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CHAPTER 14

SIMPLE APPLICATIONS OF DECISION THEORY

We now examine in detail two of the simplest applications of the general decision theory just
formulated, and compare the �rst with the older Neyman{Pearson procedure. The problem of
detection of signals in noise is really the same as Laplace's old problem of detecting the presence of
unknown systematic inuences in celestial mechanics, and Shewhart's (1931) more recent problem
of detecting a systematic drift in machine characteristics, in industrial quality control. Statisticians
would call the procedure a \signi�cance test." It is unfortunate that the basic identity of all these
problems was not more widely recognized, because it forced workers in several di�erent �elds to
rediscover the same things, with varying degrees of success, over and over again.

As is clear by now, all we really have to do to solve this problem is to take the principles of
inference developed in Chapters 2 and 4; and supplement them with the loss function criterion
for converting �nal probabilities into decisions (and, if needed, the maximum entropy principle for
assigning priors). However, the literature of this �eld has been created largely from the standpoint
of the original decision theory before this was realized. The existing literature therefore uses a
di�erent sort of vocabulary and set of concepts than we have been using up to now. Since it exists,
we have no choice but to learn these terms and viewpoints if we want to read the literature of the
�eld. This material appeared in the papers of Middleton and van Meter (1955, 1956), and later in
the monumental treatise of Middleton (1960), in an enormously expanded form where a beginner
can get lost for months without ever �nding the real underlying principles. So we need a very
rapid, condensed review of the literature of the 1950's on these problems. To have a complete,
self{contained summary, we repeat a little from previous chapters as a way of introducing this
di�erent language.

De�nitions and Preliminaries

Notation:

p(AjB) = Conditional probability of A, given B

p(ABjCD) = Joint conditional probability of A and B, given D and C : : : etc.

For our purposes, everything follows from the product rule:

p(ABjC) = p(AjBC) p(BjC) = p(BjA) p(AjC): (14{1)

If the propositions B and C are not mutually contradictory, this may be rearranged to give the rule
of \learning by experience," Bayes' theorem:

p(AjBC) = p(AjC) p(BjAC)
p(BjC) = p(AjB) p(CjAB)

p(CjB) : (14{2)

If there are several mutually exclusive and exhaustive propositions Bi , then by summing (14{1)
over them, we obtain the chain rule

p(AjC) =
X
i

p(AjBiC) p(BijC) (14{3a)
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or, in a simple skeleton notation,

p(AjC) =
X
B

p(AjBC) p(BjC): (14{3b)

Now let

X = prior knowledge, of any kind whatsoever

S = signal

N = noise

V = V (S;N) = observed voltage

D = decision about the nature of the signal
Thus we have

p(SjX) = prior probability of the particular signal S

p(N jX) = W (N) = prior probability of the particular sample of noise N .

We understand that the prior information X is always built into the right{hand side of all our
probability symbols, whether or not we write it explicitly. Thus, in a linear system, V = S +N ,
and

p(V jS) � p(V jSX) = W (V � S): (14{4)

The reader may be disturbed by the absence of density functions, dS 's, dN 's, etc., which might be
expected in the case of continuous S; N . Note, however, that our equations are homogeneous in
these quantities, so they cancel out anyway. We are trying only to convey the broad ideas, without
bothering with �ne details which would make the notation very intricate. Thus by

P
A we mean

ordinary summation over some previously agreed set of possible values if A is discrete, integration
with appropriate density functions if A is continuous.

A decision rule p(DijVj) , or for brevity just p(DjV ) , represents the process of drawing in-
ferences about the signal from the observed voltage. If it is always made in a de�nite way, then
p(DjV ) has only the value 0, 1 for any choice of D and V ; however we may also have a \random-
ized" decision rule according to which p(DjV ) is a true probability distribution. Maintaining this
more general view turns out to be a help in formulating the theory.

The essence of any decision rule, and in particular, any one which can be built into automatic
equipment, is that the decision must be made on the basis of V alone; V is, by de�nition, the
quantity which contains all the information actually used (in addition to the ever-present X ) in
arriving at the decision. Thus, if Y 6= D is any other proposition, we have

p(DjV ) = p(DjV Y ): (14{5)

The fact that Y is to be ignored in the presence of V might appear a departure from our previous
exhortations that the robot is always to take into account all the relevant information it has.
However, if we consider that the property (14{5) is a part of the prior information X there is no
di�culty. To put it di�erently, (14{5) expresses the prior knowledge that there is a direct logical
relation by which D is determined by V alone. If this relation was a known law of physics, there
would be nothing strange in (14{5). The only di�erence is that in the present case this relation
does not express any law of Nature, but rather our own design of the apparatus. In either case, Y
is ignored not because the robot has relaxed its rules, but because Y is irrelevant.

An equivalent statement is that the probability of reaching a decision D depends on any
proposition Y only through the intermediate inuence of Y on V :

p(DjY ) =
X
V

p(DjV ) p(V jY ): (14{6)
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which is a kind of \Huygens principle" for logic. To see the analogy, think of Y as a light source
which cannot be seen from D , but it illuminates various points V . Then the resulting light
arriving at D is the sum of the Huygens wavelets p(DjV ) with amplitudes p(V jY ) . The almost
exact mathematical analogy between conditional information ow and the ow of light according
to the Huygens principle of optics will appear in detail when we consider the statistical mechanics
of irreversible processes.

Su�ciency and Information

Equation (14{5) has interesting consequences; suppose we wish to judge the plausibility of some
proposition Y , on the basis of knowledge of V and D . From the product rule (14{1),

p(DY jV ) = p(Y jVD) p(DjV ) = p(DjV Y ) p(Y jV )

and using (14{5), this reduces to

p(Y jVD) = p(Y jV ): (14{7)

Thus, if V is known, knowledge of D is redundant and cannot help us in estimating any other
quantity. The reverse is not true, however; we could equally well use (14{5) in another way:

p(V Y jD) = p(Y jV D) p(V jD) = p(Y jD) p(V jY D):

Combining this with (14{7), there results the

Theorem: Let D be a possible decision, given V . Then p(V jD) 6= 0, and

p(Y jV ) = p(Y jD) if and only if p(V jD) = p(V jY D).
(14{8)

In words: knowledge of D is as good as knowledge of V for judgments about Y if and only if Y
is irrelevant for judgments about V , given D . Stated di�erently: in the \environment" produced
by knowledge of D , the probabilities of Y and V are independent, i.e.,

p(Y V jD) = p(Y jD) p(V jD): (14{9)

In this case, in the literature of this �eld D is said to be a su�cient statistic for judgments about
Y . We shall want to see whether this is in agreement with our earlier de�nitions of su�ciency,
made from a quite di�erent point of view in Chapter 8.

