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CHAPTER 7

THE CENTRAL GAUSSIAN, OR NORMAL, DISTRIBUTION

\My own impression � � � is that the mathematical results have outrun their in-

terpretation and that some simple explanation of the force and meaning of the
celebrated integral � � � will one day be found � � � which will at once render useless
all the works hitherto written." - - - Augustus de Morgan (1838)

Here, de Morgan was expressing his bewilderment at the \curiously ubiquitous" success of methods
of inference based on the gaussian, or normal, \error law" (sampling distribution), even in cases
where the law is not at all plausible as a statement of the actual frequencies of the errors. But the
explanation was not forthcoming as quickly as he expected.

In the middle 1950's the writer heard an after{dinner speech by Professor Willy Feller, in
which he roundly denounced the practice of using gaussian probability distributions for errors,
on the grounds that the frequency distributions of real errors are almost never gaussian. Yet in
spite of Feller's disapproval, we continued to use them, and their ubiquitous success in parameter
estimation continued. So 145 years after de Morgan's remark the situation was still unchanged, and
the same surprise was expressed by George Barnard (1983): \Why have we for so long managed
with normality assumptions?"

Today we believe that we can, at last, explain (1) the inevitably ubiquitous use, and (2) the
ubiquitous success, of the gaussian error law. Once seen, the explanation is indeed trivially obvious;
yet to the best of our knowledge it is not recognized in any of the previous literature of the �eld,
because of the universal tendency to think of probability distributions in terms of frequencies. We
cannot understand what is happening until we learn to to think of probability distributions in
terms of their demonstrable information content instead of their imagined (and as we shall see,
irrelevant) frequency connections.

A simple explanation of these properties { stripped of past irrelevancies { has been achieved
only very recently, and this development changed our plans for the present work. We decided that it
is so important that it should be inserted at this somewhat early point in the narrative, even though
we must then appeal to some results that are established only later. In the present Chapter, then,
we survey the historical basis of gaussian distributions and get a quick preliminary understanding
of their functional role in inference. This understanding will then guide us directly { without the
usual false starts and blind alleys { to the computational procedures which yield the great majority
of the useful applications of probability theory.

The Gravitating Phenomenon

We have noted an interesting phenomenon several times in previous Chapters; in probability theory
there seems to be a central, universal distribution

'(x) � 1p
2�

exp(�x2=2) (7{1)

toward which all others gravitate under a very wide variety of di�erent operations { and which,
once attained, remains stable under an even wider variety of operations. The famous Central
Limit Theorem, derived below, concerns one special case of this. In Chapter 4, we noted that a
binomial or beta sampling distribution goes asymptotically into a gaussian when the number of trials
becomes large. In Chapter 6 we noted a virtually universal property, that posterior distributions
for parameters go into gaussians when the number of data values increases.
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In physics these gravitating and stability properties have made this distribution the universal
basis of kinetic theory and statistical mechanics; in biology, it is the natural tool for discussing
population dynamics in ecology and evolution. We cannot doubt that it will become equally
fundamental in economics, where it already enjoys ubiquitous use, but somewhat apologetically, as
if there were some doubt about its justi�cation. We hope to assist this development by showing
that its range of validity for such applications is far wider than usually supposed.

This distribution is called the Gaussian, or Normal distribution for historical reasons discussed
in our closing Comments. Both names are inappropriate and misleading today; all the correct
connotations would be conveyed if we called it, simply, the Central distribution of probability
theory.y We consider �rst three derivations of it that were important historically and conceptually,
because they made us aware of three important properties of the gaussian distribution.

The Herschel{Maxwell Derivation

One of the most interesting derivations, from the standpoint of economy of assumptions, was
given by the astronomer John Herschel (1850). He considered the two{dimensional probability
distribution for errors in measuring the position of a star. Let x be the error in the longitudinal
(east{west) direction and y the error in the declination (north{south) direction, and ask for the
joint probability distribution �(x; y). Herschel made two postulates (P1, P2) that seemed required
intuitively by conditions of geometrical homogeneity:

(P1): Knowledge of x tells us nothing about y . That is, probabilities of errors in orthogonal
directions should be independent; so the undetermined distribution should have the functional
form

�(x; y) dx dy = f(x) dx � f(y) dy : (7{2)

We can write the distribution equally well in polar coordinates r; � de�ned by x = r cos �; y =
r sin � :

�(x; y) dx dy = g(r; �) rdr d� : (7{3)

(P2): This probability should be independent of the angle: g(r; �) = g(r). Then (7{2), (7{3) yield
the functional equation

f(x) f(y) = g(
p
x2 + y2) ; (7{4)

and setting y = 0, this reduces to g(x) = f(x) f(0), so (7{4) becomes the functional equation

log
f(x)

f(0)
+ log

f(y)

f(0)
= log

f(
p
x2 + y2)

f(0)
: (7{5)

But the general solution of this is obvious; a function of x plus a function of y is a function only
of x2 + y2 . The only possibility is that log [f(x)=f(0)] = ax2 . We have a normalizable probability
only if a is negative, and then normalization determines f(0); so the general solution can only have
the form

f(x) =

r
�

�
e��x

2

; � > 0 (7{6)

with one undetermined parameter. The only two{dimensional probability density satisfying Her-
schel's invariance conditions is a circular symmetric gaussian:

y However, it is general usage outside probability theory to denote any function of the general form
exp(�ax2) as a gaussian function, and we shall follow this.
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�(x; y) =
�

�
exp[��(x2 + y2)] : (7{7)

Ten years later, James Clerk Maxwell (1860) gave a three{dimensional version of this same argument
to �nd the probability distribution �(vx; vy ; vz) / exp[��(v2x+ v2y + v2z )] for velocities of molecules
in a gas, which has become well known to physicists as the `Maxwellian velocity distribution law'
fundamental to kinetic theory and statistical mechanics.

The Herschel{Maxwell argument is particularly beautiful because two qualitative conditions,
incompatible in general, become compatible for just one quantitative distribution, which they
therefore uniquely determine. Einstein (1905) used the same kind of argument to deduce the
Lorentz transformation law from his two qualitative postulates of relativity theory.z

The Herschel{Maxwell derivation is economical also in that it does not actually make any use
of probability theory; only geometrical invariance properties which could be applied equally well in
other contexts. Gaussian functions are unique objects in their own right, for purely mathematical
reasons. But now we give a famous derivation that makes explicit use of probabilistic intuition.

The Gauss Derivation

We estimate a location parameter � from (n+ 1) observations (x0 � � �xn) by maximum likelihood.
If the sampling distribution factors: p(x0 � � �xnj�) = f(x0j�) � � �f(xnj�), the likelihood equation is

nX
i=0

@

@�
log f(xij�) = 0 (7{8)

or, writing

log f(xj�) = g(� � x) = g(u) (7{9)

the maximum likelihood estimate �̂ will satisfy

X
i

g0(�̂ � xi) = 0 : (7{10)

Now intuition may suggest to us that the estimate ought to be also the arithmetic mean of the
observations:

�̂ = x =
1

n + 1

nX
i=0

xi ; (7{11)

but (7{10) and (7{11) are in general incompatible [(7{11) is not a root of (7{10)]. Nevertheless,
consider a possible sample, in which only one observation x0 is nonzero: if in (7{11) we put

x0 = (n+ 1)u ; x1 = x2 = � � �= xn = 0 ; (�1 < u <1) ; (7{12)

then �̂ = u; �̂ � x0 = �nu, whereupon (7{10) becomes g0(�nu) + n g0(u) = 0 ; n = 1; 2; 3; � � � .
The case n = 1 tells us that g0(u) must be an antisymmetric function: g0(�u) = �g0(u), so this
reduces to

z These are: (1) The laws of physics take the same form for all moving observers; and (2) The velocity of
light has the same constant numerical value for all such observers. These are also contradictory in general,
but become compatible for one particular quantitative law of transformation of space and time to a moving
coordinate system.
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g0(nu) = n g0(u) ; (�1 < u <1); n = 1; 2; 3; � � � : (7{13)

Evidently, the only possibility is a linear function:

g0(u) = au ; g(u) =
1

2
au2 + b : (7{14)

Converting back by (7{9), a normalizable distribution again requires that a be negative, and
normalization then determines the constant b. The sampling distribution must have the form

f(xj�) =
r

�

2�
e�

1

2
�(x��)2 ; (0 < � <1) (7{15)

Since (7{15) was derived assuming the special sample (7{12), we have shown thus far only that
(7{15) is a necessary condition for the equality of maximum likelihood estimate and sample mean.
Conversely, if (7{15) is satis�ed, then the likelihood equation (7{8) always has the unique solution
(7{11); and so (7{15) is the necessary and su�cient condition for this agreement. The only freedom
is the unspeci�ed scale parameter �.

Historical Importance of Gauss' Result

This derivation was given by Gauss (1809), as little more than a passing remark in a work concerned
with astronomy. It might have gone unnoticed but for the fact that Laplace saw its merit and
the following year published a large work calling attention to it and demonstrating the many
useful properties of (7{15) as a sampling distribution. Ever since, it has been called the `gaussian
distribution'.

Why was the Gauss derivation so sensational in e�ect? Because it put an end to a long {
and, it seems to us today, scandalous { psychological hangup su�ered by some of the greatest
mathematicians of the time. The distribution (7{15) had been found in a more or less accidental
way already by de Moivre (1733), who did not appreciate its signi�cance and made no use of it.
Throughout the 18'th Century it would have been of great value to astronomers faced constantly
with the problem of making the best estimates from discrepant observations; yet the greatest minds
failed to see it. Worse, even the qualitative fact underlying data analysis { cancellation of errors
by averaging of data { was not perceived by so great a mathematician as Leonhard Euler.

Euler (1749) trying to resolve the `Great Inequality of Jupiter and Saturn' found himself
with what was at the time a monstrous problem (described briey in our closing Comments).
To determine how the longitudes of Jupiter and Saturn had varied over long times he had 75
observations over a 164 year period (1582{1745), and eight orbital parameters to estimate from
them.

Today, a desk{top microcomputer could solve this problem by an algorithm to be given in
Chapter 19, and print out the best estimates of the eight parameters and their accuracies, in about
one minute [the main computational job is the inversion of an (8 � 8) matrix]. Euler failed to
solve it, but not because of the magnitude of this computation; he failed even to comprehend the
principle needed to solve it. Instead of seeing that by combining many observations their errors tend
to cancel, he thought that this would only `multiply the errors' and make things worse. In other
words, Euler concentrated his attention entirely on the worst possible thing that could happen, as
if it were certain to happen { which makes him perhaps the �rst really devout believer in Murphy's
Law.y

Yet practical people, with experience in actual data taking, had long perceived that this
worst possible thing does not happen. On the contrary, averaging our observations has the great

y \If anything can go wrong, it will go wrong."
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advantage that the errors tend to cancel each other.z Hipparchus, in the second Century B. C.,
estimated the precession of the equinoxes by averaging measurements on several stars. In the late
sixteenth Century, taking the average of several observations was the routine procedure of Tycho
Brahe. Long before it had any formal theoretical justi�cation from mathematicians, intuition had
told observational astronomers that this averaging of data was the right thing to do.

But some thirty years after Euler's e�ort another competent mathematician, Daniel Bernoulli
(1777), still could not comprehend the procedure. Bernoulli supposes an archer is shooting at a
vertical line drawn on a target, and asks how many shots land in various vertical bands on either
side of it:

\Now is it not self{evident that the hits must be assumed to be thicker and more numerous on any given
band the nearer this is to the mark? If all the places on the vertical plane, whatever their distance from
the mark, were equally liable to be hit, the most skillful shot would have no advantage over a blind
man. That, however, is the tacit assertion of those who use the common rule [the arithmetic mean] in
estimating the value of various discrepant observations, when they treat them all indiscriminately. In
this way, therefore, the degree of probability of any given deviation could be determined to some extent
a posteriori, since there is no doubt that, for a large number of shots, the probability is proportional
to the number of shots which hit a band situated at a given distance from the mark."

