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PREFACE.

Tuis text-book is designed for Colleges, Universities,
and Technical Schools. The aim of the author has been
to prepare a work for beginners, and at the same time to
make it sufficiently comprehensive for the requirements of
the usual undergraduate course. For the methods of develop-
ment of the various principles he has drawn largely upon his
experience in the class-room. In the preparation of the work
all authors, home and foreign, whose works were available,
have been freely consulted.

In the first few chapters elementary examples follow the
discussion of each principle. In the subsequent chapters
sets of examples appear at intervals throughout each chapter,
and are so arranged as to partake both of the nature of a
review and an extension of the preceding principles. At the
end of each chapter general examples, involving a more
extended application of the principles deduced, are placed for
the benefit of those who may desire a higher course in the
subject.

The author takes pleasure in calling attention to a ¢ Dis-
cussion of Surfaces,” by A. L. Nelson, M.A., Professor of
Mathematics in Washington and Lee University, which
appears as the final chapter in this work.

He takes pleasure also in acknowledging his indebtedness
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to Prof. C. S. Venable, LL.D., University of Virginia, to
Prof. William Cain, C.E., University of North Carolina,
and to Prof. E. 8. Crawley, B.S., University of Penunsylvania,
for assistance rendered in reading and revising manuseript,
and for valuable suggestions given.
E. W. NicHoLs.
LEXINGTON, VA.

January, 1893,
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PLANE ANALYTIC GEOMETRY.

PART L

CHAPTER L

CO-ORDINATES. —THE CARTESIAN OR BILINEAR
SYSTEM.

1. Tug relative positions of objects are determined by
referring them to some other objects whose positions are
assumed as known. Thus we speak of Boston as situated
in latitude — ° north, and longitude — ° west. Here the ob-
jects to which Boston is referred are the equator and the
meridian passing through Greenwich. Or, we speak of Bos-
ton as being so many miles north-east of New York. Here the
objects of reference are the meridian of longitude through
New York and New York itself. In the first case it will be
observed, Boston is referred to two lines which intersect each
other at right angles, and the position of the city is located
when we know its distance and direction from each of these
lines.

In like manner, if we take any point such as P; (Fig. 1) in
the plane of the paper, its position is fully determined when
we know its distance and direction from each of the two lines
O X and O Y which intersect each other at right angles in
that plane. This method of locating points is known by the

name of THE CARTESIAN, or BILINEAR SysteEM. The lines of
1
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reference O X, O Y, are called Co-orpINATE AXEs, and, when
read separately, are distinguished as the X-axis and the
Y-ax1s. The point O, the intersection of the co-ordinate
axes, is called the OriGix oF Co-ORDINATES, or simply the
ORIGIN.

The lines «’' and gy which measure the distance of the
point P; from the Y-axis and the X-axis respectively, are

Y
P, x] R
y’
0 Y
al
R R
FiG. 1.

called the co-ordinates of the point — the distance (z') from
the Y-axis being called the abscissa of the point, and the dis-
tance () from the X-axis being called the ordinate of the
point.

2. Referring to Fig. 1, we see that there is a point in each
of the four angles formed by the axes which would satisfy
the conditions of being distant #’ from the Y-axis and distant
9’ from the X-axis. This ambiguity vanishes when we com-
bine the idea of direction with these distances. In the case
of places on the earth’s surface this difficulty is overcome by
using the terms north, south, east, and west. Inanalytic geome-
try the algebraic symbols + and — are used to serve the same
purpose. All distances measured to the right of the Y-axis
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are ecalled positive abscissas; those measured to the left,
negative ; all distances measured adove the X-axis are called
positive ordinates; all distances below, negative. With this
understanding, the co-ordinates of the point I’; become (', y') ;
of Py, (—a, y'); of Py, (—a/, —y'); of Py, (&', —¥).

3. The four angles which the co-ordinate axes make with
each other are numbered 1, 2, 3, 4. The first angle is above
the X-axis, and to the right of the Y-axis; the second angle
is above the X-axis, and to the left of the Y-axis; the third
angle is below the X-axis, and to the left of the Y-axis; the
fourth angle is below the X-axis and to the right of the
Y-axis.

EXAMPLES.
1. Locate the following points:
(=12, (23), G -1, (=1, =1, (=2 0), (0,1),
0, 0), (3, 0), (0, —4).
2. Locate the triangle, the co-ordinates of whose vertices
are,
0, 1), (= 1,—2), 3, —4).
3. Locate the quaduhte‘m% the co-ordinates of whose ver-
tices are,
(2, 0); (0, 3), (—4.0), (0, — ol
What are the lengths of its sides ?
Ans. /18, 5, 5, V/13.
4. The ordinates of two points are each = — &; how is
the line joining them situated with reference to the X-axis ?
Ans. Parallel, below.

5. The common abscissa of two points is @ ; how is the
line joining them situated ?

6. In what angles are the abscissas of points positive ?
In what negative ? £

7. In what angles are the ordinates of points negative ?
In what angles positive ?



4 PLANE ANALYTIC GEOMETRY.

8. In what angles do the co-ordinates of points have like
signs ?  In what angles unlike signs ?

9. The base of an equilateral triangle coincides with the
X-axis and its vertex is on the Y-axis at the distance 3 below
the origin; required the co-ordinates of its vertices ?

Ans. (3 ~/12, 0), (0, — 3), (-} V 12, 0).

10. If a point so moves that the ratio of its abscissa to its
ordinate is always = 1, what kind of a path will it describe,
and how is it situated ?

Ans. A straight line passing through the origin, and mak-
ing an angle of 45° with the X.axis.

11. The extremities of a line are the points (2,1), ( — 1, — 2):
construet the line.

12, If the ordinate of a point is =0, on which of the
co-ordinate axes must it lie ? If the abscissa is =07?

13. Construct the points (— 2, — 3), (2, 3), and show that
the line joining them is bisected at (0, 0).

14. Show that the point (m, n) is distant vm? + 22 from
the origin.

15. Find from similar triangles the co-ordinates of the
middle point of the line joining (2, 4), (1, 1).
Ans. (3, 3).

THE POLAR SYSTEM.

4. Instead of locating a point in a plane by referring it to
two intersecting lines, we may adopt the second of the two
methods indicated in Art. 1. The point P,, Fig. 2, is fully
determined when we know its distance O P, (= r) and direc-
tion P, O X (= 6) from some given point O in some given
line O X. If we give all yalues from 0 to oo to 7, and all
values from 0° to 360° to 6, it is easily seen that the position
of every point in a plane may be located.

This method of locating a point is called the Ponar SysTEM.
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The point O is ecalled the Pore; the line O X, the PorAr
Axis, or INrT1AL Line; the distance 7, the Rap1us VEcror;
the angle 6, the DIRECTIONAL or VECTORIAL ANGLE. The
distance = and the angle 6, (r, 0), are called the PorLar Co-
ORDINATES of a point.

5. In measuring angles in this system, it is agreed (as in
trigonometry), to give the positive sign (4-) to all angles meas-

Fia. 2.

ured round to the left from the polar axis, and the opposite
sign (—) to those measured to the right. The radius vector
(r) is considered as positive (+) when measured from the
pole foward the extremity of the arc (6), and negative (—)
,when measured from the pole away from the extremity of the
arc (0). A few examples will make this method of locating
points clear.

If 7 = 2 inches and § = 45°, then (2, 45°) locates a point
P, 2 inches from the pole, and on a line making an angle
of 4-45° with the initial line.

If » = — 2 inches and 6 = 45°, then (— 2, 45°) locates a
point P; 2 inches from the pole, and on a line making an
angle of 45° with the initial line also; but in this case the
point is on that portion of the boundary line of the angle
which has been produced backward through the pole.

If »=2 inches and § = — 45°, then (2, — 45°) locates a
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point P, 2 inches from the pole, and out on a line lying below
the initial line, and making an angle of 45° with it.

If »= — 2 inches and 6= — 45° then (—2, —45°)
locates a point P, directly opposite (with respect to the pole),
the point Py, (2, — 45°).

6. While the usual method in analytic geometry of express-
ing an angle is in degrees, minutes, and seconds (%, ', "), it
frequently becomes convenient to express angles in terms of
the angle whose arc is equal in length to the radius of the
measuring circle. This angle is called the CircuLAR UNIT.

We know from geometry that angles at the centre of the
same circle are to each other as the ares included between
their sides; hence, if 6 and ¢ be two central angles, we
have,

0  arc

¢  ard
Let @ — unit angle; then ard’ =1 (radius of measuring
circle).

0 are

Hence “circular unit 7
.1 0 = are X circular unit.
1f § = 360°, common measure, then are = 2.
Hence, rX 360° =2mr X circular unit.
Therefore the equation,
360° = 27 X circular unit, . . . @)
expresses the relationship between the two units of measure.
\
EXAMPLES. '
1. What is the value in cireular measure of an angle of 30°7
From (1) Art. 6, we have,
360° =30° X 12 =2~ cireular unit.

™ . .
% Y = . civeular unit.
)
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2. What are the values in circular measure of the following

angles ?
1°, 45°, 60°, 90°, 120°, 180°, 225°, 270°, 360°,
3. What are the values in degrees of the following angles?
i Kepe @ 08 R Il e PR

™
=y =w, =, —m, & 2.

B P8 haT AT s
4. What is the unit of circular measure ?
Ans. 57°, 17, 45"\ & (4

3. Locate the following points :

@, 40°), <3, g) (— 4, 90), (3, — 135°), (— 1, — 180°),
(2, %) (1, —Z.W), (=2, 210°), (3, 2),

(s ()

6. Locate the triangle whose vertices are,

(i (5)

7. The base of an equilateral triangle (= a) coincides with
the initial line, and one of its vertices is at the pole; re-
quired the polar co-ordinates of the other two vertices.

Ans. <a, §>’ (a, 0).
8. The polar co-ordinates of a point are (2, i) Give

three other ways of locating the same point, using polar
co-ordinates.

['71' 3T (T
Ans. — 2, T, g (= = 2L B ek ) -
ns < y ) < 3 9 5

9. Construct the line the co-ordinates of whose extremities

are H=p [=ds g
6 3
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10. How is the line, the co-ordinates of two of its points

being(S, 1—1) (3, éf), situated with reference to the initial

line ? Ans. Parallel.

Find the rectangular co-ordinates of the following points :

o T ™
1. <o, 3} 13 <4, §>.
2 (-3 Z). 14. _oi
2 (=5 ) (->5)
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CHAPTER II

LOCI.

7. Tur Locus or AN EQUATION is the path described by its
generatrix as it moves in obedience to the law expressed in the
equation.

The Equation or A Locus is the algebraic expression of
the law subject to which the generatricz moves in describing that
locus.

If we take any point Pj, equally distant from the X-axis
and the Y-axis, and impose the condition that it shall so move

Y
Pz

<

P
+0

FiaG. 3.
that the ratio of its ordinate to its abscissa shall always be
equal to 1, it will evidently describe the line P;P;. The
algebraic expression of this law is

?/—=1,org/=w,
4

and is called the Equation of the Locus.
The line P;P, is called the Locus of the Equation. Again:
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if we take the point P,, equally distant from the axes, and
make it so move that the ratio of its ordinate to its abscissa
at any point of its path shall be equal to — 1, it will describe
the line P, P,. In this case the equation of the locus is

8 IR

=—1ory = —x,

and the line P, P, is the locus of this equation.

8. It will be observed in either of the above cases (the
first, for example), that while the point P moves over the
line Py P, its ordinate and abscissa while always equal are
yet in a constant state of change, and pass through all values
from — o, through 0, to 4+ . For this reason y and z are
called the VARIABLE or GENERAL Co-oRDINATES of the line.
If we consider the point at any particular position in its
path, as at P, its co-ordinates (— a/, — #/) are constant in
value, and correspond to this position of the point, and to
this position alone. The variable co-ordinates are represented
by = and y, and the particular co-ordinates of the moving
point for any definite position of its path by these letters
with a dash or subsecript; or by the first letters of the
alphabet, or by numbers. Thus (&, ¥'), (z1, 1), (a, 8), (2, 2)
correspond to some particular position of the moving point.

EXAMPLES.
1. Express in language the law of which y = 3 + 2 is the
algebraic expression.
Ans. That a point shall so move in a plane that its ordinate
ghall always be equal to 3 times its abscissa plus 2.

2. A point so moves that its ordinate 4 a quantity a is
always equal to } its abscissa — a quantity & ; required the
aloebraic expression of the law,

Ans. y +a=1%x —0b.

3. The sum of the squares of the ordinate and abscissa of
a moving point is always constant, and = « %; what is the
equation of its path ?

Ans. x* 4y =a®
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4. Give in language the laws of which the following are
the algebraic expressions:

2y=ux— g —yi= —6.
2
%4-%— ik xy = 16.
y:=4wx. 422 —5y?= —18.
222 4+ 3y*=06. a®y? + 0%x® = a2
yt = 2 pa.

9. As the relationship between a locus and its equation
constitutes the fundamental conception of Analytic Geometry,
it is important that it should be clearly understood before
entering upon the treatment of the subject proper. We have
been accustomed in algebra to treat every equation of the
form y = = as indeterminate. Here we have found that this
equation admits of a geometric interpretation ; i.e., that it repre-
sents a straight line passing through the origin of co-ordi-
nates and making an angle of 45° with the X-axis. We shall
find, as we proceed, that every equation, algebraic or transcen-
dental, which does not involve more than ¢hree variable quan-
tities, is susceptible of a geometric interpretation. We shall
find, conversely, that geometric forms can be expressed alge-
braically, and that all the properties of these forms may be
deduced from their algebraic equivalents.

Let us now assume the equations of several loci, and let us
locate and discuss the geometric forms which they represent.

10. Locate the geometric figure whose algebraic equivatent is /¥ '

y=3x+2

We know that the point where this locus cuts the Y-axis has
its abscissa @ = 0. If, therefore, we make x = 0 in the equa-
tion, we shall find the ordinate of this point. Making the
substitution we find y = 2. Similarly, the point where the
locus cuts the X-axis has 0 for the value of its ordinate. Mak-
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ing y = 0 in the equation, we find # = — . Drawing now
the axes and marking on them the points

(©, 2),(-5, 0),

we will have two points of the required locus. Now make @
successively equal to

1,23 —1, — 2, — 3, ete.
in the equation, and find the corresponding values of y. For
convenience let us tabulate the result thus:

Values of « Corresponding Values of »
1 L 5
2 Z 8
3 @ kil
—1 5 ’ -1
-2 & —4
Y
b
a/ |0 X
FiG. %

Locating these points and tracing a line through them we
have the required locus. This locus appears to be a straight
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line —and it is, as we shall see hereafter. We shall see also
that every equation of the first degree between two variables
represents some straight line. The distances Oa and 0%
-which the line cuts off on the co-ordinate axes are called
IntERCEPTS. In locating straight lines it is usually sufficient
to determine these distances, as the line drawn through their
extremities will be the locus of the equation from which their

values were obtained. /

EXAMPLES.
1. Locate the geometric equivalent of
il
—y—x=1—2zx
9 Y

Solving with respect to # in order to simplity, we have,
y=—2x42
The extremities of the intercepts are
©,2), (@@,0).
Locating these points, and drawing a straight line through
them, we have the required locus.

Construet the loci of the following equations:

2. y=—2z—2. 7.%—{—2%‘:3{1}—3/.
3. y=38x—1 8 22 43y=7—1y.
e —1 y -2
& g= b. e B e
y=ar+ 2 3
5. %y:cm—d. 10. 1——‘-/—_'-{—90 O‘T_2+g/.
6. 2y =3z 11.x—y=—gj—2x.

12. Is the point (2, 1) on the line whose equation is
y=2x2—3? Is(6,9? Is(5,4)? Is(0,—3)?

Norr. —If a point is on a line, its co-ordinates must satisfy
the equation of the line.
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13. Which of the following points are on the locus of the
equation 3 x? 4 2J =67

@ 1), V3,0), 0,V3), (- 1,3), (- V30, ¢, V5)
14, Write six points which are on the line

ly—20=3y—6

15. Construct the polygon, the equations of whose sides are
y=—2x—1, y==, y=>5.

16. Construct the lines y =sx 4+ 6 and y = sz + 4, and
show by similar triangles that they are parallel.

11. Discuss and construct the equation :
x? + y? = 16.
Solving with respect to y, we have,

¥y=4+ V16 — 2%

The double sign before the radical shows us that for every
value we assume for x there will be two values for y, equal
and with contrary signs. This is equivalent to saying that
for every point the locus has above the X-axis there is a cor-
responding point below that axis. Hence the locus is symmet-
rical with respect to the X-axis. Had we solved the equation
with respect to = a similar course of reasoning would have
shown us that the locus is also symmetrical with respect to the
Y-axis. Looking under the radical we see that any value of «
less than 4 (positive or negative) will always give two real
values for y; that # = 4 4 will give ¥y = L 0, and that any
value of « greater than L 4 will give imaginary values for y.
Hence the locus does not extend to the right of the Y-axis
farther than @ = 4+ 4, nor to the left farther than x = — 4.

