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PREFACE

This book is the first volume of a course in mathematics

designed to present in a consecutive and homogeneous manner

an amount of material generally given in distinct courses under

the various names of algebra, analytic geometry, differential

and integral calculus, and differential equations. The entire

course covers the work usually required of a student in his first

two years in an engineering school, the first volume containing
the work of the first year. In arranging the material, however,
the traditional division of mathematics into distinct subjects is

disregarded, and the principles of each subject are introduced as

needed and the subjects developed together. The objects are to

give the student a better grasp of mathematics as a whole, and
of the interdependence of its various parts, and to accustom him
to use, in later applications, tnVj&ethod best adapted to the

problem in hand. At the same time a decided advantage is

gained in the introduction of the principles of analytic geometry
and calculus earlier than is usual. In this way these subjects
are studied longer than is otherwise possible, thus leading to

greater familiarity with their methods and greater freedom and
skill in their application.

In carrying out this plan in detail the subject-matter of this

volume is arranged as follows:

1. An introductory chapter on elimination, including the use

of determinants. This chapter may be postponed or omitted, if a

teacher prefers, without seriously affecting the subsequent work.

2. Graphical representation. Here the student learns the use

of a system of coordinates and the definition and plotting of a

function.

3. The study of the algebraic polynomial. This includes the

analytic geometry of the straight line, the more important

M298789



iv PREFACE

theorems of the theory of equations, and the definition of a

derivative. Simple applications of the calculus to problems

involving tangents, maxima and minima, etc., are given. In this

way a student obtains an introduction to the principles of the

calculus, free from the difficulties of algebraic computation.

4. The study of the algebraic function in general. The knowl

edge of analytic geometry and calculus is here much extended

by new applications of the principles already learned. Simple

applications of integration are also introduced. The study of the

conies forms part of the work in this place, but other curves are

also used and care is taken to avoid giving the impression that

analytic geometry deals only with conic sections
;
in fact, the

chapters which deal especially with the conies may be omitted

without affecting the subsequent work.

5. The study of the elementary transcendental functions. It

has been thought best to assume the knowledge of elementary

trigonometry, since that subject is often presented for admission

to college, a tendency which should be encouraged. The

chapter discusses the graphs, the differentiation of transcendental

functions, and the solution of transcendental equations.

6. The work closes with chapters on the parametric represen
tation of curves, polar coordinates, and curvature. In the first of

these chapters the solution of locus problems, which, from some

standpoints, is the most important part of analytic geometry,
finds its natural place ;

for this problem involves, in general,

the expression of the coordinates of a point on a locus in terms

of an arbitrary parameter, and possibly the elimination of the

parameter.

As compared with the usual first course in analytic geometry,
there will be found in this volume fewer of the properties of the

conic sections, except as they appear in problems set for the

student. On the other hand, a greater variety of curves are

given, and it is believed that greater emphasis is placed on the

essential principles. All work in three dimensions is postponed
to the second year, and is to be taken up in the second volume

in connection with functions of two or more variables, partial

differentiation, and double and triple integration.



PREFACE V

This volume contains the matter usually given in a first course

in differential calculus, with the exception of differentials, series,

indeterminate forms, partial differentiation, envelopes, and some

advanced applications to curves. These subjects will find their

appropriate place in the further development of the course in

the second volume. Integration has been sparingly used as the

inverse operation of differentiation, and without employing the

integral sign. Simple applications to areas and velocities are given.

To do more would require the expenditure of too much time on

the operation of integration, and the introduction of too many
new ideas into one year s work. The integral, as a limit of a

sum, with its many applications, will form an important part of

the second year s work.

In the preparation of the text the needs of a student who

desires to use mathematics as a tool in engineering and scientific

work have been primarily considered, but it is believed that the

course is also adapted to the student who studies mathematics

for its own sake. Abstract discussions are avoided and frequent

applications and illustrations are given. Illustrations, however,

which are beyond the range of a first-year student s knowledge
of physical science are omitted. The proofs are made as rigorous

as the maturity of the student will admit. It is to be remembered

in this connection that the earlier chapters are to be studied by
students who have just entered college.

In the preparation of the book the authors have had the advice

and criticism of the mathematical department of the Massachu

setts Institute of Technology. In particular, they are indebted

to the head of the department, Professor H. W. Tyler, at whose

invitation the book has been written, and whose suggestions have

been most valuable.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September, 1907
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A COURSE IN MATHEMATICS

CHAPTEE I

ELIMINATION

1. Determinant notation. Elimination is the process of obtain

ing from a certain number of equations containing two or more

Unknown quantities one or more equations which do not contain

all of these quantities. The quantities removed are said to have

been eliminated. The solution of equations is essentially the elim

ination of all but one of the unknown quantities. The process of

elimination leads to the formation of certain expressions in the

coefficients, for which a special name and a corresponding notation

have been invented. In this chapter we shall consider equations of

the first degree, or linear equations. These are equations in which

no term contains more than one unknown quantity, and that in

the first degree.

Ex. 1. aix + biy + ci = 0,

a2x 4- b2y + c2 = 0.

To eliminate ?/, multiply the first equation by 62 ,
the second by 61, and

add. To eliminate x, multiply the first equation by a2 ,
the second by ai,

and add. There results

= 0,

(aib-2
-

aobi) y + (aiC2 a2Ci) = 0.

ibz a-&amp;gt;bi
= 0, equations (2) #ive at once the solution of (1).

It n
{
h.2 a26i = 0, the method used to eliminate y also eliminates x, and the

equations need further discussion, to lu- uivt-n in (I.

1



Ex. 2.

ELIMINATION

&amp;lt;ix + biy + c+z -f di = 0,

azx = 0,

= 0.

(1)

- 63c2)
-

-f [di (b2c3
- 63c2)

-

To eliminate y and z, multiply the first equation by (62c3 &3c2), the second

by -
(&lC8

- 63ci), the third by (6iC2
- 62Ci), and add. There results

(2)

To eliminate x and 2, multiply the first equation by -
(a2c3

- a3c2), the

second by (iC3
- a3Ci), the third by -

(aiC2
- a2ci), and add. There results

(3)

To eliminate x and y, multiply the first equation by (a263 a362), the second

by (cn&s a^bi), the third by (ai&2 2&i), and add. There results

(4)= 0.

Equations (2), (3), and (4) give the solution of (1), unless

-f 2&3Ci + a3&ic2 ai&3c2 a2&iC3 a3&2ci = 0.

The exceptional case will be considered in 6.

The binomials which occur in the solution of Ex. 1 are called

determinants of the second order. The symbol

a, \
a

2
&
2

is used to denote the determinant ajb2 aj)r Then equations (2)

of Ex. 1 may be written

c b,

= 0,
a^ b,



DETERMINANT NOTATION 3

The polynomials which occur in the solution of Ex. 2 are called

determinants of the third order. The symbol

is used to denote the determinant

The results of Ex. 2 may then be written

d
i \ c

i

d~ DO GO

a
2

b
2

c
z

a
3

b
3

c
3

=
0,

z +

y+

d.

= 0.

aa da

~ q333
= 0,

By the work of Ex. 2,

a
i \ c

i

a
2

b
2

c
2

a n bn c

= a.
h ,

bn Co b C K ba c

which may be taken as the definition of a determinant of the

third order.

Similarly a determinant of the fourth order is indicated by the

symbol

a
2

b
2

c
2

d
2

a
3

b
3

c
3

d
3

and is defined as equal to

\ c* ^3
b
4

c
4

d
4

b
S

C
3

\ c&amp;lt;

b, c, (L

b. c t
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If now each of these determinants of the third order is expressed
in terms of determinants of the second order, we shall have finally

the determinant of the fourth order expressed as an algebraic

polynomial of twenty-four terms.

2. In general a determinant of the nth order is an algebraic

polynomial involving n2

quantities, called elements. The symbol
of the determinant is obtained by writing the elements in a square
of n rows and n columns. If in such a symbol a row and a col

umn are omitted, there is left the symbol of a determinant of the

next lower order. This new determinant is said to be a minor of

the original determinant, and is said to correspond to the element

which stands at the intersection of the omitted row and column.

We shall now give as definition :

A determinant is equal to the algebraic sum of the products
obtained ~by multiplying each element of the first column by its

corresponding minor, the signs of tha products being alternately

plus and minus.

By repeated application of the same definition to the minors

obtained, we eventually make the value of the determinant depend

upon determinants of the second order, and thus obtain the poly
nomial indicated by the original symbol.

Students who desire a more general definition and discussion of

determinants are referred to treatises on the subject. We shall

derive here, as simply as possible, only those properties which are

of use in solving equations. Before doing so, however, we need to

show that the word &quot;column&quot; may be changed to &quot;row&quot; in the

above definition, thus : A determinant is also equal to the sum of
the products obtained by multiplying each element of the first row

by the corresponding minor, the signs of the products being alter

nately plus and minus.

For a determinant . of the third order the student may verify

that



DETERMINANT NOTATION

The theorem thus shown to he true for a determinant of the

third order may be proved for one of the fourth order as follows :

d

rf.

C
l *1

C
3 ^3

6, c,
d

l

6, c,

(by definition)

-,{,

+,{*,

(as already proved)

-&amp;gt;,{,

6 c

(by a rearrangement)

U
2

G
2l

. &amp;lt;ai

(by definition)

In a similar manner the theorem may be proved successively
for determinants of the fifth, the sixth, and, eventually, any order.
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3. Properties of determinants.

1. A determinant is unchanged in value if the rows and the

cohimns are interchanged in such a manner that the first row

becomes the first column, the second row the second column, and

so on.

The student may verify that

an I

a
i

a
:

1 \

a, a e

This proves the theorem for determinants of the second and

the third orders. To prove it for one of the fourth order, proceed

as follows :

d d

d
l
d d

3 ~4

da d d A

c, c c.

The expressions on the right of these equations are equal, and

hence the determinants of the fourth order are equal. In the same

manner the theorem may be proved for determinants of higher

order.

It follows from this theorem that any property which is true of

the rows is also true of the columns, and vice versa. The following

theorems are stated for both rows and columns, but are proved for

the rows only.
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2. If two consecutive rows (or columns) of a determinant are

interchanged, the sign of the determinant is changed.

The student may verify that

The theorem is then proved for determinants of the second and

the third orders. To prove it for a determinant of the fourth order,

consider

and

By definition,

= Of, a&amp;lt;

6, c,
d

1

b c d

Comparing these two expressions, it will be noticed that the

minors which multiply a
l
and a

4 (the elements of the unchanged

rows) differ in the two expressions by the interchange of two con

secutive rows, and that the minors which multiply a
2
and a

s (the

elements of the interchanged rows) are the same in the two expres

sions but are preceded by opposite signs. It is evident on reflection

that these laws always hold
;
and hence, if the theorem is true

for determinants of any order, it is true for determinants of the
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next higher order. The theorem is known to be true for determi

nants of the third order
;
hence it is universally true.

3. A determinant is equal to the algebraic sum of the products

obtained by multiplying each element of any row (or column) by its

corresponding minor, the sign of each product being plus or minus

according as the sum of the number of the row and the number of
the column in which the element stands is even or odd.

For the Mi row may be made the first row of a new determi

nant by k 1 interchanges of two consecutive rows. By theorem 2,

if k is odd, the new determinant is equal to the original one
;
and

if k is even, the new determinant is equal to minus the original one.

The new determinant may now be expressed by definition as the

algebraic sum of the elements of its first row multiplied by their

minors, which are the same as those of the Mi row of the original

determinant. Hence the original determinant is equal to the alge

braic sum of the elements of its &th row multiplied by their minors,

the products being alternately plus and minus when k is odd, and

alternately minus and plus when k is even. From this the law of

signs as given in the theorem at once follows..

Ex.

L 6l

I

?2

61 Ci

62 C2

C3 dg

c\

ds

64 c4 d4

61 GI di

a3

|&i 61

c3 d3

ai 61

When a determinant is thus expressed it is said to be expanded

according to the elements of the Mi row. We shall call the

coefficient of an element the quantity which multiplies it in

the expansion.

Then the coefficient of tin element is plus or minus the corre

sponding minor according as the number of the row added to the

number of the column is even or odd.
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The coefficient of ^ shall be denoted by A v that of b
l by J&amp;gt; v

and so on. Then

i
?

&amp;gt;i

&amp;lt;
;

i

a
2

b
2

c
2

4.
_//&quot; ??/?/ two rows (or columns) of a determinant are inter

changed, the sign of the determinant is changed.

For suppose the determinant is expanded as in theorem 3, and

that two rows other than that used in the expansion be inter

changed. A similar interchange takes place in the minors of the

expansion. Hence, if the theorem is true for each of the minors,

it is true for the determinant. In other words, if the theorem is

true for determinants of any order, it is true for those of the next

higher order. But the theorem is certainly true for determinants

of the second order. Hence it is always true.

. 5. If two rows (or columns} of a determinant are the same, the

determinant is equal to zero.

Let a determinant with two rows the same be expanded accord

ing to the elements of some other row. Each minor of the expan
sion has two rows the same. Hence, if the theorem is true for

determinants of any order, it is true for determinants of the next

higher order. But the theorem is certainly true for determinants

of the second order, for

Hence it is universally true.



10 ELIMINATION

6. TJie sum of the products obtained by multiplying the elements

of any row (or column) by the coefficients of the corresponding ele

ments of some other row (or column) is zero.

Consider, for example,

\ c,

h c,

fro c n

= aA 4 4

If we replace a
2 ,

1
2 ,

c
2 ,
d

z ,
on the right-hand side of this equation

by 4 ,
&
4 ,

c
4 ,
d

4 ,
the same substitution must be made on the left-

hand side. Then we have

But the determinant is zero, by theorem 5
;
therefore

It is evident that the proof is general and establishes the

theorem.

7. If each element of any row (or column) is multiplied by the

same quantity, the determinant is multiplied by the same quantity.

This follows at once from theorem 3. For example,

a
l \ kc^ d

l

a \ l&quot;c d*
=^ C

&amp;gt;

+ *c&+kc&+ kc^CA
UJQ L/2 ^^^ ^3

4
^
4 kc, d

cn dn
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8. If each of the elements of any row (or column) is increased

~by the same multiple of the corresponding element of any other

row (or column), the value of the determinant is unchanged.

We wish to show, for example, that

d

(1)

(2)

Let the coefficients of the elements in the second column of

(1) be Bv B2 ,
B

3 ,
J5

4
. It is evident that these are also the coeffi

cients of the elements of the second column of (2). Hence (2) is

(b,+ MJ B, + (62+ kd
z) B, + (l&+ M9 )

B
z + (b,

which equals

The coefficient of k in this equation is zero, by theorem 6, and.

the remaining terms equal the determinant (1). Hence (2)
=

(1).

It is evident that the proof is general. The following are special

cases : If k = 1, the elements of one row or column are added to

the corresponding elements of another row or column
;

if k = 1,

the elements of one row or column are subtracted from those of

another row or column.

This theorem is often used in simplifying determinants.

Ex. 1. Consider

1-21 2

3-53 6
- 1 23-43-52 6

(1)

It the elements of the second column are added to those of the fourth column,
this becomes

1-21
3 -

f&amp;gt; 3 (}

-1 2

3-5
3-2
2

(2)
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If twice the elements of the first column are added to those of the second

column, (2) becomes

101313103-2312
(3)

If the elements of the first column are subtracted from those of the third

column, (3) becomes

1

3

-1
3

- 2 (4)

Expressing (4) as the sum of the product of the elements of the first row
and their coefficients, it becomes

1

4-2
1-1

and this is equal to
4 -2 = -2.

Ex. 2. Consider
x y
Xi 2/i

x2 2/2

By successive subtraction of the elements of one row from those of another

we have

x y
xi 2/1 1

X2 2/2 1

X

x

y - 2/1

2/2

2/
-

2/1

2/1 -2/2

x - xi ?/
-

2/i

xi -x2 2/1-2/2
^2 2/2 1

,
the last transformation being made by
theorem 3.

4. Solution of n linear equations containing n unknown quan

tities, when the determinant of the coefficients of the unknown

quantities is not zero. We are now prepared to show that the

method used in 1 to solve equations with two or three unknown

quantities can be so generalized as to apply to any system of

equations of the first degree in which the number of equations is

equal to the number of the unknown quantities. For convenience

we will take the case of four equations, but the student will readily

see that the method is perfectly general.
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Consider the equations

a^x + 1)^ + CjZ + djW -f ^ = 0, (1)

V + bjJ + C2* +^ +
&amp;lt;^2

=
&amp;gt; (

2
)

a
8
a? +% + c

3
z + d

z
w + e

3
= 0, (3)

V +^ + C
4
Z + d

4
w + e

4
= 0. (4)

Let the determinant of the coefficients of the unknown quan
tities x, y, z, w be denoted by D, so that

a
2

b
2

c
2 d^

and let A
l
denote the coefficient of av Bl

the coefficient of bv and

so on. We assume D = 0.

If now we multiply (1) by Av (2) by A
2 , (3) by ^4

3 , (4) by A^
and add the results, we have, by theorems 3 and 6, 3,

Dx + V*i+ Ma + Ms + M* =
(
5

)

Similarly, by using Bv B2 ,
J5

3 ,
B as multipliers, we have

Dy + e
l
B

l + g
3
/f

a + e
8
/?

8 + e
4
B

4
=

; (6)

by using C
1?
C

2 ,
6

3 ,
C

4
as multipliers, we have

Dz + e^Cl + e, C, + e, C, + e
4
C

4 =0; (7)

and by using Dv D2 ,
Z&amp;gt;

3 ,
X&amp;gt;

4
as multipliers, we have

Dw + e
l
D

l
+ 2

Z&amp;gt;

2 + ^
3

Z&amp;gt;

3 + 4
1&amp;gt;

4
= 0. (8)

Now it is clear that any values of x, y, z, w which satisfy (1),

(2), (3), (4) satisfy also (5), (6), (7), (8). Conversely, any values

which satisfy (5), (6), (7), (8) satisfy also (1), (2), (3), (4). For if

we multiply (5) by av (6) by lv (7) by cv (8) by dv and add, we
obtain (1). Similarly (2), (8), (4) can be obtained from (5), (6),

(7), (8). Hence (1), (2), (3), (4) and (5), (6), (7), (8) are equivalent

equations.
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Now

and v*V

Hence the solution of (5), (6), (7), and (8) is

d y = -

a
2

e
2

c
2

d
2

z =
&amp;lt;*,

w =

c d

and this is the solution, and the only solution, of (1), (2), (3), (4).
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Hence we may state the following important theorem :

Any system of n linear equations containing n unknown quan
tities has one and only one solution when the determinant formed

ly the coefficients of the unknown quantities is not zero.

This solution may be written down at once, for each unknown

quantity is equal to minus a fraction, of which the denominator is

the determinant of the coefficients and the numerator is a similar

determinant formed by replacing the coefficients of that unknown

quantity by the absolute terms.

EX. i:

Ex. 2.

x = = 0.

5. Systems of n linear equations containing more than n un

known quantities. When in a set of linear equations the number

of equations is less than the number of unknown quantities, the

equations have usually an infinite number of solutions, but may
have none. The general method of procedure in solving them is to

pick out a number of the unknown quantities equal to the number
of the equations and having the determinant of their coefficients
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not zero. These are solved by the method of 4. We then have

these unknown quantities expressed in terms of the others.

Ex. l.

If we choose x and y for the unknown quantities, we have

12 3D =
I -2 = -1.

Then, solving as in 4, we have

x =

2 z

1 3z

2 3

1 -2

and since z may be given any value whatever, the equations have an infinite

number of solutions.

Ex. 2. + z + 4 = 0,

If we choose to solve for x and y, we have

n-J2 3~
2 3

But if we choose to solve for y and z, we have

13 II o-3.

The solutions are

It is possible that no selection of the unknown quantities will

lead to a determinant of the coefficients which is not zero. In this

case the equations may have no solution. The discussion is too

complex for this book, but the student will probably have no diffi

culty with the cases likely to occur in practice.
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Ex. 3. 2x + 3y + + 4 = 0,

The determinant of any pair of unknown equations is zero. By subtracting
the second equation from the first we have 1 = 0, showing the equations to be

contradictory.

6. Systems of n linear equations containing n unknown quan

tities, when the determinant of the coefficients of the unknown

quantities is zro. Consider again equations (1), (2), (3), (4) of

4, but with the assumption that D = 0. Wr
e may proceed exactly

as in 4, but equations (5), (6), (7), (8) do not now contain the

unknown quantities. In fact, these equations are, in general, con

tradictory, and consequently equations (1), (2), (3), (4) have, in

general, no solution.

Ex. 1. x -+z+3 =

Here D =
1-11
2 1 3

1 2 2

Eliminating y and z by the method of 4, we have Ox 24 = 0, which is

absurd. Hence the equations have no solution.

It is, of course, possible that when D = each of the other

determinants in (5), (6), (7), (8) is also zero. Each of these equa
tions is then simply =

0, and gives no direct information about

the solutions of (1), (2), (3), (4). As a matter of fact, in this case,

(1), (2), (3), (4) have, in general, an infinite number of solutions,

but may, under special conditions, have no solutions.

The general discussion is too complex to be given here. We
shall simply state the following theorem :

A set of linear equations containing n unknown quantities lias,

in general, no solution u-ln n Hie determinant of the coefficients of
tli&amp;gt; i nl. iioim

i/ini
ntif irs /x tero, lmt

///&quot;//,
under certain condition*.

have an infinite -/it/ ///!/&amp;lt; / of solutions.
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In practice, one of the n equations may be temporarily set aside,

and the other n 1 equations, which contain n unknown quan
tities, may be examined by the method of 5. If these equations
can be solved, the solution can be tested in the equation which

has been set aside.

Ex. 2. 2z-8y+z-l=0,
x - 2 ?/ + 3 z + 4 = 0,

7z - lly + 62+1 = 0.

If the method of 4 is used, the result is = 0. Solving the first two equa
tions for x and ?/, we have

x = 7 z + 14,

y = 5z + 9,

and these results are found on trial to satisfy the last of the given equations.

Since z may have any value, the equations have an infinite number of solutions.

7. Systems of linear equations in which the number of the

equations is greater than that of the unknown quantities. If

there are more equations of the first degree than there are unknown

quantities, there will be, in general, no values of the unknown

quantities which satisfy all equations. There may be such values,

however, when certain relations exist among the coefficients of

the equations. To obtain these relations we may pick out a num
ber of equations equal to the number of the unknown quantities

and solve them. If the solution is substituted in the remaining

equations, there will result certain expressions in the coefficients

which must be zero if the equations are to be satisfied.

The most important case is that in which there are n + 1 equa
tions containing n unknown quantities. For example, consider

ajc + \y + c^z 4-^ = 0,

a^x + b^y + c.,3 + d. t

=
0,

a
s
x 4- b.

Ay 4- c
s
z 4- ds

=
0,

a^x 4- by + cz + d
4
= 0.
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The solution of the first three equations, if

d.

2 * 0, is
( 4)

Substituting these values in the first member of the last equa

tion, we have

a
i

c
i

d
i

which, by theorem 3, 3, is the same as

Z&amp;gt;, c, d
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Hence, in order that the last equation may be satisfied, we must

have

= 0.

Extending this to any number of variables, we have the theorem :

In order that a system of n + 1 linear equations containing n

unknown quantities shall have a solution, it is necessary that the

determinant formed from the coefficients of the unknown quantities

and the absolute terms shall he zero.

Ex. 1. x+ y+
y-

-3y- 4z

Here

1

- 1

-2 - 3

-3 -4

-2
3
4

1

showing that if the first three equations have a solution it will satisfy the fourth

equation. In fact, the solution is x 1, y 2, z = 3.

It should be noted that the converse of the theorem stated is

not necessarily true. All that has been proved is that if n of the

equations have a solution, that solution satisfies the (n + l)st equa

tion when the determinant is zero. But the determinant may be

zero when the equations are contradictory.

Ex. 2. 2 x - 3 y +

2x-

Here

2z-8 = 0.

= 0,

but any three of the equations may be seen to be contradictory by the method

of 6.
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8. Linear homogeneous equations. An equation is homoge
neous with respect to the unknown quantities when the sum of

the exponents of the unknown quantities is the same in each term.

In particular an equation of the first degree is homogeneous when
each of the terms contains one of the unknown quantities ;

for

example,

a^ + a
2
x

z + a
s
x

s + a
4
x

4
=

0,

where xv xv x
s ,
x

4
are the unknown quantities.

This equation is, of course, satisfied by placing x
l
=

0, x
2
= 0,

x
9
=

0, x
4
=

0, but in practice this solution is generally unimportant.
In such equations, in fact, it is usually the ratios of the unknown

quantities which are important ;
for if each unknown quantity is

multiplied by the same number, the equation is unaltered. In fact,

if we place

the homogeneous equation just written becomes the non-homogene
ous equation

ajc -f- a^y + a
s
z + 4

= 0.

In this manner a set of homogeneous equations containing n
unknown quantities may be reduced to a set of non-homogeneous

equations containing n I unknown quantities by dividing each

equation by one of the unknown quantities. The methods of the

previous articles may then be used. But this method of proced
ure is open to the objection that the unknown quantity by which
the equations are divided may possibly be zero when the division

is invalid. It is better, therefore, to handle the homogeneous equa
tions as they stand, slightly modifying the methods used for non-

homogeneous equations in a manner which will be clear from the

examples.

4X4 = 0,

61X1 -f /&amp;gt;.jX2 + to + 64^4 = 0, (1)

?\x\ + &amp;lt;

&amp;gt;.*:&amp;gt; + 3X3 + r4x4 = 0.
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We will handle this by the method of 4, in that we temporarily look upon
ii 2, xs as the unknown quantities. We have, in the first place,

61

61

C2 C3

a2 a3

62 63

Ci C2 C3

i a2 a3

61 62 63

Ci C2 C3

which may be written as

X3

a4x4 a2 a3

64X4 62 &3

C4Z4 C2 C3

61 &4x4 63

C4X4 C3

ai a2 4x4

bi 62 64x4

Ci C2 C4X4

61

a2 a3

&2 63
C2 C3

a2 a3

62 63
C2 C3

a2 a3

62 63

C2 C3

X2
-

X3

c2 c3 c4

i a3 a4

61 63 64

Ci C3 C4

Zi a2 a4

61 62 64

Ci C2 C4

(2)

(3)

(4)

From these follow :

x2

a2 a3 a4

62 63 64
C2 C3 C4 C3 C4

: 61

C2 C4

OL\

Cg

(-5)

The result (5) holds even when one or more, but not all, of the determinants

involved are equal to zero. Then the corresponding unknown quantities are

equal to zero. For example, if

C3 C4

01 a2 a4

&i b-2 64

Ci C2 C4

= 0,

and the other determinants in (5) are not zero, (3) and (4) show that x2 = and
x3 = 0, while (2) shows that the ratio of xi and x4 are correctly given by (5).

If all the determinants in (5) are zero, the values of the unknowns are not

thereby determined. In this case, two of the equations (1) should be solved for

two of the unknown quantities in terms of the others, and the results tested for

the last equations.
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It should be noted that contradictory equations cannot occur. The student

should compare the contradictory equations

2x-3?/ + 4 = 0,

2x-37/-2=0,

with the homogeneous equations

2xi - 3x2 +4 x3 = 0,

2 xi - 3 x2
- 2 x3 = 0.

By subtracting one equation from the other we have

whence x3 = and Xi : Xa = 3 : 2.

Ex. 2. The four equations

#1X1 + CZ2X2 + &3X3 -{- 04X4 = 0,

61X1 + 62x2 -f 63x 3 + 64X4 = 0,

CiXi + C2X2 + C3X3 + C4X4 = 0,

diXi + d2x2 + d3x3 + d4x4 = 0,

have, of course, the common solutions, Xi = 0, x2 = 0, x3 = 0, X4 = 0. In order

that they may also be satisfied by the same ratios of the unknown quantities, it

is necessaiy that

6. 64

C3 C4
= 0.

The proof is as in 7. The condition is also sufficient, for the proof of 7

shows that if three of the equations have a solution, that will also be a solution

of the fourth equation ; and, as just noted, three homogeneous equations always

have a solution.

9. Eliminants. The result of eliminating all the unknown

quantities from two or more equations is an equation the left-

hand member of winch is called the elimmant, or resultant, of

the given equations. The following cases are important:

1. n 4- 1 non-homogeneous linear equations with n unknown

quantities. To eliminate the unknown quantities, we may solve

n of the equations and substitute the solutions in the remaining

equation. The work and the result are as in 7
;
that is,

The eliminant of n + l non-lwmogeneous equations with n un

known quantities is equal to the determinant of the coefficients
and

the absolute terms.
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2. n homogeneous linear equations with n unknown quantities.

To eliminate the unknown quantities, we may solve n 1 equa
tions for their ratios and substitute the results in the remaining

equation. The work and the result are as in 8
;
that is,

The eliminant of n homogeneous equations with n unknown quan
tities is equal to the determinant of the coefficients.

3. Two equations containing one unknown quantity. Let it be

required to eliminate x between the equations

+ ^ = 0, (1)

x + c
l
= 0. 2

If we multiply each equation by x, we have

X+V2 + c
i ^=&amp;gt; (3)

and a
2
x*+ \x*+ c

2
x = 0. (4)

These four equations may now be considered as linear in the

three unknown quantities x
3
,
x2

, and x. Elimination gives, by 1,

a,

,

i
b

i

a., b 6

a
1

b
1

c
i

(5)

It is clear that if equations (1) and (2) have a common solution,

equation (5) must be true. Conversely, it may be shown that if (5)

is true, (1) and (2) must have a common solution
;
but this proof is

too long to be given here.

The method used in the above problem may be used for

equations of any degree and is known as Sylvester s method of

elimination. It consists in multiplying the given equations by
successive powers of x until we have one more equation than we
have powers of x. The eliminant is then found as in 1.

The method may also be used to eliminate one of the unknown

quantities from two equations containing two unknown quantities.
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PROBLEMS

Find the value of each of the following determinants:

= a {a,
2
a|

- 4 a a.? 4- 4 a,
sa3

- 3 o,
2
a.?
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Solve the following equations :

= 0.

Solve the following equations

31. 4x-5?/ + 6 = 0,

7x-9y + 11 = 0.

32. x + 2 y - z + 3 = 0,

2x- y -5 = 0,

x +2^-8 = 0.

37.

4x- y+ 62-
5x-2?/+ 32

34. 2x + 4y + 3z - 2 = 0,

x- 5 y + 2+1 =
0,

3x+ lOy + 52- 5 = 0.

35. 2x+ y + 2 + 2 = 0,

38. x + y + 2 = a,

?/ + 2 + w =
6,

z + w + x = c,

w + x + y = d.

39. lOxt + 4x2 + 5x3 = 0,

3 X! + x2 + 2 x3 = 0.

40. xi + 5 x2 + 3 x3 = 0,

3 xi + 3 x2 + x3 = 0.

41. 2xi + 4x2 + x3 = 0,

3xj + 6x2 -x3 = 0.

42. 2xj + x2
- 5x3 + x4

3xi -2x2 -4x3 -2x4

Xi + x2 + 2 x3
- x4

=
0,

=
0,

= 0.

36. X + 7/ + 92- 7 =0,
5x-y + 92-5 = 0,

3 x - y + 3 2 - 2 = 0.

43. 2xi - 3x2 + 2x3
- 3x4 = 0,

4i + 5x2 + 4x3
- 6x4 = 0,

3 xi - 7 x2
- 2 x3 + 3 x4 = 0.

44. 7xi- 5x2 + 3x3
- 4x4 = 0,

3xi+ 2x2
- 5x3 + 9x4 = 0,

5xi- 16x2 + 21x3
- 35 x4 = 0.
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Find whether or not the equations in each of the following examples have

a common solution :

45. 2 z - y + 3 = 0,

3z + y- 1 = 0,

3z-4y + 10 = 0.

46. 5z-2?y + 7 = 0,

3z- y + 6 = 0,

x + 3 y - 1 = 0.

47. z-2y+3z-l=0,
2z + y- z+ 1 = 0,

x - 3 y + 2 2 + 2 = 0,

x _ 19 y + 22 z - 4 = 0.

48. z-2y+ 1 = 0,

y-2z + 2 = 0,

z - 2 x + 3 = 0,

x + y + z = 0.,

49. For what values of a are the

following equations consistent ?

x + a2
?/ + a = 0,

ax + y + a2 = 0,

a2z + ay + 1 = 0.

53. Find the condition that

ax2 bx c = 0,

and x2 =
1,

have a common root.

54. Show that the condition that

az2 + bx + c = 0,

50. Eliminate z from the equations and x3 =
1,

have a common root is

zy + 3 z + 1 = 0,

2zy-4y + 2 = 0.

51. Eliminate x from the equations

xy* + 2 y + 3 = 0,

xy + 4z+ 1 = 0.

52. Eliminate x and z from the

equations

xy + yz x + z -f 2 = 0,

z?y
- 2 x + y + z + 2 = 0,

z + 3z-2 =0.

a b c

b c a
cab

55. Show that if

aix + biy + ci = 0,

a%x -f- b%y -\- c% = 0,

dsX + b^y + c3 = 0,

have a common solution, there can

always be found three numbers Z, k,

m such that

a\l + a^k + a^m = 0,

bil + b2k + b-m = 0,

cil + c2fc + cjn = 0.



CHAPTEE II

GRAPHICAL REPRESENTATION

10. Real number. The science of mathematics deals with vari

ous kinds of numbers, each of which has arisen through the desire

to perform, without restriction, some one of the fundamental oper

ations. The simplest numbers are the positive integers, or whole

numbers. If one restricts himself to the use of these, he may add

or multiply together any two of them without obtaining a new
kind of number

;
but he may not divide one number by another not

exactly contained in it, nor subtract a larger number from a smaller.

In order that division may always be performed, the common frac

tions, which are the quotients of one integer divided by another,

are necessary. In order that subtraction may always be possible,

the idea of a negative number must be introduced. The integers

and fractions, both positive and negative, together form the class

of rational members. On these numbers the operations of addition,

subtraction, multiplication, and division may always be performed
without leading to a new kind of number.

The operation of evolution, however, leads to two new kinds of

numbers, the irrational, exemplified by V2 ;
and the complex, of

which v 2 is an example. The complex numbers will be noticed

in 12
;
we shall here speak only of the irrational numbers. An

irrational number is defined as one which cannot be expressed

exactly as an integer or a common fraction, but which may be so

expressed approximately to any required degree of accuracy. The

simplest examples are the roots of rational numbers
;
for example,

V? may be approximately expressed as
||-jj, | -&amp;lt;5~M$&amp;gt;

etc., but can

not be expressed exactly. There are also irrational numbers which

are not the roots of numbers and cannot be expressed by means of

radical signs. A familiar example is the number 7r = 3.14159---.

An irrational number may be either positive or negative. The
28
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rational and the irrational numbers together form the class of real

numbers.

A rigorous investigation of the nature and properties of these

numbers, especially of the irrational numbers, is too advanced for

this book. An elementary discussion, however, is given in any
course in algebra, and is here assumed as known.

The real numbers may be represented graphically on a number

scale, constructed as follows :

On any straight line assume a i i i i i i i nn-f
.

J -k -3 -2 -101231*
fixed point as the zero point, or

origin, and lay off positive numbers

in one direction and negative numbers in the other. If the line

is horizontal, as in
fig. 1, it is usual, but not necessary, to lay off

the positive numbers to the right of and the negative numbers

to the left. Then any point M on the scale represents a real

number, namely, the number which measures the distance of M
from

; positive if M is to the right of 0, and negative if J/ is

to the left of 0. Conversely, any real number is represented by.

one and only one real point on the scale.

11. Zero and infinity. There are two mathematical concepts

usually included in the number series, for which special rules of

operation are needed. These are zero, represented by the symbol 0,

and infinity, represented by the symbol co.

Zero arises in the first place by subtracting a quantity from an

equal quantity ; thus, a a = 0. It signifies in this sense the

absence of quantity nothing. It cannot, then, either operate

upon a quantity or be operated upon ;
for all operations imply

the existence of the quantities concerned. Literally, then, the

expressions a x 0,
-

&amp;gt;

-
&amp;gt; are meaningless. However, it is possible

ci U

to put into these symbols conventional meanings, as follows :

Take the three expressions ./.-,
-&amp;gt; -&amp;gt; and consider what hap-
a x

pens when x is taken smaller and smaller, constantly nearer to

zero but never equal to it. It requires only elementary arith

metic to see that a. i and - ma each be made as small as we
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please by taking x sufficiently small, while - becomes indefinitely

great as x decreases, and may be made larger than any quantity
we may choose to name. We may express the first two results

concisely by the formulas

a x =
0,

- = 0.
a

We can express the last result in a formula, however, only by

introducing the concept infinity. When the value of a quantity

is indefinite, but the quantity is increasing or decreasing in such

a way that its numerical value is greater than any assigned quan

tity, however great, it is said to become infinite. It is then denoted

by the symbol oo, called infinity. We can accordingly express our

third result by the formula

which means that when the denominator of a fraction decreases, be

coming constantly nearer to zero, the value of the fraction increases

and becomes greater than any quantity which can be named.

The symbols a ^
a x oo, &amp;gt;

oo a

are also literally meaningless. We can, however, give a conven-

ff IT

tional meaning to them by writing ax, &amp;gt;&amp;gt; and studying the
x a

effect of increasing x indefinitely. Elementary arithmetic leads

to the results expressed by the formulas

a oo
a X co = co, = 0,

- = oo.

oo a

Two other forms also occur in practice, namely,
- and These

x
OD

arise when we have a fraction - in which the numerator and
y

the denominator either approach zero together or increase indefi

nitely together. The value of the fraction cannot be determined

unless we know a law to govern x and y. These fractions are

consequently called indeterminate forms, and will be considered

later in the course.
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Neither zero nor infinity can be said to have an intrinsic alge

braic sign. In some cases a quantity may increase in value,

remaining always positive. It is then said to be + GO. At other

times it may increase numerically, remaining always negative.

It is then said to be oo. Often, however, the quantity is indefi

nitely great in such a way that the sign is ambiguous. An

example is tan 90. If an acute angle is made nearer and nearer

to 90, its tangent increases indefinitely, remaining positive. But

if an obtuse angle is made nearer and nearer to 90, its tan

gent increases indefinitely, remaining negative. Hence we say

tan 90 =
oo, and no algebraic sign can be attached to it.

Similar considerations hold for the sign of zero.

12. Complex numbers. If one restricts himself to the use of

the real numbers, named in 10, it is impossible to perform the

operation of evolution without exception ;
for the even root of a

negative number is not a real number. It is therefore necessary,

if the generality of all algebraic operations is to be maintained, to

introduce a new kind of number, called a complex member. These

numbers will be used very little in this volume, and the following

resume of the matter usually contained in algebra is sufficient for

our present purposes. A further discussion will be given in the

second volume.

The imaginary unit is V 1, and is denoted by i. Then

By multiplying this equation successively by i
y
we find

V3 4 V4 1 ?
5

&amp;lt;? VG - 1
i, ^

JL,
i i, i i, ,

and, in general,

* = !, t
4** 1

***, &amp;lt;*+ 1,
*+ =_,

where k is zero or any integer.

If b is any real number, the product bi is called a pure imagi

nary number. The square root of any negative number is pure

imaginary ; thus,

4 = VI V^T == 2 1,
V f) = Vr&amp;gt; V i = i Vo.
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If a and b are any two real numbers, the combination a + In

is called a complex imaginary number, or, more simply, a complex
number. A complex number reduces to a pure imaginary number

when a = 0, and to a real number when b = 0. If a = and 1 = 0,

the complex number a + bi =
;
and conversely, if a -f fo = 0,

then a = and ~b = 0.

All operations with complex numbers are carried out by using

the ordinary laws of algebra and replacing all powers of i by their

values just determined.

Ex. 1. V- 3 x V- 2 = i V3 x i V2 = ?,
2 Vo = - Vo.

3 + 2 i 2.+ 2_ 6 + 10 i + 4i 2 _ 2+10 t_ i + 5V^T
2-2i

X
2 + 2i~ 4-4i2 8 ~T~

Two complex numbers such as a + bi and ^, where a and &

have the same values in each, are called conjugate complex numbers.

Their product is a real number
; thus,

(a + bi)(a fa)
= a2 +62

.

It is clear that the complex numbers have no place on the num
ber scale of 10.

13. Addition of segments of a straight line. Consider any

straight line connecting two points A and B. In elementary

geometry only the position and the length of the line are consid

ered, and consequently it is immaterial whether the line be called

AB or BA
;
but in the work to follow it is often important to con

sider the direction of the line as well. Accordingly, if the direction

of the line is considered as from A to B, it is called AB
;
but if

the direction is considered from B to A, it is called BA. It will

be seen later that the distinction

~J J J between AB and BA is the same

as that between -f- a and a in
r IG. A

algebra.

Consider now two segments AB and BC on the same straight

line, the point B being the end of the first segment and the begin

ning of the second. The segment AC is called the sum of AB and

BC
y
and is expressed by the equation

+ BC=AC. (1)
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This is clearly true if the points are in the position of
fig. 2, but

it is equally true when the points are in the position of
fig. 3.

Here the line BC, being opposite in

direction to AB, cancels part of it, ^
+ ~+

leaving AC.
ElG 3

If, in the last figure, the point C
is moved toward A, the sum AC becomes smaller, until finally

when C coincides with A we have

BA = Q, or BA=-AB. (2)

If the point C is at the left of A, as in fig. 4, we still have

AB + BC = A (7, where A C = - CA by (2).

It is evident that this addition

C ~~A ~B i &amp;gt;s analogous to algebraic addition,

^IG 4 and that this sum may be an arith

metical difference.

From (1) we may obtain by transposition a formula for sub

traction, namely,
BC.=AC AB. (3)

This is universally true since (1) is universally true.

This result is particularly important when applied to segments
of the number scale of 10. For if x is any number corresponding
to the point M, we may always place x = OM, since both x and OM
are positive when M is at the right of 0, and both x and OM are

negative when M is at the left of 0. Now let M^ and M
z
be any

two points, and let x
l
= OM

1
and x

2
=OM

z
. Then

= OM.2
- OM

l
= #

a
- xv

On the other hand,

It is clear that the segment M^M^ is positive when M
2

is at the

right of Mv and is negative when 3/&quot;

2
is at the left of Mr

Hence, the length and the sign of any segment of the number
scute, is found lj subtracting the value of the x corresponding 1&amp;lt;&amp;gt;

tlif Beginning of the segment from the mine of the x corresponding
t&amp;lt;&amp;gt; f/IC fllff

&amp;lt;&amp;gt;f
fjlt- -SV////0//.
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14. Projection. Let AB and MN
(figs. 5, 6) be any two straight

lines in the same plane, the positive directions of which are respec

tively AB and MN. From A and B draw straight lines perpendicu
lar to MN, intersecting it at points A f and B respectively. Then A B

is the projection of AB on MN, and is positive if it has the direction

MN
(fig. 5), and is negative if it has the direction NM

(fig. 6).

Denote the angle between MN and AB by (f&amp;gt;,

and draw A C par
allel to MN. Then in both cases, by trigonometry,

But AC=A B
,
and therefore

Hence, to find the projection of one straight line upon a second,

multiply the length of the first ~by ike cosine of the angle between the

positive directions of the two lines.

Ex. It is customary in mechanics to represent a force by a straight line,

the length and the direction of which denote respectively the magnitude and the

direction of the force. Then the component of the force in any direction is the

projection upon that direction of the line which represents the force.

M- N M-

FIG. 7

C A

FIG. 8

B N

In particular, let F\ and F2 , represented respectively by AB and AC (tigs.

7, 8), be two forces acting at A along the same line, and let MN be a line

which makes an angle with AB.
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The respective components of FI and F% are represented by A W and A C
,

and the resultant component is represented by A R +A C .

But A B = FI cos0, and^4 C&quot;=.F2 cos0 ; hence, by substitution, the resultant

component is FI cos0 + F&amp;gt;2 cos0. It is to be noted that in fig. 8 FI and Fz have

opposite signs.

15. The projection of a &quot;broken line upon a straight line is defined

as the algebraic sum of the projections of its segments.

Let ABODE
(fig. 9) be a broken line, MN a straight line in the

same plane, and AE the straight line

joining the ends of the broken line.

Draw AA 1

,
BB

,
CC

,
DD f

,
and

EE perpendicular to MN; then

A B
,
B Cf

,
C D

,
D E

,
and A E

are the respective projections on

MN of AB, BC, CD, DE, and AE. FIG. 9

A B D

But A B + B C + C D + D E == A E . (by 13)

Hence, the projection of a broken line upon a straight line is

equal to the projection of the straight line joining its extremities.

Ex. If ABODE (fig. 9) represents a polygon of forces, we have the result:

the component of the resultant in any direction is the sum of the components
of the forces in that direction.

16. Coordinate axes. Let A Xand Y Y be two number scales

at right angles to each other, with their zero points coincident at 0,

as in fig. 10.

Let P be any point in the

plane, and through P draw

straight lines perpendicular to

XX and Y Y* respectively,

intersecting them at M and N.

If now, as in 13, we place

x OM, and y = ON, it is

clear that to any point P there

corresponds one and only one

pair of numbers x and y, and
to any pair of numbers corresponds one and only one point P.

Y
FIG. 10

M X
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If a point P is given, x and y may be found by drawing the two

perpendiculars MP and NP as above, or by drawing only one per

pendicular as MP. Then MP = ON= y and OM= x.

On the other hand, if x and y are given, the point P may be

located by finding the points M and N corresponding to the num
bers x and y 011 the two number scales, and drawing perpendiculars

to X X and Y 1 Y respectively through M and N. These perpen

diculars intersect at the required point P. Or, as is often more

convenient, a point M corresponding to x may be located on its

number scale, and a perpendicular to J X may be drawn through

M, and on this perpendicular the value of y laid off. In fig. 10,

for example, M corresponding to x may be found on the scale X X,

and on the perpendicular to X X at M, MP may be laid off equal

to y. When the point is located in either of these ways it is said

to be plotted. It is evident that plotting is most conveniently per

formed when the paper is ruled in squares, as in fig. 10.

These numbers x and y are called respectively the abscissa and

the ordinate of the point, and together they are called its coordi

nates. It is to be noted that the abscissa and the ordinate, as

defined, are respectively equal to the distances from Y Y and X X
to the point, the direction as well as the magnitude of the distances

being taken into account. Instead of designating a point by writing

x = a and y &, it is customary to write P(a, 6), the abscissa

always being written first in the parenthesis and separated from

the ordinate by a comma. X X and Y Y are called the axes of

coordinates, but are often referred to as the axes of x and y

respectively.

17. Distance between two points. Let P
l (xv y^ and P^(xz , yn)

be two points, and at first assume that Pfz is parallel to one of

the coordinate axes, as OX (fig. 11). Then y^
= yr Now M^MV

the projection of P^PZ on OX, is evidently equal to P^Py But

T M^ = x^xl ( 13). Hence

x.2
- xr (I)

Ml

FIG.

Ms
&quot;

to OY, and

In like manner, if x
2
= xv P^PZ is parallel
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If x
z

= x
l
and yz

= yv PJ^ is not parallel to either axis. Let

the points be situated as in
fig. 12, and through P1

and P
z
draw

straight lines parallel respectively to OX and OY. They will meet

at a point R, the coordinates of which are readily seen to be

(xv y,). By (1) and (2),

But in the right triangle P^RP^

whence, by substitution, we have

It is to be noted that there is an ambiguity of algebraic sign on

account of the radical sign. But since Pfz is parallel to neither

coordinate axis, the only two directions in the plane the positive

directions of which have been chosen, we are at liberty to choose

either direction of Pf^ as the positive direction, the other becoming
the negative.

It is also to be noted that formulas (1) and (2) are particular

cases of the more general formula (3).

Ex. Find the coordinates of a point equally distant from the three points

P!&amp;lt;!, 2), P2(- 1,
-

2), and P3 (2,
-

5).

Let P (x, y) be the required point. Then

PiP = P2P and P2P = P3P.

But PiP = V(x - IV2 4- (y - 2)2.

P3P = V(x -
2)

2 + (y

... V(x - I)* + (y
-

2)2 = V(x + I)
2 + (y + 2)2,

V(x + I)
2 + (V + 2)2 = V(x - 2)2 + (y + 5)2,

whence, by solution, x = % and y = |. Therefore the required point is
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18. Collinear points. Let P(x, y) be a point on the straight line

determined by Pl (xv yj and P
2 (x2 , yz),

so situated that P^P = l(P^.
There are three cases to consider according to the position of

the point P. If P is between the points P{
and P

2 (fig. 13), the

M! M M,

FIG. 13

&amp;gt;

segments Pf and Pf^ have the same direction, and

accordingly I is a positive number less than unity. If P is beyond
P2

from P
l (fig. 14), .ZJP and Pf2

still have the same direction, but

therefore / is a positive number greater than unity.

Finally, if P is beyond P^ from P
2 (fig. 15),

JJ-Pand JJ7J have opposite directions, and

/ is a negative number, its numerical value

ranging all the way from to oo.

In the first case P is called a point of

internal division, and in the last two cases

it is called a point of external division.

In all three figures draw P^MV PM,
and P^MI perpendicular to OX. In each

\
and since P,P = I (P^), M1

M=

M O Ml

-Y

FIG. 15

figure OM=OMl +
by geometry.

whence, by substitution,

(1)

By drawing lines perpendicular to OY we can* prove, in the

same way,
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In particular, if P bisects the line 1{P2) I = 1, and these formulas

become

}-:\. 1. Find the coordinates of a point | of the distance from PI (2, 3) to

(S, -3).
If the required point is P(x, y),

3 = 2 + 3(3
- 2

)
=

2$,

Ex. 2. Prove analytically that the straight line dividing two sides of a tri

angle in the same ratio is parallel to the third side.

Let one side of the triangle coincide with OJF, one vertex being at O. Then
the vertices of the triangle are 0(0, 0), A(XI, 0),

B(x2 , 2/2 ) (fig. 16). Let CD divide the sides OB
and AB so that OC = l(OB) and AD = l(AB).

If the coordinates of C are denoted by (#3, y2 )

and those of D by (x4 ,
?/4 ), then, by the above

formulas,

3 = 2, 2/3
=

ly-z,

y

and x4 = xi + J
(.r,

-

Since ?/3 = ?/4 ,
G .D is parallel to OA.

X

FIG. 16

00 &amp;lt;

/&amp;lt;#

19. Let us now see what happens as different real values are

assigned to /. When I = 0, P coincides with P
l (fig. 17). As /

y increases in value, the

point P moves along the

line toward P
2 till, when

I 1
, it coincides with P,.

As the value of I con

tinues to increase, the

X pointP continues to move

along the line away from

P% and in the same direc

tion as before.

If negative values are assigned to /, in ascending order of numer
ical magnitude, the point P moves along the line, away from P

ly
in

the opposite direction from P,.

FIG. 17
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It follows that

may be made to represent the coordinates of any point of the

straight line determined by the points P^ and J by assigning the

appropriate value to I, the range of values for each segment of

the line being indicated in fig. 17.

Ex. Consider the straight line determined by the two points PI( 1, 4)

and Pa(5, 6). Any other point P on this line has the coordinates

x = - 1 + 6 Z, y = - 4 + 10 Z.

When I &amp;lt; 0, it is clear that x &amp;lt;

-
1, y &amp;lt;

- 4
;
hence P lies at the left

of PI. When &amp;lt; I &amp;lt; 1, it is clear that 1
&amp;lt; x &amp;lt; 5, 4

&amp;lt; y &amp;lt; 6
;
hence P

lies between PI and P2 . When Z
&amp;gt; 1, it is clear that x &amp;gt; 5, y &amp;gt;

6
;
hence

P lies at the right of P%.

20. Variable and function. A quantity which remains un

changed throughout a given problem or discussion is called a

constant. A quantity which changes its value in the course of

a problem or discussion is called a variable. If two quantities

are so related that when the value of one is given the value of

the other is determined, the second quantity is called a function
of the first. When the two quantities are variables the first is

called the independent variable, and the function is sometimes

called the dependent variable. As a matter of fact, when two

related quantities occur in a problem it is usually a matter of

choice which is called the independent variable and which the

function. Thus, the area of a circle and its radius are two

related quantities such that if one is given the other is deter

mined. We can say that the area is a function of the radius,

and likewise that the radius is a function of the area.

The relation between the independent variable and the function

can be graphically represented by the use of rectangular coordi

nates. For, if we represent the independent variable by x and the

corresponding value of the function by ?/, x and y will determine

a point in the plane, and a number of such points will outline a

curve indicating the correspondence of values of variable and

function. This curve is called the graph of the function.
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Ex. 1. An important use of the graph of a function is in statistical work.

The following table shows the price of standard steel rails per ton in the

respective years:

.... $24.33 1900 $32.29

.... 28.00 1901 27.33

18.75 1902 . 28.00

1895

1896

1897

1898

1899

17.62

28.12

1903

1904

28.00

28.00

If we plot the years as abscissas, calling 1895 the first year, 1896 the second

year, etc., and plot the price of rails as ordinates, making one unit of ordinates

correspond to ten dollars, we shall locate the points PI, P2 ,
. . ., PIO in fig. 18. In

order to study the variation in price, we join these points in succession by straight

X

FIG. 18

lines. The resulting broken line serves merely to guide the eye from point to

point, and no point of it except the vertices has any other meaning. It is to

be noted that there is no law connecting the price of rails with the year.

Also the nature of the function is such that it is defined only for isolated

values of x.

Ex. 2. As a second example we take the law that the postage on each ounce or

fraction of an ounce of first-class mail matter is two cents. The postage is then a

known function of the weight. Denoting each

ounce of weight by one unit of x, and each two

cents of postage by one unit of ?/,
we have the

series of straight, lines (fig. 19) parallel to the

axis of x, representing corresponding values of

weight and postage. Here the function is defined

by United States law for all positive values of x,

but it cannot be expressed in elementary mathe

matical symbols. A peculiarity of the graph is

the series of breaks. The lines are not connected
,

but all points of each line represent correspond

ing values of x and y. FIG. 19

X
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Ex. 3. As a third example, differing in type from each of the preceding, let

us take the following. While it is known that there is some physical law con

necting the pressure of saturated steam with its temperature, so that to every

temperature there is some corresponding pressure, this law has not yet been

formulated mathematically. Nevertheless, knowing some corresponding values

of temperature and pressure, we can construct

a curve that is of considerable value. In the

table * below, the temperatures are in degrees

Centigrade and the. pressures are in millimeters

of mercury.

TEMPERATURE

100

105

110

115

-120

125

130

135

140

145

150

PRESSURE

760

900

1074.7

1268.7

1490.5

1743.3

2029.8

2353.7

2717.9

3126.1

3581.9

Let 100 represent the zero point of tempera

ture, and let each unit of x represent 5 degrees

of temperature ;
also let each unit of y represent

100 millimeters of pressure of mercury, and locate

the points representing the corresponding values

of temperature and pressure given in the above

table. Through the points thus .located draw a

smooth curve (fig. 20) i.e. one which has no sudden

changes of direction. While only the eleven points

located are exact, all other points are approxi

mately accurate, and the curve may be used for

approximate computation as follows : Assume any

temperature, and, laying it off as an abscissa,

measure the corresponding ordinate of the curve.

While not exact, it will, nevertheless, give an approximate value of the corre

sponding pressure. Similarly, a pressure may be assumed and the corresponding

temperature determined. It may be added that the more closely together the

tabulated values are taken, the better the approximation from the curve, but

the curve can never be exact at all points.

FIG. 20

*From C. H. Peabody s
&quot; Steam Tables,&quot; computed for sea level at a latitude of

45 degrees.
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_\

Ex. 4. As a final example, we will take the law of Boyle and Mariotte for per

fect gases, namely, at a constant temperature the volume of a definite quantity
of gas is inversely proportional to its

pressure. It follows that if we repre

sent the pressure by x and the corre-

k
spending volume by ?/,

then y = ~,

where k is a constant and x and y are

positive variables. A curve (fig. 21) in

the first quadrant, the coordinates

of every point of which satisfy this

equation, represents the comparative

changes in pressure and volume, show

ing that as the pressure increases by a

certain amount the volume is decreased

more or less, according to the amount | | | 1 1 1 1
X

of pressure previously exerted.

This example differs from the pre- FIG. 21

ceding in that the law of the function

is fully known and can be expressed in a mathematical formula. Consequently,
we may find as many points on the curve as we please, and may therefore con

struct the curve to any required degree of accuracy.

21. Classes of functions. We shall consider in this book only
those functions of one variable which can be expressed by means
of elementary mathematical symbols. The simplest kind of such

functions is the algebraic polynomial, expressed by

an _ l
x + a

n ,

where all the exponents are positive integers and the coefficients

a
, !,--, a

n _ v a
n are real or complex numbers or zero. The

number n is the degree of the polynomial. These functions are

discussed in Chaps. Ill and IV.

The quotient of two algebraic polynomials is a rational alt/cb re it-

fraction t expressed by

Examples of functions of this kind are discussed in Chap. VI.
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If a function requires for its expression the use of radical signs
combined with algebraic polynomials, it is an example of an irra

tional algebraic function ; for example,

Examples of such functions are found in Chap. VI.

The general definition of an algebraic function is given in

Chap. IX, and examples of non-algebraic, or transcendental func
tions, are given in Chap. XIII.

22. Functional notation. When y is a function of x it is cus

tomary to express this by the notation

Then the particular value of the function obtained by giving x a

definite value a is written f(a). For example, if

then /(2)
= 2

8 +3-2 2 +l=21,

/(0)=0
8 +3-0 2+l = l,

If more than one function occurs in a problem, one may be

expressed as /(a?), another as F(x), another as $(#), and so on. It

is also often convenient in practice to represent different functions

by the symbols fx) 9 /2 (ar), f9 (x), etc.

If f(x) is any function, and we place

we may, as already noted, construct a curve which is the graph of

the function. The relation between this curve and the equation

y ~f(x)
such that aM points the coordinates of which satisfy the

equation lie on the curve
;
and conversely, if a point lies on the

curve, its coordinates satisfy the equation.
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The curve is said to be represented by the equation, and the equa
tion is called the equation of the curve. The curve is also called

the locus of the equation. Its use is twofold, on the one hand,

we may study a function by means of the appearance and the

properties of the curve, and, on the other hand, we may study the

geometric properties of a curve by means of its equation. Both

methods will be illustrated in the following pages.

PROBLEMS

1. Find the perimeter of the triangle the vertices of which are (2, 3),

(- 3, 3), (1, 1).

2. Prove that the triangle the vertices of which are (4, 3), (2, 1),

(5, 5) is isosceles.

3. Prove that (0, 2), (- 2,
-

4), (5,
-

5), (-1, 3) are points of a circle the

center of which is (2, 1). What is its radius ?

4. Prove that the quadrilateral of which the vertices are (2, 2), (4, 5),

( 1, 4), ( 3, 1) is a parallelogram.

5. Find a point equidistant from the points ( 3, 4), (5, 3), and (2, 0).

6. Find the center of a circle passing through the points (0, 0), (3, 3),

and (5, 4).

7. Find a point on the axis of x which is equidistant from (0, 4) and

(-3, -3).

8. A point is equally distant from the points (1, 1) and
( 2, 3), and its

distance from OY is twice its distance from OX. Find its coordinates.

9. Find the points which are 4 units distant from (2, 3) and 5 units distant

from the axis of y.

10. A point of the straight line joining the points (4, 2) and (4, 6)

divides it into segments which are in the ratio 3 : 5. What are its coordinates ?

11. Find the coordinates of a point P on the straight line determined by

Pi (2,
-

1) and P2 (- 4, 5), when^ = ?
ft 2

12. On the straight line determined by the points PI (2, 4) and P2 (-l, -
3)

find the point three fourths of the distance from PI to P2 .

13. If P(x, y) is a point on the straight line determined by PI(XI, y\} and

2), such that 5^ = L1
, prove

PPo 12

x _ hxz + l&i _ Ziyg -f kv\
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14. The middle point of a certain line is (1, 2) and one end is the point

(3, 5). Find the coordinates of the other end.

15. To what point must the line drawn from (1, 1) to
( 4, 5) be extended

in the same direction that its length may be trebled ?

16. One end of a line is at (2, 5) and a point one fourth of the distance

to the other end is
( 1, 4). Find the coordinates of the other end of the line.

17. Find the points of trisection of the line joining Pi(0, 3) and P2(G, 3).

18. Find the lengths of the medians of the triangle (2, 1), (0, 3), (4, 0).

19. Given the three points A(- 3, 3), 5(3, 1), and C(6, 0) upon a straight

line. Find a fourth point D such that \
.

DC BC
20. Given four points PI, P2 ,

P3 ,
P4 . Find the point halfway between Px

and P2 ,
then the point one third of the distance from this point to PS, and

finally the point one fourth of the distance from this point to P4 . Show that

the order in which the points are taken does not affect the result.

21. Prove analytically that if in any triangle a median is drawn from the

vertex to the base, the sum of the squares of the other two sides is equal to

twice the square of half the base plus twice the square of the median.

22. Prove analytically that the straight line drawn between two sides of a

triangle so as to cut off the same proportional parts measured from their com
mon vertex is the same proportional part of the third side.

23. Prove analytically that if two medians of a triangle are equal the tri

angle is isosceles.

24. Prove analytically that in any right triangle the straight line drawn
from the vertex to the middle point of the hypotenuse is equal to one half the

hypotenuse.

25. Prove analytically that the lines joining the middle points of the opposite

sides of a quadrilateral bisect each other.

26. Show that the sum of the squares on the four sides of any quadrilateral

is equal to the sum of the squares on the diagonals, together with four times the

square on the line joining the middle points of the diagonals.

27. Prove analytically that the diagonals of a parallelogram bisect each

other.

28. Prove analytically that the line joining the middle points of the non-

parallel sides of a trapezoid is one half the sum of the parallel sides.

29. OABC is a trapezoid of which the parallel sides OA and CB are per

pendicular to 0(7. D is the middle point of AB. Prove analytically that

OD = CD.
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30. The following table gives the price of a bushel of wheat in the New
York market from 1890 to 1904. Construct the graph.

31. The following table shows hourly barometric readings at a United States

weather bureau station. Construct the graph.

32. The following table shows the number of inches of rainfall in Boston

during the years 1880-1891. Construct the graph.

33. The following is a portion of a railway time-table. The letters indicate

stations, and the adjacent number gives the distance from A to each of the other

stations. The second and the third columns give the times at which two trains

running in opposite directions leave each of the stations. Make a graph showing
the motion of each train and thus determine the time and place of their passing.
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34. The following table shows the amount of $1.00 put at interest at

compounded annually. Construct the graph.

35. Make a graph showing the relation between the side and the area of a

square.

36. Make a graph showing the relation between the radius and the area
of a circle.

37. Make a graph showing the relation between the radius and the volume
of a sphere.

38. The space s through which a body falls from rest in t seconds is given
by the formula s = J gt

2
. Assuming g = 32, construct the graph.

39. The velocity acquired by a body thrown towards the earth s surface
with a velocity VQ is given at the end of t seconds by the formula v v -f gt.

Construct the graph.

40. Two particles of mass m x and m2 at a distance d from each other attract

each other with a force F, given by the formula

F =

Assuming mi = 5 and m 2 = 20, construct the graph of F.

41. Ohm s law for an electric current is

Electromotive force
Current =

Resistance

Assuming the electromotive force to be constant, plot the curve showing the

relation between the resistance and the current.

42. If f(x) = x* - 3x2 + 7x - 1, nnd/(3),/(0),/(a),/(a + h).

43. If f(x) = x3 + 1, show tlmt/(2)
-

4/(l) =/(0).

44. If f(x) = x4 + 2x2 + 3, prove that/(- x) =f(x).

45. If f(x) = x5 + 3x3 -
7x, prove that/(- x) = -/(x).

46. If f(x) = x2 - a2
, prove that /(a) =/(- a).

47. If /! (x)
= x2 + a2

,
and /2 (x)

= 2 x, prove that /i (a)
- a/2 (a) = 0.

48. If /(x) = (x
-

1) (x

2 -
1) (XB

-
1)

, prove that / (a) = -/Q
,
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49. If /(x) = , prove that /(a) /(- a) = 1.

50. If/(x) =
x4 + 2a;3

x

+ 2x + 1

, prove that
/()=/(!).

51.

52. If /(x) = [x, prove that (x + l)/(x) =/(x + 1).

53. If/i(x) =\/- + \/- and/2 (x) = A/-- \ /- prove that
\a If* \a \x

54. If /(x) = , prove that /[/(x)] = x.



CHAPTEK III

THE POLYNOMIAL OF THE FIRST DEGREE

23. Graphical representation. An algebraic polynomial of the

first degree is of the form mx + b, where m and b are numbers,

which may be positive or negative, integral or fractional, rational

or irrational. We shall restrict the values of m and &, however, to

real numbers. In particular cases b may be zero, when the poly

nomial becomes the monomial mx.

To obtain the graph of the polynomial, we write

y = mx+l), (1)

and proceed as in the examples of the previous chapter. We assign

to x any number of values assumed at pleasure, say xv #
2 ,
x

s ,
x
t ,

etc.
; compute the

corresponding values

y of y, namely,

P
2

(2)

and plot the points

FIG. 22

2/4)

(fig. 22). We then

draw the straight

lines Pfv P2
PS) P3

P
4 ,

each connecting two successive points, and shall prove that these

lines form one and the same straight line. For that purpose draw

50 *
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through eacli point lines parallel to the coordinate axes, forming
the triangles shown in fig. 22. Then, by 13,

=
2/2
~

2/l&amp;gt;

J
*3
7
3
=

2/3
-

2/2 &amp;gt; Rfl = 2/4-2/3

By subtracting each equation in (2) from the one below it, we
have

whence 6=25 .tZ^V ^-^ = *r (4)
/&amp;gt; _ i 1 V _ -V W _ O1 J \ /

Hence tlie triangles of the figure are similar, and the angles

Rffv RfJi, Ji,P,P4 are equal. Therefore the line Pfffi is a

straight line.

