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PREFACE

This book is the first volume of a course in mathematics
designed to present in a consecutive and homogeneous manner
an amount of material generally given in distinet courses under
the various names of algebra, analytic geometry, differential
and integral calculus, and differential equations. The entire
course covers the work usually required of a student in his first
two years in an engineering school, the first volume containing
the work of the first year. In arranging the material, however,
the traditional division of mathematics into distinet subjects is
disregarded, and the principles of each subject are introduced as
needed and the subjects developed together. The objects are to
give the student a better grasp of mathematics as a whole, and
of the interdependence of its various parts, and to accustom him
to use, in later applicatioms, tlle rhethod best adapted to the
problem in hand. At the same time a decided advantage is
gained in the introduction of the principles of analytic geometry
and calculus earlier than is usual. In this way these subjects
are studied longer than is otherwise possible, thus leading to
greater familiarity with their methods and greater freedom and
skill in their application.

In carrying out this plan in detail the subject-matter of this
volume is arranged as follows:

1. An introductory chapter on elimination, including the use
of determinants. This chapter may be postponed or omitted, if a
teacher prefers, without seriously affecting the subsequent work.

2. Graphical representation. Here the student learns the use
of a system of coGrdinates and the definition and plotting of a
funetion.

3. The study of the algebraic polynomial. This includes the
analytic geometry of the straight line, the more important
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v PREFACE

theorems of the theory of equations, and the definition of a
derivative. Simple applications of the calculus to problems
involving tangents, maxima and minima, etc, are given. In this
way a student obtains an introduction to the principles of the
calculus, free from the difficulties of algebraic computation.

4. The study of the algebraic function in general. The knowl-
edge of analytic geometry and calculus is here much extended
by new applications of the principles already learned. Simple
applications of integration are also introduced. The study of the
conics forms part of the work in this place, but other curves are
also used and care is taken to avoid giving the impression that
analytic geometry deals only with conic sections; in fact, the
chapters which deal especially with the conics may be omitted
without affecting the subsequent work.

5. The study of the elementary transcendental functions. Tt
has been thought best to assume the knowledge of elementary
trigonometry, since that subject is often presented for admission
to college, — a_ tendency which should be encouraged. The
chapter discusses the graphs, the differentiation of transcendental
functions, and the solution of transcendental equations.

6. The work closes with chapters on the parametric represen-
tation of curves, polar codrdinates, and curvature. In the first of
these chapters the solution of locus problems, which, from some
standpoints, is.the most important part of analytic geometry,
finds its natural place; for this problem involves, in general,
the expression of the coordinates of a point oh a locus in terms
of an arbitrary parameter, and possibly the elimination of the
parameter.

As compared with the usual first course in analytic geometry,
there will be found in this volume fewer of the properties of the
conic sections, except as they appear in problems set for the
student. On the other hand, a greater variety of curves are
given, and it is believed that greater emphasis is placed on the
essential principles. All work in three dimensions is postponed
to the second year, and is to be taken up in the second volume
in connection with functions of two or more variables, partial
differentiation, and double and triple integration.



PREFACE ) v

This volume contains the matter usually given in a first course
in differential calculus, with the exception of differentials, series,
indeterminate forms, partial differentiation, envelopes, and some
advanced applications to curves. These subjects will find their
appropriate place in the further development of the course in
the second volune. Integration has been sparingly used as the
inverse operation of differentiation, and without employing the
integral sign. Simple applications to areas and velocities are given.
To do more would require the expenditure of too much time on
the operation of integration, and the introduction of too many
new ideas into one year’s work. The integral, as a limit of a
sum, with its many applications, will form an important part of
the second year’s work. '

In the preparation of the text the needs of a student who
desires to use mathematics as a tool in engineering and scientific
work have been primarily considered, but it is believed that the
course is also adapted to the student who studies mathematics
for its own sake. Abstract discussions are avoided and frequent
applications and illustrations are given. Illustrations, however,
which are beyond the range of a first-year student’s knowledge
of physical science are omitted. The proofs are made as rigorous
as the maturity of the student will admit. It is to be remembered
in this connection that the earlier chapters are to be studied by
students whe have just entered college.

In the preparation of the book the authors have had the advice
and eriticism of the mathematical department of the Massachu-
setts Institute of Technology. In particular, they are indebted
to the head of the department, Professor H. W. Tyler, at whose
invitation the book has been written, and whose suggestions have
been most valuable.

MassacuUSETTS INSTITUTE OF TECHNOLOGY
September, 1907
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A COURSE IN MATHEMATICS

CHAPTER I
ELIMINATION

1. Determinant notation. Elimination is the process of obtain-
ing from a certain number of equations containing two or more
unknown quantities one or more equations which do nof contain
all of these quantities. The quantities removed are said to have
been eliminated. The solution of equations is essentially the elim-
ination of all but one of the unknown quantities. The process of
elimination leads to the formation of certain expressions in the
coefficients, for which a special name and a corresponding notation
have been invented. In this chapter we shall consider equaticns of
the first degree, or linear equations. These are equations in which
no term contains more than one unknown quantity, and that in
the first degree.

Ex. 1. ax + by +c, =0,

)]
agx + boy + ¢z = 0.
To eliminate y, multiply the first equation by bs, the second by — b;, and
add. To eliminate «, multiply the first equation by — ap, the second by a,,
and add. There results

(a1bg — ash) x + (c1bz — caby) = 0,

@)
(albg -_ azbl) ¥+ (a162 — agcl) =0
Unless ayby — azh, = 0, equations (2) give at once the solution of (1).
If aybg — ashy = 0, the method used to eliminate y also eliminates x, and the
equations need further discussion, to be given in § 6.
1



2 ELIMINATION

Ex. 2. ax® + b1y + ez + dy = 0,
as® + bay + oz + dg =0, (1)
asx + bsy + csz + dz = 0.

To eliminate y and z, multiply the first equation by (becs — bscz), the second
by — (bics — bsey), the third by (bice — bac1), and add. There results

[a1 (szs - bng) — Qg (blcg — bscl) + asg (b162 — bﬁcl)]a:
+ [dy (bacs — bsce) — da (bics — bscr) + da (bice — bacs)] =0,

or (a1bacs + asbsey + agbice — absca — aghbics — ashacy) @
+ (d1b263 + dgbscy + dsbics — dibsce — dobics — dgbecy) = 0. (2)

To eliminate  and z, multiply the first equation by — (azcs — ascs), the
second by (aics — asc1), the third by — (aicz — aqc1), and add. There results

(a1bacs + asbscy + agbice — arbsez — asbics — agbacr) ¥
+ (aldgcg —+ a2d361 + a3d102 — a1d362 — a2d103 - agdgcl) =0. (3)

To eliminate ¢ and y, multiply the first equation by (asbs — asbs), the second
by — (aibs — asby), the third by (aibs — azb1), and add. There results

(a1bacs + ashsey + agbica — a1bscy — agbics — asbsc1) z
+ (albzda -+ a2b3d1 + agbldg = a1b3d2 == agbldg -— asbgd]_) =0. (4)

Equations (2), (3), and (4) give the solution of (1), unless

a1bgCs + abaCr + asbice — a1bats — agbics — asbacy = 0.

The exceptional case will be considered in § 6.

The binomials which occur in the solution of Ex. 1 are called
determinants of the second order. The symbol

@y bl
a b,

is used to denote the determinant a,b,— a,b,. Then equations (2)
of Ex. 1 may be written

a
a,

a, b
a, b

(e Th
aZ 02

1 bl cl bl
¢, b

2 2

x+ =0, = 0.

2 2 2 2



DETERMINANT NOTATION 3

The polynomials which occur in the solution of Ex. 2 are called
determinants of the third order. The symbol

s
ay by ¢
as by ¢

is used to denote the determinant

@,byey+ @bge, + aghic,— @ bye,— b, — agbye,.

