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Tight Submanifolds, Smooth and Polyhedral

THOMAS F. BANCHOFF AND WOLFGANG KÜHNEL

Abstract. We begin by defining and studying tightness and the two-piece
property for smooth and polyhedral surfaces in three-dimensional space.
These results are then generalized to surfaces with boundary and with
singularities, and to surfaces in higher dimensions. Later sections deal with
generalizations to the case of smooth and polyhedral submanifolds of higher
dimension and codimension, in particular highly connected submanifolds.
Twenty-six open questions and a number of conjectures are included.
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Introduction

The theory of tight submanifolds starts with attempts to generalize theorems
about convex surfaces to topologically more complex surfaces such as the torus.
For surfaces, it is possible to develop this generalization in terms of an elemen-
tary notion, the two-piece property, which then leads to the study of critical
points of height functions and the theory of total absolute curvature. These no-
tions can then be applied for higher-dimensional objects in higher-dimensional
Euclidean spaces, producing a rich collection of examples and theorems in the
global geometry of submanifolds.

An object in ordinary three-dimensional space is said to have the two-piece
property, or TPP, if any plane cuts it into at most two pieces. Examples of sur-
faces with the TPP are spheres and ellipsoids and, more generally, the boundary
of any bounded convex body. There are also nonconvex objects with boundaries
that have the TPP: for example, a torus of revolution (Figure 1), or, more gener-
ally, a surface of revolution obtained by revolving a convex curve around an axis
in the plane of the curve and not meeting the curve. If we deform a sphere into
a nonconvex surface, for example a U-shaped object, or a sphere with a dent in
it, the resulting surfaces (Figure 2) will not have the TPP.

Figure 1. A torus of revolution has the two-piece property.

Figure 2. Smooth spheres without the two-piece property.
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For closed subsets, the TPP is equivalent to the condition that the intersection
of the object with every closed half-space is connected.

For compact surfaces (without boundary), the TPP is closely related to the
study of critical points of height functions. Any plane in space can be considered
a level set of a height function in a direction perpendicular to the plane. If a
plane cuts a surface into more than two pieces, a height function perpendicular
to this plane must have at least one maximum or minimum on each piece. It
follows that if a surface does not have the TPP, there must be a height function
with at least two (strict) local maxima on the surface. Conversely, if a height
function has two strict local maxima on a surface, the half-space above the level
set containing the lower of the two will intersect the surface in at least two pieces.
It follows that a surface has the TPP if and only if no height function restricted
to the surface has more than one strict local maximum. A surface with this
property is called tight. An equivalent definition for a surface to be tight is that
every local support plane be a global support plane.

The TPP is a topological condition, so it applies to any surface in space,
whether it be smooth, polyhedral, or just a one-to-one continuous image of such
a surface. If the surface happens to be sufficiently smooth, it is possible to
characterize the tightness condition in terms of the surface’s total or Gaussian
curvature. Any point of positive curvature is a local extremum of the height
function perpendicular to the tangent plane at the point. So the tightness con-
dition implies that in any direction there is at most one point on the surface with
positive curvature that is critical for that direction. For almost any direction,
the maximum of the height function in that direction on the surface will occur
at a point of positive curvature. It follows that, if a smooth surface is tight, the
only strict local maxima of any height function must occur on the “outside”,
where the surface intersects its convex hull, the smallest convex set containing
the surface.

For a smooth surface embedded in three-dimensional space, tightness can be
expressed in terms of the Gauss spherical image mapping, which sends each point
of the surface to the point of the unit sphere centered at the origin having the
same outer unit normal vector. (This definition assumes that a consistent field
of unit normals has been chosen over the whole surface.) For any smooth surface
without boundary, almost every point of the sphere is the image of at least one
point with positive curvature, so the total area of the spherical image of the part
with positive curvature is at least 4π. For a tight smooth surface, almost every
point of the sphere is the image of exactly one point of the surface with positive
curvature, so the total area of the spherical image of the positive curvature part
of the surface achieves the minimum value, namely 4π. Originally this property
was used as the definition of tightness for smooth surfaces in ordinary space.

Although the first definition of tightness was given in terms of curvature,
the critical point or TPP reformulation is much broader in scope. It applies
not only to smooth surfaces in space but also to polyhedral surfaces. The crit-
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ical point condition and the TPP extend naturally to surfaces embedded in
higher-dimensional Euclidean spaces, and to immersions and to mappings with
singularities.

It was Nicolaas Kuiper who made the first wide-ranging and systematic study
of tight embeddings and immersions of surfaces, in three dimensions and higher.
He produced tight embeddings of all orientable surfaces and tight immersions of
all but three nonorientable surfaces in three-dimensional space. He proved that
two of the remaining surfaces, the real projective plane and the Klein bottle,
could not be immersed tightly in three-space even as topological surfaces, and
he conjectured that the final case, a real projective plane with one handle, could
not be immersed tightly into three-space. Only recently was François Haab
able to prove that conjecture for smooth immersions, and even more recently
Davide Cervone produced a surprising example to show that this surface can be
immersed tightly as a polyhedral surface.

There are still a number of unsolved problems concerning immersions of sur-
faces into four-space, but thanks to the work of Kuiper the situation for five-space
is better understood. First of all, Kuiper showed that any smooth immersion of
a surface into Euclidean n-space for n ≥ 5 must lie in a five-dimensional affine
space; moreover, if the image does not lie in a four-dimensional subspace, the
surface is the real projective plane and the immersion is affinely equivalent to the
Veronese embedding, an algebraic surface. An even stronger result by Kuiper
and William Pohl states that any topological tight embedding of the real pro-
jective plane into five-space whose image does not lie in a four-space must be
either the smooth Veronese embedding or a simplexwise linear embedding of a
triangulation with exactly six vertices.

In order to appreciate the nature of the theorems of Kuiper, it is useful to
consider the TPP and tightness for closed curves in Euclidean spaces. A convex
curve in the plane has the TPP, whether it is smooth or polygonal or a more
general topological embedding of the circle. If an embedded curve in the plane is
not convex, it does not coincide with the boundary of its convex hull, and there
is a segment in the convex hull boundary containing points not in the curve. A
line containing this segment bounds a half-space meeting the curve in at least
two pieces, so a nonconvex plane curve does not have the TPP. Furthermore, if
a curve is not planar, then there are four points on the curve, in cyclic order,
not lying in a plane, and it is possible to find a plane with the first and third
of these points on one side and the second and fourth on the other; this plane
separates the curve into at least four pieces. Thus a TPP curve in n-space is
necessarily contained in an affine two-space.

When the curve is smooth, we may recast the preceding result in terms of
curvature to obtain a famous theorem in global differential geometry due to
Werner Fenchel: the total curvature of a smooth closed curve in any dimension
is at least 2π, and if it is exactly 2π, the curve is a convex plane curve.
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For two-dimensional surfaces, the TPP restricts not only the number of max-
ima and minima of height functions but also the total number of critical points.
This follows from the critical point theorem of elementary Morse theory: for
almost every height function on a smooth surface, the only critical points are
maxima, minima, and ordinary saddle points, and the number of maxima plus
the number of minima minus the number of saddles is constant and equal to the
Euler characteristic of the surface, also described as the number of vertices mi-
nus the number of edges plus the number of triangles in any triangulation of the
surface. By “integrating” this theorem over all height functions, we obtain one
of the most famous of all theorems in global differential geometry, the Gauss–
Bonnet Theorem, relating the integral of the total curvature of a smooth surface
to its Euler characteristic. We may use this fact to obtain other characterizations
of tightness.

For higher-dimensional manifolds, the situation is quite different. The two-
piece property no longer places such a strong restriction on the nature of the
critical points of height functions. We say that an n-manifold is tight if the
intersection of the object with any half-space is no more complicated than it
has to be, that is, if the homology of the intersection is not greater than the
homology of the whole object. For example, if a manifold is simply connected,
we require that the intersection with every half-space also be simply connected.
Thus a closed hemisphere has the TPP, but it is not tight since it is simply
connected but there is a half-space that intersects it in a circle.

Morse theory gives lower bounds for the numbers of critical points of various
types for almost all smooth functions defined on a higher-dimensional manifold.
Tightness for higher-dimensional submanifolds of a Euclidean space requires that
almost all height functions have the minimal number of critical points. Fenchel’s
theorem was generalized by Chern and Lashof by considering the Lipschitz–
Killing curvature of a submanifold of a higher-dimensional Euclidean space. The
total measure of the absolute value of this curvature is equal to the integral over
the sphere of the number of critical points of height functions on the submanifold.
Fenchel’s theorem is generalized by the result that an m-dimensional sphere is
immersed with minimum total absolute curvature if and only if it is a convex
hypersurface in an affine subspace of dimension m + 1.

In this article, we will develop the theory of tight submanifolds primarily in
the smooth and polyhedral situations. A related article based on the work of
Nicolaas Kuiper will develop this theory for topological immersions.

1. Tight Surfaces

1.1. Definitions and notations. By a surface, we mean a connected two-
dimensional manifold without boundary, unless stated otherwise (Section 1.5).
We use the term closed surface to denote a compact surface without boundary.

For any closed surface M embedded in Euclidean three-space E 3, and for
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any unit vector z, the height function in the direction of z achieves its abso-
lute maximum on some subset of M . A point of M is a local maximum for z

when a neighborhood of the point is contained in the half-space below the plane
perpendicular to z through the point.

We say that the surface M is tight if, for almost every unit vector z, the height
function in the direction of z has a unique local maximum on M . This condition
is equivalent to the Two-Piece Property, or TPP, which states that any plane in
space cuts the surface into at most two pieces. Equivalently, a surface M has
the TPP if the intersection of M and any open or closed half-space is connected.
Note that the property of tightness is invariant under projective transformations
of three-space, since such transformations are homeomorphisms that send planes
to planes.

If the closed surface satisfies some additional properties, we may find equiv-
alent formulations of the tightness condition in terms of familiar quantities like
curvature and critical points. We will be especially concerned with two impor-
tant classes of surfaces: smooth and polyhedral.

For a smooth surface M in E 3, at every point there is a well-defined tangent
plane and a pair of unit normal vectors perpendicular to the tangent plane.
When M is smooth and embedded, the surface is orientable and it is possible to
make a choice of unit normal vector at each point over the entire surface. The
Gauss mapping assigns each point of M to the point on the unit sphere having
the same unit normal vector. For a region U , the algebraic area of the image of
U under the Gauss mapping is given by the integral

∫
U

K dA

of the Gaussian curvature function K, where the Gauss mapping preserves the
orientation in a neighborhood of a point when the sign of K is positive at that
point and it reverses orientation in a neighborhood of a point when the sign of
K is negative at that point.

For almost all directions z on the unit sphere, only a finite number of points of
M are sent to z under the Gauss mapping. At the one among those points that
is highest in the direction for z, the orientation of the surface will be preserved.
It follows from this observation that∫

M∩{K≥0}
|K| dA ≥ 4π.

Equality occurs when there is exactly one local maximum for almost every height
function, so this condition gives an equivalent definition of tightness in the case of
a smooth surface. This definition first appears in the work of A. D. Aleksandrov
[1938].

One of the most fundamental results in elementary differential geometry is
the Gauss–Bonnet Theorem, which states that the total algebraic area over an
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entire smooth closed surface M is independent of the embedding, and is given
by

∫
M

K dA = 2πχ(M), where χ(M) denotes the Euler characteristic of the
surface M , the number of vertices minus the number of edges plus the number
of triangles in a triangulation of the surface.

It follows that∫
M

|K| dA =
∫

M∩{K≥0}
K dA−

∫
M∩{K≤0}

K dA

= 2

(∫
M∩{K≥0}

K dA

)
− 2πχ(M) ≥ 2π

(
4− χ(M)

)
.

The integral
∫
M
|K| is called the total absolute curvature of M , and M is tight

when this functional achieves its minimum value.
By a fundamental result in elementary Morse theory, for almost all unit vectors

z, the height function in the direction of z, when restricted to the smooth closed
surface M , is nondegenerate, with isolated singularities that are either local
maxima, local minima, or ordinary saddle points. For any such function, the
number of maxima plus the number of minima minus the number of (ordinary)
saddles equals the Euler characteristic χ(M).

If M is tight, almost every height function will have exactly one maximum and
one minimum, so the number of saddles will be 2−χ(M) and the total number of
critical points will be 4− χ(M), the minimum number of nondegenerate critical
points a function can have on a closed surface. The total absolute curvature of
a surface M equals the integral over the unit sphere, in the sense of Lebesgue,
of the number of critical points of height functions on M corresponding to unit
vectors on the sphere.

We may summarize these comments about smooth surfaces as follows:

Definition 1.1.1 (smooth tight closed surfaces). A smooth (at least
C2) immersion of a closed surface f : M → E

3 is said to be tight if one of the
following equivalent conditions is satisfied:

(i) 1
2π

∫
M
|K| dA = 4− χ(M).

(ii) Every nondegenerate height function zf : x 7→ 〈fx, z〉 in the direction of a
unit vector z ∈ R3 has exactly one local minimum and one local maximum
(and, consequently, 2− χ(M) saddle points).

(iii) 1
2π

∫
M |K| dA =

∑
i bi(M ;Z2). Here bi(M ;Z2) denotes the i-th Betti number

bi = dimZ2 Hi(M ;Z2).
(iv) f has the Two-Piece Property (TPP): For every plane H ⊂ E

3, the com-
plement f−1(M \H) has at most two connected components.

(v) For every open half-space h bounded by a plane H , the induced morphism
H∗(f−1(h)) → H∗(M) is injective, where H∗ denotes the singular homology
with coefficients in Z2.

Note. The TPP condition is also called 0-tightness because in this case the
homomorphism H0(f−1(h)) → H0(M) is injective for any open half-space h.
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The equivalence of (i) and (ii) and (iv) has been established above. The equiva-
lence of (ii) and (iii) follows from elementary Morse theory, and that of (iv) and
(v) follows from Poincaré duality. For orientable surfaces one can replace Z2 by
any field or by Zin condition (v).

In the case of a smooth immersion of a nonorientable surface M into E 3, we
will not have a field of unit normal vectors, and even in the case of an immersion
of an orientable surface, it may be that the Gauss mapping is not surjective. We
can take care of each of these situations by considering not just one but both
unit normal vectors at each point of the surface. We define a double spherical
image mapping that assigns to each point the pair of unit vectors perpendicular
to the tangent plane at the point, and we get the total curvature by taking half
the total integral of this double spherical image mapping.

For an immersion f : M → E
N of the closed surface M for N > 3, the

equivalences in Definition 1.1.1 still hold if we replace the word “plane” by “hy-
perplane” and if we no longer use the Gaussian curvature of the surface itself but
rather the Lipschitz–Killing curvature of the unit normal bundle of the surface;
that is, if we replace the total absolute curvature 1

2π

∫
M
|K| dA by

TA(f) :=
1

cN−1

∫
⊥f

|K| dV,

where K denotes the Lipschitz–Killing curvature (the determinant of the shape
operator) in a normal direction, ⊥f denotes the unit normal bundle with its
canonical volume element, cN−1 denotes the volume of the unit sphere SN−1.
Compare [Willmore 1971; Cecil and Ryan 1985] for more details.

For the total absolute curvature of immersions into the sphere see [Teufel
1982]. For a generalization of tightness to the case of hyperbolic space or mani-
folds without conjugate points other than EN see [Cecil and Ryan 1979; Bolton
1982].

The Two-Piece Property is a purely topological condition, and as such it can
be applied even to topological embeddings or immersions where it does not make
sense to talk about a curvature measure K or the collection of nondegenerate
height functions. In particular, for polyhedral surfaces embedded in E 3 we may
use the TPP as the definition of tightness. Condition (ii) still applies, since we
may consider surfaces for which almost all height functions have exactly one local
maximum. We can no longer assume that almost all height functions restrict to
functions on the surface with only maxima, minima, and ordinary saddles, since
there might be more complicated isolated critical points. Nonetheless, for each
unit vector not perpendicular to any edge of a closed polyhedral surface M , it is
possible to assign an index of singularity to each vertex such that maxima and
minima have index 1 and such that the sum of the indices equals χ(M). The
number of critical points, counted with multiplicities, once again is greater than
or equal to the sum of the Betti numbers of the surface, with equality when M
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has the TPP. For further discussion, see [Banchoff 1970a; Banchoff and Takens
1975].

Definition 1.1.2 (polyhedral curvature). In the case of a polyhedral
surface, we can also find analogues for the concept of curvature. Although there
is not a well-defined Gauss mapping at the vertices of a polyhedron, we may
assign to each vertex v the integral of the indices of singularity at v for all height
functions determined by points of the unit sphere. This average can be shown
to equal the polyhedral curvature K(v) given by

K(v) := 2π −∑
i αi,

where the αi, for i = 1, 2, . . . denote the interior angles of the faces at v.
The analogue of the Gauss–Bonnet formula for a closed polyhedral surface is

then
∑

v K(v) = 2πχ(M).

In the case of a smooth immersion, a fundamental theorem of Gauss states that
the curvature K is intrinsic, dependent only on measurements made along the
surface and not depending on the way the surface sits in space. The situation
is quite different for polyhedra. Although the quantity K(v) depends only on
intrinsic measurements, these measurements do not give as much information
about the way the surface is embedded in space. For example, if two smooth
surfaces are intrinsically the same and if one is convex, then the other is as well.
This is not true for polyhedra: for example, a regular icosahedron is intrinsically
the same as a nonconvex polyhedron where one of the vertices is pushed in.

Nevertheless, we can define a concept of the positive curvature at a vertex v

of a polyhedral surface M in E 3: Namely, K+ is the polyhedral curvature of the
local convex hull around v. If v happens to be an interior vertex of the convex hull
of its neighbors, we set K+ := 0. Thus K+ represents the area of the collection
of unit vectors such that the associated height function has index 1 at v. Define
K− by the condition K = K+ −K−. Then K∗ := K+ + K− is the analogue of
the absolute Gaussian curvature. As in the smooth case,

∑
v K+(v) ≥ 4π, and

we obtain the inequality [Brehm and Kühnel 1982]
∑

v K∗(v) ≥ 2π(4− χ(M)).

