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Real Hypersurfaces

in Complex Space Forms

ROSS NIEBERGALL AND PATRICK J. RYAN

Abstract. The study of real hypersurfaces in complex space forms has
been an active field of study over the past decade. This article attempts to
give the necessary background material to access this field, as well as a de-
tailed construction of the important examples of hypersurfaces in complex
projective and complex hyperbolic space. Following this we give a survey
of the major classification results, including such topics as restrictions on
the shape operator, the η-parallel condition, and restrictions on the Ricci
tensor. We conclude with a brief discussion of some additional areas of
study and some open problems. A comprehensive bibliography is included.

Introduction

The study of real hypersurfaces in complex projective space C P n and complex
hyperbolic space C Hn has been an active field over the past decade. Although
these ambient spaces might be regarded as the simplest after the spaces of con-
stant curvature, they impose significant restrictions on the geometry of their
hypersurfaces. For instance, they do not admit umbilic hypersurfaces and their
geodesic spheres do not have constant curvature. They also do not admit Ein-
stein hypersurfaces. M. Okumura [1978] remarked that there was a poverty of
vocabulary for describing the differential geometric properties of the hypersur-
faces that can arise. That situation has since been improved.

One can regard C P n as a projection from S2n+1 with fibre S1. H. B. Lawson
[1970] was the first to exploit this idea to study a hypersurface in C P n by
lifting it to an S1-invariant hypersurface of the sphere. He identified certain
hypersurfaces called equators of C P n which are minimal and lift to Clifford
minimal hypersurfaces of the sphere. Subsequently, other investigators explored
properties that lifted to familiar properties of hypersurfaces in S2n+1.
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R. Takagi’s classification [1973] of the homogeneous real hypersurfaces of C P n

was important in its own right, but it also identified a whole list of hypersurfaces,
gave them names (type A1, type B, etc.), and focused attention on them. Other
geometers began to study them and to derive new characterizations of various
subsets of the list.

Another important notion that developed was the relevance of the structure
vector of a hypersurface. It is defined by W = −Jξ where J is the complex
structure and ξ is the unit normal field. In early investigations, it was found
that computations were more tractable when W was a principal vector. Further,
it was observed that W is principal for all homogeneous hypersurfaces in C P n.
Later, geometric characterizations of this property were found and hypersurfaces
that satisfy it are now called Hopf hypersurfaces.

It has also developed that certain interesting classes of hypersurfaces can be
characterized by simply stated conditions on the so-called holomorphic distri-
bution W⊥. For example, the notions of η-umbilical and pseudo-Einstein have
arisen. These are the appropriate analogues of umbilical and Einstein, respec-
tively, and essentially say that the indicated property holds on W⊥.

The homogeneous hypersurfaces of C P n all have constant principal curva-
tures, and Hopf hypersurfaces with constant principal curvatures have been de-
termined, both for C P n and for C Hn. In real space forms, constant principal
curvature hypersurfaces are isoparametric and have many nice properties re-
lated to parallel families and focal sets. The various equivalent definitions of
isoparametric that can be used in real space forms lead to distinct classes of hy-
persurfaces in C P n. Several of these alternatives have been investigated but the
constant principal curvature hypersurfaces have been studied most intensively.

The study of hypersurfaces in C Hn has followed developments in C P n, of-
ten with similar results, but sometimes with differences. For example, a Hopf
hypersurface with constant principal curvatures in C P n must have 2, 3, or 5
distinct principal curvatures. For C Hn, 2 and 3 are the only possibilities. On
the other hand, C Hn admits a wider variety of hypersurfaces with a specific
number (say 2) of principal curvatures.

In this article, we will present the fundamental definitions and results neces-
sary for reaching the frontiers of research in the field. We will state the known
classification results and provide proofs of many of them. For those proofs that
we cannot include because of time and space limitations, we provide appropriate
pointers to the literature.

In Section 1 we construct the standard models of spaces of constant holo-
morphic sectional curvature, and give the essential background for studying real
hypersurfaces. In Section 2 we discuss the notion of Hopf hypersurfaces, and
show that the shape operator satisfies rather stringent conditions for these hy-
persurfaces. In Section 3 we list the standard examples of real hypersurfaces that
occur in spaces of constant holomorphic sectional curvature. The classification
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results are discussed in Sections 4–7. Finally, in Sections 8 and 9, we discuss
areas for further study.

We conclude this section by mentioning a few notational conventions. In
addition to the usual end-of-proof symbol �, we use / to conclude the statement
of a theorem whose proof is to be omitted.

For Hopf hypersurfaces, the shape operator A preserves the holomorphic dis-
tribution W⊥. Rather than say that λ is a principal curvature whose correspond-
ing principal vectors lie in W⊥, we often say that λ is a principal curvature “on
W⊥”. This will allow us to avoid repeating a wordy and awkward phrase.

When X and Y are vectors, X ∧ Y will denote the linear transformation
satisfying

(X ∧ Y )Z = 〈Y, Z〉X − 〈X, Z〉Y
where 〈 , 〉 is the inner product. Finally, since covariant differentiation acts as a
derivation on the algebra of tensor fields, and commutes with contractions, the
curvature operator R(X, Y ) can operate in the same way. For any tensor field
T , the tensor field defined by

R(X, Y ) · T = ∇X∇Y T −∇Y∇XT −∇[X,Y ]T

is abbreviated R · T . For instance, if T is a tensor field of type (1, 1),

(R · T )(X, Y, Z) = (R(X, Y ) · T )Z = R(X, Y )(TZ) − T (R(X, Y )Z).

1. Preliminaries

In this section we construct the standard models of spaces of constant holo-
morphic sectional curvature. We first construct C P n and then C Hn, and then
we take a unified approach to the discussion of spaces of constant holomorphic
sectional curvature. We then discuss the geometry of hypersurfaces and their
lifts.

Complex Projective Space. We first introduce the complex projective space
C P n and the basic equations for studying its hypersurfaces. For z = (z0, . . . , zn),
w = (w0, . . . , wn) in C n+1, write

F (z, w) =
n∑

k=0

zkw̄k

and let 〈z, w〉 = ReF (z, w), the real part of F (z, w). The (2n + 1)-sphere
S2n+1(r) of radius r is defined by

S2n+1(r) = {z ∈ C n+1 : 〈z, z〉 = r2}.
We may consider C n+1 as R2n+2 and define u, v ∈ R2n+2 by

zk = u2k + u2k+1i, wk = v2k + v2k+1i.
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Then

〈z, w〉 = 〈u, v〉 =
2n+1∑
k=0

ukvk.

We will use 〈z, w〉 and 〈u, v〉 interchangeably. When desired, we can work ex-
clusively in real terms by introducing the operator J for multiplication by the
complex number i. Note that for z ∈ S2n+1(r),

TzS
2n+1(r) = {w ∈ C n+1 : 〈z, w〉 = 0}.

Restricting 〈 , 〉 to S2n+1(r) gives a Riemannian metric whose Levi-Civita con-
nection ∇̃ satisfies

DXY = ∇̃XY − 〈X, Y 〉 z

r2

for X, Y tangent to S2n+1(r) at z, where D is the Levi-Civita connection of
R2n+2. The usual calculations of the Gauss equation yield that the curvature
tensor R̃ of ∇̃ satisfies

R̃(X, Y ) =
1
r2

X ∧ Y. (1.1)

Let V = Jz and write down the orthogonal decomposition into so-called
vertical and horizontal components,

TzS
2n+1(r) = span{V } ⊕ V ⊥.

Let π be the canonical projection of S2n+1(r) to complex projective space C P n,

π : S2n+1(r) → C P n.

Complex Hyperbolic Space. Next, we introduce the complex hyperbolic
space C Hn. The construction is parallel to that of C P n with some important
differences. For z, w in C n+1, write

F (z, w) = −z0w̄0 +
n∑

k=1

zkw̄k

and let 〈z, w〉 = ReF (z, w). The anti–de Sitter space of radius r in C
n+1 is

defined by
H2n+1

1 (r) = {z ∈ C n+1 : 〈z, z〉 = −r2}.
We denote H2n+1

1 (r) by H for short. We use the same identification of C n+1

with R2n+2 so that

〈z, w〉 = 〈u, v〉 = −u0v0 − u1v1 +
2n+1∑
k=2

ukvk.

For z ∈ H ,
TzH = {w ∈ C n+1 : 〈z, w〉 = 0}.

Restricting 〈 , 〉 to H gives a Lorentz metric whose Levi-Civita connection ∇̃
satisfies

DXY = ∇̃XY + 〈X, Y 〉 z

r2
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for X, Y tangent to H at z. The Gauss equation takes the form

R̃(X, Y ) = − 1
r2

X ∧ Y. (1.2)

Again take V = Jz and we get the analogous orthogonal decomposition

TzH = span{V } ⊕ V ⊥.

Denote by C Hn the image of H by the canonical projection π to complex pro-
jective space,

π : H → C Hn ⊂ C P n.

Thus, topologically, C Hn is an open subset of C P n. However, as Riemannian
manifolds, they have quite different structures.

Complex Space Forms From here we make a uniform exposition covering both
C P n and C Hn. When convenient, we make use of the letter ε to distinguish the
two cases. It denotes the sign of the constant holomorphic sectional curvature
4c = 4ε/r2. For example, (1.1) and (1.2) could be written as

R̃(X, Y ) =
ε

r2
X ∧ Y.

We also use M̃ to stand for either C P n or C Hn and M̃ ′ for S2n+1(r) or H .
Note that π∗V = 0 but that π∗ is an isomorphism on V ⊥. Let z be any point

of M̃ ′. For X ∈ TπzM̃ , let XL be the vector in V ⊥
z that projects to X. XL

is called the horizontal lift of X to z. Define a Riemannian metric on M̃ by
〈X, Y 〉 = 〈XL, Y L〉. It is well-defined since the metric on M̃ ′ is invariant by the
fibre S1. Since V ⊥ is J-invariant, M̃ can be assigned a complex structure (also
denoted by J) by JX = π∗(JXL). It is easy to check that 〈 , 〉 is Hermitian on
M̃ and that its Levi-Civita connection ∇̃ satisfies

∇̃XY = π∗(∇̃XLY L). (1.3)

We also note that on M̃ ′

∇̃XLV = ∇̃V XL = JXL = (JX)L (1.4)

while

∇̃V V = 0.

See [O’Neill 1966; Gray 1967] for background on Riemannian submersions.

Theorem 1.1. The curvature tensor R̃ of M̃ satisfies

R̃(X, Y )Z =
ε

r2
(X ∧ Y + JX ∧ JY + 2〈X, JY 〉J)Z.

In particular , the sectional curvature of a holomorphic plane spanned by X and
JX is 4ε/r2 so that M̃ is a space of constant holomorphic sectional curvature. /
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The Riemannian metrics we have just constructed are known as the Fubini–Study
metric on C P n and the Bergman metric on C Hn respectively. See [Kobayashi
and Nomizu 1969, Chapter IX] for additional information on these metrics.

Hypersurfaces in Complex Space Forms. Let M̃(c) be a space of con-
stant holomorphic sectional curvature 4c with real dimension 2n and Levi-Civita
connection ∇̃. For an immersed manifold f : M2n−1 → M̃ , the Levi-Civita
connection ∇ of the induced metric and the shape operator A of the immersion
are characterized respectively by

∇̃XY = ∇XY + 〈AX, Y 〉ξ
and

∇̃Xξ = −AX

where ξ is a local choice of unit normal. We omit mention of the immersion f

for brevity of notation. Let
J : TM̃ → TM̃

be the complex structure with properties J2 = −I, ∇̃J = 0, and 〈JX, JY 〉 =
〈X, Y 〉. Define the structure vector

W = −Jξ.

Clearly W ∈ TM , and |W | = 1. Write a = 〈AW, W 〉. We reserve the symbols
W and a for these purposes throughout.

Define a skew-symmetric (1, 1)-tensor ϕ from the tangential projection of J

by
JX = ϕX + 〈X, W 〉ξ. (1.5)

Then, since −X = J2X = J(ϕX + 〈X, W 〉ξ) = ϕ2X + 〈ϕX, W 〉ξ + 〈X, W 〉Jξ,
we see that

ϕ2X = −X + 〈X, W 〉W. (1.6)

It is easy to check that

〈ϕX, ϕY 〉 = 〈X, Y 〉 − 〈X, W 〉〈Y, W 〉. (1.7)

Putting X = W in (1.5) gives ϕW = 0. Noting that ϕ2 = −I on W⊥ = {X ∈
TM : 〈X, W 〉 = 0} we see that ϕ has rank 2n− 2 and that

ker ϕ = span{W}.
Such a ϕ determines an almost contact metric structure [Blair 1976, pp. 19–21]
and W⊥ is called the holomorphic distribution.

In the usual way, we derive the Gauss and Codazzi equations:

R(X, Y ) = AX ∧AY + c
(
X ∧ Y + ϕX ∧ ϕY + 2〈X, ϕY 〉ϕ)

, (1.8)

(∇XA)Y − (∇Y A)X = c
(〈X, W 〉ϕY − 〈Y, W 〉ϕX + 2〈X, ϕY 〉W )

. (1.9)
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Corollary 1.2. We have
〈
(∇XA)Y − (∇Y A)X, W

〉
= 2c〈X, ϕY 〉 and〈

(∇XA)W, W
〉

=
〈
(∇WA)X, W

〉
= 〈(∇W A)W, X〉.

Proof. The first equation follows by taking the inner product of the Codazzi
equation with W , and the second follows by letting Y = W . �

From equation (1.8) we get the Ricci tensor S of type (1, 1) defined by

〈SX, Y 〉 = trace{Z → R(Z, X)Y } (1.10)

as

SX = (2n + 1)cX − 3c〈X, W 〉W + (trace A)AX − A2X. (1.11)

The scalar curvature is

s = trace S = 4(n2 − 1)c + (trace A)2 − trace A2.

The mean curvature is m = trace A and we reserve the symbol m for this purpose
throughout.

Proposition 1.3. We have ∇XW = ϕAX and

(∇Xϕ)Y = 〈Y, W 〉AX − 〈AX, Y 〉W.

Proof. For the first equality,

∇XW =−∇X(Jξ) = −∇̃X(Jξ) + 〈AX, Jξ〉ξ
=− J∇̃Xξ + 〈AX, Jξ〉ξ = JAX − 〈JAX, ξ〉ξ = ϕAX.

For the second,

(∇Xϕ)Y = ∇X(ϕY )−ϕ∇XY = ∇X(JY −〈Y, W 〉ξ)−ϕ∇XY

= ∇̃X(JY −〈Y, W 〉ξ)−〈AϕY, X〉ξ−ϕ∇XY

= J(∇XY + 〈AX, Y 〉ξ)−X〈Y, W 〉ξ + 〈Y, W 〉AX−〈AϕY, X〉ξ−ϕ∇XY

= ϕ∇XY + 〈∇XY, W 〉ξ−〈AX, Y 〉W −〈∇XY, W 〉ξ
−〈Y, ϕAX〉ξ + 〈Y, W 〉AX−〈AϕY, X〉ξ−ϕ∇XY

= 〈Y, W 〉AX−〈AX, Y 〉W. �

Proposition 1.4. If c 6= 0 then ∇W cannot be identically zero. Equivalently ,
ϕA cannot be identically zero.

Proof. By Proposition 1.3, ∇XW = 0 if and only if ϕAX = 0. Suppose that
this condition holds for all X. Then AX = 〈AX, W 〉W . Thus, for all X and Y ,

(∇XA)Y = ∇X(AY ) −A∇XY ∈ span{W}.
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Applying the Codazzi equation, we have

c(〈X, W 〉ϕY − 〈Y, W 〉ϕX) ∈ span{W}.

In particular, put Y = W to get that −cϕX lies in the span of W for all X.
This is clearly impossible since c 6= 0. �

Theorem 1.5. Let M2n−1, where n ≥ 2, be a hypersurface in a complex space
form of constant holomorphic sectional curvature 4c 6= 0. Then the shape oper-
ator A cannot be parallel . Also, no identity of the form A = λI can hold , even
with λ nonconstant . In particular , umbilic hypersurfaces cannot occur .

Proof. Let us first assume that A = λI. The Codazzi equation (1.9) becomes

(Xλ)Y − (Y λ)X = c(〈X, W 〉ϕY − 〈Y, W 〉ϕX + 2〈X, ϕY 〉W ).

If we put Y = W in this equation, it simplifies to

(Xλ)W − (Wλ)X = −cϕX.

For X 6= 0 orthogonal to W , the set {X, ϕX, W} is linearly independent, and
so c = 0 which contradicts the hypothesis. Now suppose that ∇A = 0. Take
X 6= 0 orthogonal to W and Y = W in the Codazzi equation, to get −cϕX = 0,
another contradiction. �

The nonexistence of umbilic hypersurfaces was proved by Tashiro and Tachibana
[1963].

Lifts of Hypersurfaces in M̃ to M̃ ′. Once again, we let M̃ represent C P n or
C Hn and M̃ ′ represent S2n+1(r) or H respectively, with the canonical projection

π : M̃ ′ → M̃.

Now consider a hypersurface M in M̃ . Then M ′ = π−1M is an S1-invariant
hypersurface in M̃ ′ (Lorentzian in the case M̃ ′ = H ). If ξ is a unit normal for
M , then ξ′ = ξL is a unit normal for M ′. The induced connection ∇′ and the
shape operator A′ for M ′ satisfy

∇̃XY = ∇′
XY + 〈A′X, Y 〉ξ′, ∇̃Xξ′ = −A′X,

and the more familiar form of the Codazzi equation

(∇′
XA′)Y = (∇′

Y A′)X.

There is also a Gauss equation, but we will not have occasion to use it. We
also have WL = U = −Jξ′ where W = −Jξ is the structure vector introduced
earlier.
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Lemma 1.6. For X and Y tangent to M̃ ,

(∇̃XY )L = ∇̃XLY L + ε〈JXL, Y L〉 1
r2

V. (1.12)

Proof. By (1.3), π∗ applied to each side of (1.12) yields the same result. Thus,
it only remains to check that the right side is horizontal. However,

〈∇̃XLY L, V 〉+ ε〈JXL, Y L〉 1
r2
〈V, V 〉 = −〈Y L, ∇̃XLV 〉+ 〈JXL, Y L〉ε2

= −〈Y L, JXL〉+ 〈JXL, Y L〉 = 0. �

Lemma 1.7. (i) ∇̃V ξ′ = Jξ′ = −U , so A′V = U .
(ii) For X tangent to M , (AX)L = A′XL − 〈XL, U〉εr−2V.

(iii) In particular , (AW )L = A′U − εr−2V.

(iv) If AW = aW , then A′U = aU + εr−2V .

Proof. To verify the first assertion, note that ∇̃V ξ′ = ∇̃V ξL = JξL = −U .
For the second, we compute

−A′XL = ∇̃XLξL = (∇̃Xξ)L − ε〈JXL, ξL〉r−2V,

and hence

A′XL = (AX)L + ε〈XL, U〉r−2V.

Assertions (iii) and (iv) are special cases of (ii). �

We now look at the relationship between the covariant derivatives of the respec-
tive shape operators of M and M ′.

Theorem 1.8. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then the shape
operator A′ of M ′ = π−1M satisfies

π∗((∇′
XLA′)Y L) = (∇XA)Y + c

(〈ϕX, Y 〉W + 〈Y, W 〉ϕX
)

for all X, Y tangent to M .

Proof. We begin with the fundamental identity,

(∇XA)Y = ∇X(AY ) −A(∇XY ),

and take the horizontal lift of each side. In the following equation, all equalities
are to be understood mod V . We freely use (1.3), (1.4) and the results of
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Lemmas 1.6 and 1.7.(
(∇XA)Y

)L =
(∇̃X(AY )−〈AX, AY 〉ξ)L−A′(∇XY )L

= ∇̃XL(AY )L−〈(AX)L, (AY )L〉ξ′−A′((∇̃XY )L−〈(AX)L, Y L〉ξ′)
= ∇̃XL(A′Y L−εr−2〈Y L, U〉V )

−(〈A′XL, A′Y L〉+r−4〈XL, U〉〈Y L, U〉〈V, V 〉)ξ′
+2εr−2〈XL, U〉〈Y L, U〉ξ′
−A′(∇̃XLY L +εr−2〈JXL, Y L〉V −〈(AX)L, Y L〉ξ′)

= ∇′
XL(A′Y L)+〈A′XL, A′Y L〉ξ′−εr−2〈Y L, U〉JXL

−〈A′XL, A′Y L〉ξ′+εr−2〈XL, U〉〈Y L, U〉ξ′
−A′(∇′

XLY L+〈A′XL, Y L〉ξ′+εr−2〈JXL, Y L〉V −〈(AX)L, Y L〉ξ′)
= (∇′

XLA′)Y L−εr−2〈Y L, U〉(JX)L

+εr−2〈XL, U〉〈Y L, U〉ξ′−εr−2〈JX, Y 〉U
= (∇′

XLA′)Y L−εr−2〈Y, W 〉(ϕX)L−εr−2〈Y, W 〉〈X, W 〉ξL

+εr−2〈X, W 〉〈Y, W 〉ξL−εr−2〈ϕX, Y 〉WL,

from which the result follows. �

Note that the Codazzi equation (1.9) for M in M̃ is a consequence of Theo-
rem 1.8 together with the Codazzi equation for M ′ in M̃ ′. We also look at the
vertical component of the covariant derivative of A′ and observe the following
nice relationship. The proof is a straightforward application of the same methods
used in Theorem 1.8.

