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2.6. Recognizing Functions

In this section we examine the following question:

“Is the variable s a function of the variable t?”

The goal of this section is develop a “feel” for functional relation-
ships, and furthermore, do it in such a way that your understanding
of a functional relationship does not depend on the particular letters
(variables) used. (This is why I have used different letters to denote
the variables – to avoid biasing your thinking towards our special
variables x and y.)

• Interpreting the Terminology
In the quotation,

“Is the variable s a function of the variable t?”

the letter s is usually y and the letter t is usually x and so the above
question becomes: “Is y a function of x?”. However, it may be that
letter s refers to the letter x and the letter t means letter y, the
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question now becomes: “Is x a function of y?” The letters s and t
could represent any pair variables of interest.

Suppose I make the assertion: “s is a function of t.” What does this
statement mean, what are its implications?

1. The variable t is to be considered the independent variable.
2. The variable s is to be considered the dependent variable.
3. The acceptable values of the variable t vary over a set of numbers

that is referred to as the domain of the function.
4. The values of the function are symbolically represented by the

letter s. The values of the function come from the range of the
function.

5. There is some rule of association – a rule that associates with
each value of t in the domain of the function, a corresponding
value of s in the range. The rule of association my be given
explicitly or implicitly.

6. Notationally, “s is a function of t” means s = f(t).
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Quiz.

1. Consider w as a function of z. Then, corresponding to each value
of z is only one value of w.
(a) True (b) False

2. Consider h as a function of q. Then h is the independent variable.
(a) True (b) False

3. Consider x a function of y. Then x may be considered a member
of the domain of the function.
(a) True (b) False

4. Consider z as a function of x. Then, corresponding to each value
of z is only one value of z.
(a) True (b) False

5. Consider w as a function of s. Then w may be considered a member
of the range of the function.
(a) True (b) False



6. Consider t as a function of w. Then symbolically, this means that
t = f(w).
(a) True (b) False

Passing Score: 6 out of 6.

End Quiz.

Let’s now practice recognizing functions through a series of examples
and exercises.

Example 2.14. Let x and y be real-variables. Suppose it is known
that y is related to x by the equation 2x2 − 3y = 1.

a. Is y a function of x?
b. Is x a function of y?

Exercise 2.41. Suppose x and y are related by the equation 2x −
5y3 = 1.

a. Is y a function of x?
b. Is x a function of y?



Exercise 2.42. Let s and t be related to each other by way of the
equation s− 4t+ t2 = 1.

a. Is s a function of t?
b. Is t a function of s?

Exercise 2.43. Consider the equation x2 + y + 2 = 1. I wouldn’t
think of asking you whether y is a function of x or whether x is a
function of y — they are not. Let m be any number. Consider the
straight line given by y = mx and visualize the intersection of the line
y = mx with the circle x2 + y2 = 1.

a. Is x a function of m, where x is the x-coordinate of the point(s)
of intersection between y = mx and x2 + y2 = 1.

b. Let x be the variable described in part (a). Is m a function of
x?

• The Vertical Line Test
Suppose you have a curve C drawn in the xy-plane. How can we tell
whether this curve C represents y as a function of x? There is a simple
graphical test.



Vertical Line Test :
A curve C in the xy-plane defines y as a function of x if it is
true that every vertical line intersects the curve at no more
than one point.

Important. The x-axis is assumed to be the horizontal axis, and so
the meaning of vertical is perpendicular to the x-axis.

Exercise 2.44. Taking the definition of function into consideration,
the orientation of the axes (x-axis is horizontal), and the geometry of
the graph of a curve, justify in your own mind the Vertical Line Test.

Exercise 2.45. Assume the usual orientation of the xy-axis system
(i.e. the x-axis is horizontal). Suppose we have a curve C in the xy-
axis plane. Under what conditions, similar to the Vertical Line Test,
under which we can assert that the curve defines x as a function of y?
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The Vertical and the results of Exercise 2.45 can be consolidated
into a single statement which is stated independently of orientation
of the axis system.

The Function Line Test :
A curve C in the xy-plane defines y as a function of x if it
is true that every line perpendicular to the x-axis intersects
the curve at no more than one point.

Where, in this test, we do not assume that the x-axis is necessarily
the horizontal axis.

The above concepts are independent of the letters used to describe
them. Here are a couple of questions using other letters.

Exercise 2.46. Let C be a curve in the st-plane. Under what con-
ditions, similar to the Function Line Test, under which we can assert
that

a. the curve defines s as a function of t;
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b. the curve defines t as a function of s.

Exercise 2.47. Quiz.

3. Graphing: First Principles
This section still under construction. It is my intention to have a
section here discussing the fundamental principles and techniques

of graphing a function.
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4. Methods of Combining Functions
Functions can be combined in a variety of ways to create new func-
tions. In this section, we discuss ways in which we can use arithmetic
operations for this purpose.

4.1. The Algebra of Functions

• Equality of Functions
Let f and g be functions. We say that f = g provided:

1. Dom(f) = Dom(g);
2. f(x) = g(x), for all x ∈ Dom(f).

More informally, two functions are the same if they have the same
domain of definition (condition 1), and pointwise they have the same
values (condition 2).

The first example illustrates the equality of two functions. It is a two-
step method: (1) Check whether the domains are equal; (2) Check
whether the functions, pointwise, have the same values.
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Example 4.1. Consider the following two functions:

f(x) = x, g(x) =
x3 + x

x2 + 1
.

Is it true that f = g?

The next example is almost the same as the previous one, but with
two subtle changes. The signs in the numerator and denominator of
the function g have been changed to negative signs. As in the previ-
ous example, the numerator and denominator have a common factor,
when you cancel the common factor you get g(x) = x, this is the same
definition of f . So the two functions are equal, right?

Example 4.2. Are the following two functions equal?

f(x) = x, g(x) =
x3 − x
x2 − 1

.
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Example 4.3. Consider the following two functions:

f(x) = x+ 2 x ∈ R,

g(x) =


x2 + x− 2
x− 1

for x 6= 1

3 for x = 1

Is it true that f = g?

Exercise 4.1. Determine whether the two functions f and g are
equal.

f(x) =
1√

x+ 1−√x g(x) =
√
x+ 1 +

√
x.

Exercise 4.2. Determine whether the two functions f and g are
equal.

f(x) =
x√

x2 + x− x g(x) =
√
x2 + x+ x.



Section 4: Methods of Combining Functions

• Scalar Multiplication
Let f be a real-valued function of a real variable, and let k ∈ R be a
constant. Define a new function, denoted kf , to be a function whose
domain is

Dom(kf) = Dom(f),
such that,

(kf)(x) := kf(x), x ∈ Dom(kf).

The function kf is called a scalar multiple of f (the constant k, in
this context, is referred to as a scalar).

