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PREFACE.

In the geometrical investigations of the last century, one of the most
fundamental distinctions has been that between metrical and projective
geometry. It is a curious fact that this classification seems to have given
rise to another distinction, which is not at all justified by the nature of
things. There are certain properties of curves, surfaces, etc., which may
be deduced for the most general configurations of their kind, depending
only upon the knowledge that certain conditions of continuity are fulfilled
in the vicinity of a certain point. These are the so-called infinitesimal
properties and are naturally treated by the methods of the differential
calculus. The curious fact to which we have referred is that, but for rare
exceptions, these infinitesimal properties have been dealt with only from
the metrical point of view. Projective geometry, which has made such
progress in the course of the century, has apparently disdained to consider
the infinitely small parts into which its cornfigurations may be decomposed.
It has gained the possibility of making assertions about its configurations
as a whole, only by limiting its field to the consideration of algebraic
cases, a restriction which is unnecessary in differential geometry.

Between the metrical differential geometry of Monge and Gauss,
and the algebraic projective geometry of Poncelet and Pliicker, there
is left, therefore, the field of projective differential geometry whose
nature partakes somewhat of both. The theorems of this kind of geometry
are concerned with projective properties of the infinitesimal elements. As
in the ordinary differential geometry, the process of integration may lead
to statements concerning properties of the configuration as a whole. But, of
course, such integration is possible only in special cases. Even with this
limitation, however, which lies in the nature of things, the field of pro-
jective differential geometry is so rich that it seems well worth while to
cultivate it with greater emergy than has been done heretofore.

But few investigations belonging to this field exist. The most im-
portant contributions are those of Halphen, who has developed an ad-
mirable theory of plane and space curves from this point of view. The
author bas, in the last few years, built up a projective differential geo-
metry of ruled surfaces. In this book we shall confine ourselves to the
consideration of these simplest configurations. If time and strength permit,
a general theory of surfaces will follow.

In presenting the theories of Halphen, I have nevertheless followed
my own methods, both for the sake of uniformity and simplicity. In all
cases, I have attempted to indicate clearly those results which are due
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Iv PREFACE,

to him or to other authors. The general method of treatment and the
results which are not specifically attributed to others are, so far as I am
aware, due to me. The theory of ruled surfaces has been developed by
me in a series of papers, published principally in the Transactions of
the American Mathematical Society, beginning in 1901. I have
thought it unnecessary to refer to them in detail, the treatment here
given being in many respects preferable to that of the original papers.
In particular, some errors have been corrected; I hope that no serious
mistakes have been allowed to pass over into the present work. To
finish these personal remarks, I may add that Chapter II contains a
number of important additions to the theory as generally presented,
without which it would lack rigor and completeness. The canonical deve-
lopment of Chapter ITI has also been added by the author.

The examples collected at the end of each chapter are of two kinds.
Some of them are mere exercises. Some, however, (those marked with
an asterisk), are of a very different nature. They are essentially suggestions
for such further investigations, as appear to me to be of promise and
importance. I have, also in the body of the book, taken the privilege of
pointing out further problems which seem to be of interest. Many others
will readily suggest themselves. It is my sincere wish that these suggestions
may be helpful toward a further development of this fascinating subject.

The instructor in an American University finds his time fully occupied
by other things besides the advancement of Science. The Carnegie In-
stitution of Washington, in recognition of this fact, makes it a part
of its policy to give a certain number of men the opportunity to devote
all of their time and energy to research. For two years I have had the
honor and the good fortune of finding my efforts aided and encouraged by
the support of this magnificent institution. Withount this aid, the present
work would not have seen the light of day for several years. I take this
opportunity to express to the Carnegie Institution my fullest gratitude
for its help, and for the generosity with which it has left me free to
act and move, unfettered by unnecessary conditions and regulations.

In these last two years, I have had occasion to make use of libraries
at Gottingen, Paris, Cambridge and Rome. For these privileges I am
indebted to Professors Klein, Darboux, Forsyth and Castelnuovo, who met
my wishes with the greatest of courtesy. It remains for me to express
my thanks to the publishers B.G.Teubner, whose enterprise is a household
word in the mathematical world, For their sake, as well as for my own,
I hope that this little book may prove to be a success.

Rome, March 29, 1905.
E. J. WILCZYNSKI.
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INTRODUCTION.

THE FUNDAMENTAL THEOREMS OF LIE'S THEORY
OF CONTINUOUS GROUPS.

In the theory to which this work is devoted, Lie’s theory of
continuous groups plays a fundamental part. It seems advisable,
therefore, to give a brief account of this important subject; we shall
not, however, attempt to do more than to give a clear statement of
those ideas and theorems belonging to Lie's theory, which will be
found useful later on, without insisting upon the proofs.?)

The 2 equations

=, %y th), (=12 ...m),
are said to determine a transformation of z,, ...z, into z/,...2,, if
they can be solved for z,...%,, i.e. if the Jacobian
o1, |
E_a:k b
does not vanish identically.

The equations may contain r arbitrary constants a,,...a,, so
that they may be written
¢)) & =@y . s By .- ®%); (=13 ... n),
in which case they represent not merely a single transformation, but
a family. The r constants are said to be essential, if it is impossible
to find combinations A4,,... A4, less than # in number such that
z,',...x, appear as functions of 2,,...z, and 4,,... 4, only. The
family may then be said to contain co” transformations. It will be
called an r parameter family.

Let the » parameters in (1) be essential. After having made the
transformation (1) converting (z,, ... z,) into (z,, ... z.), let us make
another transformation of the same family

)] B S FAEy e - B P LB (=R W)
which converts (z,/,...z,) into (z,",...z.").

G, k=13, ...%)

1) The general theory has been made easily accessible by the lucid treatment
in Lie-Engel, Theorie der Transformationsgruppen. Teubner. Leipzig 1888—93.
Cf. especially vol. 1. A shorter account is given in Lie-Scheffers, Vorlesungen
iber kontinuierliche Gruppen etc. Teubner. Leipzig 1893. See also Campbell,
Introductory treatise on Lie's Theory, etc., Clarendon Press, Oxford, 1903.

WILCZYNSKI, projective differential Geometry. 1



2 INTRODUCTION.

If, now, we eliminate z/ between (1) and (2), i.e. if we make
directly the transformation which converts (z,, . . . #,) into (z,", ... z,"),
it may happen that the resulting equations are again of the same form
as (1) and (2), i. e. of the form

3) Z s g Oy g e Be)y AEE=L, 2, ),
where ¢, ...c, are certain functions of a;, b;,
4) G =03 (B, o Gy By g oo B)s > (=12, L)

In that case the transformations (1) are said to form a group. Moreover
to describe these equations more. completely we may speak of this
group as an # parameter group in n variables.

Let equations (1) represent such an r parameter group, and
assume that it contains the inverse of each of its transformations.
It will, then, contain also the identical transformation, i.e. a certain
transformation, corresponding to the parameters a,%...q,% which
reduces to

o (e, 20 )

The functions f; being assumed to be analytical functions of their
arguments, the transformation which corresponds to the parameters,

@l + ¢ 0'¢,

where 0¢ is an infinitesimal and ¢; an arbitrary constant, will convert
z; into 2 where the difference

z! — x; = 0,

will be, in general, an infinitesimal of the same order as dt. We
shall find, in fact

2(;‘) de\t+"'=§6‘k§kiat+""

of,
where (—ai) = E: (2, . . . 2,) denotes the value of fi for a;= ;% and
) /o G
1s therefore a function of z,,...z, only. The constants iy ... Cpare

arbitrary.
The transformations

®) 0z =Z‘ ke (g, ... %) 08 (i=1,2,...n)
k=M

are called by Lie, the infinitesimal transformations of the group. In
some cases they cannot be obtained in the way indicated. But we
-need not insist upon these exceptional cases, as we shall not need
them in the course of this work.
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If we consider an arbitrary function of z,,...z,, say
f(@y, 235 - - - Zn),

the infinitesimal change in f, which results from the infinitesimal
transformation (5), is

(6) 6f=<2r’ckU;,f)6t= Uf - ot

where

) Uf= gu + gk + 5 §kn

Lie speaks of Uf as the symbol of the infinitesimal transforma-
tions (5) of the group. We have

Uf=¢Uf+ aUf+---+ ¢ Uf,

U.f, ... U.f being themselves the symbols of infinitesimal transforma-
tions which are contained in the group. In fact Uf reduces to U:if for

G=CG=' =G 1=CGt1="=¢6=0, g=1.