Proposition 1.9. Under the hypothesis of Theorem 1.8,〈
(∇′

XLA′)Y L, V
〉

= 〈(ϕA−Aϕ)X, Y 〉.

Therefore (∇′
XLA′)Y L is horizontal for all X and Y if and only if ϕ and A

commute. /

A (1, 1) tensor A is said to be a Codazzi tensor with respect to a semi-Riemannian
metric 〈 , 〉 if, for all tangent vectors X and Y ,

〈AX, Y 〉 = 〈X, AY 〉 and (∇XA)Y = (∇Y A)X,

where ∇ is the Levi-Civita connection.

Lemma 1.10. Let A be a Codazzi tensor . Assume that there are constants α

and β such that A2 = αA + βI. If α2 + 4β 6= 0, then ∇A = 0. Furthermore,
if α2 + 4β < 0, the tangent space splits into spacelike and timelike subspaces of
equal dimensions.
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Proof. Differentiating the quadratic condition yields

(∇XA)A + A(∇XA) = α(∇XA) (1.13)

so that
A(∇XA)A = (αA− A2)∇XA = −β∇XA. (1.14)

On the other hand, we can write (1.13) in the form

〈(∇ZA)Y, AX〉 + 〈(∇ZA)X, AY 〉 = α〈(∇ZA)X, Y 〉
where we have used the symmetry of A and∇ZA. Applying the Codazzi equation
and then replacing Z by AZ yields

〈(∇Y A)AZ, AX〉 + 〈(∇XA)AZ, AY 〉 = α〈(∇XA)AZ, Y 〉.
Again using symmetry and the Codazzi equation, along with (1.14), we have

−2β
〈
(∇XA)Y, Z

〉
= α

〈
A(∇XA)Y, Z

〉
= α

〈
(∇XA)AZ, Y

〉
.

Since the left side is symmetric in Y and Z, we have

α(∇XA)A = αA(∇XA) = −2β∇XA

so that, in view of (1.13),
(α2 + 4β)∇XA = 0.

If α2 + 4β < 0, there is a constant γ such that P = γ(A − 1
2
αI) is a symmetric

transformation satisfying P 2 = −I. In fact, γ =
(−(β + 1

4α2)
)−1/2

. The result
follows immediately. �

Using Theorem 1.8, we can strengthen the result that the shape operator cannot
be parallel. In fact, its covariant derivative cannot vanish even at one point.
Specifically:

Theorem 1.11. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then the shape
operator A satisfies |∇A|2 ≥ 4c2(n− 1).

Proof. Let

T (X, Y ) = (∇XA)Y + c(〈ϕX, Y 〉W + 〈Y, W 〉ϕX),

the right side of the equation in Theorem 1.8. Then

0 ≤ |T |2 = |∇A|2 + 2ck1 + c2k2,

where k1 is the sum of

〈(∇XA)Y, 〈ϕX, Y 〉W + 〈Y, W 〉ϕX〉
as X and Y range over an orthonormal basis, while k2 is the sum of

〈ϕX, Y 〉2 + 〈Y, W 〉2|ϕX|2
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over the same range of X and Y . Summing over Y and using the fact that ∇XA

is symmetric, we see that k1 is equal to the sum over X of

〈ϕX, (∇XA)W 〉 + 〈W, (∇XA)ϕX〉 = 2〈ϕX, (∇XA)W 〉.
By the Codazzi equation,

〈ϕX, (∇XA)W 〉 = 〈ϕX, (∇W A)X〉 − c〈ϕX, ϕX〉.
Now note that (∇WA)ϕ has zero trace while the trace of ϕ2 is −2(n− 1). Thus
we can calculate that k1 = −4c(n − 1), while k2 = 4(n− 1). Therefore

|∇A|2− 8c2(n− 1) + 4c2(n− 1) ≥ 0,

which gives the desired result. �

As a byproduct of this proof, we also see that equality holds if and only if T = 0.
This means that

(∇XA)Y = −c(〈ϕX, Y 〉W + 〈Y, W 〉ϕX).

We will discuss this further at the beginning of Section 4. See Corollary 4.4.

2. Hopf Hypersurfaces: When W Is Principal

If W is a principal vector, M is called a Hopf hypersurface. Hopf hypersur-
faces have several nice characterizations. The notion makes sense in any Kähler
ambient space, and corresponds to the property that the integral curves of W

are geodesics. Tubes over complex submanifolds are known to be Hopf.
A fundamental fact about Hopf hypersurfaces is that the principal curvature

a corresponding to W is constant for complex space forms of nonzero curvature.
For c > 0, the proof is fairly direct, but for c < 0, it is rather lengthy, and involves
formidable computation. Nevertheless, it is of significance for the geometry of
real hypersurfaces in complex space forms, and so we will include it here. When
c = 0, a need not be constant, but nonconstancy puts rather strong restrictions
on A.

Theorem 2.1. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a com-
plex space form of constant holomorphic sectional curvature 4c, and let a be the
principal curvature corresponding to W .

(i) If c 6= 0, then a must be constant .
(ii) If c = 0 and grada 6= 0 at some point , then A|W⊥ = 0 in a neighborhood of

this point . Consequently , the number of distinct principal curvatures is 1 or 2
in this neighborhood . /

We first remark that a = 〈AW, W 〉 is a smooth function whether or not W

is principal. The first few lemmas establish a relationship between the shape
operator A and the structure tensor ϕ. A consequence of these preliminary
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results is the proof of the theorem in the case when c ≥ 0. The remainder of the
section is necessary to establish the result when c < 0.

Throughout this section, M2n−1, where n ≥ 2, will be a real hypersurface in
a space of constant holomorphic sectional curvature 4c, and X, Y , and Z will
be vectors tangent M .

Lemma 2.2. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c. Then

AϕA − a

2
(Aϕ + ϕA) − cϕ = 0 (2.1)

and
grad a = (Wa)W. (2.2)

Proof. Expand (∇XA)W , by making use of Proposition 1.3 to calculate that

(∇XA)W = ∇X(AW ) −A∇XW = (Xa)W + (aI − A)ϕAX. (2.3)

Then, by Corollary 1.2,

Xa = 〈(∇XA)W, W 〉 = 〈(∇W A)X, W 〉, (2.4)

and 〈(∇W A)W, X〉 = (Wa)〈W, X〉. Since 〈grad a, X〉 = Xa, we have grada =
(Wa)W . Now, using (2.3) and (2.4),

〈(∇XA)Y, W 〉 = 〈(∇XA)W, Y 〉
= (Wa)〈W, X〉〈W, Y 〉+ 〈(aI −A)ϕAX, Y 〉. (2.5)

Interchanging X and Y in (2.5) and subtracting, we calculate

〈(∇XA)Y, W 〉 − 〈(∇Y A)X, W 〉 = 〈(aI − A)ϕAX, Y 〉 − 〈(aI − A)ϕAY, X〉.
Comparing this with Corollary 1.2 we see that

2c〈X, ϕY 〉 = 〈(aI −A)ϕAX, Y 〉 − 〈(aI −A)ϕAY, X〉
= −〈X, Aϕ(aI − A)Y 〉 − 〈X, (aI −A)ϕAY 〉.

Since this is true for all tangent X and Y , we get

2cϕY = −a(AϕY + ϕAY ) + 2AϕAY,

and so
AϕA − a

2
(Aϕ + ϕA)− cϕ = 0. �

Here is an immediate consequence of this lemma.

Corollary 2.3. (i) If X ∈ W⊥ and AX = λX, then

(λ − a

2
)AϕX = (

λa

2
+ c)ϕX.
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(ii) If a nonzero X ∈ W⊥ satisfies AX = λX and AϕX = µϕX, then

λµ =
λ + µ

2
a + c.

(iii) If Tλ is ϕ-invariant , then λ2 = aλ+ c. (The notation Tλ is used for the set
of principal vectors for a principal curvature λ). /

Lemma 2.4. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex space
form of constant holomorphic sectional curvature 4c. Then (Wa)(ϕA+Aϕ) = 0.

Proof. Let β = Wa, so that grad a = βW . Then

〈∇X(grad a), Y 〉 − 〈∇Y (grad a), X〉
= X〈grad a, Y 〉 − 〈grad a,∇XY 〉 − Y 〈grad a, X〉 + 〈grad a,∇Y X〉
= XY a− Y Xa − grad a〈∇XY −∇Y X〉 = ([X, Y ]− (∇XY −∇Y X))a = 0.

(This is, of course, true for any function a and expresses the symmetry of the
Hessian.) So, since βW = grad a,

0 = 〈∇X(βW ), Y 〉 − 〈∇Y (βW ), X〉
= Xβ〈W, Y 〉+ β〈ϕAX, Y 〉 − Y β〈W, X〉 − β〈ϕAY, X〉
= (Xβ)〈W, Y 〉 − (Y β)〈W, X〉 + β〈(ϕA + Aϕ)X, Y 〉. (2.6)

If we set Y = W in this equation, we get

0 = Xβ − (Wβ)〈W, X〉 + β〈AϕX, W 〉,
where the last term is zero since AW = aW and ϕW = 0. Thus

Xβ = (Wβ)〈W, X〉.
Using this to simplify equation (2.6) and noticing that this is true for all X

proves the lemma. �

Corollary 2.5. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c. If ϕA = Aϕ, then
AW = aW . If , in addition, c 6= 0, then a must be constant .

Proof. Start with a = 〈AW, W 〉. Because ϕAW = AϕW = 0, AW lies in the
span of W ; that is, AW = 〈AW, W 〉W = aW . Now suppose that β = Wa 6= 0
at some point. From Lemma 2.4, we have Aϕ = −ϕA = −Aϕ so that Aϕ = 0,
and hence cϕ = 0 by (2.1). If c 6= 0, we have a contradiction. If c = 0, there is
no contradiction, but A must vanish on W⊥ in a neighborhood of the point in
question. �

A cylinder of the form Γ× C n, where Γ is any plane curve other than a circle or
line, shows that a need not be constant when c = 0.
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Corollary 2.6. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c. Suppose AW = aW .
If c > 0, then a is constant . If c = 0, then either a is constant or g ≤ 2, where
g is the number of distinct eigenvalues of A.

Proof. By Lemma 2.4, if β 6= 0 at some point, then ϕA + Aϕ = 0 in some
neighborhood of this point, and (2.1) reduces to

ϕA2 + cϕ = 0.

Now, for any eigenvector of A, say X, orthogonal to W , we have

0 = ϕ(A2 + cI)X = ϕ(λ2 + c)X,

where λ is the eigenvalue of A for X. Hence λ2 + c = 0. For c > 0, this is a
contradiction. If c = 0, then λ = 0, and there can be no eigenvalues other than
0 and a. �

To complete the proof of Theorem 2.1, the main result of this section, we must
verify the theorem for the case when c < 0 The purpose of this next series
of lemmas is to compute the explicit form of ∇XA. This is accomplished in
Lemma 2.9. We can then compute (R(X, Y ) · A)Z and use this to prove that
Aϕ+ϕA cannot be zero and hence that Wa = 0. Our proof follows [Ki and Suh
1990].

Lemma 2.7. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex space
form of constant holomorphic sectional curvature 4c. If Aϕ+ϕA = 0, then

(∇XA)AY+A(∇XA)Y = 2aβ〈X, W 〉〈Y, W 〉W
+(a2 +c)(〈ϕAX, Y 〉W +〈Y, W 〉ϕAX), (2.7)

(∇XA)AY−(∇Y A)AX = 2ca〈ϕX, Y 〉W +a2(〈Y, W 〉ϕAX−〈X, W 〉ϕAY ). (2.8)

Proof. First note that Aϕ = −ϕA implies that ϕAW = 0 and hence that W is
principal, so we can write AW = aW . Also, (2.1) simplifies to ϕ(A2 + cI) = 0,
and from this we compute

0 = (∇X(ϕ(A2 + cI)))Y

= (∇Xϕ)(A2 + cI)Y + ϕ(∇XA)AY + ϕA(∇XA)Y. (2.9)

Proposition 1.3 allows us to rewrite the first term, and equation (2.9) becomes

0 = (a2 + c)〈Y, W 〉AX − 〈(A3 + cA)X, Y 〉W + ϕ(∇XA)AY + ϕA(∇XA)Y.

Applying ϕ to this equality gives

ϕ((a2 + c)〈Y, W 〉AX) + ϕ2((∇XA)AY ) + ϕ2(A(∇XA)Y ) = 0. (2.10)

Using (1.6), the second term of (2.10) is

ϕ2(∇XA)AY = −(∇XA)AY + 〈(∇XA)AY, W 〉W.
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From Proposition 1.3 and the fact that ϕA2 = −cϕ, we calculate directly that

〈(∇XA)AY, W 〉 = 〈AY, (Xa)W + (aI −A)ϕAX〉
= aβ〈X, W 〉〈Y, W 〉 + a〈AϕAX, Y 〉 − 〈A2ϕAX, Y 〉
= aβ〈X, W 〉〈Y, W 〉 + ca〈ϕX, Y 〉 + c〈ϕAX, Y 〉.

Again using (1.6), we can rewrite the third term of (2.10) as

ϕ2A(∇XA)Y = −A(∇XA)Y + 〈A(∇XA)Y, W 〉W,

and we can calculate directly that

〈A(∇XA)Y, W 〉 = a〈(∇XA)Y, W 〉aβ〈X, W 〉〈Y, W 〉 + a2〈ϕAX, Y 〉 − ac〈ϕX, Y 〉.
All of the information allows us to rewrite (2.10) as

(∇XA)AY + A(∇XA)Y

= (a2 + c)〈Y, W 〉ϕAX + 2aβ〈X, W 〉〈Y, W 〉W + (a2 + c)〈ϕAX, Y 〉W,

which is equation (2.7). Then, interchanging X and Y in (2.7) and subtracting
gives

(∇XA)AY − (∇Y A)AX + c(〈X, W 〉AϕY − 〈Y, W 〉AϕX + 2a〈X, ϕY 〉W )

= (a2 + c)
(〈Y, W 〉ϕAX − 〈X, W 〉ϕAY + 〈ϕAX, Y 〉W − 〈ϕAY, X〉W )

.

Equation (2.8) results from this. �

Lemma 2.8. Let M be a real hypersurface in a complex space form of constant
holomorphic sectional curvature 4c. If ϕA + Aϕ = 0, then

(∇XA)AY − A(∇XA)Y = (a2 − c)(〈Y, W 〉ϕAX − 〈ϕAX, Y 〉W )

− 2ac(〈W, Y 〉ϕX + 〈W, X〉ϕY + 〈ϕY, X〉W ).

Proof. Taking the inner product of Z with (∇XA)AY and using the Codazzi
equation results in

〈(∇XA)AY, Z〉 = 〈AY, (∇XA)Z〉
= 〈AY, (∇ZA)X〉+ c〈AY, 〈X, W 〉ϕZ −〈Z, W 〉ϕX +2〈X, ϕZ〉W 〉
= 〈AY, (∇ZA)X〉

+ c
(〈X, W 〉〈AϕY, Z〉− 〈Z, W 〉〈AϕX, Y 〉+2a〈W, Y 〉〈X, ϕZ〉).

Reversing X and Y and subtracting the two equations, we get

〈(∇XA)AY, Z〉 − 〈(∇Y A)AX, Z〉 = 〈AY, (∇ZA)X〉 − 〈AX, (∇ZA)Y 〉
+c

(〈X, W 〉〈AϕY, Z〉−〈Y, W 〉〈AϕX, Z〉)+2ac
(〈W, Y 〉〈X, ϕZ〉−〈W, X〉〈Y, ϕZ〉).

Then the coefficient of X on the right hand side is
(∇ZA)AY − A(∇ZA)Y + c(〈AϕY, Z〉W − 〈Y, W 〉AϕZ)

+ 2ac(〈W, Y 〉ϕZ − 〈Y, ϕZ〉W ). (2.11)
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Now consider equation (2.8). If we take the inner product of this equation with
Z, the coefficient of X on the right hand side is

−2ca〈W, Z〉ϕY + a2(〈Y, W 〉ϕAZ − 〈ϕAY, Z〉W ).

Since this represent the same quantity as (2.11), the two expressions can be
equated, and we get

(∇ZA)AY − A(∇ZA)Y = (a2 − c)〈Y, W 〉ϕAZ

− 2ac
(〈W, Y 〉ϕZ + 〈W, Z〉ϕY + 〈ϕY, Z〉W ) − (a2 − c)〈ϕAY, Z〉W.

The statement of the lemma can be obtained by replacing Z with X. �

Lemma 2.9. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex space
form of constant holomorphic sectional curvature 4c 6= 0. If ϕA + Aϕ = 0, then

(∇XA)Y = β〈X, W 〉〈Y, W 〉W +a
(〈X, W 〉ϕAY +〈Y, W 〉ϕAX +〈ϕAX, Y 〉W )

+c
(〈ϕY, X〉W −〈W, Y 〉ϕX

)
.

Proof. Adding the result of Lemma 2.8 to the first equation from Lemma 2.9
we get

(∇XA)AY = aβ〈X, W 〉〈Y, W 〉W + c〈ϕAX, Y 〉W + a2〈Y, W 〉ϕAX

− ac
(〈Y, W 〉ϕX + 〈X, W 〉ϕY + 〈ϕY, X〉W )

. (2.12)

Notice that (A2 + cI)Y = (a2 + c)〈Y, W 〉W , since ϕ(A2 + cI) = 0. Also recall
that AϕA = cϕ. Replacing Y by AY in (2.12) we get

(∇XA)A2Y = a2β〈X, W 〉〈Y, W 〉W + c2〈ϕX, Y 〉W
+ a3〈Y, W 〉ϕAX − a2c〈Y, W 〉ϕX − ac〈X, W 〉ϕAY − ac〈ϕAY, X〉W. (2.13)

On the other hand, by computing it directly we see that

(∇XA)A2Y = −c(∇XA)Y +(a2 + c)〈Y, W 〉(∇XA)W

= −c(∇XA)Y +(a2 + c)β〈Y, W 〉〈X, W 〉W
+ (a2 + c)〈Y, W 〉aϕAX − (a2 + c)c〈Y, W 〉ϕX

= −c(∇XA)Y + a2β〈X, W 〉〈Y, W 〉W + βc〈X, W 〉〈Y, W 〉W
+ a3〈Y, W 〉ϕAX + ac〈Y, W 〉ϕAX − a2c〈Y, W 〉ϕX − c2〈Y, W 〉ϕX.

Now after equating this with (2.13), we can make several cancellations to get

c(∇XA)Y = cβ〈X, W 〉〈Y, W 〉W + ac〈ϕAY, X〉W
+ ac(〈Y, W 〉ϕAX + 〈X, W 〉ϕAY ) − c2〈Y, W 〉ϕX − c2〈ϕX, Y 〉W.

Finally, using the assumption that 4c 6= 0, we obtain the desired conclusion. �
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In this final pair of lemmas we show that if Aϕ + ϕA = 0, then c = 0. This is
accomplished by computing ∑

(R(ei, ϕei) · A)Z,

where {ei} is an orthonormal basis for W⊥, in two different ways. The first way,
described in Lemma 2.10, is to use Lemma 2.9, and compute the sum directly.
The second way, described in Lemma 2.11, uses the Gauss equation.

Lemma 2.10. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex space
form of constant holomorphic sectional curvature 4c 6= 0. Suppose Aϕ + ϕA = 0
and X ∈ W⊥. Then direct calculation of (R(X, ϕX) · A)Z using Lemma 2.9
yields

(R(X, ϕX) · A)Z = c(〈X, Y 〉ϕAX − 〈X, ϕZ〉AX + 〈X, AZ〉ϕX + 〈X, ϕAZ〉X).

Consequently , if {ei} is an orthonormal basis for W⊥, we have∑
(R(ei, ϕei) · A)Z = 4cϕAZ

for all tangent vectors Z.

Proof. We will first calculate ∇X((∇ϕXA)Z), (∇ϕXA)(∇XZ) and (∇∇XϕXA)Z
separately, and then put the pieces together to get the desired results. We will
make the first calculation in detail, and simply state the results for the others.