Below is a sequence of simple examples.{
f(x) = x2, x ∈ R
5f(x) = 5x2, x ∈ R{
g(x) =

√
x2 − 4, x ∈ [ 4,∞ )

−.23g(x) = −.23
√
x2 − 4, x ∈ [ 4,∞ ){

h(x) = sinx, x ∈ R
1
2h(x) = 1

2 sinx, x ∈ R
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The above discussion covered the construction of a scalar multiple
of a function. A related topic is the recognition of scalar multiples
of functions. For example, consider the function G(x) = 2 sinx, you
should recognize (or realize) that his function G is, in fact, a scalar
multiple of a more elementary function, namely the sin function. Thus,
G = 2 sin. (Looks strange doesn’t it.)

This ability to recognize scalar multiples is fundamentally a very im-
portant skill.

• The Addition/Subtraction of Functions
Let f and g be real-valued functions of a real variable. Define f + g
to be a function whose domain is

Dom(f + g) = Dom(f) ∩Dom(g),
such that

(f + g)(x) := f(x) + g(x), x ∈ Dom(f + g).

The function is called the sum of f and g. Subtraction of two functions
is defined similarly.
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Exercise 4.3. Study the definition of the sum of two functions. Dis-
cuss why the domain of f + g is defined as it is.

Let’s look at some illuminating examples.

Example 4.4. Let f(x) =
√
x and g(x) = sinx, then the sum and

difference of f and g are

(f + g)(x) = f(x) + g(x) =
√
x+ sinx

(f − g)(x) = f(x)− g(x) =
√
x− sinx.

What are the domains of these functions?

Exercise 4.4. Let f(x) =
√

1− x and g(x) =
√
x− 2, and let F =

f + g. Is there something strange about this definition?

The sum and difference of functions is extended to sums and differ-
ences of many functions.

Exercise 4.5. Let f , g, and h be functions. Define F = f + g − h.
What is the domain of F , and how do calculate the values of F?
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You can combine scalar multiplication and addition/subtraction of
functions.

Example 4.5. Let f(x) =
√
x, g(x) = sinx, and h(x) =

√
4− x,

and define F = 2f − 3g + 4h. Discuss the domain of F and obtain a
calculation formula for F .

Recognition: Frankly, a quite a bit more important ability is that of
recognizing sum and differences of functions. For example consider
the function:

y = 6x2 sin(x)− 4x3(x+ 1)1/2.

Ideally, when you look at this function, you would, perhaps, in the
natural course of things, make a number of observations: (1) the
function is the difference of two other functions y = 6x2 sin(x) and
4x3(x+1)1/2; (2) these two functions are scalar multiples of the func-
tions y = x2 sin(x) and y = x3(x+1)1/2. Here, we mentally decompose
the original function y = 6x2 sin(x)− 4x3(x+ 1)1/2 into smaller func-
tional “pieces.”
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When you look at certain problems in Calculus, for example, this
ability to visually decompose a function this way is fundamental to
correctly analyzing the problem and successfully solving the problem.
(Of course, the functions y = x2 sin(x) and y = x3(x+1)1/2 can, them-
selves, be broken down into smaller functional “pieces;” namely, into
x2, sin(x), x3, (x+ 1)1/2 — as we shall see in subsequent paragraphs
below.)

Exercise 4.6. Break the function

f(x) = 5x3 sin(x) cos(x)− 3
√
x tan(x)

down into more elementary functions.

• The Multiplication of Functions
Let f and g be real-valued functions of a real variable. Define fg to
be a function whose domain is

Dom(fg) = Dom(f) ∩Dom(g)
such that,

(fg)(x) := f(x)g(x), x ∈ Dom(fg).
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The function is called the product of f and g.

Examples in this section are much the same as in the previous section
on addition and subtraction of functions. Here we have an abbreviated
discussion.

One of the common examples of function multiplication is power func-
tions. For example, Consider the functionsF (x) = x3. Now it may be
convenient to think of F as a “stand-alone” function. Sometimes it
is useful to realize that F is a product of functions; which functions?
Well, define a function f(x) = x, then F (x) = f(x)f(x)f(x), for all
x ∈ Dom(F ) = R. This can be written as F (x) = [f(x)]3. Or, if
we want to utilize the concept of equality of functions, we can say:
F = f3. (The f -cubed function, is the function whose value at an
x ∈ Dom(f) is given as [f(x)]3.

Exercise 4.7. In light of the previous discussion, what can be said
about the function F (x) = (2x3−1)5 and the functionG(x) = sin2(x)?

Now let’s get back to a more direct illustration of the product of
functions definition.
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Example 4.6. Consider the functions: f(x) = 4, g(x) =
√
x2 − 1,

and h(x) = sin(x2). Define a new function by F = fgh. Find the
domain of definition of F , and write the calculating formula for F .

Recognition: As in the previous section, it is important to recognize
products of functions.

Example 4.7. Consider the function F (x) = 6x3 sin(x) cos2(x), de-
fine the most basic of functions such that F is the product of them.

Exercise 4.8. Consider the function F (x) = x4 sin2(x)− cos2(x). If
you wanted to write F in terms of sums, differences, and products,
of “elementary functions,” what is the minimum number of distinct
functions needed to do this?

• The Quotient of Functions
Let f and g be real-valued functions of a real variable. Define f/g to
be a function whose domain is

Dom(f/g) = Dom(f) ∩ {x ∈ Dom(g) | g(x) 6= 0}
such that,
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f

g
(x) :=

f(x)
g(x)

, x ∈ Dom(f/g).

The function is called the quotient of f and g.

Notice the domain of f/g is a bit more involved than the previous
definitions. Obviously, we cannot divide by 0, so we must ensure that
the x we use to evaluate the expression f(x)/g(x), cannot yield 0 in
the denominator; i.e. we require g(x) 6= 0.

A skill level 0 example would be the following.

Example 4.8. Let f(x) = x3, g(x) = (x2 − 1), and define F = f/g.
Discuss the natural domain of definition of F , and write a calculating
formula for F .

Example 4.9. Decompose the function F (x) =
√
x sin(x)
x2 − 3

into a

products and quotients of “elementary functions.” Do a domain anal-
ysis on same.
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• Comparison of Functions
Comparing functions is quite important in mathematics. It is very
important to understand what is meant by it.

Exercise 4.9. Let f and g be two given functions. Now that you have
seen a large number of definitions, can you give a good definition of
the following phrase:

“f < g over the set A.”
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5. The Composition of Functions
Composition of two functions is a very fundamental and important
concept. If you think of a function as a calculation of some type, then,
roughly speaking, the composition of two functions, is the process
of calculating the value of one function, then based on that result,
calculate the value of the second function. The technical definition of
composition follows.

Let f and g be functions such that Rng(g) ⊆ Dom(f). Define f ◦ g to
be a function whose domain is

Dom(f ◦ g) = Dom(g),
such that,

(f ◦ g)(x) := f(g(x)), x ∈ Dom(f ◦ g).

The function f ◦ g is called the composition of f with g.

Compatible for Composition: Given a pair of functions, f and g,
if Rng(g) ⊆ Dom(f), we us agree to say that f is compatible with g
for composition.
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Example 5.1. State the criterion under which the functions h is
compatible for composition with the function f . (That is, we wish to
compose h ◦ f .)

