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1. Introduction
In the world of Mathematics one of the most common creatures en-
countered is the function. It is important to understand the idea of a
function if you want to gain a thorough understanding of Calculus.

Science concerns itself with the discovery of physical or scientific truth.
In a portion of these investigations, researchers (or engineers) attempt
to discern relationships between physical quantities of interest. There
are many ways of interpreting the meaning of the word “relation-
ships,” but in Calculus we are most often concerned with functional
relationships. Roughly speaking, a functional relationship between two
variables is a relationship such that one of the two variables has the
property that knowledge of it (or knowledge of its value) implies a
knowledge of the value of the other variable.

For example, the physical quantity of area, A, of a circle is related
to the radius of that circle, r. Indeed, it is internationally known
that A = πr2—an equation, I’m sure, you have had more than one
occasion to examine in the past. The simple equation A = πr2 sets
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forth the principle of a functional relationship: Given knowledge of the
value of one variable (the independent variable), r, then we have total
knowledge of the value of the other variable (the dependent variable),
A. This causal (or deterministic) relationship one variable has with
another variable is the essence of a functional relationship.

This only difference between the example of the previous paragraph
and any other example of a function, either one taken from the applied
fields or one that is of a more “purely abstract” nature, is the way in
which the functional relationship is defined, and the complexity of that
definition. There are many, many ways of defining (or describing) a
functional relationship between one variable (or a set of variables) and
another variable (or another set of variables). Some of these methods
are rather “natural,” and you will encounter them if you continue
with reading through this tutorial on Calculus I; other methods are
“unnatural”—you’ll encounter them too.

Before we continue with this discussion, perhaps it is best to have a
formalized definition of a function—in the next section.
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2. The Concept of a Function
Let’s begin by presenting a definition of a function. The definition
is labeled “Junior Grade” because it is slightly less than rigorous; a
rigorous definition, for those who want to know more, is given in the
Appendix.

Definition 2.1. (Junior Grade) Let A be a set and B be a set. A
function, f , from A into B is a rule that associates with each element
in the set A a unique corresponding element in the set B. In this case,
we write symbolically, f :A→ B, or A

f→ B.

This is a very general definition, and a number of remarks must be
made concerning it. This definition will be taken apart in great detail
in the next few paragraphs. Many of the other points discussed are
expanded on and illustrated in more detail in subsequent sections.
These remarks take the form of indented bulleted paragraphs listed
below.
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Throughout this discussion, f will refer to a function from a set A
into a set B.

The meaning of the phrase “a rule that associates” is not clear,
imprecise, and is, therefore, non-rigorous. See the rigorous definition
of function if desired.

Domain and Co-domain of a function. The set A is called the
domain of the function f , the set B is called the co-domain of the
function f . Throughout these tutorials, the symbol Dom(f) will refer
to the domain of the function of f .

In elementary calculus, typically A and B are subsets of the real line
(in fact, we can always consider B = R). In other fields of mathemat-
ics, however, the domain and co-domain of a function can be subsets
of vectors, subsets of functions, and even subsets of quite abstract
sets. The domain can consist of a finite set of elements, or consist of
an infinite set of elements; similarly, the co-domain may be finite or
infinite. The student should not maintain any preconceived notions
concerning the nature of domains and co-domains. However, . . .
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Domain and Co-Domain in Calculus:
Throughout all of Calculus I and Calculus II, the domain
and co-domain of all functions encountered are subsets of
the real line, R. (Perhaps there will be a few exceptions.) In
Calculus III, the domain and co-domain may be subsets of
vectors.

Exercise 2.1. Let f :A → B, where A ⊆ R and B ⊆ R, discuss
the parenthetical remark made above: “ . . . in fact, we can always
consider that B = R.”

In order to describe a function in more detail, it is customary to
assign a generic symbol to the elements of the domain of a function and
to the elements of the co-domain of a function. The “usual” symbolism
is to denote a typical element of A, the domain, by the letter x, and a
typical element of the set B, the co-domain, by y. These are the usual
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symbols, but mathematicians don’t always stick to the usual—they
can suddenly change these generic choices virtually without notice.

Function Notation. With the aid of these symbolisms, the “ac-
tion” of a function can be symbolically represented. From the defini-
tion above, the function f is a rule that associates with each element,
x in A, a corresponding element y in B. If y is the element in B that
corresponds to the element x in A, with respect to the function f ,
then we write y = f(x) (spoken as y equals f of x), or sometimes we

write f :x 7→ y or x
f7→ y (but this is not seen too often at this level of

play). To summarize, the proper notation for representing a function
is

y = f(x) or f :x 7→ y or x
f7→ y. (1)

The student should strive the use the notation y = f(x), and to
understand the underlying meaning of the notation—that of a func-
tion. Throughout your studies, in addition to learning and mastering
the different techniques of calculus, and understanding the various
concepts of calculus, you should also seek most diligently to become
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mathematically literate: Learn to write and speak mathematics cor-
rectly.

Functional Notation:
Let f be a function. The symbolism

y = f(x)

means that, with respect to the function f , y is that element
in the co-domain of f that corresponds to x in the domain,
Dom(f) of f .

On the word “unique” in Definition 2.1. The word “unique” here
is important. It distinguishes the notion of function from more general
mathematical concept of relation. For each element of A there must
be associated one and only one element in the set B; two or more
associations are not allowed—that would disqualify f as a function.
Below are two contrasting trivial examples to illustrate the point.
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Illustration 1. Let A = { 0, 1 } and B = R. Define a f from A into
B as follows:

f : 0 7→ 17
f : 1 7→ 17.

(Note: The notation defined in (1) is used to describe the rule of
association.)

I have just defined a good and proper function. For each element in A
there corresponds a unique (meaning one) element in B. Even though
f associates the number 17 with both 0 and 1, this does not violate
Definition 2.1.

Illustration 2. Let A = { 0, 1 } and B = R. Define a f from A into
B as follows:

f : 0 7→ 17
f : 0 7→ 20
f : 1 7→ 17.
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(Note: The notation defined in (1) is used to describe the rule of
association.)

Here, the rule of association described above associates with each ele-
ment in A a corresponding element in the set B; however, f associates
with the element 0 ∈ A two corresponding elements in the set B. This
is in violation of the word “unique” in Definition 2.1. The construct
f in this illustration is not a function.

Exercise 2.2. The mathematical concept of relation is typically in-
troduced in a course on PreCalculus. Can you recall the meaning of
the word relation? Write out a good definition of the notion of a math-
ematical relation. (Let me start you off. Let A be a set and B be a
set. A relation R between sets A and B is . . . )

Independent Variable and Dependent Variable. More terminol-
ogy! Let y = f(x), x ∈ A and y ∈ B. The symbol x is called the
independent variable, and y is the dependent variable; also, the vari-
able y is said to be a function of the variable x.
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The word variable refers to the fact that x can be any of the elements
(numbers) in the set A. The way a functional relation is described,
knowledge of the value of one variables gives us knowledge (through
the rule of association) of the other variable. When a variable x is the
independent variable, that means if we have knowledge of its value (or
assign it a value), then, by the rule of association, we have knowledge
of the other variable, y, in this case.

The statement that y is the dependent variable suggests that its value
is determined by (or is dependent on) the value of another quantity—
the independent variable, x.

A Value of a Function. Further, if y0 is a particular element in
the co-domain of f , then y0 is called a value of f provided there is
some element, x0 ∈ A, such that y0 = f(x0); that is, y0 is a value of
the function f if it corresponds, with respect to the rule of f , to some
x0 in the set A = Dom(f).

Let me do away with the subscripts and rephrase the definition of the
value of the function f .
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y is a value of the function f provided there is some x in
Dom(f) such that y = f(x).

Turning things about a bit, if x0 is a given element in the domain of
the function f , and y0 = f(x0), then we say that y0 is the image of
x0 under f .

Exercise 2.3. Define a function f by f(1) = 3, f(2) = 3, f(3) = 4,
f(−1) = 7.

a. Write the domain, Dom(f), of f .
b. Is 3 a value of this function?
c. Is 1 a value of this function?
d. What is the image of 3 under f?
e. What is the value of f(1)?

Co-Domain as a Statement of Type. The co-domain B can be
any set sufficiently large to contain all the values of the function f .
Think of the co-domain of a function as a set that describes the type
of values that a function, such as our f , can take on. Examples: for a
function that takes on values in the real number system, the co-domain
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can be taken to be R, the set of all real numbers; for a function that
takes on complex numbers as values, the co-domain of such a function
may be considered to be C, the set of all complex numbers; for a
function whose values are points in the plane, the co-domain may be
considered to be R2, the plane.

Common Variable Specifications. Throughout mathematics, you
will read phrases such as, “Let f be a real-valued function of a real
variable.” What does this mean? The statement “real-valued” refers
to the values of the function: It means that coDom(f) = R, i.e. the co-
domain is taken to be the set of real numbers. (See above for an expla-
nation.) The statement “of a real variable” means that Dom(f) ⊆ R.
Thus, when

Dom(f) ⊆ R and coDom(f) = R,
the function f will be a “real-valued function of a real-variable.”

Exercise 2.4. I declare f to be an integer-valued function of a integer
variable. Describe what this means, and give an example of such a
creature. In these notes, the set of all integers is denoted by Z. (Note:
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there are infinitely many such creatures roaming the mathematical
planes . . . just capture and put one on display one!)

Other common specifications that functions are often declared as are
a. Complex-valued function of a complex variable.
b. Real-valued function of a natural variable. (The natural num-

bers are the numbers 1, 2, 3, 4, . . . .) Such a function is called a
sequence.

c. (Calculus III) Real-valued function of a vector-variable.
d. (Calculus III) Vector-valued function of a real-variable.

There are many, many other possibilities.

Exercise 2.5. Specify each of the functions described above in the
numbered list, and give an example of each.

The Range of a Function. As we have seen the role that the
co-domain plays may be no more than a statement about the “type of
value” a function takes on. If B = R, then the function is real-valued,
or if B = C, then the function is complex valued. A concept related to
the co-domain of a function is that of its range. As usual, f :A→ B,



Section 2: The Concept of a Function

the range of f is that subset of the co-domain consisting of the set
of values of the function f . This can be described more concisely as
follows:

Rng(f) : = { y ∈ B | y is a value of f }
= { y ∈ B | there is some x ∈ Dom(f) such that y = f(x) },

here, the notation Rng(f) denotes the range of f . (The latter render-
ing is due to the definition of a value of a function f .

Illustration 3. Define a function f from Dom(f) = { 1, 2, 3 } into R
by f(1) = 1, f(2) = 17, and f(3) = −100. In this case, it is trivial to
determine the range of the function f :

Rng(f) = { 1, 17,−100 }.
For functions of this elementary type, it is very simple to calculate
the range. The functions that we shall encounter in Calculus are a bit
more complicated. The determination of their range is, as a result,
considerably more involved.
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Defining the Rule of Association. The last few paragraphs dealt
with notation and terminology. Unless you have had some contact with
functions in the past, these definitions may have little meaning to you.
To rectify this potential problem, let us look at a simple example to
illustrate these concepts. A function is a rule of association between
two sets. At this level of presentation, the principle manner in which
this rule is given is through an algebraic equation. Let that equation
be y = x2, and let us give our function a name, say f ; thus, f :x 7→ y,
where y = x2, is our function. This notation can be abbreviated more
tersely as f :x 7→ x2, or as f(x) = x2. This latter notation, f(x) = x2,
is by far the most common notation.