Again, let us take on this line any other point, such as f,
which has not been used in constructing the graph, and draw

PJis and 7?
5^ parallel to OX and Y respectively. Then, since

the triangles P^^ and PJirJl are similar,

Rft RJj.

r
-

i *
-

t

that is, L4 = y*_J!l = m . (bv (4))
^5-^4 *.-*i

Therefore y5
= ?;i^

5
?^.?J

4 -f y4 ,

whence, by substituting the value of y given, in (2),

Hence the coordinates of /? satisfy the equation (1).

We have now shown that all points the coordinates of which

satisfy equation (1) lie on a straight line, and that any point on
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the line has coordinates which satisfy (1). We have accordingly

proved the following proposition : The equation y = mx + b always

represents a straight line.

24. The general equation of the first degree. The equation

Ax+By + C= 0,

where A, B, and C may be any numbers or zero, except that

A and B cannot be zero at the same time, is called the general

equation of the first degree. We shall prove : The general equa

tion of the first degree with real coefficients always represents a

straight line.

1. Suppose A = and B ^= 0. If any value of x is assumed,

the value of y is determined. Therefore y is a function of x,

which may be expressed by solving the equation for y\ thus,

A C

This equation is of the form y = mx -f b, and therefore repre

sents a straight line by 23.

2. Suppose A = 0, B = 0. The equation is then

J5 + &amp;lt;7=0 or =--

All points the coordinates of which satisfy this equation lie

C
on a straight line parallel to OX at a distance units from it

;B
and, conversely, any point on this line has coordinates which

satisfy the equation. Hence the equation represents this line.

3. Suppose A 3=. 0, B 0. The equation is then

C
Ax+C=Q, or x = ---,

A
C

and represents a straight line parallel to Y at a distance -

units from it.

Therefore the equation Ax + By + C = always represents a

straight line.
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25. In order to plot a straight line it is, in general, convenient

to find the points L and A (fig. 23), in which it cuts OX and OY
respectively. If the coordinates of L are (a, 0) and those of K are

(0, &), these coordinates will satisfy the equation Ax + By+ C= 0.

By substitution we find Y

--S-
The quantities a and 6, which

are equal in magnitude and

sign to OL and OK respectively,

are called the intercepts of the

straight line. It is evident that

the b found here is the same as
r IG. 2,6

in y = mx + b.

If (7=0, i.e. if the equation is Ax -f- By = 0, then a = and

b = 0, and the straight line passes through the origin. To plot

the line, we must find by trial the coordinates of another point

which satisfy the equation, plot this point, and draw a straight

line through it and the origin.

Ex. 1. Plot the line 3z-5y + 12 = 0. Placing y = 0, we find a = - 4.

Placing x = 0, we find 6 = 2f . We lay off OL = -
4, OK = 2, and draw a

straight line through L and K.

Ex. 2. Plot the line 3x 5 y = 0. Here a = and 6=0. If we place x = 1,

we find y = 5. The line is drawn through (0, 0) and (1, ).

26. Any straight line may be represented by an equation of the

first degree.

The proof consists in showing that the coefficients A, B, C,

in the general equation of the first degree, may be so chosen that

the equation may represent any straight line given in advance.

Let (xv y^ and (x2 , y^ be any two points on a given straight

line. The coordinates of these points will satisfy

Ax + lii/ + C=Q, (1)

provided A, B, C have such values that

Ax., + Hy., + C = 0.
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Solving these equations for the ratios of A, B, C, we have (by 8)

A-.B-.C = 2/!
1

2/2
1 (2)

If these values -are used in (1), that equation represents a

straight line which has two points in common with the given

line, and therefore coincides with it throughout. Hence the

theorem is proved.

The result of substituting from (2) in (1) is

which is the equation of a line through two given points.

27. Slope. Let P^(xv y^ and P
2 (x2 , ?/2 ) (figs. 24, 25) be two

points upon a straight line. If we imagine that a point moves

along the line from P
l

to P
z ,

the change in x caused by this

motion is measured in magnitude and sign by x xv and the

R
i

FIG. 24 FIG. 25

change in y is measured by y^yr We define the slope of the

straight line as the ratio of the change in y to the change in x as

a point moves along the line, and shall denote it by the letter m.

We have then, by definition,
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It appears from equations (4) (23) that the letter ra in the

equation y = mx + I has the meaning just defined. It follows that

if the equation of a straight line is in the form Ax -{-By -f C = 0,

its slope may be found by solving the equation for y and taking the

coefficient of x, thus,

AC A
y x whence m =

B H B

A geometric interpretation of the slope is readily given. For if

we draw through JJ a line parallel to OX, and through P^ a line

parallel to Y, and call R the point in which these two lines inter-

7? ~P

sect, then x
2

x
v
=P

1
R

)
and y2 y^

= RP2 ;
and hence m =

\

It is clear from the figures, as well as from equations (4) ( 23),

that the value of m is independent of the two points Pt
and P,

and depends only on the given line. We may therefore choose P
1

and P^ (as in figs. 24 and 25) so that J[R is positive. There are

then two essentially different cases, according as the line runs up
or down toward the right hand. In the former case RP

Z and m
are positive (fig. 24) ;

in the latter case RP
Z
and m are negative

(fig. 25). We may state this as follows :

The slope of a straight line is positive when an increase in x

causes an increase in y, and is negative when an increase in x

causes a decrease in y.

When the line is parallel to OX, ?/2
= yv and consequently m = 0,

as explained in 11. If the line is parallel to OY, x
2
= x

lt
and

therefore m = oo in the sense of 11.

28. Angles. The slope of a straight line enables us to solve

many problems relating to angles, some of which we take up in

this article.

1. The angle between the axis of x and a known line. Let a

known line cut the axis of x at the point L. Then there are four

angles formed. To avoid ambiguity, we shall agree to select that

one of the four which is above the axis of x and to the right of



56 THE POLYNOMIAL OF THE FIRST DEGREE

the line, and to consider LX as the initial line of this angle. We
shall denote this angle by (f&amp;gt;.

Then if we take P any point on

M
VN*

FIG. 27

the terminal line of
c/&amp;gt;

and drop the perpendicular MP, we have,

in the two cases represented by figs. 26 and 27,

MP
tan

(/&amp;gt;

= -
LM

MP
But is equal to the slope of the line. Therefore

tan
(/&amp;gt;

= m.

If the straight line is parallel to OY,
(/&amp;gt;

= 90 and tan
&amp;lt;/&amp;gt;

= cc.

If the line is parallel to OX, no angle &amp;lt;#&amp;gt;

is formed
;
but since in = 0,

we may say tan
&amp;lt;/&amp;gt;

= 0, whence
(f&amp;gt;

= or 180.

2. Parallel lines. If two lines are parallel, they make equal

angles with OX, and hence their slopes are equal. It follows that

two equations which differ only in the absolute term, such as

and A

represent parallel lines.

More generally, two straight lines,

and

are parallel if
A, B = 0.
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3. Perpendicular lines. Let AB and CD (fig. 28) be two lines inter

secting at right angles. Through P draw PR parallel to OX and

let RPD =
c/&amp;gt; t

and RPB =
&amp;lt;

2
. Then tan

(f&amp;gt; 1
= m^ and tan

&amp;lt;/&amp;gt;2
= m.,.

where m
l
and m

2
are the slopes

of the lines. But by hypothesis,

wlience

tan cot
&amp;lt;/&amp;gt;!

=
tan

which is the same as

1

That is : Two straight lines

ftre perpendicular when the

slope of one is minus the reciprocal of the slope of the other. This

theorem may be otherwise expressed by saying that two lines are

perpendicular when the product of their slopes is minus unity.

It follows that two straight lines whose equations are of the type

Ax + By -f C\
=

and

are. perpendicular.

4. Angle between two lines. Let AB and CD
(fig. 29) inter

sect at the point P, making the angle BPD, which we shall

call /3. Draw the line PR
D

parallel to OX and place

RPB =
(f&amp;gt; l

and RPD =
(/&amp;gt;.

Then

v

-R

-A
and hence

tan /? = tan
((/&amp;gt;., c^ t)

tan &amp;lt;&amp;gt; tan

FIG. 20 1 + tan
(f).,

tan
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But tan
(/^
= m

l
and tan &amp;lt;

2
= m

2 ,
where m

2
is the slope of CD

and m
1
is the slope of AB. Therefore

tan ft
= m2~ m i

.

If $2
is always taken greater than

&amp;lt;f)v tan /3 will be positive or

negative according as ft is acute or obtuse.

29. Problems on straight lines. We shall solve in this article

certain important problems which depend on the equation

b.

The essential problem is, in every case, to determine m and b so

that the line will fulfill certain conditions. Since two quantities

are to be determined, two conditions are necessary and sufficient
;

hence, in general/ one and only one straight line can be found to

satisfy two given conditions.

1. To find the equation of a straight line which has a known

slope and passes through a known point. Let m
l
be the known

slope and P
1 ( 1 , yx)

be the known point. The equation of the line

will be of the form y = m^x -f b, where &, however, is unknown.

But the line contains the point Pr Therefore

whence ^~y\~ m i
xr

The required equation is, therefore,

y = m 1
x + yl

m
1
x

l ;

or, more symmetrically,

V -Vi = m i (B-XI)

Ex. Find the equation of a straight line with the slope passing through

the point (5, 7).

First method. We have y = x + b
;

then 7 = -
(5) + 6,

whence & = 3
g*-.

Therefore the required equation is

*=-..+ Vi
or, finally, 2z + 3y-31 = 0.
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Second method. By substituting in the formula we have

y-7 = -f(x-5),
whence 2z + 3 y 31 = 0, as before.

2. To find the equation of a straight line passing through a

known point and parallel to a known line.

The slope of the required line is the same as that of the given

line, which can be found by 27. Hence the problem is the same

as the preceding.

Ex. Find the equation of a straight line passing through (2,3) and parallel

to3z-5y + C = 0.

First method. The slope of the given line is
|.

Therefore the required line is

y-3=f(z + 2), or 3z - 5?/ + 21 = 0.

Second method. As explained in 28, 2, we know that the required equation
is of the form

3z - by + C = 0,

where C is unknown. Since the line passes through ( 2, 3),

3(-2) -
5(3) + C = 0,

whence C= 21. Therefore the required equation is

3. To find the equation of a straight line passing through a

known point and perpendicular to a known line.

The slope of the required line may be found from the slope of

the given line, as in 28, 3. The problem is then the same as

problem 1.

Ex. 1. Find a straight line through (5, 3) perpendicular to7z + 9i/ + l = 0.

First method. The slope of the given line is ^. Therefore the slope of the

required line is . By problem 1, the required line is

y-3 =
i}.(z- 6), or 9z-7y-24 = 0.

Second method. As shown in 28, 3, we know that the equation of the

required line is of the form 9z 7y + C = 0. Substituting (6,3), we find

C = -24. Hence the required line is 9z - ly - 24 = 0.
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Ex. 2. Find the equation of the perpendicular bisector of the line joining (0, 5)

and (5, 11). The point midway between the given points is (, 3), by 18.

The slope of the line joining the given points is -L6
-, by 27. Hence the required

line passes through (|, 3), with the slope y
5
^. Its equation is

y + 3 = TV(x-f), or 10 x - 32 y- 121 = 0.

4. To find the equation of a straight line through two . known

points.

This problem has already been solved in 26, and the result

given in the form

x y I

which is the same as

2/2

x x
1 y

-
= 0. (Ex. 2, 3)

Or, by 27, the slope of the required line is

2/2-2/1

xa

Hence, by problem 1, the equation of the required line is

-

y
~

2/1
=

x x {
x ~ Xi &amp;gt;x

2
x

l

Ex. Find a straight line through (1, 2) and (3, 5).

By the formula,

-3-1&quot;

5. To find the condition that three known points should lie on

the same straight line. If the three points are (xv y^ y (x9 , y ),

and (x8 , y9),
the condition that they should lie on the same straight

line is

2/i

: 2/2

I 2/3

as is evident from 4.
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30. Intersection of straight lines.

Let

and
(1)

be the equations of two straight lines. It is required to find their

point of intersection. Since the coordinates of any point on one

of the lines satisfy the equation of that line, the coordinates of a

point on both lines must satisfy both equations simultaneously.

Hence the coordinates of the point of intersection of the lines is

found by solving the two equations.

There are three cases.

1. =0.
A.2 B f

The solutions are then

B A, C\

A, B,
Aa B

The two straight lines intersect in the corresponding point.

2.
A, B,
A, Ba

= 0, but at least one of the determinants,

C
2 S,

and A, C\

not equal to zero.

The equations are then contradictory and the straight lines do

not intersect. In fact, 28 shows that the straight lines are

parallel

This case may be brought into connection with case 1 as

follows: In case 1 suppose that AJi., AJi
l

is very small, but

not zero. The values of x and // are then very large, assuming

that tin- numerators are not small, and the point of intersection

is then very remote.
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Let now the lines be changed in such a manner that A^B^ A^B^

approaches zero. The values of x and y increase indefinitely, the

point of intersection recedes indefinitely, and the lines approach

parallelism.

3.
A

B.
=

0,
A

l C,

^ C
2

The equations are then not independent but represent the same

straight line.

In this case the attempt to use the solutions as given in 1

leads to the indeterminate form
-J ( 11).

31. If the three straight lines

-C,= 0, (1)

C-,= 0, (2)

C-,= 0, (3)

pass through the same point, the three equations have a common
solution, and therefore

A, B
l

B. C,

= 0. (4)

Also, if the three straight lines are parallel, the determinant (4)

is zero. For if (1), (2), and (3) are parallel, A
1
B

2
A

Z
B

1
= Q,

A
2
B

S
A

3
B

2
=

0, A3
B

1
A

1
B

3
= 0, and therefore

= 0.

Conversely, if C

the lines (1), (2), and (3) either pass through the same point or are

parallel. For, by 7, if two of the lines intersect, the coordinates

of the point of intersection satisfy the other.



DISTANCE FROM A STRAIGHT LINE 63

32. Distance of a point from a straight line.

Take the equation of any straight line, written in the form

y-mx-b = 0, (1)

and consider the polynomial

y mx I), (2)

which stands upon the left-hand side. We may substitute in (2)

the coordinates (xv y^) of any point Pv and thus obtain a value

of (2) which is zero when P
l
lies

on the line (1), but not other

wise. We wish now to obtain

the meaning of

K

r
:

when P
l

is not on (1). For that ^^ o M
purpose, let LK (fig. 30) be the

line (1), and let MPV the ordinate FlG 30

of Pv cut LK in Q. Then the

abscissa of Q is x
l
and its ordinate is MQ. From (1)

-x

MQ =

=
i/ l (m*i+ V)Hence

It is clear that y^ mx
l

b is a positive quantity when (xv y^)

lies above the line LK, and is a negative quantity when (xv y^ lies

below LK. It is also evident from the triangle P^QR, and from

a like triangle in other cases, that the length of P^ is numeric

ally equal to P^ cos
&amp;lt;f&amp;gt;.

But tan
c/&amp;gt;

= m, and hence

cos
&amp;lt;/&amp;gt;

=

We have, then,
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We may, if we wish, always choose the -f sign in the denomi
nator. Then PJl is positive when P^ is above y = ma + &, and

negative when P^ is below.

If the equation of the straight line is in the form

A Cm = ------ and I = Therefore
B Ii

i+C=B(y l

- mx
l
-

I),

and -IT * -i.l

It appears, then, that the polynomial Ax^\-By^-\- C and the per

pendicular PY
R are positive for all points on one side of the line

Ax + By +. C = 0, and negative for all points on the other side.

To determine which side of the line corresponds to the positive

sign, it is most convenient to test some one point, preferably the

origin.

33. Normal equation of a straight line. Let LK
(fig. 31) be any

straight line and let OD be the normal (or perpendicular) drawn

from the origin. Let the length of OD be p and let the angle

XOD be a. Take P any point on LK. The projection of OP on

OD is equal to the sum of the

projections of OM and MP (15).
But the projection of OP on OD
is p, since ODP is a right angle.

The projection of OM on OD is

xcosa
( 14), and that of MP is

y cos (a 9 0) = y sin a. Hence

FIG. 31 or

p = x cos a + y sin a,

x cos a + y sin a p = 0.

This equation, being true for the coordinates of any point on

LK and for those of no other point, is the equation of LK. It is

called the normal equation of a straight line.
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Since siii
2a + cos

2a = 1, it follows from 32 that

x
1
cos a + y l

sin a p

is numerically equal to the distance of (xv y^ from

x cos a -\- y sin a: jp
= 0.

It is sometimes desirable to change an equation

Ax +By + 6 =

into a; cos a + y sin a; p = 0.

For that purpose it is enough to notice that since any value of

(x, y) which satisfies one equation must satisfy the other, the one

is a multiple of the other. Hence

A = k cos a, 7&amp;gt;
= k sin a, C = kp,

where k is an unknown factor. But from these last equations we

have

Therefore cos a =

sin a =

Since p is to he positive, the sign of the radical must be oppo

site to that of C.

PROBLEMS

Plot the graphs of the following equations :

1. r,z _ 3 y + 10 = 0. 3. x + :&amp;gt;&amp;gt;//-
7 = 0. 5. 3 x + 5y = 0.

2. 4 jr + 15
// + 12 = 0. 4. 2 x.

- y = 0. 6. 4 x + 7 = 0.

7. :
//
- 8 = 0.

8. T\\&amp;lt;&amp;gt; numbers ;uv to be found such that one halt of one plus one third

of the other is equal to unity. Show how one number may be graphically

found when the other is known.
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9. A plane figure is in the form of a square, 3 ft. on one side, surmounted

by a triangle constructed on one of its sides as a base. Express the area of the

above figure in terms of the altitude of the triangle, and plot the graph of the

function.

10. Express the number of inches in any length as a function of the number
of centimeters, and express the same as a graph.

11. A uniform elastic string of length I is subjected to a stretching force/.
If V is the new length, V = 1(1 -f m/), where m is a constant. Plot the graph,

showing the relation between I and /.

12. If t represents the boiling point in degrees Centigrade at a height h in

meters above sea level, then approximately h = 295 (100 t}.
Plot the graph.

13. The pressure on a square unit of horizontal surface immersed in a liquid

is equal to the weight of the column of liquid above it. Express the pressure at

a depth x below the surface of a body of water, the density of the water being
taken as unity. Express also the pressure x units below the surface of a body
of water over which is a body of oil of density .9 and of depth 8 units. Plot

the graphs.

14. A road starts at an elevation of 100 ft. above sea level and has a uniform

up grade of 15 per cent
;

i.e. it rises 15 ft. in every 100 ft. of horizontal length.

Express the distance above sea level on the road as a function of the horizontal

distance from the point of departure, and construct the graph.

15. A tank of water contains 100 gal. A tap is opened, causing the water

to flow out at a uniform rate of f gal. per minute. Express the amount of

water in the tank as a function of the time, and construct the graph.

16. Find the equation of the straight line of which the slope is 7 and the

intercept on OF is 3.

17. Find the equation of the straight line passing through the point (0, 3)

and making an angle of 135 with OX.

18. Find the equation of a* straight line making an angle of 60 with OJTand

cutting off an intercept 5 on OY.

19. A straight line making a zero intercept on OY makes an angle of 120

with OX. Find its equation.

20. A straight line making a zero angle with OX cuts OF at a point 5 units

from the origin. Find its equation.

21. Find the acute angle between the lines 2x 3y + 5 and x + 2y + 2 = 0.

22. Find the acute angle between the lines 2x + 3y 6 = and 2x + y + 1 = 0.

23. Find the acute angle between the lines 4z + y 2 = and 3x + 5?/ + 8 = 0.

24. Show that 2z -f 14y 17 = bisects one of the angles between the lines

8x-f67/-ll = and 3x 4y + 3 = 0.

25. Find the equation of the straight line through the point ( 4, 5) parallel

to the line 5x 4y+l = 0.
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26. Find the equation of the straight line through (3, 1) parallel to the line

x - y = 8.

27. Find the equation of the straight line through the point (2, 11) per

pendicular to the line 9 x 8y-fC=0.

28. Find the equation of the straight line through the origin perpendicular

to the line 6x + 5?/- 3 = 0.

29. Find the equation of the straight line through the points (2, 3)

and (0, 4).

30. Find the equation of the straight line through the points (2, 1)

and (3, 2).

31. Find the equation of the straight line through the points ( 1, 3)

and (- 1, 5).

32. Find the angle between the straight lines drawn from the origin to the

points of trisection of that part of the line x + 4 y = 24 which is included

between the coordinate axes.

33. Find the equation of the perpendicular bisector of the line joining

(-3, 5) and (-4, 1).

34. A straight line is perpendicular to the line joining the points (4, 2)

and (2, 0) at a point one third of the distance from the first to the second

point. What is its equation ?

35. Find the equation of the straight line through (3, 5) parallel to the

straight line joining (2, 5) and
( 5, 2).

36. Find the equation of the straight line parallel to the line 2x 3^ + 5 =
and bisecting the straight line joining ( 1, 2) and (4, 5).

37. Find the equation of the straight line perpendicular to 3x 5y = 9 and

bisecting that portion of it which is included between the coordinate axes.

38. What is the equation of a straight line the intercepts of which on the

axes of x and y are 2 and 5 respectively ?

39. What is the equation of the straight line the intercepts of which on the

axes of x and y are 4 and 7 respectively ?

40. In the triangle A (-2, -
2), B (1,

-
3), C (0,

-
7), a straight line is

drawn bisecting the adjacent sides AB&nd BC. Prove that it is parallel to AC
and half as long.

41. Find the equation of a straight line through (4, ?
{ )

and the point of

intersection of the lines 3x -4y -2 = and 12 x - 15 y -8 = 0.

42. Find the equation of the straight line passing through the point of inter

section of x 2y 5=0 and 2x 3y 8 = and parallel to3x 2 y + 2 = 0.

43. Find the equation of the straight line through the point of intersection

ofGx-2y-ll = and 4x-(&amp;gt;y-5 = and perpendicular to4x-y+l = 0.
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44. Find the equation of the straight line joining the point of intersection

of the lines 2x y + 6 = and x + y -f 1 = and the point of intersection of

the lines x y 7 = and 2 x + ?/
-

f&amp;gt;
= 0.

45. Determine the value of m so that the line y = inx -f 3 shall pass through
the point of intersection of the lines y = 2x + 1 and y = x + 5.

46. Find the vertices and the angles of the triangle formed by the lines

x = 0, x -y + 2 = 0, and 2z + 3?/-21=0.

47. Find the distance of (3, 5) from the line y = 4 x 8. On which side of

the line is the point ?

48. How far distant from the line 2 x + 3 y + 8 = is the point (7, 4), and

on which side of the line is it ?

49. Find the distance from the point (6, a) to the line h r = 1.

50. The base of a triangle is the straight line joining the points (1, 3) and

(5,
-

1). How far is the third vertex (6,
-

2) from the base ?

51. The vertex of a triangle is the point (6, 2) and the base is the straight

line joining ( 3, 2) and (4, 3). Find the lengths of the base and the altitude.

52. Find the distance between the two parallel lines 4x+3y 10 = and

4x + 8y - 8 = 0.

53. A straight line is 7 units distant from the origin and its normal makes

an angle of 30 with OX. What is its equation ?

54. The normal to a straight line which is 5 units distant from the origin

makes the acute angle tan- 1 i with OX. What is the equation of the line ?

55. A straight line 4 units distant from the origin makes an angle of 45

with OX. What is its equation ?

56. The normal to a straight line makes an angle tan- 1 2. with OX. The

line passes through the origin. What is its equation ?

57. The normal to a straight line makes an angle of 90 with OX. The

line is 7 units distant from the origin. What is its equation ?

58. Find a point on the line 4 x + 3 y = 12 equidistant from the points

(-1, -2) and (1,4).

59. Find the equation of the perpendicular bisector of the base of an

isosceles triangle having its vertices at the points (3, 2), (2, 3), and

(2,
-

5)-

60. A point is equally distant from (2, 1) and (4, 3), and the slope of the

straight line joining it to the origin is . Where is the point ?

61. A point is 7 units distant from the origin, and the slope of the straight

line joining it to the origin is |. What are its coordinates ?

62. Perpendiculars are let fall from the point (5, 0) upon the sides of the

triangle the vertices of which are at the points (4, 3), ( 4, 3), and (0, 5).

Show that the feet of the three perpendiculars lie on a straight line.
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63. Find a point on the line x + 2 y - 3 = 0, the distance of which from the

axis of x equals its distance from the axis of y.

64. ( )nu diagonal of a parallelogram joins the points (4, 2) and
( 4, 4).

One end of the other diagonal is (1, 2). Find its equation and length.

65. Find the equations of the straight lines through the point (-2, 0)

making an angle tan- 1

f with the line 3x + 4y + 6 = 0.

66. Find the equations of the straight lines through (2, 2) making an angle

of 45 with the line 3 x - 2 y 0.

67. Find the equations of the straight lines through the point (2, 1) making

an angle tan- 1

\ with the line 2x y 3=0.

68. Derive the equation of the straight line making the intercepts a and b

on the axes of x and y respectively.

69. Prove analytically that the locus of points equally distant from two

points is the perpendicular bisector of the straight line joining them.

70. Prove analytically that the medians of a triangle meet in a point.

71. Prove analytically that the perpendicular bisectors of the sides of a tri

angle meet in a point.

72. Prove analytically that the perpendiculars from the vertices of a tri

angle to the opposite sides meet in a point.

73. Prove analytically that the perpendiculars from any two vertices of a

triangle to the median from the third vertex are equal.

74. Prove analytically that the straight lines joining the middle points of

the adjacent sides of any quadrilateral form a parallelogram.

75. Prove analytically that the straight lines drawn from a vertex of a paral

lelogram to the middle points of the opposite sides trisect a diagonal.



CHAPTEK IV

THE POLYNOMIAL OF THE NTH DEGREE

34. Graph of the polynomial of the second degree.

The polynomial of the second degree is cut?+ bx + c. Its

graph may be plotted by equating it to y and proceeding as in

20 and 23.

Place y = x2 +2x + 2 and assume integral

values of x. The corresponding values of x and

y are given in the following table :

x

i

2

-3
4

-5

As in 20, we plot these points (fig. 32), and
are then to draw a smooth curve through them.

But we notice that these points are nearer

together in some places than in others. It follows

that in some parts the curve would be more

accurate than in others. To obviate this diffi

culty we assume such fractional values of x

as will locate points between the more widely

separated points already plotted.

We thus form the table :

-XO

FIG. 32

Plotting these points also, and drawing the curve, we have (fig. 32) the graph of

the given polynomial, x2
-f 2 x -\- 2. The graph lies entirely above the axis of x,

and recedes constantly from it as x increases numerically, since the polynomial
is positive for all values of x, and increases in value as x increases.

70
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Ex. 2. 2x2 + x 6.

Place y = 2x2 + x 6 and assume integral values of x

Hence the table :

-3
4

15

- 1

-2
-3

- 5

9

On plotting these points (fig. 33) we see that iC

is desirable to assume fractional values of x.

Hence the table :

1.5

2.3

2.6

1.5

2.5

V

6.9

10.1

-3

4

3.3

3.7

.5

y

12.5

17.7.

-6
-6.1
- 5.7

FIG. 33

In obtaining this new set of points we have

assumed .5, .3, .7 as values for x, with the

aim of locating as closely as possible the turning

point, or vertex, as it will be called, of the curve.

Plotting these points also, we draw the curve (fig. 33).

It is especially to be noted that the curve cuts the

axis of x when x = 2 and when x = 1.5. But these two values of x, since they
make 2 x2 + x 6 equal to zero, are the roots of the equation 2 x2 + x 6 = 0.

As the graph of the polynomial in Ex. 1 did not intersect the axis of x, we
conclude that the equation formed by placing it equal to zero has no real roots.

Solving that equation we find that, in fact, the roots are 1 V 1.

35. Let us now consider the general polynomial of the second

degree, ax 2+ bx + c, of which the two polynomials just plotted

are special cases.

If we place y= ax2 + bx + c, we can write

?+-, + -

= a

= a

, AY+ c
-.f

2 a)
+

a

4 a
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The expression in brackets is the constant, j~ P^us

(T
\ -2 4 ci

x + -
)

&amp;gt; which is always positive except for
2 a/

& =
7: &amp;gt; when it is zero.
2 a

At first we shall regard a as positive. It follows that y has its

least value when x = Therefore the lowest point, the vertex,
& ct

,, .,, , / 1) b
2 4 ac\

ot the curve will be --
&amp;gt;

- - As values greater and
\ 2 a 4a.

-./

less than - are assigned to x, x + increases numerically,
2 a 2 a

y increases, and the corresponding point of the curve rises in

the plane. Moreover, if x is assigned the values + k and
I

2a
&, k being any assumed constant value, the corresponding

2i Ct

,
values of y are the same. Hence the curve is symmetrical with

respect to the straight line x = -
&amp;gt; which line passes through

Ct

the vertex of the curve parallel to the axis of y.

If a is negative, it can be proved in the same way that the curve

has an axis of symmetry, x = &amp;gt; which passes through its
2i a

vertex, which is in this case the highest point of the curve.

36. Now that we have proved that the graphs of all quadratic

polynomials in x are alike, having a vertex and an axis of sym
metry passing through it, we can plot them more easily than was

possible before, as is shown by the two following examples.

Ex. 1. 4x2 - 4x + 1.

y = 4&2 - 4 Z + 1 = 4 (Z*
- X + ]-)

= 4 (X
-

)2.

Therefore the vertex of the. graph is (1, 0), and the

axis of symmetry is the line x = \. Beginning with

the value ^, we assign to x values greater and less

than ^, thereby locating points on both sides of the

axis of symmetry, and plot the graph which is repre

sented in fte. 34.
-X

1 We see that the equation 4x2 4x + l = has two

equal real roots, the graph being tangent ( 37) to the

FIG. 34 axis of x at the point x = ^.
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y = - 2 x2 + 3 x

Therefore the vertex of the graph is
(|, f) and

the axis of symmetry is the line x =. J.
The graph

is represented in fig. 35. We see that it crosses

the axis of x at two different points. Hence the

equation 2 x2 + 3 z = has two unequal real

roots, which are found to be and f . FIG. 3

37. Discriminant of the quadratic equation. Turning now to

the constant - in the equation
4 or

r &_4oc / I VI= ft
- - T- + I

* + a- )4 a2

\ 2 / J

of 35, we have three cases to consider.

1. If Ir 4 ac &amp;gt; 0, the vertex of the graph is below the axis of

x when a
&amp;gt; 0, and above the axis of x when a

&amp;lt; 0, and accord

ingly the graph intersects the axis of x in two points.

2. If &
2 4ac = 0, the vertex of the graph is on the axis of x,

;md hence the graph intersects the axis of x in a single point.

3. If l
2

4(tc
&amp;lt; 0, the vertex of the graph is above the axis

of x when a &amp;gt; 0, and below the axis of x when&quot; a &amp;lt; 0, and the

graph does not intersect* the axis of x at all.

Now let us suppose that different values are assigned to the

constants a, b, and c, in such a way as to make If 4ac decrease,

beginning with a positive value. Then the vertex of the graph

rises or falls in the plane until, when l~ 4 ac = 0, it lies on the

axis of x. At the same time, the points in which the graph inter

sects the axis of x have been approaching each other, and finally

coincide, when the graph is said to be tangent to the axis of ax

Recalling that the abscissas of the points of the graph on the

axis of x are the real roots of the equation formed by placing the

expression equal to zero, we can tabulate the following results.
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1. If b
2 4 ac

&amp;gt; 0, the graph of ax2+ bx -+- c intersects the axis

of a? at two points, and the equation x2
-f &# + c = has two real

roots, which are unequal.

2. If 6
2 4 ac = 0, the graph of ay?+ ~bx + c is tangent to the

axis of x, and the equation ax2+ &# -+ c = has two real roots,

which are equal.

3. If 6
2 4 ac

&amp;lt; 0, the graph of ax*+ bx -f- c is entirely on one

side of the axis of x
t
and the equation ax2

-\- bx + c = has only

imaginary roots.

The expression W 4 ac is called the discriminant of the quad
ratic equation, as its sign indicates the nature of the roots of the

equation.

Y 38. Graph of the polynomial of the nth degree.

Let the polynomial he

In general this polynomial contains n + 1 terms.

If any term is lacking, we may consider that its

coefficient has become zero.

We will begin by plotting the graphs of some

special numerical cases.

Ex. i. x3
.

Place v x3 and assume values of x. Hence the table :

FIG. 36

X

1.6

1.5

2.3

2.3

2.7

2.7

y

3.4

3.4

12.2

12.2

19.7

19.7

Drawing a smooth curve through these points, we have the curve of fig. 36.

It is called a cubical parabola.
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FIG.

Ex. 4. x* - 2x2 + 3x - 6.

Place y = x3 - 2 x2 + 3 x - 6

Hence the table:

and assume values of x.

u

1.5

2.5

2.7

1.5

1.7

The curve is represented in fig. 39.

This curve crosses the axis of x at

the point x 2, and hence the equation

x3 2x2 + 3x 6 = has 2 for a real root.

Its other roots are imaginary, i.e. V 3.

Ex. 5. 4x3 + 4x2 - 9x- 9.

Place 7/
= 4x3 + 4x2 9x 9 and assume

values of x. Hence the table :

2

-1
-2

x

21

1.5

1.3

1.7

.5

1.5

-1.3

y

o

-5.2
6.9

-4.0

.7

2.0

4.6

7.2

18.4

21.8

This curve is represented in fig. 40. It crosses the axis of

x at three points, when x = 1.5, when x = 1.5, and when

x = 1. Hence 1-5 and 1 are real roots of the equation

4 x3 + 4 x2 - 9 x - 9 = 0.

Without discussing any more numerical examples

we can see that, in general, the abscissas of the points

on the axis of x of the graph of the polynomial

a
ti
xn + a^x

n ~ l + axn - 2+ + a
n _ rv + &amp;lt;

are real roots of the equation

FIG. 40
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Conversely, the real roots of the equation

a xn+ a^~
l + a^-&quot;-\

-----h _!# 4- =

are the abscissas of the points at which the graph of

#M ~ l + a
z
xn ~ 2+ ----h #_!# +

intersects the axis of a?, for they make y = 0.

Moreover, if the graph of the polynomial does not intersect

the axis of x, the corresponding equation has no real roots
;
and

conversely, if the equation has no real roots, the graph of the

polynomial does not intersect the axis of x.

39. Solution of equations by factoring. Let f(x) be a poly

nomial which can be separated into factors f^x), /2 (#), /3 (#)&amp;gt; &quot;$

each of which is necessarily of lower degree than f(x). Then the

equation

/(*)= (1)

may be written in the form

/,W /(*) /,()
- = 0. (2)

It is evident that any value of x which makes one of the fac

tors fi(x), /&amp;gt;(&amp;lt;), /j(^), zero, satisfies equation (2), and hence

equation (1),
i.e. is a root of equation (1). But such a value of x

is evidently a root of some one of the equations

Conversely, any root of equation (1) must satisfy equation (2),

and hence must make some one of the factors /1(^),/2(^),/3 (./ ),

zero
;
for if no one of these factors is zero, their product cannot be

zero. Hence the solution of the equation f(x)
= is reduced to

the solution of the separate equations

/ = o, /,(*)
= o, /=o,

In applying this method it is usually desirable to have no fac

tor of higher degree thsin the second; but there is no advantage

in carrying the factoring any further, as any quadratic equation

can be readily solved.
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Ex. 1. Solve the equation xs = 8.

By transposition, xs 8 =
;

whence, by factoring, (x 2) (x
2 + 2 x + 4) = 0.

.-. x - 2 = or x2 + 2 x + 4 =
;

whence x = 2 or 1 V 3.

Since the original equation might have been written x =
&quot;v/8,

we see that the

three values of x which have been found are each a cube root of 8. In fact,

every number has three cube roots, which may be found by solving the equation
formed by placing x3

equal to the number.

Ex. 2. Solve the equation x4 + 9 = 0.

This equation may be written

(x
4 + 6x2 + 9)-6x2 = 0;

whence, by factoring, (x
2 + Vo x + 3) (x

2 V(j x + 3) = 0.

.-. x2 + V(ix + 3 = 0, or x2 - V6x + 3 = 0;

_ Vo V^e Vo V^e
whence x =-- or ----

It is to be noted that every number has four fourth roots, which may be found

by a method similar to that suggested above for finding its three cube roots.

40. Factors and roots. It follows immediately from the pre

ceding article that if x r is a factor of f(x) y
then r is a root of

the equation f (x)
= 0.

Conversely, if r is a root of the equation f(x)=Q, then the

polynomial f (x) is divisible
l&amp;gt;y

x r.

Let f(x)
= a

Q
xn+ a^~

l + -+- an _ l
x + a

n ,

and let r be a root of f(x) = 0. Then

f(r) = a
()
r
n + a

l
r
n ~ l + +

&quot;_!&amp;gt;
+ a

n 0.

a
n)

As f(x) is expressed as a series of terms each of which, being
the difference of the same positive integral powers of x and r, is

divisible by x r, it follows that f(x) is divisible by x r.
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Ex. By inspection 1 is a root of the equation

X4 + X3 + 2X2 + 3X + 1 = 0. (1)

Hence x + 1 is a factor of the left-hand member of the equation, which may

accordingly be written

(x + l)(z3 + 2z + l)
= 0. (2)

Additional roots of equation (1) may now be found by solving the equation

x3 + 2x + l = 0by methods given in 62 and 63.

It is to be noted that the solution of the original equation has been simplified

by making it depend upon the solution of a depressed equation, i.e. one of degree

lower than the degree of the original equation.

41. By means of the second theorem we can form an equation

which shall have any given quantities, rv r
z , -, rn as roots. For

if rv r
,

- are the roots of the equation, its left-hand member

must contain the factors x rv x r
z , ,

the right-hand mem
ber being zero. Therefore the equation

(x
-

r^ (x rj -
(x
- r

n )
=

has the required quantities as roots. Moreover, this equation can

have no other roots, since any other value of x will make no fac

tor equal to zero, and hence the product will not be zero. There

fore the required equation is

Ex. 1. Form the equation having as roots 2 + 3 V 1, 2 3 v 1, -.

The required equation is

(x _ 2 - 3 V^i) (x
- 2 + 3 VITi) (x + )

= 0,

or [(x-2)* + 0][3x + l]=0,

or 3 x3 - 1 1 x2
4- 35 x + 13 = 0.

This method of forming an equation suggests a method of factor

ing a quadratic expression. For if r
l
and r., are the roots of the

quadratic equation ax*+ l&amp;gt;x -f c = 0, then &amp;lt;i.&amp;gt;

:~

-\- lx + c is divisible

by x 7\ and x r., ;
and hence

.,.- _|_ /,,,- 4. c = a
(./ 7-j) (x r.,).
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Ex. 2. Factor Qxz
-f x 1.

The roots of the equation 6x2 +

Ex. 3. Factor 4x2 + 4x 2.

The roots of the equation 4 x2 + 4 x 2 = are : -

= (2 x + 1 - V3) (2x + l + V3).

Ex. 4. Factor x2 + 4x + 6.

The roots of the equation x2 + 4 x + 6 = are - 2 V^~2.

... X2 + 4 X + =
(x + 2 - V^2) (x + 2 + V1T2).

42. Number of roots of an equation. The fundamental propo
sition concerning the roots of an equation is that every equation

formed by placing a polynomial equal to zero lias at least one root.

The proof of this proposition, however, depends upon methods

too advanced to be used here. We shall therefore assume it as

proved, and proceed to prove, as a consequence of it, that every

equation of the nth degree has n roots, and only n roots.

Let the given equation

a xn + a^-
1

H-----h _, x + a
n
=

be denoted by f(x)
= 0. (1)

Since this equation must have at least one root, let i\ be that

root. Then f(x) is divisible by x i\(\ 40) and therefore

^x) being the other factor, and necessarily of degree n 1.

Equation (1) can now be written

:-o, (3)

and any root of f^(x)
=

(4)

is a root of f(x) = ( 39).
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But equation (4) must have at least one root
;
and if we let r.2

be that root, and reason as before, we may write

, (5)

f.2 (,c) being of degree n 2.

By substitution in (2) we shall have

After separating n linear factors in this way, the last quotient
will be . Therefore we shall have

f(j&amp;gt;)

=
a,(.c

-
TI ) (x

-
rj -

(x
- r

H ), (7)

the polynomial being expressed as the product of n linear factors.

Then the equation f(x) = may be written

&amp;lt;&amp;gt;(*

~ r
i) (*

~ ^ -(- r
n)
= 0, (8)

whence it is seen to have n roots ( 39), i.e. rv r.2 , ,
rn .

It can have no other roots
;
for if we let x have any value other

than rv r
2 ,

or rn) no factor of the first member of (8) is zero,

and hence the product in the first member is not equal to zero.

Therefore the equation of the nth degree has n, and no more
than n, roots, and the polynomial of the nth degree can always
be separated into n linear factors. In general, however, it is not

possible to determine these factors where n &amp;gt; 4.

It is to be noted that the roots may all be different, or some of

them may occur more than once. In the latter case the equation
is said to have multiple roots.

43. If now the left-hand member of equation (8) of 42 is

expanded, the equation appears in the original form

and it is evident that

(- rj + (-
-&amp;gt;-._,)

+ (- r,) +..+(- r,,)=^ (
1
)

and that (- TI ) (- /-,) (- /-,) .._. (- r
&amp;gt;t )
=

&quot;

-

(1&amp;gt;)
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Equations (1) and (2) express respectively the following theorems:

1. The sum of the roots of an equation with their signs changed

is the coefficient of xn ~ l divided ~by that of tf
1

.

2. The product of the roots of an equation with their signs

changed is the constant term divided
l&amp;gt;y

the coefficient of xn
.

Other theorems of this type are given in works on the theory

of equations, but only these two have been stated here, since they
are of special service in finding the remaining root of an equation

after all the others have been determined.

Ex. l^JThree roots of the^ equation 2x4 + 7x3 + 8x2 + 2x - 4 = are -2,
1 V 1, and 1 + V 1. Find the fourth root.

The sum of all the roots is
,
and the sum of the three roots known is 4.

Therefore the fourth root is | ( 4), or
^.

Ex. 2. Two roots of the equation 36 z3 7 x + 1 = are ^ and 1. Find

the third root.

The sum of the two roots known is ^, and the sum of all the roots is 0,

since the coefficient of x2 is 0; therefore the third root is
( ), or 1.

Or the product of the roots known is ^, and the product of all the roots

is ^ ;
therefore the third root is

( ^) -=-
( ^), or .

44. Conjugate complex roots. Nothing was said in 42 as

to the nature of the roots rv r
2 , ,

r
H

. But if the coefficients

a
,
av

-

,
a
n
are all real, and if a + bi is one of the roots, then

a bi is also a root.

For if a + bi is a root of /(#) = 0, then f(a + bi)
= 0. When

f(a + bi) is expanded the terms can be separated into two sets,

those containing a alone or involving only even powers of bi

as a factor, and those involving only odd powers of bi as a factor.

By 12 the terms of the first set are all real and their sum may
be denoted by A ;

and the terms of the second set contain i to the

first power as a factor, and their sum may be denoted by Bi (B t

of course, being real). Then f(a + bi)
= may be written .

A + Bi = 0,

whence
( 12), A = and B = 0.

If, in the above, we replace bi by bi, it is evident that the

terms in the first set are not affected, as they involve only even
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powers of bi as a factor, and those in the second set, involving

only odd powers of bi as a factor, are changed in algebraic sign

only. Therefore we have f[a + ( li)]
= A Bi. But we have

seen that A = and B =
;

therefore f[a + ( bi)] 0. Since

f[a + ( bi)]=f(a bi), however, it follows that f(a bi)
= 0,

and a bi is a root of the given equation f(x) = 0.

This fact is usually stated by saying that complex roots occur

in pairs.

It follows that an equation of even degree may not have any
real roots, and that an equation of odd degree must have an odd
number of real roots, and thus at least one real root.

45. It was proved in 42 that every polynomial is equivalent
to the product of n linear factors, i.e.

a
o(
x ~ rj (x

- r
a) (M

-
rj,

where rv r
2 ,

-

,
rn are the roots of the corresponding equation.

Now if any one of these roots is -complex, there will be a corre

sponding conjugate complex root. Let a + bi and a bi be two
such roots. Then the corresponding factors are (x a bi) and

(x a + li) y which combine into (xaf+W, a real quadratic
factor.

Therefore every polynomial with real coefficients is equivalent
to the product of real linear and quadratic factors.

46. Graphs of products of real linear and quadratic factors.

1. All the factors linear and none repeated, as

(*-&amp;gt;!&amp;gt;(

~ rs) (a -rj.

Placing y equal to this expression, we have

y = a
(.t
-

rj (x
-

/-
2 ) (.,;

- r
H ).

It is evident that the graph intersects the axis of x at n dis

tinct points for which x = rv x = r
z , ,

x = ?, and at no other

points, as no other values of x make y zero. Now let the quan
tities rv ?,, -, r

n be arranged in the order of their magnitude,

r, being the least. Then if at first x
&amp;lt;

rv all the factors are nega
tive

;
and if x changes so that i\ &amp;lt;

x
&amp;lt; ?,, the first factor becomes

positive while all the others remain negative. Therefore y changes
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sign when x changes from being less than r
l

to being greater
than rv and the curve crosses the axis of x at the point x = rr

Again, if x changes so that at first r
x &amp;lt;

x
&amp;lt;

r
2
and then

r
z &amp;lt;

x
&amp;lt;

r
s ,

the second factor changes sign from minus to plus,

the others retaining their original signs. Hence y again changes

sign, and the curve crosses the axis of x again at the point x = rr

Continuing in this manner, we can show that the curve crosses

the axis of x n times as it is traced from left to right. .

2. All the factors linear, some being repeated, as, for example,

the corresponding equation being

If the r s are arranged in ascending order of magnitude, it may
be proved, as in the previous case, that the graph crosses the axis

of x at the points x = rv and x r
s ,
but not at the point x = i\.

For if at first r^ &amp;lt;
x

&amp;lt;
r
z
and then r

2 &amp;lt;
x

&amp;lt;
r
s ,

it is seen that no

factor changes sign. But since y = when x = r
,
the graph has

a point on the axis of x when x = r
2 ;

in fact, it is tangent- to the

axis of x. And it can be proved in general that, if a linear factor

occurs an even number of times, the graph does not cross the axis

of x at the corresponding point.

3. Some of the factors quadratic, as, for example,

the corresponding equation being

The only new type of factor is (x a)
2 + b

2
,
and this is positive

for all values of x. Hence there is no new point to be discussed

in regard to the intersection of the graph with the axis of x.

In general, the graph has as many points on the axis of x as

the polynomial has different linear factors; it does not cross the axis

at any point corresponding to a factor occurring an even number

of times ; and it crosses the axis of x at any point corresponding
to a factor occurring an odd number of times.
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Ex.1. y= .5(.c+ 2)(+.5)(z-2).

1. If x = 2 or .5 or 2, y 0,

and there are three points of the

curve on the axis of x.

2. If x &amp;lt; 2, all three factors are

negative ;
therefore y &amp;lt; 0, and the

corresponding part of the curve lies

below the axis ofx. If 2
&amp;lt; x &amp;lt; . 5,

the first factor is positive and the

other two are negative; therefore

y &amp;gt; 0, and the corresponding part of

the curve lies above the axis of x.

If .5 &amp;lt; x &amp;lt; 2, the first two factors

are positive and the third is nega
tive

;
therefore y &amp;lt; 0, and the corre

sponding part of the curve lies

below the axis of x. Finally, if

x &amp;gt; 2, all the factors are positive ;

therefore y &amp;gt; 0, and the correspond

ing part of the curve lies above the

axis of x.

3. Assuming values of x and

finding the corresponding values

of y, we plot the curve, as repre
sented in fig. 41. FIG. 41

Fio. 42

Ex. 2. y = .5 (x + 2.5) (x
-

1)2.

1. If x = 2.5 or 1, y = 0, and there

are two points of the curve on the

axis of x.

2. If x &amp;lt; 2.5, the first factor is

negative and the second factor is posi

tive
;

therefore y &amp;lt; 0, and the corre

sponding part of the curve lies below

the axis of x. If
2.5&amp;lt;x&amp;lt;l, both

factors are positive ;
therefore y &amp;gt; 0,

and the corresponding part of the curve

lies above the axis of x. Finally, if

x &amp;gt; 1, we have the same result as when

2.5&amp;lt;x&amp;lt;l, and the curve does not

cross the axis of x at the point x = 1,

but is tangent to it.

3. Assuming values of .c, and finding

the corresponding values of y, we plot

the curve as represented in tig. 42.
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Ex. 3. y = .5(x + 3)

(z*
- 2.5z + 3.6).

1. If x = -
3, y = 0, and this

curve lias but one point on the

axis of x.

2. If x &amp;lt;

-
3, the first factor is

negative and the second factor is

positive, as it always is, since it is

equivalent to (x
-

1.25)
2 + 1.9375;

therefore y &amp;lt; 0, and the corre

sponding part of the curve is

below the axis of z. If x &amp;gt; 3,

the first factor is positive; there

fore y &amp;gt; 0, and the corresponding

part of the curve is above the

axis of x.

3. Assuming values of x, and

finding the corresponding values

of y, we plot the curve as repre

sented in fig. 43.

47. Location of roots.

From the work of the last

article it is evident that the

real roots of the equation f(x)= determine points on the axis

of x at which the graph of f(x) crosses or touches that axis.

Moreover, if x
l
and x

2 (xl &amp;lt;
x

2)
are two values of x, such that

f(x^) and f(x2)
are of opposite algebraic sign, the graph is on one

side of the axis when x = xv and on the other side when x = x
2

.

Therefore (56) it must have crossed the axis an odd number of

times between the points x = x
t
and x x

2
. Of course it may

have touched the axis at any number of intermediate points.

Since a point of crossing corresponds to an odd number of roots

of an equation, and a point of touching corresponds to an even

number of roots, it follows that the equation f(x) = has an odd

number of real roots between x
l
and x

2
.

The above gives a ready means of locating the real roots of

an equation in the form f(x) = 0, for we have only to find two

values of x, as x
l
and x

2 ,
for which f(x) has different signs. We

then know that the equation has an odd number of real roots

between these values, and the nearer together x
v
and x

2)
the more

FIG. 43
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nearly do we know the values of the intermediate roots. In locat

ing the roots in this manner it is not necessary to construct the

corresponding graph, though it may be helpful.

48. Descartes* rule of signs. When in a polynomial a term

with one sign is immediately followed by one with the opposite

sign, there is said to be a variation of sign. For example, in the

polynomial 3 x* + 2 j? 3 j? + x 2 there are three variations.

The variations of sign in the left-hand member of an equation

are often of value in locating the real roots of the equation,. for

the number of positive roots of the equation f (x)
= cannot exceed

the number of variations of sign in its left-hand member. This

rule is known as Descartes rule of signs.

For example, the equation 3 x* -f 2 xs 3 x2
4- x 2 = cannot

have more than three positive roots, as there are three variations

of sign in its left-hand member.

To determine the greatest possible number of negative roots,

replace x by x . The roots of the resulting equation will be

those of the original equation with their signs changed. Accord

ingly the original equation can have no more negative roots than

this new equation has positive roots.

If, in the equation 3 x* + 2 x* 3 x2
-f x 2 = 0, x is replaced

by x
,
the new equation is 3 x *

2 x 3 3 x 2 x 2 = 0. As

this equation cannot have more than one positive root, the original

equation cannot have more than one negative root.

Sometimes, by Descartes rule, we can prove that an equation

has imaginary roots. For example, the equation 3 x3
-f- x

2
-f 2 =

can have no positive root, and not more than one negative root.

Being of odd degree, it has at least one real root
&quot;( 44); therefore

it has one negative root and two imaginary roots.

In order to prove Descartes rule we will first prove that if &quot;////

polynomial f(x] is multiplied by x r, where r is a positive ynn/t-

tity, the product has at least one more variation than has /( )

Assuming the first term of f(x) to be positive, we will inclose

all the terms preceding the first minus sign in a parenthesis. In

a second parenthesis we will inclose all the terms with a minus

sign before a positive sign occurs again, and so on. Suppose,

then, that the first minus sign appears in the term containing
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#&quot;&quot;*,
the next plus sign occurs in the term containing xn ~ l

, etc.,

and that all the terms after that containing xn ~ m have the same

sign as that term. We can now write

+ (ap?-
1 + .)

----

KXl -&quot; +-- . + O, (i)

where all the terms within each parenthesis are of the same sign,

i.e. plus. Therefore each parenthesis marks a variation.

To multiply f(x) by x r we shall multiply first by x, then by

r, and add the partial products.

The result is an equation of the following form :

x -rx = +1
. . . - -*+ J

. .

f +1 -
.-)=FV. (2)

where bk
= a

k + rak _ lt
b

l

= a
(
+ ra

( _ v etc., and accordingly are

positive.

The signs before each parenthesis of (2) are the same as in (1),

but the signs within the parenthesis are not necessarily all plus.

But however the signs may occur within any parenthesis, there

is at least one variation between the first term of one parenthesis

and the first term of the following parenthesis. Hence, if we con

sider the parentheses only, the number of variations in the prod
uct is not less than the number of variations in/(#).

But, in addition, we have the last term of the product, i.e. if anr,

the sign of which differs from the sign of the first term in the

last parenthesis. Hence there is at least one more variation in

(x r) f(x) than in /(.c), as we set out to prove.

Now the equation having the roots rv r.2 ,

-

,
rn is

( 41)

(x
-

rj (x
- r

2 ) (x
-

r,)
= 0.

In expanding the left-hand member every time we multiply

by a factor corresponding to a positive root, we add at least one

variation of sign. Hence the number of positive roots cannot

exceed the number of variations, as stated in Descartes rule.
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49. Rational roots. The real roots of any equation are either

rational or irrational
( 10), and the rational roots must be

either integral or fractional. We will now derive methods of

finding the rational roots, beginning with the integral roots.

An easy method of determining the integral roots depends upon

the following theorem: If the equation is written in the form

ajf + a^-
1- 1 + + _! + a

n
= 0, (1)

where all the coefficients are integers, any integral root r must be

a factor of a
n.

It has been proved in 40 that the left-hand member of (1) is

divisible -by x r. Since the coefficient of x is unity, and all the

coefficients in the dividend are integers, all the coefficients in the

quotient are integers. But the last coefficient in the quotient

multiplied by r must be a
B,

since there is no remainder. Hence

the theorem is proved.

Accordingly, to find the integral roots of any equation with

integral coefficients, we have merely to try the integral factors of

a
n. When an integral root has been found, we depress the degree

of the equation as in 40, and apply the process to the new

equation. In this way all the integral roots may be found. In

case no integral factor of a
n proves to be a root, it follows that

the equation can have no integral root.

Ex. Find the integral roots of the equation

4 X4 _ 4^3 _ 253.2 + x + o = 0.

The integral roots of this equation must be factors of 6, so that \ve have to

try 1, 2, 3, 6. By trial it is found that 2 is a .root, and the degree

of the equation is depressed by dividing the left-hand member by x + 2, the

depressed equation being 4 x3 12 x2 x + 3 = 0. The only possible values of

integral roots of this equation are 1, 3, and 3 is found to be a root. Dividing

the left-hand member by x 3, we have, as the depressed equation, 4x2 1 = 0,

the roots of which are .

Therefore the roots of the original equation are 2, 3, .

While all the integral roots of an equation may be found by
this method, it is evident that it fails for fractional roots, as there

is no way of determining what fractions ought to l&amp;gt;e tried. This

difficulty is obviated by the two theorems in the m-xi article.
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50. If a is unity and all the other coefficients are integers,

the equation cannot have a rational fraction in its lowest terms

as a root.

Let the equation be

xn + a
l
y?- l

-+ a
2
xn ~ 2

H \-a
&amp;gt;l

_ l
x + a

n
= 0,

7)

and, if possible, let the rational fraction -
, which is in its lowest

terms, be a root. Then

/\
a. = 0.ft\w

Multiply through by q
n l

,
and transpose to the second member

all terms but the first. Then

p
n

By hypothesis p and q have no common factor, and therefore -

is a rational fraction in its lowest terms, while the right-hand
member of the equation is an integral expression. But two such

P
expressions cannot be equal, and hence -, the rational fraction

in its lowest terms, cannot be a root of the equation.

Moreover, every equation in the form

a xn + a^1
- 1 + a

2
xn ~ 2

H-----h n _ r + a
n
=

0,

in which a is not unity, can l&amp;gt;e transformed into an equation ivith

integral coefficients in which the coefficient of the highest power of
the unknown quantity shall be unity.

For, dividing through by a
,
we have

If x is a root of this equation, let y. = &amp;gt; m being an integer, and

substitute in (1). Then

^ +^ ^* + +^, + ^ =
mn an mn an mn - an m a n
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Multiplying ( 2) by m&quot;,
we have

We can now determine ra by inspection in such a way that

all the coefficients of (3) shall be integers. The roots of this new

equation are m times the roots of the original equation.

Ex. Transform equation 12 x* + 1(3 x2 - ox - 3 = to an equation having

integral coefficients, the coefficient of the highest power of x being unity.

Dividing by 12, we have

Multiplying the roots of this equation by an integer m, we insert in each

term a power of m such that the sum of its exponent and that of x shall be

equal to the degree of the equation, thus obtaining

x 3 + (i m)x 2 -
(/Vj-

w2
)x

-
(} m3

)
= 0.

For | m to be an integer, m must equal 3 k where k is an integer. Then T
5
^ m2

becomes T\ (9 fc
2
),
and this is an integer only when k = 21; i.e. m = 6 J, I being

an integer. Finally, J m8
,
or *

(6 Z)
3

,
is an integer if / = 1, the least value of m

being the one desired.

Therefore we let m = 6, and our required equation is

X 3 + 8x 2 -15x - 54 = 0,

the roots of which are six times the roots of the original equation.

The roots of this equation are found by the method of 40 to be 2, 3,

and 0. Hence the roots of the original equation are ^, ,
and ^.

We are thus in a position to determine the rational fractional

roots of any equation with rational coefficients.

51. We now see that to tind all the rational roots of any equa

tion, we iirst tind all its integral roots and then all its fractional

roots, as indicated in the following example.
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Ex. Find all the rational roots of the equation

2x4 - 5x3 - 2 z2 - 7 + 30 = 0.
(1)

By Descartes rule of signs this equation cannot have more than two posi
tive roots, and not more than two negative roots. If any of the roots are inte

gral, they will be among the factors of 30, i.e. 1, 2, 3, 5, 6, 10,

16, 30. By trial we find 4- 2 to be a root, and the depressed equation is

2x3 -x2 - 4x-15 = 0. (2)

By trial we find that this new equation has no integral roots, no factor of 15

being a root. Accordingly we proceed to find fractional roots.

Dividing equation (2) through by 2 and then multiplying the roots by m, we

have x * -
( m) z

2 -
(2 ?n2

)
x -

(y m3
)
= 0. (3)

To make the coefficients of (3) integral we take m = 2, and the equation becomes

z/3 -z 2 - 8z -60 = 0. (4)

By trial we find an integral root of this equation to be 5, and the depressed

equation is

z2 + 4z + 12 = 0, (5)

the roots of which are 2 2 V 2.

Therefore the three roots of the transformed equation (4) are 5 and
22V 2, and the roots of the first depressed equation (2) are | and

- 1 V 2, so that the roots of the given equation are 2, f ,
and 1 V 2.

It is to be noted that in this example, after having found all the rational

roots, we were able to find the remaining roots also, since the last depressed

equation was of no higher degree than the second.

52. Irrational roots. It should be borne in mind that rational

roots occur only for special values or systems of values of the

coefficients. Hence, after removing the rational roots, if any, by
the previous methods, we have, in general, to determine irrational

roots in order to have all the real roots of the equation. But
from the definition of an irrational quantity ( 10) it is evident

that we cannot find an irrational root exactly. We may, however,
find an approximate value to any required degree of accuracy.
There are various methods of approximation, one of which imme

diately follows. A more rapid method is given in 63.*

* A method of solving algebraic equations, known as Homer s method, is found
in most treatises on the theory of equations. It is convenient in arrangement of
work and speedy in the hands of an expert. It may therefore be recommended to
one who has often to solve equations. On the other hand, the methods of 52, 6-S of
this book have two advantages. They may be applied to other than algebraic equa
tions (see 1(52), and depend upon principles which, if once mastered, are not easily
forgotten.
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Let the given equation be f(x)
= 0, and the graph of the left-

hand member be as in fig. 44, where OM
l
= x

l
and OM

2
= xr

Then M
l
P

l =f(c l )
and 3/

2/J=/(^2 ),
and since /(a^) and f(x2 )

are

of opposite sign, the curve crosses the axis of x between M
l
and

3f
,
and there is at least one y

real root of f(x)=Q between

x
l
and x

2 ( 47).

Not only does the curve cross

the axis of x at some point be

tween MI and J/
2 ,

but it is

evident from tig.
44 that the

straight line P^P2 also intersects

the axis of x at some point

FIG. 44

between 3/
x
and J/

2 ,
as Ny If

the points Ml
and M

2
are near

together, i.e. if x
1
and x

z
differ

only by a small amount, the curve in most cases differs only slightly

from the straight line Pfz
. Hence, if we replace the curve by

the straight line, the abscissa of the point at which P^P2
intersects

the axis of x will be approximately the root of the equation.

If OM
3

is denoted by x
9 ,

it is evident (fig. 44) that there is a

root of f(x) = between x
2
and a;

8 ,
a smaller interval than that

between x
l
and #

2 ,
hi which the root was first located.

If, however, the graph of f(x) had

been as in fig. 45, the root would

have been between x
l
and x

& ,
an

interval smaller, of course, than that

between x
1
and x

z
.

If /(#) has the same sign as /(a^),

we have the first case (fig. 44) ;
and

if f(x3)
has the same sign as f(xj,

we have the second case (fig. 45).

In the first case, repeating the proc

ess, using x
z
in place of xv we can

find an #
4
between which and #

2

the root must lie; and in the second case, using .r.
{
in place of ./

,.

we can find an ,/
4
between which and

Jt\
the root must lie.
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Moreover, it is evident that the successive values of #, i.e. X
B ,

%v xv ,
found in this way are each nearer to the true value of

the root of/(#) = than the one preceding.

Ex. Find the root of the equation x3 + 2x 17 = between 2 and 3.

Here Xi = 2 and x2 = 3
; also/(2) =-6 and/(3) = 16. The equation of the

straight line determined by the points (2,
-

5) and (3, 16) is
( 29)

5 16
y + 5 = 2-3 (X 2)

Its intercept on OJT, found by letting y = 0, is 2.2 -f, and /(2.2) = 1.952.

Since /(2. 2) has the same sign as/(2), the second straight line is determined

by the points (2.2,
-

1.952) and (3, 16). Its intercept on OX is 2.28 + ,and
/(2.28)=- 0.587648.

Since /(2.28) and /(2.2) have the same sign, the third straight line is

determined by the points (2.28,
-

0.587648) and (3, 16). Its intercept on
OX is 2.3+, and /(2.3) = - 0.233. The fourth straight line is determined

by the points (2.3, -0.233) and (3,16). Its intercept on OX is 2.31 +, and

/(2.31) = - 0.053609. The fifth straight line is determinedly (2.31, -0.053609)
and (3, 16). Its intercept on OX is 2.312.

Hence the irrational root of x* + 2 x - 17 = 0, accurate to two places of

decimals, is 2.31.

By continuing this process we can find any desired number of decimal places
of the root. It is to be noted that we are obliged to find one more decimal place
than the number of decimal plac.es to which the root is to be accurate. The

approximation is more rapid if the first decimal place is found by the method
of 47.

PROBLEMS

Plot the graphs of the following quadratic expressions, in each case locating
the vertex of the graph and determining the nature of the roots of the corre

sponding equation :

1. 2x2 + 3x-2. 4. -3x2 + 5x.

2. 9x2 -3x-2. 5. - 9x2 + 12x-7.

3. 4x2 + 4x + 3. 6. 4x2 -4x-l.

7. For what values of a are the roots of ax2 + 3 x + 7 = equal ? What are

the roots ?

8. Prove that the roots of fez + -
J

8 ax = are equal for all values

of a and c, and find them.

9. Prove that there is no real value of in for which the roots of

x2 + (mx + 3)
2 - 16 = are equal.
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For what values of k arc the mots of the following quadratic equations (1)

equal ? (2) real and unequal .
(:-J) imaginary ?

10. 2x2 + 3 X + 2 = k. 11. z2
-f (2

- k)x + 1 = 0.

12. (fc + l)x
2 + (fc-l)x + (A; + !)

=
&amp;lt;&amp;gt;.

Plot the graphs of the following polynomials :

13. a* -ox. (a &amp;gt; 0.) 19. x3 - 12 x + 3.

14. x3 - 4x2 + x + 1. 20. 2x4
-f x3 - 4x2 - lOx - 4.

15. x3 - 3x2 + 1. 21. 4x4 + 12x3 + 7x2 - 28x - 0.

16. x3 + x2 + 2x + 5. 22. 3x* - 10x3 - 5x2 + 2x.

17. X3 _ X2
_j_ x _ 4. 23. x4

-f 6x3 + 10 x2
.

18. x3 + 6x-6. 24. 2x5 + 2x4 -7x3 -8x2 -4x.

Find all the roots of the following equations :

25. 8x3 = 27. 28. 5x6 .+ 27 x2 = 2x6 - 54 x4
.

26. 8x6 _ 03 xs _ 8 = o. 29. (2x
-

a)
4 - (3x + a)

4 = 0.

27. x6 - 5x3 + 12x = 2x3 + 3x. 30. x4 - 2(a
2 +l)x2 + (a

2 -I) 2 = 0.

Form the equations having the following values for their roots :

31. 0, ,

*
. 32. a + VE, a - Vft,

- a.

33. 0, 0, 2 a 6, V26.

34. Form a quadratic equation with real coefficients having 2 + Si for one

of its roots.

Factor the following quadratic expressions :

35. 4x2 + 8x - 7. 38. x2 + 2 ax - a + a2
.

36. 4 x2 + 12 x + 11. 39. a2x2 + 2 aftx - a.

37. 4 a2x2 + -2 ax + 1. 40. a2x2 + 2 a&z + 6 + 62 .

