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1. Introduction
The notion of limit is one of the most basic and powerful concepts in
all of mathematics. Differentiation and Integration, which comprise
the core of study in calculus, are both creatures of the limit — the
concept of limit is the foundation stone of calculus and as such is the
basis of all that follows it.

It is extremely important that you get a good understanding of the
notion of limit of a function if you have a desire to fully understand
calculus at the entry level.
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2. Motivating the Concept
Algebra is a static mathematical field — it cannot be used to analyze
the dynamics of a moving object, for example. The mathematics of
calculus does have the built-in capability of making this analysis. The
major concept that allows us to make the transition from algebra
(static) to calculus (dynamic) is the limit of a function.

In this section, we give a general discussion of limits wherein I try to
give you an intuitive “feel” for limit. The remaining sections consist
of applications of the limit concept to physical science and geometry:
Instantaneous Velocity, Tangent of a Curve, and Rate of Change.

2.1. General Discussion of Limits

Let us begin our study of limits by examining a example meant to
introduce the concept of a limit and to illustrate some basic numerical
techniques.
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Example 2.1. Consider the function

f(x) =
sin(2x)
x

, for x 6= 0,

Discuss the behavior of this function near the exceptional point of
x = 0.

Solution: As you can see, this function is the ratio of two well-known
functions; however, something strange goes on at x = 0. At x = 0 the
numerator equals 0, and the denominator equals 0 as well, so f(0) is
an undefined quantity. But for x 6= 0, f(x) is well-defined quantity no
matter how close x is to 0! What goes on here? What is the behavior
(or trend) of the function near x = 0?

Below you will find a table of numerical calculations, please review
. . . and I’ll see you on the other side of that table.

y = sin(2x)/x
x 1.0 0.5 0.1 0.05 0.01 0.005 0.001
y 0.09093 1.6829 1.9867 1.9967 1.9998 1.9999 1.9999
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Did you make any observations concerning the contents of the table?
My observations are as follows:

Observation 1 : The given values of x in the table are getting closer and
closer to 0. This is because of our declared interested in understanding
what is going on at x = 0. We cannot put x = 0, so the next best
thing is to “sneak up on 0.”

Observation 2 : As you follow the table in the y-row from left to right,
you see that the y-value entries seem be getting closer and closer to
2.

Observation 3 : Summary. As x, the independent variable (the one the
user has control over), gets closer and closer to 0, the corresponding
value y-value seems to be getting closer and closer to 2. In this case,
we write

lim
x→0

sin(2x)
x

= 2 (1)

The above (standard) notation summarizes must succinctly our ob-
servations. Example 2.1.
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Exercise 2.1. What are the dangers of making empirical observa-
tions based on a table of numerical calculations—just as we did in
Example 2.1?

Next up is a physical example of limit that will heat up our discussion.

Illustration 1. There is a fireplace with a raging fire therein. As
you move closer to the fire source the distance, x, between you and
the fireplace decreases. At any given distance, x, you feel heat on
your face. Let the temperature on the surface of your facial skin be
measured as f(x). Thus,

x = distance to the fire

f(x) = temperature on surface of your face.

Now as you continue to move closer and closer to the heat source (i.e.
x gets closer and closer to 0), you feel increased heat on your face.
The closer your get, the greater the sense of heat. Now you would not
want to actually put x = 0 as then you would be in the fire (a no-no,
reference: childhood), but yet as you get closer, you have a sense that
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the temperature on the surface of your face will continue to increase
until it reaches the temperature of the fire! In this case we might say:

lim
x→0

f(x) = temperature of fire. (2)

Thus, from the behavior (or trend) of the function near x = 0, we
have tried to extrapolate the functional values beyond its domain of
definition; hence, we make the assertion equation (2). (It is truly a
good mathematical sentence that has a ‘thus’ and a ‘hence’ in it—
including this one!)

In each of the examples above, we were interested in the limit of a
functions f(x) as x got closer and closer to 0. There is nothing special
about x going to 0. More generally, we are interested in the limit of a
function f(x) as x gets closer and closer to a number a of interest.

Based on the above example we are ready to give two rough descrip-
tions of the symbol:

lim
x→a f(x) = L (3)
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Pedestrians Pay Attention: A pedestrian description of equation (3)
can be phrased as follows:

“As x gets closer and closer to a, the corresponding value
f(x) gets closer and closer to L.”

A refinement, or rephrasing, of my Pedestrian description of limit is

The limit of a function connotes the study of the behavior (or
trend) of the function in smaller and smaller neighborhoods
around a target point x = a.
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2.2. Instantaneous Velocity

This section discusses the physical notion of instantaneous velocity :
Given that a particle is in motion, define/calculate the velocity of the
particle at a given instant in time. For those who want to know more,
Click here.

2.3. Tangent to a Curve

In this section we discuss the Fundamental Problem of Calculus I :
Given a function and a point of the graph of the function, define and
calculate the equation of the line tangent to the graph at the given
point. Click here to learn more.

2.4. Rate of Change

Given that two variables, x and y, are related, y = f(x), this section
discusses ways of measuring how fast the variable y changes per unit
change in the x variable. This turns out to be a generic interpretation
of the derivative of the function f . Click here for more.
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3. Calculating Limits
The Goal of the Section: To develop some basic mechanical skills for
evaluating

lim
x→a f(x) = L (1)

where, f is a function of x and a is a number. In the section entitled
Working with the Definitions, we take a deeper, more rigorous look
at limit. Meanwhile, we shall be content to develop a series of “in the
field” techniques, most of which are obvious. Emphasis will be placed
on good reasoning, and good and proper notation.

Throughout this section, our guide post for evaluating limits in this
section will be the Pedestrian description.

Let us begin with two (as promised) obvious rules, which we state as
theorems.

c1l_t2.pdf#WorkDefn
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Theorem 3.1. Let a and c be numbers, then

lim
x→a c = c. (Rule 1)

Proof.

From the point of view of our Pedestrian description, this is clear: As
x gets closer and closer to a, what does c get closer and closer to?
(Here, c in interpreted as the constant function f(x) = c.)

Another obvious point about the limit concept is

Theorem 3.2. For any number a,

lim
x→ax = a. (Rule 2)

Proof.

An intuitively satisfying observation: As x gets closer and closer to a,
what does x get closer and closer to?

c1l_tp.pdf#pfLimConst
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Visual manifestations of these rules would be

lim
x→−1

x = −1

lim
t→7

t = 7

lim
w→100

100 = 100.

Needless to say, the first two rules are somewhat limited. We need to
explore how this notion of limit “interacts” with the basic arithmetic
operations. For example, If,

lim
x→2

x = 2 / Rule 1

lim
x→2

7 = 7 / Rule 2

then, what is
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lim
x→2

7x = L1

lim
x→2

(x+ 7) = L2

lim
x→2

7x2 = L3

lim
x→2

x+ 7
x

= L4

The answers should apparent. For example, to intuit the limit L1,
when x ≈ 2, then it is reasonable to suggest that 7x ≈ 14; furthermore,
the closer x is to 2, the closer 7x is to 14. Hence, we state that L1 = 14.
Similarly, to evaluate L2 we would reason as follows: When x ≈ 2, from
our knowledge of our arithmetic system, we feel that x + 7 ≈ 2 + 7,
or x ≈ 9. Again, we would reason that as x gets closer and closer to
2, x+ 7 would get closer and closer to 9. Thus, L2 = 9.

Exercise 3.1. Mimic the reasoning of the previous paragraph and
determine the values of L3 and L4.

In the next section we formalize the ideas above so we don’t have to
go through a complex reasoning process every time.
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3.1. The Algebra of Limits

In this section we formalize the relation the limit operation has with
our arithmetic system. These two interact quite nicely.

Theorem 3.3. (Algebra of Limits Theorem) Let f and g be functions
and let a and c be number. Suppose

lim
x→a f(x), and lim

x→a g(x)

exist and are finite. Then,
(1) lim

x→a(f(x) + g(x)) = lim
x→a f(x) + lim

x→a g(x); (2)

(2) lim
x→a(cf(x)) = c lim

x→a f(x); (3)

(3) lim
x→a(f(x)g(x)) = lim

x→a f(x) lim
x→a g(x); (4)

(4) lim
x→a

f(x)
g(x)

=
lim
x→a f(x)

lim
x→a g(x)

, provided, lim
x→a g(x) 6= 0. (5)
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Proof.

Exercise 3.2. Why do you think I refer to this theorem as the Alge-
bra of Limits? What does the word Algebra mean to you? (In a wider
sense than simply high school or college algebra.)

Let’s spend some time mastering the contents of the theorem on the
algebra of limits. Keep in mind throughout, our building block rules
of Rule 1 and Rule 2.

The following is a verbose presentation.

Example 3.1. (Skill Level 0): Calculate,

lim
x→3

x2 lim
x→3

x3 lim
x→3

x4 lim
x→3

x5

Exercise 3.3. Utilizing the techniques of the Example 3.1, argue
that lim

x→3
x6.

Based on our experience with the previous examples and exercises we
are prepared to generalize those results.

c1l_tp.pdf#pfAlgLimt
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Theorem 3.4. (Continuity of Power Functions) Let a ∈ R and n ∈
N. Then

lim
x→ax

n = an. (6)

Proof.

Before continuing with more examples, perhaps I had better explain
the term continuity used in the title bar of the last theorem. This
is an important concept that will be developed more extensively on
the article on continuous functions; however, in the interim, I shall
be content to state the formal definition of the terminology so we can
refer back to it.

Definition 3.5. Let f be a function having a domain Dom(f), and
let a ∈ Dom(f). We say that f is continuous at a provided

lim
x→a f(x) = f(a). (7)

c1l_tp.pdf#pfLimPower


Section 3: Calculating Limits

Furthermore, a function f is called a continuous function if f is con-
tinuous at every point in its domain.

Definition Notes: There are some thoughts on the definition, given in
the form of bulleted paragraphs.

