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toc2.2. Instantaneous Velocity

Assuming that your are not familiar with the technical aspects of
this section, when you think about it, your knowledge of velocity
is limited. In terms of your own mathematical background, there is
only one type of velocity you can deal with: Constant Velocity. To
make matters worse, there is really only one formula for dealing with
velocity: the famous formula,

distance = velocity× time. (4)

But the good news is that simple algebra is sufficient to solve many
problems involving constant velocity. The bad news is that, based on
life’s experiences, velocity is hardly ever constant!

One way around this problem is through the notion of average veloc-
ity. Even though the average velocity concept is very useful in many
different situations, it is inadequate for a deeper study of the dynamics
of motion of a particle. For this reason, we need a better understand-
ing of velocity. This requires us to move to a higher mathematical
plane: The Calculus level.
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It was the limit concept that enabled mathematicians to move from
the algebraic level to the Calculus level.

First, we begin with a . . .

Review of Average Velocity. Suppose, for simplicity, a particle is
moving in a straight line, and this straight line is the traditional x-
axis. At time t = t0 the particle is at position x = a, at a later time,
t = t1, the particle is observed to be at position x = b. Thus, the
particle has moved from point a to point b during the time interval
[ t0, t1 ]. By definition, the average velocity of the particle during the
time interval [ t0, t1 ] is

vavg :=
b− a
t1 − t0 . (5)

Or, in mere words, the average velocity is the distance traveled (b−a)
divided by the time (t1 − t0) needed to travel that distance.

Exercise 2.2. It is possible for vavg to be positive, negative, or zero.
Explain each case physically.
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What is average velocity?

vavg is the constant velocity the particle would have to travel
at in order to go from position x = a to x = b during the
time interval [ t0, t1 ], if the particle was moving at constant
velocity.

(But, of course, if this was a teenage particle its velocity would defi-
nitely not be constant!)

An algebraic proof of this assertion follows. Here, we assume that the
particle is moving at a constant velocity, vconst, and that we have two
data points: at time t = t0, the particle is at x = a; and at time t = t1,
the particle is at x = b.

Recall equation (4), and its variant,

distance = (velocity)× (time),
or,
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velocity =
distance

time
, (6)

which is valid only in the case of constant velocity. Thus,

distance = b− a
velocity = vconst

time = t1 − t0.
Substitute into (6) to get

vconst =
b− a
t1 − t0

= vavg. (7)

The last equality in line (7) comes from the definition of average
velocity in equation (5).

Exercise 2.3. (Skill Level 0) An automobile was observed to travel
30 miles in one-half hour. What is the average velocity of the auto-
mobile? What is the average velocity as measured in ft/sec?
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Instantaneous Velocity. Now let’s begin our discussion of the new
concept of instantaneous velocity as an application to the limit con-
cept. Suppose we have a particle moving in a straight line (the x-axis,
say). Define a function as follows: at any time t,

f(t) := position on x-axis at time t.

Problem: Fix a time point t = t0, define/calculate the notion of the
instantaneous velocity of the particle at time t = t0; i.e., we want to
know the velocity of the particle at the instant in time t = t0. (I say
‘define/calculate,’ because this is a ‘new’ notion (define), yet, I want
a calculating formula (calculate).)

This notion of instantaneous velocity, intuitively, is characterized by
the position (as determined by the function f) of the particle around
the time in question, t = t0. Such a phrase suggests the limit concept.
(see above.)
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Let us begin by interpreting various quantities: Let h > 0 be a positive
(time) value,

t0 = the time of interest
t0 + h = the time h time units after t0
f(t0) = position at time t0

f(t0 + h) = position at time t0 + h.
Also,

f(t0 + h)− f(t0) = distance traveled during the
time interval [ t0, t0 + h ]

and finally,
f(t0 + h)− f(t0)

h
= average velocity of the particle

during the interval [ t0, t0 + h ]
(8)

The last equation (8) follows from the definition of average velocity,
and the observation that the length of the time interval [ t0, t0 + h ] is
(t0 + h)− t0 = h.
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To continue, let us take a particular function so we can make some
numerical calculations to illustrate the idea. Take,

f(t) = t2, and t0 = 2.

