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CHAPTER 18

THE Ap DISTRIBUTION AND RULE OF SUCCESSION

\Inside every nonBayesian, there is a Bayesian struggling to get out."

- - - Dennis V. Lindley

Up to this point we have given our robot fairly general principles by which it can convert information
into numerical values of prior probabilities, and convert posterior probabilities into de�nite �nal
decisions; so it is now able to solve lots of problems. But it still operates in a rather ine�cient way
in one respect. When we give it a new problem, it has to go back into its memory (this proposition
that we have denoted by X or I , which represents everything it has ever learned). It must scan its
entire memory archives for anything relevant to the problem before it can start working on it. As
the robot grows older this gets to be a more and more time{consuming process.

Now, human brains don't do this. We have some machinery built into us which summarizes
our past conclusions, and allows us to forget the details which led us to those conclusions. We want
to see whether it is possible to give the robot a de�nite mechanism by which it can store general
conclusions rather than isolated facts.

Memory Storage for Old Robots.

Note another thing, which we will see is closely related to this problem. Suppose you have a
penny and you are allowed to examine it carefully, convince yourself that it's an honest coin; i.e.
accurately round, with head and tail, and a center of gravity where it ought to be. Then, you're
asked to assign a probability that this coin will come up heads on the �rst toss. I'm sure you'll say
1=2. Now, suppose you are asked to assign a probability to the proposition that there was once
life on Mars. Well, I don't know what your opinion is there, but on the basis of all the things that
I have read on the subject, I would again say about 1=2 for the probability. But, even though I
have assigned the same `external' probabilities to them, I have a very di�erent `internal' state of
knowledge about those propositions.

To see this, imagine the e�ect of getting new information. Suppose we tossed the coin �ve
times and it comes up tails every time. You ask me what's my probability for heads on the next
throw; I'll still say 1=2. But if you tell me one more fact about Mars, I'm ready to change my
probability assignment completely. There is something which makes my state of belief very stable
in the case of the penny, but very unstable in the case of Mars.y

This might seem to be a fatal objection to probability theory as logic. Perhaps we need to
associate with a proposition not just a single number representing plausibility, but two numbers;
one representing the plausibility, and the other how stable it is in the face of new evidence. And
so, a kind of two{valued theory would be needed. In the early 1950's, the writer gave a talk at one
of the Berkeley Statistical Symposiums, expounding this viewpoint.

But now, with more mature reection we think that there is a mechanism by which our
present theory automatically contains all these things. So far, all the propositions we have asked

y Note in passing a simple counter{example to a principle sometimes stated by philosophers, that theories
cannot be proved true; only false. We seem to have just the opposite situation for the theory that there
was once life on Mars. To prove it false, it would not su�ce to dig up every square foot of the surface of
Mars; to prove it true one needs only to �nd a single fossil.
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the robot to think about are \Aristotelian" ones of two{valued logic; they had to be either true
or false. Suppose we bring in new propositions of a di�erent type. It doesn't make sense to say
the proposition is either true or false, but still we are going to say that the robot associates a real
number with it, which obeys the rules of probability theory. Now, these propositions are sometimes
hard to state verbally; but we noticed before that if we give the probabilities conditional on X for
all propositions that we are going to use in a given problem, we have told you everything about
X which is relevant to that mathematical problem (although of course, not everything about its
meaning and signi�cance to us, that may make us interested in the problem). So, we introduce a
new proposition Ap, de�ned by

p(AjApE) � p (18{1)

where E is any additional evidence. If we had to render Ap as a verbal statement, it would come
out something like this:

Ap �

(
\Regardless of anything else you may have been told,

the probability of A is p."

)

Now, Ap is a strange proposition, but if we allow the robot to reason with propositions of this sort,
Bayes' theorem guarantees that there's nothing to prevent it from getting an Ap worked over onto
the left side in its probabilities: p(ApjE). What are we doing here? It seems almost as if we are
talking about the \probability of a probability."

Pending a better understanding of what that means, let us adopt a cautious notation that will
avoid giving possibly wrong impressions. We are not claiming that p(ApjE) is a `real probability' in
the sense that we have been using that term; it is only a number which is to obey the mathematical
rules of probability theory. Perhaps its proper conceptual meaning will be clearer after getting a
little experience using it. So let us refrain from using the pre�x symbol p; to emphasize its more
abstract nature, let us use the bare bracket symbol notation (ApjE) to denote such quantities, and
call it simply \the density for Ap, given E."

We de�ned Ap by writing an equation. You ask what it means, and we reply by writing more
equations. So let's write the equations; if X says nothing about A except that it is possible for A
to be true, and also possible for it to be false, then as we saw in case of the \completely ignorant
population" in Chapter 12,

(ApjX) = 1; 0 � p � 1 (18{2)

The transformation group arguments of Chapter 12 apply to this problem. As soon as we have this,
we can use Bayes' theorem to get the density for Ap, conditional on the other things. In particular,

(ApjEX) = (ApjX)
P (EjApX)

P (EjX)
=
P (EjAp)

P (EjX)
(18{3)

Now,

P (AjE) =

Z 1

0

(AApjE)dp : (18{4)

The propositions Ap are mutually exclusive and exhaustive (in fact, everyAp atly and dogmatically
contradicts every other Aq), so we can do this. We're just going to apply all of our mathematical
rules with total disregard of the fact that Ap is a funny kind of proposition. We believe that these
rules form a consistent way of manipulating propositions. But now we recognize that consistency
is a purely structural property of the rules, which could not depend on the particular semantic
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meaning you and I might attach to a proposition. So now we can blow up the integrand of (18{4)
by the product rule:

P (AjE) =

Z 1

0

P (AjApE)(ApjE)dp (18{5)

But from the de�nition (18{1) of Ap, the �rst factor is just p, and so

P (AjE) =

Z 1

0

(ApjE) p dp : (18{6)

The probability which our robot assigns to proposition A is just the �rst moment of the density
for Ap. Therefore, the density for Ap should contain more information about the robot's state
of mind concerning A, than just the probability for A. Our conjecture is that the introduction
of propositions of this sort solves both of the problems mentioned, and also gives us a powerful
analytical tool for calculating probabilities.

Relevance

To see why, let's note some lemmas about relevance. Suppose this evidence E consists of two parts;
E = EaEb, where Ea is relevant to A and, given Ea, Eb is not relevant:

P (AjE) = P (AjEaEb) = P (AjEa) (18{7)

By Bayes' theorem, it follows that, given Ea, A must also be irrelevant to Eb, for

P (EbjAEa) = P (EbjEa)
P (AjEbEa)

P (AjEa)
= P (EbjEa) (18{8)

Let's call this property `weak irrelevance.' Now does this imply that Eb is irrelevant to Ap? Ev-
idently not, for (18{7) says only that the �rst moments of (ApjEa) and (ApjEaEb) are the same.
But suppose that for a given Eb, (18{7) holds independently of what Ea might be; call this \strong
irrelevance." Then we have

P (AjE) =

Z 1

0

(ApjEaEb) p dp =

Z 1

0

(ApjEa) p dp: (18{9)

But if this is to hold for all (ApjEa), the integrands must be the same:

(ApjEaEb) = (ApjEa) (18{10)

and from Bayes' theorem it follows as in (18{8) that Ap is irrelevant to Eb:

p(EbjApEa) = p(EbjEa) (18{11)

for all Ea (according to our rules of notation, Appendix B, we may use either p or P for these
probability symbols).