The results of Ex. 2 may then be written

a’l bl c1 dl bl Cl l al bl Gl (1/1 dl cl
a, b, ¢lz+|d, b, ¢, =0, a, b, clytia, d ¢|=0,
as bs 83 dﬂ bs 63 “s bS Cs as d3 c8
aq by e, @i by dy |
a, b, clz+|a, b, dy|=0.
(1 g GERO S
By the work of Ex. 2,
[ I S iy @ e (0
a b c.l=a 2 o= a, ol 1 + a 1 il A
a: b2 cz 1 b3 08 K bs 03 h b2 2

which may be taken as the definition of a determinant of the
third order. :

Similarly a determinant of the fourth order is indicated by the
symbol :

@ b yuos Ny

d, by Ty o,

e Us oSl

g o Uy IS C

and is defined as equal to

bselind. &y ey ) Uil bwite d. |
@, |\ by wia3% d (ng:b3 e, dy|l+a,\b, ¢, d,|—a,lb, ¢ d,
b4 64 dl 1 b4 c4 dl 4 ci d~l bB CS dS




4 ELIMINATION

If now each of these determinants of the third order is expressed
in terms of determinants of the second order, we shall have finally
the determinant of the fourth order expressed as an algebraic
polynomial of twenty-four terms.

2. In general a determinant of the nth order is an algebraic
polynomial involving »* quantities, called elements. The symbol
of the determinant is obtained by writing the elements in a square
of » rows and » columns. If in such a symbol a row and a col-
umn are omitted, there is left the symbol of a determinant of the
next lower order. This new determinant is said to be a minor of
the original determinant, and is said to correspond to the element
which stands at the intersection of the omitted row and column.
We shall now give as definition :

A determinant s equal to the algebraic sum of the products
obtained by multiplying each element of the first column by its
corresponding minor, the signs of the products being alternately
plus and minus.

By repeated application of the same definition to the minors
obtained, we eventually make the value’of the determinant depend
upon determinants of the second order, and thus obtain the poly-
nomial indicated by the original symbol.

Students who desire a more general definition and discussion of
determinants are referred to treatises on the subject. We shall
derive here, as simply as possible, only those properties which are
of use in solving equations. Before doing so, however, we need to
show that the word “column” may be changed to “row” in the
above definition, thus: 4 determinant is also equal to the sum of
the products obtained by multiplying each element of the first row
by the corresponding minor, the signs of: the products being alter-
nately plus and minus.

For a determinant.of the third order the student may verify
that

a, b, ¢ ik

CRARERRNS @ a, ¢ h il
a,2 [)2 02 — al Zz 2 {r, 1044 ],1 2 0] +- cl 2 b‘z
as b3 cs )3 CS { (l3 c3 aa 3
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5

The theorem thus shown to be true for a determinant of the
third order may be proved for one of the fourth order as follows:

R0 e Y A boe, d| |b e d
i 2= b ies o0y € dil+a lb, ¢, d,
aj bz ci dj b, ¢ d, by ¢ d, by ¢, d,
b, ¢, d,
— a,lb, ¢, d, (by definition)
b3 03 dS
b, ¢, d,
== b: c: ds _az{bl 5 ZB TR b3 ds +d1 bs 63}
b4 (/,4 d4 4 4 b4 d4 bl 64
¢, d b, d b, ¢
Feble | ol + 4l )
i, o L b 8 b, ¢,
{8l =l g+l
(as already proved)
b2 Cy dz d.
d ¢, d
= s Qs _
=alle o dl-adas -l o+l g}
b, d b, d b, d
#e Loy al| ol |+l 1}
(15 05 b, ¢ b, ¢
B B R e R A
(by a rearrangement)
Ot Wy (b (0 a, b, d, a, b, ¢,
=41b303d8—bacd3+cla3b3d —d,la;, b c,
|0, ¢, d, a, ¢, d, e B2 a,'b, e

(by definition)

In a similar manner the theorem may be proved successively
for determinants of the fifth, the sixth, and, eventually, any order.
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3. Properties of determinants.

1. A determinant is unchanged in value if the rows and the
colummns arc interchanged in such a manner that the first row
becomes the first column, the second row the second column, and
s0 on.

The student may verify that

1A = G S il
b
a, b, b, 0,
a, by e a, @, Q4
RN s [l el o
a; by e, Cy =G Gy

This proves the theorem for determinants of the second and
the third orders. To prove it for one of the fourth order, proceed
as follows:

Z1 21 Zl‘ gl b, ¢, d, b, ¢, d1 b, ¢ dl Z)l oAl
a,zb: c: d: = a,|b, ¢, dy| — a,|b; ¢, dg|+ a5b, ¢, dy| —a,|d, ¢, d,|;
a, b4 04 d4 b4 04 d4 b4 64 d4 b4 ¢y d4 63 63 d3
0661 6732 61;3 %4 by b, b, by, by b, byby by b, b, b,
cl 02 ca 64 =@, €y €3 Cyf— Ayl & G5 C4 +a,l e ¢ o —a, e, ¢ g
di d: d: d: d,d, d, d, d, d, d, d, d, ndl dy

The expressions on the right of these equations are equal, and
hence the determinants of the fourth order are equal. In the same
manner the theorem may be proved for determinants of higher
order.

Tt follows from this theorem that any property which is true of
the rows is also true of the columns, and vice versa. The following
theorems are stated for both rows and columns, but are proved for
the rows only.
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2. If two consecutive rows (or columns) of a determinant are
interchanged, the sign of the determinant s changed.

The student may verify that

/A L R L b,|.

b

a, b, a, b
Ol Ly T o s 02‘ Mol RO GY
ty b, ¢|=—|a, b, 011’ & 0,050, =— |, by ¢
a by ¢ a; by ¢ a, b ¢ a, b ¢

The theorem is then proved for determinants of the second and
the third orders. To prove it for a determinant of the fourth order,
consider :

a'l 21 cl Zl al 21 cl (gl

a S, e, Qg 05 Cz. Oy

a: (e G5 g et i ms kA

@ Uy WA

By definition,

a b e d
lai b: c; dl b, ¢, d, by e, d, by ¢ dy by e, d,
a, b, ¢ (l,2 = a,|b, ¢ dy|— a,|by ¢, dy| + a5|D, ¢, dy| — ,|b, ¢, dy|;
Hl; bz Ci d:: b4 Cy d4 ‘64 G d4 b4 s d4 bS Cs d3
lpih Ve = dlal
a: b, ¢ d, by €5 dy b ¢ d, by e, d, b o, d,
\u; b: CZ dz =% b2 Cy dz % bz Cy dz t+a bs Cs d8 % b3 Cs d3 1
e b, c, d, byopd, b, ¢, d, b, ¢, d,
1774 74 64 4 i

Comparing these two expressions, it will be noticed that the
minors which multiply «, and a, (the elements of the unchanged
rows) differ in the two expressions by the interchange of two con-
secutive rows, and that the minors which multiply «, and «; (the
elements of the interchanged rows) are the same in the two expres-
sions but are preceded by opposite signs. It is evident on reflection
that these laws always hold; and hence, if the theorem is true
for determinants of any order, it is true for determinants of the
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next higher order. The theorem is known to be true for determi-
nants of the third order; hence it is universally true.

3. A determinant s equal to the algebraic sum of the products
obtained by multiplying each element of any row (or colummn) by its
corresponding minor, the sign of each product being plus or minus
according as the sum of the number of the row and the number of
the column in which the element stands s cven or odd.

For the Zth row may be made the first row of a new determi-
nant by £ — 1 interchanges of two consecutive rows. By theorem 2,
if % is odd, the new determinant is equal to the original one; and
if % is even, the new determinant is equal to minus the original one.
The new determinant may now be expressed by definition as the
algebraic sum of the elements of its first row multiplied by their
minors, which are the same as those of the Zth row of the original .
determinant. Hence the original determinant is equal to the alge-
braic sum of the elements of its Ath row multiplied by their minors,
the products being alternately plus and minus when % is odd, and
alternately minus and plus when % is even. From this the law of
signs as given in the theorem at once follows.

a b1 C1 d1
(17 b2 Co d2
as ba c3 dg
ay b4 Cyq d4

a b ¢ dy
ag by ¢y dy
az by ¢ dg
az by c3 d3

ag by ¢y dy
a; by ¢ b
az by c2 dp
ag by c3 ds

ay by ¢ dg
az by ¢y do
ag by cy dy
ag bz c3 ds

'bl C1 d1 ap € dl ay b1 d1 ay bl Cy
=—asby cp do| + bs|as co do| —cslag by do|+ dy|ag by cg|.
|bs cg dg ag cz ds ag bg ds as bs cg

When a determinant is thus expressed it is said to be expanded
according to the elements of the Ath row. We shall call the
coefficient of an element the quantity which multiplies it in
the éxpansion.