Note that in equation (8), t0 is fixed (the time point of interest),
the only variable quantity is the time increment h. We are interested
in studying the velocity of the particle in smaller and smaller time
intervals around the point of interest t = t0. The point of the above
discussion is that the expression in (8) depends on the value of h;
hence defines a function of h. Define, therefore,

vavg(h) :=
f(t0 + h)− f(t0)

h
(9)
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Now, for the purpose of illustration, we are taking f(t) = t2, and
t0 = 2. Then, in this case, (9) becomes

vavg(h) =
f(t0 + h)− f(t0)

h

=
f(2 + h)− f(2)

h

=
(2 + h)2 − 4

h

=
(4 + 4h+ h2)− 4

h

=
4h+ h2

h
= 4 + h.

Thus,
vavg(h) = 4 + h (10)

Equation (10) is equation (8) specialized to f(t) = t2, and t0 = 2.
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Now you can clearly see the meaning of my comment above: In equa-
tion (10) we have the average velocity in an interval around the time
point t0 = 2 of interest is written explicitly as a function of h, the
length of that interval.

What happens as the length of the time interval gets smaller; that is,
what happens to average velocity as h gets closer and closer to 0? It
should be obvious from (10): If h ≈ 0, then vavg ≈ 4. I’ll construct a
table anyway:

vavg = 4 + h
h 1.0 0.5 0.1 0.05 0.01 0.005 0.001

vavg 5.0 4.5 4.1 4.05 4.01 4.005 4.001

Let’s interpret the entries of the table. I’ll assume the scales of mea-
surements are feet and seconds. For example, vavg(.01) = 4.01 means
that from time t = 2 to t = 2.01, the particle averaged 4.01 ft/sec;
vavg(.001) = 4.001 means that from time t = 2 to t = 2.001, the parti-
cle averaged 4.001 ft/sec. Finally, not included in the table is that the
particle averaged 4.000001 ft/sec over the time interval [ 2, 2.000001 ].
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Based on these interpretations, what are we willing to say about the
velocity of the particle at t = 2? Dare we say that the particle must
be moving at a velocity of 4 ft/sec at time t0 = 2?

Apparently, as h gets closer and closer to 0, the corresponding value of
vavg appears to be getting closer and closer to 4. This is the Pedestrian
description of limit. Therefore we write,

vinst(2) = lim
h→0

vavg(h) = 4

This formula does not tell the whole story, I have specialized it to this
example.

Summary : Suppose a particle moves in a straight line (on the x-axis)
and at time t the position of the particle is f(t). Then the instanta-
neous velocity at time t is given by

v(t) = lim
h→0

f(t+ h)− f(t)
h

(11)

Provided such a limit exists.
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Note that I have dropped the notation t0 and replaced it with just
t—this was just a notational device used in the discussion. I have
dropped the use of vinst and replaced it with v, and finally, I have
replaced vavg with what it’s equal to (see (9)).

In the previous discussion, we saw how the trend in the (average)
velocity the particle over smaller and smaller intervals containing the
time value of t0 = 2 determined its instantaneous velocity at time t0 =
2. Further, we restricted ourselves to intervals of the form [ t0, t0 +h ],
where h > 0. What about other kinds of intervals containing t0.

Exercise 2.4. Let f(t) be the position on the x-axis of a particle at
time t; let t0 be a (time) point of interest, and let h < 0. Establish
a formula for vavg(h), the average velocity of the particle over the
interval [ t0 + h, t0 ] (References: (5) and (9).)

Exercise 2.5. It seem rather unnatural to take t0 as either the left-
hand end point of the time interval or the right-hand end point of the
interval. Perhaps, a more “natural” course is to take t0 as the center
point of a time interval around t0. Suppose the interval is of the form:
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[ t0 − h, t0 + h ], where h > 0. Construct a formula for vavg(h), the
average velocity of the particle over this interval.

2.3. Tangent to a Curve

We begin by stating the basic problem of this section, which, at this
introductory level to calculus, is usually thought of as the origin of
differential calculus. In most calculus books, this problem is always
advertised as the . . .

Fundamental Problem of Differential Calculus. Given a curve and a
point on that curve, define/calculate the equation of the line tangent
to the given curve at the given point.