Now, suppose our robot gets a new piece of evidence, F . How does this change its state of
knowledge about A? We could expand directly by Bayes' theorem, which we have done before, but
let's use our Ap this time:
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p(AjEF ) =

Z 1

0

(ApjEF ) p dp=

Z 1

0

(ApjE)
p(F jApE)

p(F jE)
p dp: (18{12)

In this likelihood ratio, any part of E that is irrelevant to Ap can be struck out. Because, by Bayes'
theorem, it is equal to

p(F jApEaEb)

p(F jEaEb)
=
p(F jApEa)

h
p(EbjFApEa)

p(EbjApEa)

i
p(F jEa)

h
p(EbjFEa)

p(EbjEa)

i =
p(F jApEa)

p(F jEa)
(18{13)

where we have used (18{11).

Now if Ea still contains a part irrelevant to Ap, we can repeat this process. Imagine this
carried out as many times as possible; the part Eaa of E that is left contains nothing at all that is
irrelevant to Ap. Eaa must then be some statement only about A. But then by de�nition (18{1)
of Ap, we see that Ap automatically cancels out Eaa in the numerator: (F jApEaa) = (F jAp). And
so we have (18{12) reduced to

p(AjEF ) =
1

p(F jEaa)

Z 1

0

(ApjE) p(F jAp) p dp : (18{14)

The weak point in this argument is that we haven't proved that it is always possible to resolve E
into a completely relevant part and completely irrelevant part. However, it is easy to show that in
many applications it is possible. So, let's just say that the following results apply to the case where
the prior information is \completely resolvable." We have not shown that it is the most general
case; but we do know that it is not an empty one.

A Surprising Consequence

Now, (F jEaa) is a troublesome thing which we would like to eliminate. It's really just a normalizing
factor, and we can eliminate it the way we did in Chapter 4; by calculating the odds on A instead
of the probability. This is just

(AjEF ) =
p(AjEF )

p(AjEF )
=

R 1
0
(ApjE)p(F jAp) p dpR 1

0
(ApjE)p(F jAp) (1� p) dp

(18{15)

The signi�cant thing here is that the proposition E, which for this problem represents our prior
information, now appears only in the density (ApjE). This means the only property of E which the

robot needs in order to reason out the e�ect of new information is this density (ApjE). Everything
that the robot has ever learned which is relevant to proposition A may consist of millions of isolated
separate facts. But when it receives new information, it does not have to go back and search its
entire memory for every little detail of its information relevant to A. Everything it needs in order
to reason about A from that past experience is contained summarized in this one function, (ApjE).

So, for each proposition A about which it is to reason, the robot can store a density function
(ApjE) like that in Figure (18.1). Whenever it receives new information F , it will be well advised
to calculate (ApjEF ), and then it can erase the previous (ApjE) and for the future store only
(ApjEF ). By this procedure, every detail of its previous experience is taken into account in future
reasoning about A.

This suggests that in a machine which does inductive reasoning, the memory storage problem
may be simpler than it is in a machine which does only deductive reasoning. This does not mean
that the robot is able to throw away entirely all of its past experience, because there is always a
possibility that some new proposition will come up which it has not had to reason about before.
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And whenever this happens, then of course it will have to go back into its original archives and
search for every scrap of information it has relevant to this proposition.

With a little introspection, we would all agree that that is just what goes on in our minds.
If you are asked how plausible you regard some proposition, you don't go back and recall all the
details of everything that you ever learned about this proposition. You recall your previous state
of mind about it. How many of us can still remember the argument which �rst convinced us that
d sin x=dx = cos x ? [But, unlike the robot, when you or I are confronted with some entirely new
proposition Z, we do not have the ability to carry out a full archival search.]

Let's look once more at Equation (18{14). If the new information F is to make any appreciable
change in the probability of A, we can see from this integral what has to happen. If the density
(ApjE) was already very sharply peaked at one particular value of p, then p(F jAp) will have to be
even more sharply peaked at some other value of p, if we are going to get any appreciable change in
the probability. On the other hand, if the density (ApjE) is very broad, any small slope in p(F jAp)
can make a big change in the probability which the robot assigns to A.

So, the stability of the robot's state of mind when it has evidence E is determined, essentially,
by the width of the density (ApjE). There does not appear to be any single number which fully
describes this stability. On the other hand, whenever it has accumulated enough evidence so that
(ApjE) is fairly well peaked at some value of p, then the variance of that distribution becomes a
pretty good measure of how stable the robot's state of mind is. The greater amount of previous
information it has collected, the narrower its Ap{distribution will be, and therefore the harder it
will be for any new evidence to change that state of mind.

Now we can see the di�erence between the penny and Mars. In the case of the penny, my
(ApjE) density, based on my prior knowledge, is represented by a curve something like Figure
(18.2a). In the case of previous life on Mars, my state of knowledge is described by an (ApjE)
density something like Figure (18.2b), qualitatively. The �rst moment is the same in the two cases,
so I assign probability 1=2 to either one; nevertheless, there's all the di�erence in the world between
my state of knowledge about those two propositions, and this di�erence is represented in the (ApjE)
densities.

Ideas very much like this have arisen in other contexts. While the writer was �rst speculating on
these ideas, a newspaper story appeared entitled: \Brain Stockpiles Man's Most Inner Thoughts."
It starts out: \Everything you have ever thought, done, or said{a complete record of every conscious
moment{is logged in the comprehensive computer of your brain. You will never be able to recall
more than the tiniest fraction of it to memory, but you'll never lose it either. These are the �ndings
of Dr. Wilder Pen�eld, Director of the Montreal Neurological Institute, and a leading Neurosurgeon.
The brain's ability to store experiences, many lying below consciousness, has been recognized for
some time, but the extent of this function is recorded by Dr. Pen�eld."

Now there are several examples given, of experiments on patients su�ering from epilepsy.
Stimulation of a de�nite location in the brain recalled a de�nite experience from the past, which
the patients had not been able to recall to memory previously. Here are the concluding sentences
of the article. Dr. Pen�eld now says:

\This is not memory as we usually use the word, although it may have a relation to it. No man can
recall by voluntary e�ort such a wealth of detail. A man may learn a song so he can sing it perfectly,
but he cannot recall in detail any one of the many times he heard it. Most things that a man is able
to recall to memory are generalizations and summaries. If it were not so, we might �nd ourselves
confused by too great a richness of detail."