If ri and r2 are the roots of the equation x2 + px -f q = 0, find the values of

the following expressions in terms of p and q without solving the equation :

Lff + lf.
42. r? + r, . 48.1 + 1. 44.1 + I.

45.^
+
^.

If n, r-&amp;gt;, r3 are the roots of the equation x8 + px2 + qx + r = 0, find the val

ues of the following expressions in terms of the coefficients without solving the

equation :

46. (rf + r,- + r.f) + 2 (nr2 -f r2r3 + rgr^ + 3 rirr3 .

4 7. rr r.,r, + r|r,n + r|nr8 . 48. -L + __ +_ .

49. Show that if a + Vb is a root of an equation with rational coefficients,

then a Vb is also a root.
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Plot the graphs of the following expressions, and find all the roots of the

corresponding equations :

50. (x + 1) (x
-

2) (x
-

4). 56. (2 x + 5) (x
2 + 2 x + 3).

51. (x
-

2)(x
- 4)(2x + 3). 57. (x

-
5).(2x

2 + 3x + 2).

52. (x
-

4) (2 x + 1) (3 x + 5). 58. (x + 2) (x
-

3) (x
-

2)2.

53. (x + 3) (x
-

1)2. 59. (x
-

2) (x + 2) (x* + 2).

54. (2x-l)(x-3)2. 60. (x
-

2)2(2 x2 + 2x + l).

55. (x-2)(2x + 3)2. 61. (x + l)(2x
-

l)(3o* + 2x + 3).

Find all the roots of the following equations :

62. x3 - 4 x2 - 2 x + 5 = 0. 67. 8 x3 - 28 x2 + 30 x - = 0.

63. z3 - 3 x2 + 4 = 0. 68. 12 x3 - 44 x2 + 5 x + 7 = 0.

64. 3x3 -7x2 - 8x + 20 = 0. 69. 3x3 + 10x2 + lOx - 12 = 0.

65. 4x3 - 8x2 - 35x 4- 75 = 0. 70. 3x3 + 10x2 + 2x - 8 = 0.

66. x3 4-4x2
4- 4x4- 3 = 0. 71. 4x4 + 8x3 + 3x2 - 2x - 1 = 0.

72. x4 - 11 x3 - 37 x2 -f 30 x + 30 = 0.

73. 3 x4 - 17 x3
4- 41 x2 - 53 x + 30 = 0.

74. 2 x4 - 9 x3 - x2
4- 57 x - 20 = 0.

75. 18x4 - 27x3 + 10x2 + 12x - 8 = 0.

76. 16 x4 + 16 x3 - 72 x2 - 20 x + 25 = 0.

77. x5 - 2x4 - 4x3 - 4x2 + 15x -f 18 = 0.

78. 4x5 + 12 x4 + llx3 + 5x2 - 3x - 2 = 0.

79. 12 x5 + 44 x4 - 55 x3 - 95 x2 + 03 x - 9 = 0.

80. 2x5 - 5x4 - 13x3 + 13x2 + 5x - 2 = 0.

Determine by Descartes 1 rule of signs the nature of the roots of the follow

ing equations :

81. x3 + 5x-7 = 0. 84. 3x4
-f 4x3 + 4x + 3 = 0.

82. x3 + 2 x + 3 = 0. 85. x4 + x2 - x - = 0.

83. x3 + 2 x2 + 5 = 0. 86. x4 - 4 x2 + 1 = 0.

Find the real roots of the following equations, accurate to two decimal places :

87. x3 + 3x - 7 = 0. 89. x4 - 12 x + 7 = 0.

88. x3 + x + 5 = 0. 90. x4 - 3x3 + 3 = 0.

91. x3 -x2 - Ox + 1 = 0.



CHAPTER V

THE DERIVATIVE OF A POLYNOMIAL

53. Limits. A variable is said to approach a constant as a

limit, when, under the law which governs the change of value of
the variable, the difference between the variable and the constant

becomes and remains less than any quantity which can be named,
no matter how small.

If the variable is independent, it may be made to approach a

limit by assigning to it arbitrarily a succession of values follow

ing some known law. Thus, if x is given in succession the values

i ,, 3 ~, 7
*1

~~
2f&amp;gt;

*2
~~

1&amp;gt;
^3

8&amp;gt;
^n

~~

2&quot;

and so on indefinitely, it approaches 1 as a limit. For we may
make x differ from 1 by as little as we please by taking n suffi

ciently great ;
and for all larger

values of n the difference be- ? ; T /

tween x and 1 is still smaller.

This may be made evident

graphically by marking off on a number scale the successive values

of x
(fig. 46), when it will be seen that the difference between x

and 1 soon becomes and remains too minute to be represented.

Similarly, if we assign to x the succession of values

&amp;gt; approaches as a limit (fig. 47).

111 ill
&quot; ~

&quot;T

FIG. 47

If the variable is not independent but is a function of ^-, the

values which it assumes as it approaches a limit depend upon
97
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the values arbitrarily assigned to x. For example, let y =
and let x be given a set of values

approaching a limit a. Let the corresponding values of y be

Vv 2/2 2/3 2/4&amp;gt;

&quot;

2/n&amp;gt;

Then if there exists a number ^1, such that the difference between

y and A becomes and remains less than any assigned quantity, y
is said to approach A as a limit

as x approaches a in the man
ner indicated. This may be seen

graphically in fig. 48, where the

values of x approaching a are

seen on the axis of abscissas and

the values of y approaching A
are seen on the axis of ordinates.

The curve of the function is con-

X tinually nearer to the line y = A.

In the most common cases, the

limit of the function depends only

upon the limit a of the inde

pendent variable and not upon the particular succession of values

that x assumes in approaching a. This is clearly the case if the

graph of the function is as drawn in fig. 48.

Ex. 1. Consider the function

FIG. 48

V = -

and let x approach 1 by passing through the succession of values

a; = 1.1, x = 1.01, x = 1.001, x = 1.0001, .

Then y takes in succession the values

y = 6.1, y = 5.01, y = 5.001, y = 5.0001.

It appears as if y were approaching the limit 5. To verify this, we place x = 1 -f h,

where h is not zero. By substituting and dividing by h we find y = 5 + h.

From this it appears that y can be made as near 5 as we please by taking h

sufficiently small, and that for smaller values of h, y is still nearer 5. Hence 5

is the limit of y as x approaches 1. Moreover, it appears that this limit is inde

pendent of the succession of values which x assumes in approaching 1.
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Ex. 2. Consider y = as x approaches zero.

1-Vl-x
(Jive x in succession the values .1, .01, .001, .0001, . Then y takes the

values 1.9487, 1.9950, 1.9995, 1.9999, ..., suggesting the limit 2.

In fact, by multiplying both terms of - = by 1 + Vl x we find

1- Vl-x
y = 1 + Vl x for all values of x except zero.

Hence it appears that y approaches 2 as x approaches 0.

We shall use the symbol == to mean &quot;

approaches as a limit.&quot;

Then the expressions
Lim x = a

and x = a

have the same significance.

x}
= AThe expression

is read &quot; the limit of /(.#), as a; approaches a, is A&quot;

54. Slope of a curve. By means of the conception of a limit

we may extend the definition of
&quot;slope,&quot; given in 27 for a

straight line, so that it may be

applied to any curve. For let JJ

and PI be any two points upon a.

curve
(fig. 49). If P, and P

2
are

connected by a straight line, the

slope of this line is ^-^ - If P9A rn _^ /y *x
2 x^

and P
l
are close enough together,

the straight line P^P2 will differ

only a little from the arc of the

curve, and its slope may be taken

as approximately the slope of the curve at the point Pv Now this

approximation is closer, the nearer the point P, is to Pv Hence we

are led naturally to the following definition :

The slope of a curve at a point Pl (-&amp;gt; v y^} is the limit approached
y y

by the fraction - - where x., and
y.,

are the coordinates of a
x

2
x

l

second point P, on the curve, and where the limit /* tLrn as P,

moves toward P^ uluiuj the curre.

FIG. 49
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Ex. 1. Consider the curve y x2 and the point (5, 25) upon it, and let

Xi = 5, yi = 25.

We take in succession various values for x2 and y2 corresponding to points
on the curve which are nearer and nearer to (xj, T/J), and arrange our results in

a table as follows :

The arithmetical work suggests the limit 10. To verify this, place x2 = 5 + h.

Then y2 = 25 -f 10 h -f h2
. Consequently

X2 X\
= 10 + A, and as x2 approaches

Xi, h approaches and- approaches 10. Hence the slope of the curve
3*2 *^1

y x2 at the point (5, 25) is 10.

Ex. 2. Find the slope of the curve y = - at the point (3, ^).X

We have here

We place

*i = 3,

JC2 = 3 +
3 +

Then x2
- X! = A, 2/2

-
2/i -

*

and
9 + 3 /i

As P2 approaches PI along the curve, h approaches 0, and the limit of-- is -- ; hence the slope of the curve at the point (3, ^) is J-.

x2 Xi 9

Iii a similar manner we may find the slope of any curve the

equation of which is not too complicated ;
but when the equation

is complicated there is need of a more powerful method for find-

&amp;lt;&amp;gt;

ing the limit of - This method is furnished by the opera-x
n

x
l

tion known as differentiation, the first principles of which are

explained in the following articles.

55. Increment. When a variable changes its value the quan

tity which is added to its first value to obtain its last value

is called its increment. Thus if x changes from 5 to 5^, its
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increment is .V. If it changes from 5 to 4J, the increment

is
|. So, in general, if x changes from x

l
to #

2 ,
tlie increment

is x., xr It is customary to denote an increment by the

symbol A (Greek delta), so that

and= x x
2
= x

1 -{- Aa;.

If y is a function of x, any increment added to x will cause

a corresponding increment of y. Thus, let y =/(#), and let a;

change from a^ to a;
2

. Then y changes from y l
to yv where

2/i =/(* i)
and ya =/().

Hence Ay =/(, 2 ) -/(,).

But, as shown above, #
2
= ^ + Aa;,

so that &=x
56. Continuity. ^ function y is called a continuous function

of a variable x when the increment of y approaches zero as the

increment of x approaches zero.

It is clear that a continuous function cannot change its value

by a sudden jump, since we can make the change in the function

as small as we please by taking the increment of x sufficiently
small. As a consequence of

this, if a continuous function

has a value A when x = a, y = B

and a value B when x b, it y=c
will assume any value C, lying V=A
between A and B, for at least

one value of x between a

and b
(fig. f&amp;gt;0).

In particular, if /() is posi
tive and f(b) is negative, f(x) = for at least one value of x
between a and b.

An algebraic polynomial is a continuous function, but we shall

omit the proof. The postage function (20) is an example of a

function which is discontinuous at certain points. Other examples
arc found in 14!). 154.

FIG. 50
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When A# and A?/ approach zero together it usually happens

that approaches a limit. In this case y is said to have a
A#

derivative, defined in the next article.

57. Derivative. When y is a continuous function of x the deriva

tive of y with respect to x is the limit of the ratio of the increment

of y to the increment of x, as the increment of x approaches zero.

(ill

The derivative is expressed by the symbol ; or, if y is expressed
Cv3u

by/(#), the derivative may be expressed \&amp;gt;y f (x}.

Thus, if y =/(),

dy ... Ay
-f-

= f (x)
= Lim -~ = Lim

CiX Ax^oAt/J Asr=0 *

The process of finding the derivative is called differentiation,

and in carrying out the process we are said to differentiate y with

respect to x.

The process of differentiation involves, according to the defini

tion, the following four steps :

1. The assumption of an increment of x.

2. The computation of the corresponding increment of y.

3. The division of the increment of y by the increment of x.

4. The determination of the limit approached by this quotient

as the increment of x approaches zero.

Ex. 1. Find the derivative of y = x3
.

(1) Assume Ax = h.

(2) Compute Ay = (x + h)*
- x3 = 3x 2

/&amp;gt;, + 3x7i2 + h*.

(3) Find^ = 3 x2 + 3 xh + W.
Ax

(4) The limit is evidently 3x2
. Hence = 3x2

.

Ex. 2. Find the derivative of -
x

(1) Place y - and assume Ax = h.

(2) Compute Ay =
x + h x x2 + xh

(3) Find ^ = 1

Ax x2 + xh
ri -\

(4) The limit is clearly , and therefore = -&amp;lt;
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It appears that the operations of finding the derivative of f(x)

are exactly those which are used in finding the slope of the curve

y =f(x). Hence the derivative is a function which gives the slope

of the curve at each point of it.

58. Formulas of differentiation. The obtaining of a derivative

by carrying out the operations of the last article is too tedious

for practical use. It is more convenient to use the definition to

obtain general formulas which may be used for certain classes of

functions. In this article we shall derive all formulas necessary

to differentiate a polynomial.

1. - = naxn ~ l

,
where n is a positive integer and a any

constant.

Let y = axn
.

(1) Assume A,c = h.

(2) Then Ay = a(x + /)&quot;
axn

= ainxn ~ l

Ji + i~ xn
-*7i

2
H h h

n
} .

\ / A O

(4) Taking the limit, we have
-j-

= naxn ~ l
.

. d (ax)
2. - - = a, where a is a constant.

djc

This is a special case of the preceding formula, n being here

equal to 1. The student may prove it directly.

dc
3. -- = 0, where c is a constant.

dx

Since c is a constant, Ar is always 0, no matter what the

value of A. Hence -- = 0, and consequently the limit -- = 0.
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4. The derivative of a polynomial is found ~by adding the

derivatives of the terms in order.

Let y = a
()
x

(
1
)
Assume A-*; = h.

(2) Then

Ay - a
Q (x + h)+

- h

Ji
Ha .

(3)
- mv 71 1 + (n

-
1) X &quot; 2+ + an-

(4) Taking the limit, we have

Ex. Find the derivative of

f(x) = x5 - 3 x4 + 5 x3 - 7 x2 + 8 x - 2.

Applying formulas 1, 2, or 3 to each term in order, we have

/ (x)
= 30 x4 - 12 x3 + 15 x2 - 14 x + 8.

59. Tangent line. ^4 tangent to a curve is the straight line

((pproached as a limit by a secant line as two points of intersection

of the secant and the curve are made to approach coincidence.

It is immaterial in what manner the two points of intersection

are made to approach coincidence. In 37 this was done by

considering the curve as moved in the plane. In 88 the secant

is considered as moving parallel to itself until it becomes a

tangent. In this article we are especially interested in determin

ing a tangent at a known point of the curve. Let us call this
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point /; and a second point on the curve P,. Then if a secant is

drawn through /; and 7J of a curve (fig. 51), and the point P2
is

made to move along the curve toward /-J,
which

is kept fixed in position, the secant will turn on

P
l
as a pivot, and will approach as a limit the

tangent I\ T. The point Pl
is called the point of

contact of the tangent.

From the definition it follows that the slope

of the tangent is the same as the slope of the

curve at the point of contact; for the slope of the tangent is

evidently the limit of the slope of the secant, and this limit

is the slope of the curve, by 54.

The equation of the tangent is readily written by means of

29, when the point of contact is known. For, let (xv y^) be the

point of contact, and let
( -f- } denote the value of -y- when x = x
Wi dx

/dy\ .

and y = yr Then
(&amp;lt;cv y^ is a point on the tangent and

f-gj
is

its slope. Therefore its equation is

(1)

The equation of the tangent may also be written in terms of

the abscissa of the point of contact. Let a be the abscissa of the

point of contact of a tangent to a curve y =/(#), and let f(x)

represent as usual the derivative of /(,/j).
Then the ordinate of

the point of contact is /(a) and the slope of the tangent is/ (^),

in accordance with 22. Hence the equation of the tangent is

y -/() = (
-

)./&amp;gt;) (2)

Kx. 1. Find the equation of the tangent to the curve y = xs at the point

(Xi, ?/i) on it.

I sing formula (1), \ve have

lint since (*!, y t )
is on the curve, \v- have i/ l

= x?. Therefore the equation

can be written
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Ex. 2. Find the equation of the tangent to

y = x 2 + 3z

at the point the abscissa of which is 2.

We will use equation (2). Then

FIG. 52

_x /(2) = 10, /(2) = 7.

Therefore the equation is

7/-10 = 7(x-2), or y = 7*-4.

If PT
(fig. 52) is a tangent line and &amp;lt; the angle it makes with

OX, its slope equals tan
(/&amp;gt;, by 28. Hence tan &amp;lt;

= -~

60. Sign of the derivative. A function of x is called an

increasing function when an increase in x causes an increase in

the function. A function of x is

called a decreasing function when
an increase in x causes a decrease

in the function. The graph of a

function runs up toward the right

hand when the function is increas

ing, and runs down toward the

right hand when the function is

decreasing. Thus x2 x6
(fig. 53)

is decreasing when x
&amp;lt; J-, and in

creasing when x
&amp;gt;

J-.

The sign of the derivative enables

us to determine whether a func

tion is increasing or decreasing
in accordance with the following
theorem :

When the derivative of a func
tion is positive the function is in

creasing ; when the derivative is

negative the function is decreasing.

To prove this, consider y =/(#), and let us suppose that

dy . dy A?/ A?/

^-
is positive. Then, since

-^
is the limit of -~^ , it follows that -

p IG- 53
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is positive for sufficiently small values of A-/;; that is, if Aaj is

assumed positive, Ay is also positive, and the function is increas

ing Similarly, if ~ is negative, Ay and A./; have opposite signs

for sufficiently small values of A^
,
and the function is decreasing

by definition.

Ex. 1. If y x 2 - x 0,
= %x 1, which is negative when and

positive when
x&amp;gt;\.

Hence the function is decreasing when x&amp;lt; and increas

ing when x &amp;gt; ^, as is shown in fig. 53.

Ex.2. If ?/
= i (x

3-3x2 Ox+ 27), Y

FIG. 54

Kow is positive when x &amp;lt; 1,
dx

negative when 1 &amp;lt; x &amp;lt; 3, and positive

when x &amp;gt;
3. Hence the function is

increasing when x &amp;lt; 1, decreasing

when x is between 1 and 3, and

increasing when x &amp;gt;
3 (fig. 54).

It remains to examine the

cases in which = 0. Refer-
dx

ring to the two examples just

given, \ve see that in each the

values of x which make the

derivative zero separate those for which the function is increasing

from those for which the function is decreasing. The points on

the graph which correspond to these zero values of the derivative

-a n he described as turning points.

Likewise, whenever / ( ) is a continuous function of x, the

values of x for which the derivative is positive are separated from

those for which it is negative by values of x for which it is zero

($ 56). Now in most cases which occur in elementary work

/ ( )
is a continuous function. Hence we may say,

Tlf mini * of .! for ir/u c/i &amp;lt;t function clmnyes from mi increas

ing to n ilcci cuximj function (trc, in yencrtt/. -nditea of .* -it ll n h

in air tin* tl&amp;lt; ri en tire
c&amp;lt;jitl

to zero.
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FIG. 55

The converse proposition is, however, not always true. A
value of x for which the derivative is zero is not necessarily a

value of x for which the function changes from increasing to

decreasing or from decreasing to increasing. For consider

Its derivative is x2
6 x -f- 9 = (x 3)

2

,

which is always positive. The func

tion is therefore always increasing.

When x = 3 the derivative is zero

and the corresponding shape of the

graph is shown in
fig. 55.

61. Maxima and minima. The
-X turning points of the graph of a

function correspond to the maxi

mum and the minimum values of

the function. These terms are more

precisely defined as follows :

f(a) is a maximum value of thefunctionf (x) whenf (a h) &amp;lt; /(.)

for all values of h sufficiently small, i.e. for all values of h nu

merically less than some finite quantity.

f(a) is a minimum value of the functionf(x) whenf(a h) &amp;gt;f(a)

for all values of h sufficiently small.

In passing through a maximum value the function changes
from an increasing to a decreasing function, and in passing

through a minimum value the function changes from a decreas

ing to an increasing function. From the work of the previous
article we may accordingly frame the following rule for finding
the maxima and the minima values of a function :

Find the derivative of the function, place it equal to zero, and
solve the resulting equation. Take each root thus found and see

if the derivative has opposite signs as x is taken first a little

smaller and then a little larger than the root. If the sign of the

derivative changes from plus to mimes, the root substituted in the

function gives a maximum value of the function. If the sign of
the derivative changes from minus to plus, the root substituted in,

the function gives a minimum value of the function.
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Tliis rule is most readily applied when the derivative can be

factored. The change of sign is then determined as in 46.

In 62 will be given a method of distinguishing between a maxi

mum and a minimum, which may be used when the factoring of

the derivative is not convenient. In practical problems the ques
tion as to whether a value of x for which the derivative is zero

corresponds to a maximum or a minimum can often be deter

mined by the nature of the problem.

Ex. 1. Find the maximum and the minimum values of

We find

f(x] = x5 - 5x4 + 5x3 + 10 x2 - 20 x + 5.

/ (x) - 5 x4 - 20 x3 + 15 x2 + 20 x - 20

= 5(x
2 -l)(x2 -4x

=.6(*+ l)(x- l)

The roots of /(x) = are -
1, 1, and 2. , As x passes through -

1, /(x)
changes from + to . Hence x = 1 gives /(x) a maximum value, namely 24.

As x passes through + 1, / (x) changes from to +. Hence x = + 1 gives /(x)
a minimum value, namely - 4. As x passes through 2, / (x) does not change
sign. Hence x = 2 gives /(x) neither a maximum nor a minimum value.

Ex. 2. A rectangular box is to be formed by cutting a square from each
corner of a rectangular piece of cardboard and bending the resulting figure.
The dimensions of the piece of cardboard being 20 by 30 inches, required the

largest box which can be found.

Let x be the side of the square cut out. Then if the cardboard is bent along
the dotted lines of fig. 5(5, the dimensions of the box are 30 2 x, 20 2 x, x.

Let y be the volume of the box. Then

y = x (20
- 2 x) (30

- 2 x)

= (&amp;gt;00x
-

dy
dx

-
&amp;lt;!&amp;lt;)&amp;lt;)

_ 200 x + 12 X2
.

Equating this to zero, we have

3x2 - 50x-f 150 - 0,

25 5 V7
x =

3
= 3.0 or 12.7.

dy

30 2X

Hence = 12 (x
-

3.9)(x
-

12.7). Fio.

~ Changes hom + to as .r passes through : .. .). Hence X= 3.0 gives the

maximum value ]i)5(i+ for the capacity of the box. x = 12.7 gives a mini
mum value of

?/, but this has no meaning in the problem for which x must
lie between and 10.
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Ex. 3. The deflection of a girder resting on three equally distant supports
and loaded uniformly is given by the equation

where C is a constant, I the distance between the supports, and x the distance
from the middle support. Required the point of maximum deflection.

Equating this to zero, we have

8 x* - 9 lx2 + Z
3 = 0.

It is clear that in the practical problem x
&amp;lt; I. We find by trial that a root

lies between x = .4 1 and x = . 5 Z. We will place

y = 8 x3 - 9 lx2 + Z
3

,

and apply the method of 52. The straight line connecting (.4Z, .072Z3
)
and

(.5Z,
- .25Z3

)
is

y - .072 J3 = _ 3.22 I
2

(
x _ .4

/)

and this cuts the axis of x when

x =

This is approximately the root of the equation. As a check we note that when
x = .42 Z, y- .005104 Z

3
;
and when x = .43

Z, y = - .028044 Z
5
. Hence the root

lies between .42 Z and .43 Z.

If more accuracy is required, the straight line connecting (.42Z, .005104 Z
3
)

and (.43 Z,
- .028044 Z

3
) may be found. Its intercept on OX is

x = .4215Z.

As shown in 63, Ex. 2, this is correct to four decimal places.

62. The second derivative. Since
C

-j-
is in general a function of

x, it may be differentiated with respect to x. The result is called

the second derivative of y with respect to x, and is indicated by

the symbol -5- (-/-]&amp;gt;
which is commonly abbreviated into

ax \ax/ rfx
2

When a function is denoted by f(x) and its derivative by / (#),
its second derivative is denoted by fn

(x) ; thus, if
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d2
y

Again, by differentiating
-

y
or

/&quot;(#),
we may obtain an expres-

Cl/JO 73

sion called the third derivative, denoted by
-~ or f &quot;(x). By dif-
CttJC

ferentiating this we obtain the fourth derivative, and so on. To

distinguish from these higher derivatives it is sometimes called

the first derivative.
2

The significance of -: for the graph is obtained from the fact

j. dx 7-2

that is equal to the slope ;
hence -. is the derivative of the

dx dx

slope. Therefore, by 60, if 42 is positive, the slope is increas

ed
2
y

ing ;
if ^ is negative, the slope is decreasing. We may have,

accordingly, the following four cases :

. .

1. -f is +, -75
is +

dx dx

The graph runs up toward the right with

increasing slope (fig. 57).

dy . d*y .

2. -/ is +, -5 is -.
a^c a,^

The graph runs up toward the right with

decreasing slope (fig. 58).

FIG. 57

Y

O

Fn:. -&quot;,8

3. ^ is -, ^ is +.

The graph runs down toward the right.

The slope which is negative is increasing

algebraically and hence is decreasing

numerically (fig. 59).

The graph runs down toward the right

and the slope is decreasing algebraically

(fig. 60).

FIG. 59

Y

X

FlO. 151)



112 THE DERIVATIVE OF A POLYNOMIAL

The consideration of these types leads to the following con

clusion : If
-

2
is positive, the graph is concave upward ; if ^

is negative, the graph is concave downward.

From this we may deduce the following rule to distinguish
maxima and minima in that we take account of the fact that

the graph is concave upward when y is a minimum and concave

downward when y is a maximum. If is zero and is posi-

.,dy
dx

d-y
^

tive, y has a minimum value ; if
~- is zero and -~ is negative, y

has a maximum value. ,

This rule cannot be applied to the case in which
-j-
= and

jl, . dX
-- =

0, and hence it is not so complete as the rule in 61, but it
ClfJU

is sometimes more convenient in application, and especially when
the first derivative cannot be factored.

When the curve changes from concavity in one direction to con

cavity in the other,
j-
= 0. The corresponding point is called a

Ci/tJC

point of inflection. Hence to find the points of inflection we

must solve the equation
~ = 0, and see if the second derivative

CbuU

changes sign as x passes through
each root.

Ex. 1. y =

- 61

The curve (fig. 61) is concave down
ward when x &amp;lt; 2, is concave upward
when x &amp;gt; 2, and has a point of inflec

tion when x 2. When x = 0, =

and -
&amp;lt; 0; the corresponding value

of y is therefore a maximum. When

4, = and -
&amp;gt;

;
the corresponding value of y is therefore a minimum.
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Ex. 2. y = x* + ax = x (z
2 + a),

dy

The curve is concave downward when x &amp;lt; 0, is con

cave upward when x &amp;gt; 0, and has a point of inflection

when x = 0. In addition we distinguish two cases :

is always positive, and the curve
ax

(1) a positive.

cuts OX only at the origin (fig. 02).

(2) a negative. The curve has a maximum ordinate

a 2a / a
-i y =-- A /

--
, and has a mmi-

&amp;gt; 8 \ 3

Y muni ordinate when

when x =

2a

It cuts OA~ when x = V
, 0, or -f- V a

(fig. (53).

Ex. 3. y = x* + ax + b.

The graph of this function may be obtained

by moving the graph of Ex. 2 through the dis

tance 6 up or down, according to the sign of b.

Our interest is especially with the intercepts
on OX. The curve obtained from (1) of Ex. 2

cuts the axis of x in one and only one point.

The curve obtained from (2) of Ex. 2 will

intersect OX in three points, will intersect

OX in one point and be tangent in another,
or will intersect OX in one point only, accord

ing as the numerical value of 6 is less than,

equal to, or greater than the distance of the

turning point of the curve from OX
;
that is,

according as

FKJ.

This condition reduces to

6- + 2!so
4
+

27 &amp;gt;

,
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52 a3

It is to be noticed that when a &amp;gt; 0, -{ &amp;gt; 0. Hence we may cover all

cases by the statement :

The equation x3 + ax + b = has three unequal real roots, two equal real roots

52 as

and one other real root, or one real and two complex roots, according as |-
--- = 0.

63. Newton s method of solving numerical equations. The

results of this chapter may be applied to finding approximately
the irrational roots of a numerical equation. We first find, by the

method of 47, two numbers x
l
and #

2 ,
between which a root

of f(x) = is known to lie. It is necessary to take care that

neitherf (x) nor
f&quot;(x)

is zero for any value of x between x
l
and x

Then f(x) is always increasing or decreasing between x
l
and xv

and hence only one root of f(x) = lies between x
l
and x

z
. Also

N
N

(1) M (2)

M

Xl

N
(3) (*) jy

FIG. 64

the curve y = /(#) is always concave upward or concave down

ward between x
l
and x

2
. Hence the curve has one of the four

shapes of fig. 64.

It appears that in each case a tangent at one of the points

M or N will intersect the axis of a? in a point C which lies

between x
l
and xy In practice it is most convenient to sketch

the curve with attention to the signs of the first and the second

derivative, and to find the tangent at that end at which it lies

between the curve and the ordinate of the point of contact.

The intersection of the tangent with OX is then nearer to the
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intersection of the curve, i.e. to the required root of the equation,

than is the abscissa of the point of contact. For example, in

fig. 64, (1) and (4), the equation of the tangent is

fix }
and its point of intersection with OX is x

2 ^
2 Hence the

/ fe)
root which was at first known to lie between x

1
and x

2
is now

f(x }
known to lie between x

l
and a?

2 ,

2/

/ (
x
z)

It is well in practice to combine this method with the method

of 52. For, if we draw the secant MN, it will intersect the

axis of x in a point D, and the root of the equation lies between

C and D. But C and D are closer together than are x
l
and x

z ,
so

that we have narrowed down the interval within which the root lies.

Ex. 1. Find the root of x* 6 x 13 = 0, which lies between 3 and 4.

Here f(x) = x* - Qx -
13,

/ (*) = 3x2 -6,

/&quot;()= 6*.

When x = 3,/(x) = - 4
;
and when x = 4,/(x) = 27

;
while between x = 3 and

x 4, / (x) and /&quot;(x)
are positive. Hence the graph is as in fig. 64, (1), where M

is (3,
-

4) and N is (4, 27). The tangent at N is

?y-27 = 42(x-4).

Hence, for C, x = 4 - || = 3.36.

The equation of MN is y 27 = 31 (x 4).

Hence, for
Z&amp;gt;,

x = 4 - 7 _ 3. 13,

Therefore the root lies between 3.13 and 3.36.

As this does not fix the first decimal figure of the root, it is advisable to apply
47 again. We find /(3. 1)

= - 1.809 and /(3.2) = + .568. Hence the root lies

between 3.1 and 3.2. Accordingly, the point M is now (3.1,
-

1.800), and the

point N is (3.2, .568). The equation of the tangent atN is

y- . 568 = 24. 72 (x- 3.2),

and for the new point C x = 3.17702.

The secant MN is y - .568 = 23. 77 (x
-

3.2)

and for D x = 3.176.

The root of the equation therefore lies between 3.176 and 3.177. This result

is close enough for most practical purposes, but if the operations are carried

out once more it is found that the root lies between 3.1768143 and 3.1768144.
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Ex.2. In 61, Ex.3, the root of 8x3 -9te2 -M3 = was found to lie

between A21 and A3 I.

Placing f(x) = 8 x3 - 9 /x2 + Z
3

,

we have / (z)
= 24 x2 - 18 te,

/&quot;(x)
= 48 x - 18 /,

so that/ (x) is negative and
/&quot;(x) positive, when x is between .42? and .43Z.

Hence the curve has the shape of fig. 64, (3). The tangent at (.421, .005104 I
s
)

meets OX where x = .42153 1. The chord connecting (.42 J,
.005104 Z

3
)
and (.43 Z,

.028044 Z
3
)
meets OX where x = .42154 1. The root is therefore determined to

four decimal places.

64. Multiple roots of an equation.

If f(x)
= a xn + a

1
xn ~ l + a

2
a?&quot;-

2
H-----h a

n _

f(x) = n(n- l}aQ
xn --+ (n

-
1) (n

-
2)a l

xn ~ 3

+ (n-2) (n
-

3) aj?-*+ + 2an _ 2,

+ (n-l) (n
-

2) (n
-

3) 0,^ *+ -,

and so on. Now let f(a), / (a), f&quot;(a), f &quot;(a), etc., denote the result

of placing x = a in these functions, and f(a-\- h) denote the result

of placing x = a + h in f(x). One readily computes that

f(a + h)
= f(a) + hf (a) + /() + / + - . . + o^ . (1)

In (1) place h = x a and it becomes

/ &quot;()
+ +

, ( -)&quot;

If now a is a double root of f(x)
=

Q,f(x) is divisible by (x af,

by 42, and therefore, by (2), f(a) = 0, f (a)
= 0. If a is a triple

root of f(x)
= 0, /(#) is divisible by (x a)

3

,
and therefore f(a) = 0,

f (a)
= 0, /&quot; (a)

= 0. Similar statements may be made for multiple

roots of higher order.
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Conversely, if f(a) = and f (n)
= 0, (2) shows that f(x) is

certainly divisible by (x of and perhaps by a higher power of

x a. Therefore a is a multiple root of f(x) = 0. We have then

the result:

A multiple root off(x)
= 0is also a root off

f

(x)=Q, and conversely.

Hence we may find the multiple roots of f(x) = by equating

to zero the highest common factor of f(x) and f(x) and solving

the resulting equation.

The condition that an equation f(x) = should have multiple

roots is the vanishing of the discriminant of the equation, which

is the eliminant of the equations f(x) = and f(x) = 0, and may
be found by the method of 9.

Ex. 1. Find the discriminant of ax2
-f bx + c 0.

We have to find the condition that the two equations

ax2 + bx + c =
and 2 ax + 6 =

should have a common root. Multiplying the last equation by x, we have

2 ax2 + bx = 0,

and the determinant of the coefficients and the absolute terms of the three

equations is

b c

= 0,2a b

2a b

or 52 _ 4 ac - o.

Ex. 2. Find the discriminant of x3
-f- ax + b = 0.

We must find the eliminant of this and

3 x2 + a = 0.

Multiplying the first equation by x, and the second by x and x2
,
we have the

five equations

and their eliminant is

or

X4 + OX2

3x4 + ox2

3x3

3x2

1

1

3

3

-
0,

5 - o,

=0,

=0,
a = 0,

a
a

4 a3
-I- 27 b2 = 0. (See 02, Ex. 3.)
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PROBLEMS

Find the respective slopes of the following curves at the points noted:

(1) by an approximate numerical calculation, as in 54; (2) by placing x equal
to the abscissa of the given point, plus ft,

and allowing h to approach zero :

1. y = x^ at (2, 8).

2. y = x2 - 3 x at (0, 0).

3. 7/ = x3 -3x + l at (1,
-

1).

4. Find the derivative of x5 x by using the definition but not the formulas.

5. Find the derivative of 3 x4 + 2 x by using the definition but not the

formulas.

Find the derivative of each of the following expressions by the formulas :

6. I x
6 -

| x
5 + x.

7. 4x3 - Gx2 + 5x - 8.

8. 5 x9 - G x8 + 7 x6 - 4 x4 - 2 x2 + 3 x - 9.

9. By expanding and differentiating show that the derivative of (3 x + 2)
4

is 12(3x + 2)
3

.

10. By expanding and differentiating show that the derivative of (x -f a)
n is

ra (x + a)&quot;-
1

.

11. Find the equation of the tangent to the curve y = x4 + 3 at the point the

abscissa of which is 2.

12. Show that the equation of the tangent to the curve y = x3 + ax + b at

the point (xi, yi) is y = (3x? + a)x 2x 3 + 6.

13. Show that the equation of the tangent to the curve y = ax2 + 2 bx + c at

the point (xi, yi) is y = 2 (oxi + b) x
-

ax? + c.

14. Determine the point of intersection of the tangents to the curve y =
x3 5x + 7 at the points the abscissas of which are 2 and 3 respectively.

15. Find the angle between the tangents to the curve y = 2x2 3x + lat
the points the abscissas of which are 1 and 2 respectively.

16. Find the area of the triangle included between the coordinate axes and
the tangent to the curve y = x3 at the point (2, 8).

17. Find the points on the curve y = xs 3x + 7at which the tangents are

parallel to the line y = 9 x + 3.

18. How many tangents has the curve y x3 4x2 + x 4 which are

parallel to the line y + 4x + 7=0? Find their equations.

19. Find the points on the curve y = x3 + x2 G at which it makes an angle
of 45 with OX.
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Find the values of x for which the following expressions are respectively

increasing and decreasing :

20. x* + 4x-7. 22. x4 + 8x-10.

21. x s -2z2 + 8. 23. x4 -2x2 + G.

24. Find the lowest point of the curve y=3x2 Sx + 7.

25. Find the turning points of the curve y = 1 x4 2 x2 + -

Find the maximum and the minimum values of the following expressions :

26. 3x3 - 2x2 - 5x + 1. 27. 3x5 - 25x3 + 60x - 50.

28. Prove that the largest rectangle with a given perimeter is a square.

29. A rectangular piece of cardboard a in. long and b in. broad has a square

cut out of each corner. Find the length of a side of this square when the box

formed from the remainder has its greatest volume.

30. Find the dimensions of the greatest rectangle which can be inscribed in

a given isosceles triangle with base b and altitude h.

31. Find the right circular cylinder of greatest volume which can be inscribed

in a sphere of radius a.

32. Find the right circular cylinder of greatest volume which can be cut from

a given right circular cone.

33. Find the point of the line 3 x + y 6 such that the sum of the squares

of its distances from the two points (5, 1) and (7, 3) may be a minimum.

34. Among all circular sectors with a given perimeter find the one which

has the greatest area.

35. A rectangular box with a square base and open at the top is to be made
out of a given amount of material. If no allowance is made for thickness of

material or waste in construction, what are the dimensions of the largest box

that can be made ?

36. A length I of wire is to be cut into two portions, which are to be bent

into the forms of a circle and a square respectively. Show that the sum of the

areas of these figures will be least when the wire is cut in the ratio TT : 4.

37. A piece of galvanized iron b ft. long and a ft. wide is to be bent into a

U-shaped water pipe 6 ft. long. If we assume that the cross section of the pipe is

exactly represented by a rectangle on top of a semicircle, what are the dimensions

of the rectangle and the semicircle that the pipe may have the greatest capacity ;

(1) when the pipe is closed on top ? (2) when it is open on top?

38. A stream flowing with the velocity a strikes an undershot water wheel,

giving it the velocity x. Assuming that the efficiency of the wheel is propor
tional to the velocity x of the wheel and the loss of velocity a x of the

water, what is the velocity of the wheel when it has its greatest efficiency?
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39. A gardener has a certain length of wire fencing with which to fence

three sides of a rectangular plot of land, the fourth side being made by a wall

already constructed. Required the dimensions of the plot which contains the

maximum area.

40. For a continuous girder of uniform section, uniformly loaded, and con

sisting of three equal spans, the deflection in the middle span is given by the

equation v = C (l
sx 6 l*x2 + 10 /x3 5x4

), where C is constant, I the length of

the span, and x the distance from a point of support. Find the maximum
deflection.

41. If p is the density of water and t the temperature between and 30 C.,

p = po(l + It + mt2 + ?i
3
), where /&amp;gt;

is the density when t = 0, and I = .000052930,
m - -

.0000065322, n = .00000001445. Show that the maximum density occurs

when t = 4. 108.

42. Show that the curve y = ax2 + bx + c is concave upward or downward

according as a is positive or negative.

43. Show that the curve y x3
-f ax + b is concave upward when x is posi

tive and concave downward when x is negative.

Determine the values of x for which the following curves are concave

upward or downward :

44. y = x3 - 3 x2 - 24. 45. y = x5 - 5 x + 6.

Find the points of inflection of the following curves :

46. 6y = x3 -6x2 + 6x + 1. 47. 12 y = x4 - 6z3 + 12x2 - 2x + 1.

48. y = 3x5 - 10x* + 10x3 + 6x - 8.

49. y = 3 x5 - 5 x4 + 20 x3 - 00 x2 + 20 x - 5.

50. Prove that the curve y = ax3 + bx2 + ex + d always has one and only
one point of inflection.

Find the real roots of the following equations accurate to two decimal

places :

51. x3 -x2 -2x+ 1 =0. 54. x3 -3x2 -2x + 5 = 0.

52. x3 + 3 x2 + 4 x + 5 = 0. 55. x4 - x 3 - x2 + x - 1 = 0.

53. x3 -2x -5 = 0.

Show that each of the following equations has equal roots and solve it :

56. x3 -x2 -8x-f 12 = 0. 57. x4 - 2(1- a)x
3 + (1- 3a)x2 + a = 0.

Find the condition that each of the following equations should have equal
roots :

58. x3 + 3 ax2 + 6 = 0. 60. x4 + 4 ax + b = 0.

59. x4 + 4 ax3 + b = 0. 61. aox3 + 3 e^x2 + 3 a2x + a3 = 0.



CHAPTEE VI

CERTAIN ALGEBRAIC FUNCTIONS AND THEIR GRAPHS

65. Square roots of polynomials. In the previous chapters the

discussion has been restricted to the polynomial. We will next

study the square root of the polynomial.

At first let us assume that the polynomial can be separated
into n linear real factors, as in 42. We have, then,

y = (x
-

rj (x
- r

2 ) (x
- r

n ), (1)

and the graph of this function can readily be constructed by con

sidering the graph of

y = a (x
-

rj (x
- r

s)
- -

(x
- r

H), (2)

as given in 46.

In the first place, the graph of (1) will intersect the axis of x in the

same points as the graph of (2), i.e. in the points x = rv x = rv
-

,

as for these values of x the product under the radical sign is zero.

In the second place, wherever the graph of (2) is below the

axis of x, the expression under the radical sign in (1) is negative,
the value of the radical is imaginary, and hence there is no cor

responding point of the graph. If, however, the graph of (2) is

above the axis of x, there are two values of y in (1), equal in

magnitude and opposite in sign, and correspondingly there are two

points of the graph situated symmetrically with respect to OX.

Therefore OX is an axis of symmetry.
As the negative values of the expression under the radical sign

are separated from the positive values by zero, it follows that the

values of x which make the expression zero, i.e. rv rn ,
-

,
r
n , are of

the utmost importance in plotting these graphs. In fact, the lines

x = rv x = r.2 ,
-

,
x = rn divide the plane into sections bounded by

straight lines parallel to OF, in which there will be no part of the

121
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graph if the corresponding values of x make the expression negative,
and in which there will be a part of the graph if the corresponding
values of x make the expression positive. Hence the first step in

plotting the graph is the drawing of these lines and the determi

nation of which sections of the plane should be considered.

Ex. 1. y = i V(x + 2) (x
-

1) (x
-

5).

If x = - 2, 1, or 5, y = 0, and the graph intersects the axis of x at three points.
The lines x = 2, x=l, x=5 divide the plane (fig. 65) into four sections.

If x
&amp;lt; 2, all three factors of the product are negative ;

hence the radical

is imaginary and there can be no part of the graph in the corresponding section
of the plane.

FIG. 65

If 2
&amp;lt; x &amp;lt; 1, the first factor is positive and the other two are negative ;

hence the radical is real and there is a part of the graph in the corresponding
section of the plane.

If 1
&amp;lt; x &amp;lt; 5, the first two factors are positive and the third is negative ;

hence the radical is imaginary and there can be no part of the graph in the

corresponding section of the plane.
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Finally, if x &amp;gt; 5, all three factors are positive ;
hence the radical is real and

there is a part of the graph in the corresponding section of the plane.

Therefore the graph consists of two separate parts, and is seen (fig. 65) to

consist of a closed loop and a branch of infinite length.

Ex. 2. y = V(z + 4) (x + 2) (x
-

1) (x
-

4).

If x = 4, 2, 1, or 4, y = 0, and the graph intersects the axis of x at

four points.

The lines x = 4, x = 2, x = 1, and x = 4 divide the plane (fig. 66) into

five sections.

FIG. 00

If x &amp;lt; 4, all four factors are negative ;
hence the radical is real and there

is a part of the graph in the first section.

If 4
&amp;lt; x &amp;lt; 2, the first factor is positive and the others are negative ;

hence the radical is imaginary and there can be no part of the graph in t In-

second section.

If 2
&amp;lt;
x

&amp;lt; 1, the first two factors are positive and the other two are nega

tive
;
hence the radical is real and there is a part of the graph in the third section.
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If 1
&amp;lt; x &amp;lt; 4, the first three factors are positive and the last is negative ;

hence the radical is imaginary and there can be no part of the graph in the
fourth section.

Finally, if x
&amp;gt; 4, all the factors are positive ;

hence the radical is real and
there is a part of the graph in the fifth section.

In this example we see that the graph consists of three separate parts, and
is seen (fig. 66) to consist of a closed loop and two infinite branches.

Ex. 3. y = V- (x -f 4) (x -f 2) (x
-

1) (x
-

4).

The plane is divided into five sections (fig. 67) by the lines x =
x = 1, and x = 4.

r

-
4, x = -

2,

FIG. 67

Proceeding as in the previous two examples, we find y to be real if

-4&amp;lt;x&amp;lt;-2, or
l&amp;lt;z&amp;lt;4,

and to be imaginary for all other values of x.

Therefore the graph consists of two separate parts, and is seen
(fig. 67) to

consist of two closed loops.



GRAPHS 125

66. In the examples of the last article no two factors were

alike, i.e. no factor occurred more than once. If any factor does

occur more than once, only its first power will be left under the

radical sign, or, to put it more generally, no perfect square will

be left as a factor under the radical sign. As a result, there will

be before the radical a factor involving x, and the presence of

this factor will of necessity change the course of the reasoning to

some extent, as is shown in the following examples.

Ex. 1. y = V(x + 2) (x
-

I)
2

.

This will be written as

V = (x
-

1) x + 2.

The line x = 2 divides the plane

(fig. 08) into two sections.

Proceeding as in the previous ex

amples, we find the radical to be real

if x
&amp;gt;

- 2 and imaginary if x &amp;lt; 2.

Therefore there is a part of the graph
to the right of the line x = 2, but

there can be no part of the graph to

the left of that line unless x can have

such value as to make the coefficient of

the radical zero
;
and this coefficient is

zero only when x equals unity. Hence
all of the graph lies to the right of the

line x = 2, as shown in fig. 08.

Comparing this example with Ex. 1

of 05, we see that by changing the

factor x 5 to x 1 we have joined
the infinite branch and the loop,

making a single curve crossing itself at the point (1, 0).

FIG. 08

Ex. 2. y = V(x + 2)2 (
X - 1)

=
(x + 2) Vx - 1.

The line x = I divides the plane (fig. 00) into two sections.

If x &amp;gt; 1, the radical is real and there is a part of the graph in tlu&amp;gt;

corresponding section of the plane. If x
&amp;lt; 1, the radical is imaginary and

there will be no points of the graph except for such values of .r as make
the coefficient of the radical zero. There is but one such value, i.e. 2,

and therefore there is but one point of the graph, i.e. (2, 0), to the
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left of the line x 1. The graph consists, then (fig. 69), of the isolated

point A and the infinite branch.

Comparing this example also with Ex. 1 of 65, we see that by changing
the factor x 5 to x + 2 we have reduced the loop to a single point, leaving
the infinite branch as such.

FIG. 69 FIG. 70

Ex.3, y = V- (x + 4) (x + 2)2 (x
-

4) = (x + 2) V- (x + 4) (x
-

4).

The lines x = 4 and x = 4 divide the plane (fig. 70) into three sections.

If 4
&amp;lt; x &amp;lt; 4, the radical is real and there is a part of the graph in the cor

responding portion of the plane. If x &amp;lt;

- 4 or x &amp;gt; 4, the radical is imaginary ;

and since in the corresponding sections there is no value of x which makes x + 2

zero, there can be no part of the graph in those sections. It is represented in

fig. 70.

Comparing this example with Ex. 3 of 65, we see that the changing of x I

to x + 2 has brought the two loops together, forming a single closed curve cross

ing itself at the point (- 2, 0).
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67. Functions defined by equations of the second degree in y.

If we have given an algebraic equation involving both y and x,

y is thereby defined as a function of x. For if x is assigned any

value, the corresponding values of y are determined by means of

the equation. In particular, if the equation involves no power of

y higher than the second, it may be readily solved for y, and the

work of finding the graph is similar to that already done.

In many important cases the solution of the equation is of

the form

y = c V(# rj (x r
2)

.

Comparing this case with the previous one, we see that y = c

is an axis of symmetry instead of y = 0, and that in all other

respects the work is similar.

Ex. 2 x2 +

Solving for

+ 3 x - 4 y - 5 = 0.

we have

y = 2 V-2z2 -3z + 9,

or, after the expression under the radical

sign has been factored,

The lines x = 3 and x = | divide

the plane (fig. 71) into three sections, and,

proceeding as before, we find that the

curve is entirely in the middle section,

i.e. when 3
&amp;lt; x &amp;lt; |, and that the line

y = 2 is an axis of symmetry.

FIG. 71In case the given equation is

of higher degree in y than the

second, but of the first or the second degree in x, it is evident

that we can solve for x in terms of y and proceed as above,

working from the y axis instead of the x axis.

It should be added that given any equation in x and y, since

either may be regarded as the independent variable and the other

as the function, we have perfect freedom of choice to solve for y in

terms of x, or for x in terms of
?/, according to convenience.
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68. Functions involving fractions. If the expression defining a

function contains fractions, the function is not defined for a value of

x which makes the denominator of any fraction zero
( 11). But if

x = a is a value which makes the denominator zero, but not the

numerator, and x is allowed to approach a as a limit, the value of

the function increases indefinitely and is said to become infinite. The

graph of a function then runs up or down indefinitely, approaching
the line x = a indefinitely near, but never reaching it. We have

thus a graphical representation of the discussion of infinity in 11.

When a function becomes infinite it is discontinuous
( 56).

In fact, this is the only kind of discontinuity which can occur in

an algebraic function.

Ex. l. y = x-2
It is evident that y is

real for all values of x
;

also if x &amp;lt; 2, y is negative,

and if x &amp;gt; 2, y is positive.

Moreover, as x increases

toward 2, y is negative

and becomes indefinitely

great ;
while as x decreases

toward 2, y is positive and

becomes indefinitely great.

We can accordingly assign

all values to x except 2,

that value being excluded

by 11. The curve is repre

sented in fig. 72.

It is seen that the nearer

to 2 the value assigned to x,

the nearer the correspond

ing point of the curve to

the line x = 2. In fact,

we can make this distance

as small as we please by

choosing an appropriate

value for x. At the same

time the point recedes indefinitely from OX along the curve.

Now when a straight line has such a position with respect to a curve that as

the two are indefinitely prolonged the distance between them approaches zero as a

limit, the straight line is called an asymptote of the curve.

FIG. 72
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It follows from the above definition that the line x = 2 and also the line

y = are asymptotes of this curve. In this example it is to be noted that the

asymptote x 2 is determined by the value of x which makes the function infinite.

It is clear that all equations of the type

x a

represent curves of the same gen
eral shape as that plotted in fig. 72.

Ex. 2. y =

If x = - 2 or if x = 2, y is

infinite
;
hence these two values

may not be assigned to x, all

other values, however, being

possible. The curve is repre

sented in fig. 73.

By a discussion similar to that

of Ex. 1, it may be proved that

the lines x = 2 and x = 2,

which correspond to the values

of x which make the function

infinite, and also the line y = 0, are asymptotes of the curve.

This curve is a special case of that represented by

r v =

FHJ. 73

x a x b

and it is not difficult to see how
the curve represented by

1 1 1

y = - - + - - + - - + ...
x a x b x - c

will look for any number of terms.

1
Ex. 3. y =

(x
-

2)2

All values of x may be assumed

except 2. The curve is represented
in fig. 74. It is evident that the lines

x = 2 and y = are asymptotes.
This curve is a special case of

that represented by

FIG. 74

which is itself a special case of

y=
l

+
l

+ ..

(x
-

a)
2

(x
-

6)
2
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Ex. 4. 7/
2 =

CERTAIN ALGEBRAIC FUNCTIONS

1

ic-3

As in 67, we solve for y, forming the equation y = . The line

x = 3 (fig. 75) divides the plane into two sections, and it is evident that there

can be no part of the curve in that section for which x &amp;lt; 3. Moreover, thia

FIG. 75

line x = 3 is an asymptote, as in the preceding examples. The curve, which

is a special case of that represented by

is represented in fig. 75. It is to be noted that the axis of x also is an asymptote.

T, eEx. 5. y =
X

To plot this curve we write the equation in the equivalent form

+
x (!)

It is evident that all values except may be assigned to x, that value being
excluded as it makes y infinite. Let us also draw the line

y x C2\if &quot;! \ 7

a straight line passing through the origin and bisecting the first and the third

quadrants.
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Comparing equations (1) and

(2), we see that if any value Xi

is assigned to x, the corre

sponding ordinates of (1) and

(2) are respectively Xi H and

Xi, and that they differ by .

Moreover, the numerical value

of this difference decreases as

greater numerical values are

assigned to Xi, and it can be

made less than any assigned

quantity however small by tak

ing Xi sufficiently great. It

follows that the line y = x is an

asymptote of the curve. It is

also evident that the line x = 0,

determined by the value of x
which makes the function infi

nite, is an asymptote. The curve

is represented in fig. 76.
FIG. 70

69. Special irrational functions.

EX. 1. ?/2 = 38.

Writing this equation in the form y x Vx,
we see that y is an irrational function of x, and
that its graph is symmetrical with respect to

OX and lies entirely to the right of the axis y.
It is represented in fig. 77, and is called the

semicubical parabola.
In general, if the equation expressing the

function is of the form

y = kx&quot;,

the function is rational or irrational according
as n is integral or fractional. In 38 we have

plotted the graphs of some of the rational func
tions of this type for the special case when k = 1

and n has the values 3, 4, and 5 respectively.
Above we have just plotted the graph of one of

the irrational functions, i.e. when n = J.
The graphs of the irrational functions y = x*,

FIG. 77 V = x*, and y = x* may be obtained by assuming
values for x and plotting as above, or by rewriting

the^
equation* in the f,nns x = ?/

3
,
x = ?/, and x = y, when it is immediately

that their graphs are respectively the same in shape as those of the
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FIG. 7*

rational functions y = x3
, y = x4

,
and

y x5
already plotted, the axes of

x and y, however, being changed in

position.

It is to be noted that the graphs of

all the functions expressed by the

equation y = xn pass through the points

(0, 0) and (1, 1).

Ex. 2. x* + y
1- = a*.

If y is defined as a function of x

_x by the equation x? + y* = a*, it is

evident that its graph will lie entirely
in the first quadrant, since both x

and y must be positive, and that its relative positions with respect to the

two axes of coordinates are the same

(fig. 78). The curve is a parabola

( 79). If the equation is put in the

form y = (a? x*)
2

,
it is seen that y

is an irrational function of x.

Ex. 3. x?
-f y% = al

Writing this equation in the form

y = (a? 2^)*, we see that y is an

irrational function of x, and that its

graph is symmetrical with respect to

OX and bounded by the lines x = a

and x = a. In the same way we may
show that the graph is symmetrical
with respect to OF and bounded by the

lines y = a and y = a. It is repre

sented in fig. 79, and is a four-cusped hypocycloid.

FIG. 79

FIG. 80

Ex. 4. x3 + y3 - 3 axy = 0.

The graph of this equation,

by which y is defined as an

irrational function of x, is repre

sented in fig. 80, and is known
as the Folium of Descartes.

It is symmetrical with respect

to the line y = x and has the

line x + y + a = as an

asymptote. While it may be

plotted by assuming values for

x and solving the corresponding
cubic equations for y, it is more

easily plotted when different

axes of coordinates are chosen

(see Ex. 38, Chap. X).
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PROBLEMS

Plot the graphs of the following equations :

1. 7/2
= (x

-
1) (x

2 -
4).

29. 7/3 = x2
(x + 2).

2. 7/
2 = (x + 2)(8x

- x2 -
15).

30. (y + 2)3 = (x
-

1) (x
2 -

4).

3. 47/
2 = (x + 3)(2x-3)

2
. 31. XT/ = 7.

4. 47/
2 = x2

(x + 1).
32. XT/ = -7.

5. 7/
2 = (x-3)

2 (5-2x). 33 y = J9_.

6. 7/
2 = (3x + 2)(9x

2 -4).

7. 7/
2 = (x-2)2

(4x
2 -4x-15). 34. r = L- -

^_~
35. 27y = 3x + i.

9. 7/
2 = (2 x -f 5)

2
(6 -f x x2

).

10. 7/
2 = -x2

(x + 3)
2
(x + l).

36. y-2 = 2(x-l) +
j-

11. 7/
2 = x2 (x-2)2

(x-3). 37. (7y
_

2),^_
1_.

12. 7/
2 = (l-x2

)(x
2
-9).

13. 7/
2 ^(2x-o)(x2 + 2). 38.^ = ^+^-X 2

14. 7/
2 = (x-2)

2
(x

2 + 2).

39 7/2 =
15. 7/

2 = (x-2)(2x-3)
2
(x

2
+x4-l).

16. 167/2 = 4x4 -x.
40 2 __

2 r 1
x2 ox + 8

41. x2
7/
2 + 36 = 47/

2
.

lo.

42 1(&amp;gt; a4
?/
2 =

19. X2 -T/ + 3T/
2 + T/-3 = 0.

X2 (d
20. x2 -

y* (4 + T/)
= 0. 43. 7/

2 =
a x

44. ?/(x
2 + a2

)
= a2

(a x).

22. (y
-

I)
2 - (x

-
I)

2
(x
-

4).
45 ^^ + ^ = a2^

23. (i/
- x)2 = o - x2

.

46. a4
?/
2 + &2x4

24. (x + T/)
2 =

7/
2
(y + 1). 47 y,

(a2 + x2) = x2 (a2
_

x2)e

25. x2 - 4xy + 87/2
_ ^ = .

48 ^ = 4a2(2a _ x) .

26
.(^ +e^, :, =;4

27. ?/ = x4
.

!

50. y = x + -.
28. 7/3 = x(x2 -4). ^



CHAPTER VII

CERTAIN CURVES AND THEIR EQUATIONS

70. The circle. When a curve has been defined by a geometric

property it is often possible to find the equation of the curve by

expressing the definition in algebraic symbols. This equation

serves, then, as a means for plotting the curve and also as a basis

for examining its other properties. In this chapter we shall derive

the equation of certain important elementary curves, beginning

with the circle.

A circle is the locus of a point at a constant distance from a

fixed point. The fixed point is the center of the circle and the

constant distance is the radius.

Let (d, e) (fig. 81) be the coordi

nates of the center C, and r the

radius of the circle. Then if P (x, y)

x is a point on the circle, x and y
must satisfy the equation

(x-d?+(y-e)* = r\ (1)

by 17.

Conversely, if x and y satisfy

the equation (1), the point (x, y)

is at a distance r from (d, e)
and

therefore lies on the circle.

FIG. 81

Therefore (1) is the equation of the circle
( 22).

Equation (1) expanded gives

r
2 =

and if this is multiplied by any quantity A, it becomes

Ax* + Af + 2 Gx + iFy + (7=0,

G F ft

where d = , e =
&amp;gt;

(2)

134
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Ex. The equation of a circle with the center
(^, J) and the radius | is

(x-i)2 + (?7+^)2 = |,

which reduces to 36 x2 + 30 y2 - 30 x + 24 y 3 = 0.

71. Conversely, ike equation

where A =

0, represents a circle, if it represents any curve at all.

To prove this, we will transform the equation as follows :

There are then three possible cases :

1. G*+ F* AC &amp;gt; 0. The equation is then of the type (1), 70,

G F
where d -

&amp;gt; e ---
&amp;gt; r = -

&amp;gt; and therefore represents

Iff-
lius \l

2. Gf
2
-\-F

2 AC = 0. The equation is then

a circle with the center
(

&amp;gt;

)
and the radius

V A A

which can be satisfied by real values of x and y only when
C1 W= - and y = - Hence the equation represents the pointA A

I C* ff\

(
-

j
. This may be called a circle of zero radius, regarding

it as the limit of a circle as the radius approaches zero.

3. G2+ F2
AC&amp;lt;0. The equation can then be satisfied by no

real values of x and y, since the sum of two positive quantities
cannot be negative. Hence the equation represents no curve.
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Ex. 1. The equation x2 + ?/
2 2x + 4y + l=0 may be written

(x
-

1)2 + (y + 2)2 = 4,

and represents a circle with center (1, 2) and radius 2.

Ex. 2. The equation x2 + y2 2x + 4y + 5=0 may be written

(x
-

I)
2 + (y + 2)2 = 0,

and is satisfied only by the point (1, 2).

Ex. 3. The equation xz + y2 2x + 4y + 7 = may be written

(x
-

1)2 + (y + 2)2 = _
2,

and represents no curve.

72. To find the equation of a circle which will satisfy given

conditions, it is necessary and sufficient to determine the three

quantities d, e, r, or the ratios of the four quantities A, G, F, C.

Each condition imposed upon the circle leads usually to an equa
tion involving these quantities. In order to determine the three

quantities it is necessary and in general sufficient to have three

equations. Hence, in general, three conditions are necessary and

sufficient to determine a circle.

It is not important to enumerate all possible conditions which

may be imposed upon a circle, but the following three may be

mentioned.

1. Let the condition be imposed upon the circle to pass through
the known point (xv i/J. Then (xv yj must satisfy the equation
of the circle

;
therefore d, e, and r must satisfy the condition

2. Let the condition be imposed upon the circle to be tangent
to the known straight line Ax + By + C=Q. Then the distance

from the center of the circle to this line must equal the radius
;

therefore, by 32, d, e, and r must satisfy the condition

Ad + Be + C _

The sign will be ambiguous, unless from other conditions of the

problem it is known on which side of the line the center lies.
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3. Let it be required that the center of the circle should lie on

the line Ax + By + C= 0. Then d and e must satisfy the condition

Ad + Ue + C=Q.

Ex. 1. Find the equation of the circle through the three points (2, 2),

(7, 3), and
((5, 0).

The quantities d, e, and r must satisfy the three conditions

(2-d) 2 + (-2 -e) 2 = r2
,

(7
-

d)
2 + (3

-
e)

2 = r2
,

(0
-

rf)
2 + (0

-
e)

2 = r2 .

Solving these we have d = 2, e = 3, and r = 5. Therefore the required

equation is

(x
-

2)
2 + (y

-
3)

2 = 25,

or x2 + y2 - 4 x - y - 12 = 0.

Ex. 2. Find the equation of the circle which passes through the points

(2, 3) and (4, 1) and has its center on the line 3 y + x 18 = 0.

The quantities d, e, and r must satisfy the conditions

3e + d- 18 = 0.

Solving these equations we find d= g, e y, r2 =l. Therefore the

required equation is

(x
-

|)
2 + (y V) 2 = if-*,

or x2 + y2 - 3x- 11 ?/
- 40 = 0.

Ex. 3. Find the equation of a circle which is tangent to the lines

17 x + y - 35 = and 13 x + 11 y + 50 = 0,

and has its center on the line 88 x -f 70 y + 15 = 0.

The quantities d, e, and r must satisfy the conditions

17 d + e _ 35 _
V

l&amp;gt;!&amp;gt;&amp;lt;)

- 13 d- lie -50

15 = 0.



138 CERTAIN CURVES AND THEIR EQUATIONS

These equations have the two solutions

and (1 = 6,

V290.
6

3 V290

20

Hence each of the two circles

3x2 + 3?/
2 + 5x- 5y -20 =

and 40 x2 + 40 y2 - 400 x + 520 y + 2429 =

satisfies the conditions of the problem.

Ex. 4. The equation of a circle through three given points is most readily
found by means of the equation

Ax2 + Ay* + 2 Gx + 2 Ify + C = 0.

If (EI, 2/i), (2, 2/2), and (x3 , ?/3 ) are the three given points, the quantities

A, (?, F, C must satisfy the equations

.4X 2 + ^7/2 + 2 C&i + 2 Fy! + C = 0,

Axj + ^l?/2
2 + 2 Gx2 + 2

F&amp;lt;/2 + C = 0,

Ay* + 2Gxs + 2 Fyz + C =-0.

There are here four homogeneous equations in the unknowns A, G, F, (7,

and the result of eliminating the unknowns is, by 9,

x2 + 2/
2 x y 1

#1 + 2/1 X] 7/j \

T 2 -4- J/ 2 -j/ 1
^3 T 2/3 Xs 2/3

-1

which is the required equation of the circle.

It is to be noticed that the coefficient of x2 + y2 in (1) is

(1)

x2

2/3

When this is zero, equation (1) is of the first degree and represents a straight
line. But when

2/1 1

2/2 1

2/3 1

= 0,

the points (x t , y^, (x2 , ?y2), and (x3 , y3 ) are on the same straight line
( 29, 5) and .

cannot determine a circle.
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73. The ellipse. An ellipse is the locus of a point the sum of

the distances of which from two fixed points is constant.

The two fixed points are called the foci. Let them be denoted

by F and F 1

(fig. 82) and let the axis of x be taken through them

and the origin halfway between tlxem. Then if P is any point

on the ellipse and 2 a represents the constant sum of its distances

from the foci, we have

From the triangle

FP=2a.

it follows that

F F&amp;lt; 2 a.

(I)

Hence there is a point A on the axis of x and to the right

of F which satisfies the definition. We have then

or (F O+ OA)+ (OA- OF) = 2
,

whence OA= a.

Let us now place

OF =
e, where e &amp;lt; 1.

OA

Then the coordinates of F and

F are (ae, 0). Computing
the values of F P and FP by 17, and substituting in (1), we have

+ aef+ y* + (# ae
*

(2)

By transposing the second radical to the right-hand side of the

equation, squaring, and reducing, we have

a - ex=V(xae)*+i/=FP. (3)

Similarly, by transposing the first radical in (2), we have

a + c,r = V(./- + c)*+y* = F P. (4)
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Either (3) or (4) leads to the equation

or 1 + ~vT-5T
= I- (6)a2

a~(le
2

)

Since e
&amp;lt; 1, the denominator of the second fraction is positive

and we place

0^(1-V),.?,
2

2/

2

thus obtaining --h = 1. ( 7 )

a2
tf

We have now shown that any point which satisfies (1) has co

ordinates which satisfy (7).