The phrase “f is continuous at x = a” is designated to those
functions for which the evaluation of the limit problem is done simply
by evaluating the function, f at the limiting point, a. This is the
content of (7). Not all limit problems can be evalulated this way. In a
sense, the continuous functions easiest kind of function to deal with
(yet very important). Of course, we must first prove a given function
is continuous before evaluating limits so easily.

There is a difference between continuous at x = a, and just
continuous: the former is a local property, and the latter is a global
property. A given function can be continuous at one point but not at
another. For example, the function

f(x) =
{
x2 if x 6= 0
17 ifx = 0
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Now this is a rather artificial example but it serves the point. It turns
out that

lim
x→2

f(x) = 2 = f(2)
but,

lim
x→0

f(x) = 0 6= f(0)

This function is continuous at x = 2, but not continuous, or (discon-
tinuous) at x = 0. Thus, the property of being continuous is relative
to the particular point in its domain (hence is a local property). On
the other hand, if a function is continuous at each point in its do-
main, we refer to that function as being continuous – at every point
understood.

The content of Theorem 3.4 is that a power function is a con-
tinuous function. Having made that designation, we can now evaluate
limit problems involving power functions is the easiest possible way,
e.g.

lim
x→101

x123 = 101123,



Section 3: Calculating Limits

no thinking necessary!
Now let’s continue this the development of the limit concept through
examples and discussion.

Example 3.2. (Skill Level 0): Calculate the limit

lim
x→2

(3x2 − 2x+ 1).

Exercise 3.4. Calculate lim
x→−2

(2x3+x2−3x+2). Be sure to delineate

all steps using standard notation.

Using the previous examples and exercises to guide our reasoning,
while keeping in mind Rule 1, Rule 2, and the Algebra of Limits
Theorem, we can now state the following theorem.

Theorem 3.6. (Continuity of Polynomial Functions) Let p(x) be a
polynomial and a ∈ R. Then

lim
x→a p(x) = p(a). (8)

c1f_t.pdf#defnpoly
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Proof.

This theorem means that polynomials are continuous functions,

Now the process if evaluating limits of polynomials can be accelerated.

Example 3.3. Calculate lim
x→−2

( 1
2x

4− 2
3x

3− 4
3 ), and lim

w→4
(2w2−6w+1).

Exercise 3.5. Calculate the limit: lim
x→−1

(2x3 + 6x2 + 3x− 4)3.

Warning: Think before you act. Think about the content of the of the
theorem on Continuity of Polynomial Functions. What, in essence, is
it saying?

Now, let’s take a look at another example of a different type.

Example 3.4. (Skill Level 0): Calculate the limit

lim
x→−1

x2 − 3x+ 2
2x3 + x− 4

.

Here is another example for your study.

c1l_tp.pdf#pfLimPoly
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Example 3.5. Calculate the limit

lim
x→2

x3 − x2 − 4x+ 3
x2 + 3x− 6

.

And, furthermore, use correct notation, and write out a well-organized
solution.

Study the presentations given in your calculus book and the ones
in these tutorials. As you do problems, use correct notation, organize
your steps, think and plan how to present the solution, and, of course,
use good mathematics (algebra and calculus). I assure you, it is more
time consuming for me to type out the mathematics in these tutorials
in an organized way than it is for you to write out your solutions in a
good form. If I can take the trouble of using standard notation, you
can too.

We have been illustrating the pattern of thought for handling quo-
tients of two polynomials. I’m sure you have seen the pattern. Let’s
formalize our observations.
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Theorem 3.7. (Continuity of Rational Functions) Let f be a rational
function, and let a ∈ Dom(f). Then

lim
x→a f(x) = f(a). (9)

Proof.
Theorem/ Notes: We make a couple of observations.

This theorem is saying that a rational function is continuous at
each point x = a that belongs to the domain of f ; in other words, f
is a continuous functions.

In the corresponding theorem for polynomials, Theorem 3.6, the
domain of polynomial functions is all of R. Rational functions may
have a limited domain. A careful domain analysis need be done before
declaring continuity at a point.

The theorem on Continuity of Rational Functions supersedes
the previous theorems of the same type (see Theorem 3.4 and Theo-
rem 3.6). Power functions and polynomials are special cases of rational
functions.
Continuing now with some examples.

c1f_t.pdf#defnrat
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Example 3.6. Calculate lim
x→2

5x2 + 8
3x+ 1

.

The previous examples were of Skill Level 0, let’s move to Skill Level
1 shall we?

Example 3.7. (Skill Level 1) Calculate lim
x→2

x− 2
x2 − x− 2

.

Here’s another example of the same type, but I’ll put the solution
elsewhere.

Example 3.8. (Skill Level 1): Evaluate the limit: lim
x→−1

x2 + 4x+ 3
2x2 + x− 1

.

In the previous examples, there were hidden factors that “cause” the
numerator and denominator to go to zero. Once these offending fac-
tors were located and cancelled out, we were back to a Skill Level 0
problem. Here is a rule you can go by . . . at least for now.
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Empirical Oberservation: At our level of play (Calculus I),
when we are trying to calculate the limit of a ratio of two
expressions, and the limit of both the numerator and denom-
inator is zero, then the numerator and denominator have a
common factor(s) that need to be cancelled

Now you try some.

Exercise 3.6. Calculate the limit: lim
x→2

x3 − x2 − 2x
x2 + x− 6

.

Exercise 3.7. Calculate the limit: lim
x→1/3

3x2 + 2x− 1
3x− 1

.

Exercise 3.8. Calculate the limit: lim
t→1

t−2 − 2t−1 + 1
t−1 − t−2 .
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Exercise 3.9. Calculate the limit: lim
x→3

x(x2 + 1)3

2x2 + 1
.

3.2. The Limit of Composite Functions

In the article on functions, there was extensive discussion on com-
posite functions. Throughout, we assume knowledge of composition
of functions.

In the sections on the Algebra of Limits, we built up some ideas and
techniques of evaluating the limit of rational functions. Even though
the theorem of the Algebra of Limits applied quite generally to all
functions, our techniques were limited to rational functions. Not all
functions are rational functions, i.e. there are functions out there that
are more complicated than mere ratios of polynomial functions.

This section addresses itself to limit problems involving functions
“built-up” through composition.

Let’s take an example to motivate our discussion.

Example 3.9. Calculate lim
x→3

(x2 + 1)23.

c1f_t.pdf#CompFuncs
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Exercise 3.10. Can you reason this one out? Calculate

lim
x→1

√
17x3 + 23x2 + 9.

Think it out before daring to look.

Theorem 3.8. (The Composite Limit Theorem) Let f and g be func-
tions that are compatible for composition, let a ∈ R. Suppose,

(1) limx→a g(x) exists, let b = limx→a g(x);
(2) b ∈ Dom(f), and limy→b f(y) = f(b) exists.

Then

lim
x→a f(g(x)), exists

and,
lim
x→a f(g(x)) = f(b),

or,
lim
x→a f(g(x)) = f( lim

x→a g(x)). (10)

c1f_t.pdf#defnCompatComp
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Proof.

Before we can apply this new limit result to problems that are beyond
our current level, it is necessary to introduce a continuity theorem for
root functions.

Theorem 3.9. (Continuity of the Root Function) Let n ∈ N. Define
f(x) = n

√
x, for a ∈ Dom(f). Then

lim
x→a f(x) = f(a)

or,
lim
x→a

n
√
x = n

√
a (11)

Proof.
Theorem Notes: The domain of the nth-root function: For f(x) = n

√
x,

we have

Dom(f) = R if n is odd

Dom(f) = [ 0,∞ ] if n is even

c1l_tp.pdf#pfLimComp
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Corollary 3.10. Suppose lim
x→a g(x) exists, then

lim
x→a

n
√
g(x) = n

√
lim
x→a g(x), (12)

provided that the number b := lim
x→a g(x) is within the domain of the

nth-root function.

Proof.

Now armed with these theorems, we now have the theoritical base to
solve more difficult problems

Example 3.10. (Skill Level 0) Calculate the limit: lim
x→2

√
x2 + 3x

Here’s another example of the same type.

Example 3.11. Evaluate the limit: lim
t→−1

(t3 − 5t+ 1)2/3.

c1l_tp.pdf#pfLimRoot1
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Exercise 3.11. Evaluate the limit: lim
x→4

4
√
x3 − 2x.

Justify your steps by explicitly referencing your steps in the manner
of these tutorials.

Exercise 3.12. Evaluate the limit: lim
x→1

(2x2 − 3x + 5)3/2. Justify
your steps by explicitly referencing your steps in the manner of these
tutorials.

From our experiences of the past examples and exercises we are ready
to make an observation that will greatly accelerate solving limiting
problems of the type we have been working on.

Theorem 3.11. (Continuity of Algebraic Functions) Let f be an al-
gebraic function, and let a ∈ Dom(f). Then

lim
x→a f(x) = f(a).

Proof.

c1f_t.pdf#algfuncs
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This means that algebraic functions are continuous at every point
with their domain of definition. The domain of algebra functions can
be limited by any root functions and quotients that make up its defini-
tion. A careful domain analysis must be made to determine whether
a given point x = a does or does not belong to the domain of the
algebraic function of interest.

Example 3.12. Evaluate the limit: lim
x→4

3
√
x2 − 3x− 3√
x+ 3
√

2x
.

Now let’s consider a little harder one.

Example 3.13. (Skill Level 1.3) Calculate the limit

lim
x→0

√
x2 + 1− 1

x2 .

Now, how about doing one yourself?

Exercise 3.13. Calculate the limit: lim
x→0

√
3x+ 4− 2

x
.
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Exercise 3.14. Evaluate the limit: lim
x→2

√
x− 2
x− 4

.