We see that Daniel Bernoulli (1777), like his uncle James Bernoulli (1713), saw clearly the distinc-
tion between probability and frequency. In this respect his understanding exceeded that of John
Venn 100 years later. Yet he fails completely to understand the basis for taking the arithmetic
mean of the observations as an estimate of the true `mark'. He takes it for granted (although a
short calculation, which he was easily capable of doing, would have taught him otherwise) that if
the observations are given equal weight in calculating the average, then one must be assigning equal
probability to all errors, however great. Presumably, many others made intuitive guesses like this,
unchecked by calculation, making this part of the folklore of the time. Then one can appreciate
how astonishing it was when Gauss, 32 years later, proved that the condition

(maximum likelihood estimate) = (arithmetic mean)

uniquely determines the gaussian error law, not the uniform one.
In the meantime, Laplace (1783) had investigated this law as a limiting form of the binomial

distribution, derived its main properties, and suggested that it was so important that it ought to be
tabulated; yet lacking the above property demonstrated by Gauss, he still failed to see that it was
the natural error law (the Herschel derivation was still 77 years in the future). Laplace persisted
in trying to use the form f(x) / exp(�ajxj) which caused no end of analytical di�culties. But he
did understand the qualitative principle that combination of observations improves the accuracy of
estimates, and this was enough to enable him to solve, in 1787, the problem of Jupiter and Saturn,
on which the greatest minds had been struggling since before he was born.

Twenty{two years later, when Laplace saw the Gauss derivation, he understood it all in a
ash { doubtless mentally kicked himself for not seeing it before { and hastened (Laplace, 1810,
1812) to give the Central Limit Theorem and the full solution to the general problem of reduction
of observations, which is still how we analyze it today. Not until the time of Einstein did such a
simple mathematical argument again have such a great e�ect on scienti�c practice.

The Landon Derivation

A derivation of the gaussian distribution that gives us a very lively picture of the process by which
a gaussian frequency distribution is built up in Nature was given in 1941 by Vernon D. Landon, an
electrical engineer studying properties of noise in communication circuits. We give a generalization
of his argument, in our current terminology and notation.

z If positive and negative errors are equally likely, then the probability that ten errors all have the same
sign is (0:5)9 ' 0:002.
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The argument was suggested by the empirical observation that the variability of the electrical
noise voltage v(t) observed in a circuit at time t seems always to have the same general properties
even though it occurs at many di�erent levels (say, mean square values) corresponding to di�erent
temperatures, ampli�cations, impedance levels, and even di�erent kinds of sources { natural, as-
trophysical, or man{made by many di�erent devices such as vacuum tubes, neon signs, capacitors,
resistors made of many di�erent materials, etc. Previously, engineers had tried to characterize the
noise generated by di�erent sources in terms of some \statistic" such as the ratio of peak to RMS
(Root Mean Square) value, which it was thought might identify its origin. Landon recognized that
these attempts had failed, and that the samples of electrical noise produced by widely di�erent
sources \ � � � cannot be distinguished one from the other by any known test ." z

Landon reasoned that if this frequency distribution of noise voltage is so universal, then it
must be better determined theoretically than empirically. To account for this universality but for
magnitude, he visualized not a single distribution for the voltage at any given time, but a hierarchy
of distributions p(vj�) characterized by a single scale parameter �2 , which we shall take to be the
expected square of the noise voltage. The stability seems to imply that if the noise level �2 is
increased by adding a small increment of voltage, the probability distribution still has the same
functional form, but only moved up the hierarchy to the new value of � . He discovered that for
only one functional form of p(vj�) will this be true.

Suppose the noise voltage v is assigned the probability distribution p(vj�). Then it is incre-
mented by a small extra contribution �, becoming v0 = v + � where � is small compared to � , and
has a probability distribution q(�)d�, independent of p(vj�). Given a speci�c �, the probability for
the new noise voltage to have the value v0 would be just the previous probability that v should have
the value (v0 � �). Thus by the product and sum rules of probability theory, the new probability
distribution is the convolution

f(v0) =

Z
p(v0 � �j�) q(�) d� : (7{16)

Expanding this in powers of the small quantity � and dropping the prime, we have

f(v) = p(vj�)� @p(vj�)
@v

Z
� q(�) d�+

1

2

@2p(vj�)
@v2

Z
�2 q(�) d�+ � � � (7{17)

or, now writing for brevity p � p(vj�),

f(v) = p� h�i@p
@v

+
1

2
h�2i@

2p

@v2
+ � � � (7{18)

This shows the general form of the expansion; but now we assume that the increment is as likely to
be positive as negative; h�i = 0.? At the same time, the expectation of v2 is increased to �2+ h�2i,
so Landon's invariance property requires that f(v) should be equal also to

z This universal, stable type of noise was called \grass" because that is what it looks like on an oscilloscope.
To the ear, it sounds like a smooth hissing without any discernible pitch; today this is familiar to everyone
because it is what we hear when a television receiver is tuned to an unused channel. Then the automatic
gain control turns the gain up to the maximum, and both the hissing sound and the ickering `snow' on
the screen are the greatly ampli�ed noise generated by random thermal motion of electrons in the antenna
according to the Nyquist law noted below.
? If the small increments all had a systematic component in the same direction, one would build up a large
\D. C." noise voltage, which is manifestly not the present situation. But the resulting solution might have
other applications; see Exercise 7.1.
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f(v) = p+ h�2i @p

@�2
: (7{19)

Comparing (7{18) and (7{19), we have the condition for this invariance:

@p

@�2
=

1

2

@2p

@v2
: (7{20)

But this is a well{known di�erential equation (the \di�usion equation"), whose solution with the
obvious initial condition p(vj� = 0) = �(v) is

p(vj�) = 1p
2��2

exp

�
� v2

2�2

�
; (7{21)

the standard Gaussian distribution. By minor changes in the wording, the above mathematical
argument can be interpreted either as calculating a probability distribution, or as estimating a
frequency distribution; in 1941 nobody except Harold Je�reys and John Maynard Keynes took
note of such distinctions. As we shall see, this is, in spirit, an incremental version of the Central
Limit Theorem; instead of adding up all the small contributions at once, it takes them into account
one at a time, requiring that at each step the new probability distribution has the same functional
form (to second order in �).

This is just the process by which noise is produced in Nature { by addition of many small
increments, one at a time (for example, collisions of individual electrons with atoms, each collision
radiating another tiny pulse of electromagnetic waves, whose sum is the observed noise). Once a
gaussian form is attained, it is preserved; this process can be stopped at any point and the resulting
�nal distribution still has the Gaussian form. What is at �rst surprising is that this stable form is
independent of the distributions q(�) of the small increments; that is why the noise from di�erent
sources could not be distinguished by any test known in 1941.y

Today we can go further and recognize that the reason for this independence was that only
the second moment h�2i of the increments mattered for the updated point distribution (that is, the
probability distribution for the voltage at a given time that we were seeking). Even the magnitude
of the second moment did not matter for the functional form; it determined only how far up
the �2{hierarchy we moved. But if we ask a more detailed question, involving time{dependent
correlation functions, then noise samples from di�erent sources are no longer indistinguishable.
The second order correlations of the form h�(t)�(t0)i are related to the power spectrum of the
noise through the Wiener{Khinchin theorem, which was just in the process of being discovered in
1941; they give information about the duration in time of the small increments. But if we go to
fourth order correlations h�(t1)�(t2)�(t3)�(t4)i we obtain still more detailed information, di�erent
for di�erent sources even though they all have the same Gaussian point distribution and the same
power spectrum.z

y Landon's original derivation concerned only a special case of this, in which q(�) = [�
p
a2 � �2]�1; j�j <

a corresponding to an added sinusoid of amplitude a and unknown phase. But the important thing was his
idea of the derivation, which anyone can generalize once it is grasped. In essence he had discovered inde-
pendently, in the expansion (7{18), what is now called the Fokker{Planck equation of statistical mechanics,
a powerful method which we shall use later to show how a nonequilibrium probability distribution relaxes
into an equilibrium one. It is now known to have a deep meaning, in terms of continually remaximized
entropy.
z Recognition of this invalidates many na��ve arguments by physicists who try to prove that \Maxwell
Demons" are impossible by assuming that thermal radiation has a universal character, making it impossible
to distinguish the source of the radiation. But only the second order correlations are universal; a demon
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Exercise 7.1. The above derivation established the result to order h�2i. Now suppose that
we add n such small increments, bringing the variance up to �2+ nh�2i. Show that in the limit
n!1; h�2i ! 0; nh�2i ! const:, the gaussian distribution (7{21) becomes exact (the higher
terms in the expansion (7{17) become vanishingly small compared to the terms in h�2i).

Exercise 7.2. Repeat the above derivation without assuming that h�i = 0 in (7{18). The
resulting di�erential equation is a Fokker{Planck equation. Show that there is now a super-
imposed steady drift, the solutions having the form exp[�(v � a�2)2=2�2]. Suggest a possible
useful application of this result. Hint : �2 and v may be given other interpretations, such as
time and distance.

Why the Ubiquitous Use of Gaussian Distributions?

We started this Chapter by noting the surprise of de Morgan and Barnard at the great and ubiq-
uitous success that is achieved in inference { particularly, in parameter estimation { through the
use of gaussian sampling distributions, and the reluctance of Feller to believe that such success was
possible. It is surprising that to understand this mystery requires almost no mathematics { only a
conceptual re{orientation toward the idea of probability theory as logic.

Let us think in terms of the information that is conveyed by our equations. Whether or not
the long{run frequency distribution of errors is in fact gaussian is almost never known empirically;
what the scientist knows about them (from past experience or from theory) is almost always simply
their general magnitude. For example, today most accurate experiments in physics take data
electronically, and a physicist usually knows the mean{square error of those measurements because
it is related to the noise energy and temperature by the well{known Nyquist thermal uctuation
law.? But he seldom knows any other property of the noise. If one assigns the �rst two moments
of a noise probability distribution to agree with such information, but has no further information
and therefore imposes no further constraints, then a gaussian distribution �t to those moments
will, according to the Principle of Maximum Entropy as discussed in Chapter 11, represent most
honestly his state of knowledge about the noise.

But we must stress a point of logic concerning this. It represents most honestly his state of
knowledge about the particular samples of noise for which he had data. This never includes the
noise in the measurement which he is about to make! If we suppose that knowledge about some past
samples of noise applies also to the speci�c sample of noise that we are about to encounter, then we
are making an inductive inference that might or might not be justi�ed; and honesty requires that
we recognize this. Then past noise samples are relevant for predicting future noise only through
those aspects that we believe should be reproducible in the future.

who perceives fourth order correlations in thermal radiation is far from blind about the details of his
surroundings. Indeed, the famous Hanbury Brown{Twiss interferometer (1956), invokes just such a fourth{
order demon, in space instead of time and observing h�2(x1)�2(x2)i to measure the angular diameters of

stars. Conventional arguments against Maxwell demons are logically awed and prove nothing.
? A circuit element of resistance R(!) ohms at angular frequency ! develops across its terminals in a small
frequency band �! = 2��f a uctuating mean{square open{circuit voltage V 2 = 4kTR�f , where f
is the frequency in Hz (cycles per second), k � 1:38� 10�23 joules/degree is Boltzmann's constant, and
T is the Kelvin temperature. Thus it can deliver to another circuit element the maximum noise power
P = V 2=4R = kT�f . At room temperature, T = 300K, this is about 4 � 10�15 watts per megahertz
bandwidth. Any signal of lower intensity than this will be lost in the thermal noise and cannot be recovered,
ordinarily, by any amount of ampli�cation. But prior information about the kind of signal to be expected
will still enable a Bayesian computer program to extract weaker signals than this, as the work of Bretthorst
(1988) demonstrates. We study this in Chapter 23.
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In practice, common sense usually tells us that any observed �ne details of past noise are
irrelevant for predicting �ne details of future noise; but that coarser features, such as past mean{
square values, may be expected reasonably to persist, and thus be relevant for predicting future
mean{square values. Then our probability assignment for future noise should make use only of
those coarse features of past noise which we believe to have this persistence. That is, it should
have maximum entropy subject to the constraints of the coarse features that we retain because we
expect them to be reproducible. Probability theory becomes a much more powerful reasoning tool
when guided by a little common{sense judgment of this kind about the real world, as expressed in
our choice of a model and assignment of prior probabilities.