This is exactly the hint we needed to form a clearer idea of what the Ap density means conceptually.
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Outer and Inner Robots

We know from overwhelming evidence, of which the above is only a small part, that human brains
have two di�erent functions: a conscious mind and a subconscious one. They work together in
some kind of cooperation. The subconscious mind is probably at work continually throughout life.
It solves problems and communicates information to the conscious mind under circumstances not
under our conscious control; everyone who has done original thinking about di�cult problems has
experienced this, and many [Henri Poincar�e, Jacques Hadamard, Wm. Rowan Hamilton, Freeman
Dyson] have recorded the experience for others to read. A communication from the subconscious
mind appears to us as a sudden inspiration that seems to come out of nowhere when we are relaxed
and not thinking consciously about the problem at all; instantly, we feel that we understand the
problem that has perplexed us for weeks.y

Now if the human brain can operate on two di�erent levels, so can our robot. Rather than
trying to think of a `probability of a probability' we may think of two di�erent levels of reasoning:
an `outer robot' in contact with the external world and reasoning about it; and an `inner robot'
who observes the activity of the outer robot and thinks about it. The conventional probability
formulas that we used before this Chapter represent the reasoning of the outer robot; the Ap
density represents the inner robot at work. But we would like our robot to have one advantage
over the human brain. The outer robot should not be obliged as we are to wait for the inspiration
from within; it should have the power to call at will upon the services of the inner robot.

Looking at the Ap distribution this way makes it much less puzzling conceptually. The outer
robot, thinking about the real world, uses Aristotelian propositions referring to that world. The
inner robot, thinking about the activities of the outer robot, uses propositions that are not Aris-
totelian in reference to the outer world; but they are still Aristotelian in its context, in reference
to the thinking of the outer robot; so of course the same rules of probability theory will apply to
them. The term `probability of a probability' misses the point, since the two probabilities are at
di�erent levels.

Having had this much of a glimpse of things, our imagination races on far beyond it. The inner
robot may prove to be more versatile than merely calculating and storing Ap densities; it may have
functions that we have not yet imagined. Furthermore, could there be an `inner inner' robot, twice
removed from the real world, which thinks about the activity of the inner one? What prevents us
from having a nested hierarchy of such robots, each inner to the next? Why not several parallel
hierarchies, concerned with di�erent contexts?

Questions like this may seem weird, until we note that just this same hierarchy has evolved
already in the development of computers and computer programming methods. Our present micro-
computers operate on three discernible hierarchical levels of activity, the inner `BIOS' code which
contacts the machine hardware directly, the `COMMAND SHELL' which guards it from the outer
world while sending information and instructions back and forth between them, and the outer level
of human programmers who provide the `high level' instructions representing the conscious ulti-
mate purpose of the machine level activity. Furthermore, the development of `massively parallel'
computer architecture has been underway for several years.

In the evolution of computers this represented such a natural and inevitable division of labor
that we should not be surprised to realize that a similar division of labor occurred in the evolution
of the human brain. It has an inner `BIOS' level which in some way exerts direct control over
the body's biological hardware (such as rate of heartbeat and levels of hormone secretion), a

y The writer has experienced this several times when, in unlikely situations like riding a tractor on his
farm, he suddenly saw how to prove something long conjectured. But the inspiration does not come unless
the conscious mind has prepared the way for it by intense concentration on the problem.
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`COMMAND SHELL' which receives `high level' instructions from the conscious mind and converts
them into the �nely detailed instructions needed to execute such complex activities as walking or
playing a violin, without any need for the conscious mind to be aware of all those details. Then in
some aspects of the present organization of the brain, not yet fully understood, we may be seeing
some aspects of the future evolution of computers; in particular of our robot.

The idea of a nested hierarchy of robots, each thinking about propositions on a di�erent level,
is in some ways similar to Bertrand Russell's `theory of types', which he introduced as a means of
avoiding some paradoxes that arose in the �rst formulation of his Principia Mathematica. There
may be a relation between them; but these e�orts at what Peano and Poincar�e called \logistic"
made in the early 20'th Century are now seen as so awed and confused { with an unlimited
proliferation of weird and self{contradictory de�nitions, yet with no recognition of the concept of
information { that it seems safest to scrap this old work entirely and rebuild from the start using
our present understanding of the role of information and our new respect for Kronecker's warnings,
so appropriate in an age of computers, that constructibility is the �rst criterion for judging whether
a newly de�ned set or other mathematical object makes any sense or can serve any useful purpose.

Our opening quotation from Dennis Lindley (made in a talk at a Bayesian seminar in the
early 1980's) �ts in nicely with these considerations and with our remarks in Chapter 5 about
visual perception. There we noted that any reasoning which conicts with Bayesian principles
would place a creature at a decided survival disadvantage, so evolution by natural selection would
automatically produce brains which reason in the Bayesian format. But our outer brain can become
corrupted by false indoctrination from contact with the outer world, while the inner brain, protected
from this, retains its natural Bayesian purity. Thus Lindley's statement made as a kind of joke,
may be quite literally true.

But we are here treading on the boundaries of present knowledge, so the above material
is necessarily a tentative, preliminary exploration of a possibly large new territory (call it wild
speculation if you prefer), rather than expounding a well established theory. With these cautions
in mind, let us examine some concrete examples which follow from the above line of thought, but
can also be justi�ed independently.

An Application.

Now let' imagine that a \random" experiment is being performed. From the results of the experi-
ment in the past, we want to do the best job we can of predicting results in the future. To make
the problem a de�nite one, introduce the propositions:

X � \For each trial we admit two prior hypotheses: A true, and A false. The
underlying `causal mechanism' is assumed the same at every trial. This means,
for example, that (1) the probability assigned to A at the n'th trial does not
depend on n, and (2) evidence concerning the results of past trials retains its
relevance for all time; thus for predicting the outcome of trial 100, knowledge
of the result of trial 1 is just as relevant as is knowledge of the result of trial
99. There is no other prior evidence."

Nn � \A true n times in N trials in the past."

Mm � \A true m times in M trials in the future."

