
~w
calculus
menu

THE UNIVERSITY OF AKRON
The Department of Mathematical Sciences

Article: Integration

Directory

• Table of Contents
• Begin tutorial on Integration

Copyright c©1995–1997 D. P. Story
Last Revision Date: 4/18/1997
Comments by e-mail: dpstory@uakron.edu

mailto:dpstory@uakron.edu


Integration

Table of Contents
1. Introduction
2. The Indefinite Integral

2.1. The Indefinite Integral Notation
2.2. An Application: Velocity and Acceleration

3. Some Basic Integration Formulas
3.1. Specific Formulas
3.2. General Formulas

4. The Technique of Substitution
4.1. Developing the Idea: Substitution
4.2. Learning the Technique of Substitution
4.3. The Generalized Power Rule
4.4. Integration of Trig Functions

5. Substitution: Two Attitudes
5.1. Formula Checking
5.2. True Substitution of Variables



Table of Contents (continued)

6. Strategies for Integration
6.1. Knowledge of the Integral Formulas
6.2. Knowledge of the Techniques
6.3. Obtain a History of Problem Solving
6.4. Learn from Problem Solving
6.5. Patterned Thought: The Butterfly Method

7. The Definite Integral
7.1. A Little Problem with Area

• The Problem • The Idea of the Solution • The Technical
Details • Passing to the Limit • Solution to our Problem

7.2. The Definite Integral
7.3. The Existence of the Definite Integral
7.4. Summation Techniques
7.5. Evaluation by Partitioning
7.6. Properties of the Definite Integral

8. Evaluation of the Definite Integral
8.1. The Fundamental Theorem of Calculus
8.2. The Mechanics of Evaluation

9. Techniques of Evaluating Definite Integrals

c1i_t1.pdf#TheDefiniteIntegral
c1i_t1.pdf#Morass
c1i_t1.pdf#ssTheAreaProblem
c1i_t1.pdf#ssIdeaOfSolution
c1i_t1.pdf#ssTechDet
c1i_t1.pdf#ssPassToLim
c1i_t1.pdf#ssSoltoProb
c1i_t1.pdf#DefnDefIntJG
c1i_t1.pdf#Existence
c1i_t1.pdf#Summation
c1i_t1.pdf#EvalPart
c1i_t1.pdf#PropDefInt
c1i_t1.pdf#EvalDefInt
c1i_t1.pdf#FundThrmCalc
c1i_t1.pdf#ExmplInt
c1i_t1.pdf#TechEvalDefInt


Table of Contents (continued)

9.1. EBLO Tricks
9.2. Definite Integration and Substitution
9.3. Taking Advantage of Symmetry

10. Presentation of the Theory

c1i_t1.pdf#EvalTricks
c1i_t1.pdf#DintSubs
c1i_t1.pdf#IntSym
c1i_tp.pdf#IntThry


1. Introduction
Prerequisite: Limits, Continuity, Differentiation.

2. The Indefinite Integral
We begin, as always, with a definition.

Definition 2.1. Let f be a function defined over an interval ( a, b ).
A function F is called an indefinite integral, or an antiderivative, of f
over the interval ( a, b ) provided

F ′(x) = f(x) for all x ∈ ( a, b ).

Definition Notes: At our level of play, the reference to the interval
( a, b ) is suppressed; consequently, we speak of F as an indefinite
integral, or antiderivative, of f .

An antiderivative of a function f is a function, F . This point
must always be kept in mind: The antiderivative of a function is a
function.
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The term antiderivative is more descriptive of the concept than
the term indefinite integral. An antiderivative of f is any function,
F , whose derivative is f . The term indefinite integral comes from the
important role it plays in Definite Integration.
Let’s have a quick example to illustrate the definition of antiderivative.

Illustration 1. For the function f(x) = 2x, the function F (x) = x2

is an antiderivative of f since F ′(x) = 2x = f(x), for all x ∈ R.

Question. Can a function have more than one antiderivative? If the
answer is ‘yes,’ in general, how many antiderivative does a given func-
tion have? (Use f(x) = 2x as an example to help you reason.)

Let’s look an elementary example before continuing.

Example 2.1. Consider the function f(x) = x3, find an antideriva-
tive of f .

It is important that you understand the meaning of the term ‘anti-
derivative’ and the relationship between a function and its antideriv-
ative; furthermore, the concept of antiderivative does not depend on

c1i_t1.pdf#TheDefiniteIntegral
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the letters used to describe the functions and the variables. The next
set of exercises is meant query you on the definition of antiderivative.

Exercise 2.1. Let h be a function of the variable t, write the defini-
tion of an antiderivative of h.

Review the reasoning of Exercise 2.1, as well as the definition of
antiderivative before answering the following quiz questions.
Quiz.

1. Given two functions f and g, f is an antiderivative of g provided,
(a) g′(x) = f(x) (b) f ′(x) = g(x)

2. Given two function H and q, q is an antiderivative of H provided
(a) q′(t) = H(t) (b) H ′(s) = q(s)

3. Define a function f(s) = 4s3 and another function F (t) = t4, is
F an antiderivative of f?

(a) Yes (b) No

End Quiz.
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Exercise 2.2. Verify that an antiderivative of f(x) = 16(4x+ 1)3 is
the function F (x) = (4x+ 1)4.

Checking your answer.
To determine whether a function g is an antiderivative or
indefinite integral of another function, we simple differentiate
the function g we think is the antiderivtive and determine if
the result is equal to f . In symbols, g is an antiderivtive of
f provided,

g′(x) = f(x) for all x.

This is simply the definition.

Exercise 2.3. Determine whether the function f(t) = (t2 +1)2 is an
antiderivative of g(t) = 4t(t2 + 1).

Exercise 2.4. Determine whether the function H(s) = cos(2s) is an
antiderivative of the function g(s) = 2 sin(2s).
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Let’s now continue developing some of the basic ideas of the antideriv-
ative.

As we have seen in Example 2.1, once we have found one antideriva-
tive of a given function, we have found infinitely many antiderivatives.
More precisely, if F is an antiderivative of f then for any constant C,
F + C is also an antiderivative of f . A natural question to ask: Sup-
pose F is an antiderivative of f , do there exist antiderivatives of f
that are not of the form F + C? The answer is no.

Recall a corollary to the Mean Value Theorem which states that
if F and G are two functions such that F ′(x) = G′(x) for all x in
an interval I of numbers, then there exists a constant C such that
F (x) = G(x) + C for all x in the interval I.

Now, let’s prove the answer to the question.

Theorem 2.2. Let f be a function having antiderivative F over an
interval I. If G is any other antiderivative of f over I, then there exists
a constant C such that F (x) = G(x) + C for all x ∈ I.

c1d_t1.pdf#corConstFunc
c1d_t1.pdf#thmMVT


Section 2: The Indefinite Integral

Proof. F is an antiderivative of f means

F ′(x) = f(x) all x ∈ I.

G is an antiderivative of f means

G′(x) = f(x) all x ∈ I.

Therefore we have

F ′(x) = f(x) = G′(x) all x ∈ I.

By the corollary to the Mean Value Theorem we then have

F (x) = G(x) + C all x ∈ I,

for some constant C. �
Theorem Notes: This shows that once we find an antiderivative, F , of
f , then we have found all antiderivatives. Any other antiderivative of
f must have the form: F (x) + C.

Let us agree on some terminology. If F is an antiderivative of f ,
then F (x) +C will be referred to as the general antiderivative of f .

c1d_t1.pdf#corConstFunc
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In the next few sections, antidifferentiation formulas are developed.
Before we get to that point, try to solve each of the following exercises.
The trick is to imagine what the function F would have to look like in
order for its derivative to be the given function f . Use your knowledge
of the differentiation formulas to construct the function F . You can
check your answers before “jumping” to the solutions.

Exercise 2.5. Find the general antiderivative of f(x) = x7.

Exercise 2.6. Find the general antiderivative of f(x) = 4x5.

Exercise 2.7. Find the general antiderivative of f(x) = 4x5 + x7.

Exercise 2.8. Find the general antiderivative of f(x) = 3 cos(x).

Exercise 2.9. Find the general antiderivative of f(x) = 3 cos(x) +
4 sin(x).

And finally, to illustrate that the ideas in this section are not de-
pendent on the name of the function and the variable name, try this
exercise.
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Exercise 2.10. Find the general antiderivative of h(t) = 4t7−6t2+10

The next few paragraphs can be skipped over on first reading.

For those who want to know more. The next exercise is a natural
question: Must a function always have an antiderivative? The answer
is “no,” in general. Don’t look at the solution, yet. Think about this
question, and as you progress through these notes and learn more
about antidifferentiation, perhaps you can answer this question on
your own. Be aware that their are infinity many examples, so even if
you produce an example, it may not be the same as mine.

•Exercise 2.11. Give an example of a function f defined over the
interval ( 0, 1 ) such that f does not have an antiderivative over the
interval ( 0, 1 ). (See the commantary that follows the statement of
this problem.)

Thoughts on this Exercise. You have to create a function, f , that is
so “weird” that for any function F , F ′(x) 6= f(x) for at least one x ∈
( 0, 1 ). That seems simple enough. After you think of a candidate for
f , the interesting part is to prove your example has no antiderivative.
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To do this, you must use the definition of derivative, some “common
sense,” and . . . the Mean Value Theorem.

I’ve marked this exercise with a ‘•’, meaning it is moderately difficult,
and requires some abstract thinking, and “proof” construction.

As you learn more about the differentiation process, maybe you can
imagine such a function f would look like. Keep this exercise in mind
as you work through these tutorial. Come back soon!

For those who want to know more. If you’ve solved the last exercise,
or studied it in detail, here is another exercise for you. The function in
my solution to Exercise 2.11 had the property that antiderivatives
existed for it over the interval ( 0, 1

2 ) and ( 1
2 , 1 ), but not over ( 0, 1 ).

Now, construct a function f defined on the interval ( 0, 1 ) such that
f has no antiderivative over any subinterval of ( 0, 1 ); i.e., find a
function f such that for any ( a, b ) ⊆ ( 0, 1 ), f has no antiderivtive
over ( a, b, ). :-)

I’ve marked this exercise with a ‘•’, meaning it is more difficult and
can be skipped over on first reading; however, by making a significant

c1d_t1.pdf#thmMVT


Section 2: The Indefinite Integral

modification of my example in Exercise 2.11. (Hint : The example
that I have in mind only takes on the values of 0 and 1.)

•Exercise 2.12. Give an example of a function, f , defined over the
interval ( 0, 1 ) such that f does not have an antiderivative over any
subinterval of ( 0, 1 ).

2.1. The Indefinite Integral Notation

Notation. The notation, which is due to Leibniz, you will find rather
unusual. Let f be a function of x, an indefinite integral of f , denoted
by ∫

f(x) dx, (1)

is any function whose derivative is f ; that is, (1) is a symbol that
represents any antiderivative of f .
Notation Notes : The function, f , is called the integrand. Notice that
the indefinite integral is a function — this is an important point to
remember.
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The symbol dx is called the differential of x. See below for a
discussion of the role of dx.

The symbol x is called the variable of integraton.
Quick Response.

1. Consider the integral:
∫

3x4 dx. Which of the following is the
integrand?

(a) x4 (b) 3x4 (c) 3 (d) n.o.t.

2. Consider the integral:
∫
a cos(z) + bz dz. What is the variable

of integration?
(a) a (b) b (c) x (d) z

3. What is the integrand of the integral in (2)?
(a) cos(z) (b) a cos(z) (c) a cos(z) + bz (d) n.o.t.

4. Complete the following phrase: An indefinite integral is
(a) an antiderivative of its integrand.
(b) the derivative of its integrand.
(c) an antiderivative of the derivative of its integrand.
(d) the derivative of the antiderivative of its integrand.
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Reading the Notation. The notation (1) is read as “The integral of
f(x) with respect to x.” The differential notation, dx, in this context,
is read as “with respect to x.”

For example, consider the equation:∫
3x2 dx = x3 + C.

This equation may be read from left to right as “the integral of 3x2

with respect to x is x3 plus an arbitrary constant C.” The function
3x2 is the integrand. You’ll notice that the indefinite integral of 3x2

is indeed a function of x.

When the integral notation is used by itself,∫
cos(x) dx,
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it poses the question: “What is the integral (antiderivative) of the
function cos(x) with respect to x?” The integral also provides a handy
notation for presenting the answer:∫

cos(x) dx = sin(x) + C,

which reads: “the integral of cos(x) with respect to x is sin(x) plus
any constant C.”

Exercise 2.13. Write out a sentence which will be a precise English
translation of the equation∫

sin(t) dt = − cos(t) + C.

Before trying the next exercise, review the definition of the indefinite
integral and the description of the indefinite integral notation.

Exercise 2.14. What is the evaluation of
d

dx

∫
f(x) dx?
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Exercise 2.15. Evaluate the expression:
d

dx

∫
(x+ sin(x))10 dx.

Exercise 2.16. Evaluate the expression:
d

ds

∫
tan12(s) ds.

The significance of the dx. For right now, the role dx plays will
be three-fold. (We’ll get another fold later.)

1. An indefinite integral is supposed to be a function, but a func-
tion of what variable? The differential notation that is incorporated
into the integral answers this question.

For example, in the statement,∫
x2 dx

the dx indicates that this indefinite integral represents a function.
The defining property of this function (of x) is that its derivative with
respect to x is x2, the integrand. (Note:

∫
x2 dx = 1

3x
3 + C.)
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The statement ∫
t3 dt

represents a function of t (as indicated by the dt) such that if we
differentiate this function with respect to t we obtain the integrand,
t3. (Note:

∫
t3 dt = 1

4 t
4 + C.)

The statement ∫
zs5 ds

is a function of s. Here, the symbol z may represent a constant or
another function; in any case, regardless of the meaning of the symbol
z, the integral represents a function of s (because of the ds).

2. The symbol dx tells us what variable we are to consider as the
variable of integration. Why is it important to know the variable of
integration? Read on.
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Without the “differential notation,” the following symbolism is am-
biguous ∫

s cos(t).

Are we to consider the integrand a function of s (f(s) = s cos(t))
and integrate with respect to s, or should we consider the integrand
a function of t (f(t) = s cos(t)) and integrate with respect to t? De-
pending on what variable is the variable of integration, we would have
totally different answers:∫

s cos(t) ds =
1
2
s2 cos(t) + C∫

s cos(t) dt = s sin(t) + C.