Evidently, a decision rule which makes D a su�cient statistic for judgments about the signal
S is superior to one without this property, in that it tells us more about the signal. However, such
a rule does not necessarily exist. Equation (14{9) is a very restrictive condition, since it must be
satis�ed for all values of Y; V; and all D for which p(DjV ) 6= 0 .

As you might guess from this, the concept of su�ciency is closely related to that of information.
The above de�nition of su�ciency could be stated equally well as: D is a su�cient statistic for
judgments about Y if it contains all the information about Y which V contains. Since D is
determined from V , if it is not a su�cient statistic, it seems intuitively that is necessarily contains
less information about Y than does V . In this statement, the term \information" was used in a
loose, intuitive sense; does it remain true if we adopt Shannon's measure of information?

Imagine that there are several mutually exclusive propositions Yi , one of which must be true.
For brevity we use, as above, the notation

P
Y f(Y ) �

P
i f(Yi) . With a speci�c value of D given,

the entropy which measures our information about the propositions Yi is

HD(Y ) = �
X
Y

p(Y jD) log p(Y jD)

and its average over all values of D is
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HD(Y ) =
X
D

p(DjX)HD(Y ): (14{11)

If

HC(Y ) < HD(Y ) (14{12)

we say that C contains, on the average, more information about Y than does D . Note, however,
that it may be otherwise for speci�c values of C and D .

Acquisition of new information can never increase H ; let fZig be, for the moment, any set
of propositions and form the expression

HV (Z)�HDV (Z) =
X
DV Z

p(DV jX) p(ZjDV ) log p(ZjDV )�
X
V Z

p(V jX) p(ZjV ) log p(ZjV )

=
X
DV Z

p(CV jX) p(ZjDV ) log
�
p(ZjDV )
p(ZjV )

�
:

Using the fact that on the positive real line log x � (1� x
�1) , with equality if and only if x = 1 ,

this becomes

HV (Z)�HDV (Z) �
X
DV Z

p(DV jX)[p(ZjDV )� p(ZjV )] = 0 (14{13)

Thus, HDV (Z) � HV (Z) , with equality if and only if Eq. (14{7) holds for all D , V , and Z for
which p(DV jX) 6= 0 .

But now, since (14{13) holds regardless of the meaning of D and V , we can conclude equally
well that for all D , V , Z ,

HD(Y ) � HDV (Z) � HV (Z):

Choosing Z = Y , we have in consequence of (14{7) HV (Y ) = HDV (Y ) , so that

HV (Y ) � HD(Y ) (14{14)

with equality if and only if Eq. (14{9) holds, i.e., if and only if D is a su�cient statistic as
just de�ned. Thus, if by \information" we mean minus the average entropy of Y over the prior
distribution of D or V; zero information loss in going from V to D is equivalent to su�ciency of
D .

Note that inequality (14{13) holds only for the averages H , not for the H . Acquisition of a
speci�c piece of information (that an event previously considered improbable had in fact occurred)
may in some cases increase the entropy of Y . However, this is an improbable situation and on
the average the entropy can only be lowered by additional information. This shows again that the
term \information" is not a happy choice of words to describe entropy expressions. In spite of the
entropy increases, the situation just described could hardly be called one of less information in the
colloquial sense of that word; but rather one of less certainty.

Loss Functions and Criteria of Optimum Performance

In order to say that one decision rule is better than another, we need some speci�c criterion of
what we want our detection system to accomplish. The criterion will vary with the application,
and obviously no single decision rule can be best for all purposes. But our discussion in Chapter 13
will apply, almost unchanged, in this slightly di�erent language. A very general type of criterion is
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obtained by assigning a loss function L(D;S) which represents our judgment of how serious it is
to make decision D when signal S is in fact present.

In case there are only two possible signals, S0 = 0 (i.e., no signal), and S1 > 0 , and con-
sequently two possible decisions D0 , D1 about the signal, there are two types of error, the false
alarm A = (D1; S0) and the false rest R = (D0; S1) . In some applications, one type of error might
be much more serious than the other.

Suppose that a false rest is considered ten times as serious as is a false alarm, while a correct
decision of either type represents no \loss." We could then take L(D0; S0) = L(D1; S1) = 0 ,
L(D0; S1) = 10 , L(D1; S0) = 1 . Whatever the possible signals and the possible decisions form
discrete sets, the loss function becomes a loss matrix. In the above example,

Lij =

�
0 10
1 0

�

Instead of assigning arbitrary a certain loss value to each possible type of detection error, we may
consider information loss by the assignment L(D;S) = � log p(SjD) . This is somewhat more
di�cult to manipulate, because now L(D;S) depends on the decision rule. A decision rule which
minimizes information loss is one which makes the decision in some sense as close as possible to
being a su�cient statistic for judgments about the signal. In exactly what sense seems never to
have been clari�ed.

The conditional loss L(S) is the average loss incurred when the speci�c signal S is present

L(S) =
X
D

L(D;S) p(DjS) (14{15)

which may in turn be expressed in terms of the decision rule and the properties of the noise by
using (14{6). The average loss is the expected value of this over all possible signals:

hLi =
X
S

L(S) p(SjX): (14{16)

Two di�erent criteria of optimum performance now suggest themselves:

The Minimax Criterion. For a given decision rule p(DjV ) , consider the conditional loss
L(S) for all possible signals, and let [L(S)]max be the maximum value attained by L(S) . We
seek that decision rule for which [L(S)]max is as small as possible. As we noted in Chapter 13,
this criterion concentrates attention on the worst possible case regardless of the probability of
occurrence of this case, and it is thus in a sense too conservative. It has, however, for some the
psychological advantage that it does not involve the prior probabilities of the di�erent signals,
p(SjX) , and therefore it can be applied by persons who, under the handicap of orthodox
training, have a mental hangup against prior probabilities.

The Bayes Criterion. We seek that decision rule for which the average loss hLi is minimized.
In order to apply this, a prior distribution p(SjX) must be available.