3.3. Other Tools: The Squeeze Theorem

Some limits problems are of such a nature that they defy easy evalu-
ation of their limit using the standard techniques described earlier in
this section. In this section we illustrate a useful method of evaluating
limits. The technique involves comparing the given limit problem with
other limit problems that are easier to evaluate.

The actual Squeeze Theorem is discussed elsewhere in more detail and
rigor.

The Squeeze Method

The Problem: Evaluate lim
x→a f(x).

The Guess: It helps in this method to guess the limit. Let’s say you
guess that lim

x→a f(x) = L. Where L is your guess — a specific numerical
value.

c1l_t2.pdf#Squeeze
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The Method : You must construct two functions g and h having the
following properties.

1. The functions g and h “bound” the function f :

g(x) ≤ f(x) ≤ h(x), (13)

for all x close to a.
2. The functions g and h are created so that

lim
x→a g(x) = lim

x→ah(x) = L, (14)

The common value of the limits in (14) is L, your guess hope-
fully.

Conclusion: Should you be able to carry out the game plan described
above, then by the Squeeze Theorem, we are emboldened to conclude

lim
x→a f(x) = L.

This technique of at first difficult to master. It’s the first of many
methods in mathematics that require the creation of inequalities.

c1l_t2.pdf#eqclose1
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Example 3.14. Argue that limx→0 x
2 sin( 1

x ) = 0.

4. Trigonometric Limits
Looking forward to our article on Differentiation, we now look at
certain important and basic limits of trigonometric functions. Another
reason we consider trigonometric functions is that they supply us with
a very nice application of the “squeeze techniques.”

We begin with an obvious limit statement — but mildly difficult to
prove. These limits are important in the study of continuity of the
trigonometric functions.

Theorem 4.1. The following limits are obtained.

lim
x→0

sin(x) = 0 lim
x→0

cos(x) = 1. (1)

Proof.

c1l_tp.pdf#pfSineTo0
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The proof is referenced above, but let me sketch the critical steps. In
the proof, we demonstrate the following inequality:

−x ≤ sin(x) ≤ x − π

2
< x <

π

2
. (2)

Obviously,
lim
x→0

(−x) = lim
x→0

x = 0. (3)

We are now in position to apply the squeeze method. In that method,
g(x) = −x, and h(x) = x. Line (2) represents condition (1) in the
squeeze method, and equation (3) represents condition (2) in the
squeeze method. Therefore, we can allowed to conclude

lim
x→0

sin(x) = 0. (4)

Of course the critical step is (2). This is proved in the proof.

Exercise 4.1. The limit lim
x→0

cos(x) = 1 follows from (4). Show this.

(Hint: cos(x) =
√

1− sin2(x), for −π/2 ≤ x ≤ π/2; apply Corol-
lary 3.10.)

c1l_tp.pdf#pfSineTo0
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Another set of limit problems,

lim
x→0

sin(x)
x

lim
x→0

cos(x)− 1
x

(5)

important to the discovery of the derivatives of the trigonometric
functions, is the purpose of our next study.

Example 4.1. Calculate numerically, the limits given in (5).

The results of Example 4.1 would suggest that

lim
x→0

sin(x)
x

= 1 lim
x→0

cos(x)− 1
x

= 0 (6)

This is how many mathematical inquiries are pursued: Defining the
problem; numerical investigations that would suggest analytical di-
rections; and analytical solution to the basic problem.



Section 4: Trigonometric Limits

Theorem 4.2. The following limits are obtained.

lim
x→0

sin(x)
x

= 1 lim
x→0

1− cos(x)
x

= 0. (7)

Proof.

The proof of this is referenced, but let me sketch the critical steps. It
is shown in the proof that

cos(x) ≤ sin(x)
x
≤ 1

cos(x)
− π

2
< x <

π

2
.

This is the critical inequality needed to “squeeze” sin(x)/x. Now by
Theorem 4.1, limx→0 cos(x) = 1, thus,

lim
x→0

cos(x) = lim
x→0

1
cos(x)

= 1.

Once again we are in the divine state to use the squeeze method, and
conclude

lim
x→0

sin(x)
x

= 1. (8)
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Exercise 4.2. The limit

lim
x→0

1− cos(x)
x

= 0

follows from (8) and (4). Show this.
(Hint : (1− cos(x))(1 + cos(x)) = sin2(x))

While we’re at it, let me demonstrate some ideas that utilize (1) and
(7). It is quite typical of mathematical thinking to take a basic set of
results and use them to make more complicated calculations.

Example 4.2. Calculate lim
x→0

sin(4x)
x

.

Here is another example of the same type.

Example 4.3. Calculate lim
x→0

sin(x/5)
x

.

Exercise 4.3. Calculate lim
x→0

sin(99x)
x

.
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Exercise 4.4. Calculate lim
x→0

x

sin(99x)
.

An important variation on (7) is the point of the next exercise.

Exercise 4.5. Show lim
x→0

tan(x)
x

= 1. (Hint : tan(x) = sin(x)
cos(x) .)

Because tan(x)/x satisfies the same limit equation as does sin(x)/x,
the same techniques used for sin(x)/x are valid for tan(x)/x.

Exercise 4.6. Calculate lim
x→0

tan(7x)
x

.

Another nail in this same coffin is the next example.

Example 4.4. Calculate lim
x→0

sin(4x)
sin(6x)

.

Exercise 4.7. Calculate lim
x→0

sin(5x)
sin(3x)

.

Exercise 4.8. Calculate lim
x→0

sin(x/5)
sin(3x)

.
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Exercise 4.9. Calculate lim
x→0

tan(8x)
tan(4x)

. (Can you guess the answer?)

5. One-Sided Limits
The past few sections we have been examining the limit concept:

lim
x→a f(x) = L,

where L is either a number of the symbol ±∞. These kinds of limits
are bi-directional, i.e. x < a and close to a and x > a and close to
a. As an additional tool for analyzing the behavior of functions near
a point x = a, we now take a one-sided or uni-directional approach.
Indeed, the behavior of a function f to the left of a may be radically
different from the behavior of f to the right of a.
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5.1. The Left-Hand Limit

Let f be a function and a a point. We write

L = lim
x→a−

f(x)

if it is true that as x gets closer and closer to a, and x < a, f(x) gets
closer and closer to L. In this case we say that L is the left-hand limit
of f , or the limit from the left of f , as x approaches a.

As you can see, this is the same Pedestrian Description of limit we
have seen before, except for the qualification that x < a;consequently,
you can expect the left-hand limit to function similarly to the (bi-
directional) limit.

Take note that the limit notation is a little different. We have written
x→ a−. The superscript of − connotes the limit from the left.

Here is an example along with some of standard techniques that are
used with the one-sided limit concept.
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Example 5.1. Consider the function:

f(x) =
{
x2 x ≤ 2
x3 x > 2.

Calculate: lim
x→2−

f(x).

Exercise 5.1. Define the function f by

f(x) =
{

6x2 − 3x+ 1 x < −1
3− 3x2 − 2x3 x ≥ −1

Evaluate lim
x→−1−

f(x).

Exercise 5.2. Consider the function:

f(x) =


x2 − 2x x ≤ −2
1− 2x3 −2 < x ≤ 1
7x− 1 x > 1.

Calculate: lim
x→−2−

f(x), and lim
x→1−

f(x).
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Exercise 5.3. Let a ∈ R. Prove that lim
x→a−

|x| = |a|.

The concept of left-hand limit applies equally well to infinite limits.

Example 5.2. Discuss: lim
x→1−

x

x− 1
.

Exercise 5.4. Discuss: lim
x→−1−

x2 − x− 3
1 + x

.

Exercise 5.5. Discuss: lim
x→1/2−

1√
1− 2x

.

Exercise 5.6. Discuss: lim
x→2−

x− 1
6− x− x2 .

5.2. The Right-Hand Limit

Let f be a function and a a point. We write

L = lim
x→a+

f(x)
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if it is true that as x gets closer and closer to a, and x > a, f(x) gets
closer and closer to L. In this case we say that L is the right-hand
limit of f , or the limit from the left of f , as x approaches a.

As you can see, this is the same Pedestrian Description of limit we
have seen before, except for the qualification that x > a; consequently,
you can expect the right-hand limit to function similarly to the (bi-
directional) limit.

Take note that the limit notation is a little different. We have written
x→ a+. The superscript of − connotes the limit from the right.

Let’s examine the same examples as in the previous section . . . giving
me a chance to practice my cut and paste techniques.

Example 5.3. (Continued from Example 5.1) Consider the func-
tion:

f(x) =
{
x2 x ≤ 2
x3 x > 2.

Calculate: lim
x→2+

f(x).
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Exercise 5.7. (Continued form Exercise 5.1) Define the function
f by

f(x) =
{

6x2 − 3x+ 1 x < −1
3− 3x2 − 2x3 x ≥ −1

Evaluate: lim
x→−1+

f(x).

Exercise 5.8. (Continued form Exercise 5.2) Consider the func-
tion:

f(x) =


x2 − 2x x ≤ −2
1− 2x3 −2 < x ≤ 1
7x− 1 x > 1.

Calculate: lim
x→−2+

f(x), and lim
x→1+

f(x).

Exercise 5.9. (Continued from EXERCSE 5.3) Let a ∈ R. Prove
that lim

x→a+
|x| = |a|.
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5.3. Two-sided and One-sided Limits Related

The relationship between these various types of limits is contained in
the following theorem.

Theorem 5.1. Two-sided and One-sided Limits Related Let f be a
function and a ∈ R.

(1) If lim
x→a f(x) exists, then lim

x→a−
f(x) and lim

x→a+
f(x) both exist,

and in this case

lim
x→a f(x) = lim

x→a−
f(x) = lim

x→a+
f(x).

(2) If lim
x→a−

f(x) and lim
x→a+

f(x) both exist, and if lim
x→a−

f(x) =

lim
x→a+

f(x), then lim
x→a f(x) exists, and

lim
x→a f(x) = lim

x→a−
f(x) = lim

x→a+
f(x).
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That was quite a mouthful.