Direct calculation, using previous results, in particular Lemma 2.9, and re-
peated use of (1.7) and Proposition 1.3 allows us to conclude that

∇X

(
(∇ϕXA)Z

)
= ∇X

(
a(〈Z, W 〉ϕAϕX + 〈ϕAϕX, Z〉W ) + c(〈ϕZ, ϕX〉W − 〈W, Z〉ϕ2X)

)
= a

(〈∇XZ, W 〉AX + 〈Z,∇XW 〉AX + 〈Z, W 〉∇X(AX)

+ 〈∇X(AX), Z〉W + 〈AX,∇XZ〉W + 〈AX, Z〉∇XW
)

+c
(〈∇XX, Z〉W + 〈X,∇XZ〉W + 〈X, Z〉∇XW

+ 〈∇XW, Z〉X + 〈W,∇XZ〉X + 〈W, Z〉∇XX
)
, (2.14)

where we have used (2.2) to dispose of Xa. Then, using the fact that

∇X(AX) = A(∇XX) + (∇XA)X = A(∇XX) + a〈ϕAX, X〉W + c〈ϕX, X〉W,

and noting that 〈ϕX, X〉 = 0, we rewrite (2.14) as

∇X

(
(∇ϕXA)Z

)
= a

(〈∇XZ, W 〉AX+〈Z, ϕAX〉AX+〈Z, W 〉A(∇XX)+a〈ϕAX, X〉〈Z, W 〉W
+〈A(∇XX), Z〉W +a〈ϕAX, X〉〈W, Z〉W +〈AX,∇XZ〉W +〈AX, Z〉ϕAX

)
+c

(〈∇XX, Z〉W +〈X,∇XZ〉W +〈X, Z〉ϕAX

+〈ϕAX, Z〉X+〈W,∇XZ〉X+〈W, Z〉∇XX
)
. (2.15)
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Similar calculations can be performed to compute

(∇ϕXA)(∇XZ) = a
(〈∇XZ, W 〉AX + 〈AX,∇XZ〉W )

+ c
(〈∇XZ, X〉W + 〈W,∇XZ〉X)

, (2.16)

and
(∇∇XϕXA)Z = −β〈AX, X〉〈Z, W 〉W

+ a
(〈Z, W 〉A∇XX − 〈AX, X〉ϕAZ − 〈Z, W 〉〈∇XX, W 〉aW

+〈A∇XX, Z〉W − a〈∇XX, W 〉〈W, Z〉W )
+ c

(〈Z,∇XX〉W − 〈Z, W 〉〈∇XX, W 〉W
+〈W, Z〉∇XX − c〈W, Z〉〈∇XX, W 〉W )

. (2.17)

Now define

N(X, Z) = (∇X∇ϕXA−∇∇XϕXA)Z

= ∇X

(
(∇ϕXA)Z

) − (∇ϕXA)(∇XZ) − (∇∇XϕXA)Z.

Substituting the values from equations (2.15), (2.16), and (2.17), we get

N(X, Z) = β〈AX, X〉〈Z, W 〉W
+ a

(〈Z, ϕAX〉AX + 〈AX, Z〉ϕAX + 〈AX, X〉ϕAZ
)

+ c
(〈X, Z〉ϕAX + 〈ϕAX, Z〉X − 2〈Z, W 〉〈ϕAX, X〉W )

. (2.18)

Also, notice that, since we are assuming that X is orthogonal to W , we have

N(ϕX, Z) = (∇ϕX∇ϕ2XA−∇∇ϕXϕ2XA)Z − (∇X∇ϕXA −∇∇XϕX)Z,

from which we conclude that

(R(X, ϕX) ·A)Z = N(X, Z) + N(ϕX, Z).

Now, by direct calculation using (2.18), we see that

N(ϕX, Z) = −β〈AX, X〉〈Z, W 〉W
+ a

(〈Z, AX〉AϕX + 〈AϕX, Z〉AX − 〈AX, X〉ϕAZ
)

+ c
(〈ϕX, Z〉AX + 〈AX, Z〉ϕX − 2〈Z, W 〉〈X, AϕX〉W )

.

Hence

(R(X, ϕX) · A)Z = c
(〈X, Z〉ϕAX + 〈X, ϕAZ〉X − 〈X, ϕZ〉AX + 〈X, AZ〉ϕX

)
.

Now let {ei} be an orthonormal basis of W⊥. Then∑
(R(ei, ϕei) · A)Z = c

(
ϕAZ + ϕAZ − AϕZ + ϕAZ

)
= 4cϕAZ. �

Lemma 2.11. Under the conditions of Lemma 2.10, the Gauss equation yields∑
(R(ei, ϕei) ·A)Z = −4c(2n + 1)ϕAZ.
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Proof. First look at the calculations for any (1, 1) tensor T , and evaluate

(TX ∧ TϕX)AZ − A(TX ∧ TϕX)Z.

Two of the terms needed in calculating the desired equality are of this form for
various tensors T . Expand this to get

(TX ∧ TϕX)AZ − A(TX ∧ TϕX)Z

= 〈TϕX, AZ〉TX − 〈TX, AZ〉TϕX − 〈TϕX, Z〉ATX + 〈TX, Z〉ATϕX.

Summing this over X = ei, the right side becomes

−T (ϕT ∗AZ) − TϕT ∗AZ + ATϕT ∗Z + ATϕT ∗Z = −2TϕT ∗AZ + 2ATϕT ∗Z,

(2.19)
where T ∗ is the transpose of T . Now we can look at this for specific choices of
T . In the case when T = I, (2.19) becomes

2(Aϕ− ϕA)Z = −4ϕAZ.

When T = A, (2.19) is

−2AϕA2Z + 2A2ϕAZ = −2(AϕA)AZ + 2A(AϕA)Z = −4cϕAZ.

Here we have substituted for AϕA using (2.1). Now

R(ei, ϕei) = Aei ∧Aϕei + c(ei ∧ ϕei + ϕei ∧ ϕ2ei + 2〈ei, ϕ
2ei〉ϕ)

= Aei ∧Aϕei + 2c(ei ∧ ϕei)− 2cϕ.

Summation of the last term in (R(ei, ϕei) · A)Z gives −4c(2n − 2)ϕAZ. Using
this and (2.19) with T = I and T = A, we get∑

(R(ei, ϕei) ·A)Z = −4c(2n + 1)ϕAZ,

which is the claim of the lemma. �

Corollary 2.12. Let M2n−1, n ≥ 2, be a real hypersurface in a complex space
form of constant holomorphic sectional curvature 4c 6= 0. Then Aϕ+ϕA cannot
be identically zero.

Proof. Suppose Aϕ + ϕA = 0. From Lemmas 2.10 and 2.11 we see that for all
tangent vectors Z,

8c(n + 1)ϕAZ = 0.

Therefore, ϕA = 0. This is impossible by Proposition 1.4. �

Now all the ingredients for proving that a is constant have been assembled.

Proof of Theorem 2.1. In view of Corollary 2.12 and Lemma 2.4, we must
have Wa = 0. This implies that grad a = 0 by Lemma 2.2. Thus a is constant.

�
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Lemmas 2.7 and 2.8 are valid for c = 0, and, in fact, ϕA + Aϕ = 0 leads to
no contradiction in this case. However, the only new information that can be
derived from these lemmas is that A(∇XA)Y = 0 when X and Y are in W⊥.
Even this can be deduced more easily by differentiating the identity AY = 0.

We finish this section with two applications that make use of the preceding
material. The first one will be useful for later classifications.

Lemma 2.13. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then Wm = 0.

Proof. By the Codazzi equation (1.9), we have (∇W A)X = (∇XA)W + cϕX.
Thus

Wm = W (trace A) = trace∇WA = trace{X 7→ a∇XW − A∇XW + cϕX}
= trace(aϕA −AϕA + cϕ) = 0. �

The second application shows that there is a lower bound on the rank of A, even
pointwise.

Proposition 2.14. Let M2n−1, where n ≥ 2, be a hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then the rank
of the shape operator A is ≥ 2 at some point .

Proof. Suppose that the rank of A is ≤ 1 everywhere. Since M cannot be
umbilic, by Theorem 1.5, there is an open connected set U where the rank is 1.
We restrict our attention to U . Let λ be the nonzero principal curvature with
(one-dimensional) principal subspace Tλ. If X and Y are vector fields in the
principal distribution T0 = ker A = T⊥λ , then Codazzi’s equation gives

c(〈X, W 〉ϕY − 〈Y, W 〉ϕX + 2〈X, ϕY 〉W ) = (∇XA)Y − (∇Y A)X

= −A(∇XY −∇Y X). (2.20)

Clearly the right (and hence the left) side of this equation lies in T⊥0 = Tλ. In
particular, taking the inner product with W yields

3〈X, W 〉〈ϕY, X〉 = 0. (2.21)

If W /∈ Tλ, we can choose X ∈ T0 which is not orthogonal to W . For this X,
we have 〈ϕY, X〉 = 0 for all Y ∈ T0 by (2.21). Thus ϕX ∈ Tλ. At any point
where ϕX = 0, we have X = 〈X, W 〉W by (1.6) so that W ∈ span {X} ⊂ T0. If
ϕX 6= 0, on the other hand, we have

0 = 〈ϕW, X〉 = −〈W, ϕX〉
so that W ∈ T⊥

λ = T0. In either case, we can conclude that AW = 0.
The net result is that either AW ≡ λW or that AW ≡ 0 on U . Thus U is a

Hopf hypersurface and we can apply Corollary 2.3(i). In the first case, we get

−λ

2
AϕX = cϕX
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for any X ∈ T0 = W⊥, which contradicts the fact that the rank is 1. If AW = 0,
on the other hand, we have ϕX ∈ Tλ for any X orthogonal to W in T0. This
comes from setting Y = W in (2.20). Corollary 2.3 then yields cϕX = 0, another
contradiction. �

For other theorems involving lower bounds on the rank, see [Suh 1991].

3. Hypersurfaces in Complex Space Forms

In this section we will describe the standard examples of real hypersurfaces in
spaces of constant holomorphic sectional curvature. We start with real hyper-
surfaces in complex hyperbolic space, and discuss them in detail.

3A. Examples in Complex Hyperbolic Space. We begin with a lemma
that will be useful for discussing the first class of examples, the horospheres.
The proof is a straightforward calculation.

Lemma 3.1. In C
n+1, let p = (1, 1, 0, . . . , 0) and let η = (z0 − z1)p. Then

treating z as the position vector field , we have, for any vector field Z in C n+1,

(i) η = (z0 − z1)p = −F (z, p)p.
(ii) 〈η, z〉 = −|z0 − z1|2 = −|F (z, p)|2.
(iii) 〈η, Z〉 = −Re(F (z, p)F (Z, p)) = 〈DZη, z〉.
(iv) DZη = −F (Z, p)p.
(v) Z〈η, z〉 = 2〈η, Z〉. /

We will use the notation introduced in Section 1. In particular, r is a positive
number and the holomorphic curvature of C Hn is 4c = −4/r2. All of the
examples, both in C Hn and in C P n, are tubes of some sort, and we will use
these descriptive names for the purposes of identification. However, we will not
attempt to justify these names, but refer the reader to [Cecil and Ryan 1982;
Kimura 1986a; Berndt 1989a; 1990] for a full discussion.

The horospheres: Type A0. The first class of examples to be considered
were called “self tubes” by Montiel [1985] and are now called horospheres. They
form a one-parameter family, parametrized by t > 0. Let

M ′ = {z ∈ C n+1 : 〈z, z〉 = −r2, |z0 − z1|2 = t}.
Then the corresponding horosphere is M = πM ′. We now investigate the

geometry of M and its relation to that of M ′.

Lemma 3.2. M ′ is a hypersurface in H . For z ∈ M ′,

TzM
′ = {Z ∈ C n+1 : 〈Z, z〉 = 0, 〈Z, η〉 = 0}.

Proof. First we show that z and η are linearly independent. Both are nonzero,
since 〈η, z〉 = −t 6= 0. However, 〈η, η〉 = Re(F (z, p)F (z, p)F (p, p)) = 0 so z

cannot be a multiple of η.
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The map Φ : C n+1 → R
2, given by Φ(z) = (〈z, z〉, 〈η, z〉) implicitly defines

M ′. That is
M ′ = Φ−1(−r2,−t).

Its rank is 2 since for Z ∈ C n+1, we have Φ∗Z = 0 if and only if Z〈z, z〉 = 0 =
Z〈η, z〉, if and only if 〈z, Z〉 = 0 = 〈η, Z〉. Thus ker Φ∗ = (span{z, η})⊥, which
has dimension 2n.

Let ξ′ = (r/t)η−(1/r)z. Then ξ′ is orthogonal to TzM
′ (since η and z are) and

coefficients have been chosen so that 〈ξ′, z〉 = 0 and 〈ξ′, ξ′〉 = 1. Then {z/r, ξ′}
can be completed to an orthonormal basis for Cn+1 by adding one timelike and
2n− 1 spacelike vectors, so M ′ is a Lorentz hypersurface of H . �

The proof of the next lemma can be verified directly from the definitions, and
the background developed in Section 1.

Lemma 3.3. Let U = −Jξ′ and V = Jz. Then {r−1z, ξ′, r−1V, U = −Jξ′} is
an orthonormal set of vectors with {U, V } in TzM ′ and {z, ξ′} is orthogonal to
TzM

′. The shape operator A′ satisfies A′V = U , A′U = −r−2V + 2r−1U . For
Z ∈ TzM

′ ∩ {U, V }⊥, A′Z = r−1Z. /

We now look at the geometry of M = πM ′ which is a hypersurface in C Hn.
First note that ξ′ is the horizontal lift of the unit normal ξ of M . For W = −Jξ,
we have

∇̃W ξ = π∗(∇̃WLξL) = π∗
( 1

r2
V − 2

r
U

)
= −2

r
W.

For X in W⊥,

∇̃Xξ = π∗(∇̃XLξL) = −1
r
X,

since XL ∈ {U, V }⊥. Thus we have established the following.

Theorem 3.4. The horospheres (Type A0) are hypersurfaces of complex hyper-
bolic space that have two distinct principal curvatures: λ = 1/r of multiplicity
2n− 2, and a = 2/r of multiplicity 1. /

Tubes around complex hyperbolic spaces: Types A1, A2. Such tubes
also form a one-parameter family, parametrized initially by b > 0 and later by
u. Begin by writing C n+1 = C

p+1 × C q+1 where p, q ≥ 0 and p + q = n− 1 > 0.
Let

M ′ = {z = (z1, z2) ∈ C n+1 : F1(z1, z1) = −(b2 + r2), F2(z2, z2) = b2}
where F1 and F2 are the restrictions of F to C p+1 and C q+1 respectively. Then
M ′ is the Cartesian product of an anti–de Sitter space and a sphere whose radii
have been chosen so that M ′ lies in H . Specifically,

M ′2n = H2p+1
1 ((b2 + r2)1/2)× S2q+1(b).

Write b = r sinhu, (b2 + r2)1/2 = r cosh u, λ1 = r−1 tanhu, λ2 = r−1 coth u, and
c = −r−2, so that λ1λ2 +c = 0. These turn out to be principal curvatures of M ′.
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Let ξ′ = −(λ1z1 + λ2z2). Note that we identify z1 and (z1, 0) for convenience of
notation. Similarly for z2. It is easy to check that ξ′ is a unit normal vector for
M ′.

Let V = Jz. Note that V is tangent to M ′ since 〈V, z〉 = 〈Jz, z〉 = 0 and
〈V, ξ′〉 = −〈Jz1 + Jz2, λ1z1 + λ2z2〉 = −(λ1〈Jz1, z1〉+ λ2〈Jz2, z2〉) = 0. Both λ1

and λ2 satisfy the equation

λ2 − αλ +
1
r2

= 0 with α =
2
r

coth 2u.

A routine calculation yields the following two lemmas.

Lemma 3.5. For X tangent to H2p+1
1 , A′X = λ1X. For X tangent to S2q+1 ,

A′X = λ2X. If U = −Jξ′, then A′V = U and A′U = αU − V r−2. /

Lemma 3.6. {z/r, ξ′, V/r, U} is an orthonormal set with ξ′ and U spacelike.
The other two vectors are timelike. /

The hypersurface πM ′ is denoted by M2p+1,2q+1. At a typical point z ∈ M ′, the
horizontal subspace of TzM ′ is the orthogonal direct sum

(span{U})⊕ T1 ⊕ T2,

where
T1 = {Z ∈ TzH2p+1

1 : 〈Z, U〉 = 0, 〈Z, V 〉 = 0},
T2 = {Z ∈ TzS2q+1 : 〈Z, U〉 = 0, 〈Z, V 〉 = 0}.

Note that T1 and T2 are J-invariant. Thus

TπzM2p+1,2q+1 = (span{W})⊕ π∗T1 ⊕ π∗T2.

We calculate the shape operator A using Lemma 1.7.

AW = π∗(A′U)− ε

r2
π∗V = π∗

(
A′U +

1
r2

V
)

= π∗
(
αU − 1

r2
V +

1
r2

V
)

= π∗(αU) = αW.

For X ∈ π∗T1,

AX = π∗
(
A′XL − 〈XL, U〉 ε

r2
V

)
= π∗λ1X

L = λ1X.

Similarly, AX = λ2X for X ∈ π∗T2. When p = 0, M is a geodesic hypersphere
with principal curvatures λ2 (of multiplicity 2n − 2) and α of multiplicity 1.
The radius of the sphere is ru. When q = 0, M is a tube of radius ru over a
complex hyperbolic hyperplane. There are only two principal curvatures λ1 and
α. These are the Type A1 hypersurfaces. The rest are Type A2 and have three
distinct principal curvatures. Again, they are tubes of radius ru about complex
hyperbolic spaces of codimension greater than 1. Summarizing this information,
we have the following results.
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Theorem 3.7. The tubes around complex hyperbolic hyperplanes (Type A1) in
complex hyperbolic space have two distinct principal curvatures: λ1= (1/r) tanhu

of multiplicity 2n− 2 and a = (2/r) coth 2u of multiplicity 1. /

Theorem 3.8. The geodesic spheres (Type A1) in complex hyperbolic space have
two distinct principal curvatures: λ2 = (1/r) coth u of multiplicity 2n − 2 and
a = (2/r) coth 2u of multiplicity 1. /

Theorem 3.9. The Type A2 hypersurfaces in complex hyperbolic space have
three distinct principal curvatures: λ1 = (1/r) tanhu of multiplicity 2p, λ2 =
(1/r) coth u of multiplicity 2q, and a = (2/r) coth 2u of multiplicity 1, where
p > 0, q > 0, and p + q = n− 1. /

Tubes around real hyperbolic space: Type B. Again, these examples form
a one-parameter family. We begin with t > r4 but later find a more convenient
parameter u. Let

M ′ = {z ∈ C n+1 : 〈z, z〉 = −r2, |F (z, z̄)|2 = t}.
Write Q(z) = F (z, z̄) and η = Q(z)z̄.

Lemma 3.10. M ′ is a hypersurface in H . For z ∈ M ′,

TzM
′ = {Z ∈ C n+1 : 〈Z, z〉 = 0, 〈Z, η〉 = 0}.

Proof. First we note that z and η are nonzero. In fact, 〈η, η〉 = |Q(z)|2〈z̄, z̄〉 =
−tr2. Further, they are linearly independent since if η = ρz then −ρr2 = 〈η, z〉 =
ReF (F (z, z̄)z̄, z) = |F (z, z̄)|2 = t. On the other hand, by considering 〈η, η〉, we
have ρ2 = t. Thus tr4 = ρ2r4 = (−ρr2)2 = t2. In other words, t(r4 − t) = 0,
which is a contradiction.

The map Φ : C n+1 → R2, given by Φ(z) = (〈z, z〉, |Q(z)|2) implicitly defines
M ′. That is,

M ′ = Φ−1(−r2, t).

Its rank is 2 since, for Z ∈ C n+1, we have Φ∗Z = 0 if and only if Z〈z, z〉 = 0 =
Z〈η, z〉, if and only if 〈z, Z〉 = 0 = 〈η, Z〉. To see this, note that

Z(F (z, z̄)F (z̄, z)) = (F (Z, z̄) + F (z, Z̄))F (z̄, z) + F (z, z̄)(F (Z̄, z) + F (z̄, Z))

= 2 Re(F (Z, z̄)F (z̄, z)) + 2(ReF (z, Z̄)F (z̄, z))

= 2 ReF (Z, Q(z)z̄) + 2 ReF (Q(z)z, Z̄)

= 4〈Z, Q(z)z̄〉 = 4〈Z, η〉. �

From the lemma we see that η is normal to M ′ but not tangent to H . However,
it is easy to verify that

ξ0 = r2η + tz

satisfies 〈ξ0, z〉 = 0. Furthermore,

F (ξ0, ξ0) = r4〈η, η〉+t2F (z, z)+2r2 ReF (η, tz) = −r6t−t2r2+2t2r2 = r2t(t−r4),
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so that we can define a unit normal ξ′ by

ξ0 = −rt1/2(t− r4)1/2ξ′. (3.1)

We now describe the shape operator A′ of M ′. First let V = Jz as in earlier
examples. Note that V is tangent to M ′ since F (Q(z)z̄, V ) = −iF (Q(z)z̄, z) =
−iQ(z)Q(z) is purely imaginary. Also the vector field U0 = −Jξ0 = −tV − r2Jη

is tangent to M ′ and orthogonal to V . In computing A′, we first work with ξ0

to avoid the normalization factor involved in (3.1).