Thus we shall �nd in studying Maximum Entropy below that when we use a gaussian sampling
distribution for the noise, we are in e�ect telling the robot: \The only thing I know about the noise
is its �rst two moments; so please take that into account in assigning your probability distribution,
but be careful not to assume anything else about the noise." We shall see presently how well the
robot obeys this instruction.y

This does not mean that the full frequency distribution of the past noise is to be ignored if
it happens to be known. Probability theory as logic does not conict with conventional orthodox
theory if we actually have the information (that is, perfect knowledge of limiting frequencies, and no
other information) that orthodox theory presupposes; but it continues to operate using whatever
information we have. In the vast majority of real problems we lack this frequency information
but have other information (such as mean square value, digitizing interval, power spectrum of the
noise); and a correct probability analysis readily takes this into account.

Exercise 7.3. Suppose that the long{run frequency distribution of the noise has been found
empirically to be the function f(e) (never mind how one could actually obtain that information)
and we have no other information about the noise. Show, by reasoning like that leading to
(4{48) and using Laplace's Rule of Succession (6{70), that in the limit of a very large amount
of frequency data, our probability distribution for the noise becomes numerically equal to the
observed frequency distribution: p(ejI) ! f(e). This is what Daniel Bernoulli conjectured in
the above quotation. But state very carefully the exact conditions for this to be true.

In other �elds such as analysis of economic data, knowledge of the noise may be more crude,
consisting of an approximate general magnitude of the noise and nothing else. But for reasons
noted below (Central Limit Theorem) we still have good reasons to expect a gaussian functional
form; so a gaussian distribution �t to that magnitude is still a good approximation to one's state
of knowledge. If even that knowledge is lacking, we still have good reason to expect the gaussian
functional form, so a sampling distribution with � an undetermined nuisance parameter to be
estimated from the data is an appropriate and useful starting point. Indeed, as Bretthorst (1988)
demonstrates, this is often the safest procedure even in a physics experiment, because the noise
may not be the theoretically well understood Nyquist noise [No source has ever been found which
generates noise below the Nyquist value { and from the second law of thermodynamics we do not
expect to �nd such a source { but a defective apparatus may generate noise far above the Nyquist
value. One can still conduct the experiment with such an apparatus, taking into account the greater
noise magnitude; but of course, a wise experimenter who knows that this is happening, will try to
improve his apparatus before proceeding.]

We shall �nd, in the Central Limit Theorem, still another strong justi�cation for using gaussian
error distributions. But if the gaussian law is nearly always a good representation of our state of
knowledge about the errors in our speci�c data set , it follows that inferences made from it are

y If we have further pieces of information about the noise, such as a fourth moment or an upper bound,
the robot can take these into account also by assigning generalized gaussian { that is, general maximum
entropy { noise probability distributions. Examples of the use of the fourth moment in economics and
physical chemistry are given by Zellner (19XX) and Chris (19XX).
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nearly always the best ones that could have been made from the information that we actually have.
Now as we note presently, the data give us a great deal of information about the noise, not usually
recognized. But Bayes' theorem automatically takes into account whatever can be inferred about
the noise from the data. Therefore Bayesian inferences using a gaussian sampling distribution
could be improved upon only by one who had additional information about the actual errors in his
speci�c data set, beyond its �rst two moments and beyond what is known from the data.

For this reason, whether our inferences are successful or not, unless such extra information is
at hand there is no justi�cation for adopting a di�erent error law; and indeed, no principle to tell
us which di�erent one to adopt. This explains the ubiquitous use. Since the time of Gauss and
Laplace, the great majority of all inference procedures with continuous probability distributions
have been conducted { necessarily and properly { with gaussian sampling distributions. Those
who disapproved of this, whatever the grounds for their objection, have been unable to o�er any
alternative that was not subject to a worse objection; so already in the time of de Morgan, some
25 years after the work of Laplace, use of the gaussian rule had become ubiquitous by default, and
this continues today.

Recognition of this considerably simpli�es our expositions of Bayesian inference; 95% of our
analysis can be conducted with a gaussian sampling distribution, and only in special circumstances
(unusual prior information such as that the errors are pure digitizing errors or that there is an
upper bound to the possible error magnitude) is there any reason for adopting a di�erent one. But
even in those special circumstances, the gaussian analysis usually leads to �nal conclusions so near
to the exact ones that the di�erence is hardly worth the extra e�ort.

It is now clear that the most ubiquitous reason for using the gaussian sampling distribution is
not that the error frequencies are known to be { or assumed to be { gaussian; but rather because
those frequencies are unknown. One sees what a totally di�erent outlook this is than that of Feller
and Barnard; `normality' was not an assumption of physical fact at all. It was a valid description

of our state of information. In most cases, had we done anything di�erent we would be making an
unjusti�ed, gratuitous assumption (violating one of our Chapter 1 desiderata of rationality). But
this still does not explain why the procedure is so successful; so we need to explain much more.

Why the Ubiquitous Success?

By `ubiquitous success' we mean that for nearly two Centuries, the gaussian sampling distribution
has continued to be, in almost all problems, much easier to use and to yield better results (more
accurate parameter estimates) than any alternative sampling distribution that anyone has been
able to suggest. To explain this requires that analysis that de Morgan predicted would one day be
found.

As a start, note that we are going to use some function of the data as our estimate; then
whether our present inference { here and now { is or is not successful, depends entirely on what
that function is, and on the actual errors that are present in the one speci�c data set that we are

analyzing. Therefore to explain its success requires that we examine that speci�c data set. The
frequency distribution of errors in other data sets that we might have got but did not { and which
we are therefore not analyzing { is irrelevant to the question we now seek to answer, unless (a) it is
actually known, not merely imagined; and (b) it tells us something about the errors in our speci�c
data set that we would not know otherwise. But in practice, those who emphasize frequencies
most strongly merely assume them without pointing to any actual measurement. They persist in
trying to relate the gaussian distribution to assumed frequencies in imaginary data sets that have
never been observed; thus they continue to look in the wrong place, and so are unable to �nd any
explanation of the success.

In constrast, consider a typical real problem. We are trying to estimate a location parameter
�, and our data D consist of n observations: D = fy1 � � �yng. But they have errors that vary in a
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way that is uncontrolled by the experimenter and unpredictable from his state of knowledge.z In
the following we denote the unknown true value by �0 , and use � as a general running variable.
Then

yi = �0 + ei ; (1 � i � n) (7{22)

where ei is the actual error in the i'th measurement. Now if we assign an independent gaussian
sampling distribution:

p(Dj�; �; I) =
�

1

2��2

�n=2
exp

�
�
P
(yi � �)2

2�2

�
(7{23)

we have
nX
i=1

(yi � �)2 = n[(�� y)2 + s2] (7{24)

where

y � 1

n

X
yi = �0 + e

s2 � y2 � (y)2 = e2 � (e)2

(7{25)

The consequence of assigning the gaussian error distribution is that only the �rst two moments of
the data are going to be used for inferences about � (and about � , if it is unknown). They are
called su�cient statistics , and we study the general phenomenon of su�ciency in Chapter 8. From
(7{25) it follows that only the �rst two moments of the noise values fe1 � � �eng:

e =
1

n

X
i

ei ; e2 =
1

n

X
i

e2i (7{26)

can matter for the error in our estimate. We have, in a sense, the simplest possible connection
between the errors in our data and the error in our estimate, allowing the maximum possible
opportunity for that error cancellation to take place.

When we assign an independent gaussian sampling distribution to additive noise, what we achieve
is not that the error frequencies are correctly represented, but that those frequencies are made
irrelevant; all other aspects of the noise beyond e and e2 can contribute nothing to the numerical
value or the accuracy of our estimates.

Feller, thinking exclusively in terms of sampling distributions for estimators, thought that
unless our sampling distribution correctly represented the actual frequencies of errors, our estimates
would be in some way unsatisfactory. Now there is an important and closely related truth here: The
actual variability of the estimate in the long run over all possible data sets, is indeed determined by

the actual long run frequency distribution of the errors, if such a thing exists. But does it follow
that our assigned sampling distribution must be equal to that frequency distribution in order to
get satisfactory estimates? Might not the estimates of � be made still better in the long run (i.e.,
more closely concentrated about the true value �0) by a di�erent choice of sampling probability

z This does not mean that they are `not determined by anything' as is so often implied by those su�ering
from the Mind Projection Fallacy; it means only that they are not determined by any circumstances that
the experimenter is observing. Whether controlling factors could or could not be observed in principle is
irrelevant to the present problem, which is to reason as best we can in the state of knowledge that we have

speci�ed.
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distribution? To the best of our knowledge, orthodoxy has never attempted to give any such
demonstration; there is a big gap in the logic here, even from a pure sampling{theory standpoint.

But more fundamental than the logical gap is the conceptual disorientation; the scenario
envisaged by Feller is not the real problem facing a scientist. His job is not to fantasize about an
imaginary `long run' which will never be realized; but to estimate the parameters in the one real
case before him, from the one real data set that he actually has.?

In the absence of cogent prior information about � (that is, if the prior density p(�jI) is
substantially constant over the region of high likelihood), then Bayes' theorem will lead us to make
the posterior (mean) � (standard deviation) estimatey

(�)est =

8<
:
y � �=

p
n ; � known

y � s=
p
n� 3 ; � unknown

9=
; (7{27)

Thus the actual error we shall make in the estimate is the average of the individual errors in our
speci�c data set:z

� = y � �0 = e (7{28)

Note that e is not an average over any probability distribution; it is the average of the actual

errors; and this result holds however the actual errors ei are distributed. For example, whether
a histogram of the ei closely resembles the assigned gaussian (7{23) or whether all of the error
happens to be in e1 does not matter in the least; (7{28) remains correct.

The Near{Irrelevance of Sampling Frequency Distributions

Another way of looking at this is helpful. As we have seen before, in a repetitive situation the
probability of any event is usually the same as its expected frequency (using, of course, the same
basic probability distribution for both). Then given a sampling distribution f(yj�), it tells us thatR
R
f(yj�) dy is the expected frequency of the event y 2 R, before the data are known.

But if, as always supposed in elementary parameter estimation, the parameters are held �xed
throughout the taking of a data set, then the variability of the data is also, necessarily , the
variability of the actual errors in that data set. If the noise is de�ned to be additive, as in the
model (7{22), the exact distribution of the errors is known from the data to within a uniform
translation: ei�ej = yi�yj . We know from the data y that the exact error in the i'th observation

? Curiously, in that same after{dinner speech Feller also railed against those who fail to distinguish between
the long run and the individual case, yet it appears to us that it was Feller who failed to make that distinction
properly. He would judge the merit of an individual case inference by its imagined long run properties.
But it is not only possible, but common as soon as we depart from gaussian sampling distributions, that
an estimator which is proved to be as good as can be obtained, as judged by its long run success over all
data sets, may nevertheless be very poor for our particular data set and should not be used for it. This
introduces us to the phenomenon of ancillarity, pointed out by R. A. Fisher in the 1930's. It is now known
that Bayes' theorem automatically detects this situation and does the right thing here, choosing for each
data set the optimal estimator for that data set. In other words, the correct solution to the problem of
ancillarity is just to return to the original Bayesian analysis of Laplace and Je�reys that Fisher thought to
be wrong; this is discussed further in Chapter 8.
y The detailed derivation of this result is given in our discussion of Estimation with a Gaussian Distribution
in Chapter 20; however, we might regard it as an easy exercise for the reader.
z Of course, probability theory tells us that this is the best estimate we can make if, as supposed, the
only information we have about � comes from this one data set. If we have other information (previous
data sets, other prior information) we should take it into account; but then we are considering a di�erent
problem.
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has the form ei = yi � e0 , where e0 is an unknown constant. Then what use remains for the
sampling distribution, which yields only the prior expectations of the error frequencies? Whatever
frequency distribution we might have expected before seeing the data, is rendered almost irrelevant
by the information in the data! What remains signi�cant is the likelihood function { how the
probability of the observed data set varies with the parameters � .

