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toc10. Presentation of the Theory

In this section we present some to the theory referenced within the
main tutorial. We begin with a more rigorous discussion of the defi-
nition of the definite integral.

10.1. The Fundamental Theorem of Calculus

In this section we look at a series of theorems referred to as the Fun-
damental Theorems of Calculus.

Theorem 10.1. (Fundamental Theorem of Calculus, Part I.) Let f
be continuous over the interval [ a, b ], then antiderivatives of f exist.
In particular, define a new function F on the interval [ a, b ] by,

F (x) =
∫ x

a

f(t) dt,
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then F is an antiderivative of f ; this means that for any x ∈ ( a, b ),
F ′(x) = f(x).

Proof. First note that since f is continuous on [ a, b ], then for any
x ∈ ( a, b ), f will be continuous on [ a, x ]. This means that∫ x

a

f(t) dt exits;

consequently, the function F (x) is well-defined (has meaning).

Let x ∈ ( a, b ). We want to prove that F ′(x) exists, but also we want
to prove that F ′(x) = f(x). The argument is clever, and uses the
Intermediate Value Theorem. Indeed, for any h > 0

F (x+ h)− F (x) =
∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

=
∫ x+h

x

f(t) dt.
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Let ε > 0. The function f is continuous at x so there exists a number
δ > 0 such that if

0 < |t− x| < δ =⇒ |f(t)− f(x)| < ε.

Choose h so that 0 < h < δ, then∣∣∣∣F (x+ h)− F (x)
h

− f(x)
∣∣∣∣ =

∣∣∣∣∣ 1h
∫ x+h

x

f(t) dt− f(x)

∣∣∣∣∣
=

∣∣∣∣∣ 1h
∫ x+h

x

[f(t)− f(x)] dx

∣∣∣∣∣
≤ 1
h

∫ x+h

x

|f(t)− f(x)| dx

<
1
h

∫ x+h

x

ε dx

=
1
h
εh

= ε
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This proves, by way of the definition of limit that,

lim
h→0

F (x+ h)− F (x)
h

= f(x),

but, notationally, the left-hand side is F ′(x); thus F ′(x) = f(x). �

Theorem 10.2. (Fundamental Theorem of Calculus, Part II.) Let
f be integrable over the interval [ a, b ], and suppose there is an anti-
derivative F of f over the interval ( a, b ). Then,∫ b

a

f(x) dx = F (b)− F (a).

Proof. Let us give ourself any partition of the interval [ a, b ] into n
subintervals:

a = x0 < x1 < x2 < x3 < · · · < xn−1 < xn = b.
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For each i, i = 1, 2, 3, . . . , n, by the Mean Value Theorem, choose
x∗i ∈ (xi−1, xi ) so that

F (xi)− F (xi−1) = F ′(x∗i )(xi − xi−1) = f(x∗i )(xi − xi−1),

the last equality due to the assumption the F is an antiderivative of
f over the interval ( a, b ).

Then

F (b)− F (a) =
n∑
i=1

[F (xi)− F (xi−1)]

=
n∑
i=1

f(x∗i )(xi − xi−1)

=
n∑
i=1

f(x∗i )∆x.
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Thus,

F (b)− F (a) =
n∑
i=1

f(x∗i )∆x. (1)

The right-hand side of (1) is a Riemann Sum. Since f is integrable
over the interval [ a, b ], we know that∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆x = F (b)− F (a).

We have argued that∫ b

a

f(x) dx = F (b)− F (a),

and this ends the proof. �
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Theorem 10.3. Let f be an even function over the symmetric inter-
val [−a, a ], then ∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx.

Proof. The proof is a very nice application of the technique of substi-
tution of variables.

Suppose a function f is an even function over the interval [−a, a ],
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then∫ a

−a
f(x) dx

=
∫ 0

−a
f(x) dx+

∫ a

0
f(x) dx / Additivity Limits

= −
∫ 0

a

f(−u) du+
∫ a

0
f(x) dx /

{
u = −x
du = −dx

= −
∫ 0

a

f(u) du+
∫ a

0
f(x) dx / f is even

=
∫ a

0
f(u) du+

∫ a

0
f(x) dx / reverse limits

=
∫ a

0
f(x) dx+

∫ a

0
f(x) dx / replace u with x

= 2
∫ a

0
f(x) dx
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Theorem 10.4. Let f be an odd function over the symmetric interval
[−a, a ], then ∫ a

−a
f(x) dx = 0. (2)

Proof. The proof is a very nice application of the technique of substi-
tution of variables.

Suppose a function f is an odd function over the interval [−a, a ],
then∫ a

−a
f(x) dx

=
∫ 0

−a
f(x) dx+

∫ a

0
f(x) dx / Additivity Limits

= −
∫ 0

a

f(−u) du+
∫ a

0
f(x) dx /

{
u = −x
du = −dx

= −
∫ 0

a

(−f(u)) du+
∫ a

0
f(x) dx / f is even
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=
∫ 0

a

f(u)) du+
∫ a

0
f(x) dx

= −
∫ a

0
f(u) du+

∫ a

0
f(x) dx / reverse limits

= −
∫ a

0
f(x) dx+

∫ a

0
f(x) dx / replace u with x

= 0 �
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