The verbal statement of X su�ers from just the same ambiguities that we have found before, and
which have caused so much trouble and controversy in the past. One of the important points we
want to put across here is that you have not de�ned the prior information precisely until you have
given, not just verbal statements, but equations, which show how you have translated them into
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mathematics by specifying the prior probabilities to be used. In the present problem, this more
precise statement of X is, as before

(ApjX) = 1; 0 � p � 1 (18{16)

with the additional understanding (part of the prior information for this particular problem) that
the same Ap{distribution is to be used for calculations pertaining to all trials. What we are after
is p(MmjNn). First, note that by many repetitions of our product and sum rules in the same way
that we found Equation (9{30), we have the binomial distributions

p(NnjAp) =

�
N

n

�
pn(1� p)N�n

p(MmjAp) =

�
M

m

�
pm(1� p)M�m

(18{17)

and at this point we see that, although Ap sounds like an awfully dogmatic and indefensible state-
ment to us the way we introduced it, this is actually the way in which probability is introduced
in almost all present textbooks. One postulates that an event posses some intrinsic, \absolute"
or \physical" probability, whose numerical value we can never determine exactly. Nevertheless, no
one questions that such an \absolute" probability exists. Cram�er (1946, p. 154), for example, takes
it as his fundamental axiom. That is just as dogmatic a statement as our Ap; and we think it is, in
fact, just our Ap. The equations you see in current textbooks are all like the two above; whenever
p appears as a given number, an adequate notation would show that there is an Ap hiding invisibly
in the right{hand of the probability symbols.

Mathematically, the main functional di�erences between what we are doing here and what
is done in current textbooks are: (1) we recognize the existence of that right{hand side of all
probabilities, whether or not an Ap is hiding in them; and (2) thanks to Cox's theorems, we are not
afraid to use Bayes' theorem to work any proposition { including Ap { back and forth from one side
of our symbols to the other. In refusing to make free use of Bayes' theorem, orthodox writers are
depriving themselves of the most powerful single principle in probability theory. When a problem
of inference is studied long enough, sometimes through a string of ad hockeries for decades, one is
always forced eventually to a conclusion that could have been derived in three lines from Bayes'
theorem. But those cases refer to `external' probabilities at the interface between the robot and
the outside world; now we shall see that Bayes' theorem is equally powerful and indispensible for
manipulating `inner' probabilities.

We need to �nd the prior probability p(NnjX). This is already determined from (ApjX), for
our trick of resolving a proposition into mutually exclusive alternatives gives us

p(NnjX) =

Z 1

0

(NnApjX)dp=

Z 1

0

p(NnjAp)(ApjX)dp=

�
N

n

�Z 1

0

pn(1� p)N�ndp:

The integral we have to evaluate is the complete Beta-function:

Z 1

0

xr(1� x)sdx =
r!s!

(r + s+ 1)!
(18{18)

Thus, we have

p(NnjX) =

8<
:

1

N + 1
; 0 � n � N

0; N < n

9=
; ; (18{19)
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i.e., just the uniform distribution of maximum entropy; p(MmjX) is found similarly. Now we can
turn (18{17) around by Bayes' theorem:

(ApjNn) = (ApjX)
p(NnjAp)

p(NpjX)
= (N + 1)P (NnjAp) (18{20)

and so �nally the desired probability is

p(MmjNn) =

Z 1

0

(MmApjNn) dp =

Z 1

0

p(MmjApNn) (ApjNn) dp : (18{21)

Since p(MmjApNn) = p(MmjAp) by the de�nition of Ap, we have worked out everything in the
integrand. Substituting into (18{21), we have again an Eulerian integral, and our result is

p(MmjNn) =

�
n+m
n

� �
N+M�n�m

N�n

�
�
N+M+1

M

� : (18{22)

Note that this is not the same as the hypergeometric distribution (3{18) of sampling theory. Let's
look at this result �rst in the special caseM = m = 1. it then reduces to the probability of A being
true in the next trial, given that it has been true n time in the previous N trials. The result is

p(AjNn) =
n+ 1

N + 2
: (18{23)

We recognize Laplace's rule of succession, which we found before and discussed briey in terms of
Urn sampling in (6{28) { (6{43). Now we need to discuss it more carefully, in a wider context.

Laplace's Rule of Succession.

This rule occupies a supreme position in probability theory; it has been easily the most misunder-
stood and misapplied rule in the theory, from the time Laplace �rst gave it in 1774. In almost any
book on probability you'll �nd this rule mentioned very briey, mainly in order to warn the reader
not to use it. But we must take the trouble to understand it, because in our design of this robot
Laplace's rule is, like Bayes' theorem, one of the most important constructive rules we have. It is a
`new' rule (i.e., a rule in addition to the principle of indi�erence and its generalization, maximum
entropy) for converting raw information into numerical values of probabilities, and it gives us one
of the most important connections between probability and frequency.

Poor old Laplace has been ridiculed for over a Century because he illustrated use of this rule
by calculating the probability that the sun will rise tomorrow, given that it has risen every day for
the past 5,000 years.y One gets a rather large factor (odds of 5000� 365:2426+1 = 1826214 : 1) in
favor of the sun rising again tomorrow. With no exceptions at all as far as we are aware, modern
writers on probability have considered this a pure absurdity. Even Keynes (1921) and Je�reys
(1939) �nd fault with the rule of succession.

We have to confess our inability to see anything at all absurd about the rule of succession.
We recommend very strongly that you do a little independent literature searching, and read some

y Some passages in the Bible led early theologians to conclude that the age of the world is about 5,000
years. It seems that Laplace at �rst accepted this �gure, as did everyone else. But it was during Laplace's
lifetime that dinosaur remains were found almost under his feet (under the streets of Montmartre in Paris),
and interpreted correctly by the anatomist Cuvier. Had he written this near the end of his life, we think
that Laplace would have used a �gure vastly greater than 5,000 years.
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of the objections various writers have to it. You will see that in every case the same thing has
happened. First, Laplace was quoted out of context, and secondly, in order to demonstrate the
absurdity of the rule of succession, the author applies it to a case where it does not apply, because
there is additional prior information which the rule of succession does not taken into account.

But if you go back and read Laplace (1819) himself, you will see that in the very next sentence
after this sunrise episode, he warns the reader against just this misunderstanding: \But this number
is far greater for him who, seeing in the totality of phenomena the principle regulating the days

and seasons, realizes that nothing at the present moment can arrest the course of it." In this
somewhat awkward phraseology he is pointing out to the reader that the rule of succession gives
the probability based only on the information that the event occurred n times in N trials, and that
our knowledge of celestial mechanics represents a great deal of additional information. Of course,
if you have additional information beyond the numbers n and N , then you ought to take it into
account. You are then considering a di�erent problem, the rule of succession no longer applies, and
you can get an entirely di�erent answer. Probability theory gives the results of consistent plausible
reasoning on the basis of the information which was put into it.

But it has to be admitted that, in mentioning the sunrise at all, Laplace made a very unfortu-
nate choice of an example { because the rule of succession does not really apply to the sunrise, for
just the reason that he points out. This choice has had a catastrophic e�ect on Laplace's reputation
ever since. His statements make sense when the reader interprets \probability", as Laplace did,
as a means of representing a state of partial knowledge. But to those who thought of probability
as a real physical phenomenon, existing independently of human knowledge, Laplace's position
was quite incomprehensible; and so they jumped to the conclusion that Laplace had committed a
ludicrous error, without even bothering to read his full statement.