Figure 1

Figure 1 shows the Venn Diagram of the composition of
two functions. When thinking of composition, it is important
to visualize this picture. It often helps you to reason your way

through a difficult composition.

In terms of a black box interpretation we have the following diagram

x −→ g −→ g(x) −→ f −→ f(g(x))

Example 5.2. Consider the two functions f(x) = sin(x) and g(x) =
x2. (a) Is f compatible with g for composition? (b) Calculate the
domain of the composed function. (b) Compose f with g.

Multiple Compositions. Very often, functions of interest are, in
fact, the composition of several simple functions. The extension from
two function to three is obvious — at least after a few examples.
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Example 5.3. Let f(x) = x5, g(x) = sin(x), and h(x) =
√
x. Calcu-

late the function (f ◦ g ◦ h)(x) = f(g(h(x))).

Exercise 5.1. Consider the functions

f(x) = tan(x) g(x) =
x

x2 + 1
h(x) = x2.

Calculate the composition (f ◦ g ◦ h)(x) = f(g(h(x))). Perform the
calculation two ways: In-to-Out, and Out-to-In.

The concept of composition is independent of the letters used to define
the functions and the variables.

Exercise 5.2. Consider the functions

W (x) = cos(x) M(u) = u2.

Calculate W ◦M and M ◦W .

Composition of Anonymous Functions. Very often, the functions
are given in anonymous form, say y = sin(x) and y = x2. Now we
have a bit of a syntactical problem: How to explain to the user (you)
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what we want to do. We could say, that we want to compose the first
function with the second function — until we reverse the order of
the functions, in which case we change our minds and now want to
compose the second with the first.

A popular convention is to relabel the variables so as to suggest our
intentions. Instead of writing y = sin(x) and y = x2, write instead

y = sin(u) and u = x2.

Does this now suggest our intention? The composition of the these
two functions is then

y = sin(x2),

where now composition is reduced to a process of substitution of vari-
ables; to tell you the truth, that’s all composition is anyway.

Exercise 5.3. Consider the pair of functions w = s2 + 2 and s =
t2 − 1, compose these two functions together in the obvious order to
obtain w as a function of t.
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A function may be the composition of three functions, four functions,
five functions, or any number of functions. If we label the variables
properly, multiple compositions is une piecè du gateaux.

Example 5.4. Suppose y = u4, u = v2 + 1, and v = sin(x). Perform
the implied composition.

Actually, this relabeling of variables is sometimes used even when the
functions have names. In the abstract, we may describe two functions
by saying: Define,

y = f(u) and u = g(x).

That is, f defines y as a function of u, and g defines u as a function of
x. Again, the choice of the variables suggests our intention to compose
f with g to get

y = f(g(x)),

the new function defines y as a function of x.

Composition and your Calculator. Composition of functions is an
operation you perform almost every time you use your hand-held cal-
culator. On your calculator, there is a series of buttons called function
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keys. When you press two consecutive function keys on your calcula-
tor, you are composing functions together.

For example, suppose you wanted to calculate the expression sin(x2),
for some particular number x. How would you do it? You would per-
form a series of calculation steps. Step (1): Use the keypad to enter x
into the display. Step (2): Press the function key labeled x2. Step (3):
Now press the function key labeled sin(x). You have just composed
functions! Here is a diagram of the sequence of operations:

x −→ x2 −→ x2 −→ sin(x) −→ sin(x2).

The “squaring box” squares whatever is input into its box, the “sine
box” take the sine of whatever is input into its box.

Now that I have amazed you with this observation, let me pop you
balloon. You don’t actually have to press two function keys to compose
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functions together. Consider the functions g(x) = x2 + 2x + 3 and
f(x) = x2. The composition of these two functions is

(f ◦ g)(x) = f(g(x)) / by defn of composition

= f(x2 + 2x+ 3) / by defn of g

= (x2 + 2x+ 3)2. / by defn of f

To make this calculation on the calculator, we start with the initial
input value of x, some particular value. We then build up the ex-
pression x2 + 2x + 3 through a series of keypresses on our keypad,
utilizing the multiplication and addition buttons, as well as perhaps
the x2 function key. Once we build up the value of x2 + 2x+ 3, then
we would press (possibly for a second time) the x2 function key. This
key would then take the value in the display, which is x2 + 2x+ 3 and
square it. The process is diagramed as

x −→ x2 + 2x+ 3 −→ x2 −→ (x2 + 2x+ 3)2.

As you can see, this process is indeed a composition: the output of a
function (x2 + 2x+ 3) is input back into another function x2.
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Patterns Observed. There is a pattern to composition that is im-
portant that you be able to be aware of. To see the pattern let me
present a whole list of compositions, f ◦ g, where, in each example,
the functions f is f(x) = sin(x), but the function g is different.

g(x) f(g(x))
x2 sin(x2)
x3 sin(x3)
x2 + 1 sin(x2 + 1)√
x sin(

√
x)

cosx sin(cosx)
cos2 x sin(cos2 x)

Let’s do the same thing but with a different function f , say, f(x) = x3.
Repeating the above table with the new function f , we get:
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g(x) f(g(x))
x x3

x2 (x2)3

x3 (x3)3

x2 + 1 (x2 + 1)3√
x (

√
x)3

cosx (cosx)3

cos2 x (cos2 x)3

Of course, some of the entries in the second column can be simplified.
I left them that way so you could see the results of composition.

One more table. This one a little more abstract. Let the function
f(x) = (3x+ 1)4. Compose f with some functions of the form g(x) =
x+ h, where h algebraic quantity (unspecified); or g(x) = ax, where,
again a is an algebraic quantity — plus variations on these two.
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g(x) f(g(x))
x (3x+ 1)4

x+ h (3(x+ h) + 1)4

x− h (3(x− h) + 1)4

ax (3(ax) + 1)4

−ax (3(−ax) + 1)4

ax+ h (3(ax+ h) + 1)4

ax− h (3(ax− h) + 1)4

x− a
h

(3(
x− a
h

) + 1)4

Have you gotten the “feel” for composition? As a rough rule, if you
want to compose a function f(x) = sin(x) with another function
g(x) = x2 + 1, that is, if you want to compute the function f ◦ g,
you take the “outer function,” f in this case, and replace its “argu-
ment,” that’s x, with the value, g(x) of g, that’s x2. Thus,

f ◦ g(x) = f(g(x)) = sin(g(x)) = sin(x2 + 1).
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Uncomposing functions. In calculus, in order to perform certain
calculations on functions, it is important to analyze the function under
consideration. Part of that analysis is, perhaps, to realize that the
function you are studying can be thought of as the composition of
two other (simpler) functions. The importance of this ability to spot
composed functions cannot be overemphasized !

With the experience of the tables above, you should be able to solve
the following exercise without looking at the answer first.

Example 5.5. Consider the function F (x) = (3x3 − 2x+ 1)6. Write
F as the composition of two other functions — let’s call these two
functions f and g (That’s original!).

Example 5.6. Consider the function F (x) = sin(1 + x3). Write f
as the composition of two other functions f and g; i.e. write F (x) =
f(g(x)).

