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1. Introduction
Prerequisite: Limits.

In the article Limits, we had some discussion of the notion of continu-
ous function. In that article, we introduced the definition and classified
certain collections as having the property of being continuous. In this
article we expand and extend the ideas introduced in Limits.

Continuity is a property of a function. In analysis, of which Calculus
is a part, certain facts (called theorems) are true when the functions
being dealt with are continuous, while other facts are not true (or may
not be true) when dealing with noncontinuous functions; therefore, it
is incumbent on us to be able to understand continuity and to be able
to identify functions that are continuous — in this way, we can utilize
the facts from analysis with confidence and authority.
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Section 2: What is a Continuous Function?

2. What is a Continuous Function?
Let’s begin with some definitions — the love of a mathematician’s life.

Definition 2.1. Let f be a function and a ∈ Dom(f). We say that
f is continuous at x = a provided

lim
x→a f(x) = f(a), (1)

or, more precisely, for each ε > 0, there is a δ > 0 such that

x ∈ Dom(f) and |x− a| < δ implies |f(x)− f(a)| < ε. (2)

Corollary Definition 2.2. Let f be a function defined on a set A.
We say that f is a continuous on A if f is continuous at each point
a ∈ A. If A = R, sometimes we say that f is continuous everywhere.

Definition Notes: Here are some thoughts on the definition, given in
the form of bulleted paragraphs.
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The phrase “f is continuous at x = a” is designated to those
functions for which the evaluation of the limit is done simply by evalu-
ating the function, f at the limiting point, a. This is the content of (1).
Not every limit can be evalulated this way. In a sense, the continuous
functions easiest kind of function to deal with (yet very important).
Of course, we must first prove a given function is continuous before
evaluating limits so easily.

There is a difference between continuous at x = a, and just
continuous: the former is a local property, and the latter is a global
property. A given function can be continuous at one point but not at
another. For example, the function

f(x) =
{
x2 if x 6= 0
17 if x = 0
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Now this is a rather artificial example but it serves the point. Look
at the limit of f at x = 2 and x = 0:

lim
x→2

f(x) = 4 = f(2)
but,

lim
x→0

f(x) = 0 6= f(0)

This function is continuous at x = 2, but not continuous, or (discon-
tinuous) at x = 0. Thus, the property of being continuous is relative
to the particular point in its domain (hence is a local property). On
the other hand, if a function is continuous at each point in its do-
main, we refer to that function as being continuous – at every point
understood.
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Theorem 2.3. (Continuity of Linear Functons) Let f(x) = mx + b
be a linear function, and a ∈ R. Then f is continuous at x = a. Thus,
f is a continuous function.

Proof. Let ε > 0, choose δ =
ε

1 + |m| . Note that the chosen δ is

positive (which is a requirement of the definition). Now, suppose

|x− a| < δ,
then,

|f(x)− f(a)| = |(mx+ b)− (ma+ b)|
= |mx−ma| = |m(x− a)|
= |m||x− a|
≤ |m| ε

1 + |m|
=

|m|
1 + |m|ε

< ε. (3)
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Note that in line (3), we used the fact that

|m|
1 + |m| < 1.

We have shown that, for any ε > 0, there is a δ > 0 such that if
|x − a| < δ, then |f(x) − f(a)| < ε. This is precisely what is needed
to prove that f is continuous at x = a. �
Note: Compare this choice of δ with the choice of δ for the same proof
in the article on Limits. Why did I take δ = ε/(1 + |m|)?

Definition 2.1 is a low-level tool for showing that a given function is
continuous. Working with a function at this definitional level can be
quite difficult and challenging. In the next section we develop some
high-level tools for arguing that a function is continuous; however,
as with a higher level computer language, certain things can be done
more easily at the high level, but other things cannot be done at all —
as a result, you must maintain our low level hooks. You must always
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keep in back of your mind the definitions — it is the definitions that
ultimately give meaning to any concept.w�

For Those Who Want to Know More. This rest of this section
is devoted to some esoteric details. In the discussion below, I assume
that your have already For Those Who Want to Know More.

In Definition 2.1, the two conditions (1) and (2) are not, in general,
equivalent.

Condition (2) is, in fact, the standard definition of continuity at x = a.
Now, if a is an accumulation point, then (1) is equivalent to (2).