The r infinitesimal transformations, whose symbols are U, f, . .. U,f,
are said to be linearly independent, if it is impossible to find r non-
vanishing constants, so that for an arbitrary function f(z,, ... .), the
equation

61U1f+ ch;f++ crlrrf=0
will hold. .

We then have the following theorem: An r-parameter continuous
group contains precisely r linearly independent infinitesimal trans-
formations.

From two expressions U, f and U,f of the form (7) we may form
the commutator, (Klammerausdruck),

® U(G:f) — U (Ui f) = (U, Uy) 1,

which is again of the same form. In fact, the second derivatives
of f eliminate, and we find

® U, &) f= Z[U(Sn)— U, (51-)]

Lie has shown that r infinitesimal transformations

Uf, ... Uf

are precisely the r infinitesimal transformations of an r parameter group,
if and only if they satisfy the relations

(10) (U.', Uk)f=zr| CiHUIf:

swhere the quantities c;.; are constants.
1*



4 INTRODUCTION.

In this case U,f,... U.f are said to generate an r-parameter
continuous group.

If a function f(#,,...2,) remains unchanged by all of the trans-
formations of the group, it is said to be an dnvariant. In particular,
an invariant will not be changed by any enfinitesimal transformation of
the group; it must, therefore, satisfy the » partial differential equations

(11) Uf=0, (k=1,2,...7)

Lie has shown that this wecessary condition for invariants, is also
sufficient, whenever the group may be generated by infinitesimal
transformations. All invariants of the group may, therefore, be found
by integrating a system of partial differential equations of the form (11).

But in regard to this system (11) we may make the following
remarks. Although U.f,... U, were linearly independent as in-
finitesimal transformations, the » equations (11) need not be independent.
For, there may be relations of the form

o (@, - ) Uf+- 4 0 (2,. .. 2) U f =0,

where @, ... @, are functions of #,, ... x,, even though U,f, ... U.f
be linearly independent in the former sense. Suppose then, that ¢ of
the equations (11) are independent (¢ < #), and let these equations be

(12) U,f=0, U;f=0,... U,f=0.
Let u be any solution of (12). Then clearly
U,(Uk'll/) =" O, U}C(U,’M/) = O,

(Ui Uy u =0,

whence

i. e. any solution of (12) will also satisfy all of the further equations
which can be obtained from (12) by the commutator operation. If
the equations (12) are taken at random, we shall obtain in this way
successively new equations which any solution of (12) must satisfy.
We shall find finally a system of the form (12) such that all of the
commutators formed from it will be zero as a consequence of the
system itself. Such a system has been called a complete system by
Clebsch.') The general theory of complete systems is due to Jacobi.?)
From our above considerations it follows that the invariants of an
r parameter group may be obtained by integrating a complete system of
q < r partial differential equations of the first order in n independent
variables.

1) Clebsch, Crelle’s Journal, vol. 65.
2) Jacobi, ibid. vol. 60. Cf. also the first volume of Lie-Engel, Trans-
formationsgruppen.
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But according to the general theory, a complete system of ¢ equa-
tions with n independent variables has precisely 2 — ¢ independent
solutions, of which all other solutions are functions.

If, therefore, an r parameter group in n variables, is generated by

the r infinitesimal transformations U.f, ... U.f, and if among the
r equations
(13) Uf=0, (k=1,2,...7),

q are independent, the group has precisely n — q invariants, which are
obtained by integrating the complete system to which (13) is equivalent.

We have defined the term; an »-parameter group. But a system
of transformations may have the group property although its equa-
tions cannot be expressed by a finite number of parameter. For
example, the transformations

149 y' = i@)y, z'=up(2)

where 2 and g are arbitrary functions of z, clearly have the group
property; i. e. if we make successively two transformations of this
kind, the result is another transformation of the same character.

Following Lie we shall, therefore, distinguish between finite and
infinile continuous groups. The former contain only a finite number
of arbitrary constants in their general equations, while the latter
contain an infinite number of such constants, or arbitrary functions.
The general theory of infinite groups has not been constructed.
There exists, however, an important class of infinite groups for which
a general invariant theory, (due to Lie), exists. Let

of of

be the most general infinitesimal transformation of the group. It
may happen that there exists a system of linear homogeneous partial
differential equations

o0&
oz,

Ap1E o F 0pa &+ by 4...=0, k=12,...m)

of which &,,... &, are solutions. In that case the group is said to be
defined by differential equations. Such is the case in the above example.
We have

I 2 ,
Uf=til+ gl L=v@), &=9@n

where ¢ and ¥ are arbitrary functions of #. The defining differential

equations are
2

®
g

™

§ ot

, F=0.

Y
<
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Lie has shown') that the invariants of an infinite continuous group,
which s defined by differential equations, may always be obtained as
the solutions of a complete system of partial differential equations, as in
the case of finite groups.

This complete system will, of céurse, be obtained by equating
to zero the symbol of the most general infinitesimal transformation
of the group.

CHAPTER L

TRANSFORMATION OF SYSTEMS OF LINEAR HOMOGENEOUS
DIFFERENTIAL EQUATIONS.

Let there be given a system of » independent linear, homogeneous
differential equations between # unknown functions ¥, 4,, ...y, of 2,
and let the order of the highest derivative which is present in the
system be m. We may assume that none of these equations are of
the zero™ order, i.e. that no equation of the system has the form,

(free from all derivatives),
Zpkyk =0,
k=1

since, by means of such an equation, we could reduce the number n
of unknown functions. We may, for the same reason, assume that
no combination of the equations of the system give rise to an equa-
tion of this special form. The system of equations will be assumed
to be written in the form

Y +2 g, Y0+ D10 Y + 20 9) =0,
.
I O et
Y+ D g b9+ F Dy Pop %) =0,
k=1

(j=ll+1}}'1+2}"'ll+l2)7

(1)

?/", +2P00kyk = O;
==
(6=11+12+"'+lm—1+1;- .. }vl+lg+"'+lm—1+lm);

where, of course

Mt A+ A4 A= 0.

1) Lie, Math. Annalen, vol. 24.
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The integration of (1) would involve
)] M=21m+lyg(m—1)+2,(m—2)+--+ In

arbitrary constants. In fact according to the fundamental theorem
of the theory of linear differential equations'), if for z =, the
coefficients p;;; can be developed in series proceeding according to
positive integral powers of & — z,, convergent for values of »# which
make
|z — 2| <o,

there exists a system of functions ¥,,...4y., expressible by power
series convergent in the same domain, for which the values of the A
quantities;

Yo o83 WeeYrsee s YU,y

. 5 m—2 ')

3 NTRTREES S PRTPPPE ) e TS [ rwag
e R B R R Yo+ 0+ 4251+ 205

for x =1z, are arbitrarily assigned constants, and which satisfy the
system of differential equations.

If, for a moment, y,, ¥,, . .. ¥, # are interpreted as coordinates
of a point in an 2+ 1 dimensional space, we may speak of any trans-
formation of the form

(4) Yi =gi(§§ Nis Yoy - - - 77!«)7 = f(ga M1y Ny« - - nn);

where g; and f are arbitrary functions of their arguments which do

d g ] iy t :
not contain the derivatives —é; ete., as a pomnt-transformation. For,

if these functions are independent, i. e. if the Jacobian of g,, g5, ... ga,
with respect to 7, ...7,, £ is not identically zero, the point
(%1 Y25 -+ - Yn, ) will then be transformed into another point
(1> Mgy - - - m, E) of the n + 1 dimensional space considered, and vice
versa.

We shall assume that the functions f and g; admit differentiation
up to the order required by the following considerations. We may,
although this restriction is not necessary, assume that they are
analytic functions of their arguments.

