!3}‘ i
"ii- "o.l

4

-
o
-

ki R
G e R

ARG R
1-7-.-. Bt
i<



















American athematical Sevies

E.J. TOWNSEND
GENERAL EDITOR



MATHEMATICAL SERIES

While this series has been planned to meet the needs of the
student who is preparing for engineering work, it is hoped that it
will serve equally well the purposes of those schools where mathe-
matics is taken as an element in a liberal education. In order that
the applications introduced may be of such character as to interest
the general student and to train the prospective engineer in the
kind of work which he is most likely to meet, it has been the policy
of the editors to select, as joint authors of each text, a mathemati-
cian and a trained engineer or physicist.

The following texts are ready:

I. Calculus.

By E. J. TownsenD, Professor of Mathematics, and G. A. Goop-
ENOUGH, Professor of Thermodynamics, University of Illinois.
$2.50.

Il. Essentials of Calculus.

By E. J. TownseND and G. A. GOODENOUGH. $2.00.
IIl. College Algebra.

By H. L. RieTz, Assistant Professor of Mathematics, and Dr. A.
R. CRATHORNE, Associate in Mathematics in the University of
Illinois. $1.40.

IV. Plane Trigonometry, with Trigonometric and Logarithmic

. Tables.

By A. G. HaLr, Professor of Mathematics in the University of
Michigan, and . H. Frink, Professor of Railway Engineering in
the University of Oregon. $1.25.

V. Plane and Spherical Trigonometry.
(Without Tables)

By A. G. HALL and F. H. FrRixk.  $1.00.
V1. Trigonometric and Logarithmic Tables.

By A. G. HaLL and F. H. FrRINK. 75 cents.

The following are in preparation:

Plane Analytical Geometry.

ByL.W.DowLING, Assistant Professor of Mathematics, and F. E,
TurRNEAURE, Dean of the College of Engineering in the University
of Wisconsin. :

Analytic Geometry of Space.

By VIrRGIL SNYDER, Professor in Cornell University, ana C. H,
S1sam, Assistant Professor in the University of Illinois.

Young and Schwartz’s Elementary Geometry.

By J. W. Youne, Professor of Mathematics in Dartmouth Col-
lege, and A. J. Scawartz, William McKinley High School, St. Louis.

HENRY HOLT AND COMPANY

NEW YORK CHICAGO



ANALYTIC GEOMETRY
OF SPACE

BY

VIRGIL SNYDER, Pu.D. (GOTTINGEN)

PROFESSOR OF MATHEMATICS AT CORNELL
UNIVERSITY

AND

C. H. SISAM, Pu.D. (CoRNELL)

ASSISTANT PROFESSOR OF MATHEMATICS AT THE
UNIVERSITY OF ILLINOIS

f
L fa)
S,

NG T
L

e

. NEW YORK
HENRY HOLT AND COMPANY
1914



CoPYRIGHT, 1914,
BY
HENRY HOLT AND COMPANY

Nortwood Press
J. 8. Cushing Co. — Berwick & Smith Co.
Norwood, Mass., U.8.A,



PREFACE

" Ix this book, which is planned for an introductory course,
the first eight chapters include the subjects usually treated in
rectangular codrdinates. They presuppose as much knowledge
of algebra, geometry, and trigonometry as is contained in the
major requirement of the College Entrance Examination Board,
and as much plane analytic geometry as is contained in the
better elementary textbooks. In this portion, proofs of theorems
from more advanced subjects in algebra are supplied as needed.
Among the features of this part are the development of linear
systems of planes, plane coordinates, the concept of infinity, the
treatment of imaginaries, and the distinction between centers
and vertices of quadric surfaces. The study of this portion can
be regarded as a first course, not demanding more than thirty or
forty lessons.

In Chapter IX tetrahedral coérdinates are introduced by means
of linear transformations, under which various invariant proper-
ties are established. These codrdinates are used throughout the
next three chapters. The notation is so chosen that no ambigu-
ity can arise between tetrahedral and rectangular systems. The
selection of subject matter is such as to be of greatest service for
further study of algebraic geometry.

In Chapter XIII a more advanced knowledge of plane analytic
geometry is presupposed, but the part involving Pliicker’s num-
bers may be omitted without disturbing the continuity of the
subject. In the last chapter extensive use is made of the cal-
culus, including the use of partial differentiation and of the
element of are.

The second part will require about fifty lessons.

355580
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ANALYTIC GEOMETRY OF SPACE

CHAPTER 1
COORDINATES

1. Rectangular coordinates. The idea of rectangular codrdinates
as developed in plane analytic geometry may be extended to space
in the following manner.

Let there be given three mutually perpendicular planes
(Fig. 1) X0Y, YO0Z, ZOX, intersecting at O, the origin. These
planes will be called codrdinate planes. The planes ZOX, XOY
interseet in X’0X, the X-axis; the planes XO0Y, YOZ intersect
in Y'0Y, the Y-axis; the
planes YOZ, ZOX intersect |
in Z'0Z, the Z-axis. Dis- !
tances measured in the o ~——-;»i-i,-,————

i
I
J

Z

directions X'OX, Y'0OY, oz
Z'0Z, respectively, will be
considered positive; those Y .
measured in the opposite i
directions will be regarded
as negative. The cobrdi- <

nates of any point P are its distances from the three coérdinate
planes. The distance from the plane YOZ is denoted by , the
distance from the plane ZOX isdenoted by y, and the distance
from the plane XOY is denoted by z. These three numbers
x, i, z arve spoken of as the w-, y-, z-coordinates of P, respect-
ively. Any point P in space has three real codrdinates. Con-
versely, any three real numbers x, ¥, z, taken as a-, y-, and 2-
codrdinates, respectively, determine a point P; for if we lay off a
distance OA=x on the X-axis, OB=y on the Y-axis, OC'=z on

i

%




2 ‘1. COORDINATES [Crap. 1.

the Z-axis, and draw planes through 4, B, C' parallel to the co-
ordinate planes, these planes will intersect in a point P whose
coordinates are z, y, and 2.

It will frequently be more convenient to determine the point
P whose codrdinates are z, y, and z, as follows: Lay off the
distance O4 = on the X-axis (Fig. 2). From A lay off the
distance AD =1y on a parallel to the Y-axis. From D lay off the

VA distance DP =z on a parallel to
c the Z-axis.

The eight portions of space

P separated by the coordinate

planes are called octants. If the
coordinates of a point P are a,

4 0= =X b, c, the points in the remaining
S Y octants at the same absolute
¥ B D distances from the ecoordinate

Fic. 2. planes are (—a, b, ¢), (a,— b, ¢),
(a, b, — ¢}, (—a,—b,¢),(— a, b, —¢), (@, — b, — ¢), (— a, — b,—©).

Two points are symmetric with regard to a plane if the line
joining them is perpendicular to the plane and the segment
between them is bisected by the plane. They are symmetric with
regard to a line if the line joining them is perpendicular to the
given line and the segment between them is bisected by the line.
They are symmetric with regard to a point if the segment be-
tween them is bisected by the point.

The problem of representing a figure in space on a plane is
considered in descriptive geometry, where it is solved in several
ways by means of projections. In the figures appearing in this
book a particular kind of parallel projection is used in which the
X-axis and the Z-axis are represented by lines perpendicular to
each other in the plane of the paper; the Y-axis is represented by
a line making equal angles with the other two. Distances
parallel to the X-axis or to the Z-axis are represented correctly
to scale, but distances parallel to the Y-axis will be foreshortened,
the amount of which may be chosen to suit the particular drawing
considered. It will usually be convenient for the student, in
drawing figures on cross section.paper, to take a unit on the
Y-axis 1/V/2 times as long as the unit on the other axes,
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EXERCISES

1. Plot the following points to scale, using cross section paper: (1, 1, 1),
(21 0) 3)1 ("45 o 11 _4)1 (_31 _4, 1)9 (4’ 41 - 1)1 (—77 2, 3), (“‘1, 5, —5),
(-4,2,8), B, -4, -1, (2,1, =38), (—1,0,0); (4, —2, 2), (0, 0, 2),
©, —1, 0), (—3,0,0), (0, 0, 0).

2. What is the locus of a point for which x = 0?

3. What is the locus of a point for whichx =0, y=0?

4. What is the locus of a point for whichx =a, y =0 ?

5. Given a point (%, I, m), write the codrdinates of the point symmetric
with it as to the plane XO0Y ; the plane ZOX; the X-axis; the Y-axis; the
origin.

2, Orthogonal projections. The orthogonal projection of a
point on a plane is the foot of the perpendicular from the point
to the plane. The orthogonal projection on a plane of a segment
PQ of a line * is the segment P'Q' joining the projections P’ and
Q' of P and @ on the plane.

The orthogonal projection of a point on a line is the point in
which the line is intersected by a plane which passes through the
given point and is perpendicular to the given line. The or-
thogonal projection of a segment P@ of a line 7 on a second line
I' is the segment P'Q' joining the projections P' and Q' of P and
@ on .

For the purpose of measuring distances and angles, one direc-
tion along a line will be regarded as positive and the opposite
direction as negative. A segment P@ on a directed line is
positive or negative according as @ is in the positive or nega-
tive direction from P. From thlS definition it follows that
PQ =— QP.

The angle between two intersecting directed lines ! and !’ will
be defined as the smallest angle which has its sides extending
in the positive directions along ! and I'. We shall, in general,
make no convention as to whether this angle is to be considered
positive or negative. The angle between two non-intersecting
directed lines ! and ' will be defined as equal to the angle be-
tween two intersecting lines m and m' having the same directions
as ! and ', respectively.

* We shall use the word line throughout to mean a straight line.



4 COORDINATES [Crae. L.

TuroreMm 1. The length of the projection of a segment of a
directed line on a second directed line is equal to the length of the
given segment multiplied by the cosine of the angle between the lines.

Let PQ (Figs. 3a, 3b) be the given segment on ! and let P'Q’
be its projection on . Denote the angle between ! and 7' by 6.
It is required to prove that

P’Q’ PQ cos 6.

Through P' draw a line !" having the same direction as I. The
angle between I' and I" is equal to §. Let Q" be the point in

; e /4
Ql ‘,/Q” #2 QI '/Q/l ‘/Q
- H (1
l /] l l l’ l” l
P 7)o Jp
Fic. 3a. Fic. 3b.

which " meets the plane through @ perpendicular to ! Then
the angle P'Q'Q" is a right angle. Hence, by trigonometry,
we have
P'Q = P'Q" cos 6.
But PQ" = PQ.
It follows that P'Q'= PQcos 6.

It should be observed that it makes no difference in this
theorem whether the segment P@) is positive or negative. The
segment P@Q = r will always be regarded as positive in defining
cosines.