Other criteria were proposed before the days of Wald's decision theory. In the Neyman{Pearson
theory, we �x the probability of occurrence of one type of error at some small value � , and then
minimize the probability � of the other type of error subject to this constraint.y Arnold Siegert's
\Ideal Observer" minimizes the total probability of error (�+ �) .

y For example, we suspect that at an Early Warning Radar Installation, the primary constraint might be

that the Commanding O�cer shall not be roused out of bed by a false alarm more often than once per

month, and subject to that requirement, we minimize the probablity of a false rest.
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After having invented many di�erent such ad hoc criteria from various viewpoints, and arguing
their relative merits on philosophical grounds, the basic mathematical identity of all these criteria
came as quite a surprise to the early workers in this �eld. We shall see below that all of them are
special cases of the Bayes criterion.

Let us �nd the Bayes solution, as it was rationalized in decision theory. Substituting in
succession equations (14{15), (14{6), and (14{3) into (14{16), we obtain for the average loss

hLi =
X
DV

"X
S

L(D;S) p(VSjX)

#
p(DjV ): (14{17)

If L(D;S) is a de�nite function independent of p(DjV ) (this assumption excludes for the moment
the information loss function), there is no function p(DjV ) for which this expression is stationary
in the sense of calculus of variations. We then minimize hLi merely by choosing for each possible
V that decision D1(V ) for which

K(D1; S) �
X
S

L(D1; S) p(VSjX) (14{18)

is a minimum. Thus, we adopt the decision rule

p(DjV ) = �(D;D1): (14{19)

In general there will be only one such D1 , and the best decision rule is nonrandom. However, in
case of \degeneracy," K(D1; V ) = K(D2; V ) , any randomized rule of the form

p(DjV ) = a�(D;D1) + b�(D;D2); a+ b = 1 (14{20)

is just as good by the criterion being used. This degeneracy occurs at \threshold" values of V;
where we change from one decision to another.

A Discrete Example

Consider the case already mentioned, where there are two possible signals S0 , and S1 , and a loss
matrix

Lij =

�
L00 L10

L10 L11

�
=

�
0 Lr

La 0

�

where Ls , Lr are the losses incurred by a false alarm and a false rest, respectively. Then

K(D0; V ) = L01 p(V S1jX) = Lr p(V S1jX)

K(D1; V ) = L10 p(V S0jX) = La p(V S0jX)
(14{21)

and the decision rule that minimizes hLi is

Choose D1 if
p(V S1jX)

p(V S0jX)
>
La

Lr

Choose D0 if
p(V S1jX)

p(V S0jX)
<
La

Lr

Choose either at random in case of equality.

(14{22)

If the prior probabilities of signal and no signal are

p(S1jX) = p; p(S0jX) = q = 1� p (14{23)

respectively, the decision rule becomes
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Choose D1 if
p(V jS1)
p(V jS0)

>
qLa

pLr
; etc: (14{24)

The left{hand side of (14{24) is a likelihood ratio, which depends only on the pdf assigned to the
noise, and is the quantity which should be computed by the optimum receiver according to the
Bayes criterion.

This same quantity is essential one regardless of the assumed loss function and regardless of the
probability of occurrence of the signal; these a�ect only the threshold of detection. Furthermore, if
the receiver merely computes this likelihood ratio and delivers it at the output without making any
decision, it provides us with all the information we need to make optimum decisions in the Bayes
sense. Note particularly the generality of this result, which is one of the most important ones for
our applications; no assumptions are needed as to the type of signal, linearity of the system, or
properties of the noise.

We now work out, for purposes of illustration, the decision rules and their degree of reliability,
for several of the above criteria, in the simplest possible problem. We have a linear system in which
the voltage is observed at a single instant, and we are to decide whether a signal, which can have
only amplitude S1 , is present in noise, to which we assign a gaussian pdf with mean square value
�
2 :

W (N) =
1p
2��2

exp

�
�N

2

2�2

�
: (14{25)

The likelihood ratio in (14{24) then becomes

p(V jS1)
p(V jS0)

=
W (V � S1)

W (V )
= exp

�
2V S1 � S

2
1

2h�2i

�
(14{26)

and since this is a monotonic function of V , the decision rule can be written as

Choose

�
D1

D0

�
when V

�
>

<

�
Vb (14{27)

with

Vb

�
=

1

2s

�
2 log

�
qLa

pLr

�
+ s

2

�
= vb (14{28)

in which

s � S1

�
is the voltage signal-to-noise ratio, and

v � V

�
is the normalized voltage.

Now we �nd for the probability of a false rest:

p(RjX) = p(D0S1jX) = p

X
V

p(D0jV ) p(V jS1) = p

Z Vb

�1

dVW (V � S1)

= p�(vb � s)

(14{29)

and for a false alarm,
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p(AjX) = p(D1S0jX) = q

X
V

p(D1jV ) p(V jS0) = q

Z
1

Vb

dVW (V )

= q[1� �(vb)]:

(14{30)

Here �(x) is the cumulative normal distribution function, calculated and tabulated in Appendix
I:

�(x) =
1p
2�

Z x

�1

e
�t2=2

dt : (14{31)

For x > 2 , a good approximation is

1� �(x) � e
�x2=2

x
p
2�

(14{32)

As a numerical example, if Lr = 10La , q = 10p , these expressions reduce to

p(AjX) = 10p(RjX) =
10

11

h
1� �

�
s

2

�i
: (14{33)

The probability of a false alarm is less than 0.027, and of a false rest less than 0.0027 for s > 4 .
For s > 6 , these numbers become 1:48� 10�3 , 1:48� 10�4 respectively.

Let us see what the minimax criterion would give in this problem. The conditional losses are

L(S0) = La

X
V

p(D1jV ) p(V jS0) = La

Z
1

�1

p(D1jV )W (V )dV

L(S1) = Lr

X
V

p(D0jV ) p(V jS1) = Lr

Z
1

�1

p(D0jV )W (V � S1)dV

(14{34)

Writing f(V ) � p(D1jV ) = 1 � p(D0jV ) , the only restriction on f(V ) is 0 � f(V ) � 1 . Since
La , Lr , and W (V ) are all positive, a change �f(V ) in the neighborhood of any given point V

will always increase one of the quantities (14{34) and decrease the other. Thus when the maximum
L(S) has been made as small as possible, we will certainly have L(S0) = L(S1) , and the problem
is thus to minimize L(S0) subject to this constraint.