Theorem Notes: We make several cogent remarks.

All that is being said in the pseudo-intellectual terminology of
the theorem is this: The two-sided limit exists if and only if (is equiv-
alent to) the left-hand limit equals the right-hand limit. In this case,
the value of the two-sided limit is the common value of the two-one
sided limits.

One of the major applications of this theorem is to prove that
a two-sided limit does not exist. From the first part of the theorem if
the two-sided limit exists, the two one-sided limits are equal to each
other; therefore, if the two one-sided limits either do not exist, or if
they do exist they differ from each other, we can deduce the two sided
limit does not exist.

In the previous section, One-Sided Limits, we have tacitly been
using this theorem in our work there — sorry I didn’t tell you!
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Techniques for showing the nonexistence of a limit
If limx→a− f(x) 6= limx→a+ f(x), then limx→a f(x) does not
exist.

Let’s apply this principle.

Example 5.4. Once again, consider the function,

f(x) =
{
x2 x ≤ 2
x3 x > 2.

Argue that lim
x→2

f(x) does not exist.

Exercise 5.10. (Continued form Exercise 5.1) Define the function
f by

f(x) =
{

6x2 − 3x+ 1 x < −1
3− 3x2 − 2x3 x ≥ −1
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Argue that lim
x→−1

f(x) does not exist.

Exercise 5.11. (Continued form Exercise 5.2) Define the function:

f(x) =


x2 − 2x x ≤ −2
1− 2x3 −2 < x ≤ 1
7x− 1 x > 1.

Argue that lim
x→−2+

f(x) d.n.e., and lim
x→1+

f(x) d.n.e.

Exercise 5.12. Discuss: lim
x→3+

x− 1
(x− 2)(x− 3)

.

Exercise 5.13. Prove: lim
x→a |x| = |a|, for any a ∈ R.

The last exercise (Exercise 5.13 is of sufficient importance that we
feel a need to elevate it to the status of a theorem.
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Theorem 5.2. For any a ∈ R,

lim
x→a |x| = |a|.

Proof. We cite Exercise 5.13.

Exercise 5.14. Calculate: lim
x→−1

|2x2 + 3x− 5|. (Hint : Review The-
orem 3.8 and Theorem 5.2)

Exercise 5.15. Calculate lim
t→4

∣∣∣∣ t− 6√
2t+ 1

∣∣∣∣.
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6. Limits Involving Infinity
In this section we discuss two types of limit operations: (1) limits
having infinite values; and (2) limits at infinity. Both of these two
types of limits have a strong graphical interpretations.

6.1. Infinite Limits

There are other ways that a limit does not exist. Consider the follow-
ing example to illustrate the kind of limiting problems of this section.

Example 6.1. Discuss lim
x→0

1
x2 .

In this section we consider limits of the following form:

lim
x→a f(x) = +∞ lim

x→a f(x) = −∞
These kind of limits are called infinite limits.

Here is a rough and ready description of these two limit concepts, the
rigorous definitions are given later.
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Pedestrian Description of limx→a f(x) = +∞.
As x gets closer and closer to a, f(x) gets larger and larger
without bound.

Pedestrian Description of limx→a f(x) = −∞.
As x gets closer and closer to a, f(x) gets smaller and smaller
in without bound.

Exercise 6.1. Contemplate the Pedestrian Descriptions, ponder the
concept of infinite limits, and try to formulate what I mean by the
phrase “without bound.”



Section 6: Limits Involving Infinity

6.2. Limits at Infinity

In this section we take up the meaning of the symbols

lim
x→+∞ f(x) = L lim

x→−∞ f(x) = L,

their calculation, and their geometric interpretation. Later, in another
section, we take up the meaning of this type of limit at the definition
level.
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7. Some Limits Do Not Exist
Lest you think that all limits exist, we have devoted this section to
limits problems wherein the limit does not exit.

Fundamentally, we classify two ways: undefined limits and infinite
limits. The latter topic has already been discussed, and the former is
taken up in this section.

7.1. Undefined Limits

When we write
lim
x→a f(x) = L,

what do we mean? From our Pedestrian Description, which is the only
guide we have of limit until the theoretical definition, this means that
as x gets closer and closer to a, f(x) gets closer and closer to L.

When we say limit

lim
x→a f(x), does not exist,
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we mean there does not exist a number L having the property that as
x gets closer and closer to a, f(x) is getting closer and closer to L.

One of our implicit understandings of limit is that a limit is unique.
That is, if we calculate limx→2 x

2 = 4, then we understand that there
is not some other limiting value for the same problem. Given that
the limit of limx→2 x

2 = 4 is a correct answer, we would reject the
statement limx→2 x

2 = 6.2490203309 as being a false statement.

Discerning the nonexistance of a limit puts more demand on our intu-
ition than calculating a limit that exists. One technique that is used
quite often to argue that a limit does not exist is to try to deny the
uniqueness of the limit. Let’s do an example to illustrate the idea
before formalizing it.

Example 7.1. Analyze the limit problem: lim
x→0

sin(
1
x

).

Example 7.2. Define the function f(x) =
{
x, x ≤ 2
x2, x > 2

. Analyze

the limit lim
x→2

f(x).
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The use of One-Sided Limits represents a general method of handling
piecewise defined functions, whether the limit exists or not.

In the past two examples we have exhibited a “standard technique”
for proving that a limit does not exist, let’s formalize it.

Technique For Arguing the Nonexistance of a Limit . Let f(x)
be a function and a ∈ R. In order to argue that limx→a f(x)
does not exits, first find a sequnce of x’s that approach a
such that f(x) gets closer and closer to a number L1. Then
find another sequence of x’s that approach a such that f(x)
gets closer and closer to another number L2. (L1 6= L2.)
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8. Working with the Definitions
In this section we introduce the precise definitions of limit, and learn
how to use them.

Click Here to go there.

9. Presentation of the Theory
In this section we present the proof of the theorems stated in this
article. The material is self-contained and can be read without any
prior knowledge. The only requirement is an enquiring mind, logical
mind, and a desire to know why things are the way they are. Click
Here.
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Verbalizations

The verbalization of the equation

lim
x→a(f(x) + g(x)) = lim

x→a f(x) + lim
x→a g(x)

is phrased as follows: “The limit of a sum is the sum of the
limits.”



Verbalizations

The verbalization of the equation

lim
x→a cf(x) = c lim

x→a f(x)

is phrased as follows: “The limit of a constant times a func-
tions is the constant times the limit of the function”



Verbalizations

The verbalization of the equation

lim
x→a(f(x)g(x)) = ( lim

x→a f(x))( lim
x→a g(x))

is phrased as follows: “The limit of a product is the product
of the limits.”



Verbalizations

The verbalization of the equation

lim
x→a

f(x)
g(x)

=
lim
x→a f(x)

lim
x→a g(x)

, lim
x→a g(x) 6= 0

is phrased as follows: “The limit of a quotient is the quotient
of the limits, provided that the limit of the denominator is
nonzero.”



Solutions to Exercises

2.1. In making out the table in Example 2.1, I had to decide at
what points to evaluate the function f(x) = sin(2x)/x. I decided to
use

x = 1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001.

What if the behavior of the function as observed using these values
differs from the behavior of the function using another set of values?
Our empirical observation that the function seems to tend to a value
of 2 is a function of the particular points we calculated. It may be
true, in fact, that there is no limit of this function!

Another point concerns numerics. As the x gets closer and closer to
0, we are dividing a number close to 0 (sin(2x)) by another number
(x) close to zero. In such a situation, your calculator may not give
an accurate calculation. Thus, the numbers we are using to judge the
trend in the function values may be unreliable. Exercise 2.1.



Solutions to Exercises (continued)

3.1. L3 = 28 and L4 = 9/2.

For the case of L3, when x ≈ 2, x2 = xx ≈ (2)(2) = 4. Now if x2 ≈ 4,
then 7x2 ≈ (7)(4) = 28. Thus, L3 = 28.

The evaluation of L4 is left to you, dear reader. Exercise 3.1.
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3.2. Algebra, to me, connotes a system of symbols (in the case of
college algebra, these symbols are oft times denoted by x, y, and z);
a system of operations used with these symbols (in college algebra,
these operations are addition, subtraction, multiplication, and divi-
sion); and a system of rules telling us how these symbols interact
with the operations.

Sounds familiar doesn’t it. I have tried to insinuate exactly such jar-
gon into my discussions on limits. In the case of limits, the system
of symbols consist of letters f , g, and h (and so on) that represent
functions and x, y, and z that represent the usual algebra quantities.
The Algebra of Limits Theorem delineates how the symbols interact
with certain operations: the operations of limit, addition, subtraction,
multiplication, and division. Exercise 3.2.
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3.3. We use the techniques of Example 3.1:

lim
x→3

x6 = lim
x→3

(xx5)

= ( lim
x→3

x)( lim
x→3

x5) / by (4)

= (3)(3)5
/ by Example 3.1

Exercise 3.3.
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3.4. I will not delineate the details on this answer. Just follow the
solution pattern in Example 3.2. As you go through the details, it
will re-enforce your reasoning processes. The bottom line:

lim
x→−2

(2x3 + x2 − 3x+ 2) = −4.

Let f(x) = 2x3 + x2 − 3x + 2. Then we make the summarize our
calculation:

lim
x→−2

f(x) = f(−2).

Thus, f is continuous at x = −2. Exercise 3.4.



Solutions to Exercises (continued)

3.5. The function f(x) = (2x3 + 6x2 + 3x − 4)3 is nothing more
than a polynomial; therefore, by the theorem above,

lim
x→−1

f(x) = f(−1) = (−3)3 = −27.

I hope you didn’t multiply out the expression (2x3 + 6x2 + 3x − 4)3

and then take the limit . . . that’s what I was warning you about!

See what I was referring to when I hinted in the statement of the
problem to understand the content of the theorem. The function was
a polynomial and so the limit is f(−1). This was Skill Level 0.