To show, conversely, that any point whose coordinates satisfy (7)

is such as to satisfy (1), let us assume (7) as given. We can then

obtain (6) and (5), and (5) may be put in each of the two forms

x2 + 2 aex -f aV + y
1 = a2 + 2 aex + e

2x2

,

x~1 aex + aV + y
2 = a2

2 aex + eV,

the square roots of which are respectively

F P=(a + ex),

These lead to one of the four following equations :

F P+FP=2a,
F P-FP=2a

)

-F P-FP= 2a.

Of these, the last one is impossible, since the sum of two nega
tive numbers cannot be positive ;

and the second and third are

impossible, since the difference between FP and F P must be less

than F f

F, which is less than 2 a. Hence any point which satisfies

(7) satisfies (1), and therefore (7) is the equation of the ellipse.
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74. Placing y = in (7), 73, we find x=a. Placing x = 0,

we find y = b. Hence the ellipse intersects OX in the two points

A
(a, 0) and A

( a, 0), and intersects OY in two points 7?(0, b)

and B r

(Q, b).
The points A and A are called the vertices of the

ellipse. The line AA 9

,
which is equal to 2 a, is called the major

axis, and the line BB
,
which is equal to 2 b, is called the minor

axis of the ellipse. r
Solving (5) first for y and

then for x, we have

and a; = T V&&quot; if.

FIG. 83These equations show (1) that

the ellipse is symmetrical with

respect to hoth OX and OY, (2) that x can have no value numer

ically greater than a, (3) that y can have no value numerically

greater than b. If we construct the rectangle KLMN (fig. 83),

which has for a center and sides equal to 2 a and 2 5 respec

tively, the ellipse will lie entirely within it
;
and if the curve is

constructed in one quadrant, it can be found by symmetry in all

quadrants. The form of the curve is shown in figs. 82 and 83.

75. Any equation of the form (7), 73, in which a
&amp;gt; b,

represents an ellipse with the foci on OX. For if we place,

as in 73, I* = a* (! &amp;lt;?),

we find

e =

and may fix .Fand F
,
which in 73 were arbitrary in position, by

the relation OF = OF 1 = ae.

The foci may be found graphically by placing the point of a com

pass on B and describing an arc with the radius a. This arc will

intersect AA in the foci; for since
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Similarly an equation of the form (7), 73, in which b &amp;gt; a,

represents an ellipse in which the foci lie on BB at a distance

V&2 a2 from 0. In this case BB = 2 I is the major axis and
AA = 2 a is the minor axis.

It may be noted that the nearer the foci are taken together, the

smaller is e and the more nearly b = a. Hence a circle may be

considered as an ellipse with coincident foci and equal axes.

76. The hyperbola. An hyperbola is the locus of a point the

difference of the distances of whichfrom two fixed points is constant.

FIG. 84

The two fixed points are called the foci. Let them be F and
F 1

(fig. 84) and let FF be taken as the axis of x, the origin being

halfway between F and F . Then if P is any point on the

hyperbola and 2 a is the constant difference of its distances

from F and F
,
we have either

or FP-F P=2a.
(1)

(2)

Since in the triangle F PF the difference of the two sides FP
and F P is less than F F, it follows that F F

&amp;gt;
2 a.

There is therefore at least one point A between and F which

satisfies the definition.
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Then PA-AF-la,
or (F + OA) (

OF- OA
)
= 2 a

;

whence OA = a.

We may therefore place

OF- =
e, where e

&amp;gt;
1.

Ovl

Then the coordinates of F and JP are
( ae, 0) and equations

(1) and (2) become

+ ae)
2+ 2/

2

V(3 ae)
a + 2T

= 2 a (3)

and (#
-

ae)
2 + if

- V(x + ae)
2

+if = 2 a. (4)

By transposing one of the radicals to the right-hand side of

these equations, squaring, and reducing, we obtain from (3) either

ex + a =

or ex a = (# ae)
2+ y

2 = FP
;

and from (4) we obtain either

-
(CM + a)

= V(3 + ae)
2 + y

2 = F P,

or -
(ex -a) = ^/(x-ae)

2+y2 = FP.

Any one of the last four equations gives

(l- e*)^+^ = a2

(!-), (5)

But since e &amp;gt; 1, a
2

(l e
2

)
is a negative quantity and we may

write a 2

(1 c
2

)
= fr

2

, thus obtaining
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Then any point which satisfies (1) or (2) satisfies (7). Conversely,

by retracing our steps, we find that if the coordinates of a point
P satisfy (7), then

F P + FP = 2 a,

and FP =
(ex a).

Hence we must have either

FPFP= 2 a,

or

The equation F P+ FP = 2 a is impossible, for F P + FP &amp;gt; F F,

and 2 a &amp;lt; F F. The equation F P FP = 2 a is also clearly

impossible. Hence any point which satisfies (7) satisfies either

(1) or (2). Therefore (7) is the equation of the hyperbola.

77. If we place y = in (7), 76, we have x = a. Hence
the curve intersects OX in two points, A and A

,
called the vertices.

If x = 0, y is imaginary. Hence the curve does not intersect Y.

Solving (7), 76, for y and x respectively, we have

and

These show (1) that the curve is symmetrical with respect to

both OX and Y, (2) that x can have no value numerically less

than a, and (3) that y can have all values.

Moreover, the equation for y can be written
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As x increases the term decreases, approaching zero as a limit.
vU

Hence the more the hyperbola is prolonged, the nearer it comes

to the straight lines y = - x. Therefore the straight lines

j
a

y = - x are the asymptotes of the hyperbola. They are the
a/

diagonals of the rectangle constructed as in
fig. 85, and are used

FIG. 85

conveniently as guides in drawing the curve. The line AA 1
is

called the transverse axis and the line BB the conjugate axis

of the hyperbola. The shape of the curve is shown in figs.

84 and 85.

78. Any equation of the form (7), 76, where a and b are any
positive real values, represents an hyperbola with the foci on AA .

For if we place b
2 = a* (I e

2

),
we find e= - - and may
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find the position of the foci from the equations OF = OF = ae.

Similarly any equation of the form

s r

represents an hyperbola with the foci on BB 1

.

If I = a, the hyperbola is called an equilateral hyperbola and its

equation is either x2

y*
= a2

or x2+ y
1

=f= a2
.

79. The parabola. A parabola is the locus of a point equally

distant from a fixed point and a fixed straight line. The fixed

point is called the focus and the fixed straight line the directrix.

Let the line through the focus perpendicular to the directrix be

taken as the axis of x, and let the origin be taken on this line halfway
between the focus and the directrix.

Let us denote the abscissa of the

focus by p. In fig. 86 let F be the

focus, ES the directrix intersecting

OX at D, and let P be any point on

the curve. Then the coordinates of

Y F are (p, 0), those of D are (p, 0),

and the equation of RS is x= p.

Draw from P a line parallel to OX
intersecting RS in N. If F is on the

right of RS, P must also lie on the

right of RS, and by the definition

FIG. 86 FP = NP.

If, on the other hand, F is on the left of RS, P is also on the

left of RS and

In either case FP = NP

But

hence (x

which reduces to

y\ and

f =
(&amp;lt;&amp;gt;

+

y
2 = p

(by 17)

(1)
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Any point on the parabola then satisfies this equation.

Conversely, it is easy to show that if a point satisfies this

equation, it must so lie that FP = NP, and hence lies on

the parabola.

Equation (1) shows (1) that the curve is symmetrical with

respect to OX, (2) that x must have the same sign as p, and (3)

that y increases as x increases numerically. The position of the

curve is as shown in fig. 86 when p is positive. When p is neg
ative F lies at the left of and the curve extends toward the

negative end of the axis of x.

Similarly the equation y? = 4 py represents a parabola for which

the focus lies on the axis of y, and which extends toward the

positive or the negative end of the axis of y according as p is

positive or negative. In all cases is called the vertex of the

parabola and the line determined by and F is called its axis.

80. If J^(xv y^) and P2 (x^ y) are two points on the parabola

(fig. 87), then Y

hence

yl =

yl

FIG. 87
That is, the squares of the ordinates

of a parabola are to each other as the

abscissas. Conversely, if in any curve the squares of the ordinates

are to each other as the abscissas, the curve is a parabola.

For let PI be a known point and P any point on the curve.

Then, by hypothesis,
x

2 \

y = ^which may be written

,

But this is the same as y
2 = 4px, where p = -*
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81. The conic. A conic is the locus of a point the distance

of which from a fixed point is in a constant ratio to its distance

from a fixed straight line.

The fixed point is called the focus, the fixed line the directrix,

and the constant ratio the eccentricity.

We shall take the directrix as the axis of y, and a line through
the focus F as the axis of x, and shall call the coordinates of the

focus
(c, 0), where c represents OF and

is positive or negative according as F
lies to the right or the left of 0.

Let P be any point on the conic;

N\ /p connect P and F, and draw PN per

pendicular to OY. Then by definition

FP=e-NP, (1)

according as P is on the right or the

left of OY. In both cases

FP = NP*

FIG. 88

But FP =
(x
-

c)

2+ f, by 17, and

= x. Therefore for any point on

the conic

(x
- c)*+f = e^. (2)

It is easy to show, conversely, that if the coordinates of P sat

isfy (2), P satisfies (1). Hence (2) is the equation of the conic.

It is clear that the parabola is a special case of a conic, for the

definition of the latter becomes that of the former when e = I.

It is also not difficult to show that the ellipse is a special case

of a conic, where the eccentricity is e of 73 and &amp;lt; 1.

x2 V2

For if P
(fig. 89) is a point on the ellipse -f-

y^
= 1, we found

in 73 that

FP = a ex, F P = a + ex,

or
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If now we take the point D so that OD = -
&amp;gt; and D so that

e

OD1 = -
&amp;gt; draw the lines DS and D S perpendicular to OX, the

t

line N PN perpendicular to DS, and the ordinate MP, we have

. . FP = e PN, F P = e N P.

r,

FIG. 89

The ellipse has therefore two directrices at the distances -
e

from the center. When the ellipse is a circle, e = and the

directrices are at infinity.

In a similar manner we may show that the hyperbola is a

special case of a conic where e &amp;gt; 1.

In 114, Ex. 3, we shall prove that the conic is always either

an ellipse, a parabola, or an hyperbola.
82. The witch. Let OBA (fig. 90) be a circle, OA a diameter,

and LK the tangent to the circle at A. From draw any line

intersecting the circle at B and LK at C. From B draw a line

parallel to LK and from C a line perpendicular to LK, and call

the intersection of these two lines P. The locus of P is a curve

called the witch.
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To obtain its equation we will take the origin at and the

line OA as the axis of y. We will call the length of the diameter

of the circle 2 a. Then by continuing CP until it meets OX at

M, and calling (x, y) the coordinates of P, we have

OM=x,

In the triangle OMC,

If AB is drawn, OBA is a right angle and consequently

OB-OC = OA\ also OC* = OM* + MC*.

r

=

y, O^ = JfG = 2 a.

JfP 07? OB-OC

FIG. 90

(2)

(3)

(4)

Conversely, if equation (4) is satisfied by any point, we can

deduce equations (3), (2), and (1) in order, and hence show that

the point is on the witch.

Solving (4) for x, we have
I2ax=2a
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This shows (1) that the curve is symmetrical with respect to OF,

(2) that y cannot be negative nor greater than 2 a, and (3) that

y = is an asymptote.

83. The cissoid. Let ODA (fig. 91) be a circle with the diam

eter OA, and let LK be the tangent to the circle at A. Through

draw any line intersecting the circle in D and LK in E. On

OE lay off a distance OP equal to DE. Then the locus of P is

a curve called the cissoid.

To find its equation, we will

take as the origin of coordinates

and OA as the axis of x, and will

call the diameter of the circle 2 a.

Draw MP perpendicular to OA.

Then if A and D are connected, a

triangle ADE is formed similar

to OMP
;
whence

OP _AE
MP~ J)E

(1)

By hypothesis DE = OP.

Therefore

OP
2 = MP AE. (2)

Also, in the similar triangles

OAE and 0PM,
AE

__
MP

~OA~~OM

whence, from (2),

7
= ^P (3)

OM

X

=

or y?+ if
=

whence

This equation is satisfied by
the coordinates of any point

upon the cissoid.
Fi&amp;lt;;. HI
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Conversely, if we assume equation (6), we may deduce (5) and

(4), and then by aid of (1) and (3) we have OP = DE.
Therefore (6) is the equation of the cissoid. It may be written

From this it appears

(1) that the curve is

symmetrical with re

spect to OX, (2) that

no value of x can be

greater than 2 a or

less than 0, and (3) that

the line x = 2 a is an

asymptote.

84. The strophoid.

Let LK and US
(fig. 92)

be two straight lines

intersecting at right

angles at 0, and let A
be a fixed point on LK.

Through A draw any

straight line intersecting

RS in D, and lay off on

AD in either direction a

distanceDP equal to OD.

The locus of P is a curve

called the strophoid.

To find its equation,

take LK as the axis of

x and RS as the axis of

y, and call the coordi

nates of A (a, 0). By
the definition the point

P may fall in any one

of the four quadrants.
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If we take the positive direction on AD as measured from A

towards D, we have
OD=PD

when P is in the first quadrant,

OD = PD

when P is in the second quadrant,

when P is in the third quadrant, and

_ OD = PD

when P is in the fourth quadrant.

These four equations are equivalent to the single equation

(1)

From the similar triangles OAD and APM,

OZ&amp;gt; = MP = y

AD
~~

AP
~

V(a;
-

a)
2 + f

PD MO OM x

u2 x2

Hence r^- :2
=

2 (2)

(x ay + y a

is an equation satisfied by any point on the curve. Conversely,

if (2) is given, (1) may be deduced. Therefore (2) is the equation

of the strophoid.

It may be written

la x
v = x

This shows (1) that the curve is symmetrical with respect to

OX, (2) that no value of x can be less than a nor greater than

+ a, and (3) that x = a is an asymptote.
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85. Examples. The use of the equation of a curve in solving

problems connected with the curve will be constantly illustrated

throughout the book. The following examples depend upon prin

ciples already given.

Ex. 1. Prove that in the ellipse the squares of the ordinates of any two

points are to each other as the products of the segments of the major axis made

by the feet of these ordinates.

We are to prove that (fig. 93)

Let the coordinates of PI be

i 2/i) an(i let those of P2 be

FIG. 93

_ (a + xj)(a
-

(a + x2)(a
-

But ?/i
= JfiPi, a + xi = A O + OMi = A M.\, a Xi= OA OMi = MiA,

2/2
= .M2P2 ,

a + #2 = A Mz, a
x&amp;lt;z

= M2A. Hence the proposition is proved.

Ex. 2. If M\P\ is the ordinate of a point PI of the parabola, y2 = 4 px, and

a straight line drawn through the middle point of MiPi parallel to the axis of x

cuts the curve at Q ; prove that the intercept of the line MiQ on the axis of y

equals | M\P\.
Let the coordinates of PI (fig. 94) be

y
2

(xi, ?/i). Then x\ = from the equation of

the parabola.
p

By construction, the ordinate of Q is

Since Q is on the parabola its abscissa is

found by placing y = in y2 = 4px. The2/2 \

coordinates of Q are then (
-

, ) . The
\16p 2/

coordinates of M are (xi, 0), which are the

same as I , ) Hence the equation of

MQ is, by 29,

Spx + 3 yiy 2y? = 0.

The intercept of this line on OY is ^ y\ %MiP\, which was to be proved.

FIG. 94
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PROBLEMS

1. Find the equation of the circle having the center (2, -4) and the radius 3.

2. Find the equation of the circle having the center (- , ) and the

radius 6.

3. Find the equations of the circles having the line joining (2, 3) and
(
-

3, 1)

as a radius.

4. Find the equation of the circle having the line joining (a,
-

ft)
and

( a, 6) as a diameter.

5. Find the equations of the circles of radius a which are tangent to the

axis of y at the origin.

6. Find the equations of the circles of radius a which are tangent to both

coordinate axes.

7. Find the equation of the circle having as a diameter that part of the line

2x 3 y + 6 = which is included between the coordinate axes.

8. Find the center and the radius of the circle x2 + y
2
-f 4 x - 10 y - 36 = 0.

9. Find the center and the radius of the circle x2 + y- + 4 x - G y + 1 = 0.

10. Find the center and the radius of the circle 3x2 + 3?/
2 9x + 6?/ 2 = 0.

11. Find the center and the radius of the circle 5x2 -f5?/
2 + 2x 4 y + 1 = 0.

12. Prove that two circles are concentric if their equations differ only in the

absolute term.

13. Show that the circles x2 + ?/
2 + 2 Gx + 2 Fy + C = and x2 + y2 + 2 G x

+ 2 F y + C&quot; = are tangent to each other if

F 2 - C .

14. Find the equation of the circle which passes through the points (0, 3),

(3, 0), (0, 0).

15. Find the equation of the circle circumscribing the triangle with the

vertices (0, 2), (- 1, 0), (0,
-

2).

16. Find the equation of the circle circumscribed about the triangle the sides

of which are x + y 2 = 0, 9 x + 5 y 2 = 0, ?/ + 2 x 1 = 0.

17. Find the equation of the circle passing through the point (2, 4) and

concentric with the circle x2 + y2 5x + 4y 1 = 0.

18. A circle which is tangent to both coordinate axes passes through (4, 2).

Find its equation.

19. The center of a circle which is tangent to the axes of x and y is on the

line 2x 3y-hG = 0. What is its equation ?

20. A circle of radius 5 passes through the points (2, 1) and (3, 2).

What is its ct|ii;it ion .

21. The center of a circle which passes through the points (1, 2) and

(- 2, 2) is on the line bx 4 ij + 9 = 0. What is its equation ?
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22. A circle which is tangent to OX passes through (- 3, 2) and (4, 9).

What is its equation ?

23. The center of a circle which is tangent to the two parallel lines x 3 =
and x 7 = is on the line y = 2 x + 4. What is its equation ?

24. The center of a circle is on the line 2x + y = Q. The circle passes

through the point (4, 2) and is tangent to the line 4x 3y 15 = 0. What is

its equation ?

25. Find the equation of the circle circumscribing the isosceles triangle of

which the altitude is 4 and the base is the line joining the points (3, 0) and

(3, 0).

26. Find the equation of the ellipse the foci of which are (3, 0) and
the major axis of which is 8.

27. Find the equation of the ellipse the foci of which are (0, 2) and the

major axis of which is .6.

28. Find the equation of an ellipse when the vertices are (6, 0) and one

focus is (4, 0).

29. Determine the semiaxes a and b in the ellipse + y- =
1, so that it will

pass through (1, 4) and (2,
-

3).
a2 &2

30. If the vertices of an ellipse are
( 5, 0) and its foci are

( 3, 0), find

its equation.

31. The center of an ellipse is at the origin and its major axis lies along OX.
If. its major axis is 8 and its eccentricity is f ,

find its equation.

32. Find the equation of an ellipse when its center is at the origin, one focus

at the point ( 3, 0), and the minor axis equal to 8.

33. Find the equation of an ellipse the eccentricity of which is ^ and the

foci of which are (0, 6).

34. Given the ellipse Qx2 + 16 y2 = 144. Find its semiaxes, eccentricity, and

foci.

35. Find the eccentricity and the equation of an ellipse, if the foci lie half

way between the center and the vertices, the major axis lying on OX.

36. Find the equation of an ellipse the eccentricity of which is and the

ordinate at the focus is 5, the center being at the origin and the major axis

lying along OX.

37. Find the equation and the eccentricity of the ellipse if the ordinate

at the focus is one fourth the minor axis.

38. Find the eccentricity of an ellipse if the line connecting the positive ends

of the axes is parallel to the line joining the center to the upper end of the

ordinate at the left-hand focus.

39. Find the equation of an ellipse when the foci are
( 2, 0) and the

directrices are x = 5.

40. Given the ellipse 2 x2
-f 3 y2 = 1. Find its semiaxes, foci, and directrices.
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41. Find the equation of an hyperbola if the foci are
( 3, 0) and the trans

verse axis is 4.

42. Find the equation of an hyperbola if the foci are (0, 4) and the trans

verse axis is 4.

43. An hyperbola has its center at the origin and its transverse axis along

OX. If its eccentricity is ^ and its transverse axis is 5, find its equation.

44. Find the equation of an hyperbola when the vertices are
( 4, 0) and

the eccentricity is .

45. Show that the eccentricity of an equilateral hyperbola is equal to the

ratio of a diagonal of a square to its side.

46. Find the equation of an hyperbola the vertices of which are halfway
between the center and the foci, the transverse axis lying on OX.

47. Find the equation of the hyperbola with eccentricity 3 which passes

through the point (2, 4), its axes lying on OX and OY.

48. Find the equation of an equilateral hyperbola which passes through

(5,
-

2).

49. Find the equation of the hyperbola which has the points (0, V2) for

foci and passes through the point (2, 1).

50. The sum of the semiaxes of an hyperbola is 17 and its eccentricity is

J-^.
Find its equation, if its axes lie on OX and OY.

51. Find the equation of the hyperbola which has the asymptotes y Zx
and passes through the point (1, 1).

52. Express the angle between the asymptotes in terms of the eccentricity
of the hyperbola.

53. If the vertex of an hyperbola lies two thirds of the distance from the

center to the focus, find the slopes of the asymptotes.

54. Given the hyperbola 4x2 2oy2 = 100. Find its eccentricity, foci, and

asymptotes.

55. Find the equation of the hyperbola which has the lines y = x for

its asymptotes and the points ( 4, 0) for its foci.

56. Show that
1

= 1, where k is an arbitrary quantity,
tt
2 _ 2 &2 _ 2

x2 y2

represents an ellipse confocal to \-
= l,when k2 &amp;lt; b2 ;

and represents an
X2 y2

2 &
hyperbola confocal to

~^
+ ^= 1

,
when k2

&amp;gt; 62 but &amp;lt; a2
,
a2 being considered

greater than b-.

57. Find the equation of an hyperbola when the foci are
( 7, 0) and the

directrices are x 4.

58. Given the hyperbola ^ \~^ Find its eccentricit7 foci
, directrices,

and asymptotes.
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59. A perpendicular is drawn from a focus of an hyperbola to an asymptote.
Show that its foot is at distances a and b from the center and the focus

respectively.

60. Show that in an equilateral hyperbola the distance of a point from the

center is a mean proportional between its focal distances.

61. Determine p so that the parabola y2 = 4px shall pass through the point

(2,
-

3).

62. An arch in the form of a parabolic curve is 29 ft. across the bottom and

the highest point is 8 ft. above the horizontal. What is the length of a beam

placed horizontally across the arch 4 ft. from the top ?

63. The cable of a suspension bridge hangs in the form of a parabola. The

roadway, which is horizontal and 240 ft. long, is supported by vertical wires

attached to the cable, the longest being 80 ft. and the shortest being 30 ft.

Find the length of a supporting wire attached to the roadway 50 ft. from the

middle.

64. Find the equation of a circle through the vertex and the ends of the

double ordinate through the focus of the parabola y2 = 4 px.

65. Find the equation of the circle through the vertex, the focus, and the

upper end of the ordinate at the focus, of the parabola y2 + 12 x = 0.

66. Find the equation of the locus of a point the distances of which from

(3,
-

2) and (-4, 1) are equal.

67. Find the equations of the locus of a point the distance of which from the

axis of x equals five times the distance from the axis of y.

68. Find the equation of the locus of a point the distance of which from the

axis of x is one third its distance from (0, 3).

69. Find the equation of the locus of a point the distance of which from

the line x = 3 is equal to its distance from (4, 2).

70. What is the locus of a point the distance of which from the line

3x + 4?/ = is twice &quot;its distance from (2, 1) ?

71. A point moves so that its distance from the axis of y equals its distance

from the point (5, 0). Find the equation of its locus.

72. A point moves so that the square of its distance from the point (0, 2)

equals the cube of its distance from the axis of y. Find its locus.

73. Find the locus of the points at a constant distance 5 from the line

4z + 3?/-6 = 0.

74. Find the locus of points equally distant from the lines 2x + 3y 6 =
and 3x - 2y + 1 = 0.

75. Show that the locus of a point which moves so that the sum of its dis

tances from two fixed straight lines is constant is a straight line.

76. Find the equations of the locus of a point equally distant from two fixed

straight lines.
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77. A point moves so that its distances from two fixed points are in a con
stant ratio k. Show that the locus is a circle except when k = 1.

78. A point moves so that the sum of the squares of its distances from the

sides of an equilateral triangle is constant. Show that the locus is a circle and
find its center.

79. A point moves so that the square of its distance from the base of an
isosceles triangle is equal to the product of its distances from the other two
sides. Show that the locus is a circle which passes through the vertices of the
two base angles.

80. A point moves so that the sum of the squares of its distances from the
four sides of a square is constant. Find its locus.

81. A point moves so that the sum of the squares of its distances from any
number of fixed points is constant. Find its locus.

82. Find the locus of a point the square of the distance of which from a
fixed point is proportional to its distance from a fixed straight line.

83. Find the locus of a point such that the lengths of the tangents from it

to two concentric circles are inversely as the radii of the circles.

84. A point moves so that the length of the tangent from it to a fixed circle
is equal to its distance from a fixed point. Find its locus.

85. Find the equation of the locus of a point the tangents from which to
two fixed circles are of equal length.

86. Straight lines are drawn through the points (- a, 0) and (a, 0) so that

the difference of the angles they, make with the axis of x is tan~i- . Find the
locus of their point of intersection.

a

87. The slope of a straight line passing through (a, 0) is twice the slope of
a straight line passing through (- a, 0). Find the locus of the point of inter
section of these lines.

88. A point moves so that the product of the slopes of the straight lines

joining it to A(- a, 0) and B (a, 0) is constant. Prove that the locus is an
ellipse or an hyperbola.

89. If in the triangle ABC tan A tan = 2 and AB is fixed, show that
the locus of C is a parabola with its vertex at A and focus at B.

90. Given the base 26 of a triangle and the sum s of the tangents of the

angles at the base. Find the locus of the vertex.

91. Find the locus of the center of a circle which is tangent to a fixed circle
and a fixed straight line.

92. Prove that the locus of the center of a circle which passes throu-h a
fixed point and is tangent to a fixed straight line is a parabola.

93. A point moves so that its shortest distance from a fixed circle is equal to
its distance from a fixed diameter of that circle. Find its locus.
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94. is a fixed point and AB is a fixed straight line. A straight line

is drawn from meeting AB at Q, and in OQ a point P is taken so that

OP- OQ = k2 . Find the locus of P.

95. If a straight line is drawn from the origin to any point Q of the line

y = a, and if a point P is taken on this line such that its ordinate is equal to

the abscissa of Q, find the locus of P.

96. AOB and COD are two straight lines which bisect each other at right

angles. Find the locus of a point P such that PA PB = PC PD.

97. AB and CD are perpendicular diameters of a circle and M is any point

on the circle. Through M, AM and BM are drawn. AM intersects CD in TV,

and fromN a line is drawn parallel to AB meeting BM in P. Find the locus of P.

98. Given a fixed line AB and a fixed point Q. From any point E in AB a

perpendicular to AB is drawn equal in length to RQ. Find the locus of the end

of this perpendicular.

99. Let OA be the diameter of a fixed circle. From B, any point on the

circle, draw a line perpendicular to OA and meeting it in D. Prolong the line

DB to P, so that OD : DB = OA: DP. Find the locus of P.

100. Two straight lines are drawn through the vertex of a parabola at right

angles to each other and meeting the curve at P and Q. Show that the line PQ
cuts the axis of the parabola in a fixed point.

101. In the parabola y- = 4px an equilateral triangle is so inscribed that

one vertex is at the origin. What is the length of one of its sides ?

102. Prove that in the ellipse half of the minor axis is a mean proportional

between AF and FA .

103. Prove that in the ellipse or the hyperbola the ordinate at the focus

is an harmonic mean between AF and AF .

104. If from any point P of an hyperbola PK is drawn parallel to the

transverse axis, cutting the asymptotes in Q and E, then PQ PR = a2
. If PK

is drawn parallel to the conjugate axis, then PQ PR = - 62 .

105. Show that the focal distance of any point on the hyperbola is equal to

the length of the straight line drawn through the point parallel to an asymptote

to meet the corresponding directrix.

106. Prove that the product of the distances of any point of the hyperbola

from the asymptotes is constant.

107. Prove that in the hyperbola the squares of the ordinates of any two

points are to each other as the products of the segments of the transverse axis

made by the feet of these ordinates.

108. Lines are drawn through a point of an ellipse from the two ends of

the minor axis. Show that the product of their intercepts on OX is constant.

109. PI is any point of the parabola y2 = 4 pa:, and PiQ, which is perpen

dicular to OP1? intersects the axis of the parabola in Q. Prove that the pro

jection of PiQ on the axis of the parabola is always 4 p.



CHAPTER VIII

INTERSECTION OF CURVES

86. General principle. If fm (x, y) is an expression involving

XMldy
.

/&amp;lt;**)-0 (1)

is the equation of a curve containing all points the coordinates

of which satisfy (1), and containing no other points. Similarly if

/( , y] is any second expression in x and y,

/(*&amp;gt;?)
=

(2)

is the equation of a second curve. It follows that if we consider

these two equations, any point common to the two corresponding
curves will have coordinates satisfying both (1) and (2); and that,

conversely, any values of x and y which satisfy both (1) and (2)

are coordinates of a point common to the two curves. Hence,
to find the points of intersection of two curves, solve their equa
tions simultaneously.

We have already discussed in 30 the simplest case of this

problem, i.e. the intersection of two straight lines. We shall now
discuss some more complex cases.

87-
(x, |/)

= 0and/a (jc, y)
= 0. Let

/i(Ay)=0 (1)

be a linear equation, and /, (#, y)
=

(2)

be a quadratic equation. Since a linear equation always represents
a straight line, this problem is to find the points of intersection of a

straight line and a curve. Solving (1) for either x or y, and substitut

ing the result in (2), we obtain in general a quadratic equation, as,

for example, 2
,

,

ax* + bx -f c = 0,

if (1) has been solved for y. We shall call this equation the

resultant equation ( 9). If the roots of this equation are denoted
161
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by x
l
and x

z , x^ and x
z
are the abscissas of the required points of

intersection. The corresponding ordinates are found by substi

tuting x
1
and x

z
in succession in (1).

But according to 37 there are three cases to be considered in

the solution of the resultant equation. (1) The roots x
1
and x

2

may be real and unequal, in which case there are two points of

intersection. (2) The roots x
l
and x

z may be real and equal, in

which case the corresponding ordinates are equal and the two

points coincide. As in 37, we may regard this case as a limit

ing case when the position of the curves is changed so as to make

x
l
and x

2 approach each other, i.e. so as to make the points of inter

section of the straight line and the curve approach each other along

the curve. Accordingly, the straight line represented by equation (1)

is tangent to the curve represented by equation (2). (3) Finally, the

roots x
l
and x

z may be imaginary, in which case no real points of

intersection can be found, and the curves do not intersect.

Ex. 1. Find the points of intersection of

3x- 2y -4 =
and

(1)

(2)

FIG. 95

Solving (1) for y and substituting the result in (2), we have x2 - 6x + 8 = 0,

the roots of which are 2 and 4. Substituting these values of x in (1), we find the
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corresponding values of y to be 1 and 4. Therefore; the points of intersection

are (2, 1) and (4, 4) (fig. &amp;lt;.).&quot;&amp;gt;).

Ex. 2. Find the points of Y
intersection of

6z-4?/-9 =
(1)

and x2 - 4 y = 0. (2)

Solving (1) for y and substi

tuting the result in (2), we have

xz _ o x _j_ j)
-

o. The roots of

this equation are equal, each

being 3. Hence the straight line

is tangent to the curve. Substi

tuting 3 for x in (1), we find

y = | ;
hence the point of tan-

gency is (3, f ) (fig. 90).

Ex. 3. Find the points of

intersection of

3z-2i/-5 =
(1)

and x2 - 4 y = 0. (2)

FIG. 96

(2),

Proceeding as in the two previous examples, we obtain x2 6 x + 10 = 0,

the roots of which are 3 V^T. Hence the straight line does not intersect the

Y curve (fig. 97). The correspond

ing values of y are 2 | V 1.

It is to be noted that the

straight lines of these three

examples all have the same

direction, differing only in the

intercept on the axis of y.

A

(l)

88. The work of the last

article suggests a method

of finding the tangent to

any curve represented by
an equation of the second

degree, the slope of the

tangent being given. For

if m of the required tan

gent is known, its equation may be written y = mx + b, where
I is not known. According to the definition of a tangent, ho\v-

ever, I must have such value that the points of intersection of
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straight line and curve shall be coincident. This condition enables

us to determine ~b, as shown in the following examples.

Ex. 1. Find the equation of the

tangent to the parabola 3 z2 + 2 y=0,
the slope of the tangent being 2.

Since the slope of the tangent
-X is 2, its equation may be written

y = 2 x + b. Substituting this value

of y in the equation of the parabola,

we have the equation

Since the line is to intersect the

curve in two coincident points, this

equation must have equal roots.

The condition for equal roots, by

FlG 98
37, is (4)2

- 4 (3) (2 6)
= 0, whence

we find 6 =
|-.

Therefore the required tangent is y = 2 z + f, or 6 x 3 y -f 2 = (fig. 98).

Ex. 2. Find the equation

of the tangent to the ellipse

x2
-f 4y2 = 4, the t siope of the

tangent being ^.

The equation of the tangent

is y = TfX + 6. Substituting this

value of y in the equation of the

ellipse, we have

X2 + 2 bx + (2 62 - 2) = 0.

FIG. 99

The condition that this equation

shall have equal roots is (2 6)2
- 4 (2 62 - 2) = 0, whence 6 = \/2.

In this case there are two tangents having the required slope ^ (fig. 99), the

equations of which are respectively y = -fa x + V2 and y \x V2,

or x - 2 y 2 V2 = 0.

By this same method the following formulas for a tangent with

known slope m may be derived :

1. The tangent to the parabola y
z = 4px is
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2. The tangents to the ellipse

x2
if+ = 1 are

v a* l&amp;gt;

2
.

3. The tangents to the hyperbola
~ = I are

89. It was stated in 87 that the result of the substitution is

in general a quadratic equation. In exceptional cases, however, the

resultant equation may be linear,

as in the first of the following

examples, or even impossible, as ^
in the second example.

Ex. 1. Consider

**-6y-10 = (1)

and 4 z2 - 25?/2 = ioo. (2)
Fie. 100

Substituting in (2) the value of y
from (1), we have the equation 40 x 200 = 0, whence x = 5. .*. y = 0, and

the straight line and the curve intersect in a single point (5, 0) (fig. 100).

Ex. 2. Consider

and

2s

4 x2 - 25 ?/2

(1)

(2)

FIG. 101

Substituting in (2) the value of y from (1), we have 100 = 0. Hut this

filiation is impossible. Hence the given equations are contradictory, and the

straight line and thr curve do not intersect (fig. 101).
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These exceptional cases, of which the above are illustrative

examples, may be regarded as limiting cases as follows :

If x
l
and x

2
are the roots of the resultant equation ax

2 + bx + c = Q,

2c

V u~ 4 ac

2c

2 a - b + V//-466C

Now as a = 0, the resultant equation approaches the linear equa-
/j

tion bx + c = 0. At the same time ^ == - and x
2
= oo . There

fore, if a is made to approach zero by changing the position of

either the straight line or the curve in the plane, the case in which

only one solution of the linear and the quadratic equations is

found is the limiting case of intersection of the straight line and

the curve as one point of intersection recedes indefinitely from

the origin.

If a = and 6 = 0, both x
l
and x

2
increase indefinitely. Hence

the case in which the linear and the quadratic equations are con

tradictory is the limiting case of intersection, as both points of

intersection recede indefinitely from the origin.

f(x. ^=0. Let

/ite y)
= o (i)

be a linear equation, and fn (x, y) (2)

be an equation of the nth degree where n
&amp;gt;

2. The degree of a

curve is defined as equal to the degree of its equation. Accord

ingly, this problem is to find the points of intersection of a straight

line and a curve of the nth degree where n
&amp;gt; 2, and the method

is the same as that of 87. The resultant equation, after sub

stitution from the linear equation, is, in general, of the ?ith degree,

and its solution is found by the methods of Chaps. IV and V.

The number of points of intersection will be the same as the

number of real roots of the resultant equation. Hence a straight
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line can intersect a curve of the nth degree in n points at most.

If the resultant equation has multiple roots, they correspond, in

general, to points of tangency of the straight line and the curve,

as in 88
;

and if the resultant

equation is of degree less than n, it

can be shown that the straight line is

the limiting position of one in which

one or more points of intersection

have been made to recede indefinitely.

Ex. 1. Find the points of intersection of

y = 2x (1)

and y
2 = x(x - 3)

2
. (2)

The resultant equation is

x[(x-3)2-4x] = 0,

or x [x
2 - 10 x + 9]

= 0.

Its roots
( 39) are the roots of x = and

x2 10x + 9 = 0, which are 0, 1, and 9.

The corresponding

v values of y are found

from (1) to be 0, 2,

and 18. Therefore the

points of intersection

are (0, 0), (1, 2), and

(9, 18) (fig. 102).

Ex. 2. Find the

points of intersection

of

-A

FIG, in:;

and y = x3
. (2)

FIG. 102

The resultant equa
tion is x3 3x 2=0.
One root is found

( 49) to be 2, and the depressed

equation is x2 + 2 x + 1 = 0. Its roots are equal, both

being 1. The corresponding values of y, found
from (1), are 8 and - 1. Therefore the points of

intersection are (2, 8) and (- 1,
-

1), the latter being
a point of taugency (fig. 103).
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Ex. 3. Find the points of intersection of

and 7/2 = x(x
2 -

12).

(1)

(2)

The resultant equation is x3 - 4x2 + 4x - 16 - 0, or (x
-

4) (z
2

-f 4) = 0,

the roots of which are 4 and 2 V 1. The corresponding values of y, found

(2

FIG. 104

from (1), are 4 and 4^4 V 1. The only real solution of equations (1) and

(2) being x = 4 and y 4, the straight line and the curve intersect in the single

point (4,
-

4) (fig. 104).

W-/fr0)=and/n (jc, 0)=0. Let

/.&amp;lt;*ji&amp;gt;~-o (i)

be an equation of the mth degree and

/.tey) = o (2)

be an equation of the nth degree, where m and n are both greater

than unity. The method is the same as in the preceding cases, i.e.

the elimination of either x or y, the solution of the resultant equa

tion, and the determination of the corresponding values of the

unknown quantity eliminated. The equation resulting from the
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elimination is, in general, of degree mn, and the number of simul

taneous solutions of the original equations is mn. If all these

solutions are real, the corresponding curves intersect at mn points.

If, however, any of these solutions are imaginary, or are alike, if

real, the corresponding curves will intersect at a number of points

less than mn. Hence, two curves of degrees m and n respectively

can intersect at mn points and no more.

No attempt at a complete discussion will be made, on account

of the unlimited number of cases which are possible. We shall

merely solve a few illustrative examples, noting any interesting

geometrical facts that may occur in the course of the solution.

Ex. 1. Find the points of intersection

of

2/
2 -2x=0 (1)

and x2
-f ?/

2 -8 = 0. (2)

Subtracting (1) from (2), we elimi

nate y, thereby obtaining the resultant

equation x2 + 2 x - 8 = 0, the roots of

which are 4 and 2. Substituting 2

and 4 in either (1) or (2), we find the

corresponding values of y to be 2 and

2 V 2. The real solutions of the

equations are accordingly x = 2, y = : 2,

and the corresponding curves intersect

at the points (2, 2) and (2, 2) (fig. 105).

From the figure it is also evident that

the value 4 for x must make y imaginary, as both curves lie entirely to the

v right of the line x = 4.

Ex. 2. Find the points of inter-

(i)/ section of

and
y&quot;

1 3 x = 0. (2)

Substituting in (2) the value of y
from (1), we have x4 27x = 0.

This equation may be written

x(x - 3)(x
2 + 3x + 0) = 0,

the roots of which are 0, 3, and

FIG. 100

FIG. 105

values of x in (1), we find the corre-

spending values of y to be 0, 3,
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and
3V-3

Therefore the real solutions of these equations are x = 0,

y = 0, and x = 3, y 3. If we had substituted the values of x in (2), we should

have at first seemed to find an additional real solution, y = 3 when x = 3.

But 3 for y makes x imaginary in (1), as no part of (1) is below the axis

of x. Geometrically, the line x = 3 intersects the curves (1) and (2) in a

common point and also intersects (2) in another point. Therefore the only
real solutions of these equations are the ones noted above, and the corre

sponding curves intersect at the two points (0, 0) and (3, 3) (fig. 106).

We see, moreover, that any results found must be tested by substitution in both

of the original equations.

The remaining two solutions of these equations found by letting x

_3 3 V- 3
are imaginary.

Ex. 3. Find the points of intersection of

2 x2 + 3 7/
2 = 35

and xy G.

(1)

(2)

Since these equations are homogeneous quadratic equations we place

y = mx (3)

and substitute for y in both (1) and (2). The results are 2 x2 + 3 w2x2 = 35 and

mx2
6, whence

35

and

2 + 3 m*

6

(4)

2 +

from which we find m ^ or |.

If m =
|, from (5) x = 2

;
and

from (3) the corresponding values

of y are 3.

If m = *, in like manner we find

FIG. 107
x = o and y = V.

Therefore the ellipse and the hyperbola intersect at the four points (2, 3),

(- 2,
-

3), (i Ve, Voj, (- % VG, - VG) (fig. 107).

It should be noted that (3) is the equation of a straight line through the

origin, so that when we solve (6) for m we determine the slopes of the straight

lines passing through the origin and intersecting the two given curves at their

common points.
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Ex. 4. Find the points of inter

section of

2y = *-2 (1)

and x* - 4 y
2 = 4. (2)

Eliminating y, we have

x2 - 2 x = 0,

the roots of which are and 2. ^
When x we find from either FIG. 108

(1) or (2) y = V
1, and when

x 2 either (1) or (2) reduces to y
2 = 0, whence y = 0. Therefore these

two curves are tangent at the point (2, 0) (fig. 108).

Y Ex. 5. Find the points of intersec-

tion of
x2 = 2 y (1)

and x3 - 3 xy + yz = 0. (2)

Eliminating ?/,
we have

which may be written x3
(x

3 -
4) = 0.

X The real roots of this equation are 4^

and 0, the latter being a triple root,

and the two imaginary roots are

Corresponding

values of y are found to be 2^, 0, and

2~3( 1 :f V 3). Therefore the

Fi&amp;lt;;. 10!) curves intersect at the two points

(4*, 2*) and (0, 0) (fig. 109).

At the point (0, 0) the parabola (1) is tangent to one part of (2) and passes

through another part of (2), and for this reason the point is to be regarded as a

triple point of intersection.

92. lfm (x, y}+kfn(x, y)= Q - lf we nave two expressions

fm (x, y} and fn (, y), we have seen in 86 that we can form the

equations of two curves by placing each of them separately equal

to zero, i.e.

/.(*&amp;gt;y)
= o, (i)

and * /M(*,y)
= 0. (2)

Let us now form the equation of a third curve by multiplying

fm(x &amp;gt; 2/)
ail( l /( y) uv ^ and ^ respectively, where / and / are
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any two quantities which are independent of both x and y, and

placing the sum of the products equal to zero, i.e.

(3)

This third curve has the following two important properties :

1. It passes through all points common to curves (1) and (2).

For the coordinates of any such points make fm (x, y)
= and

fn (
x

&amp;gt; y} 0&amp;gt;
since they satisfy (1) and (2). Hence they will

satisfy (3), i.e. be coordinates of a point of curve (3).

If either I or k is placed equal to zero, (3) reduces to either (2)

or (1) as a special case.

2. If neither I nor k is zero, it intersects curves (1) and (2)

at no other points than their common points. For the coordi

nates of any point on (1), for example, but not 011 (2), make

fm (
x

* y)
= an(l fn (

x
&amp;gt; y} different from zero. Hence they will not

satisfy (3), and the corresponding point cannot be a point of (3).

It follows that if (1) and (2) have no points in common, (3)

intersects neither (1) nor (2). If we treat (1) and (2) apart from

possible geometrical interpretation, however, it is evident that the

imaginary solutions of (1) and (2) are solutions of (3).

By assigning different values to I and k we may make (3) satisfy

another condition, as will be illustrated in the following examples :

Ex. 1. Find the equation of the straight line passing through the point of

intersection of the lines
Y

2x + y-l =
(1)

and + 2y-3 =x + 2y-3 =
(2)

and the point (1, 2).

l(2x+ y - 1) + k(x + 2

passes through the point of intersection of

(1) and (2), and is the equation of a straight

line, since it is an equation of the first

FIG. 110 degree. Since (3) is to pass through the point

(1, 2), (1, 2) must satisfy (3). Therefore

I (2 + 2 - 1) + k (1 + 4 - 3) = 0, or 3 I + 2 k = 0. Therefore, if we substitute

k = ^ I in (3) and simplify, we shall have the equation of the required line.

It is found to be & 4 y + 7 = (fig. 110).
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Ex. 2. Find the equation of a straight line passing through the point of

intersection of the lines

and

and parallel to the line

As in Ex. 1, the required line is

which may be written

z-2?/ + 1 =

x - .3 y + 3 = 0,

k)x + (-2l-

Since this line is to be parallel to (3),

l + k =
~ 2 *~

2 3

(1)

(2)

(8)

(4)

( 28, 2), whence

&amp;gt;
= /. Substituting this value of k in (4) and simplifying, we have as our

required line 2x + 3y-12 =
(fig. 111).

FIG. Ill

Both of these examples could also have been solved by finding the point of

intersection of the given lines and then, by the methods of Chap. Ill, passing
the line through the point subject to the given condition.

93. In the two examples of the last article both equations were
of the first degree. In this article we will solve some examples
in which one or both equations are of the second degree.
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Ex. 1. Find the equation of a circle determined by the points of intersec

tion of the straight line

2x-y-C=0 (1)

and the circle

z2 + y2 - 6z - (\y -7 =
(2)

and the point (1, 1) (fig. 112).

The equation

-Gz-6?/-7) = (3)

is the equation of a circle, since the

coefficients of z2 and y2 are equal ;

and since it passes through the points
of intersection of (1) and (2), it only

. 112 remains to choose I and k so that it

shall pass through the point (1, 1).

Substituting (1,
-

1) in (3), we have 3 I + 5 k = 0, whence k = ~. Accordingly,
the equation (3) of the required circle, in simplified form, is

3z2 - 28z - 9= 0.

Ex. 2. Find an equation representing the system of circles passing through
the points of intersection of the circles

and z2 + 2/
2 - 4 z - 2 y - 11 =

(fig. 113).

The equation

is the required equation, for by its form it is

the equation of a circle, and passes through
the two points common to (1) and (2). By
assigning different values to I and k we can

make (3) represent any, and hence every, FlG -Qg
circle passing through the common points of

(1) and (2). In other words, it represents the required system of circles.

In particular, if I and k are assigned such values as to make the coefficients

of z2 and ?/
2

vanish, i.e. k = I in this example, the equation reduces to

2 z + y + 1 = 0.
(4)

But this is the equation of a straight line, and since it must, from the way in

which it was formed, pass through the points common to the two circles, it

must be the equation of their common chord.
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In general, if x2 + y
2 + 2 G& + 2 FlV + Ci = 0, (5)

z2 + y
2 + 2 G.2x + 2 F2y + C2 = 0, (6)

are the equations of any two circles, we derive the third equation

2(6?!
- G)x + 2(Fi - F2)y + (d - C2 )

- (7)

by assuming k = I.

If the circles intersect, (7) is the equation of their common chord
;
but if

they do not intersect, (7) is called their radical axis. It may easily be proved

to be perpendicular to the line of centers and is the locus of points from

which equal tangents, one to each circle, may be drawn.

PROBLEMS

Find where and how the straight line intersects the curve of the second

degree in each of the following cases :

1. 2x + 3y = 5, 4x2 + O?/ -f 16 X - 18 y - 11 = 0.

2. x - y + 1 = 0, (x + 2)2
- 4 y = 0.

3. x _ 2 y + 4 = 0, 2 x2 - y
2 + 8 x + 2 y + 13 = 0.

4. y - 2 x = 0, x2 + y2 - x + 3 y = 0.

5. x _ 2 y + 4 = 0, f&amp;gt;x
2 - 4 ?/ + 20 = 0.

6. y = 8 x -
r&amp;gt;,

2 x2 + xy -. 3 y
2 + 6x + 4 y + 4 = 0.

7. 2 x + 3 y - (&amp;gt;
= 0, x2 + 4 y*

- 4 = 0.

8. x + y - 4 = 0, x2 - 2xy + ^ - 20 = 0.

9. Find the length of the chord of the circle x2 + 2/
2 + 8x-4?/ + 10 =

cut from the line 2x 3 y + 3 = 0.

10. Find the tangent to the curve x2 +-0x-2y + 5 = with slope 2.

11. For what value of p will the parabola y- 4px be tangent to the line

y_8x + l = 0?

12. Find the tangents to the ellipse 4 x2
-f y2 = 36 which are parallel to the

line joining the positive ends of the axes.

13. Find the tangent to the curve &2x2 + a2
?/
2 + 2 a&2x = perpendicular to

the line ax + by = ab.

14. Prove that the line y = mx + 2 c Vm is always tangent to the hyper-

/ c _\
bola xy = c2

,
and that the point of contact is I 7= c vm )

15. Find the point of contact of the tangent to the curve

x2_4 y
2 + 2z&amp;gt;/-2x + 4?/ = with slope .

16. Find the points of intersection of the line Sy - 25 x = and the curve

z2
*/
2 + 3(} = 4y2

.

17. Find the points of intersection of the line y = 2x - 3 and the curve
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18. Find the points of intersection of the line x 2 y + 2 = and the cissoid

x(x
2 + y2

)
= 4?/

2
.

19. Find the points of intersection of the line x 2y and the curve
1C y2 = 4 x4 - z6 .

20. Find the points of intersection of the line y = 2 x 2 and the cissoid

x (x
2 + 7/

2
)
= 4 2/2.

21. Find the points of intersection of the line y = mx and the cissoid

x (x
2 + y2

)
= 2 ay 2

.

22. Find the points of intersection of the line x y 1 = and the witch

8
y =

x2 + 4

Find the points of intersection of the following pairs of curves :

23. 4?/
2 = x2

(x + l), ?y
2 = x(x + l)

2
.

24. y
2 = 12 x, y2 = (x + 2) (x

-
3)

2
.

25. x2 =
2/
2

(7/ + 2), x2 - (y
- iy(y + 1).

26. Find the points of intersection of the parabolas y2 = 4 ax + 4 a2 and

y2 = - 4 6x + 4 62 .

27. Find the points of intersection of the parabola x2 = 4 ay and the witch
8 a3

?/ =- .

x2 + 4 a2

28. Find the points of intersection of the cissoid y2 =_ and the

parabola y2 = 4 ax.
2 a x

29. Find the points of intersection of the cissoid y2 = --- and the circle

x2 + y2 - 4 ax = 0.
2 a - x

30. Find the points of intersection of the hyperbola xy = 2 a2 and the witch

8 a3

y ~x2 + 4a2

31. Find the points of intersection of the witch y =--- and the cissoid

32. Find the points of intersection of the circle x2 + y
2 = 5 a2 and the witch

33. Find the equation of a straight line through the point of intersection

of 7x - y - 18 = (1) and x - 3 y - 14 = (2) and the point (- 2, 1), without

finding the point of intersection of (1) and (2).

34. Find the equation of a straight line through the point of intersection of

2x-y + 5 = 0(l) and x - 4y + 13 = (2) and parallel to the line 2x + 5?/ + 2= 0,

without finding the point of intersection of (1) and (2).
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35. Find the equation of a straight lino through the point of intersection

of 4x y 5 = (1) and 6 x 4y 5 = (2) and perpendicular to the line

x 3 ?/ + 1 = 0, without finding the point of intersection of (1) and (2).

36. A circle passes through the origin of coordinates and the points of

intersection of the circle z2 + y2 = 14 and the line 2z + 3?/ + 5 = 0. Find
its equation.

37. Prove that (1, 1) is a point of the common chord of the two circles

X2 + yi _ 4 x - o anci X2 + y
2 _ 4 y

_
o.

38. Find the circle passing through (1, 3) and the points of intersection

of the two circles z2 + ?/
2 - 4 z - 4y - 8 = and x2 + y- + x + y - 4 = 0.

39. Find a curve of the second degree passing through (1, 1) and the points
of intersection of the curves 3x2 + 5y2 - 15 = and 2z2 - 3y2 - 6 = 0, and
tell what kind of a curve it is.

40. Prove that a parabola can be passed through the points of intersection

of the curves z2 -2?/2 -z + 2?/-l = and 3z2 + 4^2 + 2z + 2 = 0.

41. The center of a circle is at the vertex A of a parabola y2 = 4px, and its

diameter is 3AF, F being the focus of the parabola. Prove that their common
chord bisects AF.

42. Show that the circle described on any focal radius of a parabola as

diameter is tangent to the tangent at the vertex of the parabola.

43. Show that the circle described on any focal chord of a parabola as

a diameter is tangent to the directrix of the parabola.

44. If a circle is described from a focus of an hyperbola as center, with its

radius equal to half the conjugate axis, prove that it will touch the asymptotes
at the points where they intersect the corresponding directrix.



CHAPTEE IX

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

94. Theorems on limits. In operations with limits the follow

ing propositions are of importance.

1. The limit of the sum of a finite number of variables is equal

to the sum of the limits of the variables.

We will prove the theorem for three variables
;
the proof is

easily extended to any number of variables.

Let X, Y, and Z be three variables, such that IAmX= A,

lim Y=B, Lim Z = C. From the definition of limit
( 53) we

may write X= A + a, Y = B + b, Z = C + c, where a, It, and c are

three quantities each of which becomes and remains numerically

less than any assigned quantity as the variables approach their

limits.

Adding, we have

Now if e is any assigned quantity, however small, we may

make a, b, and c each numerically less than &amp;gt; so that a + b + c is

o

numerically less than e. Then the difference between X -f Y+ Z
and A + B + C becomes and remains less than e, that is,

lim X+Y+ Z = A +B+C= Lim X+ Lim Y+ Lim Z.

2. The limit of the product of a finite number of variables is

equal to the product of the limits of the variables.

Consider first two variables X and Y such that Lim X= A and

Lim Y= B. As before, we have X= A + a and Y= B + b. Hence

XY = AB + IA + aB + ab.

178
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Now we may make a and I so small that IA, aB, and ab are

each less than &amp;gt; where e is any assigned quantity, no matter how
small. Hence

Lim AT = AB = (Lim X) (Lim Y).

Consider now three variables A
, Y, Z. Place AT = /&quot;. Then,

as just proved,
Lim tf2T - (Lim U) (Lim Z) ;

that is, Lim XYZ =
(
Lim AT) (Lim Z)

= (Lim X) (Lim F) (Lim Z).

Similarly the theorem may be proved for any finite number of

variables.

3. The limit of a constant times a variable is equal to the con

stant times the limit of the variable.

The proof is left for the student.

4. The limit of the quotient of two variables is equal to the quo
tient of the limits of the variables, provided the limit of the divisor

is not zero.

Let X and Y be two variables such that Lim X= A and
LimY= B. Then, as before, X= A + a, Y = B + b.

X A + a X A A + a A aB bAHence - = - and a =
Y B + b Y B B + b B B2 + bB

Now the fraction on the right of this equation may be made
less than any assigned quantity by taking a and b sufficiently
small.

TT T . X A Lim X
Hence Lnn = =

Y B Lim Y

The proof assumes that B is not zero.

95. Theorems on derivatives. The definitions of increment,

continuity, and derivative given in Chap. V are perfectly general,

although they are there applied only to algebraic polynomials.
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In order to extend the process of differentiation to other func

tions, we shall need the following theorems :

1. The derivative of a function plus a constant is equal to the

derivative of the function.

Let u be a function of x which can be differentiated, let c be a

constant, and place _ ,

Then if x is increased by an increment A#, u is increased by
an increment &u, and c is unchanged. Hence the value of y
becomes u + Aw + c.

Whence Ay = (u + Aw + c) (u + c)
= Aw.

Therefore Ay = A,
A^C A#

and, taking the limit of each side of this equation,

dy _ du

Ex. = 4xa + 3

rfx dx

2. 77^ derivative of a constant times a function is equal to tlie

constant times the derivative of the function.

Let u be a function of x which can be differentiated, let c be a

constant, and place y LLI.

Give x an increment A#, and let Aw and Ay be the correspond

ing increments of u and y. Then

Ay = c (u + Aw) CM = cAw.

Ay A2
Hence - = c

A^ A#

^V ^j y\ ^
/

and Lim = c Lim -- (by theorem 2, 94)
A _X

(fy du
Therefore = c &amp;gt;

ewe &amp;lt;^ic

bv the definition of a derivative.
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Ex. y = f&amp;gt; (z
:l

4- 3 x2
4- 1),

dJ = 5 (x
8 4 3x2 + 1)

= 5(3x2 4- Ox) = 15(x
2 + 2x).

dx dx

3. The derivative of the sum of a finite number of functions

is equal to the sum of the derivatives of the functions.

Let u, v, and w be three functions of x which can be differen

tiated, and let
y = u + v + w.

Give x an increment Ax, and let the corresponding increments

of u
y v, iv, and y be Aw, Av, Aw, and Ay. Then

Ay = (M 4- AM 4- v + Ar 4- w 4- Aw) (u 4- r + w)

= AM 4- Av 4- Aw ;

A-y A?/. A ?
1 Aw

whence - = ---h ---
1-

Aa; A,-*.- Aa; Ay

Now let Ax approach zero. By theorem 1, 94,

T . Ay T . Au -. At T . Aw .

Lim -^ = Lim -- 4- lim ---h Lim -
,

A# A,/ Ax Ax

that is, by the definition of a derivative,

dy _ du dv dw

dx dx dx dx

The proof is evidently applicable to any finite number of

functions.

Ex. y = x4 - 3x3 4 2 x2 - 7 x,

^ = 4 x3

dx

4. TAe derivative of the product of a finite number of functions
is equal to the sum of the products obtained by multiplying the

derivative of each factor by all the other factors.

Let u and v be two functions of x which can be differentiated,

and let
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Give x an increment Ax, and let the corresponding increments

of w, v, and y be Aw, Av, and Ay.

Then Ay = (w + Aw) (v + Av) uv

A?/ Av Aw Au
and 2- = w \- v ---h - - At?.

Ax A# Ax Ax

If now Ax approaches zero, we have

T . Ay T . A# T . Aw T . Aw T .

Lim - = w Lim ---
\- v Lim - + Lim - Lim At?.

Ax Ax Ax Ax , Q ,.

Aw &amp;lt;iw , Aw t?w . Av dv
But Lim - = -^

&amp;gt; Lim - = -
&amp;gt; Lim - = --

&amp;gt; and Lim Av =
;Ax dx Ax dx Ax cue

c?w c?v du
therefore -^- u--\- v -

dx dx dx

Again, let y = uvw.

Eegarding uv as one function and applying the result already

obtained, we have

dy dw d (uv}
-f.

= uv - + w^ L

dx dx dx

dw [ dv du\= uv h w \u + v -\
dx dx axj

dw dv du= uv- h uw + vw -
dx dx dx

The proof is clearly applicable to any finite number of factors.

Ex. y = 3x

= (3z- 5)(x
2 + 1)(3

2
) + (3x- 5)x

3
(2x) + (x

2 + l)x
3
(3)

= (18 x
3 - 25x2 + 12 x - 15)x

2
.

5. The derivative of a fraction is equal to the denominator

times the derivative of the numerator minus the numerator times

the derivative of the denominator, all divided by the square of

the denominator.
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?/

Let y = where u and v are two functions of x which can be
v

differentiated. Let Ax, Au, Av, and Ay be as usual. Then

4- An M v Aw M Av

and

Ay =

Ay

v + Av v v*+ v Av

v u-

A# 4-

Now let Ax approach zero. By 94,

T . Aw ... . Av
v Lim --- u Lim

Ay Ax Ax
Lim T~ =-5

-
r^ *
-

Ax v + v Lim Av

du dv
v--- u

ay ax ax
whence ^= 7-

x2 - 1

dy _ (x
2 + 1) (2 a;)

-
(x

2 -
1) 2 x _ 4x

dx~ (a + I)
2

~
(x

2 + l)
2

6. 7/
1

y is a function of x, then x is a function of y, and the

derivative of x with respect to y is the reciprocal of the derivative

of y with respect to x.

Let Ax and Ay be corresponding increments of x and y. Then

Ax

whence

that is,

7. If y is a function of u and u is a function of x, then y is

a I a action of x, and the derivative of y with respect to x is equal

t&amp;lt;&amp;gt; the. derivative of y with respect to u times the derivative of u

with respect to x.
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An increment Ac determines an increment A?t, and this in turn

determines an increment Ay. Then evidently

Ay Ay Aw
A^ Az^ A#

T . Ay T . A?/ T . A^ .

whence Lim = Lim Lim &amp;gt;

A^c Aw A#

f?V ffo/ ffot

that is, -J
L =

-J
L Tdx du dx

Ex. y = w2 + 3 u + 1, where u = ,

X X X&quot;

The same result is obtained by substituting in the expression for y the value

of u in terms of x, and then differentiating.

96. Formulas. The formulas proved in the previous article are :

d (u + c] _ du

dx dx

d (cu) du

d(u + v) _ du
dv_

dx dx dx

d (uv] dv du
-j-

2 = u + v &amp;gt; (4)dx dx dx

7 /u\ du dv
d(-) v- u
\v/ dx dx _.

dx 1

dx

dx du dx

dy _ du

dx dx

du

Formula (8) is a combination of (6) and (7).
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97. Derivative of un
. If u is any function of x which can be

differentiated and n is any real constant, then

dx dx

To prove this formula we shall distinguish four cases :

1. When n is a positive integer.

dx du dx
//7/= nu&quot; 1

te (
by(i). 58)

2. When n is a positive rational fraction.

P
Let n = where p and q are positive integers, and place

p

By raising both sides of this equation to the gth power we have

Here we have two functions of x which are equal for all values

of x. If we give x an increment A#, we have

A
(//&quot;)

= A (w),

d(y&quot;) d(u p
]and therefore vy - -

,

dx dx

, dy ,
du

whence qy pu &amp;gt;

dx dx

since p and q are positive integers. Substituting the value of y
and dividing, we have

dx q dx

Hence in this case also

d(u
n

} _ ,,- }
du

dx dx
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3. When n is a negative rational number.

Let n = m, where m is a positive number, and place

y = u
- = .

1C&quot;

_d(u
m

)

Then |U_^_ (by (5), 96)
Cvt// tv

n 1
&amp;lt;^

mzt&quot;
1

&quot; 1

u

dx
(by 1 and 2)

cw;

Hence in this case also

.

dx dx

4. When n is an irrational number.

The formula is true in this case also, but the proof will not be given.

As a particular case of this formula, it appears that 1, 58, is

true for all real values of n.

Ex.1. y = (x
3 + 4x2 - 5z + 7)

3
,

^ = 3(x
3 + 4x2 - 5x +7) 2

(x
3 + 4x2 - 5x + 7)

dx dx

= 3 (3 x
2 + 8 x - 5) (x

3 + 4 x2 - 5 x + 7)
2

. (by 58)

Ex.2, y = &amp;gt;Xz
2 + = x* + x- 3

,

(by (3), 96)

Ex.3, y = (x + l)Vx2 + 1,

* i

(x2 + 1)
^J) (by(4), 00)

= (x + 1) H(x2 + 1)- 2x] + (x
2

= xjx_ 1) + 4

(x
2 + 1)*

_ 2 x2 + x + 1

Vx2 + l
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Ex.4. =
8

+ !/

dy _ 1 / x \~ * d I x \

dx
~

3W + I/ dx U* + I/

_ 1 /z3 + iy
1 - 2z3

1 o ^3

98. Higher derivatives. It has been noted already ( 62) that

the derivative of the derivative of a function is called the second
derivative of the function. Similarly the derivative of the second
derivative is called the third derivative, and so on. The succes
sive derivatives are commonly indicated by the following notation.

V = f(x)&amp;gt;

the original function,

=f t

(x), the first derivative,

d idy\ d?y~ = ~ =
** secon(* derivative,

d /d2

y\ _ d*y

~dx dtf ~d^~ f (X &amp;gt;&amp;gt;

the third

derivative.

It is noted in 22 that f(a) denotes the value of f(x) when
x = a - Similarly f (a), f&quot;(a), /&quot; (a), are used to denote the values
of / (

-
)&amp;gt; f&quot;(z), f &quot;(x) respectively when x = a. It is to be empha

sized that the differentiation is to be carried out before the sub
stitution of the value of x.

Ex. If /(z) ^-I-I, find/&quot;(0).

I)

. .

/&quot;(O)
= 2.
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99. Differentiation of implicit algebraic functions. Consider

any equation of the form

pQy
n

+Piy
n - l

+p*y
n

~*+p*y
n~*+ - - +pn-iV+Pn = o, (i)

where n is a positive integer, and where some or all of the coeffi

cients p (), p 1}
-

-,pn ,
are polynomials in x. By means of this equa

tion, if a value of x is given, values of y are determined. For if a

numerical value is given to x, the coefficients become numerical

and the equation is of the kind discussed in Chap. IV, which has

been shown always to have n roots. Hence (1) defines y as a

function of x. This is the most general form of an algebraic

function. When (1)
can be solved for y, so that y is expressed in

terms of x by means of radical signs, y is an explicit algebraic func

tion. When (1) is not solved for y, y is an implicit algebraic function.

For example,

3 Xs 4 xy + 5 y
1

6 x + 7 y 8 = 0,

which may be written

5 f + (7_ 4 X
) y + (3 ^ _ 6 x _ g

)
=

0?

defines y as an implicit function of x.

If the equation is solved for y, giving

- 7 + 4 x V209 + 64 x - 44 y?
y = ,

10

y is expressed as an explicit function of x.