TueoreEM 1I. The projection on a directed line 1 of a broken
line made up of segments PPy, PPy, +.+, P,_ P, of different lines is
the sum of the projections on l of its puarts, and s equal to the pro-
Jection on 1 of the straight line P\ P,.
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For, let Py, Py, Py ooey Py Plibe the projections of Py, P,
P, -, P, P, respectively. The sum of the projections is
equal to P17, ; that is,

PP, + P,Ps+ - + PP, =PFP,
But P', P, is the projection of P, P,. - The theorem therefore follows.

CoroLLARY. If Py, Py -+, P, are the vertices of a polygon, the
sum of the projections on any directed line | of the segments PP,
P,P,, -+, P, P, formed by the sides of the polygon is zero.

Since in this case P, and P, coincide, it follows that P, and P,
also coincide. The sum of the projections is consequently zero.

EXERCISES
1. If Ois the origin and P any point in space, show that the projections
of the segment OP upon the codrdinate axes are equal to the codrdinates of P.
2. If the cobrdinates of Py are &1, ¥1, 21 and of P are ¥z, ys, 22, show that
the projections of the segment Py P; upon the codrdinate axes are equal to
29 — X1, Y2 — Y1, Z2 — 21, respectively.
3. If the lengths of the projections of P, P; upon the axes are respectively
3, — 2, 7 and the codrdinates of Py are (— 4, 3, 2), find the cogrdinates of Ps.
4. Find the distance from the origin to the point (4, 3, 12).
5. Find the distance from the origin to the point (e, b, ¢).
6. Find the cosines of the angles made with the axes by the line joining
the origin to each of the following points.
(17 2, 0) (17 1’ 1) (— 7, 6, 2)
(0,2, 4) (1, — 4,2) (%, 9 2)

3. Direction cosines of a line. Z
Let I be any directed line in g
space, and let ' be a line through L
the origin which has the same ¢ r’// T
direction. If «, B, y (Fig. 4) e an
are the angles which ' makes %&a p
with. the cobérdinate axes, these b
are also, by definition (Art. 2),
the angles which I makes with
the axes. They are called the
direction angles of ! and their cosines are called direction cosines.
The latter will be denoted by A, u, v, respectively.

O

3
\
>

N\

Y
Fic. 4.
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Let P=(a, b, ¢) be any point on /' in the positive direction from
the origin and let OP=r. Then, from trigonometry, we have

(e

.
-

a b
A=cosa=-", p=cosB=-, v=1C0Sy=
i 7%

~

But r is the diagonal of a rectangular parallelopiped whose edges
are

04 = q, OB=)b, oC=c.
Hence, we obtain e V& + b+ 2

In this equation, as in the formulas throughout the book, except
when the contrary is stated, indicated roots are to be taken with
the positive sign.

By substituting this value of » in the above equations, we obtain

)\=cpsu=+,
\/a2+bz+cz
b
p=cosfB=———
\/a2+b2+c2,
v=cos7'=;-
Va:+ b4 ¢

By squaring each member of these equations and adding the
esults, we obtai
results, wi in N el a
hence we have the following theorem.

TrroreM. The sum of the squares of the direction cosines of a
line is equal to unity.

If Ay, p, v and Ay, py, v, are the direction cosines of two like
directed lines, we have

M=y =y n=v

If the lines are oppositely directed, we have

M=—Ay p=—pigy =—1p

4. Distance between two points. Let P, =(,, 11, %), Po=(%y ¥,
2,) be any two points in space. Denote the direction cosines of the
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line PP, (Fig. 5) by A, p, v and the length of the segment P, P,
by d. The projection of the segment P, P, on each of the axes is
equal to the sum of the projections V4

of P,0 and OP,, that is - e

M =2, — @, pd =Y, — Y, vd =2 — 2. b

By squaring both members of these / ; 7, |/MZX
equations, adding, and extracting the A N, N,

square root, we obtain Fia. 5.

d=V (@ — )2 +Ys — ¥1)2 + (22 — ?1)2, g
EXERCISES 0 ;

1. Find the distance between (3, 4, — 2) and (— 5, 1, — 6).

2. Show that the points (— 3, 2, — 7), (2, 2, — 3), and (— 8,6, — 2) are
vertices of an isosceles triangle. .

3. Show that the points (4,3, —4), (—2,9, —4), and (— 2, 3, 2) are
vertices of an equilateral triangle.

&

- 4. Express by -an equation that the point (z, y, 2) is equidistant from
(1,1, 1) and (2, 3, 4).

5. Show that 22 4 y% + 22 = 4 is the equation of a sphere whose center is
the origin and whose radius is 2.

6. Find the direction cosines of the line P, P;, given :

(a) P1=(0, 0, 0), Py=(2, 3, 5).
) h=(1,1,1), P=(22,2).
(cy P=(1, —2,3), Pr=(4,2, — 1).

7. What is known about the direction of a line if (e¢) cose=0?
(®) cose=0and cosB=0? (c) cose=1?

8. Show that the points (3, — 2, 7), (6,4, —2), and (5,2,1) are on a
line.

9. Find the direction cosines of a line which makes equal angles with the
coordinate axes.

5. Angle between two directed lines. Let 4, and I, be two
directed lines having the direction cosines X, p,, v; and Ay, g, vg,
respectively. It is required to find an expression for the cosine
of the angle between !, and /,, Through O (Fig. 6) draw two
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Z lines OP, and OP, having the same di-
p rections as [, and , respectively. Let
OP, = ryand let the cosrdinates of P, be

@%=0M, y=MN, z=XNF

77 X The projection of OP, on OP, is equal
N to the sum of the projections of the
FiG. 6. broken line OMNP, on OP, (Art. 2).

Hence OP,cos 0 = OMX, + MN y, 4+ NP, v,.
But OFP,=1y, OM=0,=1; MN=y, =7, NP=2z,=rm, .

e, we obtain
75 €08 0 = 1A 1Ay + Popypty + Tovyvy
or €08 & = MAy + pypa + vyva, 3

The condition that the two given lines are perpendicular is
that cos § =0. Hence we have the following theorem :

TreEorREM. Two lines I, and I, with direction cosines A, py, v, and
Agy pay vy, Tespectively, are perpendicular if

MAz + B2 + viv2 =0, 4)

The square of the sine of § may be found from (1) and (3).
Since sin?§ =1 — cos? §, it follows that

sin? 0 = (A% + e + vi) (A2 + o + ve) — (AAg + papss +vivy)?

= (Mipta — Agpar)*+ (v — pavi)® +(vidy — vy )2 )
6. Point dividing a segment in a Z P
2.
given ratio. Let P, = (z, 1, %) and PP
P, = (2, 3 25) be two given points o 2

(Fig. 7). It isrequired to find the

point P=(z, y, 2) onthe line PP, /O V\V X
such that P,P: PP,=m,: m.. Let v 4,

=N ; ¥
A, u, v be the direction cosines of Frla 7. -

the line PP, Then (Art. 2, Th. I) we have
P P\=z—ux and PP,A=1,—2.

Hence PP\ PP A=2—2 : 8y—X=m : My
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On solving for  we obtain
: My + My ! ©)
my + my
Similarly, Bl Vs L
my + Mg
M2y + My2s
= mypmy

It should be noticed that if m, and m, have the same sign, P, P
and PP, are measured in the same direction so that P lies between
P, and P,. If m and m, have opposite signs, P lies outside the
segment PP, By giving m; and m, suitable values, the cobr-
dinates of any point on the line P,P, can be represented in
this way. In particular, if P is the mid-point of the segment
P, P,, m; = m,, so that the codrdinates of the mid-point are

z + 2, Wt 2+ 2,

99 3 P 2=
S S T 2
EXERCISES
1. Find the cosine of the angle between the two lines whose direction
cosines are —1:, 2 3 aud —2— —i, L_
V14 \/14 V14 \/30 V30 V30

~2. Find the direction cosines of each of the codrdinate axes.

3. The direction cosines of a line are proportional to 4, — 3, 1. Find
their values.

4. The direction cosines of two lines are proportional to 6, 2, — 1 and
— 3, 1, — 5, respectively. Find the cosine of the angle between the lines.

5. Show that the lines whose direction cosines are proportional to 3, 6,
2; — 2,3, —6; —6,2,3are mutually perpendicular.

6. Show that the points (7, 3, 4), (1, 0, 6), (4, 5, — 2) are the vertices
of a right triangle.

. Show that the points (3, 7 2), (4, 3, 1), (1, 6, 3), (2, 2, 2) are the

vertlces of a parallelogram.

8. Find the coordinates of the intersection of the diagonals in the paral-
lelogram of Ex. 7.

9. Show by two different methods that the three points (4, 13, 3),
(3, 6, 4), (2, — 1, 5) are collinear.
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10. A line makes an angle of 75° with the X-axis and 30° with the Y-axis.
How many positions may it have ? Find, for each position, the cosine of the
angle it makes with the Z-axis. )

11. Determine the codrdinates of the intersection of the medians of the
triangle with vertices at (1, 2, 3), (2, 3, 1), (3, 1, 2).

12. Prove that the medians of any triangle meet in a point twice as far
from each vertex as from the mid-point of the opposite side. This point is
called the center of gravity of the triangle.

13. Prove that the three straight lines joining the mid-points of oppo-
site edges of any tetrahedron meet in a point, and are bisected by it. This
point is called the center of gravity of the tetrahedron.

14. Show that the lines joining each vertex of a tetrahedron to the point
of intersection of the medians of the opposite face pass through the center of
gravity.

15. Show that the lines joining the middle points of the sides of any
quadrilateral form a parallelogram.

16. Show how the ratio m,; : my (Art. 6) varies as P describes the line
P; 1P 20

7. Polar Coprdinates. Let OX, OY, OZ be a set of rectangular
axes and P be any point in space. Let O = p have the direc-

AZ tion angles «, 8, y. The position

: of the line OP is determined’ by

! P a, B, y and the position of P on

o 2 the line is given by p, so that the

NG position of the point P in space

© }'%"___ _____ is fixed when p, « B, y are
y.-"0 X known. These quantities p, &, B,
e y are called the polar codrdinates
Y FiRy 5 of P. As «, B,y are direction

angles, they are not independent, since by equation (1)
cos? « + cos? B4 cos?y =1.
If the rectangular cosrdinates of P are z, y, 2, then (Art. 3)
x=p Cos a, Yy = pcos B, z = p CoS y.
8. Cylindrical coordinates. A point is determined when its
directed distance from a fixed plane and the polar codrdinates of

its orthogonal projection on that plane are known. These co-
ordinates are called the cylindrical codrdinates of a point. If the
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point P is referred to the rectangular
axes «, ¥, %, and the fixed plane is taken
as z=0 and the ax-axis for polar axis,
we may write (Fig. 9)

x=p0089, y=psin9, =2z,

in which p, 6, z are the cylindrical codrdi- ’
nates of P. Fie. 9.