As before, the polyhedral surface M will be tight if equality is achieved.
One of the consequences of tightness for polyhedral surfaces is that a vertex

v with K(v) > 0 (or K+(v) > 0) has to lie on the boundary of its convex hull.
More precisely, it has to be an extreme vertex of the convex hull, not contained
in the interior of any segment in the convex hull.

We say that a height function in the direction of the unit vector z is general
with respect to M if it takes distinct values at distinct vertices (so it is never
constant on an edge). For an embedded polyhedral surface M , the nongeneral
height functions correspond to unit vectors contained in a finite union of great
circles. So almost all height functions are general for M .



60 THOMAS F. BANCHOFF AND WOLFGANG KÜHNEL

We may summarize our discussion of tight polyhedral surfaces as follows:

Definition 1.1.3 (polyhedral tight closed surfaces). A polyhedral im-
mersion of a closed surface f : M → E

3 is said to be tight if one of the following
equivalent conditions is satisfied:

(i) 1
2π

∑
v K∗(v) = 4− χ(M) =

∑
i≥0 bi(M ;Z2).

(ii) Every height function zf : x 7→< fx, z > in the direction of a unit vector
z ∈ E 3 that is general for M has exactly one local minimum and one local
maximum (and, consequently, b1 = 2 − χ(M) saddle points, counted with
multiplicity).

(iii) 1
2π

∫
M
|K| dA =

∑
i bi(M ;Z2).

(iv) f has the TPP.
(v) For every open half-space h bounded by a plane H , the induced morphism

H∗(f−1(h)) → H∗(M) is injective.

(The last three conditions are the same as their counterparts in Definition 1.1.1.)

In contrast to the smooth situation, where we had to modify the definitions of
curvature for immersions of surfaces, or surfaces in higher codimension, these
five conditions remain equivalent for any polyhedral mapping of a triangulated
surface into Euclidean space of any dimension. For polyhedral surfaces in EN ,
with N ≥ 4, condition (i) is not well defined, but the conditions (ii), (iii), (iv)
still remain unchanged, and they are still equivalent.

Definition 1.1.4 (topsets, substantial codimension). A supporting hy-
perplane for a compact subset M of EN is a hyperplane that contains at least
one point of M such that M is entirely contained in one of the two half-spaces
determined by the hyperplane. The intersection of M with a supporting hyper-
plane is called an i-topset if it is contained in an i-dimensional linear subspace
but not in any (i − 1)-dimensional linear subspace. A topset is defined as an
i-topset for some i. A topset of an immersion is defined as the preimage of a
supporting hyperplane. A topset is thus a subset of M where a certain height
function attains its maximum (or minimum).

A closed surface M is called substantial in EN if it is not contained in any
hyperplane. An immersion f is called substantial if its image is substantial. If f

is polyhedral and substantial in EN , the convex hull of f(M) is an N -dimensional
convex polytope, or N -polytope for short. The topsets are the preimages under
f(M) of the faces of this polytope. For general facts about convex polytopes see
[Grünbaum 1967; Brøndsted 1983].

If f is smooth, its convex hull admits a stratification into smooth i-topsets of
various dimensions. Not necessarily every i between 0 and N − 1 has to occur
in this case: The standard sphere has only 0-topsets, while the convex hull of
a torus of revolution in E 3 and the Veronese surface in E 5 (see Example 1.2.4
below) possess only 0-topsets and 2-topsets. A piece of cylinder capped off by
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two hemispheres has 0- and 1-topsets. An analytic tight closed surface can never
have 1-topsets or 2-topsets.

1.2. Basic examples: smooth and polyhedral.

Example 1.2.1 (Genus 0). The boundary of any bounded three-dimensional
convex body is a tightly embedded two-sphere. The easiest condition to verify
is the TPP, which works no matter what degree of smoothness is present. It
is possible to find smooth examples of any order Ck, for k ≥ 0. The unit
two-sphere is an example of a real analytic tight embedding. The boundary
polyhedral surface of a Platonic solid, or of any convex three-polytope, is a
polyhedral tightly embedded two-sphere.

Example 1.2.2 (Genus 1). A torus of revolution, obtained by revolving a
circle around a disjoint axis in its plane, is a tight analytic surface in E 3. Such
a torus can be obtained by stereographic projection of the Clifford torus S1 ×
S1 ⊂ E

2 × E 2 = E
4, a tight torus contained on the three-sphere S3 of radius√

2 in four-space. (Any tight surface situated on a sphere satisfies a stronger
condition, called tautness or the spherical TPP ; see [Cecil 1997] in this volume.)
A polyhedral analogue of the Clifford torus is the Cartesian product of two square
polygons in two-dimensional planes in four-space, regarded as a subcomplex of
the four-cube, which it itself a Cartesian product of two square regions. The
vertices of this polyhedron lie on a three-sphere, and stereographic projection
from the north pole of this sphere sends the vertices of the tight “polyhedral
torus of revolution” to the vertices of a Schlegel diagram of the four-cube.

An essentially different example of a tight polyhedral torus in 3-space is
Császár’s torus, a polyhedron without diagonals [Császár 1949; Bokowski and
Eggert 1991]; see Figure 3. Any two of the seven vertices are joined by an edge.
As a consequence, any simplexwise linear embedding of this particular triangula-
tion into E 4, E 5 or E 6 is tight. The abstract 7-vertex triangulation of the torus
was already known to Möbius [1886], and, as the union of two disjoint triple
systems on 7 points, it was mentioned by Cayley [1850].

Example 1.2.3 (Higher genus). In order to construct smooth tight orientable
surfaces of higher genus in E 3, we start with the boundary of the convex hull
of a thin torus of revolution (an ε neighborhood of a horizontal circle). This
convex smooth surface contains horizontal circular discs. We may then remove
smaller circular discs from these discs and attach rotationally symmetric handles
given by the parts of negative curvature of other tori of revolution. This is an
instance of what is known as “tight surgery” S0 × B2 → B1 × S1 . One can
see that condition (i) of Definition 1.1.1 remains satisfied. Polyhedral analogues
are obtained by removing pairs of small square discs from parallel faces of a
cube, then connecting the square boundaries by tubes with square cross-section.
We can also carry out a similar polyhedral construction to join pairs of convex
polygons in disjoint planar faces of a tight polyhedral surface.
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Figure 3. Császár’s seven-vertex embedding of the torus.

A similar type of construction is possible in the case of a tight smooth surface
in E

4 that contains a pair of parallel planar pieces. We can obtain such a
tight torus as the product of a pair of curves consisting of a pair of parallel
segments capped by two semicircles. This surface contains a pair of parallel
square regions lying in a three-dimensional affine subspace of E 4, so we may add
negative curvature tubes as above. Note that these examples will not be real
analytic, and in fact there are no real analytic surfaces of genus greater than 1
in E 4 not lying in any affine hyperplane [Thorbergsson 1991]. This leads to an
open problem:

Question 1. For a polyhedral tight surface in E
4, it is possible to join two

polygons in different faces by a polyhedral tube, preserving tightness, even if
the two faces do not lie in any three-dimensional subspace. Is an analogous
construction possible for smooth surfaces, to produce examples of tight surfaces
of higher genus by adding handles to nonparallel flat pieces?

For any N it is possible to construct tight polyhedral surfaces in EN not ly-
ing in any hyperplane. We can obtain such examples recursively as follows:
Start with any tight polyhedral closed surface substantially embedded in EN ,
and translate a copy of it into a parallel hyperplane of EN+1. Then remove
a number of open two-faces with pairwise disjoint boundaries such that every
vertex of the given surface is contained in one of the boundaries. Remove the
corresponding faces in the parallel copy, and join corresponding boundaries by
polyhedral tubes. The resulting surface has the TPP, so this procedure gives a
tight polyhedral surface substantially embedded in EN+1, of at least twice the
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genus of the original surface. Applying this procedure to the boundary of the
three-cube gives the polyhedral torus in the four-cube constructed earlier. We
may repeat the procedure to obtain a series of highly symmetric tight surfaces
embedded as subcomplexes of higher-dimensional cubes. This series of examples
has been developed independently by various authors [Banchoff 1965; Coxeter
1937; Kühnel and Schulz 1991; Kühnel 1995]. Surprisingly, these examples can
also be realized as embedded polyhedra in E 3 where the number of vertices can
be smaller than the genus [McMullen et al. 1983].

Example 1.2.4 (The Klein bottle). According to a theorem of Kuiper
[1960; 1983b], it is not possible to find a tight immersion of the Klein bottle
into E 3, even as a topological surface. However, following a procedure analogous
to the one used in the previous paragraph, we can construct a tight polyhedral
embedding of the Klein bottle into E 4. We start with a Möbius band in E 3 with
five vertices, all ten edges connecting pairs of vertices, and five triangular faces.
Take a copy in a parallel hypersurface in E 4 and connect corresponding vertices
by segments and corresponding boundary segments by rectangles. The resulting
tight polyhedral surface contains all edges of the convex hull of the ten points in
E

4. Compare [Ba7].

Question 2. Is there a tight smooth embedding or immersion of the Klein
bottle substantially into E 4? (Haab [1994/95] has announced that the answer is
negative.)

Example 1.2.5 (The projective plane). There is no tight immersion of the
real projective plane into E 3. This was proved by Kuiper [1960], who showed that
it was not possible even for topological immersions. One of the most famous and
most beautiful examples in the theory of tight surfaces is the Veronese surface
contained substantially in a five-dimensional hyperplane in E 6. It is defined as
the immersion of the unit sphere

S2 = {(x, y, z) : x2 + y2 + z2 = 1}
into E 6 by the formula

(x, y, z) 7→ (
x2, y2, z2,

√
2xy,

√
2yz,

√
2zx

)
.

Since antipodal points of the unit sphere are sent to the same image, and no
other disjoint pairs are sent to the same point, this defines an embedding into
E

6 of the real projective plane, thought of as the unit sphere with antipodal
points identified. The sum of the first three coordinates is 1, so the image is
contained in a five-dimensional hyperplane, but it is not contained in any four-
dimensional affine subspace. It is, however, contained in the five-sphere of radius
1, so also in the small four-sphere obtained by intersecting the unit sphere with
the hyperplane. It follows that this surface is not only tight but also taut; see
[Cecil 1997] in this volume.
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The Veronese surface has the TPP. We can see this using projective geometry,
since any hyperplane cuts the surface in a projective quadric that separates the
projective plane into at most two pieces. Alternatively, one can verify condi-
tion (ii) in Definition 1.1.1 because any nondegenerate height function on the
Veronese surface can be regarded as a quadratic function on S2 . Using Lagrange
multipliers, we see that there are exactly six critical points on S2, three pairs
of antipodal points, giving the minimum number of critical points on the real
projective plane RP2.

By stereographic projection, we can obtain a taut (therefore tight) embedding
of the real projective plane into E 4. The Veronese surface has a very special
property called secant-tangency. Any secant joining two points of the Veronese
surface is parallel to a line in a tangent plane to the surface, and from this it
follows that any orthographic projection into four-space that leads to an immer-
sion does in fact lead to an embedding. Such an embedding is automatically
tight since almost all height functions on the projected image will still have the
minimal number of critical points.

Question 3. Is it possible to attach a handle tightly to the Veronese surface
projected into E 4?

By a result of Kuiper, it is not possible to carry out this construction smoothly
in E 5, and the construction in E 4 would require very subtle details; compare
Question 1.

A tight polyhedral embedding of the real projective plane into E 5 is given by
any simplexwise linear embedding of the unique six-vertex triangulation obtained
by identifying antipodal points on a regular icosahedron (this is called the hemi-
icosahedron in [Coxeter 1970]). As an abstract triangulation, the six-vertex RP2

was already known to Möbius [1886]. In this embedding the TPP follows from
the fact that any two vertices are joined by an edge. As in the case of the
Veronese surface, any orthogonal projection of this surface into E 4 that results
in an immersion automatically produces a tight embedding.

Example 1.2.6. Nonorientable surfaces with even Euler characteristic χ ≤ −2
To construct a smooth tight immersion of a Klein bottle with one handle

[Kuiper 1961], start with a tight torus smoothly embedded into E 3 such that
some line intersects the surface in four parallel flat pieces. We can then con-
struct a tight tube as above, intersecting the original torus in a curve, thus
producing an immersion of a nonorientable surface of Euler characteristic −2
(see Figure 4). Attaching additional handles produces tight immersions of all
nonorientable surfaces with negative even Euler characteristic. Similar construc-
tions can be carried out on polyhedral tori to obtain tight polyhedral immersions
of such surfaces.
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Figure 4. Kuiper’s tight immersed Klein bottle with one handle, with a detail

showing the self-intersection.

Example 1.2.7 (Nonorientable surfaces with odd Euler character-

istic χ ≤ −1). An example with χ = −3 can be obtained by attaching a certain
interior part (two handles together with one cross-cap) to a convex outer part.
The idea was described in [Kuiper 1961]; a more concrete description of a poly-
hedral example admitting a tight smoothing was given in [Kühnel and Pinkall
1985]. Additional handles can be attached tightly.

This covers the case of odd Euler characteristic χ ≤ −3. The case χ = −1, a
projective plane with one handle, was mentioned as an open problem in [Kuiper
1961] and remained open until recently. For a long time it has been conjectured
that existence or nonexistence would be the same for the smooth and the poly-
hedral case. The solution was quite surprising: F. Haab [1992] proved that no
smooth tight surface with χ = −1 can exist, and recently D. Cervone [1994]
found a polyhedral tight example (see also [Cervone 1997] in this volume).
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Example 1.2.8 (Combinatorial). Assume there is given an abstract simpli-
cial triangulation of a closed surface M with n vertices and

(
n
2

)
edges (that is,

any two vertices are joined by an edge). Regard the union of the triangles as a
subcomplex of the (n − 1)-dimensional simplex spanned by n vertices in E n−1.
Then M is tightly and substantially embedded into E n−1 [Banchoff 1974; Kühnel
1980]. Special cases are the 7-vertex torus and the 6-vertex real projective plane.

1.3. Tight smooth surfaces. In a series of papers starting in 1958, Kuiper
studied tight smooth embeddings and immersions of surfaces using a variety
of approaches. He obtained existence and uniqueness results, obstructions to
tight immersions, and characterizations of special examples. One of his basic
observations is the following:

Proposition 1.3.1 [Kuiper 1962]. If f : M → E
N is a smooth and substantial

0-tight immersion of a closed surface, then N ≤ 5. In other words, a smooth
closed surface immersed tightly in a Euclidean space must be contained in a
three-, four-, or five-dimensional affine subspace.

It is instructive to consider the analogue of this statement for a lower-dimensional
situation, that of a smooth immersion of a closed one-dimensional manifold (a
closed curve) into EN possessing the TPP. We know that even for a topological
immersion the TPP for a closed curve implies that the image is contained in a
two-dimensional affine subspace. In the case of a smooth immersion, we observe
that if the curve is not contained in the plane of the velocity and the acceleration
vectors at a particular point, we can find a different plane containing the tangent
line that cuts the curve away from a neighborhood of the point. This violates
the TPP.

In the case of a two-dimensional surface in EN , at any given point all the
tangent vectors to curves in the surface are contained in a two-dimensional affine
subspace, and all the acceleration vectors are contained in a five-dimensional
affine subspace containing that plane. If the surface is not wholly contained in
that five-dimensional space, there is an affine hyperplane through the tangent
plane meeting the surface away from a neighborhood of the point. This violates
the TPP.

We can reformulate this argument in terms of the space of second fundamental
forms as follows (compare [Cecil and Ryan 1985, p. 34]):

Let zf denote a nondegenerate height function attaining its maximum at a
point p ∈ M . For any normal ξ at p, let Aξ denote the second fundamental form
in direction ξ. If the mapping ξ 7→ Aξ is injective, the codimension N−2 cannot
exceed the dimension of symmetric bilinear forms on the tangent plane, which
for a two-dimensional surface is 3.

If this mapping were not injective, then for some ξ, the associated bilinear
form would be zero. For any t, the height function in the direction of zf + tξ

would have a local maximum at p; but since f is assumed to be substantial, the
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height function in the direction of ξ is not constant, so for some point q of M , it
has a higher value at q than at p, contradicting the TPP.

Proposition 1.3.2 [Chern and Lashof 1957; Kuiper 1960]. Let f : S2 → E
N

be a smooth and substantial tight immersion. Then N = 3, and f(S2) is the
boundary of a convex body in E 3.

Proof. Let H denote the convex hull of f(S2). A nonempty intersection of
H with a hyperplane bounding a half-space containing the image of f is called
a topset. If f is tight, every topset A of H is a convex set. A 0-topset is a
point that must be contained in f(S2). A 1-topset is an interval that, by the
TPP, is entirely contained in f(S2). A 2-topset of H has the property that its
boundary is contained in f(S2), and the preimage of this boundary curve will
separate the two-sphere into two pieces, each topologically equivalent to a disc.
If the 2-topset is not contained in the image, the TPP is violated. Inductively, it
follows that f(S2) would have to contain all of the topsets of H and finally the
boundary of H itself. But this is impossible if N ≥ 4. Hence N = 3, and f(S2)
is a closed surface that contains the boundary of the convex body H. This can
only happen if f(S2) coincides with the boundary of its convex hull. �

Theorem 1.3.3 (existence of smooth tight surfaces). A tight and
smooth immersion f : M → E

3 exists if

(i) M is orientable (and in this case, f can be chosen to be algebraic [Banchoff
and Kuiper 1981]), or

(ii) M is nonorientable with χ(M) ≤ −2 (and if χ is even, f can be chosen to
be algebraic [Kuiper 1983a]).

