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From the History of a Simple Group

JEREMY GRAY

The attractive pattern of 168 shaded and 168 unshaded triangles shown in
Figure 1 has an interesting history. Since its discovery by Klein in 1878 (see

Figure 1
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[Klein 1879]), it has often been reproduced; a close cousin
(Figure 2) inspired the badge of the 1978 International Con-
gress of Mathematicians in Helsinki. This article considers
its origins, which lie in the fields of nineteenth century ge-
ometry and the theory of equations.

Figure 2

But first let us look closely at the figure itself. Each tri-
angle, shaded or unshaded, has angles of π/2, π/3, and π/7.
Since

π

2
+
π

3
+
π

7
=

41π
42

< π,

we immediately recognize that this is a non-Euclidean figure, but we shall see
that Klein missed this conclusion altogether.

In each of the 14 slices emanating from the center there are 12 shaded and 12
unshaded triangles, so there are 168 of each kind. The sides of each triangle are
arcs of circles orthogonal to the boundary circles, or are diameters. The figure
can be continued in this fashion to reach indefinitely close to the boundary, and
it provides in this way a tessellation of the non-Euclidean plane. The unshaded
tessellation is preserved by non-Euclidean reflection in any side of any triangle
(i.e., by inversion) and so has the group of all such reflections as its symmetry
group. The group generated by all products of pairs of reflections is the symmetry
group of the shaded figure.

Klein had been led to construct the figure because of its use in studying a
certain polynomial equation (described at the end of this paper) for which the
group permuting the roots is PSL(2;Z/7Z), sometimes known as G168 because
of the number of its elements. Our first task, then, is to understand this group
geometrically.

The map Z → Z/7Z which takes residues modulo 7 induces a homomorphism
between two groups of 2× 2 matrices:

SL(2;Z)→ SL(2;Z/7Z),

where SL(2, K) is the group of 2×2 matrices with entries inK and of determinant
1. This is an onto map, and we shall denote its kernel by Γ7. The group SL(2;Z)
acts on the upper half-plane H = {z ∈ C : Im(z) > 0}: the element

(
a
c
b
d

)
in

SL(2;Z) sends z to (az + b)/(cz + d).
Since

(
a
c
b
d

)
and

(−a
−c
−b
−d
)

have the same effect on all z ∈ H, it is sometimes
convenient to factor out the centre, {±1}, of SL(2;Z), and obtain PSL(2;Z) =
SL(2;Z)/{±1}, which acts faithfully on H. Dedekind was the first to describe
this group geometrically, in a very important paper [1878]. He defined the region

R =
{
z ∈ H : |z| ≥ 1, −1

2 ≤ Re(z) ≤ 1
2

}
(see Figure 3), and showed that the orbit

O(z) =
{
az + b

cz + d
:
(
a b

c d

)
∈ SL(2;Z)

}
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Figure 3

of each point z of H meets R precisely once (in its interior) or twice (on its
boundary). Consequently SL(2;Z) moves this region around en bloc, and covers
H like a tile, with overlaps occurring only on copies of the boundary of R.
Moreover, as Dedekind said, the elements of SL(2;Z) are all products of these
matrices: (

0 −1
1 0

)
, which sends z to −1/z and fixes i, and(

0 −1
1 1

)
, which sends z to −1/(z + 1) and fixes ρ,

a cube root of unity.
Klein took over Dedekind’s simple geometric presentation, and refined it by

making explicit that the set of all 2× 2 matrices with integer entries and deter-
minant 1 is a group, a fact Dedekind had not stressed although he would have
been well aware of it, and by looking for particular subgroups of it. The one of
most interest to him was Γ7.

The index of Γ7 in SL(2;Z) is, of course, the order of SL(2;Z/7Z). Since
Galois’s work had been published (in 1846) it had been usual to consider the
action of this group on the eight symbols 0, 1, . . . , 7, ∞ by

z 7→ αz + β

γz + δ
,

(
α β

γ δ

)
∈ SL(2;Z/7Z).