It may be shown by advanced methods that y defined by (1)

is a continuous function of x and has a derivative with respect

to x. Assuming this, it is possible to find the derivative without

solving (1), for we have in (1) a function of x which is always

equal to zero. Hence its derivative is zero. The derivative may
be found by use of the formulas of the previous article, as shown

in the examples.

Ex. 1. Given x2 + ?/
2 = 5.

Then &quot;(&quot; + ^ = 0,
dx

dy
that is, 2ai+2y = 0;

ax

dy x
whence =

dx y
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The derivative may also be found by solving the equation for y. Then

y = V5 - x2
,

dx

Ex. 2. Given ?/
3 - xy - I = 0.

Then *M_*M
dx dx

Hence
dx dx

and
dx 3 1/

2 - x

The second derivative may be found by differentiating the result thus

obtained.

Ex. 3. If x2 + y2 = 5, we have found = - - .

dx y

Therefore f? = ~ f (*)da;2 (fa \y/

dy

Ex. 4. If y
s - xy - 1 = 0, we have found = y

dx 3 y1 x

dy
(3 y

2 -
x)

- y
d2y dx

Then
dx2

(
3 y

a _

dx

(37/-X)-
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100. Tangents. It has been shown in 59 that the tangent
to a curve y =f(x) at a point (xlt y^ is

where /
-j-

\ denotes the value of & at^ y^ We will ly thig
\ctxi^ cLdC

to some of the curves of Chap. VII, obtaining results for future
reference.

Ex. 1. Consider the circle Ax2 + Ai/
2 + 2 Gx + 2 Fy + C - 0.

Differentiating, we have

whence dy_ _ Ax + G
dx Ay + F

Hence the equation of the tangent is

that is,

A &i + ^

^4xix - ^Ix/
8 + ^l?/i?/

- Ay* + 6?x - (?Xi + Fy - Fy x
= 0.

This equation may be simplified by adding to it the identity

Ax? + Ay* + 2 Gx l + 2Fyi + (7 = 0,

which follows from the fact that (x^ yi ) is on the circle. There results

+ Ayiy + G (x + a;^ + F(y + yj) + C = 0.

This result is easily remembered from its resemblance to the equation of the
circle.

The proofs of the next three examples are left to the student.

Ex. 2. The tangent to the ellipse - + ^ = 1 is~ + y-^L = 1
a2 62 a 2 6-

2 o

Ex. 3. The tangent to the hyperbola - y = 1 is ?1_ _^ - l
a2 62 ifi 62

Ex. 4. The tangent to the parabola y2 = 4 px is yiy = 2 p (x + a^).
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Kx. 5. Consider the witch x-y + 4 a2y - 8 a* = 0.

Differentiating, we have 2 xy + x2

Hence the equation of the tangent is

101

+ 4 a2 - = 0.
dx

that is,

But

xfy + 4 a?y -

2 + 4a2V

-f 2 XiyiX 3 xfyi = 0.

z-Vi-f 4a2y 1 -8a* = 0.

Hence the equation of the tangent may be written

2 xiyix + (x
2 + 4 a2

) y + 8 a%i - 24 a3 = 0.

Ex. 6. In the same manner the tangent to the cissoid x3 + xy- 2 ay2 = at

the point (#1, ?/i)
is found to be

(3 x
2 + y

2
)
x + (2 xiyi

- 4 ayi) y - 2 ay? = 0.

101. Normals. The normal to a curve at any point is the

straight line perpendicular to the tangent at that point. To find

its equation first find the slope of the tangent and then apply

problem 3, 29.

x2 v2

Ex. 1. For the ellipse
--

1-
= 1 the slope of the tangent at (xi, y\) is

tffc,
a2 bZ

Hance the equation of the normal at (xi, 7/1) is

which is

a2
/!X

if y = o,

a

(a

Hence in fig. 114

NF=OF-ON= ae -

F N =F O + ON=ae

Then

F N
NF a -

exl

FPl

( 73)
FIG. 114

and therefore, by plane geometry, the angle F P\F is bisected by JVPi ;
that is,

in an ellipse the normal bisects the angle between the focal radii drawn to the

point of contact.
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102. Maxima and minima. The discussion of 61 applies here

without change.

Ex. 1. A lever with the fulcrum at one end A (fig. 115) is to be used to lift a

weight w applied at a distance a from the

fulcrum by means of a force applied at

the other end B. The lever weighing n

units per unit of length, required the

length of the lever that the force required

may be a minimum.
Let x = AB, the length of the lever, 6

the angle it makes with the horizontal,

FlG n^ and F the force applied at B. Then the

weight of the lever is nx, and may be

considered as applied at (7, the middle point of AB, By the law of the lever,

Fx cos 6 = wa cos 6 + nx ( - 1 cos 0,

wa nx
Jf = H

Then

and

dF wa n

eta

= ~
&quot;y*

+
2

d2F 2wa

2wa dF . &amp;lt;PF AWhen x = \ ,
= and

&amp;gt; 0.
\ n dx d&

Therefore this is the required length.

Ex. 2. Light travels from a point A in one medium to a point B in another,
the two media being separated by a plane surface. If the velocity in the

first medium is v\ and in the second v2 ,

required the path in order that the time

of propagation from A to B shall be a

minimum.
It is evident that the path must lie in the

plane through A and B perpendicular to the

plane separating the two media, and that the

path will be a straight line in each medium.

We have, then, fig. 116, where MN- represents

the intersection of the plane of the motion

and the plane separating the two media, and

A CB represents the path. pIG
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Let MA = a, NB = 6, MN = c, and MC = x. Then AC - Va2 + x2 and

CB = V(c x)
2 + 62. The time of propagation from A to 5 is therefore*

Va2 + x2 V(c x)
2 + 62

/7/ ^
whence

I

and

=
t&amp;gt;i

v a2 + x2
2 v(fl

-
x)

2 + 62

a2 62

x2
)^ v2 [(c

-
x)

2 + ft
2
]*

Since is always positive, the time is a minimum when

x2 u2 V(c - x)
2

- 0. (1)

This equation may be solved for x, but it is more instructive to proceed as

follows :

x MC
sin 0.

Then equation (1) is

sin
\f&amp;gt;

Now is the angle made by AC with the normal at C and is called the angle

of incidence, and
\f/

is the angle made by CB with the normal at C and is

called the angle of refraction. Hence the time of propagation is a minimum
when the sine of the angle of incidence is to the sine of the angle of refraction

as the velocity of the light in the first medium is to the velocity in the second

medium. This is, in fact, the law according to which light is refracted.

A case of a maximum or a minimum value sometimes occurs

when the derivative is infinite and consequently discontinuous.

Therefore the case is not included in the previous discussions.

In praptice the infinite values of the derivative may be examined

by the rule of 61.

Ex. 3. y = v^x - 1) (x
-

2)
2 = (x

-
1)* (x

-
2)*,

^ = 1
(x
-

I)
!
(x
-

2)3 + ?
(x
-

1)4 (x
-

2)-*

.
= i

(x
-

l)-I(x
-

2)-4[(x
-

2) + 2(x - 1)]

3x-4

3\/(x- l)
2 (z-2)
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r =0 when x =
-|,

and changes from + to as x passes through f-

Therefore cc = *- gives a maxi
mum value to the function.

co when x = 1 or 2. When
dx j,.

FIG. 117

d2

y

dx
does not change sign.

When x = 2 - changes from
dx

to -{- . Then x = 2 gives a mini

mum value of the function. Its

graph is in fig. 117.

103. Point of inflection.

A point of inflection was

defined in 62 as a point

at which the curve changes
from being concave upward
to concave downward, or

vice versa; and the condition

for it is that ^ changes sign. Hence only those values of x which
72 dx

make -
2
zero or infinity need be considered in the examination of

emu

a curve for points of inflection.

Ex. 1. Find the points of inflection of the witch y = --
x2 + 4 a2

1(3 a* (3x2 -4 a2
)T, ,.. ,. .. dy

By differentiation, - =
dx (x- + 4 a2

)
2

(x
2 + 4 a2

)

3

It is evident that - = if x = ^ , and that no real finite value of x

makes - infinite.
V3

We have, then, to consider only the points for which x = =.

9^ V^

Writing - in the form

2 a \ / a\/x _
/\ Vs

,
we see that if x &amp;lt;

-
V3

d2
y 2 a 2 a d-y 2 a d2v-

&amp;gt; ;
if ---

&amp;lt; x &amp;lt; -, ^-
&amp;lt;

;
and if x&amp;gt;

-
, &amp;gt;

0.
dx2 Vi V3 dx2 V3 dx2

Hence the curve is concave downward between the two points for which

x = -- and x = -
respectively, and concave upward at all other points.

v8 V3
2

Then there are two points of inflection (fig. 90, 82) for which x = - - The

ordinates are found from the equation to be --
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Ex. 2. Kxamiiic (In- curve y = (x 2)^ for points of inflection.

1 d2y 2
liy differentiation, =

dx dx2
9(3-2)*

It is evident that = oo if x = 2, and that no value of x makes ^ =
d*

dx*
d*

dx*

If z
&amp;lt; 2,

~
&amp;gt;

;
and if x

&amp;gt; 2,
-^

&amp;lt;
0. Hence the point for which x = 2 is a

point of inflection, since on the left

of that point the curve is concave

upward and on the right of that

point it is concave downward (%.

118). The ordinate of this point isO.

FIG. 118

104. Limit of ratio of arc

to chord. The student is fa

miliar with the determination

of the length of the circumference of a circle as the limit of the

length of the perimeter of an inscribed regular polygon. So, in

general, if the length of an arc of any curve is required, a broken

line connecting the ends of the arc is constructed by drawing a

series of chords to the curve as in
fig. 119. Then the length of

the curve is defined as the limit of the sum of the lengths of

these chords as each approaches zero, and as their number there

fore increases without limit. The
manner in which this limit is ob

tained is a question of the Integral

Calculus, and will not be taken up
here.

We may use the definition, how

ever, to find the limit of the ratio of

the length of an arc of any curve

to the length of its chord, as the

Length of the arc approaches zero as a limit, i.e. as the ends of the

arc approach each other along the curve.

Accordingly, let P^ and Pz (fig. 120) be any two points of a curve,

P^ the chord joining them, and 7JT and P
2
T the tangents to the

curve at those points respectively. We assume that the arc
PJ&amp;gt;

lies entirely on one side of the chord 1\PV and is included between

FIG. 119
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the tangents. These conditions can in general be met by taking
the points P1

and 7 near enough together. Then it follows from

T the definition that

perpendicular from

T to
JFJ7J, and if the angles

are denoted by a and /3 respectively, then P
1
2J = P

1
R sec a,

and T7 = sec ft = PP~P sec 3.

sec a + (P^-P^R) sec/3

=
7J/J sec /3 + 7J/ (sec a - sec

/S),

^j _ P^ sec /3 4- %R (sec a - sec /3)~
-= sec ft + -^ (sec a sec ).

Now, as /J and P2 approach each other along the curve, a and ft

both approach zero as a limit, whence seco: and sec/3 approach
T&amp;gt; T}

unity as a limit
;
and since -* is always less than unity, it fol-

PT -\r TP
lows that the limit of -= is unity.

arc PP,.
Hence * 2

lies between unity and a quantity approaching
P.P.

arc -

unity as a limit, and therefore the limit of ^ is unity, i.e.

the limit of the ratio of an arc to its chord as the arc approaches
zero as a limit is unity.

105. The derivatives and -* On any given curve let the
as as

distance from some fixed initial point measured along the curve to

any point P be denoted by s, where s is positive if P lies in one
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direction from the initial point, and negative if P lies in the

opposite direction. Tl*e choice of the positive direction is purely

arbitrary. We shall take as the posi

tive direction of the tangent that

which shows the positive direction of

the curve, and shall denote the angle

between the positive direction of OX
and the positive direction of the tan

gent by c/&amp;gt;.

Now for a fixed curve and a fixed

initial point, the position of a point P /_

is determined if s is given. Hence x /
and y, the coordinates of P, are func- ^ IG 121

tions of s, which in general are con

tinuous and may be differentiated. We will now show that

dx

ds
= cos

dy = sin cf&amp;gt;.

ds

Let arc PQ = As
(fig. 121), where P and Q are so chosen that As

is positive. Then PR = A# and RQ = Ay, and

Ax _ PR _ chord PQ PR
As

~~

arc PQ arc PC chord PQ

chord PQ
arc PC

cos RPQ.

Ay _ RQ _ chord PQ RQ
As arc PC arc PC chord PQ

chord

arc PQ
sin RPQ.

Taking the limit, we have, since Lim - -- = 1 and

dx
- = cos

ds

dy
-f = sin
ds
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From (1) we obtain by division

ds dy
tan = =

-f-
&amp;gt;

(2)dx dx

d$

by (8), 96. This agrees with 59.

Again from (1), by squaring each equation and adding them,

we have
2

=1. (3)

2
/ fl &amp;lt;i\^

By multiplying (3) by
( y- )

and again by ( )
and applying

(7), 96, we have

1 +

and
dy

/&v
(dy)

(4)

(5)

These last are the familiar trigonometric formulas

1 + tan
2

$ = sec
2

&amp;lt;,

cot d&amp;gt; 4~ 1 cosec &amp;lt;f&amp;gt;.

For convenience we have used

a figure in which &amp;lt; is acute. But

as s increases
(f) may be in any

v
&amp;gt; quadrant. This may be seen on

the circle of fig. 122.

The student may verify that

formulas (l)-(5) are true in all

cases.

106. Velocity. An important application of the conception of

a derivative is found in the definitions of the velocity of a moving

body.

FIG. 122
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If a body moves so that the space traversed is proportional to

the time, the motion is said to be uniform, and the velocity is the

quotient of the space divided by the time, and is therefore con

stant. If t represents time, s the space traversed in the time t,

c

and v the velocity, then for uniform motion v = -- When the
v

space is not proportional to the time but is some other function

of it, the quotient of the space divided by the time is called the

mean or average velocity during the time. Thus if a railroad

train goes 200 miles in 5 hours, the mean velocity is 40 miles

an hour. So, in general, if a body traverses a small increment of

As
space As in a small increment of time A, the quotient

- is the

mean velocity in the time A. The mean velocity depends upon

the value of A. To obtain a definition of the velocity at the

beginning of the interval Atf, we think of AZ, and consequently of

As
As, as approaching zero as a limit, and take the limit of as the

velocity v
;
that is,

As ds
v = Lim = -- -

A dt

We note that if v &amp;gt; 0, an increase of time corresponds to an

increase of s
;
while if v &amp;lt; 0, an increase of time causes a decrease

of s. Consequently, the velocity is positive when the body moves

in the direction in which s is measured, and negative if it moves

in the opposite direction.

Ex. 1. If a body is thrown up from the earth with an initial velocity of 100 ft.

per second, the space traversed, measured upward, is given by the equation

s = 100 1 - 10 P.

Then v =
^|
= 100-32.

\Ylu MI t &amp;lt; 3, &amp;gt;0 and when t &amp;gt; 3|, u &amp;lt;0. Hence the body rises for 3 seconds,

and then falls. The highest point reached is 100 (3) - 1(5 (3 J)
2 =

1&6J.

Ex. 2. A man standing on a wharf 20 ft. above the water pulls in a rope

attached to a boat at the uniform rate of 3 ft. per second. Required the

velocity with which the boat approaches the wharf.
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Let A (fig. 123) be the position of the man and C that of the boat. Let

AB = h = 20, A C = s, and BC - x.

We wish to find ~.
dt

Now

therefore

x =

dx

dt

dt

s2 - 400 dt

But, by hypothesis, s is decreasing at the rate of 3 ft. per second
; therefore

dt =
3, and the required expression for the velocity of the boat is

dx

~dt

-3s

To express this in terms of the time we need to know the value of s when
t = 0. Suppose this to be s

;
then

and

s = s()
- 3

1,

dx - 3 s,, + 9 1

107. Components of velocity. When a body moves along its

path, straight or curved, from P to Q (fig. 124), where PQ A/9,

,c changes by an amount Pit = A*
,
and y changes by an amount

EQ = Ay. We now have

Lim = = v = velocity of the bodyA dt . ..
J

in its path,

^^ np /&quot;/ y*

Lim - = = vx = component of ve-
A dt , ., 11 1 i X%TT

locity parallel to OA.

A?/ dyLim * = ^^ =
v,.
= component of ve-

&t dt \ .. 11 i ^ x&amp;gt;^

locity parallel to OY.

M N

FIG . 124

Otherwise expressed, v represents the velocity of P, v
r

the

velocity of the projection of P upon OX, and v
y
the velocity of

the projection of P on OY.



COMPONENTS OF VELOCITY 201

By (7), 96, and (3), 105,

dx dx ds=
&amp;gt;

dt ds dt

fds^
2

whence

dy _ dy ds

dt ds dt

\M

vx = v cos $,

9
v~

v sin
&amp;lt;,

Ex. A man walks across the diameter of a circular courtyard at a uniform

rate. A lamp, at one extremity of the diameter perpendicular to the one on

which he walks, throws his shadow

on the wall. Required the velocity

of the shadow along the wall.

In fig. 125 let L be the lamp,

M the man, and S the shadow. Let

a be the radius of the courtyard

and c the uniform velocity of the

man. Let the variable OM = x\

where ~ - = c. Then the equation
dt

of the line LS is

ax Xiy axi = 0,

and that of the circle is

X2 + 7/2
_ a2.

Solving these equations, we have,

for the coordinates of /S,

2a2
x,

x =

Hence

CL*

dx

y =

2a4 -2a2 x
1

2 dx
1 _

t&amp;gt;^^lz^
(a

2 + x 2
)

2 dt (a
2 + x 2

)

and
dt dt

a4 + 2 a2
x,

2 + xf

2a2c
The required velocity is i

a2 + ^i

The above solution can be simplified by the use of trigonometric functions.
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108. Acceleration and force. When the motion of a body is

not uniform, the velocity at the end of an interval of time is not

the same as at the beginning. Let v be the velocity at the begin

ning of the interval A, and v + Av the velocity at the end. Then
the limit of the ratio of the change in the velocity to the change
in time, as the latter approaches zero as a limit, is called the

acceleration; that is, if a denotes the acceleration,

_ dv __ d /ds\ _ d2
s~

~dt

~
~dt\dt)

~
~df

When a is positive an increase of t corresponds to an increase

of v. This happens when the body moves with increasing velocity
in the direction in which s is measured, or with a decreasing

velocity in the direction opposite to that in which s is measured.

When a is negative an increase of t causes a decrease of v.

This happens when the body moves with decreasing velocity in

the direction in which s is measured, or with increasing velocity
in the direction opposite to that in which s is measured.

The force which acts on a moving body is measured by the

product of the mass and the acceleration. Thus if F is the force

and m the mass, 7 72

_, dv d2
sF = ma = m = m - -

dt df

From this it appears that a force is considered positive or nega
tive according as the acceleration it produces is positive or nega
tive. Hence a force is positive when it acts in the direction in

which s is measured, and negative when it acts in the opposite

direction.

Ex. Let s = A + Bt + J- CP.

Then v = B + Ct,

o = C,

and F= mC.

If s and VQ denote the values of s and v when t = 0, we have, from the last

equations,
so = A, v = B,

and the original equation may be written

S = s + vot + l at2 .
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As a special case, suppose a body of mass ra thrown vertically upward from

a point h ft. above the surface of the earth with an initial velocity of VQ ft. per

second. Then, if s is measured upward from the surface of the earth, we have

s = h, F = - mg, a = -
g,

where g is the acceleration due to gravity. Then the expression becomes

s = h + V t -

109. Other illustrations of the derivative.

1. Rate of change. If y=f(x), a change of A# units in the

value of x causes a change of Ay units in the value of y. Then

is the change in y per unit of change in x
;
that is, the change

Ax
in y which would be caused by the change of a unit in x, if A?/

were proportional to A#. Passing to the limit, we have

= rate of change of y with respect to x.
ax

For example, the velocity of a moving body is the rate of change
of the space with respect to the time, and the acceleration is the

rate of change of the velocity with respect to the time.

2. Momentum. The momentum of a moving body is the product

of the mass and the velocity ;
that is, if M is the momentum,

M = mv.

XT s -i no dv d(mv) dM
Now, from 108, F = m = - L = ---

dt dt dt

The force is therefore the derivative of the momentum with

respect to the time, or, in other words, the rate of change of the

momentum with respect to the time.

3. Kinetic energy. The kinetic energy of a moving body is

equal to half the product of the mass into the square of the

velocity ;
that is, if E is the kinetic energy, .

m dE d(\mv
2

)
dv ds dv dv

Then - = ^ --- = mr =ra ---- =m = F;
ds ds ds dt ds dt

that is, the force is the derivative of the kinetic energy with

ivsju ct to the space traversed, or, in other words, the rate of

change of the kinetic energy with respect to the space.
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4. Coefficient of expansion. Let a substance of volume v be at a

temperature t. If the temperature is increased by A, the pressure

remaining constant, the volume is increased by Av. The change

per unit of volume is then &amp;gt; and the ratio of this change per

unit of volume to the change in the temperature is The
v At

limit of this ratio is called the coefficient of expansion; that is,

the coefficient of expansion equals In other words, the
v at

coefficient of expansion is the rate of change of a unit of volume
with respect to the temperature.

5. Elasticity. Let a substance of volume v be under a pressure

p. If the pressure is increased by A^&amp;gt;,
the volume is increased by

Av. The change in volume per unit of volume is then
v

The ratio of this change per unit of volume to the change in the
1 Av

pressure is , and the limit of this is called the compres-
v Ap

sibility ;
that is, the compressibility is the rate of change of a unit

volume with respect to the pressure.

The reciprocal of the compressibility is called the elasticity,

which is therefore equal to v
dv

Ex. For a perfect gas at constant

temperature,

p = -.
v

Therefore the elasticity is

dp I k\ k-v =
(

1 = - =s
;

dv \ v2
/ v

that is, the elasticity of a perfect gas is

equal to the pressure.

_x 6. Areas. Lety =/(#)(% 126)
be any curve, C a fixed point, and

P(x, y) a variable point upon it.

We shall assume that P lies at the right of C and that the por
tion of the curve between C and P lies above the axis of x.

M
FIG. 120

N
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Draw the ordinates BC and MP and let A denote the area

BMPC. Then A is a function of x, since it is determined when

OM=x is given. Give x an increment &x = MN9
and draw the

ordinate NQ and the lines PR and QS parallel to OX. Then

=
(y + Ay) As.MNHP = MP MN= y Ax,

But, from the figure,

MNRP &amp;lt; MNQP &amp;lt; MNQS *
;

that is, y Ax &amp;lt; A.4 &amp;lt; (y + Ay) Ax,

whence ?/&amp;lt; &amp;lt;?/ + A?/.

Now as Ax approaches zero as a limit, approaches &amp;gt; y is
Ax dx

unchanged, and y -f Ay approaches y. Hence &amp;gt; which lies be

tween y and y -f- Ay, also approaches y ;
that is,

dA = 11.

dx *

If the curve lies below the axis of x
(fig. 127), and we place,

as before, MNPIi = yAx and

MNQS= (y -f Ay) Ax, these areas

are negative. We shall then

have, as before,

dA_
dx

but the area is now considered

as negative.

110. Integration. In many
applications of the calculus the

derivative is known, and the

problem presents itself to find IM (; . 127

* If the curve runs down toward the right, the inequality signs will be reversed.
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the function which has that derivative. For example, it may be

required to find a curve when its slope is known, or to find the

space traversed by a particle with known velocity or acceleration,

or to find the area bounded partly by a known curve, or to find a

function which has a known rate of change.

The process by which a function is found from its derivative

is called integration. Differentiation and integration are then

inverse processes, as are addition and subtraction, multiplication

and division, involution and evolution. The methods of integra
tion are in general complex and must be studied later in the

integral calculus. At this time we shall give some simple exam

ples where the integration can be carried out by reversing the

formulas of differentiation.

In the first place, however, we must notice that the integration

of a given function does not lead to a unique result. For, as we
have seen already ( 95),

d (u + c) du

dx dx

where c is any constant whatever
;
that is, two functions which

differ by an additive constant have the same derivative.

Conversely, if two functions have the same derivative, they differ

by an additive constant.

_ ,
,

dv du
I or let -

dx dx

, dv du
Then - = 0,

dx dx

fc^ = o.
dx

Hence* v u = c, where c = constant
;

that is, v = u -J- c.

The constant c cannot be determined by integration, but must

be fixed by the special conditions of the problem in which it

occurs.
* A proof of this conclusion will be given in the second volume.
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Ex. 1. Required the curve the slope of which at any point is twice the

abscissa of the point. y c? c ^ ?

By hypothesis, ? ** ^

dx

Therefore y x2 + c. 0)

Any curve whose equation can be

derived from (1) by giving c a defi

nite value satisfies the condition of

the problem. It it is required that

the curve should pass through the

point (2, 3), we have, from (1),

3 = 4 + c
;

whence c = 1,

and therefore the equation of the

curve is
y = ^ _ L

But if it is required that the curve

should pass through (3, 10), we

have, from (1),

10 = 9 + c
;

whence c = 1,

and the equation is

y - x2 + 1. FIG. 128

Ex. 2. Required the space traversed by a particle if its velocity is equal to

the square of the time.

By hypothesis, =*=,*
dt

Therefore s = + c.

The constant c can be determined if we know the position of the particle at a

given time. For instance, if when t the particle is at the point from which

s is measured, we must have c 0. On the other hand, if when t = the particle

is two units from the point at which s = 0, we have c = 2.

Ex. 3. Required the space traversed by a body if the acceleration is propor

tional to the time.

dv d*s .,We have a = = -- =
Art,

where k is a known constant. Then v = = - kt2 + c\,
dt 2

1
and s -W + c\t -4- c-&amp;gt;.

The constants GI and c2 can be determined if we know the position and the

velocity of the body at a given time. If, for exarnole, we know that when t = 0,

s = 0, and v = 4, we have Co = 0, Ci = 4.
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Ex. 4. Find the area bounded by the curve y = (x
s 3x2 9x + 27), the

axis of x, and the ordinates x = 4 and x = 5.

If A is the area CDPJtf (fig.129), where OC = 4 and OJlf = x, then
( 10!), (i)

whence
(1)

FIG. 129

If x = 4, IfP coincides with CD and therefore A = 0. Substituting in (1)

the corresponding values x = 4, A = 0, we find c
|.

Therefore

If x = 5, A = CDEF. Hence

= I (6.|
s _ 125 - 135)

_ 9 =

Ex. 5. Find the area bounded by the axis of x and the portion of the curve

y = (x
3 - 3 x2 - 9 x + 27) between x = - 3 and x = 3.

We now let A = the area GNQ (fig. 129).

Then, as before, = -
(x

3 - 3 x2 - 9x + 27).
dx 8

1 /x4 9 \A = -
I x3 x2 + 27 x 1 -f c .

When x = - 3, J. =
;
therefore c = -W,

Placing x = 3, we have area GQH =
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PROBLEMS

dy
Find in each of the following cases:

dx

-

Vx

11. y = (3x
2 -5X4-0) 2

.

12. y = (x2 + l)
3

.

13. ?y
= V4z2 + 5z-6.

14. . _ ^x-2 + a - 1.

17. f =

XB
4- x2 + 1

10

18. y = (2x -3) 2
(x + l)

3
.

19. y = (3x - 5)
2
(x

2 - 5x + 1).

20. y = (x + l) Vx2 + 1.

21. y = (x
2 - 4x + 3)*(x

3 + l)
s

.

22. y = Vx + 1 + Vx - 1.

23. ?y
= x + Vx2 + 1.

24. y=

25. ? = x-1
\5TFT

Find from each of the following equations :

dx

31. z*-

32. x5 - y
5 - x3 + y = 0.

33. x3
?/ + (x

-
y)

3 = 0.

34. x5
4- y4 - x3 - y = 0.

35. (x 4- y)
3
4- (x

-
y)* = a.

36. 2/
2 =^-

Find
r//

and
&quot;y

from each of the following equations :

dx dx2

37. r, x2 4- 2 ?/
2 = 10. 40. yz = a2

(x 4

38. x7 + 2/
7 = tf. 41 y8 + y = xj

OQ XV _

a2 62
~

42. v3 -2x4- = 0.
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43. Find the tangent and the normal to the parabola ?/
2
-4?/-&amp;lt;3x-9 =

at a point the abscissa of which is - 2.

44. Find the equations of the tangent and the normal to the circle

x2 + ?/
2 -4x + 6?/ -24 =

at the point (1, 3).

45. Find the equation of the tangent to the witch y = - - at the point
for which x = 1.

x2 + 1

46. Find the tangent to the curve x5 -
?/
5 + x3 - y = at the point the

abscissa of which is 1.

47. Find the tangent to the curve x-y + x* - x2 + y = at the point the
abscissa of which is 1.

48. Find the equation of the tangent to the curve y3 - xy - a = at the

point (xi, yi).

49. Find the equation of the tangent to the curve x = y* + I at the point

(si, y\)-

50. Find the equation of the tangent to the curve y* = x3 at the point (x x , ?/i).

51. Find the equations of the tangent and the normal to the curve y = x +
at the point (xi, ?/i).

x2

52. Find the equation of the tangent to the curve Vx + Vy = V^ at the

point (xi, T/I).

53. Find the equation of the tangent to the curve x* + y$ = a% at the point

(zi, 2/1).

54. Find the tangent and the normal to the ellipse 3x2 + oy2 = 15 at the

upper end of the ordinate through the right-hand focus.

55. Find the equations of the tangent and the normal to the hyperbola
4 x2

y
2 12 at a point the abscissa of which is equal to its ordinate.

56. Find in terms of x, y, and the projections upon OX of the portions

of the tangent and the normal between the point of contact and OX. These
are called the subtangent and the subnormal.

57. Find in terms of x, y, and
-j-

the lengths of the portions of the tangent

included between the point of contact and the coordinate axes.

58. Prove that a normal to an hyperbola makes equal angles with the focal

radii drawn to the point where the normal intersects the hyperbola.

59. Prove that a normal to a parabola makes equal angles with the axis of

the parabola and the line drawn from the focus to the point where the normal
intersects the parabola.

60. Show that for an ellipse the segments of the normal between the point
of the curve at which the normal is drawn and the axes are in the ratio a2 : 62 .

61. Find the point at which the tangent to the curve x3 - xy 1 = has
the slope 2.
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62. Find the coordinates of a point on the ellipse h = 1 such that the
a2 b2

tangent there is parallel to the line joining the posiiivc extremities of the major
and the minor axes.

63. Find a point on the ellipse +
1!
= 1 such that the tangent there is

equally inclined to the two axes.

64. Prove that the portion of a tangent to an hyperbola included by the

asymptotes is bisected by the point of tangency.

65. If any number of hyperbolas have the same transverse axis, show that

tangents to the hyperbolas at points having the same abscissa all pass through
the same point on the transverse axis.

66. If a tangent to an hyperbola is intersected by the tangents at the verti

ces in the points Q and K, show that the circle described on QR as a diameter

passes through the foci.

67. Prove that the ordinate of the point of intersection of two tangents to a

parabola is the arithmetical mean between the ordinates of the points of con
tact of the tangents.

68. If P, Q, and E are three points on a parabola, the ordinates of which
are in geometrical progression, show that the tangents at P and R meet on the

ordinate of Q.

69. Show that the tangents at the extremities of the latus rectum* of a

parabola are perpendicular to each other.

70. Prove that the tangents at the ends of the latus rectum of a parabola
intersect on the directrix.

71. Prove analytically that if the normals at all points of an ellipse pass
through the center, the ellipse is a circle.

72. Prove that the tangent at any point of the parabola yz= 4px will meet the
directrix and the latus rectum produced in two points equidistant from the focus.

73. Find the length of the perpendicular from the focus of the parabola
?/
2 = 4px to the tangent at any point (EI, ?/i), in terms of xi and p.

74. If perpendiculars are let fall on any tangent to a parabola from two given
points on the axis which are equidistant from the focus, prove that the difference
of their squares is constant.

75. Show that the product of the perpendiculars from the foci of an ellipse

upon any tangent equals the square of half the minor axis.

76. Find the equation and the length of the perpendicular from the center
a;
2

?/
2

to any tangent to the ellipse \-
= 1.

77. At what angles f do the loci y* - 4 x + 4 = and y - x + 1 = intersect ?

*The latus rectum of a conic is the chord through the focus perpendicular to
the axis.

1 The angle between two curves is the angle between their tangents at their
point of intersection.
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78. Find the angle between the straight line y = 2x 2 and the cissoid

x(x
2 + y

2
)
= 4y2 at each of their points of intersection.

79. At what angle do the circles x2 + ?/
2 9 = 0, x2 + ?/

2 Ox 6^ + 9 =
intersect ?

80. Prove that the center of each of the circles

% x2 + ?/
2 = a2 and x2 + y* - 2 ax =

is a point of the other, and find the angle at which they intersect.

81. At what angle do the circle x2 + y2 = 21 and the parabola y2 = 4x inter

sect each other ?

82. Show that the curves ~ + y~ = 1 and ~ - ^ = 1 cut each other at

right angles and are confocal.

83. Prove that an ellipse and an hyperbola with the same foci cut each
other at right angles.

84. If two concentric equilateral hyperbolas are described, the axes of one

being the asymptotes of the other, show that they intersect at right angles.

85. Find the angle between the parabolas y2 = 4 ax and x2 = 4 ay at each
of their points of intersection.

86. Find the angle between the parabola x2 = 4 ay and the witch y =
8a3

at each of their points of intersection. x + 4a

87. Prove that the cissoid y2 = - and the parabola y2 = 4 ax intersect

at right angles at the origin.
a ~ x

88. Find the angles of intersection of the cissoid y2 = and the circle

z2 + 2/2
_ 4ax = o.

2a-x

89. Find the angle of intersection of the witch

8 a3 4 ?/3

y = - and the cissoid x2 =
x2 + 4 a2 5 a - 4 y

90. Find the angles of intersection of the circle x2 + y2 = 5 a2 and the witch

8a3

y =
x2 + 4 a2

91. Find the angle between the strophoid y = x-\j-
- and the circle

x2 + ?/
2 = a2

.

\ a + x

92. Find the angles of intersection of the curves

?/
2 = 2 ax and x3 + ys - 3 axy = 0.

93. It is required to fence off a rectangular piece of ground to contain a

given area, one side to be bounded by a wall already constructed. Required
the dimensions of the rectangle which will require the least amount of fencing.

94. A man on one side of a river, the banks of which are assumed to be

parallel straight lines l mi. apart, wishes to reach a point on the opposite side

of the river and 3 mi. further along the bank. If he can walk 4 mi. an hour
and swim 2 mi. an hour, find the route he should take to make the trip in the

least time.
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95. A rectangular piece of land to contain 06 sq. rd. is to be inclosed by a

fence and divided into two equal parts by a fence parallel to one of the sides.

What must be the dimensions of the rectangle that the least amount of fence

may be required ?

96. What are the dimensions of the rectangular beam of greatest volume

that can be cut from a log a ft. in diameter and 6 ft. long, assuming the log to

be a circular cylinder ?

97. The hypotenuse of a right triangle is given. How shall the sides be

chosen so that the area shall be a maximum ?

^/ 98. Two towns A and B are situated respectively 2 mi. and 3 mi. back

from a straight river from which they are to get their water supply, both from

the same pumping station. At what point on the bank of the river should the

station be placed, that the least amount of piping may be required, if the nearest

points of the river to A and B respectively are 10 mi. apart ?

99. AB and CD are two parallel lines distant b units apart. A transversal

BF is drawn, intersecting the transversal AD at E. For what position of F is

the sum of the areas of the two triangles AEB and FED a minimum ?

100. A right cone is generated by revolving an isosceles triangle of constant

perimeter about its altitude. Show that the cone of greatest volume will be

obtained when the length of the side of the triangle is three fourths the length
of the base.

101. Into a full conical wine glass whose depth is a and angle at the base is

2 a there is carefully dropped a spherical ball of such size as to cause the greatest
r overflow. Show that the radius of the ball is

a sin a
sin a -f cos 2 a

102. Two ships are sailing uniformly with velocities w, v along lines inclined

/ at an angle 6. Given that at a certain time the ships are distant respectively
/ a and b from the point of intersection of their courses, show that the least dis

tance between the ships is

(av bu) sin &

(u
2 + t&amp;gt;

2 - 2 u-o cos 6)1

103. Find the least ellipse which can be described about a given rectangle,

assuming that the area of an ellipse with semiaxes a and b is irab.

/ 104. Find what sector must be taken out of a given circle in order that it

may form the curved surface of a cone of maximum volume.

105. The stiffness of a rectangular beam varies as the product of the breadth
and the cube of the depth. Find the dimensions of the stiffest rectangular beam
that can be cut from a circular cylindrical log of radius a in.

106. The strength of a rectangular beam varies as the product of its breadth
and the square of its depth. Find the dimensions of the strongest rectangular
beam that can be cut from a circular cylindrical log of radius a in.
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/ 107. The fuel consumed by a steamship is proportional to the cube of the

velocity which would be given to the steamship in still water. If it is required
to steam a fixed distance against a current flowing a mi. an hour, find the

most economical rate.

108. A cistern in the form of a circular cylinder open at the top is to

be constructed to contain a given amount. Required the dimensions that the

amount of material expended may be the least.

109. Required the right circular cone of greatest volume which can be

inscribed in a given sphere.

110. A power house stands upon one side of a river of width 6 mi. and a

manufacturing plant stands upon the opposite side a mi. downstream. Find
the most economical way to construct the connecting cable if it costs m dollars

per mile on land and n dollars per mile through water.

111. Find the isosceles triangle of greatest area which can be cut from a semi

circular board, assuming that the vertex of the triangle lies in the diameter.

112. Find the isosceles triangle of greatest area which can be placed in a

figure bounded by a portion of a parabola and a straight line perpendicular to

J the axis of the parabola, assuming that the vertex of the triangle lies in the

straight line.

113. Find the point of inflection of the curve y = a + (6 x)
3

.

114. Find the points of inflection of the curve y =--
115. Examine the curve y = (x l)

2
(x + I)

3 for maxima and minima and

points of inflection.

116. Find the maximum and the minimum orclinates and the points of

inflection of the curve y3 = x(x
2 a2

).
Q

117. Find the points of inflection of the curve y =--
x2 + 4

118. Show that the strophoid y = x\ - - has no point of inflection.
\a + x

119. Find the points of inflection of the curve aV2 = a2z4 x.

120. Find the points of inflection of the curve (
-

) -f (
-

) 1.w w
121. Find where the rate of change of the ordinate of the curve

is equal to the rate of change of the slope of the tangent.

122. A body moves in a straight line according to the law s
\

t* 4 tB + IGt 2
.

Find its velocity and acceleration. When is it stationary ? When is its velocity
a maximum ? During what interval is it moving backward ?

123. A particle is moving along the curve y2
4x, and when x = 4 its ordi

nate is increasing at the rate of 10 ft. per second. At what rate is the abscissa

then changing, and how fast is the particle moving along the curve ? Where
will the abscissa be changing ten times as fast as the ordinate ?
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124. Two points, having always the same abscissa, move in such a manner

that each generates one of the curves y = x3 12 x2 + 4 x and y = x3 - 8 x2 - 8.

When are the points moving with equal speed in the direction of the axis of. y?
What will be true of the tangent lines to the curves at these points ?

125. The top of a ladder a units long slides down the side of a vertical wall

which rests on horizontal land. Find the ratio of the velocities of its top and

bottom.

126. The altitude of a variable cylinder is constantly equal to the diameter

of its base. If when the altitude is ft. it is increasing at the rate of 2 ft. an

hour, how fast is the volume increasing at the same instant ?

127. A boat moving 8 mi. an hour is laying a submarine cable. Assuming
that the water is 100 ft. deep, that the cable is attached to the bottom of the

sea and stretches in a straight line to the stern of the boat, at what rate is the

cable leaving the boat when 120 ft. have been paid out ?

128. A ball is swung in a circle at the end of a cord 4 ft. long so as to make
100 revolutions a minute. If the cord breaks, allowing the ball to fly off at a

tangent, at what rate will it be receding from the center of its previous path
10 sec. after the cord breaks, if no allowance is made for any new force acting ?

129. A body slides down an inclined plane at such a rate that the distance

traversed at the end of t sec. from the time it begins to move is 5 12 . If the plane
is inclined to the horizon at an angle of 30, what is the vertical velocity of the

body at the end of 3 sec. ?

130. A roll of belt leather is unrolled on a horizontal surface at the rate of

5 ft. per second. If the leather is ] in. thick and at the start the roll was 2 ft.

in diameter, at what rate is the radius decreasing at the end of 3 sec., if the roll

is assumed to be a true circle ?

131. An elevated car running at a constant elevation of 40 ft. above the

street passes directly over a surface car, the tracks of the two cars crossing at

right angles. If the speed of the elevated car is 16 mi. per hour and the speed
of the surface car 8 mi. per hour, at what rate are the cars separating 5 min.

after they meet ?

132. Find the curve the slope of which at any point is 3 more than the

square of the abscissa of that point and which passes through the point (1, 3).

133. Find the curve the slope of which at any point is equal to the square
of the reciprocal of the abscissa of the point and which passes through (2, 1).

134. Find the curve the slope of which at any point -is equal to the square
root of the abscissa of the point and which passes through (4, 9).

135. Prove that any curve the slope of which at any point is proportional
to the abscissa of the point is a parabola.

136. Find the curve the slope of which at any point is proportional to the

square of the ordinate of the point and which passes through (1, 1).

137. Find the area of each arch of the curve y = loOx 25 x2 x3
.
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138. Find the area of the arch of the curve y = x3 - 3x2 9x + 27.

139. Show that the area bounded by any parabola y2 = 4px, the axis of x,

and the ordinate through any point of the curve is two thirds the area of a rec

tangle the sides of which are the coordinates of- the point.

140. Express the area between the curve y xn
,
the axis of x, and the ordi

nate through the point (h, k) of the curve as a rational function of h and k.

141. Find the area of the three-sided figure bounded by the coordinate axes

and the curve x* + y* = a*
( 69).

142. Find the area between the parabola y2 = 8 x and the straight line

2 y - x = 0.

143. Find the area between the parabolas y2 = 4 ax and x2 = 4 ay.

144. Find the area of the crescent-shaped figure between the curves

y = x2 + 5 and y = 2 x2 + 1.

145. Find the area of the closed figure bounded by the curves y^ = lQx

and y* = x3
.



CHAPTER X

CHANGE OF COORDINATE AXES

111. Introduction. So far we have dealt with the coordinates

of an)
7

point in the plane 011 the supposition that the axes of coor

dinates are fixed, and therefore to a given point corresponds one,

and only one, pair of coordinates
; and, conversely, to any pair of

coordinates corresponds one, and only one, point. But it is some

times advantageous to change the position of the axes, i.e. to make

a transformation of coordinates, as it is called. In such a case

we need to know the relations between the coordinates of a point

with respect to one set of axes and the coordinates of the same

point with respect to a second set of axes.

The equations expressing these relations are called formulas of

transformation. It must be borne in mind that a transformation

of coordinates never alters the position of the point in the plane,

the coordinates alone being changed because of the new standards

of reference adopted.

112. Change of origin without change of direction of axes.

In this case a new origin is chosen, but the new axes are respec

tively parallel to the original axes. ^,

Let OX and OF (fig. 130) be

the original axes, and O X and

O Y the new axes intersecting

at
,
the coordinates of with

respect to the original axes being
x and T/O

. Let P be any point

in the plane, its coordinates being
x and y with respect to OX and

OF, and ,/ and ?/ with respect to

O X and O Y . Draw PMM paral

lel to OF, intersecting OX and O X at M and M respectively.
217
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Then OM= x, MP= y, M = x f

,
M P= y ,

ON= y ,
and N0 = xv

But OM= NM = NO + O M
,

and MP = MM1 + M P = ON+ M P.

which are the required formulas of transformation.

Ex. 1. The coordinates of a certain point are (3,
-

2). What will be the

coordinates of this same point with respect to a new set of axes parallel respec

tively to the first set and intersecting at (1, 1) with respect to OX and OY*
Here x 1, yQ = 1, x = 3, and y = 2. Therefore 3 = 1 + x and
2 = 1 + y ,

whence x = 2 and y
f = 1.

Ex. 2. Transform the equation ?/
2 2y 3x 5 = to a new set of axes

parallel respectively to the original axes and intersecting at the point ( 2, 1).

The formulas of transformation are x = 2 + x
, y = 1 + y . Therefore

the equation becomes

(1 + y f - 2(1 + y }
- 3(- 2 + x

)
- 5 = 0,

or
y&quot;

2 3x = 0.

As no point of the curve has been moved in the plane by this transformation,
the curve has been changed in no way whatever. Its equation is different because

it is referred to new axes.

After the work of transformation has been completed the primes may be

dropped. Accordingly, the equation of this example may be written y2 3 x = 0,

or y2 = 3 x, the new axes being now the only ones considered.

113. One important use of transformation of coordinates is

the simplification of the equation of a curve. In Ex. 2 of the last

article, for example, the new equation y
1 = 3 x is simpler than the

original equation, and from its form we recognize the curve as a

parabola. It is obvious, however, that the position of the new

origin is of fundamental importance in thus simplifying the equa

tion, and we shall now solve an example illustrating a method of

determining the new origin to advantage.

Ex. Transform the equation y2 4y x3 3x2 3x + 3 = 0to new axes

parallel respectively to the original axes, so choosing the origin that there shall

be no terms of the first degree in x and y in the new equation.
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The formulas of transformation are

x = XQ + x and y y (} + y ,

where suitable values of x and y are to be determined. The equation becomes

(2/o + I/)
2 - 4 (2/0 + y )

-
(x + x

)
3 - 3 (x + x

)

2 - 3 (x + x
) + 3 = 0,

or, after expanding and collecting like terms,

?/
2 + (2 yo - 4)y - x 3 - (3x + 3) a/* - (3x

2 + Ox + 3)x

+ (l/o
2 - 4 ?/o

-
&amp;lt;?

- 3x 2 - 3x + 3)
= 0.

By the conditions of the problem we are to choose x and y so that

2 y - 4 = 0, 3x 2 + 6x + 3 = 0,

two equations from which we find x = 1 and y = 2.

Therefore ( 1, 2) should be chosen as the new origin of axes, and the new

equation is y
2 x 3 = 0, or y2 = x3

,
after the primes are dropped.

114. Iii particular, this method of simplifying an equation is

of considerable importance in studying the conies defined in

Chap. VII. For consider the equation

|

I
2

If we place x = x + x
, y = ?/ + /, (1) becomes

n.n ,
2

which is the equation of an ellipse with its center at x = 0, y = 0,

and its axes along O X and O Y . Therefore (1) is an ellipse

with its center at x = x
, y = y ,

and its axes parallel to OX
and OY.

^ jji

Furthermore, if a &amp;gt; b, e = -^- -
5 and the foci of the ellipse

a

are at (d = ae, y = 0), or, what is the same thing, (x
= ae + x

,

= y ). The directrice

In a similar manner
y = y ).

The directrices are x1 = -
&amp;gt; or x = X

Q
-

oY (y
- y )

2

._ i

v
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is the equation of an hyperbola with its center at (xw ?/ )
and its

axes parallel to X and OY; and

represents a parabola with its vertex at (# , yc)
and its axis parallel

to OX.

Any equation which can be reduced to a form similar to one
of these can be discussed in a similar manner. A general treat

ment of such equations will be found in Chap. XL We shall

give here some examples.

Ex. 1. 16x2 + 25y2 + 64z - 160 y - 111 = 0.

Rewriting, we have

16(x
2 + 4z)+ 25(y

2 -6y) = lll,

whence 16 (x
2 + 4 x + 4) + 25 (y

2 - 6 y -f 9) = 400,

(x + 2)
2 Q/-3)2

26 16

Placing now x = - 2 -f x
7

, ?/ = 3 + y ,

r 2 ?/2
we have _ + y - \

25 16

This is an ellipse with semiaxes 5 and 4, and eccentricity . Its center is at

(x =Q,y =
0), its foci are at (x = 3, y =

0), and its directrices are x = 2J*.

= 8..

Hence the original equation represents an ellipse with semiaxes 5, 4, and

eccentricity f . Its center is at (- 2, 3), its foci are (- 5, 3) and (1, 3), and its

directrices are x = 10i and x = 6J.

Ex.2. 5?/
2 -10?/ -4-7= 0.

Rewriting, we have 5 (y
2 - 2 y) = 4 (x + |),

or
(y
-

I)
2 = | (x + 3).

Placing now x = - 3 + x
,

2/
= 1 + y

7

,

we have
2/
/2 = f ,

which represents a parabola with vertex (xf= 0, y = 0). Its axis is alon
its focus is (x

f

i, y
-

0). and its directrix is x = -
\.

Therefore the original equation represents a parabola with its vertex at

(-- 3, 1) and its axis parallel to OX. Its focus is (- 2f , 1) and its directrix is
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EX. 3. (X
-

C)
2 + 7/2 = glfca.

This is the equation of the conic, as found in 81. We may write it as

Then if e -

1, we may proceed as follows :

(1_^__l_ x + __!_

c2e2

C2g2
We may now place = a2

,

l-e2

c a
and -

&amp;gt;

I e2 e

the sign of 6 being 1 according as e &amp;lt; 1. The equation is then

^2

a- ^
= 1 -

The equation accordingly represents an ellipse or an hyperbola with center

If e = 1, the equation (x c)
2 + ?/

2 = e2x2

becomes ?/
2 = 2 ex - c2 = 2 c (x

-J
,

which represents a parabola with the vertex at (-,
Oj

.

115. Change of direction of axes without change of origin.

CASE I. Eolation of axes. Let OX and OY (fig. 131) be the

original axes, and OX and Y be the new axes, making Z.
&amp;lt;f&amp;gt;

with OA&quot; and OF respectively. Then Z.XOY = 90 +
&amp;lt;J&amp;gt;,

and
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Let P be any point in the plane, its coordinates being x and y
with respect to OX and OY, and x and y with respect to OX

and Y . Then by construction OM= x,

ON= y, OM1 = x
,
and M P = y . Draw

OP.

The projection of OP on OXis OM, and

the projection of the broken line OM P
on OX is 03f

cos(/&amp;gt;+Jf Pcos(90 +&amp;lt;)

X or OM cos
&amp;lt;/&amp;gt;

M
Psiii(/&amp;gt;.

. . OM=OM cos
(f&amp;gt;-M

P sin
(#&amp;gt;, (1)

by 15.

In like manner the projection of OP on OY is OjV, and the

projection of the broken line OJf P on OY is OM cos (90 (/&amp;gt;)

+M P cos
&amp;lt;/&amp;gt;.

by 15.

Replacing Oif
, 07^, OM 1

, by their values, we have

x = x cos
&amp;lt;j) y sin

&amp;lt;,

y = x sin cos

Ex. 1. Transform the equation x?/ = 5 to new axes, having the same origin
and making an angle of 45 with the original axes.

Here 45, and the formulas of transformation are x --
, y = ---

V2 V2
Substituting and simplifying, we have as the new equation x2

?/
2 = 10,

from which we recognize the curve to be an equilateral hyperbola.

Ex. 2. Transform the equation 34 x2 + 41 y2 24 xij = 100 to new axes with

the same origin, so choosing the angle that the new equation shall have no

term in xy.

The formulas of transformation are

x = x cos y sin 0,

y = x sin + y cos 0,
where is to be determined.

Substituting in the equation and collecting like terms, we have

(34 cos2 + 41 sin2 24 sin cos 0)x
2

+ (34 sin2 + 41 cos2 + 24 sin cos 0) ?/
2

+ (24 sin2 + 14 sin cos 24 cos2 0)xy = 100.

By the conditions of the problem we are to choose so that

24 sin2 + 14 sin cos 24 cos2 = 0.
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One value of satisfying this equation is tan- 1 3
. Accordingly we substitute

sill
_ a all(j COS -

4^ \vhcn tin; equation reduces to x2 + 2y2 = 4, which is

the equation of an ellipse.

CASE II. Interchange of axes. If the axes of x and y are simply

interchanged, their directions are changed, and hence such a trans

formation is of the type under consideration in this article. The

formulas for such a transformation are evidently x = y ,y = x .

CASE III. Rotation and interchange of axes. Finally, if the

axes are rotated through an angle $ and then interchanged, the

formulas, being merely a combination of the two already found, are

x = y
1 cos

&amp;lt;f&amp;gt;

x sin
&amp;lt;, y = y

1 sin
c/&amp;gt;

+ x cos &amp;lt;.

A special case of some importance occurs when
&amp;lt;/&amp;gt;=

270. We

have then x = x
, y = y .

Cases II and III, it should be added,, occur much less frequently

than Case I.

In case both the origin and the direction of the axes are to be

changed, the processes may evidently be performed successively,

preferably in this order: (1) change of origin; (2) change of

direction.

116. Oblique coordinates. Up to the present time we have

always constructed the coordinate axes at right angles to each

other. This is not necessary, however,

and in some problems, indeed, it is of

advantage to make the axes intersect

at some other angle. Accordingly, in

fig. 132, let OX and OY intersect at

some angle o&amp;gt; other than 90.

We now define x for any point in the

plane as the distance from OY to the

point, measured parallel to 0A~; and y

as the distance from OX to the point, measured parallel to 01 .

The algebraic signs are determined according to the same rules as

were adopted in 16.

It is immediately evident that the rectangular coordinates are

but a special case of this new type of coordinates, called oblique
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coordinates, since the new definitions of x and y include those

previously given. In fact, the term Cartesian or rectilinear co

ordinates includes both the rectangular and the oblique.

Oblique coordinates are usually less convenient than the rectan

gular, and are very little used in this book. If necessary, the

formulas obtained by using rectangular coordinates can be trans

formed into similar ones in oblique coordinates by the formulas

of the following article. When no angle is specified the angle
between the axes is understood to be a right angle.

117. Change from rectangular to oblique axes without change
of origin. Let OX and OY

(fig. 133) be the original axes at right

Y angles to each other, and

OX and OY the new axes,

making angles &amp;lt;f&amp;gt;

and &amp;lt;/

, respectively with OX.

,R Then co =
&amp;lt;j&amp;gt; (f&amp;gt;.

Let P
be any point in the plane,

its rectangular coordinates

being x and y, and its ob

lique coordinates being x r

and y . Draw PM parallel to OT
t
PM parallel to OY

,
MN

parallel to OF, and PiM N parallel to OX. Then Z RM P =
&amp;lt;f&amp;gt;

.

But OM= ON+NM= ON+MN = OM cos &amp;lt; +M P cos &amp;lt;

,

MP =MN +N P =NM +N P = OM sin &amp;lt; +M P sin &amp;lt; .

.-. x = x cos $ + y cost//,

y x sin $ + y
f

sin
c//.

and

x2 y2

Ex. Transform the hyperbola = 1 to its asymptotes as axes.
a2 b2

/ b\
Since the equations of the asymptotes are y = -

x, &amp;lt;f&amp;gt;

tan- 1 /
J

&amp;lt;

= tan-1 -
, if we choose to have the hyperbola lie in the first and the third

quadrants with respect to the new axes. The formulas of transformation become

&quot;

y=
b

Substituting and simplifying, we have as the new equation xy =

Unless 6 = a, the axes are oblique and w = 2 tan- ] -
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118. Degree of the transformed equation. In reviewing this

chapter we see that the expressions for the original coordinates in

terms of the new are all of the first degree. Hence the result of

any transformation cannot be of higher degree than that of the

original equation. On the other hand, the result cannot be of

lower degree than that of the original equation ; for it is evident

that if any equation is transformed to new axes and then back to

the original axes, it must resume its original form exactly. Hence

if the degree had been lowered by the first transformation, it must

be increased to its original value by the second transformation.

But this is impossible, as we have just noted.

It follows that the degree of an equation is unchanged by any

single transformation of coordinates, or by any number of succes

sive transformations. In particular, the proposition that any equa

tion of the
fir^st degree represents a straight line is true for oblique

as for rectangular coordinates.

PROBLEMS

1. What are the new coordinates of the points (2, 3), (4, 5), and (5, 7)

if the origin is transferred to the point (3, 2), the new axes being parallel to

the old ?

2. Transform the equation x* + 4 ?/
2 - 2 x -\- 8 y + 1 = to new axes parallel

to the old axes and meeting at the point (1, 1) with respect to the old axes.

3. Transform the equation y* - 6?/
2 + 3x2 + 12 y - 18 x + 35 = to new

axes parallel to the original axes and meeting at (2, 3) with respect to the

original axes.

4. Find the equation of the ellipse when the origin is taken at the lower

extremity of the minor axis, and the minor axis is the axis of y.

5. Find the equation of the ellipse when the origin is at the left-hand vertex,

the major axis lying along OX.

6. Find the equation of the hyperbola when the origin is at the left-hand

vertex, the transverse axis lying along OX.

7. Find the equation of the strophoid when the origin is at A (fig. 92), the

axes being parallel to those of 84.

8. Find the equation of the strophoid when the asymptote is the axis of y,

the axis of x being as in 84.

9. Find the equation of the witch (fig. 90) when LK is the axis of x and

OA the axis of y.
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10. Find the equation of the witch when the origin is taken at the center of

the circle used in constructing it, the axes being parallel to those of 82.

11. Find the equation of the cissoid when its asymptote is the axis of y and
its axis is the axis of x.

12. Find the equation of the cissoid when the origin is at the center of the

circle used in its definition, the direction of the axes being as in 83.

13. Find the equation of the parabola when the origin is at the focus and
the axis of x is the axis of the curve.

14. Find the equation of the parabola when the axis of the curve and the

directrix are taken as the axes of x and y respectively.

15. Transform ?/
2 Sx 10?/ + 1 = to new axes parallel to the old, so

choosing the origin that the new equation shall contain only terms in y2 and x.

16. Transform the equation 12 x2
-f 18 y2 12 x + 12 y 31 = to new axes

parallel to the old, so choosing the origin that there shall be no terms of the first

degree in the new equation.

17. Show that any equation of the form xy + ax + by + c = can always
be reduced to the form xy k by choosing new axes parallel to the old, and
determine the value of k.

18. Show that the equation ax2
-f by&quot;

2 + ex + dy + e = (a ^ 0, 6^0) can

always be put in the form ax2 + by
2 = k by choosing new axes parallel to the

old, and determine the value of k.

19. Show that the equation ?/
2 + ay + bx + c = (b ^ 0) can always be

reduced to the form y2
-f bx = by choosing new axes parallel to the given ones.

20. Find the equation of an ellipse if its axes are 6 and 2, its center is at

( 3, 2), and its major axis is parallel to OX.

21. Find the equation of an ellipse if its axes are ^ and 1, its center is at

( 2, 3), and its major axis is parallel to OX.

22. Find the equation of an hyperbola if its transverse axis is 4, its conju

gate axis 2, its center at (1, 2), and its transverse axis parallel to OX.

23. Find the equation of an hyperbola if its transverse axis is V2, its con

jugate axis Vf ,
its center at (2, 3), and its transverse axis parallel to OX.

24. The vertex of a parabola is at (3, 2) and its focus is at (5, 2). Find

its equation.

25. The vertex of a parabola is at (4, 5) and its focus is at (4, 1). Find its

equation.

26. The center of an ellipse is at the point (2, 3), its eccentricity is i, and

the length of its major axis, which is parallel to the axis of x, is 10. What is

the equation of the ellipse ?

27. Find the equation of an ellipse when the vertices are
( 2, 0), (4, 0), and

one focus is at the origin.
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28. The center of an hyperbola is at ( 1, 2), its eccentricity is 1, and its

transverse axis, which is parallel to OX, is 4. Find its equation.

29. The vertex of a parabola is at the point ( 4, 2), and it passes through
the origin of coordinates. Find its equation, its axis being parallel to OX.

30. Given the ellipse 4x2 + 9y2 + 8x 30 y + 4 = 0; find its eccentricity,

center, vertices, foci, and directrices.

31. Given the ellipse 3x2 + 5y2 + 18 x - 20 y + 32 =
;
find its eccentricity,

center, vertices, foci, and directrices.

32. Given the hyperbola Ox2 - 4 y
2 - 54 x - 32 y - 19 =

;
find its eccen

tricity, center, vertices, foci, directrices, and asymptotes.

33. Given the hyperbola 3x2 -2?y2 + 6x + 8?/-ll:=:0; find its eccentricity,

center, vertices, foci, directrices, and asymptotes.

34. Given the parabola 72 x2 + 48 x + 180 y - 37 = 0; find its vertex, focus,

axis, and directrix.

35. Given the parabola y~ - bx + Gy 1 = 0; find its vertex, focus, axis,

and directrix.

36. What are the coordinates of the points (0, 1), (1, 0), (1, 1) if the axes

are rotated through an angle of 00 ?

37. Transform the equation 3x2 + 3?/
2 10 xy + 8 = to a new set of axes

by rotating the original axes through an angle of 45, the origin not being

changed.

38. Find the equation of the folium x 3 + y9 3 axy = after the axes have
been rotated through an angle of 45.

39. By rotating the axes through an angle of 45 and changing the origin,

prove that the curve x* + y* = a* is a parabola.

40. Transform 5x2 - Ilxy + 10 y2 - 14 = to a new set of axes, making
an angle tan- 1

1 with the original set.

41. Show that the equation x2 + ?/
2 = a2 will be unchanged by transforma

tion to any pair of rectangular axes, if the origin is unchanged.

42. Transform the equation x2
y- 30 to new axes bisecting the angles

between the original axes.

43. Transform the equation 4x2 - 3xy + 8?/
2 = 1 to one which has no

xy-term, by rotating the axes through the proper angle.

44. By rotating the axes through the proper angle transform the equation
3 x2 + 2 Vs xy + y2 + 2 x - 2 Va\y = to another which shall have no term in xy.

45. Transform the equation

x2 - 5 7/2
_ G Vs xy + [2 + 12 V3] x + [20

- 6 V3] y - 15 + 12 Vs =

to a new set of rectangular axes making an angle of 60 with the original axes
and intersecting at the point (- 1, 2) with respect to the original axes.
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46. Transform the equation 4 x2 + 9 y2 36 from rectangular axes to oblique

axes with the same origin, making angles tan- 1

^ and tan-1
( i) respectively

with OX.

47. Find the equation of the hyperbola 3 x2 4 y
2 = 12 referred to its asymp

totes as coordinate axes.

48. Show that the lines y = x intersect the strophoid at the origin only, and

find the equation of the curve referred to these lines as axes.

49. Transform the equation 2x2 3y2 = G from rectangular axes to oblique

axes having the same origin and making the angles tan- 1

^ and tan- 1

^ respec

tively with OX.

50. Prove that the formulas for transposing from a set of rectangular axes

to a set of oblique axes having the same origin and the same axis of x are

x = x + y cos w,

y = y sin w,

where w is the angle between the oblique axes.

51. By transforming the equation y = mx + b by the formulas of example

50, show that the equation of a straight line in oblique coordinates is

sin

sin(co 0)

where w is the angle between OX and OF, the angle between the line and OX,
and c the intercept on OF.

52. Derive the result of example 51 directly by use of the trigonometric

formulas connecting the sides and the angles of an oblique triangle.

53. By use of the transformation of example 50, prove that the equation of

a circle in oblique coordinates is

(x
-

d)
2 + (y

-
e)

2 + 2 (x
-

d) (y
-

e)cos ta = r2
,

where w is the angle between the axes, and (d, e) is the center.

54. Obtain the result of example 53 directly by use of the trigonometric

relations connecting the sides and the angles of an oblique triangle.



CHAPTEE XI

THE GENERAL EQUATION OF THE SECOND DEGREE

119. Introduction. The most general equation of the second

degree is of the form

Ax2

-}- 2 Hxy + By*+ 2 Gx + 2 Fy + C = 0,

where the coefficients may have any values, including zero, except
that A, B, and H cannot be zero together.

We shall proceed to show that this equation always represents

an ellipse, an hyperbola, a parabola, or a limiting case of one of

these, if it represents any curve, and shall derive criteria by which

the nature of the curve can be readily determined.

120. Removal of the xy-term. Let us make a transformation

of coordinates to new rectangular axes, making an angle $ with

the original ones, the origin being unchanged. The formulas of

transformation are (115)

x = x cos $ y sin
(f&amp;gt;,

y x sin &amp;lt; + y cos
c/&amp;gt;.

Substituting, we have

AW* + 2H x y + B y
1 + 2 G x + 2 F y + C f = 0,

where A = A cos
2

$ + 2H sin
&amp;lt;f&amp;gt;

cos
&amp;lt;f&amp;gt;

+ B sin
2

&amp;lt;,

H = (B A) sin&amp;lt;/&amp;gt; cos&amp;lt;J&amp;gt;
-f 7/~(cos

2 sm2

&amp;lt;),

.# = .4 sin
2 - 2# sin &amp;lt;&amp;gt;cos

sn

and C&quot;
= C.

229
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We may now determine &amp;lt; so that // shall vanish
;
that is,

so that

2(B A) cos
&amp;lt;f&amp;gt;

sin
&amp;lt;/&amp;gt;

+ 2 7/(cos
2

sin
2

&amp;lt;)

= 0.

This equation is equivalent to

2 77 cos
2c/&amp;gt;

+ (B -A)siu 2c/&amp;gt;

=
0,

9 TT
whence tan 2

&amp;lt;f&amp;gt;

=
&amp;gt;

2H
or &amp;lt;

= 1 tan-i A-B

To compute the values of A and B
,
we have

A A cos
2

&amp;lt;/&amp;gt;

+ 2 7? sin
(f&amp;gt;

cos
cf&amp;gt;

+ B sin
2

$

1 + cos 20 .
^
1 cos 2

2 ^2
=

^ [^ + B + (^
-

J?) cos 2 &amp;lt; + 2H sin 2
&amp;lt;].

But, since tan 26 = &amp;gt;

^47?
o rr 4

sin 2 ^ =

and therefore A = -
\A + B (^~^)2+4

2
L V(^-7?)

2 +4^T2

= l-[J+7? V(^l 7?)
2

Similarly, B = 1
[.

From these results it follows that

A&^ABH*.

Hence if ^47? ^ 2
is positive, ^4 and 7? have the same sign ;

if

AB H2
is negative, A and B have opposite signs ;

if AB H2

is zero, either A r

or B is zero.
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The discussion of the general equation is then reduced to that

of the simpler equation

A xn+ B y
2+ 2 G x +2F y + C f = 0.

