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Varieties of Minimal Rational Tangents on
Uniruled Projective Manifolds

JUN-MUK HWANG AND NGAIMING MOK

Abstract. On a polarized uniruled projective manifold we pick an irre-
ducible component K of the Chow space whose generic members are free
rational curves of minimal degree. The normalized Chow space of minimal
rational curves marked at a generic point is nonsingular, and its strict trans-
form under the tangent map gives a variety of minimal rational tangents, or
VMRT. In this survey we present a systematic study of VMRT by means of
techniques from differential geometry (distributions,G-structures), projec-
tive geometry (the Gauss map, tangency theorems), the deformation theory
of (rational) curves, and complex analysis (Hartogs phenomenon, analytic
continuation). We give applications to a variety of problems on uniruled
projective manifolds, especially on irreducible Hermitian symmetric mani-
folds S of the compact type and more generally on rational homogeneous
manifolds G/P of Picard number 1, including the deformation rigidity of
S and the same for homogeneous contact manifolds of Picard number 1,
the characterization of S of rank at least 2 among projective uniruled man-
ifolds in terms of G-structures, solution of Lazarsfeld’s Problem for finite
holomorphic maps from G/P of Picard number 1 onto projective manifolds,
local rigidity of finite holomorphic maps from a fixed projective manifold
onto G/P of Picard number 1 other than Pn, and a proof of the stability
of tangent bundles of certain Fano manifolds.
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Rational curves play a crucial role in the study of Fano manifolds. By Mori’s
theory, Fano manifolds are uniruled. We consider more generally uniruled projec-
tive manifolds. Fixing an ample line bundle and considering only components of
the Chow space whose generic members are free rational curves, we introduce the
notion of minimal rational curves by minimizing the degree of a generic member.
The normalized Chow space of minimal rational curves marked at a generic point
is nonsingular, and its strict transform under the tangent map gives the variety
of minimal rational tangents. In [Hwang and Mok 1997; 1998a; 1998b; 1999;
Hwang 1997; 1998] we have put forth the idea of recapturing complex-analytic
properties of Fano manifolds from varieties of minimal rational tangents and
holomorphic distributions spanned at generic points by them. In this survey we
present a systematic treatment of the fundamental notions, and examine a num-
ber of applications primarily in the context of rational homogeneous manifolds
of Picard number 1.

The scope of problems we consider covers deformation rigidity, algebro-geo-
metric characterizations (of Grassmannians, etc.), stability of the tangent bun-
dle, and holomorphic mappings. We also give complex-analytic and geometric
proofs of results from the theory of geometric structures of Tanaka, as given
by Ochiai [1970] as well as Tanaka and Yamaguchi [Yamaguchi 1993], which we
needed for various problems, making our presentation essentially self-contained.
As to the techniques we employ, an important role is played by holomorphic
distributions and the Frobenius condition. Distributions spanned by minimal
rational tangents are first of all studied using the deformation theory of ra-
tional curves. Then, projective geometry enters the picture in various ways,
in the problem of integrability of such distributions, in vanishing theorems re-
lated to flatness of G-structures and in the study of stability of tangent bundles.
Complex-analytic techniques enter, in the form of analytic continuation and Har-
togs extension, in conjunction with the use of the Gauss map, when we study
varieties of minimal rational tangents Cx as x varies. Further study of defor-
mations of curves, in the context of finite holomorphic maps to Fano manifolds,
leads to the notion of varieties of distinguished tangents. For the study of rational
homogeneous manifolds, we will need basics for graded Lie algebras associated
to simple Lie groups, a summary of which will be given.

For the general theory, varieties of minimal rational tangents are first studied
as projective subvarieties. The first motivation for studying their projective-
geometric properties stemmed from [Hwang and Mok 1998b], where we proved
the rigidity of irreducible Hermitian symmetric manifolds of the compact type
S under Kähler deformation. There we reduced the problem to the study of
the distribution W spanned by varieties of minimal rational tangents Cx at the
central fiber X, and derived a sufficient condition for the integrability in terms
of the projective geometry of Cx, namely, W is integrable whenever the variety
Tx of lines tangent to Cx is linearly nondegenerate in P(