The question a student might ask, if I permitted it, is how can this
decomposition be discerned? I might answer in any of three ways. (1)
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Look at a large number of worked out examples, similar to the last ex-
ample, until you finally get a “feel” for the process, or see the pattern
of composition. Or, (2) Imagine how you would calculate the function
on your calculator — the consecutive pressing of function buttons.
Reread the discussion above. Or, (3) uncompose by substitution.

Uncompose by Substitution. The formal technique of substitution
is a way of uncomposing a function. Let me illustrate with a hideous
example:

y =
(
x2 sin(x3) + 2x = 1

cos(x)−√x
)23/3

.

Isn’t that ugly now? That base function offends me! Let me mask it
over, or substitute it away. Let u be defined by

u =
x2 sin(x3) + 2x = 1

cos(x)−√x . (1)

Now, my original function is not so bad; it becomes

y = u23/3, (2)
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where, u is the quantity defined in (1). What I have just done is
uncompose the hideous function into a non hideous part, u23/3, and
a semi-hideous part, (1).

What equations (2) and (1) represent is the implicit composition of
functions: Define

y = f(u) = u23/3

u = g(x) =
x2 sin(x3) + 2x = 1

cos(x)−√x
This substitution method is a very important tool used in differenti-
ation of complicated functions and in the integration of functions.

Exercise 5.4. Make an appropriate substitution of variables to help
you uncompose the function y = tan(x3 − 2x+ 2).



Section 6: Shifting and Rescaling

6. Shifting and Rescaling
Shifting and rescaling are a terms applied to particular algebraic and
composite functions – that’s clear I’m sure. Let me divide the dis-
cussion into three topics: horizontal shifting, vertical shifting, and
rescaling.

• Horizontal Shifting
Let y = f(x) be a function of a real variable, and let c > 0 be a
fixed constant. The graph of f is a certain curve in the xy-plane.
Sometimes we want to move the graph horizontally a distance of ‘c.’
We may want to shift horizontally to the right or to the left.

Shift Horizontally to the Right. Define a new function g (whose graph
is going to be the graph of f shifted over c units to the right) by

g(x) := f(x− c), x ∈ Dom(f).
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Shift Horizontally to the Left. Define a new function g (whose graph
is going to be the graph of f shifted over c units to the left) by

g(x) := f(x+ c), x ∈ Dom(f).

• Vertical Shifting
Let y = f(x) be a real-valued function, and let c > 0 be a fixed
constant. The graph of f is a certain curve in the xy-plane. Sometimes
we want to move the graph vertically a distance of ‘c.’ We may want
to shift vertically upward or downward.

Shift Vertically Up. Define a new function g (whose graph is going to
be the graph of f shifted up c units) by

g(x) := f(x) + c, x ∈ Dom(f).

Shift Vertically Down. Define a new function g (whose graph is going
to be the graph of f shifted down c units) by

g(x) := f(x)− c, x ∈ Dom(f).
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• Rescaling
Rescaling is a term taken from the applications this technique has
in many of the applied sciences. In the sciences, the variables of in-
terested are observable, perhaps measurable quantities. Quite often
the variables are measured in a certain scale of measurement : inches,
meters, pounds, liters, etc. Sometimes, it is desirable to change a re-
lationship from one scale of measurement to another: this is the origin
of the term.

Let y = f(x) be a function of a real variable, and let c be a fixed
constant (positive or negative). Define a new function g by

g(x) := f(cx), x ∈ Dom(f).

The constant c is sometimes called the scale factor.

For example, suppose a car travels at a constant speed of v = 55 mi/hr.
As we know, the distance traveled is given by d = vt = 55t, where
it is understood that t is measured in hours. Let’s put this in func-
tional notation: d = f(t), where f(t) = 55t. Suppose now we want
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to measure time in minutes. We still want to know the distance trav-
eled, but the input value, t, will be measured in seconds. Let u denote
time as measured in seconds; we know that u = 60t, or t = u/60.
(i.e. when t = 1, we want u = 60.) The distance function, now is
d = f(t) = f(u/60), or, more formally, define

g(u) = f(u/60) = 55
u

60or,

g(u) =
11
12
u

Let’s make a calculation. After 6 minutes, how far has the car gone?

d = g(6) =
11
12

(6) =
11
2
.

That is, the car has gone 5.5 miles.
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7. Classification of Functions
A brief discussion some of the very common types of functions seen
in pure and applied mathematics. At this introductory level, we will
survey only the follow types at this time.

1. Polynomials.
2. Rational Functions.
3. Algebraic Functions.

• Polynomial Functions
Let be define a polynomial function in a series of definitions.

Polynomial of degree 0. A polynomial of degree 0 is any function
of the form:

y = a0,

where a0 is any constant. For example, y = 2 is considered a polyno-
mial of degree 0.
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Polynomial of degree 1. A polynomial of degree 1 in x is any
function of the form:

y = a0 + a1x,

where a0 and a1 are constants. A polynomial of degree 1 is also called
a linear function. For example, y = 3+2x, or more commonly written,
y = 2x + 3 – this is a polynomial of degree 1 in x. A polynomial of
degree 1 in t might be y = 7t− 3.

Polynomial of degree 2. A polynomial of degree 2 in x is any
function of the form:

y = a0 + a1x+ a2x
2,

where a0, a1 and a2 are constants — called the coefficients of the
polynomial. Such a polynomial is called a quadratic, meaning that it
is of degree 2. The graph, as you know is typically a parabola. A simple
example would be y = 1 + 2x+ 2x2; this a polynomial of degree 2 in
x. Whereas, y = z2 − 3z + 5 is a polynomial of degree 2 in z.
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Polynomial of degree 3. A polynomial of degree 3 in x is any
function of the form:

y = a0 + a1x+ a2x
2 + a3x

3,

where a0, a1, a2 and a3 are constants (the coefficients of the polyno-
mial). Examples abound: y = 1− 2x+ 4x2 − 8x3; y = 1.23− 3.42z +
3.141z2 + 4.4z3.

Polynomial of degree 4. A polynomial of degree 4 in x is any
function of the form:

y = a0 + a1x+ a2x
2 + a3x

3 + a4x
4,

where a0, a1, a2, a3, and a4 are constants (the coefficients of the
polynomial). Some examples would be y = x4 (the coefficients a0 =
a1 = a2 = a3 = 0; y = 2t− 7t4, and so on.

The reason that I introduced polynomials in this rather monotonous
way is for you see them: see what they look like, see what they look
like relative to each other. As you can see, a polynomial of degree 2,
is a polynomial of degree 1 plus one additional term of higher power
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(the x2 term). Similarly, a polynomial of degree 3 is a polynomial of
degree 2 plus one additional term of higher power (the x3 term).

Here is a chart to drive home this point.
degree 0 2
degree 1 2 + 5x
degree 2 2 + 5x− 12x2

degree 3 2 + 5x− 12x2 − 7x3

degree 4 2 + 5x− 12x2 − 7x3 + x4

degree 5 2 + 5x− 12x2 − 7x3 + x4 − 2x5

Let’s tackle the general definition of a polynomial.