Here are some famous examples of the kind of objections to the rule of succession which you
�nd in the literature:

(1) Suppose the solidi�cation of hydrogen to have been once accomplished. According to
the rule of succession, the probability that it will solidify again if the experiment is
repeated is 2/3. This does not in the least represent the state of belief of any scientist.

(2) A boy 10 years old today. According to the rule of succession, he has the probability
11/12 of living one more year. His grandfather is 70; and so according to this rule
he has the probability 71/72 of living one more year. The rule violates qualitative
common sense!

(3) Consider the case N = n = 0. It then says that any conjecture without veri�cation
has the probability 1=2. Thus there is probability 1=2 that there are exactly 137
elephants on Mars. Also there is probability 1/2 that there are 138 elephants on
Mars. Therefore, it is certain that there are at least 137 elephants on Mars. But the
rule says also that there is probability 1/2 that there are no elephants on Mars. The
rule is logically self{contradictory!

The trouble with examples (1) and (2) is obvious in view of our earlier remarks; in each case, highly
relevant prior information, known to all of us, was simply ignored, producing a agrant misuse of
the rule of succession. But let's look a little more closely at example (3). Wasn't the rule applied
correctly here? We certainly can't claim that we had prior information about elephants on Mars
which was ignored. Evidently, if the rule of succession is to survive example (3), there must be
some very basic points about the use of probability theory which we need to emphasize.

Now, what do we mean when we say that there is `no evidence' for a proposition? The question
is not what you or I might mean colloquially by such a statement. The question is: What does it

mean to the robot? What does it mean in terms of probability theory?
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The prior information we used in derivation of the rule of succession was that the robot is told
that there are only two possibilities: A is true, orA is false. Its entire \universe of discourse" consists
of only two propositions. In the case N = 0, we could solve the problem also by direct application
of the principle of indi�erence, and this will of course give the same answer P (AjX) = 1=2, that we
got from the rule of succession. But just by noting this, we see what is wrong. Merely by admitting

the possibility of one of three di�erent propositions being true, instead of only one of two, we have

already speci�ed prior information di�erent from that used in deriving the rule of succession.

If the robot is told to consider 137 di�erent ways in which A could be false, and only one way in
which it could be true, and is given no other information, then its prior probability for A is 1/138,
not 1/2. So, we see that the example of elephants on Mars was, again, a gross misapplication of
the rule of succession.

Moral: Probability theory, like any other mathematical theory, cannot give a de�nite answer
unless we ask it a de�nite question. We should always start a problem with an explicit enumeration
of the \hypothesis space" consisting of the di�erent propositions that we're going to consider in
that problem. That is part of the \boundary conditions" which must be speci�ed before we have a
well{posed mathematical problem. If you say, \I don't know what the possible propositions are,"
that is mathematically equivalent to saying, \I don't know what problem I what to solve". The
only answer the robot can give is: \Come back and ask me again when you do know."

Je�reys' Objection.

As one would expect, the example used by Je�reys (1939, p. 107) is more subtle. He writes: \I may
have seen one in 1000 of the `animals in feathers' in England; on Laplace's theory the probability
of the propositions `all animals with feathers have beaks' would be about 1/1000. This does not
correspond to my state of belief, or anybody else's."

Now, while we agree with everything Je�reys said, we must point out that he failed to add
two important facts. In the �rst place, it is true that, on this evidence P (all have beaks) � 1=1000
according to Laplace's rule. But also P (all but one have beaks) � 1=1000; P (all but two have
beaks) � 1=1000; � � � etc. More speci�cally, if there are N feathered animals of which we have seen
r (all with beaks) then rewriting (18{22) in this notation we see that P (all have beaks)= P0 =
(r + 1)=(N + 1) � 1=1000, while P (all but n have beaks) is

Pn = P0
(N � r)! (N � n)!

N ! (N � n� r)!

and the probability that there are n0 or more without beaks is

NX
n=n0

Pn =
(N � r)! (N � n0 + 1)!

(N + 1)! (N � n0 � r)!
� exp(�rn0=N):

Thus if there are one million animals with feathers of which we have seen 1000 (all with beaks),
this leaves it an even bet that there are at least 1000 ln2 = 693 without beaks; and of course,
an even bet that the number is less than that. If the only relevant information one had was the
aforementioned observation we think that this would be just the proper and reasonable inference.

But in the second place, Laplace's rule is not appropriate for this problem because we all have
additional prior information that it does not take into account; hereditary stability of form, the
fact that a beakless feathered animal would, if it existed, be such an interesting curiosity that we
all should have heard of it even if we had not seen it (as has happened in the converse case of
the duck{billed platypus), etc. To see fairly and in detail what Laplace's rule (18{22) says, we
need to consider a problem where our prior information corresponds better to that supposed in its
derivation.
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Bass or Carp?

A guide of unquestioned knowledge and veracity assures us that a certain lake contains only two
species of �sh: Bass and Carp. We catch ten and �nd them all Carp { what is then our state of
belief about the percentage of Bass? Common sense tells us that, if the �sh population were more
than about ten percent Bass, then in ten catches we had a reasonably good chance of �nding one;
so our state of belief drops o� rapidly above ten percent. On the other hand, these data D provide
no evidence against the hypothesis that the Bass population is zero. So common sense without any
calculation would lead us to conclude that the Bass population is quite likely to be in the range,
say, (0%, 15%), but intuition does not tell us quantitatively how likely this is.

What, then, does Laplace's rule say? Denoting the Bass fraction by f , its posterior cumulative
pdf is p(f < f0jDX) = 1 � (1 � f0)

11. Thus we have a probability of 1 � (1 � :15)11 = :833, or
odds of 5:1, that the Bass population is indeed below 15%. Likewise, the data yield a probability
of 2/3, or odds of 2:1, that the lake contains less than 9.5 percent Bass, and odds of 10:1 that it is
less than 19.6 percent, while the posterior median value is

f1=2 = 1�

�
1

2

�1=11

= 0:061

or 6.1 percent; it is an even bet that the Bass population is less than this. The interquartile range
is (f1=4; f3=4) = (2.6%, 11.8%); it is as likely to be within as outside that interval. The `best'
estimate of f by the criterion of minimum mean{square error is Laplace's posterior mean value
(18{23): hfi = 1=12, or 8.3 percent.

Suppose now that our eleventh catch is a Bass; how does this change our state of belief?
Evidently, we shall revise our estimate of f upward, because the data now do provide evidence
against the hypothesis that f is very small. Indeed, if the Bass population were less than 5%, then
we would be unlikely to �nd one in only eleven catches, so our state of belief drops o� rapidly below
5%, but less rapidly than before above 10%.

Laplace's rule agrees, now saying that the best mean square estimate is hfi = 2=13, or 15.4
percent, and the posterior density is P (df jDX) = 132f(1 � f)10df . This yields a median value
of 13.6 percent, raised very considerably because the new datum has e�ectively eliminated the
possibility that the Bass population might be below about three percent, which was just the most
likely region before. The interquartile range is now (8.3%, 20.9%).