9. Spherical cobrdinates. Let OX, OY, OZ, and P be chosen as
in Art. 7, and let P’ be the orthogonal projection of Pon the plane
XO0Y. Draw OP. The position of P is defined by the distance
p, the angle ¢ = ZOP which the line OP makes with the z-axis,
and the angle 6 (measured by the angle XOP') which the plane
through P and the z-axis makes with the plane XOZ. The num-
bers p, ¢, 6 are called the spherical coordinates of P. The length
p is called the radius vector, the angle ¢ is called the co-latitude,
and 6 is called the longitude.

If P=(» ¥y, 2), then, from the figure
(Fig. 10),

OP'=pcos (90 — ¢)=p sin ¢.
Hence 2 =psin ¢ cos ¥,
Y =p sin ¢ sin 6,
Y Fe10 % 2 =p cos .

On solving these equations for p, ¢, 6, we find

p=Vat+ it + 2, ¢ =arccos— %, @=arctan Z.
'\/(l?2 + ?/2 e 22 X
EXERCISES
What locus is defined by p = 1?
What locus is defined by o = 60°?
What locus is defined by 6 = 30° ?
What locus is defined by ¢ = 45°?

5. Transform 22 4 y2 4 22 =4 to: (a) polar codrdinates, (b) spherical
codrdinates, (¢) cylindrical codrdinates.

6. Transform «2 + y2 = 22 into spherical codrdinates; into cylindrical
coordinates.

7. Express the distance between two points in terms of their polar
coordinates.

L= Do



CHAPTER 11

PLANES AND LINES

10. Equation of a plane. A plane is characterized by the
properties :

(@) It contains three points not on a line.

(b) It contains every point on any line joining two points on it.

(¢) It does not contain all the points of space.

TueorEM. The locus of the points whose covrdinates satisfy a
linear equation

Ax+By+ Cz+D =0 @)
with real coefficients is a plane.

We shall prove this theorem on the supposition that € # 0.
Since 4, B, C are nof all zero, a proof for the case in which
=0 can be obtained in g similar way. -

D

It is seen by inspection that the cobrdinates (0, 0, —6)

(O, 1, — = ED ), (1, 0, — (A’ED ) satisfy the equation. These

three points are not collinear, since no valués of m,, m, other than
zero satisfy the simultaneous equations (Art. 6)

my; =0, my =0, myA + m,B=0.
Let P, = (w0, 31, 2,) and P, = (2,, ¥, #,) be any two points whose
codrdinates satisfy (1). . The codrdinates of any point P on the
line P, P, are’of the form

o U + myx, Ml + Ml 2= Tu? + my2;
PR ey & e ’ . L —’ b § i e 5
my -+ m; my + my my + m,

The equation (1) is satisfied by the coordinates of P if
my(Ax, + By, + Oz + D)+ m,(Ax, + By, + Cz, + D)y=0,

but since the cosrdinates of I, and P, satisfy (1), we have
Awy + By, + Co, + D=0,  Ax, 4 By, + Oz, + D =0,

hence the codrdinates of P satisfy (1) for all values of m, and m,.
12



Arts. 11, 12] INTERCEPT FORM OF THE EQUATION 13

Finally, not all the points of space lie on the locus defined by
(1), since the codrdinates <0, 0, —-Dg 0)) do mnot satisfy (1).

v

This completes the proof of the theorem. -

11. Plane through three points. Let (2, ¥, 21, (@3 Yo %))
(a3 Y5, 2;) be the codrdinates of three non-collinear points. The
condition that these points all lie in the plane

Aw+ By + Cz+D=0
is that their cobrdinates satisfy this equation, thus
Az, + By, + Oz + D=0,
Ax2+By2+C’z2+D=0,
A, + By, 4+ Cz,+ D=0.
The condition that four numbers 4, B, O; D (not all zero)
exist which satisfy the above four simultaneous equations is
e oy 2z 1
xm oy oH 1
v Y % 1
s Yy 2 1

=0 )

This is the required equation, for it is the equation of a plane,
since it is of first degree in w, y, z (Art. 10). The plane passes
through the given points, since the codrdinates of each of the given
points satisfy the equation.

12. Intercept form of the equation of a plane. If a plane inter-
sects the X-, Y-, Z-axes in three points 4, B, C, respectively, the
segments 0A, OB, and OC are called the intercepts of the plane.
Let A4, B, C all be distinct from the origin and let the lengths of
the intercepts be a, b, ¢, so that 4 =(a, 0,0), B =(0,0,0), C=
(0, 0, ¢). The equation (2) of the plane determined by these three
points (Art. 11) may be reduced to

b, f i
a +3 ar 2 (3)
This equation is called the intercept form of the equation of a
plane.
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EXERCISES

1. Find the equation of the plane through the points (1, 2, 3), (3,1, 2),
(57 o 17 3)'

2. Find the equation of the plane through the points (0, 0, 0), (1,1, 1),
(2,2, —2). What are its intercepts ?

8. Prove that the four points (1, 2, 3), (2,4, 1), (—1,0, 1), (0,0, 5)
lie in a plane. Find the equation of the plane.

4. Determine % so that the points (1, 2, —1), (8, —1, 2), (2, — 2, 8),
(1, — 1, k) shall lie in a plane.

5. Find the point of intersection of the three planes, x + y + z == (i),
22—y+2x=0,2—2y+32z=4.

13. The normal form of the equation of a plane. Let ABC
(Fig. 11) be any plane. Let OQ be drawn through the origin per-
pendicular to the given plane
and intersecting it at P'. Let
the direction cosines of OQ be
A, n, v and denote the length of
the segment OF' by p.‘

Let P=(, y, #) be any point
in the given plane. The projec-
tion of P.on OQ is P' (Art. 2).
Draw OP and the broken line
v/ OMNP, made up of segments

Fie. 11 ON =2, MN =y, and NP =z,
parallel to the X-, ¥-,and Z-axes, respectively. The projections of
OP and OMNP on OQ are equal (Art. 2, Th. IT). The projection
of the broken line is A 4+ py + vz, the projection of OPis OP' or p,
so that

Az A+ py +vz=p. 4)

This equation is satisfied by the cosrdinates of every point P in
the given plane. It is not satisfied by the codrdinates of any
other point. For, if P, is a point not lying in the given plane, it
is similarly seen, since the projection of OP, on 0@ is not equal to
p, that the codrdinates of P, do not satisfy (4).

Hence, (4) is the equation of the plane. It is called the normal
form of the equation of the plane. -The number p in this equa-
tion is positive or negative, according as P’ is in the positive or
negative direction from O on 0Q.
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14. Reduction o: the equation of a plane to the normal form. Let

Az 4+ By+ C24+D=0 6))

be any equation of first degree with real coefficients. Itisrequired

to reduce this equation to the normal form. Let @ = (4, B, C)

be the point whose cobrdinates are the coefficients of z, ¥,z in this

" equation. The direction cosines of the directed line OQ are
(Art. 3)

. B C

y = = .
VATB+C T VETB+ L VAP0
If we transpose the constant term of (3) to the other member of
the equatior, and divide both numbers by VA4 B - C%, we
obtain i
o ol e By
VAA+B+C VA4 B+
+ o 7= U
L+B+C? A+ B+
The plane determined by (7) is identical with that determined
by (5) since the coordinates of a point will satisfy (7) if, and only
if, they satisfy (5). By subtituting from (6) in (7) and comparing
with (4), we see that the locus ‘of the equation is a plane perpen-
dicular to OQ and intersecting 0@ at a point P' whose distance
from O is

()

(M)

o s

VAT B+

In these equations, the radical is to be taken with the positive

sign. The coefficients of x, y, z are proportional to A, u, v in such

a way that the direction cosines of the normal to the plane are

fixed when the signs of 4, B, C are known. But the plane is not

changed if its equation is multiplied by — 1, hence the position

of the plane alone is not sufficient to determine the direction of

the normal. In order to define a positive and a negative side of
a plane we shall first prove the following theorem :

@®)

TaeorEM. Two points P, P, are on the same side or on opposite
sides of the plane Ax+ By Cz+ D =0, according as their coordi-
nates make the first member of the equation of the plane have like or
unlike signs.



16 PLANES AND LINES [Crap. II.

For, let Py =(ay, ¥y, 7)), Po= (23 Yoy ’5:2) be two points not lying
on the plane. The point I> =(x, y, 2) in which the line P, P, inter-
sects the plane is determined (Art. 6) by the values of my, m,
which satisfy the equation

my(Ax, + By, + Oz, + D) + my(Ax + By, + Oz, + D)= 0.

If Axy+ By, +Cz + D and Ax, + By, + Cz + D have unlike
signs, then m, and m, have the same sign, and the point P lies be-
tween P, and P, If Ax + By, + Oy + D and Ay + By, + Oz,
+ D have the same sign, then the numbers m,, m, have opposite
signs, hence the point P is not between P, and P,

When all the terms in the equation

Aw+ By+C24+D=0

are transposed to the first member, a point (@), ¥, z,) will be said
to be on the positive side of the plane if Ax, + By, +Cz + D is a
positive number; the point will be said to be on the negative side
if this expression is a negative number. Finally, the point is on
the plane if the expression vanishes. It should be observed that
the equation must not be multiplied hy — 1 after the positive and
negative sides have been chosen.

N 15. Angle between two planes. The angle

/ \N’ between two planes is equal to the angle

between two directed normals to the planes;

A hence, by Arts. 5 and 14, we have at once
B <0 D the following theorem:
C by TueorEM. The cosine of the angle 6 be-

tween two planes '

i Ax+ By+ Cz+ D=0,
/\\ Az 4+ By 4+ C'24-D'=0
o Fra. 12. 8 defined by the equation
I/ ! !
AL - AA4'+ BB'+ CC { ©
VAL B+ CEVAR+ BR+ 07
In particular, the condition that the planes are perpendicular is

Ad'+ BB+ CC =0. (10)
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The conditions that the planes are parallel are (Art. 3)
4_B_C, ' (11)
The equations (11) are satisfied whether the normals have the
same direction or opposite directions. From the definition of the
angle between two planes it follows that in the first case the two
planes are parallel and in the second case they make an angle of
180 degrees with each other. We shall say, however, that the
planes are parallel in each case.

16. Distance to a point from a plane. Let P = (&, y;, 2;) be a
given point and 4z + By + Cz + D = 0 be the equation of a given
plane. The distance to P from the plane is equal to the distance
from the given plane to a plane through P parallel to it.