History. Mathematically, the notion of tangent line has already been
defined in your past history. If you have taken a course (in high
school), in Plane Geometry, you would have come across the following
theorem due to Euclid:

Given a circle in the plane, and a line in the plane, then exactly
one of the following is true: (1) the line does not touch the circle;
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(2) the line touches the circle at one point; (3) the line touches
the circle at two points.

Remarks: In case (2), we say the line is tangent to the circle. The line
described in case (3) is referred to as a secant line.

This is the sum total of your knowledge of tangent lines. Yet, it is
sufficient to give you an intuitive notion of what is meant by a tangent
line to an arbitrary curve.

Solution to the Problem. We need a curve. This problem will
eventually be solved in greater generality, but until then we take a
simple, yet important, case. Take the curve to be of the form:

The Curve: y = f(x) (10)
Now we need a point on the curve.

The Point: P ( a, f(a) ) (11)

We want to construct the equation of a line having the property that
the line passes through the given point P ( a, f(a) ), and having a cer-
tain intuitive property: tangency. We need to define our line so that
it has this vaporous property.
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In order to construct the equation of a line we need one of two sets of
information about that line: (1) We need two points on the line; (2)
we need one point on the line and the slope of the line. Note that we
have neither of these two. This is the basic problem — we don’t have
enough information. We have one point, but we don’t have a second
point, nor do we have the slope of the line.

The tack we take to solve the problem is to define/calculate the slope
of the imagined tangent line. If we have the slope, then we can write
down the equation of the tangent line: we have a point and the slope.

To construct a line we need a second point. Let h > 0 be a small
number. Consider x = a and x = a + h. These two values of x are h
units apart. Now look at the corresponding points on the curve:

P ( a, f(a) ) Q( a+ h, f(a+ h) ).

If h is small, the point Q is close to the point P . Draw a line through
these two points. This line is called a secant line. The slope of this
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line can be computed as

msec(h) =
f(a+ h)− f(a)

(a+ h)− a
Thus,

msec(h) =
f(a+ h)− f(a)

h
. (12)

Notice that I have represented the slope of the line through the points
P andQ as a function of h; this seems reasonable sinceQ is determined
by the value of h and so the slope of this line depends on the choice
of Q, which in turn depends on h.

Figure 1
The line through P and Q:
the secant line approximates
y = f(x) near P .

Figure 2
An approximating secant line
shown with the hypothetical
tangent line.

Figure 1 depicts the secant line through the points P and Q; it’s slope
is given in equation (12). While in Figure 2 the tangent line has been
included. Now imagine, if you can, how the picture changes as h gets
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closer and closer to 0: the point Q moves along the curve getting
closer and closer to the point P ; the secant line rotates around the
pivot point P and becomes more and more tangent-like. Now if the
secant line is looking more and more like a tangent line, then the slope
of the secant line must be getting closer and closer to the slope of the
(imagined) tangent line.

Let’s summarize the major points of the above discussion: As h gets
closer and closer to 0, the slope of the secant line, msec(h), we imag-
ine, will get closer and closer to mtan, we imagine. But this is the
Pedestrian description of limit!

mtan = lim
h→0

msec(h)

= lim
h→0

f(a+ h)− f(a)
h

/ by (12)

or,

mtan = lim
h→0

f(a+ h)− f(a)
h
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Let’s have some numerical calculations for the unbelievers in the
peanut gallery.

Example 2.2. Consider the function f(x) =
√
x, and take a = 4. Set

up a table of secant slopes and try to determine the slope of the line
tangent to the graph of f at a = 4.

The table given in the solution to Example 2.2, only positive values
of h were used. What about negative values of h? Perhaps the use of
negative values of h lead us to an entirely different conclusion than
before.

Exercise 2.6. Take the table given in the solution to Example 2.2,
negate each of the values of h, and re-calculate the corresponding vales
of msec.

That’s enough for an introduction to the concept of limit and how
it is applied to solve the fundamental problem of differential calculus.
You’ll get plenty more in your regular calculus course as well as in
these tutorials.
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Summary : The slope of the line tangent to the curve y = f(x) at
x = a is given by

mtan = lim
h→0

f(a+ h)− f(a)
h

,

provided the limit exists.