Suppose that for some particular p(SjX) the Bayes decision rule happened to give L(S0) =
L(S1) . Then this particular solution must be identical with the minimax solution, for with the
above constraint, hLi = [L(S)]max , and if the Bayes solution minimizes hLi with respect to all
variations �f(V ) in the decision rule, it a fortiori minimizes it with respect to the smaller class
of variations which keep L(S0) = L(S1) . Therefore the decision rule will have the same form as
before: There is a minimax threshold Vm such that

f(V ) =

(
0; V < Vm

1; V > Vm

)
: (14{36)

Any change in Vm from the value which makes L(S0) = L(S1) necessarily increases one or the
other of these quantities. The equation determining Vm is therefore

La

Z
1

Vm

W (V )dV = Lr

Z Vm

�1

W (V � S1)dV
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or, in terms of normalized quantities,

La[1� �(vm)] = Lr�(vm � s): (14{37)

Note that (14{30), (14{31) give the conditional probabilities of false rest and false alarm for any
decision rule of type (14{36), regardless of whether the threshold was determined from (14{28) or
not; for the arbitrary threshold V0

p(RjS1) = p(V < V0jS1) = �(v0 � s)

p(AjS0) = p(V > V0jS0) =
1

2
[1� �(v0)]:

(14{38)

From (14{28) we see that there is always a particular ratio (p=q) which makes the Bayes threshold
Vb equal to the minimax threshold Vm . For values of (p=q) other than this worst value, the Bayes
criterion gives a lower average loss than does the minimax, although one of the conditional losses
L(S0) , L(S1) will be greater than the minimax value.

These relations and several previous remarks are illustrated in Figure 14.1, in which we plot
the conditional losses L(S0) , L(S1) and the average loss hLi as functions of the threshold V0 , for
the case La = (3=2)Lr; p = q = 1=2 . The minimax threshold is at the common crossing{point of
these curves, while the Bayes threshold occurs at the lowest point of the hLi curve.

One sees how the Bayes threshold moves as the ratio (p=q) is varied, and in particular that the
value of (p=q) which makes Vb = Vm also leads to the maximum value of the hLimin obtained by
the Bayes criterion. Thus we could also de�ne a \maximin" criterion; �rst �nd the Bayes decision
rule which gives minimum hLi for a given p(SjX) , then vary the prior probability p(SjX) until
the maximum value of hLimin is attained. The decision rule thus obtained is identical with the
one resulting from the minimax criterion; this is the worst possible prior probability, in the sense
that the most pessimistic rule is the best that can be done.

The Neyman{Pearson criterion is easily discussed in this example: Suppose the conditional
probability of a false alarm p(D1jS0) is held �xed at some value � , and we wish to minimize the
conditional probability p(D0jS1) of a false rest, subject to this constraint. Now the Bayes criterion
minimizes the average loss

hLi = pLr(D0jS1) + qLr(D1jS0)

with respect to any variation �p(DjV ) in the decision rule. In particular, therefore, it minimizes
it with respect to the smaller class of variations which hold p(D1jS0) constant at the value �nally
obtained. Thus it minimizes p(D0jS1) with respect to these variations and solves the Neyman{
Pearson problem; we need only choose the particular value of the ratio (qLa=pLr) which results in
the assumed value of � according to (14{28), (14{30).

We �nd for the Neyman-Pearson threshold, from (14{38)

�(vnp) = 1� � (14{39)

and the conditional probability of detection is

p(D1jS1) = 1� p(D0jS1) = �(s� vnp): (14{40)

If � = 10�3 , a detection probability of 99 percent or better is attained for s > 6 .

It is important to note that these numerical examples depend critically on our noise pdf

assignment. If we have prior information about the noise beyond its �rst and second moments, the
noise pdf expressing this may not be gaussian, and the actual situation may be either more or less
favorable than indicated by the above relations.
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It is well known that in one sense noise with a gaussian frequency distribution is the worst
possible kind; because of its maximum entropy properties, it can obscure a weak signal more
completely than can any other noise of the same average power. On the other hand, gaussian noise
is a very favorable kind from which to extract a fairly strong signal, because the probability that the
noise will exceed a few times the RMS value � =

p
hN2i becomes vanishing small. Consequently,

the probability of making an incorrect decision on the presence or absence of a signal goes to zero
very rapidly as the signal strength is increased. The high reliability of operation found above for
s > 6 would not be found for noise possessing a probability distribution with wider tails.

The type of noise frequency distribution to be expected in any particular case depends, of
course, on the physical mechanism which gives rise to the noise. When the noise is the result of
a large number of small, independent e�ects, the Landon derivation of Chapter 7 and the Central
Limit Theorem both tell us that a gaussian frequency distribution for the total noise is by far the
most likely to be found, regardless of the nature of the individual sources.

All of these apparently di�erent decision criteria lead, when worked out, to a probability ratio
test. In the case of a binary decision, it took the simple form (14{22). Of course, any decision
process can be broken down into successive binary decision, so this case really has the whole story
in it. All the di�erent criteria amounted, in the �nal analysis, only to di�erent philosophies about
how you choose the threshold value at which you change your decision.

How Would Our Robot Do It?

Now let's see how this problem appears from the viewpoint of our robot. The rather long arguments
we had to go through above (and even they are very highly condensed from the original literature) to
get the result are due only to the orthodox view which insists on looking at the problem backwards,
i.e., on concentrating attention on the �nal decision rather than on the inference process which
logically has to precede it.

To the robot, if our job is to make the best possible decision as to whether the signal is present,
the obvious thing we must do is to calculate the probability that the signal is present, conditional
on all the evidence at hand. If there are only two possibilities, S0 , S1 , to be taken into account,
then after we have seen voltage V; the posterior odds on S1 are from (4{7),

O(S1jV X) = O(S1jX)
p(V jS1)
p(V jS0)

: (14{41)

If we give the robot the loss function (14{21) and ask it to make the decision which minimizes the
expected loss, it will evidently use the decision rule

choose D1 if O(S1jV ) = p(S1jV )
p(S0jV )

>
La

Lr

; (14{42)

etc. But from the product rule, p(V S1jX) = p(S1jV ) p(V jX) , p(V S0jX) = p(S0jV ) p(V jX) , and
(14{42) is identical with (14{22). So, just from looking at this problem the other way around, our
robot obtains the same �nal result in just two lines!