Although all these results are mathematically trivial, we stress their nontrivial consequences
by repeating them in di�erent words. A gaussian distribution has a far deeper connection with
the arithmetic mean than that shown by Gauss: If we assign the independent gaussian error
distribution, then the error in our estimate is always the arithmetic mean of the true errors in
our data set; and whether the frequency distribution of those errors is or is not gaussian is totally
irrelevant. Any error vector fe1 � � �eng with the same �rst moment e will lead us to the same
estimate of �; and any error vector with the same �rst two moments will lead us to the same
estimates of both � and � and the same accuracy claims, whatever the frequency distributions of

the individual errors . This is the �rst part of the answer to de Morgan, Feller, and Barnard.
This makes it clear that what matters to us functionally { that is, what determines the actual

error of our estimate { is not whether the gaussian error law correctly describes the limiting fre-
quency distribution of the errors; but rather whether that error law correctly describes our prior
information about the actual errors in our data set. If it does, then the above calculations are the
best we can do with the information we have; and there is nothing more to be said.

The only case where we should { or indeed, could { do anything di�erent is when we have
additional prior information about the errors beyond their �rst two moments. For example, if we
know that they are simple digitizing errors with digitizing interval � , then we know that there
is a rigid upper bound to the magnitude of any error: jeij � �=2. Then if � < � , use of the
appropriate truncated sampling distribution instead of the gaussian (7{23) will almost surely lead
to more accurate estimates of �. This kind of prior information can be very helpful (although it
complicates the analytical solution, this is no deterrent to a computer), and we consider a problem
of this type below, under `Accuracy of Computation'.

But, closer to the present issue, in what sense and under what conditions does the gaussian
error law `correctly describe' our information about the errors?

The Remarkable E�ciency of Information Transfer

Again, we anticipate a few results from later Chapters in order to get a quick, preliminary view
of what is happening, which will improve our judgment in setting up real problems. The noise
probability distribution p(ej��) which has maximum entropy H = � R p(e) log p(e) de subject to
the constraints of prescribed expectations

hei = �; he2i = �2 + �2 (7{29)

in which the brackets h i now denote averages over the probability distribution p(ej��), is the
gaussian

p(ej�; �) = 1p
2��2

exp

�
�(e � �)2

2�2

�
(7{30)

So a state of prior information which leads us to prescribe the expected �rst and second moments of
the noise { and nothing else { uniquely determines the gaussian distribution. Then it is eminently
satisfactory that this leads to inferences that depend on the noise only through the �rst and second
moments of the actual errors. When we assign error probabilities by the principle of maximum
entropy, the only properties of the errors that are used in our Bayesian inference are the properties

about which we speci�ed some prior information. This is a very important second part of that
answer.
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In this example we have stumbled for the �rst time onto a fundamental feature of probability
theory as logic: if we assign probabilities to represent our information, then circumstances about
which we have no information, are not used in our subsequent inferences. But it is not only true
of this example; we shall �nd when we study Maximum Entropy that it is a general theorem that
any sampling distribution assigned by maximum entropy leads to Bayesian inferences that depend
only on the information that we incorporated as constraints in the entropy maximization.?

Put di�erently, our rules for extended logic automatically use all the information that we have,
and avoid assuming information that we do not have. Indeed, our Chapter 1 desiderata require this.
In spite of its extremely simple formal structure in the product and sum rules, probability theory
as logic has a remarkable sophistication in applications. It perceives instantly what generations of
statisticians and probabilists failed to see; for a probability calculation to have a useful and reliable
function in the real world, it is by no means required that the probabilities have any relation to
frequencies.y

But once this is pointed out, it seems obvious that circumstances about which we have no
information cannot be of any use to us in inference. Rules for inference which fail to recognize this
and try to introduce such quantities as error frequencies into the calculation as ad hoc assumptions,
even when we have no information about them, are claiming, in e�ect, to get something for nothing
(in fact, they are injecting arbitrary { and therefore almost certainly false { information). Such
devices may be usable in some small class of problems; but they are guaranteed to yield wrong
and/or misleading conclusions if applied outside that class.

On the other hand, probability theory as logic is always safe and conservative, in the following
sense; it always spreads the probability out over the full range of conditions allowed by the infor-
mation used. Thus it always yields the conclusions that are justi�ed by the information which was

put into it . The robot can return vague estimates if we give it vague or incomplete information;
but then it warns us of that fact by returning posterior distributions so wide that they still include

the true value of the parameter. It cannot actually mislead us { in the sense of assigning a high
probability to a false conclusion { unless we have given it false information.

For example, if we assign a sampling distribution which supposes the errors to be far smaller
than the actual errors, then we have put false information into the problem, and the consequence
will be, not necessarily bad estimates of parameters, but false claims about the accuracy of those
estimates and { often more serious { the robot can hallucinate, artifacts of the noise being misin-
terpreted as real e�ects. As de Morgan (1872, p. 113) put it, this is the error of \attributing to the
motion of the moon in her orbit all the tremors which she gets from a shaky telescope".

Conversely, if we use a sampling distribution which supposes the errors to be much larger
than the actual errors, the result is not necessarily bad estimates, but overly conservative accuracy
claims for them and { often more serious { blunt perception, failing to recognize e�ects that are
real, by dismissing them as part of the noise. This would be the opposite error of attributing to
a shaky telescope the real and highly important deviation of the moon from her expected orbit.
If we use a sampling distribution that reects the true average errors and the true mean square
errors, we have the maximum protection against both of these extremes of misperception, steering
the safest possible middle course between them. These properties are demonstrated in detail later.

Other Sampling Distributions. Once we understand the reasons for the success of Gaussian
inference, we can also see very rare special circumstances where a di�erent sampling distribution

? Technically (Chapter 8), the class of sampling distributions which have su�cient statistics is precisely
the class generated by the maximum entropy principle; and the resulting su�cient statistics are precisely
the constraints which determined that maximum entropy distribution.
y This is not to say that probabilities are forbidden to have any relation to frequencies; the point is rather
that whether they do or do not depends on the problem, and probability theory as logic works equally well
in either case. We shall see, in the work of Galton below, an example where a clear frequency connection
is present, and analysis of the general conditions for this will appear in Chapter 9.
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would better express our state of knowledge. For example, if we know that the errors are being
generated by the unavoidable and uncontrollable rotation of some small object, in such a way that
when it is at angle � , the error is e = � cos � but the actual angle is unknown, a little analysis
shows that the prior probability assignment p(ejI) = (�

p
�2 � e2)�1 ; e2 < �2 correctly describes

our state of knowledge about the error. Therefore it should be used instead of the Gaussian
distribution; since it has a sharp upper bound, it may yield appreciably better estimates than
would the Gaussian { even if � is unknown and must therefore be estimated from the data (or
perhaps it is the parameter of interest to be estimated).

Or, if the error is e = � tan � , we �nd that the prior probability is the Cauchy distribution
p(ejI) = ��1 a=(a2 + e2). Although this case is rare, we shall �nd it an instructive exercise to
analyze inference with a Cauchy sampling distribution, because qualitatively di�erent things can
happen; Orthodoxy regards the Cauchy distribution as \a pathological, exceptional case" but it
causes no di�culty in Bayesian analysis, which enables us to understand it.

Nuisance Parameters as Safety Devices

As an example of this principle, if we do not have actual knowledge about the magnitude � of
our errors, then it could be dangerous folly to assume some arbitrary value; the wisest and safest
procedure is to adopt a model which honestly acknowledges our ignorance by allowing for various
possible values of � ; we should assign a prior p(�jI) which indicates the range of values that �
might reasonably have, consistent with our prior information. Then in the Bayesian analysis we
shall �nd �rst the joint posterior pdf for both parameters:

p(�; �jD; I) = p(�; �jI) p(Dj�; �; I)
p(DjI) : (7{31)

But now notice how the product rule rearranges this:

p(�; �jD; I) = p(�jI) p(�j�; I) p(Dj�; I) p(�j�;D; I)
p(DjI) p(�j�; I) = p(�j�;D; I) p(�jD; I) (7{32)

So, if we now integrate out � as a nuisance parameter, we obtain the marginal posterior pdf for �
alone in the form:

p(�jD; I) =
Z
p(�j�;D; I) p(�jD; I) d� ; (7{33)

a weighted average of the pdf 's p(�j�;D; I) for all possible values of � , weighted according to the
marginal posterior pdf p(�jD; I) for � , which represents everything we know about � .

Thus when we integrate out a nuisance parameter, we are not throwing away any information
relevant to the parameters we keep; on the contrary, probability theory automatically estimates
the nuisance parameter for us from all the available evidence, and takes that information fully
into account in the marginal posterior pdf for the interesting parameters (but it does this in
such a slick, e�cient way that one may not realize that this is happening, and think that he is
losing something). In the limit where the data are able to determine the true value � = �0 very
accurately, p(�jD; I) ! �(� � �0) and p(�jD; I) ! p(�j�0; D; I); the theory yields, as it should,
the same conclusions that we would have if the true value were known from the start.

This is just one example illustrating that, whatever question we ask, probability theory as logic
automatically takes into account all the possibilities allowed by our model and our information.
Then, of course, the onus is on us to choose a model wisely so that the robot is given the freedom
to estimate for itself, from the totality of its information, any parameter that we do not know. If
we fail to recognize the existence of a parameter which is uninteresting but nevertheless a�ects our
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data { and so leave it out of the model { then the robot is crippled and cannot return the optimal
inferences to us. The marginalization paradox, discussed in Chapter 15, and the data pooling
paradox of Chapter 8, exhibit some of the things that can happen then; the robot's conclusions are
still the best ones that could have been made from the information we gave it , but they are not
the ones that simple common sense would make.

In practice, we �nd that recognition of a relevant, but unknown and uninteresting parameter
by including it in the model and then integrating it out again as a nuisance parameter, can greatly
improve our ability to extract the information we want from our data { often by orders of magnitude.
By this means we are forewarning the robot about a possible disturbing complication, putting it
on the lookout for it; and the rules of probability theory then lead the robot to make the optimal
allowance for it. The recent success of Bayesian Spectrum Analysis (Bretthorst, 1988) is based on
this recognition, as we shall see in detail when we take up spectrum/shape analysis.

This point is extremely important in some current problems of estimating environmental haz-
ards or the safety of new machines, drugs or food additives, where inattention to all of the relevant
prior information that scientists have about the phenomenon { and therefore failure to include that
information in the model and prior probabilities { can cause the danger to be grossly overestimated
or underestimated. For example, from knowledge of the engineering design of a machine, one knows
a great deal about its possible failure modes and their consequences, that could not be obtained
from any feasible amount of reliability testing by `random experiments'. Likewise, from knowledge
of the chemical nature of a food additive one knows a great deal about its physiological e�ects,
that could not be obtained from any feasible amount of mere toxicity tests.