The equation

4w+ By 4 Cz — (Av, + By, + C2)=0

represents a plane, since it is of first degree with real coefficients
(Art.10). It is parallel to the given plane by Eqs. (11). It passes
through P since the coordinates of P satisfy the equation. When
the equations of the planes are reduced to the normal form, they
become, respectively,

A B
T+ Y
VAA+ B+ A+ B+
(o} —D
+ —— e L T —
VAL B0 VA B+ C?
A 5 B i
VA+B+C A+ B+ C?
C z=z1.’l7l,+ By, + Cz,.

e
VAL B+ VA EB$(C?
’

The second members of these two equations represent the dis-
tances of the two planes from the origin, hence the distance from
the first plane to the second, which is equal to the distance d to P
from the given plane is found by subtracting the former from the
latter. :
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The result is
d=Aw1+B!/l+Czl+D. 12) -

VA 4+ B4 C?

The direction to P from the plane, along the normal, is positive
or negative according as the expression in the numerator of the
second member is positive or negative (Art. 14), that is, according
as P is on the positive or negative side of the plane.

EXERCISES

1. Reduce the equation 3z — 12y — 4 2z — 26 = 0 to the normal form.

2. Write the equation of a plane through the origin parallel to the plane
r+2y==6.

3. What is the distance from the plane 3z +4y — 2 =5 to the point
@2, 2)*

4. Find the distance between the parallel planes )

20—y +32=4, 20—y+32+5=0.

5. Which of the points (4, 8, 1), (1, — 4, 3), (38, 5, 2), (— 1, 2, — 2),
(5, 4, 6) are on the same side of the plane 5 — 2y — 32z =0 as the point
(1’ 61 &1 3) ?

6. Find the codrdinates of a point in each of the dihedral angles formed
by the planes

3x+2y+bz—4=0, x—2y—2+6=0.

7. Show that each of the planes 25x 439y 4+ 82—43=0 and 25«
— 39y 4 1122z + 113 = 0 bisect a pair of vertical dihedral angles formed by
the planes 524 12247 =0 and 3y —42—6 =0. Which plane bisects
the angle in which the origin lies ?

8. Find the equation of the plane which bisects that angle formed by
the planes 8x —2y +2—4=0, 22+ y—32—2=0, in which the pomt
(1, 8, — 2) lies.

9. Find the equations of the planes ‘which bisect the dihedral angles
formed by the planes Az + By + Ciz2 + Dy =0, Asx + Boy + Coz + D2 = 0.

10. Find the equation of the locus of a point whose distance from the
origin‘is equal to its distance from the plane 3x + y — 2z =11.

11. Write the equation of a plane whose distance from the point (0, 2, 1)
is 8, and which is perpendicular to the radius vector of the point (2, — 1, —1).

12. Show that the planes 22z —y+2+43=0, 2 —y+42=0,3x+y
—224+8=0,4r—2y+22—5=0,92+ 3y —62—-T7=0,andTx —Ty
4 28z — 6 = 0 bound a parallelopiped.

13. Write the equation of a plane through (1, 2, — 1), parallel to the
plane x — 2y — z = 0, and find its intercepts.
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14. Find the equation of the plane passing through the points (1, 2} 3),
(2, — 8, 6) and perpendicular to the plane4x + 2y +3z=1.

15. Find the equation of the plane through the point (1, 3, 2) perpen--

dicular to the planes
22 +3y— 4z._2 4r—3y—2z=25.

16. Show that the planes « +2y—2=0, y+72—-2=0, x—2y —=z
—4=0, x+3y+2z=4, and 8z +3y —2=28 bound a quadrilateral
pyramid.

17. Find the equation of the locus of a point which is 3 times as far
from the plane 83z — 6y — 2z =0 as from the plane 22 — y + 2z = 9.

18. Determine the value of m such that the plane mx +2y — 32z =14
shall be 2 units from the origin.

19. Determine % from the condition that x — &y + 3 z = 2 shall be perpen-
dicular to 3z + 4y —22 = 6.

17. Equations of a line. Let A,z + By + Cz+ D, = 0and A
+ By + Cz 4 D, =0 be the equations of two non-parallel planes.
The locus of the two equations considered as simultaneous is a
line, namely, the line of intersection of the two planes (Art. 10).
The simultaneous equations '

Ax+ By+ Cz+ D, =0, ‘ /
A+ By + O+ Dy =0
are called the equations of the line.
The locus represented by the equations of two parallel planes,
considered as simultaneous, will be considered later (Art. 33).

irection cosines of intersecti planes.

Let )\, u, v be the direction cosines of the line of intersection of
the two planes

L= Aﬂf' +By,+ Cz+ D=0,

Ly = A+ By + Gz + D, =0.
Since the line lies in the plane L, =0, it is perpendicular to the
normal to the plane. Hence, (Arts. 5, 14)

A, + pB,+vC,=0.
Similarly, A, + pB, +vC, = 0.

By solving these two eqﬁations for the ratios of A, p, v, we obtain

e I B Ve S AP 13)
BO,— B0, G4 —Cd, 4B —A4B




20 . "PLANES AND LINES [Caar. IL
R

The denominators in these expressions are, therefore, proportional
to the direction cosines. In many problems, they may be used
instead of the direction cosines themselves, but, in any case, the
actual cosines may be determined by dividing these denominators
by the square root of the sum of their squares. It should be
observed that the equations of a line are not sufficient to deter-
mine a positive direction on it.

19. Forms of the equations of a line. If A, pu, v are the direction
cosines of a line, and if P, =(x,, ¥, %) is any point on it, the
distance d from P, to another point P =(z, ¥, #) on the line satis-
fies the relations (Art. 4)

M=x—2a, pd=y—1y, vd=2—2,.
By eliminating d, we obtain the equations

m"‘“’l:y—?/l:Z—zl, (14)
A " v

which are called the symmetric form of the equations of the line.
Instead of the direction cosines themselves, it is frequently

convenient to use, in these equations, three numbers a, b, ¢, pro-

portional, respectively, to A, u, ». The equations then become

TS BNl Y N R it (15)
a b ¢

They may be reduced to the preceding form by dividing the de-
nominator of each member by Va?+ 02 + ¢* (Art. 3).

If the line (15) passes through the point P, =(xy ¥ %), the
coordinates of P, satisfy the equations, so that :

L=t _Y—%h_%—%,
a b c

On eliminating a, b, ¢ between these equations and (15), we

obtain ?
T T S R A (16)
L= Ya2—Y%h B2

These equations are called the two-point form of the equations
of a line.
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20. Parametric equations of a line. Any point on a line may
be detined in terms of a fixed point on it, the direction cosines of
the ‘line, and the distance d of the variable point from the fixed
one. Thus, by Art. 4

x=xo+Ad, y=y,+ud, z2=2,+vd. amn
If A, u, v are given and (x,, ¥, %) represents a fixed point, any
point (, y, 2) on the line may be defined in terms of d. To every
real value of d corresponds a point on the line, and -conversely.
These equations are called parametric equations of the line, the
parameter being the distance.

It is sometimes convenient to express the coordinates of a
point in terms of a parameter « which is defined in terms of d by
a linear fractional equation of the form

s PR
v+ o’
in which «, B, y, 8 are constants satisfying the inequality
a8 — By=0.

By substituting these values of « in (17) and simplifying, we
obtain equations of the form

m=al+b,:<, y=a2+b2x, z=as+b35’ (18)
a;+ by ay+ by a4 by
in which a,, ), ete., are constants. Equations (18) are called the
parametric equations of the line in terms of the parameter «.

It should be observed that the denominators in the second
members of equations (18) are all alike. Each value of « for
which a,+ bk =0 determines a definite point on the line. As
a,+ b,k approaches zero, the distance of the corresponding point
from the origin increases without limit. To the value deter-
mined by a,+b,x=0 we shall say that there corresponds a
" unique point which we shall call the point at infinity on the line.

EXERCISES

1. Find the points in which the following lines pierce the cobrdinat
planes : . / > y
(@) x+2y—32z=1, 3x—2y+5z=2.

() x+3y+562=0, bx—3y+2=2.
(¢c) x+2y—5=0, 20— 3y +2z2=1.
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2. Write the equations of theline x +y—82z=6, 22—y +22=17 in
the symmetric form, the two-point form, the parametric form.

3. Show that the lines 42 4+ y— 32 =0, 29-—_/+‘)z+6._0 and 8
—y+z_1 10x + y — 42 + 1 = 0 are parallel.

4. Write the equations of the line through (8, 7, 8) and (—1, 5, 6).
Determine its direction cosines,

5. Find the equation of the plane passing through the point (2, —2, 6)

——and perpendicular to the line z =3, y =2z — 4.

-3 y+1 z+3andx—1

6. Find the value of % for whicl the lines ©—
2k k+1 3

sl 5 242
T )
7. Do the points (2, 4, 6), (4, 6, 2), (1, 3, 8) lie on a line ?
8. For what value of % are the points (k, — 3, 2), (2, — 2, 3), (6, —1, 4)
collinear ?

9. Isthere a value of & for which the points (Ic 2, —2), (2, — 2, k), and
(—2, 1, 3) are collinear ?

areqjerpendlcular

10. Show that the line % z c ] +12 =2= 3 Jies in the plane 2 4 2y

—-24+3=0.

11. Inequations (18) show that, as x approaches infinity, the correspond-
ing point approaches a definite point as a limit. Does this limiting point lie
on the given line ?

21. Angle which a line makes with a plane. Given the plane
Ar+By+ Cz:+D =0

i 0] FR e, O

and the line
a b ¢

The angle which the line makes with the plane is the complement
of the angle which it makes with the normal to the plane. The
direction cosines of the normal to the plane are proportional to
A4, B, C and the direction cosines of the line are proportional to
a, b, ¢, hence the angle 6 between the plane and the line is de-
termined (Art. 5) by the formula

s%n 0= G o0 > (19)
VA + B+ C*Vat + 1 + ¢

1 S 7.N et
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EXERCISES

1. Show that the planes 22 —8y+2+1=0, 52+2—1=0, 42+
9y — z— 5 =0 have a line in common, and find its direction cosines.

2. Write the equations of a line which passes through (5, 2, 6) and is

‘paralleltotheline 20 —8z+y—2=0,z+y+2+1=0.