You see that all this discussion of strategies, admissibility, conditional losses, etc., was com-
pletely unnecessary. Except for the introduction of the loss function at the end, there is nothing
in the actual functional operation of Wald's decision theory that isn't contained already in basic
probability theory, if we will only use it in the full generality given to it by James Bernoulli and
Laplace.
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Historical Remarks

This comparison shows why the development of decision theory has, more than any other single
factor, provoked our `Bayesian Revolution' in statistical thought. For some �fty years, Harold
Je�reys tried valiantly to explain the great advantages of the Laplace methods to statisticians, and
his e�orts met only with a steady torrent of denials and ridicule. It was then a real irony that the
work of one of the most respected of \orthodox" statisticians (Abraham Wald), which was hailed,
very properly, as a great advance in statistical practice, turned out to give, after very long and
complicated arguments, exactly the same �nal results that the despised Laplace methods give you
immediately. Wald showed in great generality what we have just illustrated by one simple example.

The only proper conclusion, as a few recognized at once, is that the supposed distinction be-
tween statistical inference and probability theory was entirely arti�cial { a tragic error of judgment
which has wasted perhaps a thousand man{years of our best mathematical talent in the pursuit of
false goals.

In the works cited, addressed to electrical engineers, the viewpoint of Middleton and van Meter
was that of the Neyman{Pearson and Wald decision theories. At about the same time, Herbert
Simon expounded the Neyman{Pearson viewpoint to economists. The writer collaborated with
David Middleton for a short time while he was writing his large work, and tried to persuade him of
the superiority of the straight Bayesian approach to decision theory. The success of the e�ort may
be judged by comparing Middleton's Chapter 18 { particularly its length { with our exposition. It
seems that persons with orthodox training had received such strong anti{Bayesian indoctrination
that we were in an in�nite regress situation; although they could not deny the results that Bayesians
got on any speci�c problem, they could never believe that Bayesian methods would work on the
next problem until that next solution was also presented to them.

The Classical Matched Filter A funny thing happened in the history of this subject. In the
1930's, Electrical Engineers knew nothing whatsoever about probability theory; they knew about
signal to noise ratios. Receiver input circuits were designed for many years on the basis that signal
to noise ratio was maximized by empirical trial and error. Then a general theoretical result was
found: if you take the ratio of (peak signal) 2 to mean square noise, and �nd, as a variational
principle, the design of input stages of the receiver which will maximize it, this turned out to have
an analytically neat and useful solution. It is now called the classical matched �lter, and it has
been discovered independently by dozens of people.

To the best of our knowledge, the �rst person to derive this matched �lter solution was the late
Professor W. W. Hansen of Stanford University. The writer was working with him, beginning in
May 1942, on problems of radar detection. Shortly before then, Hansen had circulated a little mem-
orandum dated 1941, in which he gave this solution for the design of the optimum response curve for
the receiver �rst stage. Years later I was thinking about an entirely di�erent problem (an optimum
antenna pattern for a radar system to maximize the ratio (signal)=(ground clutter response) , and
when I �nally got the solution, I recognized it as the same result that Bill Hansen had shown me
many years before. This theory is considered later, under \Optimum Antenna and Filter Design."

Throughout the 1950's, almost every time one opened a journal concerned with these problems,
somebody else had a paper announcing the discovery of the same solution. The situation was
satirized in a famous editorial by Peter Elias (1958), entitled \Three Famous Papers". He suggested
that it was high time that people stopped rediscovering the easiest solution, and started to think
about the many harder problems still in need of solution.

But also, in the 1950's people got more sophisticated about the way they handled their detec-
tion problems, and they started using this wonderful new tool, statistical decision theory, to see if
there were still better ways of handling these design problems. The strange thing happened that in
the case of a linear system with gaussian noise, the optimum solution which decision theory leads
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you to, turns out to be exactly the same old classical matched �lter. At �rst glance, it was very
surprising that two approaches so entirely di�erent conceptually should lead to the same solution.
But, note that our robot represents a viewpoint from which it is obvious that the two lines of
argument would have to give the same result.

To our robot it is obvious that the best analysis you can make of the problem will always be
one in which you calculate the probabilities that the various signals are present by means of Bayes'
theorem (but to those with orthodox training this was not obvious; it was vehemently denied). But
let us apply Bayes' theorem in the Logarithmic form of Chapter 4. If we now let S0 and S1 stand
for numerical values giving the amplitude of two possible signals, as a function of V the evidence

for S1 is increased by

log
p(V jS1)
p(V jS0)

=
(V � S0)

2 � (V � S1)
2

2h�2i = const. +
(S1 � S0)

h�2i V : (14{43)

In the case of a linear system with gaussian noise, the observed voltage is itself just a linear
function of the posterior probability measured in db . So, they are essentially just two di�erent
ways of formulating the same problem. Without recognizing it, we had essentially solved this
problem already in the Bayesian hypothesis testing discussion of Chapter 4.

In England, P. M. Woodword had perceived much of this correctly in the 1940's { but he
was many years ahead of his time. Those with conventional statistical training were unable to see
any merit in his work, and simply ignored it. His book (Woodword, 1953) is highly recommended
reading; although it does not solve any of our current problems, its thinking is still in advance of
some current literature and practice.

We have seen that the other non{Bayesian approaches to the theory all amounted to di�erent
philosophies of how you choose the threshold at which you change your decision. Because of the
fact that they all lead to the same probability ratio test, they must necessarily all be derivable from
Bayes' theorem.

The problem just examined by several di�erent decision criteria is, of course, the simplest pos-
sible one. In a more realistic problem we will observe the voltage V (t) as a function time, perhaps
several voltages V1(t); V2(t); � � � in several di�erent channels. We may have many di�erent possible
signals Sa(t); Sb(t); � � � to distinguish and corresponding many possible decisions. We may need to
decide not only whether a given signal is present, but also to make the best estimates of one or more
signal parameters (such as intensity, starting time, frequency, phase, rate of frequency modulation,
etc.). Therefore, just as in the problem of quality control discussed in Chapter 4, the details can
become arbitrarily complicated. But these extension are, from the Bayesian viewpoint, straight-
forward in that they require no new principles beyond those already given, only mathematical
generalization.