A transformation of the form (4) applied to (1), will give rise
to a mew system of differential equations, obviously of the same
order, but not in general linear and homogeneous. We wish to find

1) The proof, essentially upon function-theoretic principles due to Cauchy,
for the case of a single linear differential equation was given by Fuchs, Crelle's
Journal vol. 66. It is a very easy matter to extend this proof to the case of a
system of form (1).
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the most general form of the transformation compatible with the
condition that the transformed system may also be linear and homo-
geneous; we assume moreover that the coefficients of (1) may be any
analytic functions of z, and that the functions f and g; are not
dependent upon these coefficients. In other words, the transforma-
tion (4) when found, is such as to convert every system whatever
of form (1) into another of the same kind, and it is the same trans-
formation for all systems of this form. If, for example, y),,...1), are
solutions of (1), the equations -

wi=m+9% E=12...0), z=§

would transform (1) into another system of the same form, in fact,
into itself. But such transformations are excluded, because the solu-
tions y); depend upon the coefficients of (1). This transformation is
a different one for different systems of the form (1).

We find, from (4), by successive differentiation

5 dy, Yy d%; Y, a‘y; Yiu
() Ty T e MR g e S

where

np orf =y Of d'h
6 == 'a'g +2~1 ?_h; *gl—g}
®) j
29, 09, dn,

i e} =1 o, B

(=1,2...m),

and where Y;s, Y;s,... are defined by these equations as rational
integral functions of %), 7", etc., if we denote derivatives with respect
to & by strokes. We have, in particular

a¥y de
Yo=6 aE Y aE
Let H;s; be the coefficient of %;" in this expression. Then

n

. 0f  of ag, D5, <OF 5| O S o
(7) H;z}__—‘?;):a—g—-%—za—g’+2(a—n;§?u‘—ﬁa?}c)mt;

o=}

(€, T="0 0NN RN A

For a fixed value of ¢, all of these quantities H;s; cannot be
equal to zero for all values of #; and . For, if they were, all of
the Jacobians

would be zero, i.e. the functions f and g; would not be independent.
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From the equation "
d"‘_ly 1:‘,,14—1

dzi—1 o L3 4

we obtain by differentiation

iy
da*y ET—(‘“ 3)d§ fu—1
dz* G
so that
Y, ,
(8) :Y'}“=G_d§_"_ - —3)d§ Hau—1-

Let H;.; denote the coefficient of %) in Y;,. Then (8) shows that
Hx‘yl = G-Hi,,u—l,l; (l‘l' » 3: 4} S ')}

whence
9 H;\; = 6*—*H;s,,
so that H,, is different from zero if H;s; does not vanish; for
P
d§

cannot be zero.
Let us substitute (5) in (1). We find

(10) Yim +2(1)m-—11",k Yk,m—1 6° 4+ Pm—2,ik Yk,m—‘-’ 4} o
E=1 + 01 Y31 6272 + po gr 6°™ 1) =0,
ete. . .. ete,

where we imagine the coefficients p;., also expressed in terms of
Ey Ny - - e
Yim is linear in 4™, ... 7™, and actually contains at least ome
of these m™ derivatives, since at least one of the quantities H;s; and,
therefore, at least one of the quantities H;,; is different from zero.
It must be possible, if the transformation is of the required

character, to solve (10) for 1, derivatives of order m, say %{™, ... %{";
for 7, derivatives of order m —1, say (")), . T ete. We

shall then have a new system of differential equations of the form (1),
which we may imagine written down replacing the Roman throughout
by the corresponding Greek letters. From this system, which we
may denote by (1), certainly all of the m®™ derivatives %™ can be
expressed in the form

(11) 'rig'”‘) =2(qm_1,2,), ﬂim i s, ;_’k'r(m—-) FEiE ST 9o, 2,x 721;))
k=1

where g.,, are functions of £ alome.
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We have, on the other hand

Y, = SV, 1+
i=
where the terms not written are of order lower than m, and where
H;,,; is an integral rational function of 7, of degree m — 1.
By hypothesis (10), when solved, gives rise to (1), from which
follows (11). The left members of (10) contain the highest derivatives

only in the combinations 2
ZH, 7.

These left members must, therefore, be obtained from (11) by making
precisely these linear combinations. The first equation of (10) can,
therefore, contain 7,/,...7, to the m'™ degree only, since H;,; is of
degree m — 1 in these quantities. But this equation contains the term

Doirgro®™—1
which is of degree 2m — 1 in %/,...7,, provided that f depends
upon any of the quantities 7,,...%,. For m > 1 this is a contra-
diction. Therefore, if m > 1, we must have f independent of 7;,...7,, i.e.

of 40
20, 2=r@®
We have, therefore, :
9;
6=f,(g)) Hz27_f(§)a——1 “H"M:f’(g)ﬂ_lgm’

so that the coefficients of the highest derivatives in (10) are now
free from the derivatives 7. Each of the terms of (10) must there-
fore be linear in 7. One of these terms is

PoirYrs 62m 4,

But we find
Y, 6 — sy — Y,
ke == Bil o
where dg dg
dYk1 0%y,

aE — 0g ""22653,, " +2 a,, 377 ' +29n 72"

so that Y;e is linear in %, only if

1) To be sure all of the mth derivatives, except 77(1"‘), Y50 TIE{,"), may be removed
by means of the other equations of the system (1)’. But this does not affect
the conclusion. More symmetrically, system (1) could be replaced by a system
of n equations each of the mth order, a system of 1, linear relations between
the derivatives up to the m — 1th order, a system of 1, relations between the
derivatives up to the m — 2th order, etc. System (1)’ could be written in the
same way and thus the conclusion would be rendered more obvious.
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gy,
A o e d
on, o7,
i e if

gy == au(i)m + aki(g)ﬂg + s + “kn(g)nn + al‘O(g)'

But in this case
Hiyo =€) aa(®),

i. e. the coefficients of the highest derivatives in (10) are mere func-
tions of £. Every term of (10) must therefore be linear and hLomo-
geneous in 1y, ... 7, and the derivatives of these quantities. The term

Doixgr62m—1

aro(£)
is zero.

If m > 1 the most general transformation of the kind required
is, therefore,
z=[(8), n=eu@)mn + aE)n +- -+ cn(E)n,
*=1,3...%
where f(§) and «;;(§) are arbitrary functions of £ and where the
determinant

is homogeneous, only if

“iky
is different from zero.
We still have to examine the case m = 1. Let

dy
(12) Ef=pk1y1+"'+pkny,., (A==, 2.5 .9,
be the given system, and suppose that the transformation
=1 My---M); =g ny,- oY)
converts it into

dn
(1?’0 -a~§—k=ftk17l‘1+”'+ Tkn Nny (k=1,2,...n).
We may write (12) in a different form. If we differentiate each
equation n» — 1 times, we shall find
dzy,‘
:i?=p111y1+"'+pkznyn, (k,1=1,2,...ﬂ).
Eliminating the » — 1 quantities y;, (i 5=%), from these equations,
we shall find

(13) r

d"yk d"_ly,,
o rk,n—lF"‘"""rkoyk:O;
(k=1,2,...n);

in special cases some of these equations may be of lower than the
n'® order, but in general they are not.
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The equations (13) are all integrated if ome of them is. We
shall have, in fact

dn_l?/l
yk—3k0y1+3k1 dw o o e | —t (k=2,3,...n),

dx® 1
Y, dn_l?/e
(14) Y= troy2 + tkl s Tt a1 P i *#=13,...m),
dyfn ok n—lyn
Yr = VroYn+ Vi1 g T Vn—1 PP *k=12...0-1),

where the coefficients si;, ¢4, ... v;; as well as the coefficients r;; of
of (13) may be obtained from p;; by rational processes including
differentiation. The combined systems (13) and (14) are equivalent
to (12), the equations (14) serving to reduce the order of (13), which
would be %% to . In place of (12a) we may consider a corresponding
combined system (13a) and (14a). The required transformation must
convert (13) and (14) into a system equivalent to (13a) and (14a).
By the method of the general case we find the same result as before,
provided that » > 1.