Exercise 3.5.
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3.6. We proceed along standard lines of inquiry. Begin by observing

lim
x→2

(x3 − x2 − 2x) = 23 − 22 − 2(2) = 0
and,

lim
x→2

(x2 + x− 6) = 22 + 2− 6 = 0

Because the limit of the denominator, the theorem on quotients does
not apply, yet, my Empirical Observation remains valid. We should
seek to factor the numerator and denominator.

lim
x→2

x3 − x2 − 2x
x2 + x− 6

= lim
x→2

x(x− 2)(x+ 1)
(x− 2)(x+ 3)

= lim
x→2

x(x+ 1)
x+ 3

/ Cancellation of Factors

= lim
x→2

2(3)
5

/ by (9)

=
6
5
.
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Exercise 3.6.
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3.7. This is basically an exercise in factoring. Find the common
factors and cancel them out. Then find the limit that was obscured
by those cancelled factors. Use good techniques. I’m trusting you to
show all details, even as I have in these tutorials.

lim
x→1/3

3x2 + 2x− 1
3x− 1

=
4
3
.

Exercise 3.7.
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3.8. Mere algebraic subterfuge trying to obfuscate our solution. The
first thing you should have thought of is to rid yourself of those das-
tardly negative exponents.

t−2 − 2t−1 + 1
t−1 − t−2 =

t−2 − 2t−1 + 1
t−1 − t−2

t2

t2

=
1− 2t+ t2

t− 1

=
t2 − 2t+ 1
t− 1

Now apply the techniques of the previous examples. (Answer : 0).
Exercise 3.8.
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3.9. See the solution to Exercise 3.5 for my thoughts and feelings
on the subject. The answer is

lim
x→3

x(x2 + 1)3

2x2 + 1
=

3,000
19

.

Exercise 3.9.



Solutions to Exercises (continued)

3.10. When x is close to 1, the radicand, 17x3 + 23x2 + 9 is close to
49. Now the square root of anything close to 49 is close to 7; therefore,
when x is close to 1,

√
17x3 + 23x2 + 9 is close to 7.

lim
x→1

√
17x3 + 23x2 + 9 = 7.

Hey, this is very natural! Exercise 3.10.



Solutions to Exercises (continued)

3.11. The device for making the argument is Corollary 3.10. By that
corollary,

lim
x→4

4
√
x3 − 2x = 4

√
lim
x→4

(x3 − 2x) / by Cor 3.10

= 4
√

56.

Make a conscience note of the fact that 56 lies within the domain of
the 4th-root function, i.e. 4

√
56 is defined.

Final Note: Let F (x) = 4
√
x3 − 2x. Then this exercise shows us that

lim
x→4

F (x) = F (4).

Exercise 3.11.
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3.12. Reason as follows:

lim
x→1

(2x2 − 3x+ 5)3/2 = lim
x→1

[(2x2 − 3x+ 5)3]1/2

= [ lim
x→1

(2x2 − 3x+ 5)3]1/2 / by (12)

= [(4)3]1/2 / by (8)

= 8.

Final Note: If we give our function a name like F (x) = (2x2 − 3x +
5)3/2, then we can observe that

lim
x→1

F (x) = F (1)

Exercise 3.12.
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3.13. Simply follow the solution in Example 3.13. Here are some
details:

Auxiliary Algebraic Calculation:
√

3x+ 4− 2
x

=
√

3x+ 4− 2
x

√
3x+ 4 + 2√
3x+ 4 + 2

=
3√

3x+ 4 + 2

Now for the limit calculations

lim
x→0

√
3x+ 4− 2

x
= lim
x→0

3√
3x+ 4 + 2

/ Aux. Calc.

=
3
4

Exercise 3.13.
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3.14. The limit of the numerator and denominator are both zero.
The Empirical Observation tells us that there is a common factor.

Preliminary Algebraic Step:
√
x− 2
x− 4

=
√
x− 2
x− 4

√
x+ 2√
x+ 2

=
x− 4

(x− 4)(
√
x+ 2)

=
1√
x+ 2

Finally,

lim
x→4

√
x− 2
x− 4

= lim
x→4

1√
x+ 2

=
1
4

Exercise 3.14.
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4.1. Proceed as follows.

lim
x→0

cos(x) = lim
x→0

√
1− sin2(x)

=
√

lim
x→0

(1− sin2(x)) / Lim. Comp.

=
√

1− 0 / by (4)

= 1

Where we have applied Corollary 3.10. (The function g is that state-
ment is g(x) = 1− sin2(x). By (4), limx→0(1− sin2(x)) = 1− 0 = 1.)

Exercise 4.1.
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4.2. I’ll sketch some details. Finish it off yourself.

1− cos(x)
x

=
1− cos(x)

x

1 + cos(x)
1 + cos(x)

=
1− cos2(x)
x(1 + cos(x))

=
sin2(x)

x(1 + cos(x))

=
sin(x)
x

sin(x)
1 + cos(x)

.

Now take the limit. “The limit of a product is the product of the
limits,” etc., etc. Exercise 4.2.
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4.3. You should have used the same techniques as the two previous
examples.

lim
x→0

sin(99x
x

= 99 lim
x→0

sin(99x)
99x

= 99.

That’s not too hard. Exercise 4.3.
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4.4. The answer is 1
99 silly! Of course you know

lim
x→0

x

sin(99x)
= lim
x→0

1
sin(99x)/x

.

The denominator of the latter limit is 99 by the previous exercise.
Exercise 4.4.
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4.5. You should have proceeded as follows:

lim
x→0

tan(x)
x

= lim
x→0

sin(x)
x cos(x)

= lim
x→0

sin(x)
x

1
cos(x)

= lim
x→0

sin(x)
x

lim
x→0

1
cos(x)

= (1)(1)

The last two limit calculations follow from (7) and (1) Exercise 4.5.
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4.6. You should have called on your experience gained form the
exercises and examples above.

lim
x→0

tan(7x)
x

= 7 lim
x→0

tan(7x)
7x

= 7(1) = 7.

Exercise 4.6.
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4.7.

lim
x→0

sin(5x)
sin(3x)

= lim
x→0

sin(5x)/x
sin(3x)/x

= lim
x→0

5 sin(5x)/5x
3 sin(3x)/3x

=
5
3

lim
x→0

sin(5x)/5x
sin(3x)/3x

=
5
3
.

Exercise 4.7.
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4.8. This is the same as the previous exercise, only you have to be
careful with your algebra — to not error!

lim
x→0

sin(x/)
sin(3x)

= lim
x→0

sin(x/5)/x
sin(3x)/x

= lim
x→0

(1/5) sin(x/5)/(x/5)
3 sin(3x)/3x

=
1/5
3

lim
x→0

sin(x/5)/(x/5)
sin(3x)/3x

=
1
15
.

See what I mean. You’ve got to be solid in algebra. Exercise 4.8.
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4.9. Just go at it the same as you would if it were a sine divided by
a sine!

lim
x→0

tan(8x)
tan(4x)

= lim
x→0

sin(8x)/x
sin(4x)/x

= lim
x→0

8 sin(8x)/8x
4 sin(4x)/4x

=
8
4

lim
x→0

sin(8x)/5x
sin(4x)/4x

= 2.

Exercise 4.9.
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5.1. We reason as before.

lim
x→−1−

f(x) = lim
x→−1−

6x2 − 3x+ 1 / since x < −1

= 10 / by (8)

Exercise 5.1.
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5.2. Merely two problems of the same type.

lim
x→−2−

f(x) = lim
x→−2−

(x2 − 2x) / since x < −2

= 4 / by (8)
and,

lim
x→1−

f(x) = lim
x→1−

(1− 2x3) / since −2 < x < 1

= −1 / by (8)

For this last evaluation, x < 1 and close to 1. Well, if x is close to
1, it will eventually be larger than −2. So for the purposes of the
evaluation of the function, we can assume that −2 < x < 1, hence for
that case f(x) = 1− 2x3. See how it work? Exercise 5.2.
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5.3. The first thing you have to remember is the meaning of the
symbols, in particular,

|x| =
{ −x x < 0
x x ≥ 0

I discern two cases for analysis. This case study is necessary to get rid
of the absolute value.

Case 1 : a ≤ 0. Now, if x is close to a and x < a, then because a ≤ 0
we conclude that x < 0 too. Thus,

|a| = −a |x| = −x.
Therefore,

lim
x→a−

|x| = lim
x→a−

(−x) / since x < 0

= −a / by (8)

= |a|. / since a ≤ 0

Case 2 : a > 0. Left to the reader — that’s you!
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Exercise 5.3.
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5.4. Let’s summarize the limiting properties of numerator and de-
nominator:

lim
x→−1−

(x2 − x− 3) = −3

lim
x→−1−

(1 + x) = 0

This indicates an infinite limit: Numerator having a finite nonzero
limit, and denominator a zero limit. The only question: Is the limit
positive or negative infinity?

Sign Analysis: When x < −1 and close to −1, the numerator is close
to −3 — so the numerator must be negative: x2 − x − 3 < 0. When
x < −1 and close to −1, the denominator is x + 1 < 0 (Note: x <
−1 =⇒ x+ 1 < 0). Thus,

x2 − x− 3 < 0, and x+ 1 < 0 =⇒ x2 − x− 3
x+ 1

> 0.

Conclusion: Thus, lim
x→−1−

x2 − x− 3
x+ 1

= +∞.
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Graphically Speaking : This function has a vertical asymptote that zips
off to positive infinity as x approaches −1 from the left.

Exercise 5.4.
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5.5. The function under consideration is f(x) =
1√

1− 2x
. Its do-

main is

Dom(f) = {x ∈ R | 1− 2x > 0 }
= {x ∈ R | x < 1/2 }
= (−∞, 1

2
)

As you can see, it doesn’t make sense to consider a two-sided limit
for this problem at x = 0. This is one of the utilities of the one-sided
limit concept — to be able to investigate the behavior of a function
at a boundary point.