We shall return to some of these more complicated problems of detection and �ltering when we
take up frequency/shape estimation; but for now let's look at another elementary kind of decision
problem. In the ones just discussed, we needed Bayes' theorem, but not maximum entropy. Now
we examine a kind of decision problem where we need maximum entropy, but not Bayes' theorem.

The Widget Problem

This problem was �rst propounded at a symposium held at Purdue University in November, 1960 {
at which time, however, the full solution was not known. This was worked out later (Jaynes,
1963c), and some numerical approximations were improved in the computer work of Tribus and
Fitts (1968).

The widget problem has proved to be interesting in more respects than originally realized.
It is a decision problem in which there is no occasion to use Bayes' theorem, because no \new"
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information is acquired. Thus it would be termed a \no data" decision problem in the sense of
Cherno� and Moses (1959). However, at successive stages of the problem we have more and more
prior information; and digesting it by maximum entropy leads to a sequence of prior probability
assignments, which lead to di�erent decisions. Thus it is an example of the \pure" use of maxi-
mum entropy, as in statistical mechanics. It is hard to see how the problem could be formulated
mathematically at all without use of maximum entropy, or some other device [like the method of
Darwin & Fowler (1928) in Statistical Mechanics, or the `method of the most probable distribution'
dating back to Boltzmann (1871)] which turns out in the end to be mathematically equivalent to
maximum entropy.

The problem is interesting also in that we can see a continuous gradation from decision prob-
lems so simple that common sense tells us the answer instantly with no need for any mathematical
theory, through problems more and more involved so that common sense has more and more di�-
culty in making a decision, until �nally we reach a point where nobody has yet claimed to be able
to see the right decision intuitively, and we require the mathematics to tell us what to do.

Finally, it turns out to be very close to an important real problem faced by oil prospectors.
The details of the real problem are shrouded in proprietary caution; but it is not giving away any
secrets to report that, a few years ago, the writer spent a week at the research laboratories of one of
our large oil companies, lecturing for over 20 hours on the widget problem. We went through every
part of the calculation in excruciating detail { with a room full of engineers armed with calculators,
checking up on every stage of the numerical work.

Here is the problem: Mr. A is in charge of a Widget factory, which proudly advertises that it
can make delivery in 24 hours on any size order. This, of course, is not really true, and Mr. A's
job is to protect, as best he can, the Advertising Manager's reputation for veracity. This means
that each morning he must decide whether the day's run of 200 widgets will be painted red, yellow
or green. (For complex technological reasons, not relevant to the present problem, only one color
can be produced per day.) We follow his problem of decision through several stages of increasing
knowledge.

Stage 1. When he arrives at work, Mr. A checks with the stock room and �nds that they now
have in stock 100 red widgets, 150 yellow, and 50 green. His ignorance lies in the fact that he
does not know how many orders for each type will come in during the day. Clearly, in this state of
ignorance, Mr. A will attach the highest signi�cance to any tiny scrap of information about orders
likely to come in today; and if no such scraps are to be had, we do not envy Mr. A his job. Still,
if a decision must be made here and now on no more information that this, his common sense will
probably tell him that he had better build up that stock of green widgets.

Stage 2. Mr. A, feeling the need for more information, calls up the front o�ce and asks, \Can
you give me some idea of how many orders for red, yellow, and green widgets are likely to come in
today?" They reply, \Well, we don't have the breakdown of what has been happening each day,
and it would take us a week to compile that information from our �les. But we do have a summary
of the total sales last year. Over the last year, we sold a total of 13,000 red, 26,000 yellow, and
2600 green. Figuring 260 working days, this means that last year we sold an average of 50 red, 100
yellow, and 10 green each day." If Mr. A ponders this new information for a few seconds I think
he will change his mind, and decide to make yellow ones today.

Stage 3. The man in the front o�ce calls Mr. A back and says, \It just occurred to me that we
do have a little more information that might possibly help you. We have at hand not only the total
number of widgets sold last year, but also the total number of orders we processed. Last year we
got a total of 173 orders for red, 2600 for yellow, and 130 for green. This means that the customers
who use red widgets order, on the average, 13000/173 = 75 widgets per order, while the average
order for yellow and green were 26000/2600=10, and 2600/130=20 respectively." These new data
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do not change the expected daily demand; but if Mr. A is very shrewd and ponders it very hard, I
think he may change his mind again, and decide to make red ones today.

Stage 4. Mr. A is just about to give the order to make red widgets when the front o�ce calls
him again to say, \We just got word that a messenger is on his way here with an emergency order
for 40 green widgets." Now, what should he do? Up to this point, Mr. A's decision problem has
been simple enough so that reasonably good common sense will tell him what to do. But now, he
is in trouble; qualitative common sense is just not powerful enough to solve his problem, and he
needs a mathematical theory to determine a de�nite optimum decision.

Let's summarize all the above data in a table:

Table 14.1 Summary of Four stages of the Widget Problem

R Y G Decision
1. In stock 100 150 50 G
2. Avg. Daily Order Total 50 100 10 Y
3. Avg. Individual Order 75 10 20 R
4. Speci�c Order 40 ?

In the last column we give the decision that seemed intuitively to be the best ones before we had
worked out the mathematics. Do other people agree with this intuitive judgment? Professor Myron
Tribus has put this to a test by giving talks about this problem, and taking votes from the audience
before the solution is given. We quote his �ndings as given in their paper (M. Tribus and G. Fitts,
1968). They use D1; D2; D3; D4 to stand for the optimum decisions in stages 1, 2, 3, 4 respectively:

\Before taking up the formal solution, it may be reported that Jaynes' widget problem has been
presented to many gatherings of engineers who have been asked to vote on D1; D2; D3; D4 . There
is almost unanimous agreement about D1 . There is about 85 percent agreement on D2 . There
is about 70 percent agreement on D3 , and almost no agreement on D4 . One conclusion stands
out from these informal tests; the average engineer has remarkably good intuition in problems of
this kind. The majority vote for D1; D2; and D3 has always been in agreement with the formal
mathematical solution. However, there has been almost universal disagreement over how to defend
the intuitive solution. That is, while many engineers could agree on the best course of action, they
were much less in agreement on why that course was the best one."

Solution For Stage 2

Now, how are we to set up this problem mathematically? In a real life situation, evidently, the
problem would be a little more complicated than indicated so far, because what Mr. A does today
also a�ects how serious his problem will be tomorrow. That would get us into the subject of
dynamic programming. But for now, just to keep the problem simple, we shall solve only the
truncated problem in which he makes decisions on a day to day basis with no thought of tomorrow.