Moreover , if M is not topologically equivalent to a two-sphere, then there exists
a tight and substantial smooth immersion f : M → E

4 if

(iii) M is orientable (but f can only be analytic in the case where M is the torus
[Thorbergsson 1991]), or

(iv) M is nonorientable with χ = 1, χ = −2 or χ ≤ −4.

Proof. The existence in (i) and (ii) follows from the basic examples in Sec-
tion 1.2. Case (iii) is also contained in Example 1.2.3, and the case χ = −1 in
(iv) is mentioned in Example 1.2.4.

For the nonorientable case χ = −2 in E 4 we start with the 4 × 4 torus as a
subcomplex of the 4-cube [0, 1]4 of Example 1.2.2, and consider the diagonally
opposite squares with vertices (0, 0, x, y) and (1, 1, x, y). Since these squares lie
in a common three-plane, it is possible to attach a polyhedral or smooth handle
tightly. The outer torus can be chosen to be smooth as well; see Example 1.2.2.
Additional handles can be attached tightly. This covers the case of even Euler
characteristic χ ≤ −2. Note that these examples are embedded.

For the case of odd Euler characteristic one would like to have a starting
example with χ = −3 (or, even better, χ = −1), which does not seem to be
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known. For χ = −5 one can start with the torus in E 4 as above and then attach
in a certain three-plane the inner part of the surface with χ = −3 in E 3, as
in Example 1.2.7. Then additional handles can be attached. This construction
leads to self-intersections, which are not really necessary from the differential
topological point of view; compare Question 7. �

Note that in each of cases (i)–(iv) (except possibly for χ = 1) the smooth tight
surface can be approximated by polyhedral tight surfaces, and it can also be
obtained as the smoothing of a certain polyhedral example.

Proposition 1.3.4 (top-cycles [Cecil and Ryan 1984]). Let f : M → E
3 be

a tight immersion of a closed surface (smooth or polyhedral), and let H denote
the convex hull of f(M). Then ∂H \ f(M) consists of a finite number of convex
planar discs. Their boundaries are called top-cycles. The number α(f) of these
top-cycles satisfies 2 ≤ α(f) ≤ 2 − χ(M). Moreover , if α(f) = 2 − χ(M), the
top-cycles are joined pairwise by cylinders of nonpositive Gaussian curvature, or
by cylinders of K+ = 0 in the polyhedral case. For nonorientable surfaces the
sharper inequality 2 ≤ α(f) ≤ 1− χ(M) holds.

Sketch of proof. If the surface is not an immersed sphere, obviously there
must exist at least one top-cycle. In a first step one has to show that the number
of top-cycles is finite. Furthermore, each of the top-cycles lies in the part of the
surface with vanishing Gaussian curvature. By the tightness, the part with
positive Gaussian curvature is contained in the boundary of the convex hull, and
the part with negative Gaussian curvature lies in the interior, connecting the
various top-cycles with one another. Finally, their number can be related to the
topology of the surface by a decomposition argument and the additivity of the
Euler characteristic. �

In fact, any value for α(f) within the range of the inequalities above can be
realized by a tight surface; for examples, see [Cecil and Ryan 1985, § 7.27].

Example 1.3.5. There exists a tight smooth immersion of the torus into E 3

that is not an embedding (i .e., that has double points).

The key to creating a tight smooth immersion of the torus that is not an em-
bedding is to find a nonsingular tube with everywhere nonpositive curvature
joining two convex curves in parallel planes. If X(t) and Y (t) are two convex
closed curves both defined over the same interval {a ≤ t ≤ b}, with X(t) in the
horizontal plane through the origin and Y (t) in the horizontal plane at height 1,
then we may define a surface

Z(t, u) = uX(t) + (1−u)Y (t).

The partial derivative with respect to t will be horizontal, while the partial with
respect to u is a nonzero vector from the plane at height 0 to the plane at
height 1. These vectors can only be linearly dependent when the first is zero,
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Figure 5. Construction of the inner part of a tight smooth immersion of a torus
with self-intersections.

that is, when uX′(t) + (1−u)Y ′(t) = 0 for some t and u, so the tube will be
nonsingular if X′(t) is never parallel to Y ′(t). One way to arrange this is to
start with an ellipse X(t) with unequal axes, then let Y (t) be the parallel curve
at distance r, where the distance is greater than the radius of curvature at any
point of the ellipse. The tube constructed for these two curves will have four
cuspidal edges meeting pairwise in a set of four swallowtail points, and there are
two curves of double points. If we then rotate Y (t) slightly, no X′(t) will be
parallel to the corresponding Y ′(t), so there will be no singularities. However for
small enough rotations, there will still be intersection points near the original
double point arcs. See Figure 5.

A similar example of a tight polyhedral immersion of a torus that is not an
embedding is described in [Kuiper 1983b].

Theorem 1.3.6 [Kuiper 1962; 1997]. A tight and substantial smooth immersion
f : M → E

5 exists only if M is the real projective plane, and its image is the
Veronese surface (up to projective transformations of E 5).

This result is quite surprising, and the proof is difficult; compare the higher di-
mensional generalization given below as Theorem 2.4.2. It is also surprising that
the tight Veronese surface f : RP2 → E

5 cannot be approximated by polyhedral
tight surfaces [Kuiper and Pohl 1977]. Conversely, the tight polyhedral RP2 in
5-space cannot be approximated by smooth tight surfaces.
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Theorem 1.3.7 (nonexistence results). There is no tight and smooth im-
mersion into E 3 of the projective plane [Kuiper 1960], the Klein bottle [Kuiper
1960], or the surface with χ = −1 [Haab 1992].

The assertions for the projective plane and the Klein bottle follow from Proposi-
tion 1.3.4, because there is no possibility for α(f). The proof in the case χ = −1
is much more involved.

The remaining open cases lead to the following questions.

Question 4. Is there a smooth tight immersion of the surface with χ = −1 or
χ = −3 into E 4?

Question 5. Are there tight algebraic surfaces in E 3 with odd Euler character-
istic?

Question 6. Are there tight analytic immersions of nonorientable surfaces into
E

4 if χ 6= 1? See [Haab 1994/95].

Question 7. Does there exist a smooth tight embedding into four-space of a
surface with odd Euler characteristic χ ≤ −1?

Question 8. Is it possible to approximate the Veronese surface in E 4 by tight
polyhedral surfaces? A positive answer would also shed some light on Question 2.

Question 9. Is it possible to approximate Császár’s seven-vertex torus in E 3

by tight smooth surfaces? One may start with any version of this polyhedron
[Bokowski and Eggert 1991].

Question 10. Is there any difference between the case of C2-immersions and the
case of C1-immersions, as far as existence or nonexistence of tight immersions
is concerned?

1.4. Tight polyhedral surfaces. Tight polyhedral surfaces were introduced
in [Banchoff 1965]. There are a number of analogies with the smooth case, but
also a number of significant differences. In particular, the structure of the topsets
can be different from those in the smooth case, and the substantial codimension
can be arbitrarily large (see Example 1.2.3). In [Banchoff 1974] the relationship
with Heawood’s map color problem was mentioned, and this was developed in a
systematic way in [Kühnel 1980]. In this section we summarize the main results.
For the details and proofs see [Kühnel 1995].

The 1-skeleton of a convex polytope, denoted by Sk1, is defined as the set
of all extreme vertices and extreme edges of the polytope. For example, the
1-skeleton of an N -dimensional simplex is the complete graph KN+1 on N + 1
vertices.

Lemma 1.4.1. (i) [Banchoff 1965] Let M ⊂ E
d be a 0-tight and connected

polyhedron. Then M contains the 1-skeleton of its convex hull : Sk1(H) ⊂ M .
(ii) A polyhedral surface M with convex faces is 0-tight if and only if its 1-

skeleton is 0-tight .
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Proof. (i) Let e be an extreme edge of H with the extreme vertices v, w as its
endpoints. By construction M contains v and w. There is a half-space h of E d

such that h ∩H = e. Consequently we have {v, w} ⊂ h ∩M ⊂ h ∩H = e. By
the 0-tightness, h ∩M must be connected. It follows that h ∩M = e.

(ii) If the one-skeleton is 0-tight, M is 0-tight because adding higher dimen-
sional faces preserves the connectedness of M ∩ h. Conversely, if M ∩ h is con-
nected then Sk1(M) ∩ h must be connected because the faces are convex.

Note that this is not true if there are nonconvex faces. For example, if we
remove two square regions from opposite faces of a cube and connect by a poly-
hedral tube, the resulting one-skeleton is not even connected, and if we make it
connected by adding some diagonals, it is possible that the resulting one-skeleton
will not be tight. �

The tightness of the one-skeleton of a polyhedron essentially means that (i) the
one-skeleton of the convex hull is contained in the surface, and (ii) every vertex
that is not a vertex of the convex hull lies in the relative interior of some of its
neighbors. For example, a vertex might lie in the interior of a segment determined
by two neighboring vertices, or in the interior of a triangle determined by three
neighbors. These situations are not stable, in that tightness can be lost by
small perturbations of the vertex. If, however, a vertex is in the interior of
a tetrahedron spanned by four neighboring vertices, this situation is preserved
under small perturbations of the vertex.

Theorem 1.4.2 (existence results in small codimension). Let M be an
abstract surface with Euler characteristic χ(M).

(i) There is a tight polyhedral embedding M → E
3 if M is orientable.

(ii) There is a tight polyhedral immersion M → E
3 if M is nonorientable and

χ(M) ≤ −1 (see [Cervone 1994; 1997] for the case χ = −1).
(iii) There are tight and substantial polyhedral embeddings M → E

4 and M → E
5

if M is not topologically equivalent to the two-sphere.
(iv) There is a tight and substantial polyhedral embedding M → E

6 if M is
orientable and distinct from the two-sphere.

In particular , any closed surface admits a tight polyhedral embedding into some
Euclidean space EN .

Proof. The proof consists in a series of examples, most of them already sketched
in Section 1.2. The most difficult case is the nonorientable surface in E 3 with
χ = −1, settled only recently by D. Cervone [1994; 1997]. The case χ = −3 is
also special, although it can now be obtained from the case χ = −1 by attaching
a handle. In [Kühnel and Pinkall 1985], a symmetric immersion of the surface
with χ = −3 is constructed in such a way that it can be smoothed to give a
tight smooth immersion of the surface. By the nonexistence result of Haab, the
Cervone immersions cannot be smoothed while maintaining tightness. �
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For a tight torus in three-space, the intersection with the convex hull is a convex
sphere with two open convex discs removed. In the case of a smooth torus,
the closures of these two convex discs are disjoint, although in the polyhedral
case they may intersect at a point or along a line segment. In any case, the
complement of this outer part is an open cylinder strictly contained in the interior
of the convex hull.

Although the outer part is necessarily a one-to-one image of a subset of the
torus, the inner part, surprisingly, can have self-intersections. The first example
of this phenomenon in the smooth case was observed by L. Rodŕıguez, and in
the polyhedral case by Banchoff. Since this example has not been published
elsewhere, we include it here.

Start with a tetrahedron inscribed in a cube, with vertices

v1 = (1, 1, 1), v2 = (1,−1,−1), v3 = (−1, 1,−1), v4 = (−1,−1, 1).

Shift the triangles v1v3v4 and v2v3v4 in the direction (t, 0, 0) and the trian-
gles v1v2v3 and v1v2v4 in the direction (−t, 0, 0). For t between 0 and 1,
the intersection of these triangles will be a skew quadrilateral with vertices
(1−t)v1, (1−t)v3, (1−t)v2, (1−t)v4. To these four triangles, we may attach two
parallelograms v1 + (t, 0, 0), v1 + (−t, 0, 0), v3 + (−t, 0, 0), v3 + (t, 0, 0) and
v2 + (t, 0, 0), v2 + (−t, 0, 0), v4 + (−t, 0, 0), v4 + (t, 0, 0). This produces a self-
intersecting polyhedral cylinder with boundary given by two parallelograms v1 +
(t, 0, 0), v1 +(−t, 0, 0), v4 +(−t, 0, 0), v4 +(t, 0, 0) and v2 +(t, 0, 0), v2 +(−t, 0, 0),
v3+(−t, 0, 0), v3+(t, 0, 0). We may obtain a tightly immersed polyhedral torus by
attaching this cylinder to the surface of a square prism with vertices (±2,±2,±1),
with the regions removed that are bounded by the parallelograms v1 + (t, 0, 0),
v1 + (−t, 0, 0), v4 + (−t, 0, 0), v4 + (t, 0, 0) and v2 + (t, 0, 0), v2 + (−t, 0, 0),
v3 + (−t, 0, 0), v3 + (t, 0, 0). See Figure 6.

Figure 6. The inner part of a tight polyhedral torus with self-intersections.
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Attaching Lemma 1.4.3 [Kühnel 1980]. Let M be a tight polyhedral surface,
substantial in EN , for N ≥ 4. Then there is a tight polyhedral M # S1 × S1 and
a tight M #RP2 in the same space EN , obtained just by local modifications of
M (attaching a handle or a cross-cap).

A handle can be attached tightly also in E 3; see Example 1.2.3. For the con-
struction of attaching a cross-cap one can replace the cone over a skew pentagon
by a five-vertex Möbius band.

Lemma 1.4.4 [Grünbaum 1967]. The one-skeleton of any convex N -polytope
contains the complete graph KN+1 as a subset (not necessarily as a subgraph).

Corollary 1.4.5 [Banchoff 1971a]. Let f : S2 → E
d be a tight and substantial

polyhedral embedding or immersion. Then d = 3, and f(S2) is the boundary of
a convex three-polytope.

Proof. By Lemma 1.4.1, f(S2) contains the one-skeleton of its convex hull.
This in turn contains a Kd+1 by Lemma 1.4.4. On the other hand, S2 does not
contain a K5 because K5 is not planar, hence it does not contain a Kd+1 for any
d ≥ 4. Therefore d + 1 = 4. Assume that f(S2) is not identical with its convex
hull H. Then one of the two-dimensional faces of H is not contained in f(S2).
On the other hand, the boundary of this two-face is certainly contained in f(S2)
because this boundary contains all edges of H. It separates S2 into two pieces.
Therefore it follows that a certain plane in E 3, parallel to this two-face, would
separate f(S2) into more than two pieces, a contradiction to 0-tightness. �

Theorem 1.4.6 (nonexistence results in small codimension). (i) There
is no tight polyhedral immersion of the real projective plane or of the Klein
bottle into E 3 (not even topologically [Cecil and Ryan 1985; Kuiper 1983b]).

(ii) There is no tight and substantial polyhedral immersion of S2 into EN , for
N ≥ 4.

Assertion (i) follows from Proposition 1.3.4. For assertion (ii), see Corollary 1.4.5.
For the case of higher codimension, see Theorem 1.4.8 below.
By Lemma 1.4.4, a necessary condition for tightness of a polyhedral surface

into E d is the embeddability of the complete graph on d+1 vertices in the surface.
This in turn is closely related with the Heawood map color problem [Heawood
1890; Ringel 1974; White 1984]. The following result of G. Ringel and J. W. T.
Youngs expresses the embeddability of the complete graph in n vertices in terms
of an inequality, known as Heawood’s inequality, between n and the genus of the
surface.

Theorem 1.4.7 [Ringel 1974]. For every abstract surface M of genus g, apart
from the Klein bottle, the following conditions are equivalent :

(i) There exists an embedding Kn → M .
(ii) χ(M) ≤ n(7− n)/6.



74 THOMAS F. BANCHOFF AND WOLFGANG KÜHNEL

(iii) n ≤ 1
2

(
7 +

√
49− 24χ(M)

)
.

(iv)
(
n−3

2

) ≤ 3
(
2− χ(M)

)
= 6g.

For the Klein bottle, condition (i) is equivalent to n ≤ 6. Moreover if equality
holds in (ii)–(iv), the embedding of Kn induces an abstract triangulation of M .

Theorem 1.4.8 [Kühnel 1980]. For an abstract surface M and a number n ≥ 6,
the following conditions are equivalent :

(i) There exists a tight and substantial polyhedral embedding M → E
n−1.

(ii) There exists an embedding Kn → M .

Combining this with Theorem 1.4.7, we obtain:

Corollary 1.4.9 [Kühnel 1978, Theorem A]. Let M be an abstract surface
that is not topologically equivalent to the Klein bottle . Then there exists a tight
substantial polyhedral embedding M → E

d if and only if

d0 ≤ d ≤ 1
2

(
5 +

√
49− 24χ(M)

)
,

where d0 = 3 if M is orientable and d0 = 4 if M is nonorientable. The Klein
bottle can be embedded tightly and substantially into E 4 and E 5 but not into E k,
k ≥ 6 [Franklin 1934; Banchoff 1974].

Sketch of proof of Theorem 1.4.8.

(i) ⇒ (ii) is just a combination of Lemmas 1.4.1 and 1.4.4:

Kn ⊂ Sk1(H) ⊂ M ⊂ E n−1.

(ii) ⇒ (i) : We start with an embedding Km ⊂ M , where m ≤ n is maximal
with respect to the inequality (iii) in Theorem 1.4.7. Then we extend it to a
triangulation of M with those m vertices and some extra vertices. Finally the m

vertices can be put into general position in E n−1, and the extra vertices have to
be chosen in the relative interiors of their neighbors. This implies that the edge
graph of this triangulation is 0-tight in E n−1. If the surface is embedded (i.e.,
without self-intersections) then it is 0-tight and tight by Lemma 1.4.1. Here it
can be shown that the case of self-intersections can always be avoided by slight
changes of the triangulation. �

A triangulated surface (or any simplicial complex) with n vertices can always
be regarded as a subcomplex of an (n − 1)-dimensional simplex 4n−1. We call
this the canonical embedding of the triangulation. An abstract triangulation of
a surface is called tight if its canonical embedding is tight.

Corollary 1.4.10 (Tight triangulations [Kühnel 1995]). Let M be a tri-
angulated surface of genus g with n vertices. Then the following conditions are
equivalent :

(i) The triangulation is tight .
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(ii) The triangulation is two-neighborly , that is, its edge graph is a complete
graph Kn.