This equation we will consider in the next two articles, dropping

the primes for convenience.

121. The equation Ax2 + By
2 + 2 Gx + 2Fy + C = 0. We

shall prove the theorem : The equation

=
0,

where the coefficients are such that

0,

represents a conic, if it represents any curve at all. In particular,

(1) ivhen A and B have the same sign, it represents an ellipse
*

or no curve ;

(2) when A and B have opposite signs, it represents an hyperbola ;

(3) when either A or B is zero, it represents a parabola.

Suppose first that neither A nor B is zero. Then the equation

may be rearranged as follows :

We may then complete the squares of the expressions in the

parentheses; thus,

A B

AF*+BG--ABC
AB

/ /^\ 2

that is, A[x + )+#
\ Al

* The circle is considered a special case of an ellipse (see 75).

I
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Since AF2+ BG2 ABC is not zero, we may divide by the right-

hand member of the equation, obtaining

M N

where, for convenience, we place

M =
A*B

AB2

We may now transfer the origin of coordinates to the point

)

A
formulas

G F\
)&amp;gt;

the new axes remaining parallel to the old, bv the
A B

x = ---\- % , y = --- + i/
r

.

A B
x 2

y
2

The equation is then - + = 1.M N

Now if A and B have the same sign, M and N will have the

same sign. If this sign is positive, we may place M= a2
,
N= b

2

,

and the equation is

i._i
a2 +

b
2

=

which represents an ellipse.

The axes of the ellipse are parallel to the original coordinate
/ C* 7f\

axes, and its center is at the point (

--
&amp;gt;

--
)
referred to the

\ A Bl

original axes. If A = B, the ellipse is a circle.

If M and N are both negative, the equation

M N

can be satisfied by no real values of x and y.
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If A and B have opposite signs, M and N have opposite signs,

and we may place either M= a\ N= I?, or M = a 2

,
N = I

2

,

thus obtaining either n ,.2

-- =

either of which represents an hyperbola.

The axes of the hyperbola are parallel to the original coordinate

(f*
ET\--

&amp;gt;

--
j
referred to the

j -&amp;gt; /

ungmcu. CIACO.

The first and the second parts of the theorem are therefore proved.

Consider now the case in which either A or B is zero. If, for

example, A = 0, B =t= 0, the equation is

and the condition to be fulfilled by the coefficients is BG2 =
0,

which is equivalent to G =
0, since B cannot be zero.

We may arrange the equation as follows :

F G C
y*+2 y = 2 a? -

B J B B

Completing the square, we have

C F
B] B \ 2 G 2GB

If now we transform to a new origin by placing

C F2 Ft
2 G

we have y
* = x

,

which is the equation of a parabola.

Similarly, if B = but A =
0, the equation may be reduced to

the form

which is also a parabola.
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In each case the axis of the parabola is parallel to one of the

original coordinate axes.

Hence the third part of the theorem is proved.
122. The limiting cases. We shall consider now the equation

when the coefficients are such that

The figures represented are limiting cases of a conic, since the

equation of this article may be obtained from that of the previous
article by allowing the coefficients to change in such a way that

BG^ ABC approaches zero. We have three cases:

1. A and B have the same sign.

By proceeding as in 121, we may put the equation in the form

and if, as before, we place

G F
x = -- + xf

, y = - + a;
,A B

we have Ax 1 2 + By
* = 0.

Since A and B have the same sign, we may consider them as

positive, and factor the equation as follows :

(\/Ax
r + i^/By ) (VAx

1

i^fBy )
= 0,

which is satisfied by real values of x 1 and y only when x f =
0,

C* F
y =

0, or in the old coordinates x = &amp;gt; y = ---

Hence in this case the equation represents a point. This may be

considered the limiting case of the ellipse.

2. A and B have opposite signs. We may put the equation in

the form

or
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Since A and B have opposite signs, we will consider A as posi

tive and B as negative. The equation can then be separated into

two real factors

= 0.

Consequently the equation represents the two straight lines inter-

c^ v
secting in the point x f =

0, y = 0, or x = ---
&amp;gt; y =

^4. j-&amp;gt;

This may be considered the limiting case of the hyperbola.

3. One of the coefficients A or B is zero. For example, let

A = 0, B 3= 0. Then the condition AF2+ BG2 ABC= becomes

G = 0. Hence the equation is

This may be factored into

and accordingly represents either two parallel straight lines, two

coincident straight lines, or no real locus, according as yv
and yz

are real and unequal, real and equal, or imaginary.

This is considered a limiting case of the parabola.

123. The determinant AB H2
. Eeturning now to the gen

eral equation of the second degree,

and remembering that if it is reduced to the form

A x *+ B y
2 + 2 G x + 2 F i/ + C = 0,

we have AB H 2 = A B
,

we may state the following theorem :

The equation

=

always represents a conic or one of the limiting cases, if it repre
sents any curve at all.
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1. If ABH 2
&amp;gt; 0, the equation represents an ellipse, a point,

or no curve.

2. If AE H z
&amp;lt; 0, the equation represents an hyperbola or two

intersecting straight lines.

3. If AB H2 =Q
)
the equation represents a parabola, two par

allel lines, two coincident lines, or no curve.

124. The discriminant of the general equation. We have seen

in 122 that

A x 2+B y
2+ 2 G x + 2 F y* + C =

(1)

represents one of the limiting cases of the conic sections when

A F 2 + B G!2-A B C = 0.

It is useful to have this condition in terms of the coefficients of

the general equation

Ax2+ IHxy + Bf+2Gx + 2Fy + C=Q. (2)

This might be done by substituting for A
,
B

,
G

,
F

,
and C the

values given in 120, but this method is tedious. We may obtain

the result by noticing that the first member of (1) can be factored

rationally in x and y when it represents a limiting case, and not

otherwise. The same must be true of equation (2). We shall pro
ceed then to find the condition under which (2) can be factored.

1. Assume A = 0. (2) may now be considered as a quadratic

equation in x, and factored by the method of 41. Solving (2)

for x, we have

A

It is necessary, however, that y should not appear under the radi

cal sign, and for this it is necessary and sufficient that the quantity
under the radical sign must be a perfect square. The necessary
and sufficient condition for this is (37)

(HG - AF)
2

-(H*-AB)(G
2- CA) = 0,

that is, ABC+2FGIf-AF2-BG2-CH2 = 0. (3)
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2. Assume ^4 = 0, but B = 0. The equation may then be con

sidered as a quadratic equation in y, and handled in the same

manner as before with the same result.

3. Assume A 0, B = 0. Then H cannot equal zero. The

equation can consequently be written

The factors of this, if they exist at all, are clearly of the form

(B-f *)(?+ *) 0,

771 S~1 /~1

whence = -, 5 = -, b = -

The necessary and sufficient condition that two quantities a and I

can be found satisfying these equations is

But this is just what (3) becomes when A = 0, B = 0. Hence,

the necessary and sufficient condition that

represents a limiting case of a conic is

The expression (3) is called the discriminant of (1) and is

denoted by A. In determinant form

A =
A H G
H B F
G F C

125. Classification of curves of the second degree. The results

of the previous articles are exhibited in the table on the following

page, which gives the simplest forms to which the general equation

can be reduced under the various hypotheses, where

D =AB-H2
,

A =ABC+ I
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126. Center of a conic. It is frequently desirable to find the

center of a conic represented by the general equation. Now, if

the origin of coordinates is taken at the center of the curve, the

equation can contain no terms of the first degree in x and y ;
for

if it is satisfied by any point (xv y^) y
it must also be satisfied by

the symmetrically placed point (
xv y^). We will accordingly

take the center as (xot y )
and make the transformation

The general equation then becomes

Ax 2+ 2Hdy + By
* + 2 (Ax,+ Hy + G) x + 2 (HxQ+ By + F) y

+ Ax*+ lHx
QyQ+ By*+ 2 Gx + 2Fy + (7=0,

where, by the condition for the center,

+ F = 0.
(1)

By multiplying each of these by a properly chosen factor and add

ing, we obtain the equivalent equations

(2)
(AB-H2

)y= IIG -AF.
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Three cases then occur :

ft AB //&quot;
= 0. Equations (2) have then a single solution

and the curve has a center. This occurs for the ellipse, the

hyperbola, and their limiting cases.

2. AB II
2 = Q, but not each of the expressions HF BG

and HGAF equal to zero. At least one of equations (2) ex

presses an absurdity, and hence equations (1) have no solution

and the curve has no center. This occurs in the case of the

parabola.

3. AB-H* =
0, HF-BG =

0, HG -AF= 0. Equations (2)

are each = 0. Equations (1) are identical, and any point on the

line expressed by each of them is a center of the curve. In this

case one easily calculates that A = 0. The curve then consists of

two parallel straight lines
( 125), and the line of centers is the

line halfway between the two parallel lines.

127. If for the equation

Ax*+ 2 Hxy + r&amp;gt;if+1Gx+lFy + C=Q

the origin is transferred to the center of the curve, when such

exists, the equation becomes

Ax 2+ 2 Hafy + By
1 2 + 6&quot;

= 0,

where C f = Ax* + 2 Hx,y,+ By%+ 2 Gx + 2 FyQ+ C.

This quantity C may be expressed in terms of the original coeffi

cients as follows. Take the equations (1) of 126, multiply the

first one by x
ot the second by y ,

and add them. There results

Ax;+ 2 Hx.yQ+ Byl+ Gx
Q+ FyQ

= 0.

Subtracting this from the value of C
,
as given above, we have

whence, by substituting the values of X
Q and T/O ,

as given by (2)

( 126), we have

ABC+2FGH-AF t2-BG*-CH i AC =
AB-H- D
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128. Directions for handling numerical equations. In case it

is necessary to reduce a numerical equation to its simplest form,

the procedure, based on the foregoing discussion, is as follows:

First compute AB H2 and determine the type of the curve

( 123). A may also be computed if wished, but it is not necessary.

If AB H2
= 0, find the center, as in 126, and transfer the

origin to it. Then, as in 120, turn the axes through an angle

x= - tan 1- = tan- B ^(A-B}
2+H 2

(A-B)

computing A and B by the formulas of 120. The two values

of tan&amp;lt; are the slopes of the axes of the curve.

If AB H2 =
Q, write the equation in the form

+ y)
2 + 2 Gx + 2 Fy + C = 0,

being taken with the same sign as //, and let

, _ Vjff + VBy , _ V#ff V Ay

Solve these equations for x and y and substitute in the given

equation.

The equation is now in the form y
2 + 2 G x + 2F y

r + C = 0,

and the further reduction is made by the method of 121.

Ex.1. 8x2 - 4xy + 5?/
2 -36z-f- 18y + 9 = 0.

Here AB H 2 = 36, and the curve is an ellipse or a limiting case of an ellipse.

The center, found by 126, is (2, 1), and the equation transferred to the

center as origin becomes

8 z 2 - 4 x y + 5 y 2 - 36 = 0.

We now turn the axes through = 1 tan- 1
( f)

= tan- 1 2 or tan-!( ),

and find, from 120, A = 9 or 4, B = 4 or 9.

The ambiguity is removed by noticing that if we take tan = 2, the formulas

of transformation
( 115) are

x&quot; -%&quot;

V5 V5
which give A =4, B = 9.

The simplest equation is then

4 x//2 + 9
y&quot;*

- 36.

The slopes of the axes are 2 and ^.
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Ex. 2. 36 x2 - 48 xy + 16 y2 + 52 x - 260 y - 39 = 0.

Here AB-ir2 = 0.

We write (6 x
- 4 y)

2 + r,2 x - 260 y - 39 = 0,

and place
,_ 6x - 4y _ 3x - 2y

V52 Vl3

x = -2x-3y
V52 Vl3

Solving for x and y and substituting, we have

or

where

The curve is a parabola, the axis of which is
y&quot;

= or 6 x 4 y + 13 = 0.

129. Equation of a conic through five points. The general

.equation of the second degree

Ay?+ 2 Hxy + Bif +1Gx + iFy + C =

contains six constants, the ratios of which are alone essential. Five

independent equations are sufficient to determine these ratios.

Therefore a conic is, in general, determined by five conditions. The

simplest conditions are that the conic should pass through the five

points (xv y^, (x2 , y2), (a&amp;gt;8 , y3 ), (x4t y4),
and (z6 , y5 ).

The five equa
tions to determine the ratios of A, H, B, G, F, and C are then

l + 2 Hxj/i + + 2 Gx, + 2 Fy, + C = 0,

+2Gx2+2 Fy2 + C = 0,

2 Gx
s + 2

2

2 G 2 Fy,

C = 0,

C = 0.

Eliminating the coefficients between these and the general equa
tion, we have

xy y
z x y 1

^32/3

X^4
^52/6

2/4

2/5

=
0,
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which is the required equation of a conic through five given points.

The equation of a conic through five points may also be found

in the following manner :

Let us take any four of the given points and connect them by

straight lines so as to form a quadrilateral (fig. 134).

Let the equation of /^ be A^x + B^y + C\
= 0, or, more shortly,

fi(x &amp;gt; y)
= 0- Similarly, let the equation of

P&amp;lt;fz
be fz (x, y)

= 0, that

of %% be f3 (x, y}
=

0, and that of P^ be /4(#, y)
= 0.

Form now the equation

(Afa y) M*&amp;gt; y} + *(*&amp;gt; y) f*(x &amp;gt; y)
=

&amp;gt; W
where I and k are undetermined factors. This equation is of the

second degree in x and y ;
therefore

it represents a conic section. More

over, this conic section passes through

7J; for the coordinates of JJ make

f^x, y)
= and /4 (aj, y)

=
0, and

therefore satisfy equation (1). Simi

larly, this conic passes through PZ)
J, and P. If now we substitute in

(1) the coordinates of P
& ,

we de

termine values of I and k, which we
must assume in order that the conic

may pass through P& . We thus de

termine the equation of a conic through the five given points.

Ex. Let it be required to pass a conic through the points Pi(2, 3), PZ( 1, 2),

P3(-3, -1),P4 (0, -4), P6 (l, 1).

The equation of PiP2 isx-3y + 7=0, that of P2P3 is3x-2y + 7 = 0,

that of PgP* is x + y + 4 = 0, and that of P4Pi is7x 2y-8 = 0.

We form the equation

l(x-3y + 7)(x + y + 4) + fc(3x-2y + 7)(7x-2y -
8) = 0,

and, substituting the coordinates of PS, find k = 1 1.

Hence the required conic is

(x
- 3 y + 7) (x + y + 4) + -

(3 x
- 2 y + 7) (7 x

- 2 y - 8) = 0,

or 100 x2 - 108 xy + 8 ?/
2 + 169 x - 10 y - 168 = 0.

If three of the points lie in a straight line, the method is appli

cable, but it is evident that the conic must be one of the limiting
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cases, for it must consist of the straight line in which the three

]
joints lie, and the straight line connecting the other two points.

If four or five of the points lie in a straight line, the method is

not applicable. It is geometrically evident that in this case the

problem is indeterminate
;
for the conic may consist of the straight

line in which the four points lie, together with any line through the

fifth point, if that is not on the line with the four, or any line what
ever if the fifth point lies on a straight line with the four others.

If it is required to determine a parabola, only four points are

necessary. This follows from the fact that one relation connecting
the coefficients is always given, namely, AB H 2 = 0. We form,
as before, the equation

l
fi(*&amp;gt; y) -f&&amp;gt; y) + */2 ( , y) f&, y}

= o.

We form, then, the equation AB H 2 = out of the coefficients

of this equation. The result is a quadratic equation in -
&amp;gt; and

K
hence we will have two, one, or no real parabolas, according as the

values of - are real, equal, or imaginary. It should be noticed that

in this connection &quot;

parabola
&quot;

may mean two parallel straight lines.

Ex. Let it be required to pass a parabola through the points Pj(l,
-

1)P2 (2, 3), P8 (2,
-

5), P4
(:&amp;gt;, 7).

We find the equations of the following lines: PiP2 , 4s-y-6 = 0; P2P3 ,

x - 2 =
;
P3P4 , 4x-y-13 = 0; P4 Pj, 2x-y-3 = 0. The equation of

the conic is then

1(4 X - y - 5) (4x - y - 13) + k(x - 2)(2x
- y - 3) = 0,

or (1(H + 2k)x* + (-Sl- k)xy + ly*

+ (- 72 1 - 7 k) x + (18 I + 2 k) y + 65 1 + k = 0,

and the condition AB - 7/2 - Q is

whence k = Oor-SL
There are accordingly two parabolas,

1C x2 - 8 xy + ?y
2 - 72 x + 18 y + G5 = 0,

and y2 16 x + 2 ?/ + 17 = 0.

The first equation, however, represents a limiting case of a parabola, since
it factors into

4x-y - 5 = and 4 x - y - 13 = 0,

which represent two parallel straight lines.
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130. Oblique coordinates. We have assumed, thus far, that the

general equation is referred to rectangular coordinates. If, how

ever, the equation

Ax2 + 2 Hxy + By*+2Gx+2Fy + C=Q

has reference to oblique coordinates, it may be transformed to any

conveniently chosen pair of rectangular coordinates. Formulas for

this purpose are given in 117, and it has been proved in 118

that such a transformation does not alter the degree of the equa

tion. Therefore the new equation is of the form

A x 1 2 + 2H x y + B y
12 + 2 G x + 2 F y + C = 0.

This equation may now be investigated by the methods of this

chapter.

Hence we have the result :

Any equation of the second degree, whether referred to rectangu

lar or to oblique coordinates, represents a conic.

PROBLEMS

Determine the nature and the position of the following conies :

1. 4x?/ + 3y2 -Sx + IQy + 19 = 0.

2. x2 - Qxy + 9?/
2 - 280x - 20 = 0.

3. llx2 -4x?/ + 14?/
2 -26x + 32?/ + 59 = 0.

4. 5x2 -26 xy + 5?/
2 + lOx - 26?/ + 71 = 0.

5. 4xy + 6x- 8y + 1 = 0.

6. x2 - 2 xy + y2 + 2 x - 2 y + 1 = 0.

7. 13x2 + 10x?/ + 13y2 + 6x - 42?/-27 = 0.

8. x2 - 4 xy - 2 y
2 - 14 x + 4 y + 25 = 0.

9. 6 x2 - 5 xy - 6 y2 - 46 x - 9 y + 60 = 0.

10. 4 x2 - 8 xy + 4 y2 + 6 x - 8 y + 1 = 0.

11. x2 + 6xy + 9?/
2 - 6x -18y + 5 = 0.

12. 41 x2 - 24 xy + 34 y2 - 188 x + 116 y + 196 = 0.

13. 31x2 - 24xy + 21^2 + 48x - 84 y + 84 = 0.

14. Show that, if J. and B in the general equation have opposite signs, the

conic is an hyperbola.

15. Show that the conic represented by the general equation is an equilateral

hyperbola when A = B.
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16. Trove that the necessary and sufficient conditions that the general

equation should represent a circle are A = B, II = 0, provided the axes are

rectangular.

17. Show that, if the general equation contains the term in xy and not more

than one of the terms containing x2 or y2
,
the conic is an hyperbola.

18. Show that xy + ax -f by + c = is the general equation of the hyperbola

when the axes of coordinates are parallel to the asymptotes.

19. Prove that any homogeneous equation in x and y represents a system of

straight lines passing through the origin.

20. Find the angle between the two straight lines represented by the equation

Ay? + 2 Hxy + By2 = 0.

21. Show that the asymptotes of the hyperbola are parallel to the two

straight lines Ax2 + 2 Hxy + By2 = 0.

22. Show that, if the focus is taken upon the directrix, the conic becomes

one of the limiting cases.

Find the equations of the conies through the following points :

23. (3, 2), (- 2,
-

3), (, -
3), (2,

-
2), ( j,

-
J).

24. (1, 2), (0, 3), (3, 2), (2, 1), (9, 2).

25. (0, a), (a, 0), (0,
-

a), (- a, 0), (a, a).

26. (1,1), (-1,5), (2,4), (0,3), (3,1).

27. Find the equation of a parabola through the four points (4, 4), (9, 4),

(0,
-

1), (5,
-

2).

28. A point moves so that the sum of the squares of its distances from two

intersecting straight lines is constant. Prove that the locus is an ellipse, and find

its eccentricity in terms of the angle between the lines.



CHAPTER XII

TANGENT, POLAR, AND DIAMETER FOR CURVES OF THE
SECOND DEGREE

131. Equation of a tangent. It has been shown in 59 that

the tangent to a curve at a point (xv y^) is

*-*-

where ( )
denotes the value of at (xv y,).

\dx/i ax

Applying this theorem to the conic

Ax2 + IHxy +%2+ 2 Gx + 2 Fy + (7=0,

we first find, by differentiation,

2 Ax + IHy + ZHx^t- + iBy^ + 2 G + ZFy^- = 0,
ax dx ax

dy Ax + Hy+Gwhence
dx Hx+By

Therefore the equation of the tangent at the point (xv y^ is

AZi+Hy.+ G,V y =--1
(x a; )^

that is, Axjc Ax?+ Hxyl+ Hx^y 2Hx^+ By$ Byl
F = 0.

This equation may be simplified by adding to it the identity

Ax*+ 2 Hxj/i+ Byl+ 2 Gx
l+2Fy1 + C= 0,

which follows from the fact that (xv y^) is on the conic. There results

Axp + H(x$ + xy^ + Byiy + G(x + x
l)+ F(y + ^) + C = 0.

This result is easily remembered from its resemblance to the equa

tion of the conic.

246
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132. Definition and equation of a polar. We have just seen in

131 that the equation

Ax^x + H(x$ + xyj +Byy + G (x + xj + F(y + y,} + C = (1)

represents the tangent line to the conic

Ax* + 1Hxy + Bif + 1Gx+2Fy + C = 0, (2)

provided the point (xv y^ is on the conic. But no matter what is

the position of the point (xv yj, (1), being of the first degree, repre

sents some straight line which from the form of the equation must

in some way be related to the conic (2) and the point (xv yj.

This line is called the polar of the point (xv yj with respect to

the conic, and the point is called the pole of the line.

The tangent line now appears as only the special case of the

polar which occurs when the pole is on the conic.

Ex. 1. The polar of the point (3,
-

2) with respect to the ellipse

4x2 + 5y2 - 2x + 3y - 1 =

is 12 x - 10 y - (x + 3) -f (y
-

2)
- 1 = 0,

or 22x-17y-14 = 0.

Ex. 2. Find the pole of the line 2x-3?y + 6 = with respect to the hyper

bola 4x2 -
5?/

2 + 4x -2y + 3 = 0.

The polar of (xi, y\] is

4x!X - 5yi?y + 2(x + x : )
-

(y + yi) + 3 = 0,

or (4x! + 2)x + (- 6yi - l)y + 2x l -y l + 3 = Q.

This will be the same as the given line if

4 xi + 2 _5yi + 1 ^2xi -?/i + 323 6

These reduce to the two equations for x\ and ?/i,

12 xi -

whence x l
= -

, yi = ^.

133. Fundamental theorem on polars. \\lien the equation

2 Hxy + By*+ 2Gx+2Fy + C=Q (1)

represents one of the limiting cases of the conies, the polar has

little importance. We shall therefore assume that the conic is
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either an ellipse (including the circle), a parabola, or an hyperbola,
The properties of its poles and polars are then conveniently found

by use of the proposition :

If Pz is any point on the polar of another point Pv the polar of
P
z passes through Pr

For the polar of P^(xv y^ with respect to (1) is

Ax^x + H(x$ + xyj + By,y + G(x + xj + F(y + yi ) + C= 0, (2)

and if I%(x2 , y^ is 011
(2), we must have

Ax&+ H(xiy^+ x^) +By^ + G (xz+ xj + F(y^+ yj + C^ 0. (3)

Again, the polar of
JFJ with respect to (1) is

Ax
2
x + H(x^y + xya ) + By2y + G(x + x

a ) + F(y + yz) + C=0, (4)

and this passes through (xv y^ because of (3).

134. Chord of contact. An inspection of the figures of the conies

shows that a point not on a conic must lie so that in general either

two tangents or no tangent can be drawn from it to the conic. In
the former case the point is said to be outside the conic

;
in the

latter case, inside. Let us take

now a point P^ outside the conic,

and let the two tangents drawn
from it to the conic touch the

conic in L andK
(fig. 135). Now

the polar of a point on a conic

is the tangent to the conic at

that point (132). Hence P,L is

the polar of L, and JJ7f is the

polar of K. Therefore, by the fundamental theorem
( 133), the

polar of P
l
must pass through L and K. Hence the polar is

the straight line LK, which is called the chord of contact of

tangents from Pr
Conversely, if a straight line intersects a conic, its pole is the

point of intersection of the tangents at the points of intersection.

The proof of this is left to the student.
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The, chord of contact may be used to find the equations of the

tangents through a point not on the conic.

Ex. Find the tangents to the conic x2 + 2zy4-y2 +2z + 0y + l = which

l&amp;gt;:iss through the point (4, 2).

Since this point is not on the conic, its coordinates not satisfying the equa
tion of the conic, we form the equation of its polar, i.e. 3x -f oy 1 = 0, which

will be the chord of contact of the tangents drawn from the point to the conic,

provided any can be drawn. Solving the equations of the polar and the conic

simultaneously, we find that they intersect at the points (7, 4) and (2, 1).

Hence there are two tangents which are respectively 2x + 3y 2 = and

x + 2y = 0.

135. Construction of a polar. Whether a point lies inside or

outside a conic, the polar may be obtained by the following con

struction. Draw through

PI (fig. 136) two straight

lines, one intersecting the

conic in L and K, and

the other intersecting the

conic in M and N. Let

the tangents at L and K
intersect in R and the

tangents at M and N in

tersect in S. Then R is the pole of LK and S is the pole of MN
y

by 134. Since P
l

lies on both LK and MN, its polar passes

through R and S by the fundamental theorem. Therefore RS is

the required polar.

This construction may also be used when 7J is outside the conic.

136. The harmonic property of polars. An important property
of poles and polars is stated in the theorem : Any secant passing

through J^ is divided har

monically by the conic and

the polar of P.

Let P^N (fig. 137) be any
secant through P^ M and

N be the points in which

Fi( 137 P^N cuts the conic, and Q
the point in which it cuts

the polar of Pr We are to prove that the line MN is divided

FIG. 136
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harmonically, i.e. that it is divided externally and internally in

the same ratio. We are to prove, then, that

P^M _ MQ
JIN ~~QN

whence, by placing MQ=P1QP1M, QN=P1
NP

1 Q, and solving

for P^Q, we have
2 PM PN

PQ __\_L_ .M PN

Let the point Pl
be (xv y^, the equation of the conic be

Ax* + 2Nxy + By
2 + &amp;lt;ZGx+ &amp;lt;

ZFy + C=0, (I)

and that of the polar of 7J be

Ax^x + H(x# + xy^) + By,y + G(x + x^ + F(y + y,) + C=0. (2)

Let (x, y) be a variable point on f(N, r the variable distance P^P,

and the angle made by P^N and OX. Then

x x. v y.
cos0 =--, sin0 = - -,

r r

that is, x r cos + xv y = r sin 6 + yr (3)

Now if P coincides with either M or N, the values of x and y

given by (3) satisfy (1). Substitution gives

r
2

[A cos
2 6 + 2 // sin 6 cos + 7; sin

2

6&amp;gt;]

+ 2 r [Axl
cos + H(x l

sin + ^ cos 0)

+ By l
sin + G cos + ^ sin 0] + C&quot;

= 0,

where C r = Axl+ 2Hx^ + Byl + 2 G^ + 2 Fy,+ C.

The roots of this equation are P^M an^l P^N. Hence, by 43,

2 [Ax^ cos +H(xl
sin -f^ cos 9)+Byl

sin + (7 cos -f^sin 0]

-4 cos
2B+2H sin cos + B sin

2

J cos
2 + 2^ sin cos + # sin

2

whence
* !

^4^
t
cos 0-i-H(x1

sin +^ cos 0)+By^ sin + 6r cos +^sm
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Also, if the point P coincides with Q, the values of x and y

given by (3) satisfy (2). Substitution gives

r [Ax l
cos -f //(#! sin 4- y cos 0)+Byl

sin + G cos + ^sin 0]

+ C = 0.

The root of this is P^Q. Therefore P
l

C
Ax

l
cos +H(x1

sin +^ cos 0)+By^ sin + G cos +^7

sin

Comparing (4) and (5), we have

which was to be proved.

The theorem of this article is often made the basis of the

definition of the polar.

137. Reciprocal polars. Consider a given conic and a rectilinear

figure, such as the triangle ABC with sides a, b, c
(fig. 138). Con

struct the lines a
,
b

,
c

,
the polars of A, B, C, respectively with

respect to the conic. The lines a
,
b

,
c form a new triangle A B C .

The fundamental theorem shows that A
,
B

,
C1

are the poles of

a, b, c respectively. Hence the two triangles are so related that the

vertices of one are the poles of the sides of the other. They are

called reciprocal polars. A similar construction holds for any
figure composed of straight lines.

Consider next any curve K and a tangent line a
(fig. 139). Let

A be the pole of a with respect to a conic C. As the tangent rolls
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around the curve K, the point A describes another curve k. Let
a and I be two tangents to K, and M their point of intersection,
and let A and B be the two corresponding points of k, and m the
chord AB. Then, by the fundamental theorem, m is the polar of M.

Now let a and b approach
coincidence. Then M ap

proaches a point on K, B
and A approach coinci

dence, and m approaches a

tangent to k. Hence the

points of K are the poles
of the tangents to k.

We have then two curves such that the points of either are the

poles of the tangents of the other. -These curves are called reciprocal

polars.

The study of reciprocal polars forms an important part of geom
etry, but lies outside the limits of this work.

138. Definition and equation of a diameter. A diameter of a
conic is the locus of the middle points of a system of parallel chords.

Let

2 Hxy + Bf+ 2 Gx

C7-0 (1)

be any conic
(fig. 140), US any

chord which makes the angle 6

with OX, and P^(xv yj the mid

dle point of this chord. Take

P(x, y) any point on the chord,

and let P^P = r, where r is posi- FIG. MO
tive if P^P has the direction of

RS, and negative if P^P has the direction SK. Then for any
position of P we have

x a?, ?/ y.1 n ./ &amp;lt;7 1 /I~ = cos 0,
- = sin 6

whence x = x
1 + r cos 6, y = yv + r sin 6. (2)
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Now if P coincides with either It or #, the values of x and y in

(1) satisfy (1). Substituting, we have

r
2

[A cos
20+2N sin cos 6 + ^ sin

2

0]

+ 2r [Axl
cos + Jfx

l
sin + Hy^ cos

-f% x
sin 6 + G cos + F sin 0]

+ [^ 2+ 2^
l2/1 +% 2 + 2 6^ + 2 Fy, + C] = 0, (3)

the roots of which are I^S and J^R. But, by hypothesis, P^R
= P^. Hence the roots of equation (3) are equal in magnitude
and opposite in sign. Therefore the coefficient of r in (3) must be

zero, that is,

sin +//?/, 0080+7^ sin0 + 6J cos0+^sin0 = 0. (4)

If, for convenience, we assume that cos 0^0, and this will gen

erally be the case, we may divide by cos and replace tan by the

usual symbol for the slope m, thus obtaining

Ax
l + Hy^ +G + m (Hxl + Sy1 + F) = 0. (5)

If we allow RS to move parallel to itself, so that m remains

fixed but PI changes, (5) always holds true, and in fact shows that

P
l
is always a point of the straight line

Ax + Hy + G + m (Hx +P&amp;gt;y+F)=Q. (6)

Conversely, any point f((xv yj on line (6) makes the values of

r in (3) equal in magnitude but opposite in sign, and if P
l
lies so

that these roots are real, it will be the middle point of a chord

with slope m.

The straight line (6) is of infinite length, and it is customary to

regard the entire line as the diameter, though it is evident that

not all of its points correspond to chords of the system which

intersect the conic in real points.

139. The last statement of the previous article may be explained as follows :

The equation y = mx + b may be made to represent any line of slope m by
iissiuniii^ an appropriate value to b. For some values of b the corresponding
line intersects the conic (1) of 138 in real points, and is one of the chords

bisected by the diameter
((&amp;gt;).
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For other values of 6, however, the line does not intersect the conic in real

points, the simultaneous values of x and y satisfying their equations being

imaginary. But if these imaginary values of x and y are substituted for

Xi, 2 and ?/!, ?/2 respectively in the formulas x = -1

--, y =
l z

of

18, the resulting values of x and y are real, and furthermore they satisfy the

equation of the diameter.

This fact is sometimes expressed by saying that the line is a chord of the

conic which intersects it in imaginary points, and that its middle point is a

real point of the diameter. It is from this point of view that the entire line is

regarded as the diameter, since every point of it is the middle point of some

chord of the system.

140. If the conic has a center, every diameter passes through the

center. For, by 126, the center satisfies the equations

Ax + Hy + G = Q, Hx + By + F = 0,

and hence satisfies (6) of 138 for any and all values of m.

In the parabola, however, all diameters are parallel to each other

and to the axis ; for the slope of the diameter is, from (6), 138,
A l JftYi /

---- But for the parabola H = ~vAB. so that the slope ofH + Bm , ,A + VABm ... VA
the diameter becomes -- &amp;gt; which reduces to --=

VAB + Bm -^/B

This is independent of m, and equal to the slope of the axis
( 128).

It is evident that the axes of a conic are diameters, for from the

symmetry of the curves they contain the middle points of all

chords which are perpendicular to them. In fact, they are the

only diameters which are perpendicular to the chords which they

bisect, as will be proved later on.

141. Diameter of a parabola. If the equation of the parabola

is written in its simplest form, y
2 = 4px, the equation of the

2
&amp;lt;p

diameter becomes y = m
From this equation it is evident that the only diameter perpen

dicular to the chords which it bisects is the axis of the parabola.

Ex. 1. Find the equation of the diameter of the parabola 2y2 + 3a: =

bisecting chords with slope 2.

Since w = 2 and p = f ,
the equation of the diameter is y = , or
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ro

Ex. 2. A diameter of the parabola y2 = 2cc passes through the point (2, 1).

What is its equation, and what is the slope of the chords bisected by it?

If /// is the slope of the chords bisected, the equation of the diameter is

y - . But (2, 1) is a point of this diameter.

.-. 1 = , whence m = 1
;
also the diameter is y = , or y = I.

m
This equation of the diameter could have been written down immediately,

for the diameter is parallel to OAT, so that if one of its points is distant 1 from

OA
,
all its points are distant 1 from OAT, and its equation is y = 1.

If we solve the equations of the diameter and the parabola

simultaneously, we find the coordinates of (fig. 141), their point

(p
2 p

m&quot; ?

The equation of the tangent at is found to be y = mx + -

whence it is seen that its slope is m.

Calling the end of the diameter, we express the above theo

rem as follows : The tangent at the end of a diameter is parallel to

the chords bisected ~by the diameter.

If we consider the tangent as the limiting position of a chord

which is moved, yet retains its original slope, the above theorem

seems almost immediately evident.

142. Parabola referred to a diameter and a tangent as axes. Let

O X (fig. 141) be a diameter of parabola

y
1 =

&amp;lt;px, (1)

bisecting chords of slope m, and O Y be the tangent at . Then

the coordinates of are
(

&amp;gt;

\m m
and the slope of O Y 1

is m.

First transposing (1) to O X and

O
Y&quot;,

where O Y&quot; is parallel to OY,
we have the formulas of transfor

mation

m m
The new form of the equation is

m
&quot;= 4 -a

FIG. 141
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Using now the formulas of transformation of 117, which become

Vl + m 2 Vl + m2

since &amp;lt;

= and
$&amp;gt;

= tan&quot;
l

m, we have, finally,

By 17, however, FO =

Therefore if we denote FO by _/, after dropping the primes from

x and y, the equation becomes

It is to be noted that an equation in the form y* = 4:px always

represents a parabola, the x axis being a diameter, the y axis a

tangent, and the distance of the focus from the origin being one

fourth the coefficient of x.

143. Diameters of an ellipse and an hyperbola. If the equation
, x2

i/
2

of the ellipse is written in its simplest form, + ^- =
1, and the

a o

common slope of the chords is denoted by mv the equation of the

diameter becomes
2

I)
2

If the slope of the diameter is denoted by m
,
m9
= ---

whence mjn z
= ---

If 1)
=

a, m l
m

z
cannot in general be 1, and the diameter of an

ellipse cannot in general ~be perpendicular to the chords which it

bisects. The single exception is when the chords are parallel to

either axis, in which case the diameter is the other axis and is

perpendicular to the chords which it bisects, as noted above.

If I = a, the ellipse becomes a circle, and mjn* is always equal
to 1. Hence the diameter of a circle is always perpendicular to

the chords which it bisects.
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Ex. 1. Find the equation of a diameter of the ellipse 4x2 + 9y 2 = 36 bisect

ing chords parallel to the line x + 2?/ + l 0.

Here a2 =
9, &2 = 4, and nil = ^.

.-. the diameter is y =-- x,

or Qy -8x = 0.
9 (~ 5)

Ex. 2. 2y + 3x = 0isa diameter of the ellipse 4x2 + 9y2 = 36. What is

the slope of the chords which it bisects ?

The slope of the diameter is - a, and by the formula is --
, ?, being

52
a2m i

4
the slope of the chords bisected. As a2 = 9 and 62 = 4,

---- becomes __ .

8
whence m-t =

27

9 mi

2 9m!
Ex.3. Find the diameter of the circle 4x2 + 4i/

2 + 4x 8?/ 11

bisecting chords of slope 2.

The center of the circle is (- -V, 1), so that the required diameter will be

#-! = -( + i) or 2 x + 4 y - 3 = 0.

Ex. 4. Find the diameter of the circle 4x2 + 4?/
2 + 4x 8y 11=0, which

passes through the point (2, 1).

The center of the circle is (- , 1), and the straight line determined by the
two points (2,

-
1) and (- , 1), i.e. 4x + 5y - 3 = 0, is the required diameter.

x2
i/

2

In the case of the hyperbola ^-
= 1 it is to be noticed that

a&quot; b

the parallel chords may be drawn in two ways. They may join

points on the same branch of the hyperbola, or points of one
branch to joints of the

other branch, as repre

sented in fig. 142.

In whichever way
the chords are drawn, if

their common slope is -

denoted bymv the equa
tion of the diameter is

arm. FIG. 142

This equation differs from that for the diameter of the ellipse

only in the sign of the right-hand member.

If m
z

is the slope of the diameter, m^i.,
=

&amp;gt; and, as in the

case of the ellipse, a diameter of an hyperbola cannot be perpendic
ular to the chords it bisects, except in the two special cases of the

transverse axis and the conjugate axis.
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144. Conjugate diameters. In 143 we have seen that if the

x2
if

slope of the chords of the ellipse + ~ = 1 is denoted by mv and
Ct&amp;gt;

the slope of the diameter is denoted by m2 ,

b
2

whence tf.
* (1)

Similarly, if the slope of the chords is m
2 ,
the slope of the diam

eter bisecting them must be
2

&amp;gt; which, by (1), must be m r

FIG. 143

Hence the proposition : If m l
and w

2
are the slopes of two

diameters of an ellipse, and

a*

then each diameter bisects all

chords parallel to the other.

Such diameters are called

conjugate diameters. As the

major and the minor axis

each bisects chords parallel

to the other, they are conjugate diameters.

It follows that :

1. The two axes are the only pair of conjugate diameters which

are perpendicular to each other.

2. If one of two conjugate diameters of an ellipse makes an

acute angle with the axis of x, the other makes an obtuse angle
b
2

with the axis of x. For if m
l

&amp;gt; 0, m2
&amp;lt; 0, since m^n^

-

But a positive slope corresponds to an acute angle, and a negative

slope to an obtuse angle. Hence the upper portions of conjugate

diameters always lie on opposite sides of the minor axis, as OA
l

and OB^ in fig. 143, A^A^ and B^B^ being conjugate diameters.

x2
i/

2

In similar manner for the hyperbola ^ = 1, if the slopes
Ct

of two diameters m
l
and m

2
are such that

-m
i
m

2--*&amp;gt;
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f/tc corresponding diameters are conjugate, and each bisects all

chords parallel to the other. The transverse and the conjugate
1

;i\rs are conjugate diameters, each of which bisects chords parallel

to the other.

It follows that:

1. The two axes are the only pair of conjugate diameters that

are perpendicular to each other.

2. Two conjugate diameters make either both acute or both

obtuse angles with the transverse axis
;

for mjn^ being always

positive, m v
and m

2
have the same sign.

3. Two conjugate diameters lie on opposite sides of either asymp

tote
;
for since m.m = , if m

l &amp;lt;
-

&amp;gt; then m &amp;gt;
-

, and the corre-
a 2

a a

spending conjugate diameters are on opposite sides of the asymptote

y =^ (fig. 146).
tv

145. Ellipse and hyperbola referred to conjugate diameters as

axes. Let the conjugate diameters OA
l
and 0/?

t
of the ellipse

;?
+ ^

= 1 w

(fig. 144) be chosen as new
axes OX and OY r

,
and let

them make angles &amp;lt;f&amp;gt;

and &amp;lt;

respectively with OX.

Then the formulas of trans

formation are

x = # cos
(/&amp;gt;

+ y
1

cos
&amp;lt;//,

v/
= x sin

&amp;lt;/&amp;gt;

+ y sin
(//,

where

sin
&amp;lt;/&amp;gt;

sin
&amp;lt;/&amp;gt;

cos
^&amp;gt;

cos $
xi 5

~ =
V) (o)

b
2

a&quot;

since OX and OY are conjugate diameters.
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Substituting in (1) and collecting like terms, we have

, 2 2
cos

&amp;lt;ft

cos
&amp;lt;fr sinft sin ft , ,

*

(4)

But the coefficient of % y is zero, by virtue of (3) ;
and if the

intercepts on OX and OY are denoted by a and V respectively,
i.e. OA^ = a and OB^ =1 , (4) becomes

2

(5)

where a =
(cos

2

VI?

and ?/ =
&amp;lt;/&amp;gt;

sin
2

&amp;lt;f&amp;gt;

1 77T-
Icos

2

&amp;lt;fr

N *

The equation of an ellipse can assume the form (5) only when
the axes chosen are a pair of conjugate diameters, as only then will

the coefficient of xy be zero. Conversely, any equation in form (5)

is an ellipse referred to a pair of conjugate diameters as axes.

In similar manner, the equation of the hyperbola referred to a

pair of conjugate diameters as axes is -^
=

1, where at pres

ent no geometrical meaning \vill be assigned to //.

146. Properties of conjugate diameters.

1. The tangent at the end of a diameter is parallel to the conjugate diameter.

We shall prove the theorem for the ellipse, the same form of proof being appli

cable to the hyperbola.
In fig. 145 let AI have

coordinates (x\,y\). Then

the slope of OAi is ,

and if the slope of OB\ is

w2 ,
m 2 =

, whence
&i a2

62Xiw 2 =
jj

The equa

tion of the tangent A i

r

J\

the slope of which is

-

^g
Hence this tangent is parallel to the conjugate diameter OB\.
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2. The sum of the squares of the halves of two conjugate diameters of an ellipse

is constant and equal to the sum of the squares of the halves of the major and the

minor axes, i.e. a 2 + b&quot;
2 a2

-f b2
.

&2Xi
We have just seen that the slope of OB\ (fig. 145) is - -

, so that its

is

Solving this equation simultaneously with the equation of the ellipse, in order
x2 y2

to find coordinates of B\, we substitute the value of y from (1) in --
1

-- = \.

a4y?
As a result x2 -

^
- - But AI(XI. y\] is a point of the ellipse, so that

and z=

By substitution in (1), y = =p

Therefore the coordinates of B are
(
--

, -)
\ b a /

If, as in 145, we denote O^li by a
x and OB\ by 6

, by 17,

and b/2 = - - + -
,

62 a2

and hence a/2 + &/2 = aLi x 2 + &amp;lt;*l+_^ y
2

- = 2
-f &2

,

x ?/

since -\
- =

1, as noted above.

3. The area of the parallelogram formed by drawing tangents to an ellipse at

the ends of conjugate diameters is constant and equal to 4ab. Let
TiT&amp;gt;2 Ts T

(fig. 145) be a parallelogram formed by the tangents at the ends of the con

jugate diameters AiA 2 and BiB2 . Now the area of this parallelogram is evi

dently four times the area of the parallelogram A \OB\T\. But-4 1 7
1

i= OBi

_j_= 6 = -

, from work above
;
and since the equation of A\T\ is

ab a2

-f 22? =
1, the perpendicular distance from O to AiTi is, by 32,

Hence the area of A lOB l 7\ =
(

^Vl +
) (

- = = ab, and the

\ ab

area of the large parallelogram is 4 ab, as was to be proved.
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147. It was noted in 144 that conjugate diameters of the hyperbola

= 1 lie on opposite sides of the asymptotes, whence it follows that if

one of two conjugate diameters intersects the hyperbola, the other cannot inter

sect it. In order, then, to state for the hyperbola propositions analogous to 2 and
3 of the last article, it is customary to consider, in connection with the above

hyperbola, the hyperbola -- +
JL!

= 1. These two hyperbolas are called con

jugate hyperbolas, either one being considered the primary and the other being
called the conjugate.

It may readily be proved that if the slopes of two diameters are such that

=
, they are conjugate diameters of both the above hyperbolas. More

over it is evident (fig. 146)

that if one diameter in

tersects one hyperbola, the

other intersects the conju

gate hyperbola.

Now if OAi and OBi are

conjugate diameters, and

OA i is called a
,

as in

145, and we apply the

same method as was ap

plied to the ellipse, we shall

find OBi = V of 145.

With this value of 6
,

theorem 2, 146, becomes

for the hyperbola a 2 b 2 = a2 62
,
while theorem 3 is the same for the

hyperbola as for the ellipse.

The proofs of these last statements are left to the student, the work being

exactly like that for the ellipse.

FIG. 146

PROBLEMS

Find the polars of each of the following points with respect to the given

conic, and find the points in which the polar intersects the conic :

1. (1, 2), 23z2 -llz?/ + 2?/
2 + 36z-9?/ + 9 = 0.

2. (-1, -2), 3z2 -3z?/+4z + 2/-3 = 0.

3. (0, 0), 2z2 -2?72 -2z + 2y-l = 0.

4. (4, -2), 5?/
2

-f 18y + 4z + 5 = 0.

Find the poles of each of the following polars with respect to the given conic :

5. 2 x - y = 0, z2 + 8z?/ - 2 y2 - 12 z + 6y-9 = 0.

6. z- 3T/ + 2 = 0, z2 + ?/
2 -2z + 4?/ = 0.

7. z + 2?/ -13 = 0, 3z2 + 8?/
2 - 26z - 76y + 231 = 0.

8. 3z _2y- = 0, 3z2 - 4y2 + 6z - 24 ?/
- 45 = 0.
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Find the equations of the tangents from each of the following points to the

given conic :

9. (2, 3), 4x2 - oxy + 2y2 + 3x - 2 y = 0.

10. (0, 1), 3 x2 - 4 y
2 + 12 x = 0.

11. (1, -2), 2x2 -2y2 -Cx-6y- 1 = 0.

12. (2, 4), x2 + ?/
- Ox - 2 y + 5 = 0.

13. (2, 0), Sy2 + 4x - 2y - 3 = 0.

14. (-1, -
1), 3x2 + 8y2 -8x- 12y + 4 = 0.

15. Prove that the polar of a given point with respect to any one of the

circles x2 + y2 2 kx + c2 = 0, when k is variable, always passes through a fixed

point whatever the value of k.

16. T is the pole of a chord PQ of the parabola y2 = 4px. Prove that the

perpendiculars from P, T, and Q upon any tangent to the parabola are in

geometric progression.

17. If P is any point, LM its polar with respect to any central conic, C the

center of the conic, R the point in which the perpendicular from C to LM meets

LM, and S the point in which the perpendicular from P to LM meets the axis

of the conic, prove CR PS 62 .

18. Prove that the perpendicular from any point (xi, yi) to its polar with

respect to any central conic intersects the axis of the conic at a distance e2Xi

from the center of the conic.

19. Prove that if in any conic the pole of the normal at P lies on the normal
at Q, then the pole of the normal at Q lies on the normal at P.

20. If PI and P2 are any two points, and C the center of a conic, show that

the perpendiculars from P! and C to the polar of P2 are to each other as the

perpendiculars from P2 and C to the polar of PI.

21. If mi is the slope of the polar of a point PI with respect to the ellipse

x2 y2
-f =

1, and rn2 is the slope of the line joining PI to the center, show that
a b

52
?mm2 = Find the similar relation for the hyperbola.

a2

22. Prove that the portion of the axis included between the polars of two

points with respect to a parabola equals the projection on the axis of the line

joining the points.

23. Show that for any conic section the polar of the focus is the directrix.

24. Where is the polar of the center of an ellipse or hyperbola with respect
to that curve ?

25. In the ellipse f-
= 1 find the equations of two conjugate diameters,

one of which bisects the chord determined by the upper end of the minor axis

and the right-hand focus.
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- 26. If P! and P2 are the extremities of any two conjugate diameters of the
x2 y2

ellipse + =
1, prove that the sum of the squares of the perpendiculars drawn

from PI and P2 to the major axis of the ellipse is equal to 62 .

27. Show that there can be only one pair of equal conjugate diameters of the

ellipse
-

;
+ y-- =

1, namely y = -x,y=-^-x.
Or tr a a

28. Show that the equation of any ellipse referred to its equal conjugate

diameters as axefe is x2 + y2 = a
.

29. In any ellipse show that the diameters parallel to the lines joining the
extremities of the axes are conjugate.

30. One diameter of the ellipse L +
JL

i passes through the upper end of

the right-hand latus rectum. What is the slope of the conjugate diameter ?

31. What must be the relation between the semiaxes a and 6 of an ellipse
when the diameters passing through the upper extremities of the left-hand latus

rectum and the right-hand latus rectum are conjugate ?

32. Show that the polar of any point on a diameter of a central conic is

parallel to the conjugate diameter.

33. Show that if an ellipse and an hyperbola have the same axes in magni
tude and position, then the asymptotes of the hyperbola coincide with the equal
conjugate diameters of the ellipse.

34. Prove that tangents at the ends of conjugate diameters of an hyperbola
intersect on the asymptotes.

35. Prove that the straight line joining the ends of a pair of conjugate diam-
dters of an hyperbola is parallel to one asymptote and bisected by the other.

36. If an hyperbola has a pair of equal conjugate diameters, prove that it is

an equilateral hyperbola.

37. Show that in an equilateral hyperbola conjugate diameters are equally
inclined to the asymptotes.

38. Show that in an equilateral hyperbola all diameters at right angles to

each other are equal.

39. Show that every diameter of an equilateral hyperbola is equal to its

conjugate.

40. Prove that the tangents at the ends of any chord of a conic intersect on
the diameter which bisects the chord.

41. The chords which join the ends of any diameter to any point of the
curve are called supplemental chords. Prove that two diameters which are

parallel to any pair of supplemental chords are conjugate.

42. If the tangent at the vertex A of an ellipse cuts any two conjugate
diameters produced in T and t, show that A T At = - 62 .
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43. Show that if any tangent meets any two conjugate diameters, the prod

uct of its segments is equal to the square of the half of the parallel diameter.

44. If from the focus of an ellipse a perpendicular is drawn to a diameter,

show that it will meet the conjugate diameter on the corresponding directrix.

45. The tangent at any point PI of an ellipse cuts the equal conjugate

diameters in T and 7\. Show that the triangles TCPi and TiCPi are in the

ratio CT 2
: C2\

2
.

46. Show that the product of the focal distances of any point of a central

conic is equal to the square of half the corresponding conjugate diameter.

47. Find where the tangents from the foot of the directrix will meet the

hyperbola, and what angles they will make with the transverse axis.

48. Show that the perpendicular from the focus upon a polar with respect to

an ellipse or an hyperbola meets the line drawn from the center to the pole on

the corresponding directrix.



CHAPTER XIII

ELEMENTARY TRANSCENDENTAL FUNCTIONS

148. Definition. Any function of x which is not algebraic is

called transcendental. The elementary transcendental functions are

the trigonometric, the inverse trigonometric, the exponential, and

the logarithmic functions, the definitions and the simplest properties
of which are supposed to be known to the student. In this chapter
we shall discuss the graphs and the derivatives of these functions.

149. Graphs of trigonometric functions.

Ex. 1. y = sinx.

The values of y are found from a table of trigonometric functions. In plot

ting it is desirable to express x in circular measure
; e.g. for the angle 180 we

lay off x = TT = 3.1416. When x is a multiple of TT, y = 0; when x is an odd
7T

multiple of , y = 1
;
for other values of x, y is numerically less than 1. The

2

graph consists of an indefinite number of congruent arches alternately above

and below the axis of x, the width of each arch being TT and the height being 1

(fig. 147).

X

FIG. 147

The curve y = sin x may be constructed without the use of tables by a method
illustrated in fig. 148.

Let PI be any point on the circumference of a circle of radius 1 with its

center at C, and let A be a diameter of the circle extended indefinitely. With
a pair of dividers lay off on A produced a distance ONi equal to the arc OPi.
This may be done by considering the arc OPi as composed of a number of straight

lines each of which differs unappreciably from its arc. From NI draw a line

266
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perpendicular to AO, and from PI draw a line parallel to AO. Let these lines

intersect in
&amp;lt;&.

Then Nify = M^Pi = CPi sin OCPi. But CPi -
1, and the cir

cular measure of OCPi is OP l
= ON^ If, then, we take O^i = x, N^=y,

FIG. 148

Qi is a point of the curve y = sin x. By varying the position of the point Pt we

may construct as many points of the curve as we wish. The figure shows the

construction of another point Q2 -

Ex. 2. y = a sin 6x.

When x is a multiple of , y = ;
when x is an odd multiple of , y = a

;

6 26
for all other values of x, y is numerically less than a. The curve is similar in

its general shape to that of Ex. 1, but the width of each arch is now , and its

height is a. Fig. 149 shows the curve when a = 3 and 6 = 2.

FIG. 149

Ex. 3. y a, sin (6x + c).

Place x = - C
- + x

, y = y .

6

The equation then becomes y = a sin 6x .

The graph is consequently the same as in Ex. 1, the effect of the term -f c

being merely to shift the origin.
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Ex. 4. y = a cosbx.

This may be written y = a sin /bx + -
J

,

which is a curve of Ex. 3. Hence the graph of the cosine function differs from
that of the sine function only in its position.

Ex. 5. y sin x + ^ sin 2 x.

The graph is found by adding the ordinates of the two curves y = sin x and

y = ^ sin 2 x, as shown in fig. 150.

r

\^ s-f

f/*\^V?\ ?/,

FIG. 150

Ex. 6. y = sin-.
x

y = when - =
&TT, i.e. when x = -, where k is any integer. Hence the

X /C

graph crosses the axis of x at the points 1, , , J, ,
etc. Between any con

secutive two of these points y varies continuously from to 1 and back to

FIG. 151

zero. It follows that as x approaches 0, the corresponding point on the graph
oscillates an infinite number of times back and forth between the straight lines
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y = 1. It is therefore physically impossible to construct the graph in the

neighborhood of the origin. This is shown in fig. 151 by the break in the curve.

It should be borne in mind, however, that the value of y can be calculated

for any value of x no matter how small. E.g. let x = 5 then - = = 10 TT

125 12

+ -TT, and y = sin = sin 75 = .9659.
12 12

The value of y is not defined for x = 0, and the function is discontinuous

at that point.

Ex. 7. y = tanx.

When x is a multiple of TT, y = ;
when x is an odd multiple of -

, y is

infinite, in the sense of 11 and 68. The curve has therefore an unlimited

number of asymptotes perpendicular to OX, namely x = -
, x =

,

2i 2

which divide the plane into an infinite number of sections, in each of which

is a distinct branch of the curve, as shown in fig. 152.

&r

7
r
-ir _TT 29

FIG. 152

150. Graphs of inverse trigonometric functions. The graphs of

the inverse trigonometric functions are evidently the same as those

of the direct functions, but differently placed with reference to the

coordinate axes. It is to he noticed particularly that to any value

of x corresponds an infinite number of values of
//.
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Ex. 1. y = sin^x.

From this x = sin y, and we may plot the graph
by assuming values of y and computing those of x
(fig. 153).

FIG. 153

151. Limits of

FIG. 154

Ex. 2. y = tan- IE.

Then x = tan y, and the graph is as in fig. 154.

These curves show clearly that to any value of x

corresponds an infinite number of values of y.

and

h h

^
sl

. In order to
,

the
h

methods of the differential calculus to the trigonometric functions, it

is necessary to know the limits approached by
Sm ll

and
1 ~ cos ^

as h approaches zero as a limit, it

being assumed that h is expressed
in circular measure.

1. Let AOB
(fig. 155) be the

angle h, r the radius of the arc AB
described from as a center, a the

length vlAB,p the length of the per

pendicular BC from B to OA, and
t the length of the tangent drawn
from B to meet OA produced in D.

FlG&amp;gt; 156
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Revolve the figure on OA as an axis until B takes the position

/; . Then BCB =2p, BAB 1 =2 a, B D = BD. Evidently

BD + DB 1

&amp;gt; BAB &amp;gt; BOB ,

whence t &amp;gt; &amp;gt; P-

Dividing through by r, we have

t a p
-&amp;gt;-&amp;gt;-&amp;gt;

T T T

that is,
tan li &amp;gt; li &amp;gt; sin h.

Dividing by sin h, we have

sin h
1

or, by inverting, cos li &amp;lt; 7
^ 1.

cos li sin h

in

T
sin h

Now as li approaches zero, cos h approaches 1. Hence -
&amp;gt;

which lies between cos h and 1, must also approach 1
;
that is,

T . sin h
1Lim - = 1.

A o n

2. To find the limit of - -
&amp;gt; as h approaches 0, we proceed

as follows :

1- cos ft _
2siR2

| =
Sln

*2 = h
|
^_2

&quot;T&quot; A h 2\ h

2 \ 2

//

sm-

Now as // approaches zero as a limit, -r~ approaches 1, as

just shown, and therefore ^ j-z
approaches zero, by 2, 94.

\ 2 /

1 cos h A
Therefore Lim : =0.

AO h



272 ELEMENTARY TRANSCENDENTAL FUNCTIONS

152. Differentiation of trigonometric functions. The formulas

for the differentiation of trigonometric functions are as follows,

where u represents any function of x which can be differentiated :

d . du
- smw = cosu &amp;gt; (1)
dx dx

d . du
cos u = sin u &amp;gt; (2)

dx dx

d 2 du- tan u = sec u &amp;gt; (3)
dx dx

d 2
du- cot u = cscru &amp;gt; (4)

dx dx

d du
sec u = sec u tan u &amp;gt; (5)

csc w = ese M cot (6)

1. By (7), 96, sinw = -^sinwdx du dx

To find - sin u, we place y = sin u.
du

Then if u receives an increment Aw, y receives an increment Ay,

where / A \ A
Ay = sin (w + &u) sin w = 2 cos ( u +

)

sin -
&amp;gt;

the last reduction being made by the trigonometric formula

. + &. &
sin a sm o = 2 cos - sin -

Then we have

r- = cos
Aw 2Aw

Let Aw approach zero. By 2, 94,
. Aw

sin
*

T . Ay T . /
,

Aw\ . _2
Lim - = Lim cos

(
w H--- Lira --

Aw \ 2 /
Aw
&quot;2
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Aw
sin

But Lini - = . Lim cos
(
w + ^ )

= cos w, and Liin - -
Aw du \ 2 / Aw

= M151). 2

Hence sin w = cos w
du

d . du
and sm w = cos w -

dx dx

2. To find cos w, we write
dx

/7T \= sin I
--- u I.

rf rf /7T \
Then cos u = sin( w

)

c^ f^ \2 /

7T= cos -

= sin u
dx

3. To find tan u, we write
dx

tan w =

_,, ,
(

Then - tan u = -

cos u

sinw

ax ax cos u

d d
cos u sm u sm w cos w

(by(5) 96)

. ty rt v (* IV

(cos w + sm w)

2f (by (1) and
( &amp;gt;))

COS W
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4. To find cot u, we write
dx

cosu
cot u = --

sin u

m, d d cosu
Then cot u = --r

ax dx sin u

d d
sin u cos u cos u sm u

dx dx=--
(by (5), 96)

-

3
(^ (D and (2))

-

dx

5. To find sec u, we write
dx

sec u = : =
(cos u)~

l
.

cosu

Then secu= (cos u)~
2

cos u (by 97)dx dx

(by (2))

= sec u tan u

6. To find esc u, we write
dx

esc u - = (sin u)~\smu

Then esc u (sin u)~
2

sin u (by 97)
dx dx

du= csc^ cot u -
(by (1))

Ex. 1. y = tan 2 x - tan2 x = tan 2 x - (tan x)
2

.

^^sec2 2x
d
-(2cc)

-
2(tanx) tanx

dx dx dx
= 2 sec2 2x 2 tan x sec2 x.
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Ex. 2. A particle moves in a straight line so that

s = k sin bt,

where t = time, s = space, and 6 and k are constants. Then

velocity = v = bk cos bt,
dt

acceleration a = 7 = Wk sin bt = 62s,

force = F = ma = mb2s.

Let be the position of the particle when t = 0, and let OA =+k and
OB = k. Then it appears from the formulas for s and v that the particle
oscillates forward and backward between B and A. It describes the distance

OA in the time , and moves from B to A and back to B in the time .

2b b
The formula F= mtfs shows

that the particle is acted on by a

force directed toward and pro- A
portional to the distance of the

particle from 0.

The motion of the particle is

called simpl harmonic motion.

Ex. 3. A wall is to be braced

by means of a beam which must

pass over a lower wall b units

high and standing a units in front

of the first wall. Required the

shortest beam which can be used.

Let AB= I (fig. 156) be the beam, and C the top of the lower wall.

Draw the line CD parallel to OB and let EBC = 6. Then

that is, when

I = BC + CA

= EC esc d + DC sec 6

= b esc 6 + a sec

dl = b esc 6 cot 6 + a sec 6 tan 6
dd

_ a sin3 b cos8

sin2 6 cos2 6

dl
=0, when a sin3 = b cos3 0,

b*
tan = _ .

a*
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When e has a smaller value than this, a sin8
&amp;lt; b cos3

0, and when has a

6*
larger value, a sin3

&amp;gt; 6 cos3 0. Hence I is a minimum when tan 6 = Then
a*

I = b esc + a sec 6

b

- (a* +

153. Differentiation of inverse trigonometric functions. The

formulas for the differentiation of the inverse trigonometric func

tions are as follows :

i -i , . _, . . ,,
1. -sin u = -=r- when sm lw is m the first or the

* VI it
2 dx f , ,

-,tourtn quadrant ;

j when sin&quot;
1 ^ is in the second or

the third quadrant.

len cosr
l u is in th

second quadrant;

1 du , , . . ,,
-&amp;gt; when cos&quot;

1^ is in the first or the

&amp;gt; when cos&quot;
1

?6 is in the third or the
1 u fourth quadrant.

o d _j _ 1 du

6?
,

, 1 C?W
4. -- cot

l u = ;
-

dx 1 + u&quot; dx

5. sec&quot;
1^ = = t when sec&quot;

1
76 is in the first or the

dx qivV2
1 dx .1-1 -i

third quadrant ;

&amp;gt; when u is in the second or the

M-vV-l ^ fourth quadrant.

c 1 du , ,, n ,,

g t csc-i^_ -^^_
== , when u is in the first or the

CvtXx q/ ~\/ fit . | (JLJis , -i -i T

third quadrant ;

-T-i when 76 is in the second or the

fourth quadrant.
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The proofs of these formulas are as follows :

1. If y = sirr
1

^,

then sin y = u.

Hence cosy- = -&amp;gt; (by 152)
doc dx

dy 1 du
or - = - -

ax cos y dx

But cos y = Vl u2

,
when y is in the first or the fourth quad

rant, and cos?/= Vl uz when y is in the second or the third

quadrant.

2. If y = cos&quot;
1

^,

then cos y = u
;

, . dy du
whence sin y = ,

a#

dy 1 du
or

:r
=-~ -y# sin y c?^;

But sin y = + Vl w2 when
^/

is in the first or the second

quadrant, and sin?/ = Vl uz - when y is in the third or the

fourth quadrant.

3. If y = tan&quot;
1

^,

then tan y = u.

dy du .Hence sec
2
v -f = -r-

,

whence dy \ du
- - -

4. If y = cot

then cot y = w.

r^?/ ^w
Hence esc y =

whence
dx 1 + u* dx



278 ELEMENTARY TRANSCENDENTAL FUNCTIONS

5. If y secT
1

^,

then sec y = u.

dy du
Hence sec y tan y &amp;gt;

Ct/Ou CltJu

dy 1 du
whence ~r r~ax sec y tan y ax

But sec y u and tan y = + ^u2
1 when y is in the first or

the third quadrant, and tan y = Vu2
1 when y is in the second

or the fourth quadrant.

6. If y = esc&quot;
1

it,

esc y = u.

dy du
Hence esc y cot y

-^ =
&amp;gt;

whence
dx esc y cot y

But esc y = u and cot y = + Vu2
1 when y is in the first or

the third quadrant, and cot y = Vu 2
1 when y is in the second

or the fourth quadrant.

Ex. 1. y sin- 1 Vl x2
,
where y is an acute angle.

dy _ 1

dx

This may also be done by noticing that sin- 1 Vl x 2 =

Ex. 2. The example of 107 may be solved by drawing a straight line from

S to (fig. 125), denoting the angle YOS by 6 and the subtended arc by s.

Then s = ad,

and 6 = 2 YLS = 2 tan~i = 2 tan-i -

OL a

Hence s = 2atan- 1
,

ds a dx\ 2 a2c
and &quot;

=
S
= 2a ^ =

oM^
1 +

oi
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154. The exponential and the logarithmic functions. The

equation y = ax

defines y as a continuous function of x, called the exponential func

tion, such that to any real value of x corresponds one and only

one real positive value of y. A proof of this statement depends

upon higher mathematics, but the student is already familiar with

the methods by which the value of y may be computed for simple

values of x. If x n, an integer, y is determined by raising a to

P
the Ttth power by multiplication. If x is a positive fraction &amp;gt; y is

the qth root of the pth power of a. If x is a positive irrational num

ber, the approximate value of y may be obtained by expressing x

approximately as a rational number. If x = 0, y = a = 1. Finally,

if x m, where m is any positive number, y = a~ m =

Practically, however, the value of ax is most readily obtained by

means of the inverse function, the logarithm ; for if

then x

When a = 1 0, tables of log

arithms are readily accessible.

