#4
=

0,

as one may find by the general theory of plane curves. The cusp

tangent intersects PyPa in the point

(55) jc = 24y + 20 tf.

The tangent to the plane cubic at Py
is

3# = 0.

It intersects the cubic again in the point

(12 + 30 @3 + 3P
2 &amp;gt;

-

If this point be joined to Pz by a straight line, the latter will inter

sect PyPa in the point

(56) ^ = (12
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The plane PyP:Pa is tangent to the torsal cubic. It intersects

it once more in the point corresponding to
??
=

0, viz.:

\ 3 5 / */ Z *

A line joining this point to P. intersects P
y
Pa in

(57) 11
= (6003 + 6P

2 )i/ + 200.

Consider the four points Px , P;., Pu and Py
. We have

2

3P2 -12)y = ^p,
so that Pi is the harmonic conjugate of P

y
with respect to Px

and P^
The osculating cubic differs from the torsal cubic only in having

2(P3 P, ) in place of 10&
3 -f P2

f

. Consequently, the plane cubic

in which its developable intersects the plane PyPfPa is

(58) F= 8 (bx2
-

+ 15^(10^ - 6 (P3
- P2 &amp;gt;4 }

2 = 0.

If we denote by P^, Pj, P- the points constructed with respect to

this curve in the same way as Px? P;. and P^ were with respect to

F = 0, we find

x = x, I

^

the cusp and its tangent being common to the two curves, as well

as the tangent at P
y

. I refrain from formulating explicitly the various

theorems which may be obtained from these equations.
In order to obtain a simple construction for Pa ,

we shall con

sider, finally, the developable generated by the motion of the plane

PyPoPa- The equation of this plane is x2
= 0. As x changes into

x + dx, y, z, Q change into y -f y dx, Q + Q^x, 6 4- e dx respectively,
where ij, $ ,

e are given by equations (5). The equation of the plane
of these points, referred to the tetrahedron Py, Pz ,

P
? ,
Pff ,

is

dx 00
which becomes, when developed,

~&quot;

J^ft -f- ft
&quot;

**s
~ OX t I -Lt&amp;gt;

&quot;

JL
s&amp;gt; ) O JU ~ \J,9m - \ O 2 /

17*
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Therefore, the equations of the generator of the developable, generated

by the motion of the plane PV
P

Q
P0) are

(60) xz
=

0, a?!
- 2P

2
a
3
- 3 (P3

- P2K = 0.

It intersects the generator P
y P^(x^

= x =
0) of the derived ruled

surface of the second kind in that point

(52) p = 2P
2 y + (&amp;gt;,

whose tangent plane coincides with the plane corresponding to it in

the osculating linear complex. Its intersection with P
y
Pa ,

the generator
of the derived ruled surface of the third kind, is

(61) y

The generator of the developable joins Pp to Py . We wish to deter

mine its edge of regression. If

d = l@ -\- my

is the point where PpP7 meets the edge of regression, we must have

d = r/3 + sy, or Iff + my =
r/3 -f ~sy.

We proceed to determine the ratio of I to m. We find

/?
= (3P2

- 2PlP2
- P8)y -piQ + 6,

? = - [P4 - PJ + 3P2

&quot; + 3^(P3
- P

a )]y
- 3P2?

We may eliminate Q and 6 by (52) and (61). This gives

- 3P2 /3
-

y&amp;gt;

= -
(P4

- 4P3 + 3P
2

&quot; -

We may, therefore, put

3P2

&quot; - 6P2

2

)/3

m = 4 &
3

so that

(62) &amp;lt;?

= (P4 -4P3
-

gives the edge of regression. This gives the following theorem. The

developable, generated l&amp;gt;y

the plane of the generators of the derived ruled

surfaces of the second and third kind, has its edge of regression upon
the derived ruled surface of the second kind, if and only if the curve

Cy belongs to a linear complex.

We may write, in place of (61),

We have from (59)
20&amp;lt;?.
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Therefore, the cross -ratio of the four points PY ,
P

y , Fji and Pa is

(v, y, /*&amp;gt;

= 5 -

We have found finally a geometrical definition for Pa ,
which

we may recapitulate as follows. The plane of the tangent and the

generator of the third derived ruled surface intersects the osculating cubic

in Py counted ttcice and one other point. If tiie Utter point be joined

to P. by a straight line, tee obtain a certain point P-
t as the intersection

of tiiis line with PyPa . The generator of Hie developable, generated by

Hie plane of the generators of the derived ruled surfaces of the second

and third J:ind, intersects PyPa in another point P... Pa may now be

found as fliat point of PyPa which makes the cross -ratio

(PYJ Py , P-p, Pa)
= o.

We have shown how to construct the fundamental tetrahedron

when Pt is given. If PO is given, Pf can be found at once as the

pole of PyPo with respect to the osculating conic. If Pa is given,

we may find first its polar plane with respect to the osculating linear

complex, which is

^ + 2P*X3 = 0,

and therefore passes through PZ} but not through Pu . P, can there

fore be found at once as the intersection of this plane with the

tangent to Cy at Py .

We see, therefore, that any one of flie three points P: ,
P

? ,
Pa

determines uniquely the otiiers.

6. Some further properties of the derived ruled surfaces of the

second and third kind,

Let us suppose pi
= P., = 0, so that the derived ruled surface

of the third kind is a developable, and let us consider the derived

ruled surface of the second kind which corresponds to it. We proceed
to deduce the equation of its osculating linear complex.

Let Y and E denote the developments of y and Q in the vicinity

of the ordinary point x = a, and replace again x a by x in the

developments. Then we shall find

where
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-(4P3 4

262

(63)

while
/!, . . . ?/4 liave been computed before. Denote by

o&amp;gt;i*

=
2/ip/t ^*0&amp;lt;

the Pliickerian coordinates of the line joining the two points.

We find

o12
=-P

3 *
2 - (2P3

- P4&amp;gt;

~

= 3? r- P3 3?

Let
-f =

be the equation of the osculating linear complex of the surface in

question. Then, the coefficients of all powers of x up to and including
x* must be zero, if we substitute the above developments for caik into

the left member. This gives us the following equations:

6 = 0, c + d = 0,
- P3 a + e = 0,

whence the ratios of the coefficients may be easily deduced.

We find thus the equation of the linear complex osculating the

derived ruled surface of the second kind which corresponds to a developable

of the third kind; it is

(64)
- 4P3 o12

-
(P;

- 2P
3 &quot;) (o,14

- 4P

It coincides with the osculating linear complex of CV)
if and only if

P
3
=

0, i. e. if Cy belongs to a linear complex. This result is also

obvious for geometrical reasons.
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The coordinates vt of the plane, which corresponds to a point

X1} x* }
X3) x, in the linear complex (6-ty, are given by

0^= * + 4P3 *2 + * + (P;-2P,&quot;)*4 ,

ra r
2
= -4P

3
.r1+ * -

(P/
- 2P,

w
)jr. + 4P3 *4 ,

,3= * + (P;-2PS &quot;)*8 + * -4P3(P,-2P3 K,
03 r,

= -
(P;

- 2P3V1
- 4P3

2x2 + 4P3 (P,
- 2P3&amp;gt;,

+ *,

where o is a proportionality factor.

Let us consider at the same time the osculating linear complex
of Cy

. The lines common to the two complexes form a congruence
whose directrices we propose to find. This we can do quite easily

by writing down the equations which express that, for a point on

one of the directrices, the two planes corresponding to it in the two

complexes must coincide. The right members of (65) must, for such

a point, be equal to

-j- G)Xi

respectively, where & is a proportionality factor.

The four equations obtained in this way can be satisfied only if

their determinant vanishes, which gives

(66) 2P
3

&quot; - P; - CD = 4P3 y-2P,
- P 4 ,

whence the following equations for the two directrices

&amp;gt;/2P3
- P& - P

3x9_
- (2P3

-
P&amp;gt;3

=
0,

-
x, /2P3

- P4a 3 + P
3^ = 0,

of which three equations only two are independent, and where we
have assumed P

3 )
0. In fact, if P3 were zero the two complexes

would coincide and the congruence would be indeterminate.

Since we have assumed PQ = 0, the quantity under the square
root is O. We find a second interpretation for the condition

6&amp;gt;4
= 0. If 6&amp;gt;4

=
0, the congruence lias coincident directrices. We

may combine this with our former result to the following theorem.

CJioose as derived ruled surface of the third kind one of the

developables of the single family ichicfi exists. Consider the osculating

linear complex of the corresponding ruled surface S of the second kind-

Let the directrices of the congruence, which this complex lias in common
with the osculating linear complex of the fundamental curve Cy ,

coincide.

Then t)ie two brandies of tiie flecnode curve of S coincide, and the generator

of S which passes through Py wiU intersect the osculating conic of C
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in Py and a second point, whose locus is the flecnode curve of the sur

face S.

I refrain from formulating the converse. The above conditions

are fulfilled if and only if 4
= 0.

Let us consider one of the directrices (67), for example that

one which corresponds to the plus sign of the square root. Then
we see that

(68)

=P~t (P3 y

are two points on the directrix. We have multiplied each expression

by a factor so as to have a and
/3 of the same weight. If now we

change the independent variable, but in such a way as not to disturb

the condition P2
=

0, we shall get in (64) a single infinity of com

plexes, and in (67) two families of lines, the directrices of the single

infinity of congruences which thus result. We are going to study,
to some extent, the two ruled surfaces thus generated.