3. Find the angle which the line x +y +22=0, 2x—;+22—1_0
makes with the plane 3z + 62— 5y +1 =0.

4. TFind the equation of the plane through the point (2, —2, 0) and
perpendicular to the line x + 2y ~3z=4,2x -3y +42=0.
5. Find the equation of the plane determined by the parallel lines
x4+l =’y—2=§ r—38 y+4_z-1
3 TS 2 T :
6. For what value of & will the two linesz +2y—2+3=0, 3 -
224+1=0;2r—y+2—2=0,x+y—2z+ k=0 intersect ?

7. Find the equation of the plane through the points (1, —1,2) and
(3,0, 1), parallel tothehne.c+y—z_0 2Jc+y+z—0

8. Show that the lines £—=% —2 i o R MR B Sorik R Ak R
T3 3 -2 - 1 3 2

; intersect, and find the equation of the plane determined by them.

9. Find the equation of the plane through the point (e, b, ¢), parallel to
8 = ./“Jl x— 2z, %—fzzy—yz:_z—-zg_
l] my ny lz ma ng

each of the lines,

10. Find the equation of the plane through the origin and perpendicular
totheline3x—y+4z+6=0,2+y—2=0.

i . g ] 1_2-3
11. Find the value of % for which the lines £—2 =¥+ G
J in e value of k& for whic e lines 7% o 5 )

x —; Py -;- 5_ z + 2 are perpendiculars

12. Find the values of % for which the planes kx — 5y +(k +6)2+3 =0
and (k — 1)z + ky + z = 0 are perpendicular.

13. Find the equations of the line through the point (2, 3, 4) which meets
the Y-axis at right angles.

22, Distance from a point to a line. Given the line
o O B Y, T
A n v
and the point P, = (a, ¥, 2,) not lying on it. It is required to find
the distance between the point and the line.
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Let P, =(ay, y, 2,) (Fig. 13) be any
point on the line; let P be the foot of
the perpendicular from P, on the line;
6 the angle between the given line and

x the line P,P,; let d be the length of

/ the segment 7,7, We have (Fig. 13)

Y Fig. 13. PP = P P?sin?f = d2 — d2 cos 6.

The direction cosines of the line PP, are 2= 0 Y2 = U1 2 — cz B
5 d a ad

from which (Art. 5)

=)= Yo—% Ea— 8
& e R
Hence,
PP} = d* — d? cos? 0 =(w, — a,)* +(y, — )2+ (2 — 2,)?
— (A (x, — )+ p (Y — )+ v (2 — 2))%  (20)

23. Distance between two non-intersecting lines. Given the
two lines
BB _Y=h 2=t —%_ Y—9_ z—2
A 1 141 2 (7% V2

which do not intersect. It is required to find the short:esti dis-

tance between them. Let A, p, v be the direction cosines of the -

line on which the distance is measured. Since this line is per-
pendicular to each of the given lines, we have, by Art. 5,
Equations (4) and (5),

Z
A i I F 27 ,
Hava— niply VA — Vz?‘l 4 M
RS RN A\
My — A, sin 6 I \d
where 6 is the angle between \-Q
the given lines. Mé——N\P
The length d of the required 0 >X
perpendicular is equal to the
projection on the common per-
Fic. 14.

pendicular of the segment PP’, Y
and is equal to the projection of ile hroken line PMNP’ (Fig. 14).
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d =Mz, — )+ w(y — 3/2)+V(z1 — %)
or .

X —x M Ay
d=% (h—Y m P

2
i 21— % W "

= 1
sin 0 e

EXERCISES

1. Find the distance from the origin to the line

4 1

2. Find the distance from (1,1,1) tox +y+2=0,3x—2y +4z= 0. -

3. Find the perpendicular distance from the point (— 2, 1, 3) to the line
z2+2y—2+3=0, 3x—y+22z+1=0.

4. What are the direction cosines of the line through the origin and the
point of intersection of the lines x +2y — 2z + 3=0,38x—y+22+1=0;
22—2y+832—2=0,c—y—2+3=0.

5. Determine the distance of the point (1, 1, 1) to the line x =0, y =0
and the direction cosines of the line on which it is measured.

x2—1_y—3_2-—-2
% .

6. Find the distance between the lines g:y +22 = z_—;l and ?—I—l

2 -1
7. Find the equations of the line along which the distance in Ex. b
is measured. 1 N ; :
8. TFind the distance between the lines 2¢ +y—2=0, 2—y+22=3
andz +2y—382z=4,2c—3y+4z="5. E

y—3 _2z+1

. 9. Express the condition that the lines - _Y-—h_z2-& T2
y < 1 my m Iz

=Y —Y3_ 2= 22 iptersect.
m2, Na .

24, System of planes through a line. If

L= Az + By + Cz + D=0,
Ly= Ay + By + Cw + D, =0

are the equations of two intersecting planes, the equation %L, +
¥y L, =0 is, for all real values of &, and k, the equation of a plane
passing through the line L, =0, L, = 0. For, kyL, + koL, = 0 is
always of the first degree with real coefficients, and is therefore
the equation of a plane (Art. 10); this plane passes through the
¢ line I, =0, I, =0, since the codrdinates of every point on the line
satisfy L, =0 and L, =0 and consequently satisfy the equation

-~
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keoly + kyL, = 0. Conversely, the equation of any plane passing
through the line can be expressed in the form %1, + kL, = 0,
since &, and k, can be so chosen that the plane kI, + kL, = 0
will contain any point in space. Since any plane through the
given line is determined by the line and a point not lying on
it, the theorem follows.

To find the equations of the plane determined by the line L, = 0,
L,=0,and a point 7 not lying on it, let the covrdinates of P, be
(@1, 2y 21).  If P, lies in the plane kI, + k,L, = 0, its codrdinates
must satisfy the equation of the plane; thus

k(42 + By + O+ D)) + ky( Aty + Byy, + Coza + Dy) = 0.
On eliminating %, and %, between this equation and k, L, + k. L, = 0,
we obtain

0 = (4 + By + O + Dy)(Ayz + By + Ciz + Dy)
— (Alxl + B + Cyz + Dl) (11275 + By + Cx + Dz);

as the equation of the plane determined by the line I, =0, L, = 0,
and the point P,.
It will be convenient to write the above equation in the abbre-

viated form
Ly(y) Ln(2) — Ly(o;) Lo(x) = 0.

The totality of planes passing through a line is called a pencil
of planes The number %,/k, which determines a plane of the
pencil is called the parameter of the pencil.

If, in the equation

Ly + kyLy = 0)

k, and k, are given such values that the coefficient of z is equal to
zero, the corresponding plane is perpendicular to the plane 2 =0.
Since this plane contains the line, it intersects the plane z = 0 in
the orthogonal projection of the line L, =0, L, =0. Similarly,
if k, and %, are given such values that the coefficient of y is equal
to zero, the corresponding plane is perpendicular to the plane y =0
and will cut the plane y =0 in the projection of L, =0, L,=0 on
that plane; if the coefficient of z is made to vanish, the plane will
contain the projection of the given line upon the plane z =0. The
three planes of the system &, L, + k,L, = 0 obtained in this way
are called the three projecting planes of the line 7, =0, L, = 0 on
the coordinate planes.
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Since two distinct planes
passing through a line are
sufficient to determine the
line, two projecting planes of
a line may always be em-
ployed to define the line. If
the line is not parallel to the
plane z=0, its projecting
planeson x =0 and y = 0 are
distinet and the equations of

zZ
1 A~
[ ‘!x'/‘/
— TP
0 I
Fia. 15.

Y

27

the line may be reduced to the form (Fig. 15)

r=mz+4+a, y=nz+b.

If the line is parallel to z = 0, the value of ¥ for which the coeffi-

X

(22)

cient of  is made to vanish will also reduce the coefficient of y to

y ;

A

- Fig. 16.

to define the line.

r=py4c¢ z=c.

Z zero, so that the projecting planes on
=0 and on y=0 -coincide.
projecting plane z =c and the projec-
ting plane on z = 0 may now be chosen
If the line is not

0 / >y parallel to the X-axis, the equations

This

of the line may be reduced to (Fig. 16)

(23)

Finally, if the line is parallel to the X-axis, its equations may be

reduced to (Fig. 17)

Y= b, Z=C.

If the planes L, = 0, L, = 0 are par-

allel but distinct, so that

4_5,_0C_D
A By 0 DY

(24)

Z

*Y/O

Fi1a. 17.

then every equation of the form k71,4 kL, =0, except when

by i Be LGy
k, 4, B, G

, defines a plane parallel to the given ones.

Conversely, the equation of any plane parallel to the given ones
can be written in the form kL, + k,L, =0 by so choosing % : k,

G
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that the plane will pass through a given point. In this case the
system of planes &, L, + k,L, = 0 is called a pencil of parallel planes.
Two equations,
L= Aw+ By + Cz+ D, =0,
L,= A + By 4 Cp + D* =0,

will represent the same plane when, and only when, the coefficients
4y, By, (), D, are respectively proportional to 4, B, C, D,; thus,
when

4_B5B_GC_D

4, B, C Dy
These conditions may be expressed by saying that every deter-
minant of order two formed by any square array in the system

'Al Bl 01 Dl
A, B, C, D,

shall vanish.

In this case multipliers %,, k, can be found such that the equa-
tion %&,L, + k. L, = 0 is identically satisfied.

Conversely, if multipliers %, &, can be found such that the pre-
ceding identity is satisfied, then the equations I,=0, L,=0
define the same plane.

EXERCISES

1. Write the equation of a plane through the line 7z + 2y — 2z — 3 =0,
3x— 3y + 2z — 5 =0 perpendicular to the plane 22 + y — 2z = 0.

2. What is the equation of the plane determined by the line 22 — 3y —
2+4+2=0,x—-y+42z=3 and the point (3, 2, — 2) ?

3. Determine the equation of the plane passing through the line

*+ 22z =4, y — 2z =8 and parallel to the linemz3=y';'4=zg &,

4. Does the plane 2 42y —z +3 =0 have more than one point in
common with the line 3z —y +22+1=0, 22 -3y +82—-2=0°?

5. Determine the equations of the line through (1, 2, 3) intersecting the
two lines  + 2 y—82=0, y—4z=4and 22—y +32=38, 32 + y + 2z + 1=0.

25. Application in descriptive geometry. A line may be repre-
sented by the three orthogonal projections of a segment of the line,
each drawn to scale. Consider the XZ-plane (elevation, or verti-
cal plane) as the plane of the paper, and the X Y-plane as turned
about the X-axis until it coincides with the XZ-plane. The pro-
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jections in the X Y-plane are thus drawn to scale on the same
paper as projections on the XZ-plane, but points are distinguished
by different symbols, as P, Pp. Q, Z
The X Y-plane is called the plan
or horizontal plane. Finally, let
the YZ-plane be turned about the
Z-axis until it coincides with the
XZ-plane, and let figures in the
new position be drawn to scale.