2.4. Rate of Change

This is another very important application to the limit concept, and
is actually a generalization to instantaneous velocity.

There is a couple of start up concepts to be reviewed/introduced first.

The Notation of Change. If x is a number, and we change the
value of x a little bit, then this new number can be represented by
the notation x+ ∆x. The amount of change in the value of x is given
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by (x + ∆x) − x = ∆x. If ∆x > 0, then the value of x has increased
to x+ ∆x; if ∆x < 0, then the value of x has decreased. Summary:

x = given
x+ ∆x = x is changed a little

∆x = the amount of change in x.

In a similar way, if we have a second variable y, then we can use the
same notational conventions:

y = given
y + ∆y = y is changed a little

∆y = the amount of change in y.

Change Induces Change. Suppose we have two variables x and y.
And these two variables are related: y = f(x). Think of x and y as
fixed for now. Now, y is the value of f that corresponds to x. Suppose
we change x a little bit: from x to x + ∆x. Question: If x changes
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by an amount of ∆x, how much does the corresponding value of y
change?

x −→ f(x)

x+ ∆x −→ f(x+ ∆x)

As the independent variable changes from x to x + ∆x, the corre-
sponding dependent variable changes from f(x) to f(x + ∆x). Since
these are “y”-values, the amount of change in the y-direction is

∆y = f(x+ ∆x)− f(x). (13)

Notational Trick : We have denoted by y the value f(x), then

y + ∆y = f(x) + (f(x+ ∆x)− f(x)) = f(x+ ∆x). (14)

Thus, we have the very pleasant representation: As “x” changes from
x to x+ ∆x, “y” changes form y to y + ∆y; or, symbolically,

x −→ y

x+ ∆x −→ y + ∆y.
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Here is the point of these paragraphs: A change in the x variable
induces a change in the y variable. A change of ∆x induces a change
of ∆y.

Example 2.3. A simple example to illustrate the point. Let f(x) =
x2. Discuss how changes in x induce changes in the y.

Average Change Induced. In the preceding paragraphs we saw
how change in one variable induced change in the other variable.

y = f(x)
∆x = change in x

∆y = corresponding (or induced) change in y.
Recall,

∆y = f(x+ ∆x)− f(x).

Question: What is the average change in y given the change in x? The
answer to that question is

∆y
∆x

= The average change in y per
unit change in x. (15)
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To understand more fully the interpretation given in equation (15),
we must look at some applications. In fact, it is the applications that
motivate this topic.

Example 2.4. The radius of a balloon is measured to be r, conse-
quently, the volume of the balloon is V = 4

3πr
3. Additional air is

introduced into the balloon which increases the radius by ∆r. What
change in the volume, ∆V , does the change, ∆r, induce?

Instantaneous Rate of Change. We now come to the point of
all this preliminary discussion. Let’s illustrate the concept through
example.

Example 2.5. (Example 2.4 continued.) The radius of a balloon
is measured to be r, consequently, the volume of the balloon is V =
4
3πr

3. Additional air is introduced into the balloon which increases
the radius by ∆r. What is the rate at which volume is changing with
the radius 4 in.?
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Concept: Instantaneous Rate of Change. Let’s now abstract
the previous example and define the concept of instantaneous rate of
change.

The Setup. Suppose we have a function y = f(x). We make the
following definitions.

y = f(x)
∆x = change in x

∆y = corresponding (or induced) change in y.
Recall,

∆y = f(x+ ∆x)− f(x)

The instantaneous rate of change of y with respect to x is defined to
be

lim
∆x→0

∆y
∆x

= lim
∆x→0

f(x+ ∆x)− f(x)
∆x

(16)

As a notation to reference this concept, it is customary to write

dy

dx
= lim

∆x→0

∆y
∆x
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Thus,

dy

dx
= The (instantaneous) rate of change of y per unit

change in x.

In Example 2.5 we had V = 4
3πr

3 and we argued that

dV

dr
= 4πr2.

This is a measure of the rate at which the volume, V , changes with
respect to (unit change in) r.