Lemma 3.11. (i) For Z tangent to M ′, DZξ0 = 2r2F (Z, z̄)z̄ + r2Q(z)Z̄ + tZ.
(ii) In particular , DV ξ0 = −U0.
(iii) DU0ξ0 = (t− r4)(2U0 + tV ).
(iv) There are two n − 1 dimensional subspaces V+ and V−, orthogonal both to
{U, V } and to each other , such that DXξ0 = (t + r2t1/2)X for X ∈ V+, and
DXξ0 = (t− r2t1/2)X for X ∈ V−.

Proof. We compute

DZξ0 = DZ(r2F (z, z̄)z̄) + DZ (tz) = 2r2F (Z, z̄)z̄ + r2F (z, z̄)Z̄ + tZ

= 2r2F (Z, z̄)z̄ + r2Q(z)Z̄ + tZ,

which proves the general formula (i). Now, if Z = V = iz, we get

DV ξ0 = 2r2F (iz, z̄)z̄ + r2Q(z)(−iz̄) + tiz = ir2Q(z)z̄ + tiz = iξ0 = −U0.

For (iii) we compute

DU0ξ0 = 2r2F (U0, z̄)z̄ + r2Q(z)Ū0 + tU0.

It is straightforward to verify that

F (U0, z̄) = −i(t − r4)Q(z)

and that
Q(z)Ū0 = it(r2z + η),

from which it follows by substitution that

DU0ξ0 = (t− r4)(2U0 + tV ).

We now prove (iv). Choose α in the range 0 ≤ α ≤ π/2 and such that Q(z) =
e2iα|Q(z)|. Let X be a totally real tangent vector (that is, X̄ = X). Then
Z = eiαX = cos αX + sin αJX satisfies

DZξ0 = r2Q(z)e−iαX + teiαX = r2Q(z)e−2iαZ + tZ

= (r2|Q(z)|+ t)Z = (t + r2t1/2)Z.

Similarly, if Z = eiαJX = ei(α+π/2)X, then

DZξ0 = r2Q(z)e−iα(−iX) + teiα(iX) = −r2Q(z)e−2iαZ + tZ = (t − r2t1/2)Z.
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Now

V+ = {eiαX : X ∈ TzM
′, X̄ = X, 〈X, U0〉 = 〈X, V 〉 = 0}

and V− = JV+ have the properties stated in (iv). Note that V− is obtained
from “totally imaginary” tangent vectors as follows:

V− = {eiαX : X ∈ TzM ′, X̄ = −X, 〈X, U0〉 = 〈X, V 〉 = 0},

and that J interchanges the two principal spaces V+ and V−. �

Theorem 3.12. The Type B hypersurfaces in complex hyperbolic space have
three principal curvatures, namely , λ1 = (1/r) coth u of multiplicity n− 1, λ2 =
(1/r) tanhu of multiplicity n− 1, and a = (2/r) tanh2u of multiplicity 1. These
curvatures are distinct unless coth u =

√
3, in which case λ1 and a coincide to

make a principal curvature of multiplicity n.

Proof. Taking the normalization factor from (3.1) into account, we get

A′X =
1
r

(t1/2 + r2)
(t − r4)1/2

X = λ1X

for X ∈ V+, and

A′X =
1
r

(t1/2 − r2)
(t − r4)1/2

X = λ2X

for X ∈ V−. (These equations serve to define the principal curvatures λ1 and
λ2.) Also, we get

DU0ξ
′ = −(t − r4)1/2

rt1/2
(2U0 + tV ).

Applying Lemma 1.7, V+ and V− are horizontal subspaces projecting to TπzM

and the principal curvatures are preserved. Also, we get

AW =
(t− r4)1/2

rt1/2
(2W ).

It is easy to verify that λ1λ2 = 1/r2 = −c, so that there is a unique positive
number u satisfying λ1 = (1/r) coth u and λ2 = (1/r) tanhu. A direct calculation
shows that a = (2/r) tanh 2u. �

The Type B hypersurfaces are tubes of radius ru around real hyperbolic space
RHn.

3B. Examples in Complex Projective Space. We now discuss the standard
examples of real hypersurfaces in complex projective space. Since these examples
may be more widely know than those in complex hyperbolic space, and since the
constructions often resemble those in complex hyperbolic space, we will leave
some of the details to the reader. Here r is a positive constant and c = 1/r2.



260 ROSS NIEBERGALL AND PATRICK J. RYAN

Tubes around complex projective spaces: Types A1, A2. Begin by writ-
ing C n+1 = C

p+1 × C
q+1, where p, q ≥ 0 and p + q = n − 1 > 0. Choose b so

that 0 < b < r. Let

M ′ = {z = (z1, z2) ∈ C n+1 : F1(z1, z1) = r2 − b2, F2(z2, z2) = b2},

where F1 and F2 are the restrictions of F to C p+1 and C q+1 respectively. Then
M ′ is the Cartesian product of spheres whose radii have been chosen so that M ′

lies in S2n+1(r). Specifically,

M ′2n = S2p+1
(
(r2 − b2)1/2

)× S2q+1(b).

Write b = r sin u, so (r2−b2)1/2 = r cosu. We can choose u so that 0 < u < π/2.
Write λ1 = −(1/r) tanu and λ2 = (1/r) cotu. Since c = r−2 we have λ1λ2 + c =
0. The numbers λ1 and λ2 turn out to be the principal curvatures of M ′.

The principal curvatures λ1, λ2, and α project as in the hyperbolic case. There
is only one kind of Type A1 hypersurface since tubes over complex projective
hyperplanes are also geodesic spheres. The principal curvatures of one are related
to those of the other by replacing the parameter u by π

2 − u. We summarize as
follows.

Theorem 3.13. The geodesic spheres (Type A1) in complex projective space
have two distinct principal curvatures: λ2 = (1/r) cotu of multiplicity 2n − 2
and a = (2/r) cot 2u of multiplicity 1. /

Theorem 3.14. The Type A2 hypersurfaces in complex projective space have
three distinct principal curvatures: λ1 = −(1/r) tanu of multiplicity 2p, λ2 =
(1/r) cotu of multiplicity 2q, and a = (2/r) cot 2u of multiplicity 1, where p > 0,
q > 0, and p + q = n− 1. /

Tubes around the complex quadric: Type B. Again, such tubes form a
one-parameter family. We begin with t < r4 but later find a more convenient
parameter u. Let

M ′ = {z ∈ C n+1 : 〈z, z〉 = r2, |F (z, z̄)|2 = t}.

Write Q(z) = F (z, z̄) and η = Q(z)z̄. Then we have,

Theorem 3.15. The Type B hypersurfaces in complex projective space have
three distinct principal curvatures: λ1 = −(1/r) cotu of multiplicity n− 1, λ2 =
(1/r) tanu of multiplicity n− 1, and a = (2/r) tan2u of multiplicity 1. /

The Type B hypersurfaces are also tubes over totally geodesic real projective
spaces RP n. The parameter u is chosen so that the tubes have radius ru. Then
the tubes over the complex quadric have radius r(π/4 − u). This is taken into
account in the statement of Theorem 6.1. For more detail—in particular, the
relationship to focal sets—see [Cecil and Ryan 1982].
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Examples with Five Principal Curvatures. There are three additional stan-
dard types of hypersurfaces in C P n and they have five distinct principal curva-
tures. They are listed at the end of Section 3 (page 261), but we will not describe
their construction in detail. However we will list the principal curvatures for fu-
ture reference.

Theorem 3.16. The Type C hypersurfaces in complex projective space have five
distinct principal curvatures,

(i) λ1 = −(1/r) cot u of multiplicity n− 3,
(ii) λ2 = (1/r) cot(π/4− u) of multiplicity 2,
(iii) λ3 = (1/r) cot(π/2 − u) of multiplicity n− 3,
(iv) λ4 = (1/r) cot(3π/4− u) of multiplicity 2,
(v) a = −(2/r) cot 2u of multiplicity 1.

These hypersurfaces occur for n ≥ 5, n odd . /

Theorem 3.17. The Type D hypersurfaces in complex projective space have five
distinct principal curvatures,

(i) λ1 = −(1/r) cot u of multiplicity 4,
(ii) λ2 = (1/r) cot(π/4− u) of multiplicity 4,
(iii) λ3 = (1/r) cot(π/2 − u) of multiplicity 4,
(iv) λ4 = (1/r) cot(3π/4− u) of multiplicity 4,
(v) a = −(2/r) cot 2u of multiplicity 1.

This hypersurface occurs only in C P 9. /

Theorem 3.18. The Type E hypersurfaces in complex projective space have five
distinct principal curvatures,

(i) λ1 = −(1/r) cot u of multiplicity 8,
(ii) λ2 = (1/r) cot(π/4− u) of multiplicity 6,
(iii) λ3 = (1/r) cot(π/2 − u) of multiplicity 8,
(iv) λ4 = (1/r) cot(3π/4− u) of multiplicity 6,
(v) a = −(2/r) cot 2u of multiplicity 1.

This hypersurface occurs only in C P 15. /

3C. Summary: Takagi’s list and Montiel’s list. In this section, we list,
for reference purposes, standard examples of hypersurfaces in complex space
forms. These examples are so prevalent in the subject that they have acquired
a standard nomenclature. In C P n, they divide into five types, A–E, while C Hn

has just two types. Types are further subdivided, e.g., A1, A2. The list is as
follows. In complex projective space, C P n:

(A1) Geodesic spheres.
(A2) Tubes over totally geodesic complex projective spaces C P k, where 1 ≤ k ≤

n− 2.
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(B) Tubes over complex quadrics and RPn.
(C) Tubes over the Segre embedding of C P 1 × C P m where 2m + 1 = n and

n ≥ 5.
(D) Tubes over the Plücker embedding of the complex Grassmann manifoldG2,5.

Occur only for n = 9.
(E) Tubes over the canonical embedding of the Hermitian symmetric space

SO(10)/U(5). Occur only for n = 15.

This list consists precisely of the homogeneous real hypersurfaces in C P n as
determined by Takagi [1973], and is often referred to as “Takagi’s list”. The
list itself with the type names is given in [Takagi 1975a]. In addition, every
Hopf hypersurface with constant principal curvatures is an open subset of one
of these. Many authors contributed to this result, which was completed by M.
Kimura [Kimura 1986a]. In complex hyperbolic space C Hn the list is as follows:

(A0) Horospheres.
(A1) Geodesic spheres and tubes over totally geodesic complex hyperbolic hy-

perplanes.
(A2) Tubes over totally geodesic C Hk, where 1 ≤ k ≤ n− 2.
(B) Tubes over totally real hyperbolic space RHn.

These hypersurfaces are homogeneous, but there is yet no classification theorem
for homogeneous hypersurfaces in C Hn. However, every Hopf hypersurface with
constant principal curvatures must be one of these. This classification was begun
by S. Montiel [1985] (who also described the examples in detail) and completed
by J. Berndt [1989a]. We refer to the list as “Montiel’s list”.

In subsequent sections, we will characterize certain subsets of these lists in
terms of properties of the shape operator, Ricci tensor and other geometric
objects.

4. Restrictions on the Shape Operator and
the Number of Principal Curvatures

We recall that the principal spaces of the Type A hypersurfaces are invariant
by the structure tensor ϕ. One of the first classification theorems in this subject
is that this property is a characterization for Type A hypersurfaces.

Theorem 4.1. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then ϕA = Aϕ

if and only if M is an open subset of a Type A hypersurface.

As a first step in proving Theorem 4.1, we show that this property is equivalent
to parallelism of the shape operator of the lifted hypersurface M ′.

Lemma 4.2. Under the hypothesis of Theorem 4.1, ϕA = Aϕ if and only if A′

is parallel .
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Proof. If A′ is parallel, then ϕA = Aϕ by Proposition 1.9. Conversely, suppose
ϕA = Aϕ. Then (A2−aA− cI)ϕ = 0 by Lemma 2.2 and Corollary 2.5, so A|W⊥

satisfies the quadratic equation

t2 − at− c = 0. (4.1)

Lifting this condition to M ′ using Lemma 1.7, we see that A′ satisfies (4.1) on
{U, V }⊥. Again using Lemma 1.7, we have

(A′)2U = A′(aU + cV ) = aA′U + cA′V = aA′U + cU

and
(A′)2V = A′U = aU + cV = aA′V + cV.

Applying Lemma 1.10 to A′, we see that A′ is parallel provided that a2 +4c 6= 0.
Suppose now that a2 + 4c = 0. Without loss of generality we can assume that a

is positive so that a = 2/r. Let

P = A′ − 1
2aI = A′ − 1

r
I

so that (4.1) means that P 2 = 0. Note that ∇′A′ = ∇′P and that

ker P = {U, V }⊥ ⊕ span{rU − V } = {rU − V }⊥.

Writing Ū = rU−V and V̄ = rU +V , we have P Ū = 0 and P V̄ = (2/r)Ū . Take
Z ∈ kerP and and differentiate 〈Z, Ū〉 = 0 with respect to an arbitrary tangent
vector X. Using the fact that Ū = −J(rξ + z), we arrive at

〈∇′
XZ, Ū〉 = −r〈Z, JPX〉.

On the other hand,

PX ∈ (kerP ) ∩ (kerP )⊥ = span Ū

so that JPX ∈ span{rξ + z} which is normal to M ′. Thus

〈∇′
XZ, Ū〉 = 0. (4.2)

Now take any tangent vectors X and Y and let Z be in kerP . Then

〈(∇′
XP )Y, Z〉 = 〈∇′

X(PY ), Z〉 = −〈PY,∇′
XZ〉 = 0

since ∇′
XZ ∈ ker P by (4.2). Noting that any expression of the form 〈(∇′

XP )Y, Z〉
is symmetric in its three arguments (by the Codazzi equation), we have shown
that such an expression is zero if any of its three arguments lies in kerP . To
complete the proof that ∇′P = 0, we need only show that 〈(∇′

XP )Y, Z〉 = 0
when X = Y = Z = V̄ . For this Z we have 〈PZ, Z〉 = 2r−2〈Ū , V̄ 〉 = 4r, so that

〈(∇′
ZP )Z, Z〉+ 2〈PZ,∇′

ZZ〉 = 0.

On the other hand, if we differentiate 〈Z, Ū〉, we get

〈∇′
ZZ, Ū〉 = −〈Z,∇′

ZŪ〉 = −〈Z, rDZU −DZV 〉.
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Substituting U = −Jξ and V = Jz, we show that the second argument of the
inner product is −J(r−1V̄ + 2r−1Ū) which is a normal vector to M ′. Thus
〈PZ,∇′

ZZ〉 = 0 and hence 〈(∇′
ZP )Z, Z〉 = 0. This completes the proof that A′

is parallel. �

Sketch of proof of Theorem 4.1. Suppose that ϕA = Aϕ. By Lemma 4.2,
A′ is parallel. It also follows from Lemma 1.10 that a2 + 4c ≥ 0. This is
because n ≥ 2 and the tangent space to M ′ cannot have a timelike subspace of
dimension greater than one. If a2 + 4c > 0, then (4.1) has two distinct roots.
The classification is fairly straightforward in this case. If a2 + 4c = 0, it is a
little more difficult and leads to the horosphere. For details, see [Ryan 1971;
Okumura 1975; Montiel and Romero 1986]. �

There are other characterizations of the Type A hypersurfaces. Theorem 1.8
together with Proposition 1.9 yield the following formula for ∇A.

Theorem 4.3. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then ϕA = Aϕ

if and only if
(∇XA)Y = −c(〈ϕX, Y 〉W + 〈Y, W 〉ϕX). (4.3)

/

Corollary 4.4. Equality occurs in Theorem 1.11 if and only if M is an open
subset of a Type A hypersurface. /

Theorem 4.1 is due to Okumura [1975] for C P n and to Montiel and Romero
[1986] for C Hn. Theorem 1.11 and Corollary 4.4 were proven by Y. Maeda
[1976] for C P n and by B.-Y. Chen, G. D. Ludden, and Montiel [1984] for C Hn.
Also, a generalization of Theorem 1.11 and Corollary 4.4 to Type B hypersurfaces
can be found in [Ki et al. 1990a]. As we saw in Theorem 1.5, there are no real
hypersurfaces for which A is parallel. A (1, 1) tensor field T is said to be cyclic
parallel if the cyclic sum

〈(∇XT )Y, Z〉 + 〈(∇Y T )Z, X〉 + 〈(∇ZT )X, Y 〉
vanishes for all X, Y , and Z. This provides yet another characterization of the
Type A hypersurfaces. Relevant references are [Chen and Vanhecke 1981; Chen
et al. 1984; Ki 1988; Ki and Kim 1989].

Theorem 4.5. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then the shape
operator A is cyclic parallel if and only if (4.3) holds.

Proof. First assume (4.3). Then

〈(∇XA)Y, Z〉 = −c(〈ϕX, Y 〉〈W, Z〉 + 〈Y, W 〉〈ϕX, Z〉),
〈(∇Y A)Z, X〉 = −c(〈ϕY, Z〉〈W, X〉 + 〈Z, W 〉〈ϕY, X〉),
〈(∇ZA)X, Y 〉 = −c(〈ϕZ, X〉〈W, Y 〉 + 〈X, W 〉〈ϕZ, Y 〉).
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The right sides sum to zero by skew-symmetry of ϕ. Thus A is cyclic parallel.
Conversely, suppose that A is cyclic parallel. Then we obtain (4.3) by applying

the Codazzi equation twice, as follows:

−〈(∇XA)Y, Z〉 = 〈(∇Y A)Z, X〉 + 〈(∇ZA)X, Y 〉
= 〈Z, (∇Y A)X〉 + 〈(∇ZA)X, Y 〉
= 〈(∇XA)Y, Z〉
− c(〈X, W 〉〈ϕY, Z〉 − 〈Y, W 〉〈ϕX, Z〉 + 2〈X, ϕY 〉〈W, Z〉)
+ 〈(∇ZA)X, Y 〉,

−2〈(∇XA)Y, Z〉 = 〈(∇ZA)X, Y 〉
− c(〈X, W 〉〈ϕY, Z〉 − 〈Y, W 〉〈ϕX, Z〉 + 2〈X, ϕY 〉〈W, Z〉),

−2〈Y, (∇XA)Z〉 = 〈(∇XA)Z, Y 〉
− c(〈X, W 〉〈ϕZ, Y 〉 − 〈Z, W 〉〈ϕX, Y 〉 + 2〈X, ϕZ〉〈W, Y 〉)
− c(〈X, W 〉〈ϕY, Z〉 − 〈Y, W 〉〈ϕX, Z〉 + 2〈X, ϕY 〉〈W, Z〉),

−3〈Y, (∇XA)Z〉 = 3c(〈Y, W 〉〈ϕX, Z〉 + 〈Z, W 〉〈ϕX, Y 〉).
That is,

(∇XA)Y = −c(〈ϕX, Y 〉W + 〈Y, W 〉ϕX). �

Theorem 4.5 is also trivially true when c = 0. In that case, A is cyclic parallel
if and only if ∇A = 0 because of the Codazzi equation. Also, when c = 0, (4.3)
means that ∇A = 0.

The “standard examples” listed in the summary at the end of Section 3 have
constant principal curvatures, and there are classification theorems using this
hypothesis. It is possible to get some results by merely imposing a limit on the
number of distinct principal curvatures. As we noted in Theorem 1.5, there is no
possibility of an umbilic hypersurface. The next two theorems show what can
happen when the number of distinct principal curvatures is 2. For proofs, we
refer to [Cecil and Ryan 1982; Montiel 1985].

Theorem 4.6. Let M2n−1, where n ≥ 3, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c > 0. Suppose that the
number g of distinct principal curvatures is ≤ 2 at each point . Then M is an
open subset of a geodesic hypersphere. /

Theorem 4.7. Let M2n−1, where n ≥ 3, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c < 0. Suppose that the
number g of distinct principal curvatures is ≤ 2 at each point . Then M is an
open subset of one of the following :

(i) a geodesic sphere (Type A1);
(ii) a tube over a complex hyperbolic hyperplane (Type A1);
(iii) a horosphere (Type A0);
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(iv) a tube of radius

r log
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)
=
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2
log

(
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√
3
)

over a totally real hyperbolic space (Type B). /

Possibility (iv) occurs when u is chosen so that cothu = 2 tanh 2u. One principal
subspace includes W and therefore has dimension n.

Since A cannot be parallel, we look for similar but weaker conditions that can
be satisfied and can serve as characterizing properties. The condition R · A = 0
is sometimes called “semi-parallel”, and has been of interest for hypersurfaces in
real space forms. However, here we find it is also too strong, as is shown by the
next sequence of results.

Lemma 4.8. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex space
form of constant holomorphic sectional curvature 4c 6= 0. Suppose that p is a
point where R · A = 0. If λ and µ are distinct principal curvatures at p, with
associated principal orthonormal vectors X and Y , then

λµ + c
(
1 + 3〈ϕX, Y 〉2) = 0.