QI

B om
>
S
X
o

This is called the end or profile ¢ P
plane. Thus, in the figure (Fig. \\\

18), a segment PQ, wherein VY Q,
P=(1, 4, 8), @=(13, 9, 12), Fra. 18.

may be indicated by the three segments P'Q, P,Q, P,Q,.

Exampre. Find the equations of the projecting planes of the line
2¢+3y—42=5, x—4y+52=6.
Here, Li=2x+8y—42z—5, Li=x—4y+52z—6,
kiLy + koLa =(2 k1 + I’C‘z).’t -+ (3 k1 — 4 k2)y
+(—4Fk+8k)z+ (—Hk1—06k)=0.
If kg = — 2 k4, the coefficient of = disappears; thus the equation of the
plane projecting the given line on the plane » = 0 is
1ly—1424+7=0.
k3

If S the coefficient of » vanishes; the projecting plane on y =0 is
1

fonnd to be 112z — 2 = 38.
Finally, if %—2 = %, the projecting plane on z =0 is found. ~ Its equation
21

is 14z —y =49.
» EXERCISES
Find the equations of the projecting planes of each of the following lines :
1. x4+2y—32z=4, 2x—3y+42z=>5.
2 2x4+y+2=0, r—y+22=3.
3. x+y+2z2=4, r—y+3z=4
4. A+ By + Ciz+ D=0, Ayx+ Boy+ Cez+ D;=0.

26. Bundles of planes. The plane Ly = A+ By + Oz + D;
=0 will belong to the pencil determined by the planes ;= 0, L,=0,
assumed distinet, when three numbers %, k,, k;, not all zero, can
be found such that the equation &Ly + kL, + ks Ly = 0 is identi-
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cally satisfied for all values of «, 7, z. This condition requires that
the four equations &4, + k, A, + k4, =0, ’,B, + kB, + K, B; =0,
kG + k0o + %G, =0, kD, + kD, + k,D; =0 ave satisfied by
three numbers %,, k,, %;, not all zero; hence, that the four equa-
tions

|A1B203} =0, |3102D31 =0, | C\D,A4,| =0, | Dy 4,B; |=0

are all satisfied, wherein we have written for brevity,

Al Bl Ol
| 4,B,Cy| =|4, B, 0, ete.
A3 'B3 CS

These simultaneous conditions may be expressed by saying
that every determinant of order three formed by the elements
contained in any square array in the system

Al Bl Cl Dl

4, B, C, D,
4, By (5 Dy

shall vanish.

Conversely, if these conditions are satisfied, then three con-
stants %, k,, k; can be found such that the equation kL, + k,L,
+ KLy = 0 is identically satisfied, and the three planes L, =0,
L,=0, L =10 belong to the same pencil.

Let Li=Ax+ By+ Cz+ D, =0,
L,= Ax+ By + Cz + D, =0,
Li=Ax+ By+ Oz + D=0

be the equations of three planes not belonging to a pencil. If we
solve these three equations for (, ¥, 2), we find for the cosrdinates
of the point of intersection of the three planes, in case | 4,B,C |
# 0,

ENS !‘DIBZOS| Y =— I_A1D2C.l|_ o= IAIB?D:!‘ . (25)
A 20,7 | 4,B,C, |’ | 4,B,C; |

If | 4,B,C;| =0, but not all the determinants in the numerators
of (25) are zero, no set of valuesof w, y, z will satisfy all three
equations. In this case, the line of intersection of any two of the
planes is parallel to the third. For, if I, = 0 and L, = 0 intersect,
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the direction cosines of their line of intersection are proportional
(Art. 18) to ;

BOa Be PO LS el VA BE R,

The condition that this line is parallel to the plane L,=0 is
(Art. 21)

A3<Bx 02 = B201) + Bs(Culz == O‘.:Al) + Oa(Ale — AZBI) = 0’

which is exactly the condition | 4,B,0;|=0. The proof for the
other lines and planes is found in the same way.

If at least one of the determinants | 4,B,C;|, | D\B,Cs |, | A,D,Cy |,
and | 4,B,D;| is not zero, the system of planes

oLy + KoLy + R Ly = 0

is called a bundle. If [ABL]+ 0, all the planes of the bundle
pass through the point (25), since the coordinates of this point
satisfy the equation of every plane of the bundle. Conversely,
the equation of every plane passing through the point (25) can be
expressed in this form. This point is called the vertex of the
bundle. If |A4BC]=0, all the planes of the bundle are parallel
to a fixed line (such as I, =0, L,=0). In this case, the bundle
is called a parallel bundle.

27. Plane coordinates. The equation of any plane not passing
through the origin may be reduced to the form

we+vy+wz4+1=0. (26)

When the equation is in this form, the position of the plane is
fixed when the values of the coeflicients u, v, w (not all zero) are
known; and conversely, if the position of the plane (not passing
through the origin) is known, the values of the coefficients are
fixed. Since the numbers (u, v, w) determine a plane definitely,
just as (z, y, 2) determine a point, we shall call the set of num-
bers (u, v, w) the coordinates of the plane represented by equation
(26). Thus, the plane (3, 5, 2) will be understood to mean the
plane whose equation is 3z +5y+2241=0. Similarly, the
equation of the plane (2,0, —1)is 22 —2z+1=0. -

If u, v, w are different from zero, they are the negative recipro-
cals of the intercepts of the plane (u, v, w) on the axes (Art. 12).
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If u =0, the plane is parallel to the X-axis; if u = 0, v = 0, the
plane is parallel to the X Y-plane. The vanishing of the other
coefficients may be interpreted in a similar way.

28. Equation of a point. If the point (=1, 91, #) lies in the
plane (26), the equation
ury vy, +wz, +1=0 (€19)

must be satisfied. If ), y, 2 are considered fixed and u, v, w
variable, (27) is the condition that the plane (u, v, w) passes
through the point (x,, ¥, ). For this reason, equation (27) is
called the equation of the point (@, ¥1, %) in plane cobrdinates.

Thus, u—Bbv+2w41=0
is the equation of the point 1, —-5,2); ‘similarly,
SJu+w+1=0
is the equation of the point (3,0, 1).
If equation (27) is multiplied by any constant different from

zero, the locus of the equation is unchanged. Hence, we have
the following theorem :

Turorem. The linear equation
Au+ Bo+ Cw+D =0 (D=+0)
is the equation of the point (%, %, %) in plane cobrdinates,

Thus, u—5v—3w—2=0 is the equation of the point

-1 5 3
R 92/

AR
The condition that the cosrdinates g)f‘ u,’@('u/; of a plane satisfy
two linear equations

uy + 2y, +wz +1 =0, ULy + VYy + w2 +1 =0

is that the plane passes through the two points (, y, 2,) and
(2 Y2y 22) and therefore through the line joining the two points."
The two equations are called the equations of the line in plane
coordinates.
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EXERCISES

1. Plot the following planes and write their equations: (1, 2, 1), (3, — 4,
v i)v ("’ 1, %’ . %)
2. Find the volume of the tetrahedron bounded by the coérdinate planes
and the plane (— %, — }, — 3).
3. What are the codrdinates of the planes whose equations are
Te+b6y—z+1=0, r—6y+112+5=0, 9xr—4=0°?
* 4. Find the angle which the plane (2, 6, 5) makes with the plane
(_ 1, 1, 2). ¥
5. Write the equations of the points (1, 1, 1), (2, — 1, }), (6, —2, 1).
6. What are the coordinates of the points whose equations are
2u—v—3w+1=0, uw+2w—3=0, w—2=0?
7. Find the direction cosines of the line
Ju—v+2w+1=0, u+bv+2w—-1=0.
8. What locus is determined by three simultaneous linear equations in
- (uy v, w) ?
9. Write the equation satisfied by the cobrdinates of the planes whose

distance from the origin is 2. What is the locus of a plane which satisfies
this condition ?

29, Homogeneous coordinates of the point and of the plane. It is
sometimes convenient to express the codrdinates =, y, z of a point
in terms of four numbers «', ¥/, #', t' by means of the equations

A set of four numbers (2, ¥/, 2, ¢'), not all of which are zero, that
satisfy these equations are said to be the homogeneous codrdinates
of a point. If the coordinates («', ¥, 2/, t') are given, the point
is uniquely determined (for the case ¢'=0, compare Art. 32),
but if (x, y, z) are given, only the ratios of the homogeneous
coordinates are determined, since (2', ¥', 2/, ¢') and (kx', ky', k2', kt')
define the same point, k¥ being an arbitrary constant, different
from zero.

Similarly, if the cobrdinates of a plane are (u, v, w), four num-
bers (', o', w', s'), not all of which are zero, may be found such
that

u v
—5 =y, e =

£ = 0,
s! s' 7

S
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The set of numbers (u', v', w', s') are called the homogeneous coordi-

nates of the plane.

Where no ambiguity arises, the accents will be omitted from

the homogeneous codrdinates.

30. Equation of a plane and of a point in homogeneous coordinates.

* If, in the equation

Ax + By + Cz+ D=0
(D+#0, and 4, B, C are not all
zero) the homogeneous coordi-
nates of a point are substituted,
we obtain, after multiplying by
t, the equation of the plane in
homogeneous coordinates

Az + By+ Cz+ Dt =0.
The homogeneous coordinates
of this plane are (4, B, C, D).

If, in the equation

Auv+ Bv+Cw+D =0
(D=0, and A, B, (' are not all
zero) the homogeneous coordi-
nates of a plane are substituted,
we obtain, after multiplying by
s, the equation of the point in
homogeneous codrdinates

Auw+ Bv 4+ Cw+ Ds =0.

The homogeneous coordinates
of this point are (4, B, C, D).

31. Equation of the origin. Coordinates of planes through the
origin. The necessary and sufficient condition that the plane
whose equation is ux + vy + wz+st=0 shall pass through the
origin is s=0. We see then that s =0 is the equation of the
origin, and that (w, v, w, 0) are the homogeneous codrdinates of a
plane through the origin. Since s = 0, it follows from Art. 29 that
the non-homogeneous coérdinates of such a plane cease to exist.

32. The plane at infinity. Let (@, y, 2, {) be the homogeneous
coordinates of a point. If we assign fixed values (not all zero)
to x, ¥, z and allow ¢ to vary, the corresponding point will vary in
such a way that, as ¢ = 0, one or more of the non-homogeneous co-
ordinates of the point increases without limit. If ¢ =0, the non-
homogeneous coordinates cease to exist, but it is assumed that
there still exists a corresponding point which is said to be at
infinity. It is also assumed that two points at infinity coincide
if, and only if, their homogeneous coordinates are proportional.