(iii)
(
n−3

2

)
= 3

(
2− χ(M)

)
= 6g.

Conversely , given an abstract surface not topologically equivalent to the Klein
bottle, and a number n satisfying (iii), then there is a tight triangulation of M

with n vertices.

For a two-manifold M , let NM denote the maximum dimension of Euclidean
space admitting a tight and substantial polyhedral embedding of M . Let nM

denote the minimum number of vertices for any simplicial triangulation of M .
Then the results of [Ringel 1955b; Jungerman and Ringel 1980; Huneke 1978] in
connection with Theorem 1.4.8 can be reformulated as follows:

Theorem 1.4.11. For any surface M we have NM ≤ nM − 1 ≤ NM + 2.
Moreover , for any surface distinct from the Klein bottle, from the orientable
surface of genus 2 and from the surface with χ = −1, the sharper inequality
NM ≤ nM − 1 ≤ NM + 1 holds.

Theorem 1.4.12 [Banchoff 1965; Pohl 1981; Kühnel 1995]. Let M ⊂ E
d be a

tightly and substantially embedded polyhedral surface. Then:

(i)
(
d−2
2

) ≤ 3
(
2− χ(M)

)
.

(ii) If d ≥ 4, equality in (i) holds if and only if M is embedded as a subcomplex
of a d-simplex 4d (and the induced triangulation is tight by Corollary 1.4.10).

Equality in (i) is satisfied by the boundary of any convex three-polytope. This
shows that (ii) cannot be extended to the case d = 3.

The case χ 6= 0 was treated in [Banchoff 1974], the case χ = 0 in [Pohl 1981;
Kühnel 1995, § 2.17].

Corollary 1.4.13. The image of a tight polyhedral real projective plane in E 5

is affinely equivalent to the canonical embedding of the 6-vertex RP2, and the
image of a tight polyhedral torus in E 6 is affinely equivalent to the image of the
7-vertex torus.

Conjecture 1.4.14 [Pohl 1981]. Let M → E
d be a tight and substantial topo-

logical immersion of a surface, and assume d ≥ 6. Then:

(i) The convex hull of M in E d is a convex polytope.
(ii)

(
d−2
2

) ≤ 3
(
2− χ(M)

)
.

(iii) Equality in (ii) holds if and only if M is embedded as a subcomplex of a
d-simplex 4d (and the induced triangulation is tight by Corollary 1.4.10).

If (i) turns out to be true, (ii) and (iii) follow by the same arguments as in the
proof of Theorem 1.4.12. A particular case of this conjecture is the uniqueness of
the polyhedral model induced by the 7-vertex torus as the only tight topological
torus in E 6.
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Conjecture 1.4.15. Any tight torus that is centrally symmetric lies in a linear
subspace of dimension at most four . (This is true for a certain subclass of
polyhedral surfaces [Kühnel 1996].)

1.5. Tight and 0-tight surfaces with boundary. For surfaces with bound-
ary, the 0-tightness condition is much weaker than the condition of tightness.
Recall that an object in E 3 is 0-tight (condition (iv) in Definition 1.1.1) if the
intersection with every open or closed half-space is connected. For tightness
(condition (iii) in Definition 1.1.1), we also require that every 1-chain in the in-
tersection of an object and a half-space, that bounds in the object also bounds
in the intersection of the object with the half-space. For example, a closed hemi-
sphere satisfies the 0-tightness condition, but the plane containing the boundary
circle bounds a half-space in which the circle is not a boundary of a 2-chain even
though the circle bounds the hemisphere itself.

Proposition 1.5.1. (i) Assume that f : M → E
3 is a smooth tight immer-

sion of a closed surface. Then for any r ∈ N there exists a smooth 0-tight
immersion f̃ : Mr → E

3 where Mr denotes the surface M with r open discs
removed .

(ii) Assume that f : M → E
N is a tight polyhedral immersion of a closed surface.

Then for any r ∈ N there exists a 0-tight polyhedral immersion f̃ : Mr → E
N .

(iii) The upper bound for the substantial codimension of 0-tight polyhedral sur-
faces Mr is the same as for the corresponding closed surfaces M .

Proof. To obtain (i), note that the image of a smooth tight immersion of a
surface without boundary into E 3 must have points of strictly positive curvature.
By moving the tangent plane at any such point parallel to itself by an arbitrarily
small amount, we can cut off a region bounded by a convex plane curve, and
the resulting object will still have the TPP. This procedure can be repeated
any desired finite number of times. It is not clear whether there are analogous
constructions for smooth surfaces in E 4 or higher.

In order to prove (ii), we may start with any tight polyhedral immersion
of a surface M without boundary into EN and then remove r disjoint convex
polygonal open regions from any of the two-dimensional faces of the polyhedron
to produce a TPP embedding of Mr into EN .

The proof of (iii) is already contained in the proof for the case of closed
surfaces, Corollary 1.4.10. �

L. Rodŕıguez [1976] constructed a 0-tight embedding in E 3 of a torus with a disc
removed by removing a nonconvex topological disc from the negative Gaussian
curvature region of a torus of revolution. In order for the surface with boundary
to remain 0-tight, it is necessary that the boundary curve consist of asymptotic
curves, that is, curves where the tangent vector is directed along an asymptotic
direction at the point (where an asymptotic direction is a null direction of the
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second fundamental form so that the principal curvature direction of the curve
lies in the tangent plane of the surface at every point of the boundary curve).

Proposition 1.5.2. For any closed surface M (except RP2) that is known to
admit a tight and substantial immersion M → E

4 (see Theorem 1.3.3), there is
a smooth 0-tight substantial immersion Mr → E

4 for any r ≥ 1. We may start
with a tightly embedded surface containing a flat regions, and remove a number
of disjoint open regions bounded by smooth convex curves.

Lemma 1.5.3. For any immersion f : M → E
N (smooth or polyhedral) of a

compact surface M with boundary ∂M 6= ?, the following two conditions are
equivalent :

(i) f is tight .
(ii) f is 0-tight and H(fM) = H

(
f(∂M)

)
.

Moreover , if f is smooth, we have TA(f |M\∂M )+ 1
2

TA(f |∂M ) ≥ 2−χ(M), and
condition (i) above is equivalent to either of the following conditions [Grossman
1972; Kühnel 1977; Rodŕıguez 1976]:

(iii) TA(f |M\∂M ) + 1
2 TA(f |∂M) = 2− χ(M).

(iv) For sufficiently small ε > 0, the boundary fε of the ε-tube is 0-tight .

Corollary 1.5.4. The image of a tight immersion of a two-disc into any EN

is a convex set contained in an affine two-dimensional subspace of EN .

Examples 1.5.5. The first study of smooth tight immersions f : M → E
2 of

surfaces with boundary into the plane was carried out by L. Rodŕıguez [1973];
compare [Kuiper 1997, Figures 8, 9, 10]. Except for the disc, these surfaces with
boundary must have at least two boundary components: the boundary of the
convex hull and one or more inner components that are “locally concave”, that
is, smooth curves such that, at each point, the part of the tangent line lying in
a disc neighborhood of the point is contained in the image of the surface.

Smooth orientable tight immersions of surfaces with boundary f :→ E
3 can

be obtained by starting with a smooth immersion of a surface without boundary
that contains a flat piece, and then removing a finite number of disjoint convex
discs.

Nonorientable surfaces of this type can be obtained by cutting two convex
holes into Kuiper’s tight Klein bottles with a handle or into the tight surface
with χ = −3 described in [Kühnel and Pinkall 1985]; compare Examples 1.2.6
and 1.2.7. In any case handles can be attached and convex discs can be removed
while still preserving the tightness.

Conjecture 1.5.6 [White 1974]. There is no tight and substantial smooth im-
mersion of any compact orientable surface with exactly one boundary component ,
except for the disc.
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The key lemma in [White 1974] states that this boundary curve would have to be
planar and convex, in contradiction with Lemma 1.5.3. However, it seems that
the proof of this lemma has never appeared. The conjecture may be extended to
the nonorientable case as well. By a theorem of Kuiper [Kuiper 1971/72] there
is no smooth tight Möbius band.

Theorem 1.5.7 [Rodŕıguez 1976]. There is no tight and substantial smooth
immersion of any compact surface with nonempty boundary into EN , for N ≥ 4.

In contrast with Theorem 1.5.7, it is easy to construct polyhedral examples with
boundary. Start with a tight polyhedral surface without boundary. Then cut out
a finite number of disjoint convex holes from polyhedral faces in such a way that
every vertex is contained in the boundary of one of the holes. Then the remaining
surface with boundary is tight, according to Proposition 1.5.2. Another example
of a polyhedral surface with the TPP is the torus with disk removed illustrated
in Figure 7.

Figure 7. A tight polyhedral embedding of a torus minus a disc.

Example 1.5.8. The 5-vertex Möbius band includes all edges joining pairs of
vertices, so any simplexwise linear embedding of the 5-vertex Möbius band is
tight. Similarly if we remove the open star of a vertex of the 7-vertex torus, we
obtain a surface with boundary that contains every edge joining a pair of the
remaining six vertices, so any simplexwise linear embedding of this surface with
boundary is tight. These are examples of tight triangulations.

Example 1.5.9. The product of two one-dimensional planar convex polygons
γ1, γ2 is a tight torus in E 4. Remove the products γ1×{p}, where p ranges over
all vertices of γ2. This leads to a tight polyhedral torus in E 4 with a number of
holes.

Example 1.5.10. The highest possible codimension for a tight polyhedral sur-
face M without boundary is attained in the cases N = 1

2

(
5 +

√
49− 24χ(M)

)
;

see Corollary 1.4.10. By removing sufficiently many disjoint convex holes from
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one of the 2-faces, we obtain a tight surface in the same highest possible codi-
mension. For the details see [Kühnel 1980].

Example 1.5.11. A tight RP2 with three holes in E 5 can be constructed as
follows: Start with the 6-vertex triangulation, regarded as a subcomplex of the
5-simplex. Then cut three convex holes into the faces such that all 6 vertices are
covered by the boundaries. Observe that two holes are not sufficient to do this:
there is no tight polyhedral Möbius band with one hole, substantial in E 5.

Conjecture 1.5.12 (Extension of Pohl’s conjecture). If for a compact
surface M with nonempty boundary f : M → E

N , with N ≥ 4, is a tight
topological immersion, then its convex hull H(fM) is a polyhedron.

By [Kuiper 1971/72; 1980, Theorem 12], this is true for the Möbius band.

1.6. Congruence and rigidity theorems. We now turn to the question of
whether or not two isometric tightly immersed surfaces are necessarily congruent.

Theorem 1.6.1 (Congruence theorem for smooth tight tori). If two
tightly immersed smooth tori in E 3 are isometric, they are congruent if either

(i) they are analytic [Aleksandrov 1938], or
(ii) the immersions are at least five times differentiable, gradK 6= 0 at every

point for which K = 0, and an additional technical condition on asymptotic
curves is satisfied [Nirenberg 1963].

The situation for tight polyhedral surfaces is quite different:

Example 1.6.2 (Noncongruence for polyhedral tight surfaces [Ban-
choff 1970b]). There are pairs of tight polyhedral tori in E 3 that are isometric but
not congruent . By attaching handles one can obtain examples of higher genus
as well .

Question 11. Is it true that any two isometric smooth tight immersions of the
torus into E 3 are congruent?

For smooth immersions, tightness is an intrinsic property: if two surfaces M and
M̄ are isometric and one of them is tight, the other one must be tight since the
Gaussian curvature is intrinsic, so

∫ |K| = ∫ |K̄|. Tightness of surfaces in higher
codimension is definitely not an intrinsic property. Note also that for polyhedral
surfaces, tightness is not an intrinsic property; in particular, a convex polyhedron
can be isometric to a nonconvex polyhedron.

Definition 1.6.3. A polyhedral surface in E 3 is called rigid if it does not allow
a globally defined continuous deformation (other than by Euclidean motions)
where each edge and each face moves by a Euclidean motion (that is, moves
rigidly).

A famous example of R. Connelly [1978/79] disproved the rigidity conjecture for
polyhedral spheres in general. However, rigidity does hold for convex polyhedral
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surfaces [Connelly 1993]. In other words: A tight polyhedral surface of genus 0
is rigid.

For the case of higher genus this seems to be an open question:

Conjecture 1.6.4 [Kalai 1987]. Any tight closed polyhedral surface in E 3 is
rigid .

It is sufficient to consider only the case of triangulated surfaces because planar
n-gons can always be subdivided into triangles. Then Conjecture 1.6.4 just says
that the edge graph of any tight triangulated surface is rigid.

It is a trivial consequence of Theorem 1.4.11 that a tight surface is rigid if it
is substantial in EN with N = 1

2

(
5 +

√
49− 24χ(M)

)
.

Note that a rigidity theorem is weaker than a congruence theorem: Rigidity
does not a priori exclude the possibility of two noncongruent positions of the
same polyhedron. It just says that there is no continuous one-parameter family
of polyhedra of the same type joining them. The examples in [Banchoff 1970b] do
allow such a continuous and isometric one-parameter family, but in this case the
polyhedral structure is not preserved; faces are creased at continuously varying
edges.

The rigidity (even infinitesimal rigidity) of smooth ovaloids in E 3 is a classical
result [Liebmann 1900]. For congruence theorems of ovaloids see [Blaschke and
Leichtweiß 1973, Section 105] (smooth case) and [Pogorelov 1973] (general convex
surfaces).

Question 12. Are there congruence or rigidity theorems for higher dimensional
tight submanifolds, smooth or polyhedral?

If the rank of the shape operator of a hypersurface is at least 3 everywhere,
then a congruence theorem holds even locally. Besides cylinders with rank 1,
there are examples of three-dimensional hypersurfaces in E 4 with rank 2 that
are isometric but not congruent [Hollard 1991]. For congruence and rigidity of
convex hypersurfaces, see [Sen’kin 1972].

1.7. Isotopy, knots, and regular homotopy. Instead of studying immersions
for which the minimum of the total absolute curvature is achieved, it is possible to
consider lower bounds on the total absolute curvature for smooth immersions in a
given isotopy class or regular homotopy class. The first examples of theorems in
this area come from knot theory: By Fenchel’s Theorem, a closed curve in EN has
total absolute curvature

∫ |κ| ≥ 2π, with equality only for planar convex curves
[Fenchel 1929]. However, for a knotted curve in E 3, the total (absolute) curvature
is more than twice that large:

∫ |κ| > 4π [Fáry 1949; Fox 1950; Milnor 1950b].
This lower bound is not attained for any knot. More precisely, the infimum of
1
2π

∫ |κ| within a given isotopy class of embeddings is the bridge number of the
knot, defined as the minimum number of relative maxima of any height function
in this isotopy class. This infimum is attained only for the unknot (the isotopy
class containing the circle). The same results hold for polygonal knots, and in
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fact the method of Milnor [1950b] made essential use of approximation of smooth
curves by polygons in the same isotopy class.

These results have been extended to the case of knotted surfaces:

Theorem 1.7.1 [Langevin and Rosenberg 1976; Meeks 1981; Morton 1979].
Assume that for a smooth embedded orientable surface M ⊂ E 3 the total absolute
curvature satisfies

1
2π

∫
M

|K| < 8− χ(M).

Then M is unknotted , that is, M is isotopic to the ‘standard’ embedding given
in Example 1.2.3. The same conclusion holds for polyhedral surfaces satisfying

1
2π

∑
v

K∗(v) < 8− χ(M).

The polyhedral case can be derived by the process of smooth approximation
[Brehm and Kühnel 1982].

The bound on χ(M) cannot be improved, since there are surfaces for which
the equality is achieved that are not isotopic to the standard embedding. This
leads to the following notion [Kuiper and Meeks 1984]:

For a given isotopy class of embeddings, we call an embedded surface isotopy
tight if the total absolute curvature realizes the infimum in this isotopy class. As
mentioned above, a knotted curve is never isotopy tight.

Theorem 1.7.2 [Kuiper and Meeks 1984; 1987]. (i) A knotted torus is never
isotopy tight .

(ii) There exist knotted surfaces of genus g ≥ 3 that are isotopy tight and satisfy

1
2π

∫
M

|K| = 8− χ(M).

These examples can also be made polyhedral , satisfying

1
2π

∑
v

K∗(v) = 8− χ(M).

We can broaden the question of the existence of tight immersions of a surface
by asking if there are tight mappings in a given regular homotopy class of im-
mersions of a surface. Given two immersions f and g of a surface M , we say
these immersions are image homotopic if there is a homeomorphism φ of M such
that f and g ◦ φ are regularly homotopic. Pinkall [Pinkall 1986b] classified all
surfaces up to image homotopy, and exhibited tight immersions for a given im-
age homotopy class in all but a finite number of cases. His examples are tight
polyhedral immersions that can be smoothed preserving tightness by means of a
specific algorithm. More recently, Cervone [Cervone 1996] constructed polyhe-
dral immersions for most of the missing cases; only two cases remain unresolved.
However, these models do not meet the demands of Pinkall’s smoothing algo-
rithm, and some may in fact represent tight polyhedral immersions in an image
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homotopy class for which there exists no tight smooth immersion. (Compare the
case of the projective plane with one handle, for which there is a tight polyhedral
immersion but no tight smooth immersion).

The image homotopy class of an immersion of a surface can be described in
terms of the number of generators of the one-dimensional homology represented
by curves with neighborhoods that are twisted cylinders. For example, if both
generators of the first homology of a torus have twisted neighborhoods, the
torus is not image homotopic to any embedding; such a torus is called a twisted
torus. For the Klein bottle, one generator of the first homology has an orientable
neighborhood and if this generator is represented by a twisted cylinder, then the
immersion is called a twisted Klein bottle; such Klein bottles come in both left-
and right-handed versions.

Theorem 1.7.3 (Regular homotopy [Pinkall 1986b; Cervone 1996]). (i)
Apart from the previously mentioned cases of the Klein bottle and the real
projective plane, there are no tight immersions of the twisted Klein bottle, the
twisted torus, or the connected sum of three projective planes (all of the same
handedness).