Proof. Since A(R(X, Y )Y = R(X, Y )AY = µR(X, Y )Y , we have R(X, Y )Y ∈
Tµ(p) so that 〈R(X, Y )Y, X〉 = 0. On the other hand, by the Gauss equation,

〈R(X, Y )Y, X〉
= (λµ + c) + c〈ϕY, Y 〉〈ϕX, X〉 − c〈ϕX, Y 〉〈ϕY, X〉 + 2c〈X, ϕY 〉〈ϕY, X〉
= λµ + c(1 + 3〈ϕX, Y 〉2). �

Theorem 4.9. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then R ·A never
vanishes.

Proof. Suppose R · A = 0 at a point p. Take Y = W in Lemma 4.8. This
shows that A = λI on W⊥ where λa + c = 0. In particular, for any X ∈ W⊥,
AX = λX and AϕX = λϕX. By Corollary 2.3, 0 6= λ2 = λa + c = 0, which is a
contradiction. �

Theorem 4.10. Let M2n−1, where n ≥ 3, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c > 0. Then R · A
cannot be identically zero.

Proof. Suppose that R · A = 0. As a result of Lemma 4.8, any two distinct
principal curvatures have opposite signs. Therefore, there can be at most two of
them at each point. Thus M must be an open subset of a geodesic hypersphere
by Theorem 4.6. Since geodesic hyperspheres are Hopf hypersurfaces, this con-
tradicts Theorem 4.9. �
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Theorem 4.10 is due to S. Maeda [1983]. Note that it deals only with the case
c > 0. Also, because of the hypotheses required for Theorem 4.6, the proof only
applies when n ≥ 3. However, there is a direct proof for n = 2, both for positive
and for negative c. For the proof, we refer to [Niebergall and Ryan 1996].

Theorem 4.11. Let M3 be a real hypersurface in a complex space form M̃ of
constant holomorphic sectional curvature 4c 6= 0. Then R·A cannot be identically
zero. /

In the next two theorems, we use the hypothesis of constant principal curvatures.

Theorem 4.12. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c > 0. Suppose that
the number of principal curvatures is 3 at each point and that these principal
curvatures are constant . Then M is an open subset of a hypersurface of Type
A2 or Type B . /

It is not known whether a similar theorem holds for complex hyperbolic space.
In order to get further results along this line for either ambient space, we need
to restrict our attention to Hopf hypersurfaces.

Theorem 4.13. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. If the principal
curvatures are constants, then M is an open subset of a member of Takagi’s list
or Montiel’s list . /

Theorem 4.12 is due to Takagi for n ≥ 3 and to Q.-M. Wang for n = 2. Theo-
rem 4.13 is due to Kimura for c > 0 and to Berndt for c < 0. Relevant references
are [Takagi 1975a; 1975b; Li 1988; Wang 1983; Kimura 1986a; Berndt 1989a;
1990].

Böning [1995] obtained the following result, which we may regard as a gener-
alization of Theorems 4.5 and 4.6 to the case g = 3. Note that he assumes that
M is Hopf with a2 + 4c 6= 0. He proves that under the stated hypotheses, the
principal curvatures must be constants. Then Theorem 4.13 can be applied. It
is not known whether the hypothesis that a2 + 4c 6= 0 is necessary.

Theorem 4.14. Let M2n−1, where n ≥ 3, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Suppose that
a2 + 4c 6= 0 and the number of distinct principal curvatures is equal to 3 at each
point . Then M is an open subset of a member of Takagi’s list or Montiel’s list . /

Further results involving assumptions on the principal curvatures may be found
in [Chen 1996; Deshmukh and Al-Gwaiz 1992; Ki and Takagi 1992; Kon 1980;
Xu 1992]. Semi-parallelism and semi-symmetry are also discussed in [Kimura
and Maeda 1993; Vernon 1991]. For extensions in other directions, including the
indefinite case and the case of minimal hypersurfaces, see [Berndt et al. 1995;
Bejancu and Duggal 1993; Garay and Romero 1990; Gotoh 1994; Kim and Pyo
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1991; Maeda 1984; Mart́ınez and Ros 1984; Miquel 1994; Nagai 1995; Shen 1985;
Vernon 1989; Vernon 1987; Udagawa 1987]. The constructions in [Fornari et al.
1993] are also of interest, although their main result is incorrect, as noted in the
errata to that paper.

5. The η-Parallel Condition

It is clear that the behavior of the structure vector W is crucial whenever
we work with real hypersurfaces in complex space forms. The Hopf condition
takes this into account. The next set of conditions we study will also do so.
Specifically, we will take some familiar condition that is too strong to be useful
for classification, and weaken it by only insisting that it apply on the holomorphic
distribution W⊥. We begin with η-parallelism which essentially restricts the
∇A = 0 condition to W⊥.

A (1, 1) tensor T on a hypersurface in a complex space form is said to be
η-parallel if 〈(∇XT )Y, Z〉 = 0 for all X, Y , and Z ∈ W⊥. Further, T is said to
be cyclic η-parallel if the cyclic sum of this same expression vanishes. That is,

〈(∇XT )Y, Z〉 + 〈(∇Y T )Z, X〉 + 〈(∇ZT )X, Y 〉 = 0

for all X, Y , and Z ∈ W⊥.

Lemma 5.1. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex space
form of constant holomorphic sectional curvature 4c 6= 0. Let X be a (smooth)
principal vector field in W⊥ with associated principal curvature λ. Then Wλ = 0.
Further , if A is η-parallel , λ must be constant .

Proof. The Codazzi equation gives

(∇XA)W − (∇W A)X = −cϕX,

which, using the fact that a is constant (Theorem 2.1), can be rewritten as

(aI − A)ϕAX − (Wλ)X − (λI −A)∇W X = −cϕX.

Taking the inner product with X yields Wλ = 0.
Suppose now that A is η-parallel. Then if Y ∈ W⊥, we have

0 = 〈(∇Y A)X, X〉 = (Y λ)〈X, X〉 + 〈(λI −A)∇Y X, X〉 = (Y λ)〈X, X〉,
so Y λ = 0. This proves that λ is constant. �

Lemma 5.2. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex space
form of constant holomorphic sectional curvature 4c 6= 0. If M has η-parallel
shape operator , then its principal curvatures are constant .

Proof. Suppose M has η-parallel shape operator. Let p be a point where
the maximum number of principal curvatures are distinct. The 2n− 1 principal
curvature functions, numbered in nonincreasing order, are continuous. The set U
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of points where they assume the values taken at p is clearly closed by continuity.
On the other hand, p must have a neighborhood where the distinct principal
curvatures have constant multiplicities. Lemma 5.1 shows that these principal
curvatures are constant in such a neighborhood. This shows that the set U is
also open. We conclude that the principal curvatures are constant on M . (We
have implicitly assumed that M is orientable. If not, apply the same argument
to the twofold covering to reach the same conclusion.) �

We make the observation that the expression 〈(∇XA)Y, Z〉 restricted to W⊥ is
symmetric in its three arguments. This is immediate from the Codazzi equation
and the symmetry of A.

Theorem 5.3. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then M has
η-parallel shape operator if and only if it is an open subset of a Type A or Type
B hypersurface from Takagi’s list or Montiel’s list .

Proof. In light of Theorem 4.13, there are two things to prove. First that every
Type A or Type B hypersurface has η-parallel shape operator, and second, that
hypersurfaces of type C, D, or E do not. The first part is easy. Since M is Hopf,
W⊥ is spanned by principal vector fields locally. Suppose M is a Type A or
Type B hypersurface. Since the number of distinct principal curvatures on W⊥

is 1 or 2, the arguments in any expression of the form 〈(∇XA)Y, Z〉 with X, Y ,
and Z principal vectors in W⊥, can be permuted so that Y and Z belong to the
same principal distribution, say that of λ. Then

〈(∇XA)Y, Z〉 = 〈(λI − A)∇XY, Z〉 = 〈∇XY, (λI − A)Z〉 = 0,

where we have used the fact that λ is constant. We write the second half of the
proof as a separate lemma. �

Lemma 5.4. Hypersurfaces of types C , D , and E in complex projective space
are not η-parallel .

Proof. Denote the four distinct principal curvatures (other than a) by λ, µ,
ρ, and σ, where Tλ and Tµ are ϕ-invariant, while ϕ interchanges Tρ and Tσ .
Assume that A is η-parallel. Choose X ∈ Tλ, Z ∈ Tρ (nonzero vectors) and
compute 〈R(X, ϕX)Z, ϕZ〉 in two ways, once directly and once using the Gauss
equation. This will lead to a contradiction. We first observe that since A is
η-parallel, ∇X takes any principal distribution Tr ⊆ W⊥ into the span of Tr and
W provided that X ∈ W⊥. In the curvature calculation,

〈∇ϕXZ, W 〉 = −〈Z,∇ϕXW 〉 = −〈Z, ϕAϕX〉 = λ〈Z, X〉 = 0.

Therefore, ∇ϕXZ ∈ Tρ and ∇X∇ϕXZ contributes nothing to the curvature since
it has no Tσ component. Similarly∇ϕX∇XZ makes no contribution. Finally, the
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W⊥ component of [X, ϕX] makes no contribution since differentiation in a W⊥

direction takes Z to Tρ. However,

〈[X, ϕX], W 〉 = 〈∇X(ϕX), W 〉 − 〈∇ϕXX, W 〉
= 〈ϕX, ϕAX〉 + 〈X, ϕAϕX〉 = −2λ〈X, X〉.

So far, we have

〈R(X, ϕX)Z, ϕZ〉 = 2λ〈∇W Z, ϕZ〉〈X, X〉.
We now simplify the right side further, as follows:

〈(∇W A)Z, ϕZ〉 = 〈(ρI − A)∇WZ, ϕZ〉 = (ρ− σ)〈∇W Z, ϕZ〉.
Also,

〈(∇ZA)W, ϕZ〉 = 〈(aI −A)∇ZW, ϕZ〉 = (a − σ)〈ϕAZ, ϕZ〉 = (a − σ)ρ〈Z, Z〉.
Now apply the Codazzi equation to get

(ρ− σ)〈∇W Z, ϕZ〉 = ((a− σ)ρ− c)〈Z, Z〉 =
a

2
(ρ− σ)〈Z, Z〉,

the last equality using the relationship between ρ and σ implicit in Corollary 2.3.
Specifically, it is

ρσ =
ρ + σ

2
a + c.

Thus we get
〈R(X, ϕX)Z, ϕZ〉 = λa〈X, X〉〈Z, Z〉.

On the other hand, using the Gauss equation, we obtain

〈R(X, ϕX)Z, ϕZ〉 = −2c〈X, X〉〈Z, Z〉.
Since λa + 2c 6= 0, as can be seen from Corollary 2.3, we have the desired
contradiction. �

Theorem 5.3 was proved by Kimura and S. Maeda [1989] for complex projective
space. They also produced a class of examples which showed that the Hopf
hypothesis is necessary (ruled real hypersurfaces). Suh [1990] extended it to
complex hyperbolic space. In addition, the following characterization [Ki and
Suh 1994] uses a condition that is stronger than η-parallelism. However, it does
not assume that the hypersurface is Hopf, and establishing this is the heart of
the proof.

Theorem 5.5. Let M2n−1, where n ≥ 3, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Assume that

(∇XA)Y = −c〈ϕX, Y 〉W
and

〈(Aϕ−ϕA)X, Y 〉 = 0



REAL HYPERSURFACES IN COMPLEX SPACE FORMS 271

for all X and Y in W⊥. Then M is an open subset of a Type A hypersurface
from Takagi’s list or Montiel’s list . /

For further results along these lines, see [Hamada 1995; Suh 1995].

6. Conditions on the Ricci Tensor

We recall from Section 1 that the (1, 1) Ricci tensor is denoted by S. A
Riemannian manifold for which S is a constant multiple of the identity is called
an Einstein space. A weaker condition is the Ricci-parallel condition which says
that ∇S = 0. As we shall see, both are too strong to be satisfied by a real
hypersurface. A real hypersurface in a complex space form is said to be pseudo-
Einstein if there are constants ρ and σ such that

SX = ρX + σ〈X, W 〉W (6.1)

for all tangent vectors X. (The terms quasi-Einstein and η-Einstein have also
been used for this notion.) The following theorem classifies pseudo-Einstein
hypersurfaces in C P n, and in fact proves a stronger result, namely that if a con-
dition of the form (6.1) is satisfied, the coefficients are automatically constants.
The proof can be found in [Cecil and Ryan 1982].

Theorem 6.1. Let M2n−1, where n ≥ 3, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c > 0. Suppose that
there are smooth functions ρ and σ such that SX = ρX +σ〈X, W 〉W all tangent
vectors X. Then ρ and σ must be constant and M is an open subset of one of

(i) a geodesic sphere (as in Theorem 3.13),
(ii) a tube of radius ur over a complex projective subspace C P p, with 1 ≤ p ≤

n − 2, 0 < u < π/2, and cot2 u = p/q (notation as in Theorem 3.14 with
λ2

1 = qc/p and λ2
2 = pc/q), or

(iii) a tube of radius ur over a complex quadric Qn−1 where 0 < u < π/4 and
cot2 2u = n− 2 (as in Theorem 3.15). /

Theorem 6.1 was proved by M. Kon [1979] under the assumption that ρ and σ

are constant. For complex hyperbolic space, the analogous theorem was proved
by Montiel [1985].

Theorem 6.2. Let M2n−1, where n ≥ 3, be a real pseudo-Einstein hypersurface
in a complex space form of constant holomorphic sectional curvature 4c < 0.
Then M is an open subset of one of

(i) a geodesic sphere,
(ii) a tube over a complex hyperbolic hyperplane, or
(iii) a horosphere. /

It is not trivial to prove directly that every pseudo-Einstein hypersurface is Hopf,
even though we can observe it from Theorems 6.1 and 6.2, at least for n ≥ 3.
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When σ + 3c 6= 0, there is a straightforward proof, valid for n = 2 as well.
However, if σ + 3c = 0, one essentially has to complete the classification. Since
we have not included proofs of Theorems 6.1 and 6.2, it is worthwhile to present
a few of the basic equations. Using (6.1) and (1.11), we observe that any pseudo-
Einstein hypersurface satisfies

(A2 − mA)X = −(σ + 3c)〈X, W 〉W + ((2n + 1)c− ρ)X.

Further, if the hypersurface is known to be Hopf, then

a2 −ma = −(σ + ρ− 2(n− 1)c)

while on W⊥, any principal curvature λ must satisfy

λ2 − mλ− ((2n + 1)c− ρ) = 0.

In fact, a Hopf hypersurface will be pseudo-Einstein if and only if any two prin-
cipal curvatures λ1 and λ2 on W⊥ satisfy

(λ1 − λ2)(λ1 + λ2 −m) = 0. (6.2)

The reason that hypersurfaces of types A2 and B in C Hn cannot be pseudo-
Einstein is that the necessary condition λ1 + λ2 = m cannot hold when all the
principal curvatures have the same sign, which is the case for C Hn. In C P n,
on the other hand, the signs of λ1 and λ2 differ, so in each family there is a one
choice of radius for which the hypersurface will be pseudo-Einstein.

In the rest of this section we study several conditions that represent ways of
weakening the Ricci-parallel condition ∇S = 0. Surprisingly, many of these turn
out to be equivalent to, or to imply, the pseudo-Einstein condition.

When a hypersurface is pseudo-Einstein, it is easy to check that ∇S satisfies
the identity

(∇XS)Y = σ(〈ϕAX, Y 〉W + 〈Y, W 〉ϕAX), (6.3)

where the constant σ is as in (6.1). We shall now investigate how a condition
of the form of (6.3) restricts a hypersurface. A routine calculation yields the
following information on ∇S.

Proposition 6.3. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. If there is a
function κ such that

(∇XS)Y = κ(〈ϕAX, Y 〉W + 〈Y, W 〉ϕAX), (6.4)

then

|∇S|2 = 2κ2(trace A2 − |AW |2). /

We now look at the standard examples in light of the condition (6.4).
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Theorem 6.4. Let M2n−1, where where n ≥ 2, be a member of Takagi’s list
or Montiel’s list satisfying the hypothesis of Proposition 6.3. Then M is pseudo-
Einstein. Specifically it is a Type A0 or A1 hypersurface or one of the Type A2
or B hypersurfaces occurring in case (ii) or (iii) of Theorem 6.1. The latter two
occur only when c > 0 and n ≥ 3.

Proof. We consider first a Type A hypersurface and derive an expression for
∇S. From Theorem 4.1 and formulas (1.10) and (4.3), we calculate

(∇XS)Y = −2c(〈ϕAX, Y 〉W +〈Y, W 〉ϕAX)+c(a−m)(〈ϕX, Y 〉W +〈Y, W 〉ϕX).
(6.5)

This implies

(∇WS)Y = 0,

and hence both sides of (6.4) vanish when X = W . Now suppose that X ∈ W⊥.
If the hypersurface is of type A0 or A1, then m − a = (2n − 2)λ where λ is
the principal curvature for W⊥ so that (6.4) holds with κ = −2nc. However, a
Type A2 hypersurface will have linearly independent values of X corresponding
to distinct principal curvatures. The only way that (6.4) can be satisfied is if
m − a = 0. This occurs for just one choice of radius for each value of p (see
Theorem 3.14), namely the one that makes the hypersurface pseudo-Einstein.
For a Type B hypersurface, we note that the principal curvatures satisfy λ1λ2 =
−c so that neither is zero. If (6.4) holds, then (as we shall see later) so does
(6.7). Hence mλ1 − λ2

1 = mλ2 − λ2
2 which is precisely the condition for M to

be pseudo-Einstein. It will become clear in the proofs of the next few theorems
that hypersurfaces of types C, D, or E cannot satisfy an equation of the form
(6.4). �

Using Proposition 6.3 and the information on the standard examples in Section 3,
we can compute the following information.

Corollary 6.5. For the hypersurfaces of Theorem 6.4, |∇S|2 is equal to

(i) 16n2(n − 1)|c|3 for Type A0,

(ii) 16n2(n− 1)|c|3 tanh2 u for Type A1 with c < 0,

(iii) 16n2(n − 1)|c|3 cot2 u for Type A1 with c > 0,

(iv) 16(n− 1)|c|3 for Type A2,

(v) 16n(n− 1)(2n− 1)2|c|3/(n− 2) for Type B . /

In particular, the value of κ occurring in any equation of the form (6.4) is nonzero
when M is one of the standard examples. Thus:

Corollary 6.6. For the hypersurfaces in Takagi’s and Montiel’s lists, the Ricci
tensor is never parallel , that is, ∇S never vanishes. In particular , none of these
hypersurfaces are Einstein spaces. /
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This also proves, for n ≥ 3, the remark made in the introduction that there
are no Einstein hypersurfaces in C P n or C Hn. This statement is also true for
n = 2. A proof can be found in [Niebergall and Ryan 1996]. As a consequence of
the calculations performed in proving Theorem 6.4, we can make the following
further observation.

Theorem 6.7. The Type A0 and Type A1 hypersurfaces in C P n and C Hn,
where n ≥ 2, satisfy

(∇XS)Y = −2ncλ(〈ϕX, Y 〉W + 〈Y, W 〉ϕX)

where λ is the principal curvature for the principal space W⊥. /

We now look at the converse of formula (6.3). As a first step we show that (6.4)
implies the Hopf condition if κ 6= 0.

Lemma 6.8. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. If there is a
nonvanishing function κ satisfying (6.4), then M is a Hopf hypersurface, and
m

2 − trace A2 is constant .

Proof. We first differentiate (1.11) to find the general expression for ∇S in
terms of ∇A to get

(∇XS)Y = −3c(〈Y, ϕAX〉W+〈Y, W 〉ϕAX)+(Xm)AY +m(∇XA)Y −(∇X(A2))Y.

(6.6)
Taking the trace of (6.6) and of (6.4) with respect to Y , we get

m(Xm) + m trace(∇XA) − trace(∇XA2) = 2m(Xm)−X(trace A2)

= X(m2 − trace A2),

and we conclude that m2 − trace A2 is constant.
On the other hand, using the fact that ∇XA2 = (∇XA)A + A∇XA in (6.6),

substituting for (∇XA)Y and (∇XA)AY from the Codazzi equation, and taking
the trace with respect to X gives

−3c〈Y, ϕAW 〉+ 〈gradm, AY 〉 +m(trace(∇Y A))

− trace(∇AY A) − (trace A∇Y A + c〈AϕY, W 〉 + 2c〈AW, ϕY 〉)
= κ〈ϕAW, Y 〉.

This equation simplifies to

κ〈ϕAW, Y 〉 = 1
2
〈grad(m2 − trace A2), Y 〉.

Since the right side vanishes, we must have ϕAW = 0 so that M is a Hopf
hypersurface. �
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Lemma 6.9. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Suppose that
there is a function κ satisfying (6.4). Then either a is zero or m is constant .
Furthermore,

(κ + 3c)ϕAX = ((ma− a2)I − mA + A2)ϕAX (6.7)

for all X ∈ W⊥.

Proof. Combine (6.4) and (6.6) and take the inner product with W . The
resulting equation gives X(am) = 0 and (6.7). �

Lemma 6.10. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Suppose that
there is a function κ such that

(∇XS)Y = κ(〈ϕAX, Y 〉W + 〈Y, W 〉ϕAX).