Particular correspondences are handled in the obvious way. To illus-
trate, let us continue with our old friend f(x) = x2, x ∈ R (i.e.,
Dom(f) = R). Now we know that 4 ∈ R; to find the value in the
range of the function that corresponds to the element 4 in the domain
of the function, we apply the rule: y = x2. Replacing x with 4 into
the defining equation we get y = 42 = 16. Thus, 16 corresponds to 4
with respect to the function f(x) = x2. (The number 16 is the value
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of f at 4 and 16 is the image of 4 under f) This may be written as
either f(4) = 16, or f : 4 7→ 16.

Now we do not want to go through this analysis each time we wish to
calculate the particular value, so usually we proceed as follows:

f(x) = x2, x ∈ R
put x = 4,

f(4) = 42,
thus,

f(4) = 16.

Exercise 2.6. Define a function by f(x) =
x

x2 + 1
. Calculate f(2).

Specifying the Domain and Co-Domain. A function is more than
a rule of association, such as f(x) = x2. A function must have a
specified domain and a co-domain (indeed, these were as much a part
of the definition of function as the rule itself). The domain is defined
by whomever is creating the function; in this case, I am creating this
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function, so I declare the domain to be the set of all real numbers,
i.e. let A = R, and let the co-domain be the set of all real numbers as
well, i.e. let B = R. Thus is the power of the mathematician; however,
such power must be tempered by reason.

Exercise 2.7. Let f(x) = x2. Is it possible to assign the function f
an “unreasoned” domain (an unreasonable domain)? Is it possible to
assign the function f an “unreasoned” co-domain (an unreasonable
co-domain)?

Holding the rule of association fixed and changing the domain, in fact
changes the function. To illustrate, define

f(x) = x2, for x ∈ R = Dom(f)
and,

g(x) = x2, for x ∈ [ 0, 1 ] = Dom(g).

The function f and g have the same rule of association, but different
domains. These functions are considered different ; indeed, they cannot
be the same function since f(2) is a defined quantity, where as g(2)
is not. (See the definition of equality of functions below.)

c1f_t1.pdf#EqFuncs
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More Discussion of Range. The range of a function f obviously
depends on the rule of association, but it also depends on the domain
of the function. This is because a function consists of a rule of associ-
ation and the specification of a domain. See discussion above. If the
domain is changed, then the range may be changed also.

Illustration 4. The range for the function f(x) = x2, Dom(f) = R,
is

Rng(f) = { y ∈ R | y ≥ 0 } = [ 0,∞ ); (2)

whereas the range of the function g(x) = x2, where Dom(g) = [−3, 2 ],
is

Rng(g) = [ 0, 9 ].

Exercise 2.8. Let f(x) = x2, x ∈ R. It was stated above that if we
change the domain, the range may be changed also. In illustration 4,
the range was changed when we changed the domain. Your Assign-
ment : Change the domain of f in such a way that the range does not
change.
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Exercise 2.9. Suppose we have a function f whose domain consists
of only a finite number of elements. Must the range consist of only a
finite number of elements too?

The Argument of a Function. Let y = f(x). Let us agree that the
quantity within the parentheses of f always be called the argument
of the function f . The argument is the quantity upon which f acts to
obtain the corresponding y-value. As a simple example, let f(x) = x2,
here the argument of f is x. But now, what is the argument of f(x+1)?
Answer: x+ 1. What is the argument of f(x2)? Answer: x2.

Exercise 2.10. Let f(x) = sin(x). What are the arguments of f of
each of the following: sin(x2) and sin(

√
x+ 1)?

Exercise 2.11. What is the argument of the square-root function in
the expression

√
x+ 1.

The next exercise contains within its solution some important teaching
points concerning the notion of argument of a function. Read it and
determine your responses before your peek at the answers.
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Exercise 2.12. What are the arguments of each of the following:
a. sin(x2).
b. cos(sin(x)).
c. (x+ 1)3.

2.1. Constructing Functions

There are many, many ways of constructing functions; some of them
require a knowledge of Calculus. In this section, we will take a survey
of methods that are within your grasp at this time. Other methods
will be brought out in the process of developing the Calculus.

• The Use of Algebraic Expressions
Let x denote a mathematical variable. An algebraic expression in x is
any combination of sums, differences, products, quotients, and roots
of x with itself and with other constants (whether numerical or sym-
bolic).

I’m sure you have seen many examples; here is a few more.
1. x3 − 3x2 + 12x+ 10.
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2. mx+ b.
3.

2y − 1
y4 − 3

.

4.
2.3x2 − 27.3x√
x2 − 3x+ 2

.

Some additional comments are in order. In item (2), we have two
symbolic constants m and b. In item (3), we fooled you there, this is
an algebraic expression in the variable y.

Rule. As a general rule, any algebraic expression in a single
variable determines a function.

The reason this rule is true is that when we give a value to the real
variable, the algebraic expression evaluates to a single real number.
This is the essence of a functional relation.
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Illustration 5. Take x3−3x2 +12x+10, as defined above. To create
a function we just say: Define a function f by

f(x) = x3 − 3x2 + 12x+ 10,

and that’s all there is to it! Well, not quite. A function also has a
domain. We must consciously be aware of the domain of the function
we are working with. The domain of f would be its natural domain
of definition: Dom(f) = R.

Illustration 6. A second illustration will be sufficient. Consider the
algebraic expression:

2.3x2 − 27.3x√
x2 − 3x+ 2

Define a new function, g, by

g(x) =
2.3x2 − 27.3x√
x2 − 3x+ 2

, x ∈ Dom(g). (3)
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Stand-alones. A “stand-alone” algebraic expression is nothing
more than an anonymous function. For example, the algebraic ex-
pression, x2, is a function. (Just give it a name: f(x) = x2.) The
algebraic expression

√
3x2 − 3x+ 1 is also a function. The expression

is the rule of association: Give x a value, evaluate expression, and le
voilá, the value of the function is obtained.

Exercise 2.13. Calculate the domain of the function g defined in
(3).

• Piecewise Definitions
Another method of creating functions is through a piecewise approach.
In this method, you take algebraic expressions (or other functions that
have already been defined) and ‘piece’ them together in such a way
as to create a function. Here are a few examples.

Consider the function, y = f(x) defined by

f(x) =
{
x if x < 0
x2 if x ≥ 0
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It was stated that this is a function, but is it? (Maybe I am playing
with your head!) Is it true that for each value of x there is only one
corresponding value f(x) defined? Given any x, either x < 0, or x ≥ 0
— that’s obvious. Now in the first case, x < 0, the corresponding
value of y is equal to the value of x; i.e. a single value y is defined. In
the other case, x ≥ 0, the corresponding value of y is the x2, and there
is only one number x2, when x is a real number. So we can conclude
that f is indeed a function.

Exercise 2.14. Consider the function defined above, i.e.:

f(x) =
{
x if x < 0
x2 if x ≥ 0

You should be able to read this notation well enough to be able to
compute f(−2), f(−1/2), f(0), f(1/2), f(3). Give yourself 1 point for
each correct answer!
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In the above example we ‘pieced’ two functions together: the function
y = x and the function y = x2. We can piece three functions together:

g(x) =


x2 − 2x+ 1 x ≤ −1
sinx −1 < x ≤ 3

1
3
√
x

x > 3
.

It is possible to piece any number of functions together. You just have
to piece them together so that you create a function.

Exercise 2.15. Define a ‘function’ by

f(x) =
{
x2 x ≤ 2
x3 x ≥ 1

.

Something is wrong here. As defined, is f a function?

Exercise 2.16. Based on your experience from the last exercise,
would you say that

f(x) =
{
x2 x ≤ 1
x3 x ≥ 1

.
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is a function or not? Note that the domains of the two pieces overlap!

Exercise 2.17. Is g a function? Where,

g(x) =


|x| x ≤ −3
2x+ 9 −3 ≤ x ≤ 3
x3 − 10 x ≥ 3

Exercise 2.18. Is h a function? Where,

h(x) =


|x| x ≤ −3
−x −4 ≤ x ≤ 1
x2 x > 1

Exercise 2.19. Formulate some rules for constructing piecewise de-
fined functions so that what you are defining is indeed a function.

An Applied Illustration. Piecewise defined functions do occur in the
physical world. For example, imagine an electrical circuit. The switch
in the circuit is “off” and so the current in the circuit is 0. At a certain
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time t = 0, you turn the circuit “on.” You are interested in current
as a function of time. This functional relationship might be described
by a piecewise definition:

i(t) =

{
0 if t < 0
t

t+ 1
if t ≥ 0

(4)

Here, i(t) = current at a point in circuit at time t. As you can see, at
time t = 0, there is a radical change in basic functional relationship
between i and t.

Famous Piecewise Defined Functions.
There are several useful functions that are piecewise defined. Below
is a listing and a brief discussion of each.

The Absolute Value Function. The absolute value function is defined
by

|x| =
{ −x if x < 0
x if x ≥ 0
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The absolute function has a famous name, hence has a specialized
notation for its name.
Notes: The absolute value function is a very useful critter. One use
of it is that it reads back to you the distance a number is away from
origin. The number 5 is |5| = 5 units away from the origin; the number
−6.2 is | − 6.2| = 6.2 units away from the origin.

Another related application of the absolute value function is that
it is used to measure distance between two numbers on a number line.
Let a and b be (real) numbers. Then,

|a− b| = the distance between a and b. (5)

Throughout Calculus you will see absolute values put to many uses.
An important fact you need to keep ever in mind when dealing

with expressions involving an even root of a perfect square is
√
x2 = |x| ∀x ∈ R (6)

Commit this concept to memory.

Here’s a “tricky” application to the above points.
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Exercise 2.20. (The distance between horizontally oriented points)
Let P ( a, b ) and Q( c, b ) be two horizontally oriented points in the
plane. (How do I know that?) Calculate the distance between P andQ.

Exercise 2.21. (The distance between vertically oriented points) Let
P ( a, b ) and Q( a, c ) be two vertically oriented points in the plane.
Calculate the distance between P and Q.

The Heaviside Function. The Heaviside function is defined by

H(x) =
{

0 if x ≤ 0
1 if x > 0

This function is an “on-off” function, and is used as such.

Example 2.1. Consider the function defined in (4). Use the Heaviside
function to describe this function.

Example 2.2. Define a function g to be

g(x) = H(x− 2) x ∈ R.
Write g as a piecewise defined function.
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Exercise 2.22. Define the function f by

f(x) =
{

0 x ≤ 2
x3 x > 2

Write the function f in terms of the Heaviside function.

Exercise 2.23. Consider the piecewise function

f(x) =
{
x2 x ≤ 2
x3 x > 2

Write the function f in terms of the Heaviside function.