There remains the case m =n =1, so that the differential
equation has the form

——% + py = 0.
It is convenient in this case to write

logy =y, logn=n,
We must then determine those transformations

(15) r=fEn), h=9C¢mn)
which transform any equation of the form
(16) W 4 p(a) =0,
into
(162) Ot m(®)=0.
We find, by applying directly the transformation (15) to (16),
of, , 0y,
1 b I8 Poe *oe =9
at+ on g "
on, ' omy

The second term of this equation must be a function of £ only. The
partial derivative with respect to 7, must therefore be zero, for all
possible functions p. Therefore, the equation
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dp df, of, ot o%g, of, , %9
(Ef?_ﬂi?&l“{” bgﬁln, 3 ?éan,)( on, ﬁ)

dp (0f; o*h B,gl ?fl ?ﬂl x|
[da:(an)+ Pigy,: ]( + ) %
must be satisfied identically. This is impossxble unless the coefficient

dp . 4
of d—ﬁ is zero, i.e. unless

o, (?ﬂ 99, _ of, 3-‘71) Lo

O \ 0% On,  my TE

0% o, on, 0f

The second factor cannot be zero, since f; and g, are independent
functions of & and #,. Therefore

of,

e =,

on,
i.e. f; is a fonction of £ only, so that instead of (15) we may write

z=f(§), y1=29.@ w)
We find in this case, in place of (17),

(.91
an, PG O+ -
a§ [ ’

E"h

where again the second term must be a function of £ alome. Since

p(x) was an arbitrary function of z, we see first that c?‘? g—’ must
be a function of £ only, since the second term reduces to t}.us ratio
for p=0. But if p 4= 0, we see in the second place that Z‘ must
be a mere function of §, and finally also 2%

in %, Say

g, is therefore1 linear

g
91 =9,(8) + g:(8)m,

a 3
=0 ®+a On

But this latter expression must be a function of £ only, so that
gy =1
where 4 is a constant. We have therefore the following transformation

whence x=fi(8), 4 = in + g,(§)
(18) r=f(), y=g&r" i=const

Therefore (18) is the most general transformation which can convert
a general homogeneous linear differential equation of the first order
into another of the same kind. It is easy to verify that every
transformation of this form actually accomplishes this.

whence
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We may recapitulate our result as follows. ZThe most general
point-transformation, which converts a system of n linear differential
equations into another of the same form and order, is

E=1(), m=w1(@y + a2(®)+- -+ Gn(@)yn,
k=1,2,...%),

where f(z) and o;(x) are arbitrary functions of z, for which the

determinant :
: |ews(2)], €,k=1,2,...n),
does not vanish.

If n=1, and if the single differential equation, to which the system
then reduces, is of the first order there is an exception. In that case
the most general transformation, which has the required property, is

z=f(&), y=9E7n,

where [ and g are arbitrary functions, and A an arbitrary constant.
For the case of a single linear differential equation, the trans-
formation becomes, (m > 1),

E=f(@), n=yg@@)y.
The proof, that this is the most general transformation converting
every linear differential equation of the m! order into another, was
first given by Stickel.') The generalization to systems of differential
equations is due to the author?) A shorter, but less elementary
proof than that of Stdckel is due to Lic.®)

CHAPTER IL

INVARIANTS OF THE LINEAR HOMOGENEOUS
DIFFERENTIAL EQUATION OF THE »nt ORDER.

§ 1. Fundamental Notions.

Let us consider the linear differential equation

1) ¥ + () 2y + (B) =D+ -+ pay =0,
where the symbol

1) Stdckel, Crelle’s Journal, vol. 111 (1893), p. 290. Stickel there also gives
the investigation for m =1 which we have reproduced.

2) Wilczynski, Am, Journ. of Math., vol. 23 (1901), p. 29.

8) Lie, Leipziger Berichte (1894), p. 322. Lie emphasizes the fact that
such results are mere corollaries of his general theory. For the present work,
however, they are of especial importance.
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(n) _nr—1)n—2)...m—k41)
4= k!

represents the coefficient of z* in the expansion of (1 + z)", where

dl
» %Y
Said e
and where p,, p,,...p, are functions of z.
We have seen that the most general transformation, which
converts (1) into another equation of the same form and order, is

@) z=f(&), y=2&n .
where f(£) and A(&) are arbitrary functions of £. Clearly all of the
transformations of the form (2) form a group, an infinite continuous
group in the sense of Lie, which is defined by differential equations.
If the general transformation (2) be applied to (1) another
equation of the same form will be obtained between 7 and &, whose
coefficients will be expressible in terms of p,, ... ps, f, 4, and of
certain derivatives of these functions. We shall always suppose that
all of these derivatives exist. In fact we may assume for our purposes,
although this involves an unnecessary restriction, that all of these
functions are analytical. Any differential equation, which may be
obtained from (1) by a transformation (2), shall be said to be equi-
valent to (1). A function of the coefficients p,, p,,...p, of (1) and
of their derivatives, which has the same value as the same function
formed for an equivalent equation, shall be called an absolute invariant.
If such an invariant function also contains y, y',y", ete, we shall
speak of it as a covariant.

§ 2. Seminvariants and semi-covariants.

The transformation (2) may be conveniently decomposed into
two others. Let us put first
C) y=24(2)y
where J(x) is an arbitrary function of x. This gives rise to a
differential equation between 7 and z. We may then transform the
independent variable by- putting

z = f(£)-

The transformation (3) clearly form a sub-group of (2) which is still,
an infinite continnous group. We shall speak of the functions, which
remain invariant under the transformations of this sub-group, as
seminvariants and semi-covariants, and we shall proceed to determine
them immediately. Since invariants must also be seminvariants we
shall then be able to determine the invariants as special seminvariants,
namely such as remain unchanged by an arbitrary transformation of
the independent variable as well.
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We find, from (3),
y =4any,
y = '+ 2,
so that (1) becomes

(5) 7 + (411) P o _;_(72&) A= 4 . 7,y = O,
where

Ty = %[}" - pli'];
(6) Wy = % [l" + 2]?1 A+ D l:':

Ty = % [N) + (’1’)1011‘"—” + (’2’)1021("‘2) e Tt pnl],

as may be found by direct computation. Without computation these
equations may be found by noting that (4) is a linear homogeneous
substitution in % + 1 variables y, 4/, ... 4%, that the quantities

g =p =T swit=1) = (71’)101, P A== (g)pz, : ..z'=(

constitute a second set of # 4-1 variables, and that the transformation

of the latter set must be contragredient to that of the first, so as to
leave the bilinear form (the differential equation)

Yz y("—l)z(”—l) Ao 0oL y'z' + yz =0,

invariant.
As equations (6) show, we may always choose A(z) so as to
make m, vanish. We need only put

) = e/
so that (5) becomes
(7 ONR (’2%) Pyyn—9 4 (g) Poyn=9 4 ... Py =0,
where :

k k—if —/pda
. % d
(8) Pp— e/nd 2(?)10‘._01%_.‘,_), (=2 3,4,...0)
i=0

We find in particular
P, =p,—p2—p', Py=p,—3pp, + 20— p,
) Py =p, — 4p.ps + 6p°p, — 6p/'p; — 3p,* + 6p,°p/
+ 3p,"* — p,®, ete,
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and it is evident that the exponentials of equation (8) always cancel
each other. We may write, moreover,

(9a) P,=p,—4pps + 12p°p;, — 3p,* — 6p,* — p,® + 3P,

a formula which we shall need later.

We have seen that any linear differential equation of the
n'® order may be reduced to the form (7) in which the »n—1* deri-
vative is absent, and which shall be called its semi-canonical form.
As long as the independent variable x is not transformed, the semi-
canonical form is unique. For, although we might more generally
have put

i=Ce/ndz

where C is an arbitrary constant, this would not affect the coefficients
P; of the semi-canonical form of the equation.

Consider now any equation (5) which can be obtained from (1)
by a transformation of the form y = 1zn. If we reduce it to ifs
semi-canonical form, the coefficients IT,, II;, . . . II, of the latter will
of course be precisely the same functions of x,, 7,,... 7, as P,,.. P,
are of p,, p;,...ps. But, since (1) and (D) can be transformed into
each other, their semi-canonical forms must coincide. Therefore

Hk=Pk, (k=2,3,...n);

in other words, the n — 1 quantities P, Py, ... P, are seminvariants.
Obviously the same is true of their derivatives of any order, and of
any function of these quantities.
But the converse is also true, i. e. every seminvariant is a function
of Py, Py, ... P, and of the derivatives of these quantities.
For, let
[(B1; 235 - -+ Pas Pys D55 - - - Dns ete.)

be a seminvariant. It must be equal to the same function of the
coefficients of any differential equation obtained from (1) by a trans-
formation of the form (3). In particular it must therefore be equal to

f(0,P,... Py O, P, ... P;..),

where P,, ... P, are the coefficients of the semi-canonical form,
i. e. it must be a function of these quantities and of their derivatives,
as we asserted.