Exercise 2.1. Define a function f by

f(x) =
{
x 0 ≤ x ≤ 1
5 x = 2

Utilizing condition (2) as the definition of continuity, show that f is
continuous at x = 2.
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If a point a ∈ Dom(f) is not an accumulation point of the domain,
then by definition (condition (2)) f is continuous at x = a. If a ∈
Dom(f) is an accumulation point of the domain, then continuity is
a nontrivial concept. The law for continuity is now governed by the
equation

lim
x→a f(x) = f(a).

In a standard course, continuity of a function is only discussed for
points in the domain of a function that are accumulation points of
the domain. Usually, the function in question is defined for an interval
of numbers. In this case, all points of the interval are accumulation
points of the interval.

Summary : The standard definition of continuity is given by condition
(2). When a ∈ Dom(f) is an accumulaton point, then continuity is
equivalent to (1):

lim
x→a f(x) = f(a).

c1l_t.pdf#defnaccum
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When a ∈ Dom(f) and is not an accumulation point of Dom(f),
then by definition (i.e. by (2)) and as Exercise 2.1 illustrates, f is
continuous at x = a.

3. The Algebra of Continuous Functions
We have already seen the Algebra of Functions, and the Algebra of
Limits. We now present the same type theorem for continuous func-
tions. This theorem would represent a “high-level tool” for classifying
functions as continuous.

Theorem 3.1. (Local Version) Let f and g be functions and let a
and c be number. Suppose f and g are continuous at x = a. Then

(1) the function f + g is continuous at x = a;
(2) the function cf is continuous at x = a;
(3) the function fg is continuous at x = a;

(4) the function
f

g
is continuous at x = a, provided, g(a) 6= 0.

c1f_t1.pdf#AlgFuncs
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Proof.

Corollary 3.2. (Global Version) Let f and g be functions that are
continuous on a common domain A, and let c be a constant. Then
each of the functions are continuous on the domain A: f + g, cf , and
fg. In the case of the quotient function, f/g is continuous on the
domain B = {x ∈ A | g(x) 6= 0 }.

Proof.

One can think of Theorem 3.1 as a building block result. There are
many building block results in mathematics; you have seen several of
them already, even though I didn’t tell you. Theorem 3.1 enables us
to take functions that are known to be continuous, and use them to
build more complex continuous functions.

What functions do we know are continuous? Answer: Linear Functions
are continuous everywhere. This was very easy to prove. (See the
proof of Theorem 2.3.) A linear function is a function of the form:

c1c_tp.pdf#pfLocCont
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f(x) = mx + b. Take the simplest cases are m = 1 and b = 0, and
m = 0 and b = 1. Thus we know that

f(x) = x and g(x) = 1 (1)

is continuous on their domains: Dom(f) = Dom(g) = R.

A polynomial is constructed by taking the little functions in (1) and
multiplying them together (with themselves and with each other),
multiplying them by constants, and adding them together. For exam-
ple, polynomial p(x) = 3x4 − 7x3 + 9x− 10 is nothing more than

p(x) = 3f(x)4 − 7f(x)3 + 9f(x)− 10g(x)

or, without the arugments

p = 3f4 − 7f3 + 9f − 10g.

You can see that p is the sum and product of the functions f and g.
Since f and g are continuous on R, and in light of Corollary 3.2, we
conclude that p is continuous on R as well.
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Do you see the building block of effect. The blocks are the functions
f(x) = x and g(x) = 1, and Corollary 3.2 supplies the “mortar” to
stack the blocks. Thus, we have argued, informally, . . .

Continuity of Polynomials
Let p be a polynomial function, then p is continuous on R.

Now we have new building blocks! Polynomials. Let N(x) and D(x)
be two polynomials, and define

r(x) =
N(x)
D(x)

.

You will recall that r is a rational function. The domain of r is given
by

Dom(r) = {x ∈ R | D(x) 6= 0 }.
Now applying Corollary 3.2 again, we conclude that r is continuous
on its domain Dom(r). Let’s highlight this observation.



Section 3: The Algebra of Continuous Functions

Continuity of Rational Functions
Let r be a rational function, then r is continuous on Dom(r).

4. Continuity of the Trigonometric Functions
In this section we develop the continuity properties of the trigonomet-
ric functions. In the article on Limits, we discussed some basic limit
problems of the trigonometric functions. In particular, recall, we have

lim
x→0

sin(x) = 0 lim
x→0

cos(x) = 1. (1)

The pair of equations (1) implies the sine and cosine functions are
everywhere continuous!

c1l_t.pdf#TrigLimits
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Theorem 4.1. The functions sin(x) and cos(x) are continuous on
R.