Then the coefficient of an element is plus or minus the corre-
sponding minor according as the nwinber of the row added to the
number- of the column is even or odd.
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The coefficient of @, shall be denoted by A, that of b, by B,
and so on. Then

g boe,
a, b, ¢,|=0a,d,+a,d,+ad,
a3 b3 03

=b,B, + b,B,+ b,B,
=¢,C, + ¢,C, + ¢,C,
=a,4,+ b B+ ¢, C,
=a,4,+ b,B,+ ¢,C,
= a,A, 22 b, B, + ¢, C,.

4. If any two rows (or columns) of a determinant are inter-
changed, the sign of the determinant is changed.

For suppose the determinant is expanded as in theorem 3, and
that two rows other than that used in the expansion be inter-
changed. A similar interchange takes place in the minors of the
expansion. Hence, if the theorem is true for each of the minors,
it is true for the determinant. In other words, if the theorem is
true for determinants of any order, it is true for those of the next
higher order. But the theorem is certainly true for determinants
of the second order. Hence it is always true.

. 0. If two rows (or columns) of a determinant arve the same, the
determinant is equal to zero.

Let a determinant with two rows the same be expanded accord-
ing to the elements of some other row. Each minor of the expan-
sion has two rows the same. Hence, if the theorem is true for
determinants of any order, it is true for determinants of the next
higher order. But the theorem is certainly true for determinants
of the second order, for

(i )
ai bi' =ab, —ab =0,

Hence it is universally true.
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6. The sum of the products obtained by multiplying the elements
of any row (or column) by the coeficients of the corresponding elc—
ments of some other row (or column) s zero.

Consider, for example,

a, b, ¢ d
a, b, ¢, d
a: b: c: d: =a,4,+ 1)232 +¢,C,+ d,D,.
a; b, ¢, d

S

4 4 4

If we replace a,, b,, ¢,, d,, on the right-hand side of this equation
by a,, b,, c,, d,, the same substitution must be made on the left-
hand side. Then we have

a b ¢ 31

a C .

a: b: c: d: =ad,+bB,+ ¢, 0+ 4D,
a, b, ¢, d,

But the determinant is zero, by theorem 5; therefore
A+ 0,B,+ ¢,C,+ d.D, = 0.
It is evident that the proof is general and establishes the

theorem.

7. If each element of any row (or column) is multiplied by the
same quantity, the determinant is multiplied by the same quantity.

This follows at once from theorem 3. For example,

@, bl kc1 d1

a, b, ke, d

a: b: ]gc: d: = ke, C,+ ke,C, + ke, Cy + ke, C,
Gl o e,

=k [¢,C+ ¢,Co+ ¢, Cy+ 6404]

al bl cl dl
=W a, b, Cq dz X

a, by ¢, d

a, b, ¢ d,
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8. If each of the elements of any row (or column) is tncreased
by the same multiple of the corresponding element of any other
row (or column), the value of the determinant is unchanged.

We wish to show, for example, that

al Zl cl gl
a ¢
e )
a, b, ¢ d,
a, bi+kd, ¢ d
@ bt kd, ¢, d, @)
@y b+ kdy, ¢, d,
a, b+kd, ¢, d,

Tet the coefficients of the elements in the second column of
(1) be B, B,, By, B,. Tt is evident that these are also the coeffi-
cients of the elements of the second column of (2). Hence (2)is

(by+ i) By + (by+ kdy) By + (b + hedy) By+ (b, + kd,) B,,
which equals
b,B,+ b,B,+ b,B,+ b B, + k(d,B,+ d,B,+ d,B,+ d,B,).

The coefficient of % in this equation is zero, by theorem 6, and
the remaining terms equal the determinant (1). Hence (2) = (1).

It is evident that the proof is general. The following are special
cases: If k=1, the elements of one row or column are added to
the corresponding elements of another row or column; if A =—1,
the elements of one row or column are subtracted from those of
another row or column. :

This theorem is often used in simplifying determinants.
1 -2 1 2
3 -5 3 5

3 8 gt @)
Rt S

Ex. 1. Consider

If the elements of the second column are added to those of the fourth column,
this becomes

i d gl g
ST .
U Ry @
§- g gty
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If twice the elements of the first column are added to those of the second
column, (2) becomes

®

o = o =
— O -t D
DO QO OO =
|
(=N S Y]

If the elements of the first column are subtracted from those of the third
column, (3) becomes

*)

CO =t OO =t
OO
oo
(=3 SN}

Expressing (4) as the sum of the product of the elements of the first row
.and their coefficients, it becomes

1 0 0
0 4 —2(; 3
1 -1 0
Y148 B
and this is equal to & ol=-— 2.
a3 Ll
Ex. 2. Consider |z; 1 1.
Tz Y2 1

)
By successive subtraction of the elements of one row from those of another
we have

G TR B z—2 yY—un O T —x ¥y —y1 O
zy 9 L=l = N =21 —@ y—y2 O
T2 Y2 2 Y2 1 Z2 Y2 1l

, the last transformation being made by
theorem 3.

_{x —-T Y -
Ty — T2 Y1 — Y2

4. Solution of n linear equations containing n unknown quan-
tities, when the determinant of the coefficients of the unknown
quantities is not zero. We are now prepared to show that the
method used in § 1 to solve equations with two or three unknown
quantities can be so generalized as to apply to any system of
equations of the first degree in which the number of equations is
equal to the number of the unknown quantities. For convenience
we will take the case of four equations, but the student will readily
see that the method is perfectly general.
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Consider the equations

ax+by+er+dwte =0, (1)
ax + by +cz+dw+e, =0, (2)
ax + by + ez + dw + e, =0, (3)
ax+by+ez+dw+e,=0. 4)

Let the determinant of the coefficients of the unknown quan-
tities z, ¥, 2, w be denoted by D, so that

-
ix)
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-
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and let A4, denote the coefficient of a,, B, the coefficient of 5,, and
so on. We assume D = 0. '

If now we multiply (1) by 4,, (2) by 4,, (3) by 4,, (4) by 4,,
and add the results, we have, by theorems 3 and 6, § 3,

Dx+e A +eA,+eA,+eAd,=0. (5)
Similarly, by using B,, B,, B,, I3, as multipliers, we have
Dy+eB +e,B,+eB,+eB,=0; (6)
by using C,, C,, C,, C, as multipliers, we have
Dz+¢,Ci+ ¢,C,+ ¢,C;+ ¢,C, = 0; (7)
and by using D, D,, D,, D, as multipliers, we have
Dw+e D+ e,D,+ e, D+ e D, = 0. (8)
Now it is clear that any values of z, y, 2, w which satisfy (1),
(2), (3), (4) satisfy also (5), (6), (7), (8). Conversely, any values
which satisty (5), (6), (7), (8) satisty also (1), (2), (3), (4). For if
we multiply (5) by a, (6) by b, (7) by ¢,, (8) by d,, and add, we
obtain (1). Similarly (2), (3), (4) can be obtained from (5), (6),

(7), (8). Hence (1), (2), (3), (4) and (5), (6), (7), (8) are equivalent
equations.
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e A, +e,d,+ e, A, 4 e, 4,

Now

e, B, +e,B,+ ¢, B, + e, =

6,0+ 6,0+ e, Cy+ ¢,Cy=

and
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Hence we may state the following important theorem :

Any system of n linear equations containing n unknown quan-
lities has one and only one solution when the determinant formed
by the cocfficients of the unknown quantities is not zero.

This solution may be written down at once, for each unknown
quantity is equal to minus a fraction, of which the denominator is
the determinant of the coefficients and the numerator is a similar
determinant formed by replacing the coefficients of that unknown
quantity by the absolute terms.