Having found all of the seminvariants we proceed to determine
the semi-covariants. We may confine our attention to semi-covariants
which contain no higher derivatives of y than the » —1*. For, if
a semi-covariant contains y), y*+9, etc. we may express these higher
derivatives in terms of the lower ones, by means of the differential
equation itself and of others derived from it by differentiation.

WILCZYNSKI, projective differential Geometry. 2
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Put
(10) =98+ () 2900+ E) =2+ + puy, G=1,2,...m),

and denote by 7#; the corresponding expression in % and z. Then it
is clear without any computation that

(11) Yi = 7.

For, equations (4) and (6) show that, just as the equation y,=0 is
transformed into 1, =0, so will y; be transformed into A#;.
We have therefore, the following n — 1 semi-covariants

(12) B, Y, ., Y1

Y=Y Y
Any semi-covariant must be a function of these and of seminvariants.
For, in the first place, every absolute semi-covariant must be homo-
geneous of degree zero in ¥, 4/, ...y"—Y, since if we take 1 = const.,
equations (4) and (6) reduce to

(13) YO = Aq®,  pp = m;.
Any absolute semi-covariant must, therefore, be a function of

‘!/' yn y(n—l)-
Lo g o o

Yy e

Dy Doy - Pr; D Doy pa; ete
By means of (10) this becomes a function of

LATRREEN, L5 . ete
v’ y 7 bin Fags I3 Day OB

But if it is a semi-covariant it must be equal to the corresponding
function- for the semi-canonical form, and must therefore reduce to

a function of
Ys Yp -1
LY

y y 27
This justifies the above statement

AP % e SRR LR

§ 3. Invariants and covariants. Fundamental properties.

Before proceeding to the explicit calculation of the invariants
and covariants, it will be useful to deduce a few simple theorems
about them. :

We have seen that any absolute semi-covariant must be homo-
geneous of degree zero in y,y,...y®»—1, The same must therefore
be true of an absolute covariant.
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An drreducible rational integral expression

F@ - Y5 Py Dai ),

i. e. one which cannot be resolved into integral rational factors, is
said to be a relative covariant, if the equation /= 0 has as its con-
sequence the same equation in the new variables, 1. e.

flg,... oY =,...%;..)=0.

Equations (13) show that every covariant must be homogeneous in
%Y, ..y
We proceed to make a very simple transformation of the form (2)
by putting
y=m, £E= ¢z,

where ¢ is a constant. We find

) !
ﬁ:c—kdk._y., dﬂf:c—(f'l'l)d_p':.
de* dzF"  4d¢ da

If we assign to [y®]™ the weight km, and to [ p’]" the weight (»+1)m,
we see that every term is multiplied by a power of ¢ whose index
is its weight. We see, therefore, that every covariant must be isobaric,
every absolute covariant isobaric of weight zero. Besides, as we have
seen, it must be homogeneous in y,¥',...y"—Y, and of degree zero
if it is an absolute covariant. Invariants are, of course, included
among the covariants as special cases, their degree being zero.

Let Q&) be a rational integral covariant of degree % in y,...y" 1),
and of weight w. Let us make the transformation (3). Equations (4)
and (6) show that

ﬂ(kyw) z ;'k?a(krw) + @,

where @%*) denotes the same function of the new variables as Q)
of the old, and where @ is a rational function of lower weight than 2.
But the equation % =0 must be a consequence of Q¥ =0,
which requires that @ shall vanish. If we assume further that Q%®)
is irreducible, @ cannot vanish as a consequence of Q%) =0, but
must be identically zero. An irreducible rational integral covariant,
of degree A, is therefore transformed in accordance with the equation

k, w) E ok10)
Q&) — Q)

if the dependent variable is transformed by (3).
Let the independent variable be transformed by putting

§E=§(.

2‘
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We find

r o g,gl_y
—@rii+ey

(14) o= (223 4 39 gu g %Y

Y (lj) dgs i dg’ + ag’

yO— € 5+ 6E T+ AEE +3E) 1 T+ 80 5
in general

; A% 7y

(15) y™ "2 k dgk (’"’ =1,23,..)

where A,; is an integral rational function of the derivatives of §(z).
Some of these coefficients we shall have to determine. We find at
once from (14):

Ay =F, 4,,=¥", 4,= BIEYY
(16) / Ay =", Ay =68E", Ayp= 6(’3’)35
Ay = §(4); A42 =8E'E® 4 6(2”)2; A43 =36 (2,)2 5”7 A44 =24 (g')4-

Differentiation of (15) gives

m Am, e Y < A;n,k+k§'Am,k—1 dty
gotd = Tmap Ty Sfarttidarady | 4 4,
k=2
whence
Am+1,m+1 == (/’n+ 1) Am,mg,;
Am—(—l,m - A;n,m 2l 7ngAm,m—17
(17) -A-m+1,m—1 b A—:n,m—l s (m = 1) g,Am,m—%

Am—l—l,l = A;n,l-

From the first and last of these equations, together with 4,, =§, we
deduce at once

(18) Apm=m!(E)", Ay;=Em,

From the second equation of (17) we find:
Am,m 1 = -A;n 1,m—1 -+ (7"/ = 1)g,Am—1 m—2)
-A-m 1,m- Z—Am—Zm 2+(m 2)5Am 2, m—8,

A32—A22+25§A21
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Multiply the members of these equations successively by
1, (m—1DE, m—=1)(m—2)E)"...(n—1)(m—2)...4.3(&)"3

and add. Then substitute the values of A,_i m—1, etc. derived
from (18), and the value of A,. The result is

Ay m— M\ ey e
(19) =)@
From the third equation of (17) we find

Apnm—s =Ap_1m—zs+m—2)8A4An_1,m—s,
-Am 1,m—8 = Am—? m—3 t (7)1‘—3) g'Am—-Q, m—4)

A4,2 = As,. + 2§'A3 &
Multiply the members of these equations in order, by
1, (m—2)8, m—2)(m—3)(#),..,(m—2)(m—3)...3(&)"4

add, insert the values of A,_; n.—2:, ete. from (19) and of A;
from (16). The result is

(20) fl_":L—. ("‘) ED(Em—3 + 3 (’") (E") (=",

(m—2)!
an equation for whose demonstration the following well-known formulae

1 2+2-3+3-4+---+n(n+1)=7—‘1+—13)("—_'_2);

1-2.34+2.34+4+--+n(n+1)(n+2)=

may be used.

The substitution of (15) in (1) gives the result of the trans-
formation § = £(z). Denote the coefﬁments of the resulting equation
Y155 i - EhER

(21) (M) @rs =S () a=tp, (¢=01,3,...m),

i=0

nn+1) »+2) n43)
J
4

Po=py=1
According to (18) this shows that

(21a) Pr= (g,),z r+ gr—1

where g, contains only terms of weight lower than r.
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n

Solving (14), and denoting %,— by %, we find
dy 1
a_g‘ —F ?/';
d? 1
b= @' — )
22 as 1 .
@2) g§=@{?J@)—'?'W”—(ﬂ'—2772)?”,
dty

qEt é [y —6qy®= (49 —119)y" — (4" — Ty + 64°)y],
so that in general

d’y 1

22 —L =y L Y, _

(200) aw ! T

where Y,_; contains terms of weight no higher than » —1. From
(21a) finally, one finds

a*p, 1

i @yt PO+ @rpr—1,

(21b)

where g,.;—; is of weight no higher than » + % —1.

Let Q& be an integral, rational, irreducible covariant, homo-
geneous of degree % and isobaric of weight w. The equations (22a)
and (21b) show that the transformation £ = £(z) will convert it into

R% — £y Q%" 4+ terms of lower weight.