In each of the evaluations, we assumed all other algebraic symbols
were constants. To verify the correctness of these equations, simply
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differentiate the right-hand sides of these equations to obtain the in-
tegrand; remember, “the derivative of an indefinite integral is its in-
tegrand.” (Differentiate with respect to the variable indicated by the
differential.)

It is true that in many situations we know the variable of integration
from the context. There can really be no dispute that in the integral∫

x2,

x is the variable of integration; however, mathematicians like to have
their notation tightly wrapped and addressed so that can be abso-
lutely no confusion as to the variable of integration—hence the use of
the dx notation.

By the way, evaluate
∫
x2 please.
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3. The symbol dx also acts as a delimiter. It helps us to define
the integrand. The integrand is the function that lies between the

∫
symbol and the dx symbol. ∫

. . . . . .︸ ︷︷ ︸
integrand

dx

Without this delimiter, the integrand may not be identifiable. For
example, in some applications we want to calculate in integral and
add it to another function. Consider the following integral without
the benefit of the dx symbol∫

x3 + x2 + x.

Now do we want to calculate the integral of x3 and then add it to the
function x2 +x, or to we want to calculate the integral of x3 +x2 and
add this result to x?



Section 2: The Indefinite Integral

Perhaps it would always be understood from the context of the prob-
lem what is meant, but mathematician like things more exactly orga-
nized.

2.2. An Application: Velocity and Acceleration

It seems that a student is always asking, “What’s this good for?” This
seems to me to be a fair and reasonable question.

“Antidifferentiation is nothing more than the reverse process to dif-
ferentiation. You have this fancy notation for an antiderivative that
doesn’t make sense, and you have this term ‘indefinite integral,’ and
what’s this ‘+C’ bit?”

The indefinite integral has wide ranging applications, as does the def-
inite integral, yet to be taken up. In this section we look at a simple
application to the antiderivative, and see what the ‘+C’ is all about.

There are many physical systems that must obey certain physical laws.
Many of these physical laws are described by mathematical formula.
By identifying the physical laws the system must obey, and writing
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these laws mathematically, sometimes we can solve the equations and
obtain, as a result, extensive knowledge of the state of the system.

Analysis of Free Falling Body. Suppose you are standing on the
ground with a rock in your hand. At some instant in time (your choice)
you throw the rock vertically upward. When the rock leaves your hand,
the rock is s0 feet above the ground, and it is going at a velocity of
v0 ft/sec. It is our desire to have total knowledge of the motion of the
rock.

The rock must obey a certain physical law: Due to gravity, the rock
must accelerate towards the earth at a rate of 32 ft/sec2. To maintain
total abstraction, let g denote the acceleration due to gravity.

The motion of the rock must then satisfy,

a(t) = −g, (2)

at any time t. Acceleration, then, is a constant function of time, t. I
have appended a minus sign to indicate that the rock is accelerating
downward toward the earth.
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Recall that for a particle in motion, acceleration is the rate at which
velocity changes with respect to time. In terms of Calculus concepts:

a(t) =
d

dt
v(t).

In the language of this article, this means that v(t) is an indefinite
integral, or antiderivative, of a(t). Symbolically,

v(t) =
∫
a(t) dt. (3)

But by (2), a(t) = −g. Substituting this into (3) we get,

v(t) =
∫
−g dt. (4)

The right-hand side of (4) is the integral of a specific function; namely,
the constant function equal to−g. We can conjure up an antiderivative
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of −g: A function (of t) whose derivative (with respect to t) is equal
to −g. After many hours of meditation we reach the result,

v(t) =
∫
−g dt = −gt+ C. (5)

You can check for yourself that the derivative of −gt + C is the in-
tegrand, −g. We have shown that the (unknown) velocity function
must be for the form −gt+ C, for some constant C. This doesn’t do
us much good unless we can put our little phalanges on this C.

The value of C can be obtained by substituting some of the informa-
tion we have about our rock; in particular, at time t = 0, the rock has
a velocity of v0. Thus, from (5),

v0 = v(0) = −g(0) + C
or,

C = v0. (6)
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Now update our equation (5) using (6) to get,

v(t) = −gt+ v0. (7)

We now have total knowledge of the velocity of the rock at any time
t.

But let’s continue. What is the position of the rock at any time t?
Again, we have seen that velocity is the rate at which position changes
with respect to time. Let s(t) denote the height the rock is off the
ground at time t, then we know

v(t) =
d

dt
s(t).

But this says that s(t) is an indefinite integral, or antiderivative, of
v(t). In the language of indefinite integrals, this equation becomes

s(t) =
∫
v(t) dt. (8)
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But from (7), v(t) = −gt+ v0. Substituting this into (8) we get

s(t) =
∫
−gt+ v0 dt (9)

The right-hand side is the indefinite of a concrete function, v0 being
a symbol for a numerical constant. This can be calculated:∫

−gt+ v0 dt =
1
2
gt2 + v0t+ C. (10)

This can be verified by differentiating the right-hand side with respect
to t to obtain the integrand. Putting this result into (9), we obtain

s(t) = −1
2
gt2 + v0t+ C. (11)

Once again we have the enigmatic C. The equation (11) states the
functional form of s(t). We can’t use this equation until we know C.
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But again, at time t = 0, we have the information that the rock was
at a height of s0. Putting t = 0 in (11) we get

s0 = s(0) = 0 + 0 + C
or,

C = s0.

Now, update equation (11) to get

s(t) = −1
2
gt2 + v0t+ s0. (12)

Now we have total knowledge of the physical system.

Summary : A rock leaves your hand at time t = 0 at an initial height
of s0 and an initial velocity of v0. Then, for any time t,

a(t) = −g
v(t) = −gt+ v0

s(t) = −1
2
gt2 + v0t+ s0. (13)
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An example will illuminate the concepts.

Example 2.2. You throw a rock is vertically at a speed of 50 ft/sec,
and the rock is initially 6 ft off the ground.

a. Find the equation (13) that specifies the height, s(t) of the rock
above the ground at time t.

b. How high is the rock off the ground 1 second after the rock
leaves your hand?

c. How long before the rock hits the ground?
d. What is the velocity of the rock when it hits the ground?
e. At what time is the rock 6 feet above the ground?
f. What is the velocity of the rock when the rock is 6 feet off the

ground?
g. How high does the rock go?
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3. Some Basic Integration Formulas
We now turn to the task of developing form formula for evaluating
indefinite integrals. Each rule must be memorized. It is important to
memorize and understand these formulas because they will represent
a base of knowledge upon with you can reason, solve problems, com-
municate with others, and expand to more complicated ideas without
being encumbered.

Here’s an expansion that last point, for those who want to know
more.

Fundamentally, there are two types of integration formulas: specific
formulas and general formulas. In the next two sections we discuss
each of these types.

3.1. Specific Formulas

A specific formula for integration is an integral formula that actually
solves an integral problem. In this section we identify a few of the
more elementary ones.
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The Integral of 0. The most elementary integral formula is∫
0 dx = C. (1)

The integrand is 0.

Exercise 3.1. Refer to equation (1). The integrand is suppose to be
a function of x, yet is state, and I quote myself, “The integrand is 0.”
But 0 is a number not a function, explain this paradox.

Why is this formula true? Because the derivative of a constant
is zero; therefore, any constant function C is an antiderivative of the
identically 0 function.

The Power Rule. Let r ∈ Q be a rational number, r 6= −1, then by
the Power Rule, we have

d

dx

xr+1

r + 1
=

1
r + 1

d

dx
xr+1 1

r + 1
(r + 1)xr = xr.

../ref/c_defn.pdf#defnRatNum
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This says that an antiderivative of xr is
xr+1

r + 1
. In terms of the indef-

inite integral notation, we have∫
xr dx =

xr+1

r + 1
+ C.

Let’s elevate this formula.

Power Rule Junior Grade:
Let r ∈ Q be a rational number, r 6= −1, then∫

xr dx =
xr+1

r + 1
+ C.

Exercise 3.2. Why do you think that we require r 6= −1 in the
Power Rule?
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At the beginning of this section, I remarked that specific integra-
tion formulas are formulas that actually solve integral problems. This
is apparent from the Power Rule Formula The left-hand side is the
statement of an integral problem, the right-hand side is the solution
to same.

The use of the Power Rule depends on your ability to identify power
functions. If you cannot recognize a power function, then you will not
be able to apply the power rule.

Quick Response. Which of the following functions is a power function
of x? (Or, simplifies to a power function!)

(a) 5x+1 (b) (x+ 1)x (c)
√
x

x3 n.o.t.

c1d_d.pdf#DerivPower
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Here are some quick visual examples with positive integer exponents.∫
x2 dx =

x3

3
+ C∫

x3 dx =
x4

4
+ C∫

x10 dx =
x11

11
+ C∫

t20 dt =
t21

21
+ C∫

w8 dw =
w9

9
+ C.
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Now for some quick visual examples with negative integer exponents.∫
x−3 dx =

x−2

−2
+ C = −1

2
x−2 + C∫

t−5 dt =
t−4

−4
+ C = −1

4
t−4 + C∫

w−23 dw =
w−22

−22
+ C = − 1

22
w−22 + C.

How about fractional exponents?∫
x2/3 dx =

x5/3

5/3
+ C =

3
5
x5/3 + C∫

u−2/3 du =
u1/3

1/3
+ C = 3x1/3 + C∫

z−11/4 dz =
z−7/4

−7/2
+ C = −4

7
x−7/4 + C.

Do you get the idea?
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Important. In the above quick visual examples, I presented examples
with a variety of variables of integration. The application of the power
rule does not depend on the variable, x, that is used to write the
formula down. The power rule is∫

xr dx =
xr+1

r + 1
+ C, r 6= −1.

On the left-hand side of this equation, the key point is this: the base
function of the power function being integrated is exactly the same
as the variable of integration as defined by the dx. If these two do
not match, then the power rule, as currently stated, does not apply !
A simple example of this observation is the following:∫

(2x+ 1)1/2 dx.

We are integrating a power function, but the base function, 2x + 1,
does not match the variable of integration, x, as defined by the dx
symbolism. Therefore, this form of the power rule does not apply.
Below you will find a more general power rule that we can use here.

c1d_t.pdf#DerivPower
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To summarize:

Key Point: When you are integrating a power function, in
order for the power rule to apply, the base of the power
function must be the same as the variable of integration.

Exercise 3.3. Calculate
∫
x−3/4 dx.

Exercise 3.4. Calculate
∫
w7/3 dw.

Here’s a slight variation on the previous exercises, see if you can think
your way through.

Exercise 3.5. Calculate
∫

(2x)4 dx.

c1d_t.pdf#DerivPower
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Important. When applying the Power Rule, the power function must
be in the numerator. Move the power function into the numerator, for
the correct calculation of the exponent!

To illustrate this point, consider this . . .

Example 3.1. Evaluate
∫

1
x2 dx.

Exercise 3.6. Evaluate
∫

1√
u
du.

Exercise 3.7. Calculate
∫
x2√x dx.

Exercise 3.8. Evaluate
∫ √

t

t3
dt.

(Hint : Make integrand into a power function.)

Here’s a poser.

Exercise 3.9. Calculate
∫

dx, and
∫

du.
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Trigonometric Functions. There are six formulas for solving inte-
grals involving trigonometric functions.

Trigonometric Integration Formulas: Junior Grade:

(1)
∫

cos(x) dx = sin(x) + C

(2)
∫

sin(x) dx = − cos(x) + C

(3)
∫

sec2(x) dx = tan(x) + C

(4)
∫

csc2(x) dx = − cot(x) + C

(5)
∫

sec(x) tan(x) dx = sec(x) + C

(6)
∫

csc(x) cot(x) dx = − csc(x) + C

The student should verify these six formulas by differentiating the left-
hand side of each formula, to obtain the integrand of the right-hand
side. See the exercise below.

You’ll note that there are essentially three formulas here; the other
three are “co’ed” versions of the first three. Formulas (2), (4), and (6)
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can be constructed from (1), (3), and (5), by “co-ing” the functions
and appending a negative sign to the answer. For example, formula (3)
is ∫

sec2(x) dx = tan(x) + C.

Now if we “co’ed” the functions, and appended a negative sign to the
answer we get ∫

csc2(x) dx = − cot(x) + C

This makes it very easy to remember these six (three) formulas.

These formulas must be memorized. There are two ways of remem-
bering something: sitting down and muttering to yourself, repeating
the formulas over and over again (not good); do many problems, each
time you use these formulas, verbalize the formula — after awhile,
you’ll have them memorized.

The exercises are limited right now.
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Exercise 3.10. Evaluate
∫

cos(t) dt.

Exercise 3.11. Evaluate
∫

csc2(s) dx.

Exercise 3.12. Evaluate
∫

sin2(x3) + cos2(x3) dx.

Exercise 3.13. Verify formula (4).

This is the sum total of the specific integration formulas. In Calculus
II, many more formulas of this type will be developed.

3.2. General Formulas

A general formula for integration is a formula that transforms the
integral into another integral or integrals. General formulas do not
solve an integral problem.

Homogeneous Property. The homogeneous property comes from
the corresponding property for differentiation.
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Homogeneous Property :
For any constant c and any function f , we have∫

cf(x) dx = c

∫
f(x) dx.

If we think of the left-hand side as the given integral problem, then the
formula does not solve the problem; it merely transforms the problem
into another integral problem (the right-hand side).

This substance of the Homogeneous Property is that constants can be
taken outside an intgral.

Example 3.2. Verify the Homogeneous Property.

Exercise 3.14. Evaluate
∫

4x6 dx.
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Exercise 3.15. Evaluate
∫

6t
√
t dt

The Additive Property. A fundamental formula which, along with
the Homogeneous Property, delineates the algebraic stucture of the
indefinite integral.

The Additivity of the Integral :
Let f and g be functions, then∫

f(x) + g(x) dx =
∫
f(x) dx+

∫
g(x) dx.

Again note that this formula does not solve integrals — it merely
transforms the integral problem on the left-hand side into two integral
problems on the right-hand side. Solving integrals is the role of the
specific formulas.
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The use of this formulas depends on your ability to realize that the
integrand is the sum of several functions. That shouldn’t be too dif-
ficult? We’ll find out.

Example 3.3. (Skill Level 0). Evaluate
∫

3x4 + 6x2 dx.