(ii) It is unknown whether there exist smooth or polyhedral tight immersions for
the connected sum of three projective planes plus a handle, or for the twisted
torus with a handle.

(iii) Tight polyhedral immersions exist for all the remaining image homotopy
classes of surfaces [Cervone 1996].

(iv) There is no tight immersion of the projective plane with one handle, and no
smooth examples are known for

(i) the twisted Klein bottle with one, two or three handles,
(ii) the connected sum of three projective planes with one, two or three han-

dles,

(iii) the Klein bottle with one twisted handle or the Klein bottle with one
twisted handle and one standard handle, or

(iv) the twisted torus with fewer than four handles.

In addition to these results about mappings into E 3, we mention another question
concerning mappings into Euclidean four-space:

Question 13. Is there a tight smooth immersion of an orientable surface into
E

4 with an odd number of double points?

The tube around such an example would beZ2-tight but notZ-tight [Breuer and
Kühnel 1997]. There is a polyhedral example of a tight torus in E 4 with exactly
one double point; see Example 1.8.6 below.

1.8. Tight mappings of surfaces with singularities. The title of this sec-
tion has two aspects: On the one hand, it can mean that we consider ordinary
nonsingular surfaces and tight mappings on them that fail to be immersions at
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Figure 8. Tight stable mappings of the real projective plane: the cross-cap and

Steiner’s Roman surface.

certain points. On the other hand, it can mean that we consider surfaces with
singular points, like a pinched sphere (a sphere with two points identified), and
then consider tight mappings that are immersions, that is, locally one-to-one.

A smooth or polyhedral map f : M → E
N from a surface is called tight if

condition (iii) of Definition 1.1.1 is satisfied, so the preimage of any closed half-
space is connected. A trivial example of a tight map on a connected topological
space is the mapping that sends the entire space to a single point. More generally,
the composition of a tight immersion into EN with any linear mapping to a
subspace of EN produces a tight map.

René Thom proved that almost all differentiable mappings of nonsingular
surfaces into E 3 have at most a finite number of singularities, all equivalent
to “pinch points”, topologically equivalent to a cone over a figure-eight. Such
mappings are called stable. In particular, any smooth immersion is a stable
mapping.

Theorem 1.8.1 [Kuiper 1975]. All closed surfaces admit tight stable smooth
maps into E 3.

In particular, Kuiper exhibited tight stable mappings into E 3 for the real pro-
jective plane (see Figure 8) and the Klein bottle. Such mappings were analyzed
further by Coghlan [1987; 1989], who also proved the following:

Theorem 1.8.2 [Coghlan 1987; 1989]. For any surface other than the sphere
or the real projective plane, and any integer n ≥ 2 there is a tight stable smooth
map into E 3 with exactly n top-cycles (in contrast with Theorem 1.3.4).

Example 1.8.3 (Dupin cyclides with singularities). A torus of revolution
obtained by revolving a circle around a disjoint axis in its plane is tight, and
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as we let the radius of the circle increase, we obtain a family of embedded tori
of revolution having as a limit a singular mapping, where the circle becomes
tangent to the axis and an entire circle is sent to a single point. As a limit of
TPP mappings, this map is also a tight differentiable mapping of the torus into
E

3. This is called a “limit torus” in [Cecil and Ryan 1985].

The image of this singular tight mapping is topologically equivalent to a pinched
sphere. The natural inclusion of this singular surface into E 3 has the TPP so
it is 0-tight. But it is not 1-tight since either topset is a circle that bounds in
the object but not in the half-space containing the topset and not containing the
rest of the object.

A related important class of tight singular surfaces is given by the cyclides of
Dupin, obtained as images of a torus of revolution under inversion of E 3 through
spheres with centers not lying on the torus. The parallel surfaces of such cyclides
also give tight smooth embeddings of the torus into E 3. There are two limiting
positions for such parallel surfaces, called limit horn cyclide and limit spindle
cyclide [Cecil and Ryan 1985]. These are described by differentiable mappings of
a torus into E 3 that are singular along an entire circle that is mapped to a single
point, and such mappings are tight. (They have the TPP, as limits of maps with
the TPP).

These singular cyclides as point sets are topologically equivalent to the pinched
sphere. The natural inclusions of these singular surface into E 3 are both 0-tight
but not 1-tight.

Note that conditions (iii) and (iv) in Definition 1.1.1 are not equivalent for
such surfaces with singularities because this equivalence depends on the valid-
ity of Poincaré duality, which does not hold in this case. However, if we use
the intersection homology [Goresky and MacPherson 1980] instead of ordinary
singular homology, Poincaré duality is still valid for this type of surface with sin-
gularities, and it is possible to consider a notion of intersection tightness, where
we consider condition (iii) of Definition 1.1.1 applied to intersection homology
groups.

Question 14. Does any given closed surface with any given number of pinch
points admit an embedding into some Euclidean space with intersection tightness?

With respect to ordinary singular homology, we have the following lemma:

Lemma 1.8.4. Let M ⊂ E
N be a connected closed surface with a pinch point

that is an isolated local maximum for a some height function. Then M is not
tight .

Proof. For a connected closed surface with a finite number of pinch points
the second homology with coefficients mod 2 is always one-dimensional. On
the other hand, the maximum pinch point is a critical point of index two and
multiplicity at least two, in contradiction to equality in the Morse inequalities.
This argument is the same for smooth and polyhedral surfaces. �
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Note that it is easy to obtain 0-tight examples of this type, e.g., the limit horn
cyclide.

Corollary 1.8.5. Let M ⊂ E
N be a connected and tight closed surface with

finitely many pinch points. Then each pinch point of M lies in the relative
interior of the convex hull of ordinary points of M .

The situation is altered for three-dimensional objects. There are three-manifolds
with isolated singularities that have tight triangulations, and tight mappings into
E

N for which there are height functions with an extremum at a singular point
[Kühnel 1995, § 7.16].

Example 1.8.6 [Kühnel 1995, Section 2F]. There are projections of the 7-vertex
torus into E 4 with one double point (by projecting along a line joining the centers
of two triangles with disjoint closures). This can also be considered as a tight
inclusion into E 4 of a pinched torus, that is, a torus with two points identified.

Example 1.8.7 [Kühnel 1992]. There is a two-dimensional simplicial complex
that is a surface with one singular cycle and a polyhedral immersion into E 4 that
is Z3-tight but not Z2-tight .

This example is a 12-vertex triangulation containing all
(
12
2

)
edges. However,

as in Corollary 1.8.5, the three singularities have to lie in the interior of the 9
nonsingular vertices.

2. Tightness in Higher Dimensions

While the tightness condition and the TPP are identical for surfaces without
boundary, and closely related in the case of more general two-dimensional ob-
jects like surfaces with boundary and surfaces with singularities, the situation is
different when we consider higher-dimensional manifolds. No longer does control
over the numbers of maxima and minima of height functions on an object enable
us to conclude such strong results about the topology of the object. More sub-
tle conditions have to be brought in, even in the case of smooth hypersurfaces.
Although a number of important classes of tight examples have been discovered
over the years, there are many areas where little is known about tightness in
higher dimensions.

Nonetheless, in certain cases we have a good understanding of tightness, for
example for manifolds topologically equivalent to spheres. The first results of
this type in higher dimensions are found in [Chern and Lashof 1957; 1958].

2.1. The Chern–Lashof theorem and related results. As a first general-
ization of surfaces in E 3, consider the case of a smooth hypersurface M embedded
in EN . At each point there is an outward unit normal vector and we may de-
termine a Gauss mapping sending each point to the point of the (N − 1)-sphere
with the same outward unit normal vector. As in the two-dimensional case, the
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Figure 9. The spherical image of the normal tube around a space curve.

absolute measure of the image of a region U on the hypersurface, divided by the
measure of the entire sphere, is called the total absolute curvature of the region,
denoted TA(U). The total absolute curvature of the hypersurface itself can be
expressed as one half the average number of critical points of height functions
restricted to the hypersurface. For a strictly convex hypersurface, there will be
exactly two critical points for every height function and TA(M) = 2. The the-
orem of Chern and Lashof shows that the condition TA(M) = 2 characterizes
convex hypersurfaces even in the case where some height functions have degen-
erate critical points, as for example when the hypersurface contains flat pieces
on which the Gauss mapping is constant.

Moreover, the Chern–Lashof results extend to immersions of surfaces of higher
codimension. Let f : M → E

N be an immersion of an n-dimensional submanifold
M , where n ≤ N − 1. Then, for sufficiently small r, the collection of normal
vectors of length r perpendicular to the tangent space at a point forms a sphere
of dimension N − 1 − n. If r is chosen sufficiently small, the union of all these
normal spheres of radius r forms an immersed hypersurface called the normal
tube of radius r about M . The total absolute curvature of the union of (N−1−n)-
dimensional spheres at points of a region U is called the total absolute curvature
of U , again denoted TA(U).

It is useful to recall the lowest dimension in which we may consider subman-
ifolds that are not hypersurfaces, namely the case of curves in E 3. There the
normal tube of radius r about a curve M1 is a torus of radius r, and a calculation
shows that the total absolute curvature of the torus equals the integral of the
absolute value of the curvature of the curve with respect to arclength (Figure 9).

Fenchel’s Theorem says that, for M one-dimensional, we have TA(M) ≥ 2,
with equality if and only if M is a plane convex curve. This result is generalized
by the famous theorem by S.-S. Chern and R. K. Lashof, in part anticipated by
Milnor [1950a]. We state it in its original form as follows:
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Theorem 2.1.1 [Chern and Lashof 1957; 1958]. Let f : Mn → E
N be a smooth

immersion of a compact manifold . Then the total absolute curvature

TA(f) :=
1

cN−1

∫
⊥f

|K|
satisfies:

(i) TA(f) = (1/cN−1)
∫

z

∑
i µi(zf).

(ii) TA(f) ≥ ∑
i bi(M ; F ) for any field F .

(iii) TA(f) < 3 implies that M is homeomorphic to the sphere Sn.
(iv) TA(f) = 2 if and only if f is an embedding and f(M) is the boundary of a

convex body in an (n + 1)-dimensional Euclidean subspace.

If one assumes that (i) is given, then (ii) follows directly from the Morse inequal-
ities µi(φ) ≥ bi(M ; F ) for the number of critical points of any Morse function φ

defined on M . In fact, almost all height functions in the sense of the Lebesgue
measure satisfy this condition. Assertion (iii) follows from (i) by Reeb’s theorem,
which says that if a compact n-manifold that admits a Morse function with two
critical points is homeomorphic to the sphere Sn.

The proof of (iv) requires more subtle geometric arguments. The main prob-
lem is how to deal with the parts of the manifold where the second fundamental
form (or the Gauss mapping) degenerates. Assertion (iv) can be regarded as one
of the many characterizations of convexity [Mani-Levitska 1993]. In particular,
there is no immersion f of an exotic sphere with TA(f) = 2, an observation
already mentioned in [Kuiper 1959]. Generalizations for the case of less regular
immersions (e.g., topological immersions) can be found in [Kuiper 1980; Lastufka
1981]. A generalization of (iii) can be obtained by using more general versions
of Reeb’s theorem.

Here is one of the consequences of Theorem 2.1.1:

Corollary 2.1.2. If TA(f) < 4, then M is either homeomorphic to Sn or it
is a manifold with Morse number 3, a “manifold like a projective plane” in the
sense of [Eells and Kuiper 1962].

Such manifolds with Morse number 3 can occur only as the compactification of
E

2, E 4, E 8, or E 16 by a “sphere at infinity” S1 , S2 , S4 or S8 .
Even in the case where the total absolute curvature is not at its minimum,

restrictions on the total absolute curvature can place conditions on smooth im-
mersions of the sphere. For example, in codimension two, we have the following
result of Ferus:

Theorem 2.1.3 [Ferus 1968]. Suppose that Σ is an n-manifold homeomorphic
to the sphere Sn and admitting an immersion f : Σ → E

n+2 with TA(f) < 4.
Then Σ is diffeomorphic with the standard sphere.

Question 15. Does there exist an immersion of an exotic sphere f : Σn → E
n+2

with TA(f) = 4? Compare Example 2.7.6.
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Note that the restriction on the codimension is essential in the above theorem;
if we allow higher codimension, we can always find an immersion with total
absolute curvature arbitrarily close to the minimum value. Given any immersion
f : Mn → E

N , and given any smooth function g : Mn → E
1, we may obtain an

immersion f = cg : Mn → E
N+1 , where c is a large constant. Then in EN+1 ,

nearly all of the height functions restricted to f = cg(Mn) will have the minimal
number of critical points, and all the height functions with a larger number can be
clustered in a region with arbitrarily small volume. In particular, if f : Sn → E

N

is an immersion of an exotic sphere, we can choose a function g on Sn with two
critical points, and for sufficiently large c, we can make TA(f + cg) ≤ 2 + ε for
arbitrarily small positive ε.

In the case of immersions of noncompact manifolds, the Chern–Lashof in-
equality for the total absolute curvature is no longer valid in its original form.
However, it is possible to derive an analogue by regarding the geometry and
topology of the ends. We assume that f : M → E

N is a proper immersion of
a noncompact manifold with finitely many ends ∞1, . . .∞k and finitely many
limit directions in the sense of [Wintgen 1984]. A limit direction is a possible
accumulation point of a sequence of normalized position vectors converging to
an end. The number of limit directions is finite if the immersion converges to
one direction at each end. In this case the Gauss–Bonnet formula remains valid
[Wintgen 1984], and the following inequality holds:

Theorem 2.1.4 [van Gemmeren 1996]. Let f : M → RN be a proper immersion
with finitely many limit directions. Then

TA(f) ≥
∑

i

µi(M) ≥
∑

i

∣∣bi(M) − 1
2 bi(∞)

∣∣,

and the equality TA(f) = 1 for one end is possible only for convex hypersurfaces.

The case of a cylinder shows that TA(f)=0 is possible if there are two ends.

2.2. Tightness and k-tightness. The case of equality in Theorem 2.1.1(ii) is
very special, because it forces almost all height functions zf to have the minimal
number of critical points of index i, namely bi, for all indices i. In this case
every critical point is really necessary from the topological point of view, in that
each critical point generates one additional homology class of the manifold. Such
functions have been called “perfect functions” (of “linking type” in the sense of
[Morse and Cairns 1969].) The condition of equality in Theorem 2.1.1(ii) is what
we mean by tightness in higher dimensions.

Definition 2.2.1. A smooth (at least C2) immersion f : M → E
N is said to

be tight with respect to a field F if any of the following equivalent conditions is
satisfied:

(i) TA(f) =
∑

i≥0 bi(M ; F ).
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(ii) Every nondegenerate height function zf : x 7→ 〈fx, z〉 in the direction of a
unit vector z ∈ RN has exactly bi critical points of index i.

(iii) For every open half-space h the induced morphism H∗(f−1(h)) → H∗(M)
is injective, where H∗ denotes the singular homology with coefficients in F .

It is also possible to obtain significant, although weaker, information about an
immersion when there is a condition on the numbers of critical points of height
functions of index less than or equal to some fixed number k. We have already
seen that the TPP is equivalent to the condition that almost every height func-
tion restricted to the object has exactly one critical point of index 0, and this
notion is known as 0-tightness. More generally we may define k-tightness for
other values of k:

An immersion f : M → E
N of an n-dimensional manifold is called k-tight with

respect to F if in (ii) the number of critical points satisfies µ0 = b0, µ1 = b1, . . . ,
µk = bk or, equivalently, if in (iii) the induced morphism Hi(f−1(h)) → Hi(M)
is injective for i = 0, 1, . . . , k.

In terms of critical point theory, tightness means that every critical point of a
nondegenerate height function is homology-generating (“linking type”), whereas
k-tightness means that this holds for critical points of index less or equal to k.
By condition (iii) it follows that tightness (and k-tightness as well) is invariant
under projective transformations of the ambient space. Although we have been
concentrating on smooth immersions, the definition of k-tightness also makes
sense for polyhedral immersions.

Lemma 2.2.2 (duality). Let f : M → E
N be an immersion (smooth or

polyhedral) of a compact n-dimensional manifold satisfying Poincaré duality , so
that Hi(M ; F ) ∼= Hn−i(M ; F ) for every i. Then the following conditions are
equivalent :

(i) f is tight with respect to F .
(ii) f is k-tight with respect to F for one particular k ≥ 1

2 (n− 2).

The proof relies on the duality for critical points µi(−zf) = µn−i(zf) and the
Poincaré duality bi = bn−i in combination with the Euler–Poincaré equation∑

i(−1)iµi = χ =
∑

i(−1)ibi.
As an example, the Veronese surface is 0-tight for any field, but 1-tight and

2-tight only for fields of characteristic 2.

Theorem 2.2.3. The space of all smooth tight immersions of compact manifolds
into Euclidean spaces is closed under the following operations:

(i) composition with projective transformations P : EN → E
N (not sending any

point of the manifold to infinity);
(ii) composition with linear embeddings j : EN → E

N+1;
(iii) cartesian products f1 × f2 : M1 ×M2 → E

N1+N2 .
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Moreover , for a tight smooth immersion, the tube of sufficiently small radius r

gives a tight immersion of the unit normal bundle. More precisely , if f : M →
E

N is tight then the ε-tube around j ◦ f : M → E
N+1 is tight for any linear

embedding j. If f itself is a tight embedding then the ε-tube around f itself is
tight [Pinkall 1986a; Breuer and Kühnel 1997].

Note that TA(j◦f) = TA(f) by the choice of the normalization and that TA(f1×
f2) = TA(f1)TA(f2). Formally, one follows from the other if j is regarded as
the trivial embedding of the one-point space into E 1. The proof of (iii) uses also
the Künneth formula bk(M1×M2) =

∑
i+j=k bi(M1)bj(M2). For a more general

version of (iii) see [Ozawa 1983].