Of course, this is not to say that reliability tests and toxicity tests should not be carried out;
the point is rather that random experiments are very ine�cient ways of obtaining information (we
learn, so to speak, only like the square root of the number of trials), and rational conclusions cannot
be drawn from them unless the equally cogent { often far more cogent { prior information is also
taken into account. The real function of the random experiment is to guard against completely
unexpected bad e�ects, about which our prior information gave us no warning.

More General Properties

Although the Gauss derivation was of the greatest historical importance, it does not satisfy us
today because it depends on intuition; why must the `best' estimate of a location parameter be the
sample mean? Why must it be even a linear function of the observations? Evidently, in view of
the Gauss derivation, if our assigned sampling distribution is not gaussian, the best estimate of the
location parameter will not be the sample mean. It could have a wide variety of other functional
forms; then under what circumstances is Laplace's prescription the one to use?

We have just seen the cogent pragmatic advantages of using a gaussian sampling distribution.
Today, anticipating a little from later Chapters, we would say that its unique theoretical position
derives not from the Gauss argument, but rather from four mathematical stability properties which
have fundamentally nothing to do with probability theory or inference; and a �fth which has
everything to do with them, but was not discovered until the mid{twentieth Century:

(A) Any smooth function with a single rounded maximum, if raised to higher and higher
powers, goes into a gaussian function. We saw this in Chapter 6.

(B) The product of two gaussian functions is another gaussian function
(C) The convolution of two gaussian functions is another gaussian function.
(D) The fourier transform of a gaussian function is another gaussian function.
(E) A gaussian probability distribution has higher entropy than any other with the same

variance; therefore any operation on a probability distribution which discards infor-
mation but conserves variance, leads us inexorably closer to a gaussian. The Central
Limit Theorem, derived below, is the best known example of this, in which the oper-
ation being performed is convolution.
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Properties (A) and (E) explain why a gaussian form is approached more and more closely by various
operations; properties (B) { (D) explain why that form, once attained, is preserved.

Convolution of Gaussians

The convolution property (C) is shown as follows. Expanding now the notation of (7{1)z

'(x� �j�) � 1
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�

�
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i
(7{34)

in which we introduce the \weight" w � 1=�2 for convenience, the product of two such functions is
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but we bring out the dependence on x by rearranging the quadratic form:�
x� �1

�1

�2

+

�
y � x� �2

�2
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= (w1 + w2) (x� x̂)2 +
w1 w2

w1 + w2

(y � �1 � �2)
2 (7{36)

where x̂ � (w1�1 + w2y � w2�2)=(w1 + w2). The product is still a gaussian with respect to x; so
on integrating out x we have the convolution law:Z

1

�1

'(x� �1j�1)'(y� x� �2j�2) dx = '(y � �j�) (7{37)

where � � �1+�2 ; �
2 � �21 +�22 . Two gaussians convolve to make another gaussian, the means �

and variances �2 being additive. Presently we shall see some important applications that require
only the single convolution formula (7{37). Now we turn to the famous theorem, which results
from repeated convolutions.

The Central Limit Theorem

The question whether nongaussian distributions also have parameters additive under convolution
leads us to the notion of cumulants discussed in Appendix C. The reader who has not yet studied this
should do so now. If the functions fi(x) to which we apply that theory are probability distributions,
then they are necessarily nonnegative and normalized: fi(x) � 0 ;

R
fi(x)dx = 1. Then the zero'th

moments are all Zi = 1, and the fourier transforms

Fi(�) �
Z

1

�1

fi(x) e
i�x dx (7{38)

are absolutely convergent for real �. Note that all this remains true if the fi are discontinuous, or
contain delta{functions; therefore the following derivation will apply equally well to the continuous
or discrete case or any mixture of them.z

************ MUCH MORE TO COME HERE! ************

Now we turn to some important applications of the above mathematical results.

z This notation is not quite inconsistent, since '( ) and '( j ) are di�erent functional symbols.
z At this point, the reader who has been taught to disbelieve in delta{functions must unlearn that by
reading Appendix B. In fact, without the free use of delta{functions and other generalised functions, real
applications of fourier analysis are in an almost helpless, crippled condition, as noted in Appendix F.
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Accuracy of Computations

As a useful application of the Central Limit Theorem, consider a computer programmer deciding on
the accuracy to be used in a program. This is always a matter of compromise between misleading,
inaccurate results on the one hand, and wasting computation facilities with more accuracy than
needed on the other.

Of course, it is better to err on the side of a little more accuracy than really needed. Nev-
ertheless, it is foolish (and very common) to tie up a large facility with a huge computation to
double precision (16 decimal places) or even higher, when the user has no use for anything like that
accuracy in the �nal result. The computation might have been done in less time but with the same
result on a desktop microcomputer, had it been programmed for an accuracy that is reasonable for
the problem.

Programmers can speed up and simplify their creations by heeding what the CLT tells us. In
probability calculations we seldom have any serious need for more than three{�gure accuracy in
our �nal results, so we shall be well on the safe side if we strive to get four �gure accuracy reliably
in our computations.

As a simple example, suppose we are computing the sum

S �
NX
n=1

an (7{39)

of N terms an , each one positive and of order unity. To get a given accuracy in the sum, what
accuracy do we need in the individual terms?

Our computation program or lookup table necessarily gives each an digitized to some smallest
increment �, so this will be actually the true value plus some error en . If we have an to six decimal
digits, then � = 10�6 ; if we have it to sixteen binary digits, then � = 2�16 = 1=65536. The error
in any one entry is in the range (��=2 < en � �=2), and in adding N such terms the maximum
possible error is N�=2. Then it might be thought that the programmer should ensure that this is
acceptably small.

But if N is large, this maximum error is enormously unlikely; this is just the point that Euler
failed to see. The individual errors are almost certain to be positive and negative about equally
often, giving a high degree of mutual cancellation, so that the net error should tend to grow only
as
p
N .
The CLT tells us what is essentially a simple combinatorial fact, that out of all conceivable

error vectors fe1; : : : ; eNg that could be generated, the overwhelming majority have about the same

degree of cancellation, that indicated by the
p
N rule. If we consider each individual error equally

likely to be anywhere in (��=2; �=2), this corresponds to a rectangular probability distribution on
that interval, leading to an expected square error per datum of

1

�

Z �=2

��=2

x2 dx =
�2

12
(7{40)

Then by the CLT the probability distribution for the sum S will be gaussian with a variance
N�2=12, while S is approximately N . So if N is large so that the CLT is accurate, the probability

that the magnitude of the net error will exceed �
p
N , which is

p
12 = 3:46 standard deviations, is

about

2[1� �(3:46)]' 0:0006 (7{41)

where �(x) is the cumulative normal distribution. One will almost never observe an error that
great. Since �(2:58) = 0:995, there is about a 1% chance that the net error magnitude will exceed

0:74�
p
N = 2:58 standard deviations.
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Therefore if we strive, not for certainty, but for 99% or greater probability, that our sum S is
correct to four �gures, this indicates the value of � that can be tolerated in our algorithm or lookup
table. We require 0:74�

p
N � 10�4N , or

� � 1:35� 10�4
p
N (7{42)

The perhaps surprising result is that if we are adding N = 100 roughly equal terms, to achieve a
virtual certainty of four{�gure accuracy in the sum we require only three{�gure accuracy in the
individual terms! Under favorable conditions, the mutual cancellation phenomenon can be e�ective
far beyond Euler's dreams. Thus we can get by with a considerably shorter computation for the
individual terms, or a smaller lookup table, than might be supposed.

This simple calculation can be greatly generalized, as indicated by Exercise 7.4. But we should
note an important proviso to be investigated in Exercise 7.5; this holds only when the individual
errors en are logically independent. Given � in advance, if knowing e1 then tells us anything about
any other en , then there are correlations in our probability assignment to errors, the CLT no longer
applies, and a di�erent analysis is required. Fortunately, this is almost never a serious limitation
in practice because the individual an are determined by some continuously variable algorithm and
di�er among themselves by amounts large compared to �, making it impossible to determine any
ei given any other ej .

Exercise 7.4. Suppose that we are to evaluate a fourier series S(�) =
P

an sinn� . Now
the individual terms vary in magnitude and are themselves both positive and negative. In order
to achieve four{�gure accuracy in S(�) with high probability, what accuracy do we now require
in the individual values of an and sin n�?

Exercise 7.5. Show that if there is a positive correlation in the probabilities assigned to
the ei , then the error in the sum may be much greater than indicated by the CLT. Try to make a
more sophisticated probability analysis taking correlations into account, which would be helpful
to a computer programmer who has some kind of information about mutual properties of errors
leading to such correlations, but is still striving for the greatest e�ciency for a given accuracy.

The literature of orthodox statistics contains some quite di�erent recommendations than ours
concerning accuracy of numerical calculations. For example, the textbook of McClave & Ben-
son (1988, p. 99) considers calculation of a sample standard deviation s of n = 50 observations

fx1 � � �xng from that of s2 = x2 � x2 . They state that: \You should retain twice as many decimal
places in s2 as you want in s. For example, if you want to calculate s to the nearest hundredth,
you should calculate s2 to the nearest ten{thousandth." When we studied calculus (admittedly
many years ago) it was generally thought that small increments are related by �(s2) = 2s�s, or
�s=s = (1=2) �(s2)=s2 . So if s2 is calculated to four signi�cant �gures, this determines s not to two
signi�cant �gures, but to somewhat better than four. [But in any event, their practice of inserting
a gratuitous extra factor n=(n � 1) in the symbol which they denote by `s2 ' makes a joke of any
pretense of four{�gure accuracy in either when n = 50].

Galton's Discovery

The single convolution formula (7{37) led to one of the most important applications of probability
theory in biology. Although from our present standpoint (7{37) is only a straightforward integration
formula, which we may write for present purposes in the formZ

1

�1

'(xj�1)'(y � axj�2) dx = '(yj�) (7{43)

where we have made the scale changes x! ax; �1 ! a�1 , and so now
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� =
q
a2�21 + �22 (7{44)

it became in the hands of Francis Galton (1886) a major revelation about the mechanism of bi-
ological variation and stability.? We use the conventional language of that time, which did not
distinguish between the notions of probability and frequency, using the words interchangeably. But
this is not a serious matter because his data were, in fact, frequencies and as we shall see in Chapter
9, strict application of probability theory as logic would then lead to probability distributions that
are substantially equal to the frequency distributions (exactly equal in the limit where we have an
arbitrarily large amount of frequency data and no other relevant prior information). Consider, for
example, the frequency distribution of heights h of adult males in the population of England. He
found that this could be represented fairly well by a gaussian

'(h� �j�)dh = '

�
h� �

�

�
dh

�
(7{45)

with � = 68:1 inches, � = 2:6 inches. Then he investigated whether children of tall parents tend to
be tall, etc. To keep the number of variables equal to two in spite of the fact that each person has
two parents, he determined that the average height of men was about 1.08 times that of women,
and de�ned a person's \midparent" as an imaginary being of height

hmid � 1

2
(hfather + 1:08 hmother) : (7{46)

He collected data on 928 adults born of 205 midparents and found as expected that children of
tall parents do indeed tend to be tall, etc. but that children of tall parents still show a spread in
heights, although less than the spread (��) of the entire population.

But if the children of each selected group of parents still spread in height, why does the spread
in height of the entire population not increase continually from one generation to the next? Because
of the phenomenon of \reversion"; the children of tall parents tend to be taller than the average
person, but less tall than their parents. Likewise children of short parents are generally shorter
than the average person, but taller than their parents. If the population as a whole is to be stable,
this `systematic' tendency to revert back to the mean of the entire population must exactly balance
the `random' tendency to spreading. Behind the smooth facade of a constant overall distribution
of heights, an intricate little time{dependent game of selection, drift, and spreading is taking place
constantly.