Exercise 3.16. (Skill Level 0). Evaluate
∫

2
3
x6 − 8x12 dx.

Exercise 3.17. Evaluate
∫

8 sec2(x)− 6 sec(x) tan(x) dx.

Some integrals require you to manipulate the integrand algebraically
before attempting to integrate. Next up are a few examples of these
creatures.

Exercise 3.18. Evaluate
∫

(t4 − 4t3)2 dt.

Exercise 3.19. Evaluate
∫ (

w3 − 1
w2

)2

dw.
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Exercise 3.20. Evaluate
∫

(sec(x) + tan(x))2 dx. (Hint: Square it,

and use the identity: sec2(x)− tan2(x) = 1.)

4. The Technique of Substitution
The formulas and techniques already developed are useful and impor-
tant, but they are limited in their scope. For example, the power rule
can solve ∫

x1/2 dx,

but cannot solve the integral,∫
(2x+ 1)1/2 dx.

Do you know why? If not, review the discussion presented earlier.
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4.1. Developing the Idea: Substitution

If indefinite integration is the reverse operation to differentiation, then
substitution is the reverse operation of the Chain Rule.

Let f and g be are differentiable and compatible for composition. Let
F be an antiderivative of f ; this means that F ′(u) = f(u). Since F is
an antiderivative of f , we have∫

f(u) du = F (u) + C. (1)

Now from the Chain Rule,

(F ◦ g)′(x) = F ′(g(x))g′(x) = f(g(x))g′(x).

In the language of antiderivatives, this equation says that the left-
hand side is an antiderivative of the right-hand side. Therefore,∫

f(g(x))g′(x) dx = F (g(x)) + C. (2)

c1f_t.pdf#defnCompatComp
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If we now take the right-hand side of (1), and replace u with g(x), we
obtain ∫

f(u) du = F (g(x)) + C. (3)

Notice that the right-hand sides of (2) and (3) are identical; there-
fore, the left-hand sides are equivalent. What this means is that we
can solve the integral in (2), by first solving the integral in (1), then
replacing u with g(x).

In fact, we equate (2) and (3) we obtain the classic substitution of
variable formula: ∫

f(g(x))g′(x) dx =
∫
f(u) du, (4)

where, u = g(x).

Equation (4) displays the principle of substitution. We can think of the
left-hand side or the right-hand side as our target, or given, integral.



Section 4: The Technique of Substitution

The principle of substitution states then that the given integral is
equal to the integral on the other side of the equality.

Equation (4) is especially pleasing when we remember the concept of
the differential:

If u = g(x), then du = g′(x) dx.

Thus, if
∫
f(g(x))g′(x) dx is our given integral, we can let u = g(x)

and so du = g′(x) dx. Now replacing these symbolisms into our given
integral we obtain ∫

f(g(x))g′(x) dx =
∫
f(u) du.

On the other hand, if
∫
f(u) du is our given integral, we can let u =

g(x) and so du = g′(x) dx. Now replacing these symbolisms into our
given integral we obtain∫

f(u) du =
∫
f(g(x))g′(x) dx.

c1d_t.pdf#defndifferential
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Before looking at an extensive collection of examples, let’s highlight
this technique.

The Technique of Substitution:
Let f and g be functions. Let u = g(x) and du = g′(x) dx,
then ∫

f(g(x))g′(x) dx =
∫
f(u) du.

4.2. Learning the Technique of Substitution

Let’s now examine the circumstances under which this principle can
be applied and exhibit the standard techniques of implementing the
formula.

Example 4.1. Evaluate
∫

(x+ 1)15 dx.
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This example hopefully gives you a vision of the potential use of the
Substitution. The next examples will tend to expand your vision.

Example 4.2. Evaluate
∫

(2x+ 1)15 dx.

Now you try one.

Exercise 4.1. Evaluate
∫

(3x+ 1)20 dx.

(Hint : Consider the substitution u = 3x+ 1.)

These examples and exercises were all the same. They were the inte-
grals of power functions. The technique of substitution is quite gen-
eral, and can be applied in a wide variety of problems.

Example 4.3. Evaluate
∫

cos(2x) dx.

Exercise 4.2. Evaluate
∫

sec2(3x) dx. Use the substitution u = 2x.

c1d_t.pdf#DerivPower
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In the next two sections, we create specialized formulas for integrating
power functions and trigonometric functions. The new formulas are
created using the substitution formula applied to abstractions of the
examples and exercises we just finished.

4.3. The Generalized Power Rule

We can generalize the basic Power Rule using the technique of sub-
stitution.

Generalized Power Rule:
Let u be a function of some variable (perhaps x, or t, or s,
or any variable), and let r ∈ Q be a rational number, then∫

ur du =
ur+1

r + 1
+ C r 6= −1.
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The first thing you will notice is that this formula is exactly the same
as our old Power Rule. The only difference is the choice of the letter
to describe the formulas. Yes, that’s true. But our interpretation of
this letter is different : We are thinking of u as a function of some
other variable, say, u = f(x), and so du = f ′(x) dx. In this case, the
Generalized Power Rule actually becomes∫

[f(x)]r f ′(x) dx =
[f(x)]r+1

r + 1
+ C.

As you can see, this gives us the ability to solve the integrals of more
general power functions . . . if the conditions are right.

Let’s take a look at an example in light of this new formula.

Example 4.4. Evaluate
∫

(5x− 3)9 dx.

Now, we raise the level of difficulty a little, but not discouragingly so.

Example 4.5. Evaluate
∫
x(3x2 − 5)3/4 dx.
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Strategy. When trying to use the Power Rule to solve an integral
involving power functions, let u be the base function of your power
function, if the power rule is to apply, the rest of the integrand must
be directly proportional to the du. If not there are two courses: (1)
Some integrands have several power functions in them, try another
choice; (2) The power rule does not apply, use another formula, or try
a technique.

Commentary on the Previous Example: In light of the Strategy, let’s
look at the solution to Example 4.5. I let u = 3x2 − 5, this was the
base of the power function. I calculated du to be du = 6x dx. You’ll
notice that the rest of the integrand is directly proportional to the
calculate value of du: ∫

(3x2 − 5)3/4 x dx.

I then factored in the constant of proportionality, 6, and compensated
for the insertion of this factor, by factoring in 1

6 , outside the integral.

c1i_d.pdf#strategyPR
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The overall effect is to multiply by (6)(1
6 ) = 1. No damage done, but

a lot of good.
1
6

∫
(3x2 − 5)3/4 6x dx.

The result is that I can not affect the substitution:
1
6

∫
u3/4 du,

and I am home free.

Keeping the Strategy in mind, solve following exercise, please.

Exercise 4.3. Evaluate
∫
x8(6x9 + 12)1/3 dx.

The next example illustrate a case when the Power Rule does not
apply. This case is just as important because you need to learn to
recognize when the power rule does not apply, so you can move on to
another solution method — rather than giving up.



Section 4: The Technique of Substitution

Example 4.6. (Power Rule Does Not Apply.)

Evaluate
∫
x3(2x3 + 1)7 dx.

Here are some exercises that are solved directly by the Power Rule.

Exercise 4.4. Evaluate
∫

x√
4− 3x2

dx. (Hint: Convert integrand to

a power function in the numerator!)

All these problems are pretty much the same. You’re words of advice
for today are

Identification and Implementation!

Exercise 4.5. Evaluate
∫

(3x3−1)(3x4−4x+1)1.45 dx. (Hint: Keep

a cool head, and follow the strategy for the power rule.)
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Quiz. Which of the following integrals can be solved by the Power
Rule, and which cannot. Before you begin you may want to review
the strategy for the Power Rule.

1.
∫

(x2 + 1)2 dx. (a) Yes (b) No

2.
∫
x(x2 + 1)2 dx. (a) Yes (b) No

3.
∫

x2
√
x3 + 1

. (a) Yes (b) No

4.
∫

x− 1
(x2 − 2x− 1)2 . (a) Yes (b) No

5.
∫

x

(x3 + 1)100 . (a) Yes (b) No

6.
∫

(x− 2)(x2 − 3x− 1)17 dx. (a) Yes (b) No

7.
∫

x

x2 + 1
dx. (a) Yes (b) No
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Passing Score: 5 out of 7.
Quiz Notes: The last answer was ‘No’ because the power function is
(x2 + 1)−1. We let u = x2 + 1 and so du = 2x dx, which is directly
proportional to the rest of the integrand, so why is ‘No’ the correct
answer? Because the value of the exponent of the power function is
r = −1. This is the exceptional case to which the Power Rule does
not apply. Trick Question! You have to be on your Power Rule toes!
The case r = −1 is covered in Calculus II.
End Quiz

Finally, let’s have a . . .

Period of Consolidation. Take a moment to consolidate your knowl-
edge by listing out the major points of this Generalized Power Rule
section.
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4.4. Integration of Trig Functions

We have two sets of elementary integration formulas: The original
Power Rule and the set of Trigonometric. In the previous section, we
have generalized the old Power Rule using the Technique of Substitu-
tion to obtain a more general, more powerful Generalized Power Rule.
Now we do the same for the Trig formulas.

Before presenting the list of new formulas, you might review an earlier
example, Example 4.3, in which the technique of substitiution is
utilized to analyze a trigonometric integral.

Trigonometric Integration Formulas:
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Let u be a function of some independent variable, then

(1)
∫

cos(u) du = sin(u) + C

(2)
∫

sin(u) du = − cos(u) + C

(3)
∫

sec2(u) du = tan(u) + C

(4)
∫

csc2(u) du = − cot(u) + C

(5)
∫

sec(u) tan(u) du = sec(u) + C

(6)
∫

csc(u) cot(u) du = − csc(u) + C

Here is an example with extensive discussion concerning the back-
ground thinking that should be going on.

Example 4.7. Evaluate
∫

sin(5x) dx.

Strategy. Given that you have an integral to be solved that involve
any of the trigonometric function types sin, cos, sec2, csc2, sec tan,
or csc cot, then the Trig. formulas might apply. To verify that one of
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the trig formulas apply, let u be equal to the argument of the trigono-
metric function. The rest of the integral must be directly proportional
to the du, the differential of u. If this is so, then the formula applies,
if not, the formula does not apply.

Example 4.8. Evaluate
∫
x sec(x2) tan(x2) dx.

Exercise 4.6. Evaluate
∫

sec2(4x) dx.

Exercise 4.7. Evaluate
∫

sin
√
x√

x
dx.

Example 4.9. (Trig. Formulas do not apply.) Evaluate
∫
x cos(x) dx.

This next exercise may be a bit tricky.

Exercise 4.8. Evaluate
∫
x sec(x2) tan(x2) sec2(sec(x2)) dx.

(Hint : Follow the strategy.)



Section 5: Substitution: Two Attitudes

5. Substitution: Two Attitudes
The use we have made of the technique of substitution could be de-
scribed as formula checking. In all the examples and exercises given
so far, we have had an integral, and we have solved that integral us-
ing a formula. Before we can use a particular formula we must check
whether it applies. The checking process is carried out by the device
of substitution.

5.1. Formula Checking

Given that we have a integral problem:∫
x(3x2 + 4)1/3 dx. (1)

We decide to try to solve this integral using the Power Rule:∫
ur du =

ur+1

r + 1
+ C r 6= −1. (2)
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Does this formula successfully solve the given problem, (1)? The way
we see this is to set up a correspondence between the given integral,
(1), and the selected formula. The formal mechanism for setting up
this correspondence is substitution. In the formula (2), the u is the
base of the power function; therefore, if (2) is going to solve (1), then
u must be the base of the power function in (1). This is why we would
naturally say,

Let u = 3x2 + 4, and so du = 6x dx. (3)

Rearrange the order of our integral so that the power function is listed
first (as that is the way it is written in the formula we are trying to
use). ∫

(3x2 + 4)1/3 x dx (4)

We notice that everything in the formula integral, (2), following the
power function is the du of the integral; therefore, if the formula is
to apply, everything after our power function in our integral (4) must
be the du part. We notice that the expression that follows the power
function in (4) is directly proportional to the du, as calculated in (3).
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Insert now, the appropriate fudge factor,

1
6

∫
(3x2 + 4)1/3 6x dx. (5)

Now, all the component parts of the formula integral (2) match up
with our integral (5): the integral in (5) has the form u raised to a
power times the differential of that u. We know now that the Power
Rule does apply, but to make it absolutely clear, we can go ahead and
make the substitution:∫

x(3x2 + 4)1/3 dx =
1
6

∫
(3x2 + 4)1/3 6x dx

=
1
6

∫
u1/3 du.

Now, we really can see that the Power Rule is applicable and we can
go on to evaluate the integral using that rule.



Section 5: Substitution: Two Attitudes

The formal substitution into the integral really isn’t necessary:∫
x(3x2 + 4)1/3 dx =

1
6

∫
(3x2 + 4)1/3︸ ︷︷ ︸

ur

6x dx︸ ︷︷ ︸
du

=
1
6

3
4

(3x2 + 4)4/3 + C

=
1
8

(3x2 + 4)4/3 + C

(5)

Here, rather than making the substitution, I just invoked the Power
Rule: “raise the function to one greater power, and divide by that
power.”

Can you see how substitution is used to check whether a given formula
can solve a given integral? Once the determination has been made,
the actual formal substitution need not even take place, see (5).

The next example exhibits how substitution can be used to show that
a given formula does not solve a given integral.
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Example 5.1. Argue that the Power Rule does not solve the integral∫
x(x3 + 1)100 dx.

Example 5.2. Verify, through substitution, that
∫

cos(2x) dx can be

solve using (1). Solve the integral without making the substitution.

Exercise 5.1. Verify, through substitution, that
∫

sec2(3x2)x dx

can be solve using (3). Solve the integral without making the sub-
stitution.

5.2. True Substitution of Variables

The technique has more powerful uses than simple formula checking.
It can be used in the spirit of true substitution of variables. The
substitution formula is∫

f(g(x))g′(x) dx =
∫
f(u) du. (6)
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Then using this equation for formula checking, we usually use it from
left to right; that is, we think of our given integral as the left-hand
side, make a substitution, to obtain the right-hand side. Let me pull
some trick photography on you: In (6), interchange the roles of x and
u, and move each integral to the opposite side of the equation. If you
followed that description, you will get the equation,∫

f(x) dx =
∫
f(g(u))g′(u) du. (7)

Again think of the left-hand side as the given integral. This will be
our working formula for these paragraphs.