2.3. Smooth examples. If we start with the tight examples in Section 1.2,
Theorem 2.2.3 immediately leads to a large variety of higher-dimensional exam-
ples, just by taking products and tubes. The argument concerning tubes can also
be extended to the case of submanifolds of spheres (connected with the notion
of taut submanifolds).

Example 2.3.1 (Sphere products). The Cartesian product of an arbitrary
number of tightly embedded spheres (smooth or polyhedral) leads to a tight
embedding where the codimension equals the number of factors in the product.
We can obtain examples of hypersurfaces topologically equivalent to products
of spheres by iterating the tube construction. Special cases are tight n-tori
Tn ∼= (S1)n recursively defined as follows: T 1 is the unit circle in the plane, and
Tn+1 is the ε-tube around Tn ⊂ E n+1 ⊂ E n+2 with radius ε = 2−n.

There is also a polyhedral version of the tube construction, where a circle in
the normal plane is replaced by a square.

There also exists a smooth tight (and taut) immersion of a twofold quotient
of the product Sp−1 × Sq−1 defined as the tensor product Sp−1 ⊗ Sq−1 in E pq

[Kühnel 1994b].

Example 2.3.2 (Connected sums of handles). As in Example 1.2.3, we can
easily obtain tight hypersurfaces in E 4 that are diffeomorphic to the standard
three-manifold of Heegaard genus g, the connected sum of g copies of S1 × S2 :
start with a convex hypersurface containing two flat regions in parallel hyper-
planes. Then attach handles invariant under SO(3)-rotation by rotating the
same curve as in Example 1.2.3 under SO(2)-rotation. Such a handle contributes
c3 = Vol(S3) to the total absolute curvature. Nonorientable versions can be ob-
tained by starting with a suitable S1×S2 containing two flat regions, one in the
outside, the other in the inside. Then a handle joining outside and inside can be
attached tightly. This extends Kuiper’s construction of a tight Klein bottle with
one handle (or more handles) to the case of arbitrary dimensions. Similar con-
structions are possible in codimension two and for connected sums of k-handles;
see also Example 3.2.2.
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Question 16. Is there any smooth tight immersion of a connected sum of at
least two handles Sk × S1 (k 6= 1) in codimension at least three?

Recall that there is a tight substantial embedding S1 × S2k−1 → E
4k, defined

as the complexification of S2k−1 or the tensor product S1 ⊗ S2k−1. For the case
k = 1, compare Proposition 3.3.1.

Question 17. Is there a tight immersion of a lens space L(p, 1) for p 6= 2? Is
there any smooth tight immersion of a manifold with p-torsion for p 6= 2?

There is no tight hypersurface that is a lens space, according to [Coghlan 1991].

Example 2.3.3 (Isoparametric submanifolds). Any isoparametric hyper-
surface in the sphere SN−1 is tight (and taut), regarded as a submanifold of EN .
It is a tube around a so-called focal manifold, which is also tight (and taut) [Cecil
and Ryan 1985]. Any isoparametric submanifold of arbitrary codimension is also
tight (and taut) [Terng 1993]. Particular classical examples of isoparametric hy-
persurfaces are the tubes around the Veronese embeddings of projective planes
into S4, S7 , S13, S25. These are precisely the hypersurfaces of spheres with three
distinct constant principal curvatures (compare also Examples 1.2.4 and 3.2.3).
These Veronese embeddings are special cases of the following construction:

Example 2.3.4 (Grassmannians). Let F denote either R, C , or the quater-
nions H . Then the unoriented Grassmann manifold Gp,q(F ) is defined as the set
of all p-dimensional linear subspaces through the origin in F p+q. Every such sub-
space A can be identified with the matrix representing the orthogonal projection
from F p+q onto A. This leads to the so-called standard embedding

Gp,q(F ) → E
(p+q)2 ,

which is substantial in a linear subspace of dimension p + q− 1 + d
(
p+q
2

)
, where

d = 1, 2, 4 for F = R, C ,H , respectively. This standard embedding turns out to
be tight with TA(f) =

(
p+q

p

)
=

∑
i bi(Gp,q(F );Z2). As an exceptional case, there

is a standard embedding of the Cayley plane into E 26 [Tai 1968; Kuiper 1970;
Cecil and Ryan 1985, § 9.4].

Example 2.3.5 (Unitary groups and R-spaces). The unitary group FU(n)
for F = R, C , H can be regarded as a submanifold of Euclidean dn2-space, just
by regarding an element as a quadratic unitary matrix over F . This is also tight
with total absolute curvature TA = 2n =

∑
i bi(FU(m),Z2). In the real case

FU(m) = O(m) is not connected, so one may restrict the construction to SO(m).
In much more generality, the standard embedding of any symmetric R-space

is tight (and taut) [Bott and Samelson 1958; Takeuchi and Kobayashi 1968].
Homogeneous Kähler manifolds can be tightly embedded [Kobayashi 1967]. For
tight embeddings of other homogeneous spaces, see [Wilson 1969]. Not all ho-
mogeneous spaces can be embedded tautly [Thorbergsson 1988]. Ferus [1982]
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characterized the case of standard embeddings of symmetric R-spaces as the ex-
trinsically symmetric submanifolds. For the connection between tautness and
Dupin submanifolds, see [Cecil 1997] in this volume.

Example 2.3.6 (Intermediate tightness). Let Dn ⊂ E
n denote a tightly

embedded n-ball that is rotationally symmetric with respect to the SO(n − 1)-
action around a fixed axis. If we rotate it in higher-dimensional space E n+m, we
obtain a tight (n + m)-ball Dn+m and a tight (n + m− 1)-sphere as boundary.
Similarly, if the Dn is only k-tight then Dn+m will be (k + m)-tight. The
boundary in this case is (k + m − 1)-tight, either by direct calculation or by
applying Proposition 2.6.1 below. In particular, if D2 ⊂ E

2 is not tight (that
is, not convex) and SO(1)-symmetric (that is, congruent to its mirror image),
the induced D3 ⊂ E 3 is 0-tight but not 1-tight, and its boundary is not 0-tight.
The induced D4 ⊂ E

4 is 1-tight but not 2-tight, and its boundary is a 0-tight
three-sphere that is not tight; compare [Kuiper 1970].

Curtin [1991] found similar examples with intermediate tautness, e.g., 0-taut
three-spheres that are not taut. These examples are ellipsoids with rotational
symmetry in two orthogonal planes. Inverse stereographic projection to E 5 leads
to 0-tight but not 1-tight three-spheres in codimension two, giving a positive
answer to a question of Kuiper [1970].

2.4. The substantial codimension and the Little–Pohl theorem. The ar-
gument leading to the upper bound of the substantial codimension in Section 1.3
remains valid in arbitrary dimensions: The mapping ξ 7→ Aξ is injective.

Theorem 2.4.1 [Kuiper 1959; 1970]. Let f : Mn → E
N be a 0-tight smooth and

substantial immersion. Then N − n ≤ (
n+1

2

)
.

Observe that equality is realized by the standard embeddings of G1,n(R) = RPn

in Example 2.3.4.

Theorem 2.4.2 [Little and Pohl 1971; 1985, p. 98]. Let f : Mn → E
N be a

0-tight smooth and substantial immersion with N = n +
(
n+1

2

)
. Then f is the

standard embedding of RPn (up to projective transformations of EN ).

Sketch of proof. One of the main tools is the 2-jet of the immersion spanning
the so-called osculating space of second order. At an extreme point (a maximum
of a nondegenerate height function) the TPP implies that the third-order deriva-
tives stay in the same half-space as the first- and second-order derivatives. This
has the consequence that f(M) is contained in the osculating space at that
point. Another step is to show that the dimension of the osculating space is in
fact the special number N = n +

(
n+1

2

)
at every extreme point. A sophisticated

combination of this type of arguments with classical and very special properties
of the Veronese embeddings of RPn ultimately leads to the local (and global)
coincidence of f(M) with the Veronese embedding. �
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Conjecture 2.4.3. The substantial codimension of any tight topological im-
mersion of FP n into Euclidean space is bounded by the codimension of the cor-
responding standard embedding in Example 2.3.3.

This is true for n = 1 (tight spheres [Kuiper 1980]) and n = 2 (see Theorem
3.3.2). Compare [Arnoux and Marin 1991] for essentially the same bounds for
the number of vertices of triangulations of FP n.

Question 18. Are there nonsmooth tight substantial immersions of RP3 into
E

9? Note that any smooth immersion is congruent to the standard embedding
by Theorem 2.4.2. The “canonical” polyhedral candidate would be a 10-vertex
triangulation, which, however, does not exist [Walkup 1970].

2.5. Tight polyhedra.

Definition 2.5.1. For a compact polyhedron M ⊂ E
N tightness means that

condition (iii) of Definition 2.2.1 is satisfied: For every open half-space h and
for any i, the induced morphism Hi

(
f−1(h)

) → Hi(M) is injective, where H∗
denotes the singular homology with coefficients in F . Naturally, k-tightness
means the morphism is injective for i = 0, 1, . . .k.

Equivalently, one can define tightness by the equality µi(zf) = bi(M ; F ) for any
height function in general position. In this case the number of critical points of
index i is defined as

µi(zf) :=
∑

v

dimF Hi

(
Mv, Mv\{v}

)
,

where the sum ranges over all vertices of the polyhedron, and where Mv :=
{p : (zf)(p) ≤ (zf)(v)} denotes the sublevelset determined by z and v. For
details of this type of critical point theory, including Morse relations and duality,
see [Kuiper 1971; Banchoff 1967; Kühnel 1990; 1995]. It seems that the Chern–
Lashof Theorem 2.1.1 and Corollary 2.1.2 remain valid for polyhedral immersions
of manifolds. In particular, we have the following result:

Proposition 2.5.2 (tight spheres). Any tightly embedded polyhedral sphere
Σ ⊂ E

N of dimension n is the boundary of a convex polytope in some (n + 1)-
space.

Proof. The proof of Corollary 1.4.5 can be carried over directly from dimension
two to arbitrary dimension.

An alternative proof can be formulated using Corollary 3.1.3 below: Since
the sphere is (n− 1)-connected, the tight polyhedral sphere in EN must contain
the n-dimensional skeleton of the convex hull H, which is a convex N -polytope.
For N > n + 1 this n-skeleton contains several distinct n-spheres, each as the
boundary of one of the (n + 1)-dimensional faces. This is impossible, hence
N = n + 1, and the image coincides with the boundary of H. �
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For the case of even dimension n = 2k one may compare this argument with the
theorem of van Kampen and Flores [Grünbaum 1967, § 11.2], stating that there
is no topological embedding of the underlying set of Skk(42k+2) into E 2k or S2k.

Example 2.5.3 (k-tight spheres [Banchoff 1971a; Kühnel 1995]). For any
given N ≥ n + 2 and any k ≤ (n − 3)/2, there exists a k-tight substantial poly-
hedral embedding of the sphere Sn into EN . This inequality is the best possible,
according to the polyhedral version of Lemma 2.2.2.

Such an example can be chosen as the boundary complex of the cyclic polytope
C(N+1, n+1), regarded as a subcomplex of the N -dimensional simplex. Since
the cyclic polytope contains all

(
N+1
k+2

)
(k + 1)-simplices for k + 1 ≤ (n − 1)/2

[Grünbaum 1967], it follows that the embedding into EN is k-tight.
We remark also that any given compact three-manifold admits a 0-tight poly-

hedral embedding into EN if N is large enough, just by a two-neighborly trian-
gulation [Walkup 1970; Sarkaria 1983; Kühnel 1995].

Example 2.5.4 (tight triangulations). As in Example 1.2.8, one can re-
gard every n-vertex triangulation of a manifold as a subcomplex of the (n− 1)-
dimensional simplex in E n−1. If this embedding into E n−1 is tight, we call the
triangulation a tight triangulation; compare Corollary 1.4.10 and [Kühnel 1995].
In this case every simplexwise linear embedding into any Euclidean space is
tight. Particular cases are (d + 1)-dimensional 1-handlebodies with n = 2d + 3
vertices and their boundaries: Regard the n vertices as elements of Zn and let
this group act on the starting simplex 〈0 1 2 . . . d+1〉. The union of this Zn-orbit
of simplices is a tight triangulation of a one-handle, its boundary is tight as
well [Kühnel 1995, Chapter 5]. The 9-vertex triangulation of the boundary of a
(nonorientable) one-handle is the only triangulation of any three-manifold with
9 vertices that is not a sphere [Altshuler and Steinberg 1976].

We mention an interesting 8-vertex triangulation of a three-pseudomanifold,
which is also a tight triangulation [Emch 1929; Kühnel 1995, § 7.16]. It contains(
8
2

)
edges,

(
8
3

)
triangles and 28 tetrahedra, each vertex link is a 7-vertex torus.

If we regard it as a subcomplex of the 7-simplex, then any slice by a hyperplane
in general position is a tight polyhedral two-manifold substantial in E 6.

Example 2.5.5 (Tight subcomplexes of the cube). We now present L.
Danzer’s general construction for getting tight polyhedra as subcomplexes of
higher dimensional cubes [McMullen and Schulte 1989]. Let K be a simplicial
complex with n vertices 1, 2, . . . , n. Each k-simplex of K can be identified with
a subset 4 = {i0, . . . , ik} of {1, . . . , n}. Set

Aj(4) :=
{

[0, 1] if j ∈ {i0, . . . , ik},
{0, 1} otherwise;

furthermore, set F (4) := A1(4) × · · · × An(4) and 2K :=
⋃
4∈K F (4). By

definition, we may regard each F (4) and therefore the entire 2K as a subcomplex
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of the n-dimensional cube Cn := [0, 1]n, as well as a subset 2K ⊂ Cn ⊂ E
n of

the ambient Euclidean space.
A particular case is M(n) := 2{n}, where {n} denotes the boundary of an

n-gon. This is a tight surface of genus 2d−3(d − 4) + 1 in the boundary of the
n-cube [Coxeter 1937; Banchoff 1965; Ringel 1955a; Beineke and Harary 1965].

An unexpected statement is the following:

Theorem 2.5.6 [Kühnel 1995]. The subset 2K is tight in E n for any simplicial
complex K with n vertices. This holds for any choice of a field F . If K is a
triangulated sphere, 2K is a topological manifold .

In particular, this leads to strange examples as follows:

Example 2.5.7 (torsion). Let K be any simplicial sphere such that a certain
subset of vertices spans a subcomplex with p-torsion in the homology. Then 2K

is a tightly embedded manifold with p-torsion in the homology.

Example 2.5.8 (homology manifolds). Let K be a triangulated homology
sphere that is not a sphere. Then 2K is a tight homology manifold that is not a
manifold.

Example 2.5.9 (topological manifolds that are not PL). The double
suspension K of a certain homology 3-sphere is a triangulated 5-sphere [Edwards
1975] and it is not PL with respect to this simplicial decomposition, since the link
of some edge is the original homology sphere. Then 2K is a tightly embedded
topological 6-manifold that is not PL with respect to this induced polyhedral
structure.

2.6. Manifolds with boundary and tubes around submanifolds. For
manifolds with boundary M , tightness is again defined by condition (iii) of 2.2.1:
For every open half-space h the induced morphism H∗

(
f−1(h)

) → H∗(M) is
injective, where H∗ denotes the singular homology with coefficients in F .

This is equivalent to the equality TA(f) =
∑

i bi(M ; F ). We remark that the
equation TA(M) = TA(M \ ∂M) + 1

2 TA(∂M) remains valid in general.
One of the basic cases to be considered in both the smooth and the polyhedral

situations is the case of n-manifolds with boundary in E n.

Proposition 2.6.1. Let M ⊂ E n be a compact n-manifold with boundary ∂M .
Then M is tightly embedded if and only if ∂M is tightly embedded .

In the case n = 2, this proposition states that a compact tightly embedded two-
manifold with boundary in E 2 must be a closed convex set with a collection of
open convex sets removed, so that the closures of these sets are disjoint from one
another and from the boundary of the original convex set.

The condition that the mapping be an embedding is essential. For smooth
immersions with self-intersections the proposition is not true, even for n = 2
(see the immersed surfaces with boundary in the plane 1.5.5, where the inner
boundary curves are locally convex but not necessarily globally convex).
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The proof of Proposition 2.6.1 follows from the equation TA(M) = TA(M \
∂M) + 1

2 TA(∂M) on the one hand and the equation
∑

i bi(∂M) = 2
∑

i bi(M)
on the other hand. The latter one follows from the Alexander duality for M and
its complement.

Proposition 2.6.2. For any tight immersion f of a manifold without boundary
into EN for N ≥ 3, the Euclidean solid f≤ε of radius ε-tube is a tight immersion.
If there are no self-intersections, or if

∑
i bi(∂M) = 2

∑
i bi(M), the same holds

also for the boundary of the tube.
The analogous result holds for tight subcomplexes of the cube (see Section

2.5.5) if we replace the Euclidean tube by the polyhedral tube, that is, the tube
with regard to the maximum norm.

Theorem 2.6.3 [Breuer and Kühnel 1997]. The boundary of the ε-tube around
any smooth tight immersion of a compact two- or three-manifold is again tight
if the codimension is at least two.

For four-manifolds, compare Question 21 in Section 3.4 below.

Example 2.6.4 (the ladder construction). Let Ck denote the boundary of
the (k +1)-dimensional unit cube in E k+1 with one vertex at the origin and with
edges parallel to the coordinate axes. Take an arbitrary number of congruent
copies of Ck in E k+1, attached to one another along facets in the form of a ladder.
Specifically we translate each cube-boundary a certain number of units along the
first coordinate axis so that the union of these cube-boundaries then consists of
the boundary of a rectangular parallelepiped together with a certain number
of interior copies of the k-dimensional unit cube; this is what we call a ladder.
Regard E k+1 as a linear subspace of EN for N > (k + 1). Then, for small ε, the
polyhedral ε-tube around the ladder is a tightly embedded k-handlebody, and its
boundary is a tightly embedded connected sum of sphere products Sk×SN−k−1.
Similar polyhedral examples are given by 2K for triangulated balls K.