These symbols can be regarded as the slopes of lines through the origin in the
plane defined over the field of 7 elements (more precisely, as the points of the
projective line over that field). So the group SL(2; Z/7Z) has 336 elements, for
there are 8 directions for the position of the first basis vector

(
1
0

)
under

(
α
γ
β
δ

)
,

each with 6 possible positions for the image of
(

1
0

)
itself, then there are 7 choices

for the direction of the image of
(

1
0

)
, but no choice for its position once the

direction is chosen, since αδ − βγ = 1: 8 · 6 · 7 = 336. The group PSL(2;Z/7Z)
therefore has 1

2
336 = 168 elements. So, looking at the faithful action, one finds
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that Γ̄7 = Γ7/{±1} has index 168 in PSL(2;Z). So it must move 168 copies of R
around en bloc, and a suitable choice of which 168 copies can be made depending
on the purposes at hand. One way is to observe that(

0 −1
1 0

)(
0 −1
1 1

)
=
(
−1 −1

0 −1

)
,

which is equivalent to
(

1
0

1
1

)
in PSL(2;Z), an element which has the effect of

shifting the triangle sideways by z 7→ z + 1. Since(
1 1
0 1

)n
=
(

1 n

0 1

)
,

the element (
1 1
0 1

)7

is in Γ̄7, so one picks 7 copies of R in a horizontal strip. One can also pick other
elements of Γ̄7 which yield other copies of R, until the 168 block is determined.

To study the quotient, G168, one observes that any matrix representative of
an element in it also moves the 168-member block around, but that action is
only defined modulo Γ̄7, so G168 really maps the 168-member block to itself,
once suitable identifications have been made. The case G168 is rather unwieldy
at first glance, so consider for a moment starting with residues modulo 2:

Γ̄2 → PSL(2;Z)→ PSL(2;Z/2Z).

PSL(2;Z/2Z) has only 6 elements:(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
,

(
1 0
1 1

)
.

So Γ̄2 moves 6 copies of R around en bloc, and PSL(2;Z/2Z) can be regarded as
a group of self-maps of that region. The most attractive picture of this is shown
in Figure 4, and one notices that the action of Γ̄2, unlike that of PSL(2;Z), is
fixed-point free. It is this figure that inspired the ICM badge.

The action of Γ̄2 identifies the edges of the larger region in pairs, and so
one can ask what the region is topologically. In this case it is clear from the
identifications that the region is a sphere.

There is one problem with these pictures: the vertex at ∞ of the region R.
Klein simply switched to a region R̃ where this angle was 2π/7, since Γ̄7 cycles
7 copies of R around the vertex. This can be done by standard moves in the
theory of complex functions: either appeal to the Riemann mapping theorem, or
find an explicit map of R holomorphic everywhere except at copies of ∞, where
it has a suitable branch point. Klein presumably did the first; subsequently a
student of his, the American mathematician M. W. Haskell, did the second using
a quotient of two solutions to a hypergeometric equation [Haskell 1891]. Finally
we have Figure 1 before us, together with a description of G168 as the self-maps
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of this region, thought of as the quotient space Γ̄7\H, which also preserve the
shading. It turns out that the edge identifications are 1 with 6, 3 with 8 and so
on, and the even- and odd-numbered edges are directed oppositely so that the
triangles match up.

Klein was interested in the figure as an algebraic curve and as a Riemann
surface so he wanted to know its genus. This can be found using Euler’s formula

V − E + F = 2− 2g,

where V , E, and F denote the number of vertices, edges and faces in a triangu-
lation of the surface, and g is the genus.

Happily, we have a triangulation: it has 336 triangles (since R̄ is made up of
2 triangles), so F = 336; and E = 336 · 3/2, since each edge is counted twice. As
for the vertices, 336 have angles of π/7, so 14 cluster together at each one; 336
have angles of π/3 and are identified in 6’s; and 336 have angles of π/2 and are
identified in 4’s: a total of

336

(
1
14

+
1
6

+
1
4

)
= 164,

so V − E + F = 4, and g = 3: the Riemann surface has genus 3. Klein followed
Riemann’s approach of looking at the order of the branch points in order to
calculate the genus.