True substitution of variables is performed with a different attitude
than in formula checking. In formula checking, we had a definite for-
mula in mind and we used substitution to check whether it applied
to our problem integral. In true substitution of variables, we have no
such formula in mind; in fact, we really don’t know what to do or how
to solve the problem.

When in doubt, substitute!
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Typically, when you have an integral∫
f(x) dx (8)

and you choose to make a substitution, the form of the substitution
is likely to look like

Let x = g(u), and dx = g′(u) dx, (9)

where g is some appropriately chosen function. Given this choice, then
it is a simple matter formally substitute (9) into (8) to obtain,∫

f(x) dx =
∫
f(g(u))g′(u) du (10)

which is our working substitution formula (7).

Substitution Strategy. Quit often, we choose a substitution x = g(u)
that tends to simplify the function f(x). This simplification of f(x)
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comes at the expense of making the differential part of the integral
more complicated.

f(x) −→ f(g(u))︸ ︷︷ ︸
simpler

dx −→ g′(u) du︸ ︷︷ ︸
more complex

It is hoped that the overall effect is a successful continuation of the
problem ultimately to solution.

So much for abstractions and general principles, let’s focus on an
example.

Example 5.3. Evaluate
∫
x(x+ 1)100 dx.

Example 5.4. Evaluate
∫
x2(2x+ 1)1/2 dx.

Try this exercise on for size.

Exercise 5.2. Evaluate
∫
x(3x− 2)−4 dx.

(Hint : Let u = 3x− 2.)
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Exercise 5.3. Evaluate
∫
x2(6x+ 1)−1/2 dx.

(Hint : Let u = 6x+ 1.)

Generalizations. All these integral problems are all of the same type:∫
xn(ax+ b)m dx,

where n ∈ N is a small positive integer. The change of variables

Let u = ax+ b. Then, x =
1
a

(u− b) and dx =
1
a
du.

This substitution will work nicely.

There are a number of situations where a substitution of variables is
productive. These will be surveyed in Calculus II.
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6. Strategies for Integration
Often when a student looks at an integral problem, such as this one,∫

x2 sec(3x3) tan(3x3) dx, (1)

the student takes one look and says, “I don’t know how to solve it!”
The problem lies not in the difficulty level of the integral, but is the
unfocused thinking of the student.

In this section I lay out some thoughts on the subject.

Keys to Success. Here are the keys to successfully solving integrals at
the Calculus level.

1. A definite and precise knowledge of the integral formulas and
how they are applied.

2. A definite and precise knowledge of the techniques used to ma-
nipulate integrals.

3. Acquisition of a history of problem solving.
4. The ability to learn from problem solving.
5. A developed pattern of thinking for analyzing integral problems.
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6.1. Knowledge of the Integral Formulas

The best way to have knowledge of the integral formulas is by using
them — many times. As you use them, verbalize them: “The integral
of the sine of some function times the differential of that function
is the minus the cosine of the function.” Verbalizations are supplied
throughout these files. As you verbalize the formulas, you will in turn
hear them. It is the hearing yourself say the formula as you use them
that enables you to remember them: You can remember yourself say-
ing the formula — as a result, just listen to yourself.

Knowledge of the formulas implies the ability of recognize them. For
example, if you have a knowledge of the formulas, then you would
know that the integral in (1) can be solved by one of the basic formu-
las: ∫

sec(u) tan(u) du = sec(u) + C.

Whereas, this integral∫
x2 sec(3x3) cot(3x3) dx
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cannot be solved by any of the basic formulas.

Knowledge of the formulas means that when you look at these inte-
grals ∫

x√
x2 + 1

∫
sin4(x) cos(x) dx∫

(w3 + 4)3/2w2 du

∫
(
√
x+ 1)20
√
x

dx

as all the same problem: Same in the sense that they can all be solved
by the Power Rule.

6.2. Knowledge of the Techniques

A integration technique in any process or activity that transforms
your integral problem into another integral problem. The idea is to try
to solve the new integral problem. There are two types of techniques.
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Two Types of Techniques
1. The application of a formula in which the integral symbol ap-

pears on both sides of the equation; for example,∫
cf(x) dx = c

∫
f(x) dx∫

f(x) + g(x) dx =
∫
f(x) dx+

∫
g(x) dx∫

f(g(x)) g′(x) dx =
∫
f(u) du u = g(x)

Each of these general formulas can be looked on a techniques; they
transform your problem into another problem. In Calculus II we de-
velop more techniques.

2. Direct manipulation of the integrand. You can use algebra to
transform the integrand or, perhaps, trigonometric identities. The
heavy use if trigonometric identities will be delayed until Calculus
II, but algebraic manipulation of the integrand is always in order.
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6.3. Obtain a History of Problem Solving

At this level of play, integration is really quite simple: You know the
problem is solvable, and there are only a finite number of formulas
and techniques you can use (where the ‘finite number’ is ‘small’);
therefore, you just have to keep at it — It’ll come . . . eventually.

Do not give up: Each time you successfully solve a problem
you are learning something, you are acquiring a history of
problem solving, you increase your confidence that you can
solve the next problem.

Do not treat each problem as an unique problem you have never seen
before; actually, the kinds of problems you see is extremely limited —
but disguised ! If you solve a hundred problems using the power rule,
then you have not solved one hundred distinct problems — you’ve
basically solved the same problem over and over again with different
‘u’s’.
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Your job is to pull off the disguise to see the true identity of the
problem. The problem,∫

x sin(x2) cos(cos(x2)) sin3(cos(x2)) dx (2)

is a nasty looking one, but actually, it is just the

−1
2

∫
u3 du

where u = sin(cos(x2)). Do you see now how simple the integral in (2)
really is?

Exercise 6.1. Solve the integral in (2)

Be like the Moray Eel. It is said that once the moray eel locks onto
its victim with its mighty jaws, it will not let its victim go until the
victim yields (dies — sorry). You must be a moray eel, your victim
is any problem in mathematics. Clamp onto your victim and hold on.
Don’t let your victim go until it yields. It’ll wiggle and jerk. It’ll strain
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and struggle. Don’t let it go until it capitulates! You are the master,
the problem must submit to you!

6.4. Learn from Problem Solving

As you solve problems, it would really be nice if you could learn from
your experiences.

6.5. Patterned Thought: The Butterfly Method

When you look at a integral problem, how should you think? Well,
of course, you are at liberty to think anyway you wish — as long
as it works for you. However, if do you lack a disciplined pattern of
thought, I would put forth my one suggestions: the Butterfly Method.
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Consider the following listing of formulas and techniques:

Integral Formulas and Techniques
Specific Formulas Techniques
Power Rule Homogeneity
Trig. (1) Additivity
Trig. (2) Substitution
Trig. (3) Algebraic Manipulation
Trig. (4) Trigonometric Manipulation
Trig. (5)
Trig. (6)

Butterfly Method

Problem. Solve
∫
f(x) dx.

Begin.
1. Beginning at the top of the left-hand column, labeled Specific

Formulas, go down the list. For each formula in the list, determine
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whether that formula solves the Problem. Use the formula checking
technique here.

2. If successful, you are done, Go to End, else, Go to Step 3.
3. Beginning at the top of the right-hand column, labeled Tech-

niques, go down the list. Choose a technique and apply it. Applying
one or more techniques does not solve the Problem; what it does is
to create one or more new integral problems. Now Go to Step 1 and
apply the Butterfly Method to each of unsolved integral problems.
End.
Butterfly Notes: The first formula in the list of Specific Formulas
is the Power Rule; this is the first formula you check. The Power
Rule can solve a variety of diversely different looking integrals. Use
formula checking and use the Power Rule Strategy outlined earlier.
Never overlook the Power Rule.

Many formulas in the Specific Formula list can be eliminated
immediately. For example, if the integral does not have trig functions
in it, obviously, the only specific formula that could possibly apply is
the Power Rule. Of course, in Calculus II, we obtain more Specific
Formulas, but until then, this simplified thinking is valid.
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Even if the integrand involves trigonometric functions, test out
the Power Rule. When testing whether one of the trig integral formu-
las apply, use the Trig Strategy.

At the Calculus I level, the Techniques used are fairly obvious:
Manipulate the integrand algebraically, separate the integrand, if pos-
sible, using the Additive Property and factor out any constants using
the Homogeneity Property. Manipulation by trigonometric identities
is an option you’ll see more often in Calculus II ; the same is true for
true substitution. The substitution technique is just formula checking.

We now present a series of examples to illustrate the Butterfly Method
of solving indefinite integrals. Following those, is a series of exercises
for the user — that’s you.

Example 6.1. Evaluate
∫
x3(x4 + 3)1/3 dx.

Example 6.2. Evaluate
∫
x2(x2 + 1)2 dx.
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Example 6.3. Evaluate
∫ √

x+ 1√
x

dx.

Exercise 6.2. The previous example can be solved another way. Can
you?

Exercise 6.3. The last exercise and the last example yielded two
seemingly different answers for the same integral. Resolve this appar-
ent ambiguity. (Hint : Review Theorem 2.2)

Example 6.4. Evaluate
∫

x2
√
x+ 1

dx.

The above examples have concentrated exclusively on integrands that
were algebraic functions, here’s a couple of examples involving trigono-
metric functions.

Example 6.5. Evaluate
∫

csc2( 1
x )

x2 dx.

One last example, and I’ll turn it over to you.

c1f_t.pdf#defnalgfuncs
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Example 6.6. Evaluate
∫

x sin(x2)√
cos(x2)

dx.



Verbalizations

Power Rule Junior Grade:
Let r ∈ Q be a rational number, r 6= −1, then∫

xr dx =
xr+1

r + 1
+ C.

The integral of x raised to a power, is x raised to one greater
power, divided by that greater power . . . plus an arbitrary
constant.



Verbalizations

Homogeneous Property :
For any constant c and any function f , we have∫

cf(x) dx = c

∫
f(x) dx.

The integral of a constant times a function is that contant
times the integral of the function.
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The Additivity of the Integral :
Let f and g be functions, then∫

f(x) + g(x) dx =
∫
f(x) dx+

∫
g(x) dx.

The integral of the sum of two functions is the sum of the
integrals of each.
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Generalized Power Rule:
Let u be a function of some variable, and let r ∈ Q be a
rational number, then∫

ur du =
ur+1

r + 1
+ C r 6= −1.

The integral of u raised to a power times the differential of
u is the base function u raised to one greater power, divided
by that greater power . . . plus an arbitrary constant.



Consolidations

The Generalized Power Rule

a. The Generalized Power Rule itself.
b. Recognition of a power function.
c. General Strategy. Can I get the du?
d. Use of fudge factors. Yes, put in fudge factors.
e. Recognition when Power Rule does not apply. In this case try

another technique.
f. Keep an eye out for the exceptional case r = −1. In this case,

survive Calculus I and go into Calculus II to see the solution.
Good Knowledge! (Not luck!)



Solutions to Exercises

2.1. A function H is said to be an antiderivative of h provided
H ′(t) = h(t) for all t. Exercise 2.1.



Solutions to Exercises (continued)

2.2. We verify this by differentiation. From the definition of anti-
derivative, all we must do is check whether

F ′(x) = f(x).

Well,

F ′(x) =
d

dx
(4x+ 1)4

= 4(4x+ 1)3 d

dx
(4x+ 1) / power rule

= 4(4x+ 1)3(4)

= 16(4x+ 1)3

= f(x)

Exercise 2.2.
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2.3. The answer is “Yes.” I’ve switched letter on you, I hope that
didn’t confuse you—it’s the ideas not the letters; comprehend the
meaning of the ideas, don’t be letter dependent.

Anyway, f is an antiderivative of g since

f ′(t) =
d

dt
(t2 + 1)2

= 2(t2 + 1)
d

dt
(t2 + 1) / power rule

= 2(t2 + 1)(2t) / power rule

= 4t(t2 + 1)

= g(t).

Exercise 2.3.

c1d_t.pdf#verbalGenPower
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2.4. The answer is “No.” To see why, simply differentiate the func-
tion that is postulated to be an antiderivative of the other function.
Indeed,

H ′(s) =
d

ds
cos(2s) = − sin(2s)

d2s
ds

= −2 sin(2s)

Observe that the derivative of H is not the same as g:

H ′(s) = −2 sin(2s) 6= 2 sin(2s) = g(s).

Therefore, we are entitled to say that H is not an antiderivative of
g. Exercise 2.4.
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2.5. F (x) = 1
8x

8 + C. (Check the answer by differentiating F . It
should be true that F ′(x) = f(x)) Exercise 2.5.



Solutions to Exercises (continued)

2.6. F (x) = 4
6x

6+C = 2
3x

6+C. (Check the answer by differentiating
F . It should be true that F ′(x) = f(x)) Exercise 2.6.
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2.7. F (x) = 2
3x

6 + 1
8x

8 +C. (Check the answer by differentiating F .
It should be true that F ′(x) = f(x).) Exercise 2.7.
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2.8. F (x) = 3 sin(x) +C. (Check the answer by differentiating F . It
should be true that F ′(x) = f(x)) Exercise 2.8.
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2.9. F (x) = 3 sin(x)− 4 cos(x) + C. (Check the answer by differen-
tiating F . It should be true that F ′(x) = f(x)) Exercise 2.9.
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2.10. H(t) = 1
2 t

8 − 2t3 + 10t + K, where K is a constant. (Check
the answer by differentiating H. It should be true that H ′(t) = h(t))

Exercise 2.10.
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2.11. Define the function f by

f(x) =
{

0 if 0 < x ≤ 1
2

1 if 1
2 < x < 1

Now for the interesting part—trying to explain why no antiderivative
of f over the interval ( 0, 1 ) exists.

Suppose such a function F did exist; that is suppose F is a function
such that F ′(x) = f(x) for all x ∈ ( 0, 1 ). Let’s calculate the right-
hand derivative of F as x = 1

2 and see something weird happen!

Right-hand derivative:

0 = f( 1
2 ) = F ′( 1

2 ) = F ′+( 1
2 )

= lim
h→0+

F ( 1
2 + h)− F ( 1

2 )
h

(A-1)
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For h > 0, by the Mean Value Theorem, there is a number ch,
1
2 < ch <

1
2 + h such that

F ( 1
2 + h)− F ( 1

2 )
h

= F ′(ch) = f(ch) = 1. (A-2)

The last equaltiy follows since ch > 1
2 . (The notation ch is designed

to suggest that the value of ‘c’ given to us by the Mean Value
Theorem depends on the interval ( 1

2 ,
1
2 + h ). The latter interval is

ever changing since we are taking the limit as h→ 0+; hence the value
of ch changes with h.)