But the equation 2% = 0 must follow from Q&» = 0. The terms
of lower weight cannot vanish in consequence of the latter equation,
since &** is irreducible. They must therefore vanish identically.
We have therefore the following theorem.

If Q& 4s an integral, rational, irreducible covariant of degree k
and of weight w, the transformation

(1) Z=§(@@), y==r@=)y,
transforms it in accordance with the equation

(23) gt _ 2 oaw
@”
When three such covariants are known, an absolute covariant can
) -
always be constructed.

Indact, let %7 for (i =1, 2, 3) be three such covariants. Then
[‘Sz(kh wl)]‘u - [Q(k‘zrwz)]‘uz [Q(kuwl)]‘u‘

is an absolute covariant, if
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kypy + kaps + ksps =0,
10,4y + Wa s + 1055 = 0.

From these equations g,:u,:u; may be determined, except if
ki kyi kg =10, 052 105,

in which case two of the covariants suffice to determine an absolute
covariant. This takes place, in particular, if two of the covariants
are invariants.

Let U and V be two integral rational functions of the quantities

»® and y©, without a common factor. Let their quotient I= g be

an absolute invariant, and let ¢ be a constant. Then the equation
I=¢ is an invariant equation, which, since U and ¥ have no common
factor, may be written

U—cV=0.

But this equation, being an invariant integral rational equation, must
be homogeneous in the 4’s say of degree %k, and isobaric, say of
weight w. Therefore

T—eV=""(U—cV).

&)*°
This equation must hold for all values of ¢, whence
2% lk . lk
U =N oG U, V—'——-' ——w V
) &)

Therefore: if an absolute covariant be a rational function of its argu-
ments, whose numerator and denominator have no common divisor, the
latter are relative covariants of the same degree and iweight.

Let I be an absolute covariant. Then

dI _ 14l
az_ F dx’
i. e. by differentiating an absolute covariant, a relative covariant may

always be obtained of the next higher order. In particular, let ©,, 6,
be two invariants, of weight u and » respectively. Then

(24) u @,u @v' —v0, @_u,

1s a new invariant of weight g + » 4+ 1 which we may, with Forsyih,
conveniently denote as the Jacobian of @, and 6,.
We shall have occasion to consider a special case of the trans-
formation 7, for which
A(x)=C(EY,

where C is an arbitrary constant, while v has a fixed constant value;

. n—1 .
in our case, for example » = ——- Such transformations form a sub-
-
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group of the infinite group of the transformations 7. Let U be a
covariant of degree % and of weight w. Then

U=CHE)»="T, §=CEyy,
whence by logarithmic differentiation,

dlogU 1 [dlogU : Y
e =g [ + (v — w) =)

dlogy _l[dlogy g"]

az P L de AT

so that

(25) vU'y — (kv — w)Uy'

is seen to be a covariant for the sub-group
1(@) = O,

if U is a covariant of degree % and of weight .

§ 4. Canonical form of the differential equation
and of its invariants,

From (21), making use of our expressions for Ao s M i 2GS
we find

s

i )
Py = [101 =+ WTWJ, where 7= 7

— 1 -2
By =gy [+ (0= 2pun + 55800 — 11n 4+ 10) 77+ 252 ],

whence

@)

dp, 1 X4 <A
(262) ;r;—c=(gv)-z[191'—171’7—”2 772+ﬂT77]‘
According to (9) we shall therefore find
=2 1 1 1
27 P2=@)—2[P2+%772_%77']'

Being a seminvariant, P, is not changed by any transformation
y=12y

affecting only the dependent variable. According to (6) and (26), if
we make successively the two transformations °

y=121y, z==E(),
py is changed into

s i1 A —1
(28) Bo=g oot i+ )

Suppose that (1) has been reduced to its semi-canonical form,
so that p, = 0. Then, as (28) shows, 5, will be zero, if and only if
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1’ _1 SH
(29) 7+nT'§T=O;
i e if
dE '—”—:3
(292) i=0(z) -

In other words, the most general transformation of the form T,
which leaves the semi-canonical form invariant, is

n—1

(30) —t@), 1=CE) *y

where £(x) is an arbitrary function, and C an arbitrary constant.

It is clear from the general theory that the transformations (30)
must form a group, a sub-group of (2). The group-property may
moreover be verified directly.

We may now choose £(x) in such a way as to make P, vanish.
According to (27) it is sufficient for this purpose to take for £(z)
such a function of x that % shall satisfy the equation

(31) e 4 e 5o P,

which is of the Riccati form.
We thus obtain an equation equivalent to (1) for which

p=p,=0.
That this transformation is possible was first shown by Laguerre.
The canonical form of (1) which is thus obtained was employed by
Forsyth, for the theory of invariants. We shall therefore speak of
this reduction, as the reduction to the Forsyth-Laguerre canonical
form, this form being characterized by the absence of the n — 1
and »# — 22 derivatives.

Let us suppose this reduction made, so that p, = p, =0, and
therefore P, = 0. The most general transformation which leaves the
canonical form invariant, must, according to (31), satisfy the further
condition

e

Bat, if we introduce 7 =§§—, into this equation, we find
§(3) gu °
4, (_) =
The expression on the left is nothing more or less than the Schicarzian

derivative of £ with respect to . The most general solution of this
equation is
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_axtf
By sz +0’
where «, f3, y, 0 are constants, whose ratios only are of importance.
The relation between 4 and & is, of course, the same as before.

T'herefore, the most general transformation, which leaves the Laguerre-
Forsyth canonical form wnvariant, is

39 o R\ SOy
e S=rets’ 1T Gager

The totality of these transformations constitutes a four-parameter group.

Let us suppose that (1) has been reduced to the canonical form.
Its invariants will assume an exceptionally simple (canonical) form,
owing to the vanishing of the coefficients p, and p,. But we have
just seen that this reduction may be accomplished in oo* different
ways. For any one of these reductions, of course, the absolute
invariants of (1) have the same value. But they also have the same
form; for, no matter how the reduction has been accomplished, in
the resulting canonical form, p, and p, are zero. The invariants
of (1) in their canonical form, must therefore be such functions of
the coefficients of the canonical form of (1), as remain invariant
under all transformations which leave the canonical form unchanged,
i. e. under the fransformations (32). On the other hand, any function
of the coefficients of the canonmical form, which remains invariant
under transformations (32), must be the canonical form of an invariant
of (1). For, although (1) can be reduced to any one of oco* different
canonical forms, this totality of canonical forms is the same for any
equation equivalent to (1). A function of the coefficients of the
canonical form, which remains unaltered by the transformations (32),
has therefore the same significance for (1) as for any equation equi-
valent to (1), i.e. it is the canonical form of an invariant.

To find the canonical form of the invariants of (1) is, therefore,
the same as to find the tnvariants of an equation in its canonical form
wnder the tramsformations (32).

Let, therefore

(33) ¥+ (3) 6y 4o+ gy =0

be a linear differential equation in its canonical form. We proceed
to determine its invariants under the transformations of the four-
parameter group

9 I of SO
These will be the invariants of the general equation in their canonical
form.
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We may assume
(32a) ad —fy=1,
since only the ratios of «, B, , & have any significance. It is then

evident that (32) contains only four parameters.
To determine the infinitesimal transformations of (32), put

«=1+¢0t, B=10c0t, p=c0t, 0=1+¢0t, C=1+ &0t
where d¢ is an infinitesimal. Then, neglecting higher powers of d¢,
0z =7 — z = [¢g + (¢, — ¢,)x — ¢;2%] 0t
dy=y—y=yle—(n—1)(gz+c)]dt.

But from (32a) we find

6 +c¢,=0.
‘We may therefore put

Co=ty 6—C=2a, —CG=t¢, —C=a,
so that we obtain the following, as the infinitesimal transformations
of z and y,
0z = (ey+ 2eyx+ «y2®) 0, dy={[e+ (n—1)(e, + a.,2)]ydt,
or
(34) d0x = £dt, 6y=(e +#§’)y6t,
if we put
E=oa,+ 2¢,2 + w2’

Let f be any function of x, and f the corresponding function
of Z. Then

&.I Y
8IS
&.‘ Y
81™%
by

all

Since we have

G=az+E0f, E_148081, F=f+0f,

we find
af _(af | a@r) : LRLIC N
az (d:c + dz }) ( R ﬁt) il s ',d:cat
1. €.
. d '
- 3(f") = 1= (8f) — Ef' dt.