Put _
(69) U

Making the transformations which preserve P
2
=

0, for which we
must have

we find that a and
/3

are transformed into and
|8,

where

The point ma -\- nft will be an arbitrary point on the line joining

PU and Pp. We find, therefore, the equations of our surface, referred

to two parameters 1?
and &amp;gt;

x
l
= mPsrf + (m + n)P3 k + n

(y

nh.

The nature of this surface may be easily determined. Returning
to the two curves Ca and Cp upon it, we find the equations for Ca

to be
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o

!
= A + yl?

8
, 2

=
2??, 3

=
1, C^

=
0,

obtained by putting n = 0, m = -5- in (70). If we put m = 0, n=
-j-&amp;gt;*

we find for C

But (a*, /?*) are simultaneous solutions of the equation

dB 3
1 ___ //

?^~ 2 &quot;&amp;gt;

which proves that the ruled surface, which we are considering, is a

developable, whose edge of regression is the twisted cubic C-j.

The curve Ca is a conic, the intersection of the developable of

the cubic with the osculating plane of Cy . Its equations are

Xi
=

0,
- 3.v + S^.r3

-
Sire,,

8 = 0.

We notice that for & =
0, it coincides icith the osculating conic, a

further interpretation of this condition. In general, the two conies have

a cotitact of the third order at Py
.

If, in these equations, we change k into k we obtain the

developable, cubic and conic associated with the second directrix of

our concn-uence. A considerable number of other configurations areO O

suggested by the combinations of these various curves and surfaces.

I will refrain, however, from any further study in this direction.

The curve Cy is an asymptotic curve upon every derived ruled

surface of the second kind. Moreover, the most general derived ruled

surface of the second kind depends upon one arbitrary function, as

does also the most general ruled surface containing Cy as an asymp
totic curve. It is easy to see that the derived ruled surface of the

second kind may be made to coincide with any ruled surface, upon
which Cy is an asymptotic curve, if the independent variable be

properly chosen.

Upon the derived ruled surface of the third kind, Cy can never

be an asymptotic curve. It may, however, be one branch of the flec-

node curve. In fact, if we form the quantities M,* of the theory of

ruled surfaces for system (27), we find

But M12
= is the condition that Cy may be a branch of the flec-

node curve on the surface generated by PyPa - Suppose that the

variable has been so chosen as to make P.
2
= 0. The most general

transformation, which leaves this relation invariant, according to (11),

satisfies the condition
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or

(71)
- 5V - =

0,

a differential equation of the second order for
77. Moreover, two

different solutions of this equation always give rise to two distinct

ruled surfaces. For, let ^ and
rjz

he two such solutions, and let

tf1; &amp;lt;?

2
be the corresponding values of &amp;lt;7. Then, according to (9),

&quot;

0**

(*
=

But, if the same ruled surface corresponds to
1^ 1

and %, the three

points y, &amp;lt;?x
and &amp;lt;5

2
must be collinear. We must, therefore, be able to

reduce
3

to a multiple of y. But clearly, this is possible only if ^2
= %.

We see, therefore, that there are oo 2 derived ruled surfaces of the

third kind upon which Cy is one branch of the flecnode curve.

If P
2

is not zero, our problem leads to the differential equation

(72) dx

which is of the second order and of the third degree.

We have seen, in chapter XII, that the most general ruled surface,

which has Cy
as one branch of its flecnode curve, contains an arbitrary

function in its general expression. We have also seen that, together

with any such surface, its flecnode surface and each member of a

single infinity of surfaces determined by these two, also contains Cy

as one branch of its flecnode curve. One might imagine that there

could be based upon these theorems a transformation theory of

equation (72). This is not the case however. For, if one of the

surfaces containing Cy as a branch of its flecnode curve is a derived

ruled surface of the third kind, its flecnode surface is not, nor is any
member of the family of ruled surfaces just mentioned.

Corresponding to the oo 2 solutions of (72), or of

we find oo 2
positions for PS, viz.:

(4/4
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The locus of these points is a cubic surface

f7y\ 97 T&amp;gt;
! s* 3 %.. P rr f 2 _J_ Qdr f f QOT T- ^ tO ?

*
I |O) tZljL? jCi OO.to*&amp;lt;tq.Aj ~J~~ *J\J JU& JUv JLt v\J JU-tJUt ^\J JU^ \J,

which contains Py P., the tangent of C9 ,
as a double line. It is,

therefore, a ruled surface. It is a surface of the kind known as

Cayley s cubic scroll.

If one derived surface of the tiiird kind is known, upon whicli Cy

is a brandi of flie flecnode curve, two others may be found by merely

solving a quadratic equation.

In fact, suppose that a solution r
t
of (72) be known. We may

make a transformation of the independent variable, !=!(#) such that

r_

In the resulting equation P2
= 0. If we again denote the independent

variable by x, (72) becomes

where P, is a constant, since P, = 0. But we may satisfy this

equation by putting r
(

=
const., which gives the equation

whence

The root
i?
=

gives the original solution. The other two are new.

7. The principal tangent plane of two space curves.

The covariants. Transition to Halphen s investigations.

Halphen has introduced a very important notion, which we shall

now proceed to explain.

Let there be given two space curves having at a point P a

contact of the n^ order. If these curves be projected from any
center Q upon a plane, the projections will also have, in general,
a contact of the nth order at the point corresponding to P. Halphen
shows that there exists a plane, passing through the common tangent
of the two curves, such that if the center of projection be taken any
where within it, the contact of the projections will be of order

higher than n. This plane he calls the principal tangent plane of

the two curves. 1

)

1) Halphen, Sur les invariants differentiels des courbes gauches. Journal

de 1 Ecole Polytechnique ,
t. XXVEI (1880), p. 25.
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We shall follow Halphen in determining the principal tangent

plane, at Py ,
of the curve Cy

and its osculating cubic. This will lead

us to an especially simple form for the development of the equations
of the curve, which is also due to HalpJien, and on the basis of

which he draws his further conclusions. It will also enable us to

substitute for our system of covariants 2; C3 ,
(74 another system,

whose geometrical significance will be apparent, and in terms of

which 2 ,
(73 , 4 may be expressed.

Assuming P2
=

0, the equations of the osculating cubic, referred

to the tetrahedron PPzPPa ,
are

^ a ,

2 =
0, (6xi

= 0.

Let us put

(
i4) #]_

= X
2 ,

X
2
=

-g-#3 ,

and
/ H C \ *^i *^9 *^&amp;lt;1

(75) # = ^? =?&amp;gt;
== ~r-\ / /y c/ /yi /y&amp;gt;

iX- ^ tAy^
*&amp;lt;/ ^

Then the equations of the cubic reduce to

(76) y = x\ z = v?-

The relation of the new tetrahedron of reference to the cubic is

especially simple. The plane ~x
s
= is the osculating plane at P;

x 2
= is some other plane through the tangent; this plane intersects

the cubic in another point $; the plane tangent to the cubic at Q
and passing through P is x^

=
0; the osculating plane at Q is ^4 = 0.

Since the plane ^2
= may be chosen in an infinity of ways, in

accordance with these conditions, we see that the reduction of the

equations of the osculating cubic to the form (76) may be accomplished
in an infinity of ways.

For the curve C we have

_ 1- ~
TO!_ 4 5 _
61* 61

PJ
3)-6P8 P4 -12PS P 7

71

51

(77)
,

6!

,7+...,
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If we refer it to the same tetrahedron, to which we have just

referred the osculating cubic, and if we put

(781
= |

3-^P3
6

If we put

(79) |
= X, &amp;gt;j

assuming, therefore, that P3 is not zero, this becomes

where
6 25

- -
6

~&quot;

36 3
-

&amp;gt; 7 ~7.36 3

( * 1 )

But we can make a further change of coordinates without disturbing
the form (SO) of the development. For, as we remarked above, the

plane 5:2
= may be any plane through the tangent. It may be taken in

such a way as to make A
6 vanish, as we shall presently see. Hie plane

thus obtained will obviously be the principal tangent plane of Hie curve

Cy and its osculating cubic.

Instead of working out the transformation geometrically, we
shall put with Halphen

(82a) X = ^, r=-5i, Z=-,
CO. CO. 03.

where
&amp;lt;D

1
-l + 3j&amp;gt;X + Zf Y+ p Z, 1,-Y + pZ,

the quantity p being arbitrary.

We shall then have
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X6
/ \6

On the other hand, ^ and
( j

coincide up to terms of the
fi \ )i/

eleventh order, while

We shall find, therefore,

where

(
.