Thus, from (A-1) and (A-2), it follows

0 = f( 1
2 ) = F ′+( 1

2 ) = lim
h→0+

f(ch) = lim
h→0+

1 = 1.

Oops! 0 = 1—definitely a contradiction! A contradiction has insinu-
ated itself into our logical system. How could that have happened? It
comes from the assumption that an antiderivative for f existed! An
antiderivative does not exist!.

c1d_t1.pdf#thmMVT
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Exercise Notes: The function f does have an antiderivative over the
interval ( 0, 1

2 ) and f has an antiderivative over the interval ( 1
2 , 1 ),

but not a single function F that is an antiderivative over the whole
interval ( 0, 1 ).

Find the antiderivative of f over the interval ( 0, 1
2 ) and find the

antiderivative of f over the interval ( 1
2 , 1 ).

Go through the above ‘proof’ and justify each equality by citing
definitions and theorems—make sure that you know ‘the why’ of each
step.

Exercise 2.11.
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2.12. One such example is the “salt and pepper function.” Define
the function f , for x ∈ ( 0, 1 ), by

f(x) =
{

0 if x is a rational number
1 if x is an irrational number

Note: There is nothing special about the interval ( 0, 1 ).

The next question: How to prove that no antiderivative exists for this
function?

This is the second challanging part of this problem. Try to do it your-
self. Use the tools of Calculus I to make an argument. Hint : Assume
there is a function F such that F ′(x) = f(x) for all x ∈ ( 0, 1 ) and
try to get a contradiction. You will find the Mean Value Theorem
quit useful.

Proof that f has no antiderivative.
Exercise 2.12.
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2.13. The integral of sin(t) with respect to t is − cos(t) plus an
arbitrary constant C. Exercise 2.13.
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2.14. Here we are playing mind games with you. The symbol∫
f(x) dx, (A-3)

by the description of the notation, represents an antiderivative of f .
An antiderivativeof f is any function whose derivative is f ; therefore
the derivative of (A-3) is f , i.e., in symbolics,

d

dx

∫
f(x) dx = f(x).

“The derivative of an indefinite integral is the integrand.”

Notice that you were not asked to evaluate the integral, but to differ-
entiate it. This could be done without even without precise knowledge
of the definition of the integrand function. Exercise 2.14.
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2.15. Because of the presence of the symbol dx, we know that the
variable of integration is x. This means that the indefinite integral∫

(x+ sin(x))10 dx (A-4)

is considered to be a function of x. The integral (A-4) represents any
function (of x) whose derivative (with respect to x) is the integrand
(which is (x+ sin(x))10). Therefore,

d

dx

∫
(x+ sin(x))10 dx = (x+ sin(x))10.

Exercise 2.15.
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2.16. An indefinite integral is an antiderivative of its integrand:

d

ds

∫
tan12(s) ds = tan12(s).

Exercise 2.16.
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3.1. You should have deduced: By your phrase, “The integrand is
0,” you obviously mean, Sir, that the integrand is the zero function
defined by, if memory serves, f(x) = 0, for all x. Exercise 3.1.
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3.2. The condition that r 6= −1 is necessary in order to avoid divid-
ing by 0. Exercise 3.2.



Solutions to Exercises (continued)

3.3. Notice that the base of the power function is x, the same as the
variable of integration, as defined by dx.∫

x−3/4 dx =
x1/4

1/4
+ C = 4x1/4 + C.

Division by 1/4 is the same as multiplication by 4. Exercise 3.3.



Solutions to Exercises (continued)

3.4. The problem is to calculate∫
w7/3 dw.

The base function, w, is the same as the variable of integration, w, as
determined by the differential dw. The power rule can safely applied:∫

w7/3 dw =
w10/3

10/3
+ C =

3
10
w10/3 + C.

Division by 10/3 is the same as multiplication by 3/10.
Exercise 3.4.
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3.5. Now here’s a bit of a spanner in the works! The given integral
problem, ∫

(2x)4 dx,

is the integral of a power function; however, the base of the power
function (2x)4 is 2x which does not match the variable of integration,
x, as defined by the dx. In this simple case, we can easily remove the
spanner. Proceed as follows:∫

(2x)4 dx =
∫

24 x4 dx

= 24
∫
x4 dx

= 16
x5

5
+ C / Power Rule

=
16
5
x5 + C.
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When we applied the power rule, we did so to the problem of inte-
grating x4. Now the base of this power function matches the variable
of integration. Exercise 3.5.
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3.6. I’ll follow my own advice. Hope you did too. We proceed in a
methodical and organized way. Note that

√
u = u1/2.∫

1
u1/2 du =

∫
u−1/2 du

=
u1/2

1/2
+ C / Power Rule

= 2
√
u+ C.

Notice that the base of the power function u−1/2 is u, the same as the
variable of integration, as defined by du. Exercise 3.6.



Solutions to Exercises (continued)

3.7. The integrand is f(x) = x2√x. We cannot integrate this func-
tion as it is now expressed because it is not written as a power func-
tion. We must do that

f(x) = x2√x = x2x1/2 = x5/2.

Thus, ∫
x2√x dx =

∫
x5/2 dx

=
x7/2

7/2
+ C

=
2
7
x7/2 + C

=
2
7
x3√x+ C

We have a limited number of formulas to evaluate an integral; there-
fore, we must sometimes manipulate the integrand so that the problem
fits into one of our formulas. Practically, the only formula we have is
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the Power Rule so we must try to make the integrand into a power
function. Exercise 3.7.
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3.8. The only way we can solve this problem is if the integrand is a
power function. It is . . . trust me; I know the person who made this
problem up! ∫ √

t

t3
dt =

∫
t1/2

t3
dt

=
∫
t−5/2 dt

=
t−3/2

−3/2
+ C / Power Rule

= −2
3
t−3/2 + C

= − 2
3t
√
t

+ C

Here is an important point: When you use the Power Rule, your power
function must be in the numerator.

The ideas and techniques do not depend on the variable of integration.
Exercise 3.8.
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3.9. Just apply the Power Rule for the case r = 0.∫
dx = x+ C∫
du = u+ C.

Stare at these equations. One gets the feeling that the Int symbol
cancels out the d to get x and u.∫

dz = z + C∫
dw = w + C.

Exercise 3.9.
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3.10. We use (1), ∫
cos(t) dt = sin(t) + C.

The formulas are independent of the choice of the symbol to denote
the variable of integration. Exercise 3.10.
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3.11. We use (4), ∫
csc2(s) ds = − cot(s) + C.

The formulas are independent of the choice of the symbol to denote
the variable of integration. Exercise 3.11.
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3.12. None of the formulas apply. This is, in fact, a trick question.
You should have realized that

sin2(x3) + cos2(x3) = 1,
thus, ∫

sin2(x3) + cos2(x3) dx =
∫

1 dx =
∫

dx = x+ C,

by the Power Rule. Exercise 3.12.
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3.13. Formula (4) claims that∫
csc2(x) dx = − cot(x) + C.

The right-hand side is supposed to be an antiderivative of the inte-
grand.

d

dx

(− cot(x) + C
)

= − d

dx
cot(x) = −(− csc2(x)

)
= csc2(x),

where we have used the fact that the derivative of a constant term,
C, is zero, so we dropped it out of the calculations early; and the trig
differentiation formulas (6). Thus the derivative of the answer is the
integrand; this means that the answer is, indeed, an antiderivative of
the integrand.

This is how you verify an integration formula. Exercise 3.13.
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3.14. We use good notation and techniques:∫
4x6 dx = 4

∫
x6 dx / Homog. Prop.

= 4
x7

7
+ C / Power Rule

=
4
7
x7 + C.

Above is the proper presentation and thinking. You should consciously
think the thoughts that justify each step — that will reenforce the
rules. Exercise 3.14.
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3.15. The height of triviality. We concentrate, therefore, on style.∫
6t
√
t dt = 6

∫
t
√
t dt / Homogen. Prop.

= 6
∫
t3/2 dt

= 6
2
5
t5/2 + C / Power Rule

=
12
5
t2
√
t+ C.

I have left the answer in the same radical notation in which the original
problem was posed. ’Nuff said. Exercise 3.15.
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3.16. We utilize our tool kit of techniques.∫
2
3
x6 − 8x12 dx =

∫
2
3
x6 dx−

∫
8x12 dx / Additive Prop.

=
2
3

∫
x6 dx− 8

∫
x12 dx / Homogen. Prop.

=
2
3
x7

7
− 8

x13

13
+ C / Power Rule

=
2
21
x7 − 8

13
x13 + C.

I hope you used good techniques. Exercise 3.16.
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3.17. We use standard techniques,∫
8 sec2(x)− 6 sec(x) tan(x) dx

=
∫

8 sec2(x) dx−
∫

6 sec(x) tan(x) dx / Additive Prop.

= 8
∫

sec2(x) dx− 6
∫

sec(x) tan(x) dx / Homogen. Prop.

= 8 tan(x)− 6 sec(x) + C / Trig. (3) & (5)

All these demonstrations are alike! Exercise 3.17.
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3.18. None of our specific integral formulas apply immediately: The
integrand is not a power function, the integrand does not involve
trigonometric functions. These are the types of functions we can in-
tegrate.

Whenever the specific integration formulas do not apply, we must
transform the problem into another problem or problems using the
general formulas, or by directly manipulating the integrand, then ap-
plying the general formulas. We elect the latter.

The Integrand :
(t4 − 4t3)2 = t8 − 8t7 + 16t3,

where, I have squared the binomial by verbalizing : The square of a
sum is the square of the first plus twice the product of the first and
second, plus the square of the second.
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Thus ∫
(t4 − 4t3)2 dt =

∫
t8 − 8t7 + 16t3 dt

=
1
9
t9 − t8 + 4t4 + C

Exercise 3.18.
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3.19. You should not have encountered any technical difficulties pre-
venting the successful completion of this problem.

The Integrand :
(
w3 − 1

w2

)2

= (w3 − w−2)2

= w6 − 2w + w−4

Evaluation:
∫ (

w3 − 1
w2

)2

dw =
∫
w6 − 2w + w−4 dw

=
1
7
w7 − w2 +

w−3

−3
+ C

=
1
7
w7 − w2 − 1

3
w−3 + C

=
1
7
w7 − w2 − 1

3w3 + C

Exercise 3.19.
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3.20. We must square the integrand.

(sec(x) + tan(x))2 = sec2(x) + 2 sec(x) tan(x) + tan2(x).

Keeping in mind we want to integrate the above function, we realize
that the integrals of the first and second terms are exact integral
formulas; the third term, tan2(x) is a problem. However,

sec2(x)− tan2(x) = 1
or,

tan2(x) = sec2(x)− 1.

We can integrate the constant 1, and we can integrate the function
sec2(x). I leave the rest of the demonstration to you.

Answer :∫
(sec(x) + tan(x))2 dx = 2(tan(x) + sec(x))− x+ C.

Exercise 3.20.
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4.1. If u = 3x+ 1, then du = 3 dx, or dx = 1
3 du. Thus,∫

(3x+ 1)20 dx =
∫
u20 1

3
du / Substitution

=
1
3

∫
u20 du / Homogen.

=
1
3

1
21
u21 + C / Power Rule

=
1
63

(3x+ 1)21 + C / since u = 3x+ 1

Exercise 4.1.
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4.2. Let u = 2x, so du = 2 dx, or dx = 1
2 du. Then∫

sec2(3x) dx =
∫

sec2(u)
1
3
du / Substitution

=
1
3

∫
sec2(u) du

=
1
3

tan(u) + C / Trig. (3)

=
1
3

tan(3x) + C / since u = 3x

Thus, ∫
sec2(3x) dx =

1
3

tan(3x) + C.

Did you check your answer before reading the solution?
Exercise 4.2.
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4.3. If we want to solve the integral,∫
x8(6x9 + 12)1/3 dx,

using the Power Rule, then we must choose u to base of a power
function. The rest of the integrand must be directly proportional to
the du of your chosen u.

Let u = 6x9 + 12, then du = 54x8 dx. Now, taking the integral and
rearranging the integrand,∫

(6x9 + 12)1/3 x8 dx,
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we see that the x8 dx is directly proportional to the du. Success! Con-
tinuing now,∫

(6x9 + 12)1/3 x8 dx

=
1
54

∫
(6x9 + 12)1/3 54x8 dx / insert fudge factors

=
1
54

∫
u1/3 du / substitution

=
1
54
u4/3

4/3
+ C / Power Rule

=
1
54

3
4

(6x9 + 12)4/3 + C / re-subsititute

=
1
72

(6x9 + 12)4/3 + C
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I hope your arrived at the conclusion:∫
(6x9 + 12)1/3 x8 dx =

1
72

(6x9 + 12)4/3 + C

By the way, let us agree that the insertion of the constant of propor-
tionality into the integral be referred to as the “fudge factor.”

Exercise 4.3.
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4.4. We proceed along standard lines,∫
x√

4− 3x2
dx =

∫
(4− 3x2)−1/2 x dx

Let u = 4 − 3x2, du = −6x dx. The Power Rule is applicable since
every thing left over after the power function part, (4 − 3x2)−1/2 is
directly proportional to the du. All we have to do is insert our fudge
factors:∫

(4− 3x2)−1/2 x dx

= −1
6

∫
(4− 3x2)−1/2 (−6x) dx / fudge factors

= −1
6

∫
u−1/2 du / Substitituion

= −1
6
u1/2

1/2
+ C / Power Rule

= −2
1
6

(4− 3x2)1/2 + C / re-substitution
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= −1
3

√
4− 3x2 + C

Exercise 4.4.
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4.5. Let

u = 3x4 − 4x+ 1

du = 12x3 − 4 dx
or,

du = 4(3x3 − 1) dx

Write the power function first,∫
(3x4 − 4x+ 1)1.45 (3x3 − 1) dx.

Is the rest of the integrand, following the power function, directly
proportional to the du? Yes! The Power Rule applies, and we are
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home free,∫
(3x4 − 4x+ 1)1.45 (3x3 − 1) dx

=
1
4

∫
(3x4 − 4x+ 1)1.45 4(3x3 − 1) dx / fudge

=
1
4

∫
u1.45 du / Sub.