Exercise 2.24. Consider the piecewise function

f(x) =
{

sin(x) x ≤ −1
x sin(x) x > −1

Write the function f in terms of the Heaviside function.

There is a pattern, do you see it?
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• Descriptive or Conceptual Methods
The sciences are replete with examples of functions that are described.
These functions may be only conceptual. It may not be possible to
explicitly write down a calculation formula for them; however, these
functions are among the most important in science. Quite often, sci-
entists and mathematicians attempt to approximate or model these
kinds of functions.

Functions that need to be modeled. Many functional relationships are
defined by a descriptive definition. They are typically quite complex
and need, therefore, to be modeled or approximated.

Illustration 7. For example, suppose we have a well-specified pop-
ulation of objects, and let t represent a time variable (measured in
seconds, minutes, hours, days, years, etc.). Define a function, p, as a
function of t, as follows:

p(t) = size of the population at time t.
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I have described the relation of interest. Is this a function? One would
say, “yes,” because, at any given time t, one would think that there
is exactly one population size at that time t.

Illustration 8. Another example might be from electrical circuits. At
any given point in an electrical circuit, we can measure current. Let
us choose and fix a point in the circuit at which to measure current,
and let t represent time. Define

i(t) = current at time t.

Again, the definition of i is described, yet conceptually, it defines a
function.

Functions that can be Calculated Exactly. Some functions are de-
scribed (sometimes) geometrically, but are of such a nature that they
can be written down in a analytical form.

The next example is of a function that is described, yet a formula can
be obtained for calculating the values. You, no doubt, have seen these
kinds of functions many times.
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Example 2.3. Define f(x) = x and g(x) = x2 for 0 ≤ x ≤ 1. Draw
the graphs of these two functions. Observe that they enclose a region
in the plane. For each x, 0 ≤ x ≤ 1, draw a vertical line at x and
extending upwards through the region. Define L(x) to be the length
of the line segment that (vertically) spans the region at x. Calculate
L(x).

Example 2.4. Define a function f :x 7→ y. Let x be a real number,
define f(x), if it exists, to be the ordinate of intersection between the
line s = xt and the line s = 2 − t in the ts-axis system. What is
Dom(f)?

Exercise 2.25. Define a function f :x 7→ y. Let x be a real number,
define f(x), if it exists, be the t-intercept of the line s = 2t − 5x in
the ts-axes system. What is Dom(f)?

Exercise 2.26. Define a function g:x 7→ y. Let x be a real number,
let g(x), if it exists, be the y coordinate the point of intersection
between the two lines y = 3t+ 4x and y = −2t+ 3x in the ty-axes.
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Exercise 2.27. Define a function h:x 7→ y. Let x be a real number.
Consider y = sin t and the line y = x(t− 1). Define f(x), if it exists,
to be the y-coordinate of the point of intersection between these two
curves. Is h a function? Explain! Draw a picture that illustrates the
x and the corresponding y.

Exercise 2.28. Define a function k:x 7→ y. Let x be a real number.
Consider y = sin t, 0 ≤ t ≤ π, and the line y = x(t− 1). Define k(x),
if it exists, to be the y-coordinate of the point of intersection between
these two curves. Is k a function? Explain! What is the domain of k?
Draw a picture that illustrates the x and the corresponding y

2.2. Evaluation Issues

There are two ways to evaluate a function: numerically and symbol-
ically. The former type you should be quite familiar with, and the
latter being related to the notion of composition of functions.

c1f_t1.pdf#CompFuncs
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• Numerical Evaluation
Let y = f(x) be a function. The problem of calculating the value of a
function with the symbol x is replaced by a numerical value is straight
forward enough. Problems students encounter are largely algebraic:
reading the formula and properly putting arithmetic operations to-
gether in their proper order.

Notice the use of the word “replace” in the previous paragraph. I chose
this term deliberately in lieu of the more traditional term “substitute.”
When we do evaluations, we replace the symbolic variable, x, which
acts as a place holder, with the value out of the domain at which we
want to evaluate the function f . Think of evaluation as a process of
replacement: To evaluate f(x) at a particular value, we replace the
symbol x with the particular value a to obtain f(a).

Here are some simple examples for your consideration.

Example 2.5. Let f(x) =
x3 − 1
3x2 + 1

. Calculate f(−2), f(−1), f(0),

f(1) and f(2.12).
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Take a close look at the function in the following exercise and carefully
calculate the indicated values, please. You should be able to clearly
see the order of computation.

Exercise 2.29. Let f(x) = ((x+ 1)3 − 2x)2. Calculate f(−2), f(0),
and f(1).

• Symbolic Evalulation
A function need not be evaluated at a numerical value; sometimes it
is important to evaluate a function at a symbolic value.

The Independent Variable is a Dummy !

Consider the following function:

f(x) = x2 − 3x+ 1.

The letter “x” is the independent variable. There is no particular
significance to the actual alphabetic letter “x.” Any other letter could
have been used: t, s, u, v. Within the context of the definition of
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the function, the independent variable is sometimes referred to as a
dummy variable.

Read on for an explanation.

A function is a rule of association. That being the case, in order to
define a function we must be able to describe this rule of association
— the calculation rule, if you will. When we are defining a function
such as

f(x) = x2 − 3x+ 1, (7)

the role that x plays is that of a place holder—the symbol x is standing
in for the particular elements in the domain (which have not been
chosen for calculation yet). The definition tells me, when I do choose
an element from the domain of f , how to calculate the corresponding
y-value: Simply replace x, the place holder, with the particular value
of interest and evaluate.
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All of the definitions below describe exactly the same function:

f(x) = x2 − 3x+ 1

f(t) = t2 − 3t+ 1

f(s) = t2 − 3s+ 1

f(A) = A2 − 3A+ 1

f(ρ) = ρ2 − 3ρ+ 1

f(x̄) = x̄2 − 3x̄+ 1.

Do you get the idea? Note the use of the Greek letter rho, ρ, as a
variable, and a compound symbol, x-bar (x̄) as a variable.

To emphasize the place holder aspect of the independent variable, and
the fact that the choice of the letter makes no difference, let’s look at
a strange idea. Consider the function

f( ) = ( )2 − 3( ) + 1. (8)
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Does this make sense? Or, is it rather silly? Does this describe the rule
of association? Just place any (permissible) value inside the parenthe-
ses and le voilà! Obviously, this does away with the dependence on a
particular letter to describe the rule of association, but it brings forth
new monsters to frighten freshmen.

Exercise 2.30. Can you calculate f(2) for the following function?

f( ) =
( )
√

( )2 + ( ) + 3
cos2(( )2π) + ( )

What f found in its parentheses: Another way of interpreting
rule of association as described in (7) is as follows: the function f
takes whatever it finds within its parentheses, squares it, subtracts
3 times what if found within its parentheses, and then adds 1. This
point of view is useful in more complicated constructions because
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its interpretation of the rule of association does not depend on any
symbol. For example,

f(x) = x2 − 3x+ 1

f(x2) = (x2)2 − 3(x2) + 1

= x4 − 3x2 + 1.

This is because the function f found x2 within its parentheses (x2 is
then the argument of f). When f finds something within parentheses,
is squares it (x2)2, subtracts 3 times what it finds in its parentheses
(x2)2 − 3(x2), and finally, it adds 1 to obtain (x2)2 − 3(x2) + 1. The
“void argument” example in line (8) is a silly illustration of “what f
finds in its parentheses.”

Summary. I hope you will keep this “lesson” in mind when you study
mathematics. The letter used in the definition of a function is a dummy
variable — meaning that it is just a place holder to help us describe
the rule of association.
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2.3. What’s in a Name

There are many ways of naming a function. In this section we enu-
merate a few of them. Giving a function a name, allows you to refer
to it in an unambiguous way.

• The “Standard” Way
The method of naming functions you have encountered in most of
your mathematics is using a single letter, such as f , g, or h.

For example,

f(x) = x2, g(s) =
√
s, h(v) = sin v.

This is the functional notation; however, there are other ways of nam-
ing functions.

As you will see in Calculus I, we will name functions using a combi-
nation of letters and symbols. Some examples of this are

f(x) = x3, f ′(x) = 3x2, f ′′(x) = 6x.
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Here, we have post-fixed a “prime symbol” to the single letter f ; this
creates new names f ′, and f ′′. Each function has a unique name,
and so they can be referred to in an unambiguous manner; thus, I
can say: “Consider the function f ′ . . . ”—and the classroom groans.
(But at least there will be no confusion about what function they are
groaning about.)

Again, consider the function g(x) = x3 (groan?). Define an new func-
tion g−1 by

g−1(x) = 3
√
x.

We have, now, the functions g and g−1 defined — each with unique
names.

Numerical operations can be used to name functions as well. If h(x) =
2x3, then the function h2 refers to the function h2(x) = 4x6.

More often than not, when we post-fix a symbol to the name of a
function, f say, the new function is related to f in some mysterious
way. In the case of the prime, f ′ refers to the derivative of f ; f ′′ refers
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to the second derivative of f . In the example of g and g−1, g−1 is the
inverse of g. And, of course, h2 is the square of h.

• Functions Named by the Dependent Variable
You have seen this kind of function before as well. For example,

y = x2, y = x3.

Here, I have defined two distinct functions, but if I wanted to refer
to one of these two, I would have a bit of a problem. You might call
these anonymous functions because they have no name—they do not
have a built-in way of referencing themselves.

One method of overcoming this problem is to use different symbols
for the dependent variable. To continue the discussion above, re-define
the functions above as

u = x2, v = x3.

Now, I can refer to the function u or the function v. If I want to add
these two functions together, I would write u + v. Notations such as
4u, uv,

√
v, and so on, should have meaning to you.

c1f_t1.pdf#AddFuncs
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Subscripting can also be employed to give anonymous functions dis-
tinctive labels:

y1 = sin(x) y2 = sin(x2).

These two functions can now be referred to by their labels; for exam-
ple, “Find where the functions y1 and y2 intersect.”

You may be familiar with this technique in a more applied setting.
The area of a circle is given by A = πr2. The circumference of a circle
is C = 2πr. The letters chosen help us to remember the physical
significance of the symbols involved: A = area, C = circumference,
and r = radius.

Sometimes, rather than using single letters to name a function in this
way, we use combinations of letters.

Area = πr2
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Now we can refer to this as the “Area” function. (This is actually just
an anonymous with a unique name for the dependent variable.) Or,
we might even write,

Area = π(radius)2.

See the section entitled Descriptive Naming for more discussion of this
technique.

Other times, combinations of letters and symbols are used. For exam-
ple, define two functions,

y = x2, y′ = 2x.

Once again, each function has a unique name: the y-function and the
y′-function. If I write y + y′ then that would refer to the function
defined by the expression x2 + 2x (i.e. y + y′ = x2 + 2x). Thus, I can
refer to the y + y′-function.

Evaluation. Evaluation of functions so defined is a problem. If
y = x2, how do you describe notationally that we want the y-value
corresponding to x = 3 without writing out a sentence as long as
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this one? The problem is that anonymous functions have no explicit
argument. The solution is two-fold: force an explicit argument, or
make up a new notation.