It then follows from Riemann’s work on algebraic curves [1857, § 13] that the
surface must be describable as a quartic, that is, using homogeneous coordinates
[x, y, z], by a homogeneous polynomial of degree 4. Klein then turned to the
projective theory of higher plane curves that had been developed in the preceding
generation, and showed how it could be illuminated by his new methods of
Riemann surface theory. This is a path well worth following.
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Plane Algebraic Curves

Although Newton had provided a very thorough analysis of cubics in the
1670’s, mathematicians rather neglected the systematic study of algebraic curves
other than conics until the start of the nineteenth century. When finally they
began, they confronted the question of deciding what could interestingly be said
about the profusion of new cubics, quartics, quintics, and so forth with which
they were confronted. The properties that most attracted them were projective
in nature, and were not shared by conics, notably: points of inflection, bitangents
(lines tangent at two places to a curve), double points, and cusps. The pioneer
in this study was Plücker, who was Klein’s first mathematical teacher. Plücker
[1835] showed that a non-singular curve F (x, y, z) = 0 of degree n has 3n(n− 2)
inflection points. Hesse’s proof [1844] is simpler, being couched in homogeneous
coordinates, but it essentially followed Plücker’s argument. Hesse observed that
at an inflection point adjacent normals are parallel, and so the mean curvature
vanishes there. But the formula for the mean curvature is∣∣∣∣ ∂2F

∂xi∂xj

∣∣∣∣ ,
which equated to zero is a curve of degree 3(n− 2). So, by Bezout’s principle, it
meets F = 0 in 3(n− 2)n points, which are the points of inflection.

This result led Plücker to make an intriguing observation in his next book
[1839]. The tangent to F = 0 at p has equation

x1
∂F

∂x1
(p) + x2

∂F

∂x2
(p) + x3

∂F

∂x3
(p) = 0

and the triple (
∂F

∂x1
(p),

∂F

∂x2
(p),

∂F

∂x3
(p)
)

can be thought of as defining the line coordinates of the tangent. This triple
can be thought of as a point in the dual space to the original projective plane,
and thus as defining a new plane curve called the dual of the original curve (see
Figure 5). Geometrically this can be done by picking a circle and then replacing
each point to the original curve by its polar with respect to the circle, and looking
at the envelope of the polars. Both methods were used. What is the degree of
the dual curve? Poncelet [1832] had shown that the tangents through (ξ1, ξ2, ξ3)
to F = 0 had equations

ξ1
∂F

∂x1
(p) + ξ2

∂F

∂x2
(p) + ξ3

∂F

∂x3
(p) = 0

for suitable P on F = 0. The locus of all points in the plane for which this
equation is true (for a given [ξ1, ξ2, ξ3] and F ) is a curve of degree n − 1 called
a first polar of F . It meets F = 0 in n(n − 1) points, so in general there are
n(n− 1) tangents to a given curve of degree n from a given point. Consequently
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curve F = 0

dual

Figure 5

the dual curve to a curve of degree n is of degree n(n−1), for the dual of n(n−1)
lines through a point is n(n− 1) points on a line.

Plücker’s intriguing paradox is this: plainly the dual curve of a dual curve is
the original curve, but the degree formula shows that the double dual has degree
n(n− 1)(n(n− 1)− 1), which is greater than n as soon as n > 2. Plücker had a
solution: any line through a double point is a tangent, since it meets the curve
in two coincident points, so the first polar passes through that point. But this
is not what tangency is really about, and if those intersections are ignored by
pulling the double point apart, this means two intersections of a curve and its
first polar must be discussed. So each double point on the original curve lowers
the degree of its dual by 2. Moreover, if the curve has a cusp the first polar is
a tangent there, so each cusp lowers the degree by 3. For example, the curve
x2

1x3 − x3
2 = 0 has a cusp at [0, 0, 1]. Its first polar with respect to [0, 0, 1] is

x2
1 = 0, which in fact is the equation of the tangent in this example.

So, if the original curve has α bitangents and β inflection points, the dual will
have α double points and β cusps, since bitangents dualize to double points and
inflection points to cusps. So if

2α+ 3β = n(n− 1)
(
n(n− 1)− 1

)
− n = n3(n− 2),

the paradox is explained. Moreover, Plücker had already shown that β = 3n×
(n− 2), from which he deduced that

α = 1
2
n(n− 2)(n2 − 9),
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and he proclaimed that a nonsingular curve of degree n has a dual with α double
points, β cusps, and degree n(n− 1), where

2α+ 3β = n3(n− 2).

This formula is now called Plücker’s formula. The value of α was first cal-
culated directly by Jacobi [1850]. The particular case when n = 4 is of most
interest to us: a non-singular quartic should have 24 inflection points and 28
bitangents. The inflection points cannot all be real, but the bitangents can be,
and Plücker even gave an example [1839]. He took two degenerate quartics: the
four straight lines in Figure 6, and the circle counted twice. A linear combina-
tion of the equations of these two curves defines a quartic with double points at
(0, 0), (1, 1), (1,−1), and a vertical tangent at the points a, a′. The figure shows
in thin lines the particular combination

Ω4 = (y + xy)(y − x)(x− 1)(x− 1.85)− 5(y2 + x(x− 2))2 = 0.