Proof. We want to prove, for any a ∈ R, that

lim
x→a sin(x) = sin(a) lim

x→a cos(x) = cos(a).

I will only prove the first equation.

Recall the additive formula for the sine function:

sin(x+ h) = sin(x) cos(h) + cos(x) sin(h).
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This identity and (1) is all we need — oh yes, there is one more
profound fact we need: x = a+ (x− a).

lim
x→a sin(x) = lim

x→a sin(a+ (x− a))

= lim
x→a(sin(a) cos(x− a) + cos(a) sin(x− a))

= sin(a) lim
x→a cos(x− a) + cos(a) lim

x→a sin(x− a)

= sin(a)(1) + cos(a)(0) by (1)

= sin(a)

We have shown,
lim
x→a sin(x) = sin(a).

This is what we wanted to prove.

Exercise 4.1. Prove, for any a ∈ R, limx→a cos(x) = cos(a).

Now, having accomplished the establishment of the continuity of the
sin(x) and cos(x), we now turn to the other four trig functions. But
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these are trivial because of the Algebra of Continuous Functions. Re-
call,

tan(x) =
sin(x)
cos(x)

sec(x) =
1

cos(x)

cot(x) =
cos(x)
sin(x)

csc(x) =
1

sin(x)

The tan(x) function, for example, is the ratio of two continuous func-
tions, sin(x) and cos(x). Therefore, tan(x) is continuous at all points
where the denominator is different from zero. Thus, tan(x) is contin-
uous at all x 6= ±π/2, ±3π/2, ±5π/2, ±7π/2, . . . .

Exercise 4.2. For each of the trig functions tan(x), sec(x), cot(x),
and csc(x), determine all x for which these functions are discontinu-
ous,
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5. Continuity of Composite Functions
When we discussed The Limit of Composite Functions, we introduced
the definitive theorem on how the limit process interacts with compo-
sition. In this section, that theorem is illustrated within the context
of continuous functions.

Basically, the content of the The Composite Limit Theorem is that
continuous functions preserve limits. Let’s restate this theorem using
slightly different terminology.

Theorem 5.1. (The Composite Limit Theorem) Let f and g be func-
tions that are compatible for composition, let a ∈ R. Suppose,

(1) limx→a g(x) exists, let b = limx→a g(x);
(2) f is continuous at b ∈ Dom(f).

Then

lim
x→a f(g(x)), exists

and,

c1l_t.pdf#LimComp
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lim
x→a f(g(x)) = f(b),

or,
lim
x→a f(g(x)) = f( lim

x→a g(x)). (1)

Proof.

Corollary 5.2. (Composition of Continuous Functions) Let f and g
be functions that are compatible for composition, let a ∈ R. Suppose,
g is continuous at x = a, and f is continuous at g(a). Then f ◦ g is
continuous at x = a; that is,

lim
x→a f(g(x)) = f(g(a))

Proof.
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6. Discontinuities
Let f be a function and a ∈ Dom(f). We say that f is discontinuous at
x = a if f is not continuous at x = a. Functions can be discontinuous
in a number of different ways. In this section is briefly survey these
different ways and introduce some terminology.

6.1. Types of Discontinuities

There are four types of discontinuities discussed in this section: re-
movable, jump, infinite, and oscillatory. Each of these is addressed in
turn.

Removable Discontinuities. We say that the function f has a re-
movable discontinuity at x = a provided,

lim
x→a f(x) exists (1)

but
lim
x→a f(x) 6= f(a).
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Thus, the limit must exist but not be equal to what it’s supposed to
be equal if it were continuous.

As the name suggests, these kind of discontinuities can be removed.
See the section Remove them Discontinuities

A useful criteria for testing for a removable discontinuity is to bring in
one-sided limits: f has a removable discontinuity at x = a provided,

lim
x→a−

f(x) = lim
x→a+

f(x) 6= f(a). (2)

That is, the left-hand and the right-hand limits exist and are equal to
each other (hence, the two-sided limit exists), but does not equal to
f(a) — what it’s supposed to equal if it is going to be continuous.

In the article on Limits, we say many examples of functions having
removable discontinuities.

c1l_t.pdf#thmTwoOneRel


Section 6: Discontinuities

Example 6.1. Define the function f by

f(x) =


x3 + 2x2 − x− 2

(x− 1)(x+ 2)
x 6= −2, 1

0 otherwise

Argue that f has a removable discontinuity at x = 1.

Exercise 6.1. For the function f in Example 6.1, show that f has
a removable discontinuity at x = −2.