1. Force an explicit argument:

y = x2 y(3) = 9

y′ = 2x y′(3) = 6

v = w3 − w v(2) = 6.

2. Use the Evaluation Notation:

y = x2 y|x=3 = 9

y′ = 2x y′|x=3 = 6

v = w3 − w w|w=2 = 6.

This notation is used throughout Calculus as a notation of evaluation
of anonymous functions.
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Exercise 2.31. (Skill Level -1) Define the function y = 2x3 + 1. Use
the two notations defined above to calculate the value of y correspond-
ing to x = −1.

• Descriptive Naming
In some areas, such as computer science, functions and their vari-
ables are named using complete words or phrases. The names of the
functions are, if fact, the names of the subroutines that make the
calculations.

For example, we could have functions such as

Area circle = π(radius)2

Area circle(radius) = π(radius)2

Area triangle(base, height) =
1
2

(base)(height).

The last example is a function of two variables. The domain of this
function is

Dom(Area triangle) = { ( b, h ) | b > 0, h > 0 }.



Section 2: The Concept of a Function

Exercise 2.32. Let Area circle = π(radius)2. If radius = 2, discuss
how we notationally represent Area circle.

• Famous Functions
Some functions are so famous that they have their own names! The
sine function is one of many examples of celebrity. Rather than giving
the sine function a generic name like f , it has its own name: sin. Thus,
y = sin(x) is internationally recognized as the sine function.

Some of the “famous” functions you will encounter in Calculus I are
listed below.
Trigonometric Functions. Inverse Trigonometric Functions.

1. y = sin(x) 1. y = sin−1(x)
2. y = cos(x) 2. y = cos−1(x)
3. y = tan(x) 3. y = tan−1(x)
4. y = cot(x) 4. y = cot−1(x)
5. y = sec(x) 5. y = sec−1(x)
6. y = csc(x) 6. y = csc−1(x)
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Hyperbolic Functions. Inverse Hyperbolic Functions.
1. y = sinh(x) 1. y = sinh−1(x)
2. y = cosh(x) 2. y = cosh−1(x)
3. y = tanh(x) 3. y = tanh−1(x)
4. y = coth(x) 4. y = coth−1(x)
5. y = sech(x) 5. y = sech−1(x)
6. y = csch(x) 6. y = csch−1(x)

Exponential Functions. Logarithmic Functions.
1. y = exp(x) = ex 1. y = ln(x)
2. y = ax 2. y = loga(x)

In your calculus course you will study in detail each of these types of
functions.

2.4. Models for Functions

In this section we present different ways of thinking about functions
that may be of help to you.
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• A Function as a Mapping
One traditional way of looking at a function is as a mapping or a
transformation. Let f :A → B be a function, and let x ∈ A. As dis-
cussed above, y = f(x) is the value of the function at x. We can also
look upon f as a mapping or transformation: f maps x onto y, or, y
is the image of x under f .

This interpretation is one of the origins of the notation introduced
above:

x
f7→ y.

Try to get the feeling for this interpretation. Imagine a bunch of arrows
pointing from elements x in the set A to elements y in the set B. The
arrows point from each x to the corresponding value of y, as the “arrow
notation” above suggests. When we see x we immediately think of its
corresponding value f(x). The Venn Diagram, described next, is a
more visual representation.
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• Venn Diagram of a Function

Figure 1

In Figure 1, a pictorial representation of a function (mapping,
transformation) is given. This graph represents f as it maps
or transforms a typical element x from the domain set A into

the co-domain set B. The image of x under this map, f , is denoted by
y in the figure. Visualize a function as a bunch of “arrows” pointing
from set A into set B. The tail of a typical arrow is at x, and the
arrow “points” to the corresponding y-value.

This model is very useful in understanding functions and various op-
erations performed on functions (such as composition of functions).

Figure 2

To further illustrate the point, Figure 2 depicts a relation that
is not a function. A function is a rule that associates with
each value x is a certain domain set, a corresponding unique

y-value. A rule that associates with at least one x more than one corre-
sponding y-value would not be a function—as illustrated in Figure 2.
Observe that associated with x is two corresponding values—labeled
y and z.
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As a particular example of this, consider the equation: x2 + y2 = 1.
For x = 0, there are two values of y that satisfy this equation: y = 1
and y = −1. This equation does not define, therefore, y as a function
of x. (Visualize two arrow coming out of x = 0, one pointing to y = 1
and the other pointing to y = −1.

• A Function as a Black Box
This interpretation of function is often associated with the engineering
world. A function is like a machine (a black box). We have a machine
(a black box) that takes input into it, and, as a result, yields output.
The black box is the function, the input are the values in the domain
of the function, and the output of the box (function) are the values
in the range of the function.

x −→ function −→ y.

Actually, this looks more like a white box to me :={).

A black box you are familiar with is the hand-held calculator. This
is usually, literally, a black box. You input x-values on the key pad,
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say x = 12. You then choose the black box to input this value of x
into. Your calculator is actually made up of a large number of black
boxes – called function keys (hey, function!). Choose the function key
labeled

x2

and press it – out comes the output. You will see (on your real or
imagined display panel) the value 144.

This is a representation of the black box model.

x −→ x2 −→ x2,
put x = 12,

12 −→ x2 −→ 144.

Input-output, input-output – and that’s the way it works.
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2.5. Calculating the Domain and Range

In this section we discuss techniques of calculating the domain and
range of a function. These are important and fundamental techniques.
Calculation of the domain is particularly useful.

• The Natural Domain of a Function
Suppose you want to write a computer program. As part of that pro-
gram, you are to calculate values of the function

f(x) =
√
x− 1
x− 2

. (9)

In the course of this program, you ask the user to input a value of
x, and your program will calculate the value of f for the user, and
output the answer.

Naturally, you want to protect your program against crashing ; there-
fore, you cannot allow the user to input a value of x outside the domain
of the function. Before you calculate f , you must first check whether
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the x the user has input into your program is in the domain of the
function.

Initially, you need to ask yourself two questions:
a. What type of values does the variable x take on: real-values,

complex-values, or something more esoteric?
b. What type of values does f(x) take on: real-values, complex-

values, or something more esoteric?

For our example, perhaps based on the goals of our underlying com-
puter program, we are determined to accept only real-values for x.

Even if x is a real-number, it is possible for f(x) to be a complex-value.
The thought of having complex-values for a function when we are
still struggling with real-values is odious indeed; we’ll decide that the
values of f(x) are real numbers. What we have just done is to decide
on the co-domain of the function f . (See co-domain as a statement of
type.)
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We have just decided that f should be a real-valued function of a
real-variable:

Dom(f) ⊆ R coDom(f) = R.
Now, let’s turn to the problem of calculating the actual domain of our
function, or, within the context of our computer program, what sort
of values x can we allow the user to input?

Obviously, x 6= 2, for otherwise, we would have zero in the denomi-
nator of (9) — a no–no. The square root is the other expression in
the definition of f in (9). We need

√
x− 1 to be a real value. In order

for
√
x− 1 to be a real number, the radicand must be nonegative:

x− 1 ≥ 0, or x ≥ 1.

Thus, if x ≥ 1 the numerator is a real-value; if x 6= 2 the denominator
is a nonzero real-number. If x is a real number that satisfies both of
these conditions, then √

x− 1
x− 2

,

is a real-number.



Section 2: The Concept of a Function

Conclusion: The domain of f is all x that satisfy,

x ≥ 1 and x 6= 2
or,

Dom(f) = {x ∈ R | x ≥ 0 and x 6= 2 }.
With respect to our computer program our sequence of thoughts
would be

a. input −→ x.
b. Determine whether x is a real number; if not ask user for a real

number.
c. Is x 6= 2? If ‘No’ then ask user for a real number different from

2.
d. Is x ≥ 1? If ‘No’ then ask user for a real number greater than

or equal to 1.
e. Compute f(x).

What we have just calculated is what is called the natural domain of
the function f . Let’s formalize this term into a quasi-formal definition.
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Definition 2.2. Let f be a real-valued function of a real-variable.
The natural domain of f is the set of all numbers x ∈ R for which
f(x) can be computed as a real number.

Example 2.6. (Skill Level -1) Calculate the natural domain of the
function f(x) = x2.

Example 2.7. (Skill Level 0) Calculate the natural domain of the
function f(x) = x−2.

Example 2.8. (Skill Level 1) Calculate the natural domain of the
function f(x) =

√
2x2 − 1.

Many functions are either defined by algebraic expression or they
involve arithmetic operations to some degree. The following are some
fundamental guiding principles that you should be aware of and utilize
when trying to discern the natural domain of a function.

• Principles of Domain Analysis.
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1. When examining a root, the radicand of an even root must be
nonnegative in order to evaluate to a real number. (This implies
that you must be able to solve inequalities.)

2. The denominator cannot be zero. (This implies that you must
be able to factor and/or solve equations.)

3. Determine the domain of each component (each factor, each
term) of the expression.

4. Each component (each factor, each term) of the expression must
evaluate to a real number. This means that we take the domain
of each component and intersect them; a number lying the the
domain of each component means each component evaluates to
a real number, which, in turn, implies the whole expression eval-
uates to a real number.

5. In regards to the previous point, the word “intersects” is trans-
lated into english using the word “and.” (See example below for
an additional elaboration of this point.)

Reread the two previous examples in light of the above principles.
Determine whether these little tidbits of knowledge were utilized. Or,
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read the next example for a slightly more complicated analysis . . .
but not discouragingly so.

Example 2.9. (Skill Level 1.1) Calculate the domain of the function

f(x) =
x√

2x2 − 1
.

Example 2.10. (Skill Level 2) Calculate the natural domain of

f(x) =
√

4− x2

x− 1
.

Example 2.11. (Skill Level 2) Calculate the natural domain of

f(x) =
√

1− x√
1 + x

.

Finding the natural domain of a function defined by an algebraic
expression is simple enough. It’s a matter of common sense, good
algebraic methods, and the principles of domain analysis.
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The next two problems are similar to the previous Example, but
with a subtle change.

Exercise 2.33. Find the natural domain of the function

f(x) =
√
x− 1√
x+ 1

.

Exercise 2.34. Find the natural domain of the function

f(x) =

√
x− 1
x+ 1

.

The point of the last two examples was two-fold: (1) to supply the
student with two exercises in domain analysis; (2) to illustrate a point
that some studnets may be unaware:

√
x− 1√
x+ 1

6=
√
x− 1
x+ 1

,
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or the more general principle is
√
a√
b
6=
√
a

b
. (10)

We do have equality when a ≥ 0 and b > 0, but if both a and b are
negative, then the right-hand side is a real number, whereas the left-
hand side is not. Therefore, when utilizing a property such as (10), be
sure you are dealing with nonnegative quantities.

Next example is of a lesser skill level but it is meant to illustrate do-
main analysis when sums of terms are involved—no problem though,
just apply the principles.

As always try to solve this problem before peeking at its solution.

