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CHAPTER 21

REGRESSION AND LINEAR MODELS

Fitting a theoretical curve to a set of data points is one of the most common statistical problems

faced by scientists, engineers, and economists. This �eld is very large, because there is no one

solution that applies to all cases. Instead, we have a number of quite di�erent problems, depending

on just what prior information we had about the phenomenon being observed, the measurement

errors, and the unknown parameters.

At the end of Chapter 8 we noted briey some problems that orthodox theory encounters here

because of the di�culty in distinguishing between \random" and \nonrandom" quantities. Another

di�culty is even more troublesome in practice.

Unwanted Parameters

That di�erences in the prior information can generate qualitatively di�erent mathematical problems

has, of course, been well recognized in the voluminous orthodox literature. Some `sharp and drastic'

di�erences can be expressed adequately by di�erent choices of a model (for example the judgment

that a certain parameter should or should not be present at all). But some more `gentle' di�erences

in the prior information can be expressed precisely only by di�erences in the corresponding prior

probabilities within a model. Orthodox theory, which does not admit the existence of the needed

prior probabilities, is helpless to take such information into account, although it may be fully as

cogent as the data.

This is not merely a philosophical problem; it leads to a serious technical problem, of \nuisance

parameters," i.e., parameters which are physically present in the phenomenon and so cannot be

safely disregarded in the model, although we are not interested in estimating them. But once in

the model they cannot be eliminated by orthodox principles, and one is obliged to estimate them

along with the interesting parameters.

In Bayesian methods, nuisance parameters cause very little trouble { any uninteresting param-

eters are removed by integrating out with respect to their prior probabilities. But this gives rise to

another technical question whose answer will be important for future extensions of Bayesian theory

to more and more complex problems. When parameters are integrated out, what e�ect does this

have on the accuracy of our estimates of the remaining ones?

In many cases, the presence of an unwanted and unknown parameter that has to be integrated

out, will cause a deterioration of our ability to estimate another parameter. Thus, consider esti-

mation of the mean � of a normal distribution form the sample data D � fx1; x2; : : : ; xng. If �2

is known, the posterior distribution p(duj�;D) is still a normal distribution, leading to the 90%

interval estimate (i.e., the shortest interval that contains 90% of the posterior probability):

(�)est = �x� 1:645
�p
n
:

But if � is completely unknown and must be integrated out with respect to a Je�rey's prior

d�=�, we are, in e�ect, estimating �2 by the sample variance s2 = x2 � �x2. But this estimate

is uncertain, and the integration over � averages the normal distribution p(d�j�;D) over this

uncertainty. It then becomes a t-distribution, with density function / [s2 + (�� �x)2]�n=2; and the

90% interval estimate becomes
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(�)est = �x� tn
sp
n � 1

where tn is the upper critical value of the t-statistic at the 95% level for f = (n � 1) degrees

of freedom. From the t-tables we �nd that ft2; t3; t4; t10g = f6:3; 2:92; 2:35; 1:83g respectively;

but as n ! 1, tn ! 1:645. Thus for small samples the penalty for failure to know � is not a

change in the actual point estimate, but an appreciable loss of accuracy which we may claim in our

estimate of �. With large samples � is determined by the data more and more accurately, and so

we approach the accuracy with � known.

Now suppose there were many parameters f�1; �2 : : :�kg that all had to be integrated out. If

each had a comparable e�ect, then if k = n, no useful estimates would be possible at all. There seems

to be a general belief { presumably for this reason -that models with large numbers of parameters

are, ipso facto, intractable, any useful inference requiring that the number of observations be large

compared to te number of parameters. Thus various authors [such as Kempthorne and Folks (1971

p. 425)] repeat the folk-theorem that no inference is possible if the number of parameters is greater

than the number of di�erent \statistics" that appear in the sampling distribution.

On the other hand, Lindley (1971) notes a problem of the type we study here, which pro-

vides a counter-example to the folk-theorem, the presence of many unwanted parameters doing no

appreciable harm. It will be important for us to understand the exact conditions for this good

behavior.