Exercise 6.2. Define the function f by

f(x) =


x2 − 4
x− 2

x 6= 2

0 x = 2

Argue that f has a removable discontinuity at x = 2.
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Example 6.2. Define the function

f(x) =


x+ 1 x < 1
6 x = 1
x2 + 1 x > 1

Argue that f has a removable discontinuity at x = 1.

Jump Discontinuities. We say that the function f has a jump dis-
continuity at x = a provided,

lim
x→a−

f(x) 6= lim
x→a+

f(x). (3)

That is, the left-hand and the right-hand limits exist but are not equal
to each other (hence, the two-sided limit exists), does not equal exist.
The amount of the jump is

jmp = | lim
x→a+

f(x)− lim
x→a−

f(x)|.

Examples of functions having jump discontinuities are easy to find.
Here is a few.

c1l_t.pdf#thmTwoOneRel
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Example 6.3. Jump Discontinuity Show that the function

f(x) =
{
x+ 1 x ≤ 3
x3 x < 3

has a jump discontinuity at x = 3, and calculate the amount of the
jump at that point.

Example 6.4. Greatest Integer Function. Define the greatest in-
teger function by

bxc = the greatest integer less than
or equal to x.

Show that bxc has a jump discontinuity at each integer value of x.

Infinite Discontinuities. Let f be a function and a ∈ R such that
f has a vertical asymptote at x = a; i.e. either

lim
x→a−

f(x) = ±∞
or,

lim
x→a+

f(x) = ±∞
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The point a ∈ R may or may not belong to Dom(f).

We have seen many examples of infinite discontinuities.

Example 6.5. Consider the following two functions.

f(x) =
1
x

x 6= 0, and g(x) =

{ 1
x

x 6= 0

0 x = 0

Argue that each has an infinite discontinuity at x = 0.

Oscillatory Discontinuity. This type of discontinuity is not easy,
at this level of play, to give a rigorous definition. Perhaps, definition
by example.

Example 6.6. Oscillatory Discontinuity. The function

f(x) = sin(
1
x

), x 6= 0.

has an oscillatory discontinuity at x = 0.
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6.2. Remove them Discontinuities!

Functions with removable discontinuities can be redefined in such a
way that the redefined function is now continuous.

The procedure is obvious.

Example 6.7. Consider the function:

f(x) =


x2 − 4
x− 2

x 6= 2

0 x = 2

It was seen that in Exercise 6.2 that f has a removable discontinuity
at x = 2. REMOVE IT!

Example 6.8. Consider the function

f(x) =

{ sin(2x)
x

x 6= 0

0 x = 0

The function f has a removable discontinuity at x = 0. Remove it.
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7. One-Sided Continuity
I will not devote very many electronic pages to this topic. It has been
discussed rather extensively already. See the sections: Left-Hand Lim-
its, Right-Hand Limits, and Two-Sided and One-Sided Limits Related.

When trying to argue that a function of a more pathological type
is or is not continuous, it is sometimes useful to consider one-sided
limits. The pivotal result from the article Two-Sided and One-Sided
Limits Related is reproduced below — modified to reflect the topic
of continuity.

Theorem 7.1. Let f be a function and a ∈ Dom(f). Then, f is
continuous at x = a if and only if

lim
x→a−

f(x) = f(a) (1)

and
lim
x→a+

f(x) = f(a) (2)
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Example 7.1. Define a function f as follows:

f(x) =
{
x3 x ≤ 2
3x2 − 2x x > 2

Problem: Prove that f is continuous at x = 2.

Definition 7.2. Let f be a function and a ∈ Dom(f). We say the f
is left-continuous at x = a, provided

lim
x→a−

f(x) = f(a). (3)

We say that f is right-continuous at x = a, provided

lim
x→a+

f(x) = f(a). (4)

Theorem 7.1 can be recast utilizing the terminology just introduced:
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Let f be a function and a ∈ Dom(f). Then, f is continuous at
x = a if and only if f is left-continuous and right-continuous
at x = a
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8. The Intermediate Value Theorem
After you have graphed several continuous functions, and graphed sev-
eral noncontinuous functions, you might eventually allow your mind
to dwell upon the differences in the appearance of the two types of
functions. You might think: “Continuous functions have non-broken
(or connected) graphs, discontinuous functions have graphs that are
broken (or disconnected) in certain locations.”