Making =0, we have y = 1L 4
143 ?/-:O, 43 13 x=:l:4
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Drawing the axes and constructing the points,
0, 9, (0, — 4); (4, 0), (— 4, 0), we have four points of
the locus; i.e., B, B, A, A’
Y
B

e ——

] ™~

VA q
V4

8

e
F1G. 5.
Values of « Corresponding Values of y
1 & + 3.8 and — 3.8
2 & + 3.4 and — 3.4
3 & -+ 2.6 and — 2.6
4 13 :I: 0
-1 % + 3.8 and — 3.8
-2 s + 3.4 and — 34
-3 & + 2.6 and — 2.6
'y “ :E 0

Constructing these points and tracing the curve, we find it
to be a circle.

This might readily have been inferred from the form
of the equation, for we know that the sum of the squares
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of the abscissa (OC) and ordinate (CP,) of any point P,
in the circle is equal to the square of the radius (OP,).
We might, therefore, have constructed the locus by taking
the origin as centre, and describing a circle with 4 as a radius.

Nore. z = L 0 for any assumed value of y, or y = L 0,
for any assumed value of x always indicates a tangency. Re-
ferriug to the figure we see that as z increases the values of
y decrease and become L 0 when @ =4. Drawing the line
represented by the equation @« = 4, we find that it is tangent
to the curve. We shall see also as we proceed that any two
coincident values of either variable arising from an assumed
or given value of the other indicates a point of tangency.

12. Construct and discuss the equation

92?416 y* = 144.
Solving with respect to y, we have

1 d:\/144 — 9"

z=0gives y = L 3;
y=0 “ x=44
Drawing the axes and laying off these distances, we have
four points of the locus; ie., B, B, A, A’. TFig. 6.

Values of x Corresponding Values of y
1 L +29and — 2.9
2 “ +26 “ —26
3 I + 2 ‘o2
4 « 40
-1 £ +29 « —29
-2 g 426 « —26
— 3 7] _1_ P “ 92
—4 1 -_{: O

Locating these points and tracing the curve through them,
we have the required locus. Referring to the value of y we
see from the double sign that the curve is symmetrical with
respect to the X-axis. The form of the equation (Egllffli.lling
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only the second powers of the variables), shows that the locus
is also symmetrical with respect to the Y-axis. Looking
Y

—_—

U

cal

. Fia. 6.

under the radical we see that any value of x between the
limits 4 4 and — 4 will give two real values for y; and that
any value beyond these limits will give imaginary values for
y. Hence the locus is entirely included between these limits.
This curve, with which we shall have more to do hereafter,
is called the ELLIPSE.
13. Discuss and construct the equation
:I/2 =42
Solving, we have _
y= 4+ Vi
We see that the locus is symmetrical with respect to the
X-axis, and as the equation contains only the first power of
x, that it is not symmetrical with respect to the Y-axis. As
every positive value of z will always give real values for y,
the locus must extend infinitely in the direction of the posi-
tive absciss®; and as any negative value of x will render y
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imaginary, the curve can have no point to the left of the
Y-axis. Making 2 =0, we find y = L 0; hence the curve
passes through the origin, and is tangent to the Y-axis.
Making y =0, we find # = 0; hence the curve cuts the
X-axis at the origin.

Values of = Corresponding Values of y
1 & 42 and — 2
2 “ +28 « —28
3 @ +34 ¢« —34
4 113 + 4 (3 - 4

From these data we easily see that the locus of the equation
is represented by the figure below.

‘ =

T,
A
/

o

™~

T

Fi. 7. 3
This curve is called the PAraBoLa.
14. Discuss and construct the equation
42— 9 y* = 36.
2
Hence y = :1:\/4 i ’6
We see from the form of the equation that the locus must
be symmetrical with respect to both axes. Tooking under
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the radical, we see that any value of x numerically less than
+ 38 or — 3 will render y imaginary. Hence there is no
point of the locus within these limits. We see also that
any value of x greater than 4 3 or — 3 will always give real
values for 4. The locus therefore extends infinitely in the
direction of both the positive and negative abscisse from the
limits « = -+ 3. .

Making = =0, we find y = £ 2+ — 1; hence, the curve
does not cut the Y-axis.

Making y =0, we find = L 3; hence, the curve cuts
the X-axis in two points (3, 0), (— 3, 0).

Value of z. Corresponding. Values of y
4 i + 1.7 and — 1.7
5 o +26 « —26
6 & +34 « —34
—4 5 + 17 « —17
-5 & +26 «“ —26
—6 0 +34 « —34
N

N

// a

¥IG. 8.

This curve is called the HypPERBOLA.
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15. We have in the preceding examples confined ourselves
to the construction of the loci of RECTANGULAR equations;
i.e.,, of equations whose loci were referred to rectangular
axes. Let us now assume the Porar equation

r=26 (1 — cos 6)

and discuss and construet it.

Assuming values for 6, we find their cosines from some
convenient table of Natural Cosines. Substituting these
values, we find the corresponding values of 7.

Values of 6 Values of cos 6 Values of »

0 1. 61— 1)= 0
30° .86 6(1—.86)= .84
60° .50 6(1—.50)= 3.
90° 0 61— 0)= 6.

120° — .50 61+ .50) = 9.
160° — .94 6 (14 .94) =11.64
180° — i, 6 (14 1)=12
200° — .94 6 1+ .94) =11.64
240° — .50 6 (14 .50) = 9.
270° 0 61— 0)= 6.
300° .50 61— 50)= 3.
330° .86 6(1—.86)= .84

Draw the initial line OX, and assume any point O as the
pole. Through this point draw a series of lines, making the
assumed angles with the line OX, and lay off on them
the corresponding values of 7. Through these points, tra-
cing a smooth curve, we have the required locus.
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240 270°

Fi1a. 9.
This curve, from its heart-like shape, is called the CarpIoID.

16. Discuss and construct the transcendental equation
y = log a.

Nore. — A transcendental —equation is one whose degree
Lranscends the-power of analysis to express.

Passing to equivalent numbers we have 2% = z, when 2 is
the base of the system of logarithms selected.

As the base of a system of logarithms can never be nega-
tive, we see from the equation that no negative value of  can
satisfy it. Hence the locus has none of its points to the left
of the Y-axis. On the other hand, as every positive value of
z will give real values for ¥, we see that the curve extends
infinitely in the direction of the positive abscissee.

If ¥y = 0, then

X=r..0=logz..z=1.
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If x = 0, then
W=0. . y=1log0..y=— oo

The locus, therefore, cuts the X-axis at a unit’s distance on
the positive side, and continually approaches the Y-axis with-
out ever meeting it. It is further evident that whatever be
the base of the system of logarithms, these conditions must
hold true for all loci whose equations are of the form a¥ = x.

Values of x Corresponding Values of y
1 ié 0
2 Z 1
4 @ 2
8 4 © 3
.5 @ —1
.25 & —2

Locating these points, the curve traced through them wiil
be the required locus.
Y

FiG. 10.

This curve is called the Locaritamic Curve, its name
being taken from its equation. .
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17. The preceding examples explain the method employed
in constructing the locus of any equation. While it is true
that this method is at best approximate, yet it may be made
sufficiently accurate for all practical purposes by assuming
for one of the variables values which differ from each other
by very small quantities. It frequently happens (as in the
case of the ecircle) that we may employ other methods which
are entirely accurate.

18. In the discussion of an equation the first step, usually,
is to solve it with respect to one of the variables which enter
into it. The question of which variable to select is immate-
rial in principle, yet considerations of simplicity and conven-
lence render it often times of great importance. The sole
difficulty, in the discussion of almost all the higher forms of
equations, consists in resolving them. If this difficulty can
be overcome, there will be no trouble in tracing the locus and
discussing it. If, as frequently happens, no trouble arises in
the solution of the equation with respect to one of the vari-
ables, then that one should be selected as the dependent
variable, and its value found in terms of the other. If it is
equally convenient to solve the equation with respect to either
of the variables which enter into it, then that one shounld be
selected whose value on inspection will afford the simpler
discussion.

EXAMPLES.

Construct the loci of the following equations :

L 2y—424+1=0. 5. y*44x=0.

2.y —x?=16. 6. a2 —25=0.
3. 29 +5ax?=10. 7. r*=a%cos 2.

4 42— 992 = — 36. 8. x=1logy.
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Construct the loci of the following :

9. 22 —y:=0. 14 z2—x—6=0.
10. 22+ 2ax +a*>*=0. 15. 22 4+ —6=0.
11. 22 — a2=0. 16. 22 +4x —5=0.
12. 2 —9=0. 17. o —Ta412=0.
13. 42— 2ay +2*=0. 18. 224+ Tx 4 10 =0.

NorE. — Factor the first member: equate each factor to 0,
and construct separately.
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CHAPTER III
THE STRAIGHT LINE.
19. 70 find the equation of a straight line, given the angle

which the line makes with the X-axis, and its intercept on the
Y-axis.

Y
S
P/
B N
A~ o I .
c

FiG. 11,

Let C S be the line whose equation we wish to determine.
Let SAX =« and OB = 5. Take any point P on the line
and draw PM || to OY and BN || to OX.

Then (OM, MP) = (z, %) are the co-ordinates of P.

From the figure PM = PN 4 OB = BNtan PBN + %, but
BN = OM =z, and tan PBN = tan SAX = tan .

.. Substituting and letting tan « = s, we have,

y=szt+b...(Q1)
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Since equation (1) is true for any point of the line SC, it
is true for every point of that line; hence it is the equation of
the line. Equation (1) is called the Storr EQUATION OF THE
STRATIGHT LINE; s ( = tan «) is called the slope.

Cororrary 1. If & = 0 in (1), we have,
y=sx ... (2
for the slope equation of a line which passes through the
origin. !
Cor. 2. If s =01in (1), we have
y=>b

which is, as it ought to be, the equation of a line parallel to
the X-axis.

Cor. 3. If s = oo, then « = 90° and the line becomes
parallel to the Y-axis.

Let the student show by an independent process that the
equation of the line will be of the form x = a.

ScaoriuMm. We have represented by « the angle which the
line makes with the X-axis. As this angle may be either
acute or obtuse, s, its tangent, may be either positive or nega-
tive. The line may also cut-the Y-axis either above or below
the origin; hence, &, its Y-intercept, may be either positive or
negative. From these considerations it appears that

y=—sx+b
represents a line crossing the first angle;
y=sxr+0b

represents a line crossing the second angle;
y=—sr—2>b

represents a line crossing the third angle;
y=sx —b

represents a line crossing the fourth angle.
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EXAMPLES.

1. The equation of a line is 2y 4 @ = 3; required its
slope and intercepts.
Solving with respect to y, we have,

1 3

Comparing with (1) Art. 19, we find s = — %and ey

¢

= Y-intercept. Making y =0 in the equation, we have
2« = 3 = X-intercept.

2. Construct the line 2y 4« = 3. -

The points in which the line cuts the axes are

<0, g) and (3, ).

Laying these points off on the axes, and tracing a straight
line through them, we have the required locus. Or otherwise
thus : solving the equation with respect to y, we have,

1,48
y= 90+2-

)

“

Lay off OB =6 = ‘23; draw

BYXN || OX and make it = 2, also
NP | OY and make it = 4 1.
The line through P and B is
the required locus.

PN 1
—_— i .LT
For NE — 2 = tan PBN
= — tan BAX.

... tan BAX —_ = —

L
-
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3. Construct the line 2 y — 2 = 3.
Solving with respect to y, we have,

1 3
y=§x—|—§.

Lay off BO =0 = % Draw BN

‘

e N | to OX and make it =2; draw
also NP | to OY and make it = 1.

0
A X A straight line through P and B
will be the required locus.
For f% = ;— =tan PBN = tan

BAX =s. Hence, in general, BN is laid off to the right or
to the left of Y according as the coefficient of @ is positive
or negative.

Give the slope and intercepts of each of the following lines
and construct:

4 2y +3x—2=0.
Ans. s=—§— b=1 a=?—'.
% ’ 3

5, x — 2y +3=0.
Ans. s=%,b=%, a=—3.
1

Ans. s=—12,b=—2,a=—%.

7. xg2+3¢=4. 8.y§1+2x=1—y.

9. x+2+%=4,

NoTE. — a and b in the answers above denote the X-intercept
and the Y-intercept, respectively.
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What angle does each of the following lines cross ?

10 y =3z + 1. 12. y=22 —1.

11.y=—x+2.\y)\‘ 13. y=—3z—2. 3%
14. Construct the figure the equation of whose sides are
2y +2—-1=0,3y=22+2,y=—x — 1.
ot the cquas
15. Construct the quadri the equations of whose sides

are
2=3,y=—oc+1Ly=2x=0.

20. 7o find the equation of o straight line in terms of its
intercepts.

S

F1c. 12.
Let S C be the line.
Then OB = 4 = Y-intercept, and
OA = a = X-intercept.

The slope equation of a line we have determined to be
Art. 19, equation (1),
y =sr + b
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From the right angled triangle AOB, we have,

tan OAB = — tan BAX — — s = 9B,
OA
b
§ = — —.
a
Substituting in the slope equation, we have,
b
y=—-x +b;
a
~EpY=1.. .

This is called the SymmeTrICAL EqQUATION Of the straight
line.

Cor. 1. If @ 4 and & +, then we have,

»

=, +;}i =1, for a line crossing the first angle.
a
If @ — and b 4, then
oy % = lis aline crossing the second angle.
a

If @ — and & —, then

-, Be % = 1 is a line crossing the third angle.
a

If a + and 4 —, then

&

- y—b =1 is a line crossing the fourth angle.
a

EXAMPLES.

z_ Yy _
1. Construct T 1.

NotEe. — Lay off 3 units on the X-axis and — 2 units on the -
Y-axis. Join their extremities by a straight line.

Across which angles do the following lines pass ?
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Give the intercepts of each, and construct.

2 S+4=1 £ ==V
3 T Y _ 1 fé 5.2 _Y 1 Lot
P i R s e

Write the slope equations of the following lines, and
construet:

6.

=Y
Ans. g/=——éac—-1.

10. Write y = sx + b in a symmetrical form. 4

Y b B ;
Ans. p 6_1' o -
s

-

Given the following equations of straight lines, to write
their slope and symmetrical forms :

1L 2y 482 —T=a+2 13 VL=2_3

—1 xz—3 x — 1 20 —1
12 Y — - - | 14, Y )
2 3 s 4 3
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21. To find the equation of a straight line in terms of the
perpendicular to it from the origin and the directional cosines

of the perpendicular.

Note. — The Directional cosines of a line are the cosines of
the angles which it makes with the co-ordinate axes.

FiG, 13.

Let CS be-the line.
Let OP = p, BOP =y, AOP = «.
From the triangles AOP and BOP, we have

cos a cos ¥
that is, a = c_o%:z’ = géjslj .
/

Substituting these values in the symmetrical equation,
Art. 20. (1), 4 +% = 1, we have, after reducing,

a

xcose +ycosy=p... (1)

which is the required equation.
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Since y = 90° — e, cos y = sin «; hence
zeosa+ysine=p ... (2)

This form is more frequently met with than that given in (1)
and is called the NormAaL Equatiox of the straight line.

Cor. 1. If « = 0, then

x=p
and the line becomes parallel to the Y-axis.
Cor. 2. If « = 90°, then
PEL
and the line becomes parallel to the X-axis.

22. If 2 cosu + y sin« = p be the equation of a given line,
then x cos« 4y sinu = p L d is the equation of a parallel
line. TFor the perpendiculars p and p 4 d coincide in direction
since they have the same directional cosines; hence the lines
to which they are perpendicular are parallel.

Cor. 1. Since

ptd—p=24d

it is evident that d is the distance between the lines. If,
therefore, (¢, ') be a point on the line whose distance from
the origin is p 4 d, we have

x' cosu + y sine =p L d.
ot d=a"cose+y sine—p... 1)
Hence the distance of a point (z, y) from the line
x cos e + y sine = p is found by transposing the constant
term to the first member, and substituting for « and y the co-
ordinates «’, ' of the point. Let us, for example, find the

distance of the point (1/ '3, 9) from the line x cos 30° 4y sin
30°. = 5.