If a/2 occurs as a principal curvature on W⊥ at every point of M , then c < 0
and M is an open subset of a horosphere.

Proof. To make the argument more general, we first assume only that there is
a point where a/2 occurs as a principal curvature on W⊥ and work at this point.
Then a2 + 4c = 0 by Corollary 2.3 and hence a is not zero. If, in addition, 0 is a
principal curvature, X ∈ T0 implies that AϕX = 1

2aϕX, again by Corollary 2.3.
Substituting ϕX for X in (6.7), we get

κ + 3c = ma− a2.

This reduces (6.7) to
(mA− A2)ϕAX = 0, (6.8)

which holds for all X ∈ W⊥.
Now let V = T0 ⊕ ϕT0 and note that AV ⊆ V. Then Ṽ = (V ⊕ span{W})⊥ is

A-invariant and ϕ-invariant. From (6.8) we see that the only possible principal
curvature on Ṽ has the value m = a/2. Whether Ṽ is the zero subspace or not,
we are led to the absurd conclusion that m = trace A = a + (k− 1)m = (k + 1)m
where k is the rank of A. The result is that if a

2
occurs as a principal curvature

(with principal vector in W⊥) at some point, then 0 is not a principal curvature
at that point.

We now continue to work at a point where a/2 is a principal curvature on
W⊥. Since 0 is not a principal curvature,

(κ + 3c)I = (ma− a2)I − mA + A2.

holds on all of W⊥. The fact that a/2 is a principal curvature allows us to
compute that κ = ma/2. Further, the equation two lines above shows that any
principal curvature not equal to a/2 must be equal to m− a/2.
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Now assume the full hypothesis of the lemma. Recall that a 6= 0 and so m is
constant by Lemma 6.9. If three principal curvatures are distinct at any point,
then there is a neighborhood where they are all distinct, hence constant by the
arguments of the preceding paragraph. Since none of the standard examples with
three distinct principal curvature satisfy a2 + 4c = 0, we have a contradiction in
view of Theorem 4.13. We therefore must have exactly two principal curvatures
at each point, a and a/2. Again by Theorem 4.13, M must be an open subset
of a horosphere. �

Lemma 6.11. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Suppose that
there is a constant κ such that

(∇XS)Y = κ(〈ϕAX, Y 〉W + 〈Y, W 〉ϕAX).

If a/2 does not occur as a principal curvature on W⊥, M is an open subset of
a Type A or Type B hypersurface provided a 6= 0. If n ≥ 3, the same conclusion
holds without the assumption that a 6= 0.

Proof. Choose a point p where the maximum number of principal curvatures
are distinct and work in a neighborhood of that point. Suppose first that 0 occurs
as a principal curvature at p so that AX = 0 for a nonzero X ∈ W⊥. Again
invoking Corollary 2.3, we have that a 6= 0 and −2c/a is also a principal curvature
with principal vector ϕX. Using the fact that 1

2 is not a principal curvature, we
can verify that 0 and −2c/a have equal multiplicities. Formula (6.8) still holds
and arguing as in Lemma 6.10, we find that κ+3c−ma+a2 = 0 and hence that
any further principal curvature λ must satisfy λ = m. In addition, Tλ must be ϕ-
invariant and so m2 = am+c by Corollary 2.3. If all four principal curvatures we
have identified are distinct, then there are also four distinct principal curvatures
at nearby points. The zero principal curvature must remain zero since (6.8)
does not allow for more than two distinct principal curvatures on W⊥. As a
consequence, M has four distinct constant principal curvatures in a neighborhood
of p. This is impossible by Theorem 4.13. There is still the possibility that a = m
or that a = −2c/a so that only three principal curvatures are distinct. In the first
case, m = a must be a principal curvature of the same multiplicity nearby. If the
zero principal curvature were to become nonzero nearby, then (6.8) would imply
that this nonzero value must be equal to m, which will not be true for sufficiently
nearby points. If a = −2c/a, the same argument shows that the zero principal
curvature remains zero nearby. In either case, M has three distinct principal
curvatures, all constant, in a neighborhood of p. Observing that none of the
standard examples has this particular configuration of principal curvatures, we
conclude that 0 cannot occur as a principal curvature on W⊥ at p.

Now that we know that 0 is excluded, there are two possibilities arising from
(6.7). The first is that a 6= 0 in which case m is constant and any principal
curvature on W⊥ satisfies a quadratic equation with constant coefficients in a
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neighborhood of p. Thus, M is locally a Type A or Type B hypersurface. If
a = 0, then m is not automatically constant. However, the quadratic equation
is still satisfied. If only two principal curvatures are distinct at p, then the same
holds in a neighborhood and locally M is one of the standard examples as in
Theorems 4.6 and 4.7 provided that n ≥ 3. On the other hand, if three principal
curvatures are distinct, say 0, λ, and µ, then λ and µ satisfy the quadratic
equation

κ + 3c + mt− t2 = 0.

Noting that a = 0, we observe that λµ = c by Corollary 2.3. Thus κ = −4c. If
the two eigenspaces are ϕ-invariant, then each principal curvature is constant,
again by Corollary 2.3. If not, then λ + µ = m and we get (n − 2)m = 0. Thus
m = 0 and the principal curvatures are constants provided that n ≥ 3. �

We can now state the result that we have been working towards. It determines
the hypersurfaces that can satisfy a condition of the form of (6.4).

Theorem 6.12. Let M2n−1, where n ≥ 3, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. If there is a
nonzero constant κ such that

(∇XS)Y = κ(〈ϕAX, Y 〉W + 〈Y, W 〉ϕAX),

then M is an open subset of a pseudo-Einstein hypersurface as listed in Theo-
rems 6.1 and 6.2.

Proof. From Lemma 6.8, M is a Hopf hypersurface. Suppose there is a point
p where a/2 is not a principal curvature on W⊥. Then Lemma 6.11 shows that
the set where all principal curvatures have the same values as they have at p is
open. Since this set is also closed, M is an open subset of a Type A or Type
B hypersurface. However, as we have seen in Theorem 6.4, a Type A or Type
B hypersurface satisfying the given condition must be pseudo-Einstein. On the
other hand, if no such p exists, the desired conclusion follows from Lemma 6.10.

�

Theorem 6.12 was proved by Kimura [1986b] for the case of C P n. Although
the assumption that n ≥ 3 is implicit in his proof (which relies on [Cecil and
Ryan 1982] to handle the possibility that a = 0), it is omitted from the stated
hypothesis.

The above argument also holds for n = 2, provided that we assume a 6= 0.
We state the result separately as follows.

Theorem 6.13. Let M3 be a real hypersurface in C P 2 or C H2. Suppose that
a = 〈AW, W 〉 6= 0. If there is a nonzero constant κ such that

(∇XS)Y = κ(〈ϕAX, Y 〉W + 〈Y, W 〉ϕAX),

M is an open subset of a hypersurface of type A0 or type A1. /
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The Type A0 and A1 hypersurfaces are also characterized by a refinement of
this condition as follows [Kimura and Maeda 1992; Taniguchi 1994; Choe 1995].

Theorem 6.14. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then there is a
nonzero constant κ such that

(∇XS)Y = κ(〈ϕX, Y 〉W + 〈Y, W 〉ϕX)

if and only if M is an open subset of a hypersurface of type A0 or type A1. /

If n ≥ 3, one need not specify that κ is constant in Theorem 6.14. If κ is assumed
to be a function, it turns out to be constant. However, κ 6= 0 is essential, although
this hypothesis is missing from [Choe 1995, Theorem 3.2].

We remarked in Corollary 6.6 that none of the standard examples have parallel
Ricci tensor. It follows from Lemmas 6.9 through 6.11 that Hopf hypersurfaces
cannot have parallel Ricci tensor, at least when n ≥ 3. In fact, the following
stronger result is known [Ki 1989]. We will not give the proof here, since it will
be a consequence of Theorem 6.29.

Theorem 6.15. Let M2n−1, where n ≥ 3, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then the Ricci
tensor of M cannot be parallel everywhere. /

Ki and Suh [1992] proved yet another characterization of the Type A hyper-
surfaces. Recalling (6.5), which is an expression for ∇S, the following could be
regarded a kind of converse.

Theorem 6.16. Let M2n−1, where n ≥ 3, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c > 0. Suppose that the
mean curvature m = trace A and a = 〈AW, W 〉 are constants. Then

(∇XS)Y = −cm(〈Y, ϕX〉W + 〈Y, W 〉ϕX)

+ c(〈Y, ϕX〉AW + 〈AW, Y 〉ϕX) − 2c(〈Y, W 〉ϕAX + 〈ϕAX, Y 〉W )

if and only if M is a Type A hypersurface from Takagi’s list . /

Kimura and Maeda [1991] investigated the consequences of assuming only that
S is parallel in the direction of the structure vector W . Although we will go into
some detail concerning a similar condition on the shape operator in the next
section, we will merely state their theorem concerning for ∇WS. See [Maeda
1993] for a related result.

Theorem 6.17. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c > 0. Assume that
the mean curvature is constant . If ∇WS = 0, then M is an open subset of
a hypersurface from Takagi’s list . There is a restriction on the radii that can
occur . /
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For further results along these lines, see [Cho et al. 1991; Kim 1988b; Maeda
1994].

We now look at a condition analogous to the one characterizing the Type A
hypersurfaces in Theorem 4.1. However, we ask only that ϕ commute with S,
not with A. This condition is significantly weaker as it allows at least some of
each type of homogeneous hypersurface as well as as certain nonhomogeneous
ones. Relevant references are [Aiyama et al. 1990; Ki and Suh 1990; Kimura
1987b]. The original statements have been modified to take certain corrections
into account.

Theorem 6.18. Let M2n−1, where n ≥ 3, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c > 0. If ϕS = Sϕ,
then M is an open subset of a hypersurface from Takagi’s list or a certain non-
homogeneous hypersurface. Although all types A–E occur , there is a restriction
on the radii of the tubes. /

Theorem 6.19. Let M2n−1, where n ≥ 3, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c < 0. If ϕS = Sϕ,
then M is an open subset of a hypersurface of type A from Montiel’s list . /

A Riemannian manifold is said to have harmonic curvature if its Ricci tensor
S is a Codazzi tensor, i.e., (∇XS)Y = (∇Y S)X. Concerning this condition, we
can state the following [Ki 1989; Kwon and Nakagawa 1989a; Kim 1988a].

Theorem 6.20. Let M2n−1, where n ≥ 3, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then M cannot
have harmonic curvature, that is, (∇XS)Y −(∇Y S)X cannot vanish identically .

/

Other versions of the harmonicity condition are pursued in [Ki and Nakagawa
1991; Ki et al. 1989; Ki et al. 1990b].

We now proceed to look at further conditions on the ∇S. First of all, it is
possible for S to be cyclic-parallel, but the condition is still a rather strong one
[Kwon and Nakagawa 1988].

Theorem 6.21. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c > 0. If the Ricci
tensor S is cyclic parallel , then M is an open subset of a hypersurface from
Takagi’s list . There is a restriction on the radii that can occur . /

As long as we assume the Hopf condition, η-parallelism of S turns out to be
strong enough to characterize Type A and Type B hypersurfaces. Suh [1990]
proved the following theorem.

Theorem 6.22. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then M has
η-parallel Ricci tensor if and only if it is an open subset of a Type A or Type B
hypersurface from Takagi’s list or Montiel’s list . /
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For n ≥ 3, the same conclusion was obtained by J.-H. Kwon and H. Nakagawa
[1989b] under a weaker assumption. We will present a full account of their result,
organized as a sequence of lemmas preceded by a statement of the theorem and
the core of the proof.

Theorem 6.23. Let M2n−1, where n ≥ 3, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then the Ricci
tensor of M is cyclic η-parallel if and only if M is an open subset of a Type A
or Type B hypersurface from Takagi’s list or Montiel’s list .

Proof. Suppose that S is cyclic η-parallel. Let p be a point where the maximum
number of principal curvatures are distinct. Let V be a neighborhood of p where
we can find an orthonormal basis of principal vectors. Then Lemma 6.27 (to be
proved below) shows that m is constant. For any two distinct principal curvatures
λ and µ, we have from Lemma 6.26 below that

(2λ− m)Xλ = (2λ + 4µ− 3m)Xµ = 0,

where X is the principal vector corresponding to λ. Let U = {x ∈ V : 2λ 6= m}.
Then Xλ = 0 on Ū . For any point in the complement of Ū , if Xλ 6= 0, then
2λ = m in a neighborhood of this point, which contradicts the fact that Xm = 0.
We conclude that Xλ = 0 on all of V. Similarly, we see that Xµ = 0 on the
closure of the set where 2λ + 4µ − 3m 6= 0. On the complement, however, we
have 4µ = 3m− 2λ. By the same argument as before, we see that Xµ = 0 there
as well. We have shown that every principal curvature function is constant along
every direction in W⊥. By Lemma 5.1, it is also constant in the W direction.
We conclude that V has constant principal curvatures. By Theorem 4.13, it is
an open subset of a member of Takagi’s list or Montiel’s list.

It remains to check which of the standard examples actually have cyclic η-
parallel Ricci tensor. This is covered in the next theorem, Theorem 6.24. To
complete the proof, observe that the set of points where the principal curvatures
match their values at p is open since any such point will be a point where
the maximum number of principal curvatures are distinct. Also, it will have a
neighborhood where the principal curvatures are constant. On the other hand,
such a set is closed by continuity. �

Theorem 6.24. Let M2n−1, where n ≥ 2, be a member of Takagi’s list or
Montiel’s list . Then the Ricci tensor is cyclic η-parallel if and only if the shape
operator is η-parallel ; that is if M is of type A or type B .

Proof. Lemma 6.25 below shows that in the case of the standard examples,
the cyclic sum of the expression 〈(∇XS)Y, Z〉 over principal vectors X, Y , and
Z in W⊥ is equal to

(2(λ + µ + σ) − 3m)〈(∇XA)Y, Z〉,
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where λ, µ, and σ are the respective principal curvatures. Thus a hypersurface
with η-parallel shape operator will have an η-parallel Ricci tensor. In view of
Theorem 5.3, it remains to show that hypersurfaces of types C, D, and E in C P n

do not have η-parallel Ricci tensor.
Let M be a hypersurface of type C, D, or E. Assume that the Ricci tensor

is cyclic η-parallel. Pick any three of the four principal curvatures whose prin-
cipal spaces lie in W⊥. Call them λ, µ, and σ. See Theorems 3.16 to 3.18
for the values. For a particular type (say type C), note that the expression
2(λ+µ+σ)− 3m varies continuously with u so that among all the hypersurfaces
in the one-parameter family, only a finite number will give a value of zero for this
expression. Thus, except for a finite number of values of u, the corresponding
expression involving ∇A will vanish. This holds for any combination of three
distinct principal curvatures and corresponding principal vectors. By continuity,
it holds for all values of u as well. On the other hand, the argument given in the
proof of Theorem 5.3 takes care of the case of vectors which do not belong to
distinct principal spaces. The net result is that 〈(∇XA)Y, Z〉 = 0 on W⊥. Since
this contradicts Theorem 5.3, we must conclude that no hypersurface of type C,
D, or E can have cyclic η-parallel Ricci tensor. �

Lemma 6.25. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Then the cyclic
sum of the expression 〈(∇XS)Y, Z〉 over principal vectors X, Y , and Z in W⊥

is equal to

(2(λ+µ+σ)−3m)(〈(∇X A)Y, Z〉−(λ(Zm)〈X, Y 〉+µ(Xm)〈Y, Z〉+σ(Y m)〈Z, X〉)),
where λ, µ, and σ are the respective principal curvatures. /

Lemma 6.26. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Suppose that the
Ricci tensor S is cyclic η-parallel . Suppose that X and Y are smooth orthonormal
principal vector fields in W⊥ with corresponding principal curvatures λ and µ.
Then

(2λ−m)Xλ = λXm,

(2λ + 4µ− 3m)Xµ = µXm. /

Lemma 6.27. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. Suppose that the
Ricci tensor S is cyclic η-parallel . Suppose further that the principal curvatures
have constant multiplicities. Then the mean curvature m is constant .

Proof. First note that Wm = 0 by Lemma 2.13. Because the principal cur-
vatures have constant multiplicities, we can always find a local orthonormal
principal frame when desired. We begin with the case a2 + 4c = 0. Assume that
there is a principal curvature λ 6= a/2 with corresponding unit principal vector
X ∈ W⊥. Set Y = ϕX so that in the notation of Theorem 6.26, µ = a/2. Then



282 ROSS NIEBERGALL AND PATRICK J. RYAN

Xm = 0 by Theorem 6.26. Also Ym = 0 for any Y ∈ Tµ, by the first part of
Theorem 6.26. We conclude that m is constant.

Now consider the case a2 + 4c 6= 0. Then a/2 does not occur as a principal
curvature. Suppose that there is a unit principal vector field X such that Xm 6=
0. Take Y = ϕX and use the setup of Lemma 6.26. A straightforward but
tedious calculation using Corollary 2.3 and Lemma 6.26 yields

f(λ)Xm = 0, (6.9)

where f is the polynomial a0t
4 + a1t

3 + a2t
2 + a3t + a4 whose coefficients are

a0 = 8a,

a1 = −4(a2 + ma− 8c),
a2 = 2(2a3 − ma2 − 4ca− 16mc),
a3 = 2(ma3 + 6ca2 + 10mca + 16c2),
a4 = −2mca2.

If a = 0, then λµ = c by Corollary 2.3 and equation (6.9) reduces to

32cλ(λ2 −mλ + c) = 0.

Direct substitution shows that this equation is also satisfied by µ. Thus λ+µ =
m. Suppose now that ν is a nonzero principal curvature distinct from λ and µ.
Applying Lemma 6.26 again, we get

(2λ + 4ν − 3m)Xν = νXm,

(2λ + 4σ − 3m)Xσ = σXm,

where σ is the principal curvature for ϕ(Tν). Noting that νσ = c, we have

((2λ− 3m)σ + 4c)Xν = cXm,

((2λ− 3m)ν + 4c)Xσ = cXm;

these two equations can be added to yield X(ν + σ) = 1
2
Xm. Recalling that

a = 0, we know that m is the sum of n terms, each of which is either λ + µ or a
term of the form ν + σ. Thus

Xm = kXm +
n− k

2
Xm,

where k is the multiplicity of λ. This implies that n = k = 1, a contradiction.
We conclude that a 6= 0.

Now differentiate f(λ) = 0 with respect to X and use the first equality in the
conclusion of Lemma 6.26 to get

g(λ)Xm = 0,
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where g = b0t
4 + b1t

3 + b2t
2 + b3t + b4 with

b0 = 24a,

b1 = −8(2a2 + ma− 4c),
b2 = 2(6a3 −ma2 + 12ca− 16mc),
b3 = 8c(a2 + 4c),
b4 = 2mca2.

Now f(λ) = 0 and g(λ) = 0 may be regarded as equations in m of degree 1 from
which m can be eliminated to yield a degree 7 polynomial equation in λ with
constant coefficients. Thus λ is constant. In particular, Xλ = 0 and Xµ = 0 so
that Xm = 0 by Lemma 6.26. Again, this is a contradiction. We must conclude
that m is constant. �

Lemma 6.27 is the final ingredient required for the proof of Theorem 6.23. In
view of the argument in the proof of Theorem 6.23, we now see that Lemma 6.27
is true even without the hypothesis of constant multiplicities.

A Riemannian manifold is said to be a Ryan space if R · S = 0. As far as we
can determine, this term (and variations of it) were first used by Ki, Nakagawa,
and Suh [Ki et al. 1990b]. The spaces themselves were introduced in [Ryan 1971;
1972] and independently by R. L. Bishop and S. I. Goldberg [1972], and have been
studied by many authors in the intervening years. Subsequently, the same spaces
have been called Ricci-semisymmetric. See [Deszcz 1992], for example, where the
term is part of a comprehensive naming scheme for a number of conditions, all
related to the notion of pseudosymmetry. We will adopt the terminology used in
the literature being surveyed.

A Riemannian manifold is a cyclic-Ryan space if the cyclic sum over tangent
vectors X, Y , and Z of (R(X, Y ) · S)Z vanishes. A real hypersurface in a
complex space form is said to be pseudo-Ryan if 〈(R(X1 , X2) · S)X3 , X4〉 = 0
provided all Xi lie in W⊥. The Ryan condition is too strong to be satisfied by
a real hypersurface, as we shall see in Theorem 6.29. We discuss the weaker
cyclic-Ryan condition first. The following result was proved in [Ki et al. 1990b].

Theorem 6.28. Let M2n−1, where n ≥ 3, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. If M satisfies
the cyclic-Ryan condition, then M is a Hopf hypersurface.