∧2 Wx) for a generic
point x.
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In Section 1 we study Cx as projective subvarieties, and give first applications
of such results and their methods of proof. We prove the algebro-geometric
characterization of irreducible Hermitian symmetric manifolds of the compact
type and of rank at least 2 as the only uniruled projective manifolds admitting
G-structures for some reductive G. After identifying varieties of highest weight
tangents Wx with varieties Cx of minimal rational tangents Cx, the proof is
obtained by vanishing theorems for the obstruction to flatness of G-structures,
which reduce to projective-geometric properties of Cx. We further discuss the
question of stability of the tangent bundle of Fano manifolds by applying variants
of Zak’s theorem on tangencies on Cx. In Section 2 we return to deformation
rigidity. As we may restrict to the case where S is of rank at least 2, the problem
reduces to recovering an S-structure at the central fiber X. The latter is possible,
whenever Cx is linearly nondegenerate at a generic point ofX. Otherwise we have
a proper distribution W & T (X) spanned at generic points by Cx. We prove the
nonexistence of W by studying its integrability in terms of Cx, as mentioned. We
give further a generalization [Hwang 1997] of deformation rigidity to the case of
homogeneous contact manifolds, where there is the new element of deformations
of contact distributions.

In Section 3 we study varieties of minimal rational tangents Cx as the base
points vary, by considering the tautological 1-dimensional multi-foliation F de-
fined at generic points of C by the tautological lifting of minimal rational curves.
Assuming that the Gauss map on Cx to be generically finite for generic x, we
prove the univalence of the multi-foliations, resulting in the birationality of the
tangent map. This uniqueness result implies that a local biholomorphism f pre-
serving the varieties Cx must also be F-preserving. The latter constitutes the
first step towards a complex-analytic and geometric proof of Ochiai’s character-
ization of S (as above) in terms of flat S-structures, which says that f is the
restriction of a biholomorphic automorphism F of S. To prove Ochiai’s result,
we introduce the method of analytic continuation of F-preserving meromorphic
maps along minimal rational curves, and exploit the rational connectedness of S.

In Section 4 we move to rational homogeneous manifolds S of Picard num-
ber 1. For the nonsymmetric case a new element arises, namely, there exist
nontrivial homogeneous holomorphic distributions. In analogy to Ochiai’s result
we have the results of Tanaka and Yamaguchi in terms of varieties of highest
weight tangents Wx. In the nonsymmetric and noncontact case their results go
further, stating that a local biholomorphism f must extend to a biholomorphic
automorphism, provided that f preserves the minimal homogeneous distribution
D. We give a proof of the result of Tanaka and Yamaguchi, by showing that
a D-preserving local biholomorphism already preserves W and by resorting to
methods of Section 3.

In the last two sections we have primarily the study of finite holomorphic maps
onto Fano manifolds in mind. In Section 5 we introduce the notion of varieties of
distinguished tangents. They generalize varieties of minimal rational tangents,
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and are of particular relevance in the context of finite holomorphic maps into
Fano manifolds, since preimages of varieties of minimal rational tangents give
varieties of distinguished tangents. We give an application for rational homoge-
neous target manifolds S of Picard number 1 distinct from the projective space,
proving that any finite holomorphic map into S is locally rigid. In Section 6 we
consider the case where the domain manifold is S, and prove that any surjective
holomorphic map of S onto a projective manifold X distinct from the projective
space is necessarily a biholomorphism, resolving Lazarsfeld’s problem.

While in the applications we concentrate on rational homogeneous manifolds,
the general theory has been developed to be applicable in much wider contexts.
Such applications, especially to the case of Fano complete intersections, will
constitute one further step towards developing a theory of “variable geometric
structures” modeled on varieties of minimal rational tangents.

1. Minimal Rational Curves, Varieties of Minimal Rational
Tangents and Associated Distributions

1.1. For the study of Fano manifolds and more generally uniruled manifolds a
basic tool is the deformation theory of rational curves. We will only sketch the ba-
sic ideas and refer the reader to [Kollár 1996] for a systematic and rigorous treat-
ment of the general theory. Let X be a projective manifold. By a parametrized
rational curve we mean a nonconstant holomorphic map f : P1 → X. The image
of f is called a rational curve. Given a holomorphic family ft : P1 → X of
rational curves, parametrized by t ∈ 4 := {t ∈ C : |t| < 1}, the derivative d

dt

∣∣
0
ft

defines a holomorphic section of f∗0 T (X). However, given a member f0 of the
space Hol(P1, X) of parametrized rational curves in X, and σ ∈ Γ(P1, f∗0 T (X)),
it is not always possible to fit f0 into a holomorphic family of ft ∈ Hol(P1, X),
such that d

dt

∣∣
0
ft = σ. Setting in power series ft = f + σt + g2t

2 + · · · locally,
the obstruction of lifting to higher coefficients lies in H1(P1, f∗0T (X)). In case
the latter vanishes, Hol(P1, X) is smooth in a neighborhood U of [f0], and the
tangent space at [f ] ∈ U can be identified with Γ(P1, f∗T (X)).