Exercise 2.35. Determine the natural domain of

f(x) = 4
√

2x− 1 +
1

x− 1
.

To further drive home the point, consider the following exercise.
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Exercise 2.36. Determine the natural domain of the function

f(x) =
√

1− x√
1 + x

+ 4
√

2x− 1 +
1

x− 1
.

Utilize the results of Example 2.11 and Exercise 2.35.

Additional practice can be found in the section entitled The Algebra
of Functions below. In that section a more structured approach to
analyzing the domains of functions — principles used in this section.

• Range Calculations
In this section we illustrate the logic associated with calculating the
range of a function. Let’s begin by reviewing the definition of range:
Let f be a (real-valued) function (of a real-variable), then the range
of f is the set of all values of f . Symbolically,

Rng(f) = { y ∈ R | there is some x ∈ Dom(f) such that y = f(x) }.
Therefore, to determine whether a given number, y, is in the range
of f , we must try to find a number x ∈ Dom(f), such that f(x) = y.
That is, we take the attitude that the symbol y is a given (known)

c1f_t1.pdf#AlgFuncs
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number, and we try to find an x ∈ Dom(f) such that f(x) = y, or, in
otherwords, we solve the equation

f(x) = y (11)

for x (again, treating y as a known quantity).

Exercise 2.37. What does it mean when there are no solutions to
(11) for a given value of y?

Exercise 2.38. Quiz Question. If x is a solution to (11), does it
follow that y must be in the range of f?
(a) True (b) False

Exercise 2.39. What does it mean when there are multiple solutions
to (11) for a given value of y?
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Range Testing a single point y.
Let f be a function having domain Dom(f). To determine
whether a given number y belongs to the range of f we solve
the equation

f(x) = y x ∈ Dom(f).

If there is a solution x ∈ Dom(f), then y ∈ Rng(f); other-
wise, y /∈ Rng(f).

The above criteria can be used for testing a particular value y, but it
can also be used to identify the entire domain of a function. The next
example illustrates the first statement, most of the others illustrates
the second.

Example 2.12. Let f(x) = 3 +
√
x2 − 4.

a. Is it true that 8 ∈ Rng(f)?
b. Is it true that 2 ∈ Rng(f)?



Section 2: The Concept of a Function

Example 2.13. Let f(x) = 3 +
√
x2 − 4. Find the range of f .

Exercise 2.40. Find the range of f(x) =
1

3 +
√
x2 − 4

.

The calculation of the range may not be as important as the ability
to calculate the natural domain of a function. Quite often, graphical
methods can be used to discern the range of the function without all
this algebraic hoopla anyway.w�

Click here to continue.



Appendix

Definition. Let A 6= ∅ and B 6= ∅, and f ⊆ A×B. Then f is called
a function from A into B provided

(1) ∀a ∈ A, ∃b ∈ B such that (a, b) ∈ f .
(2) (a1, b), (a2, b) ∈ f implies a1 = a2.

If (a, b) ∈ f , then we write f(a) = b.



Solutions to Exercises

2.1. The co-domain B can be any set sufficiently large to contain
all the values of the function f . If the function generally takes on
only real values, then we lose nothing by assuming that B = R. More
generally, think of the co-domain of a function as a set that describes
the type of values that a function, such as our f , can take on. For
a function that takes on complex numbers as values, the co-domain
of such a function may be considered to be C, the set of all complex
numbers; for a function whose values are points in the plane, the co-
domain may be considered to be R2. The possibilities are limitless.

Exercise 2.1.
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2.2. . . . is any subset of the cartesian product of A and B.

Definition R is a relation between A and B provided

R ⊆ A×B = { (a, b) | a ∈ A and b ∈ B }
If (a, b) ∈ R we sometimes write aR b and say that the element a is
R-related to b.

The symbol R is a generic one. For famous relations, R is replaced by
specialized and more familiar symbols. For example, ≤ is a relation
between R and R. In this case, we generally don’t write (1, 2) ∈≤;
rather, we say 1 ≤ 2 (this corresponds to the general notation of
aR b). (Now it makes sense!)

Other famous examples of relations on R are <, =, >, and ≥.

In its simplest form, a relation is just a subset of the Cartesian of two
sets; in particular, any curve in the xy-plane defines a relation.
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A function f from A into B can be used to define a relation. We’ll
call the relation G(f).

G(f) = { (a, f(a)) | a ∈ A } ⊆ A×B.

Can you guess why I used the symbol G(f) to define the relation
determined by a function?

Exercise 2.2.
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2.3. We present the answers in the form of multiple choice questions.
If you have solved this exercise before jumping here, you expected
score is 100%.

Definition of f : f(1) = 3, f(2) = 3, f(3) = 4, f(−1) = 7.

Part (a). Write the domain, Dom(f), of f .
(a) {3, 4, 7} (b) {1, 2, 3, 4, 7,−1}
(c) {1, 2, 3,−1} (d) none of these

Part (b). Is 3 a value of this function?
(a) Yes (b) No (c) Cannot tell

Part (c). Is 1 a value of this function?
(a) Yes (b) No (c) Cannot tell

Part (d). What is the image of 3 under f?
(a) 1 (b) 2 (c) 3 (d) 4

Part (e). What is the image of 3 under f?
(a) 1 (b) 2 (c) 3 (d) 4
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These questions serve to illustrate the usage of the above defined
terms. Your score indicates your understanding of these terms at the
time you took the quiz. If you got less than 100%, review the defini-
tions before continuing, please. Exercise 2.3.
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2.4. An integer-valued function of an integer variable is a function
f , say, where coDom(f) = Z (so f takes on integer values), and
Dom(f) ⊆ Z (so the independent variable x is an integer).

Dom(f) ⊆ Z and coDom(f) = Z.

Trivial Example: Define a function f by

f(0) = 0.

That is, the domain of f is Dom(f) = { 0 } (small domain). The value
of f at the only element in its domain is f(0) = 0, so f takes on
integers as values.

Less Than Trivial Example: Define a function f by,

f(x) = 2|x|, x ∈ Z.
By the definition, Dom(f) = Z so f has an integer variable, x. Are
the values of f integers?
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For x ≥ 0,
f(x) = 2|x| = 2x x = 0, 1, 2, 3, . . . .

This yields the integers: 1, 2, 4, 8, 16, 32, 64, etc. etc., and, of course,
etc.

For x < 0,

f(x) = 2|x| = 2−x x = −1,−2,−3, . . . .

This yields the integers: 2, 4, 8, 16, 32, 64, etc. etc., and, of course,
etc. Exercise 2.4.
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2.5. This is for your pleasure only. I will not deny you.
Exercise 2.5.
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2.6. f(x) =
2

22 + 1
=

2
5

. That was easy! Exercise 2.6.
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2.7. Yes. Yes. In the first case, the assignment of the domain must be
consistent with the rule of association. (Here it is y = x2.) The domain
can be any set for which the symbol x2 is a well-defined operation for
every x ∈ A. Certainly, we can take A to be any subset of the real
line, or any subset of the complex plane (in the complex plane, a mul-
tiplication is defined there). If A is Euclidean 3-space, R3, then there
is no natural multiplication operation defined on this space and so the
symbol x2 is undefined there. (There are, however, multiplication-type
operations, such as dot-product and vector-product, perhaps x2 may
refer to one of those.)

Now, regarding the co-domain question, given that the creator of the
function has properly defined the domain of the function, the co-
domain could then be any set that contains all the values of the func-
tion. If a set B is chosen that does not include all the values of the
function, then B cannot be considered the co-domain of the function.
For example, if f(x) = x2, x ∈ R (A = R), then we could not take
the co-domain to be B = (−∞, 0) because this B in fact contains
none of the values of f , nor could we take B = [−1, 1], for this B
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does not contain all the values of f . We can take the co-domain of
this function to be R, or a smaller set [0,∞); the latter set being the
range of f . Exercise 2.7.
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2.8. There are infinitely many ways of responding to this question—
I only have the time, patience, and money to give only finitely many
alternatives; namely, one.

Define h(x) = x2, for x ∈ [ 0,∞ ). We have the same rule of associa-
tion, but a different domain; however, the range is

Rng(h) = [ 0,∞ ).

This is the same range as was given in (2).

Quiz. Read the alternatives, determine your response to each before
testing your theories. Use your common sense, your knowledge of the
squaring process, and your understanding of the symbolism and ter-
minology of the question (let’s hope). Graphical techniques may also
be helpful.

Question: Which of the following sets, when used as the domain of
the rule of association x 7→ x2 does not yield a range of [ 0,∞ )?
(a) (−∞, 0 ] (b) (−3, 0 ] ∪ [ 2,∞ )
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(c) {x ∈ R | x 6= 3.3 } (d) (−∞,−17) ∪ ( 17,∞ )

End Quiz.

If you have errored in your considerations, think about why you er-
rored. What lead you to believe a false conclusion? What is the correct
reasoning? Exercise 2.8.
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2.9. Yes. Let the domain have n elements, n a natural number. Then
we can represent the domain in the following manner:

Dom(f) = {x1, x2, x3, . . . , xn }.
The range of f may then be represented by the set

Rng(f) = { f(x1), f(x2), f(x3), . . . , f(xn) },
and this set has only finitely many elements; in fact, it has at most n
elements (why?). Exercise 2.9.
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2.10. This is easy, given the discussion on arguments.

If the underlying function is f(x) = sin(x), then the argument of f
in sin(x2) is x2—since f(x2) = sin(x2). The argument of f in the
expression sin(

√
x+ 1) is

√
x+ 1—since f(

√
x+ 1) = sin(

√
x+ 1).

Exercise 2.10.
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2.11. It’s x+ 1! Exercise 2.11.
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2.12. We present that answers in the form of a Quiz.

Part (a). What is the argument of sin(x2)?
(a) x (b) x2

(c) sin(x2) (d) insufficient information

Part (b). What is the argument of cos(sin(x))?
(a) x (b) sin(x)
(c) cos(sin(x)) (d) insufficient information

Part (c). What is the argument of (x+ 1)3?
(a) x (b) x+ 1
(c) x3 (d) insufficient information
Exercise Notes: The notion of argument is made relative to a specific
function. In the three given expressions,

sin(x2), cos(sin(x)), and (x+ 1)3,

the underlying function was not specified or implied. Without knowl-
edge of the underlying function, we cannot make a statement about
its argument.
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For take part (a) to illustrate the point: sin(x2). If the under-
lying function had been stated to be f(x) = sin(x2), then choice (a)
would be correct. If the underlying function was f(x) = sin(x), then
choice (b) would have been correct. And to be extremely tricky, if the
underlying function had been specified as f(x) = x then choice (c)
would be correct.

Exercise 2.12.
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2.13. Symbolically, the domain of g is given by

Dom(g) = {x ∈ R | x2 − 3x+ 2 > 0 }.
This is because we cannot calculate the value of g(x) if the radicand is
negative. Also, if the radicand is 0, then we have 0 in the denominator.
Therefore, the radicand must be positive.

Begin by factoring the radicand: x2 − 3x + 2 = (x − 1)(x − 2). Now
use the sign chart method to solve this inequality.