IR A 3z +5y—4=0,
20 -3y+7=0.
A b 3 —4
Ll T Y S
BN B v 19 LT oy
2 -3 2 -8
Ex. 2. 22 —-3y+ 2-—-1=0,
4x+b5y—224+2=0,
r—2y+3z2—3=0.
E 2 1 2 -1 1
2 5 —2 4 03 S0
-8 -2 3 1 -8 3
- — =0, = =10
¢ TR N IR AT 2
4 5 —2 4 5 —2
1 -2 3 1 -2 3
2 -8 -1
4 b 2
1 -2 -3
z=—r — =1
2 -3 1
4 5 —2
1 -2 3 ‘

5. Systems of n linear equations containing more than n un-
known quantities. When in a set of linear equations the number
of equations is less than the number of unknown quantities, the
equations have usually an infinite number of solutions, but may
have none. The general method of procedure in solving them is to
pick out a number of the unknown quantities equal to the number
of the equations and having the determinant of their coefficients
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not zero. These are solved by the method of § 4. We then have
these unknown quantities expressed in terms of the others.

Ex. 1. 2¢+8y+ z+4=0,
r—2y+32+2=0.

If we choose  and y for the unknown quantities, we have
a2 Sy
D)= ‘ T l =—1.

Then, solving as in § 4, we have
.

z+4 )
= SIS S B IS
= 2 LI R i

il =59

2 z+4

1 3242| 5
¥ 2 [T

==

and since z may be given any value whatever, the equations have an infinite
number of solutions.

Ex. 2. 224+383y+ 2+4=0,
22 +3y+224+3=0.

If we choose to solve for ¢ and ¥, we have

2 3
D:l2 =0

But if we choose to solve for y and 2z, we have

B G
p=|3 3|=s

T »

The solutions are y=—3%z—3§,
=l

It is possible that no selection of the unknown quantities will
lead to a determinant of the coefficients which is not zero. In this
case the equations may have no solution. The discussion is too
complex for this book, but the student will probably have no diffi-
culty with the cases likely to occur in practice.
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Ex. 3. 2z +3y+2+4=0,
20 +3y+2+4+3=0.

The determinant of any pair of unknown equations is zero. By subtracting
the second equation from the first we have 1= 0, showing the equations to be
contradictory.

6. Systems of n linear equations containing n unknown quan-
tities, when the determinant of the coefficients of the unknown
quantities is zero. Consider again equations (1), (2), (3), (4) of
§ 4, but with the assumption that D = 0. We may proceed exactly
as in § 4, but equations (5), (6), (7), (8) do not now contain the
unknown quantities. In fact, these equations are, in general, con-
tradictory, and consequently equations (1), (2), (3), (4) have, in
general, no solution.

Ex. 1. zT—y+ z2+4+8=0,
22 +y+3z+1=0,
r+2y+22+4=0.

11 =1 1
Here D=2 IESIF=10"
1 2 2|

Lliminating ¥ and z by the method of §4, we have 0z — 24 = 0, which is
absurd. Hence the equations have no solution.

It is, of course, possible that when D =0 each of the other
determinants in (5), (6), (7), (8) is also zero. Each of these equa-
tions is then simply 0 = 0, and gives no direct information about
the solutions of (1), (2), (3), (4). As a matter of fact, in this case,
(1), (2), (3), (4) have, in general, an infinite number of solutions,
but may, under special conditions, have no solutions.

The general discussion is too complex to be given here. We
shall simply state the following theorem :

A set of linear equations containing n unknown quantities has,
in general, no solution when the determinant of the coefficients of
the unknown quantities is zero, but may, under certain conditions,
have an infinite number of solutions.
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In practice, one of the n equations may be temporarily set aside,
and the other » —1 equations, which contain #» unknown quan-
tities, may be examined by the method of § 5. If these equations
can be solved, the solution can be tested in the equation which
has been set aside.

Ex. 2. 20— 3y+ z—1=0,
r— 2y+32+4=0,
Te—11y4+6z+1=0.

If the method of § 4 is used, the result is 0 = 0. Solving the first two equa-
tions for x and y, we have
r="Tz+ 14,
Y= 5z + 9,

and these results are found on trial to satisfy the last of the given equations.
Since z may have any value, the equations have an infinite number of solutions.

7. Systems of linear equations in which the number of the
equations is greater than that of the unknown quantities. If
there are more equations of the first degree than there are unknown
quantities, there will be, in general, no values of the unknown
quantities which satisfy all equations. There may be such values,
however, when certain relations exist among the coefficients of
the equations. To obtain these relations we may pick out a num-
ber of equations equal to the number of the unknown quantities
and solve them. If the solution is substituted in the remaining
equations, there will result certain expressions in the coefficients
which must be zero if the equations are to be satisfied.

The most important case is that in which there are n + 1 equa-
tions containing » unknown quantities. For example, consider

ax+by+ecz+d =0,
a,z+ by +cz+d, =0,
ax+ by +ecz+d, =0,
ax+by+ecz+d,=0.
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o Lo
The solution of the first three equations, if |a, b, ¢,/ = 0, is (§4)
Ay I
dl bl cl bl cl dl
% d2 b2 02 b2 62 d2
e x dy by ¢ Sl by, ¢ d :
al bl cl al bl cl
(1/2 b2 C‘.’. a2 b2 02
as Z)3 03 a3 b5 3
i Gl AN
s A [ ey R
y=__ aa (23 63‘= a3 63 d37,
& 1 Cll 24 bl %
a2 b‘.’ 62 i a2 b‘_’ 02
a; b G| ag by ¢
al bl dl
aZ b2 d2
“rpe a, b, d, 2
al bl cl
aZ b2 02
aS b3 63

Substituting these values in the first member of the last equa-
tion, we have

e il a6 d (1l A A RHIEe)
—a,b, ¢, d,|+0b,|a, ¢, dj—ec,la, b, d,|+d,|a, b, ¢,
(i RS a, ¢ d, ais U d a, by ¢
al bl cl :
a2 b2 CZ
aS ba cs
which, by theorem 3, § 3, is the same as
N o
a‘l b2 c? d2=
g bs Cs ds‘
Wbt e e el
SR
i b s
as Z}S cS
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Hence, in order that the last equation may be satisfied, we must
have

a, b ¢, d
@, bz Ca dz =0
a8 bs 68 d3
iy B Soasl)]

Extending this to any number of variables, we have the theorem :

In order that a system of n+1 linear equations containing n
unknown quantities shall have a solution, it is necessary that the
determinant formed from the coefficients of the unknown quantities
and the absolute terms shall be zero.

Wil x4+ y+ z2—2=0,
2+ y— z+3=0,
z—2y—32z+4=0,
bx—8y—42+1=0.

1 1 1 -2

2 1 -1 3
Here Ife B0 0 4=01

5 1

-3 —4

showing that if the first three equations have a solution it will satisfy the fourth
equation, In fact, the solutionisz=1,y=—2,2=3.

It should be noted that the converse of the theorem stated is
not necessarily true. All that has been proved is that ¢f » of the
equations have a solution, that solution satisfies the (n + 1)st equa-
tion when the determinant is zero. But the determinant may be
zero when the equations are contradictory.

Ex. 2. 20 -8y + z+1=0,
20 —3y+5624+2=0,
2z — 83y —6z—3=0,
22 — 83y +2z2—8=0.

2 -3 1 1

Dl el ol
Here INER e NS =0,

2 -3 2 -8

but any three of the equations may be seen to be contradictory by the method
of §6.
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8. Linear homogeneous equations. An equation is homoge-
neous with respeet to the unknown quantities when the sum of
the exponents of the unknown quantities is the same in each term.
In particular an equation of the first degree is homogeneous when
each of the terms contains one of the unknown quantities; for
example, '

a.z, + a,z,+ ax,+ a,x, = 0,

where z,, z,, z,, z, are the unknown quantities.

This equation is, of course, satistied by placing #, =0, z,= 0,
z, =0, z, = 0, but in practice this solution is generally unimportant.
In such equations, in fact, it is usually the ratios of the unknown
quantities which are important ; for if each unknown quantity is
multiplied by the same number, the equation is unaltered. In fact,
if we place

8|8
It
&
I
Il
=

Ly
— =z,
di

N
]

the homogeneous equation just written becomes the non-homogene-
ous equation

az+ay+az+a,=0.

In this manner a set of homogeneous equations containing n
unknown quantities may be reduced to a set of non-homogeneous
equations containing 7 — 1 unknown quantities by dividing each
equation by one of the unknown quantities. The methods of the
previous articles may then be used. But this method of proced-
ure is open to the objection that the unknown quantity by which
the equations are divided ‘may possibly be zero when the division
is invalid. Tt is better, therefore, to handle the homogeneous equa-
tions as they stand, slightly modifying the methods used for non-
homogeneous equations in a manner which will be clear from the
examples.