If we apply this formula, we shall find

(36) 0(y®) = [(5 __:M tl) yo 4 F@—b 7~(" Jo: 1 gn ot,
*=0,1,2,... n).
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To find the result of the infinitesimal transformation upon (33)
we must substitute in it

aty
y® = d?i/ — O(y®).
b Dy =2
If we denote g—%i—/ by y®, (33) becomes, after this substitution,
AT o SR s A E(m—E) o
12l S (, Jars 2R
7 - n—2k41, RS T
+<n—k—{- 1)9"—"+1[1 (“L 2 g)a'{l}y r

or
W-'_Z”/’{(n—z-[— 1) Gu—pt1 ¥ [_ (n—;;—}— 1) Gomairit (€+n_22k+1 g,)
f=1

e (n i k) : (n2— 2 @n—1E"

& (n—ZJr 1) g (EJTH?)] f”} ¥+ =0.

If, therefore, we denote the coefficient of y® by (”ﬁ 7») Qn—z; and put
Gn—t — Qn—z = 0qn—s,
we shall find
—ky(m—k—
Ogn—1=— [(n — k)& gu—r +("—)<+1—)§”qn—k_1]6t
k=12,...0—1),

or
Fi=—itg—=Dprg,
The continued application of (85) will then give, by induction,

aq(.k) 1
(BT = G+ D¥gP — 3 [k(h+2i-1gl-D+iG—1)g®,]¥,

(i=38,4,...m;k=0,1,2,...).

Let f be a function of 4,4/, ..., y®. .. and of the quantities g up
to weight 10, so that ¢ +j <w, and 1 <w, if w<m. If w>n we
shall have ¢ +j <w, I <n—1, since we shall always assume that
the higher derivatives have been expressed in terms of #, 4/, ... y—1
by means of the differential equation. If then we take w > n we
shall have to consider the variables g, ¢/,...y»—D, and ¢® where

i+ k< w, together (n —2)w — w variables. If f be an

absolute invariant, containing these variables, we must have 0= 0,i.e.
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1 Of 5. V9 5o —
Zaymay( +Zaq§“agf‘ %

for all values ofl g, &, &". We thus find the following system of
partial differential equations for the absolute invariants and covariants

n—1
0= y“)
n—1 :
(0) -
(38) = X7 = Z‘Lj(k)h s +§2@+M, PPk
n—1
= "c('”)f—zk(n—k) y&—n 2 ? (k) & A(sw)f’
t=T
where
w—j
w f
(39) 437f =2 Dkt 2j— g~ >f
n w—j ?f
+22J(J Dg?, 7 m o
j=4 k=0

The three equations (38) are independent, and according to the
general theory, form a complete system. Therefore there are
(n_2)w_ n:—3n—2 —3—(n—2w— nt-3nt4

2 2

absolute invariants and covariants involving quantities of weight no
higher than «, where 1w > n. Of these, n — 1 are necessarily covanants
whﬂe all others may be taken as invariants. For, if we assume that
f is independent of y, ¢/, ... y"—", (38) reduces to a system of two
equations with n variables less than before. This system must there-
fore have n — 1 solutions less than (38), whence our conclusion that
all of the solutions of (38) except #» — 1 may be taken as invariants.
Of the » — 1 covariants, all but two may be chosen as being in-
dependent of the quantities ¢¥. In fact, the complete system obtained
by assuming that f is independent of ¢, contains » variables and
three equations, so that there are # — 3 such solutions. Therefore,
n— 3 of the covariants, the so-called identical covariants according
to Forsyth, are the same for all equations of the n'® order, while two
of them depend upon the coefficients of the equation. For the latter
two we may take

(40) 6%3/"*‘(";1‘93’3/ and m—Dyy' — f’“" 1/'\2

Y !l;s y* 93
for we can easily verify that these are solutions of (38). The first
equation of (38) merely requires that f shall be homogeneous of
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degree zero in ¥, 3/, etc.... The second equation requires /' to be
isobaric of weight zero. ¢; and y are obviously solutions of the last
-equation of (38). If, therefore, we take any function, homogeneous
of degree m and isobaric of weight , which satisfies the last of the
equations (38), we can find from it a solution of (38) by dividing by
Y™ gy -

For, such a quotient will obviously satisfy the first two conditions.
It will also satisfy the last since the quotient of two solutions of
X =0 will be again a solution. But the numerators of the two
expressions (40) are such homogeneous and isobaric functions which
verify the equation X”f=0, so that our assertion is proved.

It remains to find the » — 3 identical covariants and the in-
variants. We can establish first, the existence of a system of quadratic

covariants. Put -
P

(41) Toy = D Biy®i=9y + 1 BIyor,
i=0

where f; are constants. This expression is homogeneous of degree
two, and isobaric of weight 2j. We shall be able to determine the
coefficients . so as to have

XUy, = 0.
In fact

g J
2Ty = DV (n—8) it (2 — b+ 1) (n— 25+ B— 1) ]y~ Dyf2s=,
k=1

This will be zero, if we put

2)—k+1)(n—2j+k—1
ﬁk L) (2g +L)(/§:'D.‘L)J+ )ﬂk——l; 160 oh ],

whence

4 @H!'n—2j+FE—1)! (n—Ek—1)! g .
G ﬁk_(_-l)k(2j—k)!k!(n-—2j_1)g(n_1)!’ (#="0, 1 2 7 S5

For j =1, we find

U, —2 3
Un =725 =Yy — =5 @)
if
(43) U;=n—1y'y — (n—2)(y)"
If we put 1
2j—~271 2,3,...5—1if n is even
(44) G S R ;
(o n—1
i 273;--'T ” N » odd

n—3 . 3
according as # is even or odd.

we have gt 2 identical covariants or
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From these covariants we can deduce the others. We have

3:::' -2 (e + "——~—22j_1 E’) Usj,
e =ty
whence
6;7»', ('S B _2 g') Us; + (n—2j— 1)E" Ty,
W= (42 + e
f:: o - T v RN

3Uz' 3 1 g
bt 50 4 2620 _ 04 0]
so that U;j41 is a relative covariant of degree 3 and weight 2j+ 1.

This same result might have been obtained by applying the general
formula (25). Therefore

2j—2

: W A Ui . =R
(45) ¢'2j+1=——2_j_+_;+1) (J=1,2,3,...—;i—1 or ﬁ-g—)

9

U2 ¢

gn'es

or odd. We have found explicit expressions for the » — 3 identical
covariants. For it is evident that @,, @,, etc. are independent, since,
taken in this order, ®@; is the first which involves y®.

We now proceed to compute the invariants. The first equation
of (38) becomes superfluous. The second is satisfied by any function
of the quantities ¢{*) isobaric of weight zero. We shall, therefore,
seek 1isobaric solutions of

AP =0,

and then, by division with an appropriate power of ¢;, deduce there-
from an absolate invariant.

There are 7 — 2 relative invariants which are linear in the
quantities ¢¥. In fact, let us put

m—3

(46) On= >, q9_, (m=34,...n).
;’ 29, 4,

We shall find

m—1

4,6, =2 [(m—g) (m +5—1) tmm—s + (G + 1) ttmym—j—1lgy" 7,
j=1

so that @, is a solution of AL_"’)f =0, if
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+1) %
= = G g g et (G=% 4 m—1)
or
— - 1
O, s = — %_) me—1, ($=1,2,...m—3),
whence
(m—2)!m!(2m—s—2)! %m,0

’)

(47) tm, 0 = (— ) (m—s—1)! (m—s)! @m—23)Is! 2

which equation is satisfied also for s =0. Put @no=2, so that

m—3
(m—2)!m! (2m—s—2)!
(48) O, =2(—1) (m—s—1)! (m—s)! (2m— 3)'s'qm—c’
8=0

(m=38,4,...n).