The Sign Chart of (x− 1)(x− 2)

1
x− 1

2
x− 2

1 2
(x− 1)(x− 2)

legend : • negative (−)
• positive (+)
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The solution to the inequality x2 − 3x + 2 > 0 is (−∞, 1 ) ∪ ( 2,∞).
Thus,

Dom(g) = (−∞, 1 ) ∪ ( 2,∞).

This problem was strictly an exercise in algebra. Exercise 2.13.
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2.14. Let’s present the answers if the form of a quiz.

Quiz (1pt
ea.)

f(x) =
{
x if x < 0
x2 if x ≥ 0

1. The value of f(−2) is
(a) −2 (b) 0 (c) 2 (d) 4

2. The value of f(−1/2) is
(a) −1 (b) −1

2 (c) 1
2 (d) 1

4

3. The value of f(0) is
(a) −1 (b) 0 (c) 1 (d) 4

4. The value of f(1/2) is
(a) −1 (b) − 1

2 (c) 1
2 (d) 1

4

5. The value of f(3) is
(a) 0 (b) 1 (c) 3 (d) 9
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Did you get 6 points? Based on the difficulty of the problem, I’m
absolutely sure the answer is NO! Exercise 2.14.
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2.15. No. The domains of the pieces overlap. Take x = 2, and cal-
culate the corresponding y-value. First, it is true that x ≤ 2, since
x = 2; thus, by the definition, f(2) = 22 = 4. Secondly, it is true
that x ≥ 1, since x = 2; thus, by the definition f(2) = 23 = 8. The
above definition associates two values with x = 2. The conclusion is
as advertised!

Note, we could have chosen any number x ∈ [ 1, 2 ] and been able
to draw the same conclusion. Any number but, x = 1. This value
of x would not lead the conclusion that f is not a function. Do you
understand why? Exercise 2.15.



Solutions to Exercises (continued)

2.16. Yes, f is a function. Even though x = 1 falls into both cases
(x ≤ 1 and x ≥ 1) the value of the functional pieces are the same at
x = 1. That is, since x ≤ 1, f(1) = 12 = 1; but since x ≥ 1 too, we
also have f(1) = 13 = 1. Thus, the rule of association only assigns
one value corresponding to x = 1. Since x = 1 was the only problem
child, f is a function. Exercise 2.16.
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2.17. No. There is no problem at x = −3, but for the overlapping
domains at x = 3, the pieces do not match (2(3) + 9 6= 33 − 10).

As an important variation on this problem. Consider once again

g(x) =


|x| x ≤ −3
2x+ 9 −3 ≤ x ≤ 3
x3 − c x ≥ 3

Where c is a constant yet to be determined. Question: What value
could you give c so that g, as defined above, is now a function? (An-
swer: 12.) Exercise 2.17.
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2.18. Yes. The definition of f is

h(x) =


|x| x ≤ −3
−x −4 ≤ x ≤ 1
x2 x > 1

The second and third domain specifications have no overlap — they
are no problem. The first and second domain specifications do overlap.
However, on the interval over which they intersect

(−∞,−3 ] ∩ [−4, 1 ] = [−4,−3 ]. (A-1)

On the interval, [−4,−3 ], the intersection of the two overlapping
domains, the pieces is in question agree! Indeed, for any x ∈ [−4,−3 ],

|x| = −x since x < 0
−x = −x self-obvious.

This means the two pieces agree on the domain of overlap. For each x
in this overlap, no matter what definition you choose, |x| or −x, the
corresponding value of h is the same. Exercise 2.18.
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2.19. Take any number of functions and piece them together by
restricting their domains. These restricted domains must be either
disjoint, or if they do overlap, the functions involved must agree.

In Exercise 2.15 and Exercise 2.17, the domains of the two pieces
overlapped, but the functions did not agree on the overlap. In contrast,
in Exercise 2.16 there was overlap of the domains, but the function
pieces agreed on the overlap. See also the discussion at the end of the
solution to Exercise 2.17. Exercise 2.19.
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2.20. The distance between two horizontally oriented points in the
plane is the absolute difference of their first coordinates:

d(P,Q ) = |a− c|.
The above rule is quite useful throughout Calculus. The above equa-
tion is directly deducible form (5)

The same result can be obtained from the distance formula for the
plane:

d(P,Q ) =
√

(a− c)2 + (b− b)2

=
√

(a− c)2

= |a− c| / (6)

Exercise 2.20.
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2.21. Same reasoning as the previous exercise.

The distance between two vertically oriented points in the plane is
the absolute difference in their second coordinates:

d(P,Q ) = |b− c|.
Exercise 2.21.
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2.22. From our efforts of Exercise 2.2, we can easily see that

f(x) = x3H(x− 2).

Do we “see” it? Exercise 2.22.
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2.23. By first considering x ≤ 2 then x > 2, verify that

f(x) = x2 + (x3 − x2)H(x− 2).

(When you do the above analysis, keep x are a symbolic variable.)
Exercise Notes: Piecewise defined functions are used often in engineer-
ing and there are special techniques for handling them. One technique,
called Laplace Transforms, requires that you represent all piecewise
defined functions in terms of the Heaviside function. This exercise
attempts to prepare the way for you.

Exercise 2.23.
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2.24. I leave the analysis to you:

f(x) = sin(x) + (x− 1) sin(x)H(x+ 1).

Exercise 2.24.
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2.25. One of the initial major inhibiting factors in successfully solv-
ing this problem is understanding the question! This can be done with
a careful reading of the problem, and some graph sketching.

Draw a Cartesian axis system. Label the horizontal axis the t-axis, and
label the vertical axis the s-axis. Let x be any real number. (What
this means is that you are to consider the symbol x as a given or know
quantity. You can even think of x as being different values if you wish;
think of x as being -2, -1, 0, 1, 2, 3, for example.) Now draw the line
s = 2t − 5x on the ts-axis you have already drawn. All these lines
have slope m = 2, but different intercepts. (Here, you can use your
particular values of x, if you wish to get a “feel” for what’s going on.)
Now, f(x) is defined to be the t-intercept of the line. (The t-intercept
of the line will depend on x since the line s = 2t− 5x depends on x.)

Think about these points and try again to solve the problem. The
solution is on the next page; don’t look until you have made another
attempt at solving the problem, given the above discussion.
...

...
...

...
...

...
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...
...

...
...

...
...

Continued on the next page
...

...
...

...
...

...
...

...
...

...
...

...
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Exercise 2.25 (cont.) Let x be a given real number, and consider
the straight line s = 2t − 5x. By definition, f(x) is the t-intercept
of this line. The t-intercept can be calculated in the “usual way” by
putting 2t − 5x = 0 and solving for t (the t-intercept is occurs when
s = 0). Solving for t we get t = 5x/2. Thus, f(x) being the t-intercept,
we must have

f(x) =
5
2
x.

Obviously, we are able to calculate the t-intercept no matter what the
value of x, so Dom(f) = R. Exercise 2.25.
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2.26. Let x be a real number, then g(x) is the y-coordinate (in the
ty-axes system) of the two lines: y = 3t+ 4x and y = −2t+ 3x. This
y-coordinate can be calculate by setting up the equation:

3t+ 4x = −2t+ 3x
5t = −x

Therefore,
t = −x/5

This (i.e. t = −x/5) is the t-coordinate of the point of intersection.
The y-coordinate can be obtained by substituting this into either of
the two functions: y = 3(−x/5) + 4x = (17x)/5. But this is the
definition of g(x). Thus,

g(x) =
17
5
x.

The domain Dom(g) = R, since there was only one y-coordinate of the
point of intersection, no matter what the value of x. Exercise 2.26.
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2.27. h is not a function. For if we take x to be a little larger than
zero, then the line y = x(t − 1) would have a slightly positive slope.
Looking at the two graphs, y = sin(t) and y = x(t − 1), we see that
y = x(t−1) intersect the sine graph at least three times. Thus, for that
x (slightly positive) there is (at least) corresponding y-values defined
— all in violation of the property of a function. Exercise 2.27.
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2.28. In this case, in contrast to Exercise 2.27, k is a function!
We have restricted the domain of y = sin(t) so as to eliminate the
problem we ran into in the analysis of h in Exercise 2.27.

Draw the graph of y = sin(t) and y = x(t− 1) in the ty-axis. Do you
see that the line intersects the sine curve at only one place between
0 ≤ t ≤ π; hence, there is only one y-coordinate of intersection? There
is one interesting anomaly: x = 0. In this case, the corresponding line
intersects the sine curve at two points; but we are saved, these two
points have the same y-coordinate! When x = 0, we have y = 0 —
only one y-coordinate of intersection. Therefore,

Dom(k) = R.

Speaking of the graph of k, can you (yes, you) make a rough sketch
of the graph of k without using your graphing calculator to help you?
It is obvious that k has an horizontal asymptote.

Below are some questions to stimulate your thinking. Think about
the problem before daring to see the answer.
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1. The function y = k(x) has an horizontal asymptote at . . .
(a) y = −1 (b) y = 0 (c) y = sin(1) (d) y = 1

2. For the horizontal asymptote for x > 0, does the graph . . .

(a) approach the horizontal asymptote from below, or
(b) cross over the horizontal asymptote, then approach it from above?

3. For the horizontal asymptote for x < 0, does the graph . . .

(a) approach the horizontal asymptote from below, or
(b) cross over the horizontal asymptote, then approach it from above?

4. As observed above, k(0) = 0. This is really the only value of k that
we know. The graph starts at the origin and moves upwards towards
the asymptotes. What does the graph look like at the origin?
(a) A nice smooth curve
(b) A sharp corner
(c) A vertical asymptote
(d) Insufficient data

5. What is the highest altitude the graph of k attains?



Solutions to Exercises (continued)

(a) 0 (b)
1
2

(c)
√

2
2

(d) 1

6. What is the x-coordinate of the highest point on the graph of k?

(a) x =
π

4
(b) x =

π

2
(c) x =

1
π
2 − 1

(d) x =
1

sin(π2 − 1)

Hopefully, given this information, you can now make a good rough
sketch of the graph of k. Exercise 2.28.
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2.29. Let’s have the details of the first calculation.

Calculation of f(−2):

f(x) = ((x+ 1)3 + 2x)2

f(−2) = ((−2 + 1)3 − 2(−2))2

= ((−1)3 + 4)2

= (−1 + 4)2

= 32

= 9.

Care must be taken when dealing with negative numbers. A plentiful
use of signs is often desirable.

Calculate the other two values, if you haven’t done so already. Be
methodical. The object is not to make errors.

Quiz. Passing Score: 2 out of 2 (100%). 1. Which of the following is
f(0)?
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(a) 0 (b) 1 (c) 2 (d) 9

2. Which of the following is f(1)?
(a) 10 (b) 36 (c) 64 (d) 100

End Quiz Exercise 2.29.
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2.30. f(2) = 2! That’s strange. Exercise 2.30.
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2.31. The function is y = 2x3 + 1.