Ex. 1. Q1T + Ao + agrs + @424 =0,
bixy + bazy + bsxs + byxy =0, 1)

€11 + CaX2 + €3T3 + c4y = 0.
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We will handle this by the method of § 4, in that we temporarily look upon
21, 3, T3 as the unknown quantities. We have, in the first place,

a, az das dgly G2 Qg
by by bglxy + | by by B3| =0,
€1 C2 C3 C4Ty Cg C3
a; az as Ay A4y ag
bl bg b3 o + b1 b41‘.4 b3 = 0,
€1 C2 C3 €1 C4%s C3
ay dag as G Az Q44
bl b2 bs X3 bl b2 b4(t4 = 0,
C; C3 C3 €1 Co C4l4
which may be written as
a, ag dg ds a3 Q4
b1 b2 b3 ) + bz b3 b4 T4 = O, (2)
€3 C2 C3 Coa C3 C4
ay ag ag a; asz Qa4
by by bglwg —|by by bijxs= 0, (3)
€1 €2 C3 €1 C3 ¢4
ay Gz das ap dg ay
by by bzxz+|by by by|we=0. @
€y C2 C3 C1 Co C4

From these follow :

dg Q3 a4 ay dz Q4| |0y Az A4 a, az ag
Ty:Xo Xzixyg=|by by byl :— bl b3 by|: be b; . —_ b1 bg b3 . (5)
Cz C3 C4 €1 C3 C4f [C1 C2 C4 €1 ¢ C3

The result (5) holds even when one or more, but not all, of the determinants
involved are equal to zero. Then the COX‘I‘G%pODdlI]" unknown quantmes are
equal to zero. For example, if

a az ay4 a; Qg a4
bl b3 b4 = 0, bl b2 b4 =
€1 C3 C4 €1 C2 G4

and the other determinants in (5) are not zero, (3) and (4) show that x; = 0 and
xg = 0, while (2) shows that the ratio of z; and z4 are correctly given by (5).

If all the determinants in (5) are zero, the values of the unknowns are not
thereby determined. In this case, two of the equations (1) should be solved for
two of the unknown quantities in terms of the others, and the results tested for
the last equations.
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1t should be noted that contradictory equations cannot occur. The student
should compare the contradictory equations
2z —3y+4=0,
2x—3y—2=0,
with the homogeneous equations
221 — 323 +4 23=0,
21 —3xg — 223 =0.

By subtracting one equation from the other we have
6 Tz = O,
whence 23=0 and x;: 02 =3:2.

Ex. 2. The four equations

1Ty + Ase + agT3 + agry =0,
b1xy + baxa + bsxs + baxs =0,
c1%1 + Ca%z + C3%3 + 4y = 0,
dyxy + dotg + dgxs + dyzs = 0,

have, of course, the common solutions, &, = 0, #z = 0, 23 =0, 4 = 0. In order
that they may also be satisfied by the same ratios of the unknown quantities, it
is necessary that
ay Az Az Q4
by by b; by
€1 C2 C3 C4
dy dp d; dy

=0

The proof is as in § 7. The condition is also sufficient, for the proof of § 7
shows that if three of the equations have a solution, that will also be a solution
of the fourth equation ; and, as just noted, three homogeneous equations always
have a solution.

9. Eliminants. The result of eliminating all the unknown
quantities from two or more equations is an equation the left-
- hand member of which is called the eliminant; or resultant, of
the given equations. The following cases are important:

1. n + 1 non-homogeneous linear equations with n unknown
“quantities. To eliminate the unknown quantities, we may solve
n of the equations and substitute the solutions in the remaining
equation. The work and the result are as in § 7; that is,

The eliminant of n 41 non-homogencous equations with n un-
known quantities is equal to the determinant of the coefficients and
the absolute terms.
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2. n homogeneous linear equations with # unknown quantities.
To eliminate the unknown quantities, we may solve n —1 equa-
tions for their ratios and substitute the results in the remaining
equation. The work and the result are as in § 8; that is,

The eliminant of n homogeneous equations with n unknown quan-
tities is equal to the determinant of the coefficients.

3. Two equations containing one unknown quantity. Let it be
required to eliminate = between the equations
ar+bx+c, =0, ’ (1)
a, '+ b+ ¢y = 0. 2y

If we multiply each equation by =, we have
a0+ bx*+ecx=0, (3)
and a2’ + b* + cr = 0. 4)

These four equations may now be considered as linear in the
three unknown quantities 43, 2% and #. Elimination gives, by 1,

[ERN
-

R OO

=0. ()

i

-
-

(o W) s s
2
S o8 .S

a
a
b
a, b

2

)

[t

It is clear that if equations (1) and (2) have a common solution,
equation (5) must be true. Conversely, it may be shown that if (5)
is true, (1) and (2) must have a common solution ; but this proof is
too long to be given here.

The method used in the above problem may be used for
equations of any degree and is known as Sylvester’s method of
elimination. It consists in multiplying the given equations by
successive powers of x until we have one more equation than we
have powers of z. The eliminant is then found as in 1.

The method may also be used to eliminate one of the unknown
quantities from two equations containing two unknown quantities.
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PROBLEMS

PROBLEMS

Find the value of each of the following determinants :

1 4 B (SIS0 ll T Y 1|
A EH0 7.3 2 0L 11, {1 2 -1}
< Ix 1\. 1 0] ek 2]
% 11 g |0 @ b
3,|z l .la 0 el TR )
z? 1 b c O 160051 31
4 10 e AN P | ¥
* 110 4f R g‘ . TSR0 -1
5 1 = 9. | b fl.
s . [
|2 3l " f I 0 ay b1 61'
ili 20 w3 1 1 1 13 0 ag b2 62[
6. 12 3 1f. 10. |a b C ¢ Clay bl (] 0}'
43 Je a9 ,az b2 2 laz bz Co Ol
Prove the following relations :
4 2 1 1 -2 -3 1 2 3|
14. |13 4 2[:0. 175 =2 1 31=12 1 3I
5 6 3 SRR AR L
5 4 1]
1513 2. "1ji=0 TR, JEI Seslihengl
g A 18. |22 32 22 =a:yzia: ¥zl
28 Y3 28 22y a2
a 00 b 0 % o
O @ ON 010 b
16. |z ¥ 1 z w|=(ad — bc)% (Al
¢c 0 0 d 0 y z|=@-y)y—2)(z—2)
(1) S (USROS |e2 y2 22
7 1o e T D)
20 ag bg 0 0 !a1 b1 Cy dl
] 0 C1 d1 ‘(12 b2 Ca d2
0 0 Cg dg|
il 4 -3 t')l 5 0 2 1
21 0 6 —8 —1! (1 -6 -3 4
|2 -3 4 2]_ 3 8 4 -3
Bl e e TR e o
a; + d1 bl (3] ay b]_ Cy | ‘dl b1 (2]
22. ag+d2 b2 Co| = | QA2 bg (‘2\+ dz bz Ca e
as+ds by cs| |az bs ¢z (ds bs s
@ 8a; Sas ag O |
[ 1) 3 a) 3 as Qs 81 2 az 9 4 g
23 () 2(11 as 0 0 |=ao ‘)al 1 gs
0 Qg 2(11 as 0 go 2, .)a2
0 0 ap 2a; az | ! %o HZ G 4G

2
= ap{ata? — 6 ayn02as + 4 acas + 4 alas — 3 afad).
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Solve the following equations :

o I—a 2 3
24. '45”93 l:o. RMis| 3 Pl i8I
ek 5 8—x
Write the following equations in their expanded forms:
0 y 1 24y 2 7l
26. 2 -3 =10} 28 5 1l 2 1_O
il (5 4y 11 ¥ 13 25— 3| s
T -
MLl | 1 i
1 0 1 1|_
R G = 29 [t k |_,
0 0 0 1 h b—g|™
a—x h g
30. h b—x f -3 7
g /AR CEN
Solve the following equations :
3l. 42— 5y + 6=0, 317. 101—3y+12z—5=0,
Az —9y +11=0. dx— y 4 6z—-3=0,
bz—2y+ 3z =0.
32. T+ 2y — z2+3=0, 38.m+y+z=a,
20~ y -5=0, y+z+w=>,
@ +22—-8=0. z+w+z=c
w+r+y=d.
1%L
33. 5 i 4 39. 102, + 425 + 625 = 0,
) SRS 3214+ x4 223 =0.
_+__=
PRI s 40. =z + 52y +8x5=0,
1+1=4_ 33}1-}-3332-}- Lei="10:
20 &
41. 221+ 422+ 23 =0,
34. 224+ 4y+3z-2=0, S8 F 08k = 0.
T — 5y+ z+1=0, 42. 2(1}1+ Zg — Hxg + 3}4:0,
3+ 10y +5z—5=0. 3@1—2:52—4::3—2904:0,
1+ T+ 223 — x4=0.
5. 2=
3 g (Y5, e 0’ 43. 221—-3232-}-2233—3.’1:4:0,

be+2y+32+6=0,

20+3y—2z+2=0. 421 + 525+ 45 — 624 =0,

32 — Tag — 223 + 824 = 0.