M
&
=

(

this reduces to the canonical form required, in which we may also

assume
pie
=

1, if the curve does not belong to a linear complex.
If we combine the various transformations, which we have made

successively, we get the following result. If we introduce non-

homogeneous coordinates by putting

(85a) X = |i, r=&, -Z-I*,
2/4 2/4 2/4

,

where

^e development of the equations of the curve Cy may be written in the

canonical form
Y=X* + A

7
X 7 + ,

Z=X 3 + X^ + M^X 1 + .,

where A
1 ,

A/
7 ,

. . . are given by (84) together with (8 1). This trans

formation is valid if Cy does not belong to a linear complex, and can

obviously be made in three different ways.
The coefficients of (86) are absolute invariants. We find, in fact,

,

where

(88) @8
= 4 4 3

- 3 6&amp;gt;

3
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From (86) and (76) it is clear that the plane Y= or ys
=

is the principal plane of the curve Cy and its osculating cubic. In

the original system of coordinates its equation will, therefore, be

(89) 4P
3 *3 + (8P8

f - 5P4K = 0.

If Cy belongs to a linear complex, it coincides u ith the osculating plane.

The point, which corresponds to (89) in the osculating linear

complex, is

(90)

or, in invariant form,

(91)

an expression whose covariance may be verified directly. We shall

call this point the principal point of the tangent. We thus obtain a

curve on the developable of Cy) which may be called its principal
curve.

If we make a transformation such that

the point Pj describes the principal curve on the developable of Cy .

The points Pg and Pa also describe perfectly definite curves, whose

expressions may be obtained from (9) by substituting for
77

the

expression (92). Any covariant may be expressed in terms of y and
the three ichich tee have just determined, icliicli may therefore serve to

replace the covariants C2 , C3 and C4 .

If Cy belongs to a linear complex, these four curves all coincide,
so that a different set of fundamental covariants must then be
selected.

In this exceptional case our fundamental tetrahedron P.P3P Pa

gives rise to a most remarkable configuration. If we put again
P, = 0, we have in this case also P3

= 0. P
yPa generates one of

the developables of the third kind of which Cff is the cuspidal edge,
while P,jP: of course generates the developable of which Cy is the

cuspidal edge. The surface generated by PyPo is not developable.
Its equations become

It belongs to the same linear complex as Cy} and Cy
and C are the

two branches of its complex curve, which is at the same time an

asymptotic curve. P2 P^ generates a developable, since

of which Ct is the cuspidal edge. P
?
Pff generates a developable, since
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of which CQ is the cuspidal edge. Finally PzPa generates a ruled

surface whose equations are

6&quot;
- 4f a + P4

=
0, 0&quot;

-
&amp;lt;5

=
0,

&quot;4

upon which G2 and Ca are asymptotic lines.

We find, therefore, the following theorem.

If the curve belongs to a linear complex we may, in an infinity

of ways, choose the fundamental tetrahedron so that four of its edges

give rise to developables ,
whose cuspidal edges are described by the four

vertices. The other two edges of the tetrahedron will then give rise to

ruled surfaces, upon each of which the vertices of tlie, tetrahedron trace

a pair of asymptotic curves. The latter coincide with the two branches

of the complex curve for the derived surface of the second kind.

As in the case of differential equations of the third order, we
conclude from the canonical development obtained in this chapter:

the necessary and sufficient conditions for the equivalence of two linear

differential equations of tlie fourth order are the equality of the

corresponding absolute invariants.

Examples.

Ex. 1. Examine the conditions for the existence of conies or

space cubics upon the developable whose cuspidal edge is Cy .

Ex. 2. Discuss the cases in which the derivative ruled surface

of the second kind belongs to a linear complex or congruence.

Ex. 3.* The osculating cubics of Cy form a surface. Do there

exist such curves Cy whose osculating cubics are asymptotic curves

upon this surface? If there are such, determine them and find the

second family of asymptotic lines.

Ex. 4.* Consider the same problem for the surface of torsal

cubics.

Ex. 5. Assuming p^
= P2

=
0, deduce the differential equation

of the sixth order for the line -coordinates of the tangents of Cy .

(Halphen.)
Ex. 6. Find the conditions that the principal curve of the

developable of Cy may be a conic, a space cubic, or a curve belong

ing to a linear complex.
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CHAPTER XIV,

PROJECTIVE DIFFERENTIAL GEOMETRY OF SPACE CURVES

(CONTINUED).

1. Introduction of Halphen s differential invariants,

and identification with the invariants of the preceding chapter.

Let x, y, z be the (non-homogeneous) coordinates of a point m,
and let y and z be given as functions of x, so that the equations

y = 9&amp;gt;0*0,
e = #0)

represent a curve (). All differentiations are to be taken with

respect to x
}

if no other independent variable is specified.

Put

Then, clearly, the equation u = is characteristic of a plane curve, if

satisfied identically. In general the values of x, for which u vanishes,

give the points whose osculating plane hyperosculates the curve. We
write with Halphen,

(2) (n = 4, 5, 6, . . .)-

_1_
&quot;

~

Suppose that the point m, or (x, y, z), is an ordinary point of

the curve (m); let X, Y, Z be the coordinates of a point of the curve,
in the vicinit of m. Then

Make the following transformation of coordinates:

X
t
= X - x

}

Y =9
(3)

z _

This is clearly a projective transformation. The developments of the

equations of the curve assume the simpler form

WiLCZTXSKI, projective differential Geometry. jg
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where an ,
bn are precisely the quantities defined by (2). We may

always make the projective transformation (3), if the point m is not

one whose osculating plane hyperosculates the curve, which case

we shall suppose excluded. We may, therefore, assume that the

equations have been written, in the first place, in the form

e = xs + a4
4 + a

5
x5

H---- ,

y = a? + b^ + 1.3* + ....

An equation, which expresses a projective property of the curve, must,

therefore, be an equation between the quantities anj bn . It is in

terms of them, that Halphen has expressed his differential invariants.

If the curve belongs to a linear complex, there must be verified

an equation of the form

A + Btf + Cz + D (xy -y) + E(xJ -*) -f F(yJ - y ^ = 0,

where A, . . . F are constants. 1

)
If we substitute (4) for y and #,

and equate to zero the coefficients of x, x l

,
x2

,
. . . x*, we find

A = 0, B = 0, 3(7 + =
0, 4^0

Eliminating A, . . . F gives v = 0, where

(5) v = 6 2&
5

3a4a5 + 3a4 &4 + 2a4
8

.

The equation v = is the condition that the curve (m) may belong to

a linear complex.

We proceed to reduce (4) to its canonical form by Halphen s

method. The geometry of this reduction has already been explained,

so that it will suffice to give the transformation in its analytical form.

Put

(6) |
= x + my + nz, oo = 1 + Ax + By -f- Ce

and develop the quantities &amp;lt;o y, 0*0, |
2
, |

3
up to terms of the seventh

order inclusively. Form the differences

my |
2 and eo

2
|
3
,

and dispose of the five unknown quantities m, n, A, B, C in such a

way that the terms up to and including the fifth order shall vanish.

Then we shall have

1) Cf. chapter VII.



1. INTRODUCTION OF HALPHEX S DIFFERENTIAL INVARIANTS etc. 275

ray- |
2 =

cfz |
3 =

On the other hand

(4,1- 6*)

=(i) +

If, therefore, we put

Y %
JL = &amp;gt;

03

we shall find

r=x 2

Z=
The calculations are clearly indicated. For the details, the reader

may consult Halphen s memoir. 1

) We find, in this way, the values

^ = -2a4 ,
.B = 3a4

2 + 364 -2a5 ,
C = -&

3 ,

m = a4 ,
w = a4

2 + 2&4 a5

for the coefficients of the transformation (6). As a consequence

M6
=

6
- 26

5
- 3 45 + 3 4 &4 + 2fl/

=
V,

A6
= 66

- aA - 4a
5
64 + 4 4

2 64
- 2a4

2

5 + 2&4
2 + a

5

2 + a4
4 = w

and

/^
= crT + 3&4

2 4&4a5 + 3&
5
a4 4a6 a4 + 6a4

2
o- 3a4

4
,

1L =1 2a,L, where

- 2 (a/ + 2&4
-

5) (a6 + a4
3 + a4 64

- 2a4a5).

We have reduced the development of the equations of the curve

to the form (7). In 7 of chapter XIII, we have shown how to set

up a transformation, which involves an arbitrary constant p, and

does not disturb this form of the development. We put

(11) o^l + S^Z+ S^r+^Z, K-Y+pZ, t

and

(11 a) X = ^, F=^i, Z=-
&amp;lt;1 ! &amp;gt;1

whence

(12)

r=* ...

Z
where

1) Halphen, Journal de 1 Ecole Polytechnique, t. XXVLLI (1880), pp. 30 et sequ.

18*
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(13) A =
If we put

we find the form

67

(14)

where

= X

from which the canonical form may be derived at once.

It is obvious that the coefficients ak and fik are relative invariants.

We thus find Halphen s fundamental invariants of the seventh order

( 1 F\*\ ct Q 1 / &amp;gt;? ^ 1 I O 3 2
( _L c/ J OIT ===

fjf-r
^&quot; ;

/*7 ^ &quot;ft y ^7
&quot;

r^fi r^7
&quot; &quot;

/*fi &quot;7 ^R A^7 l~ fi
*

From S
7 , ^ and v we form other invariants by the Jacobian process:

i / 4 \ l

(16)
etc -

Halphen speaks of these as the fundamental invariants. But the

coefficients aA , /3^, of (14), form a second series of invariants which

Halphen speaks of as canonical invariants.

We shall need the equations between s8) t8 , 8 and
/38 . In order

to find them, we recur to the definitions of the quantities an and ~bn .