From (1)  d = V3cos 30° + 95sin30° — 5
—v3V3ii9e.l 5

SepaA=11"
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From Fig. 13 we have cose =2, sine =4 = 1
a b a4 b?
— ab
P -\/a/Z 40 b2
Hence id:(i-{—‘i_l)——_ﬁ:{:
a b Va? 4 b?

is the expression for the distance of the point («, ) from a
line whose equation is of the form g 3_2 =1.
a

Let the student show that the expression for d becomes
_ Az 4+ By 4+ C

VAZ ;|'7B2
when the equation of the line is given in -its general form.
See Art. 24, Equation (1).

EXAMPLES.

1. The perpendicular Hzt fall from the origin on a straight
line = 5 and makes an angle of 30° with X-axis; required the
equation of the line.

Ans. V3z + y = 10.

2. The perpendicular from the origin on a straight line
makes an angle of 45° with the X-axis and its length = v/2;
required the equation of the line.

Ans. x4y =
3. What is the distance of the point (2, 4) from the line
Z gV 2
-+ o . Ans. 7 g

Find the distance of the point from the line in each of the
following cases :

4. From (2, 5) to rT_¥=1

3 2

xr 3//""
5. From (3, 0) to 1—{%:1. Tw

6. From (0,1)to2y —x=2.

7. From (a, ¢) toy = sx 4 b. TDips N2
bv‘
= Co el
—_— o = S
-+ /_{(f P /__/' o
- s

s j\vbﬂjﬁ'ﬁ
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23. To find the equation of a straight line referred to
oblique axes, given the angle between the axes, the angle which
the line makes with the X-axis and its Y-intercept.

Note. — Oblique axes are those which intersect at oblique
angles.

Fic. 14.

A
Let CS be the line whose equation we wish to determine,
it being any line in the plane YOX.
Let YOX = 8, SAX = ¢, OB =b.
Take any point P on the line and draw
PM | to OY and ON || to SC;
then, PM =y, OM =2, NOX = ¢, NP = OB =b.
From the figure :
y=MN+4NP=MN+b... ()
From triangle ONM, we have,
MXN _ sin NOM |
OM ~ sin MNO’
JMN sin «
oz sin (8 —.a)
Substituting the value of . MN drawn from this equation in
(1), we have,

sin u
NS e
sin (8 — «)
6o’

x4+b ., . (2
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This equation expresses the relationship between the co-
ordinates of at least one point on the line. But as the point
selected was any point, the above relation holds good for
every point, and is, therefore, the algebraic expression of the
law which governed the motion of the moving point in de-
scribing the line. Tt is therefore the equation of the line.

Cor. 1. If 6 = 0, then

sin «
y = m x ... (3
is the general equation of a line referred to oblique axes
passing through the origin,
Cor. 2. If 5 = 0 and « = 0, then
y=0...(#4)
the equation of the X-axis.

Cor. 3. If & = 0 and B = «, then

=0...()
the equation of the Y-axis.

Cor. 4. If B = 90°; i.e, if the axes are made rectangular,

then
y =tanax + 0.

But tan« = s .. y = sx + b.

This is the slope equation heretofore deduced. See Art.
19 (1).

Cor. 5. If B =90° and b = 0, then

y = sx. See Art. 19, Cor. 1.

EXAMPLES.

1. Tind the equation of the straight line which makes an
angle of 30° with the X-axis and cuts the Y-axis two units
distant from the origin, the axes making an angle of 60°
with each other.

Ans. y =z + 2.

2. If the axes had been assumed rectangular in the exam-
ple above, what would have been the equation ?

Ans. y = + 2.

X
V3
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3. The co-ordinate axes are inclined to each other at an
angle of 30° and a line passing through the origin is inclined
to the X-axis at an angle of 120°, required the equation of the
line,

Ans. g/=——§\/§.

24. EBvery equation of the first degree between two variables
is the equation of a straight line.

Every equation of the first degree between two variables
can be placed under the form

Az +By4+C=0... (1)

in which A, B, and C may be either finite or zero.
Suppose A, B, and C are not zero. Solving with respect to

¥, we have,

—_A,_C 9
Yy = Bw I%...(u)

Comparing equation (2) with (1) Art. 19, we see that it
is the equation of a straight line whose Y-intercept 4 =

— % and whose slope s = —%; hence (1), the equation

from which it was derived is the equation of a straight line,
C

IfA =0, then y = — 5

the equation of a line parallel to the X-axis.
C

If B = 0, then e

the equation of a line parallel to the Y-axis.

If C =0, then =——1‘§—w,

the equation of a line passing through the origin,
Hence, for all values of A, B, C equation (1) is the equa-
tion of a straight line.

v
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25. 1o find the equation of a straight line passing through
a given point.

Let (2, y') be the given point.

Since the line is to be straight, its equation must be

y=sx+0b...(@1)

in which s and 4 are to be determined.

Now, the equation of a line expresses the relationship which
exists between the co-ordinates of every point on it; hence
its equation must be satisfied when the co-ordinates of any

point on it are substituted for the general co-ordinates 2 and
y.  We have, therefore, the equation of condition.

y =se'+b...(2)

But a straight line cannot in general be made to pass
through a given point (x/, %), cut off a given distance (b) on
the Y-axis, and make a given angle (tan. = s) with the X-axis.
We must therefore eliminate one of these requirements. By
subtracting (2) from (1), we have,

y—y=s@@—2a)...@)
which is the required equation.
Cor. 1. If 2’ = 0, then
y—y =sx ... %)
is the equation of a line passing through a point on the
Y-axis.
Cor. 2. 1f 4/ = 0, then
y=s@®—2a)... )
is the equation of a line passing through a point on the X-axis.
Cor. 3. If &’ =0 and ' = 0, then
Yy = ST

is the equation (heretofore determined), of a line passing
through the origin.
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EXAMPLES.

L Write the equation of several lines which pass through
the point (2, 3).

2. What is the equation of the line which passes through
(1,—2), and makes an angle whose tangent is 2 with the
X-axis ?

Ans. y = 22 — 4.

3. A straight line passes through (—1, — 3), and makes an
angle of 45° with the X-axis. What is its equation ?
Ans. y = x — 2.

4. Required the equations of the two lines which contain
the point (a, 4), and make angles of 30° and 60°, respectively
with X-axis.

X —

Ans. y — b = 5y —b=+/3.(x — a).

/ V3

26. To find the equation of @ straight line passing through
“two given points.

Let (@', y'), (=", ¥”) be the given points.

Since the line is straight its equation must be

y=sr+b...(1)

in which s and & are to be determined.
Since the line is required to pass through the points (z’, %),
(®", ¥""), we have the equations of condition.

Y=s'+40b...(2)
Y ' =sx"+b ... (3

As a straight line cannot, in general, be made to fulfil more
than two conditions, we must eliminate two of the four con-
ditions expressed in the three equations above.

Subtracting (2) from (1), and then (3) from (2), we have,

y—y =s(x—=2x)
y/_y”:S(x’_w”)
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40
Dividing these, member by member, we have,
y—y _x—2a
yl in :’/” .T’ “= il',/ ° >

Hence y—y’:—%—:%(m——w’) oo @
is the required equation.
Cor. 1. If ' = y", then
y—y =00ry=y,
which is, as it should be, the equation of a line || to the X-axis.

Cor. 2. If ' = 2", then
x —a =0, o0rx=a,

whieh is the equation of a line || to the Y-axis.

EXAMPLES.
1. Given the two points (— 1, 6), (— 2, 8); required both
the slope and symmetrical equation of the line passing through

them.
Ans. y=—2x+4,7§+3i=1,

9. The vertices of a triangle are (— 2, 1), (— 3,—4) (2, 0);
y=>5x+11
4z —5y=38

required the equations of its sides.
dy+ax=2

Ans. %

Write the equations of the lines passing through the points :
3 (—2,8),(—3—-1 6. 5,2),(—24
Ans. y=4x+11. Ans. Ty + 22 =24.
4. (1, 4), (0,0) 7. (2,0),(— 3,0
Ans. y =4 Ans. y =
5. (0, 2), (3,—1) 8. (—1,-3),(—29
Ans. y+x =2. Ans. y +Tax 410 =0.
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27. To find the length of a line joining two given points.

e
P”
i c
(0] A B
FiG. 15.

Let (2, '), (=", ¥”) be the co-ordinates of the given points
P, P’. L =P'P” = required length.
Draw P”B and P’A | to OY, and P'C || to OX.
We see from the figure that L is the hypotlienuse of a right
angled triangle whose sides are
PC=AB=0B—0A =2"—2/, and
P'C=P'B-BC=y"—1v.
Hence,
PP =L=+V@E -2V 4+ —y)...Q
Cor. 1. If &’ =0 and ¥ = 0, the point P’ coincides with
the origin, and we have ’

L=+Vz"245"2... (2
for the distance of a point from the origin.

EXAMPLES.

1. Given the points (2, 0), (— 2, 3); required the distance
between them; also the equation of the line passing through
them.

Ans. =54y 432 =6.
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2. The vertices of a triangle are (2, 1) (—1,2) (—3,0);
what are the lengths of its sides ? i

Ans. \/8—, \/ﬁ)—, V/26.

Give the distances between the following points:

3. (2; 3)’ (1) O) o 7. (— 3’ 2)}_ (O, 1)
Ans.  V10.
4 (4, —5), (6, — 1) 8. (= (22— 1pk(2:10)
Ans. /20,
(07 2)’ ("_ 1, 0) 9 ((l, b), ((j’ d)
Ans. V5.
6- (O; 0)) (2, 0) 10 (-—- 2’ 3)’ (_ a, b).
Ans. 2.
11. What is the expression for the area of a triangle whose
vertices are (x,’ .7/,): (m”7 ?/H)a (xm’ ?/W) ?

fins: Area = = y") + 4 Q=) 5 =90

28. To find the intersection of two lines given by their
equations.

Let y = sx + b, and ~

y=sx + 0V

be the equations of the given lines.

Since each of these equations is satisfied for the co-ordinates
of every point on the locus it represents, they must wé-éhe
_same—time be satistied for the co-ordinates of their point of
intersection, as this point is common to both. Hence, forthe
co-ordinates-of this point the equations are simultaneous. So
treating them, we find

b — 'b - ab'
— §

X =

4 ,and y =
—s
for the co-ordinates of the required point.

EXAMPLES.

1. Find the intersection of y =2 +1and 2y = — 4.
Ans. (— 2,=3).
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2. The equations of the sides of a triangle are
2y=3a+lyte=12y+ic=—3;
required the co-ordinates of its vertices.

o Ay k! 4 5 5 7
“\5 s)\ T ) Tae)

3. Write the equation of the line which shall pass through
the intersection of 2y +32 +2 =0 and 3y —ax — 8 =0,
and make an angle with the X-axis whose tangent is 4.

' Ans. y =4z +410.

4. What are the equations of the diagonals of the quadri-
lateral the equations of whose sides are y —ax 1 =0,
y=—2+2,y=3x+2 andy+224+2=0?

Ans. 283y —9x 4+2=0,3y — 30z = 6.

3. The equation of a chord of the circle whose equation is
x4 y? =10 is y = x 4 2; required the length of the chord.
Ans. L = ~/32.

29. If Az+By4+C=0... ()
and Az4+By+4-C=0...(2)
be the equations of two straight lines, then

Ar+By4+C+K A2 +By4+C)=0... (3

(K being any constant quantity) is the equation of a straight
line which passes through the intersection of the lines repre-
sented by (1) and (2). It is the equation of a straight line
because it is an equation of the first degree between two
variables. See Art. 24. It is also the equation of a straight
line which passes through the intersection of (1) and (2),
since it is obviously satisfied for the values of « and y which
simultaneously satisfy (1) and (2).

Let us apply this principle to find the equation of the line
which contains the point (2, 3) and which passes through the
intersection of y =2« +1land 2y +z = 2.
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From (3) we havey — 22 — 14+ K 2y +2—2)=0
for the equation of a line which passes through the intersec-
tion of the given lines. But by hypotheses the point (2, 3) is
on this line; hence 3 —4 —14+K (6 4+2—-2)=0
1

3

Substituting this value for K we have,
y—2e—1+43@y+a-2,=0
or, y—x — 1=0 '

for the required equation. Let the student verify this result
by finding the intersection of the two lines and then finding
the equation of the line passing through the two points.

30. 7To find the angle between two lines given by their
equations.

FIG. 16.

Let y = sx - b. and
y=sx+ ¥V
be the equations of SC and MN, respectively ; then

s = tan « and s’ = tan «.
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From the figures

o = (p—l—a

.'.(p=ul—a,

From trigonometry,

tan @ = tan (¢ — o) = tan o’ — tan e

1 + tan e tan e’

.~ substituting
ta A RS G
DP= T 1)
0 —tan L =5 ()

Cor. 1. If s=¢, then
p=tan"'0..9 =0.
.. the lines are parallel.
Cor. 2. If1+4ss' =0, then
¢ =tan ! w .. ¢ = 90°
.~ the lines are perpendicular.

ScuoL. These results may be obtained geometrically.
If the lines are parallel, then, Fig. 16,

«a=da " s=4¢.

If they are perpendicular

u’=90°—|-u
cotan o = ¢ = tan (90° 4- ¢) = — cot « = — 1 .
tan «
.'.1+ss’=1—|—tanata.na'=1+tana<_ 1 >_
tane / T
1—-—1=0.
EXAMPLES.

1. What is the angle formed by the lines ¥y —ax —1 =0
and 2y 4224+1=07?
5 Ans. ¢ = 90°.
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2. Required the angle formed by the lines y 432 — 2 =0
and 2y +4+6x+48=0.
. Ans. ¢ = 0.
3. Required the equation of the line which passes through
(2, — 1) and is
(a) Parallel to 2y — 32 — 5 =0.
(b) Perpendicular to 2y — 3x — 5 =0.
Ans. (a) 3z —2y =8, B 3y+2z=1
4. Given the equations of the sides of a triangle
y=2x+4+1,y=—ax-+42and y = — 3; required.
(a) The angles of the triangle.
(6) The equations of the perpendiculars from vertices to
sides.
(¢) The lengths of the perpendiculars.

5. What relation exists between the following lines:

y = sz + 0.
y =sx — 3.
y = sx -} 6.
y = sx -+ m.

6. What relation exists between the following:
y = sx + 0. :
y=—sr—+c

7. Find the co-ordinates of the point in which a perpen-
dicular through (— 2, 3) intersects y — 2z 41 =0.

Ans. <§,Z>
5 5

8. Find the length of the perpendicular let fall from the
origin on the line 2y 4= = 4.
' Ans. L = - /80.

9. If A« By4+C=0,Az4By+4C =0, and Ay 4
B"y + C” = 0 be the equations of three straight lines, and /,
m, and n be three constants which render the equation
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l(Az+By+4C) +m (A'z+By+C)+n (A% 4By +

(C”) = 0 an identity, then the three lines meet in a point.

10. Find the equation of the bisector of the angle between
the two lines Az 4+ By 4+ C =0 and A’z + B’y 4+ ¢/ = 0.
o Az + By iC = 1 (A'e 4+ By + (,')
VA2 + B2 \/Alz -+ B2

1/

v

GENERAL EXAMPLES.

1. A straight line makes an angle of 45° with the X-axis
and cuts off a distance = 2 on the Y-axis; what is its equation
when the axes are inclined to each other at an angle of 75°?

Ans. y=~/2x + 2.
2. Prove that the lines y=x2 41, y=22 42 and

y = 3 + 3 intersect in the point (— 1, 0).
3. If (¢, ¥') and (2", y”) are the co-ordinates of the ex-
tremities of a line, show that (x” —21—95 Yy’ + A ) ar® the co-

ordinates of its middle point.

4. The equations of the sides of a triangle are y =« + 1,
x =4, y = —x —1; required the equations of the sides of
the triangle formed by joining the middle points of the sides

of the given triangle.
y=—=z+4
Ans. y=x—4
2x =3
5. Prove that the perpendiculars erected at the middle

points of the sides of a triangle meet in a common point.

Note. — Take the origin at one of the vertices and make
the X-axis coincide with one of the sides. Find the equations
of the sides ; and then find the equations of the perpendiculars
at the middle points of the sides. The point of intersection
of any two of these perpendiculars ought to satisfy the equa-

tion of the third.
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6. Prove that the perpendiculars from the vertices of a
triangle to the sides opposite meet in a point.

7. Prove that the line joining the middle points of two of
the sides of a triangle is parallel to the third side and is equal
to one-half of it.

8. The co-ordinates of two of the opposite vertices of a
square are (2, 1) and (4, 3); required the co-ordinates of the
other two vertices and the equations of the sides.

Ans. (4, 1), (2,3);y =1L y=3, =22 =4.