Suppose a is not 10, and let b

be such a number that

. b = Iog10
a.

Then we have

y = a* =(W
b

)

x =Whx
.

Hence bx = Iog10 y,

and
Iog10

a FIG. 157

Ex. 1. The graph of y = log(i.5)X is shown in fig. 157.

It is to be noticed that the curve has the negative portion of the y axis for

an asymptote, and has no points corresponding to negative values of x.
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Ex. 2. The graph of y = (1.5)* is shown in fig. 158.

155. The number e. In

the theory and the use of the

exponential and the logarith

mic functions, an important

part is played by a certain

irrational number, commonly
denoted by the letter e. This

number is denned by an

x infinite series, thus :

FIG. 158

It will be shown in the second volume that this series converges;

i.e. that the greater the number of terms taken the more nearly

does their sum approach a certain number as a limit. Assuming

this, we may compute e to seven decimal places by taking the first

eleven terms. There results

c = 2.7182818-.. .

When y = e
x

,
x is called the natural or Napierian logarithm of y.

The student will discover as he proceeds with his study that the

use of Napierian logarithms in theoretical work causes simpler

formulas than would arise with the use of the common logarithm.

Hence, in theoretical discussions, the expression logx usually means

the Napierian logarithm. On the other hand, when the chief inter

est is in calculation of numerical values, as in the solution of tri

angles, logx usually means Iog10
#. In this look we shall use log x

for loge
x.

Tables of values of loge
x and e

x
are found in many collections

of tables, and may be used in finding the graphs. It is evident,

however, that the graphs will not differ in general shape from those

in Exs. 1 and 2 of 154

We give the graphs of certain other functions which involve e

and present other points of interest.
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Ex. 1. y - e~*\

The curve (fig. K&amp;gt;

(

.))
is symmetrical with respect to OY and is always above

OX. When x = 0, y = 1. As x increases numerically y decreases, approaching

zero. Hence OX is an asymptote.

r

FIG. 159

Ex.

This is the curve (fig. 160) made by a string held at the ends and allowed to

hang freely. It is called the catenary.

FIG. KJO

Ex. 3. y
- e-

The values of y may be computed by multiplying the ordinates of the curve

y = e~ ax by the value of sin bx for the corresponding abscissas. Since the values

of sin6x oscillate between 1, the value of e- ^sinbx cannot exceed those of

e~ ax
. Hence the graph lies in the portion of the plane between the curves

y = e~ ax and ?/ = e-&quot; . When x is a multiple of -
, y is zero. The graph
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therefore crosses the axis of x an infinite number of times. Fig. 161 shows the

graph when a = 1, b = 2 TT.

FIG. 101

Ex. 4. y = ex .

When x approaches zero, being positive, y increases without limit. When x

approaches zero, being negative, y approaches zero
; e.g. when x = ^oV o

y = e1000
,
and when x j^o V = e- 1000 = -^ . The function is therefore

discontinuous for x = 0.
glOOO

FIG. 162

The line y = 1 is an asymptote (fig. 162), for as x increases without limit,

being positive or negative,
- approaches and y approaches 1.
X
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Ex. 5. y =
10

As x approaches zero positively, y approaches zero. As x approaches zero

negatively, y approaches 10. As x increases indefinitely, y approaches 5.

The curve (fig. 1G3) is discontinuous when x 0.

T

10

-X

FIG. 163

156. Limits of (l + h]
h and

e
h -l

In obtaining the formulas

for the differentiation of the exponential and the logarithmic func

tions it is necessary to know certain limits, the rigorous derivation

of which requires methods which are too advanced for this book.

We must content ourselves, therefore, with indicating somewhat

roughly the general nature of the proof.

1. &quot;We require the limit of (l + h)
h as h approaches zero. We

i

begin by expanding (1 + h)
h
by the binomial theorem and making

certain simple transformations
;
thus :

i/I-lVi-2
(! +/!)* =
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where E represents the sum of all terms involving li, Ji
2

, h*, etc.

Now it may be shown by advanced methods that as h approaches

zero E also approaches zero, and at the same time

approaches e. Hence ^

Lim (l + li)
h = e.

h=0

e
h

l
2. We require the limit of - as h approaches zero.

li

Let us place e
h

1 = k,

where evidently k is a number approaching zero as h approaches
zero. Then

e
h = 1 + k, whence li = log (

1 + k).

Then we have

e
h-l k 1 1

i

Now as h approaches zero k approaches 0, and (1 + k)
k
approaches

i

e by the previous proof. Hence log(l -f k)
k
approaches log e, which

is 1. Therefore
e
h

l
Lim- = 1.

h = h

157. Differentiation of -exponential and logarithmic functions.

The formulas for the differentiation of the exponential and logarith

mic functions are as follows, where, as usual, u represents any func

tion which can be differentiated with respect to x, log means the

Napierian logarithm, and a is any constant:

i 1 /2\
dx u dx

d , du
a = a log a -

(3)dx dx
d , lo&amp;gt; e du

\ognu = -^-. (4dx u dx
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1. By (7), 96, f*,..
dx du dx

To find
0&quot;, place y = e

n
. Then if u receives an increment Aw,

du

y receives an increment Ay, where

Ay = e
ll + *&quot;

e
u =

e&quot;(e*

u

l).

Ay n
e*&quot;-l

Then _.=:&quot;- - .

Aw Ate

Now let Aw approach zero.

AT/ g^w_ 1

By S 94, Lim = =
g&quot; Lim --- -

Aw Aw

A?/ ^v ^
But Lim ^ = -^ = -

g&quot;,Aw ate aw

and Lim
gA &quot;~ 1 = 1. by 2, 156
Aw

Therefore e&quot;
= e

u
,

du

and

2. If

then

dy du
Hence ev -^ = -

, by (1)
dx dx

dii 1 du 1 &amp;lt;///

whence -^ = -- = -
c?ic ey rfa? w dx

3. Let y = a&quot;.

Then it is always possible to find a quantity b such that

whence I = 1&amp;lt;&amp;gt;&amp;lt;&amp;gt; .
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Then y = (e
h

)

&amp;gt;l = e
hu

,

and = ^,(H by(l)

4. If y = loga u,

then a 27 = %,

i dy du .

and aMogaJU-, by (3)

c?/ 11 du
whence - =- - ---

dx log a u dx

But if log a = b,

whence

and therefore - =
loga e,

or - =
loga e.

log a

dy log e du
Hence = ^- -

dx u dx

Ex.1, y = log(x
2 - 4z + 5).

dy 2 x - 4

dx x2 - 4 x + 5

Ex. 2. y = er 3?.

^ = -8-&amp;lt;
dx

Ex. 3. y = e-^cos&x.

= cos&x (e~
aa:

) + e~ ax (cos6x) = ae~ a-T cos6x 6e~ aj
&quot;sin 6x.

dx dx dx,
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158. An important property of the exponential functions is

expressed in the following theorem : If the rate of change of a

function is proportional to the value of the function, the function
is an exponential function.

Let = uy.
dx

Then l^ = a.

y dx

Hence log y = ax + cv

or y = eax+Cl = c^c
ax = ce.

Ex. Let p be the atmospheric pressure at the distance h above the surface

of the earth and p the density of the air. We will assume that the density is

proportional to the pressure. Then if p and p are the density and the pressure

respectively at the surface of the earth,

Po Po

whence p = p.
Po

Let now the height ft be increased by a distance Aft. The pressure will

be decreased by an amount Ap, where Ap is equal to the weight of a column
of air standing on a base of unit area and having a height Aft. If p is the density
at the height ft and p Ap the density at the height ft -f Aft, it is evident that

the weight of this column of air lies between (p Ap) Aft and pAft ;
that is,

(p Ap) Aft &amp;lt; Ap &amp;lt; pAft,

Ap
whence p Ap &amp;lt; &amp;lt; p.

Aft

Taking the limit, we have

dp . A Ap Po= Limit - = p = p.
dh Aft Po

_Pn ,

Therefore p = ce fo .

_Po h
Since when ft = 0, e PO =1 and p = p ,

it follows that c = p .

Hence p=p e~^
A

,

Po
* P
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159. Sometimes the work of differentiating a function is sim

plified by first taking the logarithm of the function and then

applying the formulas of this article.

Ex. 1. Let y =
+ x2

Then log y = log

Hence

and

= ilog(l-X2)-

1 dy x x

y dx I x2 1 + x2

-2x

dx
~

(1
- x2

) (1 + x2
)

-2x~
(1
- X2

) (1 + X2
)

-2x

(1 + x2)Vl - x4

This method is especially useful for functions of the form ur
,

where u and v are both functions of x. Such functions occur

rarely in practice, and cannot be differentiated by any of the

formulas so far given. By taking the logarithm of the function,

however, a form is obtained which may be differentiated.

Ex. 2. Let y = xsin *.

Then log y = log (x
sin x

)

= sin x logx.

Therefore - = (sin x) h cos x log x,
y dx x

and = x8111 *- 1 sin x + xsinx cosx logx.
dx

160. Hyperbolic functions. Certain combinations of exponential

functions are called hyperbolic functions. In their names and

properties they are analogous to the trigonometric functions, but

the reason for this cannot be shown at present. The fundamen

tal hyperbolic functions are the hyperbolic sine (sinh), the hyper

bolic cosine (cosh), the hyperbolic tangent (tanh), the hyperbolic
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cotangent (coth), the hyperbolic secant (sech), and the hyperbolic

cosecant (cosech), defined by the equations

sinh x =

cosh x

tanh x =

coth x =

sech x =

cosech x

cosh x e
j + e~*

cosh x _ c
x+ e&quot;

x

sinh x c
x

e~
x

1 2

cosh x e
x
4- e~

1 2

sinh x e
x

e

FIG. 164 FIG. 105

The graph of sinh x is given in
fig. 164, that of cosh x in

fig. 165, and that of tanli x in
fig. 166.
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Relations between hyperbolic functions, may be derived by

expressing each in terms of the exponential functions. The

student may in this way prove the following relations :

cosh
2 x sinh

2
a; = 1,

tanh2 # + sech
2
a; = 1,

coth
2
a? cosech

2 ^ = 1,

sinh (x y)
= sinhx coshy cosh# sinh y,

cosh
(.c y)

= cosh x cosh y sinh a; sinh y,

tanh# tanh?/
;y) = f1 tanh # tanh y

-1

FIG. 166

The derivatives of the hyperbolic functions are readily obtained

by differentiating the equations which define them. We have in

this way : , ,J d , , , du
sinh u = cosh u &amp;gt;

dx ax

d du- cosh u = sinh u ,

dx dx

d . , , 2
du

tanh u seen u
&amp;gt;

dx dx

d ., , 2
du

coth u= cosecn u ,

dx dx

sech u = sech u tanh u &amp;gt;

dx dx

cosech u = cosech u coth u
dx dx
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161. Inverse hyperbolic functions. If

x = sinh y,

y = Binh~ l
aj,

291

then

called the inverse hyperbolic sine of x.

This function may be expressed as a logarithm as follows :

We have

and

y = sinh !

x,

x = sinh y =
ey e

Placing e = and clearing of fractions, we have

e2y 2xev =l.

Treating this as a quadratic equation in ey
,
we have

ev=xVx*+l;

but since we know that for any real value of y, ev is positive, we
discard the minus sign before the radical and have

y = sinlr 1 x = log (x -f v^ -f 1).

In the same manner, the student may prove the following :

cosh&quot;
1 x = log (c VV --

1)

= log (x + Vaf-l).

tanh&quot;
1 # = 1 lo^r &amp;gt;

coth~ 1 a;=
| log x-1

sech&quot;
1 * = log

cosech&quot;
1

,*
1 = log

=
log
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The derivative of the inverse hyperbolic functions can be

obtained by differentiating the expressions just obtained, or by

proceeding in the same manner as in 153. In either way
we find :

d . , , 1 du
sinh 1 u =

dx vy?+ 1 dx

1 du

d ,
j _ 1 du

dx 1 u2 dx

d ,, , 1 du
coth l u = ----

,

dx 1 u dx

d .
lseclr ] u =

dx

cosech l u =
dx u Vl + u2 dx

Ex. Consider the motion of a particle of unit mass falling from rest, and

impeded by a force proportional to the square of its velocity. The total force

acting on the particle is then g kv 2
,
where g is the acceleration due to gravity,

and k is a constant. Hence
do _ _ ,

2 .

dt~ 9
~

1 dv
whence = 1,

g - kv 2 dt

1 1 dv
QY . ,

1

~g
v

To bring this under one of the known formulas of differentiation we will

place

whence
* = J?*!
dt \k dt

We have, therefore, = 1;

whence tanh- 1 u = t + c,

Vkg

or :=. tanh- 1
-\ -v = t + c.

Vkg \k
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But since the body falls from rest, when t 0, v = 0; therefore c = 0.

The equation may be written

v \ - tanh t

ds Ik sinli t

that,, 1 = &amp;gt;/-
-I

Hence s = -
log cosh t ^kg + c.

162. Transcendental equations. Equations involving transcen

dental functions can often be solved by methods similar to those

used for algebraic equations. Graphical methods can often be used

to advantage.

Ex. 1. sinx = a.

The solutions of this equation are the abscissas of the points of intersection

of the curve y = sin x and the straight line y a (fig. 167). If a &amp;gt; 1 or a &amp;lt; 1,

there are no real solutions
;
otherwise there are an infinite number of solutions.

Let us call the smallest positive root Xi, where
&amp;lt; x\ &amp;lt;

if a is positive, and

n&amp;gt;0

FIG. 167

TT &amp;lt; #1 &amp;lt; 2 TT if a is negative. The value of x\ must be found from a table or

approximately from the graph. The next largest positive root is then TT x\

when a is positive, and 3?r - Xi when a is negative ;
and all other roots, positive

or negative, are found by adding or subtracting multiples of 2 TT. Hence the

general solution is 2 kir + Xi and (2 k + 1) TT x 1? or, more compactly written,

where A: is any positive or negative integer or zero.

Ex. 2. cosx = a.

The general solution is 2 kir Xi, where x\ is the smallest positive solution

and k is an integer or zero. The proof is left to the student.

Ex. 3. tanx = a.

The general solution is TCTT + x\. The proof is left to the student.
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Ex.4, cos 2 x = 2 cos x.

When an equation involves two or more trigonometric functions it is well to

write it in terms of one. The above equation may be written

2 cos2 x 1=2 cosx,

which is a quadratic equation in cos x. Solving, we have in the first place

cos x -

but the plus sign may be disregarded, since for real angles cosx is not greater
than 1 numerically. The equation

cos x = i - l V3

is now to be solved as in Ex. 2. There results x = 2 k-rr 1.940.

Ex. 5. tanx = kx.

The roots of this equation are the abscissas of the points of intersection of

the curve y = tanx and the straight line y = kx (fig. 108).

FIG. 168

The two intersect at the origin, but the other intersections depend upon the

value of k. Since the slope of the curve y = tan x is 1 when x = 0, and &amp;gt;
1 when

&amp;lt; x &amp;lt;

-
, we need to distinguish three cases, according as k &amp;gt; 1, &amp;lt; k ^ 1, or k &amp;lt; 0.
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The graph shows that if k &amp;gt; 1, the smallest positive root lies between and

-
;

if &amp;lt; k &amp;lt;

1, the smallest positive root lies between ir and
;
and if k &amp;lt; 0,

2
TT

the smallest positive root lies between - and TT.

We shall now find the smallest positive root in the special case

tan x = 2 x.

We must first locate the root
( 47), either by the graph or by means of a table.

If a table is used, it must be one in which angles are given in radians. We shall

use the table on page 132 of Professor B. O. Peirce s &quot; Short Table bf Integrals.&quot;

We find, by looking for a place in the tables where the tangent of an angle is

approximately equal to twice the angle, that when x = 1.1636 (66 40 ), tans

= 2.3183, and when x = 1. 1665 (66 50 ), tan x = 2.3369. Consider now the curve

y = tan x 2 x.

When Z! = 1.1636, ?/i = -
.0089, and when x2 = 1.1665, ?/2 = .0039.

Hence the curve intersects OX between xi and x2 ,
and a root of the equation

tan x - 2 x =

is therefore located to two decimal places. To locate the root more closely we

will use the method of 63. We have

dx

d*y
and = 2 tan x sec x,

dx2

both of which are positive when x is between Xi and z2 . Hence that portion of

thecurve

appears as in fig. 64, (1), and its intersection with OX lies between the tangent

at (x2 , 7/2) and the chord connecting (xi, y\) and (x2 , ?/2). The tangent at (x2 , 7/2 ) is

y - .0039 = 4.461 (x
- 1. 1665) ;

the chord is y - .0039 = ??
(x
- 1. 1665),

and the point of intersection of each with OX is found to be

x = 1.1656

to four places of decimals. This is therefore the root of .the equation to four

decimal places.

Ex. 6. ex - 4 x2 - 2 x + 3 = 0.

The roots of this equation are the abscissas of the points of intersections of

the curves y = e? and ?/ = 4x2 -f2x 3, and may be found graphically or by
means of tables to lie between 1 and 2 and between and 1. To determine

the root between and 1, we place y = ex 4x 2 2x + 3. When Xi = 0,

2/i
= 4, and when x2 = 1, y2 = .282.



296 ELEMENTARY TRANSCENDENTAL FUNCTIONS

Also ^ = e*-8x-2,
dx

and ^ = e-8, .

dx2

which are both negative when x is between and 1. Hence the portion of the

curve in question has the shape of tig. 64, (4), and its intersection with OX lies

between that of the tangent at (x2 , 2/2) and that of the chord connecting (xi, y\}
and (x2 , yz ). The tangent is

y + .282 = -7.282 (z-1),

which intersects OX when x = .97 . The chord is

y + .282 = - 4.282 (x
-

1),

which intersects OX when x = .93+ .

If we now place Xi - .93, yi = .2149, and if x2 = .97, ya = -
.0657, the tan-

gent at (*,, ,, is

which intersects OX where x = .9608
;
and the chord between (xi, yi) and

(2, yz) is

which intersects OX where x = .9606+ .

Hence a root of the equation lies between .9606 and .9608.

PROBLEMS

Plot the graphs of the following equations :

1. y = ctnx. 11. y = X sin-.

2. y secx. -,

3. t,
=

4 ^ = versa; -

13. j,
= e^f

5. y = J- sin 3 x. i-x

6. y = sinx + JsinS*.
14&amp;lt; V = xe

^
7. y = sinx + sin2x. 15. y = xe x .

S. y -2 sin x - sin 2 x. 16 - 2/
= log (sin x).

9. y = cosx + J cos3x. 17 - ^ = tan- 1
(ax + 6).

rp 1

10. y 1 \ cos x cos 2 x. 18. y log .

x + 1

19. Plot the graph of the equation y -
sinx, and determine what relation

it has to the hyperbolas xy = 1.

20. Plot the graph of the equation y = sin x2
,
and show that the distance

between two consecutive intercepts on OX approaches zero as a limit.
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Find in each of the following cases

21. y =

22. |f
=

23. y =

24. y =

25. y =

26. y =

27. y =

28. T/
-

29. y =

30. ?/
=

31. y =

32. ?/ =

33. y =

sin (ax + b) cos (ax b).

tan (ax 4- fr)
ctn (ax 4- c).

tan 2x4- ctn 2 x

sec4x

ctn 2x4- 2

csc2x

sec3x

tan 3x4-1

esc 2 x ctn 2 x.

secw nx cscn mx.

sec2 2x4- tan 2 x.

ctn 4 x esc 2 x.

sin (x cosx).

(cos
2 x 4- )sin

8 x.

(2 sec4 x 4- 3 sec2 x) sin x.

sin2x

_ j
6 4- a cos x

a 4- 6 cos x

45

46

47

48

49 .

50. y = log

= sin- 1

(2x Vl- x2).

. 2x-l= esc- 1

= sec- J V4x2 2.

y =

x2 - a2

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

y = log (2 x 4- 1 4- 2 Vx2
4- x).

y = atan *.

y

2/

y

x2 logx2 .

(jtan
x sec2 x

= tan 2 x asec 2 *.

= csc~ !

(sec 2 x).

2/
=

61. y = tan- 1

62. ?/ =

63.

64.

65.

66.

67.

68.

69.

70.

ex - e~ x

ex + e-x

3 tan x 4- 1

tan x 4- 3

iMri!.
ea co8a

cos(xsintt).

log tan (x
2

4- a2
),

x cos- l x Vl x2
.

-
log (sec ax 4- tan ax).

(x 4- a Vl - x2
)
e 8i &quot;- 1 y

.

log Vl 4- x2
4- x ctn- ] x.

71. y =

Vl-x2

e&quot;-

r
(a sin ?nx ?n cos ?/ix)

m2 4-a2
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72. y = x2 ctn- 1 - + a2 tan- 1 - - ax.
x a

73. y =

74. y = log(x + x2 a2
) + cos- 1 -

75. y = log (x + Vx2 - a2
)
- csc- 1 -

76. y = tan- 1 Vx2 - 2x - log(x-l)

Vx2 - 2x

77. y = tan

Va2 b2

78. ?/
= log tan (2 x + 1) + csc (4 x -f 2).

a - & a^tan- .

a + 6 2/

V2 ax - x2

79. y = V2 ax x- + a cos- 1

a

80. y = x Va2 + x2 + a2 log (x + Va2 + x2
).

2 Vx 1 2Vxsec- ] 2Vx
81. y =

83. y = tan- 1
(x
- Vx2 -

1) + log

84. = lo
&quot;^ + 2) + esc- 1

1

85. y = ^ Vl - x 2 -
I 1 -

)

tan- 1 Vl - x2 .

86. y = log^
2 + 2X2 ~ X + log(x + VTT

2 V2 V2 + 2 x2 + x

87. y = (sin Vx&quot;)

tanv/rx
.

88. 7/
= Vsin^.

89. y=x(*\

Find in each of the following cases :

dx

93. x-v + secxy = 0.

94. y tan- 1
a;
- y* + x2 = 0.

95. y sin x cos (x y) = 0.

96. ye&quot;v
= ax&quot;

1
.

90. y =

91. y =

92. y =

9 7. ex sin ?/ e&quot; cos x = 0.

98. y sin x + x cos y = xy.

99. y logx = xsiny.

100. xy = tan-i-.
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Find , -, - in each of the following cases:
dx dx2 dx3

1 X 1 4- X
101. lo(x + j/)-i!tan- = 0. 103 - Io8 -

&amp;gt;g

= 1-

103. - + . = !.

104. x-
105.

106. At what points is the curve y = sin x + sin 2 x parallel to the axis of x ?

107. What value must be assigned to m that the curve y --f- tan~ ! (x+ m)
5?71X

may be parallel to OX at the point the abscissa of which is 1 ?

108. Find the angle of intersection of the curves y = sinx and y cosx.

109. Find the angle of intersection of the curves y = sin x and y = sin (x + a).

110. Find the angle of intersection of the curves y = sinx and y = sin 2 x.

111. Show that the portion of the tangent to the curve

a _

included between the point of contact and the axis of y is constant. (From this

property the curve is called the tractrix.)

112. Find the points of inflection of the curve y = 2 sin x ^ sin 2x.

113. Find the points of inflection of the curve xy = a2 log-.

114. Find the points of inflection of the curve y = e~ x2

115. Prove that the curve

y = | x sin x + ^ sin 2 x

has an indefinite number of points of inflection, and that two of them lie between

the points for which x = 6 and x = 10 respectively.

116. Plot the curve y = sin2 x, finding maxima and minima, and points of

inflection.

117. Plot the curve y = e- nr cosbx, and prove that it is tangent to the curve

y = er ax wherever they have a point in common. Find maxima and minima and

points of inflection of this curve when a = 6 = 1.

118. Plot the curve y = xne~ x (n &amp;gt; 0), finding maxima and minima and points
of inflection.

119. A body moves in a plane so that x = a cos t + 6, y = a sin t + c, where
t denotes time and a, 6, and c are constants. Find the path of the body, and
.show that its velocity is constant.

120. A rectilinear motion is expressed by the equation s = 5 2 cos2
. Show

that the motion is a simple harmonic motion, and express the velocity and the

acceleration at any point in terms of s.
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121. A, the center of one circle, is on a second circle with center at B.

A moving straight line, AMN, intersecting the two circles at M and N respec

tively, has constant angular velocity about A. Prove that EN has constant

angular velocity about B.

122. Two particles are moving on the same straight line, and their dis

tances from the fixed point on the line at any time t are respectively

x = a cos wt and x = a coslut + -
J,
w and a being constants. Find the greatest

distance between them.
*

123. A ladder b ft. long leans against a side of a house. Its foot is drawn

away in the horizontal direction at the rate of a ft. per second. How fast is its

center moving ?

124. If a particle moves so that

s = e-? ct
(asii\ht + bcosht),

find expressions for the velocity and the acceleration. Hence show that the

particle is acted on by two forces, one proportional to the distance from the origin

and the other proportional to the velocity. Describe the motion of the particle.

125. If 8 = aekt + be~ kt
,
show that the particle is acted on by a repulsive

force which is proportional to the distance from the point from which s is

measured.

126. BC is a rod a ft. long, connected with a piston rod at O, and at B with

a crank AB b ft. long, revolving about A. Find C&quot;s velocity in terms of AB s

angular velocity.

127. A man walks along the diameter, 200 ft. in length, of a semicircular

courtyard at a uniform rate of 5 ft. per second. How fast will his shadow move

along the wall when the rays of the sun are at right angles to the diameter ?

128. How fast is the shadow in the preceding problem moving if the sun s

rays make an angle a with the diameter ?

129. Given that two sides and the included angle of a triangle have at a

certain moment the values 6 ft., 10 ft., and 30 respectively, and that these

quantities are changing at the rates of 3 ft., 2 ft., and 10 per second respec

tively, what is the area of the triangle at the given moment, and how fast is it

changing ?

130. One side of a triangle is I ft., and the opposite angle is a. Find the

other angles of the triangle when its area is a maximum.

131. A tablet 8 ft. high is placed on a wall so that the bottom of the tablet

is 20 ft. from the ground. How far from the wall should a person stand in order

that he may see the tablet at the best advantage, i.e. in order that the angle

between the lines from the observer s standpoint to the top and the bottom of

the tablet may be the greatest ?

132. A weight P is dragged along the ground by a force F. If the coefficient

of friction is K, in what direction should the force be applied to produce the

best result ?
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133. An open gutter is to be constructed of boards in such a way that the

bottom and the sides, measured on the inside, are to be each 4 in. wide, and

both sides are to have the same slope. How wide should the gutter be across

the top in order that its capacity may be as great as possible ?

134. Above the center of a round table is a hanging lamp. What must be

the ratio of the height of the lamp above the table to the radius of the table

that the edge of the table may be most brilliantly lighted, given that the illumi

nation varies inversely as the square of the distance and directly as the cosine

of the angle of incidence ?

135. A steel girder 27 ft. long is to be moved on rollers along a passageway

and into a corridor 8 ft. in width at right angles to the passageway. If the hori

zontal width of the girder is neglected, how wide must the passageway be in

order that the girder may go around the corner ?

136. Find the area of an arch of the curve y = sinx.

137. Find the area bounded by the axis of y and the portion of the curves

y = sin x, y = cos x, lying between x = and x = TT.

138. Find the area bounded by the portions of the curves y = sin 2 x and

y = sin x + J sin 2 x that extend between x = and x = TT.

139. Find the area between the curve y = ex
,
the axis of x, and the ordinates

x = and x = 1.

140. Find the area bounded by the axis of x, the catenary, and the ordinates

x = a.

141. Find the area bounded by the axis of x, the curve y = -
, and the

ordinates x = 1 and x = 2.

142. Find where the ordinate of the witch should be drawn in order that

the area between that ordinate, the witch, the axis of y and the axis of x should

be equal to the area of the circle used in the definition.

143. Show that for the catenary = -(e + e~), and thence find an

expression for the length of s.

144. Find the curve the slope of which at any point is k times the reciprocal

of the abscissa of the point, and which passes through (2, 3).

.
145. Find the curve the slope of which at any point is k times the ordinate

of the point, and which passes through the point (a, 6).

146. Find the space traversed by a moving body in the time t if its velocity

is proportional to the distance traveled.

Solve the following equations :

147. tanx = cosx. 152. tana? = z.

148. cos 2 x =
|-
cos x. 153. tanz= Jz.

149. sin 20 cos 20 + 2 sin = 0. 154. x - \ sinx = TV
150. sin4x-2sinxcos2x = 0. 155. e* = x2 .

151. sin*x+ 3cos4x-4sin2xcos2x = 0. 156. logz = Jz.



CHAPTER XIV

PARAMETRIC REPRESENTATION OF CURVES

163. Definition. Thus far we have considered a curve as

represented by a single equation connecting x and y. Another
useful method is to express x and y each as a function of a

third independent variable
;
thus :

*=/i(0. y=ft (f),

where t is an independent variable and f^t) and f2 (t) are

continuous functions of t. As t varies, x and y also vary,
and the point (x, y) traces out a curve. By eliminating t be

tween the two equations the curve may often be expressed

y by a single equation between

x and y.

164. The straight line.

Let P,(xv yj (fig. 169) be a

fixed point on a straight line

and
(f&amp;gt;

be the angle which

the line makes with a line

P^R parallel to OX. Let

x P(x, y) be any point on

the line, and r the distance

from P to P, where r is
FIG. 1G9

positive when P is on the

terminal line of
&amp;lt;,

and negative when
_?J

is on the backward exten

sion of the terminal line. Then, for all possible positions of,P

i .

=cos&amp;lt;/&amp;gt;,

whence
x^-\- r cos

&amp;lt;, y = y^ + r sin
&amp;lt;/&amp;gt;.

302
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This is a parametric representation of the straight line, where

r is the arbitrary parameter. Illustrations of the use of these

( (Illations have been given in 136 and 138.

Another parametric representation of a straight line is furnished

by the equations of 19,

where / is the parameter and (xv

More generally, the equations

and (#2 , y^ are fixed points.

where a, b, /, g, are constants, and t is an arbitrary parameter,

represent a straight line. For these equations are equivalent to

/&amp;gt;

u i \

165. The circle. Let

P(x, y} (tig. 170) be any

point on a circle with its

center at the origin 0, and

its radius equal to a. Let $
be the angle made by OP
and OX. Then from the defi

nition of the sine and cosine

x = a cos0,

y = a sin
&amp;lt;f&amp;gt;,

FIG. 170

the parametric equations of the circle with &amp;lt; as the arbitrary

parameter.

166. The ellipse. Take the ellipse

r2 V2

(a &amp;gt; I)

and on its major axis as a diameter construct a circle. Take

P(x, y) (fig. 171) any point on the ellipse, draw the ordinaU -I//
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and prolong it until it meets the circle in Q. Call the coordinates

of Q (x, y ).
Then from the equation of the circle

and from the equation of

the ellipse

T Hence y = -y .

Draw the line OQ, mak

ing the angle XOQ=&amp;lt;f&amp;gt;.

Then, as in 165,

FIG. 171
y = a sin

By substituting for y its value in terms of y, we have

x = a cos
&amp;lt;, y = b sin

&amp;lt;f&amp;gt;,

the parametric equations of the ellipse.

c/&amp;gt;

is called the eccentric angle of a point on the ellipse, and

the circle x2 + y* (*? is called the auxiliary circle.

Ex. The parametric equations of an ellipse may be used to find its area.

For if A is the area bounded by the ellipse, the axis of
?/,

the axis of x, and

any ordinate MP (fig. 171), then (6, 109)

dA
(1)

dA. dA

But
dA

and

Ix dx a sin

d(f&amp;gt;

y = b sin 0.

Therefore (1) is equivalent to

dA

Hence A

, cos 2 - 1= ab sin2 = ab &amp;lt;
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When = *
,
^4 = 0; hence c = .

sin20
Therefore

When = 0, A is one fourth the area of the ellipse. Therefore the whole

area of the ellipse equals irab.

167. The cycloid. If a circle rolls upon a straight line each

point of the circumference describes a curve called a cycloid.

Let a circle of radius a roll upon the axis of x and let C

(fig. 172) be its center at any time of its motion, N its point of

FIG. 172

contact with OXt
and P the point 011 its circumference which

describes the cycloid. Take as the origin of coordinates, 0, the

point found by rolling the circle to the left until P meets OX.

Draw MP and CN each perpendicular to OX, PR parallel to

OX, and connect C and P. Let

Then

NCP =
c/&amp;gt;.

x = OH= ON- MN
= arc NP - PR
=

a&amp;lt;t&amp;gt;

a sin &amp;lt;.

= a a cos $.

Hence the parametric representation of the cycloid is

x = a
(&amp;lt;

sin
&amp;lt;f&amp;gt;),

y = a (I cos&amp;lt;).
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By eliminating &amp;lt;/&amp;gt;

the equation of the cycloid may be written

_ ,
a 11 . /= a cos - V 2 ay y ,

x

but this is less convenient than the parametric representation.

At each point where the cycloid meets OX a sharp vertex called

a cusp is formed. The distance between two consecutive cusps is

evidently 2 ?ra.

168. The trochoid. When a circle rolls upon a straight line,

any point upon a radius, or upon a radius produced, describes a

curve called a trochoid.

FIG. 173

Let the circle roll upon the axis of x, and let C (figs. 173 and

174) be its center at any time, N its point of contact with the

axis of x, P(x, y) the point which describes the trochoid, and

Fio. 174

K the point in which the line CP meets the circle. Take as

the origin the point found by rolling the circle toward the

left until K is on the axis of x. Then
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Draw PM and CN perpendicular to OX, and through P a line

parallel to OX, meeting CN or CN produced, in R. Let the radius

of the circle be a, CP be h, and NCP be
&amp;lt;f&amp;gt;.

Then

= a
(f&amp;gt;

k sin
cf&amp;gt;.

y = MP = NC
= a h cose/).

169. The epicycloid. When a circle rolls upon the outside of

a fixed circle, each point of the circumference of the rolling circle

describes a curve called an epicycloid.

FIG. 175

Let
(fig. 175) be the center of the fixed circle, C the center of

the rolling circle, N its point of contact with the fixed circle, and
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P(x, y] the point which describes the epicycloid. Determine the

point K by rolling the circle C until P meets the circumference

of 0. Then
arc AN = avcNP.

Take as the origin of coordinates, and OK as the axis of x.

Draw PM and CL perpendicular to OX, PS parallel to OX, meet

ing CL in R, and connect and C. Let the radius of the rolling

circle be a, that of the fixed circle I, and denote the angle OOP

by 0, the angle KOC by &amp;lt;. Then

whence

arc KN= Ifa arc NP = ad
;

?;&amp;lt;
= aO.

We now have x = OM= OL + LM
== OC cos KOCCP cos

=
(a + b) cos c/&amp;gt;

a cos
((/&amp;gt;
+ &amp;lt;

= (a + &) cos (f&amp;gt; cos
c/&amp;gt;.

= OC sill JTOC? - CP sin

=
(a -f 5) sin &amp;lt; a sin

(&amp;lt;

+ 0)

= + & sin &amp;lt;) a sin &amp;lt;

The curve consists of a number of congruent arches the first of

which corresponds to values of between and 2 TT, that is, to

values of
c/&amp;gt;

between and .. Similarly the &th arch corre-

2 (k 1) aTr ,2 /^TT

sponds to values of &amp;lt; between - - - and --- Hence

the curve is a closed curve when, and only when, for some value

of k, is a multiple of 2 TT. If a and b are incommensurable,

this is impossible, but if - = &amp;gt; where is a rational fraction in
b q q

its lowest terms, the smallest value of k = q. The curve then con

sists of q arches and winds p times around the fixed circle.
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170. The hypocycloid. When a circle rolls upon the inside of

a fixed circle, each point of the rolling circle describes a curve

called the hypocycloid. If the axes and the notation are as in

the previous article, the equations of the hypocycloid are

x =
(b a) cos cf) -f- a cos

n \
-

JL
.

y = (o a) sin $ a sin

a

a

cc

The proof is left to the student. The curve is shown in fig. 176.

FIG. 176

171. Epitrochoid and hypotrochoid. The epitrochoid and

hypotrochoid are generated by the motion of any point on
the radius of a circle which rolls upon the outside or the
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inside of a fixed circle. If h is the distance of the generating
point from the center of the moving circle, and the notation
is otherwise the same as in the previous articles, the equations
of the epitrochoid are

x = (a -f- &) cos
&amp;lt;f)

k cos

y = (a -f- 1) sin $ h sin -

FIG. 177

and of the hypotrochoid are

x = (b~ a) cos $ + h cos

a) sin
&amp;lt;/&amp;gt;

h sin
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The proofs are left to the student. The curves are shown in

figs. 177, 178, and 179, 180 respectively.

FIG. 178

172. The involute of the circle. If a string, kept taut, is

unwound from the circumference of a circle, its extremity

describes a curve called the involute of the circle. Let
(fig. 181),

be the center of the circle, a its radius, and A the point at which

the extremity of the string is on the circle. Take as the origin

of coordinates and OA as the axis of x. Let P (x, y] be a point on

the involute, PK the line drawn from P tangent to the circle at

K, and
&amp;lt;f&amp;gt;

the angle XOK. Then PK represents a portion of the

unwinding string, and hence
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Now it is clear that for all positions of the point K, OK makes

an angle &amp;lt;j&amp;gt;

90 with OY. Hence the projection of OK on OX is

always OK cos
(f&amp;gt;

a cos
&amp;lt;,

and its projection on Y is OK cos

(&amp;lt;/&amp;gt; 90) = a
sin&amp;lt;/&amp;gt;.

Also KP always makes an angle &amp;lt;f&amp;gt;

90

FIG. 181

with OX and 180 &amp;lt; with OY. Hence the projection of KP on

OX is KP cos
(&amp;lt;/&amp;gt; 90) = ft0smc, and its projection on OY is

KP cos (180 &amp;lt;/&amp;gt;)

=
&amp;lt;%(/&amp;gt;

cos&amp;lt;. The projection of OP on OX is

#, and upon OY is, y. Hence, by the law of projections, 15,

x = a cos
&amp;lt;f&amp;gt;

-f-
a&amp;lt;f)

sin
&amp;lt;,

y = a sin
(f&amp;gt; a&amp;lt;f&amp;gt;

cos 0.

173. Time as the arbitrary parameter. An important use of the

parametric representation of curves occurs in mechanics in find

ing the path of a moving point acted on by known forces. Here
the independent parameter is usually the time.
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Ex. 1. A particle moves in a circle, with uniform velocity, k. Then, if s

represents the arc traversed,

s = kt and =- = -.
a a

Therefore the equations of the circle are
( 165),

kt
x = a cos ,

a

. kt
y a sin .

This shows that the projections of P on the coordinate axes have simple
harmonic motions of the same amplitude.

Ex. 2. A particle Q moves with uniform velocity along -the auxiliary circle

of an ellipse ( 166) ; required the motion of its accompanying point, P.
kt

As in Ex. 1,
= Hence the equations of the path are

Id
x = a cos ,

a

. kt
y = o sin ,

a

showing that the projections of P upon OX and OT have simple harmonic

motion of amplitudes a and 6 respectively.

Ex. 3. A projectile is shot with an initial velocity VQ in an initial direction

which makes an angle a with the horizontal direction. Then the initial com

ponent of velocity in the horizontal direction is v
() cos a and in the vertical

direction is VQ sin a. If the resistance of the air is neglected, the only force

acting on the projectile is that of gravity. Hence if we take the origin at the

initial position of the projectile, and the axis of x horizontal, we have

dt2

which give x = c^t -f c2 ,

y = ^ gt
2 + cst + c4 .

But when t = 0, we have

n dx , dy
x = 0, y = 0, = VQ cos a, and = v sm or.

d^ di

Hence the parametric equations of the path of the projectile are

x = Dot cos a,

y = v t sin a 1
gt

2
.

Eliminating t from these equations, we have

2 VQ cos 2 a

or 2 VQ y cos 2 a = 2 Vo
2x sin a cos a g

which shows that the curve is a parabola.
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174. The derivatives. When a curve is defined by the equations

we have, by (8), 96,
dy _ dt

dx dx (1)

Ex. For the cycloid

y = a (I
-

cos0),

dy

dy _ d&amp;lt;(&amp;gt; __
a sin

dx dx

d&amp;lt;f&amp;gt;

Now
-y-

is the tangent of the angle

made by the tangent with the axis of x.

Therefore this angle is -.
2 2

From this follows a simple construction of the tangent and normal. For if

the line NC (fig. 182) is prolonged until it cuts the circle in Q, and PQ and PN
are drawn, the angle CQP = - . Hence PQ makes the angle - t with OX
and is therefore the tangent. PN, being perpendicular to PQ, is the normal.

If it is required to find
^&amp;gt;

we may proceed as follows:
dx

d_(dy_

dfy_d_ (dy\ _ dt \dx

dy? dx \dx) dx (2)

Ex. For the cycloid

Z = cot-,
dx 2

= a (1 cos 0) = 2 a sin2 -
a&amp;lt; 2

--cosec2 -
2 2

dx*
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Formula (1) may be expanded as follows:

d*y dx d?x dy
dt:

2
dt dt2 dt

dt \dx] dt I dx

dt dt

dx2

dx d2x dy~~&quot;

dt

By multiplying equations (3), 105, by f

j
, we have

dt \dt dt
(4)

175. Application to locus problems. In finding the Cartesian

equation of the locus of a point which satisfies a given condition,

it is often convenient to employ the principles of parametric rep

resentation; for by fixing the attention upon a single point of

the required locus, it is frequently possible to express its coordi

nates in terms of a single parameter. The required equation is

then found by eliminating the- parameter.

(3)

Ex. 1. Locus of the point of inter

section of perpendicular tangents to a

parabola.

Let the parabola be y2 = 4px
(fig. 183), and let the equation of

any tangent to it be written ( 88)

9
y = mx H m

If in is replaced by , we have

(1)

= pm,m (2)

as the equation of a tangent perpendicular to (1). Therefore, if P(x, y) is the

point of intersection of (1) and (2), P is any point of the locus.
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Solving (1) and (2), we find = -p

and

(3)

(4)

which are the parametric representations of the locus, the parameter evidently

being ra. But for all points of the locus x = p, and (3) is the Cartesian equation

of the locus. It is to be noted that in this example the elimination of the param
eter is unnecessary, since one of the equations does not contain it.

As (3) is the equation of the directrix, we have the proposition: Perpendicular

tangents to a parabola meet on the directrix.

Ex. 2. Locus of the point of

intersection of perpendicular tan

gents to an ellipse.

Let the ellipse be ^ + ^ = 1

(tig. 184), and let the equation of

any tangent to it be written
( 88)

Then the equation of a tangent

perpendicular to (1) will be

and P(z, y), the point of inter

section of (1) and (2), will be any

point of the locus. FIG. 184

Solving (1) and (2), we find

y =

(3)

(4)

as the parametric representations of the locus in terms of the parameter in.

To eliminate m, we square the respective values of X- and y and add, the

result being
x2 + ?/

2 = a2 + b2 . (5)

The locus is seen to be a circle concentric with the ellipse and having its radius

equal to the chord joining the ends of the major and the minor axes of the ellipse.

While (8) and (4) form the explicit parametric representation of the locus, x

and y being expressed explicitly in terms of the parameter 7/1, (1) and (2) may
be regarded as the implicit parametric representation of the locus, for x and ?/,

the coordinates of any point of the locus, are expressed implicitly in terms of m.
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From this point of view it is evident that we may eliminate m directly from

(1) and (2) to find the Cartesian equation of the locus. Accordingly we write

(1) and (2) in the forms

y mx V2m2 + 62
,

my + x = Va2 + 62w2
,

and square and add, the result being

or

(1 + w2
) (x

2 + y2
)
=

(1 + m) (a
2 + 62),

(1 + ra2
) (z

2 + y2 - a2 - 62
)
= 0.

As 1 + ra2 cannot be zero, since by hypothesis m must be real, we may
cancel out this factor. The result,

x2 + y2 - a2 - &2 = 0,

is the same as that found by the previous method.

Ex. 3. Locus of the foot of the perpendicular from the focus of a parabola to

any tangent.

Let the parabola be y2 = 4 px (fig. 185), and let

(1)

FIG. 185

y = mx -f m (1)

be any tangent. Then the perpendic

ular to the tangent from the focus is

= --&amp;lt;*-!. (2)

Their point of intersection, P(x,
is any point of the locus.

Solving (1) and (2), we find

and

(3)

(4)

The locus is therefore x = 0, the tangent at the vertex of the parabola.

If we proceed. from the implicit parametric representation, we may elimi

nate the parameter m by substituting in (1) its value found from (2). The

result is x [y
2 + (p x)

2
]
= 0, which breaks up into two equations, i.e.

x = 0, y2 + (x -p) 2 =0. As the last equation represents a single point, it is

evident by the geometry of the problem that the required equation is x = 0,

as was found by the other method.

We see then that when we eliminate the parameter from the equations

expressing x and y in terms of it, we must examine our result carefully to

be sure that no extraneous factor is left in it.



LOCUS PROBLEMS 319

Ex. 4. Locus of the foot of the perpendicular from the vertex of a parabola

to any tangent.

Let the parabola be y2 = 4px (fig. 186), and

Y W
(1)

be any tangent. Then the perpen

dicular to (1) from the vertex is

(2)

(3)

(4)

Solving (1) and (2), we find

-P

y =

+ 1

P

?n(m
2 + 1)

as the explicit parametric represen

tation of the locus. The Cartesian FIG. 180

equation of the locus is most readily

found by substituting in (1) the value of m from (2), and reducing. The result is

which is the equation of a cissoid ( 83) situated on the negative axis of x.

The last two loci are special examples of pedal curves, i.e. loci of the feet of

perpendiculars drawn from any chosen fixed point to tangents to a given curve.

176. In the examples of the last article the parametric repre

sentation of the locus was in terms of a single parameter. In

the examples of this article the parametric representation, whether

implicit or explicit, is in terms of two parameters, which are not

independent, however, since they are connected by a single equa

tion. The problem of rinding the Cartesian equation of the locus

is, then, the elimination of two parameters from three equations.

Ex. 1. Through the vertex of a parabola a line is drawn perpendicular to

any tangent. Required the locus of the intersection of this line and the ordinate

through the point of contact of the tangent.

Let PI(X!, ?/i) be any point of the parabola ?/
2 = 4px (fig. 187), PiT the

tangent at PI, and OT the perpendicular to P^T from the vertex 0. Then the

equation of PI T is

(2)and the equation of OT is

The equation of the ordinate

2p

through PI is

x = x\. (3)
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If P(z, y) is the point of intersection of (2) and (3), P is any point of the

locus, and (2) and (3) form the implicit parametric representation of the locus

in terms of the parameters x\ and y^. Since PI (xi, y{) is by hypothesis any
point of the parabola, its coordinates satisfy the equation of the parabola, and
the parameters x\ and yi satisfy the equation

yl
-

4pxi. (4)

(3)

FIG. 187

Solving (2) and (3) for Xi and y and substituting their values in (4), we

thereby eliminate them and have, as the Cartesian equation of the locus,

2/2
= 1x3. (5)

From the form of the equation the locus is seen to be a semicubical parabola.

It may be added that the explicit parametric representation of the locus is

readily found to be x &i and y ^ -
, where y* 4pxi.
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Ex. 2. Locus of the middle points of chords of an ellipse, drawn through one

end of its major axis.

Let the ellipse be ^ + ~ = 1 (fig. 188), and PI(*I, yi) be any point of the

ellipse. Then APl is any chord through A, and P(x, y), its middle point, is

any point of the required locus. Since the coordinates of A are (a, 0), by 18

and y
2

Then (1) and (2) are the explicit para

metric representations of the locus in

terms of the parameters Xi and y\

which satisfy the equation

T 2 ,.2
1 i I 1 /O\

~2
+ ^ = lj

&amp;lt;

3
)

FIG. 188
since PI is any point of the ellipse.

To find the Cartesian equation of the locus, we substitute in (3) the values of

Xi and yi from (1) and (2). The result is

Accordingly the locus is an ellipse with its center at (^0) and its semiaxes
Iv \&quot; /

equal respectively to - and -
2 2

Ex. 3. Locus of the point of intersection of tangents at the ends of conjugate

diameters of an ellipse.

Y

FIG. 180

Let the ellipse be +
y- = 1 (fig. 189), and CMi and Oi be any two con-

jugate diameters. If AI is /- ,

^
by Ex. 2, 140.
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Then the tangents at AI and BI will be respectively

&amp;gt;- &amp;gt; 1/^1*

(1)

(2)

(3)

(4)

&amp;lt;

5
&amp;gt;

as the explicit parametric representations of the locus.

If we write (4) and (5) in forms bx = bxi ayi and ay = bxi + ayi respec

tively, and square and add, we

and

where

Solving (1) and (2), we find x =

52

-

- =
1, we see that the required locus is

or &2X2
_|_ a2

by virtue of (3).

As (6) may be written
[

(a V2)
2

(b \/2)
2

an ellipse, concentric with the given ellipse and with the semiaxes a V2 and b V2.

Ex. 4. PiP2 is any chord of an ellipse perpendicular to its major axis AiA 2 .

Find the locus of point of intersection of AiPi and A 2P2 .

FIG. 190

x2

Let the ellipse be + ^- = 1 (fig. 190), and the coordinates of PI and P2 be

respectively (xi, yi) and (xi, yi). Then the equation of

respectively . y
y = ^Ta (X + a^

y\

J

i and A 2P2 are

(1)

(2)
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which are accordingly the implicit parametric representation of the locus. The

parameters x\ and yi satisfy the equation

L + L = 1. (3)
a2 62

Taking the product of (1) and (2), we have

(x
2 - a2

), (4)
a2 -

xl

written y2 =

by virtue of (3).

As (5) may

hyperbola concentric with the ellipse and having the same semiaxes.

which may be written y2 = (x
2 a2

), (5)

x2 y2

As (5) may be written =
1, we see that the required locus is an

a2 b2

PROBLEMS

1. Show that x = pt-, y = 2pt are parametric equations of the parabola.

2. Find the equations of the tangent and the normal to the parabola when
the equations of the parabola are as in problem 1.

3. Find the parametric equations of the parabola when the parameter is

the slope of a line through the vertex.

4. Find the equations of the tangent and the normal to a parabola when
the equations of the curve are as in problem 3.

5. Find the parametric equations of the ellipse when the parameter is the

slope of a straight line through the center.

6. Find the parametric equations of the ellipse when the parameter is the

slope of a straight line through the left-hand vertex.

7. Find the parametric equations of the cissoid when the parameter is the

angle A OP (fig. 91).

a*
8. Show that x = t, y = are parametric equations of the witch.

a2 + t
2

9. Show that x = -, y = are parametric equations of the

cissoid. What is the geometric significance of t ?

10. Find the equation of the tangent to the cissoid if the equations of the

curve are as in problem 9.
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Find the Cartesian equations of each of the following curves :

~~

2 t
2 + 1

~
2 t2 + 1

1
3 at Bat2

12. x = - -, y = - -.

13. x = a+

1-1&quot; 1 - t

1C t + l 2t
U. mm-, wm .

\-e~ l e* e~*1C16. x=

17. x = &amp;lt;

2 + 3 + 2, ?/
= i

2 -l.

lg ^ _
ci _ _

19. Eliminate t from

x cos t sin ?/ _ cos t + sin

a e* a e l

and prove that the curve represented is a logarithmic spiral ( 178).

20. Let be the center of a circle with radius a, A a fixed point, and B a

moving point on the circle. If the tangent at B meets the tangent at A in C,

and P is the middle point of J5C, find the equations of the locus of P in para
metric form, using the angle A OB as the arbitrary parameter, OA as the axis

of x, and as the origin. Also find the Cartesian equation of the locus.

21. OBCD is a rectangle with OB = a and BC = c. Any line is drawn

through C, meeting OB in
&quot;,

and the triangle EPO is constructed so that the

angles CEP and EPO are right angles. Find the parametric equations of the

locus of P, using the angle DOP as the parameter, OB as the axis of x, and O
as the origin. Find also the Cartesian equation of the locus.

22. Let AB be a given line, a given point, a units from AB, and k a given

constant. Draw any line through 0, meeting AB in Jlf, and take P so that

OM MP = fc
2

. Find the parametric equations of the locus of P, using as the

origin, the perpendicular from O to AB as the axis of x, and the angle between

OX and OP as the parameter. Also find the Cartesian equation.

23. A and B are two points on the axis of y at a distance a and + a

respectively from the origin. AH is any line through A meeting the axis of x

at II. BK is the perpendicular from B on AH, meeting it at K. Through 7f a

line is drawn parallel to the axis of x and through H a line is drawn parallel to

the axis of y. These lines meet in P. Find the parametric equations of the locus

of P, using the angle BAR as the parameter. Also find the Cartesian equation.
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24. Let OA be the diameter of a fixed circle and LK the tangent at A.

From O draw any line intersecting the circle at B and LK at C, and let P be

the middle point of BC. Find the parametric equations of the locus of P,

using the angle A OP as the parameter, OA as the axis of y, and as the origin.

Find also the Cartesian equation.

25. Show that the tangent to the ellipse at any point and the tangent to the

auxiliary circle at the corresponding point pass through the same point of the

major axis.

26. Prove that the eccentric angles of the ends of a pair of conjugate

diameters of an ellipse differ by

27. Show that the perpendicular from either focus upon the tangent at any

point of the auxiliary circle of an ellipse equals the focal distance of the corre

sponding point of the ellipse.

28. Q is the point on the auxiliary circle of the ellipse, corresponding to

the point P of the ellipse. The straight line through P parallel to OQ meets

OX at L and OF at If. Prove PL -
6, and PM = a.

29. Find the equation of the tangent at any point of an ellipse in terms of

the eccentric angle at that point.

30. What elevation must be given to a gun to obtain the maximum range
on a horizontal line passing through the muzzle of the gun ? (In this and the

following examples the resistance of the air and the effect of all forces except

gravity are neglected.)

31. What elevation must be given to a gun to obtain a maximum range on

an oblique line passing through the muzzle of the gun and making an angle /3

with the horizontal ?

32. What elevation must be given to a gun that the projectile should pass

through a point in the horizontal line passing through the muzzle and 6 units

from it ?

33. A gun stands on a cliff h units above the water. What elevation must
be given to the gun that the projectile may strike a point in the water b units

from the base of the cliff ?

34. Find the parametric equations of the curve described by any point in

the connecting rod of a steam engine.

35. If a circle rolls on the inside of a fixed circle of twice its radius, what is

the form of the curve generated by a point of the circumference of the rolling

circle ?

36. Show that the hypocycloid generated when the rolling circle has J the

radius of the fixed circle has the Cartesian equation x$ + y* = 6*.

37. If a wheel rolls with constant angular velocity on a straight line,

required the velocity of any point on its circumference
;
also of any point on

one of the spokes.
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38. If a wheel rolls with constant angular velocity on the circumference

of a fixed wheel, find the velocity of any point on its circumference and on its

spoke.

39. Show that the highest point of a wheel rolling with constant velocity

on a road moves twice as fast as each of the two points in the rim whose dis

tance from the ground is half the radius of the wheel.

40. If a string is unwound from a circle with constant velocity, find the

velocity of the end in the path described.

41. AB and CD are perpendicular diameters of a circle of radius B.

AM is a chord of the circle, rotating about A so that the angle BAM varies

uniformly. AM is extended to N so that MN the chord MB. Find the

path of N, the velocity of N in its path, and the components of the velocity

respectively parallel to AB and CD.

42. 0, ,
0&quot; are three points on a straight line and 0&quot;&amp;lt;J

-
\ 0(7. LK is

drawn through perpendicular to
00&quot;,

and any point M is taken on LK.
From M a straight line is drawn perpendicular to

0&quot;M,
and through O a

straight line is drawn parallel to 0&quot;M. These lines intersect in P. Required
the locus of P.

43. is a fixed point and LK a fixed straight line. Any point M is taken

on LK, and the line OM is drawn and prolonged to P so that OM OP = k2
,

where A: is a constant. Find the locus of P.

44. Show that the locus of points symmetrical to the vertex of a parabola

with respect to its tangent lines is a cissoid.

45. Let OA be the diameter of any circle and LK the tangent at A.

Through draw any line intersecting the circle in D and LK in E. Lay off on

OE produced the distance EP = OD, and find the locus of P.

46. Let a circle with center at intersect the axis of y at A and the axis

of x at C. Take two points G and E on the circle equidistant from A. If the

ordinate of G intersects the line CE in P, prove that the locus of P is a cissoid.

47. From a point a units from the axis of x lines are drawn to OX, and

from the point where each line meets the axis a line of the same length is

drawn at right angles to the first line. Find the equation of the locus of the

end of this last line.

48. OA is a diameter of a circle and LK the tangent at A. Through O any
line is drawn meeting the circle in B and LK in C. Through B a line is drawn

perpendicular to OA and meeting it in M. Finally MB is prolonged to P so

that MP = AC. Find the locus of P.

49. Find the path described by any point of a tangent line which rolls upon
a circle without slipping.

50. CD is perpendicular to OX and distant a units from 0. Through A , any

point on CD, a straight line OA is drawn, and from A a perpendicular is drawn
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to OA, intersecting OX at B. From B a straight line is drawn parallel to OF,
intersecting OA at P. If m denotes the slope of OA, find the parametric and

the Cartesian equations of the locus of P.

51. Prove that the pedal of a parabola with respect to any point is a cubic

curve which passes through that point.

52. Prove that the pedal of the ellipse + ^ = 1 with respect to the center

is the curve (x
2 + y2

)
2 = a2x2 + &V-

53. A line of constant length k moves with its extremities on the two axes

of coordinates. Find the locus described by any point of the line.

54. A straight line has its extremities on the coordinate axes and passes

through a fixed point. Find the locus of its middle point.

55. If the ordinate NP of an hyperbola be produced to Q, so that NQ = FP,
find the locus of Q.

56. Find the locus of the points of intersection of normals at corresponding

points of the ellipse and the auxiliary circle.

57. P is any point of a parabola, A the vertex, and through A a straight
line is drawn perpendicular to the tangent at P. Find the locus of the point of

intersection of this, line with the diameter through P, and also the locus of the

point of intersection of this line with the ordinate through P.

58. Two equal parabolas have their axes parallel and a common tangent at

their vertices, and straight lines are drawn parallel to the axes. Show that the

locus of the middle points of the parts of the lines intercepted between the

curves is an equal parabola.

59. Find the locus of the intersection of the ordinate, produced if necessary,
of any point on an ellipse with the perpendicular from the center upon the

tangent at that point.

60. Two parabolas have the same axis, and tangents are drawn from points
on the first to the second. Prove that the middle points of the chords of con
tact with the second lie on a parabola.

61. Chords of an ellipse are passed through a fixed point. Find the locus of

their middle points.

62. From a point P on an ellipse straight lines are drawn to the vertices A
and A

,
and from A and A straight lines are drawn perpendicular to AP and

A P. Show that the locus of their point of intersection is an ellipse.

63. Show that the locus of the point of intersection of two tangents to a

parabola, the ordinates of the points of contact of which are in a constant

ratio, is a parabola.

64. If the tangent to the parabola y* = 4px meets the axis at T and the

tangent at the vertex A at B, and the rectangle TABQ is completed, show
that the locus of Q is the parabola y2 + px = 0.
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65. Find the locus of the feet of the perpendiculars from the focus to the

normals of the parabola y2 = 4px.

66. Show that perpendicular normals to the parabola yz 4px intersect on

the curve y2 = px 3p2
.

67. Find the locus of the intersection of a pair of perpendicular tangents to

an hyperbola.

68. Two tangents to an ellipse are so drawn that the product of their slopes

is constant. Show that the locus of their point of intersection is an ellipse or

an hyperbola according as the product is negative or positive.

69. Prove that the locus of the point of intersection of two tangents to a

parabola is a straight line if the product of their slopes is constant.

70. Find the locus of the foot of the perpendicular from either focus of an

hyperbola to any tangent.

71. Let AB be the diameter of a circle and its center. Let NQ be the

ordinate of a point Q on the circle and P another point of the circle, so related

to Q that OP revolves uniformly from OA through a right angle in the same

time that QN travels at a uniform rate from A to 0. If OP and QN intersect

in E, find the locus of R.

72. Find the equations of the cycloid when the tangent at its highest point

is the axis of x, the normal at the vertex is the axis of ?/, and the angle 6 is

the angle through which the radius has rotated after passing through the

highest point.

73. Prove that the area of an arch of the cycloid above the axis of x is

three times the area of the rolling circle.

74. Prove that for a cycloid = 2 a sin -, and thence find its length from
dd&amp;gt; 2

cusp to cusp.

75. Show that for an epicycloid - = 2 (a -f &)sin , and thence find its

dd&amp;gt; 2 a
length from cusp to cusp.



CHAPTER XV

POLAR COORDINATES

177. Coordinate system. So far we have determined the posi

tion of a point in the plane by two distances, x and y. We may,

however, use a distance and direction, as follows :

Let (fig. 191), called the origin or pole, be a fixed point, and

OM, called the initial line, be a fixed line. Take P any point in

the plane and draw OP. Denote OP by r and the angle MOP by 6.

Then r and 6 are called the polar coordinates of the point P(r, 6),

and when given will completely determine P.

P(r,0)

Fir,. 101

For example, the point (2, 15) is plotted by laying off the

angle MOP = 15 and measuring OP = 2.

OP, or r, is called the radius vector and 6 the vectorial angle of P.

These quantities may be either positive or negative. A negative

value of 6 is laid off in the direction of the motion of the hands

of a clock, a positive angle in the opposite direction. After the

angle 6 has been constructed, positive values of r are measured

from along the terminal line of 6, and negative values of r from

along the backward extension of the terminal line. It follows

that the same point may have more than one pair of coordinates.

329
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Thus (2, 195), (2,
-

165), (- 2, 15), and (- 2,
-
345) refer to

the same point. In practice it is usually convenient to restrict 6

to positive values.

Plotting in polar coordinates is facilitated by using paper ruled

as in figs. 192 and 193. The angle is determined from the num
bers at the ends of the straight lines, and the value of r is counted

off on the concentric circles, either towards or away from the num
ber which indicates 0, according as r is positive or negative.

When an equation is given in polar coordinates the correspond

ing curve may be plotted by giving to 6 convenient values, com

puting the corresponding values of r, plotting the resulting points,

and drawing a curve through them.

Ex. 1. r = a cos 6.

a is a constant which may be given any convenient value. We may then find

from a table of natural cosines the value of r which corresponds to any value of 6.

90
105

120 60
C

13

150
30

180

195

22

255 270

FIG. 192

285

By plotting the points corresponding to values of 6 from to 00 we obtain the

arc ABCO (fig. 192). Values of $ from 90 to 180 give the arc ODEA. Values of
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from 180 to 270 give again the arc ABCO, and those from 270 to 360 give the

arc ODEA. Values of greater than 360 can clearly give no points not already

found. The curve is a circle ( 184).

Ex. 2. r = a sin 30.

As 6 increases from to 30, r increases from to a
;
as increases from 30

to 60 r decreases from a to
;
the point P(r, 0) traces out the loop OAO (fig.

193). AS increases from 60 to 90, r is negative and decreases from to - a-,

105

135

225

as increases from 90 to 120, r increases from - a to
;
the point (r, 0) traces

out the loop OBO. As increases from 120 to 180, the point (r, 0) traces out the

loop OCO. Larger values of give points already found, since sin 3 (180 + 0)

= - sin 30. The three loops are congruent because sin 3 (60 + 0)
=

This curve is called a rose of three leaves.

178. The spirals. Polar coordinates are particularly well

adapted to represent certain curves called spirals, of which the

more important follow.
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Ex. 1. The spiral of Archimedes,

r a6.

In plotting 6 is usually considered in circular measure. When = 0, r = 0,

and as 8 increases r increases, so that the curve winds infinitely often around

M

FIG. 194

the origin while receding from it (fig. 194). In the figure the heavy line repre

sents the portion of the spiral corresponding to positive values of 0, and the

dotted line the portion corresponding to negative values of 0.

Ex. 2. The hyperbolic spiral,

FIG. 195

As 6 increases indefinitely r approaches zero. Hence the spiral winds infi

nitely often around the origin, continually approaching it but never reaching it
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(fig. 195). As approaches zero r increases without limit. If P is a point on
the spiral and NP the perpendicular to the initial line,

NP = r sin 6 = a
sin d

Hence as 6 approaches zero as a limit, NP approaches a ( 151). Therefore

the curve comes constantly nearer to, but never reaches, the line LK, parallel
to OM at a distance a units from it. This line is therefore an asymptote. In

the figure the dotted portion of the curve corresponds to negative values of 6.

Ex. 3. The logarithmic spiral,

r = ea0 .

When e = 0, r = 1. As 6 increases r increases, and the curve winds around
the origin at increasing distances from it (fig. 196). When e is negative and

increasing numerically without limit, r approaches zero. Hence the curve
winds infinitely often around the origin, continually approaching it. The
dotted line in the figure corresponds to negative values of 6.

FIG. 190

A property of this spiral is that it cuts the radii vectors at a constant angle.
The student may prove this after reading 187.

We shall now give examples of the derivation of the polar equa
tion of a curve from the definition of the curve.
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179. The conchoid. Take a fixed point (tig. 197) and a fixed

straight line BC. Through draw any line OH intersecting BC
in D, and on OH lay off a constant distance DP or DQ, measured

from D in either direction. The locus of P and Q is a curve called

the conchoid.

From the definition the conchoid consists of two parts, one

generated by P, the other by Q. We may obtain the whole curve,

FIG. 11)8

however, by allowing the line OR to revolve in the positive direc

tion through .an angle of 360 and always laying off the distance b,

measured from D in the direction of the terminal line of the angle

AOK Then if AOR is in the first quadrant, we obtain the upper

half of the curve described by P ;
if AOR is in the second quad

rant, we have the lower half of the curve described by Q ;
if A OR

is in the third quadrant, we have the upper half of the curve
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described by Q, and if AOR is in the fourth quadrant, we have

the lower half of the curve described by P.