One can use this interpretation of a continuous function to reason
intuitively in the physical realm. Suppose at a certain time, designated
as time t = 0, a bird is seen sitting on a light pole, known to be 10
feet high. Later, 30 seconds later, the same bird is observed sitting
atop an electrical pole, known to be 18 feet high. Apparently the bird
flew from the light pole to the electrical pole during the time interval
[ 0, 30 ], where time t is measured is seconds.

At any time t ∈ [ 0, 30 ], the bird has some height, y, off the ground.
This establishes a functional relationship between t and y. Let

y = f(t), 0 ≤ t ≤ 30,
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symbolically represent y, the height of bird from ground at time t, as
a function of t.

Now, think about the graph of the function y = f(t). What does it
look like? The bird can fly from the light pole to the electric pole
in any of infinitely many ways; we don’t, therefore, know the exact
graph.

What very general observations can we make about the flight of the
bird? Or, what general observation can we make about the graph of
f?

We have two points on the graph on the graph of f

L( 0, 10 ) E( 30, 18 ), (1)

but what else do we know or willing to assume?

Can we assume that the graph of y = f(t) is a continuous function?
No matter what flight path the bird filed with the flight controller,
its graph must surely be unbroken, connected. Because the bird exists



Section 8: The Intermediate Value Theorem

in the real world, we would discount as impossible for the bird to
suddenly and instantaneously, at some time t0, change its altitude.

Exercise 8.1. Express mathematically the concept of sudden and
instantaneous change in altitude at time t = t0.

We feel, therefore, safe in assuming that the function y = f(t) is a
continuous function.

What else can we say about the function y = f(t). At time t = 0,
the bird has altitude y = 10 feet, and at time t = 30, the bird has
altitude y = 18. When the bird leaves the light pole, it either flies
horizontally, flies upward, or flies downward. Whatever it does, by
the time 30 seconds are up, it must have an altitude of 18 feet. What
else can be said about the flight of the bird?

Because of the infinitely many options available to the bird, there
is not a whole lot more we can say except for the following obvious
statement.
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During the time interval [ 0, 30 ], the bird must surely attain all heights
between 10 feet and 18 feet.

That is, the bird must go from a height of 10 feet to an height of 18
feet (off the ground), in the process, the bird must surely attain all
altitudes in between, for otherwise, the graph of f would be broken.

This rather long-winded discussion, ending in a statement of the obvi-
ous, was a way of introducing the Intermediate Value Theorem. This
theorem is a formal statement that all continuous function have the
property of the bird: they must take on all values between two alti-
tudes on their graph.

Theorem 8.1. (The Intermediate Value Theorem) Let f be a func-
tion defined on a closed interval [ a, b ]. Suppose M is a number strictly
between f(a) and f(b). Then there is a number c ∈ ( a, b ), such that
f(c) = M .

Proof.

c1c_tp.pdf#pfIntermediate
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Exercise 8.2. Let A( a, b ) and B( c, d ) be two points in the first
quadrant such that A and B are different distances from the origin,
O( 0, 0 ). Assume c < a. Form the triangle 4OAB. (Draw a diagram.)
Let α be the angle formed by the positive x-axis and the line segment
OA and let β be the angle formed by the positive x-axis and the line
segment OB. The condition c < a implies α < β. (Verify?) Let θ be a
symbol representing an angle such that α ≤ θ ≤ β. For any θ, draw a
line from the origin making an angle of θ with the positive x-axis; the
point at which this line intersects the line segment AB will be referred
to as P (θ) and the distance P (θ) is away from the origin will be
designated by r(θ). The Problem. Argue, using the Intermediate
Value Theorem, that there is an angle θ0, α < θ0 < β, such that
the area of the triangle 4OAB is equal to the area of the sector of
circle whose central angle is β − α and radius is r(θ0). (Did you ever
hear the phrase, “A picture is worth a thousand words?”)
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8.1. Root Hunting

One of the important applications to Theorem 8.1 is to root hunting !
Let f(x) be a given function. A root (or, a zero) of f is any number
a ∈ Dom(f) such that f(a) = 0; or, in other words, a root of f is
any solution to the equation f(x) = 0. Graphically, roots of f are the
x-intercepts: The points at which the graph of the function crosses
the x-axis.

In mathematics, it is not unusual to want to solve the equation:

f(x) = 0, (2)

that is, we want to find the roots or zeros of the function f . It would be
a waste of time to try to solve (2) if there are no solutions; therefore,
the first step towards solving an equation is to determine whether
there are any solutions at all! The Intermediate Value Theorem
can be very useful in this regard.