9. Prove that the diagonals of a parallelogram bisect each
other.

10. Prove that the diagonals of a rhombus bisect each other
at right angles.

11. Prove that the diagonals of a rectangle are equal.

12. Prove that the diagonals of a square are equal and bi-
sect each other at right angles.

13. The distance between the points (z, ) and (1, 2) is = 4;
give the algebraic expression of the fact.

Ans. (x — 124 (y — 2)? =42

14. The points (1, 2), (2, 3) are equi-distant from the point
(x, y). Express the fact algebraically.

(@ —1)2+(y—22=(@ -2+ (y—3)oz+y=4
15. A circle circumseribes the triangle whose vertices are
(8,4), (1, — 2), (— 1, 2) ; required the co-ordinates of its centre.
Ans. (2, 1).

16. What is the expression for the distance between the

points (2", ¥”), (', ¥/), the co-ordinate axes being inclined
at an angle 8 ?

Ans. L=~/(2" — ') (= yPR+2@E — x') (y' — ') cos B.
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17. Given the perpendicular distance (p) of a straight line
from the origin and the angle (¢) which the perpendicular
makes with the X-axis ; required the polar equation of the line.

dns. r=—2L
T s 6 —«)°
18. Required the length of the perpendicular from the

origin on the line g + Z =ik Ans. 2.4

19. What is the equation of the line which passes through
the point (1, 2),and makes an angle of 45° with the line
whose equationis y + 22 =17 '

Ans. g/=—%x+§.

20. One of two lines passes through the points (1, 2),
(— 4, — 3), the other passes through the point (1, — 3), and
makes an angle of 45° with the first line; required the
equations of the lines. .
Ans. y=ax 4+ 1,and y = — 3, or x = 1.

21. If p =0in the normal equation of a line, through
what point does the line pass, and what does its equation
become ? Ans. (0,0); y =s .

22. Required the perpendicular distance of the point (r cos 6,
7sin ), from the line z cos 6§ + ¥ sin 6 = p. Ans. r— p.

23. Given the base of a triangle = 2 @, and the difference
of the squares of its sides =4¢%. Show that the locus of
the vertex is a straight line.

> 24. What are the equations of the lines which pass through
the origin, and divide the line joining the points (0, 1), (1, 0),
into three equal parts. Ans. 22 =y, 2y ==
25. 1f («/, ¥/') and (2", y”’) be the co-ordinates of two points,

s ! 7’ {7
show that the point (mx sk g = + ny >divides the line
m—+n m—+n
joining them into two parts which bear to each the ratio
m:n.
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CHAPTER 1V.
TRANSFORMATION OF CO-ORDINATES.

31. Ir frequently happens that the discussion of an equa-
tion, and the deduction of the properties of the locus it
represents are greatly simplified by changing the position of
the axes to which the locus is referred, thus simplifying the
equation, or reducing it to some desired form. The operation
by which this is accomplished is termed the TRANSFORMATION
OF CO-ORDINATES.

” ‘ X
Y oL

Y

o) X’
0 X

P
Fi1G. 17.
The equation of the line PC, Fig. 17, is
y=sx+ 0

when referred to the axes Y and X. If we refer it to the
axes Y and X' its equation takes the simpler form

y = sx'.
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If we refer it to Y and X”, the equation assumes the yet
simpler form
yll — 0'

Hence, it appears that the position of the axes materially
affects the farm of the equation of a locus referred to them.

Nore. — The equation of a locus which is referred to rec-
tangular co-ordinates is called the REcraxcuLAR EQuATioN of
the locus; when referred to polar co-ordinates, the equation is
called the Porar Equarion of the locus.

32. 70 find the equation of transformation from one system
of co-ordinates to a parallel system, the origin being changed.

Y {7 c
P
\M
0: A X
0 :
D B £

F16G. 18.

Let CM be any plane locus referred to X and Y as axes,
and let P be any point on that locus. Draw PB | to OY;
then from the figure, we have,

(OB, BP) = (x, y) for the co-ordinates of P when referred
to X and Y

(0’A, AP) = (2, ¥') for the co-ordinates of P when referred
to X’ and Y';

(0D, DO’) = (a, b) for the co-ordinates of O, the new
origin.
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From the figure OB = OD +4 DB; and BP = BA 4 AP}
hence x=a+x2 andy =0+ ¥y

are the desired equations.

As these equations express the relations between z, a, 2/, ¥,
b, and % for any point on the locus they express the relations
between the quantities for every point. Hence, since the
equation of the locus CM expresses the relationship between
the co-ordinates of every point on it if we substitute for
x and y in that equation their values in terms of =’ and y’
the resulting or transformed equation will express the rela-
tionship between the z' and y' co-ordinates for every point
on it.

EXAMPLES.

1. What does the equation y = 3 + 1 become when the
origin is removed to (2, 3) ?
Ans. y =3z + 4.
2. Construet the locus of the equation 2y — x = 2. Trans-
fer the origin to (1, 2) and re-construct.

3. The equation of a curve is 2 + 2>+ 4y —4x — 8 =0;
what does the equation become when the origin is taken at
@, —-2)°

Ans. x* 4y =16.

4. What does the equation y? —2ax* — 2y 462 —3 =0
become when the origin is removed to (; . 1> ?
Ans. 2y* —4x?= — 1.

5. The equation of a circle is #? + y* = a® when referred
to rectangular axes through the centre. What does this
equation become when the origin is taken at the left-hand
extremity of the horizontal diameter ?
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33. 70 find the equations of transformation from a rectangu-
lar system to an oblique system, the origin being changed.

Y Y ¢

F1G. 19.
Let P be any point on the locus CM.
Let 0'Y’, O’X’ be the new axes, making the angles ¢ and 6
with the X-axis. Draw PA | to the Y’-axis; also the lines
0'D, AL, PB | to the Y-axis, and
AF, O'K | to the X-axis.
From the figure, we have,
OB = OD 4 O'N + AF, and
PB = DO’ 4+ AN + PF.
But OB =2, OD =a, ON =2'cos §, A¥F = 5 cos ¢,
PB =y, DO’ = b, AN = a’'sin 0, PF = ¢/ sin ¢;
hence, substituting, we have,
w=a+x’cos€+y’cos¢} )
y=1042'sinf+ y sing
for the required equations.
Cor. 1. If a =0, and & = 0, O’ coincides with O, and we

have,
73 =:1:’cOS€+?/'COS(p} )
y=2'sin 0 + 3 sin ¢ |
Jor the equations of transformation from a rectangular system
to an oblique system, the origin remaining the same.
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Cor. 2. If a =0,6 =0, and ¢ = 90° + 6, O coincides with
O and the new axes X’ and Y’ are rectangular. Making these
substitutions, and recollecting that

cos ¢ = cos (90° + ) = — sin 6, and
sin ¢ = sin (90° + ) = cos 0,

we have,

x=x’cos(9—y’sin€} 3)
y=2a'sind 4y cosb)
for the equations of transformation from one rectangular system
to another rectangular system, the origin remaining the same.

Nore. — If we find the values of &’ and %' in equations (2)
in terms of x and y we obtain the equations of transforma-
tion from an oblique system to a rectangular system, the
origin remaining the same.

EXAMPLES.

1. What does the equation x? 4 y* = 16 become when the
axes are turned through an angle of 45°?
Ans. The equation is unchanged.

2. The equation of alineisy =2 —1; required the equa-
tion of the same line when referred to axes making angles of
45° and 135° with the old axis of z.

Ans. y = — /b

3. What does the equation of the line in Example 2 become
when referred to the old Y-axis and a new X-axis, making an
angle of 30° with the old X-axis.

dns. 2y=(H3—-1ax -2
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34. To find the equations of transformation from a rectangu-
lar system to a polar system, the origin and pole non-coincident.

g g S
0
g, F "
-
e
=
- /
/"\6 0
b B E
F1aG. 20.

Let O’ (a, b) be the pole and O’S the initial line, making an
angle ¢ with the X-axis. Let CM be any locus and P any
point on it. From the figure, we have,

OB = OD + O'F,
BP = DO’ + FP.

But OB =z, OD = a, O'F = O'P cos PO'F = r cos (4 + ¢)
BP =y, DO’ =, FP = O’P sin PO'F = rsin (§ + ¢);
hence, substituting, we have,
z=a -+ r cos (0-|—<p)} Q)
y=0b+rsin (04 ¢)
for the required equations.

Cor. 1. If the initial line O'S is parallel to the X-axis (it is
usual to so take it) ¢ = 0, and

r=a 4 rcos 0} 9
y=2>b-+rsiné 1
become the equations of transformation.

Cor. 2. If the pole is taken at the origin O, and the initial
line made coincident with the X-axis ¢ — 0,6 =0,and ¢ = 0.
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Hence, in this case,

x=rcos€}
y = rsinb

- ()

will be the required equations of transformation.

35. To find the equations of transformation from a polar
system to a rectangular system.

1°. When the pole and origin are coincident, and when the
initial line coincides with the X-axis.

From equations (3), Art. 34, we have, by squaring and
adding r? = x% 4 y?%; and,

by division tan § =2 .
> @

for the required equations. We have, also, from the same
equations,

X . 2, 1
cos0=9-c=——~——-sm0=l= Y
r r

2°. When the pole and origin are non-coincident, and when
the initial line is parallel to the X-axis.

From equations (2) of the same article, we have, by a simi-
lar process,

M= (z—a)+ (y—0)?

tan. 6 = -yA_—b; also
x—a
) e A SR e
r V(@ —a)* 4+ (y — )%
sin0=y—b ?'/-_b

" Va—art G-

for the required equations.
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EXAMPLES.

1. The rectangular equation of the circle is * + y* = a%;
what is its polar equation when the origin and pole are coin-
cident and the initial line coincides with the X-axis ?

Ans. r=a.

2. The equation of a curve is (z? 4 y%) * = a® (x® — y?); re-
quired its polar equation, the pole and initial being taken as
in the previous example.

Ans. r? = a*cos 2 6.

Deduce the rectangular equation of the following curves,
assuming the origin at the pole and the initial line coincident
with the X-axis.

3. r=atan?@secd 5. 2 =a%sin29
Ans. a8 —at Y. Ans.  (x® 4+ y»)? =2 a’xy.
4 7= a’tan Osec’d 6. » = a (cos § — sin 0)
Ans. x® = a%y. Ans. 2* +y*=a (x — y)

GENERAL EXAMPLES.

Construet each of the following straight lines, transfer
the origin to the point indicated, the new axes being parallel
to the old, and reconstruet:

1. y=3x+1t0(1,2). 5. y=sx+bto(c d).

2. 2y—x—2=0t0(—1,2). 6 y+2x=0¢to (2 —2).
38 ty+ax—4=0to(—2, —1).7 y=mxto( n).

4 y+x+4+1=0to (0, 2). 8 y —4x+c=0to(d,o).

What do the equations of the following curves become when
referred to a parallel (rectangular) system of co-ordinates
passing through the indicated points ?

9. 3224292 =6, (V2,0).
10. y2=4x(1,0). 0
1. 9% —4x?= — 36 (3, 0). ’ )

o3

12. y2=2px<—
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13. What does the equation x* 4 y2 = 4 become when the
X-axis is turned to the left through an angle of 30° and the
Y-axis is turned to the right through the same angle ?

14. What does the equation #* — y* = a® become when the
axes are turned through an angle of — 45°?

15. What is the polar equation of the curve y* = 2 px, the
pole and origin being coincident, and the initial line coincid-
g with the X-axis ?

16. The polar equation of a curve is 7 =a (1 4 2cos §);
required 1ts rectangular equation, the origin and pole being
coincident and the X-axis coinciding with the initial line.

Ans. (22 + y* — 2 ax)® = o® (2* + y?).

Required the rectangular equation of the following curves,
the pole, origin, initial line, and X-axis being related as in
Example 16.

17. rz=ﬁ. 20. r=asecz—g~.
Ans. x* — y* = a%
18. » = a sin 6. 2. r =asin 2 6.
19. r=a6. 22. 72— 27 (cos § + V3sin ) = 5.

Find the polar equations of the loci whose rectangular
equations are:

23 2 =9y"(2a—ux). 5 a'y*=ax*— 1z

24 4a’c =y (2a — x). 26. x* 4 y¥ = a*
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CHAPTER V.
THE CIRCLE.

36. Tue circle is a curve generated by a point moving in
the same plane so as to remain at the same distance from a
fixed point. It will be observed that the circle as here de-
fined is the same as the circumference as defined in plane
geometry.

37. Given the centre of a circle and its radius to deduce its
equation.

¥ K
>
L S N
D_/
(0] ¥
A M {

FiG. 21,

Let C E;?, %) be the centre of the circle, and let P be any
point on the curve. Draw CA and PM | to OY and CN | to
OX; then P

(OA, AC) = (x, X) are the co-ordinates of the centre C.

(OM, MP) = (a, y) are the co-ordinates of the point P.
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Let CP = a. From the figure, we have,

CN? 4 NP2 = CP?; (1)
But CN% = (OM — OA)2 (x — a() ;
NP? = (MP — AC)* = (y —RY? and
CP? = o?

Substituting these values in (1) we have,
(x—¥)2+(J—3()2—a’ 5 0 o (&9

for the required equation. For equation (2) expresses the
relation existing between the co-ordinates of any point (P) on
the circle; hence it expresses the relation between the co-
ordinates of every point. It is, therefore, the equation of the
circle.

If in (2) we make x' = 0 and 3’ = 0, we have,

24 yi=a®. .. (3)
. x? y?
or, symmetrically, i + TR 1...1

for the equation of the circle when referred to rectangular
axes passing through the centre.

Let the student discuss and construct equation (3). See
Art. 11.

Cor. 1. If we transpose «? in (3) to the second member and
factor, we have,

y=(@+2) (@a—2);

L.e., in the circle the ordinate is a mean proportional between
the segments into which it divides the diameter.

Cor. 2. If we take L, Fig. 21, as the origin of co-ordinates,
and the diameter LH as the X-axis, we have,

LC=a"=qandy =0.
These values of 2" and ' in (2) give
@ = a) +y = a,

or, after reduction, 2* + 4> — 2ax =0 . .. (5)
for the equation of the circle when referred to rectangular
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axes taken at the left hand extremity of the horizontal
diameter.

38. Every equation of the second degree between two varia-
bles, in which the coefficients of the second powers of the
variables are equal and the term in xy is missing, is the equa-
tion of a circle.

The most general equation of the second degree in which
these conditions obtain is

ar’® +ay’ +cx +dy +7=0.... Q)

Dividing through by « and re-arrahging, we have,
2t lopypypdy— L
a a a

If to both members we now add
c? d?

4a ' 4q*’

the equation may be put under the form

e\ d\_cA+d®*—daf
<x+ﬂ>+<y+-2—;>———-4ar 0

Comparing this with (2) of the preceding article, we see
that it is the equation of a circle in which

_c _4d
2a’ 2a

are the co-ordinates of the centre and

Ve 4 d® — 4 af ig the radius.
2a

Cor. 1. If ax® 4 ay® + cx 4+ dy + m = 0 be the equation
of another circle, it must be concentric with the circle repre-
sented by (1); for the co-ordinates of the centre are the same.
Hence, when the equations of circles have the variables in
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their terms affected with equal coefficients, each to each, the
circles are concentric. Thus

20?4 29 +3ax+4y+9=0
20?4+ 29y +3x +4y +25=0

are the equations of concentric ecireles.

EXAMPLES.
What is the equation of the circle when the origin is
taken.
1. At D, Fig. 21? Ans. x*+ P —2ay =0.
2. At K, Fig. 217 Ans. 22+ y*+2ay =0.
3. At H, Fig. 217 Ans. 2*+y* 4+ 2ax =0.
What are the co-ordinates of the centres, and the values of

the radii of the following circles ?

4 422 +4y*—8x—8y+2=0.
Ans. (1,1), @ = /3.

5. x4 y?+4x —6y —3=0.
Ans. (—2,3),a =4

6. 2224292 —8x=0.
Ans. (2,0),a =2.

7. x4+ y2—6x=0.
f Ans. (3,0), a = 3.

8. a:2+g/2—4x+8y—5=0.
' Ans. (2,—4)a =25
9 2+ yt—max+ny+c=0.
10. 2% + o =m.
1. 22 —4¢ = — y* —my.
12. 224 y? =+ d*
13. 22+ cx 4 92 =1
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Write the equations of the ecircles whose radii and whose
centres are

14. « =3, (0, 1). 18. a =m, (b, ¢).
Ans. x* +y* —2y = 8.

15. a =2, (1, —2). 19. a = b, (¢, — d).
Ans. 2+ y*'—2x+4y+1=0.