We have just to carry out the steps enumerated under \General Decision Theory" at the end
of the last Chapter. Since Stage 1 is almost too trivial to work with, consider the problem of Stage
2. First, we de�ne our underlying hypothesis space by enumerating the possible \states of nature"
�j that we will consider. These correspond to all possible order situations that could arise; if Mr. A
knew in advance exactly how many red, yellow, and green widgets would be ordered today, his
decision problem would be trivial. Let n1 = 0; 1; 2; : : : be the number of red widgets that will be
ordered today, and similarly n2 , n3 for yellow and green respectively. Then any conceivable order
situation is given by specifying three non{negative integers fn1; n2; n3g . Conversely, every ordered
triple of non{negative integers represents a conceivable order situation.
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Next, we are to assign prior probabilities p(�j jX) = p(n1n2n3jX) to the states of nature,
which maximize the entropy of the distribution subject to the constraints of our prior knowledge.
We solved this problem in general in Chapter 11, Equations (11{27){(11{35); and so we just have
to translate the result into our present notation. The index i on xi in Chapter 11 now corresponds
to the three integers n1; n2; n3 ; the function fk(xi) also corresponds to the ni , since the prior
information at this stage will be used to �x the expectations hn1i; hn2i; hn3i of orders for red,
yellow, and green widgets as 50, 100, 10 respectively. With three constraints we will have three
Lagrange multipliers �1; �2; �3 , and the partition function (11{31) becomes

Z(�1; �2; �3) =

1X
n1=0

1X
n2=0

1X
n3=0

exp(��1n1 � �2n2 � �3n3) =

3Y
i=1

(1� e
��j )�1: (14{44)

The �i are determined from (11{32):

hnii = � @

@�i
logZ =

�
1

e�i � 1

�
:

The maximum entropy probability assignment (11{28) for the states of nature �j = fn1n2n3g
therefore factors:

p(n1n2n3) = p1(n1)p2(n2)p3(n3) (14{46)

with

pi(ni) = (1� e
��i)e��ini ; ni = 1; 2; 3 : : :

=
1

hnii+ 1

� hnii
hnii+ 1

�ni
:

(14{47)

Thus in Stage 2, Mr. A's state of knowledge about today's orders is given by three exponential
distributions:

p1(n1) =
1

51

�
50

51

�n1
; p2(n2) =

1

101

�
100

101

�n2
; p3(n3) =

1

11

�
10

11

�n3
: (14{48)

Applications of Bayes' theorem to digest new evidence E is absent because there is no new evidence.
Therefore, the decision must be made directly from the prior probabilities (14{48), as is always the
case in statistical mechanics.

So, we now proceed to enumerate the possible decisions. These are D1 � make red ones
today, D2 � make yellow ones, D3 � make green ones, for which we are to introduce a loss
function L(Di; �j) . Mr. A's judgment is that there is no loss if all orders are �lled today; otherwise
the loss will be proportional to { and in view of the invariance of the decision rule under proper
linear transformations that we noted at the end of Chapter 13, we may as well take it equal to { the
total number of un�lled orders.

The present stock of red, yellow, and green widgets is S1 = 100 , S2 = 150 , S3 = 50 respec-
tively. On decision D1 (make red widgets) the available stock S1 will be increased by the day's
run of 200 widgets, and the loss will be

L(D1;n1n2n3) = g(n1 � S1 � 200) + g(n2 � S2) + g(n3 � S3) (14{49)

where g(x) is the ramp function
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g(x) �
(
x; x � 0

0; x � 0
: (14{50)

Likewise, on decisions D2 , D3 the loss will be

L(D2;n1n2n3) = g(n1 � S1) + g(n2 � S2 � 200) + g(n3 � S3); (14{51)

L(D3;n1n2n3) = g(n1 � S1) + g(n2 � S2) + g(n3 � S3 � 200): (14{52)

So, if decision D1 is made, the expected loss will be

hLi1 =
X
Ni

p(n1n2n3)L(D1;n1n2n3)

=

1X
n1=0

p1(n1)g(n1 � S1 � 200) +

1X
n2=0

p2(n2)g(n2 � S2) +

1X
n3=0

p3(n3)g(n3 � S3)

and similarly for D2 , D3 . The summations are elementary, giving

hLi1 = hn1ie��1(S1+200) + hn2ie��2S2 + hn3ie��3S3 ;
hLi2 = hn1ie��1S1 + hn2ie��2(S2+200) + hn3ie��3S3 ;
hLi3 = hn1ie��1S1 + hn2ie��2S2 + hn3ie��3(S3+200)

(14{54)

or, inserting numerical values

hLi1 = 0:131 + 22:48 + 0:085 = 22:70

hLi2 = 6:902 + 3:073 + 0:085 = 10:6

hLi3 = 6:902 + 22:48 + 4� 10�10 = 39:38

(14{55)

showing a strong preference for decision D2 � \make yellow ones today," as common sense had
already anticipated.

Physicists will recognize that Stage 2 of Mr. A's decision problem is mathematically the same
as the theory of harmonic oscillators in quantum statistical mechanics. There is still another
engineering application of the harmonic oscillator equations, in some problems of message encoding,
to be noted when we take up communication theory. We are trying to emphasize the generality of
this theory, which is mathematically quite old and well known, but which has been applied in the
past only in some specialized problems in physics. This general applicability can be seen only after
we are emancipated from the orthodox view that all probability distributions must be interpreted
in the frequency sense.

Solution For Stage 3

In Stage 3 of Mr. A's problem we have some additional pieces of information given the average
individual orders for red, yellow, and green widgets. To take account of this new information, we
need to go down into a deeper hypothesis space; set up a more detailed enumeration of the states of
nature in which we take into account not only the total orders for each type, but also the breakdown
into individual orders. We could have done this also in Stage 2, but since at that stage there was
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no information available bearing on this breakdown, it would have added nothing to the problem
(the subtle di�erence that this makes after all will be noted later).