When deformed into Ω4− k = 0, for k > 0 small, the curve splits apart into four
bean-shaped pieces — the thick curves of the figure. Each has one bitangent of
its own and each pair has 4, a total of 4 + 6 · 4 = 28 in all. (We have varied

x=1

x=y

x=−y

a

a′

Figure 6
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Plücker’s coefficients, which were 3
2 and 2 instead of 1.85 and 5, in order to make

the concavity more apparent.)
The 28 bitangents became, and remain, a topic of delight. They are, for

instance, intimately connected to the 27 lines on a cubic surface, a fact first
noticed by Geiser [1869], and their automorphism group is isomorphic to the
Weyl group of the exceptional Lie algebra E7. Their history is far too lengthy to
describe here, even in the period before Klein, but mention should be made of
Hesse’s paper [1855], in which he studied them via the 28 lines through 8 points
in space, and in particular, to work of Riemann.

Riemann’s “Theorie der Abelschen Functionen” introduced an (infinitely many
valued) “function” θ of p variables on a Riemann surface of genus p which was
crucial to his solution to the Jacobi inversion problem for integrals. He associated
what he called a characteristic to θ, an expression(

e1, e2, . . . , ep
e′1, e

′
2, . . . , e

′
p

)
,

where each entry is 0 or 1, and he said the characteristic was odd if

e1e
′
1 + e2e

′
2 + · · ·+ epe

′
p

was odd, and even otherwise. Induction on p shows that (2p−1)(2p − 1) charac-
teristics are odd.

When the characteristic is odd θ has two repeated zeros and 2 repeated poles
on the surface, so it could be made to yield a bitangent curve to the surface,
and when p = 3 indeed to yield a bitangent. All this material, although partly
published by Riemann, his student Roch, and by Clebsch, was very obscure to
Riemann’s contemporaries. Clebsch himself thought this was due to the elusive
nature of the θ-function, which was defined transcendentally and only after a long
series of boldly innovative remarks. Riemann’s paper defines Riemann surfaces
and studies them topologically, uses the contentious Dirichlet principle to prove
an index theorem for the genus, considers what functions can exist on a Rie-
mann surface and proves the Riemann inequality for the dimension of the space
of meromorphic functions with prescribed poles, discusses coordinate transfor-
mations and birational transformations of a given curve and the dimension of the
corresponding moduli space of inequivalent curves of a given genus, and proves
half of Abel’s theorem before getting round to Jacobi inversion. Little wonder
people found it difficult! But the notation of the characteristics was convenient,
and in 1874 Weber used it to describe how the 28 bitangents are related (see
[Weber 1876]).

Briefly, Steiner had shown in [1848] that the bitangents fell into 63 groupings
of 6 pairs, with the property that the contact points of each pair with the quartic
gave a set of 8 points lying on a conic. Weber showed that the 63 families could
be indexed by the 63 characteristics other than

(
0
0

0
0

0
0

)
and that the sum of each
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pair of characteristics in a grouping was the indexing characteristic. Thus
(

0
0

0
0

1
0

)
indexes the pairs (

1
1

0
0

1
0

)
,
(

1
1

0
0

0
0

)
;
(

0
0

1
1

1
0

)
,
(

0
0

1
1

0
0

)
;(

1
1

1
0

1
0

)
,
(

1
1

1
0

0
0

)
;
(

1
0

1
1

1
0

)
,
(

1
0

1
1

0
0

)
;(

0
1

1
1

1
0

)
,
(

0
1

1
1

0
0

)
;
(

1
1

0
1

1
0

)
,
(

1
1

0
1

0
0

)
and (

1
1

0
0

1
0

)
+
(

1
1

0
0

0
0

)
=
(

0
0

0
0

1
0

)
,

etc. (adding coordinatewise, mod 2). This approach was in fact that of Riemann
[1862], as Weber found out on becoming joint editor of Riemann’s Werke with
Dedekind later in 1874, and had earlier been taken by Clebsch [1864], which
Weber seems not to have known. The geometric situation is that two conics,
each touching a quartic in 4 points, lie in the same system if their 8 points lie in
a conic. There are 63 systems (a result of Hesse’s) and each system contains 6
line pairs, the pairs of bitangents.