We find directly =
(n + 1) an+l 3&n 4a4an ,

We shall make use of these equations to express sg and t8 in terms

of the canonical invariants, putting

4
= a

5
=

0, a6
=

6 ,
. . . an = ccn ,

&4
= &5

= &6
=

J
&7
=

/57 ,
...& =

/?

after the differentiations. Thus we find

v = 6 ,
S
7
=

07, ^
7 =/37

a
6 ,

Therefore, according to (16),

(18)

whence
q
W6 K7 P7
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(19) 7 3

^A-V+T^-T^
the required equations.

It remains to find the relations between these differential invariants

of Halphen, and the invariants of chapter XIII.

Since &3
=

0, as well as v = express the condition for a curve

belonging to a linear complex, @
3 and v can differ only by a constant

factor. We may determine this factor by means of any special curve

for which v does not vanish. Consider the equation

for which

form a fundamental system. We find

& r~ 3

V* 32
*

On the other hand, introduce non- homogeneous coordinates, by
putting

Then
g a?, 1?

=
i
2
, e = i

4
,

whence

ai
=

4^ a5
= r

6
= &i

= &
s
=

;

so that
1 o

V =
32

a;
~ 3

-

We have, therefore,

(20) 3
== - 15v.

In order to derive the canonical form from (14), we put

X = aX, T=a 2

F, Z=a3
Z, a3 = v.

In fact, (14) will then become identical with (86) of chapter XTTT.

Since we have there

we may put
a = y

Identifying the two developments, we find

i 42

whence

(21 a)
2 4 -3 s -5 7
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2. The osculating quadric surface.

A quadric surface is determined by nine points. If we pass a

quadric through nine points of the curve, and allow them to approach
coincidence, we obtain, as a limit, the osculating quadric.

Let the equations of the curve be written in the form

-\
g =

Then we shall have

(23) z-xy = cc6 x
G -

xz y*
= Ke x

7
-f- tfr^

8
-\

Consider, now, the quadric surface, whose equation is

y x2
,

8 xy, xz

(24)
0,

Pit

6 , 0, 1 = 0.

If we wish to find its intersection with the curve, we substitute the

values (22) for y and g. Clearly, the development of the determinant

will begin with a term of the 9th order in x. The quadric, therefore,
intersects the curve for x = in nine coincident points; i. e. (24) is

the equation of the osculating quadric.

Expanding this determinant, we obtain

(25) (e*6 /37
- a

e
a8 + 7

2
) fa(y-i*) + ^(f- xsj]

+ K& - a7&) [Pi (y*
-

%*) + e
- xy -v2

)]
=

&amp;gt;

or, upon introducing the fundamental invariants,

(26) (s
8 + 2t, + 4 s

7

2

) [&amp;gt;

(x* -y) + t, (xz
-
f]\

(y* -xz) + v(z xy- vz^
= 0.

This equation ceases to be valid if . v = 0, i. e. if the curve

belongs to a linear complex. In this case we adopt a different

canonical form. The intermediate form (7) becomes

Y = X 2 + AX 6 + * X 7 + AZ 8 + -

since ^6
= in this case. By means of transformation (11), this

assumes the form (12). We may make A
7
=

0, by choosing p
subject to the condition
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The canonical form, thus obtained, is

y = *- + A**
z = y? + M-X 1

so that

(28) (24-M7) (y
- x* - 4^2

)
- A, (if-

- xz^ =

is the osculating quadric. We notice that the plane y = is tangent
to the quadric at the origin. The tetrahedron of reference, for which

the development assumes the canonical form, is therefore determined

by the osculating plane, osculating cubic curve, and osculating quadric

surface. Tlie vertices of this tetrahedron furnish a complete system of

covariants, for the case of a curve belonging to a linear complex, if the

curve is not a space cubic. For, this tetrahedron, can degenerate

only if the oscdating plane and the plane tangent to the osculating

quadric coincide. This will be the case whenever

(29) ^ + 2^ + 1^ = 0.

But if 6&amp;gt;3
= at the same time, this gives also 6&amp;gt;4

=
0, i. e. the curve

can only be a space cubic.

If

(30) *s + 4^-4f4 =
0,

the plane tangent to the osculating quadric, coincides with the

principal plane of the curve and its osculating cubic.

If the two equations (29) and (30) are satisfied simultaneously,
the osculating quadric (26) becomes indeterminate. Therefore, the

simultaneous equations (29) and (30) are characteristic of the biquadratic

curves.

The biquadratic curves may be studied by means of elliptic

functions, as were the plane cubics. The reader will find such a

treatment in Halphen s memoire, Sur les invariants differentiels des

courbes gauches, p. 96 et sequ.

3. Anharmonic curves.

If the absolute invariants of the differential equation of a space
curve are constant, the curve is said to be anharmonic. It is easy
to see, that the differential equation may then be transformed into

one with constant coefficients. Moreover, the reduction of such an

equation to its semi-canonical form leaves the coefficients constants.

We may, therefore, assume that the differential equation has the form
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(31) yW + 6P
2/ + 4P,y + P,y = 0,

where P2 ,
P

3 ,
P4 are constants. Let rv . . . r be the four roots,

supposed distinct, of the equation

(32) r* + 6P2 r
2 + 4P3 r + P4

= 0.

Then the functions

(33) y*
= e

r**
(/c=l,2,3,4)

will form a fundamental system of (31), so that

yr.-n y
rz-rt = ^-^ ^-r, yr.-r.

= ^-r^

If, therefore, we introduce non-homogeneous coordinates, by putting

x=*, r=&, z=^,
2/i 2/t 2/i

we shall find, as the equations of the anharmonic curve,

(34) F=X*, Z=^,
where

(35)
r, /-,

cwrve admits a one-parameter group of protective trans

formations into itselft viz.:

(36) X = aX, Y = a*Y, Z=

where a is an arbitrary constant. By means of this transformation

any point of the curve, which is not a vertex of the triangle of

reference, may be converted into any other.

From this theorem we conclude, as in the case of plane anharmonic

curves: the four points in which any tangent of the curve intersects the

faces of the fundamental tetrahedron, and the point of contact, form a

group of five points upon the tangent, which remains protective to itself

as the point of contact moves along the curve.

This theorem may also be verified by computing two of the

double ratios of this group of five points. They will be found to be

A and p respectively.

The curve belongs to a so-called tetrahedral complex. In fact,

its tangents intersect the tetrahedron of reference in four points
whose cross-ratio is constant, and the totality of lines which are so

related to a fixed tetrahedron constitute a tetrahedral complex.
1

)

1) For curves and surfaces belonging to a tetrahedral complex, cf. Lie-

Scheffers, Geometrie der Beriihrungstransformationen, pp. 311 398.
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From (32) we have

r
l + ri + r3 + r^

=
0,

f
i
rS + rirS + r

i
r* + V3 + T

i ri + V 4

whence, together with (35), we find

Since the coefficients are constants, we have

If, therefore, the absolute invariants of an anharmonic curve

*

are given, these equations will serve to determine the exponents A

and
jti.

The different values of A and /i, which correspond to given
values of the invariants a, ft, correspond to the twenty -four permuta
tions of the faces of the tetrahedron of reference (cf.

the corresponding
remark for plane anharnionics).

The cases, when two or more of the exponents r* coincide, may
be obtained from the general case as in the theory of plane anharmonics.

Equations (38) show that, to any anharmonic curve corresponds

dualistically another with the same absolute invariants, since a and
/3

contain only even powers of 6&amp;gt;3 . ,

Let
3
=

0, and let the absolute invariant -5-7- be a constant.
&quot;*

Assuming @4 =|= 0, so that the curve is not a space cubic, we may
choose the variables so as to have

Pi = 0, 6&amp;gt;4
=

1, whence 4.1 = const.

We shall then have

where P&amp;lt;,
and P4 are constants. Let

Tl) r\) r
Z

be the roots of

r*+ 6P,r +
and let
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Then

i. e. the curve lies on a quadric surface. In other words: any
(inharmonic curve, whose tangents belong to a linear complex, is on a

quadric, and conversely.

But the same reasoning applied to the adjoint equation shows
further: any anharmonic curve, whose tangents belong to a linear complex,
is the cuspidal edge of a developable which is circumscribed about a

quadric surface.
1

)

We shall leave it to the reader to prove; that these two quadrics

upon one of which lies the curve, while its developable is circumscribed

about the other, have a skew quadrilateral in common.
As in the case of plane curves, we may determine at any point

of a given space curve, an anharmonic having with the given curve

a contact of the seventh order. Let v, sv t-j,
etc. be the invariants of

the given curve, v, s1} t
7
the corresponding invariants of the osculating

anharmonic. s
8 ,

t8 ,
etc. will be zero, while

COON
5
7 4) t, 4)

\*J ~J-
-

-~T&amp;gt; &quot;X

s

~TP
V 3 ,j,()

3 3 CW 3

where
v&amp;lt;-\

S
7
( ) and ^) are the numerical values of v, s7 and

7
at

the given point.

The absolute invariants of the osculating anharmonic being

known, the problem arises: to determine its principal tetrahedron.