Linear Models{A First Look

There are pairs of \true" values (Xi; Yi) and the corresponding measured values (xi; yi),

xi = Xi + ei; i = 1; 2; : : :n

yi = Yi + fi
(21{1)

where the errors ei, fi are supposed independent and N(0; �x), N(0; �y) respectively; �x and �y
may be known, but usually are not. The probability, given f�x; �y; X1 : : :Xn; Y1 : : : Yng that we

shall see the data D � f(x1; y1); : : : ; (xn; yn)g, within tolerances dx � dx1 : : :dxn, dy � dy1 : : : dyn,

is

p(dxdyj�x�yXY ) = (2��x�y)
�n exp

�
�1

2
R

�
dxdy (21{2)

where

R �
nX
i=1

�
(xi �Xi)

2

�2x
+

(yi � Yi)
2

�2y

�
(21{3)

and we could integrate out either dx or dy to obtain the marginal distribution; i.e.,

p(dyj�y; Y ) =
�

1

2��2y

�n

2

exp

(
�
X
i

(yi � Yi)
2

2�2y

)
dy: (21{4)

At this stage, we have two independent problems, of inference about Xi, Yi separately. But now

the problems are tied together by a \model"; i.e., a postulated functional relationship between X

and Y :
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f(X; Y; �1; �2; : : :) = 0 (21{5)

This model equation contains certain parameters �k ; and the problem then becomes: to estimate

the �k. The common experimentalist's problem of �tting a line to a set of data points, corresponds

to choosing the model equation

Yi = � + �Xi (21{6)

and using the data to estimate (�; �).

Note that in the older literature the word \Linear" in \Linear Models" is usually taken to

mean that the model equation is linear in the parameters and in the errors, but not necessarily in

the measured variables. Thus Y 2
i = � + � cosXi would be termed a \linear model" if ei, fi are

small enough so that we can write cosXi = cosxi+ ei sin xi, etc; but Yi = �2 + �xi would not [see,

for example, Graybill (1961); p. 97]. This terminology was unfortunate, because it is hard to invent

any model equation (21|5) that cannot, merely by a rede�nition of f�i; X; Y g, be made linear in

the �i. Thus the term \linear" was almost meaningless as far as the real content of the theory was

concerned { it really meant only \small errors."

The uninitiated were falling constantly into the trap of supposing that \linear" refers to the

fact that (23{6) is the equation of a straight line (and the term would be more appropriate and

useful if it did!). In 1985, M. DeGroot made a break with this terminology and rede�ned the term

\linear model" to mean straight-line �tting. We shall follow this reform in terminology.

Case 1. �x � 0; �y known

The simplest case is that in which the error is all in the Y measurements (i.e., xi � Xi), and �y
is known. The terms in �x are then absent, and the sampling distribution (21{4) is appropriate.

Using (21{6), it reduces to

p(dyj�y; �; �;X) =

�
1

2��2y

�n

2

exp

�
� n

2�2y
Q(�; �)

�
dy (21{7)

where

Q(�; �) � 1

n

nX
i=1

(yi � �� �xi)
2 (21{8)

is a positive de�nite quadratic form in �, � that proves to be fundamental in several problems

below. We digress to consider the many ways of writing this out in detail.

Forms of Q(�; �)

For various purposes, several di�erent forms of Q(�; �) are convenient. Writing out (21{8) in full,

we get six terms:

Q(�; �) = y2 + �2 + �2x2 � 2�y + 2��x� 2�xy (21{9)

where the sample �rst moments

x � 1

n

X
xi; y � 1

n

X
yi (21{10)
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and second moments

x2 � 1

n

X
x2i ; y2 � 1

n

X
y2i ; xy � 1

n

X
xiyi (21{11)

are, of course, known from the data. Often, we are interested primarily in �, not in � [for example,

a chemist may want to know how a reaction rate varies with temperature, a meteorologist may wish

to determine if there is evidence for a slow warming trend over the past decade; or an economist

may want to know how the demand for gasoline or steel varies with its price]. We will then want

to integrate � out of the problem. In preparation for this we must complete the square �rst on �:

Q(�; �) = (�� �0)2 + s2x(� � ��)2 + s2y(1� r2): (21{12)

Here we have introduced the notation

�0 � y � �x; �� � sxy

s2x
=

sy

sx
r (21{sam)

where the sample variances and covariance

s2x � x2 � x2; s2y � y2 � y2; sxy � xy � xy (21{15)

and the sample correlation coe�cient

r � sxy

sxsy
(21{16)

are, of course, also known from the data. As is apparent already from (21{12), �� is going to

emerge as a \natural" estimator for �.