Proof. Our initial discussion will be valid for any hypersurface in a complex
space form. We begin by applying the Gauss equation and (1.11) to get

R(X, Y )(SZ) =
(
AX ∧AY + c(X ∧ Y + ϕX ∧ ϕY + 2〈X, ϕY 〉ϕ)

)
× (

(2n + 1)cZ − 3c〈Z, W 〉W − PZ
)
,
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where P = A2−(trace A)A = A2−mA. The right side is the sum of the following
terms:

(1) (2n + 1)c2(X ∧ Y )Z,

(2) −3c2(〈Z, W 〉〈Y, W 〉X − 〈Z, W 〉〈X, W 〉Y ),

(3) −c(X ∧ Y )PZ − c(ϕX ∧ ϕY )PZ,

(4) (2n + 1)c2(ϕX ∧ ϕY )Z,

(5) 2(2n + 1)c2〈X, ϕY 〉ϕZ,

(6) −2c〈X, ϕY 〉ϕPZ,

(7) (2n + 1)c(AX ∧AY )Z,

(8) −3c〈Z, W 〉(AX ∧AY )W,

(9) (AX ∧AY )PZ.

Because of the first Bianchi identity, the cyclic sum of (R(X, Y ) · S)Z is equal
to the cyclic sum of R(X, Y )(SZ). We look at the cyclic sums of each of the
terms (1)–(9) above and conclude by straightforward calculation the following
facts. Terms (1) and (2) and the first part of (3) all sum to 0, while cyclic sum
of the remainder of (3) is equal to the cyclic sum of

−c〈(Pϕ + ϕP )Y, Z〉ϕX.

The cyclic sum of (4) and (5) taken together is zero, as is the cyclic sum of (7).
The cyclic sum of (8) is equal to that of

−3c(〈Z, W 〉〈AY, W 〉 − 〈Y, W 〉〈AZ, W 〉)AX.

The cyclic sum of (9) is zero. Here we need to use the fact the P commutes with
A. The results of these observations is that the cyclic sum of (R(X, Y ) · S)Z is
equal to the cyclic sum of

〈(Pϕ+ϕP )Y, Z〉ϕX +2〈X, ϕY 〉ϕPZ +3(〈Z, W 〉〈AY, W 〉−〈Y, W 〉〈AZ, W 〉)AX,

(6.10)
multiplied by −c. Now suppose that the cyclic-Ryan condition holds. Take
X = W and compute the cyclic sum of (6.10) to obtain

0 = 〈ϕPW, Y 〉ϕZ + 〈PϕZ, W 〉ϕY + 2〈Y, ϕZ〉ϕPW

+ 3(〈Z, W 〉〈AY, W 〉 − 〈Y, W 〉〈AZ, W 〉)AW

+ 3(〈W, W 〉〈AZ, W 〉 − 〈Z, W 〉〈AW, W 〉)AY

+ 3(〈Y, W 〉〈AW, W 〉 − 〈W, W 〉〈AY, W 〉)AZ.

(6.11)



REAL HYPERSURFACES IN COMPLEX SPACE FORMS 285

Apply ϕ to the right side of (6.11) and take the trace (as a linear map in Z) to
get

0 = 〈ϕPW, Y 〉(−2n + 3)− 2〈ϕPW, Y 〉
+ 3(〈ϕAW, W 〉〈AY, W 〉 − 〈Y, W 〉〈AϕAW, W 〉)
+ 3(〈AϕAY, W 〉 − 〈ϕAY, W 〉〈AW, W 〉)
+ 3(〈Y, W 〉〈AW, W 〉 − 〈AY, W 〉). (6.12)

Note that 〈AϕAW, W 〉 = 0 and trace(ϕA) = 0, so the equation reduces to

(2n− 1)ϕPW + 3AϕAW = 0. (6.13)

Let U = ϕAW and rewrite (6.12) as

〈AU, Y 〉ϕZ − 〈AU, Z〉ϕY + 2〈Y, ϕZ〉AU

= (2n− 1)
(〈Z, W 〉〈AY, W 〉 − 〈Y, W 〉〈AZ, W 〉)AW

+ (2n− 1)(〈ϕZ, U〉AY − 〈ϕY, U〉AZ), (6.14)

where we have used the fact that (A − aI)W = −ϕU . Upon taking the inner
product with U and using the fact that 〈AW, U〉 = 0, we get

(n − 1)(〈ϕZ, U〉〈AY, U〉 − 〈ϕY, U〉〈AZ, U〉) = 〈Y, ϕZ〉〈AU, U〉. (6.15)

Taking Y = U gives
(n− 2)〈AU, U〉ϕU = 0

and hence 〈AU, U〉 = 0 provided that n ≥ 3. If we put Z = U in (6.14), we get

(2n− 3)〈ϕY, U〉AU − 〈AY, U〉ϕU = 0.

Combining this with (6.15) yields

2(n− 2)〈ϕY, U〉AU = 0,

so that AU must be zero. (Again, we have used the hypothesis that n ≥ 3.)
Then ϕPW = 0 by (6.13) and we can simplify (6.11). Put Z = ϕU in (6.11) to
get

−〈Y, W 〉〈AϕU, W 〉AW + 〈AϕU, W 〉AY + 〈(aI − A)W, Y 〉AϕU = 0.

In other words,

〈U, U〉(〈Y, W 〉AW − AY ) = 〈ϕU, Y 〉AϕU. (6.16)

We intend to show that AW = aW , that is, that U = 0. Suppose then, that
U 6= 0 at some point of M . For the rest of this proof, we work in a neighborhood
where U is nonzero. Let V be the two-dimensional subspace spanned by {W, ϕU}
and let Ū be a unit vector in the direction of ϕU . We see immediately from
(6.16) that AY = 0 for Y orthogonal to V. Thus V is A-invariant, and if we
write AW = aW + bŪ and AŪ = bW + dŪ , a short calculation reveals that
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PX = (b2 − ad)X = pX (say) for X ∈ V. In the cyclic sum of (6.10), substitute
X = ϕU and Y = U , and take Z orthogonal to X, Y , and W to get

p |U |2ϕZ = 0.

So p = 0, and we conclude that P = 0. Now, let X and Y be principal vectors
in V with corresponding principal curvatures λ and µ. Since P = 0, we have
λ2 − mλ = λ2 − (λ + µ)λ = 0 so that λµ = 0. Take µ to be the zero principal
curvature. To see that this leads to a contradiction, take Z ∈ V⊥ and use
Codazzi’s equation to get

−A[Y, Z] = c〈Y, W 〉ϕZ + 2〈Y, ϕZ〉W,

which reduces to
c〈Y, W 〉 |Z|2 = 0

upon taking the inner product with ϕZ. We have to use the fact that A(ϕZ) = 0.
We conclude that 〈Y, W 〉 = 0. This makes Ū and hence W principal, which is a
contradiction. Thus M is a Hopf hypersurface. �

We can use Theorem 6.28 to get a direct proof that Ryan spaces cannot occur
as hypersurfaces when n ≥ 3.

Theorem 6.29. In a complex space form of constant holomorphic sectional
curvature 4c 6= 0, there exists no real hypersurface M2n−1, n ≥ 3, satisfying
R · S = 0. For n = 2, there are no Hopf hypersurfaces satisfying R · S = 0.

Proof. Suppose that M2n−1, where n ≥ 2, satisfies R ·S = 0. The cyclic-Ryan
condition is satisfied so M is Hopf by Theorem 6.28 if n ≥ 3. Otherwise, it
is Hopf by hypothesis. Let X be any principal vector orthogonal to W with
associated principal curvature λ. Evaluating (R(X, W ) · S)W using the Gauss
equation and (1.11), we see that R · S = 0 if and only if

(λa + c)(3c + (λ− a)(m− λ− a)) = 0 (6.17)

for all principal curvatures λ whose principal spaces are in W⊥. If λ and µ are
principal curvatures corresponding to X and ϕX respectively, we also must have

λµ =
λ + µ

2
a + c, (6.18)

by Corollary 2.3. Of the various ways in which these two conditions might be
satisfied, λa + c = µa + c = 0 is impossible since it implies a 6= 0, λ 6= 0, µ 6= 0,
λ = µ, and λ2 = λa + c. On the other hand, if λa + c and µa + c are both
nonzero, then both λ and µ satisfy the quadratic equation

t2 −mt + ma− a2 − 3c = 0. (6.19)

If λ and µ are distinct, any other principal curvature ρ (on W⊥) must satisfy
ρa + c = 0, since it cannot satisfy (6.19). However, given the ϕ-invariance of
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W⊥, and the first remark, there can be no such ρ. Thus λ, µ, and a are the only
principal curvatures.

Suppose that there is a point where two distinct principal curvatures exist as
in (6.18). First check that neither λ nor µ is equal to a/2. With this possibility
eliminated, there is a neighborhood in which m = (n− 1)(λ+ µ)+ a, m = λ+ µ,
and

λµ = ma− a2 − 3c =
ma

2
+ c.

We now calculate that

(2n− 3)a2 + 8(n− 2)c = 0.

If c > 0, this is already a contradiction. If c < 0, we continue, obtaining

λµ =
2n + 1
2n− 3

c.

Since the relevant examples of Hopf hypersurfaces with constant principal curva-
tures have λµ > 0, the situation in this paragraph cannot occur. (The coefficients
of (6.19) are constant since (n − 2)m = −a and a 6= 0 by (6.18).)

A third possibility is that for all points and every principal λa + c = 0 but
µa + c 6= 0. Then µ satisfies (6.19) as does any further principal curvature ν .
In addition, Tν must be ϕ-invariant and ν2 = aν + c. Using (6.18) and (6.19),
respectively, we can compute µ and ν in terms of a and c. If this situation holds
at a point, then it also holds in some neighborhood, which is therefore a Hopf
hypersurface with constant principal curvatures. This is clearly impossible since
none of the standard examples have three distinct principal curvatures on W⊥.
We conclude that no such ν can exist.

The only remaining possibility is that there are two distinct constant principal
curvatures on W⊥,

λ = − c

a
and µ = − ca

a2 + 2c
,

the latter having been calculated from (6.18). Because ϕ interchanges the prin-
cipal subspaces, the only possible candidates among the standard examples are
the Type B hypersurfaces. However, one can check that none of the Type B hy-
persurfaces in fact satisfy (6.17). This concludes the proof that a hypersurface
satisfying the hypothesis cannot exist. �

Theorem 6.29 was proved in [Kimura and Maeda 1989] for c > 0. For any c 6= 0
it can be deduced from the (ii) ⇒ (i) implication of the next theorem (The-
orem 6.30) by checking that none of the pseudo-Einstein hypersurfaces satisfy
R ·S = 0. We do not prove that part of Theorem 6.30 here but refer to [Ki et al.
1990b]. Weakening the condition R · S = 0 in either of two directions, we get
two additional characterizations of the pseudo-Einstein hypersurfaces discussed
in Theorems 6.1 and 6.2. In the first case, we look at the cyclic sum. In the
second case, we restrict the condition to W⊥.
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Theorem 6.30. For a real hypersurface M2n−1, where n ≥ 3, in a complex
space form of constant holomorphic sectional curvature 4c 6= 0, the following
conditions are equivalent :

(i) M satisfies the pseudo-Einstein condition.
(ii) M satisfies the cyclic-Ryan condition.
(iii) M satisfies the pseudo-Ryan condition and is a Hopf hypersurface.

Thus, if M satisfies any of these three conditions, it is one of the hypersurfaces
listed in Theorems 6.1 and 6.2.

The equivalence of (i) and (ii) was established by Ki, Nakagawa, and Suh [Ki
et al. 1990b]. Condition (iii) was studied by S.-B. Lee, N.-G. Kim, and S.-S. Ahn
[Lee et al. 1990] who proved that condition (iii) implies that M is of type A or
B. However, one can check that among these hypersurfaces only pseudo-Einstein
ones actually satisfy (iii). Thus, the three conditions are equivalent.

We will give the proof of the equivalence of (i) and (iii). To simplify the
proof, we set TZ = 〈Z, W 〉W and P = A2 − mA. Then the Ricci tensor S can
be expressed as S = c1I + c2T − P for suitable constants c1 and c2; see (1.11).
It is easy to check that 〈(R(X, Y )T )Z1, Z2〉 = 0 for any X and Y , and for Z1

and Z2 in W⊥. Consequently, for such arguments,

〈(R(X, Y )S)Z1 , Z2〉 = −〈(R(X, Y )P )Z1, Z2〉.
We now give an alternate characterization of pseudo-Ryan hypersurfaces,

which follows immediately from this discussion.

Proposition 6.31. A real hypersurface in a complex space form is pseudo-Ryan
if and only if

〈R(X, Y )PZ1, Z2〉 + 〈R(X, Y )PZ2, Z1〉 = 0 (6.20)

for all X, Y, Z1, Z2 ∈ W⊥. /

Lemma 6.32. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c. Suppose that M

satisfies the pseudo-Ryan condition at a point p. Let X and Y be unit principal
vectors in W⊥ at p with AX = λX, AY = µY , PX = αX, and PY = βY .
Then

(α− β)(λµ + 2nc)〈ϕX, Y 〉 = 0

and
(λ − µ)(λ + µ− m)(λµ + 2nc)〈ϕX, Y 〉 = 0.

Proof. From the definition of P , we see that α = λ2 − mλ and β = µ2 − mµ.
Consequently,

α− β = (λ − µ)(λ + µ −m). (6.21)

By Proposition 6.31,
0 = (α− β)〈R(Z1 , Z2)X, Y 〉, (6.22)
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for all Z1, Z2 ∈ W⊥. In particular, using the Gauss equation, we compute

0 = (α− β)〈R(X, Y )Y, X〉
= (α− β)

(
c + λµ + c〈(ϕX ∧ ϕY )Y, X〉 + 2c〈X, ϕY 〉〈ϕY, X〉)

= (α− β)
(
c + λµ + c〈X, ϕY 〉2 + 2c〈X, ϕY 〉2)

= (α− β)
(
c + λµ + 3c〈X, ϕY 〉2). (6.23)

We also conclude that, for any unit vector Z ∈ W⊥,
〈R(ϕZ, Z)X, Y 〉

= c〈(ϕZ ∧ Z)X, Y 〉 + c〈(ϕ2Z ∧ ϕZ)X, Y 〉
+ 2c〈ϕZ, ϕZ〉〈ϕX, Y 〉+ 〈(AϕZ ∧AZ)X, Y 〉

= (2c + λµ)(〈Z, X〉〈ϕZ, Y 〉 − 〈ϕZ, X〉〈Z, Y 〉) + 2c〈ϕX, Y 〉. (6.24)

Unless α = β (in which case, we are finished), the left hand side of (6.24) must
be zero by (6.22). Let Z run through an orthonormal basis of W⊥ and take the
sum, to get

0 = −2(λµ + 2nc)〈X, ϕY 〉,
and the conclusion of the lemma follows by using (6.21). �

Lemma 6.32 does not require that c 6= 0. However, we will have no further use
for the result in the case c = 0.

Corollary 6.33. In Lemma 6.32, suppose that Y = ϕX. If n ≥ 3 and c 6= 0,
then α = β.

Proof. Taking Z = X and Y = ϕX in (6.24) yields λµ + 4c = 0. On the other
hand, Lemma 6.32 gives (α−β)(λµ+2nc) = 0. Subtracting these equations, we
obtain 2c(n− 2)(α− β) = 0, as required. �

Proof that (i) ⇐⇒ (iii) in Theorem 6.30. Assuming (iii), we will prove
that the principal curvatures must be constant. Then Theorem 4.13 limits the
possibilities to those on Takagi’s and Montiel’s lists. Then we can pick from
these lists the examples that actually satisfy the pseudo-Ryan condition.

First suppose that there is a point where P has two or more distinct eigenval-
ues on W⊥. Then, there are orthonormal principal vectors X and Y as in the
hypothesis of Lemma 6.32 with α 6= β. Assuming that neither λ nor µ is equal
to a/2, let AϕX = νϕX. By Corollary 6.33, λ2−mλ = ν2−mν . Also, by (6.23),
λµ + c = νµ + c = 0 since span{Tλ, ϕTλ} and span{Tν , ϕTν} are orthogonal.
Thus λ = ν . This shows that λ (and similarly µ) satisfies the quadratic equation

t2 − at− c = 0. (6.25)

Note that a/2 cannot occur as a principal curvature since an application of
Corollary 2.3 would imply that a2 + 4c = 0 and hence, by (6.25), that λ = a/2.
On the other hand, the argument just completed shows that no further principal
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curvature is possible since it would have to satisfy (6.25). Thus, W⊥ decomposes
into two ϕ-invariant principal subspaces and the associated principal curvatures
are constant. This shows that M is (at least locally) a Type A hypersurface.

The alternative possibility is that P is a multiple of the identity on W⊥. In
other words, for any two principal curvatures λ and µ (corresponding to principal
vectors in W⊥) at any point, we must have

(λ− µ)(λ + µ− m) = 0.

In particular, the number of distinct eigenvalues of A on W⊥ is at most 2.
Suppose that at some point there is a principal curvature λ 6= a/2 with associated
unit principal vector X ∈ W⊥ such that AϕX = µϕX, with µ 6= λ. Then
λ2 − mλ = µ2 − mµ so that λ + µ = m. This shows that there can be no other
principal curvature on W⊥. Each of λ and µ has multiplicity n − 1. Thus, we
have

(n− 1)λ + (n − 1)µ + a = m = λ + µ

and hence,
(n − 2)(λ + µ) + a = 0.

Again by Corollary 2.3,

λµ− (λ + µ)a/2− c = 0,

so that λ and µ satisfy the quadratic equation

t2 +
a

n− 2
t + c − a2

2(n− 2)
= 0.

Again, A has two distinct constant curvatures on W⊥. Because the principal
spaces are interchanged by ϕ, we have locally a Type B hypersurface.

The existence of one point satisfying either of the conditions discussed in
the preceding two paragraphs implies that the condition holds globally. The
remaining possibility is that for all points and all principal curvatures λ 6= a/2 on
W⊥, the principal space Tλ is ϕ-invariant. If there is no such λ, then A = (a/2)I
on W⊥ and our hypersurface is a horosphere (Type A0). Now suppose that there
is at least one such λ. Then there can be at most one other principal curvature
µ. Further, arguing as in the first part of this proof, any such µ satisfies µ 6= a/2.
We can ignore this case since it was covered in the first step of the proof (Type
A2). If there is no such µ, then A = λI on W⊥ and we have a geodesic sphere
or tube over a complex hyperbolic hyperplane (Type A1).

It remains to determine which of the manifolds above actually satisfy the
pseudo-Ryan condition. In this discussion, we look at (6.20) and assume that
the vectors are taken from a principal orthonormal basis that is ϕ-invariant up
to sign. We first note that if M is pseudo-Einstein, then P is a multiple of the
identity on W⊥, so that (iii) is satisfied. Thus all hypersurfaces of types A0 and
A1 are pseudo-Ryan. Now look at the Type A2 hypersurfaces as described in
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Section 3. In (6.20), we may choose Z1 and Z2 in distinct principal distributions
(since the formula clearly holds otherwise). Then (6.20) reduces to

(λ1 − λ2)(λ1 + λ2 −m)〈R(X, Y )Z1 , Z2〉 = 0. (6.26)

If X and Y are in the same principal distribution, we calculate the curvature term
using the Gauss equation (1.8) and find, noting ϕ-invariance, that it vanishes.
Thus, we take X and Z2 to be in the λ1-distribution and Y and Z1 to be principal
for λ2. Now, using the fact that λ1λ2 + c = 0, the Gauss equation for (X, Y )
becomes

R(X, Y ) = c(ϕX ∧ ϕY ) + 2c〈X, ϕY 〉ϕ,

so that the curvature term in (6.26) is c(〈ϕY, Z1〉〈ϕX, Z2〉), which vanishes unless
Z1 = ±ϕY and Z2 = ±ϕX. In this case, however, the curvature term is nonzero
and it is necessary that (λ1−λ2)(λ1 +λ2−m) = 0 in order for M to be pseudo-
Ryan. This is precisely the condition for M to be pseudo-Einstein. We examine
the Type B hypersurfaces in the same way, using the fact that the principal
spaces are interchanged by ϕ and conclude that the only Type B hypersurfaces
satisfying (iii) are the pseudo-Einstein ones.

Conversely, if (i) is assumed, P is a multiple of the identity on W⊥. We can
use (6.21) which is a valid expression for comparing the eigenvalues of P and
does not depend on the pseudo-Ryan condition in the hypothesis of Lemma 6.32.
Because of (6.2), we get α = β in (6.21) as required. �

7. A is W -Parallel

As we have seen, ∇A = 0 is too strong a condition to be satisfied by a
hypersurface in C P n or C Hn. However, if we merely ask that A be parallel in
the direction of the structure vector W , interesting results are possible.

Theorem 7.1. Let M2n−1, where n ≥ 3, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c > 0. Assume that
the principal curvatures of M have constant multiplicities. If ∇WA = 0, then
M is an open subset of a Type A hypersurface from Takagi’s list or is a non-
homogeneous hypersurface which is a tube of radius rπ/4 over a certain Kähler
submanifold of C P n.

This classification was performed by Kimura and Maeda [1991]. The key to the
theorem is the following proposition, which we generalize to the case 4c 6= 0.