=
1
4
u2.45

2.45
+ C / Power Rule

=
.25
2.45

(3x4 − 4x+ 1)2.45 + C / re-sub.

=
5
49

(3x4 − 4x+ 1)2.45 + C

This problem is the same as the previous problems. The only differ-
ence is a more complicated base function u, which lead to a more
complicated du. If you kept a cool head and followed the strategy you
should have come out fine. Exercise 4.5.
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4.6. Let u = 4x, du = 4 dx. Then,∫
sec2(4x) dx =

1
4

∫
sec2(4x) 4 dx / rearrange and fudge

=
1
4

∫
sec2(u) du / substitute

=
1
4

tan(u) + C / Trig. (3)

=
1
4

tan(4x) + C / re-substitute

Exercise 4.6.
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4.7. You were asked to integrate the sine of some function of x: try
the sine formula.

Let u =
√
x, du =

1
2
√
x
dx. Then

∫
sin
√
x√

x
dx =

∫
sin
√
x

1√
x
dx / re-arrange integrand

= 2
∫

sin
√
x

1
2
√
x
dx / fudge

= 2
∫

sin(u) du / substitution

= −2 cos(u) + C / Trig. (2)

= −2 cos
√
x+ C / re-substitute

Exercise 4.7.
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4.8. Here, there are two possibilities for u.

First Analysis: We have a sec(x2) tan(x2) combo; this is a form that
appears in Trig. (5). In this case we are forced to say: Let u = x2, since
this is the argument of the trig functions, and du = 2x dx. Looking at
our integral,∫

x sec(x2) tan(x2) sec2(sec(x2)) dx

=
∫
x sec(x2) tan(x2) sec2(sec(x2))x dx

=
1
2

∫
sec(x2) tan(x2) sec2(sec(x2)) 2x dx.

Thus, we can get our du, but we still have stuff left over. The factor
sec2(sec(x2)) is left unaccounted for. Therefore, this attempt at using
the Trig. formulas does not work.

Rather than throwing down our pencils and giving up, we’ll try again.



Solutions to Exercises (continued)

Second Analysis: We have a sec2 function with a complicated argu-
ment sec(x2). Let’s try to use Trig. (3). In that case, we are forced to
let u be equal to the argument of the sec2 function. Let

u = sec(x2)

du = sec(x2) tan(x2) 2x dx.

Let’s re-arrange our integral in an esthetically pleasing way:∫
x sec(x2) tan(x2) sec2(sec(x2)) dx

=
∫

sec2(sec(x2)) sec(x2) tan(x2)x dx.
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Notice, everything following the sec2 factor is directly proportional to
our du. Therefore, Trig. (3) will apply.∫

x sec(x2) tan(x2) sec2(sec(x2)) dx

=
1
2

∫
sec2(sec(x2)) sec(x2) tan(x2) 2x dx / fudge it

=
1
2

∫
sec2(u) du / substitution

=
1
2

tan(u) + C / Trig. (3)

=
1
2

tan(sec(x2)) + C / re-substitute

Despite the ugliness of the original problem, the given integral was
just ∫

sec2(u) du,

we just had to find the correct u. Exercise 4.8.
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5.1. The referenced formula is∫
sec2(u) du = tan(u) + C. (A-5)

Our given integral is ∫
sec2(3x2) dx. (A-6)

Now, in the formula (A-5), the u is the argument of the secant. If
(A-5) is to solve our given integral, then we are forced to say

Let u = 3x2 and du = 6x dx.

If the formula (A-5) is to apply, everything following the sec2(3x2)
must by the du. We don’t have the du, but what we do have is off by
a multiplicative constant — that good enough.∫

sec2(3x2)x dx =
1
6

∫
sec2(3x2) 6x dx

c1f_t.pdf#defnargument
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All the parts of the given integral are properly lined up with the cor-
responding parts of our chosen integral formula. (The correspondence
being setup by the device of substitution.) Therefore,∫

sec2(3x2)x, dx =
1
6

∫
sec2(3x2)︸ ︷︷ ︸

sec2(u)

6x dx︸ ︷︷ ︸
du

=
1
6

tan(3x2) + C.

There is no real need to make the substitution. Exercise 5.1.
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5.2. As suggested in the Hint :

Let u = 3x− 2, or x =
1
3

(u+ 2), and so dx =
1
3
du,

Take our integral now and replace the x’s with the u’s, and substitute
for dx — very important!∫

x(3x− 2)−4 dx

=
∫

1
3

(u+ 2)u−4 1
3
du

=
1
9

∫
u−3 + 2u−4 du

=
1
9

(
−1

2
u−2 − 2

3
u−3

)
+ C

=
1
9

(
−1

2
(3x− 2)−2 − 2

3
(3x− 2)−3

)
+ C

Same problem as my two examples previously. Exercise 5.2.



Solutions to Exercises (continued)

5.3. Again, we can check that the power rule does not solve the
integral: ∫

x2(6x+ 1)1/2 dx.

If you tried the suggested substitution, and followed the previous ex-
amples, you should be reading what you already know. So,

Let u = 6x+ 1. Thus, x =
1
6

(u− 1), and so dx =
1
6
dx.

The purpose of this substitution is to shift the binomial expression
(6x+ 1) from underneath the −1/2 power, and move a new binomial
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expression to the squared term. Let’s see if this, if fact, happens:∫
x2(6x+ 1)−1/2 dx

=
∫

1
36

(u− 1)2u−1/2 1
6
du / substitution

=
1

216

∫
(u2 − 2u+ 1)u−1/2 du

=
1

216

∫
u3/2 − 2u1/2 + u−1/2 du

=
1

216

(
2
5
u5/2 − 4

3
u3/2 + 2u1/2

)
+ C

=
1

108
u1/2

(
1
5
u2 − 2

3
u+ 1

)
+ C

=
1

108
(6x+ 1)1/2

(
1
5

(6x+ 1)2 − 2
3

(6x+ 1) + 1
)

+ C

Exercise 5.3.
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6.1. Let u = sin(cos(x2)). Then

u = sin(cos(x2))

du = cos(cos(x2))(− sin(x2))(2x) dx

= −2x sin(x2) cos(cos(x2)) dx

Thus, ∫
x sin(x2) cos(cos(x2)) sin3(cos(x2)) dx

=
∫

sin3(cos(x2))x sin(x2) cos(cos(x2)) dx

= −1
2

∫
sin3(cos(x2)) (−2x) sin(x2) cos(cos(x2)) dx

= −1
2

∫
u3 du

= −1
2

1
4
u4 + C
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= −1
8

sin4(cos(x2)) + C.

Exercise 6.1.
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6.2. We manipulate algebraically the integrand.
√
x+ 1√
x

= 1 +
1√
x

= 1 + x−1/2.

The power rule can be applied — the ball is in your court.
Exercise 6.2.
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6.3. Let’s summarize the results.

Example 6.3: ∫ √
x+ 1√
x

dx = (
√
x+ 1)2 + C.

Exercise 6.2: ∫ √
x+ 1√
x

dx = x+ 2x1/2 + C.

If both of these “answers” are correct, they should both be antideriva-
tives of the integrand. By Theorem 2.2, these two “answers” should
differ by a constant (actually, the way I phrased it in the theorem was
that one function is equal to the other plus a constant). Let’s check
it out:

(
√
x+ 1)2 − (x+ 2x1/2) = (x+ 2

√
x+ 1)− (x+ 2

√
x)

= 1



Solutions to Exercises (continued)

The two “answers” indeed differ by a constant — completely consis-
tent with general theory. Thank goodness. DPS Exercise 6.3.



Solutions to Examples

2.1. Define F (x) = 1
4x

4. Then by the rules of differentiation, F ′(x) =
x3 = f(x); therefore, by Definition 2.1, we are entitled to say that F
is an antiderivative, or that F is an indefinite integral, of f .

Notice that we could have defined F (x) = 1
4x

4 + 1, then this “new”
function F would still be an antiderivative of f since F ′(x) = f(x) as
well. (This is because the derivative of a constant term is 0.)

More generally, and function of the form F (x) = 1
4x

4 +C, there C is
any constant is an antiderivative of f . Example 2.1.



Solutions to Examples (continued)

2.2. The rock has an initial velocity of v0 = 50 (feet per second) and
is initially, s0 = 6 (feet) off the ground. Therefore,

s0 = 6 v0 = 50. (S-1)

Solution to (a): Find the equation (13) that specifies the height s(t)
of the rock above the ground at time t.

We know from (13) that

s(t) = −1
2
gt2 + v0t+ s0.

Update this equation using the data in (S-1):

s(t) = −1
2
gt2 + 50t+ 6.

Because the scale of measurement is in the English system of mea-
surement, we know that g = 32 ft/sec2. Substituting this in we get

s(t) = −16t2 + 50t+ 6. (S-2)
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Solution to (b): How high is the rock off the ground 5 seconds after
the rock leaves your hand?

We are being asked to take our mathematical model (S-2) and sub-
stitute t = 1 into it.

s(1) = −16(1)2 + 50(1) + 6

s(5) = 40 feet

Solution to (c): How long before the rock hits the ground?

The rock hits the ground when the distance off the ground is 0. The
function s(t) is the distance of the rock from the ground; therefore,
we put

s(t) = 0.

This equation asks the question: At what time t is s(t) = 0? Replace
s(t) with (S-2):

−16t2 + 50t+ 6 = 0.
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This is a second degree polynomial put equal to zero: This is a job for
the quadratic formula:

t =
−50±√502 − 4(−16)(5)

−32

= −−50±√2820
32

=
50±√2820

32
There are two solutions. We are interested in the one where t > 0 —
since the rock is thrown at time t = 0, it will hit the ground sometime
after time 0. Whipping out my calculator and choosing the positive
solution we get,

t ≈ 3.322 sec. (S-3)

Here, it have used the symbol ≈ to indicate that my calculated value
of t is only approximate; it is accurate to 3 decimal places.

Solution to (d): What is the velocity of the rock when it hits the
ground?
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The velocity of the rock at any time t is v(t) =
ds

dt
.

s(t) = −16t2 + 50t+ 6 / from (S-2)

v(t) = −32t+ 50 (S-4)

Taking our velocity expression for the velocity of the rock, (S-4), and
putting in the time value, (S-3), of when the rock hit the ground we
get,

v(3.222) ≈ −32(3.222) + 50 = −53.104.
Thus,

v(3.222) ≈ −53.104 ft/sec

Again, the ≈ means “approximately equal to,” this notation is called
for in the velocity calculation because the value of t inserted was only
approximate. The interpretation of the negative velocity, is that the
rock is going 53.104 ft/sec downward¿

Solution to (e): At what time is the rock 6 feet above the ground?
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This problem asks the question: For what value of t is it true that

s(t) = 6?
Or,

−16t2 + 50t+ 6 = 6.

This is just an exercise in solving equations.

−16t2 + 50t+ 6 = 6

−16t2 + 50t = 0

2t(25− 8t) = 9

Therefore, t = 0 or t = 25/8. At time t = 0 the rock is at 6 feet when
it left your hand — that makes sense. The rock goes up, then comes
down. Eventually, it attains a height of 6 feet again — at time

t = 25/8 = 31
8 . (S-5)

seconds after it leaves you hand.
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Solution to (f): What is the velocity of the rock when the rock is 6
feet off the ground?

The velocity equation is v(t) = −32t + 50. From the previous part,
the time when the rock reaches a height of 6 feet is t = 25/8, (S-5);
therefore,

v(25/8) = −32
25
8

+ 50 = −50

v(25/8) = −50 ft/sec.

The interpretation of the negative sign is that the rock is moving
downward when it attains a height of 6 feet.

Solution to (g): How high does the rock go?

We can determine how high the rock goes by making this simple
observation: When the rock reaches its highest point, its velocity is 0.
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We then ask ourselves the question: At what time is v(t) = 0?

v(t) = 0
−32t+ 50 = 0

t =
−50
−32

t =
25
16
.

How high now is the rock with the time is t = 25/16? From (S-2)

s(26/16) = −16(25/16)2 + 50(25/16) + 5

=
721
16

.

Thus,

s(26/16) =
721
16

feet

is how high the rock goes. Example 2.2.
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3.1.

∫
1
x2 dx =

∫
x−2 dx

=
x−1

−1
+ C / Power Rule

= − 1
x

+ C.

Notice the base, x, of the power function, x−2, is x, the variable of
integration. Example 3.1.
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3.2. We must argue that the right-hand side of∫
cf(x) dx = c

∫
f(x) dx.

is an antiderivative of the integrand of the left-hand side. Indeed,

d

dx
c

∫
f(x) dx = c

d

dx

∫
f(x) dx (S-6)

= cf(x). (S-7)

The equality in line (S-6) comes from the Homogeneous Property for
differentiation. The equality of line (S-7) comes from the definition of

the symbolism. The symbol
∫
f(x) dx stands for any function whose

derivative is f(x); consequently, if we differentiate it, we get f(x). See
Exercise 2.14 for more details — if you have forgotten them.

Example 3.2.
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3.3. As always, we use good techniques.∫
3x4 + 6x2 dx =

∫
3x4 dx+

∫
6x2 dx / Additive Prop.

= 3
∫
x4 dx+ 6

∫
x2 dx / Homogen. Prop.

= 3
x5

5
+ 6

x3

3
+ C / Power Rule

=
3
5
x5 + 2x3 + C.

Do you see how we are slowly building up a kit of tools to handle
integration problems?

There is a temptation to skip many of these steps, but I would advise
against such a course. At first, methodically, go through all the steps,
let the proper thinking flow through your brain a number of times be-
fore embarking on the potentially more dangerous course of skipping
steps. Example 3.3.
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4.1. The integral, ∫
(x+ 1)15 dx (S-8)

can be evaluated using our current techniques: multiply out the inte-
grand and integrate each term separately using the Power Rule. Good
Luck! But I don’t want to do it that way.

I’ll make a substitution. Let u = x+ 1 and so du = dx. Now formally
substituting these into the given integral we obtain,∫

(x+ 1)15 dx =
∫
u15 du.