The equation of the locus of the points at infinity is ¢ =0.
Since this equation is homogeneous of the first degree in , ¥, 2, ¢,
it will be said that t =0 is the equation of a plane. This plane
is called the plane at infinity.
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33. Lines at infinity. Any finite plane is said to intersect the
plane at infinity in a line. This line is called the infinitely dis-
tant line in the plane. The equations of the infinitely distant line
in the plane Az + By 4+ Cz + Dt =0 are Aw + By + C2=0,t=0.

TaeoreEM. The condition that two finite planes are parallel is
that they intersect the plane at infinity in the same line.

If the planes are parallel, their equations may be written in
the form (Art. 15)

Ar+By+ Cz+Dt =0, Ax+ By+ Cz+ D't=0. (28)

It follows that they both pass through the line
Ax+ By + Cz=0, t=0. (29)
Conversely, the equations of any two finite planes through the

line (29) may be written in the form (28). The planes are there-
fore parallel.

84. Coordinate tetrahedron. The four planes whose equations

in point codrdinates are :
z=0, y=0, 2=0, t=0

will be called the four coodrdinate planes in homogeneous coordi-
nates. Since the planes do not all pass through a common point,
they will be regarded as forming a.tetrahedron, called the coordi-
nate tetrahedron. The cobrdinates of the vertices of this tetra-
hedron are Y

©,0,0,1), (0,0,1,0), (0,10,0), (1,0,0,0).
The codrdinates of the four faces in plane coordinates are
0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0).

The equations of the vertices are u =0, v=0, w=0, s=0.

EXERCISES

1. Find the non-homogeneous codrdinates of the following points and
planes:

(a) Te+3y+32—4=0, @ 9u—v—3w+2=0,
(b) 10x—3y+15=0, () u+v—w—-T7=0,
(¢) 2—2=0, (f) 2w+ 11=0.

2. Determine the codrdinates of the infinitely distant point on the line
3z +2y+6t=0, 20¢—102+3t=0.
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3. Show that if L;(u)=A4,u + By + Ciw + D1s =0, and Lo(u)=Asu
+ By + Cow + Dys = 0 are the equations of two points, the equation of any
point on the joining line may be written in the form %, L, + ko L; =0.

4. Show that theplanesx +2y +72—-3t=0,2+3y+ 62=0, x+4y
+ 52z — 2t = 0 determine a parallel bundle. Find the equation of the plane
of the bundle through the points (2, — 1, 1, 1), (2, 5, 0, 1).

35. Systemof four planes. The condition that four given planes

L = Ax+ By + Cz 4 Dit =0,
Ly= Ax+ By + Cz + Dyt =0,
Ly=Ax+ By + Oz + Dit =0,
Li=Ax+By+ Cz+ D¢ =0

all pass through a point is that four numbers (z, y, #, ¢), not all
zero, exist which satisfy the four simultaneous equations. The
condition is, consequently, that the determinant

4, B, C D
A, B, O, D,
4, By O Dy
4, By C, D,

is equal to zero. If this condition is not satisfied, the four planes
are said to be independent. When the given planes are independ-
ent, four numbers %, k,, ks, &, can always be found such that the
equation
kyLy + Ky Lip 4 kL + ky Ly = 0

shall represent any given plane. For, let ax + by +¢z +d =0 be
the equation of the given plane. The two equations will repre-
sent the same plane if their coeflicients are proportional, that is,
if numbers k,, k,, k;, k,, not all zero, can be found such that

a=k A + ko d;, + ks Ay + ki, Ay
b="Fk DB, + kB, + k3 B; + k,B,,
c=kC + k0, + k0 + £,C,,
d=FkD, + kD, + k; Dy + kD,

Since the planes are independent, the determinant of the coeffi-
cients in the second members of these equations is not zero, and
the numbers k,, &y, k;, k, can always be determined so as to satisfy
these equations.
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These results, together with those of Arts. 24, 26, may be ex-
pressed as follows: The necessary and sufficient condition that a
system of planes have no point in common is that the matrix*
formed by their coefficients is of rank four; the planes belong to
a bundle when the matrix is of rank three; the planes belong to
a pencil when the matrix is of rank two; finally, the planes all
coincide when the matrix is of rank one. We shall use the ex-
pression “rank of the system of planes” to mean the rank of the
matrix of coefficients in the equations of the planes.

EXERCISES

1. Determine the nature of the following systems of planes :

(@) 22—H5y+2—3t=0, x+y+42—5t=0, 2 +3y+62~¢t=0.

(b) 3z +4y+562—5t=0, 6x+5y+92—-10¢t=0, 3z +3y+52
—5t=0,2—y+22z=0.

(¢) 20 +4y=0,52+Ty+22=0,8x+4y—-22+3¢t=0, x=0.

@) 2 +6y+32=0,Ty—52+4t=0, x—y +4z=28¢

2. Show that the line x4+ 3y ~2+¢t=0,2x —y+22—3¢t=01ies in
the plane 72 + 7y +2—3¢t=0.

3. Determine the conditions that the planes

r=cy+ bz, y=axr+cz, z=bx + ay

shall have just one common point ; a common line ; are identical.

4. Prove that the planes 22 -3y —~72=0, 32 —14y—132=0,
82 — 31y — 332z =0 have a line in common, and find its direction cosines.

5. Show that the planes 32 — 2y —t =0, 42 —22—-2¢=0, 4x + 4y
— 52z =0 belong to a parallel bundle.

* Any rectangular array of numbers

4, B, ¢ D - M
Ay By C; Dy - M,
43 By O3 Dg - M
An Bn Cn Dn - M,

is called a matrix. Associated with every matrix are other matrices obtained
by suppressing one or more of the rows or one or more of the columns of the
given matrix, or both ; in particular, associated with every square matrix, that
is, one in which the number of rows is equal to the number of columns, is a de-
terminant whose elements are the elements of the matrix. Conversely, associated
with every determinant is a square matrix, formed by its elements. We shall
use the word rank to define the order of the non-vanishing determinant of high-
est order contained in any given matrix. The rank of the determinant is defined
as the rank of the matrix formed by the elements of the determinant.



CHAPTER III

TRANSFORMATION OF COORDINATES

The coordinates of a point, referred to two different systems
of axes, are connected by certain relations which will now be
determined. The process of changing from one system of axes
to another is called a transformation of codrdinates.

36. Translation. Let the coordinates of a point P with respect
to a set of rectangular axes OX, OY, OZ be (z, y, ) and with
respect to a set of axes O'X’, O'Y’, (’Z’, parallel respectively
to the first set, be («/,%,2"). If the cobrdinates of (', referred
to the axes OX, 0Y, OZ are (L, k, I) we have (Fig. 19)

e=a+h y=y +k z=2 41 @)

For, the projection on OX of OP is equal to the sum of the pro-
jections of OO’ and O'P (Art. 2), but the projection of OPis z,

z z of OO is h, and of O’ Pis a’; hence
P x=2o+h. The other for mulas are

// derived in a similar way. Since

/ the new axes can be obtained from

X the old ones by moving the three

Ao

o x coordinate planes parallel to the
// ’ / X-axis a distance 4, then parallel
¥y 'y . to the Y-axis a distance %k, and
Fra. 19. parallel to the Z-axis a distance

I, without changing their directions, the transformation (1) is
called a translation of axes.

37. Rotation. Let the codrdinates of a point P, referred to a
set of rectangular axes OX, OY, OZ, be z, y, z, and referred to
another rectangular system OX', O0Y', OZ' having the same origin,
be o, ¥, 2". Let a'= OL', y'=L'M', z' = M'P(Fig. 20); and let
the direction cosines of OX', referred to OX, OY, OZ, be A, py, v;;

those of OY' be Ay, p,, v, and of OZ' be Agy pg, v
38



Arrt. 37] ROTATION 39

We shall show that
o= X2+ Ay + A2,
Y= + my' + i 2
z =n2 +wy' + iz
For, the projection of OP (Fig. 20) on the axis OX isx. Thesum
of the projections of O/,

L'M, and M'Pis ' +ry' N2 2 PR
+ A7 4\ ~
That these two expres- // \ %
sions are equal follows from / \ ,
Art. 2. The second and / MX
third equations are obtained L//xz M\N/
in a similar way. L '
The direction cosines of LY
0X, 0Y, and 0Z, with re- M
spect to the axes OX', O0Y',
0Z'" are Ay, Ay Agj pas Py s 4] Y’
Fic. 20.

v, vay v3, TESPeEctively. If we
project OP and OL =z, LM =y, and MP=zon OX', O0Y', and

0Z', we obtain :
' = M2+ Y + nz,

Y =My vy @)
2'= A + pgyy + vize
The systems of equations (2) and (2') are expressed in con-
venient form by means of the accompanying diagram.

&l y! z! .

& M Ay Ay

Y & Mo 3

2 121 Vo V3

Since Ay, pgy v Mgy pay 23 Agy ms v; are the direction cosines of
three mutunally perpendicular lines, we have the six relations
M4 pltvt=1, e + paps + vy =0,
A+t +nt=1, AoA + papas 4 vavs = 0, (3)
A+ pd v =1, Ashi + oy + vgny = 0.

’
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We have seen that A, Ay, A3; pyy poy p3; viy ve v; are also the di-
rection cosines of three mutually perpendicular lines. It follows
that

A4 A AP =1, Ay + Agpta + Agpy = 0,
pd o+ pl o+ pt =1, pavy + pavy + pgvs =0, “)
n'+ vl ui=1, VAL + vy 4 vy =0,

It will next be shown that
A= €(pavs — Vapis);, Ao = €(pgyy — vap); Ag = €(pyvy — vipia),
= €(vds — Agpg)y po =€(vshy — Agny),  pa = e(vidy — Awo); )
n=¢ (/\2#3— Ibz)\a)’ vy = €(Agpy — pshe); vs=e(Apy— aAs),
where e=+1. From the first and third equations of the last
column of (4) we obtain
N "

PoVs — Volhy Vi — Vil a2 — Vil

If we denote the value of these fractions by ¢, solve for A;, A, and
A; and substitute in the first of equations (4), we obtain

¢ [(I‘*z”z - V?Jls)z P (#3”1 = Val’»l)2 + (.“11’2 —n Vlf"’Z)z] =1.