In fact, Galton (with some help from mathematicians) could predict the necessary rate of
reversion theoretically, and verify it from his data. If (x = h � �) is the deviation from the mean
height of the midparents, let the population as a whole have a height distribution '(xj�1), while
the sub{population of midparents of height (x+�) tend to produce children of height (y+�) with
a frequency distribution '[(y � ax)j�2]. Then the height distribution of the next generation will
be given by (7{43). If the population as a whole is to be stable, it is necessary that � = �1 , or the
reversion rate must be

a = �
s
1� �22

�21
; (7{47)

which shows that a need not be positive; if tall parents tended to \compensate" by producing
unusually short children, this would bring about an alternation from one generation to the next,
but there would still be equilibrium for the population as a whole.

? A photograph of Galton, with more details of his work and a short biographical sketch, may be found in
Stigler (1986). His autobiography (Galton, 1908) has additional details.
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But we see that equilibrium is not possible if jaj > 1; the population would explode. Although
(7{43) is true for all a, equilibrium would then require �22 < 0. The boundary of stability is
reached at �2 = 0; jaj = 1; then each sub{population breeds true, and whatever initial distribution
of heights happened to exist, would be maintained thereafter. An economist might call the condition
a = 1 a \unit root" situation; there is no reversion and no spreading.y

Of course, this analysis is in several obvious respects an oversimpli�ed model of what happens
in actual human societies. But that involves only touching up of details; Galton's analysis was,
historically, of the greatest importance in giving us a general understanding of the kind of processes
at work. For this, its freedom from nonessential details was a major merit.

Exercise 7.6. Galton's device of the midparent was only to reduce the computational burden,
which would otherwise have been prohibitive in the 1880's, by reducing the problem to a two{
variable one (midparent and son). But today computing power is so plentiful and cheap that one
can easily analyze the real four{variable problem, in which the heights of father, mother, son,
and daughter are all taken into account. Reformulate Galton's problem to take advantage of
this; what hypotheses about spreading and reversion might be considered and tested today? As
a class project, one might collect new data (perhaps on faster{breeding creatures like fruit{ies)
and write the computer program to analyze them and estimate the new spreading and reversion
coe�cients. Would you expect a similar program to apply to plants? Some have objected that
this problem is too biological for a physics class, and too mathematical for a biology class; we
suggest that, in a course dedicated to scienti�c inference in general, the class should include
both physicists and biologists, working together.

Twenty years later this same phenomenon of selection, drift, and spreading underlying equi-
librium was perceived independently by Einstein (1905) in physics. The steady thermal Boltzmann
distribution for molecules at temperature T to have energy E is exp(�E=kT ). Being exponential
in energies E = u+(mv2=2) where u(x) is potential energy, this is gaussian in particle velocities v .
This generates a time{dependent drift in position; a particle which is at position x at time t = 0
has at time t the conditional probability to be at y of

p(yjx; t) / exp

�
�(y � x)2

4Dt

�

from random drift alone, but this is countered by a steady drift e�ect of external forces F = �ru,
corresponding to Galton's reversion rate.

Although the details are quite di�erent, Galton's Eq. (7{47) is the logical equivalent of Ein-
stein's relation D = � kT connecting di�usion coe�cient D representing random spreading of
particles, with the temperature T and the mobility � (velocity per unit force) representing the
systematic reversion rate counteracting the di�usion. Both express the condition for equilibrium
as a balance between a \random spreading" tendency, and a systematic counter{drift that holds it
in check.

Population Dynamics and Darwinian Evolution

Galton's type of analysis can explain much more than biological equilibrium. Suppose the reversion
rate does not satisfy (7{47). Then the height distribution in the population will not be static, but
will change slowly. Or, if short people tend to have fewer children than do tall people, then the
average height of the population will drift slowly upward. Do we have here the mechanism for

y It is a currently popular theory among some economists that many economic processes, such as the stock
market, are very close to the unit root behavior, so that the e�ects of momentary external perturbations
like wars and droughts tend to persist instead of being corrected. For a discussion of this from a Bayesian
viewpoint, see Sims (1988).
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Darwinian evolution? The question could hardly go unasked, since Francis Galton was a cousin of
Charles Darwin.

A new feature of probability theory has appeared here, that is not evident in the works of
Laplace and Gauss. Being astronomers, their interests were in learning facts of astronomy and
telescopes were only a tool toward that end. The vagaries of telescopes themselves were for them
only `errors of observation' whose e�ects were to be eliminated as much as possible; and so the
sampling distribution was called by them an `error law'.

But a telescope maker might see it di�erently. For him, the errors it produces are the objects
of interest to study, and a star is only a convenient �xed object on which to focus his instrument for
the purpose of determining those errors. Thus a given data set might serve two entirely di�erent
purposes; one man's `noise' is another man's `signal'.

But then in any science the `noise' might prove to be not merely something to get rid of, but
the essential phenomenon of interest. It seems curious (at least, to a physicist) that this was �rst
seen clearly not in physics, but in biology. In the late Nineteenth Century many biologists saw it as
the major task confronting them to verify Darwin's theory of evolution by exhibiting the detailed
mechanism by which evolution takes place. For this purpose the journal Biometrika was founded
by Karl Pearson and Walter Frank Raphael Weldon, in 1901. It started (Volume 1, page 1) with
an editorial setting forth the journal's program, in which Weldon wrote:

\The starting point of Darwin's theory of evolution is precisely the existence of those di�erences between
individual members of a race or species which morphologists for the most part rightly neglect. The
�rst condition necessary, in order that a process of Natural Selection may begin among a race, or
species, is the existence of di�erences among its members; and the �rst step in an enquiry into the
possible e�ect of a selective process upon any character of a race must be an estimate of the frequency
with which individuals, exhibiting any degree of abnormality with respect to that character, occur."

He had here reached a very important level of understanding. Morphologists, thinking rather
like astronomers, considered individual variations as only `noise' whose e�ects must be eliminated
by averaging, in order to get at the signi�cant `real' properties of the species as a whole. Weldon,
learning well from the example of Galton, saw it in just the opposite light; those individual variations
are the engine that drives the process of evolutionary change, which will be reected eventually in
changes in the morphologist's averages. Indeed, without individual variations, the mechanism of
Natural Selection has nothing to operate on. So to demonstrate the mechanism of evolution at its
source, and not merely the �nal result, it is the distribution of individual variations that must be
studied.

Of course, at that time they had no conception of the physical mechanism of mutations induced
by radioactivity (much less by genetic recombination or errors in DNA replication), and they
expected that evolution would be found to take place gradually, via nearly continuous changes.y

Nevertheless, the program of studying the individual variations would be the correct one to �nd
the fundamental mechanism of evolution, whatever form it took. The scenario is somewhat like the
following:

Evolution of Humming{Birds and Flowers. Consider a population of humming{birds in
which the \noise" consists of a distribution of di�erent length beaks. The survival of birds is
largely a matter of �nding enough food; then a bird that �nds itself with the mutation of an
unusually long beak will be able to extract nectar from deeper owers. If such owers are available
it will be able to nourish itself and its babies better than others because it has a food supply not
available to other birds; so the long{beak mutation will survive and become a greater portion of
the bird population, in more or less the way Darwin imagined.

y The necessity for evolution to be particulate (by discrete steps) was perceived later by several people,
including R. A. Fisher (1930b). Evolutionary theory taking this into account and discarding the Lamarckian
notion of inheritance of acquired characteristics is often called Neo{Darwinism. However, the discrete steps
are usually small, so Darwin's notion of `gradualism' remains quite good pragmatically.
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But this inuence works in two directions; a bird is inadvertently fertilizing owers by carrying
a few grains of pollen from one to the next. A ower that happens to have the mutation of being
unusually deep will �nd itself sought out preferentially by long{beaked birds because they need
not compete with other birds for it. Therefore its pollen will be carried systematically to other
owers of the same species and mutation where it is e�ective, instead of being wasted on the
wrong species. As the number of long{beaked birds increases, deep owers thus have an increasing
survival advantage, ensuring that their mutation is present in an increasing proportion of the ower
population; and this in turn gives a still greater advantage to long{beaked birds; and so on. We
have a positive feedback situation.

Over millions of years, this back{and{forth reinforcement of mutations goes through hundreds
of cycles, resulting eventually in a symbiosis so specialized { a particular species of bird and a
particular species of ower that seem designed speci�cally for each other { that it appears to be
a miraculous proof of a guiding purpose in Nature, to one who does not think as deeply as did
Darwin and Galton.z Yet short{beaked birds do not die out, because birds patronizing deep owers
leave the shallow owers for them. By itself, the process would tend to an equilibrium distribution
of populations of short and long beaked birds, coupled to distributions of shallow and deep owers.
But if they breed independently, over long periods other mutations will take place independently
in the two types, and eventually they would be considered as belonging to two di�erent species.

Discussion. As noted, the role of \noise" as the mechanism driving a slow change in a system
was perceived independently by Einstein (of course, he knew about Darwin's theory, but we think
it highly unlikely that he would have known about the work of Galton or Weldon in Switzerland
in 1905). \Random" thermal uctuations caused by motion of individual atoms are not merely
`noise' to be averaged out in our predictions of mass behavior; they are the engine that drives

irreversible processes in physics , and eventually brings about thermal equilibrium. Today this is
expressed very speci�cally in the many \uctuation{dissipation theorems" of statistical mechanics,
which we derive in generality from the maximum entropy principle in Chapter 11. They generalize
the results of Galton and Einstein. The aforementioned Nyquist uctuation law was, historically,
the �rst such theorem to be discovered in physics.

The visions of Weldon and Einstein represented such a major advance in thinking that today,
some 100 years later, many have not yet comprehended them or appreciated their signi�cance in
either biology or physics. We still have biologists? who try to account for evolution by a quite

z The unquestioned belief in such a purpose pervades even producers of biological research products who
might be expected to know better. In 1993 there appeared in biological trade journals a full{page ad with a
large color photograph of a feeding hummingbird and the text: \Speci�c purpose. The sharply curved
bill of the white{tipped sickle{billed hummingbird is speci�cally adapted to probe the delicate tubular
owers of heliconia plants for the nectar on which the creature survives." Then this is twisted somehow
into a plug for a particular brand of DNA polymerase { said to be produced for an equally speci�c purpose.
This seems to us a dangerous line of argument; since the bird bills do not, in fact, have a speci�c purpose,
what becomes of the alleged purpose of the polymerase?
? For example, see Weber, et al , (1988). Here the trouble is that it goes in the wrong direction; if the
second law were the driving principle, evolution would proceed inexorably back to the primordial soup,
which has a much higher entropy than would any collection of living creatures that might be made from
the same atoms. This is easily seen as follows: What is the di�erence between a gram of living matter
and a gram of primordial soup made of the same atoms? Evidently, it is that the living matter is far
from thermal equilibrium, and it is obeying thousands of additional constraints on the possible reactions
and spatial distribution of atoms (from cell walls, osmotic pressures, etc.) that the primordial soup is not
obeying. But removing a constraint always has the e�ect of making a larger phase space available, thus
increasing the entropy. The primordial soup represents the thermal equilibrium, resulting from removal of
all the biological constraints; indeed, our present chemical thermodynamics is based on (derivable from)
the Gibbs principle that thermal equilibrium is the macrostate of maximum entropy subject to only the
physical constraints (energy, volume, mole numbers).
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unnecessary appeal to the second law of thermodynamics; and physicistsy who try to account for
the second law by appealing to quite unnecessary modi�cations in the equations of motion. The
operative mechanism of evolution is surely Darwin's original principle of natural selection and any
e�ects of the second law can only hinder it.z

Natural Selection is a process entirely di�erent from the second law of thermodynamics. The
purposeful intervention of man can suspend or reverse natural selection { as we observe in wars,
medical practice, and dog breeding { but it can hardly a�ect the second law. Furthermore, as
Professor Stephen J. Gould has emphasized, the second law always follows the same course, but
evolution in Nature does not. Whether a given mutation makes a creature more adaptable or less
adaptable to its environment depends on the environment; a mutation that is bene�cial in Brazil
might be fatal in Finland, and so the same actual sequence of mutations can result in entirely
di�erent creatures in di�erent enviromnents.