On the other hand, we might be interested primarily in � rather than �. [For example, a

physical chemist measuring ionic conductivity has to make measurements at �nite concentrations

(= x); but it is the extrapolation to in�nite dilution (x = 0) that is the fundamental quantity

to be compared with theory. Or, a spectroscopist may wish to determine atomic energy levels by

extrapolation the measurable Zeeman levels back to zero magnetic �eld, as in the famous Lamb

shift experiment.] In this case, we will want to integrate � out of the problem; completing the

square �rst on �, we get

Q(�; �) = x2(� � �0)2 +
s2x

x2
(�� ��)2 + s2y(1� r2) (21{17)

where

�0 � xy � �x

x2
(21{18)

and

�� � y � ��x (21{19)

is a \natural" estimator of �. Even at this stage, we can see that to make the estimates (��; ��),

means that we would take the line passing through the data centroid (x; y) with slope ��, as our

estimate of the \true" line.
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Finally, we may be interested in both � and beta, or in some function f(�; �) that involves both;

and we wish to get their joint posterior pdf p(d�d�jD) in a form that treats them symmetrically.

For this we introduce the coe�cients Cij of the quadratic form:

C(�; �) = c11(�� ��)2 + 2C12(�� ��)(� � ��) + C22(� � ��)2: (21{20)

Comparison with (21{8) shows that if we choose the matrix elements Cij to be

Cij =

�
1 x

x x2

�
(21{21)

we have

Q(�; �) = C(�; �) + s2y(1� r2): (21{22)

Now, from this and (21{2), (21{7) we see that (since only the dependence on � and � matters; i.e.,

any factors independent of � and � are going to be absorbed into normalizing constants anyway)

the joint likelihood of (�; �) may be taken simply as

L(�; �) = exp
n
� n

2�2
C(�; �)

o
(21{23)

and so with uniform priors, their joint posterior distribution is the bivariate normal based on the

matrix C and peaked at (��; ��). Writing p(d�d�jD) = F (�; �)d�d�, this joint posterior density

is

F (�; �) = A exp
n
� n

2�2
C(�; �)

o
(21{24)

with

C(�; �) � (�� ��)2 + 2x(�� ��)(� � ��) + x2(� � ��)2 (21{25)

and the normalizing constant is

A =
n

2��2y
jdet(C)j

1

2 =
nsx

2��2y
: (21{26)

the second central moment of (21{24) are given by the inverse matrix to C:

D = C�1 =
1

s2x

�
x2 �x
�x 1

�
: (21{27 Thus )

h(�� ��)2i =
�2y

n
D11 =

�2y

n

x2

s2x
(21{28)

as may also be read o� by inspection of (21{17); and

h(� � ��)2i =
�2y

n
D22 =

�2y

n

1

s2x
(21{29)
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as is evident from (23{12). The covariance is

h(�� ��)(� � ��)i =
�2y

n
D12 = �

�2y x

ns2x
(21{30)

leading to the correlation coe�cient

� =
h(�� ��)(� � ��)i

[h(�� ��)2ih(� � ��)2i]
1

2

= � x�
x2
� 1

2

: (21{31)

It is interesting that (21{28) { (21{31) involve only the x{measurements which are with error. Now

if �y is known and the x{measurements are without error, then often one can decide in advance how

many measurements to make, and as what values of xi; whereupon we know just what accuracy

our � and � estimates will have. The entire shape and width of the posterior (21{24) can be known

in advance of the experiment, only the location of the peak (��; ��) awaiting the actual data.

Of course, this is a rather arti�cial and oversimpli�ed example; it is not often that one knows

�y in advance. For most measurements it would be more realistic to go to the opposite extreme,

and suppose �y entirely undetermined by the prior information, whereupon it must be estimated

from the consistency of the data (i.e., if all the data points lie very accurately on a straight line,

our common sense tells us that �y must have been very small, etc).

Case 2. �x � 0, �y Unknown

To express \complete initial ignorance" of �y we must, as noted in Chapter 12, use the Je�reys

prior

p(d�jX) =
d�y

�y
(21{32)

and the dependence of the likelihood on �y must be retained; thus we cannot use (21{23), but must

go back to the sampling distribution (21{7) which, in its dependence on f�; �; �yg gives their joint
likelihood:

L(�; �; �x) = ��n
y exp

�
� n

2�2y
Q(�; �)

�
: (21{33)

With uniform priors for � and �, their joint posterior pdf has the form

p(d�d�d�yjD) = A0
d�d�d�y

�n+1y

exp

�
� n

2�2y
Q(�; �)

�
(21{34)

and if we care only about �, �, we integrate out �y to obtain

p(d�d�jD) = AQ�n=2d�d�: (21{36)

The two normalizing constants being related by

A =

�
2

n

�n=2

�
�n
2

�
A0: (21{36)
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We thus have the bivariate t-distribution (21|35), instead of the bivariate normal distribution

(21{24), as the price we incur for not knowing �y . The distributions are qualitatively similar,

the t-distribution having wider tails which, for small n, represent a signi�cant deterioration in the

accuracy of our estimates.

*************************** MUCH MORE TO COME! *******************