1. Force an explicit argument. y(−1) = 2(−1)3 + 1 = −1.

2. Use the Evaluation Notation:

y|x=−1 = (2x3 + 1)
∣∣
x=−1 = 2(−1)3 + 1 = −1.

Exercise Notes: One of the advantages of the Evaluation Notation
is that it can be used to work through a complex calculation. In 2.
above, we replaced y with 2x3 + 1 in the Evaluation Notation. This
enabled me to continue the calculation so that the reader (that’s you)
could follow. Exercise 2.31.
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2.32. Remember there are two methods for handling anonymous
functions.

1. Force an explicit argument:

Area circle(2) = π(2)2 = 4π.

2. Use the Evaluation Notation:

Area circle|radius=2 = 4π.

I hope you answered this correctly, á priori. Exercise 2.32.
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2.33. Here is a brief outline.

The Numerator. The numerator, given by
√
x− 1, requires by (1)

that x− 1 ≥ 0, or x ≥ 1.

The Denominator. The denominator,
√
x+ 1, requires by (1) that

x+ 1 > 0, or x > −1.

Final Analysis. The natural domain of this function would be all x
that satisfy x ≥ 1 and x > −1.

Dom(f) = [ 1,∞ )

Exercise 2.33.
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2.34. Keeping in mind the principles of domain analysis, when look-
ing at the expression √

x− 1
x+ 1

we would require
x− 1
x+ 1

≥ 0 and x 6= −1.

We now need to solve the first inequality. An easy way of doing so is
to use the sign chart method.

The Sign Chart of
x− 1
x+ 1

1
x− 1

-1
x+ 1

-1 1

x− 1
x− 2

legend : • negative (−)
• positive (+)



Solutions to Exercises (continued)

Therefore, we see that the solution to the inequality is

x < −1 or x ≥ 1

In formal terms, then, the domain of the function, f , is

Dom(f) = {x ∈ R | x < −1 or x ≥ 1 } / Set Notation

= (−∞,−1 ) ∪ [ 1,∞ )

Note: The word “or” is translated as “set union (∪).”
Exercise 2.34.
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2.35. We proceed along standard lines of inquiry. The function is

f(x) = 4
√

2x− 1 +
1

x− 1
.

Analysis of the first term. The first term involves an even root ;
by (1), we require

2x− 1 ≥ 0 or x ≥ 1
2

Analysis of the first term. The second term involves a ratio. The
numerator is the constant 1 and puts no constraint on the domain.
The denominator is x− 1. By (2), we require

x 6= 1 .

Final Analysis. Therefore, we require

x ≥ 1
2

and x 6= 1.
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Now, using good and standard notation we have that,

Dom(f) = {x ∈ R | x ≥ 1
2

and x 6= 1 } / Set Notation

= [
1
2
, 1 ) ∪ ( 1,∞ ) / Interval Notation

Exercise 2.35.
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2.36. In this problem, you should have realized that you can take a
shortcut. The function is

f(x) =
√

1− x√
1 + x

+ 4
√

2x− 1 +
1

x− 1

=
[√

1− x√
1 + x

]
︸ ︷︷ ︸

Example 2.11

+
[

4
√

2x− 1 +
1

x− 1

]
︸ ︷︷ ︸

Exercise 2.35

The First Bracketed Term has domain (−1, 1 ].

The Second Bracketed Term has domain [ 1
2 , 1 ) ∪ ( 1,∞ ).

Final Analysis. The domain of our given function is then all x ∈ R
such that

x ∈ (−1, 1 ] and x ∈ [
1
2
, 1 ) ∪ ( 1,∞ )
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Now we are confronted with the problem of getting the visualization
of this set.

Dom(f) = [
1
2
, 1 ).

Exercise 2.36.



Solutions to Exercises (continued)

2.37. In other words, there is no x such that f(x) = y. This means
that y /∈ Rng(f). Exercise 2.37.



Solutions to Exercises (continued)

2.38. The answer is False in general. When we solve (11) and obtain
a solution x, then logically it follows that either that x belongs to the
domain of f (x ∈ Dom(f)), or that x does not belong to the domain
of f (x /∈ Dom(f)).

It is the first case that allows us to deduce that y ∈ Rng(f), but the
second case causes us to say that the answer to the question of False.

Exercise 2.38.



Solutions to Exercises (continued)

2.39. It means one of three things: (1) y is in the range of f ; and
(2) y is not in the range of f .

1. If any of the multiple solutions belong to the domain of f , then
y ∈ Rng(f).

2. If none of the multiple solutions belongs to the domain of f , then
y /∈ Rng(f). Exercise 2.39.
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2.40. The natural domain of this function is

Dom(f) = (−∞, 2 ) ∪ ( 2,∞ )

A number y ∈ Rng(f) if and only if there is some x ∈ Dom(f) such
that

1
3 +
√
x2 − 4

= y. (A-2)

Obviously,
y > 0. (A-3)

because the left-hand side of (A-2) is never zero and is always non-
negative.

Now invert (A-2)

3 +
√
x2 − 4 =

1
y

or, √
x2 − 4 =

1
y
− 3
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Again, since the square roon is always nonnegative, we have,

0 ≤
√
x2 − 4 =

1
y
− 3

or,
1
y
− 3 ≥ 0

or,

y <
1
3

(A-4)

Putting (A-3) and (A-4) together we get

0 < y ≤ 1
3

(A-5)

Do these specifications define the range of f? We must ask ourselves
the question: “Given y, 0 ≤ y ≤ 3, does there exist an x ∈ Dom(f)
such that y = f(x)?”
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To answer this question, we must continue with the calculations and
solve for x.

f(x) = y ⇐⇒ 1
3 +
√
x2 − 4

= y

⇐⇒ 3 +
√
x2 − 4 =

1
y

⇐⇒
√
x2 − 4 =

1
y
− 3

⇐⇒ x2 − 4 = (
1
y
− 3)2

⇐⇒ x2 = 4 + (
1
y
− 3)2

⇐⇒ x = ±
√

4 + (
1
y
− 3)2
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Do these two x’s belong to the domain of f , i.e. is it true that |x| ≥ 2?
Yes! Indeed,

|x| =
√

4 + (
1
y
− 3)2

≥
√

4
= 2.

Where, again, we have used the property that a ≤ b implies
√
a ≤ √b.

Summary : Rng(f) = ( 0, 1
3 ], from (A-5). Exercise 2.40.



Solutions to Examples

2.1. Here is the function reproduced for you convenience.

i(t) =

{
0 if t < 0
t

t+ 1
if t ≥ 0

I claim that, if fact,

i(t) =
t

t+ 1
H(t). (S-1)

To prove this equality, we must show that for every value of t, the
left-hand side of (S-1) equals the right-hand side. There are two cases:
t < 0 and t ≥ 0.

Case t < 0: By definition of i(t), i(t) = 0. By the definition of the
Heaviside function, H(t) = 0 for t ≤ 0. This makes the right-hand
side of (S-1) equal to zero too. Thus, for this case, the equality of
(S-1) is verified — they are both equal to zero.



Solutions to Examples (continued)

Case t > 0: By definition of i(t),

i(t) =
t

t+ 1
t > 0.

Now, for t > 0, the Heaviside function takes on a value of H(t) = 1,
this means that for t > 0

t

t+ 1
H(t) =

t

t+ 1
= i(t) t > 0.

Case t = 0: When t = 0, by the definition of i(t):

i(0) =
0

0 + 1
= 0

For t = 0, H(0) = 0, hence, the right-hand side of (S-1) is zero as will.
Thus, the two sides of (S-1) agree for this case too.

Thus we have shown that

i(t) =
1

t+ 1
H(t).



Solutions to Examples (continued)

Example Notes: The Heaviside function can be used to represent piece-
wise defined functions as single expressions like the one above. This is
useful in engineering mathematics when trying to calculate something
called the Laplace Transform.

Example 2.1.



Solutions to Examples (continued)

2.2. According to the definition of the Heaviside function, H, H has
a value of 0 if its argument is less than or equal to zero; therefore,

H(x− 2) = 0 whenever x− 2 ≤ 0
= 0 whenever x ≤ 2.

Similarly, H takes on a value of 1 whenever its argument is greater
than zero; thus,

H(x− 2) = 1 whenever x− 2 > 0
= 1 whenever x > 2.

From this reasoning we conclude,

g(x) = H(x− 2) =
{

0 x ≤ 2
1 x > 2.

Exercise Notes: The introduction of the (dummy) function name of g
was not needed. Oftentimes we just speak of the function H(x− 2).

The function H(x− 2) is a horizontal shifting of the basic H(x)
function. Obviously, realization of this point is important. With this



Solutions to Examples (continued)

observation, you should have knowledge of the functions H(x − 5),
H(x+ 2), and H(2x− 1).

Using paper and pencil only to write down your final answer,
what is the piecewise definition of H(2x− 1)?

Example 2.2.



Solutions to Examples (continued)

2.3. A quick sketch of the graphs of these two functions shows that

Figure S-1
f(x) = x g(x) = x2 0 ≤ x ≤ 1

For each x, 0 ≤ x ≤ 1, the vertical line enters the region by crossing
the graph of g(x) = x2, it passes through the region, and exits when
it crosses the graph of f(x) = x. The endpoints of the line segment is
then P (x, x2 ) and Q(x, x ). The length of the line segment that goes
from P to Q is given by

L(x) = x− x2.

This defines a function: L(x) = x− x2 having domain 0 ≤ x ≤ 1.

You will encounter this kind of problem later when we use this function
to calculate the area of the region. Example 2.3.



Solutions to Examples (continued)

2.4. The introduction of the ts-axis system is necessary for clarity.

For any given x ∈ R, the intersection between the lines s = xt and
s = 2 − t is obtained by solving these two equations for s. (Why s,
because s is the ordinate axis in the ts-axis system. Solve for t in one
equation and substitute it into the other equation:

s = 2− t =⇒ t = 2− s
s = xt and t = 2− s =⇒ s = x(2− s)

Finally take the equation s = x(2− s), and solve for s.

s = x(2− s) ⇐⇒ s = 2x− sx
⇐⇒ s+ sx = 2x

⇐⇒ s(1 + x) = 2x

=⇒ s =
2x

1 + x
x 6= −1

Thus, for x 6= −1,

s =
2x

1 + x
.
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What about the case x = −1? Go back to the original equations and
consider this case:

s = xt and s = 2− t
put x = −1

s = −ts = 2-t

These two lines each have slope m = −1; hence they are parallel .
They are either the same line (not!) or they have no points in common
(Yes!).

The solution to the problem is then,

f(x) =
2x

1 + x
x 6= −1,

the latter specification indicates the natural domain of the function
f .

Example 2.4.



Solutions to Examples (continued)

2.5. The key to successful calculation the is principle of replacement :
The symbol x is a place holder; simply replace x everywhere with a
particular numerical value in question.

Calculation of f(−2):

f(x) =
x3 − 1
3x2 + 1

f(−2) =
(−2)3 − 1
3(−2)2 + 1

=
−8− 1
3(4) + 1

= − 9
13
.