Obviously,

lim
x→1/2−

√
1− 2x =

√
lim

x→1/2−
(1− 2x)

= 0.
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Thus the limit of the denominator is 0. The numerator is positive and
the denominator is positive; therefore,

lim
x→1/2−

1√
1− 2x

= +∞.

Exercise 5.5.
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5.6. Same as previous exercises:

lim
x→2−

(x− 1) = 2 / the numerator

lim
x→2−

(6− x− x2) = 0 / the denominator

The numerator is positive and approaching 2; the denominator is of
unknown sign and approaching 0. One way of determining the sign of
the denominator is to take a test point : Choose x < 2 and close to 2,
say x = 1.9; the value of the denominator is then 6−(1.9)−(1.9)2 > 0.

Therefore, when x < 2 and close to 2,

x− 1
6− x− x2 > 0.

Conclusion: lim
x→2−

x− 1
6− x− x2 = +∞.

Graphically Speaking : This function has a vertical asymptote that zips
off to positive infinity as x approaches 2 from the left. Exercise 5.6.
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5.7. We reason as before.

lim
x→−1+

f(x) = lim
x→−1+

3− 3x2 − 2x3
/ since x > −1

= 2 / by (8)

Exercise 5.7.
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5.8. Merely two problems of the same type.

lim
x→−2+

f(x) = lim
x→−2+

1− 2x3
/ since −2 < x < −1

= −15 / by (8)

For this last evaluation, x > −2 and close to −2. Well, if x is close to
−2, it will eventually be smaller than −1. So for the purposes of the
evaluation of the function, we can assume that −2 < x < −1, hence
for that case f(x) = 1− 2x3.

lim
x→1+

f(x) = lim
x→1+

7x− 1 / since x > 1

= 6 / by (8)

Exercise 5.8.
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5.9. The first thing you have to remember is the meaning of the
symbols, in particular,

|x| =
{ −x x < 0
x x ≥ 0

I discern two cases for analysis. This case study is necessary to get rid
of the absolute value.

Case 1 : a ≥ 0. Now, if x is close to a and x > a, then because a ≥ 0
we conclude that x > 0 too. Thus,

|a| = a |x| = x.

Therefore,

lim
x→a+

|x| = lim
x→a+

x / since x > 0

= a / by (8)

= |a|. / since a ≥ 0

Case 2 : a < 0. Left to the reader — that’s you!
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Exercise 5.9.
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5.10. From earlier exercises,

lim
x→−1−

f(x) = 10 6= 2 = lim
x→−1+

f(x).

Now call for Theorem 5.1. Exercise 5.10.
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5.11. From earlier exercises,

lim
x→−2−

f(x) = 4 6= −15 = lim
x→−2+

f(x),

lim
x→1−

f(x) = −1 6= 6 = lim
x→1+

f(x).

Now call for Theorem 5.1. Exercise 5.11.
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5.12. You should have begun your analysis by computing the limit
of the numerator and denominator separately.

lim
x→3+

(x− 1) = 2 / the numerator

lim
x→3+

(x− 2)(x− 3) = 0 / the denominator

Sign Analysis: The numerator is positive when x < 3 and close to 3,
since the limit of the numerator is 2 > 0. The denominator is negative.
We assume x < 3 and so close to 3 that x > 2. Thus, for the purpose
of the sign analysis, we take 2 < x < 3. The denominator then is

(x− 2)(x− 3) : (+)(−) = (−)

Conclusion: lim
x→3+

x− 1
(x− 2)(x− 3)

= −∞.

Graphically Speaking : This function has a vertical asymptote to the
right of x = 3 that plunges off to −∞. Exercise 5.12.
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5.13. Here, we simply invoke our (your?) memories. Put the fol-
lowing three facts together in an organized way to prove the result:
Theorem 5.1, Exercise 5.3, and Exercise 5.9. Good Luck!

Exercise 5.13.
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5.14. From Theorem 5.2), we have

lim
x→a |x| = |a| a ∈ R.

The function F (x) = |2x2+3x−5| is the composition of two functions:
f(x) = |x| and g(x) = 2x2 + 3x − 5 such that F = f ◦ g. Therefore,
by Theorem 3.8, the following manipulation is legal:

lim
x→−1

|2x2 + 3x− 5| = | lim
x→−1

(2x2 + 3x− 5)|
= | − 7|
= 7

Exercise 5.14.
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5.15. Invoking the continuity of absolute value, and Theorem 3.8,
we reason as follows:

lim
t→4

∣∣∣∣ t− 6√
2t+ 1

∣∣∣∣ =
∣∣∣∣limt→4

t− 6√
2t+ 1

∣∣∣∣
=
∣∣∣∣4− 6√

9

∣∣∣∣
=

2
3

Exercise 5.15.
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6.1. I address only the first. The phrase “f(x) gets larger and larger”
has an ambiguous meaning without the phrase “without bound.” For
example, for the function f(x) = 1 − x2, as x gets closer and closer
to 0, f(x) gets larger and larger, in fact, limx→0 f(x) = 1. But this is
not the sense that we truly mean when we say “f(x) gets larger and
larger.” In my little example, f(x) = 1 − x2, even though f(x) gets
larger and larger, as x approaches 0, the values of f are not getting
arbitrary large — they are bounded, i.e. f(x) = 1− x2 ≤ 1. Here, we
say the function f is bounded by 1 as x goes to 0.

When we say “f(x) gets larger and larger without bound” we mean
that f(x) is getting larger and larger in such a way that there is no
number M such that f(x) ≤M . That is, the values of f are not kept
from “going off to infinity.”

This concept can and will be defined later. Exercise 6.1.



Solutions to Examples

3.1. We solve this problem by building on the solution of each pre-
vious problem — a standard technique in mathematics.

lim
x→3

x2 = lim
x→3

(xx)

= ( lim
x→3

x)( lim
x→3

x) / by (4)

= (3)(3) / by Rule 2

= (3)2. (S-1)

Next,

lim
x→3

x3 = lim
x→3

(xx2)

= ( lim
x→3

x)( lim
x→3

x2) / by (4)

= (3)(3)2
/ by Rule 2 and (S-1)

= (3)3. (S-2)
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Next, again,

lim
x→3

x4 = lim
x→3

(xx3)

= ( lim
x→3

x)( lim
x→3

x3) / by (4)

= (3)(3)3
/ by Rule 2 and (S-2)

= (3)4. (S-3)

and finally,

lim
x→3

x5 = lim
x→3

(xx4)

= ( lim
x→3

x)( lim
x→3

x4) / by (4)

= (3)(3)4
/ by Rule 2 and (S-3)

= (3)5. (S-4)

Summary of Results: limx→3 x
n = 3n, for n = 1, 2, 3, 4, and 5.

Example 3.1.
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3.2. If we want to be logical and organized, we proceed by a series
of steps.

lim
x→2

(3x2 − 2x+ 1) = lim
x→2

3x2 − lim
x→2

2x+ lim
x→2

1 / by (2)

= 3 lim
x→2

x2 − 2 lim
x→2

x+ 1 / by (3) and Rule 1

= 3(22)− 2(2) + 1 / by (6) and Rule 2

= 9

Thus, lim
x→2

(3x2 − 2x+ 1) = 9.

Study this solution method. Take note of the use of the correct no-
tation. As you do problems at home, use the proper notation! You
should strive for understanding of the concepts, but also you should
strive to become literate mathematically: That means you need to be
able to read, write, and speak mathematics in a correct way.

Another point to be made in this example is the following one. Define
f(x) = 3x2 − 2x+ 1. Our problem was to compute limx→2 f(x), and
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the answer was limx→2 f(x) = 9. You probably have already observed
that 9 = f(2). Thus, for this example,

lim
x→2

f(x) = f(2).

Hummmmm . . . interesting. f is continuous at x = 2.
Example 3.2.
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3.3. This is now the height of triviality:

lim
x→−2

(
1
2
x4 − 2

3
x3 − 4

3
) = (

1
2

(−2)4 − 2
3

(−2)3 − 4
3

) = 12

lim
w→4

(2w2 − 6w + 1) = 2(4)2 − 6(4) + 1 = 9

Example 3.3.
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3.4. The first thing your eyes should see is that this is a limit of a
quotient of two functions. By (5), the limit of a quotient is the quotient
of the limits, provided the limit of the denominator is nonzero — this
is the basic content of (5). Therefore,

lim
x→−1

x2 − 3x+ 2
2x3 + x− 4

=
lim
x→−1

(x2 − 3x+ 2)

lim
x→−1

(2x3 + x− 4)
/ by (5)

=
(−1)2 − 3(−1) + 2
2(−1)3 + (−1)− 4

/ by (8)

= −6
7
.

The limit of the denominator was

lim
x→−1

(2x3 + x− 4) = −7 6= 0;

consequently, the invocation of (5) was indeed justified.
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If we give the function a name

f(x) =
x2 − 3x+ 2
2x3 + x− 4

,

then we can summarize the limit calculation of this example as

lim
x→−1

f(x) = f(−1),

since, as you can verify, f(−1) = −6/7.
Example 3.4.
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3.5. The problem is

lim
x→2

x3 − x2 − 4x+ 3
x2 + 3x− 6

.

This is the limit of a quotient. Thus

lim
x→2

x3 − x2 − 4x+ 3
x2 + 3x− 6

=
lim
x→2

(x3 − x2 − 4x+ 3)

lim
x→2

(x2 + 3x− 6)
/ by (5)

=
23 − 22 − 4(2) + 3

22 + 3(2)− 6
/ by (8)

= −1
4
.

Again take note of the observation:

lim
x→2

f(x) = f(2), f(x) =
x3 − x2 − 4x+ 3
x2 + 3x− 6

.