Definition 7.1. Let n be a positive integer (n = 1, 2, 3,4, . . . ). A
polynomial of degree £n£ in x is any function of the form:

y = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + anx
n.

Where, as before, the symbols a0, a1, a2, a3, . . . , an are constants.
These constants are called the coefficients of the polynomial.
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Domain Analysis: The natural domain of any polynomial is R, the
set of all real numbers.

More terminology: a0 is referred to as the constant term; a1 is the
coefficient of x (or is the coefficient of the degree 1 term); a2 is the
coefficient of x2; a3 is the coefficient of x3; and of course etc., etc., so
on and so forth.

More2 terminology: If all the coefficients of a polynomial are integer,
we say that it is polynomial a polynomial with integer coefficients. For
example, y = 3− 2x5 + 5x23 is an polynomial with integer coefficients
in x of degree 23. If all the coefficients of a polynomial are rational
numbers, we say that it is a polynomial with rational coefficients. For
example, y = 3− 1

2x
3 is a polynomial with rational coefficients. What

do you think a polynomial with real coefficients is?

Exercise 7.1. Describe the function y = −3 +
1
2
t5 − 5t2 +

100
3
t5

using the terminology of this section.
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Exercise 7.2. Argue that any polynomial with rational coefficients
can be written as a rational scalar multiple of the polynomial with
integer coefficients.

• Rational Functions
A rational function is any function that can be written as the quotient
of two polynomials. More technically,

Definition 7.2. Let N(x) and D(x) be polynomials define a new
function r(x) by

r(x) =
N(x)
D(x)

.

Domain Analysis: The natural domain of a rational function given by

Dom(r) = {x ∈ R | D(x) 6= 0 }.
This analysis follows from the section on quotients of two functions.
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Illustration 1. Here are some quick examples of rational functions:

y =
2x3 − 5x2

x2 − 3x+ 2
y =

x

x2 + 1
y = 2x+

x

x+ 1
The latter example is considered a rational function of x since it can be
written as a quotient of two polynomial (get common denominator).

• Algebraic Functions
Let’s begin by setting the terminology.

Definition 7.3. Analgebraic function in x is any combination of
sums, differences, products, quotients, and roots of x with itself and
with other constants (whether numerical or symbolic).

Domain Analysis: The domain of an algebraic function is naturally
limited by the presence of even root functions and, of the function
consists of a ratio of two expressions, the presence of zeros in the
denominator.
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Example 7.1. The following are algebraic functions. Do a domain
analysis of each.

f(x) =
x1/3 − 5x2
√
x2 − 3x+ 2

g(x) =
x

x5/4 − 1
h(x) =

x

x+ 1

The last example is actually a rational function; however, it is true
that a rational function is also a algebraic function.
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2.41. Solution of (a). Is y a function of x? Yes.

Indeed, take the given equation 2x − 5y3 = 1 and solve, if possible,
for y. We get

2x− 5y3 = 1 ⇐⇒ 5y3 = 2x− 1

⇐⇒ y3 =
2x− 1

5

⇐⇒ y = 3

√
2x− 1

5
Thus, for each value of x there is only one corresponding value of y.

We could name this function as y = f(x) = 3

√
2x−1

5 . It is easy to see
that the natural domain is Dom(f) = R.

Important Fact. (The Existence and Uniqueness of Odd Roots) The
pivotal fact used in this calculation is that any real number has a
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unique real cube root. More generally, if n ∈ N is an odd natural
number and z ∈ R is any real number, then n

√
z exists as a real

number and is unique. What this means in terms of solving equations
is

wn = z ⇐⇒ w = n
√
z = z1/n n odd.

Solution to (b): Is x a function of y? Yes.

Take the equation 2x− 5y3 = 1 and try to write x in terms of y:

2x− 5y3 = 1 ⇐⇒ 2x = 1 + 5y3

⇐⇒ x =
1 + 5y3

2
.

These calculations justifies the conclusion. Each value of y determines
only one corresponding value of x. Let’s name this function

x = g(y) = x =
1 + 5y3

2
.

It is easy to see that Dom(g) = R is the natural domain of g.
Exercise 2.41.
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2.42. (a) Yes. (b) No.

Solution to (a): Is s a function of t?

Try to solve for s in terms of t. (Why?)

s− 4t+ t2 = 1 ⇐⇒ s = 1 + 4t+ t2.

That was simple. Thus, each value of t yields only one value of s; s is
indeed a function of t. We can use the notation

s = f(t) = 1 + 4t+ t2 Dom(f) = R.

Solution to (b): Is t a function of s?

Try to solve for t in terms of s. (Why?)

s− 4t+ t2 = 1 ⇐⇒ t2 − 4t+ (s− 1) = 0 (A-1)

⇐⇒ t =
4±√16− 4(s− 1)

2
(A-2)
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This shows that for each value of s (for which the radicand is nonneg-
ative) there is two value of t. Thus, t is not a function of s.

Example Notes: In line (A-2) we used the infamous quadratic formula.
The solution to the equation

ax2 + bx+ c = 0
is

x =
−b±√b2 − 4ac

2a
.

This is why I set up the equation in line (A-1). Exercise 2.42.
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2.43. (a) No. (b) No.

Solution to (a): Is x a function of m?

I need to find the x-coordinate(s) of the point(s) of intersection be-
tween the line y = mx and the circle x2 + y2 = 1.

At any point of intersection (x, y ), the two variables satisfy both
equations simultaneously: If (x, y ) is a point of intersection then

y = mx and x2 + y2 = 1.
Thus,

x2 + (mx)2 = 1.
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Now, solving this last equation for x gives the x-coordinate(s) of the
point(s) of intersection.

x2 + (mx)2 = 1 ⇐⇒ x2 +m2x2 = 1

⇐⇒ x2(1 +m2) = 1

⇐⇒ x2 =
1

1 +m2

⇐⇒ x = ±
√

11 +m2. (A-3)

Equation (A-3) indicates to me that x is not a function of m: Each
value of m yields two values of x.

Solution to (b): Is m a function of x?

Given that x is the x-coordinate of the point(s) of intersection between
the circle x2 + y2 = 1 and any line of the form y = mx, we must
determine the value of m.
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Just as in part (a) we have x2 + (mx)2 = 1, but now we want to solve
for m in terms of x (Why?)

x2 + (mx)2 = 1 ⇐⇒ x2 +m2x2 = 1

⇐⇒ m2x2 = 1− x2

⇐⇒ m2 =
1− x2

x2 = 1− 1
x2

⇐⇒ m = ±
√

1− 1
x2 (A-4)

This shows that form each x, x 6= 0, −1 ≤ x ≤ 1, there corresponds
two values of m. This means that m is not a function of x.

Example Notes: I assume you have drawn a picture of the described
situation. The two algebraic solutions were more difficult than merely
looking at the picture of the situation and reaching the proper con-
clusions based on your understanding of the concepts. Equally well, it
is obvious, geometrically, why x 6= 0 in (A-4): When x is zero, there
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is no corresponding m at all; for in that case the corresponding line
is vertical, the slope of a vertical line is undefined. Exercise 2.43.
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2.44. I cannot justify it in your own mind, only in mine.
Exercise 2.44.
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2.45. Perhaps one could call this the horizontal line test?