Notice the clever use of parentheses. This is standard algebraic tech-
nique. The parentheses were inserted to avoid problems with the neg-
ative sign.
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Calculation of f(−1):

f(x) =
x3 − 1
3x2 + 1

f(−1) =
(−1)3 − 1
3(−1)2 + 1

=
−1− 1
3(1) + 1

= −2
4

= −1
2
.

In addition to the use of parentheses to protect oneself against un-
wanted sign errors, there is another point to be made: All fractions
should be reduced.

Calculation of f(0):

f(x) =
x3 − 1
3x2 + 1

f(0) = −1.



Solutions to Examples (continued)

In this case the calculation was quite simple. A mental calculation
was all that was needed. Try to do simple calculations and algebraic
manipulations in your head—your head may need the exercise!

Calculation of f(1):

f(x) =
x3 − 1
3x2 + 1

f(1) = −1
4
.

Again a mental calculation. There is no need to use a calculator when
dealing with simple calculations.



Solutions to Examples (continued)

Calculation of f(2.12):

f(x) =
x3 − 1
3x2 + 1

f(2.12) =
(2.12)3 − 1
3(2.12)2 + 1

=
8.528128
14.4832

≈ 0.5888

Example 2.5.



Solutions to Examples (continued)

2.6. The natural domain of the function f(x) = x2 is, by the de-
scription of Definition 2.2, the set of all numbers x ∈ R for which
f(x) = x2 can be computed as a real number. Obviously, if x is any
real number, then x2 is a defined quanity, and the result of the calcu-
lation is a real number; therefore, any real number x is in the natural
domain of f . Thus,

Dom(f) = R.
Example 2.6.
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2.7. The natural domain of the function f(x) = x−2 is, by the
description of Definition 2.2, the set of all numbers x ∈ R for which

f(x) =
1
x2

can be computed as a real number.

Obviously, we run into problems when x = 0. In this case, we would
be dividing by 0 — a no-no.

Dom(f) = {x ∈ R | x 6= 0 } / Set Notation

= (−∞, 0 ) ∪ ( 0,∞ ) / Interval Notation.

Example 2.7.



Solutions to Examples (continued)

2.8. We need to find all x for which f(x) =
√

2x2 − 1 can be com-
puted as a real number. First we must recall some . . .

Fundamental Knowledge.
√
z is a real number provided z ≥ 0.

Therefore,
√

2x2 − 1 is a real number provided

2x2 − 1 ≥ 0.

We now invoke our algebraic module of knowledge and solve this in-
equality. Indeed,

2x2 − 1 ≥ 0 ⇐⇒ 2x2 ≥ 1

⇐⇒ x2 ≥ 1
2

⇐⇒ |x| ≥ 1√
2

(S-2)

where the symbol ⇐⇒ means “if and only if” or “is equivalent to.”

Push Address on Stack (Computer Science Jargan)
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Algebraic Note: To arrive at (S-2), I took the square root of both
sides of the inequality in the previous line. In doing so, I utilized two
fundamental facts that you need to be aware of

Fundamental Fact. (Square roots preserves inequalities) For a ≥ 0
and b ≥ 0,

a ≤ b ⇐⇒ √
a ≤
√
b.

A similar statement is true for all the root functions.

Fundamental Fact. (The square root of a perfect square) Let a ∈ R,
then √

a2 = |a|.
This equation is very important.

Pop Address Off Stack (Computer Science Jargan)
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The natural domain of f then is, from (S-2)

Dom(f) = {x ∈ R | |x| ≥ 1√
2
} / Set Notation

= (−∞,− 1√
2

] ∪ [
1√
2
,∞ ) / Interval Notation

Example 2.8.
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2.9. The function is

f(x) =
x√

2x2 − 1
.

For us to calculate the real numbers for the values of f , the numerator
and the denominator must be real numbers. There is no problem
with the numerator: For any x ∈ R, the numerator, x, is real. The
denominator is a slight problem. We must require two things of the
denominator: It be a real number and it be nozero.

Analysis of Denominator. We require that:

It be real : We saw from Example 2.8, that√
2x2 − 1 is a real number ⇐⇒ |x| ≥ 1√

2
.

It be nonzero:√
2x2 − 1 6= 0 ⇐⇒ |x| 6= 1√

2
⇐⇒ x 6= ± 1√

2
.
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Correlating these two pieces of information, we get

f(x)is a real number ⇐⇒ |x| > 1√
2
.

Thus, using proper notation,

Dom(f) = {x ∈ R | |x| > 1√
2
} / Set Notation

= (−∞,− 1√
2

) ∪ (
1√
2
,∞ ) / Interval Notation

Example 2.9.
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2.10. The function is

f(x) =
√

4− x2

x− 1
.

There are two “constraints” on the natural domain of f : the numerator
and the denominator.

Analysis of the Numerator. As we have seen already, the numer-
ator is a real number if and only if

4− x2 ≥ 0 ⇐⇒ x2 ≤ 4

⇐⇒ |x| ≤ 2 (S-3)

For an explantion of (S-3), see the aside in the solution to Exam-
ple 2.8.

Analysis of the Denominator. The height of triviality! We require
only that

x 6= 1 (S-4)
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Final Analysis. We require

|x| ≤ 2and x 6= 1.

bf Note: The word “and” above represents the set operation of “inter-
section.” This speaks to my point mentioned earlier. The numerator
is a real number provided |x| ≤ 2, the denominator is a real (nonzero)
number provided x 6= 1; therefore, for the whole expression to be a
real number, both numerator and denominator must be real numbers:
|x| ≤ 2 and x 6= 1.

If x is so constrained, then f(x) will surely by a computable real
number. Therefore,

Dom(f) = {x ∈ R | |x| ≤ 2 and x 6= 1 }
= {x ∈ R | −2 ≤ x ≤ 2 and x 6= 1 }
= [−2, 1 ) ∪ ( 1, 2 ]

Example 2.10.
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2.11. The function is

f(x) =
√

1− x√
1 + x

.

Analysis of the Numerator. We require

1− x ≥ 0 or x ≤ 1 (S-5)

Analysis of the Denominator. We require

1 + x > 0 or x > −1 (S-6)

Note that x cannot be equal to −1 for otherwise we would have 0 is
the denominator — a no-no!

Final Analysis. Overall, we require, from (S-5) and (S-6),

x ≤ 1 and x > −1
or,

−1 < x ≤ 1.



Solutions to Examples (continued)

Now, using good and proper notation, we present:

Dom(f) = {x ∈ R | −1 < x ≤ 1 }
= (−1, 1 ].

Example 2.11.
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2.12. The first question is . . . what is the domain of f? Without an
explicit specification, it is to be understood that the domain of f is its
natural domain. By the methods already developed (see The Natural
Domain of a Function), it is easy to see that

f(x) = 3 +
√
x2 − 4

Dom(f) = (−∞,−2 ] ∪ [ 2,∞ ) (S-7)

(Verify?)

Solution to (a): Is it true that 8 ∈ Rng(f)?

Following the advice outlined above, we setup the equation,

f(x) = 8
or,

3 +
√
x2 − 4 = 8,
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and solve for x. Solving,

3 +
√
x2 − 4 = 8 ⇐⇒

√
x2 − 4 = 5

⇐⇒ x2 − 4 = 25

⇐⇒ x2 = 29

⇐⇒ x = ±
√

29.

Note that we have multiple solutions (see Exercise 2.39). For the
case x =

√
29, a consultation with your calculator (or using your

knowledge of numbers — no calculator necessary) it is easy to see
that both x =

√
29 ≥ 2 and x = −√29 ≤ −2 this means, by (S-7)

that 29 ∈ Dom(f) and the y = 8 ∈ Rng(f).

Conclusion: 8 ∈ Rng(f) and, in fact, f(
√

29) = 8.

Solution to (b): Is it true that 2 ∈ Rng(f)?
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As before we setup the equation,

f(x) = 2
or,

3 +
√
x2 − 4 = 2,

and solve,
3 +

√
x2 − 4 = 2 ⇐⇒

√
x2 − 4 = −1. (S-8)

Wait! Time Out! The equation
√
x2 − 4 = −1 has no solutions x

that are real numbers because, by definition, the square root of any
nonnegative number is a nonnegative number. (See Exercise 2.37)

Conclusion: 3 /∈ Rng(f). Example 2.12.
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2.13. Based on our experience of testing the same function for par-
ticular points in Example 2.12, we should be able to determine the
entire range of f .

Let y be any real number. When is it true that there is an x ∈ Dom(f)
such that f(x) = y? Recall,

Dom(f) = (−∞,−2 ] ∪ [ 2,∞ ).

Setup the standard equation:

f(x) = y
or,

3 +
√
x2 − 4 = y.

Under what conditions on y is it possible to solve this equation for x
such that |x| ≥ 2? Let’s investigate.

3 +
√
x2 − 4 = y ⇐⇒

√
x2 − 4 = y − 3.
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Now because
√
z ≥ 0, for any z ≥ 0, it is certainly the case that we

must have

0 ≤
√
x2 − 4 = y − 3

or,
y − 3 ≥ 0

or,
y ≥ 3 (S-9)

It is clearly the case that y ≥ 3. But we have not entirely finished the
analysis. We must ask ourselves the question: “Is it true that for any
y ≥ 3, there is some x ∈ Dom(f) such that f(x) = y?”

Indeed, let y ≥ 3 be given, then

3 +
√
x2 − 4 = y ⇐⇒

√
x2 − 4 = y − 3

⇐⇒ x2 − 4 = (y − 3)2

⇐⇒ x2 = 4 + (y − 3)2

⇐⇒ x = ±
√

4 + (y − 3)2
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Concentrate on the positive solution for now.

x =
√

4 + (y − 3)2

We now ask the question, “Does this x belong to the domain of f ,
i.e., is it true that x ≥ 2?” The answer is Yes. Why? We know that,

4 ≤ 4 + (y − 3)2

since (y − 3)2 ≥ 0. Therefore we deduce,

2 =
√

4 ≤
√

4 + (y − 3)2. (S-10)

Here, we have used the property of square roots:

Basic Fact. For a ≥ 0 and b ≥ 0, a ≤ b ⇐⇒ √
a ≤ √b.

But, (S-10) implies that x =
√

4 + (y − 3)2 ∈ Dom(f).
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Summary : We have argued that for any y ≥ 3, (S-9), there is an
x ∈ Dom(f), (S-10), such that f(x) = y. This means that

Rng(f) = { y ∈ R | y ≥ 3 } / Set Notation

= [ 3,∞ ) / Interval Notation

Example Notes: The negative solution, x = −√4 + (y − 3)2, now need
not be considered since we already have y ∈ Rng(f)! Example 2.13.
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Because the relation

G(f) = { (a, f(a)) | a ∈ A } ⊆ A×B.
is nothing more than the graph of f ! G is for graph the parentheses
‘()’ are pronounced ‘of’ and f for f . Obvious! Important Point



Important Points (continued)

This is a horizontal shift to the right 1/2 a unit.

H(2x− 1) =
{

0 x ≤ 1
2

1 x > 1
2

Important Point
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