Jordan, basing himself on Clebsch’s work — which was published, rather than
on Riemann’s, which was not — gave an analysis of the 28 bitangents in [Jor-
dan 1870]. He showed (§ 332) that the group of symmetries of the bitangents is
isomorphic to the symplectic group Sp(6;Z/2Z), that is, to the group of 6×6 ma-
trices over the field of 2 elements which preserves the inner product represented
by the matrix

A =
(

0 I

−I 0

)
≡
(

0 I

I 0

)
(mod 2),

where I is the 3× 3 identity matrix. He also showed (§ 455) that the subgroup
of the group of symmetries which fixes a bitangent is isomorphic to the group
of symmetries of the 27 lines in a cubic surface, thereby connecting his work to
Geiser’s.

It is clear to us that each characteristic is a vector in the six-dimensional vector
space over Z/2Z and that the bitangents corresponding to those vectors v for
which vTAv ≡ 1 (mod 2); and, moreover, the action of G168 in its alternative
guise as SL(3;Z/2Z) is also now apparent. This version of G168 was presented by
Weber in [1896, p. 539], where he attributed it to Kronecker. However, Jordan
did not use this geometric approach, nor did Dickson in his discussion [1900]. It
would be interesting to know who first interpreted the characteristics in terms of
finite geometries, thereby making explicit what was implicit, but not geometric,
in [Jordan 1870]. The American mathematician A. B. Coble [1908; 1913] seems
to have been the first to illuminate the 27 lines and 28 bitangents with the
elementary theory of geometries over finite fields.

The combinatorial aspects of all this are pleasant, but the mathematics is
certainly not easy. All the more attractive then for Klein when he saw how to
make some of these configurations visible in this picture of his Riemann surface.
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µ′λ

λ′

Figure 7. From [Klein 1879].

Let us return to the description of the surface as an algebraic curve. It is a
quartic, and Klein showed quickly that if three suitable inflection tangents are
taken as triangle of reference the equation can be written as

F (x1, x2, x3) = x3
1x2 + x3

2x3 + x3
3x1 = 0.

As a real locus it looks like the curve in Figure 7. Under the action of G168

a typical point has an orbit consisting of 168 points. But some have smaller
orbits: the vertices have orbits consisting of 24, 56, and 84 points. These must,
by simple considerations of invariant theory, said Klein, correspond to the 24
inflection points, the 56 bitangents points, and 84 sextatic points (where a conic
has sixfold contact with the curve). So there are all these points, hitherto hard
to visualize, all laid out in one figure. Klein called them a, b and c points
respectively.

To get at the inter-relations of these points, Klein used elementary matrix
algebra and group theory to give an exhaustive analysis of the subgroups of
G168. He found, amongst other subgroups, 14 of order 4 (now called Klein’s
group), 14 of order 24, which come in two families of 7 conjugates, and 28 non-
abelian groups of order 6. The analysis showed that G168 has no non-trivial
normal subgroups, but Klein did not remark explicitly on its simplicity. Indeed,
he was more interested in the existence of 8 conjugate subgroups of order 21,
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and of two families of 7 conjugate subgroups of order 24 which are isomorphic
to the group of proper motions of an octahedron.

It is an easy matter to carry out the matrix algebra to find all the elements of
a given order. For example, elements of order 2 must have vanishing trace. One
can then arrange them in conjugacy classes, and thence find all the subgroups of
a given order. But it is not so easy to see them in the figure, because the action
of the group is not so clear and it is difficult to work with the identifications.
Klein argued as follows. The b-points, for example, are each fixed by a rotation
of order 3. There are 28 groups of order 3 in G168, so each such group fixes a
pair of b-points and these are the points of contact of a bitangent. The c-points
are fixed by rotations of order 2, of which there are 21, so each such rotation
fixes 4 of them.

To display them in the figure, Klein considered the 28 “symmetry lines” which
run in a cycle through six a, b, and c-points, as, for example, do the lines, which
run straight from the central point. They must be pursued with care across the
identifications, especially at the two kinds of vertex. There are 2 symmetry lines
through each c-point. There is then a unique pair of such lines which does not
meet the first pair, and the 4 c-points so picked out are a typical set of 4 c-points
fixed by a rotation. Similarly the 3 symmetry lines through a b-point meet again
in the corresponding b-point. Klein denoted 4 such pairs in the figure by A,A′;
B,B′; C,C ′; D,D′. However, he was not able to go further with this analysis
and exhibit the 63 systems of 6 pairs of bitangents. The Riemannian theory
of theta-characteristics is not taken up in this paper, nor in the famous study
[Klein 1882], and one rather supposes that Klein, like his contemporaries, did
not really understand it.