36. z+y+92-7=0, 44. Tz — bxo+ 85— 4z, =0,
bx—y+92—-6=0, 31+ 2% — big + 92, =0,
3z —y+32—-2=0. 621 — 1625 + 2125 — 3524 = 0.



PROBLEMS 2

Find whether or not the equations in each of the following examples have

a common solution:

45. 22— y+ 3=0,
3z+ y— 1=0,
3x—4y+10=0.

46. bz —2y +7=0,
3z — y+6=0,
r+3y—1=0.

49. For what values of a are the
following equations consistent ?

z+a%y+ a =0,
ac+ y +az2=0,
a2x + . ay + 1 =0.

50. Eliminate z from the equations

y+3x+1=0,
22y —4y+2=0.

51, Eliminate z from the equations

2 +2y +3=0,
zy +4x4+1=0.

52. Kliminate =z and z from the
equations

y+yz —xr+2+2=0,

y—2r+y+2+2=0,
z4+3z2~—2 =10N

47, z— 2y+ 8z2—-1=0,
22+ y— 2z+4+1=0,
z— By+ 22+42=0,
z—19y +222—-4=0.

48. z -2y +1=0,

y—2z+4+2=0,
z—2x+3=0,
z+y+2=0.,

53. Find the condition that
ax? + br 4 c=0,
and BE=pI"

have a common root.

54. Show that the condition that
ax? 4+ br 4+ c= 0,

and fgde=ll
have a common root is
astbmse
b ¢c a/ =0.
c a b

55. Show that if
@z + by + ¢ =0,
asx + boy + c2 =0,
asx + bgy + ¢c3 =0,
have a common solution, there can
always be found three numbers I, k,
m such that
a1l + azk + agm = 0,
bll + bgk + b;m = 0,
eyl + ¢k + e3m = 0.



CHAPTER II
GRAPHICAL REPRESENTATION

10. Real number. The science of mathematics deals with vari-
ous kinds of numbers, each of which has arisen through the desire
to perform, without restriction, some one of the fundamental oper-
ations. The simplest numbers are the positive integers, or whole
numbers. If one restricts himself to the use of these, he may add
or multiply together any two of them without obtaining a new
kind of number ; but he may not divide one number by another not
exactly contained in it, nor subtract a larger number from a smaller.
In order that division may always be performed, the common frac-
tions, which are the quotients of one integer divided by another,
are necessary. In order that subtraction may always be possible,
the idea of a megative number must be introduced. The integers
and fractions, both positive and negative, together form the class
of rational numbers. On these numbers the operations of addition,
subtraction, multiplication, and division may always be performed
without leading to a new kind of number.

The operation of evolution, however, leads to two new kinds of
numbers, — the irrational, exemplified by V2 ; and the complex, of
which V— 2 is an example. The complex numbers will be noticed
in § 12; we shall here speak only of the irrational numbers. An
wrrational number is defined as one which cannot be expressed
exactly as an integer or a common fraction, but which may be so-
expressed approximately to any required degree of accuracy. The
simplest examples are the roots of rational numbers; for example,
V7 may be approximately expressed as 384, 28481, ete., but can-
not be expressed exactly. There are also irrational numbers which
are not the roots of numbers and cannot be expressed by means of
radical signs. A familiar example is the number 7= = 3.14159 . - -.
An irrational number may be either positive or negative. The

28
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rational and the irrational numbers together form the class of real
numbers.

A rigorous investigation of the nature and properties of these
numbers, especially of the irrational numbers, is too advanced for
this book. An elementary discussion, however, is given in any
course in algebra, and is here assumed as known.

The real numbers may be represented graphically on a number
scale, constructed as follows: 3

! 5 ; 0 M

On any straight line assume a —f—————— -
fixed point O as the zero point, or
origin, and lay off positive numbers
in one direction and negative numbers in the other. If the line
is horizontal, as in fig. 1, it is usual, but not necessary, to lay off
the positive numbers to the right of O and the negative numbers
to the left. Then any point M on the scale represents a real
number, namely, the number which measures the distance of A1
from O; positive if 2 is to the right of O, and negative if 27 is
to the left of 0. Conversely, any real number is represented by.
one and only one real point on the scale.

11. Zero and infinity. There are two mathematical concepts
usually included in the number series, for which special rules of
operation are needed. These are zero, represented by the symbol 0,
and infinity, represented by the symbol cc.

Zero arises in the first place by subtracting a quantity from an
equal quantity; thus, e —a =0. It signifies in this sense the
absence of quantity — nothing. It cannot, then, either operate
upon a quantity or be operated upon; for all operations imply
the existence of the quantities concerned. Literally, then, the

Fic. 1

: 0 «a . g .
expressions a X 0, —, o’ are meaningless. However, it is possible
@
to put into these symbols conventional meanings, as follows:
. i s,
Take the three expressions ar, =, —» and consider what hap-
O

pens when z is taken smaller and smaller, constantly nearer to
zero but never equal to it. It requires only elementary arith-

. 2
metic to see that ex and = may each be made as small as we
T
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please by taking x sufficiently small, while 2 becomes indefinitely
3

great as x decreases, and may be made larger than any quantity
we may choose to name. We may express the first two results
concisely by the formulas

QRET S
a

ax0=0,

We can express.the last result in a formula, however, only by
introducing the concept infinity. When the value of a quantity
is indefinite, but the quantity is increasing or decreasing in such
a way that its numerical value is greater than any assigned quan-
tity, however great, it is said to become infinite. It is then denoted
by the symbol oo, called infinity. We can accordingly express our

third result by the formula

a
— = co,

which means that when the denominator of a fraction decreases, be-
coming constantly nearer to zero, the value of the fraction increases
and becomes greater than any quantity which can be named.

The symbols a 7

a X oo, = ==
o] a

are also literally meaningless. We can, however, give a conven-

‘ ! K a x L

tional meaning to them by writing ax, —» —; and studying the
49

effect of increasing # indefinitely. FElementary arithmetic leads
to the results expressed by the formulas

a X oo = o, =.().

a o8]
— = 0.
a

[o/s]
: g 0 o

Two other forms also occur in practice, namely, 0 and —- These
(ve]

arise when we have a fraction — in which the numerator and

the denominator either approachyzero’together or increase indefi-
nitely together. The value of the fraction cannot be determined
unless we know a law to govern # and y. These fractions are
consequently called indeterminate forms, and will be considered
later in the course.
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Neither zero nor infinity can be said to have an intrinsic alge-
braic sign. In some cases a quantity may increase in value,
remaining always positive. It is then said to be 4 «. At other
times it may increase numerically, remaining always negative.
It is then said to be — . Often, however, the quantity is indefi-
nitely great in such a way that the sign is ambiguous. An
example is tan 90°. If an acute angle is made nearer and nearer
to 90°, its tangent increases indefinitely, remaining positive. But
if an obtuse angle is made nearer and nearer to 90° its tan-
gent increases indefinitely, remaining negative. Hence we say
tan 90° = co0, and no algebraic sign can be attached to it.

Similar considerations hold for the sign of zero.