In order to solve this problem we prove first, the following
theorem due to Fouret. 2

)

Let X, Y, Z, T be four linear functions of x, y, z, such as

(40) X = ax + a y + a&quot;z + a
&quot;, etc.,

and consider the differential equations

X-Tx Y-Ty Z-Tz

The general integral of these equations will be

(42) Tp 1

F! = cX[, T[~*ZI = c X/,

where c and c are arbitrary constants, and where X
1?
Y

1}
Z

1} T^ are

four new linear functions of x, y, 0, whose coefficients as well as the

exponents r and s are determined by the coefficients of X, Y, Z, T.

1) Hdlphen, Acta Mathematica, vol. 3.

2) Fouret, Comptes Rendus. October 1876.
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To prove this theorem, consider the partial differential equation

(43) z + r*_z +T(,-*|i-fi)-a
The ordinary method for integrating it consists in setting up precisely

the system of ordinary differential equations (41). The factors of

X, Y, Z, T in (43), are the coordinates of the plane tangent to a

surface z = f(x, y} at the point x, y, z. Denote them by |, 17, , r,

so that we have an equation of the form

According to Clebsch, such an equation containing both point- and

plane-coordinates, defines a connex of space, i. e. the totality of points (i)
and planes (/*) which satisfy the equation. The order and class of

the connex are the degree of the equation with respect to the point-

and the plane -coordinates respectively. In our case, the order and

class are both equal to unity. To every point m of space, there

corresponds an infinity of planes /i: but, as the equation of the connex

shows, all of these planes ,u pass through a point m . The relation

between m and m is projective. There will exist, in general, a

definite tetrahedron whose vertices correspond to themselves in this

projective relation. If this be taken as tetrahedron of reference, the

equation of the connex becomes

=
0,

where Xv fv Z1}
T

t
are the new homogeneous coordinates of m,

and where il; vjv x,
T
t

are those of ,u. Let us return to non-

homogeneous coordinates by putting

X, Y._! - _t -

so that the equation of the connex becomes

Cz + Dr = 0.

The partial differential equation (43) requires of all of its integral

surfaces: in each point m of such a surface, the tangent plane shall

be one of those which corresponds to m in the connex. Consequently,
in the new variables, this partial differential equation will assume

the form
CZ, . -r, CZ. .

, -rk / d z*
C ei\ f\^

But this equation is integrated by means of the auxiliary system
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In other words, there exists a system of four polynomialsXv Yv Zv T such that the system (41) assumes the form (44) if

Xv . . . T be taken as new variables.

But (44) may be integrated at once. We find

or

(45)

S-D C-D
~A-D S ~T^D }

which completes the proof of the theorem.

We see, therefore, that the equations (41) may be taken as the

differential equations of an anharmonic curve. If the polynomials
X, Y, Z, I are given, the determination of the polynomials Xl}

Yv
Z^ T

l accomplishes the solution of our problem: to find the principal
tetrahedron of the anharmonic.

Equations (45) clearly contain 16 arbitrary constants. For, we

may take the constant terms in the four polynomials Xv Yv Zv J
t

equal to unity. The twelve coefficients which remain in these poly

nomials, the exponents r and s, and the constants c and c constitute,
in fact, 16 arbitrary constants. If we wish to determine the osculating
anharmonic of the given curve at a given point, we shall have to

determine these sixteen constants in such a way that the contact

between the two curves shall be of the seventh order, which gives

precisely sixteen conditions. These conditions might be written down

by differentiating (45) seven times, and substituting into the resulting

equations, for the derivatives up to the seventh order, the numerical

values of the corresponding derivatives for the given curve. But,

equations (41) clearly represent the result of eliminating the two
constants c and c from these sixteen conditions, and, in fact, they
contain only fourteen constants. These fourteen constants may,
therefore, be determined by means of (41) and those obtained there

from by six -fold differentiation. After they have been computed c

and c are easily obtained by the condition that the anharmonic curve

must pass through the given point of the given curve. All of the

conditions, obtained in this way for the sixteen constants, are linear,

so that a unique solution exists.

We saw, in the proof of Fouret s theorem, how a certain connex

was related to the problem of finding the principal tetrahedron of

the osculating anharmonic. This connex is not completely determined.

In fact, if we add to the left member of its equation

X| -f Yri + ZS + Tt = 0,

any numerical multiple of x% + yrj + # + tr, its tetrahedron does

not change. We may take advantage of this fact. It enables us to
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annul the constant term in T. We shall assume, therefore, that this

constant term is zero.

We now write equations (41) as follows

(46) Xtf - Y-T(xtf-y) = 0, X/ - Z- T(xJ-z) = 0,

and assume that the equations of the given curve are given in their

canonical form
z = xs

4- a6#
6
4- c^x

1
4- &amp;gt;

t/
= *2 + &*7 + ---.

In order that (46) may be the differential equations of that

anharmonic curve, which osculates the curve (47) at the origin,

equations (47) must satisfy (46) up to and including terms of the

sixth order. In this way the polynomials X, . . . T are determined.

We find

T = - Qvx 4- 14s- w - 21 -

/T7 A^i /&amp;gt;*

V

The explicit determination of the polynomials Xv . . . Tv i. e. of

the principal tetrahedron of the osculating anharmonic, requires the

solution of an equation of the fourth degree. The general theory of

collineations furnishes all of the material for further discussion of

this problem, a discussion which we shall not, however, undertake.

4. Relation to the theory of plane curves.

We shall consider briefly, two plane curves which are determined

by the properties of a space curve (m} in the vicinity of one of its

points m. Let us take m as a center and project the curve (m)
from m upon any plane. The curve (M), which is obtained in this

way, is the first of the two plane curves which we wish to consider.

The other curve (JLTj) is obtained by a construction dualistic to this,

viz.: it is the intersection of the developable, whose cuspidal edge is

the given curve (w), with the plane osculating (m) at m.
Let the equations of

(&amp;gt;w)
be developed in their canonical form:

(49)
f A*7

f
A^y /Y* ^lx // /yw I /v &amp;lt;&quot; J^ ff .yO I

*v
( fi i ^^ *^

I &quot;S

where

6
= V

} ttj
= S

7 , Og
=

[&

(50)
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Using the origin as center, and the plane at infinity as plane of

projection, we may take

v- y v i *
-A. = j Jt = --

)
x 2 x

as the coordinates of a point M of the curve (M). We shall then find

(51) r= x2 + 6
X5 +

The factor 2 has heen introduced for convenience, enabling us to

compare, more immediately, this form of the development with the

canonical development for a plane curve (Chapter III, 7).

If (51) be reduced to the canonical form by the method of

Chapter III, 7, and the new coordinates be still denoted by X, Y,
the following development will be obtained,

where

(52)

The canonical form for the second plane curve (.Mi), mentioned before,

will be obtained by putting in A^ for each invariant its adjoint, since

the two curves are dualistic to each other. This may be easily carried

out, since we have the expressions for v, S
7 , 7 ,s8 , 8

in terms of

3 , 4 ,
etc.

1

),
and since the adjoints of &amp;lt;9

3 and 4 are &amp;lt;9

3
and @4

respectively. Let A^ be the value of the coefficient thus obtained. Then

\ &quot;/ ~7 = ~I/ 7 ( ~fT $8 &quot;&quot; ^7 i

&quot;7T ^7 )

==
^7 ^7

2 itv /* \ o b / 2 3

If d = 0, the origin is a coincidence point upon (M).
2
) We may

express this as follows. We may construct cubic cones having the point
m of the curve (m) as vertex, and the tangent to (m) as double generator.

It is possible to determine such a cone having twelve coincident points

of intersection with the curve at the point m, if and only if the invariant

d is equal to zero.

Another proof of this may be easily obtained as follows. From

(49) we find

(54) Os(xya -y3
&amp;lt;v

3

)
- a

7 (x y*z}
=

[cc6 (cc8
-

2/37 )
- ^]xn+---.

The left member, equated to zero, is the equation of a cubic cone

of the character described. It has twelve coincident points of inter-

1) Equations (21).

2) Cf. Chapter HI, 4.
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section with (m} at the origin, if the coefficient of x11 on the right

member vanishes. But this coefficient may be easily shown to be

equal to d. In general, this cubic cone has only eleven coincident

points of intersection with (m) at the origin.

By duality we find the further result. The plane curve, in whicli

the osculating plane of the point m intersects the developable, of which

the curve (ni) is tlie cuspidal edge, lias m as a point of coincidence, if

and only if S
l
= 0.

If &3 and 6&amp;gt;8 are the invariants of the plane curve (-M), we have

/

^-
100800 Q /,

3

Let E be the exponent of the osculating anharmonic of (M} at M.
Then

g
s

09 (I?
2

.R-f I)
1

r\

Os
8 (- 2)* (1-2.R)

2

so that the exponent E is determined by the equation

(55)
y = 3.5 CB -

tf
8 2

There will be a similar equation for J?a . Comparing the two equations
we find:

The exponent J?t of the anharmonic, which osculates the second plane
curve (Jtfj) at M

1} will coincide iciih E if SB
= 0.

If the given curve (w) is an anharmonic, ss is identically equal to

zero, so that E and E
l

are equal to each other at all points of the

curve. Moreover, (55) is the equation for determining E. The left

member of (55) may be expressed in terms of the exponents A

and
JLI

of the curve (z) which may be supposed to have the equations

These considerations lead Halplien to make the following remark.