Thus, this function f is continuous at x = 2. Example 3.5.
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3.6. The theorem on Continuity of Rational Functions streamlines
the process considerably.

lim
x→2

5x2 + 8
3x+ 1

=
5(2)2 + 8
3(2) + 1

=
28
7

= 4.

Example 3.6.
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3.7.

We have the limit of the quotient of two functions. From (5), the limit
of a quotient is the quotient of the limits, provided the limit of the
denominator is nonzero. The limit of the denominator

lim
x→2

(x2 − x− 2) = 22 − 2− 2 = 0.

Hence, Skill Level 1! Notice also, that the limit of the numerator is

lim
x→2

(x− 2) = 0.

A double whammy. We have the following situation: When x ≈ 2,
(x− 2)/(x2 − x− 2) is the ratio of two small numbers. But all is not
lost:

lim
x→2

x− 2
x2 − x− 2

= lim
x→2

x− 2
(x+ 1)(x− 2)

= lim
x→2

1
x+ 1

=
1
3
.
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You did see the common factor, didn’t you?

Thus,

lim
x→2

x− 2
x2 − x− 2

=
1
3
.

Example 3.7.
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3.8. Again, the limit of the denominator is zero. What saves us is
the fact that the limit of the numerator is zero too.

lim
x→−1

(x2 + 4x+ 3) = (−1)2 + 4(−1) + 3 = 0

lim
x→−1

(2x2 + x− 1) = 2(−1)2 + (−1)− 1 = 0

As in Example 3.7, the numerator and denominator share a common
factor:

lim
x→−1

x2 + 4x+ 3
2x2 + x− 1

= lim
x→−1

(x+ 1)(x+ 3)
(x+ 1)(2x− 1)

= lim
x→−1

x+ 3
2x− 1

=
2
−3

= −2
3

Example 3.8.
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3.9. In one sense, this is an easy problem. We are taking the limit of
a polynomial; the techniques in the section on the Algebra of Limits
apply. In particular, (8) applies, or, for that matter, (9) does too. That
having been said, we want to analyze this function as a composite.
The function is

F (x) = (x2 + 1)23.

Now F is the composition of the functions:

f(x) = x23

and,
g(x) = x2 + 1

These definitions having been made, we obviously have

F (x) = f(g(x)).

The advantage of this point of view is that we have a “complicated
function,” that’s F , that has been de-composed into two “simple func-
tions,” those are f and g.

c1f_t.pdf#defnpoly
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From our previous work, when

x ≈ 3, implies g(x) ≈ g(3) = 10
since,

lim
x→3

g(x) = g(3). / By (8).

But,
g(x) ≈ 10, implies f(g(x)) ≈ f(10) = 1023

since,
lim
x→10

f(x) = f(10). / By (8).

Thus,
x ≈ 3, implies f(g(x)) ≈ 1023.

That was a bit awkward. Basically what I am saying is when x is
“close” to its limit of 3, g(x) will be “close” to its limit of g(3) = 10.
But f , in turn takes in the values of g, and these values of g are close
to 10, so f operating on those values of g, i.e. f(g(x)), will be close
to its limit of f(10).

This is a heuristic way of calculating the limit of a composite function
without the support of basic theory. Below you can find a statement
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of the theorem we need. The above reasoning is useful to get a “feel”
for what is going on.

Example 3.9.
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3.10. The function is F (x) =
√
x2 + 3x is a composition of two

other functions: the outer function, f(x) =
√
x, and the inner function

g(x) = x2 + 3x. (Verify: F = f ◦ g.) The essence of the Theorem 3.8
is that you can take the limit operation inside the outer function:

lim
x→a f(g(x)) = f( lim

x→a g(x))

Do you see how the limit is moved to the inside (or to the right of)
the function f? Now let’s apply Theorem 3.8 to this problem:

lim
x→2

√
x2 + 3x =

√
lim
x→2

(x2 + 3x),

provided limx→2 x
2 + 3x exists (it does here), and the limiting value

belongs to the domain of the outer function. In this case, the limit
value is limx→2 x

2 + 3x = 10; and 10, in turn, being nonnegative falls
within the domain of the outer function, the square root function.



Solutions to Examples (continued)

Now that we have run through in our minds the justification for the
steps we can finish up.

lim
x→2

√
x2 + 3x =

√
lim
x→2

x2 + 3x,

=
√

10.
Thus,

lim
x→2

√
x2 + 3x =

√
10.

Final Note: Observe lim
x→2

F (x) = F (2), where F is defined above as

F (x) =
√
x2 + 3x.

Example 3.10.
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3.11. The function we are working with is F (t) = (t3−5t+1)2/3. This
function is the composition of two: the outer function, f(t) = t2/3, and
the inner function, g(t) = t3 − 5t+ 1. (Verify that F = f ◦ g.)

lim
t→−1

(t3 − 5t+ 1)2/3 = ( lim
t→−1

(t3 − 5t+ 1))2/3

= 52/3.
Thus,

lim
t→−1

(t3 − 5t+ 1)2/3 = 52/3.

The above method is the usual method utilized by students at this
level of play; however, technically, we need to check on the conditions
of Theorem 3.8. Take a quick look at the theorem. The first condition
is O.K. since g(t) = t3 − 5t + 1 and limt→−1 g(t) = 5. The second
condition requires the limit of the inner function be in the domain
of the outer function: The number 5 is indeed inside the domain of
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f(t) = t2/3. Finally, the second condition requires that limt→5 f(t) =
f(5). Let’s argue that.

lim
t→5

f(t) = lim
t→5

t2/3

= lim
t→5

t1/3 t1/3

= (lim
t→5

t1/3)(lim
t→5

t1/3) / by (4)

= 51/3 51/3
/ by (11)

= 52/3

= f(3)

Do you see how we use the theorems and techniques to investigate a
mathematical point of interest?

Final Note: Note that lim
t→−1

F (t) = F (−1), where, F is defined above

as F (t) = (t3 − 5t+ 1)2/3. Example 3.11.



Solutions to Examples (continued)

3.12. We are still at Skill Level 0, the function involved here is an
algebraic function. The limiting point is 4 (we are taking the limit as
x goes to 4) is in the domain of the function (how do I know that?).
Thus,

lim
x→4

3
√
x2 − 3x− 3√
x+ 3
√

2x
=

3
√

42 − 3(4)− 3√
4 + 3

√
2(4)

/ by Theorem 3.11

=
1
4

Note: The reason that I knew that 4 was in the domain of the function
is that (1) for x = 4, all the roots could be computed and (2) the
denominator did not evaluate to zero when I put x = 4. In fact, the
domain of this function is ( 0,∞ ).

Example 3.12.
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3.13. There are some tricky bits here. Notice that the numerator
and denominator both go to zero. My Empirical Observation is still
valid, we just have to work a little harder (Skill Level 1.3). To reveal
the common factor, we use the conjugate trick from algebra.

lim
x→0

√
x2 + 1− 1

x2 = lim
x→0

√
x2 + 1− 1

x2

√
x2 + 1 + 1√
x2 + 1 + 1

/ conjugate

= lim
x→0

(x2 + 1)− 1
x2(
√
x2 + 1 + 1)

= lim
x→0

x2

x2(
√
x2 + 1 + 1)

= lim
x→0

1√
x2 + 1 + 1

=
1
2
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Thus,

lim
x→0

√
x2 + 1− 1

x2 =
1
2
.

Example 3.13.
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3.14. If you were to examine the graph of the function sin( 1
x ), you

will see that is oscillates “wildly” as you plot the graph closer and
closer to x = 0. Multiplication of sin( 1

x ) tends to dampen this oscilla-
tion down. However how do we make a formal argument?

In the Squeeze Method, the function f(x) = x2 sin( 1
x ). This is our

“target function.” We want to squeeze f between two other functions
(yet to be determined), g and h, such that both functions g and h go
to zero. How do we create these two functions? Typically by trial and
error !

Observe that
−1 ≤ sin( 1

x ) ≤ 1 ∀x 6= 0.

Therefore, for any x 6= 0, if we multiply all sides of this double in-
equality relation by the nonnegative number x2 we obtain

−x2 ≤ x2 sin( 1
x ) ≤ x2 (S-5)

Think of the functions g and h to be

g(x) = −x2 h(x) = x2.
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With this choice of function, (S-5) then states

g(x) ≤ f(x) ≤ h(x) ∀x.
We have then condition (1) ((13), i.e., we have squeeze f between two
much simpler function g and h.

Observe also that

lim
x→0

g(x) = lim
x→0

(−x2) = 0

lim
x→0

h(x) = lim
x→0

x2 = 0.
Thus,

lim
x→0

g(x) = lim
x→0

h(x) = 0.

This last equation is condition (2) of the Squeeze Method, equation
(14).

We have satisfied conditions (1) and (2) of the Squeeze Method
and are therefore entitled to make the conclusion,

lim
x→0

x2 sin( 1
x ) = 0.
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Example Notes: Note that we were able to “get rid” of the most com-
plex component, sin( 1

x ), of the function f without “changing” the
limit. This is quite often the goal of the manipulations: to eliminate
the more complex components of the target function by bounding it
by other, more easily manageable functions.

The meaning of the phrase “complex components” has variable
meaning. Complex component may mean a ugly algebraic expression,
or it may mean a “simple” expression whose limit is difficult to discern
or does not exist.

In the case of this problem, the function sin( 1
x ) is a simple func-

tion whose limit, as x approaches zero, does not exist. That being the
case, it is difficult to argue rigorously that the limit is zero—we must
eliminate it. The device used is the Squeeze Method.

Example 3.14.
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4.1. The following tables need to be studied.

y = sin(x)/x
x 1.0 0.5 0.1 0.05 0.01 0.005 0.001
y 0.8415 0.9588 0.9983 0.9996 0.99998 0.99999 0.999999

y = (cos(x)− 1)/x
x 1.0 0.5 0.1 0.05 0.01 0.005 0.001
y -0.4597 -0.2448 -0.04996 -0.02499 -0.00499 -0.0025 -0.0005

Notes: It appears sin(x)/x approaches 1 as x goes to 0; and it appears,
though not as strongly, that (cos(x)−1)/x tends to 0 as x tends to 0.