Proposition 2.6.5 [Rodŕıguez 1977; Kühnel 1978; Banchoff 1971b]. For an
immersion (smooth or polyhedral) f : Mn → E

N with ∂M 6= ?, the following
conditions are equivalent :

(i) f is tight .
(ii) f is (n− 2)-tight and H(fM) = H(f(∂M)).

Corollary 2.6.6. A tight embedding (smooth or polyhedral) of a ball Bn into
E

N is a convex embedding into some (n + 1)-dimensional subspace.

Proof. Any nondegenerate height function has only one critical point on Bn,
the absolute minimum. Hence it has exactly two critical points on the boundary.
The tight boundary sphere is convex by Theorem 2.1.1 or Proposition 2.5.2, as
the case may be. Then Theorem 2.6.3 implies the convexity of the embedding
of the ball. �
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The same argument leads to this result:

Corollary 2.6.7. Assume that M is a compact manifold with boundary sat-
isfying

∑
i bi(∂M) = 2

∑
i bi(M). Then the tightness of a substantial smooth

immersion f : M → E
N implies that

(i) the restriction of f to ∂M is tight and substantial , and
(ii) the Lipschitz–Killing curvature vanishes identically in M \ ∂M .

If the boundary has several components, the single components do not have to
be substantial in EN .

2.7. Higher-dimensional knots. An n-knot is defined as a smooth or poly-
hedral embedding f : Sn → E

n+2 (or f : Sn → Sn+2). Here Sn indicates
the topological sphere with no particular differentiable structure, so we will also
consider embeddings of spheres with exotic smooth structures.

Theorem 2.7.1. Let f be a smooth n-knot . If TA(f) < 4 and n is odd , or if
TA(f) < 6 and n is even, then f is unknotted , that is, isotopic to the standard
embedding .

Note that the number of critical points of a Morse function on the sphere must be
even, so if TA(f) < 4 there must be a height function with exactly two critical
points. Thus the proof in the odd-dimensional situation is analogous to the
Fáry–Milnor theorem (see Section 1.7). For even n, this theorem is mentioned
in [Kuiper 1984] as a consequence of hard results in topology; see [Scharlemann
1985] for the case n = 2.

Conjecture 2.7.2 [Kuiper 1984]. The assumption in Theorem 2.7.1 can be
replaced by TA(f) ≤ 4 for n odd or TA(f) ≤ 6 for n even.

This is true for n = 1; see Section 1.7.

Conjecture 2.7.3. Proposition 2.7.1 is true for polyhedral n-knots that are
locally unknotted .

Example 2.7.4 [Wintgen 1980]. For any ε > 0, there is a suspension of
a polyhedral (locally unknotted) n-knot that is a polyhedral (n + 1)-knot with
TA(f) < 2 + ε. However , this (n + 1)-knot is locally knotted at the two addi-
tional vertices of the suspension.

The Veronese surface RP2 → E
4 is unknotted in the sense that it is isotopic to

the cone over an unknotted Möbius band in a 3-hyperplane. We mention the
following:

Theorem 2.7.5 [Bleiler and Scharlemann 1988]. If f : RP2 → E
4 is a smooth

embedding with TA(f) < 5 then it is isotopic to the Veronese surface.

Note that under this assumption there is a Morse height function with three
critical points because the number of critical points must be odd.

Exotic spheres in codimension two can also be regarded as n-knots.
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Example 2.7.6 [Ferus 1968]. For any ε > 0 and any n = 4m + 1 there is a
smooth embedding of an exotic sphere (Brieskorn’s sphere) f : Σn → E

n+2 with
TA(f) < 4 + ε.

A tube around an ordinary knot in E 3 produces a knotted torus (see Section 1.7),
and there are analogous constructions for hypersurfaces arising from knots or
containing knots. This tube construction leads to an unexpected phenomenon:

Example 2.7.7 [Kuiper and Meeks 1984]. There is a compact hypersurface
embedded into four-space that satisfies TA(f) = γ(M) > b(M ; F ) for any F

where γ(M) denotes the Morse number , i .e., the minimum number of critical
points of any Morse function defined on M . Thus it attains the minimal total
absolute curvature but it is not tight with respect to any field .

This example starts with the isotopy tight surface M of genus 3 in E 3 given
by Theorem 1.7.2(ii). Assume that M is contained in a large ball B; then
M decomposes B into an interior component BI and an exterior component
BE . Denote the closure of the exterior component by B#. The total absolute
curvature of B# is 7, and the sum of the Betti numbers is b(B#) = 5. By
the knottedness, the fundamental group of B# requires at least four generators,
although the homology H1(M#) is only three-dimensional. Now consider the
manifold M# defined as the ε-tube around B# ⊂ E

3 ⊂ E
4 in four-space. This

is an embedded hypersurface with TA = 14 and b = 10, so it is not tight. This
hypersurface is only of class C1 along the parts arising from the boundary of
B#, but it can be made smooth preserving tightness. By the same argument
used for B#, we can prove that every Morse function on M# must have at least
14 critical points.

3. Highly Connected Manifolds

An even-dimensional manifold is called highly connected if it has the highest
degree of connectivity in the sense of homotopy theory. More precisely, a 2k-
dimensional manifold M is called highly connected if it is (k − 1)-connected,
that is, if the homotopy groups π1(M), . . . , πk−1(M) all vanish. In particular,
a surface is highly connected if and only if it is simply connected, since k = 1
in this case. Thus any connected and highly connected surface is topologically
equivalent to a two-sphere.

The theory of highly connected manifolds has a very interesting history, with
some surprising developments. A classical reference is [Whitehead 1949], which
proves that in dimension 4 the homotopy type is uniquely determined by a
quadratic form (or the cup-product) on the two-dimensional homology (or coho-
mology) with integer coefficients. Another important reference is [Wall 1962] on
the classification of (k−1)-connected 2k-manifolds for k > 2. The case of simply
connected four-manifolds remained quite mysterious until the spectacular results
by Donaldson, Freedman and others in the 1980’s [Kirby 1989].



TIGHT SUBMANIFOLDS, SMOOTH AND POLYHEDRAL 99

From the geometric point of view, it seems to be natural to begin by studying
the following standard examples:

(i) Sk × Sk;
(ii) a nontrivial Sk-bundle over Sk [Steenrod 1944];
(iii) the projective planes FP 2 for F = R, C , H , Ca (the Cayley numbers) in

dimensions 2, 4, 8, 16;
(iv) “manifolds like projective planes” in dimension 8 and 16 [Eells and Kuiper

1962] (by definition, they are manifolds admitting a Morse function with 3
critical points);

(v) exotic spheres (compare Theorem 2.1.3 and Example 2.7.6).

If k = 1, the first example is the torus, the second is the Klein bottle, and the
third is the real projective plane. Taking the connected sum of a surface with
one of these examples amounts to adding a handle, adding a twisted handle, or
adding a cross-cap.

The unimodular quadratic forms corresponding to the manifolds in the list
above are respectively (+1), (−1) (only possible for k = 1, 2, 4, 8) and the matrix(

0 1
(−1)k 0

)
.

This last unimodular quadratic form represents the only indecomposable case,
for k odd. The connected sum of α copies of the first, β of the second and γ of
the third will then have quadratic form

α(+1)⊕ β(−1) ⊕ γ

(
0 1

(−1)k 0

)
.

The Euler characteristic of such a connected sum is χ(M) = 2 + (−1)kbk(M) =
2 + (−1)k(α +β +2γ). For even k, the signature is defined to be σ(M) = α−β.
Note, however, that other definite quadratic forms may correspond to manifolds.
For example, the form E8 occurs as part of the quadratic form of a K3 surface.

Unless stated otherwise, in this section a manifold will always be compact,
connected, without boundary, and of dimension 2k ≥ 4.

3.1. Tightness and the highly connected two-piece property.

Lemma 3.1.1. Let M be a highly connected manifold of dimension 2k and let
f : M → E

N be a smooth or polyhedral immersion. Then the following conditions
are equivalent :

(i) f is tight .
(ii) f is (k − 1)-tight .
(iii) Every nondegenerate height function (or height function in general position)

has exactly one minimum and one maximum and (−1)k(χ(M) − 2) critical
points of index k (counted with multiplicity in the polyhedral case), and no
critical points of any other index .
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(iv) For any hyperplane H of EN , the preimage f−1(EN \H) has at most two
connected components, each of them being (k − 1)-connected .

We call (iv) the highly connected two-piece property (HTTP).

Proof. (i) ⇔ (ii) holds for manifolds in general by Lemma 2.2.2.
(i) ⇔ (iii) follows directly from the Morse relations.
In order to see (ii) ⇔ (iv), consider an open half-space h ⊂ EN and the inclu-

sion j : f−1(h) → M . The (k − 1)-tightness means that H̃i(j) : H̃i

(
f−1(h)

) →
H̃i(M) = 0 is injective for i = 1, . . . , k − 1, where H̃ denotes the i-th reduced
homology. By the Hurewicz isomorphism theorem [Dold 1972], this is equivalent
to the injectivity of πi(j) : πi

(
f−1(h)

) → πi(M) = 0. This in turn just says that
f−1(h) is (k − 1)-connected. �

Corollary 3.1.2. Let A be a k-topset of the convex hull of a tightly embedded
highly connected 2k-manifold M ⊂ EN . Then A is convex and contained in M .
The same holds for i-topsets for 0 ≤ i ≤ k.

Proof. Induction on i. �

Corollary 3.1.3. For a polyhedral highly connected 2k-manifold M the tight-
ness condition implies that M contains the k-dimensional skeleton of its convex
hull . Conversely , for a subcomplex of a convex polytope, this necessary condition
for tightness is also sufficient .

For the sufficiency we observe that on the one hand every (k − 1)-cycle in the
manifold can be deformed into the k-skeleton, and that on the other hand the
k-skeleton of a simplex and its intersections with arbitrary half spaces is (k−1)-
connected. This implies the HTPP.

Corollary 3.1.4. Let B be a (k + 1)-topset of a tightly embedded highly con-
nected 2k-manifold M . Then either B is convex or B is a convex set minus a
number of convex open sets in its interior , in any case the boundary ∂B∗ of the
induced topset B∗ of the convex hull is contained in M .

If B itself is not convex then a generator of Hk(B) is called a top-cycle or a
convex cycle [Thorbergsson 1983]. By the tightness it certainly represents a
nonvanishing element of Hk(M); compare Proposition 1.3.4.

3.2. Examples, smooth and polyhedral.

Example 3.2.1 (The sphere Sn
). The boundary of any convex body in

(n + 1)-space is a tightly embedded sphere Sn . Such convex hypersurfaces can
have any degree of differentiability, including C∞ and Cω. Examples of tight
polyhedral spheres are given by boundaries of convex polytopes. With respect
to the topsets, the main difference is that a polyhedral example necessarily has
i-topsets for any i = 0, 1, . . . , n, while in the differentiable case there may be
gaps. For example, a strictly convex body of class C2 or any convex body of
class Cω has only 0-topsets.
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Example 3.2.2 (Connected sum of “handles” Sk ×Sk
). Examples of tight

embeddings of Sk ×Sk into E 2k+1 and E 2k can be obtained by constructions
analogous to the ones in Example 1.2.2: The Cartesian product of two standard
spheres Sk(1)×Sk(1) ⊂ S2k+1(

√
2) ⊂ E

2k+2 is tight. Stereographic projection
to E 2k+1 gives examples similar to the torus of revolution in E 3, and its confor-
mal images (generalized Dupin cyclides). Polyhedral examples are given by the
product of two (k + 1)-cubes as a subcomplex of the (2k + 2)-cube. A Schlegel
diagram of a hypercube in (2k + 1)-space includes cubical versions of the Dupin
cyclides.

In order to attach handles tightly to these examples, we observe first that we
have to replace an Sk−1×Bk+1 by Bk× Sk, an instance of ordinary surgery. In
the case of k = 1 (Example 1.2.3) we replace an S0 × B2 (where B2 lies in a
flat region) by a rotationally symmetric cylinder B1×S1 and smooth this out
along the boundary S0 ×S1. This can be done by a suitable choice of a concave
radius function r of the (warped product) cylinder B1×r S1 depending on the
radius ρ in B1 = [−1, +1]. We use the same function r(ρ) in general where ρ is
the polar radius of Bk (in ordinary polar coordinates) and r is the scaling factor
of the fibre Sk in the warped product Bk ×r Sk . To get started we have to find
a product Sk−1×Bk+1 where Sk−1 is a standard round sphere and Bk+1 lies in
a flat region. There are certainly convex hypersurfaces in E 2k+1 containing such
regions Sk−1×Bk+1 (rotationally symmetric ovaloids containing flat regions).

To obtain examples in E 2k+2 we may start with the Cartesian product of an
Sk−1-rotationally symmetric ovaloid Ak containing a 1-flat with another ovaloid
Bk containing a k-flat. We can then attach a handle Sk ×Sk by surgery. Without
loss of generality, we can assume that the original example contains arbitrarily
many regions of this type, so we can attach arbitrarily many handles tightly.
The tightness can be seen from the HTPP because the handles are rotationally
symmetric warped products with a concave radius function and because the fibre
Sk is (k− 1)-connected. These smooth examples are essentially due to J. Hebda
[1984].

Polyhedral examples (Sk ×Sk) # . . . # (Sk × Sk) in E 2k+1 can be obtained
by the polyhedral ε-tube around the ladder construction in Section 2.6, just by
setting N = 2k + 1.

In high codimension we can apply the 2K-construction from Section 2.5.5:
Let K denote the boundary complex of a cyclic polytope C(N+1, 2k). This is
a simplicial sphere containing all

(
N+1

k

)
simplices of dimension k − 1. There-

fore 2∂C(N+1, 2k) is a 2k-manifold containing every k-dimensional face of the
N -dimensional cube. It is tight and substantial in EN by 2.5.5, and it is home-
omorphic to a connected sum of copies of Sk ×Sk [Kühnel and Schulz 1991].

Example 3.2.3 (Projective planes). For F = C or F = H , the projective
plane FP 2 has a standard embedding, sending F 3 to R3⊕F 3 in such a way that
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(x, y, z) and (ux, uy, uz) have the same image for any nonzero element u of F :

(x, y, z) 7→ (xx̄, yȳ, zz̄,
√

2xȳ,
√

2yz̄,
√

2zx̄.)

If we restrict to the unit sphere, where xx̄ + yȳ + zz̄ = 1, this defines a mapping
S5 → S7 ⊂ E

8 or S11 → S13 ⊂ E
14 so that (x, y, z) and (ux, uy, uz) have

the same image for any unit element u. It follows that this mapping gives an
embedding C P2 → S7 ⊂ E 8 or HP2 → S13 ⊂ E 14. These embeddings are tight
because any nondegenerate height function has exactly three critical points (it
is sufficient to show here that the index of each critical point is even). For the
Cayley plane CaP2 there is a similar tight embedding into S25 ⊂ E

26 but the
formulas are different [Tai 1968; Kuiper 1970; Kuiper 1980].

Under this embedding, the images of each of these projective planes lies on
a sphere of the appropriate dimension. Stereographic projection of these three
embeddings from the north pole on the sphere leads to tight embeddings of these
projective planes into E 7, E 13, and E 25 respectively. By an argument involving
characteristic classes, there are no topological embeddings of these manifolds
into lower dimensional Euclidean spaces [Cecil and Ryan 1985].

As in the case of the real Veronese surface, we may ask:

Question 19. Is it possible to attach a handle S2×S2 tightly to the projected
Veronese type embedding CP2 → E

7?

A remarkable polyhedral analogue of the standard smooth tight embedding of
CP2 is given by the unique 9-vertex triangulation CP2

9 [Kühnel and Banchoff
1983] regarded as a subcomplex of the 8-dimensional simplex 48:

Sk2(48) ⊂ CP2
9 ⊂ Sk4(48) ⊂ E 8.

This triangulation contains every edge determined by a pair of vertices, and
moreover it contains every two-simplex determined by any triple of vertices (so
the triangulation is three-neighborly [Kühnel and Lassmann 1983]). From this
the HTPP follows directly. Condition (iv) of Lemma 3.1.1 is satisfied because
any 1-cycle can be deformed homotopically into the 2-skeleton, and because
Sk2(48) ∩ h is simply connected for any half-space h ⊂ E 8.

This situation is analogous to the tight polyhedral embedding of the real
projective plane of Example 1.2.4:

Sk1(45) ⊂ RP2
6 ⊂ Sk2(45) ⊂ E 5,

where the TPP is satisfied because Sk1(45)∩h is connected for any half-space h.

Example 3.2.4 (Polyhedral manifolds with odd intersection form).

Examples 3.2.2 and 3.2.3 leave open the question whether we can combine “han-
dles” of type S2×S2 with the complex projective plane. From the point of view
of intersection forms, a connected sum of handles represents the case of an even
intersection form and signature σ = 0, whereas the complex projective plane
represents an odd intersection form.
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A tight polyhedral embedding CP2 # (−C P2) → E
8 can be constructed from

the 9-vertex triangulation of C P2, just as a tight Klein bottle was constructed
from the 6-vertex triangulation of RP2 in Example 1.2.5: Cut out the open star
of one vertex, take two parallel copies of the remaining part in a 7-simplex (or
4-simplex, respectively), and then join the two boundaries by a straight cylinder.
The tightness is easily verified since the TPP and HTPP are satisfied. By this
cylinder construction, the two copies of CP2 have opposite orientations. The
case of the same orientation seems to be open:

Question 20. Does there exist a tight polyhedral (or topological) embedding of
CP2 # C P2 into any EN?

Tight polyhedral connected sums CP2 # (−C P2) # · · · # (−C P2) can be con-
structed by truncation of the tight C P2 # (−C P2); see Theorem 3.5.7.