It appears to us that all these numbers correspond excellently to our common sense judgments.
This, then, is the kind of problem to which Laplace's rule applies very realistically; i.e., there were
known to be only two possibilities at each trial, and our prior knowledge gave no other information
beyond assuring us that both were possible. Whenever the result of Laplace's rule of succession
conicts with our intuitive state of belief, we suggest that the reason is that our common sense is
making use of additional prior information about the real world situation, that is not used in the
derivation of the rule of succession.

So Where Does The Rule Stand?

Mathematically, the rule of succession is the solution to a certain problem of inference, de�ned by
the prior probability and the data. The 200{year{old hangup has been over the question: what

prior information is being described by the uniform prior probability (18{2)? Laplace was not too
clear about this { his discussion of it seemed to invoke the idea of a `probability of a probability'
which may appear to be metaphysical nonsense until one has the notion of an inner and outer
robot { but his critics, instead of being constructive and trying to de�ne the conceptual problem
more clearly, seized upon this to denounce Laplace's whole approach to probability theory.
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Of Laplace's critics, only Je�reys (1939) and Fisher (1956) seem to have thought it through
deeply enough to realize that the unclear de�nition of the prior information was the source of
the di�culty; the others, following the example of Venn (1866), merely produce examples where
common sense and Laplace's rule are in conict, and without making any attempt to understand
the reason for it, reject the rule in any and all circumstances. As we noted in Chapter 16, Venn's
criticisms were so unjust that even Fisher (1956) was impelled to come to Laplace's defense on this
issue.

In this connection we have to remember that probability theory never solves problems of actual
practice, because all such problems are in�nitely complicated. We solve only idealizations of the
real problem, and the solution is useful to the extent that the idealization is a good one. In the
example of the solidi�cation of hydrogen, the prior information which our common sense uses so
easily, is actually so complicated that nobody knows how to convert it into a prior probability
assignment. There is no reason to doubt that probability theory is, in principle, competent to deal
with such problems; but we have not yet learned how to translate them into mathematical language
without oversimplifying rather drastically.

In summary, Laplace's rule of succession provides a de�nite, useful solution to a de�nite, real
problem. Everybody denounces it as nonsense because it is not also the solution to some di�erent
problem. The case where the problem can be reasonably idealized to one with only two hypotheses
to be considered, a belief in a constant \causal mechanism," and no other prior information, is the
only case where it applies. But you can, of course, generalize it to any number of hypotheses, as
follows.

Generalization.

We give the derivation in full detail, to present a mathematical technique of Laplace that is useful
in many other problems. There are K di�erent hypotheses, fA1; A2; : : : ; AKg, a belief that the
\causal mechanism" is constant, and no other prior information. We perform a random experiment
N times, and observe A1 true n1 times, A2 true n2 times, etc. Of course,

P
i ni = N . On the basis

of this evidence, what is the probability that in the nextM =
P

imi repetitions of the experiment,
Ai will be true exactly mi times? To �nd the probability p(m1 : : :mK jn1 : : :nK) that answers this,
de�ne the prior knowledge by a K{dimensional uniform prior Ap{density:

(Ap1 : : :pK jX) = C�(p1 + � � �+ pK � 1); pi � 0 (18{24)

To �nd the normalization constant C, we set

Z 1

0

dp1 � � �

Z 1

0

dpK(Ap1 : : :pk jX) = 1 = CI(1) (18{25)

where

I(r) �

Z 1

0

dp1 � � �

Z 1

0

dpk�(p1 + � � �+ pK � r) (18{26)

Direct evaluation of this would be rather messy, because all integrations after the �rst would be
between limits that need to be worked out; so let's use the following trick. First, take the Laplace
transform of (18{26)Z

1

0

e��rI(r)dr =

Z
1

0

dp1 � � �

Z
1

0

dpKe
��(p1+���+pK) =

1

�K
(18{27)

Then, inverting the Laplace transform by Cauchy's theorem,
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I(r) =
1

2�i

Z +i1

�i1

e�r

�K
d� =

1

(K � 1)!

dK�1

d�K�1
e�r
���
�=0

=
rK�1

(K � 1)!
(18{28)

where, according to the standard theory of Laplace transforms, the path of integration passes to
the right of the origin, and is closed by an in�nite semicircle over the left half{plane, the integral
over which is zero. Thus,

C =
1

I(1)
= (K � 1)! (18{29)

By this device we avoided having to consider complicated details about di�erent ranges of integra-
tion over the di�erent pi, that would come up if we tried to evaluate (18{26) directly. The prior
p(n1 : : :nK jX) is then, using the same trick,

p(n1 : : :nK jX) =
N !

n1! : : :nK !

Z 1

0

dp1 � � �

Z 1

0

dpK pn11 � � �pnKK (Ap1 : : :ApK jX)

=
N ! (K � 1)!

n1! : : :nK !
J(1)

(18{30)

where

J(r) �

Z
1

0

dp1 � � �

Z
1

0

dpK pn11 � � �pnKK �(p1 + � � �+ pk � r) (18{31)

which we evaluate as before by taking the Laplace transform:

Z 1

0

e��rJ(r)dr =

Z 1

0

dp1 � � �

Z 1

0

dpK pn11 � � �pnKK e��(p1+���+pK) =
KY
i=1

ni!

�ni+1
(18{32)

So, as in (18{28), we have

J(r) =
n1! � � �nK !

2�i

Z +i1

�i1

d�
e�r

�N+K
=

n1! � � �nK !

(N +K � 1)!
rN+K�1 (18{33)

and

p(n1 � � �nk jX) =
N ! (K � 1)!

(N +K � 1)!
; ni � 0; n1 + � � �+ nK = N (18{34)

Therefore, by Bayes' theorem

(Ap1���pK jn1 � � �nK) = (Ap1���pK jX)
p(n1 � � �nK jAp1���pK )

p(n1 � � �nK jX)

=
(N +K � 1)!

n1! � � �nK !
pn11 � � �pnKK �(p1 + � � �+ pK � 1)

(18{35)

and �nally

p(m1 : : :mK jn1 : : :nK) =

Z 1

0

dp1 � � �

Z 1

0

dpK p(m1 : : :mK jAp1���pK ) (Ap1���pK jn1 � � �nK)

=
M !

m1! � � �mK !

(N +K � 1)!

n1! � � �nK !

Z 1

0

dp1 � � �

Z 1

0

dpK pn1+m1

1 � � �pnK+mK

K �(p1+ � � �+ pK � 1) (18{36)
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The integral is the same as J(1) except for the replacement ni ! ni +mi. So, from (18{33),

p(m1 � � �mK jn1 � � �nK) =
M !

m1! � � �mK !

(N +K � 1)!

n1! � � �nK !

(n1 +m1)! � � �(nK +mK)!