Solutions to Exercises

2.2. Obvious. Exercise 2.2.
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2.3. vavg = 60 mi/hr.

vavg = 60× mi
hr

= 60× 5,280 ft
3, 600 sec

=
(60)(5,280)

3,600
× ft

sec

= 88× ft
sec

Exercise 2.3.
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2.4. Since h < 0, t0 + h < t0. Now at time t = t0 + h, the particle is
located at a = f(t0 + h), and at the later time of t = t0, the particle
is located at b = f(t0). Now utilizing formulate (5) we get

vavg =
f(t0)− f(t0 + h)
t0 − (t0 + h)

=
f(t0)− f(t0 + h)

−h
=
f(t0 + h)− f(t0)

h

Thus,

vavg =
f(t0 + h)− f(t0)

h

Note that this expression is exactly the same as (9)! Consequently, in
the definition of instantaneous velocity given in equation (11).

Exercise 2.4.
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2.5. I’ll leave the details to you:

vavg(h) =
f(t0 + h)− f(t0 − h)

2h
.

If our visualization of instantaneous velocity is correct, then it should
be true that velocity can also be calculated from

v(t0) = lim
h→0

vavg(h)

= lim
h→0

f(t0 + h)− f(t0 − h)
2h

Are you curious? Using f(t) = t2 and t0 = 2.

v(2) = lim
h→0

f(2 + h)− f(2− h)
2h

= lim
h→0

(2 + h)2 − (2− h)2

2h

= lim
h→0

(4 + 4h+ h2)− (4− 4h+ h2)
2h
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= lim
h→0

8h
2h

= lim
h→0

4

Now what do you suppose the last limit is? Try v(2) = 4 . . . as before!
Can you think of other ways of covering t0 with different type time
intervals? Exercise 2.5.



2.6. As before,

msec(h) =
√

4 + h− 2
h

.

The above will be the basis for our calculations below.

msec = (
√

4 + h− 2)/h
h −1.0 −0.5 −0.1 −0.05 −0.01 −0.005 −0.001

msec .2679 .2583 .2516 .2508 .2502 .2501 .2500

What does the slope of the line tangent to the graph of f(x) =
√
x at

a = 4 appear to be? Again, it appears to be 0.25. Exercise 2.6.
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2.2. In this case f(x) =
√
x, f(4) = 2. If h > 0, then f(a + h) =

f(4 + h) =
√

2 + h. Thus, from equation (12),

msec(h) =
√

4 + h− 2
h

.

The above will be the basis for our calculations below.

msec = (
√

4 + h− 2)/h
h 1.0 0.5 0.1 0.05 0.01 0.005 0.001

msec .2361 .2427 .2486 .2492 .2498 .2499 .2499

What does the slope of the line tangent to the graph of f(x) =
√
x at

a = 4 appear to be? Maybe 0.25, or there about? Example 2.2.
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2.3. We have y = f(x) = x2. If we increment (decrement) x a little
to get x + ∆x, then the value of y will be changed to another value,
symbolically written as y + ∆y. From (14), we have

y = f(x) = x2

y + ∆y = f(x+ ∆x) = (x+ ∆x)2

= x2 + 2x∆x+ (∆x)2.
Thus,

∆y = (y + ∆y)− y
= (x2 + 2x∆x+ (∆x)2)− x2

= x2 + 2x∆x,
and so,

∆y = 2x∆x+ (∆x)2.

If we change x by an amount of ∆x, then y changes by an amount
of ∆y = 2x∆x + (∆x)2. (Note that the amount of change in the y-
variable, ∆y, depends on both the value of x and the value of ∆x, the
amount that the x is changed. This is typical.)
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In numerical terms, let’s take x = 2. If we increase x = 2 by an amount
of ∆x = .1, then the induced change in y is ∆y = 2(2)(.1) + (.1)2 =
0.41. A change of ∆x = .1 gets, in this case, magnified to a change of
∆y = .41.

Note that the induced change in y (that’s ∆y) depends not only on
the amount of change in the x (that’s ∆x), but also on the x-value
itself. For example,

For ∆x = .1
x = 0 ∆y = .01
x = 1 ∆y = .21
x = 2 ∆y = .41
x = 3 ∆y = .61

In all cases above, if we increase the value of x by ∆x = .1, the
corresponding value of y also increases (since ∆y > 0). We can also
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get a negative ∆y. In the table below, ∆x = −.1, i.e. we decrement
the value of x by .1.