Proposition 7.2. Let M2n−1, where n ≥ 2, be a real hypersurface in a complex
space form of constant holomorphic sectional curvature 4c 6= 0. If ∇WA = 0,
then M is a Hopf hypersurface.

The first step in the proof of Proposition 7.2 is to show that under the conditions
of the proposition, AW must be principal.
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Lemma 7.3. Under the assumptions of Proposition 7.2, at any point p ∈ M ,
either AW = 0 or AW is principal . If AW 6= 0 then 〈AW, W 〉 6= 0.

Proof. Let X be any tangent vector field. Applying the Codazzi equation (1.9)
to X and W yields

(∇XA)W = −cϕX,

and consequently

∇X(AW ) = −cϕX + AϕAX. (7.1)

On the other hand, applying the Codazzi equation to any tangent X and Y gives

Aϕ((∇XA)Y − (∇Y A)X) = −c(〈X, W 〉AY − 〈Y, W 〉AX),

and thus

∇X∇Y (AW ) −∇∇XY (AW ) = −c(∇Xϕ)Y + (∇XA)ϕAY + Aϕ(∇XA)Y

+ 〈Y, AW 〉A2X − 〈AX, AY 〉AW.

The curvature tensor R now satisfies

R(X, Y )(AW ) = (∇XA)ϕAY − (∇Y A)ϕAX + 〈Y, AW 〉A2X − 〈X, AW 〉A2Y.

On the other hand, using the Gauss equation, we can calculate that

R(X, Y )(AW ) = c(〈Y, AW 〉X−〈X, AW 〉Y )+(〈AY, AW 〉AX−〈AX, AW 〉AY )

+c(〈ϕY, AW 〉ϕX−〈ϕX, AW 〉ϕY )+2c〈X, ϕY 〉ϕAW.

The last two equations give us two expressions for 〈R(X, Y )AW, W 〉, which we
equate to get

0 = 2(〈Y, AW 〉〈X, A2W 〉 − 〈X, AW 〉〈Y, A2W 〉)
+ 〈W, c〈ϕY, AW 〉ϕX − c〈ϕX, AW 〉ϕY + 2c〈X, ϕY 〉ϕAW 〉.

Since Y was arbitrary, we conclude that

〈A2W, X〉AW = 〈X, AW 〉A2W.

Setting X = W this becomes

|AW |2AW = 〈AW, W 〉A2W. (7.2)

If AW is orthogonal to W , then AW = 0. On the other hand, if AW 6= 0, we
can rewrite (7.2) as

A(AW ) = αAW (7.3)

for some nonzero α, and the conclusion of the lemma then follows. �
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Proof of Proposition 7.2. Suppose that there is a point p where W is not
principal, that is, where ϕAW 6= 0. Work in a neighborhood where this condition
holds. By Lemma 7.3, we know that AW is a principal vector, with principal
curvature

α =
|AW |2
〈AW, W 〉 .

Let a = 〈AW, W 〉, which is nonzero by Lemma 7.3. Then we compute

∇X(A2W ) = (∇XA)AW + A(∇XA)W + A2ϕAX,

∇X(αAW ) = (Xα)AW − cαϕX + αAϕAX.

By (7.3) the left sides of these two equations are equal. Equating the right sides,
taking inner product with Y , and subtracting the same expression with X and
Y interchanged, we get
(Xα)〈AW, Y 〉 − (Y α)〈AW, X〉 = c

(〈X, W 〉〈ϕY, AW 〉
−〈Y, W 〉〈ϕX, AW 〉 + 2〈X, ϕY 〉a)

+ 〈(A2ϕA + AϕA2)X, Y 〉
−c〈(Aϕ + ϕA)X, Y 〉+ 2cα〈ϕX, Y 〉 − 2α〈AϕAX, Y 〉. (7.4)

If we set Y = W in this equality, we get

a(Xα) = Wα〈AW, X〉+ c〈X, ϕAW 〉+ c〈ϕAW, X〉
− 〈AϕA2W, X〉 − 〈A2ϕAW, X〉 + 2α〈AϕAW, X〉.

Consequently,

a(gradα) = (Wα)AW + αAϕAW + 2cϕAW − A2ϕAW. (7.5)

Using (7.5), we can rewrite the left-hand side of (7.4) and let X = AW in (7.4)
to get

1
a
(−α2aAϕAW − 2cαaϕAW + αaA2ϕAW )

= −caϕAW − 2caϕAW − cAϕAW − cαϕAW

+ αA2ϕAW + α2AϕAW + 2cαϕAW − 2α2AϕAW.

Simplifying and noting that c 6= 0, we get

AϕAW = 3(α− a)ϕAW.

This further simplifies (7.5) and we obtain

a gradα = (Wα)AW + (2c− 3(3a− 2α)(a− α))ϕAW. (7.6)

We can also calculate directly that

Xa = 2〈AϕAX, W 〉 = 6(a− α)〈ϕAW, X〉.
Consequently, if we let σ = 6(a− α), we get

grad a = σϕAW (7.7)
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and

gradσ =
6
a
(ρϕAW − (Wα)AW ),

where ρ is a scalar. Next, compute

∇X(grad a) =
6
a
(ρ〈ϕAW, X〉ϕAW − (Wα)〈AW, X〉ϕAW )

+ aσAX − σ〈A2W, X〉W − cσ(−X + 〈X, W 〉W ) + σϕAϕAX,

and then

〈∇X(grad a), Y 〉 = −6
a

((Wα)〈AW, X〉〈ϕAW Y 〉)− σα〈AW, X〉〈W, Y 〉
+ σ〈(ϕA)2X, Y 〉+ terms symmetric in X and Y.

Using the fact that

〈∇X(grad a), Y 〉 = 〈∇Y (grad a), X〉
we see that

0 = −6(Wα)
a

(〈AW, X〉〈ϕAW, Y 〉 − 〈AW, Y 〉〈ϕAW, X〉)
− σα(〈AW, X〉〈W, Y 〉 − 〈AW, Y 〉〈W, X〉) + σ〈((ϕA)2 + (Aϕ)2)X, Y 〉 = 0.

Let Y = W in this equality to get

(Wα)ϕAW = (a− α)(3a− 2α)(AW − aW ).

Taking the inner product of this with ϕAW and AW in turn yields

(Wα) |ϕAW | = 0

and

(3a − 2α)(a− α)2a = 0.

This again allows us to simplify (7.6) to

a gradα = 2cϕAW, (7.8)

while

grad a = −6(a − α)ϕAW.

Now a 6= α, since 0 6= |AW − aW |2 = αa − 2a2 + a2 = (α − a)a, and hence
3a = 2α. Comparing (7.4) and (7.8) now gives

9a2 + 4c = 0.

Thus a is constant and grad a = 0, a contradiction. This completes the proof of
Proposition 7.2 since, by (7.7), W is again principal. �
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Proof of Theorem 7.1. By Proposition 7.2, if ∇WA = 0, then M is a Hopf
hypersurface and we can write AW = aW . By Theorem 3.1, a is constant. We
can then divide the discussion into two cases, a = 0 and a 6= 0.

Suppose that a = 0. Then AϕA = −cϕ, by (7.1). If no principal curvature
is equal to (1/r) cot(π/4) = 1/r, the focal map associated to the principal cur-
vature a has constant rank and M lies on a tube of radius rπ/4 over a complex
submanifold. This is an application of [Cecil and Ryan 1982, Theorem 1, p. 489].
Even if λ = 1/r is a principal curvature of constant multiplicity, we can make
the same claim. In this case, Tλ can be easily seen to be ϕ-invariant. Whether
or not M is a Type A hypersurface (e.g., a geodesic sphere of radius rπ/4) or a
nonhomogeneous hypersurface would depend on whether there were additional
principal curvatures.

In the case a 6= 0, the following theorem of S. Maeda and S. Udagawa [1990]
completes the proof. �

Theorem 7.4. Let M2n−1, where n ≥ 3, be a Hopf hypersurface in a complex
space form of constant holomorphic sectional curvature 4c > 0. Suppose that
a 6= 0. If ∇W A = 0, then M is an open subset of a Type A hypersurface from
Takagi’s list .

Proof. Let X be any principal vector in W⊥ with corresponding principal
curvature λ. By (7.1),

0 = aϕAX + cϕX − AϕAX = aλϕX + cϕX − λAϕX. (7.9)

Thus λAϕX = (λa + c)ϕX. Comparing this with the formula in Corollary 2.3
yields a(λ2 − aλ− c) = 0. This equation has two distinct roots, hence there are
at most two distinct principal curvatures and they are locally constant. Each
principal space is ϕ-invariant, as can be seen from (7.9). This rules out the Type
B hypersurfaces as possibilities and completes the proof. �

Related results are found in [Pyo 1994a; 1994b]. In addition, some authors have
studied similar conditions using Lie derivatives instead of covariant derivatives;
see, for example, [Ki and Suh 1995; Ki et al. 1991; Ki et al. 1992; Ki et al. 1994;
Ki et al. 1996; Kim et al. 1992a; Kimura and Maeda 1995; Pyo and Suh 1995].

8. Additional Topics

In this section we briefly discuss some topics related to the preceding material
that we have not been able to include in this article.

Ruled Real Hypersurfaces. This class of hypersurfaces that does not belong
to our list of “standard examples” but have occurred in some recent classification
results. We introduce their definition and state a few of their properties.

Take a regular curve γ in M̃ (C P n or C Hn) with tangent vector field X. At
each point of γ there is a unique complex projective or hyperbolic hyperplane
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cutting γ so as to be orthogonal not only to X but to JX. The union of
these hyperplanes is called a ruled real hypersurface. It will be an embedded
hypersurface locally although globally it will in general have self-intersections
and singularities.

Theorem 8.1. Ruled real hypersurfaces have the following properties.

(i) The holomorphic distribution W⊥ is integrable.
(ii) The structure vector W is not principal .
(iii) The principal curvatures are not all constant .
(iv) The shape operator has rank 2 and is η-parallel .
(v) The principal space for the zero principal curvature lies in W⊥. /

We will not discuss the related classification results here. Relevant references
are [Kimura 1987a; Kimura and Maeda 1989; Maeda and Udagawa 1990; Suh
1992; 1995; Ahn et al. 1993; Taniguchi 1994; Pyo 1994c; Ki and Kim 1994; Ki
and Suh 1995; 1996].

Isoparametric Hypersurfaces. In real space forms, isoparametric hypersur-
faces are characterized by the fact that all their principal curvatures are constant.
However, there are other equivalent characterizations. In the case of complex
space forms, the analogous properties turn out not to be equivalent.

The following conditions can be considered.

(i) M has constant principal curvatures.
(ii) M is one of a parallel family of hypersurfaces of constant mean curvature.
(iii) M is one of a transnormal system, a system of parallel hypersurfaces with

common normal geodesics.
(iv) The lifted hypersurface M ′ is an isoparametric hypersurface of M̃ ′.

Relevant references are [D’Atri 1979; Bolton 1973; Carter and West 1985; Li
1988; Park 1989; Wang 1982; 1983; 1987]. The new examples in C P n are hyper-
surfaces M whose lifts M ′ are isoparametric but have more than two principal
spaces that are not horizontal. Then the principal curvatures of M are need not
be constant.

Real Hypersurfaces in Quaternionic Projective Space. Several authors
have studied such hypersurfaces. Instead of the structure vector W , there is a
three-dimensional distinguished subspace of the tangent space to be considered.
Many basic questions analogous to those treated in the complex space forms
have been asked and answered. Relevant references are [Berndt 1991; Berndt
and Vanhecke 1992; 1993; Dong 1993; Hamada 1993; Ki et al. 1997; Mart́ınez
1988; Mart́ınez and Pérez 1986; Pak 1977; Pérez 1991; 1992; 1993a; 1993b; 1994;
1996a; 1996b; Pérez and Santos 1985; 1991; 1993; Pérez and Suh 1996a; 1996b].
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9. Conclusion and Open Problems

In the preceding sections we have tried to present in an orderly fashion the
central results concerning real hypersurfaces in C P n and C Hn. Because of the
limitations of time and space, we have had to forego presenting the details of all
the stated theorems, though we have done so for a good proportion of them. Two
facts emerge from our study. First, some results hold for all dimensions n ≥ 2,
while many others require n ≥ 3. Second, many results require the hypersurface
to be a Hopf hypersurface (AW = aW ) while some hold more generally. Some
papers in the literature are vague about which of these conditions are being
assumed, or rely on results that may require stronger hypotheses than those
explicitly presented. We have attempted to be as explicit as possible in our
presentation and in case of ambiguity in the literature have tried to err on the
side of caution in those cases where we did not work through the complete proofs.

The following are questions and problems that appear to us to be open.

Question 9.1. (See Proposition 1.4.) Although ϕA cannot vanish on an open
set, are there examples for which ϕA vanishes at isolated points or on sets of lower
dimension? The same question can be asked about umbilics (see Theorem 1.5)
and the vanishing of ϕA + Aϕ (see Corollary 2.12).

Question 9.2. Do Theorems 4.6 and 4.7 extend to n = 2? Are there hypersur-
faces in C P 2 or C H2 that have ≤ 2 principal curvatures, other than the standard
examples?

Question 9.3. (See Theorems 4.9 and 4.10.) R · A never vanishes for a Hopf
hypersurface. Are there non-Hopf examples for which it does? R · A cannot
vanish on an open set if c > 0. What about c < 0? Any counterexamples would
have to satisfy n ≥ 3 in view of Theorem 4.11.

Question 9.4. (See Theorem 4.12.) A hypersurface in C P n with three principal
curvatures, all constants, must be a Hopf hypersurface, and hence one of the
standard examples. Is the same true for C Hn?

Question 9.5. (See Theorems 6.1 and 6.2.) Classify the pseudo-Einstein hy-
persurfaces in C P 2 and C H2.

Question 9.6. Does Theorem 6.2 still hold if the pseudo-Einstein hypothesis
is relaxed to allow σ and ρ to be functions as is the case in Theorem 6.1?

Question 9.7. (See Corollary 6.5.) Although there are some estimates involving
|∇S| in the literature, there do not seem to be any that are as simple as seen
in Theorem 1.11 for |∇A|. Are there converses for any of the statements in
Corollary 6.5?

Question 9.8. (See Theorem 6.15.) Are there any Ricci-parallel hypersurfaces
in C P 2 or C H2? As we have seen, these could not be Hopf hypersurfaces.
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Question 9.9. Is Theorem 6.17 true for c < 0? (This theorem is concerned
with the condition ∇WS = 0).

Question 9.10. Many results have been proved for n ≥ 3 but questions remain
concerning the case n = 2. For example, Theorems 5.5, 6.18, 6.19, 6.20, 6.21,
6.23, and 6.30 can be considered from this point of view.

Question 9.11. The question of classifying homogeneous real hypersurfaces in
C Hn remains an outstanding open question. See [Berndt 1990].
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[Ki et al. 1997] U-H. Ki, J. D. Pérez, and Y. J. Suh, “Real hypersurfaces of type A in
quaternionic projective space”, Internat. J. Math. Sci. 20:1 (1997), 115–122.

[Kim 1988a] H.-J. Kim, “A note on real hypersurfaces of a complex hyperbolic space”,
Tsukuba J. Math. 12:2 (1988), 451–457.

[Kim 1988b] S. J. Kim, “Semi-invariant submanifolds with parallel Ricci tensor of a
complex hyperbolic space”, J. Korean Math. Soc. 25:2 (1988), 227–243.

[Kim and Pyo 1991] J. J. Kim and Y.-S. Pyo, “Real hypersurfaces with parallelly cyclic
condition of a complex space form”, Bull. Korean Math. Soc. 28:1 (1991), 1–10.

[Kim et al. 1992a] N.-G. Kim, S.-S. Ahn, S.-B. Lee, and I.-T. Lim, “On characteriza-
tions of a real hypersurface of type A in a complex space form”, Honam Math. J.
14:1 (1992), 37–44.

[Kim et al. 1992b] N.-G. Kim, S.-B. Lee, and I.-T. Lim, “On certain real hypersurfaces
of a complex space form”, Comm. Korean Math. Soc. 7 (1992), 99–110.

[Kimura 1986a] M. Kimura, “Real hypersurfaces and complex submanifolds in complex
projective space”, Trans. Amer. Math. Soc. 296:1 (1986), 137–149.

[Kimura 1986b] M. Kimura, “Real hypersurfaces of a complex projective space”, Bull.
Austral. Math. Soc. 33:3 (1986), 383–387.

[Kimura 1987a] M. Kimura, “Sectional curvatures of holomorphic planes on a real
hypersurface in Pn(C )”, Math. Ann. 276:3 (1987), 487–497.

[Kimura 1987b] M. Kimura, “Some real hypersurfaces of a complex projective space”,
Saitama Math. J. 5 (1987), 1–5. Correction in 10 (1992), 33–34.

[Kimura and Maeda 1989] M. Kimura and S. Maeda, “On real hypersurfaces of a
complex projective space”, Math. Z. 202:3 (1989), 299–311.

[Kimura and Maeda 1991] M. Kimura and S. Maeda, “On real hypersurfaces of a
complex projective space II”, Tsukuba J. Math. 15:2 (1991), 547–561.

[Kimura and Maeda 1992] M. Kimura and S. Maeda, “Characterizations of geodesic
hyperspheres in a complex projective space in terms of Ricci tensors”, Yokohama
Math. J. 40:1 (1992), 35–43.

[Kimura and Maeda 1993] M. Kimura and S. Maeda, “On real hypersurfaces of a
complex projective space III”, Hokkaido Math. J. 22:1 (1993), 63–78.

[Kimura and Maeda 1995] M. Kimura and S. Maeda, “Lie derivatives on real
hypersurfaces in a complex projective space”, Czechoslovak Math. J. 45:1 (1995),
135–148.



302 ROSS NIEBERGALL AND PATRICK J. RYAN

[Kobayashi and Nomizu 1969] S. Kobayashi and K. Nomizu, Foundations of differential
geometry II, Wiley, New York, 1969.

[Kon 1979] M. Kon, “Pseudo-Einstein real hypersurfaces in complex space forms”, J.
Diff. Geom. 14 (1979), 339–354.

[Kon 1980] M. Kon, “Real minimal hypersurfaces in a complex projective space”, Proc.
Amer. Math. Soc. 79 (1980), 285–288.

[Kwon and Nakagawa 1988] J.-H. Kwon and H. Nakagawa, “Real hypersurfaces with
cyclic-parallel Ricci tensor of a complex projective space”, Hokkaido Math. J. 17:3
(1988), 355–371.

[Kwon and Nakagawa 1989a] J.-H. Kwon and H. Nakagawa, “A note on real
hypersurfaces of a complex projective space”, J. Austral. Math. Soc. Ser. A 47:1
(1989), 108–113.

[Kwon and Nakagawa 1989b] J.-H. Kwon and H. Nakagawa, “Real hypersurfaces with
cyclic η-parallel Ricci tensor of a complex space form”, Yokohama Math. J. 37:1
(1989), 45–55.

[Lawson 1970] H. B. Lawson, Jr., “Rigidity theorems in rank-1 symmetric spaces”, J.
Differential Geometry 4 (1970), 349–357.

[Lee et al. 1990] S.-B. Lee, N.-G. Kim, and S.-S. Ahn, “Pseudo-Ryan real hypersurfaces
of a complex space form”, Kyungpook Math. J. 30:2 (1990), 127–135.

[Li 1988] Z. Q. Li, “Isoparametric hypersurfaces in CP
n with constant principal

curvatures”, Chinese Ann. Math. Ser. B 9:4 (1988), 485–493.

[Maeda 1976] Y. Maeda, “On real hypersurfaces of a complex projective space”, J.
Math. Soc. Japan 28:3 (1976), 529–540.

[Maeda 1983] S. Maeda, “Real hypersurfaces of complex projective spaces”, Math.
Ann. 263:4 (1983), 473–478.

[Maeda 1984] S. Maeda, “Real hypersurfaces of a complex projective space II”, Bull.
Austral. Math. Soc. 30:1 (1984), 123–127.

[Maeda 1991] S. Maeda, “Second fundamental form of a real hypersurface in a
complex projective space”, pp. 139–153 in Nonassociative algebras and related topics
(Hiroshima, 1990), edited by K. Yamaguti and N. Kawamoto, World Sci. Publishing,
River Edge, NJ, 1991.

[Maeda 1993] S. Maeda, “Geometry of submanifolds which are neither Kaehler nor
totally real in a complex projective space”, Bull. Nagoya Inst. Tech. 45 (1993),
1–50.

[Maeda 1994] S. Maeda, “Ricci tensors of real hypersurfaces in a complex projective
space”, Proc. Amer. Math. Soc. 122:4 (1994), 1229–1235.

[Maeda and Udagawa 1990] S. Maeda and S. Udagawa, “Real hypersurfaces of a
complex projective space in terms of holomorphic distribution”, Tsukuba J. Math.
14:1 (1990), 39–52.

[Mart́ınez 1988] A. Mart́ınez, “Ruled real hypersurfaces in quaternionic projective
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