This new integral can be solved by the basic Power Rule,∫
(x+ 1)15 dx =

∫
u15 du / Substitution

=
1
16
u16 + C / Power Rule

=
1
16

(x+ 1)16 + C / since u = x+ 1
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Example 4.1.
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4.2. The integral problem∫
(2x+ 1)15 dx, (S-9)

is conceptually the same as the previous problem: It is a degree one
polynomial raised to a large degree. Make a substitution: Let

u = 2x+ 1,
then,

du = 2 dx.

We want to make the substitution. The strategy is to replace the
variable x and the differential dx with the new variable u and du.
Note that

du = 2 dx =⇒ dx =
1
2
du.

Now let’s substitute the pair,

u = 2x+ 1

du =
1
2
dx
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into (S-9):∫
(2x+ 1)15 dx =

∫
u15 1

2
du / Substitution

=
1
2

∫
u15 du / Homogen

=
1
2

1
16
u16 + C / Power Rule

=
1
32

(2x+ 1)16 + C / sinceu = 2x+ 1

Thus, ∫
(2x+ 1)15 dx =

1
32

(2x+ 1)16 + C.

Example 4.2.
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4.3. You’ll notice that our cosine integral formula (1) does not apply.
That formula states ∫

cos(x) dx = sin(x) + C.

The choice of the variable of integration is unimportant. The key
point is that the argument of the cosine function x matches the dx;
by match I mean that the argument of x is the variable of integration,
as defined by the differential dx. In our problem∫

cos(2x) dx, (S-10)

the argument of the cosine function 2x does not match the dx; that
is, we are not taking the cosine of the variable of integration, but
the cosine of twice the variable of integration; therefore, the formula
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does not apply. However, we can make is apply using the technique
of substitution. Let

u = 2x
du = 2 dx

or,

u =
1
2
du

Now substituting these equations into (S-10) to get,∫
cos(2x) dx =

∫
cos(u)

1
2
du / Substitution
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Notice now that the argument of the cosine function in our new inte-
gral is u, which exactly matches the du. Continuing now,∫

cos(2x) dx =
∫

cos(u)
1
2
du / Substitution

=
1
2

∫
cos(u) du

=
1
2

sin(u) + C / Trig. (1)

=
1
2

sin(2x) + C / since u = 2x

Thus, ∫
cos(2x) dx =

1
2

sin(2x) + C.

You can always check your answer by differentiating the answer to
obtained the integrand:
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Check :
d

dx

1
2

sin(2x) + C =
1
2

cos(2x)
d

dx
2x = cos(2x).

Checked! Example 4.3.
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4.4. The problem is ∫
(5x− 3)9 dx. (S-11)

The first observation is that this is the integral of a function raised
to a fixed power: a power function. The Power Rule for integration is
designed to integration power functions; therefore, we investigate the
power rule.

Look at the new Generalized Power Rule,∫
ur du =

ur+1

r + 1
+ C r 6= −1.

and compare it with your integral (S-11). We want to use the power
rule to solve our problem. To do this, you have to set up a correspon-
dence between your problem and the power rule; this correspondence
is setup through the technique of substitution.

c1d_t.pdf#DerivPower
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What should u in the Power Rule be. Just look at the rule. The
variable u is the base of the power function. Therefore, in our problem,
(S-11), we would set u equal to the base of the power function. Let

u = 5x− 3
du = 5 dx

and so,

dx =
1
5
dx

We now take our integral, and substitute for x and for dx.∫
(5x− 3)9 dx =

∫
u9 1

5
du / Substitution

=
1
5
u10

10
+ C / Power Rule

=
1
50

(5x− 3)10 + C / resubstitute
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Thus, ∫
(5x− 3)9 dx =

1
50

(5x− 3)10 + C.

Example 4.4.
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4.5. Now the integrand of the problem∫
x(3x2 − 5)3/4 dx,

consists of two factors: x and (3x2 − 5)3/4. Both are power functions,
the latter one more complicated than the former. We are determined
to use the Power Rule. How should we assign the value of u in the
formula? Keeping in mind that in the power rule formula, u is the
base of the power function, we try letting

u = 3x2 − 5
du = 6x dx

In order to affect the substitution, we must get rid of all x’s and the
dx, replacing them with our new variable u and our new du. We can
get rid of the (3x2 − 5)3/4 with u3/4. But what about the left over x
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and dx? There are several ways of handling this situation; here is one
such.∫

x(3x2 − 5)3/4 dx =
∫

(3x2 − 5)3/4 x dx / rearrange integrand

=
1
6

∫
(3x2 − 5)3/4 6x dx / cleverly insert 1

=
1
6

∫
u3/4 du / sub. for u,du

=
1
6
u7/4

7/4
+ C / Power Rule

=
1
6

4
7
u7/4 + C

=
2
21

(3x2 − 5)7/4 + C. / resubstitute

Thus, ∫
x(3x2 − 5)3/4 dx =

2
21

(3x2 − 5)7/4 + C.
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The student should assure the self of the student that the answer is
correct. Differentiate the answer to obtain the integrand.

Example 4.5.



Solutions to Examples (continued)

4.6. The problem is to integrate∫
x3(2x3 + 1)7 dx.

This integral looks like the several ones already seen. The strategy is
to set u equal to the base of a power function. We have two power
functions; the one to try first is the more complicated of the two.

Let,

u = 2x3 + 1

du = 6x2 dx

Now examining and rearranging the integral we get,∫
x3(2x3 + 1)7 dx =

∫
x(2x3 + 1︸ ︷︷ ︸

u

)7 x2 dx.︸ ︷︷ ︸
k du

As you can see, our du calculation is du = 6x2 dx. To make the ‘du’
we need an x2 dx which we have by breaking x3 into xx2 and moving
the x2 over next to the dx. But, we still have an x left over ! This
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means that this integral cannot be solved by the Power Rule! For the
Power Rule to apply, your entire integrand must be either part of the
ur or part of the du; we have an x that belongs to neither.

Normally, we would not set our minds to pondering how to solve this
integral. You can solve this integral: Multiply everything out to obtain
a polynomial, and integrate each term. Good luck, son. DPS

Example 4.6.
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4.7. I look at the problem,∫
sin(5x) dx, (S-12)

and I see that we are asked to integrate the sine of some function of
x. We have a formula for integrating the sine of some function of an
independent variable, x in this case.∫

sin(u) du = − cos(u) + C.

I reason as follows: If I am going to use this formula to solve problem
(S-12), then u must be 5x; this is because in the formula, u is the
argument of the sine function (i.e. u is the quantity that we are taking
the sine of).

Let, therefore,

u = 5x
du = 5 dx.
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Substituting this into our problem, (S-12),∫
sin(5x) dx =

1
5

∫
sin(5x) 5 dx / fudge factors

=
1
5

∫
sin(u) du / substitution

= −1
5

cos(u) + C / Trig. (2)

= −1
5

cos(5x) + C / re-substitute

Thus, ∫
sin(5x) dx = −1

5
cos(5x) + C.

Example 4.7.
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4.8. We have the integral of the sec tan function with a common
argument of x2. Try to use Trig. (5):∫

sec(u) tan(u) du = sec(u) + C.

Our problem is ∫
x sec(x2) tan(x2) dx.

Following my own advice in the strategy, let

u = x2

du = 2x dx
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Now, is the rest of the integrand directly proportional to du? Yes.∫
x sec(x2) tan(x2) dx =

∫
sec(x2) tan(x2)x dx

=
1
2

∫
sec(x2) tan(x2) 2x dx / insert fudge

=
1
2

∫
sec(u) tan(u) du / substitution

=
1
2

sec(u) + C / Trig. (5)

=
1
2

sec(x2) + C / re-substitute

Thus, ∫
x sec(x2) tan(x2) dx =

1
2

sec(x2) + C.

Verify the answer through differentiation. Example 4.8.
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4.9. If we let u be the argument of the trigonometric function, the
du must be directly proportional to the rest of the integrand: this is
the Trig. Strategy.

In this problem, ∫
x cos(x) dx,

we would naturally let u = x and so du = dx. We have an x left over:
du is not directly proportional to the rest of the integrand.

This problem cannot be solved by any of the Trig. formulas. In Cal-
culus II, we get some techniques that solve this integral; meanwhile,
you can verify that∫

x cos(x) dx = x sin(x) + cos(x) + C,

by differentiating the right-hand side to obtain the integrand.
Example 4.9.
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5.1. We reason as above. The power rule is∫
ur du =

ur+1

r + 1
+ C r 6= −1.

and the given integral is ∫
(x3 + 1)100 x dx. (S-13)

No if the formula is to solve the above integral, we are forced to say

Let u = x3 + 1, and du = 3x2 dx.

In order for the power rule to apply, everything following the power
function must be part of the du. The du is 3x2 dx. In our integral,
(S-13), we need at least an x2 — but we have only an x. We cannot,
therefore, get the du. The expression that follows the power function
in our integral (S-13) is not directly proportional to the calculated
value of du. Example 5.1.
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5.2. The referenced formula is∫
cos(u) du = sin(u) + C. (S-14)

Our given integral is ∫
cos(2x) dx. (S-15)

Now, in the formula (S-14), the u is the expression we are taking the
cosine of (we say that u is the argument of the cosine). If (S-14) is to
solve our given integral, then we are forced to say

Let u = 2x and du = 2 dx.

If the formula (S-14) is to apply, everything following the cosine must
by the du; at the bear minimum, what follows the cosine must be
directly proportional the du. Staring at the given integral for many
hours, you make the following move,∫

cos(2x) dx =
1
2

∫
cos(2x) 2 dx

c1f_t.pdf#defnargument
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All the parts of the given integral are properly lined up with the cor-
responding parts of our chosen integral formula. (The correspondence
being setup by the device of substitution.) Therefore,∫

cos(2x) dx =
1
2

∫
cos(2x)︸ ︷︷ ︸

cos(u)

2 dx︸︷︷︸
du

=
1
2

cos(2x) + C.

There is no real need to make the substitution. Example 5.2.
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5.3. The given integral is∫
x(x+ 1)100 dx.

The function f in (8) is f(x) = x(x + 1)100. This integral cannot be
solved by a simple application of the power rule. (Use the techniques
of formula checking.) We can solve this integral using the power rule
by multiplying everything out ! No way!

Alternately, we can do a substitution of variables. One natural substi-
tution is to define a new variable u so as to simplify the (x+1)100 part
of the integrand. To do this, we could let u = x + 1, then (x + 1)100

becomes u100 — now that’s a simplification. Let’s complete the sub-
stitution and see what we get,

u = x+ 1 and du = dx
or

x = u− 1 and dx = du. (S-17)
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The latter set of equations, (S-17), is a set of equations of the recom-
mended form (9).

Take our integral and get rid of all x’s and dx’s using (S-17):∫
x(x+ 1)100 dx =

∫
(u− 1)u100 du

This last integral can be solved!∫
x(x+ 1)100 dx

=
∫

(u− 1)u100 du /

{
x = u− 1
dx = du

=
∫
u101 − u100 du / multiply out

=
u102

102
− u101

101
+ C / Power Rule

=
1

102
(x+ 1)102 − 1

101
(x+ 1)101 + C
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In the last we returned to our original variable x, by resubstituting:
u = x+ 1.
Example Notes: Notice the effect of this substitution. We transferred
the binomial from the factor that had large power to the factor that
had small power. This made it practical to “multiply out” the inte-
grand. You can check that this is a correct answer by differentiating
the answer.
Algebra Fanatics: If there are any left, the answer can be simplified
slightly by factoring out (x+ 1)101, and combining the left-overs. The
final, simplified answer is∫

x(x+ 1)100 dx =
1

(101)(102)
(101x− 1)(x+ 1)101 + C.

Waiter! Check please! Example 5.3.
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5.4. The given integral∫
x2(2x+ 1)1/2 dx,

cannot be solve using any of the integral formulas — surprise! Try a
substitution.

Let u = 2x+ 1, or x =
1
2

(u− 1), and dx =
1
2
du.
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Substitute these into our integral, see what we get,∫
x2(2x+ 1)1/2 dx

=
∫

1
4

(u− 1)2u1/2 1
2
du

=
1
8

∫
(u2 − 2u+ 1)u1/2 du

=
1
8

∫
u5/2 − 2u3/2 + u1/2 du

=
1
8

(
2
7
u7/2 − 4

5
u5/2 +

2
3
u3/2

)
+ C

=
1
8

(
2
7

(2x+ 1)7/2 − 4
5

(2x+ 1)5/2 +
2
3

(2x+ 1)3/2
)

+ C

Some additional simplification is possible — I’ll leave that to you.
Example 5.4.
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6.1. Look that the problem∫
x3(x4 + 3)1/3 dx.

Begin with the first formula in the left-hand column. That first for-
mula is the Power Rule. Does the power rule solve this problem?

Formula Checking for Power Rule: The power rule addresses integrals
of the form ∫

ur du.

Taking into consideration the Power Rule Strategy, there are two
choices for u: u = x (because we have a x3 factor in our integral), or
u = x4 + 3 (because we have a (x4 + 3)1/3). Both of these choices are
candidates for the ur part in the power rule. Given the choice, the
rest of the integrand must be the du. I mentally take note that the
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derivative of x4 + 3 is directly proportional to the x3 factor. Through
this observation, I determine to say,

Let u = x4 + 3, and so du = 4x3 dx.
Our integral becomes,∫

x3(x4 + 3)1/3 dx =
1
4

∫
(x4 + 3)1/3︸ ︷︷ ︸

ur

4x3 dx︸ ︷︷ ︸
du

We conclude that the Power Rule will solve this problem. Let’s solve
it!

Evaluation:∫
x3(x4 + 3)1/3 dx =

1
4

∫
(x4 + 3)1/3 4x3 dx

=
1
4

3
4

(x4 + 3)4/3 + C / Power Rule

=
3
8

(x4 + 3)4/3 + C.
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Where we have not bothered to make the substitution — a waste of
electronic bytes — I just applied the power rule. Example 6.1.
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6.2. We start with the first formula in the left-most column of the
table of Integral Formulas and Techniques. The first formula on that
list is the Power Rule. Does the power rule solve this problem?

The Problem:
∫
x2(x2 + 1)2 dx. (S-18)

Formula Checking for Power Rule: Again, we have two choices for u:
u = x and u = x2 + 1.

(1) Let u = x, then du = dx.

The ur = x2. Is it true that everything after the ur is directly pro-
portional to du? Ans: No. Therefore, the power rule does not apply
for this choice of u.