All entries on the second table are negative since cos(x) ≤ 1.
Example 4.1.
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4.2. In (7), we have developed the basic limit result:

lim
x→0

sin(x)
x

= 1.

A rough translation of this would is as follows: When you take the
sine of a number getting closer and closer to 0, and divide by that
exact same number, then the ratio of the two tend to 1. For example,
(7) can be construed as saying

lim
x→0

sin(4x)
4x

= 1,

since we are dividing by the same quantity we are taking the sine of
in the numerator, and ax x tends to 0, so does 4x as well.

With that discussion as background, let us make the required calcu-
lation:

lim
x→0

sin(4x)
x

= 4 lim
x→0

sin(4x)
4x

= 4(1) = 4,

where we have multiplied and divided by 4 so that the argument of
the sine function in the numerator exactly matched the denominator
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expression. This newly constructed limit is 1, by the discussion above;
therefore, the limit of the original expression is 4.

Example 4.2.
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4.3. As in the previous example, we insert a “fudge factor” so that
the denominator matches the argument of the sine function.

lim
x→0

sin(x/5)
x

= (1/5) lim
x→0

sin(x/5)
x/5

=
1
5
. / by (7)

See how that works? Example 4.3.
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4.4. The problem

lim
x→0

sin(4x)
sin(6x)

is the limit of a ratio of two sine functions both of which go to zero as
x tends to zero, by (1). Consequently, we cannot see what the value
of the limit is. We need a device that will reveal it for us.

Here is the trivially tricky trick: We observe that

sin(4x)
sin(6x)

=
sin(4x)/x
sin(6x)/x

. (S-6)

In other words, we divide the numerator and denominator by x. What
does this get us? It gets us back to familiar territory, partner! We
have seen that the ratios such as the ones in the numerator and the
denominator in (S-6) have limits we can compute.
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Therefore,

lim
x→0

sin(4x)
sin(6x)

= lim
x→0

sin(4x)/x
sin(6x)/x

= lim
x→0

4 sin(4x)/4x
6 sin(6x)/6x

=
4
6

lim
x→0

sin(4x)/4x
sin(6x)/6x

=
2
3
.

Thus,

lim
x→0

sin(4x)
sin(6x)

=
2
3

Example 4.4.
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5.1. The one-sided limit concept provides an important tool for
working with piecewise defined functions. We reason as follows:

lim
x→2−

f(x) = lim
x→2−

x2
/ since x < 2

= 4 / by (8)

Because f is a piecewise defined function, f is a little more difficult to
work with. The one-sided limit is very useful in this regard. Note that
we simplify the limit problem by making the use of the assumption
that x < 2 in this limit problem. Once we do this, we have a more
conventional limit problem to evaluate. Example 5.1.
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5.2. This is the limit of a quotient of two expressions. The limit of
the numerator is limx→1− x = 1 . . . that’s good; whereas the limit of
the denominator is limx→1−(x− 1) = 0 . . . that’s bad.

At this point it is important to do a sign analysis of the expression.
When x is close to 1, and x < 1, we know that x > 0 (that’s the
numerator), and x − 1 < 0 (that’s the denominator). Thus, when
x < 1 and close to 1, the expression is x/(1− x) < 0, is negative.

Therefore, when x < 1, and x is close to 1, x/(1 − x) is a negative
quantity, the numerator is close to 1, but the denominator is close to
0. We see in this way that x/(1−x) is extremely small in the negative
direction. The closer x gets to 1, with x < 1, the smaller x/(1− x) is
without bound.

Conclusion: lim
x→1−

x

1− x = −∞.

Graphically Speaking : This means that the graph of the function has
a vertical asymptote at x = 1. As you approach 1 from the left-hand
side, the graph plunges to −∞.
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Example 5.2.
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5.3. The one-sided limit concept provides an important tool for
working with piecewise defined functions. We reason as follows:

lim
x→2+

f(x) = lim
x→2+

x3
/ since x > 2

= 8 / by (8)

Note that we simplify the limit problem by making the use of the
assumption that x > 2 in this limit problem. Once we do this, we
have a more conventional limit problem to evaluate. Example 5.3.



Solutions to Examples (continued)

5.4. From Example 5.1 we have

lim
x→2−

f(x) = 4,

and by Example 5.3 we have

lim
x→2+

f(x) = 8.

Thus, the left-hand limit is different from the right-hand limit; there-
fore, by Theorem 5.1, the two-sided limit does not exist, i.e.

lim
x→2+

f(x) d.n.e.

That is very mechanical. Example 5.4.
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6.1. We begin by using the methods of the previous section, in par-
ticular, we will try the technique of showing the nonexistence of limits.
Choose a sequence of x’s approaching 0.

an =
1
n
, n = 1, 2, 3, 4, . . . .

Note that when n gets larger and larger, an gets closer and closer to
0. Now if we define f(x) = 1/x2, we can now examine f(an).

f(an) =
1
a2
n

but an =
1
n

=
1

(1/n)2

= n2 n = 1, 2, 3, 4, . . . .

Now, as n gets larger and larger, an gets closer and closer to 0, and
f(an) = n2 gets larger and larger without bound. That is, f(an) is
not even approaching a number. For this reason, we deduce that the
limit does not exist (as a finite number).
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However, unlike the previous examples seen in these notes, we cannot
assign a numerical value to the limit problem; in this case we write

lim
x→0

1
x2 = +∞.

A study of the graph of f(x) = 1/x2, indicates the situation: The
function f has a vertical asymptote at x = 0 that “zips” off to +∞
— like every good Akron U. student. Example 6.1.



Solutions to Examples (continued)

7.1. Can you imagine what the graph of this function looks like? For

reference let f(x) = sin(
1
x

).

Case 1 : We begin by considering some x’s getting closer and closer
to 0, and study what the corresponding values of f(x) do. The x’s I
want to choose are numbers of the form:

an =
1

2πn
, n = 1, 2, 3, 4, . . .

Note that these values of x are getting closer and closer to 0 as you
consider larger and larger values of n. Now, substituting these x’s into
the function we get

f(an) = sin(
1
an

) n = 1, 2, 3, 4 . . .

= sin(2πn) n = 1, 2, 3, 4 . . .
= 0 n = 1, 2, 3, 4 . . .
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Thus, f(an) = 0, for n = 1, 2, 3, 4, . . . . Thus as x = an gets closer
and closer to 0, f(an) is getting closer and closer to 0 too — if fact,
f(an) is constantly 0.

Conclusion Case 1 : It appears that the limit is 0.

Case 2 : Now choose different x’s getting closer and closer to 0, but
this time with functional values having a different limit. Define,

bn =
2

(2n− 1)π
, n = 1, 2, 3, 4, . . .

Notice again that x = bn is getting closer and closer to 0 as n gets
larger and larger. Finally,

f(bn) = sin(
1
bn

) n = 1, 2, 3, 4 . . .

= sin(
(2n− 1)π

2
) n = 1, 2, 3, 4 . . .

= 1 n = 1, 2, 3, 4 . . .
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Thus, f(bn) = 1, for n = 1, 2, 3,4, . . . . Thus as x = bn gets closer
and closer to 0, f(bn) is getting closer and closer to 1 — if fact f(bn)
is constantly b.

Conclusion Case 2 : It appears that the limit is 1.

Discussion: When we look at a one particular sequence of x’s, the
numbers an, the function appears to approach 0; however, if we look
and another sequence of x’s, the numbers bn, the function appears
to approach 1. From this we deduce that the limit does not exist !
This is because if the limit did exist, it would be impossible for the
function to be approaching two different values — that would deny
the uniqueness of the limit.

Conclusion: lim
x→0

sin( 1
x ) does not exist.

The Geometry : The function f(x) = sin( 1
x ) crosses the x-axis infin-

itely many times close to x = 0. The numbers an are the x-intercepts
of the function f . As you know, the sine function has a series of high
points. This function f has infinitely many high points closer to 0.
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The numbers bn were chosen to be the x-coordinates of these high
points.

Graphing the function often helps you to choose the two sets of x’s
that have different limiting characteristics.

Student Recommendation: Study how this argument goes, the reason-
ing and the notation.

Example 7.1.
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7.2. This is a piecewise defined function. The function f equals one
expression on the left side of x = 2, and another expression on the
other side of x = 2. We argue that the limit does not exist by choosing
a set of x’s on each side.

Case Study 1 : Choose a sequence of x’s smaller than 3 yet getting
closer and closer to 2. How can I use good mathematical notation to
express this idea? Define an, a subscripting notation is used because
the value of a will depend on n, by

an = 2− 1
n
, n = 1, 2, 3, 4, . . . .

Note that an is getting closer and closer to 2 as n gets larger and
larger. Now take our an and find their functional values.

f(an) = an / since an < 2

= 2− 1
n
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The value of n controls which an we are looking at. To make an get
closer and closer to 2, we must let n get larger and larger. Now then
n is very large, an ≈ 2, and f(an) ≈ 2, as well.

Conclusion Case 1 : Thus, f seems to be approaching 2 as x ap-
proaches 2.

Case Study 2 : Now take a sequence of x’s to the right of x = 2 but
getting closer and closer to 2, say

bn = 2 +
1
n
, n = 1, 2, 3, 4, . . . .

Observe that bn approaches 2, as n gets large. Then,

f(bn) = b2n / since bn > 2

= (2 +
1
n

)2

= 4 +
2
n

+
1
n2

Now when n is large, bn ≈ 2, and f(bn) ≈ 4.
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Conclusion Case 2 : f seems to be approaching 4 as x approaches 2.

Final Conclusion: The limit does not exist because the function ap-
pears to be approaching values of 2 and 4 as x approaches 2.

Example 7.2.
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