12. Complex numbers. If one restricts himself to the use of
the real numbers, named in § 10, it is impossible to perform the
operation of evolution without exception; for the even root of a
negative number is not a real number. It is therefore necessary,
if the generality of all algebraic operations is to be maintained, to
introduce a new kind of number, called a complex number. These
numbers will be used very little in this volume, and the following
résumé of the matter usually contained in algebra is sufficient for
our present purposes. A further discussion will be given in the
second volume.

The dmaginary unit is V—1, and is denoted by ¢. Then

@ =

By multiplying this equation successively by ¢, we find

e el e R R R L 59

and, in general,

,ilk=1’ ,L‘4L'+I=,L" 7:4k+2=_1’ 7:4k+3_____,L',

where £ is zero or any integer.

If 4 is any real number, the product bi is called a pure imagi-
nary number. The square root of any negative number is pure
imaginary ; thus,

Voi1=vVivZi=2i V=5=V5vV_1=1iVi.
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If @ and b are any two real numbers, the combination @ + b
is called a complex imaginary number, or, more simply, a complex
number. A complex number reduces to a pure imaginary number
when « =0, and to a real number when 6 =0. If « =0 and b =0,
the complex number a + b7 = 0; and conversely, if a + i = 0,
then ¢ = 0 and b = 0.

All operations with complex numbers are carried out by using
the ordinary laws of algebra and replacing all powers of 4 by their
values just determined.

Ex.l. V_8xV_2=iV3xiv2=iVe=—V0.

3+\/—4_3+2ix2+2i_6+10i+4i2_2+10i_1+5\/—1
o L 2 D D R R i 2 S S C L 4

Ex. 2.

Two complex numbers such as a 4+ 6¢ and a — b2, where ¢ and b
have the same values in each, are called conjugate complex numbers.
Their product is a real number ; thus,

(a + bi) (@ — bi) = a* + V2.

It is clear that the complex numbers have no place on the num-
ber scale of § 10. , :

13. Addition of segments of a straight line. Consider any
straight line connecting two points 4 and B. In elementary
geometry only the position and the length of the line are consid-
ered, and consequently it is immaterial whether the line be called
AB or BA; but in the work to follow it is often important to con-
sider the direction of the line as well. Accordingly, if the direction
of the line is considered as from 4 to B, it is called 45 ; but if
the direction is considered from B to 4, it is called BA. Tt will

be seen later that the distinction

7% i & between AB and BA is the same

9 as that between +a and —a in
algebra.

Consider now two segments 4B and BC on the same straight
line, the point B being the end of the first segment and the begin-
ning of the second. The segment AC' is called the sum of A5 and
B(C, and is expressed by the equation

AB + BC = AC. (1)
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This is clearly true if the points are in the position of fig. 2, but
it is equally true when the points are in the position of fig. 3.
Here the line BC, being opposite in
direction to 4B, cancels part of it, ~} P z
leaving AC. Fie. 3

If, in the last figure, the point C
is moved toward 4, the sum AC becomes smaller, until finally
when € coincides with 4 we have

AB+BA=0, or BA=—AB. )

If the point C is at the left of A, as in fig. 4, we still have

AB + BC=AC, where AC =— C4 by (2).
It is evident that this addition
& P 5 is analogous to algebraic addition,
Bond and that this sum may be an arith-

metical difference.
From (1) we may obtain by transposition a formula for sub-
traction, namely,

BC=AC—A4B. 3)

This is universally true since (1) is universally true.

This result is particularly important when applied to segments
of the number scale of § 10. For if « is any number corresponding
to the point M, we may always place x = 01/, since both z and OM
are positive when M is at the right of 0, and both z and O are
negative when f is at the left of 0. Now let A7, and M, be any
two points, and let », =03, and x,= OM, Then

MM, =O0M,—OM, = x,— x,.
On the other hand,
MM, = OM,— OM, = »,— x, = — M, M,
It is clear that the segment M M, is positive when 1, is at the

right of 21, and is negative when M, is at the left of M,

Hence, the length and the sign of any segment of the number
scale is found by subtracting the valve of the x corresponding to
the beginning of the segment from the value of the x corresponding
to the end of the seqment.
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14. Projection. Let 4B and MN (figs. 5, 6) be any two straight
lines in the same plane, the positive directions of which are respec-
tively AB and MN. From 4 and B draw straight lines perpendicu-
lar to MV, intersecting it at points 4’and B’ respectively. Then A'B’

B
1
1
|
|

Fic. 6

is the projection of AB on MN, and is positive if it has the direction
MN (fig. 5), and is negative if it has the direction N/ (fig. 6).

Denote the angle between MV and 4B by ¢, and draw AC par-
allel to MN. Then in both cases, by trigonometry,

AC =AD cos ¢.
But AC =A4'B, and therefore
A'B' = AB cos ¢.

Hence, to find the projection of one straight line wpon @ second,
maltiply the length of the first by the cosine of the angle between the
positive directions of the two lines.

Ex. It is customary in mechanics to represent a force by a straight line,
the length and the direction of which denote respectively the magnitude and the

direction of the force. Then the component of the force in any direction is the
projection upon that direction of the line which represents the force.

>
=

| S

pd
u
P

Fic. 8

In particular, let F and F,, represented respectively by AB and AC (figs.
7, 8), be two forces acting at A along the same line, and let MN be a line
which makes an angle ¢ with 4B.
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The respective components of F; and F, are represented by A’B and 47",
and the resultant component is represented by A’B 4+ A°C".

But A’B’=F, cos ¢, and A’C’= F; cos ¢ ; hence, by substitution, the resultant
component is Fy cos ¢ + Fp cos¢. It is to be noted that in fig. 8 F, and F, have
opposite signs.

15. The projection of a broken line upon a straight line is defined
as the algebraic sum of the projections of its segments.

Let ABCDE (fig. 9) be a broken line, MV a straight line in the
same plane, and 4 E the straight line
joining the ends of the broken line.

Draw A4, BB, CC', DD', and ‘41
EE' perpendicular to MN; then ':, :
A'B, B'C', C'D', D'E', and 4'E' 4 B

are the respective projections on ¢
MN of AB, BC, CD, DE, and AFE. Fic. 9
But AB+BC+CD+DE=AF. (by §13)

Hence, the projection of a broken line upon a straight line is
equal to the projection of the straight line joining its extremities.
Ex. If ABCDE (fig. 9) represents a polygon of forces, we have the result:

the component of the resultant in any direction is the sum of the components
of the forces in that direction.

16. Cobrdinate axes. Let X'.X and ¥'J be two number scales
at right angles to each other, with their zero points coincident at O,

I‘Y as in fig. 10.
. Let P be any point in the
3 plane, and through 2P draw
7 straight lines perpendicular to
; (AL ) A R T ;ub - 'X’X an.d AGTE respectively,
intersecting them at Al and V.
i) If now, as in § 13, we place
_1\; P z=0M, and y=0ON, it is
= clear that to any point P there
Vi corresponds one and only one
F16.10 pair of numbers = and ¥, and

to any pair of numbers corresponds one and only one point P.
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If a point P is given, # and y may be found by drawing the two
perpendiculars M and NP as above, or by drawing only one per-
pendicular as MP. Then MP = ON =y and OM = .

On the other hand, if # and y are given, the point P may be
located by finding the points M and NV corresponding to the num-
bers z and y on the two number scales, and drawing perpendiculars
to A'X and Y'Y respectively through M and N. These perpen-
diculars intersect at the required point P. Or, as is often more
convenient, a point M corresponding to x may be located on its
number scale, and a perpendicular to X’.X may be drawn through
M, and on this perpendicular the value of y laid off. In fig. 10,
for example, M corresponding to x may be found on the scale .Y'X,
and on the perpendicular to X'X at M, MP may be laid off equal
to y. When the point is located in either of these ways it is said
to be plotted. It is evident that plotting is most conveniently per-
formed when the paper is ruled in squares, as in fig. 10.

These numbers z and y are called respectively the abscissa and
the ordinate of the point, and together they are called its coordi-
nates. It is to be noted that the abscissa and the ordinate, as
defined, are respectively equal to the distances from Y'Y and X'X
to the point, the direction as well as the magnitude of the distances
being taken into account. Instead of designating a point by writing
x=a and y =—1b, it is customary to write P(a, — b), the abscissa
always being written first in the parenthesis and separated from
the ordinate by a comma. X'X and Y'Y are called the axes of
coordinates, but are often referred to as the axes of = and y
respectively.