A curve C in the xy-plane defines x as a function of y if it
is true that every horizontal line intersects the curve at no
more than one point.

If this be true, then for each y there corresponds at most one x —
this is descriptive of the concept of x is a function of y. (Note: if for a
given y the horizontal line at altitude y does not intersect the curve,
this means that y does not belong to the domain of the function.)

Exercise 2.45.
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2.46. Simply restate the Function Line Test using these different
letters:

Solution to (a): C defines s as a function of t provided every line
perpendicular to the t-axis intersects the curve at no more than one
point.

Solution to (b): C defines t as a function of s provided every line
perpendicular to the s-axis intersects the curve at no more than one
point. Exercise 2.46.
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2.47. Let C be a curve in the pq-plane.

Under what conditions can we assert that p is a function of q? Re-
view the definition of function in your head, and answer this question
without error. Passing Score: 1 out of 1.
(a) Every line perpendicular to

the p-axis intersects the curve
at no more than one point.

(b) Every line perpendicular to
the q-axis intersects the curve
at no more than one point.

Exercise 2.47.



Solutions to Exercises (continued)

4.1. Yes.

f(x) =
1√

x+ 1−√x g(x) =
√
x+ 1 +

√
x.

Domains Equal? We must have x+1 ≥ 0 and x ≥ 0 for the radicals
in the two functions to be real numbers. The next question, is whether
the denominator of f can ever be zero; indeed,

√
x+ 1−√x = 0 =⇒ √

x+ 1 =
√
x

=⇒ x+ 1 = x

=⇒ 1 = 0

We have argued that if
√
x+ 1 −√x = 0, then 1 = 0; therefore, we

conclude
√
x+ 1−√x 6= 0 for any x ∈ R.

The domains of these two functions requires x + 1 ≥ 0 and x ≥ 0;
therefore,

Dom(f) = Dom(g) = [ 0,∞ ).
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Pointwise Equal? Suppose x ∈ Dom(f) = Dom(g), then

f(x) =
1√

x+ 1−√x

=
1√

x+ 1−√x

√
x+ 1 +

√
x√

x+ 1 +
√
x

=
√
x+ 1 +

√
x

(x+ 1)− x
=
√
x+ 1 +

√
x

= g(x)

Thus,
f(x) = g(x) for allx ∈ Dom(f) = Dom(g).

Conclusion: Yes indeed, f = g.

Example Notes: You did remember the trick of multiplying by the
conjugate, didn’t you? It is also important to note that the quantity
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√
x+ 1 +

√
x is never equal to zero; therefore, multiplying the numer-

ator and denominator by this quantity is equivalent to multiplying by
one, no matter what the value of x. Exercise 4.1.
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4.2. No. Recall,

f(x) =
x√

x2 + x− x g(x) =
√
x2 + x+ x.

Domains Equal? I think we can take a useful shortcut. Note that
0 /∈ Dom(f) since x = 0 makes the denominator equal to zero (and the
numerator too). But 0 ∈ Dom(g) since we can calculate

√
x2 + x+ x

for the case of x = 0; indeed, g(0) = 0. Thus, we have argued that
0 /∈ Dom(f) and 0 ∈ Dom(g). Therefore,

Dom(f) 6= Dom(g),
and so,

f 6= g.

All done!

Exercise Notes: However, we can say Dom(f) ⊆ Dom(g) and that for
all x ∈ Dom(f) we have f(x) = g(x). In this case, we say that g is an
extension of f . Exercise 4.2.
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4.3. Look at the calculating formula. The concept is to add the values
of f and g together. So given an x, we need to have defined the value
f(x). This implies x ∈ Dom(f). Similarly, we need to add f(x) to g(x)
— g(x) needs to be a defined quantity; therefore, x ∈ Dom(g) as well.
We have argued that in order to carry out the concept of summing
two functions together, we must choose an x in both Dom(f) and in
Dom(g). Thus, x ∈ Dom(f) ∩Dom(g). ’Nuff said. Exercise 4.3.
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4.4. Yes. The domain of F is void (empty).

Dom(f) = (−∞, 1 ], and,Dom(g) = [ 2,∞ )

Thus,

Dom(F ) = Dom(f) ∩Dom(g)

= (−∞, 1 ] ∩ [ 2,∞ )

= ∅
The “function” F has no domain, hence, F remains undefined.

Exercise 4.4.
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4.5. This is a simple generalization of the sum/difference of two
functions.

Dom(F ) = Dom(f) ∩Dom(g) ∩Dom(h).

How do you calculate the values of F?

F (x) = f(x) + g(x)− h(x), x ∈ Dom(F ).

Exercise 4.5.
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4.6. At the first level f can be broken down into two pieces:

5x3 sin(x) cos(x), and 3
√
x tan(x).

At a second level:

5, x3, sin(x), cos(x), 3,
√
x, tan(x).

Each (much simpler) functions are the ones used to “build” the func-
tions f – through a combination of scalar multiplication, addition,
subtraction and multiplication of functions. Exercise 4.6.
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4.7. Define f(x) = 2x3 − 1, and g(x) = sin(x), then F = f5, and
G = g2. Exercise 4.7.
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4.8. Three! But is it the three you had in mind? Define f(x) = x,
g(x) = sin(x), and h(x) = 1. Then,

F = f4g2 + g2 − h
or,

F (x) = x3[sin(x)]2 + [sin(x)]2 − 1, x ∈ Dom(F ).

What is the natural domain of definition of F? Is there another way
of writing F? Exercise 4.8.
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4.9. We say that f < g over the set A provided

f(x) < g(x) ∀x ∈ A.
Geometrically, this means that the graph of f is always below the
graph of g when plotting these functions over the set A.

To be true to our mathematical roots we should realize what about
the set A?
(a) A ⊆ Dom(f) (b) A ⊆ Dom(g)
(c) A ⊆ Dom(f) ∩Dom(g) (d) n.o.t.

Part of successfully answering this question is being able to read and
understand the proposed questions. Then after some thought, respond
correctly with error. How did you do? Exercise 4.9.
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5.1. I’ll leave the details to you. But I will tell you,

(f ◦ g ◦ h)(x) = tan((
1

x2 + 1
)2).

Verify! Exercise 5.1.
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5.2. A challenge to our perspicacity, without doubt.

Calculation of W ◦M . By convention, we take as the independent
variable symbol, the symbol used by the inner-most function for its
independent variable. Thus

(W ◦M)(u) = W (M(u))

= W (u2)

= cos(u2)

But, of course, the independent variable is a dummy, so it really didn’t
matter what letter we used. Thus,

(W ◦M)(u) = cos(u2) (W ◦M)(x) = cos(x2) (W ◦M)(t) = cos(t2)

all define exactly the same function. The use of u was just a little
more convenient to use than the other variables.
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Calculation of M ◦ W . By convention, we take as the independent
variable symbol, the symbol used by the inner-most function for its
independent variable. Thus

(M ◦W )(x) = M(W (x))

= W (cos(x))

= (cos(x))2

= cos2(x)

Ditto the comments made above. Exercise 5.2.
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5.3. The height of triviality: w = (t2 − 1)2 + 2. I hope you got it.
Exercise 5.3.
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5.4. Let u = x3 − 2x+ 2, then

y = tan(u), where u = x3 − 2x+ 2.