The remarkable { almost exact { analogy between the processes that bring about equilib-
rium in physics and in biology surely has other important implications, particularly for theories of
equilibrium in economics, not yet exploited. It seems likely, for example, that the `turbulence' of
individual variations in economic behavior is the engine that drives macroeconomic change toward
the equilibrium envisaged by Adam Smith. The existence of this turbulence was recognized by John
Maynard Keynes (1936), who called it `animal spirits' which cause people to behave erratically;
but he did not see in this the actual cause that prevents stagnation and moves the economy toward
equilibrium.

In the next level of understanding we see that Adam Smith's equilibrium is never actually
attained in the real world because of what a physicist would call `external perturbations', or an
economist `exogenous variables' which vary on the same time scale. That is, wars, droughts, taxes,
tari�s, bank reserve requirements, discount rates and other disturbances come and go on about the
same time scale as would the approach to equilibrium in a perfectly `calm' society. As we see it, this
is the basic reason why economic data are very di�cult to interpret; even if relevant and believable
data were easy to gather, the rules of the game and the conditions of play are changing constantly.
But we think that important progress can still be made by exploiting what is now known about
entropy and probability theory as logic.

Resolution of Distributions into Gaussians

The tendency of probability distributions to gravitate to the gaussian form suggests that we might
view the appearance of a gaussian, or `normal' frequency distribution as loose evidence (but far from
proof) that some kind of equilibrium has been reached. This view is also consistent with (but by no
means required by) the results of Galton and Einstein. In the �rst attempts to apply probability
theory in the biological and social sciences (for example, Quetelet, 1835, 1869) serious errors were
made through supposing �rstly that the appearance of a normal distribution in data indicates that
one is sampling from a homogeneous population, and secondly that any departure from normality
indicates an inhomogeneity in need of explanation. By resolving a non{normal distribution into
gaussians, Quetelet thought that one would be discovering the di�erent sub{species, or varieties,

y Several writers have thought that Liouville's theorem (conservation of phase volume in classicalmechanics
or untarity of time development in quantum theory) is in conict with the second law. On the contrary,
in Jaynes (1963b, 1965) we demonstrated that, far from being in conict, the second law is an immediate
elementary consequence of Liouville's theorem and in Jaynes (1989) we gave a simple application of this to
biology; calculation of the maximum theoretical e�ciency of a muscle.
z This is not to say that natural selection is the only process at work; random drift is still an operative cause
of evolution with or without subsequent selection. For an extensive discussion of the evidence and later
research e�orts by many experts, see the massive three{volume work Evolution After Darwin (Tax, 1960)
produced to mark the Centenary of the publication of Darwin's Origin of Species, or the more informal
work of Dawkins (1987).
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that were present in the population. If this were true reliably, we would indeed have a powerful tool
for research in many di�erent �elds. But later study showed that the situation is not that simple.

We have just seen how one aspect of it was corrected �nally by Galton (1886), in showing
that a normal frequency distribution by no means proves homogeneity; from (7{43) a gaussian
of width � can arise inhomogeneously { and in many di�erent ways { from the overlapping of
narrower gaussian distributions of various widths �1; �2 . But those sub{populations are in general
merely mathematical artifacts like the sine waves in a Fourier transform; they have no individual
signi�cance for the phenomenon unless one can show that a particular set of sub{populations has
a real existence and plays a real part in the mechanism underlying stability and change. Galton
was able to show this from his data by measuring those widths.

The second assumption, that non{normal distributions can be resolved into gaussian subdis-
tributions, turns out to be not actually wrong (except in a nit{picking mathematical sense); but
without extra prior information it is ambiguous in what it tells us about the phenomenon.

We have here an interesting problem, with many useful applications: is a nongaussian distribu-
tion explainable as a mixture of gaussian ones? Put mathematically, if an observed data histogram
is well described by a distribution g(y), can we �nd a mixing function f(x) � 0 such that g(y) is
seen as a mixture of gaussians:Z

'(y � xj�) f(x) dx= g(y) ; �1 � y � 1 (7{48)

Neither Quetelet nor Galton was able to solve this problem, and today we understand why. Math-
ematically, does this integral equation have solutions, or unique solutions? It appears from (7{46)
that we cannot expect unique solutions in general, for in the case of gaussian g(y), many di�erent
mixtures [many di�erent choices of a; �1; �2 ] will all lead to the same g(y). But perhaps if we
specify the width � of the gaussian kernel in (7{48) there is a unique solution for f(x).

Solution of such integral equations is rather subtle mathematically. We give two arguments;
the �rst depends on the properties of hermite polynomials and yields a class of exact solutions, the
second appeals to fourier transforms and yields an understanding of the more general situation.

Hermite Polynomial Solutions. The rescaled hermite polynomials Rn(x) may be de�ned by
the displacement of a gaussian distribution '(x), which gives the generating function:

'(x� a)

'(x)
= exa�a

2=2 =
1X
n=0

Rn(x)
an

n!
(7{49)

or, solving for Rn , we have the Rodriguez form

Rn(x) =
dn

dan

h
exa�a

2=2
i
a=0

= (�1)n ex2=2 dn

dxn
e�x

2=2 : (7{50)

The �rst few of these polynomials are: R0 = 1; R1 = x; R2 = x2�1; R3 = x3�3x; R4 = x4�6x2+
3. The conventional hermite polynomials Hn(x) di�er only in scaling: Hn(x) = 2n=2Rn(x

p
2).

Multiplying (7{49) by '(x) exp(xb� b2=2) and integrating out x, we have the orthogonality
relation Z

1

�1

Rm(x)Rn(x)'(x) dx= n! �mn (7{51)

and in consequence these polynomials have the remarkable property that convolution with a gaus-
sian function reduces simply to Z

1

�1

'(y � x)Rn(x) dx = yn : (7{52)
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Therefore if g(y) is represented by a power series

g(y) =
X
n

an y
n (7{53)

we have immediately a formal solution of (7{48):

f(x) =
X
n

an�
nRn

�x
�

�
: (7{54)

Since the coe�cient of xn in Rn(x) is unity, the expansions (7{53) and (7{54) converge equally
well. So if g(y) is any polynomial or entire function (i.e. one representable by a power series (7{53)
with in�nite radius of convergence), the integral equation has the unique solution (7{54).

We can see the solution (7{54) a little more explicitly if we invoke the expansion of Rn ,
deducible from (7{49) by expanding exp(xa� a2=2) in a power series in x:

Rn

�x
�

�
=

MX
m=0

(�1)m n!

2mm! (n� 2m)!

�x
�

�n�2m
(7{55)

where M = (n� 1)=2 if n is odd, M = n=2 if n is even. Then noting that

n!

(n� 2m)!
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�

�n�2m
= �2m�n

d2m

dx2m
xn (7{56)

we have the formal expansion

f(x) =
1X

m=0

(�1)m�2m
2mm!

d2m

dx2m
g(x) = g(x)� �2

2

d2g(x)

dx2
+
�4

8

d4g(x)

dx4
� � � � : (7{57)

An analytic function is di�erentiable any number of times, and if g(x) is an entire function this
will converge to the unique solution. If g(x) is a very smooth function, it converges very rapidly, so
the �rst two or three terms of (7{57) are already a good approximation to the solution. This gives
us some insight into the workings of the integral equation; as � ! 0, the solution (7{57) relaxes
into f(x) ! g(x), as it should. The �rst two terms of (7{57) are what would be called, in image
reconstruction, `edge detection'; for small � the solution goes into this. The larger � , the more the
higher order derivatives matter; that is, the more �ne details of the structure of g(y) contribute to
the solution. Intuitively, the broader the gaussian kernel, the more di�cult it is to represent �ne
structure of g(y) in terms of that kernel.

Evidently, we could continue this line of thought with much more analytical work, and it might
seem that the problem is all but solved; but now the subtlety starts. Solutions like (7{54) and (7{
57), although formally correct in a mathematical sense, ignore some facts of the real world; is f(x)
non{negative when g(y) is? Is the solution stable, a small change in g(y) inducing only a small
change in f(x)? What if g(x) is not an entire function but is piecewise continuous; for example,
rectangular?

Fourier Transform Relations. For some insight into these questions, let us look at the integral
equation from the fourier transform viewpoint. Taking the transform of (7{48) according to

F (k) �
Z

1

�1

f(x) eikx dx (7{58)
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(7{48) reduces to

exp

�
� k2�2

2

�
F (k) = G(k) (7{59)

which illustrates that the fourier transform of a gaussian function is another gaussian function, and
shows us at once the di�culty of �nding more general solutions than (7{54). If g(y) is piecewise
continuous, then as k ! 1, from the Riemann{Lebesgue lemma G(k) will fall o� only as 1=k .
Then F (k) must blow up violently, like exp(+k2�2=2)=k , and one shudders to think what the
function f(x) must look like (in�nitely violent oscillations of in�nitely high frequency?) If g(y)
is continuous, but has discontinuous �rst derivatives like a triangular distribution, then G(k) falls
o� as k�2 , and we are in a situation about as bad. Evidently, if g(y) has a discontinuity in any
derivative, there is no solution f(x) that would be acceptable in the physical problem. This is
evident also from (7{57); the formal solution would degenerate into in�nitely high derivatives of a
delta{function.

In order that we can interpret g(y) as a mixture of possible gaussians, f(x) must be non{
negative. But we must allow the possibility that the f(x) sought is a sum of delta-functions;
indeed, to resolve g(y) into a discrete mixture of gaussians g(y) =

P
aj '(x�xj) was the real goal

of Quetelet and Galton. If this could be achieved uniquely, their interpretation might be valid.
Then F (k) does not fall o� at all as k ! �1, so G(k) must fall o� as exp(� k2�2=2). In short, in
order to be resolvable into gaussians of width � with positive mixture function f(x), the function
g(y) must itself be at least as smooth as a gaussian of width � . This is a formal di�culty.

There is a more serious practical di�culty. If g(y) is a function determined only empirically,
we do not have it in the form of an analytic function; we have only a �nite number of approximate
values gi at discrete points yi . We can �nd many analytic functions which appear to be good
approximations to the empirical one. But because of the instability evident in (7{57) and (7{59)
they will lead to greatly di�erent �nal results f(x). Without a stability property and a criterion
for choosing that smooth function, we really have no de�nite solution in the sense of inversion of
an integral equation.?

In other words, �nding the appropriate mixture f(x) to account for an empirically determined
distribution g(y) is not a conventional mathematical problem of inversion; it is itself a problem

of inference, requiring the apparatus of probability theory . In this way, a problem in probability
theory can generate a hierarchy of sub{problems, each involving probability theory again but on a
di�erent level.

There is Hope After All. But following up this idea, the original goal of Quetelet has now been
very nearly realized by analysis of the integral equation as a problem of Bayesian inference instead
of mathematical inversion; and useful examples of analysis of real data by this have now been found.
Sivia and Carlile (1992) report the successful resolution of noisy data into as many as nine di�erent
gaussian components, representing molecular excitation lines, by a Bayesian computer program.y

? For other discussions of the problem, see Andrews & Mallows (1974); Titterington, et al , (1985).
y We noted already in Chapter 1 that most of the computer programs used in this �eld are only intuitive ad
hoc devices that make no use of the principles of probability theory; therefore in general they are usable in
some restricted domain, but they fail to extract all the relevant information from the data and are subject to
both the errors of hallucination and blunt perception. One commercial program for resolution into gaussians
or other functions simply reverts to empirical curve{�tting. It is advertised [Scienti�c Computing , July
1993, p. 15] with a provocative message, which depicts two scientists with the same data curve showing
two peaks; by hand drawing one could resolve it very crudely into two gaussians. The ad proclaims: \Dr.
Smith found two peaks � � � . Using [our program] Dr. Jones found three peaks � � � . Guess who got the
grant? We are encouraged to think that we can extract money from the Government by �rst allowing
the software company to extract $500 from us for this program, whose output would indeed be tolerable
for noiseless data. But it would surely degenerate quickly into dangerous, unstable nonsense as the noise
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We consider the theory of this in connection with the general spectrum/shape problem in Chapter
23.