To find its polar equation, take as the origin and the line OA

perpendicular to BC as the initial line. Let OA = a and the con

stant distance DP = I.

Call the coordinates of P (r, 0), where 6 = AOR. When is in

the first or the fourth quadrant, r = OD + DP = OD+b ,
when

is in the second or the third quadrant, T OD + DQ = OD -f I.

FIG. 100

But OD = a sec 6 when 6 is in the first or the fourth quadrant ;

and OD = a sec 6 when 6 is in the second or the third quadrant.
Hence for all points on the conchoid

T = a sec 6 + b.

The conchoid has three shapes according as a &amp;gt; b
(fig. 197),

a = b
(fig. 198), a &amp;lt; b

(fig. 199). If b = 0, the conchoid becomes

the straight line BC and its equation becomes r = a sec 0, the

equation of the straight line
( 183).
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180. The limacon. Through any fixed point (fig. 200) on the

circumference of a fixed circle draw any line cutting the circle

again at D, and lay off on this line a constant length measured

from D in either direction. The locus of the points P and Q thus

found is a curve called the limacon.

Take as the pole, the diameter OA as the initial line of a sys

tem of polar coordinates, and call the diameter of the circle a and

FIG. 200

the constant length b. Then it is clear that the entire locus can

be found by causing OD to revolve through an angle of 360 and

laying off DP = b always in the direction of the terminal line

of AOD.
Let the coordinates of P be (r, 0), where 6= AOD. Then

r = OD + DP when 6 is in the first or the fourth quadrant,

and r = OD +DP when 6 is in the second or the third

quadrant. But it appears from the figure that OD = OA cos 9

when is in the first or the fourth quadrant, and OD = OA cos 6
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when 6 is in the second or the third quadrant. Hence for any

point on the liruagon

r = a cos 6 + &.

In studying the shape of the curve there are three cases to be

distinguished

0= cos
\--jj-)

FIG. 201

1. b &amp;gt; a. r is always positive and the curve appears as in
fig. 200.

is positive when cos 6 &amp;gt;
&amp;gt;

negative when
a

2. b &amp;lt; a.

7 ~L
^

cos 6 &amp;lt;
-- and zero when cos 6 = -- The curve appears as

t a
in

fig. 201.

3. b = a. The equation now becomes

n

r = a(cos + 1)= 2 a cos
2 -

&amp;lt;LJ

r is positive except when = 180, when it is zero. The curve

appears as in
fig. 202 and is called the cardioid.
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The cardioid is an epicycloid for which the radii of the fixed and

the rolling circles are the same. The proof of this is left to the

student.

FIG. 202

181. The ovals of Cassini. If a point moves so that the product

of its distances from two fixed points is constant, it generates a

P

FIG. 203

curve called an oval of Cassini. Let F
l
and F

2 (fig. 203) be the

two fixed points, called the foci, and If the constant product of
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the distances of a point of the curve from F
l
and F

2
. Take

as the initial line and the point O, halfway between F
l
and F^ as

the pole of a system, of polar coordinates, and let P be a point on

the curve. Then, by definition,

l\ (1)

By trigonometry,

- 2 OP OF
l
cosJFOP = r

a + 2 + 2 ra cos0,

where (r, 0) are the coordinates of P and 2 a = F
1
F. Also

2 OP OP
2
cosF

2
OP = r

2 + a2
2 ra cos0.

Substituting in (1), we have

(
r
* + 2

)

2_ 4 aV cos
2 = l\

which is the same as

r
4- 2 aV cos 2 + a* -tf = Q. (2)

To determine the form of the curve, it is convenient to solve (2)

for r
2

, obtaining

r
2 = a2

cos 2 VV cos
2
2 -

(a
4- 6

4

). (3)

We have, then, three cases to consider

1. a2
&amp;lt;

&amp;gt;

2
. The quantity under the radical sign in (3) is posi

tive and greater than a4
cos

2
2 6 for all values of 6. Therefore r

2

in (3) has two real values, one positive and one negative. Conse

quently r has two, and only two, real values equal in magnitude
and opposite in sign. The curve therefore consists of a single oval,

symmetric with respect to the origin (fig. 203).
4

I*
2. a2

&amp;gt; I
2

. When cos
2
2 6 &amp;gt;

--- the quantity under the rad-
CL

ical sign in (3) is positive and less than a4
cos

2
2 6. Hence for

these values of 6 there are two real positive values of r
2 and there

fore four real values of r, two positive and two negative. When
a*_ /*

cos
2
2 &amp;lt;

- - the quantity under the radical sign in (3) is
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negative, and hence all values of r are imaginary. When cos
2
2 6

= there are two real values of r, namely r =
tt a

The curve consists of two distinct ovals
(fig. 204).

-M

FIG. 204

3. a2 = b
2
. Equation (2) then factors into the two equations

r
2 = and r

2
2 a2

cos 20 = 0. But r
2 = is satisfied only by

the origin, which is also a point on the second equation.

FIG. 205

Hence r
2 = 2 a2

cos 2 (4)

is the full equation of the locus in this case. From (4) it appears

that r has two real values equal in magnitude but opposite in sign

when 0&amp;lt;0&amp;lt;-&amp;gt;or^&amp;lt;0&amp;lt; , or ~ &amp;lt; &amp;lt; 2 TT. Further,44 44
n 7T 3 7T 5 7T 7 7T , .. . ,

r when =
&amp;gt;

&amp;gt;

-
&amp;gt; or -

;
and r is imaginary when

&amp;lt; &amp;lt; or &amp;lt; &amp;lt; The curve appears as in fig. 205444 4

and is given the special name of the lemniscate.
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182. Relation between rectangular and polar coordinates. Let

the pole O and the initial line OM of a system of polar coordinates

be at the same time the origin and the axis of x of a system of

rectangular coordinates. Let P (fig. 206) be any point of the plane,

(x, y) its rectangular coordinates, and (r, 0) its polar coordinates.

Then, by the definition of the -

trigonometric functions,

cos = -
&amp;gt;

r

sn = -
r

whence follows, on the one hand,

x = r cos 6,

y = T sin 0,

and, on the other hand,

r = ^/x2 + ?/, sin =

FIG. 206

cos =
//&quot;

(2)

By means of (1) a transformation can be made from rectangular
to polar coordinates, and by means of (2) from polar to rectangular
coordinates.

Ex. 1. The equation of the cissoid
( 83) is

2a-x

Substituting from (1) and making simple reductions, we have the polar
equation

_ 2 a sin2

cose

Ex. 2. The polar equation of the lemniscate is

r2 = 2 a2 cos 2 0.

Placing cos 26= cos2 - sin2 and substituting from (2), we have the rec

tangular equation
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183. The straight line. Take the equation of the straight line

in the normal form x cos a -f- y sin a p = and substitute the

values of x and y from (1), 182. There results

r (cos 6 cos a -f- sin 6 sin a) ^9
=

;

whence r cos (6 a)
=

p.

A reference to 33 shows that (p, a] are the polar coordinates

of the point in which the normal from the origin meets the straight

line. If a = and p = a, we have the special equation

r cos 6 = a,

or r = a sec 0,

as found in 179.

If the straight line passes through the origin, p = 0. The equa
tion of the line then becomes

cos (6 a)
= 0,

or simply 6 = + a, .

which is of the form 6 = c.

184. The circle. If (d, e) are the rectangular coordinates of the

center of the circle and a its radius, its equation is

If (b t a) are the polar coordinates of the center and (r, 0) those

of any point, the pole and the initial line of the polar coordinates

being the origin and the axis of x, respectively, of the rectangular

system, we have, by (1), 182,

x = r cos 0, y = r sin 0,

d = b cos a, e = 1} sin a.

We obtain, by substitution,

r
2

2 rb (cos 6 cos a + sin 6 sin a) + b
2 a2 = 0,

or r
2- 2 rb cos (0

-
a) + b

2- a 2 = 0. (1)
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This result may also be directly obtained from fig. 207 by noticing

CP*= OC
2

+ OP* -2 OP- OCcosPOC.

When the origin is at the

center of the circle, I = 0,

and (1) becomes simply

r = a. (2)

When the origin is on

the circle, I = a, and (1)

becomes

r2a cos (0 a)
= 0,

which may be written
FlG - 207

r = a cos 6 + a
l
sin 6, (3)

where .
a and a

1
are the intercepts on the lines 6 = and =

respectively.

When the origin is on the circle and the initial line is a

diameter, (3) becomes
r = a cos u. (4)

When the origin is on the circle and the initial line is tangent

to the circle, (3) becomes
r = a

t
sin 6. (5)

185. The conic, the focus being the pole. From 81 the equa
tion of a conic, when the axis of x is an axis of the conic and the

axis of y is a directrix, is

We may transfer to new axes having the origin as the focus and

the axis of x as the axis of the conic by placing

x = c + x
, y = y ,

thus obtaining a/
2 + y

1 2 = e
2

(x + cf.

If we now take a system of polar coordinates having the focus

as the pole and the axis of the conic as the initial line, we have

x = r cos 6, y = r sin 0.
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The equation then becomes

which is equivalent to the two equations

r = ce

1 e cos 6

r =
1 -f- e cos 6

Either of these two equations alone will give the entire conic.

To see this, place 6 =
1
in the second equation, obtaining

ce
T* .

1 -f e cos
1

Now place = TT + 9
l
in the first equation, obtaining r = rr

The points (0V rj and
(TT + V

-
TI ) are the same. Hence any

point which can be found from the second equation can be found
from the first.

Therefore r = ce

1 e cos 6

is the required polar equation.
186. Examples. We shall now give examples of the use

of polar coordinates in solving

problems.

Ex. 1. Prove that if a secant is

drawn through the focus of a conic,
the sum of the reciprocals of the seg
ments made by the focus is constant.

Let P^ (fig. 208) be any secant

through the focus .F, and let FP = TI

and FP2 = r2 ,
and the angle MFP = e.

Then the polar coordinates of Px are

(r, 6) and those of P2 are (r, 6 + TT).

From the polar equation of the conic

FIG. 208 we have

1 e cos 6

ce

Hence

1 e cos (6 +
1 1- 2

TI r2
~

ce

1 + e cos 6
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Ex. 2. Find the locus of the middle points of a system of chords of a circle

all of which pass through a fixed point.

Take any circle with the center C (fig. 200) and let O be any point in the

plane. If is taken for the pole and OC for the initial line of a system of polar

coordinates, the equation of the

circle is

r2 -2r&cos0-f&2 -a2 = 0. (1)

Let PiP2 be any chord through

and let OPl
= n, OP2 = r2 .

Then r\ and r2 are the two roots

of equation (1) which correspond

to the same value of 0. Hence

n + r2 = 2 6 cos 0.

If Q is the middle point of

PiP2 ,
and we now place OQ = r,

we have

r=
r

-~p
= b CoS e.

FIG. 209

But this is the polar equation of a circle through the points and C.

187. Direction of a curve. The direction of a curve expressed

in polar coordinates is usually determined by means of the angle

between the tangent and the radius vector. Let P(r, 6) (fig. 210)
be any point on the curve,

PT the tangent at P, and

^ the angle made by PT
and the radius vector OP.

Give 6 an increment

&6=POQ, expressed in

circular measure, thus fix

ing a second point of the~M
curve Q (r + Ar, 6 + A0).

To determine Ar describe

a circle with center and radius OQ, intersecting OP produced

Then
OR = OQ = r + Ar,

FIG. 210

n

and arc PQ = As,

s being measured from some initial point A.
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Draw also the chord PQ and the straight line QS perpendicular
to OP and meeting it in S. Then

SQ = (r + Ar) sin A0,

OS = (r + Ar) cos A0,

SR = OR- OS
=

(r + Ar)(l cosA0),

and PS=PR- SR
= Ar - (r + Ar) (1

- cos A0).

As A0 approaches zero, the chord PQ approaches the limiting

position PT and the angle RPQ approaches i/r. But in the

triangle SPQ

(r + Ar)sinA(9

-(r + Ar)(l-cosA0)
. sin A#

(r + Ar) A0
Ar 1 cos

Now as A0 approaches zero

Lim (r + Ar) = r, Lim^^ . 1,
AC7

-, and Li

Hence, by taking the limit of (1),

tant = -

(2)

If it is desired to find the angle MNP =
&amp;lt;/&amp;gt;,

it may be done by
the evident relation
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188. Derivatives with respect to the arc. In the triangle PQS
(tig. 210)

, ,,chordPQ

SQ arcPQ
arcPQ chordPQ

(r + Ar)sinA0 arcPfl

As chordPQ
sinA0 A0 a

A0 As chordP

As A0 approaches zero, $P$ approaches -/r,
Lim r = 1, and

___ =
chord

P^&amp;gt;

^ /1X
Bm^r = r (1)

CvS

By dividing (1) just obtained by (2) of the previous article,

. cos^ = g. (2)

From (1) and (2) we obtain

-

By multiplying (3) by (^) we obtain

and by multiplying (3) by l
j
we obtain
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189.

variable

Area. Let C
(fig. 211) be a fixed point and P (r,6) a

point on the curve r =/(0), and let A denote the area
of the figure OCP, bounded by
the arc of the curve CP and

, the radii OC and OP. Then A
is a function of 0, since the

value of 6 fixes the position of

the point P. If 6 is increased

by A0 = angle POQ, A is in

creased by A^4 = area POQ.
From describe arcs of circles

PS and QR with radii OP = r

y and OQ = r + Ar respectively.
Then in the figure

&amp;lt; &A&amp;lt; areaROQ.

FIG. 211

But the area of the sector of the circle POS is

and area ROQ = %OQ&amp;gt; RQ = J (r + Ar)
2
A0.

We have then
J-
r
2A0 &amp;lt; &A &amp;lt; ^(r + Ar)

2A#
;

whence 1 r2
&amp;lt; &amp;lt;r 1 /v .

Taking now the limit as A0 approaches zero, we have

Ex. Find the area of a loop of the lemniscate r2 = 2 a2 cos 20.

We will take C as the point for which =
0, and P as any point for which

0&amp;lt;0&amp;lt;-. Then

whence

= a2 cos 2
;

A = aiu2B + c.

But when = 0, A =
; therefore c = 0. Also when = -

, A=% area of

the loop. Hence the area of the loop is a2 sin - = a2
.
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PROBLEMS

Plot the following curves :

1. r=asin20. 13. r = a(l + cos20).

2. r=acos30. 14. r = a(l + 2 cos20).

3. r= atone. 15. r = a(l- cos20).

4. r = a(l + sin0). 16. r = a(l + cos30).

5. r = a(2 + sin0). 17. r = a(l + 2 cos 30).

6. r = a(l + 2 sin0). 18. r = 4 + 5 cos 50.

7. r = a0~*. 19. r = 2 + sinf 0.

n r\

8. r=asec2 -- 20. r = atan-.
2 2

9. r---. 21. r =
6 6 o

10. r = a - 60. 22. r2 = a2 sin 0.

. d 23. r2 = a2 sin30.
11. r a sin-.

2 24. r cos0 = a cos 20.

12. r = acos*. 25. r =
cos sin

Find the points of intersection of the following pairs of curves :

26. r cos /
|

= a, r cos
j j

= a.

/ TT\ 3
/0 -- 1=

- 3 a
27. rcos/0 -- 1= , r = asm0.

28. r2 = a2 sin 0, r2 = a2 sin 3 0.

29. r = a sin 20, r = a (1 cos 2 0). [(n, 0i) and ( ri, 0i + TT) are the same

points.]

30. is a fixed point and LK a fixed straight line. If any line through
intersects LK in Q and a point P is taken on this line so that OP OQ = fc

2
,

find the locus of P.

31. A straight line OA of constant length revolves about 0. From A
a perpendicular is drawn to a fixed straight line through O, intersecting it

in B. From B a perpendicular is drawn to OA intersecting it in P. Find the

locus of P.

32. MN is a straight line perpendicular to the initial line at a distance a

from O. From O a straight line is drawn to any point B of MN. From B a

straight line is drawn perpendicular to OB, intersecting the initial line at C.

From C a line is drawn perpendicular to BC, intersecting MN at D. Finally,

from I&amp;gt; a straight line is drawn perpendicular to CD, intersecting OB at P.

Find the locus of P.
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Transform the following equations to polar coordinates :

33. 2/2 = 4pXm 36 xt + y2_ Sax _ Sai/ =
34. xy = 7. 37. x4 + x2

z/
2 - a2

?/
2 = 0.

35. ^ + ^ = i
38 - (*

2 + 2/
2

2 &2 39. x3 + ?/
3

40. Find the polar equation of the cissoid when the pole is A and the initial

line is OA (fig. 91).

41. Find the polar equation of the strophoid (1) when the pole is and
the initial line OA (fig. 92); (2) when the pole is A and the initial line is OA.

42. In the strophoid (fig. 92) show that

AP . APi =
a?, and + _L = JL

,AP AP! AN
where AN is the projection of AO on AD.

Transform the following equations to rectangular coordinates :

43. r cos(
-

)
+ r cos (e + -\ = 12. 46. r = a tan0.

V / V 6 7

44. r = asine. 47. r2 = a2 sin0.

45. r = a (cos 20 + sin 20). 48. r2 = a2 sin-.

49. Find the Cartesian equation of the rose of four petals r = a sin 2 0.

50. Find the Cartesian equation of the cardioid r = a(l cos0).

51. Find the Cartesian equation of the ovals of Cassini

r4 - 2 a2r2 cos 2 6 + a4 - &4 = 0.

52. Find the Cartesian equation of the limagon r = a cose -f b.

53. Find the Cartesian equation of the conchoid r = a sec 6 + 6.

54. Find the Cartesian equation of the logarithmic spiral r = ea& .

55. In a parabola prove that the length of a focal chord which makes an

angle of 30 with the axis of the curve is four times the focal chord perpen
dicular to the axis.

56. A comet is moving in a parabolic orbit around the sun at the focus of

the parabola. When the comet is 100,000,000 miles from the sun the radius

vector makes an angle of 60 with the axis of the orbit. What is the equation
of the comet s orbit ? How near does it come to the sun ?

57. A comet moving in a parabolic orbit around the sun is observed at two

points of its path, its focal distances being 5 and 15 million miles and the angle
between them being 90. What is its distance from the sun when it is nearest it ?

58. If a straight line drawn through the focus of an hyperbola, parallel to

an asymptote, meets the curve at P, prove that FP is one fourth the chord

through the focus perpendicular to the transverse axis.
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59. The focal radii of a parabola are extended beyond the curve until their

lengths are doubled. Find the, equation of the locus of their extremities.

60. If PI and P2 are the points of intersection of a straight line drawn from

any point to a circle, prove that OPi OP2 is constant.

61. If PI and P2 are the points of intersection of a straight line from any

point to a fixed circle, and Q is any point on the same straight line such that

9 DP OP& vr l vr2
f

62. Secant lines of a circle are drawn from the same point on the circle,

and on each secant a point is taken outside the circle at a distance equal to the

portion of the secant included in the circle. Find the locus of these points.

63. From a point O a straight line is drawn intersecting a fixed circle at P,

and on this line a point Q is taken so that OP OQ = A;
2

. Find the locus of Q.

64. Find the polar equation of a conic if the pole is a vertex and the initial

line an axis.

65. Find the locus of the middle points of the focal chords of a conic.

66. Find the locus of the middle points of the focal radii of a conic.

67. If P\FPz and Q\FQ-2 are two perpendicular focal chords of a conic,

68. Prove that the angle between the normal and the radius vector to any

point of the lemniscate is twice the angle made by the radius vector and the

initial line.

69. Show that for any curve in polar coordinates the maximum and the

minimum values of r occur in general when the radius vector is perpendicular

to the tangent.

70. If a straight line drawn through the pole perpendicular to a radius

r2

vector OP meets the tangent in A and the normal in .B, show that OA =
dr dr

and OB=.
de de

These are called the polar subtangent and the polar subnormal respectively.

71. If p is the perpendicular distance of a tangent from the pole, prove
r2

that p =

72. When a point traverses the curve r=f(6) with a uniform angular

velocity, find the rate at which r is changing and the rate of the point along
the curve.

73. When a point moves along the curve r=f(6) at a uniform rate, find

the rates at which r and 6 are changing.
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74. Find the velocity of a point moving in a limagon when 6 changes
uniformly.

75. A point moves along the radius vector with a constant velocity a, while
the radius vector revolves about O with a constant velocity w. Find the path of

the point.

76. Find the total area bounded by the curve r2 = a2 sin0.

77. Find the area of a loop of the curve r2 = a2 sin 3 0.

78. Find the area swept over by the radius vector of the spiral of Archimedes
as 6 changes from to TT.

79. Find the area swept over by the radius vector of the logarithmic spiral
as 6 changes from to TT.

80. Find the area swept over by the radius vector of the curve r = a sin -

as 6 changes from to 2 TT.

81. Find the area swept over by the radius vector of the curve r = atan0

as 8 changes from to -
4

82. Find the total area of the limaQon.

83. Find the total length of the cardioid.

84. Prove that the length of an arc of the logarithmic spiral is proportional
to the difference of the radii vectores drawn to its ends.

85. Show that if the angle between the tangent to a curve and the radius

vector to the point of contact is one half the vectorial angle, the curve is a

cardioid.



CHAPTER XVI

o
X

CURVATURE

190. Definition of curvature. If a point describes a curve the

change of direction of its motion may be measured by the change
of the angle &amp;lt;

( 59).

For example, in the curve

of fig. 212, if AP, = s and

Pf^ = As, and if
&amp;lt;^

and &amp;lt;

2

are the values of
&amp;lt;/&amp;gt;

for the

points JJ and P2 respectively,

then 6
9

6, is the total
r , r i

change of direction of the

curve between P^ and P
2

.

If
&amp;lt;f&amp;gt;

&amp;gt;2
(f&amp;gt; l
=

A&amp;lt;, expressed

in circular measure, the

is the average

change of direction per linear unit of the arc

&amp;lt; as a function of s and taking the limit of as As approaches
71

zero as a limit, we have -^ &amp;gt; which
ds

is called the curvature of the

curve at the point Pr Hence the

curvature of a curve is the rate

of change of the direction of the

curve with respect to the length

of the arc
( 109).

If -~ is constant, the curvature

ratio ~-
As

FIG. 212

Regarding

is constant or uniform; other

wise the curvature is variable. Applying this definition to the

circle of fig. 213 of which the center is C and the radius

353
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is a, we have A$ = 2^CP2 ;
and hence As = aA&amp;lt;. Therefore

- = - Hence = -&amp;gt; and the circle is a curve of constant
As a ds a

curvature equal to the reciprocal of its radius.

191. Radius of curvature. The reciprocal of the curvature is

called the radius of curvature, and will be denoted by p. Through

every point of a curve we may pass a circle, with its radius equal
to p, which shall have the same tangent as the curve at the point,

and shall lie on the same side of the tangent. Since the curva

ture of a circle is uniform and equal to the reciprocal of its

radius, the curvatures of the curve and the circle are the same,

and the circle shows the curvature of the curve in a manner

similar to that in which the tangent shows the direction of the

curve. The circle is called the circle of curvature.

Since the curvature is &amp;gt;

ds

ds

If the equation of the curve is in rectangular coordinates,

and ^-tan-
1

!^-); (by 59)

d4&amp;gt;whence -
ax

1+
$.
^s

ds dx
P =

d4&amp;gt;

=
~d$

dx

dx
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In the above expression for p there is an apparent ambiguity of

sign, on account of the radical sign. If only the numerical value

of p is required, a negative sign may be disregarded.

Ex. Find the radius of curvature of the ellipse (-
^ = 1.

a2 o2

Here =
dx a*y

d?y 6*
and

dx2

.-. p =

Another formula for p, i.e.

P =

may be found by denning &amp;lt; as the angle between OY and the

tangent, and interchanging x and y in the above derivation.

tfc
192. According to the definition, i.e. p = it is evident that

&amp;lt;

/&amp;gt;

is positive when s is measured so that s and
&amp;lt;/&amp;gt;

increase at the

same time, and is negative when one increases as the other decreases.

For convenience we shall assume in the following work that s

always increases from left to right
*
along the curve (figs. 214-217).

Then &amp;lt; is always in the first or the fourth quadrant, and hence

sec
&amp;lt;/&amp;gt;

is always positive.

But sec
cf&amp;gt;

= Vl+tan2

&amp;lt;/&amp;gt;=
Jl +MH Therefore in the formula
N \dx/

P =

the sign of p is the same as the sign of ~- Hence p is positive
dxr

when the curve is concave upward, and negative when the curve

is concave downward.

*The results and the proof are the same if s is measured from right to left along
the curve

;
hence the proof is left to the student.
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193. Coordinates of center of curvature. The center of the

circle described in 191 is called the center of curvature corre

sponding to the point. Let C(a, j3) (fig. 214) be the center of

curvature corresponding to the point P (x, y) of the curve. Draw
CL and PM parallel to OY, and NR through P parallel to OX.
Then

OL = OM+ ML = OM+ PN,

LC =LN+NC = HP + NC.

Now Z RPC =
&amp;lt;j&amp;gt;

+ 90,

and

L M

FIG. 214

since p &amp;gt; 0, the curve being concave upward. Therefore, by the

definition of the trigonometric functions,

PN= PC cosRPC = p cos (0 + 90) = p sin&amp;lt;,

NC = PC sinUPC = p sin(0 + 90) = p cos&amp;lt;.

.;. a = x p sine/),

P = y -f- p cos c.

There are three other cases represented in figs. 215, 216, 217

respectively. The construction in all these figures is the same

as in fig. 214, and the proof from
fig. 215 is the same as that
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just given. The proof from figs. 216 and 217 differs only in that

RPC =
c/&amp;gt;

90, and PC = p, since p &amp;lt; 0, the curve being con

cave downward. Hence the

above expressions for a and

j3 are universally true.

Since cos =

and sn =

FIG. 216

the formulas for a and j3 may be written

7

a = x

_

dx

dx2

R

dx2

Ex. Find the coordinates of

the center of curvature for any

point of the ellipse + = 1.

In the example of 191 we found

dx
ind .= .

dx2

Substituting in the above formulas and simplifying, we have

194. Evolute and involute. With the single exception when
(Py = 0, in which case p becomes infinite, there will be a center

of curvature corresponding to each point of the curve. The locus
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of these centers of curvature is a curve called the evolute of

the given curve, and the given curve is called the involute. In

fig. 2 18(1) is the involute

.and (2) is the evolute.

To find the evolute we
find the coordinates of

the center of curvature

in terms of x and y, and

then eliminate x and y
from these two equations

by the aid of the equa
tion of the curve.

FIG. 218

article, to eliminate x and y from the three equations

a2 -&2
. a2 -&* , &

Ex. To find the evolute of

the ellipse, we have then,

in the example of the last

a*

From the first two equations

a2 -

Substituting these values in the

third equation and simplifying, we

have

(aa)% + (6/3)3
_

(a
2 _ ^1

as the equation of the evolute. The

ellipse and its evolute are shown in

fig. 219.

It may be noted that equa

tions expressing a and /3 are,

in fact, the parametric repre

sentation of the evolute, x and

y being two independent param
eters connected by the equation

of the given curve. FIG. 219
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195. Properties of evolute and involute. From the equations

a = x p sin $, /3
= y -\- p cos

&amp;lt;p,

we may find the slope of the

evolute at any point by assuming a, /3, x, y, p ,
and

&amp;lt;f&amp;gt;

as functions

of s, the length of arc along the involute. Then

da dx
,

dd&amp;gt; . , dp
- = p cos -f- sin &amp;lt;

-f-
ds ds ds ds

./1\ .dp= cos 6 p cos &amp;lt;b (- sin 9 -7-

d/3 dy .
dcf&amp;gt; ,

. rfp- =
-f- /osin^^ + cosc/) %

ds ds ds ds

= sin &amp;lt; p sin &amp;lt; (
-

j
+ cos

(/&amp;gt; -^

do= COSffl -f-
ds

d/3 d/3

ds ds d/3
. . =

ctii(/&amp;gt;;
but =

&amp;gt;

do: do: do;

ds ds

by (8), 96
;
and if tan&amp;lt; is the slope of the evolute at the assumed

dR
pokit,

= tan
&amp;lt;/&amp;gt;

,
and hence tan &amp;lt;&amp;gt;

= ctn
&amp;lt;/&amp;gt;.

Hence
^&amp;gt;

and
^&amp;gt;

CLOC

differ by 90, and the tangent to the evolute at any point is

perpendicular to the tangent to the involute at the corresponding

point (fig. 218).

If we square and add the above equations, we have

ds \ds

But if we denote the length of arc along the evolute by s
r

,
we

nave _ = x i _j_/_ii) ;
and if we regard s

, a, ft, as expressed hi

da N \da]
terms of s, the length of arc along the involute, we have
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whence
ds

Hence Mi \ds

,

and dp

(by 110)

It follows, then, that as the center of curvature moves along the

evolute the radius of curvature increases or decreases by exactly the

distance traversed by the center
(fig. 218).

From these two properties we see that an involute may be

described by a pencil attached to the end of a string which is

unwound from the evolute, the free portion being kept taut and

tangent to the evolute. From any one evolute any number of

involutes may be described by changing the length of the string.

196. Radius of curvature in parametric representation. If x

and y are expressed in terms of any parameter t, the radius of

curvature may be found as follows:

ds

P =^ =
^~ . .

(by (8), 96)

dt

But + , (by (4), 174)

dy

j 1 dy , dt
and = tan&quot;

1 - = tan 1

dx dx

dt
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whence

/(fa\fy/dy\&amp;lt;Px

d&amp;lt;t&amp;gt; \dt)dt
2

(dt)dt
2

dt

Therefore, by substitution,

dl

dt dt2 dt dt
2

Ex. Find the radius of curvature of the cycloid

x =
a&amp;lt;t&amp;gt;

a sm0,

y a a cos0.

Here the parameter is 0.

.-.
- = a a cos0,
(Z0

-^=rasin0,

Hence, by substitution, p =

- = a cos0.

[a
2
(l cos 0)

2

a (1 cos 0) a cos a sin (a sin

= 4 a sin

197. Radius of curvature in polar coordinates. The equation
of any curve in polar coordinates may always, theoretically, be

expressed in the form r =f(0). Then, since r may be regarded
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as a function of 0, the equations x = r cos 0, y = r sin 0, are the

parametric equations of a curve. From them we may accordingly
derive the formula for p in polar coordinates by substituting in

the formula of 196 as follows:

dx dr- = _cofl*-rn*,

d2x d2
r dr

dr_

Substituting these values and simplifying, we have, as the

required formula,
nl

tW

Ex. Find the radius of curvature of the cardioid r = a (I cose).

Here = a sin and = a cos0.
d6 de2

a2 (I- cose)
2 + 2a2 sin 2 - a(l- cos0)acos0

_[2a2(l-cos0)]i _2a /1
,

or ,:=f(2af)

PROBLEMS

1. Find the radius of curvature of the catenary y = -
(e

a + e~ a
).

2. Find the radius of curvature of the cissoid y2

2a-x
3. Find the radius of curvature of the four-cusped hypocycloid x$ + y* = al

4. Find the radii of curvature of the curve a4
?/
2 = a2x4 x6 at the points

(0, 0) and (a, 0).

5. Find the radius of curvature of the curve - + 1 1 1
=1 at the

point (0, b).
va/ V6
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6. Find the radii of curvature of the curve y2 = ax(x
- 3 a) at the points

where it crosses the axis of x.

7. Find the radius of curvature of the curve e
x = sin y at the point (Xi, yi).

8. Find the slope and the radius of curvature of the curve y + log(l x2
)
=

at the origin of coordinates.

9. Show that the radius of curvature of the curve r = a (sin 8 + cos0) is

constant.

10. Find the radius of curvature of the curve r = a (2 cosfl - 1).
r\

11. Find the radius of curvature of the curve r = a sin8 - Find the greatest

and the least values of the radius of curvature.

12. Find the radius of curvature of the leinniscate r2 = 2 a2 cos 20.

13. Given the curve x = 2 cos t - cos 2 t, y = 2 sin t - sin 2 1. Find the radius

of curvature in terms of
,
and show that it will be greatest when t = IT.

14. Find the evolute of the parabola y2 - 4px.

15. Find the radius of curvature of the tractrix

y = log
^^^

2 a - Va2 - x2

16. Prove that the evolute of the tractrix is the catenary.

17. Prove that the evolute of a cycloid is an equal cycloid.

18. Find the evolute of the four-cusped hypocycloid x = a cos3 0, y = a sin3 0.

19. Find the evolute of the ellipse from the parametric equations x = a
cos&amp;lt;/&amp;gt;,

y = b sin 0.

20. Prove that the center of curvature of any point of the logarithmic spiral

is the point of intersection of the normal with the perpendicular to the radius

vector.

21. Find the circle of curvature of the curve y=er x &quot; when x = 0.

22. Show that the catenary y = \ (e* + er x
)
and the parabola y = I + ix2

have the same tangent and the same circle of curvature at their point of

intersection.

23. Find the point of minimum curvature on the curve y = logx.

24. Find the points of greatest and of least curvature of the sine curve

y = sin x.

25. Find the points on the ellipse for which the curvature is a maximum or

a minimum.

26. Show that the curvature of the parabola y = ax2 + bx -f c is a maximum
at the vertex.
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27. Find the condition for a maximum or a minimum of the curvature

~d&
where k =

28. At what points on the curve y = log sin x is the radius of curvature

unity, and in what direction from the point on the curve is the center of

curvature ?

X

29. Show that the product of the radii of curvature of the curve y ae~&quot;

at the two points for which x a is a2
(e + er !)

3
.

30. If the angle between the radius vector to the point of contact and the

straight line drawn from the pole perpendicular to the tangent is either a maxi-

r2mum or a minimum, prove that p = , wherep is the length of the perpendicular.
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2. -3. 11. 32x + y + 45=0. 15. taii- 1

^. 17. (2, 9), (- 2, 5).

18. 4x + y + 2 = 0, 108x + 21y + 58 = 0.

19. (-1, -6), (|, -6ff).

Page 119

20. Increasing if x &amp;gt; 2
; decreasing if x

&amp;lt; 2.

21. Increasing if x &amp;lt; orjE &amp;gt; f ; decreasing if
&amp;lt; x &amp;lt; |.

22. Increasing if x
&amp;gt;

\/2
; decreasing if x

&amp;lt; \^2.

23. Increasing ifx&amp;gt;lor -l&amp;lt;x&amp;lt;0; decreasing if
&amp;lt; x &amp;lt; 1 or x &amp;lt;

- 1.

24 - (*, $) 25. (0, i), (2, -3|).
26. Maximum value, f|f ;

minimum value, 3.

27. Maximum values, 12, 60
;
minimum values, 34, 88.

29.
I (a + b - Va2 + 62 _ a&).

30. Altitude, -; base, -.
2 2

31. Altitude, -f
a Vs

;
radius of base, -J-

a Vo.
32. Altitude is one third the altitude of the cone. 33. (1|, |).

34. The one in which the radius of the circle from which it is cut is one
fourth the perimeter of the sector.

35. Altitude is one half a side of the base.

37. (1) Height of the rectangle is equal to the radius of the semicircle.

(2) Semicircle of radius-. 38. I a.
7T
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Page 120

39. Length is twice the breadth.

40. .05 W.
44. Upward if x &amp;gt; 1

;

downward if x
&amp;lt; 1.

45. Upward if x &amp;gt; 0,

downward if x &amp;lt; 0.

46 -
(
2 ~

I)-

48. (0,
-

8).

49 - -27)-
51. 0.45, 1.80,

- 1.25.

Page 155

5. x2 + ?/2 2ax = 0.

6. x2 + 2/
2 2 ax 2 ay + a2 = 0.

7. x2 + y2 + 3x_- 2?/ = 0.

8. (- 2, 5); V65.

9. (- 2, 3) ;
2 V3.

10. (|, -1);

CHAPTER VII

16.

17.

18 . x2

n - (-i, I); 0.

14. x2 + y2 - 3 x - 3 y =

x2 + y2 + 20 x + IGy - 32 = 0.

x2 + y
2 - 5x + 4y - 46 = 0.

+ ?/
2 - 20 x - 20 y + 100 = 0,

x + y2 - 4x - 4y + 4 = 0.

19. x2 + y2 - 12 x - 12 y + 36 = 0,
2 5y2+60x-60y+ 36= 0.

0.

15.

Page 156

20.

21.

x2 +
?/ =

,

- 12 x - 4 y + 15 = 0.

22. x2 + y2 + 22 x - 34 y + 121 = 0, 30. 16 x2 + 25 y2 - 400 = 0.

x2 + y2 - 2x - 10 y + 1 =
23. x2 + ?/

2 - 10x-28?/ + 217 =
24. x2 + ^ + 22x - 44 y - 20 = 0,

x2
-f y2 + 2 x - 4 y - 20 = 0.

25. 4x2 + 4 ?/
2 7y- 36 = 0.

26. 7x2 + 16 7/
2 - 112 =0.

27. 9 x2 + 5 y2 - 45 = 0.

28. 5x2
4-_9y

2
-J^O = 0.

29. i
V385, 1 Vl65.

31. 5x2 + 9?/
2 - 80 = 0.

32. 16 x2 + 25?/
2 - 400 = 0.

33. 196x2 + 132 y2 - 14553 = 0.

34. 4, 3
;

I V?
; ( V?, 0).

35. 1 ;
3x2 + 4?/

2 - 3 a2 = 0.

36. 5x2 + 9y2 - 405 = 0.

37.x2
+_4 2/

2 - a2 =
; J Vs.

38. 1 V2.

39. 3 x2 + 5 2 _ 30 = o.. _. _
40. i V2, i V3

; ( ^ V6, 0) ;
2x V6 = 0.

Page 157

41. 5x2 -
4?y

2 - 20 = 0.

42. 3 y2 - x2 - 12 = 0.

43. 28 x2 - 36 y2 - 175 = 0.

44. 24 x2 - 25 ?/
2 - 384 = 0.

46. 3x2 -
2/
2 -3a2 = 0.

47. 8x2 -7/2 -16 = 0,

8 y2 - x2 - 124 = 0.

48. x2 - y2 - 21 = 0.

49. x2 - 8?/
2 + 4 = 0.

50. 25 x2 - 144 y2 - 3600 = 0.

51. 25 y2 - 9x2 - 16 = 0.

53. i V5 Vs.
,
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54. I \/29; (V29, 0) ;
55. 52x2 - 117 2/

2 - 576 = 0.

5x_2y = 0._ 57. 3x2-42/2-84 = 0.

58.
|-
Vl3

; ( Vl3, 0) ;
13 x 9 vT3 = 0; 2 x 3 2/

= 0.

Page 158

61.
i&amp;gt;

=
lfc. .

64. x2 + 2/
2 - 5px = 0. 67. ?/5x-0.

62. ^
!l \/2. 65 . x- + 2/

2 + 3 x - 6 y = 0. 68. x2 - 8 y2 - 6 y + 9 = 0.

63. 38}|. 66. 7x-3y + 2 = 0. 69. y2 + 4 2/
- 2 x + 11 = 0.

70. 91x2 + 84 7/2 -24 x?/- 364 x- 152?/ + 464 = 0.

71. 7/
2 - 10 x + 25 =0. 73. 4x + 3y-31 =0, 4x+ 3y + 19 = 0.

72. (y
-

2)2 x 3 + x2 = 0. 74. 5 x + y - 5 = 0, x - 5 y + 7 = 0.

Page 159

80. Circle. 83. Concentric circle. 86. Circle.

81. Circle. 84. Straight line. 87. Two straight lines.

82. Circle. 85. Straight line. 90. Parabola.

91. Parabola. 93. Two parabolas.

Page 160

94. Circle. 96. Hyperbola. 98. Hyperbola. 101. Sp VJJJ.

95. Parabola. 97. Parabola. 99. Witch.

CHAPTER VIII

Page 175

1. (1, 1), (- 2, 3). 10. 2x - y + 2 = 0.

2. (0, 1). 11. -3.
4. (0, 0), (-1, -

2). 12. 2x + 3y 6 V2 = 0^
5. (1, 2

). 13. bx - ay + ab ab V2 = 0.

6. (1,3), a, -1). 15. (0,0), (|, 11).

8. (2 V5, 2 T V5). 16.
( IS, 5), ( 14, 3|).

9. ftVli. 17. (-3,0), (1, -1).

Page 176

18. (2, 2). 23. (0, 0), (-_!, 0).

19. (0, 0), (V2, i-V2). 24. (1, 2V3), (6, 6V2).
20. (2, 2), (4.

-
). / / 7= -li

,1 25.
( ^V48T3VT3,-

21 (0 0) /
2 am

7

2am V \
;

\1 + n2 1 + m2
/ 26. (6

-
a, 2 Va6).

22. (2, 1). 27. (2 a, a).

28. (0, 0), (-2o + 2 a V3, 2 a V2 \/3 - 2).

29. (0, 0), (* a, I
a \/2).

32 -
(

2 a, a).

30. (2 a, a). 33. 5x + 42/ + 6 = 0.

31. (2a, a). 34. 2x + 52/-13 = 0.

Page 177

35. 3x + y -1 =0. 38.

36. 5x2 + 52/
2 + 28 x + 42 y = 0. 39.
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Page 209

1 . 9 x2 -

ANSWERS

CHAPTER IX

23. 1 +
^2 + l

42.

3?/
2
)

2 (3 x
2 - 2 y) . 128xy



ANSWERS 371

Page 210

43. tan., 3x + y + 5 =
;

nor., x 3y + 5 = 0:

tan., 3x - y + 9 = 0;

nor.
,
x + 3 ?/ 7 = 0.

44. x-6?/ + 17 = 0,6x + ?/-

45. x + 2?/-2=0.
46. 4x-3?/-l = 0.

47. x + 2y-l = 0.

48. (37/ 1

2 _ a
.

1 ) ?y
_

77lX
_

Xl2/1
_

49. x - 3 y~y + 2 X! - 3 = 0.

50. 2yiy

51. (2
-
xf}x

52. xr^x + y
53. x*x +

- 3xi = 0.

54. 5 y + VlO x- 5 V5 =_0,
10 y- 5VlOz + 4 Vo =

55. tan., 4x-y-6 = 0;

nor., x + 4y - 10 = 0:

tan., 4x-7/ + 6-0;
nor.

,
x + 4 ?/ + 10 0.

dx

61. (-0.57, 2.1

Page 212

78. 0, tan-if.

79. *.

76.

77. -, tan-i

85. -, tan- if.

86. tan- 1.3.

80. tan- 1

V3._
81. tan- 1

1 Vs.

93. The length is twice the breadth.

. ?, tan-i V2.

90. tan- 1

1.

91. 0, tan- 13 Vs.

92. 0, -, tan- 1 1^2.

94. He walks 2.86 mi.

Page 213

95. 8 rd., 12 rd.

96. Cross section is a square.

97. Of equal length.

98. 4 mi. from nearest point on

bank to A.

99. FD= (V2 -

Page 214

107. Velocity in still water fa mi.

per hour.

108. Radius of base equals alti

tude.

109. Altitude is
;}
radius of sphere.

103. Area of ellipse is - area of

rectangle.

104. Central angle of sector is

7rVG.

105. Breadth a, depth a Vs.
106. Breadth, f oVS; depth, f aVo.

110. a-
Vn2 -

bn

mi. on land,

mi. in water.
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111. Altitude is | V2 radius of 116. minimum ordinate, x = -^ ;

semicircle. &quot;^3

112. Altitude is ? distance between maximum ordinate, x= - -^-
;

vertex of parabola and bound- ^

ing straight line. Points of ^flection, (0, 0),

&quot;
&amp;lt;M). 117. (Jta^ fa).M^ 119.

(

a
V273ivll,

115. maximum value when x = |, \ 6
x

minimum value when x = 1
;

points of inflection when x= 1
120.

121. (1,3), (5, -5).
122. Stationary when t = 0, 4, or 8

;
maximum velocity when =1.69;

moving backward when 4
&amp;lt;

t
&amp;lt;

8.

123. 20, 10 V5; (100, 20).

Page 215

124. Whenz = *
; parallel.

125. Velocity of top: velocity of bottom = distance of bottom from wall:
distance of top from ground.

126. 54 TT ft. per hour. 132. By = x3 + 9x 19.

127. 389 ft. per minute. 133. 3x-2x?/-2 = 0.

128. 41.9 ft. per second. 134. 3 y = 2x^ + 11.

129. 15 ft. per second. 1

130. 0.2 in. per second.
136t

y
~ = k

(
l ~ *)-

131. 17.9 mi. per hour. 137. 90,000, 677TV.

Page 216

138. 108. 140.
-^L.

141. la2
. 142. 85J, 143. _LC a2

. 144. lOf. 145. 8^.

CHAPTER X.
Page 225

1. (-1, 5), (-7, 7), (2, -5). 2. x2 +47/2 -4 = 0.

5. 62x2 + a2
?/
2 - 2 a62x = 0.

8&amp;gt; y* =

x
&quot;&quot; *

6. 62x2 - a2
?/
2 - 2 ab^x = 0. 2 ax2

7. y*= *v*i-*J x2 + 4a2

2a + x

Page 226

10. y =
+ 4 a2 a -x

x 14. 7/
2 = 4px 4p2

.
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15- ^ = 8x.
18. -* + *-*

16. 2x2 + 3y2 -6 = 0. 4 a 46
17. ab - c. 20. x2 + Oy2 + 6x - 36y + 36 = 0.

21. 190 x 2 + 000 ?/
2 + 784 x + 5400 y + 8875 = 0.

22. x2 -4?/2 - 2x - 10 y- 10 = 0. 25. x2 -8x + IQy - 64 = 0.

23. 2 X2_G?/2 - 8x + 30?/-47=0. 26. 3x2 + 4y2 - 12x - 24y - 27=0.

24. ?/
2 + 4 y - 8 x + 28 = 0. 27. 8 x2 + ?/

- 16 x - 64 = 0.

Page 227

28. 5x2 -4y2 + loz - lGy-31 = 0.

29. y
2 + 4 y _z = o.

30. i

V5j (- 1, 2); (2, 2), (-4, 2); (- 1 Vs, 2); 5x + 5 9 \/5_= 0.

31. i VlO; (-3, 2); (-3 V5, 2); (-3 V2, 2) ;
2x + 6 5 \/2 = 0.

32. i Vl3; (3, -4); (5, -4), (1, -4); (3 Vl3,-4); 13x-304 Vl3= :

3 x -_2 y - 17 = 0, 3 x + 2 y_- 1 = 0.

33. I VlO; (- 1, 2)_; (- 1 \/2, 2); (- 1 \/5, 2); 5x + 5 2 V5 = 0;

V3(x-f 1) V2(y-2)= 0.

34 - (-ii i); (-i, -2); 3x + i=o
; 8^-7 = 0.

35. (_2L -3) ; (-|, -^3); y + 3 =
; 4x+ 13 = 0.

36.
( V3, i), (|,

-
I V3), 40. x2 + 14 y

2 - 14 = 0.

/I + V3 1 - V3\ 42. xy = - 18, or xy = 18.

37. x2 -47/2 -4 = 0.
or 7x2 + 17y2 -

x2(3V2 - 2x)
44 x 2

2/
=

.
or 2/

2

38. ?y
2 = - _. 45- 2x2 - 7/2 -1 = 0.

3 a V2 + 6x

Page 228

46. 5 x2 + 8 ?/
2 = 40. 48 /x + V 2

47. 4xy = 7. \x - y

49. 5x2 -
(&amp;gt;?/

2 = 30.

CHAPTER XI
Page 244

1. Hyperbola; center, (- 7, 2); slopes of axes, 2 and -
\.

2. Parabola; slope of axis, |; vertex, (ff, 4^5).
3. No curve.

4. Hyperbola; center, (- 1, 0) ; slopes of axes, 1 and -- 1.

5. Hyperbola; center, (2,
-

f); slopes of axes, 1 and - 1.

6. The line x y -f 1 = taken twice.

7. Ellipse; center, (- 1, 2); slopes of axes, 1 and - 1.

8. A pair of straight lines intersecting at (3,
-

2), and having the slopes- 1
i
Vo.

9. A pair of straight lines intersecting at (3,
-

2), and having the slopes f
and -

|.

10. Parabola; slope of axis, 1; vertex, ( |J, ||).
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11. The parallel straight lines x + 3?/-5 = 0, x + 3 ?y
- 1 = 0.

12. Ellipse; center, (2,
-

1); slopes of axes, f and -
f.

13. Point, (0, 2).

Page 245
2

20. tan- 1

A + B
23. 2x2

-f Sxy + y* + 12 x - 13 y - 50 = 0.

24. x?y
- 2 ?y

2 - 2 x + 4 y = 0. 25. x2 - ay + y
2 - a2 = 0.

26. 6x2 + 5xy + y2 - 29x - 13 ?y + 30 = 0.

27. 9x2 - 12 x?y + 4 ?/
2 - 117 x + 78 y + 380 = 0,

or 49 x2 - 56 xy + 16 y2 - 621 x + 354 ?/ + 1904 = 0.

/ A? ft 2 ft

28. \/l - tan2 - if tan -
&amp;lt; 1,
- if tan -

&amp;gt;
1

(/3
the angle between

\ 2 2 j8
2

tan -
the lines). 2

CHAPTER XII

Page 262

1. 5x-7/ + 3 = 0;(0,3),(-l,-2). 5. (0,3).

2. a&amp;gt; + y-S = 0;(0,8), (1,2). 6. (|,
-

i).

3. X-1r + l= &amp;lt;&amp;gt;;(-!, |).
7. (2,3).

4. 2/-2x+5:=0;(l,-3),(2,-l). 8. (1, -2).

Page 263

9. 3x-2?y = 0, x-?y + l = 0. 14. x - 3y - 2 = 0, 2x - y + 1 = 0.

10. x = 0, x -y + l= 0.
21

62
&amp;gt;

11. 3x-f y-l = Q. a2

12. 2 x - y = 0, x + 2 y - 10 = 0. 24. At infinity.

13. x + 2 ?/
- 2 = 0, x

- 3 y - 2 = 0. 25. 6ex - ay = 0, 6x + ae?y = 0.

Page 264

30. -e. 31. a2 = 2&2
.

Page 265

47. (ae, ^j tan-i(e).

CHAPTER XIII

Page 297

21. a cos 2 ax.

22. a [sec
2
(ax + 6) ctn (ax + c)

- tan (ax + 6) esc2
(ax + c)].

23. -8csc2 4x. 26. sec2 x.

2(2ctn2x 1) 27. mnsecw 7ixcscn mx(tan?ix ctnmx).

csc2x 28. 2 sec2 2 x (2 tan 2 x + 1).

3 sec 3 x(tan3x - 1) 29. - 2 csc2x(2 csc2 4x + ctn 4x ctn 2x).
25.

(tan3x + l)
2 30. cos (x cos x) (cos x xsinx).
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81.
;-i2 Vx

Vx(4x -
I)

3

82. V2 ax - x2
.

2x(x
2 -l)

91. yxx (\ + logx).

tan- 1
(a + x) log (a + x) 1

92 -

93.

84. -

?/ tan zy - -

logx xtan xy

+

85. xtan- 1 Vl - x2
.

86.
2 + x2

87.
y
_ (sec

2 Vx log sin Vx + 1).

2 Vx

88. (xctnx
- log sin x).

x2

89. yx*\- + logx + (logx)
2

.

LX J

90. y&l- + logxj.

Page 299

2 y tan- 1 x

, y cos x + sin (x
-

y)
&quot;0. ;

sin (x y) sin x

my
96

(ny

ey sin x
9 7 .

98.

e?/ cos x ex cos T/

y(l cosx) cosy

sin x - x (1 + sin y)

99.
x sin y y

x log x
- x2 cos y

x-?/ x

102. -*-, - e

-y2 2 (x

(x-z/)

103.

104.

X2_i (x
2 -!) (x

2 -!)

x + y + 1 (x + y + 1)
3

(z + 7/4-1)

y -x 7/(l + logx)-2x 2 y [1 + logx + (logx)
2
]
- 3x(l + logx)

[x(l-logx)]
2 [z(l_

-l V.33-1 =

112. X=

113. ae

106. x = cos

107. 1 or 2.

108.

109. tan-1 (2 tan -sec-
\ 9 9

110. tan-1
!,

tan-1 3.

116. Maxima when x = (2 k + 1)J,
minima when x = fcTr

; points of inflection

2

when x = (2 fc + 1)7-4

117. Maxima when x = (k + |)TT,
minima when x = (fc 4- J)w; points of in

flection when x = kir.
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118. Maximum when x = n, minimum when x = and n is an even integer;

points of inflection when x = n Vn.

119. Circle. 120. 2 V(s - 3) (5
-

s), 4(4 - a).

126. -

127.

Va2 - 62 sin2 e

velocity of AB, where

0= CAB.
500

times

, where cc is the

Page

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

VlO,000-x2

distance from the center.

301

8
in._

6V5ft.
2.

2.

e-1.

f(e
2
-l).

log 2.

x = 2 a.

-\- e ) +

144. v - 3 =

128.
500 sin a

: , where x is

VlO,000-z2 sin2 a
the distance from the center.

129. 15 sq. ft.
;
9. 03 sq. ft. per second.

130. ~- &quot;each.

131. 23.7.

132. At an angle tan- 1 k with the

ground.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

= ceKt .

.567, 2 for 2.206.

far.

, (2 Jfc

7T . 7T

I
*

i
4.4934.

4.275.

0.199.

- 0.7035.

1.857, 4.54.

Page 323
CHAPTER XIV

2. tan., x-ty + pt- = ; nor., tx + y -2pt pt* = 0.

4. tan., ^
2x - 2 fy + 4_p = ;

nor.
,

COS0
- 2tsy- 2 a = 0.
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Page 324

11. y2 - 15. y =
2x a

12. x3 + y
3 - 3 axy = 0. 16. (3 y - x)

2 = 2 Vx2 -
13. ?/ (ax

- a2
)
= x2

(a
2 + k2 -

ax). 17. Qy = (x- y)
2 - 6 (x

-
y).

14. 3 7/
2 - 4 xy + 2 y - 1 = 0. 1 8. (x

2 + y2
) (ax + by) = cxy.

19. Vx2 + y2 = a ^/2e*~ *.

a / . 0\ 2 x
20. x = a cos2 -1 w = - 1 sin + tan -

) ; y =
2 2\ 2/ !

21 . x = (a c tan 0) sin2 0, y = (a cos0 c sin 0) sin ; y (x
2

22. x - -
(a

2 + fc
2 cos2 0), y = -

(a
2 tan + fc

2 sin cos 0) ;

a (x a) (x
2 + y2

)
= &2x2 .

23. x = a tan 0, y = acos26: y
a2 + x2

Page 325

24. x = a sin (cos + sec 0), y = a cos (cos + sec 0) ;

- ex.

29. 6x cos + ay sin ab = 0.

30.?. 31.? + ?. 32. ^m-.?*
4 42 2 t)

2

33

34. x = a cos - I V&2 a2 sin2 0, y = (1 I)
a sin 0, where the center of

the driving wheel is the origin, a the length of the radius of the driv

ing wheel, b the length of the connecting rod, and Ib the distance

from the wheel to the point.

35. Straight line.

37. 2 aw sin-; w Va2 2 ah cos + ft
2

,
where u is the constant angular

velocity.

Page 326

38. 2-(a + 6)wsin-, ^w Va2 - 2 ah cos + ft
2

.

40. a0w, where a is the radius of the circle, a0 the distance through which

the point of the string in contact with the wheel has moved along the

rim of the wheel, and w the constant angle of velocity.

41. x = a (cos 20 + sin 20), y = a(.l + sin 20 - cos 2 0) ;
= a (cos

2 V2aw, 2 a (cos 2 - sin 2 0) w, 2 a (sin 2 + cos 2 0) w.

2 _x2
(3a + x) 48. The witch.

y ~~

a _ x 49. x = a(cos0 + 0sm0),
43. Circle. y = a (sin

- cos 0).

45. y2
(x

2 + y2
)
2 = 4 a2

(x
2 + 2y2

)
2

. 50. x = a(l + w2
), y = ma (I -f ?n2) ;

47. y = x - a. a?/
2 = X2

(x
-

a).
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Page 327

53. Ellipse.

54. Hyperbola.

55. Straight line.

56. Concentric circle.

57. x + 2p = Q, py*
59. Concentric ellipse.

61. Ellipse.

Page 328

65. Parabola.

67. Concentric circle.

70. Concentric circle.

TTX
71. y xctn

2a

72. x = a((p + sin0),

y = a( 1 + cos(/&amp;gt;).

74. 8 a.

75
8 a (a + k)

6~~

CHAPTER XV
Page

26.

27.

Page

40.

41.

49.

50.

51.

52.

53.

54.

349

STT

29. (0, 0),
^a,

-

30. Circle.

31. r = acos2 0.

32 r= aCOS2g
.

COS3
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Abscissa, 30

Acceleration, 202

Addition of segments of a straight line,

32

Algebraic functions, 43, 121

differentiation of, 178

implicit, 188

Angle between two lines, 57

between two curves, 211

eccentric, 304

vectorial, 329

Angles, 55

Arc

length of, 195

limit of ratio to chord, 195

derivatives with respect to, 197, 347

Archimedes, spiral of, 332

Area, 204

of an ellipse, 304

in polar coordinates, 348

Asymptote, 128

of an hyperbola, 145

Auxiliary circle of ellipse, 304

Axes

of an ellipse, 141

of an hyperbola, 145

Axis, of symmetry, 121

of a parabola, 147

radical, 175

Bisection of a line, 39

Cardioid, 337

Cassini, ovals of, 338

Catenary, 281

Center of a conic, 238

Change of origin without change of

direction of axes, 217

of direction of axes without change
of origin, 221

from rectangular to oblique axes

without change of origin, 224

from rectangular to polar coordi

nates, 341

Chord of contact, 248

Circle, 134

through a known point, 136

tangent to a known line, 136

with center on known line, 137

through three known points, 138

parametric equation of, 303

involute of, 311

polar equation of, 342

of curvature, 354

Cissoid, 151

Classes of functions, 43

Coefficient of an element of a determi

nant, 8

Collinear points, 38

Complex numbers, 31

roots of an equation, 82

Components of velocity, 200

Concavity of a curve, 112

Conchoid, 334

Conic, 148, 229

classification, 237

through five points, 241

polar equation, 343

Conjugate complex numbers, 32

axis of an hyperbola, 145

diameters, 258

hyperbolas, 262
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Constant, 40

of integration, 206

Contact, point of, 105

chord of, 248

Continuity, 101

Coordinate axes, 35

change of, 217

Coordinates

rectangular, 35

transformation of, 217

oblique, 223

Cartesian, 224

polar, 329

relation between rectangular and

polar, 341

Curvature, 353

radius of, 354, 360, 361

circle of, 354

center of, 356

Curve, Cartesian equation of, 44

slope of, 99

degree of, 166

parametric equations of, 302

polar equation of, 330

Curves, intersection of, 161

Curves of second degree, 229

Cycloid, 305

Degree of a curve, 166

Depressed equation, 79

Derivative, 102

of a polynomial, 97, 103

sign of, 106, 111

second, 110

higher, 111, 187

theorems on, 179

of un
,
185

illustrations of, 203

with respect to an arc, 196, 347

Descartes rule of signs, 87

folium of, 132

Determinants, 1

elements of, 4

minors of, 4

properties of, 6

expansion of, 8

Diameters, of a conic, 252

of a parabola, 254

of an ellipse, 256

of an hyperbola, 257

conjugate, 258

Differentiation, 102

of a polynomial, 103

of algebraic functions, 178

successive, 187

of implicit functions, 188

Differentiation, formulas of

for a polynomial, 103

general, 184

for w, 185

for trigonometric functions, 272

for inverse trigonometric func

tions, 276

for exponential functions, 284

for logarithmic functions, 284

for hyperbolic functions, 290

for inverse hyperbolic functions,

291

Direction of a curve, 197

in polar coordinates, 345

Directrix

of a parabola, 146

of a conic, 148

of an ellipse, 149

of an hyperbola, 149

Discontinuity, 101

examples of, 41, 128, 268, 282

Discriminant, 117

of a quadratic equation, 73, 117

of a cubic equation, 114, 117

of the general equation of the sec

ond degree, 236

Distance between two points, 36

of a point from a straight line, 63

e, the number, 280

Eccentric angle of ellipse, 304

Eccentricity of a conic, 148

Elasticity, 204

Elements of a determinant, 4

Eliminants, 23

Elimination, 1
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Ellipse, 139

referred to conjugate diameters us

axes, 259

parametric representation of, 303

Energy, kinetic, 203

Epicycloid, 307

Epitrochoid, 309

Equation in one variable

solution by factoring, 77

with given roots, 79

depressed, 79

number of roots of, 80

sum and product of roots of, 82

complex roots of, 82

solution of, 89

Newton s method of solution of,

114

multiple roots of, 116

resultant, 101

Equation of a curve, 44

Equations in several variables,

linear, 1

systems of, 12

homogeneous, 21

Equations in two variables

of first degree, 52

of second degree, 229

Equations, transcendental, 293

E volute, 357

Expansion of a determinant, 8

coefficient of, 204

Explicit algebraic function, 188

Exponential functions, 279

differentiation of, 284

Factoring, solution of equations by, 77

of quadratic expressions, 7!)

Factors and roots of an equation, 78

of a polynomial, 81, 83

Foci of an ellipse, 139

of an hyperbola, 142

Focus of a parabola, 146

of a conic, 148

Folium of Descartes, 132

Force, 202

Function, 40

Functional notation, 44

Functions, classes of, 43

algebraic, 43, 121

irrational. 44, 131

transcendental, 44, 266

defined by equations of the second

degree, 127

involving fractions, 128

trigonometric, 206

inverse trigonometric, 269

exponential, 279

logarithmic, 279

hyperbolic, 288

inverse hyperbolic, 291

Graph, 40

Graphical representation, 28

Harmonic property of polars, 249

division of a line, 250

motion, 275

Homogeneous equations, 21

Homer s method, 92

Hyperbola, 142

equilateral, 146

referred to asymptotes as axes, 224

referred to conjugate diameters as

axes, 259

conjugate, 262

Hyperbolic functions, 288

inverse, 291

differentiation of, 290, 292

Hyperbolic spiral, 332

Hypocycloid, 309

four-cusped, 132

Hypotrochoid, 309

Imaginary numbers

(see Number, Complex)

Implicit algebraic function, 188

Increment, 100

Infinity, 29, 128

Inflection, points of, 112, 194

Initial line, 329

Integration, 205

Intercepts, 63
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Interchange of axes, 223

Intersection of curves, 161

number of points of, 169

Involute, 357

of circle, 311

Irrational number, 28

algebraic functions, 44, 131

roots of an equation, 92, 114

Isolated point, 126

Kinetic energy, 203

Latus rectum, 211

Limit of ratio of arc to chord, 195

, sin h . 1 cos h _

of - and
,
270

h h
1

e - I
of (1 + h)

h and , 283
h

Limiting cases of a conic, 234

Limits, 97

theorems on, 178

Locus, 45

Locus problems, 316

Logarithm, Napierian, 280

Logarithmic function, 279

differentiation of, 284

spiral, 333

Lemniscate, 340

Limagon, 336

Maxima and minima, 108, 112, 192

Minors of a determinant, 4

Momentum, 203

Motion, uniform, 199

harmonic, 275

Multiple roots of an equation, 116

Napierian logarithm, 280

Newton s method of solving numerical

equations, 114

Normal, 64, 191

Normal equation of straight line, 64

Number, real, 28

complex, 31

Oblique coordinates, 223

Ordinate, 36

Ovals of Cassini, 338

Parabola, 146

referred to tangent at ends of

latus rectum, 132

referred to a diameter and a tan

gent as axes, 255

cubical, 74

semi-cubical, 131

Parallel lines, 56, 59

Parametric representation of curves,

302

Pedal curves, 319

Perpendicular lines, 57, 59

Plotting, 36, 329

Point of division, 38

Polar of a point, 247

Polar coordinates, 329

Polars, reciprocal, 251

Pole of a straight line, 247

of a system of polar coordinates,

329

Polynomial, 43

of first degree, 50

of second degree, 70

of nth degree, 74

factors of, 81, 83

derivative of, 97

square root of, 121

Problems on straight lines, 58

Products, graphs of, 83

Projection, 34

Radical axis, 175

Radius vector, 329

of curvature, 354, 360, 361

Rate of change, 203

Rational algebraic function, 43

number, 28

roots, 89

Reciprocal polars, 251

Resultant, 23

equation, 161

Roots of an equation
and factors, 78
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Roots of an equation

number of, &amp;lt;

s
&amp;lt;&amp;gt;

sum and product of, 82

complex, 82

location of, 8(5

rational, 89

irrational, 02, 114

multiple, 110

Hose of three leaves, 331

Rotation of axes, 221

Slope of a straight line, 54

of a curve, 99

Solution

of simultaneous equations, 12

of algebraic equations, 77, 80, 114

of transcendental equations, 203

Spiral

of Archimedes, 332

hyperbolic, 332

logarithmic, 333

Straight line, 50

satisfying two conditions, 58

normal equation of, 04

parametric equations of, 302

polar equation of, 342

Strophoid, 152

Subnormal, 210

polar, 351

Subtangent, 210

polar, 3-&quot;)l

Supplemental chords, 204

Sylvester s method of elimination, 24

Systems of curves with common points

of intersection, 171

Tangent, 73, 84, 104, 100

to a conic with given slope, 103

to a conic at a given point, 240

Tractrix, 209

Transcendental functions, 44, 200

equations, 203

Transformation of coordinates, 217,

341

Transverse axis of hyperbola, 145

Trigonometric functions, 200

differentiation of, 272

inverse, 209

differentiation of, 270

Trochoid, 300

Turning points of a graph, 107

Variable, 40

Variation of sign, 87

Vector, radius, 329

Vectorial angle, 320

Velocity, 108

components of, 200

Vertex, 71

of a parabola, 147

Vertices

of an ellipse, 141

of an hyperbola, 144

Witch, 149

Zero, 20
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