Exercise 5.4.
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7.1. This is a polynomial in t of degree 5 with rational coefficients.
Exercise 7.1.



7.2. First “proof by example.” This is not a proof, but it is frequently
used to get insight into how to formally prove an assertion. Take as
an example:

y =
1
2
− 2

3
x+

5
6
x3.

Get a common denominator for the coefficients — that would be 6.
Thus,

y =
3
6
− 4

6
x+

5
6
x3.

Now, factor out 1/6.

y =
1
6
(
3− 4x+ 5x3) .

As you can see, the original polynomial is written as a rational scalar
multiple (that is, a scalar multiple that is a rational number) times a
polynomial with integer coefficients.

The general proof is an abstract manifestation of this example.
Exercise 7.2.
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2.14. Solution of (a).
If we are posing the question: “Is y a function of x?”, then we take
the attitude that x is the independent variable and y is the dependent
variable. The statement that “x and y are real variables” asserts that
the domain of the x variable (since it is the independent variable) is a
subset of R, and that the co-domain of the y variable (the dependent
variable) is a subset of R. (Which we can assume to be equal to R,
see the Exercise above.)

We ask the question now, does the equation 2x2 − 3y = 1 establish
a relationship between x and y such that if we assign x a value, then
the equation determines a corresponding unique value for y?

Typically at this elementary level, we need only try to express y, the
dependent variable, in terms of x. Indeed, by elementary algebra we
have

y =
1
3

(1− 2x2).
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Therefore, it is clear that if we do assign x a value, and replace x in
this equation by this assigned value, then the equation evaluates to
what we interpret as the corresponding value of y. For example, if we
put x = 2 and evaluate the right-hand side of the above equation we
obtain the corresponding value of y = −7/3.

The answer to the question, then, is “yes,” y is a function of x. Let’s
give this function a name, say f . Thus,

f(x) =
1
3

(1− 2x2),
and so,

f(2) = −7
3
,

as above.

But the analysis is really not complete until we determine at least the
domain of this function f . Since x is supposed to be a real variable, we
know Dom(f) ⊆ R. Without any further information about the do-
main (possibly put on the function by physical constraints – certainly,
not the issue in this simple academic problem), we take Dom(f) to
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be natural domain: the largest subset of R (since x is a real variable),
for which the correspondence can be made. This would be

Dom(f) = R.

This is because, for any x ∈ R, we can evaluate the left-hand side of
the equation y = 1

3 (1− 2x2) to obtain a real value for y.

Solution of (b).
Now let’s study the next question: “Is x a function of y?” Again, x
and y are related by the equation 2x2−3y = 1. Given a value of y (in
the domain – yet to be determined), does this y uniquely determine
the value of x? If we take our defining equation and try to solve for x
in terms of y we get

x = ±
√

1
2

(1− 3y).

The ‘±’ is a signal to us that this is not a functional relation.

To illustrate, give y a value, say y = 2, and formally, substitute this
value into the above expression to obtain: x = ±√−5/2. Ops! The
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right-hand side does not evaluate to a real number (as required by the
condition that x be a real variable). This does not mean that x is or
is not a function of y, it simply means that we have chosen a value of
y that is not in the proper domain.

Now look at the case y = −1; substituting this value into the equation
we get x = ±√2. Thus, corresponding to a value of y = −1 there are
two values of x – x =

√
2 and x = −√2. This denies the concept

(definition) of a function. Therefore “x is not a function of y.”
Example 2.14.
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4.1. Solution:

Domains the Same? The domains of these two functions were not
given; therefore, we take their natural domains of definition. In this
case, both functions have domain of R. Thus,

Dom(f) = Dom(g) = R.

Functions Pointwise Equal? Now we must argue that these func-
tions, pointwise, have the same values. This can be seen by noticing:

g(x) =
x3 + x

x2 + 1
=
x(x2 + 1)
x2 + 1

= x

= f(x).

You did notice the common factor, didn’t you? Thus

f(x) = g(x), x ∈ R.
Example 4.1.
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4.2. Solution: With the experience of the previous example, we first
need to determine the respective domains of these two functions.

Dom(f) = R
Dom(g) = {x ∈ R | x 6= ±1}

Thus Dom(f) 6= Dom(g) and therefore f 6= g.

Example Notes: For x 6= ±1,

g(x) =
x3 − x
x2 − 1

=
x(x2 − 1)
x2 − 1

= x = f(x).

Thus, the two functions f and g have the same rule of association but
they have slightly different domains. As a result, they are considered
different functions.

This is an important point: To be equal, a two functions must
have the exactly the same domain, and exactly the same rule of asso-
ciation.

In this example, the functions are considered different, but they
are related. Because Dom(g) ⊆ Dom(f) and f(x) = g(x) for all x ∈



Solutions to Examples (continued)

Dom(g), we say that f extends the definition of g to a larger domain
(namely, Dom(f)).

Example 4.2.



Solutions to Examples (continued)

4.3. Solution: Yes. Equal domains: Dom(f) = Dom(g) = R.

Now for x 6= 1,

g(x) =
x2 + x− 2
x− 1

=
(x+ 2)(x− 1)

x− 1
= x+ 1

= f(x).

Thus, g(x) = f(x) for all x 6= 1. What about the case x = 1? Let’s
see: f(1) = 3 and g(1) = 3, so, f(1) = g(1). Finally, we can make the
declaration:

Dom(f) = Dom(g) = R
f(x) = g(x), x ∈ R.

/ (1)

/ (2)

This means, by definition, that f = g. Example 4.3.



Solutions to Examples (continued)

4.4. Solution: The domains of f + g and f − g are specified in the
definition:

Dom(f ± g) = Dom(f) ∩Dom(g).

Now the domains of f and g are unspecified; therefore, we take their
natural domains:

Dom(f) = [ 0,∞ ), and, Dom(g) = R,

Obviously, Dom(f + g) = Dom(f − g) and

Dom(f + g) = [ 0,∞ ) ∩ R = [ 0,∞ ).
Thus,

Dom(f + g) = Dom(f − g) = [ 0,∞ ) .

That seemed straight forward. Example 4.4.
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4.5. Solution: The domain analysis:

Dom(f) = [ 0,∞ ), Dom(g) = R, Dom(h) = (−∞, 4 ].

Thus,

Dom(F ) = Dom(2f) ∩Dom(3g) ∩Dom(4h)

= Dom(f) ∩Dom(g) ∩Dom(h)

= [ 0,∞ ) ∩ R ∩ (−∞, 4 ]

= [ 0, 4 ].