A space anharmonic curve (w) with given invariants / and u, gives
rise in each of its points to a perspective (M), which is not a plane
anharmonic. The plane anharmonic (M ),

which osculates (M) at

the point M which corresponds to m, has for its exponent the

quantity jR given by equation (55). This is true for all general

positions of the point m, but ceases to be true when m coincides

1) Chapter HI, equ. (60).

2) For the purpose of computing the left member of (55) in terms of I and
u we have the equations (37).
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with one of the vertices of the fundamental tetrahedron of the curve

(m). In fact, let A &amp;gt; 0, [i &amp;gt; 0. Then the curve

y = x*, z = rr&amp;lt;&quot;

passes through the origin. The cone, having the origin as vertex,
and the curve as directrix, will be

The plane sections of this cone are anharmonic curves whose expone-nt

may he equated to value be substituted for E in (55),

the left member, moreover, being expressed in terms of A and
ft,

the equation is not, in general, satisfied.

Therefore, if the point m moves into one of the singular points
of the anharmonic curve (m), the perspective (M} becomes an an

harmonic curve, but its invariant ceases to be equal to R.

5. Some applications to the theory of ruled surfaces.

The principal surface of the flecnode congruence was defined in

a somewhat unsatisfactory manner in the following exceptional cases;

1 st when the ruled surface has two rectilinear directrices; 2d when
the two branches of the flecnode curve coincide. We are now in a

position to simplify these definitions considerably.
Consider the case that the ruled surface S has two distinct

rectilinear directrices. Let Cy
and Gz be two curved asymptotic lines

upon S. We may then assume

(56)
=

0,
= aq, =

bq, cq.

Let us form the differential equation of the fourth order for Cy ,

according to the formulae of Chapter XII.

We find:

y
- 2 -

qn
&amp;gt;)

y

The derivative curve of the first kind, (upon the developable of Cy),

is given by the expression
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Similarly, the derivative of the first kind of C- is given by

On the other hand, the generator of the ruled surface S
,
the derivative

of S with respect to x, joins the two points

\j and d .

These are the same as the above, if and only if Q
1 =

0, i. e. if

4 is a constant, i. e. if S is the principal surface of the con

gruence.

We see, therefore, that the following theorem is true.

Let S be a ruled surface with rectilinear directrices, defined by a

system of form (A). Its derivative S
,

with respect to x, contains the

derivatives of the first hind of the asymptotic curves of S, if and only

if S is the principal surface of the flecnode congruence.

Precisely the same property will be found to characterize the

principal surface in the case that the two sheets of the flecnode sur

face coincide.

In (56) we may assume c = 0. Cy and C: will then be two

asymptotic curves, whose intersections with any generator are harmonic

conjugates of each other, with respect to the two points in which

the generator intersects the directrices of the surface. The differential

equations for Cy and C2 become identical, i. e.: two asymptotic curies

which are so related, are projectively equivalent. But these two curves

are really two parts of one irreducible curve. For, S belongs to an

infinity of linear complexes, and the complex curve of S, with respect
to each of these complexes, is precisely such an asymptotic curve,
each of which intersects every generator twice in the above fashion.

We may, therefore, say that every asymptotic curve of a ruled surface
with rectilinear directrices admits of projectile transformation into

itself.

Each of these asymptotic lines obviously belongs to a linear

complex. This may, moreover, be easily verified from equation (57),
whose invariant of weight 3 is zero. But the converse is also true,

i. e.: if the asymptotic curves of a ruled surface belong to linear com

plexes, the surface must have two rectilinear directrices. This theorem

is due to Peters. 1

} We have developed all of the formulae necessary
for its proof, the details of which we shall leave to the reader.

1) Peters. Die Flachen, deren Haupttangentenknrven linearen Komplexen
angehoren. (Leipzig, Dissertation 1895.) ChristianiaundKopenhagen. Alb. Cammer-

meyers Forlag.

WILCZTXSKI, projective differential Geometry. 19
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6. On the order of contact between curves after a dualistic

transformation.

If two curves (m) and (m )
have a contact of the wth order at

a common point m, two curves (M) and (M } obtained from them

by a dualistic transformation will, in general, have contact of a

different order. The following investigation, which is due to Halphen,
will make clear the various cases which may arise.

Since the most general dualistic transformation may be obtained

by combining any special dualistic transformation with a general

projective transformation, and since the latter leaves the order of

contact invariant, we may confine ourselves to investigating the effect

of any particular dualistic transformation.

Let x, y, z, t be the homogeneous coordinates of a point m of

the curve (m). We may take as the homogeneous coordinates of a

point M of the curve
(-M&quot;),

which is dualistic to (m\ the four deter

minants of the third order

which are proportional to solutions of the Lagrange adjoint of the

differential equation of the curve (m). To return to non-homogeneous

coordinates, we put t = 1, take x as the independent variable, and

consider the ratios of the above four determinants. The coordinates

X, Y, Z of the pointM,
which is thus made to correspond dualistically

to the point m, will be

(58) Y=

(zt x&quot;} _ z^_

(tx y&quot;}

~
y&quot;

(yz t&quot;} y z&quot; z
y&quot;

W?7
}

=
&quot;T

7

^

(xy z&quot;}
X (y z&quot;-z

y&quot;} + zy&quot;-yz&quot;

(tx y&quot;} y&quot;

These relations between X, Y
}
Z and x, y, z are reciprocal and must,

therefore, give rise to reciprocal relations between the elements of

the two curves.

Let tn be chosen as origin of coordinates, the tangent to the

curve at that point as x axis, and the osculating plane as the plane
z = 0. The same conditions will then be fulfilled for the curve (M)
at M. The development of the equations of the curve (m) in the

vicinity of m will be of the form
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(59)
Z = S%3? -{- ZX T &quot; *

I

and similarly for (M)

(60)

I X T*X*

We proceed to find the relations between the coefficients of

these two expansions, by making use of (58). For this purpose, we
shall develop both members of each of the equations (60) into series

proceeding according to powers of #, and then identify the coefficients

of like powers.
Let us denote by itn a function of the quantities ym and zm in

which the indices do not exceed n. Whenever it is not necessary
to distinguish between two such functions, the same letter stn may
be used for both.

From (59) we find

(z&quot;V
i si tj .. ~m 11 i i 4i -4 o r~~ i \ ys i ~

[

/ci\ .

(61) +L 8-8

2y,*
2

{3-3 -f Sg^x +
+ [(w

2 -
l&amp;gt;n+1 -f ^B&amp;gt;-

2
+...}

Owing to (58), the first equation of (60) may be written

If we put

(63) G=V ^ = ^
the substitution of i^61) in (62) gives the following equations:

o /^r* T^
D^3
= 6r-l

2 ,

whence
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Y
2
=

gy*,

(64)
r3
= - 4#

3

4 + 3#
2
?/3 ,

We have further

x(y z&quot; -z
y&quot;) + zy&quot; -yz&quot;

Making use of this formula, the second equation of (60) gives:

*%-**%,

(65)
^4 = - 3&amp;lt;?

4*4 -f 2/2/ 3 ,

Zn = g&quot;(n l*)2n + tf-i,

where &amp;lt;?_] depends upon quantities whose index is no higher than

-l.
The quantities 6r and g are dualistic. In fact we find

The equations (64) and (65) must be self-dual, i. e. they must remain
true if the small and capital letters are interchanged. That this is

so may be easily verified for the first two equations of each system,
these equations having been completely determined. On the other

hand, this dualistic character of the equations enables us to supply
some further terms in the expressions for Yn and Zn .

In fact, let us interchange the small and capital letters in the

equation for Yw ,
and denote by Un the new value of xn . Then, if

we substitute for Zn +\ its value, we shall find

yn = n(n + l)ggn+i
---

&amp;lt;5n + nn)

where 6n depends upon the quantities ym and zm of index no higher
than n. This equation must become an identity, if we replace, in IIn)
the quantities Ym ,

Zm by their expressions in terms of ym ,
sm . This

substitution in Un must, therefore, give rise to a term n(n + l)gzn +i.
But (64) and (65) show that only the expression -i- nGrn

~ 1 Yn can

give rise to such a term. We have, therefore,

(66) Yn = - (n + l)/%+i -f ng
n
-*yn + [gn , yn -i],

where \zn , yn \\ contains the quantities sm whose index is no higher
than n, and the quantities ym whose index does not exceed n 1.
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Similarly we find

(67) Zn
= -(n- l)g&quot;zn + (n

-
2) 5r- 1t/_ 1 + [&amp;gt;_!, #B_ 8].

The equations (66) and (67) enable us to solve the proposed

problem. Consider two curves (in) and (? ) which have a contact

of the nih order at the origin. In the vicinity of the origin, the

curve (ni) is represented by the equations (59), and the curve (in
1

)

by two equations of the same form. We shall then have, by hypo
thesis,

y*
=

y*&amp;gt; y* -^jfe yn
= y,

Equations (66) and (67) show that, for the two reciprocal curves (M )

and (M \ we shall have

Y2
= Y.