This gives us » — 2 relative invariants, of which the first is simply
. 0; = g;,

so that the functions

(2]
(49) In=——1 (m=4,5,...n)

3
93

represent % — 3 absolute invariants.
We may easily verify that

" = ne
(50) , J3 = 64" q4 - 7(q,)
Q33
is a further absolute invariant. These » — 2 absolute invariants are
independent, and the remaining invariants,

(n—2) (w—1) — 5 (n* —n+2)

in number can be derived from these by differentiation. In fact, if J
is an absolute invariant, so is

—LaJ
s P

If therefore we denote the operator

1
-1aq
g5 ° dz
by &, we shall have the following additional absolute invariants
i OIn, Py, .. O (m=4,5,...n),
oD Bdy, 5, ... =5 J;,

which are independent and
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w—D5H+ [w——4+w—5+w—6+---+w——n]
=m—-2)(w—1)— (n- n+2)

in number, so that we have them all. That they are indeed in-
dependent may be seen as follows. If there were a relation between
them, it would be a relation between the quantities J,, ..., and
their derivatives up to a certain order, no higher than w — 4. Solve
this relation for one of the derivatives of the highest order which
occurs in it, so that we shall have identically (i. e. for all values of
Pr, pi; iy ete) A

ad,

dx" f(Jl'; JIH W ))

Since the left member is a total derivative, so is the right member,
and integration would give rise to a relation between the derivatives
of order 2 — 1. Continuing this process would give finally a relation
between J5,J,,...J,. But these are independent. We have there-
fore found the functionally complete system of invariants and covariants
in their canonical form.

The numerator of 8J,, may be written

36,6, —m6,06,

a combination which we have decided to call, with ZForsyth, the
Jacobian of @, and 6,,.

Our result in regard to invariants, may therefore be expressed
as follows. AWl relative invariants may be derived from the linear
invariants @, ... 0, and from 6s., = 6¢," g, — T(q5')’ by first com-
bining @, with all of the others by the Jacobian yrocess, then combining
O, in the same way with the resulting new invariants, efe. . .

An invariant of (1) in its general form can contain the coeffi-
cients p;, p;,...p, of (1) only in the seminvariant combinations
Py, P,... P, P/ ...P,/, etc, and must be an isobaric function of
these quantities. If we form such an invariant of weight m in its
general form, it will contain certain terms of the first degree, certain
terms of the second degree, and so on. But by a transformation of
the form T, we can reduce the equation to the canonical form, which
is characterized by the conditions P, =0, Py—=gs,... P, =g, If

R EATE AAREY T B3 )
is the general form of the invariant, its canonmical form becomes
f(O)Q39n; O;Q3'-~-qn';...),

so that all of the terms of such an invariant in its uncanonical form,
except those which contain P,, P,/, P,”, . .. as factor, may be obtained

‘WILCZYNSKI, projective differential Geometry. 3
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by substituting P; in place of g;. If we continue to denote by @,
the invariant, which in its canonical form reduces to the expression
which we have computed, we see that the linear terms of @, excepting
a possible term of the form P{™—2, can be obtained by putting
=P (k=3,4,...n) in the formulae which give explicitly its
canonical form. We shall continue also, with Forsyth, to speak of
these invariants as linear invariants.

The linear invariants in their uncanonical form contain, beside
those terms which have been-determined explicitly, others which have
P,, P),... as factors. Are these terms also expressible as integral
rational functions of P,, P,,... P, and of their derivatives?

We observe in the first place that, if the formulae expressing

oM in terms of PY be derived from (21), these are linear in Py,

and the coefficients 4;; are algebraic functions of the derivatives of &.
The invariant equations could clearly be obtained by eliminating these
derivatives of £ from the equations. It must therefore be possible,
by algebraic elimination, to set up a complete system of invariants,
each of which is algebraic in the variables involved. We shall speak
of these as the algebraic invariants, so as to distinguish them from
those whose canonical form we have calculated, and which may be
called the fundamental invariants. Since both systems of invariants
are complete, it must be possible to express the algebraic invariants
as functions of the fundamental invariants and vice-versa. For the
canonical form, we know that the fundamental invariants are them-
selves algebraic, and therefore expressible as algebraic functions of
the algebraic invariants. But a relation between invariants is not
changed by any transformation of the form 7, such as the reduction
to the canonical form. Therefore, the fundamental invariants are
always algebraic functions of the algebraic invariants, i. e. they are
themselves algebraic.

We may, therefore, assume that @, is a root of an irreducible
algebraic equation

(52) @, + 0,10, 4+ a,0, + a, =0,

where a,, a,,...a, are integral rational functions of P,, Py, ... D,
and of the derivatives of these quantities. After an arbitrary trans-
formation of the form 7, (1) is converted into a differential equation,
whose coefficients may be denoted by p;. If we denote by @; and @,
the same function of these quantities p; as a; and @, are of the
quantities p;, @, must satisfy the equation

@0, + a4, 60, .- 4 40, + G, = 0.
On the other hand, if @, is of weight », we know that
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— 1 2
6,=—:6;
wry
where & is an arbitrary function of z, so that
ae, a,_,6,! e,
(83) R L. 1

(gy)rr = (gr\)r\r—l)

g"y
The equations (52) and (53) must be identical. Otherwise @, would
satisfy an equation of the same form but of lower degree. Therefore,
the coefficients a; of (52) must be invariants.

For the canonical form however, ®, becomes an integral rational
funetion of P;, P, ...etc. On reduction to the canonical form, the
equation (52) must therefore reduce to the form

@0, + a, =0,

where a, is merely a numerical factor, and a, an integral rational
invariant. But again, since the reduction to the canonical form cannot
change a relation between invariants, this same equation must be
true in general.

Therefore, the fundamental invariants whose canonical form has
been calculated, are in their uncanonical form integral rational invariants.

We may now conclude that the non-linear part of the linear in-
variant @, cannot contain P, or even P,_1, since each of its terms
must contain P, or a derivative of P, as a factor, and its weight
must be equal to m. This remark will be of importance shortly.

In our complete system of invariants we have employed one,
whose canonical form is 6¢;q,” — 7(gs)®. It is ome of a system,
whose general form we shall now deduce.

Consider an invariant @, of weight m. Then, after the trans-
formation £ = §(2),

0,= &y my
whence |
dlog @, 1 rdlog @, "
=l a mﬂ’ﬁ_s’
and
d’log@m 1 [dtloge dlogo, e L :
d§=_=W[ 7 it B v s mn-—mn]-
dlog @, 4
Between these two- equatlons, eliminate —dx—— We find
e — G |:Z.+mr —2m? ]

where

X =2m

d*log@ dlog O 2
dx* —( dx )

3t
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But we have also +
) n _1 - nt1 ,
P, = s [P+, )
so that

12m?2
X — "+1P2

is an invariant. The numerator of this expression, when reduced to
a fractional form, we denote by @,.;. It is equal to

3 12
(54) Op.1=2m06,0," — 2m+1)(6,') — -|?-nl P,6%,
and is called by Forsyth, the quadriderivative of @,. Its weight is
2(m+1). For m =3 we get an invariant which, in its canonical
form, coincides with

64;95" — T(g5')*

It is now clear that, if @,,0,,...0, and O@;., are given as
functions of z, the coefficients of the semi-canonical form P,, P, ...P,
can be expressed in terms of them and of their derivatives, provided that
6, 4 0.7

Upon this theorem a new proof may be founded of the fact that
all invariants can be obtained from these fundamental ones by the
Jacobian process. We shall not insist upon this. We shall show,
however, that our system of fundamental invariants, together with
the Jacobian process, furnishes a complete system of invariants in a
more special sense. Not only can any rational invariant be expressed
as @ function of these invariants, (this we have already shown), but
as a rational function.

Since the quantities Py, P,,... P, can be expressed rationally
in terms of ©,,...0, and 3.1, and of the derivatives of these
quantities, any invariant which is a rational function of the sem-
invariants P, P, etc. becomes a rational function of these # — 1
fundamental invariants and of their derivatives. The numerator and
denominator of this rational function must themselves be invariants.
We shall show that, except for a factor of the form @3, every
invariant, integral, rational function of this form may be converted
into an integral rational function of the fundamental invariants, i. e.
of 6,...0,,0;.; and of the Jacobians of @, with the others.

In order to prove this, it is clea