Some Harping : Flame On! Study the above domain analysis. No-
tice how the notation for the domains of scalar multiplication, sum
and difference of functions is utilized as a tool for working through a
“complicated” problem. You as a student should strive to master the
concepts and the mechanics; however, a more subtle aspect that is oft
not emphasized, is that of mathematical literacy. Try to master the
notation introduced in these tutorials and develop a style for using
it. Notation can be a very important tool for manipulating ideas and
working through problems. Flame off!
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The calculating formula is given by,

F (x) = 2
√
x− 3 sinx+ 4

√
4− x, x ∈ [ 0, 4 ].

Example 4.5.



Solutions to Examples (continued)

4.6. Let’s do a domain analysis first. Observe:

Dom(f) = R, Dom(g) = (−∞, 1 ] ∪ [ 1,∞ ), Dom(h) = R.

The domain of g is obtained by solving the inequality: x2 − 1 ≥ 0
(verify!). Thus,

Dom(F ) = Dom(f) ∩Dom(g) ∩Dom(h)

= R ∩ ((−∞, 1 ] ∪ [ 1,∞ )) ∩ R
= (−∞, 1 ] ∪ [ 1,∞ ).

Example 4.6.



Solutions to Examples (continued)

4.7. One of the first things to question me about is the meaning of
the phrase “the most basic of functions.” Admittedly, this has perhaps
no definite meaning to you, but does it have some intuitive meaning?
Maybe that the meaning that I had in mind.

Define three functions: f(x) = x, g(x) = sin(x), and h(x) = cos(x).
Then

F = 6f3gh2.

Is that clear? Example 4.7.
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4.8. First note:
Dom(f) = Dom(g) = R.

Now since g is to appear in the denominator, we need to determine
when g(x) 6= 0. This is more easily accomplished by finding for what
values of x is g(x) = 0. To this end,

g(x) = 0

x2 − 1 = 0

(x− 1)(x+ 1) = 0
therefore,

x = 1, or x = −1

We conclude from this that

{x ∈ Dom(g) | g(x) 6= 0 } = {x ∈ R | x 6= ±1 }.
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The domain of F = f/g is then,

Dom(F ) = Dom(f/g) = Dom(f) ∩ {x ∈ Dom(g) | g(x) 6= 0}
= R ∩ {x ∈ R | x 6= ±1 }
= {x ∈ R | x 6= ±1 }.

Thus,
Dom(F ) = {x ∈ R | x 6= ±1 } .

Or, more informally, the domain of F = f/g is all x ∈ R different
from ±1.

The calculating formula is the height of triviality to compute — yet,
I will do it:

F (x) =
x3

x2 − 1
, x 6= ±1.

Note the domain specification. Example 4.8.
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4.9. Let f(x) =
√
x, g(x) = sin(x), and h(x) = x2 − 3, then F =

(fg)/h.

What about the domain analysis? Can you determine it by inspection?
What is it? Clearly it has to be

Dom(F ) = {x | x ≥ 0 and x 6= 1 }
= [ 0, 1 ) ∪ ( 1,∞ )

Verify this please using the meticulous methods demonstrated in the
earlier examples/exercises. Example 4.9.
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5.1. Taking the definition are doing symbolic replacement we get the
criterion: for h to be compatible with f for composition we require
Rng(f) ⊆ Dom(h).

One of the fundamental skills in the mathematical sciences is replace-
ment ; that is the ability to take a sentence that uses certain symbolics
in it and replacing those symbolics with another set of symbolics. Here
are some examples:

Terminology Notation Compatibility Calculation
compose f with g f ◦ g Rng(g) ⊆ Dom(f) f(g(x))
compose g with f g ◦ f Rng(f) ⊆ Dom(g) g(f(x))
compose h with w h ◦ w Rng(w) ⊆ Dom(h) h(w(x))
compose w with h w ◦ h Rng(h) ⊆ Dom(w) w(h(x))
compose A with B A ◦B Rng(B) ⊆ Dom(A) A(B(x))

Example 5.1.
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5.2. Solution of (a): In order to argue that f is compatible with g
for composition we must show Rng(g) ⊆ Dom(f). Now Dom(f) = R,
and the Rng(g) = [ 0,∞ ). Thus,

Rng(g) = [ 0,∞ ) ⊆ R = Dom(f).

Solution of (b): Dom(f ◦ g) = Dom(g) = [ 0,∞ ). That was easy! (Of
course, I am controlling the questions that I ask myself.)

Solution of (c): The composition of f with g is

(f ◦ g)(x) = f(g(x)) = f(x2) = sin(x2).

That’s that. Example 5.2.
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5.3. For your reference, the three functions are

f(x) = x5 g(x) = sin(x) h(x) =
√
x.

We can work from the outside function inward, or work from the inner-
most function outward. In either case, we simply exhibit the courage
to follow the formula: (In-to-Out)

(f ◦ g ◦ h)(x) = f(g(h(x))) / defn of composition

= f(g(
√
x)) / inner-most function h

= f(sin(
√
x)) / next func. out, g

= (sin(
√
x))5

/ outer-most func., f

Or, we can do: (Out-to-In)

(f ◦ g ◦ h)(x) = f(g(h(x))) / defn of composition

= (g(h(x))5
/ outer-most func., f

= (sin(h(x)))5
/ next in, g

= (sin(
√
x))5

/ inner-most, h



Solutions to Examples (continued)

Any way you cut it, it’s the same. Example 5.3.



Solutions to Examples (continued)

5.4. Let’s do it in two stages. Recall,

y = u4 u = v2 + 1 v = sin(x).

Stage 1: u = v2 + 1 and v = sin(x) and so u = (sin(x))2 + 1, or
u = sin2(x) + 1.

Stage 2: y = u4 and u = sin2(x) + 1 and so

y = (sin2(x) + 1)4

Example 5.4.
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5.5. Take f(x) = x6 and g(x) = 3x3 − 2x+ 1, now calculate f ◦ g.

(f ◦ g)(x) = f(g(x)) / by definition

= (g(x))6
/ by defn of f

= (3x3 − 2x+ 1)6
/ by defn of g

= F (x). / by defn of F

Example 5.5.



Solutions to Examples (continued)

5.6. Take f(x) = sin(x) and g(x) = 1 + x3. Now calculate f ◦ g:

(f ◦ g)(x) = f(g(x)) / by definition

= sin(g(x)) / by defn of f

= sin(1 + x3) / by defn of g

= F (x). / by defn of F

That’s nice, a “proof” by definition!
Example 5.6.



7.1. We state the domains only, leaving the details to the interested
reader — that’s you!

Dom(f) = {x ∈ R | x 6= 1 and x 6= 2 }
Dom(g) = [ 0, 1 ) ∪ ( 1,∞ )

Dom(h) = {x ∈ R | x 6= 1 }
Example 7.1.
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The correct response is A ⊆ Dom(f) ∩ Dom(g). This “set-theoretic
relation” can translated as “A is a subset of Dom(f) and A is a subset
of Dom(g).” That is, the set over which you are comparing the two
functions must, of course, lie in the domains of the functions involved.
Obviously! Important Point
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