16. a =5, (—2, —2). 20. a =5, (, k).
Ans. 224+’ +4y +4=1T.

17. a =4, (0, 0). 2l a=kFk (20).

Ans. x? 4 y* = 16.
22. The radius of a circle is 5; what is its equation if it is

concentric with «* 4+ > —4x =27
Ans. 2?4y — 42 =21,

23. Write the equations of two concentric circles which
have for their common centre the point (2, — 1). .
24. Find the equation of a circle passing through three
&given points.
39. To deduce the polar equation of the circle.
Y

>

0 B A

Fia. 22,
The equation of the circle when referred to OY, OX is
@—2) P+ @y —y)=d
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To deduce the polar equation let P be any point of the
curve, then
(OA, AP) = (x, )]
(OB, BO) = (&', 4)
(OP, POA) = (r, 6)
(00, 0'0B) = (', ¢)
From the figure, OA = @ = rcos §, AP =y =rsin 6,
OB =a =7+cos ¢, BO' =y =1"sin #;
hence, substituting, we have,
(rcos 6 — 7/ cos 6)* 4 (rsin 6 — 7/ sin ) = a ™.
Squaring and collecting, we have,
*(cos?@ + sin? 6) + 1’ *(cos® ' +- sin* ') — 2 r7’(cos 6 cos ¢
+ sin 6 sin §') = a?
ie., Pt —2rcos(@—0)=a... (1)
is the polar equation of the circle.
This equation might have been obtained directly from the
triangle: OO'P.
Cor. 1. If @ = 0, the initial line OX passes through the cen-
tre and the equation becomes
7 4 72 — 277 cos § = a’.
Cor. 2. Tf ¢ =0, and + = q, the pole lies on the circum-
ference and the equation becomes
r=2acos 6.
Cor. 3. If @ =0, and # = 0, the pole is at the centre and
the equation becomes

r=4a.

40. To show that the supplemental chords of the circle are
perpendicular to each other.

The supplemental chords of a circle are those chords which
pass through the extremities of any diameter and intersect each
other on the circumference.
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LN
NPA

Fic. 23.

>

Let PB, PA be a paix: of supplemental chords. We wish to
prove that they are at right angles to each other.
The equation of a line through B (— @, o) is
y=s (x+ a).
For a line through A (@, 0), we have
y=¢ (x —a).
Multiplying these, member by member, we have
y¥=ss (®*—a? ... (a)
for an equation which expresses the relation between the
co-ordinates of the point of intersection of the lines.
Since the lines must not only intersect, but intersect on the
circle whose equation is
P =a® —at
this equation must subsist at the same time with equation (a)
above ; hence, dividing, we have

or, 14+s=0...(@1)

Hence the supplemental chords of a circle are perpendicular
to each other.

Let the student discuss the proposition for a pair of chords
passing through the extremities of the vertical diameter.
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41. To deduce the equation of the tangent to the circle.

c
\Y
\ P/,
!
! P’
of | 5 o
A \
S’
s
Fia. 24.

Let CS be any line cutting the circle in the points P’ (2, "),
P” (2", y”). 1Its equation is
! r’
y—y =L =Y (& —a). (Art.26, (4)).
x —x
Since the points (2, »'), («”, ¥”) are on the circle, we have
the equations of condition
?+yt=a*... (1)
2yt =ad* ... (2
These three equations.must subsist at the same time ; hence,
subtracting (2) from (1) and factoring, we have,

(xl + w(l) (x’ - x//) + (:I/I + y/l) (yl _ y”) = O;

) yr__?/n=_ x/+m//
: x —x” yl +y” :
Substituting in the equation of the secant line it becomes
, wl + x/l 7
—y =T —x) ... 3
y—y S+ ( ) ©)

If we now revolve the secant line upward about P the
point P’ will approach P” and will finally coincide with if
when the secant CS becomes tangent to the curve. But when
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P’ coincides with P”, 2’ = 2” and v = ¥”; hence, substituting
in (3) we have,

s

—y == (x—a"), ... 4
y Yy .7/71 (w & )’ ( )
or, after reduction,
xa” +yy’ =a*; ... (5)
or, symmetrically,
ex” Yy _
'az,—i- pr =1 . (6)

for the equation of the tangent.

Scuon. The Sup-ranGENT for a given point of a curve is the
distance from the foot of the ordinate of the point of tangency
to the point in which the tangent intersects the X-axis; thus,
in Fig. 24, AT is the sub-tangent for the point P”. To find
its value make y = 0 in the equation of the tangent (5) and

we have,

2

a
f‘_ —_—
Ol——x_p.

But AT =0T —0A =2 _ov
a2

2 _ a2 12
substangent = & — %~ Y.

& x

42. To deduce the equation of the normal to the circle.

The normal to a curve at a given point is a line perpen-
dicular to the tangent drawn at that point.

The equation of any line through the point P” (27, y") Fig.
24, is y—y' =s@—2a")...@Q)

In order that this line shall be perpendicular to the tangent
P”T, we must have

1455 =0.

" o
But Art. 41, (4) s’ = — x_,; hence, we must have s =% .
y ’ mfl
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Therefore, substituting in (1), we have,

4
y—y' =L @—2") ... @);
x
or, after reduction,
yr' —axy” =0 ... (3)

for the equation of the normal.

We see from the form of this equation that the normal to
the cirele passes through the centre.

Scror. The Sup-vormar for a given point on a curve is
the distance from the foot of the ordinate of the point to the
point in which the normal intersects the X-axis. In the circle,
we see from Fig. 24 that the

Sub-normal = x’'.

43. By methods precisely analogous to those developed in
the last two articles, we may prove the equation of the tangent
to

(@—2)V+ @y —y)l=ad
to be

@—=a2)@ =2+ —y)W' —y)=a>... Q)
and that of the normal to be
(y _?///) (x/l 2 m/) . (x _ w’/) (Z/” — y/) — 0 a0 (2)
Let the student deduce these equations.

EXAMPLES.
1. Whatis the polar equation of the circle ax? + ay® + cx 4

dy + f =0, the origin being taken as the pole and the X-axis
as the initial line ?

Ans. r2+<£cos6+gsin0>r+f=0.
@ a a

2. What is the equation of the tangent to the circle
% + 3 = 25 at the point (3, 4)? The value of the sub-
tangent ? Ans. 3x + 4y =25; 15,

3. What is the equation of the normal to the circle
x* 4 y? = 37 at the point (1, 6) 2 What is the value of the
sub-normal ? ) Ans. y=6z; 1.

~

{
~
/
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4. What are the equations of the tangent and normal to the
circle #* 4 y* = 20 at the point whose abscissa is 2 and ordi-
nate negative ? Give also the values of the sub-tangent and
sub-normal for this point.

Ans. 22 —4y =20; 2y+442=0;
Sub-tangent = 85 sub-normal = 2.

Give the equations of the tangents and normals, and the
values of the sub-tangents and sub-normals, to the following
circles :

5. 2% 4+ 92 =12, at (2, + V3).
6. x4 32 =25, at (3, — 4).
7. 2% + y? = 20, at (2, ordinate +).
8. 2% 4 y? = 32, at (abscissa 4, — 4).
9. 2?4+ y?=a?% at (b, c).
10. z* 4 y* = m, at (1, ordinate 4).
11. 2* 4 y* = £k, at (2, ordinate —).
12, «® + y* = 18, at (m, ordinate ).

13. Given the circle #* + »* = 45 and the line 2y + « = 2;
required the equations of the tangents to the circle which are
parallel to the line.

3x 4+ 6y =45.
gy {39[: 46y =— 45

14. What are the equations of the tangents to the circle

@* + y? = 45 which are perpendicular to the line 2y 4+ = 2?

33/—69):45.
e SRy

16. The point (3, 6) lies outside of the circle 2 + y2 = 9;
required the equations of the tangents to the circle which
pass through this point.

Ans. {x T

4y —3a =15
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17. What is the equation of the tangent to the circle
(x — 2)* + (y — 3)* = b at the point (4, 4) ?

Ans. 2x +y =12.

18. The equation of one of two supplementary chords of

the cirele x* 4-y? =9 is y = 3x -4 2, what is the equation

of the other ?
Ans. 2y 4-3x =Y.

19. Find the equations of the lines which touch the cirele
(@ — a)? + (y — 0)®* = r* and which are parallel to y = sz 4 c¢.
20. The equation of a circle is 22 49> —4da +4y=9;
required the equation of the normal at the point whose

absecissa = 3, and whose ordinate is positive.
Ans. 42 — y = 10.

44. To find the length of that portion of the tangent lying
between any point on it and the point of tangency.

Let (x,, ;) be the point on the tangent. The distance of
this point from the centre of the circle whose equation is
(x — 2" + (v — y")? = a? is evidently
V(xy — ') 4 (1 — ¥')%  See Art. 27, (1).
But this distance is the hypothenuse of a right angled tri-

angle whose sides are the radius « and the required distance
d along the tangent; hence

&= (o — @)~y —a* ... (D)
Cor. 1. If 2/ = 0 and y' = 0, then (1) becomes
A=z 4 y*—a® ... (2

as it ought.

45. To deduce the equation of the radical axes of two given
circles.

The RADICAL AXIS OF TWO CIRCLES 1s the locus of a point
Srom which tangents drawn to the two circles are equal.
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Fic. 25.

Let (x—2) 4+ (y —y)? = a¥
(# — ') 4 (y — y'") = 0% be the given circles.
Let P (24, 1) be any point on the radical axis; then from
the preceding article, we have,
@ = (2 =)’ + (1 — ¥')* — o
A= (@ — 2" + (g =y =
.~ by definition @ =2+ (h—y)—a® = (x, —a")?
4+ (41 — ¥"")* — ¥?; hence, reducing, we have,
2 (z‘,, _ m,) xl + 2 (yu . ?/1) ?/1 - $”2 . x/g + yug _ yl2
+ a® — 2
Calling, for brevity, the second member m, we see that
(21, 1) will satisfy the equation.

2@ =24+ 2@ —y)y=m ... Q)
But (#y, 71) is any point on the radical axis; hence every
point on that axis will satisfy (1). It is, therefore, the re-
quired equation.

Cor. 1. If ¢ =0 and ¢' = 0 be the equation of two circles,
then, c— e =0

is the equation of their radical axis.
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Cor. 2. From the method of deducing (1) it is easily seen
that if the two circles intersect, the co-ordinates of their points
of intersection must satisfy (1); hence the radical axis of two
intersecting circles is the line joining their points of intersection,
PA, Fig. 25.

Let the student prove that the radical axis of any two
circles is perpendicular to the line joining their centres.

46. To show that the radical axes of three given circles in-
tersect in a common point.

Let ce=0,¢=0and ¢’ =0
be the equations of the three circles.

Taking the circles two and two we have for the equations of
their radical axes

c—c=0...Q1Q)
0—(‘”:0...(2)
d—c"=0...(@)

1t is evident that the values of @ and y which simultaneously
satisfy (1) and (2) will also satisty (3); hence the proposition.

The intersection of the radical axes of three given circles is
called THE Rapicar CENTRE of the circles.

EXAMPLES.
Find the lengths of the tangents drawn to the following
circles: .
1 (x — 2)* 4+ (y — 3)* = 16 from (7, 2). -
Ans. d = V/10.
2. 22 4 (y + 2)* = 10 from (3, 0). -
Ans. d = /3.

3. (x — a)*+ y* =12 from (b, ¢).
4 2?4 —2x +4y =2 from (3, 1).

5. % 4 y* = 25 from (6, 3). g
Ans. d = V20.
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6. 2> 4 y* — 22 = 10 from (5, 2).
Ans. d = 3.
7. (x —a)*+ (y — b)* = c from (d, f).
8. 22 + 5 — 4y =10 from (0, 0).
Give the equations of the radical axis of each of the follow-
ing pairs of circles:

9. {(x—?)e—{—(? y — 3)2—10 = 0.
G+ 3t + (g + 27— 6 = 0.
Ans. 5x +5y +2=0.

10. x+J—4z_O
(=32 +y—9=0. Ans. Sz =2y.
11. (x+3)2 +9yP—2y—8=0.
24y —2y=0. Ans. x = — 3.
12. (ac+ ¥ —c=0.
I i)

13. {azz + = 16.
14, (24 (y —a)i=~A~A
(e = Bty =

Find the co-ordinates of the radical centres of each of the
following systems of circles:

(sr——o)2 y* = 16.

2+ =09

x4 (y — 2)* = 25. Ans. (§, — 3).
16. (249 —4x+6y—3=0.

24y — 4 =12

2+ +6y=" Ans. (1, — 3).
17. (2 + ¥ =a

(x — 1) + 52 =9.

24y —2x4+4y=10
18. (22+ iy —hkr=c

Lot =m.

24y —ay=d
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47. To find the condition that a straight line y = sx + b
must fulfil in order that it may touch the circle x* + y* = a’

In order that the line may touch the circle the perpendicu-
lar let fall from the centre on the line must be equal to the
radius of the circle. '

From Art. 21, Fig. 13, we have

b b
=[ p—y :——.
p =008y secy V14 tanly’
b
S Ve
hence, PAl4+sH=0...Q

is the required condition.
Cor. 1. If we substitute the value of  drawn from (1) in
the equation y = sz + b, we have

y=sx LtrvVi+s... (2
for the equation of the tangent in terms of its slope.

48. Two tangents ave drawn from o point without the eircle ;
required the equation of the chord joining the points of tangency.

Let P’ (2, ') be the given point, and let P’P”, P'P, be the
tangents through it to the circle.
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It is required to deduce the equation of PP”,
The equation of a tangent through P” (2", ) is
wwli yy!/ | %y
Rl
Since P’ («, ¥) is on this line, its co-ordinates must satisfy
the equation; hence

xlzll y/:l/l/ .

T
The point (x”, y”), therefore, satisfies the equation
T+l =1;... )
a
. it is a point on the locus represented by (1). A similar
source of reasoning will show that P is also a point of this
locus. But (1) is the equation of a straight line; hence, since
it is satisfied for the co-ordinates of both P’ and P, it is the

equation of the straight line joining them. It is, therefore,
the required equation.

49. A chord of a given circle is revolved about one of its
points ; required the equation of the locus generated by the
point of intersection of a pair of tangents drawn to the circle at
the points in which the chord cuts the circle.

Let P’ (¢, ¢/), Fig. 27, be the point about which the chord
P'AB revolves. It is required to find the equation of the
* locus generated by P, (x, y1), the intersection of the tangents
AP, BP,, as the line P’AB revolves about P’

From the preceding article the equation of the chord AB is

S )
a a

Since P’ (2, %) is on this line, we have
’ 4
1z Y1y -
= ot ‘/—o =13
a a?

e LYY 1. .. Q)

hence
a? a?
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is satisfied for the co-ordinates of Py (x;, ¥;); hence P, lies on
the locus represented by (1). But P, is the intersection of
any pair of tangents drawn to the circle at the points in

>

FiG. 27.

which the chord, in any position, cuts the circle; hence (1)
will be satisfied for the co-ordinates of the points of intersec-
tion of every pair of tangents so drawn.

Equation (1) is, therefore, the equation of the required
locus. We observe that equation (1) is identical with (1) of
the preceding article; hence the chord PP” is the locus whose
equation we sought.

The point P’ (2, ) is called THE poLE of the line PP

’ ol ’
<%Z—' + 71(;—;/ = 1), and the line PP" \:%92_5 + zfal‘g/ = 1> is called

THE PoLAR of the point P’ (!, /) with regard to the circle

1.2 ,7/2

a2 a2
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As the principles here developed are perfectly general, the
pole may be without, on, or within the circle.

Let the student prove that the line joining the pole and the
centre is perpendicular to the polar.

Notre. — The terms pole and polar used in this article have
no connection with the same terms used in treating of polar
co-ordinates, Chapter I.

50. If the polar of the point P' (x'y"), Fig. 2T, passes through
P, (=, y1), then the polar of Py (%1, y1) will pass through P'
(', ¥').

The equation of the polar to P! (a/, %) is

'z | Yy _
ata=t
In order that Py (%, ;) may be on this line, we must have,
a2y Yy
a“’l + a21 - 11
But this is also the equation of condition that the point
P’ («, ) may lie on the line whose equation is
TT | Yy
Faa-
But this is the equation of the polar of Py (xy, y1); hence
the proposition.

B81. 7o ascertain the relationship between the conjugate diam-
eters of the circle.

A pair of diameters ave said to be conjugate when they are
so related that when the curve is referred to them as awxes its
equation will contain only the second powers of the variables.