The following example illustrates the basic reasoning pattern.
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Example 8.1. Consider the equation,

3x3 − 4x2 + 8x− 1 = 0 (3)

Argue that there is at least one solution to this equation.

How to Argue Existence of Roots:
To argue that the equation f(x) = 0 has solutions, where
f is a continuous function, you need to find two numbers
a, b ∈ Dom(f) such that f(a)f(b) < 0. (Note: the latter
condition is a fancy way of saying that f(a) and f(b) have
opposite signs — one positive and one negative, get it?)

The last point can be rephrased slightly, to argue that f has a root,
we need to find in interval within the domain of f such that the value
of f at the two endpoints of this interval are opposite (one positive
and one negative).
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Exercise 8.3. (Graphing Calculator Exercise) In Example 8.1, we
argued that there is a solution to the equation

3x3 − 4x2 + 8x− 1 = 0

between 0 and 1. Using your graphing calculator, approximate this
root accurate to six decimal places.

Exercise 8.4. The equation x3 − 3x2 + 1 = 0 has three roots. Use
the Intermediate Value Theorem to argue that this equation has
three roots. Do this by finding three distinct intervals such that the
endpoints of each interval have different signs.

9. Presentation of the Theory
In this section I have accumulated all theorems whose proofs had hy-
pertext links. If you wish a truly deeper understanding of the concepts
of this article, Click Here for a stand alone presentation of theory.



Section 9: Presentation of the Theory

Solutions to Exercises

2.1. Let ε > 0, choose δ = 1/2. Now suppose x ∈ Dom(f), and
|x− 2| < δ = 1/2. We want to argue that |f(x)− f(2)| < ε. Indeed, if
x ∈ Dom(f), and |x− 2| < 1/2, then it must be true that x = 2; thus
|f(x)− f(2)| = |f(2)− f(2)| = 0 < ε. Thus, f is continuous at x = a.

Think about the sudden deduction of the previous paragraph. Why
does x ∈ Dom(f) and |x− 2| < 1/2 imply x = 2?

In this example, x = 2 is not an accumulation point of Dom(f). The
condition (2) does not require 0 < |x − a| < δ, but only requires
|x − a| < δ. Because we were not required to satisfy x 6= a that
enabled us to prove that this function was continuous at x = 2.

Exercise 2.1.



Solutions to Exercises (continued)

4.1. Mimicry is the highest form of flattery. Study my proof of The-
orem 4.1 and use the identity

cos(x+ h) = cos(x) cos(h)− sin(x) sin(h).

Good luck. Aloha. Exercise 4.1.



Solutions to Exercises (continued)

4.2. I’ll start you off, tan(x) is continuous at all points except,

x 6= ±π/2,±3π/2,±5π/2,±7π/2, . . . ,

or, in a more tersely,

x 6= (2n− 1)
π

2
n ∈ Z.

Construct a nice table showing all the trig functions and listing their
continuity properties. I’ll check on your work later. Exercise 4.2.



Solutions to Exercises (continued)

6.1. Factor the numerator, for x 6= −2, 1,

x3 + 2x2 − x− 2
(x− 1)(x+ 2)

=
(x− 1)(x+ 1)(x+ 2)

(x− 1)(x+ 2)
= x+ 1

Thus,
lim
x→−2

f(x) = lim
x→−2

(x+ 1) = −1 6= 0 = f(−2),

by (1), f has a removable discontinuity at x = −2.
Exercise 6.1.



Solutions to Exercises (continued)

6.2. The function f has the same definition on either side of x = 2,
so there is no need to use one-sided limits.

lim
x→2

f(x) = lim
x→2

x2 − 4
x− 2

= lim
x→2

(x− 2)(x+ 2)
x− 2

= lim
x→2

(x+ 2)

= 4

Thus we have shown that

lim
x→2

f(x) = 4 6= 0 = f(2)

Exercise 6.2.



Solutions to Exercises (continued)

8.1. This sudden and instantaneous change in altitude at time t = t0
can be expressed mathematically as either

f(t0) 6= lim
t→t−0

f(t) (A-1)

or
f(t0) 6= lim

t→t+0
f(t). (A-2)

That is, the bird’s altitude at time t0 is different form the altitude
determined by its past history (A-1), or, the bird’s altitude is different
from the altitude determined by its future flight (A-2).

Exercise 8.1.