17. Distance between two points. Let F(x, y,) and F(z,, ¥,)
be two points, and at first assume that £ is parallel to one of
the coordinate axes, as OX (fig. 11). Then y, =y, Now MM,
the projection of BEE on OX, is evidently equal to RE. But

Y MM,=x,—z (§13). Hence
I BE=a,—a, (1)
1;"1 X 1;:1 < In like manner, if @, =z, RE is parallel
2l B to 0Y, and

Fie. 11 RE =y,~ ¥, (2)
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If z,+ x, and y, + y,, & is not parallel to either axis. Let
the points be situated as in fig. 12, and through B, and I} draw
straight lines parallel respectively to OX and OY. They will meet
at a point I, the coordinates of which are readily seen to be

(%, ). By (1) and (2),

RE=x,—x, EE=y,— Yy,

o,

But in the right triangle RRE,

RE=VEE'+RE,

Fic. 12

whence, by substitution, we have

RE =V(t,— )+ (y, — y,)" 3)

It is to be noted that there is an ambiguity of algebraic sign on
account of the radical sign. But since RZ is parallel to neither
coordinate axis, the only two directions in the plane the positive
directions of which have been chosen, we are at liberty to choose
either direction of RE as the positive direction, the other becoming
the negative.

It is also to be noted that formulas (1) and (2) are particular
cases of the more general formula (3).

Ex. Find the cobrdinates of a point equally distant from the three points
Py(1, 2), Py(— 1, —2), and Py(2, — ).
Let P (z, y) be the required point. Then
PP =R Pand  Po P = PsPs
But PiP=V(z—1)24 (y — 2)3
PP=V( + 1) + (y + 23,
PP =V -7+ (v + o)

W Ve-12+ @ -2 =VE+12+F+27
Ve+12+@+22=Ve-22+(y+5)

whence, by solution, = § and y =— 4. Therefore the required point is

3 =%
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18. Collinear points. ILet P (z, ) be a point on the straight line
determined by E (z,, y,) and I} (z,, ¥,), so situated that P = [ (RL).
There are three cases to consider according to the position of
the point P. If P is between the points 7; and 7} (fig. 13), the

Y Y

X

[

7

0

A

[}
]
i
1
0| M, 1M,

Fic. 13 Fic. 14

segments BP and RF have the same direction, and RP < RE;
accordingly / is a positive number less than unity. If P is beyond
B from F (fig. 14), BP and LE still have the same direction, but
PP > RE; therefore ! is a positive number greater than unity.
Finally, if 7 is beyond £, from F (fig. 15),
L Pand BI, have opposite directions, and
! is a negative number, its numerical value
ranging all the way from 0 to co.

In the first case P is called a point of
internal division, and in the last two cases
it is called a point of external division. -

In all three figures draw KA, PJI,
and LM, perpendicular to OX. In each
figure OM = OM,+ M, M ; and since FP =I(RE), M,M=1(M, D),
by geometry.

"<1
9

RSN

o

(-
o

E [P TTEp Y
©

/ M O

Fic. 15

. OM=O0M,+ (ML),
whence, by substitution,
Tl U (i) (1)
By drawing lines perpendicular to OY we cam prove, in the

same  way,
Y=+ -5 )
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In particular, if P bisects the line 7, I = 1, and these formulas

become
; Ao SRR

2 2

Ex. 1. Find the cotrdinates of a point 2 of the distance from P;(2, 8) to
Py (3, —3).
If the required point is P (x, y),

x=2+§(3—2):2%,
y=38+3(—-3-38) =%
Ex. 2. Prove analytically that the straight line dividing two sides of a tri-
angle in the same ratio is parallel to the third side.

Let one side of the triangle coincide with OX, one vertex being at O. Then
the vertices of the triangle are O (0, 0), A (x;, 0),

B(zs, y2) (fig. 16). Let CD divide the sides OB Y
and AB so that OC = 1(OB) and AD = l(4B). B

If the cotrdinates of ' are denoted by (z3, ¥3)
and those of D by (xi, %), then, by the above c 7
formulas,

x3 = lxg ys = lys
(4 ) 0 A X

and zy =2 + L(x2 — T1), Y4 = lya.

Since y3 = ¥4, CD is parallel to OA. Fic. 16

19. Let us now see what happens as different real values are
assigned to /. When /=0, P coincides with Z; (fig. 17). As I
' increases in value, the

point P moves along the
line toward Z till, when

{ =1,it ceincides with £.

As the value of 7 con-
tinues to increase, the

X point P continues to move
along the line away from
BroiiT I} and in the same direc-

tion as before.

If negative values are assigned to /, in ascending order of numer-
ical magnitude, the point P moves along the line, away from B, in
the opposite direction from £,

-®</<(
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It follows that
2+ l(z,—x,) and y,+(y,—y,)

may be made to represent the codrdinates of any point of the
straight line determined by the points £ and E by assigning the
appropriate value to [/, the range of values for each segment of
the line being indicated in fig. 17.

Ex. Consider the straight line -determined by the two points Py(— 1, — 4)
and Py(5, 6). Any other point P on this line has the cotrdinates

r=—14+061, y=—44+101L

When [ <0, it is clear that x < —1, y < — 4; hence P lies at the left
of P;. When 0<I<1, it is clear that —1<2x <5, —4 <y <6; hence P
lies between P; and P;. When I >1, it is clear that x> 5, ¥y > 6; hence
P lies at the right of Ps.

20. Variable and function. A quantity which remains un-
changed throughout a given problem or discussion is called a
constant. A quantity which changes its value in the course of
a problem or discussion is called a wariable. If two quantities
are so related that when the value of one is given the value of
the other is determined, the second quantity is called a function
of the first. When the two quantities are variables the first is
called the independent wvariable, and the function is sometimes
called the dependent variable. As a matter of fact, when two
related quantities occur in a problem it is usually a matter of
choice which is called the independent variable and which the
function. Thus, the area of a ecircle and its radius are two
related quantities such that if one is given the other is deter-
mined. We can say that the area is a function of the radius,
and likewise that the radius is a function of the area.

The relation between the independent variable and the function
can be graphically represented by the use of rectangular codrdi-
nates. For, if we represent the independent variable by x and the
corresponding value of the function by 7,  and y will determine
a point in the plane, and a number of such points will outline a
curve indicating the correspondence of values of variable and
function. This curve is called the graph of the function.
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Ex. 1. An important use of the graph of a function is in statistical work.
The following table shows the price of standard steel rails per ton in the
respective years:

1895 . . . . . . $24.33 LODOM & S sod g o 0 1§32 20
TS et B e et 0] OO w5 S 02788
LSO Tad it = iniby LON1807 5 IR S s (i v 50 g M28.00
IBOSRLS o Era tl b g T 62 LGOS TR =Y oy et e s 1o 28500
F809x i ams iy nape s ya28 )10 LODARE ot R e 8 28 06

If we plot the years as abscissas, calling 1895 the first year, 1896 the second
year, etc., and plot the price of rails as ordinates, making one unit of ordinates
correspond to ten dollars, we shall locate the points Py, Py, . . ., Pioin fig. 18. In
order to study the variation in price, we join these points in succession by straight
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Fic. 18

lines. The resulting broken line serves merely to guide the eye from point to
point, and no point of it except the vertices has any other meaning. It is to
be noted that there is no law connecting the price of rails with the year.
Also the nature of the function is such that it is defined only for isolated
values of z.

Ex. 2. Asasecond example we take the law that the postage on each ounce or
fraction of an ounce of first-class mail matter is two cents. The postage is then a
known function of the weight. Denoting each it
ounce of weight by one unit of z, and each two Yy
cents of postage by one unit of y, we have the
series of straight lines (fig. 19) parallel to the
axis of z, representing corresponding values of
weight and postage. Here the function is defined
by United States law for all positive values of z,
but it cannot be expressed in elementary mathe-
matical symbols. A peculiarity of the graph is
the series of breaks. The lines are not connected,
but all points of each line represent correspond-
ing values of z and y. Fie. 19
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Ex. 8. As a third example, differing in type from each of the preceding, let
us take the follo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>