Example 3.2.5 (Combinatorial). As a generalization of Example 1.2.8 and
CP2

q, we observe the following: when an n-vertex triangulation of a 2k-manifold
M that contains all

(
n

k+1

)
k-dimensional simplices, M is highly connected and

the natural inclusion of M as a subcomplex of the (n− 1)-dimensional simple is
a tight embedding into E n−1:

Skk(4n−1) ⊂ M ⊂ Sk2k(4n−1) ⊂ E n−1.

Again, the tightness follows from the HTPP, condition (iv) in Lemma 3.1.1.

3.3. The substantial codimension of a tight immersion. For any tight
smooth immersion f : M → E

N of a 2k-dimensional manifold M , the substantial
codimension N−2k is less than or equal to

(
2k+1

2

)
(see 2.4.1). If M is highly con-

nected, this upper bound can be improved by using the fact that only quadratic
forms of indices 0, k and 2k can occur in the image space of the mapping

ξ 7→ Aξ.

We have the following generalization of 1.3.1:

Proposition 3.3.1 [Kuiper 1970]. The substantial codimension of a smooth
tight immersion of a highly connected 2k-manifold in EN satisfies

N − 2k − 2 ≤
{

k if k ∈ {1, 2, 4, 8},
0 otherwise.

Note that equality N = 3k + 2 is attained for the Veronese embeddings of the
projective planes FP 2; see Example 3.2.3. In these exceptional cases the same
upper bound is valid even without the assumption of smoothness:

Theorem 3.3.2 [Kuiper 1980]. If f : M → E
N is a tight substantial continuous

embedding of a 2k-dimensional “manifold like a projective plane”, then N ≤
3k + 2.
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Sketch of proof. We first must show that there is a k-dimensional top-
cycle given by the boundary of a (k + 1)-topset; see Corollary 3.1.4. This is a
convex hypersurface in some E k+1. The orthogonal projection onto the subspace
perpendicular to this space leads to a mapping f∗ : M → E

N−k−1. Since now
the k-th homology is killed, the image is a homotopy sphere of dimension 2k,
therefore the boundary of a convex set in (2k+1)-space. This implies N−k−1 ≤
2k + 1. �

A sharp upper bound for the substantial codimension of a tight Sk ×Sk does not
seem to be known in general. In the smooth case, the upper bound is 2, but for
polyhedra it may be considerably larger, as indicated by the case k = 1, where
the tight 7-vertex embedding of the torus in E 6 has substantial codimension 4.

Conjecture 3.3.3. Any continuous and substantial tight embedding Sk ×Sk →
E

N that is centrally-symmetric satisfies N ≤ 2k + 2.

This extends Conjecture 1.4.15.

Conjecture 3.3.4 [Kühnel 1995]. Let M ⊂ E
N be a tight and substantial

polyhedral embedding of a (k − 1)-connected 2k-manifold . Then(
N − k − 1

k + 1

)
≤ (−1)k

(
2k + 1
k + 1

)(
χ(M) − 2

)
=

(
2k + 1
k + 1

)
bk(M),

with equality for N ≥ 2k + 2 only for subcomplexes of the N -simplex containing
the k-skeleton of the N -simplex .

This would generalize Theorem 1.4.11. The inequality can be regarded as a
generalization of the classical Heawood inequality of Theorem 1.4.7 in the case
k = 1. In the case of M = Sk×Sk , Conjecture 3.3.4 states that N−k−1 ≤ 2k+2.

Theorem 3.3.5 [Kühnel 1994a]. Conjecture 3.3.4 is true under the additional
assumption that M is a subcomplex of the boundary complex of a simplicial con-
vex n-polytope P that contains all vertices of P .

For centrally symmetric versions, see [Sparla 1997a]. In this case the upper
bound for N in terms of χ(M) can be improved; compare Conjectures 3.3.3 and
1.4.15. There is an example of a 12-vertex triangulation of S2 × S2 as a tightly
embedded subcomplex of the 6-dimensional cross-polytope. See [Sparla 1997b].

3.4. The smooth case. According to Proposition 3.3.1 tight smooth and
substantial immersions of simply connected 4-manifolds can exist only in E 5, E 6,
E

7, and E 8. Unfortunately, in codimension greater than two, no construction
principle seems to be known for smooth tight immersions. Therefore this Section
contains more negative results on restrictions and obstructions than positive
results and examples.

Theorem 3.4.1 [Kuiper 1980]. Let f : CP2 → E
8 be a smooth tight and sub-

stantial immersion. Then, up to projective transformations of E 8, the image is



TIGHT SUBMANIFOLDS, SMOOTH AND POLYHEDRAL 105

congruent to the image of the standard (Veronese type) embedding in Example
3.2.2.

For tight embeddings of the complex projective plane into E 7 no geometric
uniqueness result can be expected, just as there is no uniqueness in the case
of tight embeddings of the real projective plane into E 4.

Theorem 3.4.2 [Thorbergsson 1983]. Let f be a substantial tight and smooth
immersion of a simply connected four-manifold M into EN , for N = 6 or N = 7.
Then, for a suitable choice of an orientation:

(i) If N = 6 then M splits diffeomorphically as a connected sum (S2 ×S2)#M∗

and the middle Betti number b2(M) is even. Moreover , if the intersection
form is odd , then b2(M) ≥ 4.

(ii) If N = 7 then M splits diffeomorphically as a connected sum CP2 # M∗. In
particular , the intersection form is odd .

The proof is quite involved and relies on a careful study of the intersections of
various top-cycles (see the end of Section 3.1). This can be considered as an
obstruction to the existence of tight immersions:

Corollary 3.4.3 [Thorbergsson 1983]. Infinitely many distinct simply con-
nected differentiable four-manifolds do not admit a tight immersion into any EN .

Particular examples are the K3-surfaces and algebraic surfaces in C P3 of even
degree d ≥ 4.

Question 21 [Thorbergsson 1983]. Is there a smooth tight immersion f : M →
E

6 of a simply connected four-manifold with odd intersection form?

According to Theorem 3.4.2, candidates would be CP2#C P2#(−C P2)#(−C P2)
or connected sums with more copies of ±CP2. Such a tight example would have
quite unexpected behavior with respect to tubes: The ε-tube around it (regarded
as an immersion of an S1-bundle over the manifold) would not be tight [Breuer
and Kühnel 1997]. So far there does not seem to be any example of a tight
smooth immersion in codimension at least two for which ε-tube is not tight.
(Compare Proposition 2.6.2 and Question 13 at the end of Section 1.7.)

Theorem 3.4.4 [Thorbergsson 1983]. Let f : M → E
N be a substantial tight

and smooth immersion of a highly connected 2k-manifold with k = 4 or k = 8.
Then:

(i) If the intersection form of M is even then N ≤ 2k + 2.
(ii) If the intersection form of M is odd then N = 3k + 1 or N = 3k + 2.

For the case k /∈ {1, 2, 4, 8} see Proposition 3.3.1.
Any such substantial immersion with N = 3k +2 is projectively equivalent to

the Veronese-type embedding of the projective plane over the complex, quater-
nion, or Cayley numbers [Niebergall and Thorbergsson 1996].
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Theorem 3.4.5. For any given natural number m ≥ 1 there exists a tight
smooth embedding of a connected sum of m copies of Sk ×Sk into E 2k+1 and
E

2k+2 [Hebda 1984], but there is no tight analytic embedding into E 2k+2 for
m ≥ 2 [Niebergall 1994].

See Example 3.2.2.

Question 22. Is there a smooth tight immersion of any simply connected four-
manifold with even intersection form that is not diffeomorphic to a connected
sum of copies of S2 ×S2?

3.5. The polyhedral case. In the polyhedral case we have the opposite situ-
ation to the smooth case in Section 3.4. There are many examples and various
construction principles but only a few restrictions. Recall first the construction
principle mentioned in Corollary 3.1.3: If a 2k-dimensional M is a subcomplex of
the boundary complex of a convex polytope, tightness is satisfied if M contains
the whole k-skeleton of this polytope.

Theorem 3.5.1 [Kühnel 1995]. For arbitrary given numbers k, N satisfying
N ≥ 2k + 1 there is a tight and substantial polyhedral embedding of a (k − 1)-
connected 2k-manifold into EN . Particular examples are PL homeomorphic to
a connected sum of copies of Sk × Sk.

Proof. Let K be a k-neighborly triangulation of S2k−1 with N vertices, and
define M to be 2K ⊂ CN ⊂ E

N , as in Example 3.2.2. Then M is (k − 1)-
connected and tight. In the particular case of the cyclic polytope K = ∂C(d, 2k),
the manifold 2K is PL homeomorphic to a connected sum of (−1)k 1

2
(χ(d, k)−2)

copies of Sk ×Sk where, by definition,

χ(d, k) = 2χ
(
Skk(Cd−k−1)

)
.

The number χ(d, k) is the Euler characteristic of any k-Hamiltonian submanifold
of Cd, that is, a submanifold containing k-dimensional faces of Cd [Kühnel and
Schulz 1991]. For any such K the intersection form of 2K on Hk(2K) is a sum
of copies of (

0 1
(−1)k 0

)
. �

It does not seem to be known whether there are distinct topological types of
such examples in the skeleton of CN for k ≥ 2.

Theorem 3.5.2 [Kühnel and Banchoff 1983; Morin and Yoshida 1991]. There
exists a unique tight 9-vertex triangulation of the complex projective plane CP2.
The canonical embedding of this complex into the 8-simplex determines a tight
polyhedral embedding CP2 → E

8 and following this embedding by projection into
almost any 7-dimensional linear subspace gives a tight embedding C P2 → E

7.

Proof. Since all vertices, edges, and two-dimensional faces of 48 must be
contained in any such tight embedding of a simply connected four-manifold, we
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may determine the number fi of i-dimensional simplices as f0 = 9, f1 =
(
9
2

)
= 36,

f2 =
(
9
3

)
= 84. From the Dehn–Sommerville relations, it follows that f3 = 90

and f4 = 36. To construct the 9-vertex triangulation, called C P2
9, we denote the

nine vertices by 1, 2, 3, . . . , 9 and we take the union of the two orbits of the
four-dimensional simplices 〈12456〉 and 〈12459〉 under the action of a group H54

on {1, 2, . . . , 9} generated by

α = (147)(258)(369), β = (123)(465), γ = (12)(45)(78).

The generator γ corresponds to the action of complex conjugation; in fact its
fixed point set is combinatorially isomorphic to an RP2

6. The triangulation is
unique (up to relabelling of the vertices) [Kühnel and Lassmann 1983; Arnoux
and Marin 1991; Bagchi and Datta 1994]. The link of each vertex is combinatori-
ally isomorphic to the so-called Brückner–Grünbaum sphere M [Grünbaum and
Sreedharan 1967], a triangulation of the three-sphere with unusual properties. �

Question 23 [Kuiper 1980]. Are there tight and substantial topological embed-
dings CP2 → E

8 other than the standard algebraic embedding and the canonical
polyhedral embedding of C P2

9 (up to projective transformations)?

By Theorem 3.3.5 there is no such example in the boundary complex of a sim-
plicial polytope. Conjecture 3.3.4 together with Theorem 3.5.2 would imply the
uniqueness in the polyhedral case.

We remark that the combinatorial formula for the first Pontrjagin number of
a four-manifold has been explicitly evaluated for CP2

9 by L. Milin [1994]. The
flattenings of the (nonpolytopal) Brückner–Grünbaum sphere play a particular
role in Milin’s work.

Example 3.5.3. For any m, 1 ≤ m ≤ 256, there is a tight polyhedral embedding
into E 8 of a simply connected four-manifold with rank(H2) = 62 + m whose
intersection form on H2 is odd .

To construct this example, we take 2M, where M is the Brückner–Grünbaum
sphere mentioned above. The link of each vertex is combinatorially equivalent
to M. Therefore we can truncate at each vertex by a hyperplane section and
attach in this hyperplane a copy of CP2

9 minus an open vertex star. The tightness
follows from Corollary 3.1.3. The intersection form of this manifold is the one of
2M plus m direct summands (±1).

Proposition 3.5.4 [Banchoff and Kühnel 1992]. There is a tight polyhedral
embedding CP2 → E

7 that is essentially different from a linear projection of
the one in Theorem 3.5.2. It is a simplexwise linear embedding of a 10-vertex
triangulation, denoted by CP2

10.

This triangulation is based on the decomposition of the complex projective plane
into three 4-balls as “zones of influence” of three points X = [1, 0, 0], Y = [0, 1, 0]
and Z = [0, 0, 1], given in homogeneous coordinates. The equilibrium torus is
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the set of points [z0, z1, z2] with the same absolute value of each coordinate zi.
We take the 7-vertex triangulation of this equilibrium torus and then introduce
X, Y, Z as extra vertices. Each of the three 4-balls is triangulated as a cone
over the boundary complex of the cyclic polytope C(7, 4), which occurs in three
different, and combinatorially equivalent, versions. For the tight embedding the
7 vertices of the torus are chosen in general position in an E 6, then X and Y as
vertices of a double cone over the seven ones, and finally Z at the centre.

Theorem 3.5.5 [Casella and Kühnel 1996]. There is a tight 16-vertex triangu-
lation of a K3 surface, leading to a tight polyhedral embedding into E 15.

The construction is algebraic and combinatorial. The triangulation has 16 ver-
tices and 288 four-simplices. One can regard the vertices as the elements of a
field with 16 elements. Then the triangulation is invariant under the group of
all invertible affine transformations x 7→ ax + b of this field.

Theorem 3.5.6 [Brehm and Kühnel 1992]. There are at least three combinatori-
ally distinct tight 15-vertex triangulations of an 8-manifold “like the quaternionic
projective plane”. These triangulations induce tight polyhedral embeddings into
E

14 and E 13.

The construction of such a triangulated 8-manifold M8
15, which is quite compli-

cated, generalizes the construction of C P2
9 above, according to Example 3.2.5:

Sk4(414) ⊂ M8
15 ⊂ Sk8(414) ⊂ E 14.

By a straightforward computation the numbers fi of i-dimensional simplices
are f0 = n = 15, f1 =

(
15
2

)
= 105, f2 =

(
15
3

)
= 455, f3 =

(
15
4

)
= 1365,

f4 =
(
15
5

)
= 3003, f5 = 4515, f6 = 4230, f7 = 2205, f8 = 490. The actual

example M8
15 is presumably a triangulated quaternionic projective plane; for

some evidence of this conjecture see [Brehm and Kühnel 1992].

Question 24. Is there a tight polyhedral embedding of a 16-dimensional mani-
fold “like the Cayley plane” into E 26, possibly as a tight 27-vertex triangulation?

A tight 27-vertex triangulation would have exactly 100386 16-dimensional sim-
plices and would contain all

(
27
9

)
8-dimensional subsimplices:

Sk8(426) ⊂ M16
27 ⊂ Sk16(426) ⊂ E 26.

Theorem 3.5.7 [Kühnel 1995]. Let M be a tight triangulation of a (k − 1)-
connected 2k-manifold with n vertices. Then for an arbitrary integer m ≥ 0
there is a tight and substantial polyhedral embedding M # m(−M) → E

n−1.

The proof uses the construction by iterated truncation. Start with the n-vertex
triangulation, regarded as a subcomplex of the (n−1)-dimensional simplex. Then
truncate the simplex at a certain vertex and glue in a small copy of the same
triangulation minus an open vertex star. Then repeat this procedure, either at
(old) vertices of the (n−1)-simplex or at (new) vertices of the truncated simplex.
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Corollary 3.5.8. For an arbitrary integer m ≥ 0 there is a tight polyhedral
embedding CP2 # m(−C P2) → E

8, and a tight polyhedral embedding M8 #
m(−M8) → E

14, where M8 is the 8-manifold “like the quaternionic projective
plane” from Theorem 3.5.6.

We mention the following sharper form of Conjecture 3.3.4: For a highly con-
nected 2k-manifold M let NM denote the maximum dimension of a Euclidean
space admitting a tight and substantial polyhedral embedding of M . Let nM

denote the minimum number of vertices for any simplicial triangulation of M .
The approximate size of NM and nM should satisfy the relations NM ≈ nM − 1
and (

NM − k − 1
k + 1

)
≈ (−1)k

(
2k + 1
k + 1

)(
χ(M) − 2

)
=

(
2k + 1
k + 1

)
bk(M);

see Conjecture 3.3.4.

Question 25. Is there a universal constant C such that NM ≤ nM−1 ≤ NM +C

for any highly connected manifold M that is a connected sum of the standard
examples 1, 2, and 3 of page 99?

This is true for k = 1 with C = 2 (C = 1 with only a few exceptions); see Lemma
1.4.11. For higher dimensions it is a very general form of a Heawood problem,
compare the generalized Heawood inequalities in [Kühnel 1994b; Kühnel 1995].

Proposition 3.5.9. If a highly connected manifold M admits a tight polyhedral
embedding into EN , there is an embedding of the k-dimensional skeleton of the
N -simplex into M .

This follows from Corollary 3.1.3 and a lemma of Grünbaum [Grünbaum 1967,
§ 11.1] saying that the k-skeleton of any convex N -polytope contains the k-
skeleton of the N -simplex as a subset. Compare Example 3.2.5 and Conjecture
3.3.4.

The question remains whether the converse of Proposition 3.5.9 is true. More
precisely: If M admits an embedding of the k-skeleton of the N -simplex 4N (N
sufficiently large, tame embedding in the topological sense), does there exist a
tight polyhedral embedding into EN?

Question 26. Given a (k−1)-connected 2k-manifold M and a number N ≥ 4k,
are the following conditions equivalent?

(i) There exists a tight and substantial polyhedral embedding M → E
N .

(ii) There exists a (topologically tame) embedding Skk(4N ) → M.

This is true for k = 1 by Theorem 1.4.8. The implication (i) ⇒ (ii) holds in
general by Proposition 3.5.9. One strategy for a proof of the converse could be
the construction of a suitable triangulation from the embedding Skk(4N ) → M

as a kind of starting data; compare the construction in Theorem 1.4.8.
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