But he did have other, new, things to say. He showed that G168 could be
written down as a group acting on complex projective two-space, since it was the
automorphism group of a plane projective curve, and he exhibited its generators
explicitly. This gave him a finite subgroup of SL(3;C), and he observed that
it was missing from Jordan’s list of such groups [Jordan 1878], which he had
published earlier while studying differential equations all of whose solutions are
algebraic. Jordan, a friend of Klein’s since the latter’s visit to Paris in 1870,
accepted the correction in a letter and in a subsequent revision of his paper, but
both men missed a presentation of A6 as a subgroup of SL(3;C) subsequently
found by Valentiner [1889] and named after him.

Finally, Klein gave a startling visual description of the Riemann surface. G168

cannot be the symmetry group of a surface in space, but the subgroups of order
24 mentioned above can be, for each is the symmetry group of an octahedron.
The octahedral group permutes the four pairs of diametrically opposite points in
the middle of the faces of the octahedron, and Klein showed that the octahedral
subgroups in G168 permute 4 pairs such as A,A′; B,B′; C,C ′; and D,D′. The
24 a-points may be taken as the centers of 24 heptagons, and when the figure
is cut up along the six heavy zig-zag lines the heptagons may be taken in 3’s so
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Figure 8

that each face of the octahedron is covered, more or less, with 21 shaded and
21 unshaded triangles. What is missing from this quilt is the six vertices of
the octahedron. He regarded G168 as acting partly by rotating the octahedron,
and partly by sliding the quilt over the octahedron, using identifications across
the edges surrounding the vertices, which come from this dissection. He showed
that these identifications were of diametrically opposite points, and were best
performed by supposing the edges drawn out to infinity. He invoked the analogy
with the hyperboloid of one sheet, which, projectively, is a torus. The dotted
curve in Figure 1 represents the intersections of the curve with the plane at
infinity.

So he described the surface as three hyperboloids whose axes meet at right
angles, which is certainly appealing (see Figure 8).

A few remarks should be made about why Klein studied this problem in the
first place. An old problem in the theory of elliptic functions asks for a relation
between the moduli of elliptic integrals if the corresponding ratios of the periods
is increased by a prime p. Jacobi and Abel had shown that the moduli were
then related by a polynomial equation of degree p + 1. Galois know that the
polynomial equation could be reduced in degree to an equation of degree p when
p was 5, 7, and 11, but for no higher prime, and he know that for these equations
the corresponding group permuting the roots (its “Galois” group, as we say, for
this reason) was PSL(2,Z/pZ). Various mathematicians, notably Betti [1853]
and Jordan [1868], attributed this reduction to the existence of large subgroups
(of index p) in PSL(2,Z/pZ) when p = 5, 7, 11, and showed that such subgroups
did not exist for higher p. For example, when p = 7, the group permutes its
7 conjugate octahedral subgroups, so it has a permutation representation of
degree 7.
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Dedekind’s paper [1878] was devoted to establishing a theory of modular func-
tions without recourse to the existing theory of elliptic functions, and central to
it was a function val : H → C (from the German Valenz ) which takes each value
once and only once on the interior of R (and “half” its boundary) and for which

val(z) = val
(
az + b

cz + d

)
.

Dedekind obtained it by taking the hypergeometric differential equation

x(1− x)
d2y

dx2
+ (γ − (α+ β + 1)x)

dy

dx
− αβy = 0,

where x and y are complex, and so choosing α, β, and γ that a quotient of the
two solutions maps C on to R or a copy of R under the action of SL(2;Z). Then
this function val is the inverse of this quotient.