Solutions to Exercises (continued)

8.2. The statement of the problem is longer than its solution. The
function r(θ) is a continuous function of θ.

Let α ≤ θ ≤ β. Sweep a circular arc of radius r(θ) across the triangle
4OAB. The area of that triangle is

A(θ) =
1
2

(θ − α)(r(θ))2.

(Why?)

The function A(θ), α ≤ θ ≤ β, is a continuous function of θ. (Why?)

I am assuming A and B are different distances from the origin; for
definiteness, assume A is closer to the origin than B. This assumption
this implies

A(α) ≤ A ≤ A(β)

where A is the area of the triangle 4OAB. (Why?)



Solutions to Exercises (continued)

I conclude, from the Intermediate Value Theorem that there is
a θ0, α < θ0 < β such that

A(θ0) = A.
(Why?)

Questions. Can you justify each step of this solution. Can you answer
the “Why’s?” Exercise 8.2.



Solutions to Exercises (continued)

8.3. I’ve approximated the root on my desk supported computer,
and the approximation is

xroot = 0.1329574493

and furthermore, this is the only root! Exercise 8.3.



Solutions to Exercises (continued)

8.4. Just go root hunting. Start calculating values of f until sign
changes are observed. This exercise is easy if you have a graphing
calculator — simply graph the function and you can see where the
roots are.

One choice of calculations yields

f(−2) = −19 f(0) = 1 f(2) = −3 f(4) = 17,

from this, we can conclude that there is a root inside the interval
(−2, 0 ), another inside the interval ( 0, 2 ), and a third root within
the interval ( 2, 4 )¿

Exercise 8.4.



Solutions to Examples

6.1. Factor the numerator, for x 6= −1, 1,

x3 + 2x2 − x− 2
(x− 1)(x+ 2)

=
(x− 1)(x+ 1)(x+ 2)

(x− 1)(x+ 2)
= x+ 1

Thus,
lim
x→1

f(x) = lim
x→1

(x+ 1) = 2 6= 0 = f(1),

by (1), f has a removable discontinuity at x = 1.
Example 6.1.



Solutions to Examples (continued)

6.2. First note that f(1) = 2. Now, calculate, in the usual way, the
one-sided limits.

lim
x→1−

f(x) = lim
x→1−

(x+ 1) = 2)

lim
x→1+

f(x) = lim
x→1+

(x2 + 1) = 2

We have shown that

lim
x→1−

f(x) = lim
x→1+

f(x) = 2 6= 6 = f(1).

This means, by (2), that f has a removable discontinuity at x = 1.
Example 6.2.



Solutions to Examples (continued)

6.3. Calculate the one-sided limits.

lim
x→3−

f(x) = lim
x→3−

(x+ 1) = 3

lim
x→3+

f(x) = lim
x→3+

x3 = 27

The left-hand limit does not equal the right-hand limit, therefore from
(3), this function has a jump discontinuity of x = 3. The amount of
the jump is

jmp = | lim
x→3+

f(x)− lim
x→3−

f(x)| = |27− 3| = 24.

That’s quite a jump!

This function is otherwise, for x 6= 3, continuous.
Example 6.3.



Solutions to Examples (continued)

6.4. Let n ∈ N (n = 1, 2, 3, 4, . . . ). Then bnc = n. Now if n− 1 <
x < n, then bxc = n− 1, since n− 1 would be the largest integer less
than or equal to x. This implies, at least in my mind, that

lim
x→n−

bxc = n− 1. (S-1)

Now look at the bxc for x a little larger than n. Let n < x < n + 1,
then bxc = n, since n is the greatest integer less then or equal to x.
This implies,

lim
x→n+

bxc = n. (S-2)

We have shown that the left-hand limit, (S-1), is not equal to the right-
hand limit, (S-2). Thus, the function bxc has a jump discontinuity at
x = n. The amount of the jump is 1.

We made the argument for n a positive integer. We leave the other
case of n ≤ 0 to you.

Notes: Otherwise, i.e. for n /∈ Z, the function bxc is continuous. (Z =
the set of all integers.)

Example 6.4.



Solutions to Examples (continued)

6.5. The major point I wanted to make in offering up the two func-
tions

f(x) =
1
x

x 6= 0, and g(x) =

{ 1
x

x 6= 0

0 x = 0
was it doesn’t really matter whether the function is defined at a par-
ticular point or not. What determines the infinite discontinuity is how
the function behaves as you approach the point of interest.

lim
x→0+

f(x) = lim
x→0+

g(x) = lim
x→0+

1
x

= +∞

This is enough to argue that f and g both have an infinite disconti-
nuity at x = 0.