Since the lines OY" and OZ' are perpendicular, the coefficient of
€? is unity (Art. 5, Eq. (5)). Itfollowsthat =1 ore=+1The
first three of equations (5) are consequently true. The other equa-
tions may be verified in a similar way.
It can now be shown that
N Dy
ppaps|=e€=+ 1. (6)

W Ve V3

For, expand the determinant by minors of the elements of the
first row, and substitute for the cofactors of Aj, Ay A, their values
from (5). The value of the determinant reduces to

Toe+ae+an=l=c
€ € ‘
It will be shown in the next Article that if e=1, the system of
axes O-X'Y'Z’ can be obtained by rotation from O-XYZ. If

e¢=—1, a rotation and reflection are necessary.
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38. Rotation and reflection of axes. Having given three mutu-
ally perpendicular directed lines, forming the trihedral angle
0-XYZ (Fig. 21), and three other mutually perpendicular directed
lines through O, forming the trihedral angle O-X'Y"'Z', we shall
show that the trihedral angle O-XYZ can be revolved in such
a way that OX and OZ coincide in direction with OX' and 0Z',
respectively. OY will then coincide with OY' or will be-di-
rected oppositely to it.

Let NN' be the line of intersection of the planes X011 and

X'0Y”. Denote the angle Z0OZ' by 0, the angle XON by ¢, and
the angle NOX' by y. Let the Z\Z
axes O-XYZ be revolved as a
rigid body about OZ through the
angle ¢, so that OX is revolved .,
into the position ON. Denote the
new position of OY by OY;, so A X’
that the angle YOY;—=¢. The 2 / -
trihedral angle O-XYZ is thus re- \V‘/’
volved into O-NY,Z Now let A\
O-NY,Z be revolved about ON Y N
through an angle 6, so that OZ Y’
takes a position OZ', and 0Y;, a Fie. 21.
position OY, Then the angle ZOZ' =angle Y,0Y,=6. The
trihedral angle O-NY;Z is thus brought into the position
O-NY,Z'. Finally, let the trihedral angle in this last position
be revolved about OZ' through an angle ¢, so that OV is revolved
into OX'. By the same operation OY is revolved into a direction
through O perpendicular to OX' and to OZ’. It either coincides
with OY"' or is oppositely directed. In the first case the trihedral
O-XYZ has been rotated into the trihedral O-X'Y'Z'. In the
second case the rotation must be followed by changing the direc-
tion of the Y-axis. This latter operation is called reflection on the
plane ¥ =0. It cannot be accomplished by means of rotations.

In case the trihedral O-XYZ can be rotated into O-X'Y'Z/,
the number e (Art. 37) is positive ; otherwise, it is negative. For,
during a continuous rotation of the axes, the value of ¢ (Eq. (6))
cannot change discontinuously. If, after the rotation, the trihe-
drals coincide, we have, in that position, A, = p, =v; =1 and the

N
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other cosines are zero, so that (Eq. (6)) e=1. If, however, at the
end of the rotation, OY and OY' are oppositely directed, \, =
=1 p=—1,and e=—1.

39. Euler’s formulas for rotation of axes. Let the coordinates of
a point P referred to O-XYZ be (z, y, ), referred to O-NY,Z be
(@1, Y1, 1), referred to O-NY,Z be (x, y, %), and referred to
O0-X'Y'Z" be (&, ¥/, ), (Fig. 21).

In the first rotation, through the angle ¢, z remains fixed.
Hence, from plane analytic geometry,

Z=12, ®=2 08¢ —y sin¢p, y=uwx sin¢ + y, cos ¢.

In the rotation through the angle §, z, remains fixed. Hence
we have .

Xy =@y Y =1, c080—28in6, 2 =y,sinb + z coséb.
Finally, if O-X"Y"Z’ can be obtained from O-XYZ by rotation,
%2, remains fixed, and we have

%H=12, m=2a cosy—y sinyg, y,=2a siny+y cosy.

On eliminating @, ¥, 235 @, %), 2, the final result is obtained,
namely :
@ =« (cos ¢ cos i — sin ¢ sin y cos ) — y'(cos ¢ sin ¢

-+ sin ¢ cos ¢ cos 6) + 2’ sin ¢ sin 6.
y = (sin ¢ cos  + cos ¢ sin ¢ cos §) — 3/ (sin ¢ sin ¢

— €08 ¢ cos Y cos ) — 2’ cos ¢ sin 6.
z =2 sinysin 6 4 ¥ cos y sin 6 + 2’ cos 6.

If O-X'Y"Z’ cannot be obtained from O-XYZ by rotation, the

sign of y’ should be changed. These formulas are known as
Euler’s formulas.

40. Degree of an equation unchanged by transformation of co-
ordinates. If in an _equation F(x, y, z) = 0 the values of x, y, z are
replaced by their values in any transformation of axes the degree
of F cannot be made larger, since =, v, z are replaced by linear ex-
pressions in «/, ¥/, 2. But the degree of the equation cannot be
made smaller, since by returning to the original axes and to the
original equation, it would be made larger, which was just seen to
be impossible.
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EXERCISES

1. Transform the equation 22 —3yz + y2—6x + 2 =0 to parallel axes
through the point (1, — 1, 2).

2. By means of equations (2) show that the expression 22 + y2 4 22 is un-
changed by rotation of the axes. Interpret geometrically.
~ 3 Show that the lines x=g g; %:—_y—1=z; gzyz_ig are mu-
tually perpendicular. Write the equations of a transformation of codrdinates
to these lines as axes.

Il

4. Translate the axes in such a way as to remove the first degree terms
from the equation 22 —2y2 + 622 — 16— 4y —242437=0.

5. Show that the equation ax 4 by + ¢z + s = 0 may be reduced to x =0
by a transformation of codrdinates.

6. Find the equation of the locus 112 + 1092 + 622 — 8yz + 42x — 12xy
— 12 = 0 when lines through the origin whose direction cosines are %, %, %;
2,1, —%; — % % — } are taken as new cotrdinate axes.

7. Show that if O-X’Y'Z' can be obtained from O-XYZ by rotation, and
if 0Y can be made to coincide with OX by a revolution of 90 degrees,
counterclockwise, as viewed from the positive end of the Z-axis, then OY'
can be revolved into OX? by rotating counterclockwise through 90 degrees as
viewed from the positive Z’-axis.

8. Derive from Ex. 7 a necessary and sufficient condition that O-X'Y'Z'
can be obtained from O-XYZ by rotation.



CHAPTER 1V

TYPES OF SURFACES

41. Imaginary points, lines, and planes. In solving problems
that arise in analytic geometry, it frequently happens that the
values of some of the quantities , y, 2 which satisfy the given
conditions are imaginary. Although we shall not be able to plot
a point in the sense of Art. 1, when some or all of its codrdinates
are imaginary, it will nevertheless be convenient to refer to any
triad of numbers @, y, 2, real or imaginary, as the codrdinates of a
point. If all the codrdinates are real, the point is real and is de-
termined by its coordinates as in Art. 1; if some or all of the
cobrdinates are imaginary or complex, the point will be said to be
imaginary. Similarly, a set of plane coordinates u, v, w will de-
fine a real plane if all the coordinates are real; if some or all
of the coordinates are imaginary, the plane will be said to be
imaginary.

A linear equation in z, y, 2, with coefficients real or imaginary,
will be said to define a plane, and a linear equation in w, v, w, °
with coefficients real or imaginary, will be said to define a point.

The equations of any two distinet planes, considered as simul-
taneous, will be said to define a line. It follows that if (x,, ¥, %)
and (2, ¥ %) are any two points on the line, then the coordinates
of any other point on the line can be written in the form
ke, + kyarp, ete. The line is also determined by the equations of
any two distinet points on it.

The line joining two imaginary points is real if it also contains
two real points. If P=(a + ik, b+ il, ¢ + @) is an imaginary
point, the point P' =(a — ik, b — il, ¢ — im), whose codrdinates
are the respective conjugates of those of P, is called the point
conjugate to P. The line joining any two conjugate points is
real; thus the equations of the line PP’ are lu — ky + bk — al =0,
(om — el)x +(ck — am)y +(al — bk)z =0. The line of intersec-

44 :

.
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tion of two imaginary planes is real if through it pass two distinet
real planes. The line of intersection of two conjugate planes
is real.

From the preceding it follows that no imaginary line can con-
tain more than one real point, and through an imaginary line
cannot pass more than one real plane. If a plane passes through
an imaginary point and not through its conjugate, the plane is
imaginary. If a point lies in an imaginary plane and not in
its conjugate, the point is imaginary.

One advantage of using the form of statement suggested in this
Article is that many theorems may be stated in more general form
than would otherwise be possible. We may say, for example,
that every line has two (distinet or coincident) points in common
with any given sphere.

With these assumptions the preceding formulas will be applied
to imaginary elements as well as to real ones. No attempt will be
made to give to such formulas a geometric meanmg when imagi-
nary quantities are involved.

In the following chapters, in all discussions in which it is
necessary to distingnish between real and imaginary quantities,
it will be assumed, unless the contrary is stated, that given points,
lines, and planes, and the coefficients in the equations of given
surfaces, are real.

EXERCISES

L 1. Show that the point (2+4¢, 1+3 4, ) lies on the plane x—2y + 52=0.
7y

2. Find the cobrdinates of the points of intersection of the line whose
parametric equations are (Art. 20) 2 =1+ J d, y=—2 + 4 d,2=5— 1§ d,
with the sphere #2 492+ 22 =1.

3. Show that the line of intersection of the planes z + iy =0, (1 + )z +
(8 —214)y =0 is real.

4. Tind the coordinates of the point of intersection of the line through
(3,2, —2) and (4, 0, 3) with the plane x +8y + (L —2¢)z+1=0.

5. Find the equation of the plane determined by the points (5 +1, 2, —2
—1i), (4+2¢ —1+27,0), (¢, 14+214, 1437).

6. Determine the points in which the sphere (x — 1)2+ %2+ (2 +2)?=1
intersects the X-axis.
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42. Loci of equations. The locus defined by a single equation
among the variables @, y, z is called a surface. A point
P= (), y, 2) lies on the surface F = 01if, and only if, the cobr-
dinates of Psatisfy the equation of the surface. We have seen,
for example, that the locus of a linear equation is a plane. More-
over, the locus of the equation

P4y 42t =1
is a sphere of radius unity with center at the origin.
The locus of the real points on a surface may be composed of

curves and points, or there may be no real points on the surface;
for example, the locus of the real points on the surface
224+ yt=0
is the Z-axis; the locus of real points on the surface
24 yt422=0
is the origin; the surface
224y +224+1=0
has no real points.

If the equation of a surface is multiplied by a constant different
from zero, the resulting equation defines the same surface as be-
fore; for, if F=0 is the equation of the surface and % a constant
different from zero, the coordinates of a point P will satisfy the
equation kF =0 if, and only if, they also satisfy the equation F=0.

The locus of two simultaneous equations is the totality of the
points whose coordinates satisfy both equations. If F(x, y, 2)=0,
[z, y, 2) =0 are the equations of two surfaces, then the locus of
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