Klein took over Dedekind’s val function and renamed it J . He also took over
(with due acknowledgement) Dedekind’s theory of modular transformations, in
which J(z) and

J̃(z) = J

(
Az + B

Cz +D

)
are related, where

(
A
C
B
D

)
is a 2×2 matrix with integer entries and determinant p

(or, more generally, any natural number). It is not hard to see that if we regard
as equivalent the elements(

A B

C D

)
and

(
A B

C D

)(
a b

c d

)
,

where
(
a
c
b
d

)
∈ SL(2;Z), then there are p+ 1 inequivalent

(
A
C
B
D

)
of determinant

p. So the equation relating J and J̃ is a polynomial equation of degree p+1: the
modular equation. Klein’s contribution lay in making the groups explicit, and,
more importantly, in introducing the Riemann surface of J̃ spread out over the
complex J-sphere. Thus when p = 5 a sphere is obtained, corresponding to the
role of PSL(2;Z/5Z) as the icosahedral group, and we have seen detail how Klein
treated the next case, p = 7. Indeed his famous book on the icosahedron [Klein
1884] is a showcase of his ideas on mathematics at the time, and his treatment
of the quartic curve marks a high point in his style.

Rational functions in J are quotients of polynomials in J , and form a field
C(J). Rational functions in J̃ live on the Riemann surface for J̃ , and form a
field extension of C(J) whose Galois group is the group of the modular equation.
This work of Klein’s is thus at the origin of the Galois theory of function fields.
Gordan’s jocular name for this kind of mathematics was, Klein tells us, hyper-
Galois theory [Klein 1922, p. 261]. The Galois-theoretic point of view is slightly
further developed in Klein and Fricke’s two-volume work on modular functions
[Klein and Fricke 1890–92].
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Dedekind had been the first in Germany to lecture on Galois theory, and the
first to stress the importance of the concept of an abstract group (in lectures
around 1858; see [Purkert 1976]), but he chose not to stress these ideas here, and
it was left to Klein and his students to develop them.

Finally, why did Klein not notice the connection with non-Euclidean geome-
try? There can never be a simple answer to this question, but Klein’s preferences
were for projective geometry, and for using group theory to get at the invari-
ant configurations (inflection points, bitangent points, and so on). In the paper
analysed here, and in his work on the icosahedron, he succeeded brilliantly in
his chosen task. The differential-geometric approach to non-Euclidean geome-
try advanced by Beltrami was less congenial to him, less central to his view of
mathematics. So he did not look for such aspects of his problem, and the simple
realization was left to Poincaré — to dramatic effect. Nonetheless, as Klein tells
us [1923, p. 584], it was during a sleepless night, March 22–23, 1882, that Klein,
in contemplating Figure 1, was able to grasp the full generality of Poincaré’s
ideas and so to formulate his own approach to automorphic functions and the
uniformization of Riemann surfaces.
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ordre”, Quetelet, Corr. Math. 7 (1832), 79–84.



FROM THE HISTORY OF A SIMPLE GROUP 131

[Purkert 1976] W. Purkert, “Ein Manuskript Dedekinds über Galois-Theorie”,
Schriftenreihe für die Geschichte der Naturwissenschaft, Technik und Medezin (Berlin)
13:2 (1976), 1–16.

[Riemann 1857] B. Riemann, “Theorie der Abelschen Functionen”, J. für reine
angew. Math. 54 (1857), 115–155. Reprinted as pp. 88–144 in his Gesammelte
mathematische Werke, Teubner, 1862; reprinted by Dover, 1953, and by Springer,
1990.

[Riemann 1862] B. Riemann, “Zur Theorie der Abelschen Functionen”, pp. 487–504
in Gesammelte mathematische Werke, Teubner, Leipzig, 1862. Reprinted by Dover,
1953, and by Springer, 1990.

[Steiner 1848] J. Steiner, “Ueber allgemeine Eigenschaften der algebraischen Curven”,
Berichte der Akad. Wiss. zu Berlin (1848), 310–316. Reprinted in J. für reine angew.
Math. 47 (1854), 1–6, and in Jakob Steiner’s Gesammelte Werke, G. Reimer, Berlin,
1882 (reprinted by Chelsea, Bronx, NY, 1972).

[Valentiner 1889] H. Valentiner, De endelige transformations-gruppers theori, Danish
Academy publications, series V 6, Copenhagen, 1889.

[Weber 1876] H. Weber, Theorie der Abel’schen Functionen vom Geschlecht 3, G.
Reimer, Berlin, 1876.

[Weber 1896] H. Weber, Lehrbuch der Algebra, Vieweg, Braunschweig, 1896. Reprinted
by Chelsea, New York, 1961.

Jeremy Gray

Faculty of Mathematics

Open University

Milton Keynes, MK7 6AA

United Kingdom

j.j.gray@open.ac.uk