Let tyr=a. .. (1)
be the equation of the circle, referred to its centre and axes.
To ascertain what this equation becomes when referred to
0Y', OX’, axes making any angle with each other, we must
substitute in the rectangular equation the values of the old
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co-ordinates in terms of the new. From Art. 33, Cor. 1, we

have
x =x'cos § + y' cos @
y=2a'sinf + y sing

for the equations of transformation. Substituting these
values in (1) and reducing, we have,

Y2422y cos(p—0) +ax%=a. .. (2
¥ Y
Xl
.\‘?
oL [0 X
Fic. 28.

Now, in order that OY’, OX’ may be conjugate diameters
they must be so related that the term containing 'y’ in (2)
must disappear; hence the equation of condition,

cos (g — 0) =0
g —0=90°o0r¢— 0 =270°

The conjugate diameters of the circle are therefore perpen-
dicular to each other. As there are an infinite number of
pairs of lines in the cirele which satisfy the condition of being
at right angles to each other, it follows that in the circle there
are an infinite number of conjugate diameters.
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EXAMPLES.

1. Prove that the line y — /3% -4 10 touches the circle
2?2 4~ y* = 25, and find the co-ordinates of the point of tangency.
q 5 = 5

Ans. Point of tangency (_ ?\/5, g\) .

2. What must be the value of & in order that the line

y = 2 x + b may touch the circle 2* 4 > =16 ? -

Ans. b= - /80.

3. What must be the value of s in order that the line

y = sx — 4 may touch the circle @ 4 3 =27 B

Ans. s= 1L V7.

4. The slope of a pair of parallel tangents to the circle
x? + 4 = 16 is 2; required their equations.

y =2z 4+ V80.

Ans.
"Ny =22 — /30

Two tangents are drawn from a point to a cirele; required
the equation of the chord joining the points of tangency in
each of the following cases:

5. From (4, 2) to a* + »* = 9.
Ans. 4 +2y=9.

6. From (3,4) to «* + y* = 8.
Ans. 3x 4+ 4y =8.

7. From (1, 5) to 2* 4+ »* = 16.
Ans. x4 5y = 16.

8. From (a, b) to a® 4 y% = ¢
Ans. ax + by = ¢~

What are the equations of the polars of the following points:
9. Of (2, 5) with regard to the circle a* 4 3 =16 ?
2z [ by
Ans. — 4+ =< =
ST
10. Of (3, 4) with regard to the circle 2* 4 y* =97
Ans. 3x +4y=9.
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11. Of (@, b) with regard to the circle 2* 4- 3> = m ?
- Adns. ax + by = m.

What are the poles of the following lines:
12. Of 2z 4 3y = 5 withregard to the circle a® + y? = 25 ?
Ans. (10, 15).

13. Of g—f + y = 4 with regard to the circle
2 2
%Jr%:w ‘ Ans. (2, 4).

14. Of y = sz + b with regard to the circle

a’s  q?
Ans. <_ > 7) .
15. Find the equation of a straight line passing through
(0, 0) and touching the circle 2* + 3* — 3z + 4y =0.

wQ Z/Q .
4L =17
a?  a?

Ans. y =2 5

GENERAL EXAMPLES.

1. Find the equation of that diameter of a cirecle which
bisects all chords drawn parallel to y = sx + b.
Ans. sy + 2 = 0.
2. Required the co-ordinates of the points in which the
line 2y — = 4+ 1 = 0 intersects the circle

a? |
=+ L =1
4+4

3. Find the co-ordinates of the points in which two lines
drawn through (3, 4) touch the circle
x| 9yt
9 v 9
[The points are common to the chord of contact and the

circle.]
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4. The centre of a circle which touches the Y-axis is at
(4, 0); required its equation.
Y Ans. (x — 4)* + > = 16.
5. Find the equation of the circle whose centre is at the
origin and to which the line y = = +4- 3 is tangent.
Ans. 22° 4+ 24 =9.
6. Given 2% 4 y*> = 16 and (z — 5)? 4+ »* = 4; required the
equation of the circle which has their common chord for a
diameter.

7. Required the equation of the circle which has the dis-
tance of the point (3, 4) from the origin as its diameter.
Ans. 2?4 y? —3x —4y =0.
8. Find the equation of the cirele which touches the lines
represented by 2 =3, y =0, and y = x.

9. Find the equation of the circle which passes through the
points (1, 2), (— 2, 3), (— 1, — 1).

10. Required the equation of the circle which circumscribes
the triangle whose sides are represented by y =0, 3y =4 «,
and 3y = — 4z 4 6. v

Ans. x4 y? —Sx—42y =0.

11. Required the equation of the cirele whose intercepts
are ¢ and b, and which passes through the origin.

Ans. 2?4 y* — ax — by = 0.

12. The points (1, 5) and (4, 6) lie on a circle whose centre
is in the line y = 2 — 4; required its equation.

Ans. 22* +2y* — 172 — y == 30.

13. The point (3, 2) is the middie point of a chord of the
circle #? + y* = 16; required the equation of the chord.

14. Given 2? + »* = 16 and the chord y — 42 = 8. Show
that a perpendicular from the centre of the circle bisects the
chord.

15. Find the locus of the centres of all the ecircles which
pass through (2, 4), (3, — 2).
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16. Show that if the polars of two points meet in a third
point, then that point is the pole of the line joining the first
two points.

17. Required the equation of the circle whose sub-tangent
= 8, and whose sub-normal = 2.
Ans.  x? 4 y? = 20.
18. Required the equation of the circle whose sub-normal
= 2, the distance of the point in which the tangent intersects
the X-axis from the origin being = 8,
Ans. x* 4+ y2 = 16.
19. Required the conditions in order that the circles
ax‘f’—i—ag/?-}—cx—}—dy-[—e=Oa.nda.7c2+ag/2-{—kw+ly+m=O
may be coneentric.
Ans. ¢c=Fk,d =L
20. Required the polar co-ordinates of the centre and the
radius of the circle
2 —27r(cos @ 4+ /3sinf) = 5.
Ans. (2, 60°); » = 3.
21. A line of fixed length so moves that its extremities

remain in the co-ordinate axes; required the equation of the
circle generated by its middle point.

22. Find the locus of the vertex of a triangle having given
the base = 2« and the sum of the squares of its sides = 282
Ans. 2 + y* = b* — a®
23. Find the locus of the vertex of a triangle having given
the base = 2 ¢ and the ratio of its sides
=2, Ans. A cirele.
n

24. Find the locus of the middle points of chords drawn

from the extremity of any diameter of the circle

2 2
g + Y —9
a? a?
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CHAPTER VL
THE PARABOLA.

52, Tur parabola is the locus generated by a point moving
in the same plane so as to remain always equidistant from a
fixed point and a fixed line.

The fixed point is called the Focus; the fixed line is called
the Direcrrix; the line drawn through the focus perpendic-
ular to the directrix is called the Axis; the point on the axis
midway between the focus and directrix is called the VErTEX
of the parabola.

83. To find the equation of the parabola, given the focus and
directrix.

R Y
B &
Dl O K s
iz \ %
C
F1G. 29.

Let RC be the directrix and let F be the focus. Let OX,
the axis of the curve, and the tangent OY drawn at the vertex
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O, be the co-ordinate axes. Take any point P on the curve
and draw PA || to OY, PB || to OX and join P and F. Then
(DA, AP) = (x, y) are the co-ordinates of P.
From the right angled triangle FAP, we have
¥ =AP*=FP*—FA%; ... (1)
But from the mode of generating the curve, we have
FP? = BP* = (AO + OD)? = (x + OD),
and from the figure, we have
FA?=(AO — OF)? = (x — OF)2
Substituting these values in (1), we have
¥=(x+ 0D — (x — OF)> .. (2

Let DF = p, then OD = OF =1§0; hence
2 2
()3
or, after reduction, P=2px ... 3)

As equation (3) is true for any point of the parabola it is
true for every point; hence it is the equation of the curve.

Cor. 1. If (2, ') and (2", y”) are the co-ordinates of any
two points on the parabola, we have,
y*=2pa’ and y"? = 2 pa”;
hence 7738 P B e g ey’
L.e., the squares of the ordinates of any two points on the para-
bola are to each other as their abscissas.
ScHoL. By interchanging @ and y, or changing the sign of
the second member, or both in (3), we have
y* = — 2px for the equation of a parabola symmetrical
with respect to X and extending to the left of Y;
~@* = 2 py for the equation of a parabola symmetrical with
respect to Y and extending above X.
x* = — 2 py for the equation of a parabola symmetrical
with respect to Y and extending below X.
Let the student discuss each of those equations. See
Art. 13.
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54. To construct the parabola, given the focus and directrix.

=

>

FiG. 30.

First Method. — Let DR be the directrix and let F be the
focus.

From F let fall the perpendicular FD on the directrix; it
will be the axis of the curve. Take a triangular ruler ADC
and make its base and altitude coincide with the axis and
directrix, respectively. Attach one end of a string, whose
length is AD, to A ; the other end to a pin fixed at F.  Place
the point of a pencil in the loop formed by the string and
stretch it, keeping the point of the pencil pressed agaiust the
base of the triangle. Now, sliding the triangle up a straight
edge placed along the directrix, the point of the pencil will
deseribe the arc OP of the parabola; for in every position of
the pencil point the condition of its being equally distant
from the focus and directrix is satisfied. It is easily seen, for
instance, that when the triangle is in the position A’D’C’ that
FP = PD'".

Second Method. — Take any point C on the axis and erect
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the perpendicular P’CP. DMeasure the distance DC. With F
as a centre and DC (= FDP) as a radius describe the arc of a
circle, cutting P’CP in P and P’. P and P’ will be points of
the parabola. By taking other points along the axis we may,
by this method, locate as many points of the curve as may be
desired.

55. 7o find the Latus-rectum, or parameter of the parabola.
The Larus-RECTUM, or PARAMETER of the parabola, is the
double ordinate passing through the focus.

The abscissa of the points in which the latus-rectum pierces

the parabola is = = 5

Making this substitution in the equation

yr=2px
we have yr=2 p% =p2
Hence 2y=2p.
Cor. 1. Forming a proportion from the equation
y' = 2p,
we have @R YBYBADS

i.e., the latus-rectum of the parabola is « third proportional to
any abscissa and its corresponding ordinate.

EXAMPLES.

Find the latus-rectum and write the equation of the parab-
ola which contains the point:

1 2,4 3. (a,d).
g 2, b
Ans. 8, y* =8u. Ans. o LT
S (=24. 4 (—a,2).
4
Ans. — 8, y* = — 8. Ans. —(—L,y2=—ax.

5. What is the latus-rectum of the parabola 2 =2py?
How is it defined in this case ?
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6. What is the equation of the line which passes through
the vertex and the positive extremity of the latus-rectum of
any parabola whose equation is of the form #? = 2 px ?

Ans. y =2z

7. The focus of a parabola is at 2 units’ distance from the
vertex of the curve; what is its equation

(@) when symmetrical with respeet to the X-axis ?
(1)) “ 13 13 “ oo Y-axis 1%
Ans. (a) y* =8z, (0) * =8 y.

Construet each of the following parabolas by three differ-
ent methods.

8. 2=8u. 10. 2> =6y.

9 ¥y*=—4ua. 11. 2> = —10y.

12. What are the co-ordinates of the points on the parabola
y* = 6 x where the ordinate and abscissa are equal ?
Ans. (0, 0), and (6, 6).

13. Required the co-ordinates of the point on the parabola
x? = 4 y whose ordinate and abscissa bear to each other the
ration 3: 2. Ans. (6, 9).

14. What is the equation of the parabola when referred to

the directrix and X-axis as axes ? Ans. y* =2 px — p2

Find the points of intersection of the following:

15, y»=4zxand 2y —x =0.
Ans. (0, 0), (16, 8).

16. >=6yandy —2 —1=0.
17 y¥? = —8zxand . + 3 =0.

18. y* =2z and 2® +4* = 8.
Ans. (2, 2), (2, — 2).

19 2?= —4yand 322+ 232 =6.
20. * =4yand =4z



88 PLANE ANALYTIC GEOMETRY.

56. To deduce the polar equation of the parabola, the focus
being taken as the pole. :
The equation of the parabola referred to OY, OX, Fig. 29, is
y=2pz... @)
To refer the curve to the initial line FX and the pole F

0

-

<p O) we have for the equation of transformation, Art. 34,

Cor. 1,

% = {; -+ 7 cos 6.
y = rsin 6.

Substituting these values in (1), we have
2 sin? 0 = p? + 2 pr cos 6.

But sin*f =1 — cos?6;

ot = pt-2 preos 6 4 12 cos? @ = (p -+ 7 cos )%

.7 =p + rcos b,

or, solving,

— )

T 1—cosé’
is the required equation.
We might have deduced this value directly as follows :
Let P (r, ) Fig. 29 be any point on the curve; then

FP — DA = DF 4+ FA = p + rcos6;

i e, r=p -+ rcosb.
Hence r= L .
1—cosé

Cor. 1. If 6=0, r=00.
1If 6 =90° r =p.
If 6=180° r=2L.
If 6 =270° » =p.
If - 6 = 360°, » = oo.

An inspection of the figure will verify these results.
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87. 1o deduce the equation of the tangent to the parabola.
If (@, ), (", y”) be the points in which a secant line cuts
the parabola, then
y—y = i = C@—2) ... (D)
will be its equation. Sinece (2, ¥'), (", ") are points of the
parabola, we have
yi=2px' ... (2
y2r=2px" ... (3
These three equations must subsist at the same time;
hence, subtracting (3) from (2) and factoring, we have
W —y)G+y)==2p @ —2");
y =y’ _ __2p
ie., x — ¥y +y’
Substituting this value in (1), the equation of the secant
becomes

— vy = -z ... @
y—y J+J,,( ) @

When the secant, revolved about (z”, y”), becomes tangent
to the parabola (z/, ¥’) coincides with (z”, y”); hence 2’ = «”,
vy =y". Making this substitution in (4), we have,

y—y" f(w—w) )
or, simplifying, recollecting that 3> = 2 pa”, we have
y' =p@E+a") ... 6
for the equation of the tangent to the parabola.
58. To deduce the value of the sub-tangent.
Making ¥ = 0 in (6), Art. 57, we have
x = —a”’ = 0T, (Fig. 31)
for the abscissa of the point in which the tangent intersects
the X-axis. But the sub-tangent CT is the distance of this
point from the foot of the ordinate of the point of tangency;

i.e., twice the distance just found; hence
Sub-tangent = 2 2"
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Le., the sub-tangent is equal to double the abscissa of the point
of tangency.

59. The preceding principle affords us a simple method of
constructing a tangent to a parabola at a given point.

Let P” (z”, ) be any point of the curve. Draw the ordi-
nate P”C, and measure OC. Lay off OT = OC.

Fi1G. 31.

A line joining T and P” will be tangent to the parabola
at P,

60. 7o deduce the equation of the normal to the parabola.

The equation of any line through P” (2", ") Fig. 31, is
y—y' =s@—2a") ... Q1)

We have found Art. 57, (5) for the slope of the tangent P”T

Ty
hence, for the slope of the normal P”N, we have

v
v

S = —
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Substituting this value of s in (1), we have

4

y—y'=—L@-2)...@
7Y
for the equation of the normal to the parabola.

6l. To deduce the value of the sub-normal.
Making ¥ = 0 in (2) Art. 60, we have, after reduction,

x =p +«” = ON; Fig. 31,

. Sub-normal = NC = p + 2" — 2" = p.
Hence the sub-normal in the parabole is constant and equal

to the semi-parameter FD.

62. To show that the tangents drawn at the extremities of
the latus rectum are perpendicular to each other.
The co-ordinates of the extremities of the latus-rectum are

(g-, p> for the upper point, and <]§ ,—p) for the lower point.

Substituting these values successively in the general equa-
tion of the tangent line, Art. 57 (6), we have

yp=p<w +§>,

—yp=p<w +g>,
or, cancelling,

y=x+%" @

y=—z—L2 ... ()

for the equations of the tangents. As the coefficient of =z
in (2) is minus the reciprocal of the coefficient of = in (1), the
lines are perpendicular to each other.

Cor. 1. Making y = 0 in (1) and (2), we find in each case

that z = —g; hence, the tangents at the extremities of the
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latus-rectum and the directriz meet the axis of the parabola
in the same point.

The values of the coefficients of # in (1) and (2) show that
these tangent lines make angles of 45° with the X-axis.

v

63. 7o deduce the equation of the parabola when referred to
the tangents at the extremities of the latus-rectum as axes.

=]
1o
AN
—
O

*x

=

’

X
FiG. 32.

The equation of the parabola when referred to 0Y, OX, is

y=2px ... Q).
We wish to ascertain what this equation becomes when the
curve is referred to DY’, DX’, as axes.