2 ,
Y3
= Y3) ... Yn i Yn i,

Z3
= Z3 ,

. . . Zn i
= Zn i, Zn

= Zn ,

so that the order of their contact will, in general, be only n 1.

But it becomes necessary to examine the conditions for this more

carefully. For, the same transformation will convert (M) and (M
1

)

back into (m) and (m
f

),
so that the order of contact may be increased,

as well as diminished, by a dualistic transformation.

We notice in the first place that the curves (M) and (M
1

)

satisfy the condition Z, = Zn ,
i. e. if the order of their contact is

really n 1, their principal tangent plane coincides with the osculating

plane.
1

) Further we notice that

Tn+l = 3nZ3 Yn
- (n+ 1) Y2

Zn+1 ,

when expressed in terms of ym ,
zm contains none of these quantities

of index higher than n. The curves (J/) and (-IT), therefore, satisfy

the further relation T^ +i = T_J_I.
We may now state our result as follows:

1. If two curies have, at the point in, a contact of Hie wth
order,

and if their principal tangent plane at this point does not coincide with

tlie osculating plane, tJie tico curves which correspond to them in any
dualistic transformation will Jiave, at the corresponding point, a contact

of the n 1 th order only.

2. If the principal tangent plane does coincide with tJie osculating

plane, but if the function

1) Chapter XIII, 7.
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i
-

(n

has different values for the two curves, the order of contact is not changed

by the dualistic transformation.

3. If the principal tangent plane coincides with the osculating

plane, and if, besides, the function tn+2 has the same value for both

curves, the dualistic transformation increases the order of contact to n + 1.

This theorem makes it evident that, to the canonical development
of the curve (m) will not correspond, in general, the canonical develop
ment of the curve (M*). For, the osculating cubic of (m) is not, in

general,&quot;
transformed by a dualistic transformation into the osculating

cubic of (M ).

It need scarcely be remarked that our proof presupposes n &amp;gt; 2,

so that the theorem does not contradict the fact that a dualistic

transformation always converts a pair of curves which touch into

another pair which, likewise, touch.

Examples.

Ex. 1. In terms of Halpheris canonical invariants, find the con

dition for a curve on a quadric surface. Express this in the usual

invariants.

Ex. 2. Transform the figure composed of a curve and its osculat

ing anharmonic dualistically. The result of this transformation is a

curve and its osculating anharmonic, if and only if 58
= 0. (Halphen.)

Ex. 3. If ss
=

0, the curve and its osculating anharmonic have

the osculating plane for their principal tangent plane. If ts
=

?
the

principal tangent plane of these two curves coincides with the prin

cipal plane of the curve and its osculating cubic. (Halphen.)

Ex. 4. If the curve (m) belongs to a linear complex, the

osculating conic of the plane curve (-M) of 4 hyperosculates it.

What is the corresponding property of the second plane curve (-M,)

of 4? (Halphen.)

Ex. 5. Find the condition for a curve on a quadric cone. (Halphen.)

Ex. 6. A biquadratic curve may be obtained which has contact

of the seventh order with (m) at a given point (osculating biquadratic).

Its developments will be

s = x + vx s
7

Consider the following four planes through the tangent of (m); the

osculating plane, the principal plane of (m) and its osculating cubic,
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the principal plane of (HZ) and its osculating anharmonic, the principal

plane of (HZ) and its osculating biquadratic. Their anharmonic ratio is

- --
(Hdplien.)

Ex. 7. The conditions

, n . . 1 a s\ O O2
S8 + 2t, + -S7

2 =
0, S9 + #8

-

characterize those curves whose developables are circumscribed about

two quadric surfaces. (Halphen.)

CORRECTIONS.

Page 19, line 5 from bottom read k instead of L
80, 10 top as many ,, a many.

.. 109. 3 a a.

163, 7 ^5,6^ a,,, 6S1 .
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(A) 126;

generator, torsal, of a ruled surface 131;

group, continuous 2;
- finite and infinite 5.

Halphen canonical H. form for a lin. diff.

equ. of the 3d order 61;

canonical form for lin. diff. equ. of

the 4*fc order 242;
s canonical invariants 276;
s fundamental invariants 276;
s differential invariants 56, 273;

point 68;

homogeneity of covariants 19, 107;

homogeneous coordinates 19;

hyperboloid which osculates a ruled

surface along a generator 146.

I.

identically self- dual plane curves 61;
- ruled surfaces 144;

space curves 243;

&quot;WiLCzrxsKl, protective differential Geometry.

infinite groups 5;

infinitesimal transformation 2;

integrating ruled surface of (A) 129;
invariants of linear diff. equ. of ?&amp;lt;

th

order 14;
of a system of form (A) 91;

involute curve 208;

points 208;
involution of ruled surfaces having a

branch of their flecnode curve in

common 233;
irreducible expression 19;
isobaric 19.

J.
Jacobian 23.

t.

Laguerre-Forsyth canonical form 25;

Lagrange adjoint 40;

Laplace transformation 190;
A functions 174;
Lie s theory of continuous groups 1:

linear complex 159;

, osculating 205, 251;

linear invariants 34;

line complex 157;

line geometry 48, 154;

logarithmic spiral 70.

manifold 48.

X.
nodal cubic 74;

, eight -pointic 67;

normal curve, rational, of the n 1th

order 53;
null plane 159;

point 159;

system 159;

system of the derivative cubic 204.

O.

order of contact after a dualistic trans

formation 293;

osculatinganha.rmoDic of a plane curve 90;
anharmonic of a space curve 282;
conic of a plane curve 61;

conic of a space curve 250;
cubic of a plane curve 61;

- cubic of a space curve 249;

hyperboloid of a ruled surface 146;
linear complex of a ruled surface 205;

linear complex of a space carve 251;

quadric surface of a space curve 278.

19*
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P.

pinch point 131;

polars, reciprocal, with respect to a

linear complex 160;

primary developable of a space curve

233;

principal curve on the developable of a

space curve 271;

curve on the flecnode surface 216;
-

point on the tangent of a space
curve 271;

surface of the flecnode congruence

216, 289;

tangent plane of two space curves 267;

principle of duality 55;

protective transformation in m 1.

dimensional space 51.

quadric surface which osculates a space
curve 278.

B.

rational normal curve of the n 1th

order 53;

ruled surface, an asymptotic curve of

which is given 237;

one of the branches of whose com

plex curve is given 236;

one of the branches of whose

flecnode curve is given 231;

which has a second derivative

coinciding with itself 188, 190;
- whose flecnode curve intersects every

generator in two coincident points

220.

S.

Schwarzian derivative 25;

secondary developable of a space curve

233;
semi -canonical form of lin. diff. equ. of

the wth order 17;

of a system of form (A) 114;
semicovariants of lin. diff. equ. of the

wth order 15;
of a system of form (A) 92;
of plane curves geometrically inter

preted 65;
- of space curves geometrically inter

preted 255;
seminvariants of a lin. diff. equ. of wth

order 16;
of a system of form (A) 92;

Serrefs theorem 143;

sphere geometry 164;

spiral, logarithmic 70;

system (A) 126;

, complete 4.

T.
tangential 69;

torsal cubic 248;

generator of a ruled surface 131;

transformation, infinitesimal 2;

,
most general, which transforms a

system of lin. diff. equ. into another

of the same form and order 6.

W.
W- congruence 199;

weight of a covariant or invariant 19.



B. G. Teubners Sammlung von Lehrbuchern auf dem
Gebiete der Mathematisclien Wissenschaften mit Ein-

schlnD ihrer Anwendungen.
Im Teubnerschen Verlage erscheint nnter obigem Titel in zwang oser Folge eine

langere Keihe von zusammenfassenden Werken nber die wichtigsten Abschnitte der
Mathematischen Wissenschaften mit EinschluB ihrer Anwendungen.
Die anerkennende Benrteilung, die der Plan, sowie die bis jetzt erschienenen Aufsatze
der Enzyklopadie der Mathematischen Wissenschaften gefunden haben

,
die allaeitige

Zustimmung, die den von der Deutsehen Mathematiker-Vereinigiuig veranlaBten und heraus-

gegebenen eingehenden Beferaten fiber einzelne Abschnitte der Hathematik zn teil geworden ist.

beweisen, wie iehr gerade jetzt, wo man die Besultate der wissenschaftlichen Arbeit eices Jahr-
hunderts zu ubrblicken bemuht ist, eich das Bedarfnis nach znsammenfassenden Darstelltingen
geltend macht

, durch welche die mannigfachen Einzelforschungen auf den rerschiedenen Gebieten
luathematischen \Visens unter einheitlichen Gesichtspnnkten geordnet und einem weiteren Kreise

zuganglich gemacht werden.
Die erwahnten Aufsatze der Eiizyklopadie ebenao wie die Keferate in den Jahresberichten

der Deatschen Mathematiker-Vereinigung beabgichtigen in dieeem Sinne in knapper, far eine
rasche Orientierung bestimmter Form den gegenwartigen Inhalt einer Disziplin an gesicherten
Eesultaten zu geben, wie auch durch sorgfaltige Literaturangaben die historische Entwickelung
der Methoden darzulegen. Daruber hinaus aber moB auf eine eingehende, mit Beweisen rersehene

Darrtellung, wie sie zum selbstandigcn ,
von umfangreichen Quellenstudien unabhangigen Ein-

dringen in die Disziplin erforderlich ist, auch bei den breiter angelegten Referaten der Deutschen
Mathematiker- Vereinigung, in denen hauptsachlich das historische nnd teilweise auch das kritische

Element zur Geltung kommt, verzichtet werden. Eine solche ansfflhrliche Darlegung, die sich
mehr in dem Charakter eines auf geschichtlichen und literarischen Studien gegrundeten Lehr-
buches bewegt ttnd neben den rein wissenschaftlichen auch padagogische Interessen berflcksichtigt,
erscheint aber bei der raschen Entwickelung und dem Umfang des zu einem grofien Teil nur in

MonograpMen niedergelegten Stoffes durchaus wichtig, zumal, im Vergleiche z. B. mit Erankreich,
bei uns in Dentschland die mathematische Literatnr an Lehrbuchern uber spezielle Gebiete der
mathematischen Forschung nicht allzn reich ist.