For completeness, we include,

lim
x→0−

f(x) = lim
x→0−

g(x) = lim
x→0−

1
x

= −∞
Example 6.5.



Solutions to Examples (continued)

6.6. An examination of the graph of the function is descriptive of the
phrase “oscillatory discontinuity.” As the graph approach the y-axis,
the function oscillates more and more frequently. Example 6.6.



Solutions to Examples (continued)

6.7. We say in Exercise 6.2 that

lim
x→2

f(x) = lim
x→2

(x+ 2) = 4.

The old function is

f(x) =


x2 − 4
x− 2

x 6= 2

0 x = 2

Define a new function g as

g(x) =


x2 − 4
x− 2

x 6= 2

4 x = 2

Notice we have changed the value at x = 2 from 0 to 4. The only
difference between f and g is their values at x = 2.

Now show that g is continuous at x = 2. Indeed,

lim
x→2

g(x) = lim
x→2

(x+ 2) = 4 = g(2).



Solutions to Examples (continued)

Example Notes: With this redefinition, the function g can be written
more concisely as g(x) = x + 2. Thus the function g(x) = x + 2 is
the continuous redefinition of the function f . In this case, we have the
analytical explanation of cancelling a common factor between numer-
ator and denominator in an algebraic expression. But the technique
of removing the discontinuity extends beyond merely explaining the
cancellation of common factors.

Example 6.7.



Solutions to Examples (continued)

6.8. In an example in the section in Limits giving a General Discus-
sion of Limits, we looked at the limit

lim
x→0

sin(2x)
x

numerically and showed

lim
x→0

sin(2x)
x

= 2.

Now if this result is also true analytically (which it is), we can say
that f has a removable discontinuity at x = 0. Define a new function
g by

g(x) =

{ sin(2x)
x

x 6= 0

2 x = 0
Now, we have

lim
x→0

g(x) = lim
x→0

sin(2x)
x

= 2 = g(0).

This means that g is continuous at x = 0.

c1l_t.pdf#exmplsin2x
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Solutions to Examples (continued)

Example Notes: Now the removal of the discontinuity was a nontrivial
event in this example. Unlike Example 6.7, there was no common
factors to divide out. Example 6.8.



Solutions to Examples (continued)

7.1. This is a job for Theorem 7.1. First note that f(2) = 8. We
reason as follows.

Calculate the left-hand limit.

lim
x→2−

f(x) = lim
x→2−

x3

= 23 = 8

= f(2) (S-3)

Calculate the right-hand limit.

lim
x→2+

f(x) = lim
x→2+

3x2 − 2x

= 3(22)− 2(2) = 8

= f(2) (S-4)

The left-hand limit equals the right-hand limit and they, in turn, equal
the value f(2); therefore, by Theorem 7.1, f is continuous at x = 2.

Example 7.1.



Solutions to Examples (continued)

8.1. The left-hand side of (3) can be thought of as the defining
formula of a function. Define, therefore,

f(x) = 3x3 − 4x2 + 8x− 1.

The equation (3) is now of the form: f(x) = 0. Noting that f is a
continuous function, we see that solutions (3), if any exist, represent
roots of a continuous function.

By examining the values of this function, we come across the following
two calculations:

f(0) = −1 and f(1) = 6.

That is, f is negative at x = 0 and f is positive at x = 1. By the
Intermediate Value Theorem, Theorem 8.1 the function f must
attain all altitudes in between −1 and 6. Here’s the critical observa-
tion: The number 0 is between −1 and 6! Somewhere between 0 and
1, f must take on a value of 0.



Solutions to Examples (continued)

Here’s the details of the assertions of the previous paragraph. Think
of a = 0 and b = 1, and M = 0 in Theorem 8.1. Observe that

−1 = f(0) < M < f(1) = 6.

Now, by the Intermediate Value Theorem, Theorem 8.1, there is
some number c ∈ ( 0, 1 ) such that f(c) = M = 0.

This means that there is a root, c, of f somewhere between 0 and 1;
that is, there is at least one solution to the equation (3) and further-
more, this root lives between 0 and 1. This is all the Intermediate
Value Theorem tells us. It tells us that there is a root, but does
not compute it for us. The theorem only says “there exists a number
c ∈ ( a, b ) . . . ,” no more.

Example Notes: Now that we know that there is a root between 0
and 1, we can gather our resources and set off to find it. (Left to the
reader, good luck!)

Example 8.1.
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