(N +M +K � 1)!
(18{37)

or, reorganizing into binomial coe�cients, the generalization of (18{22) is

p(m1 : : :mK jn1 : : :nK) =

�
n1 +m1

n1

�
� � �

�
nK +mK

nK

�
�
N +M +K � 1

M

� : (18{38)

In the case where we want just the probability that A1 will be true on the next trial, we need this
formula with M = m1 = 1, all other mi = 0. The result is the generalized rule of succession:

p(A1jn1; N;K) =
n1 + 1

N +K
: (18{39)

You see that in the case N = n1 = 0, this reduces to the answer provided by the principle of
indi�erence, which it therefore contains as a special case. If K is a power of 2, this is the same
as a method of inductive reasoning proposed by Carnap in 1945, which he denotes c�(h; e) in his
\Continuum of Inductive Methods."

Now, use of the rule of succession in cases where N is very small is rather foolish, of course.
Not really wrong; just foolish. Because if we have no prior evidence about A, and we make such
a small number of observations that we get practically no evidence; well, that's just not a very
promising basis on which to do plausible reasoning. We can't expect to get anything useful out of
it. We do, of course, get de�nite numerical values for the probabilities, but these values are very
\soft," i.e., very unstable, because the Ap distribution is still very broad for small N . Our common
sense tells us that the evidence Nn for small N provides no reliable basis for further predictions,
and we'll see that this conclusion also follows as a consequence of the theory we're developing here.

The real reason for introducing the rule of succession lies in the cases where we do get a
signi�cant amount of information from the experiment; i.e., when N is a large number. In this
case, fortunately, we can pretty much forget about these �ne points concerning prior evidence.
The particular initial assignment (ApjX) will no longer have much inuence on the results, for the
same reason as in the particle{counter problem of Chapter 6. This remains true for the generalized
case leading to (18{38). You see from (18{39) that as soon as the number of observations N is
large compared to the number of hypotheses K, then the probability assigned to any particular
hypothesis depends for all practical purposes, only on what we have observed, and not on how
many prior hypotheses there are. If you contemplate this for ten seconds, your common sense will
tell you that the criterion N � K is exactly the right one for this to be so.

In the literature starting with Venn (1866), those who issued polemical denunciations of
Laplace's rule of succession have put themselves in an incredible situation. How is it possible
for one human mind to reject Laplace's rule { and then advocate a frequency de�nition of prob-
ability? Anyone who assigns a probability to an event equal to its observed frequency in many
trials, is doing just what Laplace's rule tells him to do! The generalized rule (18{39) supplies an
obviously needed re�nement of this, small correction terms when the number of observations is not
large compared to the number of propositions.
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Con�rmation and Weight of Evidence.

A few new ideas { or rather, connections with familiar old ideas { are suggested by our calculations
involving Ap. Although we shall not make any particular use of them, it seems worthwhile to point
them out. We saw that the stability of a probability assignment in the face of new evidence is
essentially determined by the width of the Ap distribution. If E is prior evidence and F is new
evidence, then

p(AjEF ) =

Z 1

0

(ApjEF )pdp =

R 1
0
(ApjF )(ApjE)pdpR 1
0
(ApjF )(ApjE)dp

(18{40)

We might say that F is compatible with E, as far as A is concerned, if having the new evidence, F ,
doesn't make any appreciable change in the probability of A;

p(AjEF ) = p(AjE) (18{41)

The new evidence can make an enormous change in the distribution of Ap without changing the �rst
moment. It might sharpen it up very much, or broaden it. We could become either more certain
or more uncertain about A, but if F doesn't change the center of gravity of the Ap distribution,
we still end up assigning the same probability to A.

Now, the stronger property: the new evidence F con�rms the previous probability assignment,
if F is compatible with it, and at the same time, gives us more con�dence in it. In other words, we
exclude one of these possibilities, and with new evidence F the Ap distribution narrows. Suppose
F consists of performing some random experiment and observing the frequency with which A is
true. In this case F = Nn, and our previous result, Eq. (18{20), gives

(ApjNn) =
(N + 1)!

n!(N � n)!
pn(1� p)N�n

� (constant) � exp

�
�

�
(p� f)2

2�2

��
(18{42)

where

�2 =
f(1� f)

n
(18{43)

and f = (n=N) is the observed frequency of A. The approximation is found by expanding
log(ApjNp) in a Taylor series about its peak value, and is valid when n � 1 and (N � n) � 1. If
these conditions are satis�ed, then (ApjNn) is very nearly symmetric about its peak value. Then,
if the observed frequency f is close to the prior probability P (AjE), the new evidence Nn will not
a�ect the �rst moment of the Ap distribution, but will sharpen it up, and that will constitute a
con�rmation as we de�ned it.

This shows one more connection between probability and frequency. We de�ned the \con-
�rmation" of a probability assignment according to entirely di�erent ideas than are usually used
to de�ne it. We de�ne it in a way that agrees with our intuitive notation of con�rmation of a
previous state of mind. But it turned out that the same experimental evidence would constitute
con�rmation on either the frequency theory or our theory.

Now, from this we can see another useful notion; which we'll call weight of evidence. Consider
Ap, given two di�erent pieces of evidence, E and F ,

(ApjEF ) = (constant)� (ApjE) (ApjF ): (18{44)

If the distribution (ApjF ) was very much sharper than the distribution (ApjE), then the product
of the two would still have a peak at practically the value determined by F . In this case, we would
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say intuitively that the evidence F carries much greater \weight" than the evidence E. If we have
F , it doesn't really matter much whether we take E into account or not. On the other hand, if
we don't have F , then whatever evidence E may represent will be extremely signi�cant, because it
will represent the best we are able to do. So, acquiring one piece of evidence which carries a great
amount of weight can make it, for all practical purposes, unnecessary to continue keeping track of
other pieces of evidence which carry only a small weight.

Of course, this is the way our minds operate. When we receive one very signi�cant piece of
evidence, we no longer pay so much attention to vague evidence. In so doing, we are not being very
inconsistent, because it wouldn't make much di�erence anyway. So, our intuitive notion of weight
of evidence is bound up with the sharpness of the Ap distribution. Evidence concerning A that we
consider very signi�cant is not necessarily evidence that makes a big change in the probability of
A. It is evidence that makes a big change in our density for Ap. Now seeing this, we can get a
little more insight into the principle of indi�erence and also make contact between this theory and
Carnap's methods of inductive reasoning.

Is Indi�erence Based on Knowledge or Ignorance?

Before we can use the principle of indi�erence to assign numerical values of probabilities, there are
two di�erent conditions that have to be satis�ed: (1) we have to be able to analyze the situation into
mutually exclusive, exhaustive possibilities; (2) having done this, we must then �nd the available
information gives us no reason to prefer any of the possibilities to any other. In practice, these
conditions are hardly ever met unless there's some evident element of symmetry in the problem.
But there are two entirely di�erent ways in which condition (2) might be satis�ed. It might be
satis�ed as a result of ignorance, or it might be satis�ed as a result of positive knowledge about
the situation.