Die TerlagBbuchhaEdlung B. G. Teubner gibt sich der Hoffnune hin, daB sich recht zahl-
reiche Mathematiker

, Physiker und Astronomen, Geodaten und Techniker, sowohl des In- als des
Auslandes

,
in deren Forschungsgebieten derartige Arbeiten erwunscht eind, rur Mitarbeiterschaft

an dem Unternehmen entschliefien mochtn. Besonders nahe liegt die Beteiligung den Herren Mit-
arbeitern an der EnzyklopSdie der MathematUchen &quot;Wissenschaften. Die nmfangreichen literarischen
und speziell fachlichen Studien, die fur die Bearbeitung von Abschnitten der Enxyklopadie vor-

zunehmen waren, konnten in dem notwendig eng begrenzten Bahmen nicht vollstindig nieder-

gelesrt werden. Hier aber, bei den Werken der gegenwartigen Sammlung, ist die MdgUchkeit
gegeben, den Stoff freier zu gestalten nnd die individuelle Anffassung und Richtung des einzelnen
Bearbeiters in hOherem Mae znr Geltung zu bringen. Doch ist, wie gesagt, jede Arbeit, die sich

dem Plane der Sammlnng einfugen l&fit, im gleichen MaBe willkommen.
Bisher haben die folgenden Gelehrten ihre geachatzte Mitwirkung zngesagt, wahrend

erfreulicherweise stetig nene Anerbieten zur Mitarbeit an der Sammlung einlaufen, woruber in
meinen M Mitteilnngen&quot; fortlanfend berichtet werden wird (die bereits erschienenen Bande Bind mit
zwei **, die nnter der Presse befindlichen mit einem *

bezeichnet):

**P. BACHMAXX. niedere Zahlentheorie. I.

(BandX d. Sammlung.) Geb. M. 14..
*E. BLASCHKE , Yorlesungen uber mathe-

matisclie Statistik.

M. BOCHBR, uber die reellen Losungen
der gewohnlichen linearen Differen-

tialgleichungen zweiter Ordnting.

G.BoHLJiAxx,Versiclieningsmath.ematik.
**H. BBuxs,Wahrscheinlichkeitsrechrmng

undKoUektivmaBlehre. (BandXTU^
Geb. M. 8.40.

*G. H. BEYAX, ThennodjTiamics.
G.CASTELXTOVO und F. ExEiQi.-zs,Theorie

der algebraischen Flachen.

**E. CZCBEB, Wahrscheinlichkeitsrech-

nungund ihreAnwendung auf Fehler-

ausgleichung, Statistik und Lebens-

versicherung. (Band IX.) Geb.
M. 24..

M. DEHS u. P. HEEGAARD, Analysis situs.

*L. E. DICKSON, Linear Groups with an

exposition of the Galois Field theory.

(Band YI.) Geb. M. 12..
F. DIXGELDKT, Kegelschnitte und Kegel-

schnittsysteme.

F. DixGELDEr. Sammlung von Aufgaben
zur Anwendung der Differential- und

Integralrechnung.
G. EXESTROM (inTerbindung mit andern

Gelehrten), Handbuch der Geschichte
der Mathematik.

F. EXGEL und G. KOWAI.EWSKI, Ein-

fuhrung in die Theorie der Trans-

fonnationsgruppen.
*F. EKRIQCES, Fragen der Elementar-

geometrie.
*0. FISCHEB, theoretische Grundlagen

fur eine Mechanik der lebenden

Korper.



PH. FUETWANGLER, die Mechanik der
einfachsten physikalischen Apparate
und Versuchsanordnungen.

**A. GLEICHEN, Lehrbuch der geometri-
schen Optik. (Band VIII.) Geb.
M. 20..

M. GRUBLER, Lehrbuch der hydrau-
lischen Motoren.

J. HARKNESS , elliptische Funktionen.
L. HENNEBERG, Lehrbuch der graphi-

schen Statik.

K. HEUN, die kinetischen Probleme der
modernen Maschinenlehre.

G. JUNG
,
Geometric der Massen.

G. KOHN, rationale Kurven.
**A. KRAZER, Lehrbuch der Thetafunk-

tionen. (Band XII.) Geb. M. 24..
H. LAMB, Akustik.

E. v. LILIENTHAL, Differentialgeometrie.
**G. LORIA, spezielle, algebraische und

transzendente Kurven der Ebene.
Theorie und Geschichte. (Band V.)
Geb. M. 28..

A. E. H. LOVE, Lehrbuch der Hydro-
dynamik.

*A. E. H. LOVE, Lehrbuch der Elastizitat.

A. LOEWT, Vorlesungen iiber die Theorie
der linearen Substitutionsgruppen.

R. MEHMKE, Vorlesungen iiber Vektoren-
und Punktrechnung.

R. MEHMKE, fiber graphisches Rechnen
und iiber Rechenmaschinen, sowie
iiber numerisches Rechnen.

W. MEYERHOFFER
,
die mathematischen

Grundlagen der Chemie.
**E. NETTO, Lehrbuch der Kombinatorik.

(Band VII.) Geb. M. 9..
*W. F. OSGOOD, Lehrbuch der Funk-

tionentheorie.

E. OVAZZA, aus dem Gebiete der Me
chanik.

**E. PASCAL, Determinanten. Theorie und

Anwendungen. (Band III.) Geb.
M. 10..

S. PINCHERLE, Funktional-Gleichungen
und -Operationen.

**FR.POCKELS, Kristalloptik. (BandXIX.)
Geb. M. 16..

A. PRINGSHEIM,Vorlesungen iiber Zahlen-
und Funktionenlehre. (Elementare
Theorie der unendlichen Algorithmen
und der analytischen Funktionen
einer komplexen Veranderlichen.
Bd.I. Zahlenlehre. Bd.II. Funktionen
lehre. (Band I.)

C. SEGRE, Vorlesungen iiber algebra
ische Geometrie, mit besonderer

Beriicksichtigung der mehrdimen-
sionalen Raume.

**D. SELFWANOFF, Differenzenrechnung.
(Band XIII.) Geb. M. 4..

P. STACKEL, Lehrbuch der allgemeinen
Dynamik.

P. STACKEL, Differentialgeometrie hohe-
rer Mannigfaltigkeiten.

**0. STAUDE, analytische Geometrie des
Punktes

,
der geraden Linie und der

Ebene. (Band XVI.) Geb. M. 14..
0. STAUDE, FlachenundFlachensysteme

zweiter Ordnung.
** 0. STOLZ und J. A. GMEINER, theoretische

Arithmetik. (Band IV.) Geb. M. 10.60.

**0. STOLZ und J. A. GMEINER, Einleitung
in die Funktionentheorie. (Bd. XIV.)
Geb. M. 15..

R. STURM, Theorie der geometrischen
Verwandtschaften.

R. STURM, die kubische Raumkurve.
H. E. TIMERDING, Theorie der Strecken-

systeme und Schrauben.

K.TH. VAHLEN, Geschichte des Funda-
mentalsatzes der Algebra.

K. TH. VAHLEN, Geschichte des Sturm -

schen Satzes.

A. Voss, Prinzipien der rationellen

Mechanik.
A. Voss, Abbildung und Abwicklung

der krummen Flachen.
**J. WALLENTIN, Einleitung in die Elek-

trizitatslehre. (Bd XV.) Geb. M. 12..
**E. V.WEBER, Vorlesungen iiber das Pfaff-

sche Problem und die Theorie der

partiellen Differentialgleichungen
1. Ordnung. (Band II.) Geb. M. 24..

** A. G.WEBSTER, the Dynamics of Partic

les, of rigid, elastic, and fluid Bodies

being Lectures on Mathematical

Physics. (Bd. XI.) Geb. M. 14..
** E. J.WILCZYNSKI, Projective Differential

Geometry of Curves and Ruled Sur
faces. (Band XVIII.)

A. WIMAN, endliche Gruppen linearer

Transformationen.

W.WIRTINGER, algebraische Funktionen
und ihre Integrale.

W.WIRTINGER, partielle Differential

gleichungen.
H. G. ZEUTHEN, die abzahlenden Metho-

den der Geometrie.

Mitteilungen iiber weitere Bande werden baldigst folgen.

LEIPZIG, Poststrafie 3. B. G. Teubner.
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