In Stage 3, a possible state of nature can be described as follows. We receive u1 individual
orders for 1 red widget each, u2 orders for 2 red widgets each, : : : ; ur individual orders for r red
widgets each. Also, we receive vy orders for y yellow widgets each, and wg orders for g green
widgets each. Thus a state of nature is speci�ed by an in�nite number of non-negative integers

� = fu1u2 : : : ; v1v2 : : : ;w1w2 : : :g (14{56)

and conversely every such set of integers represents a conceivable state of nature, to which we assign
a probability p(u1u2 : : : ; v1v2 : : : ;w1w2 : : :) .

Today's total demands for red, yellow and green widgets are, respectively

n1 =

1X
r=1

rur; n2 =

1X
y=1

yvy ; n3 =

1X
g=1

gwg ;

the expectations of which were given in Stage 2 as hn1i = 50 , hn2i = 100 , hn3i = 10 . The total
number of individual orders for red, yellow, and green widgets are respectively

m1 =
1X
r=1

ur; m2 =
1X
y=1

vy ; m3 =
1X
g=1

wg ;

and the new feature of Stage 3 is that hm1i , hm2i , hm3i are also known. For example, the
statement that the average individual order for red widgets is 75 means that hn1i = 75hm1i .

With six average values given, we will have six Lagrange multipliers f�1�1;�2�2;�3�3g . The
maximum entropy probability assignment will have the form

p(u1u2 : : : ; v1v2 : : : ;w1w2 : : :) = exp(��0 � �1n1 � �1m1 � �2n2 � �2m2 � �3n3 � �3m3)

which factors:

p(u1u2 : : : ; v1v2 : : : ;w1w2 : : :) = p1(u1u2 : : :)p2(v1v2 : : :)p3(w1w2 : : :) : (14{59)

The partition function also factors:

Z = Z1(�1�1)Z2(�2�2)Z(�3�3) (14{60)

with

Z1(�1�1) =

1X
u1=1

1X
u2=1

� � �exp[��1(u1 + 2u2 + 3u3 + : : :)� �1(u1 + u2 + u3 + : : :)]

=

1Y
r=1

1

1� e�r�1��

(14{61)

and similar expressions for Z2 , Z3 . To �nd �1 , �1 we apply the general rule, Eq. (10{32):

hn1i =
@

@�1

1X
r=1

log(1� e
�r�1��1 ) =

1X
r=1

r

er�1+�1 � 1
; (14{62)
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hm1i =
@

@�1

1X
r=1

log(1� e
�r�1��1) =

1X
r=1

1

er�1+�1 � 1
: (14{63)

Combining with Eqs. (14{57), (14{58), we see that

huri =
1

er�1+�1 � 1
(14{64)

and now the secret is out { stage 3 of Mr. A's decision problem is just the theory of the ideal
Bose{Einstein gas in quantum statistical mechanics!

If we treat the ideal Bose{Einstein gas by the method of the Gibbs grand canonical ensemble,
we obtain just these equations, in which the number r corresponds to the r 'th single{particle
energy level, ur to the number of particles in the r 'th state, �1 and �1 to the temperature and
chemical potential.

In the present problem it is clear that for all r , huri � 1 , and that huri cannot decrease
appreciably below hu1i until r is of the order of 75, the average individual order. Therefore,
�1 will be numerically large, and �1 numerically small, compared to unity. This means that the
series (14{62), (14{63) converge very slowly and are useless for numerical work unless you write a
computer program to do it. However, we can do it analytically if we transform them into rapidly
converging sums as follows:

1X
r=1

1

e�r+� � 1
=

1X
r=1

1X
n=1

e
�n(�r+�) =

1X
n=1

e
�n�

1� e�n�
: (14{65)

The �rst term is already an excellent approximation. Similarly,

1X
r=1

r

e�r+� � 1
=

1X
n=1

e
�n(�r+�)

(1� e�n�)2
(14{66)

and so (14{62) and (14{63) become

hn1i =
e
��1

�
2
1

(14{67)

hm1i =
e
��1

�1
(14{68)

�1 =
hm1i1
hn1i

=
1

75
= 0:0133; (14{69)

e
�1 =

hn1i1
hm1i

= 112:5; (14{70)

�1 = 4:722: (14{71)

Tribus and Fitts, evaluating the sums by computer, get �1 = 0:0131 , �1 = 4:727 ; so our approxi-
mations (14{67), (14{68) are very good, at least in the case of red widgets.

The probability that ur has a particular value is, from (14{59) or (14{61),

p(ur) = (1� e
�r�1��)e(�r�1+�1)ur (14{72)
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which has the mean value (14{64) and the variance

var(ur) = hu2ri � huri2 =
e
r�1+�1

er�1+�1 � 1
: (14{73)

The total demand for red widgets

n1 =
1X
r=1

rur (14{74)

is expressed as the sum of a large number of independent terms. The pdf for n1 will have the
mean value (14{67) and the variance

var(n1) =

1X
r=1

r
2var(ur) =

1X
r=1

r
2
e
r�1+�1

(er�1+�1 � 1)2
(14{75)

which we convert into the rapidly convergent sum

1X
r;n=1

nr
2
e
�n(r�+�) =

1X
n=1

n
e
�n(�+�) + e

�n(2�+�)

(1� e�n�)3
(14{76)

or, approximately

var(n1) =
2e��1

�31

=
2

�1
hn1i: (14{77)

At this point we can use some mathematical facts concerning the Central Limit Theorem. Because
n1 is the sum of a large number of small terms to which we have assigned independent probabilities,
our probability distribution for n1 will be very nearly gaussian:

p(n1) � A exp

�
��1(n1 � hn1i)2

4hn1i

�
(14{78)

for those values of n1 which can arise in many di�erent ways. For example, the case n = 2 can
arise in only two ways: u1 = 2 , or u2 = 1 , all others uk being zero. On the other hand, the case
n1 = 150 can arise in an enormous number of di�erent ways, and the \smoothing" mechanism of
the central limit theorem can operate. Thus, Eq. (14{78) will be a good approximation for the
large values of n1 of interest to us, but not for small n1 .

Then how accurately can Mr. A predict today's orders n1 for red widgets? The (mean) �
(standard deviation) estimate from (14{78) is

(n1)est = hn1i �
s

2hn1i
�1

= 50� 86:6 (14{79)

It was apparent from the start that his information is too meager to determine n1 to any accuracy;
yet the distribution does place a useful upper bound on the probable value. But this is a case where
the probability distribution is so broad and skewed that the (mean) � (standard deviation) is not
a good criterion. The quartiles of (14{78) would tell us something more useful.