Let P’ (2, y') be any point of the curve; then, Fig. 32
(0C, CP") = (=, »), and (DC', C'P) = (&, ¥).
I'rom the figure, we have,

0C = DC — DO = DK + M — DO;
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but
’ 4
DK = «’ cos 45° = \%,vcm =y cos 45° = \?//5 , DO =§;
o ¥y _p
hence 8 = T =5 9"
We have, also, CP’ =MP" — (C'K;
. y g7
ie. Y=L — .
’ VRN
Substituting the values of « and y in (1), we have,
1 7 2]) ’ ’ 2 ¢
S =) ==E +y)—p ... Q)
: 2L @ +y) (

In order to simplify this expression let DP = ¢ ; then from
the triangle DPF, we have,
DF = p = acos 45° = —%_.
V2

Substituting this value of p in (2) and multiplying through
by 2, we have, (¥ — )2 =2a (2/ + 1) —a?,
or, Yr+at—2ay —2ax’ —2ay + a* =0.
Adding 4 2y to both members, the equation takes the form

@ +y —a)=4xy,

i ¥ty —a=L2x%y%;
. transposing, & L 225 y¥ + o = a;
x/x:l:y/x= :!:a%, L. (3)
or, symmetrically, dropping aceents,
x* ) yE
a_%:l:a_%_:lzl oub o ()

is the required equation.
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i EXAMPLES.

N 1. What is the polar equation of the parabola, the pole
being taken at the vertex of the curve ?
Ans. r = 2 p cot 6 cosec 6.

Find the equation of the tangent to each of the following
parabolas, and give the value of the subtangent in eacli case :

. y=4xat (1, 2). Ans. y=ax +1; 2.
2=4yat (—2 1) Ans. 2 +y+1=0; 2.
y* = — 6wat (— 6, ord +). Ans. 2y +x=3; 12
2? = — 8y at (abs +, — 2). Ans. x+y=2; 4
2 =4 ax at (¢, — 2 a).

y? = ma at (m, m).

a? = — py at (abs +, — p).
x?=2py at <abs——,§>-

Write the equation of the normal to each of the following
parabolas :

10. To 3 =16 at (1, 4).
11. Toa* = — 10y at (abs +, — 2).

12. To y* = — mw at (— m, m).

© ®ue ;R
R B

13. To x? = 2my at (abs —. %) .
14. The equation of a parabola is a¥ L ¥ = 4 a¥; what
are the co-ordinates of the vertex of the curve ? :

Ans. '<]ia,1a>-
4 4

,i 15. Given the parabola 3? = 4« and the line y — 2z =03
required the equation of the tangent which is,
(@) parallel to the line,
() perpendicular to the line.
Ans. (@) y=2+1,®) y+x+1=0.
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16. The point (—1, 2) lies outside the parabola 3® = 6 x;
what are the equations of the tangents through the point to
the parabola ?

17. The point (2, 45°) is on a parabola which is symmetri-
cal with respect to the X-axis; required the equation of the

paraboly, the pole being at the focus. __
Ans. ¥ = (4 —2+/2) x.

18. The subtangent of a parabola = 10 for the point (5, 4);
required the equation of the curve and the value of the sub-
normal.

Ans.  3? =—15~6x; ?

64. The tangent to the parabola makes equal angles with the
Jocal line drawn to the point of tungency and the axis of the
curve.

From Fig. 31 we have,

FT =FO0 + OT = % + 2.
We have, also,
FP” = DC = DO 4+ 0OC = 1; + 2.
.. FT = FP”,
The triangle FP”T is therefore isosceles and
FP"T = FTP”.

!
65. To find the condition that the line y = sx + ¢ must fulfil
in order to touch the parabola y* = 2 pz.
Eliminating y from the two equations, and solving the
resulting equation with respect to x, we have,

m=1’—3":1:\/(232—20)2—0232 )

for the abscisse of the points of intersection of the parabola
and line, considered as a secant. When the secant becomes
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a tangent, these abscissas become equal ; but the condition for
equality of abscissas is that the radical in the numerator of
(1) shall be zero; hence
(es — p)? — ** =0,
or, solving, e=2L
2s
is the condition that the line must fulfil in order to touch the

parabola.
Cor. 1. Substituting the value of ¢ in the equation
y=sz+ 0
we have, Yy =sx+ g"; PN &)

for the equation of the tangent in terms of its slope.

66. To find the locus generated by the intersection of a tan-
gent, and « perpendicular to it from the focus as the point of
tangency moves around the curve.

The equation of a straight line through the focus (2‘; B 0) is

g/=s'<ac—-]§>...(1)

In order that this line shall be perpendicular to the tangent

— P
7 cx+2s @)
we must have, § = —%;
1 P
= — B N (3
hence 7 -@ + o 3)

is the equation of a line through the focus perpendicular to
the tangent. Subtracting (3) from (2), we have

<s+1>x=0,
$

or, HA=10]

for the equation of the required locus. But z =0 is the
equation of the Y-axis; hence, the perpendiculars from the
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focus to the tangents of a parabola intersect the tangents on the
Y-axis.

67. To find the locus generated by the intersection of two tan-
gents which are perpendicular to each other as the point of tan-

gency moves around the curve.
The equation of a tangent to the parabola is, Art. 65 (2),

= L. ...
Yy = st + 7 @
The equation of a perpendicular tangent is
v L, P8 9
Ul e &)

Subtracting (2) from (1), we have,

[

SRl G))
is the equation of the required locus. But (3) is the equa-
tion of the directrix; hence, the intersection of all perpendicu-
lar tangents drawn to the parabola are points of the directrix.

i

68. Two tangents are drown to the parabola from a point
without ; required the equation of the line joining the points of
tangency. '

Let (2, /) be the given point without the parabola, and let
(", y'"), (xs y2) be the points of tangency. Since (2, ¥/) is
on both tangents, its co-ordinates must satisfy their equations;
hence, the equations of condition,

'//J// _p (w/ + x//),
Yy =p (¥ + ).

The two points of tangency (x”, ¥”), (x; ¥,) must therefore

satisty
yy=p @ +2),

or yy =p@x+x)...1Q)

Since (1) is the equation of a straight line, and is satistied
for the co-ordinates of both points of tangency, it is the
equation of the line joining those points.
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69. To find the equation of the polar of the pole (x, y') with
regard to the parabola y* = 2 pax.

The polar of a pole with regard to a given curve is the line
generated by the point of intersection of a pair of tangents
drawn to the curve at the points in which a secant line through
the pole intersects the curve as the secant line revolves about the
pole.

By a course of reasoning similar to that of Art. 49, we may
prove the required equation to be

yy =p@+a)... Q1)
As the reasoning by means of which (1) is deduced is per-

fectly general, the pole may be without, on, or within the
parabola.

Cor. 1. If we make, in (1), (', y") = (g, 0), we have
o m—L;
hence, the directrix is the polar of the focus.
70. 7o ascertain the position and direction of the axes,
other than the axis of the parabola and the tangent at the

vertex, to which if the parabola be referred its equation will
remain unchanged in form. :

=

=

Fic. 33.
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Since the equation is to retain the form
oPes Biuizis 137 @)

let y2=2pa ... (2)

be the equation of the parabola when referred to the axes,
whose position and direction we are now seeking. It is
obvious at the outset that whatever may be the position of
the axes relatively to each other, the new Y’-axis must be
tangent to the curve, and the new origin must be on the
curve; for, if in (2) we make 2’ =0, we have ' = L+ 0, a
result which we can only account for by assuming the Y'-axis
and the new origin in the positions indicated. This conclu-
sion, we shall see, is fully verified by the amalysis which
follows.

Let us refer the curve to a pair of oblique axes, making
any angle with each other, the origin being anywhere in the
plane of the curve. The equations of transformation are,
Art. 33 (1),

x=a-}x cos 64y cos g
y =b 4+ 2 sin 6 + 3/ sin ¢.

Substituting these values in (1), we have,

y? sinfe 4 2a"y sin § sin g + 2%sin? 62 (dsing —p
cosq) y + 2 (bsind —pcos ) &' 4+ 02 —2pa=0...(3)

Now, in order that this equation shall reduce to the same
form as (1), we must have the following conditions satisfied :

(@) sin@sing = 0.

®) sin?6 = 0.

(¢) 0* — 2 pa = 0.

(d) bsing —pcosg =0.

If 6 = 0, then sin @ sin ¢ = 0 and sin%?§ = 0; i.e., conditions
() and (b) are satisfied for this assumed value of 6. But 6 is
the angle which the new X’-axis makes with the old X-axis;
hence, these axes are parallel.

If (a, b) be a point of the parabola 3% = 2 px, then % =2
pais an analytical expression of the fact; hence (¢) shows
that the new origin lies on the curve.
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If P _ tan ¢ =2, then (d) is satistied. But 2 is the
cos @ b b

slope of the tangent at the point whose ordinate is &, Art.
57, (5), and tan. ¢ is the slope of the new Y’-axis; hence, the
new Y’-axis is a tangent to the parabola at the point whose
ordinate is & ; .~ at (a, b); .~ at the new origin.

Cor. 1. Substituting (a), (b), (¢), and (d) in (3), recollecting
that cos § = cos 0 = 1, we have, after dropping accents,

2o 2P 4
sin? g
or, letting Y
sin? ¢
we have yr=2pc... )

for the equation of the parabola when referred to 0'Y’, 0'X,
Fig. 33. The form of (4) shows that for every value assumed
for x, y has two values, equal but of opposite sign; hence,
OX bisects all chords, drawn parallel to OY' and s therefore a
diameter of the parabola.

Nore. — A DIAMETER of @ curve is a line which bisects a sys-
tem of parallel chords.

T71. To show that the parameter of any diameter is equal
to four times the distance from the focus to the point in which
that diameter cuts the curve.

Draw the focal line FO’ and the normal O'N, Fig. 33.

Since the triangle O'FT is isosceles, Art. 64, the angle
O'FN =2 q.

Since O'N is a normal at 0/, AO'N = ¢ and AN = p, Art.
61. Hence in the triangle FO'A

A0’ = FO' sin 2 ¢ = FO' 2 sin ¢ cos .

In the triangle NO’A,

0s
AQ'=ANcotp=p cos e .
sin @
: cos
hence FO' 2singeos @ = p —o2;

G )
sin ¢
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For=_2
2sin?g

’ 2]7
B 29 = 24—
s 7= Sinty’

/ e 2])/ =4 FQ',
72. To find the equation of any diameter in terms of the

slope of the tungent and the semi-parameter.
The equation of any diameter as O’X/, Fig. 33, is

Yy = AQ =b.
But from the triangle AO’N, we have,
b =ANCOf}(p =-—p‘-— =]—);
tan ¢ 8
hence y=%L ... @
S

is the required equation.
73. To show that the tangents drawn at the extremities of

any chord meet in the diameter which bisects that chord.

F16. 34.

Let P’ (2, y'), P (x”, y”) be the extremities of the chord

@—a) ... @)

P/P,'; ) B
r Y -y

then y—y R
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is its equation. The equation of the tangents at P’ (¢, %),
P” (2", y") are

gy =p @+a) ... ©2)
vy =p( +27) ... )
Eliminating « from (2) and (3) by subtraction, we have,
x/ . x”
y=P o 4)

for the ordinate of the point of intersection of the tangents.
7 4
But if— z - is the reciprocal of the slope of chord PP,

y -y
(see (1) ). Hence, since the chord P’P” and the tangent Y'T

are parallel, we have,

x — 1
s

y —y
Substituting in (4) it becomes
y=L.
s

Comparing this value of y with (1) of the preceding
article, we see that the point of intersection is on the diameter.

EXAMPLES.
1 What must be the value of ¢ in order that the line
y = 4 x + ¢ may touch the parabola y* = 8=z ?
Ans. 3.
9. What is the parameter of the parabola which the line
y = 3z + 2 touches ?
Ans. 24,
3. The slope of a tangent to the parabola y* = 6z is = 3.
What is the equation of the tangent?
Ans. y =3z + %
4. The point (1, 3) lies on a tangent to a parabola; required
the equation of the tangent and the equation of the parabola,

the slope of the tangent = 4.
Ans. y =42 —1; yt= — 16
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5. In the parabola %? = 8 2 what is the parameter of the
diameter whose equation is y — 16 =07?

Ans. 136.

6. Show that if two tangents are drawn to the parabola

from any point of the directrix they will meet at right angles.

7. From the point (— 2, 5) tangents are drawn to y? = 8 x;
required the equation of the chord joining the points of
tangency. Ans. Sy —4x + 8 =0.

8. What are the equations of the tangents to y?=6ux
which pass through the point (— 2, 4) ?

TFind the equation of the polar of the pole in each of the
- following cases:

9. Of (— 1, 3) with regard to y* =4 x.

Ans. 3y —2x +2 =0.

10. Of (2, 2) with regard to > = — 4 .

Ans. 2y 42244 =0.

11. Of (e, ) with regard to y* = 4 «.

Ans. by —2x —2a = 0.

12. Given the parabola y* = 2 and the point (— 4, 10); to
find ‘the intercepts of the polar of the point.

Ans. a =4, = —

S =

13. The latus-rectum of a parabola = 4; required the pole
of the liney — 8z — 4 = 0.

Ans. (3, 1)

14. Given y? = 10 x and the tangent 2 y — = 10; required

_ the equation of the diameter passing through the point of

tangency.
Ans. y = 10.

GENERAL EXAMPLES.

1. Assuming the equation of the parabola, prove that every
point on the curve is equally distant from the focus and
directrix.
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2. Find the equation of the parabola which contains the
points (0, 0), (2, 3), (— 2, 3).
Ans. 3a*=4y.
3. What are the parameters of the parabolas which pass
through the point (3, 4) ?
Ans. L&, and §.
_~ 4. ¥Find the equation of that tangent to y* = 9x which is
parallel to the line y — 2x —4 = 0.
Ans. 8y —16x — 9 =0.
5. The parameter of a parabola is 4; required the equation
of the tangent line which is perpendicular to the line
y=2x 4+ 2. Give also the equation of the normal which is
parallel to the given line.

6. A tangent to »* = 4z makes an angle of 45° with the
X-axis ; required the point of tangency.
Ans. (1, 2).

Show that tangents drawn at the extremities of a focal
chord

7. Intersect on the directrix,

8. Meet at right angles.

9. That a line joining their point of intersection with the
focus is perpendicular to the focal chord.

10. TFind the equation of the normal in terms of its slope.

11. Show that from any point within the parabola three
normals may be drawn to the curve.
4

1 +cosé

gent at the point whose vectorial angle = 60°, and to find the

angle which the tangent makes with the initial line.
Ans. 6 = 60°.

13. Find the co-ordinates of the pole, the normal at one
extremity of the latus-rectum being its polar.

12. Given the parabola » = to construct the tan-
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14. In the parabola y* =4 2 what is the equation of the
chord which the point (2, 1) biseets ?
Ans. y=2x — 3.
15. The polar of any point in a diameter is parallel to the
ordinates of that diameter.

16. The equation of a chord of y? =102 is y =22 — 1;
required the equation of the corresponding diameter.

17. Show that a circle described on a focal chord of the
parabola touches the directrix.

18. The base of a triangle = 2 @ and the sum of the tan-
gents of the base angles = . Show that the locus of the
vertex is a parabola.

19. Required the equation of the chord of the parabola
y* =2 px whose middle point is (m, n).
n_x—m
r y—n
20. A focal chord of the parabola 7 = 2 px makes an
angle = ¢ with the X-axis; required its length.
Ans. 27) .
sin? ¢
21. Show that the focal distance of the point of intersec-
tion of two tangents to a parabola is a mean proportional to
the focal radii of the points of tangency.

Ans.

22. Show that the angle between two tangents to a parab-
ola is one-half the angle between the focal radii of the points
of tangency. .

23. The equation of a diameter of the parabola »* = 2 px
is ¥ = @ ; required the equation of the focal chord which this
diameter bisects.

24. The polars of all points on the latus-rectum meet the
axis of the parabola y* = 2 px in the same point ; required the
ce-ordinates of the point.
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CHAPTER VIL
THE ELLIPSE.

74. Tueellipse is the locus of a point so moving in a plane
that the sum of its distances from two fixed points is always
constant and equal to a given line. The fixed points are
called the Foct of the ellipse. If the points are on the
given line and equidistant from its extremities, then the given
line is called the Traxsverse or Masor Axis of the ellipse.

75. To deduce the equation of the ellipse, given the foci and
the transverse axis.

P

B‘
FiG. 35.

Tet F, F; be the foci and AA’the transverse axis. Draw
OY | to AA’ at its middle point, and take OY, OX as the
co-ordinate axes,
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Let P be ary point of the curve. Draw PF, PF,; draw
also PD || to OY.