For ∆x = −.1
x = 0 ∆y = 0.01
x = 1 ∆y = −.19
x = 2 ∆y = −.39
x = 3 ∆y = −.59

Thus, decrementing the value of x also decrements the value of y —
except for the case x = 0. Draw the graph of y = x2 to visualize what
is going on.

Example 2.3.
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2.4. In application work, not everything is labeled x and y. Here,
the independent variable is r, and the dependent variable is V . These
two variables are functionally related by V = f(r) = 4

3πr
3.

We follow the method of solution as exhibited in Example 2.3,

V =
4
3
πr3

V + ∆V =
4
3
π(r + ∆r)3

therefore,

∆V =
4
3
π[(r + ∆r)3 − r3]

=
4
3
π[3r2∆r + 3r(∆r)2 + (∆r)3]

Now the average change in volume with respect to radius is

∆V
∆r

=
4
3
π

3r2∆r + 3r(∆r)2 + (∆r)3

∆r

=
4
3
π(3r2 + 3r∆r + (∆r)2)
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Let’s substitute some numerical values. Suppose the radius is r = 4 in.
Then we increase the radius by an amount of ∆r = .5 in. What is the
corresponding change in the volume?

∆V =
4
3
π[3(4)2(.5) + 3(4)(.5)2 + (.5)3]

≈ 113.6209 in3

The average change in volume with respect to the change in the radius
is

∆V
∆r

=
4
3
π(3(4)2 + 3(4)(.5) + (.5)2)

≈ 227.24187 in3/in

Perhaps these calculations give us a better “feel” for average change
in one variable with respect to another. I changed the radius of the
sphere by ∆r = .5, that induced a change in the volume of ∆V ≈
113.6209 in3.
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Now, what is the interpretation of ∆V/∆r? It represents the amount
of change in the volume per unit change in r. To see this interpreta-
tion, we bring forth the following analogy: Suppose you are moving
at a rate of 30 mi each half-hour (.5 hour), how many miles are you
moving per unit hour? The answer:

v =
30 mi
.5 hr

= 60 mi/hr.

In a similar fashion we can interpret ∆V/∆r; indeed, the inclusion of
the units of measurement suggest the interpretation:

∆V
∆r
≈ 227.24187 in3/in.

Thus the volume is changing at a (average) rate of 227.24187 in3 per
inch; or, more exactly, when the radius was changed from r = 4 to
r = 4.5 (that’s a change of ∆r = .5) the volume changed at a rate
consistent with 227.24187 in3 rate. Think about it!

Example 2.4.
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2.5. Let us summarize the general results from Example 2.4.

V =
4
3
πr3

V + ∆V =
4
3
π(r + ∆r)3

∆V =
4
3
π[3r2∆r + 3r(∆r)2 + (∆r)3]

and,
∆V
∆r

=
4
3
π(3r2 + 3r∆r + (∆r)2) (S-0)

Now, ∆V/∆r represents the (average) change in volume per unit
change in r. What happens to ∆V/∆r as ∆r gets closer and closer
to 0? That is, as we change the radius less and less, what affect does
that have on the (average) change in volume per unit change in r?
Can you see in equation (S-0), that if ∆r ≈ 0, then ∆V/∆r ≈ 4πr2?



We are interested in the behavior of ∆V/∆r as ∆r get closer and closer
to 0 — this is the Pedestrian description of limit. Define instantaneous
rate of change of V with respect to (unit changes in) x as

lim
∆r→0

∆V
∆r

= lim
∆r→0

4
3
π(3r2 + 3r∆r + (∆r)2)

=
4
3
π3r2

= 4πr2.

The quantity, 4πr2 represents the instantaneous rate of change of
volume, V , with respect to unit change in x. For example, when the
radius is r = 4, how fast is the volume changing? The answer

rate = 4π(4)2 = 64π ≈ 201.0618 in3/in.

When r = 4, volume can change at a rate of 201.0618 cubic inches,
per inch change in the radius.

Example 2.5.
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