To illustrate this, let's suppose that a person who is known to be very dishonest is going to
toss a coin and there are two people watching him. Mr. A is allowed to examine the coin. He
has all the facilities of the National Bureau of Standards at his disposal. He performs hundreds
of experiments with scales and calipers and magnetometers and microscopes, X{rays, and neutron
beams, and so on. Finally, he is convinced that the coin is perfectly honest. Mr. B is not allowed
to do this. All he knows is that a coin is being tossed by a shady character. He suspects the coin
is biased, but he has no idea in which direction.

Condition (2) is satis�ed equally well for both of them. Each would start out by assigning
probability one{half to each face. The same probability assignment can describe a condition of
complete ignorance or a condition of very great knowledge. This has seemed paradoxical for a long
time. Why doesn't Mr. A's extra knowledge make any di�erence? Well, of course, it does make
a di�erence. It makes a very important di�erence, but one that doesn't show up until we start
performing this experiment. The di�erence is not in the probability for A, but in the density for
Ap.

Suppose the �rst toss is heads. To Mr. B, that constitutes evidence that the coin is biased to
favor heads. And so, on the next toss, he would assign new probabilities to take that into account.
But to Mr. A, the evidence that the coin is honest carries overwhelmingly greater weight than the
evidence of one throw, and he'll continue to assign a probability of 1=2.

You see what's going to happen. To Mr. B, every toss of the coin represents new evidence
about its bias. Every time it's tossed, he will revise his assignment for the next toss; but after
several tosses his assignment will get more and more stable, and in the limit n!1 they will tend
to the observed frequency of heads. To observer A, the prior evidence of symmetry continues to
carry greater weight than the evidence of almost any number of throws, and he persists in assigning
the probability 1=2. Each has done consistent plausible reasoning on the basis of the information
available to him, and our theory accounts for the behavior of each.
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If you assumed that Mr. A had perfect knowledge of symmetry, you might conclude that his
Ap distribution is a �{function. In that case, his mind could never be changed by any amount of
new data. Of course, that's a limiting case that's never reached in practice. Not even the Bureau
of Standards can give us evidence that good.

Carnap's Inductive Methods.

The philosopher Rudolph Carnap (1952) gives an in�nite family of possible \inductive methods,"
by which one can convert prior information and frequency data into a probability assignment and
an estimate of frequencies for this future. His ad hoc principle (that is, a principle that is found from
intuition rather than from the rules of probability theory) is that the �nal probability assignment
p(AjNnX) should be a weighted average of the prior probability p(AjX) and the observed frequency,
f = n=N . Assigning a weight N to the \empirical factor" f , and an arbitrary weight � to the
\logical factor" p(AjX) leads to the method which Carnap denotes by c�(h; e). Introduction of
the Ap distribution accounts for this in more detail; the theory developed here includes all of
Carnap's methods as special cases corresponding to di�erent prior densities (ApjX), and leads us
to reinterpret � as the weight of prior evidence. Thus, in the case of two hypotheses, the Carnap
�{method is the one you can calculate from the prior density (ApjX) = (constant) � [p(1 � p)]r,
with 2r = �� 2. The result is

p(AjNnX) =
2n+ �

2N + 2�
=

(n+ r) + 1

(N + 2r) + 2
: (18{45)

Greater � thus corresponds to a more sharply peaked (ApjX) density.

In our coin{tossing example, the gentleman form the Bureau of Standards reasons according
to a Carnap method with � of the order of, perhaps, thousands; while Mr. B, with much less prior
knowledge about the coin, would use a � of perhaps 5 or 6. (The case � = 2, which gives Laplace's
rule of succession, is much too broad to be realistic for coin tossing; for Mr. B surely knows that
the center of gravity of a coin can't be moved by more than half its thickness from the geometrical
center. Actually, as we saw in Chapter 10, this analysis isn't always applicable to tossing of real
coins, for reasons having to do with the laws of physics.)

From the second way we wrote Equation (18{45), you see that the Carnap �-method corre-
sponds to a weight of prior evidence which would be given by (� � 2) trials, in exactly half of
which A was observed to be true. Can we understand why the weighting of prior evidence is � =
(number of prior trials + 2), while that of the new evidence Np is only (number of new trials) =
N? Well, look at it this way. The appearance of the (+2) is the robot's way of telling us this: Prior
knowledge that is possible for A to be either true or false, is equivalent to knowledge that A has
been true at least once, and false at least once. This is hardly a derivation; but it makes reasonably
good sense.

But let's pursue this line of reasoning a step further. We started with the statement X : it is
possible for A to be either true or false at any trial. But that is still a somewhat vague statement.
Suppose we interpret it as meaning that A has been observed true exactly once, and false exactly
once. If we grant that this state of knowledge is correctly described by Laplace's assignment
(ApjX) = 1, then what was the \pre{prior" state of knowledge X0 before we had the data X?

To answer this, we need only to apply Bayes' theorem backwards, as we did in the method of
imaginary results in Chapter 5 and in Urn sampling in Chapter 6. The result is: our \pre{prior"
Ap{distribution must have been

(ApjX0)dp = (constant) �
dp

p (1� p)
(18{46)
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This is just the quasi{distribution representing \complete ignorance," or the \basic measure" of
our parameter space, that we found by transformation groups in Chapter 12 and which Haldane
(1932) had suggested long ago. So, here is another line of thought that could have led us to this
measure. By the same line of thought we found the discrete version of (18{46) already in Chapter
6, Eq. (6{46).

It appears, then, that if we have de�nite prior evidence that it is possible for A to be either
true or false on any one trial, then Laplace's rule (ApjX) = 1 is the appropriate one to use. But if
initially we are so completely uncertain that we're not even sure whether it is possible for A to be
true on some trials and false on others, then we should use the prior (18{46).

How di�erent are the numerical results which the pre{prior assignment (18{46) gives us?
Repeating the derivation of (18{20) with this pre{prior assignment we �nd that, provided n is not
zero or N ,

(ApjNnX0) =
(N � 1)!

(n� 1)! (N � n � 1)!
pn�1(1� p)N�n�1 (18{47)

which leads, instead of to Laplace's rule of succession, to the mean{value estimate of p:

p(AjNnX0) =

Z 1

0

(ApjNn) p dp =
n

N
(18{48)

equal to the observed frequency, and identical with the maximum{likelihood estimate of p. Likewise,
provided 0 < n < N , we �nd instead of (18{22) the formula

p(MmjNnX0) =

�
m+n�1

m

� �
M�m+N�n�1

M�m

�
�
N+M�1

M

� (18{49)

All of these results correspond to having observed one less success and one less failure.

The de Finetti Representation Theorem

******************************* MORE COMING! ****************************