Then (OD, DP) = (x, y) are the co-ordinates of P.

Let AA'= 2e, FF; = 20F = 20F; =2 ¢, FP = and
I RE=F7 '

From the right angled triangles FPD and F,PD, we have,

r=Vyi+@—clandr =Vy'+(x+c)?... (a)
From the mode of generation of the curve, we have,
r++v=2a;

hence Vit (@ —co+Vy+ @+ =2a;...Q)
or, clearing of radicals, and reducing,
(Pt -t =a’ (@ =) ... (2

As this equation (2) expresses the relationship between the
co-ordinates of any point on the curve, it must express the
relationship between the co-ordinates of every point; hence
it is the required equation.

Equation (2) may be made, however, to assume a more
elegant form. Make z = 0 in (2), we have,

?/2 — 0/2 _ 02
for the square of the ordinate of the point in which the
curve cuts the Y-axis; ie., OB = (ﬁlz). Representing
this distance by &, we have,
b = a? — %
net=at— b ... (3)
Substituting this value of ¢%in (2) and reducing, we have,
Ay 4Pt =a?t?; ... (4)
or, symmetrically,
2 2
%+%=1”.@

for the equation of ellipse when referred to its centre and
axes.
Let the student discuss equation (4). See Art. 12.
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Cor. 1. If we make b = a in (4), we have,
x2 + yz = az
which is the equation of a circle.
Cor. 2. If we interchange ¢ and b in (5), we have,

x? 2
F+%_2=1...(6)

for the equation of an ellipse whose transverse axis (= 2a)
lies along the Y-axis.

Cor. 3. If («, ) and (2", y”) are two points on the curve,
we have from (4)

2 __ b2 2 ’9 d 72 b2 2 7Y
y? =5 (@ — o) and yt =75 (@ — ;5

hence, 5% " (o — @) (a + ) : (2 — @) (a +4);

le., the squares of the ordinates of any two points on the
ellipse are to each other as the rectangles of the segments in
which they divide the transverse axis.

Cor. 4. By makingz =2’ — a and y =y  in (4), we have
after reduction and dropping accents,

2yt 4+t —2abtx=0...(7)
for the equation of the ellipse, A’ being taken as the origin
of co-ordinates.

76. The line BB/, Fig. 35, is called the CoxsuGATE or
Mixor axis of the ellipse; the points A and A’ ave called the
Verrices of the ellipse. It is evident from the figure that
the point O bisects all lines drawn through it and terminating
in the curve. For this reason O is called the CENTRE of
the cllipse.

2 __ 32
The ratio Y= _f— ¢ See(3) Art.T5... (1)
a a
is called the EccexTriciTy of the ellipse. It is evident that
this ratio is always < 1. The value of ¢ = L \a? — b? meas-
ares the distances of the foci F, I, from the centre.
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If @ =& in (1), then e = 0; i.e., when the ellipse becomes a
circle its eccentricity becomes zero.

If 5 =01in (1), then e = 1; i.e., when the ellipse becomes a
straight line the eccentricity becomes unity.

77. To find the values of the focal radii, r, v/, of a point on
the ellipse in terms of the abscissa of the point.
The FocArn RADIUS of @ point on the ellipse is the distance
of the point from either focus.
From equations («), Art. 75, we have,
r= VT @ o
from the equation of the ellipse, Art. 75 (4), we have,
2 __ b2 2 2y bZ bll x2:
Yn = P (@ — %) = — P
hence, substituting

r= 62/—23332—{-902—20.%-}—02
\ \ a®

[24

P
=\/c2+62——20x+a 21'90“’.
N P
—\/(1 —.,cac-{—z—zx

c
=a——;
a

hence r=a—ex. See (1) Art.76 . .. (1)
Similarly we find
r=a4ex ... (2)

78. Having given the transverse axis and the foci of any
ellipse, the principles of Art. 75 enables us to construct the
ellipse by three ditferent methods.

First Method. — Take a cord equal in length to the trans-
verse axis AA’. Attach one end of it at F, the other at F'.
Place the point of a pencil in the loop formed by the cord
and streteh it upward until taut. Wheeling the pencil around,
while keeping. the point on the paper and tightly pressed
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against the cord, the path described will be an arc of the
ellipse. After describing the upper half of the ellipse, re-
move the penecil and form the loop-below the transverse axis.
By a similar process the lower half may be described. It is

>

Fic. 36.

evident during the operation that the sum of the distances of
the point of the pencil from the foci is constant and equal to
the length of the cord; i.e.. to the transverse axis.

Second Method. — Take any point C on the transverse axis
and measure the distances A’C, AC. With F" as a eentre and
CA’ as a radins describe the arc of a circle; also with F as a
centre and CA as a radius describe another are. The points
R, R’ in which these ares intersect are points of the ellipse.
By interchanging the radii two other points P, P’ may be
determined. A smooth curve traced through a number of
points thus located will be the required ellipse.

Third Method. —Let the axes AA’=2 a, BB'=2 b be
given. Lay off on any straight edge MN (a piece of paper
will do) KD =0A =a and DL =0B=23. Place the
straight edge on the axes in the position indicated in the
figure. Then as K and L slide along the axes, the point D
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will describe the ellipse. For from the figure DLH and
DKE are similar triangles:
DK _ DL .
RE — i e
the co-ordinates of D).
Hence, squaring, clearing of fractions, and transposing, we
have

b .
————— (x and y being

\/1)2__ !/2

a
x

a?y? + 0%t = a®h
That is the locus deseribed by D is an ellipse. An instru-

ment based upon this prineiple is commonly used for drawing
the ellipse.

Vg, Tv find the latus rectum, or parameter of an ellipse.
The latus rectum or parameter of an ellipse is the double
ordinate passing through the focus.
The abscissas of the points in which the latus rectum
pierces the ellipse are 2 = L Va? — $%. Substituting either
of these values on the equation of the ellipse

zz—ﬁ(a"—xz)
= ’

2 LD S
we have g/z_.?(a—(a — ))_?..y_;_.
2 b2

Hence Latus rectum = 2 y = '

a

- (@)

Forming a proportion from this equation there results,
29y:2b:b:0a;
hence 29:26:20:2a;

Le., the latus rectum is a third proportional to the two axes.

EXAMPLES.

Find the semi-axes, the eccentricity, and the latus rectum
of each of the following ellipses:

1 32 +24=6. 3. ?*’4+3y=2.

2 2
2. -”;—+_1{2~=1. 4 442 4+6=8—22
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2

5. ax® + by* = ab. 7. 3/2—|—%—=m.
22

6. ¢y’ +x>=d. 8 x4+ ¥ —
m

Write the equation of the ellipse having given:
9. The transverse axis = 10; the distance between the toei
= 8.
Ans. + —‘/— =1,

&)0

10. Sum of the axes = 18; difference of axeb = 6.

Ans. VL)
ol = 9
11. Transverse axis = 10; the conjugate axis = 14 the

transverse axis.
2

L
25 25

Ans.

12. Transverse axis = 20; conjugate axis = distance be-
tween foci.
1:2
Ans. 5 + »2 = 50.

13. Conjugate axis = 10; distance between foci = 10.
2
Ans. % + y* = 25.

14. Given 3¢* 4 42? = 12; required the co-ordinates of the
point whose ordinate is double its abscissa.

6 o \/ 6
Ans. =y S\ =
ns. < 8 ’ 8)
15. Given theellipse 3 2 + 2 »* = 12, and the line y = = —1;
to find the co-ordinates of their points of intersection.

&x

16. Given the ellipse E—QI -|—~1—,_ ==1, and the abscissa of a

point on the curve = }; required the focal radii of the point.
Ans. r=Tgg v = 8.
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80. 7o deduce the polar equation of the ellipse, either focus
being taken as the pole.

F1a. 37.

Let us take F as the pole, and let (FP/, P'FA) = (», 6) be
the co-ordinates of any point P’ of the ellipse. From Art. 77

(1) we have, r=a —ex' ... (1)
From the figure, OD = OF 4 FD;
ie., & = ae + r cos 6.

Substituting this value of 2’ in (1), we have
r=a —e (ae + r cos 6),

or, reducing, we have

g U, o 2)
14 ecosé

for the polar equation of the ellipse, the right-hand focus
being taken as the pole.
From Art. 77 (2),

FP =+ =a+ ex'.
We readily determine from this value
D=l e MG
1—ecosf

for the polar equation of the ellipse, the left-hand focus being
taken as the pole.
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Cor. If 0 =0, r=a (1 —e)=FA,
¥ =a(14e) =TA

2 _ 72
It 0=90° r—a(l-e)ma—a® 0
=£=FL\T.
a
7"=a(1—gz)=a_aiff’_2=b_2:FIN.
a? o

It 6 =180° r=a (1 4+ ¢) =TFA’,
=a 1 —e)=TFA.

If 0=270° r=ua (1 —e*=FM,
" =a (1 —e*) = TN

If 0 =360° »r=a (1 —e)=FA,
=0 (1 +e) =TA

81. 70 deduce the equation of condition for the supplemental
chords of an ellipse.

>

F1G. 38.

Let AP, A’P be a pair of supplemental chords.
The equation of a line through A (a, o) is

y=3s(x—a).
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The equation of a line through A" (— «, o) is
y=¢5 (x + a).
Where these lines intersect we must have
yr=ss (@*—a? ... 1) .
In order that the lines shall intersect oz the ellipse their
equations must subsist at the same time with the equation of
the ellipse

2_£ 2 .2 9
y=n@—=2)...0@0

Dividing (1) by (2), we have

or s =—— ... ()

for the required condition.
Cor. If @ =0, the ellipse becomes -2 circle and (3) be-

comes
s’ = —1,

a relationship heretofore deduced. Art. 40 (1).

Scror. The preceding discussions have developed a remark-
able analogy between the ellipse and circle. As we proceed
we shall find that the circle is only a particular form of the
ellipse and that all of the equations pertaining to it may be
deduced directly from the corresponding equations deduced
for the ellipse by simply making @ =& in those equations.

82. ' To deduce the equation of the tangent to the ellipse.
Let P” (27, ), P’ (&, &/') be the points in which a secant
P”S cuts the ellipse. Its equation is, therefore,

, Z// | m yr/ :
Y — 1 e —2) ... (1
y—v ok ) @
As the points are on the ellipse, we must have
62
y’2=_a2 (> —a ... (2)

72 b? 2 779 3
Y —?(a —2") ... (8)
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o

=

=z
] SRS

Fi1cG. 39.

These three equations must subsist at the same time ; hence
subtracting (3) from (2) and factoring, we have

(y—M9@“+M%=—§;W—x@@“+W%

hence Fet ) . ¥ + x”.
( x/ - x// CLZ ]// + y//

Substituting this value in (1) it becomes
Lt ).
ety +y

Revolving the secant line upward about the point P” (z”, y”)
the other point of intersection P’ (2, 3//) will approach P” and
will finally coincide with it. When this occurs the secant
becomes a tangent and ' = 2, ¥’ = #/’; hence, substituting,
we have

§ = H =

2 &
y—y' = -0z 7@
iter a?yy” + Vxx” = a®?; . .. (4)
xx” | oy
or e G,

for the equation of the tangent
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Cor. If b = a, we have

wm/l yyll
s e
for the equation of the tangent to the circle. See Art. 41 (6).

Scuor. If we make x and y successively = 0 in the equa-

2 2
tion of the tangent (5), we have y =yi” and x = 9% for the

values of the variable intercepts O'I’, O, Fig. 39;
’ v? 7 a?
hence y'=—anda’=".
y x
These values in the equation
x//g ?//2
=t
give, after reduction,
a? b*

+ 2 =1...0)

x? y

for the equation of the ellipse, the intercepts of its tangents
on the axes being the variables.

83. To deduce the value of the sub-tangent.
Making y = 0 in (5), Art. 82, we have

2

r a
z=0T=—;
7

x

‘. sub-tangent =DT =2 _ " —

I

Cor. If b =a, then from Art. 41, Schol. a® = 2% = y”,
s/
*. sub-tangent in the circle = yﬂg 0
x

Scuor. The value of the sub-tangent being independent of
the value of the minor axis (24) it follows that this value is
the same for every ellipse which is concentric with the given
ellipse, and whose common transverse axis is 2 a.
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84. The equation of condition that a line shall pass through
the centre of the ellipse and the point of tangency is, Fig. 39,
?// = ta’,

.. the slope of this line is

4

t="4

(L‘” :

The slope of the tangent at (2", y”) is, Art. 82,
B e

?‘ . 7 .

Multiplying, member by member, we have

b2

¢ o= —

t=—-—z. @
But Art. 81 (3)
b?
88y = — —
P
- 58’ =tt';

i.e., the tangent to the ellipse and the line joining the centre and
the point of tangency enjoy the property of being supplemental

] q b
chords of an ellipse whose semi-axes bear to each other the ratio P

Cor. If s =t then s’ = #'; ie., if one supplementary chord
is parallel to a diameter of the ellipse, the other supplementary
chord is parallel to the tangent drawn at the extremity of that
diameter.

85. The principles of Arts. 83, 84 afford us two different
methods of constructing a tangent to the ellipse at a given
point.

First Method. — Art. 83, Schol. Let P”, Fig. 40, be the given
point. Through P” draw the ordinate P”D and produce it
until it meets the cirele described upon the transverse axis
of the ellipse (AA’) in P’; draw P'T tangent to the circle
at P’. Join P” and T; P”7T will be the required tangent.



THE ELLIPSE. 119

F1a. 40.

Second Method. — Art. 84 and Cor. Draw P”R through the
centre, and from A’ draw A'R’ || to P”R; P”T drawn through
P” || to R’A will be tangent to the ellipse at P”.

86. To deduce the equation of the normal to the ellipse.
The equation of any line through P” (2”, y”), Fig. 39, is
y—y' =s@x—x") ... Q).

In order that this line and the tangent at P” (2", »”) shall
be perpendicular their slopes must satisfy the condition
1+4+s'=0...(2.
We have found Art. 82 for the slope of the tangent

Y » oo
= 20 =5
a

hence, the slope of the normal is

- a2 y//
o 2

Substituting this value of s in (1), we have

2./

B =gy ZZ (@ —2"y ... (3).

for the equation of the normal to the ellipse.
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Cor. 1.. If @ = b, then (3) becomes, after reduction,
:[/xll _u xyll s O’
which is the equation of the normal line to the circle.

87. To deduce the value of the sub-normal.
Making y = 0 in the equation of the normal, (3), Art. 86,

2 __ 72
we have, Fig. 39, ON =& = “ = g o = G
a

2 2 2]
a—1b b
x = "—2x".

a

. Sub-normal = DN= 2" —
2 aﬂ

Cor. 1. Ifa =9, then
Sub-normal for the circle = z”.

EXAMPLES.

1. Deduce the polar equation of the ellipse, the pole being

at the centre and the initial line coincident with the X-axis.
ab

T Ja?sin®6 + Pcos?

Ans. r

Write the equation of the tangent to each of the following
ellipses, and give the value of the sub-tangent in each case.

2 22?4+ 42=38at (1, 3).
Ans. x + 6y =19; 18.

22 y2 . o
3. —3— + %— —1, at (1, ordinate positive).
B 3
Ans. x+——=y=3; 2.

V3 ’

2 2

4. %+%=1’ at (2, 0).
Ans. x=2; 0.

5. 222+ 3y*=11at (2, —1).
= ’ Ans, 4z —3y=11; &

2 2 -
6. L4+ Z 1, at (0, Va).
a b
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2 2
% _27+_§)/?=1, at (a, 0)
8 yP4bx2=2 at(l, — V2—5).
9. %2.1. F—1, at (abs +, .5).

Write the equation of the normal to each of the following
ellipses, and give the value of the sub-normal.

10. 392 +42?=39, at (3, 1).

11. 442 + 22 =44, at (— 2, ord negative).

12. ifli+%=1, at (— 1, ord —).
13 2 L% 1 a2

. _3—+6—= s @ ( )

14. %+f= , at (3,ord +).

15. m?y? + n%? = m™?% at (m, o).

16. The equation of a chord of an ellipse is y = — 2z + 65
what is the equation of the supplementary chord, the axes of

the ellipse being 6 and 4 ?
Ans. =%z §

2 2
17. Given the equation % +.1y—6 =1,and y — 2 =0; re-
quired the equation of the tangents to the ellipse at the points
in which the line cuts tne curve.

18. Given the ellipse i’; + ﬂ;— =1, and the line y — = 4

2 = 0; required
(a) The equation of a tangent to the ellipse || to the line.
(b) “ @ 43 @ - 13 “ 1o« o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>