Try again.
(2) Let u = x2 + 1, then du = 2x dx.

Rearrange the integral, ∫
(x2 + 1)2 x2 dx.



Solutions to Examples (continued)

The ur = (x2 +1)1/2. Is it true that everything after the ur is directly
proportional to du? Ans: No. Therefore, the power rule does not apply
for this choice of u.

I conclude that the Power Rule does not solve this problem.

Continue: We still want to solve the problem, right? Continue on
down the list of formulas. We skip over the rest of them because they
all have trig functions in them. Our integral does not have any trig
functions in it. We move over to the techniques column.

Apply a Technique: The original integral (S-18) has no multiplicative
constants to factor out (that’s the first technique on the list), the
integrand has no terms in it so we cannot separate using additively
(that’s the second technique on the list). The remaining choices are
to apply a true substitution of variables or manipulate the integrand
algebraically.
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As a pseudo-rule, substitution is a technique that we apply as a last
resort. I’ll choose to manipulate the integrand algebraically. The only
thing that can be done is to expand the integrand.

x2(x2 + 1)2 = x2(x4 + 2x2 + 1) = x6 + 2x4 + x2.

Thus, ∫
(x2 + 1)2 x2 dx =

∫
x6 + 2x4 + x2 dx

=
1
7
x7 +

1
5
x5 +

1
3
x3 + C.

Once we determined our course of attack, we follow through. Expand-
ing the integrand yielded a polynomial, to which we applied the Power
Rule.

The point of this problem is that it illustrates a “natural” pattern
of thinking. Methodically, we go down the list of integral formulas.
We check each candidate using formula checking technique. Having
reached the bottom of the list of integral formulas, we go over to the
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other column (I’m referring to the two-column list Integral Formulas
and Techniques.). Once we applied a technique (algebra: expanding
out the integrand), we separated integrals and factored out constants
(though these simple steps are were not explicitly shown), and finally
we jumped back to the left-hand column to apply the Power Rule —
the first formula on our list to each of the resulting integrals. This is
the Butterfly Method.

It’s as simple as that! Example 6.2.
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6.3. We apply the Butterfly Method. We go to the first formula
on the left-hand column of the list of Integral Formulas and Tech-
niques. That formula is the Power Rule. Does the Power Rule solve
this problem?

The Problem:
∫ √

x+ 1√
x

dx.

Formula Checking for Power Rule: We must choose the u in the for-
mula ∫

ur du =
ur+1

r + 1
r 6= −1.

The only choice for u is u =
√
x+ 1. (Why?)

let u =
√
x+ 1,and so du =

1
2
√
x
dx.

Keeping in mind the Power Rule Strategy, rewrite the given integral
as follows, ∫ √

x+ 1√
x

dx =
∫

(
√
x+ 1)

1√
x
dx.
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Is it true that everything that follows the ur factor (here r = 1) is
directly proportional to the calculated value of du? Ans: Yes. There-
fore, the Power Rule solves this problem.

Evaluation:∫ √
x+ 1√
x

dx =
∫

(
√
x+ 1)

1√
x
dx

= 2
∫

(
√
x+ 1)︸ ︷︷ ︸
ur

1
2
√
x
dx︸ ︷︷ ︸

du

/ insert fudge factor

= 2
1
2

(
√
x+ 1)2 + C / Power Rule

= (
√
x+ 1)2 + C.

Butterfly works again. Example 6.3.
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6.4. We proceed along standard lines of inquiry: The Butterfly pat-
tern of thought.

Can the integral ∫
x2

√
x+ 1

dx (S-19)

be solved by the Power Rule? We must first ask ourselves. Put it in
the proper form: ∫

(x+ 1)−1/2 x2 dx

If we think of u = x+ 1, then du = dx. We have our du, but we have
the x2 unaccounted for. Therefore, the Power Rule does not apply at
this time.

The other integral formulas in the list do not apply as we have no trig
functions.

We must, therefore, do a technique. Homogeneity and Additivity can-
not be used at this time. That leaves substitution or some direct
manipulation of the integrand.
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In terms of direct manipulation, there is nothing much to do: the
integrand is a fairly compact expression. No wiggle room.

I’m left with the only alternative: Substitution. Now, this will be a
true substitution of variables, not merely formula checking. (We don’t
have an integral formula to check.)

As for a substitution choice, that square root in the denominator of
our problem (6) is the problem child. I’ll use substitution to make it
go away ! You can usually make part of the integrand go away — at
the expense of another part of the integrand. Let’s hope the price is
not too high.

The Substitution: Let u =
√
x+ 1, so

x = u2 − 1 and dx = 2u du,

where I have defined my new variable u to be the offending expression
(so it will now become u), and then I solved for x in order to calculate
dx.
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Substitute In: ∫
x2

√
x+ 1

dx =
∫

(u2 − 1)2

u
2u du

= 2
∫

(u2 − 1)2 du.

The integral we get after substitution and simplification is the integral
of a polynomial in the variable u — solvable! Theoretically done! All
we need to do is to multiply out (a technique), separate integrals
(a technique), and apply the power rule to each term (an integral
formula).
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Evaluation: ∫
x2

√
x+ 1

dx = 2
∫

(u2 − 1)2 du

= 2
∫
u4 − 2u2 + 1 du

= 2
(

1
5
u5 − 2

3
u3 + u

)
+ C

= 2u
(

1
5
u4 − 2

3
u2 + 1

)
+ C
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Resubstitute: Recall that u =
√
x+ 1.∫

x2
√
x+ 1

dx = 2u
(

1
5
u4 − 2

3
u2 + 1

)
+ C

= 2
√
x+ 1

(
1
5

(x+ 1)2 − 2
3

(x+ 1) + 1
)

+ C

=
2
15
√
x+ 1(3x2 − 4x+ 8) + C.

In the last line, I felt that I had to be true to my algebraic heritage
— I simplified to a final magnificent answer. (Yes, I checked to see
whether 3x2 − 4x+ 8 can be factored some more. Did you, can you?)

Example 6.4.
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6.5. We use the Butterfly pattern of thinking.

Begin at the top of the left-hand column of the list: the Power Rule.
Does the power rule solve this problem?

If we designate u = csc(1/x), then we are trying to make our given
integral ∫

csc2( 1
x )

x2 dx (S-20)

look like
∫
u2 du. Does it? If we put u = csc(1/x), then we calculate

du = (1/x2) csc(1/x) cot(1/x) dx (You had better check this, in case I
made a mistake, thanks.) We don’t have the du; therefore, the Power
Rule does not apply.

Moving on down that list, skipping over the integral formulas that
don’t apply: we don’t have any sines, no cosines, no secant squares,
(I’m going down the list). Let’s see where was I, no cosecant squared,
no . . . Wait! I do have cosecant squared in my integral. STOP.
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Let’s investigate whether Trig. (4):∫
csc2(u) du = − cot(u) + C.

Looking at this formula, we see that u is the argument of the cosecant
squared function. Compare this formula with our given integral (S-20),
we see that we must let u be

u =
1
x

and so du = − 1
x2 .

Rearrange our given integral (S-20) to make it look more like the
formula integral: ∫

csc2( 1
x )

1
x2 dx.

Is it true that everything after the csc2(u) is directly proportional to
the calculated value of du? Ans: Yes. Therefore, the formula solve the
problem.
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Evaluation:∫
csc2( 1

x )
1
x2 dx = −

∫
csc2( 1

x )︸ ︷︷ ︸
csc2(u)

−1
x2 dx︸ ︷︷ ︸
du

/ insert fudge

= −(− cot( 1
x )) + C / Trig. (4)

= cot( 1
x ) + C.

Example Notes: Don’t forget the Power Rule. It can potentially solve
any integral no matter what kinds of functions are involved.

The dialog that I carried on above represents the simple minded
approach of the Butterfly Method. Go down the list, stop at a formula
that has some of the attributes of your own integral problem — in
this case, it was the cosecant squared. Use formula checking to check
it out.

Do not get bothered by the ugliness of the integrals. Just pick
out the most important components of your integral: the expression
csc2(of something) in the numerator and the x2 in the denominator.
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Despite its initial ugliness, this problem was almost an exact
integral formula integral. We just had to see that it was.

Example 6.5.
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6.6. The problem is ∫
x sin(x2)√

cos(x2)
dx,

a mean-looking dude, if I may say so. But, let’s not panic. Pro-
ceed along our proven standard technique of analysis: the Butterfly
Method.

Go the first formula on the left-hand column of the list of formulas
and techniques. This is the much often repeated and used Power Rule.
Does the power rule solve this problem?

Formula Checking for Power Rule: The only thing that is being raised
to a power, other than power 1, is the cosine function in the denomi-
nator. Rewrite the integral to make it look more Power Rule-ish:∫

x sin(x2)√
cos(x2)

dx =
∫

(cos(x2))−1/2 x sin(x2) dx

Now let us meditate upon the possibilities. If we let

u = cos(x2), and du = − sin(x2) 2x dx = −2x sin(x2) dx,



Solutions to Examples (continued)

then is it true that everything that follows our power function is di-
rectly proportional to the calculated value of du? Ans: YES. There-
fore, the Power Rule solves this problem.

Evaluation:∫
(cos(x2))−1/2 x sin(x2) dx

= −1
2

∫
(cos(x2))−1/2︸ ︷︷ ︸

ur

(−2x) sin(x2) dx︸ ︷︷ ︸
du

/ fudge factor

= −1
2

(cos(x2))1/2

1/2
+ C / Power Rule

= −
√

cos(x2) + C.

Example 6.6.
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Generally, if a function has one antiderivative, then it has infinity
many. (Some functions have no antiderivative—can you give an ex-
ample of one such creature?)

In the case of f(x) = 2x, each of the functions are antiderivatives of
f :

F1(x) = x2 + 1

F2(x) = x2 + 2

F3(x) = x2 − 1
2

F4(x) = x2 + 100

F5(x) = x2 − 234.12

F6(x) = x2 − π

More generally, a function of the form F (x) = x2 + C, where C is
any constant, is an antiderivative of f(x) = 2x—because, in all cases,
F ′(x) = f(x), for all x ∈ R.

Given the observation that any function of the form F (x) = x2 + C
is an antiderivative of f(x) = 2x, what is a natural question to ask
yourself in this regard? Important Point
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The answer is ‘Yes.’ The definition requires that

F ′(x) = f(x) for all x,

well, let’s check it out.

The definition of f is f(s) = 4s3 and so f(x) = 4x3.

The definition of F is F (t) = t4 and so, by the rules of differentiation,
F ′(t) = 4t3. Thus, F ′(x) = 4x3.

Therefore,
F ′(x) = 4x3 = f(x) for all x,

as required by the definition. Important Point
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This problem was given to me by a colleague. When he/she gave it
to me, he/she left explicit instructions that I was to integrate with
respect to the variable z. Therefore,∫

x2 = x2z + C.

If you missed this problem, it was probably because you weren’t
around when my colleague communicated to me what the variable
of integration was to be . . . sorry! DPS Important Point
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As you work your way through calculus, what is the one big thing
that prevents your success? What one thing do your always struggle
with? What one thing requires most of your time and concentration—
perhaps ultimately taking away from your study of the calculus itself?
The answer, most probably, Algebra!

Imagine how things would be if you where an algebraic whiz. You
could concentrate more on the ideas and techniques of calculus. Since
algebra is no problem, you could do more problems—that would help
your problem solving abilities, give more practice to the different tech-
niques, and increase the speed at which you solve problems (that’s
always good).

Algebra is a foundation block of higher mathematics; it is the language
of mathematics. If you don’t know the language, you can’t operate
effectively in a mathematics environment.

So it goes with, in this instance, the integral formulas. If you don’t
know the formulas, you can solve problems. (If you know the formulas,
and don’t know algebra, you still can’t solve the problems!)
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Finally, having a solid knowledge increases the rate at which you can
learn new ideas! The more you know, the faster you can learn. Knowl-
edge builds on itself.

My advice to you is Know the Formulas! Important Point
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Here are a few more details from a slightly different point of view.

The integrand is f(x) = 0. Define the function F (x) = 0 as well. We
know from differential calculus that

F ′(x) = 0 = f(x)

therefore, from the definition of antiderivative, F is an antiderivative
of f . Hence, we are entitled to say∫

0 dx =
∫
f(x) dx = F (x) + C = C.

The equality of the extreme left side with the extreme right side is
the substance of (1). Important Point



Proof that f has no Anti-Derivative

Choose an irrational number x0 ∈ ( 0, 1 ). Then F ′(x0) = f(x0) = 1.

For any h 6= 0, the Mean Value Theorem states that there is a
number ch between x0 and x0 + h such that

F (x0 + h)− F (x0)
h

= F ′(ch) = f(ch). (I-1)

(I have used the notation ch because the value of ‘c’ as given to us
by the Mean Value Theorem depends the value of the endpoint
x0 + h, which depends, in turn, on the value of h. So ‘c’ will depend
on the value of h.)

Since the limit of the left-hand side of (I-1), as h→ 0, is F ′(x0) = 1,
we deduce for h small enough, say −δ < h < δ, for some positive
number δ, that

F (x0 + h)− F (x0)
h

= f(ch) = 1. (I-2)

Remember that f only takes on values of 0 and 1. If f(ch) in equa-
tion (I-2) is equal to 0 for values of h ‘arbitrarily’ close to 0, that
would imply F ′(x0) does not exist. (Why?)
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Proof that f has no Anti-Derivative

Given the validity of (I-2), we now see that

F (x0 + h) = F (x0) + h − δ < h < δ. (I-3)

Differentiate both sides of (I-3) with respect to h to obtain,

F ′(x0 + h) = 1 − δ < h < δ.

But F ′(x0 + h) = f(x0 + h), and so,

f(x0 + h) = 1 − δ < h < δ. (I-4)

To obtain our contradiction, we simply choose a value for h0, such
that −δ < h0 < δ and x0 + h0 is a rational number. (Is it always
possible to do that?) Thus,

f(x0 + h0) = 1 from (I-4)
but,

f(x0 + h0) = 0 since x0 + h0 is rational

This is a contradiction. Therefore, there is no function F such that
F ′(x0) = f(x0) for any irrational number x0 ∈ ( 0, 1 ).



Proof that f has no Anti-Derivative

A similar argument can be made in the case that x0 is a rational num-
ber. I now claim that f is a function having all the stated properties.

Important Point
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