It is hardly surprising that Quetelet and Galton could not solve this problem in the last
Century; but it is very surprising that today many scientists, engineers, and mathematicians still
fail to see the distinction between inversion and inference, and struggle with problems like this
that have no deductive solutions, only inferential ones. The problem is, however, very common in
current applications; it is known as a \generalized inverse" problem, and today we can give unique
and useful inferential solutions to many such problems by specifying the (essential, but hitherto
unmentioned) prior information to be used.

This suggests another interesting mathematical problem; for a given entire function g(y), over
what range of � is the solution (7{54) nonnegative? There are some evident clues; when � ! 0,
we have '(x�yj�)! �(x�y) and so as noted above, f(x)! g(x), so for � su�ciently small f(x)
will be nonnegative if g(y) is. But when � ! 1 the gaussians in (7{48) become very broad and
smooth; and so if f(x) is nonnegative, the integral in (7{48) must be at least as broad. Thus when
g(y) has detailed structure on a scale smaller than � , there can be no solution with nonnegative
f(x); and it is not obvious whether there can be any solution at all.

Exercise 7.7. From the above arguments one would conjecture that there will be some upper
bound �max such that the solution f(x) is nonnegative when and only when 0 � � < �max . It
will be some functional �max[g(y)] of g(y). Prove or disprove this conjecture; if it is true, give
a verbal argument by which we could have seen this without calculation; if it is false, give a
speci�c counter{example showing why. It appears that (7{57) might be useful in this endeavor.

But this suggests that the original goal of Quetelet and Galton was ambiguous; any su�ciently
smooth nongaussian distribution may be generated by many di�erent superpositions of di�erent
gaussians of di�erent widths. Therefore a given set of sub{populations, even if found mathemati-
cally, would have little biological signi�cance unless there were additional prior information pointing
to gaussians of that particular width � as having a \real" existence and playing some active role
in the phenomena. Of course, this caveat applies equally to the aforementioned Bayesian solution;
but Sivia and Carlile did have that prior information.

COMMENTS

Terminology Again. As we are obliged to point out so often, this �eld seems to be cursed more
than any other with bad and misleading terminology which seems impossible to eradicate. The
Electrical Engineers have solved this problem very e�ectively; every few years an O�cial Committee
issues a Revised Standard Terminology, which is then enforced by editors of their journals (witness
the meek acceptance of the change from `megacycles' to `megahertz' which was accomplished almost
overnight a few years ago).

In probability theory there is no Central Authority with the power to bring about dozens of
needed reforms, and it would be self{defeating for any one author to try to do this by himself; he
would only turn away readers. But we can o�er tentative suggestions in the hope that others may
see merit in them.

The literature gives conicting evidence about the origin of the term \Normal distribution".
Karl Pearson (1920) claimed to have introduced it \many years ago", in order to avoid an old
dispute over priority between Gauss and Legendre; but he gave no reference. Hilary Seal (1967)
attributes it instead to Galton; but again fails to give a reference, so it would require a new historical
study to decide this. However, the term had long been associated with the general topic: given a

level increases. The problem is not, basically, one of inversion or curve �tting; it is a problem of inference.
A Bayesian inference program like those of Bretthorst (1988) will continue to return the best resolution
possible from the data and the model, without instability, whatever the noise level.
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linear model y = X�+e where the vector y and the matrix X are known, the vector of parameters
� and the noise vector e unknown, Gauss (1823) called the system of equations X 0X�̂ = X 0y ,

which give the least squares parameter estimates �̂ , the \normal equations" and the ellipsoid of
constant probability density was called the \normal surface." It appears that somehow the name
got transferred from the equations to the sampling distribution that leads to those equations.

Presumably, Gauss meant \normal" in its mathematical sense of \perpendicular" expressing
the geometric meaning of those equations. The minimum distance from a point (the estimate) to a
plane (the constraint) is the length of the perpendicular. But, as Pearson himself observes, the term
\normal distribution" is a bad one because the common colloquial meaning of `normal' is standard
or sane, implying a value judgment. This leads many to think { consciously or subconsciously { that
all other distributions are in some way abnormal.

Actually, it is quite the other way; it is the so{called `normal' distribution that is abnormal
in the sense that it has many unique properties not possessed by any other. Almost all of our
experience in inference has been with this abnormal distribution, and much of the folklore that we
must counter here was acquired as a result. For decades, workers in statistical inference have been
misled, by that abnormal experience, into thinking that methods such as con�dence intervals, that
happen to work satisfactorily with this distribution, should work as well with others.

The alternative name \gaussian distribution" is equally bad for a di�erent reason, although
there is no mystery about its origin. Stigler (1980) sees it as a general law of eponymy that no
discovery is named for its original discoverer . Our terminology is in excellent compliance with
this law, since the fundamental nature of this distribution and its main properties were noted by
Laplace when Gauss was six years old; and the distribution itself had been found by de Moivre
before Laplace was born. But as we noted, the distribution became popularized by the work of
Gauss (1809) who gave a derivation of it that was simpler than previous ones and seemed very
compelling intuitively at the time. This is the derivation that we gave above, Eq. (7{15), and
which resulted in his name becoming attached to it.

The term \Central distribution" would avoid both of these objections while conveying a correct
impression; it is the �nal `stable' or `equilibrium' distribution toward which all others gravitate
under a wide variety of operations (large number limit, convolution, stochastic transformation,
etc.) and which, once attained, is maintained through an even greater variety of transformations,
some of which are still unknown to statisticians because they have not yet come up in their problems.

For example, in the 1870's Ludwig Boltzmann gave a compelling, although heuristic, argument
indicating that collisions in a gas tend to bring about a \Maxwellian" or Gaussian, frequency
distribution for velocities. Then Kennard (1936, Chap. 3) showed that this distribution, once
attained, is maintained automatically, without any help from collisions, as the molecules move
about, constantly changing their velocities, in any conservative force �eld [that is, forces f(x)
derivable from a potential �(x) by gradients: f(x) = �r�(x)]. Thus this distribution has stability
properties considerably beyond anything yet utilized by statisticians, or yet demonstrated in the
present work.

While venturing to use the term `Central Distribution' in a cautious, tentative way, we continue
to use also the bad but traditional terms, preferring \gaussian" for two reasons. Ancient questions
of priority are no longer of interest; far more important today, \gaussian" does not imply any
value judgment. Use of emotionally loaded terms appears to us a major cause of the confusion
in this �eld, causing workers to adhere to principles with noble{sounding names like `unbiased' or
`admissible' or `uniformly most powerful', in spite of the nonsensical results they can lead us to in
practice. But also, we are writing for an audience that includes both statisticians and scientists.
Everybody understands what \Gaussian distribution" means; but only statisticians are familiar
with the term \Normal distribution".

The fundamental Boltzmann distribution of statistical mechanics, exponential in energies, is
of course Gaussian or Maxwellian in particle velocities. The general central tendency of probabil-
ity distributions toward this �nal form is now seen as a consequence of their maximum entropy
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properties (Chapter 11). If a probability distribution is subjected to some transformation that
discards information but leaves certain quantities invariant, then under very general conditions, if
the transformation is repeated, the distribution tends to the one with maximum entropy subject
to the constraints of those conserved quantities.

This brings us to the term \Central Limit Theorem" which we have derived as a special case of
the phenomenon just noted { the behavior of probability distributions under repeated convolutions,
which conserve �rst and second moments. This name was introduced by George P�olya (1920),
with the intention that the adjective `central' was to modify the noun `theorem'; i.e. it is the
limit theorem which is central to probability theory. Almost universally, students today think that
`central' modi�es `limit', so that it is instead a theorem about a `central limit ', whatever that
means.y

But in view of the equilibrium phenomenon, it appears that P�olya's choice of words was after
all fortunate in a way that he did not foresee. Our suggested terminology takes advantage of this;
looked at in this way, the terms `Central distribution' and `Central limit theorem' both convey the
right connotations to one hearing them for the �rst time. One can read `Central limit' as meaning
a limit toward a central distribution, and will be invoking just the right intuitive picture.

The Great Inequality of Jupiter and Saturn

An outstanding problem for 18'th Century science was noted by Edmund Halley in 1676. Observa-
tion showed that the mean motion of Jupiter (30.35 degrees per year) was slowly accelerating, that
of Saturn (12.22 deg/yr) decelerating. But this was not just a curiosity for astronomers; it meant
that Jupiter was drifting closer to the sun, Saturn farther away. If this trend were to continue
inde�nitely, then eventually Jupiter would fall into the sun, carrying with it the earth and all the
other inner planets. This seemed to prophesy the end of the world { and in a manner strikingly
like the prophesies of the Bible.

Understandably, this situation was of more than ordinary interest, and to more people than
astronomers. Its resolution called forth some of the greatest mathematical e�orts of 18'th Century
savants, either to con�rm the coming end; or preferably to show how the Newtonian laws would
eventually put a stop to the drift of Jupiter and save us.

Euler, Lagrange, and Lambert made heroic attacks on the problem without solving it. We
noted above how Euler was stopped by a mass of overdetermined equations; 75 simultaneous but
inconsistent equations for 8 unknown orbital parameters. If the equations were all consistent, he
could choose any eight of them and solve (this would still involve inversion of an 8 � 8 matrix),
and the result would be the same whatever eight he chose. But the observations all had unknown
errors of measurement, and so there were�

75

8

�
' 1:69� 1010

possible choices. There are over sixteen billion di�erent sets of estimates for the parameters, with
apparently nothing to choose between them.? At this point, Euler managed to extract reasonably
good estimates of two of the unknowns (already an advance over previous knowledge); and simply
gave up on the others. For this work (Euler, 1749) he won the French Academy of Sciences prize.

y The confusion does not occur in the original German, where P�olya's words were: �Uber den zentralen

Grenzwertsatz der Wahrscheinlichkeitsrechnung , an interesting example where the German habit of invent-
ing compound words removes an ambiguity in the literal English rendering.
? Our algorithm for this in Chapter 19 [Eq's (19{24), (19{37)] actually calculates a weighted average over
all these billions of estimates; but in a manner so e�cient that one is unaware of this. What probability
theory determines for us { and what Euler and Daniel Bernoulli never comprehended { is the optimal
weighting coe�cients in this average, leading to the greatest possible reliability for the estimate and the
accuracy claims.
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The problem was �nally solved in 1787 by one who was born that same year. Laplace (1749{
1827) \saved the world" by using probability theory to estimate the parameters accurately enough
to show that the drift of Jupiter was not secular after all; the observations at hand had covered
only a fraction of a cycle of an oscillation with a period of about 880 years. This is caused by an
\accidental" near resonance in their orbital periods:

2� (period of Saturn) ' 5� (period of Jupiter)

Indeed, from the above mean motion data we have

2� 360

12:22
= 58:92 yr ; 5� 360

30:35
= 59:32 yr :

In the time of Halley their di�erence was only about 0:66 percent and decreasing.
So long before it became a danger to us, Jupiter indeed reversed its drift as predicted, and

is returning to its old orbit. Presumably, Jupiter and Saturn have repeated this seesaw game
several million times since the solar system was formed. The �rst half{cycle of this oscillation to
be observed by man will be completed in about the year 2012.