By the Grothendieck splitting theorem any holomorphic vector bundle on P1

splits into a direct sum O(a1)⊕ · · ·⊕O(an). When f∗T (X) is semipositive, that
is, ai ≥ 0, then f∗T (X) is spanned by global sections, H1(P1, f∗T (X)) = 0, and
deformations of f sweeps out some open neighborhood of C = f(P1). We call f
a free rational curve. A projective manifold is said to be uniruled if it possesses
a free rational curve.

Each irreducible component of Hol(P1, X) can be endowed the structure of a
quasi-projective variety. It covers some Zariski-open subset of X if and only if
some member is a free rational curve. Consequently, there is an at most countable
union Z of proper subvarieties of X such that any rational curve passing through
x /∈ Z is necessarily free. A point x lying outside Z is called a very general point.
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Fix an ample line bundle L on X and consider all irreducible components H of
Hol(P1, X) whose generic member is a free rational curve. As degrees of members
of a fixed H with respect to L are the same we may speak of the degree of the
component H. A member of a component H of minimal degree will be called a
minimal rational curve. By Mori’s break-up trick [1979] a generic member of H is
an immersed rational curve f : P1 → X such that f∗T (X) ∼= O(2)⊕ [O(1)]p⊕Oq

(compare [Mok 1988; Hwang and Mok 1998b]); otherwise one can obtain an
algebraic one-parameter family of curves in H fixing a pair of very general points,
which must break up in the limit, contradicting minimality. A minimal rational
curve with the splitting type as described is called a standard minimal rational
curve.

We fix an irreducible component H of minimal rational curves. At a generic
point x ∈ X all such curves passing through x are free. Consider the subvariety
Hx ⊂ H of all [f ] ∈ H such that f(o) = x, where o ∈ P1 is a base point. The
isotropy subgroup of P1 at f(o) ∈ x o acts on Hx, making its normalization into
a principal bundle over a nonsingular quasi-projective variety Mx. We called
Mx the normalized Chow space of minimal rational curves marked at x. By
minimality Mx must be compact, that is, a projective manifold which may have
several connected components. By Mori’s break-up trick a generic member [f ]
of Hx is unramified at o. We have therefore a rational map Φx : Mx 99K PTx(X)
defined by

Φx
(
[f(P1)]

)
=
[
df(To(P1))

]
at generic points of Mx. We call Φx the tangent map at x.

Fix a base point x ∈ X and consider now the space Hol((P1, o); (X, x)) con-
sisting of all parametrized rational curves f sending o to x. For a holomorphic
family ft, t ∈ 4, of such curves

d

dt

∣∣∣
0
ft ∈ Γ(P1, f∗0 T (X) ⊗ O(−1)),

where O(−1) corresponds to the maximal ideal sheaf mo of o on P1. Given σ

in the latter space of sections, the obstruction to extending fo to a holomorphic
family ft, ft(o) = x, lies in H1(P1, f∗o T (X) ⊗ O(−1)), which vanishes whenever
fo is a free rational curve, since H1(P1,O(a)) = 0 whenever a ≥ −1. In this
case Hol((P1, o), (X, x)) is smooth in a neighborhood U of [fo], and the tangent
space at [f ] ∈ U can be identified with Γ(P1, f∗T (X) ⊗O(−1)).

Since [f ] ∈ Hx is standard for a generic [f ], Φx is generically finite. Let
Cx ⊂ PTx(X) be the closure of the image of the tangent map. We call Cx the
variety of minimal rational tangents at x. It may have several components.

For C smooth we can identify T[C](Mx) with Γ(C,NC|X⊗mx) for the normal
bundle NC|X of C in X and for mx denoting the maximal ideal sheaf of x on C.
For C standard and smooth, let Tx(C) = Cα ⊂ Tx(X). From the description
of T[C](Mx) we see that the tangent space T[α](Cx) = Pα/Cα, where Pα is the
positive part (O(2) ⊕ [O(1)]p)x of a Grothendieck decomposition of T (X) over
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C. With obvious modifications the preceding discussion applies to all standard
minimal rational curves, which are necessarily immersed.

1.2. From now on we assume that for our choice of H and for a generic point
x ∈ X, Cx is irreducible. For our study of uniruled projective manifolds via the
varieties of minimal rational tangents, an important element is the distribution
W spanned at generic points by the homogenization C̃x ⊂ Tx(X) of Cx. For the
problem of deformation rigidity, a key question is the question of integrability of
such distributions. By Frobenius, W is integrable if the Frobenius form

[ , ] :
∧2

W → T (X)/W

vanishes, where ϕx(u, v) = [ũ, ṽ] mod Wx for local holomorphic sections ũ, ṽ
such that ũ(x) = u, ṽ(x) = v.

A line tangent to Cx at a generic point [α] ∈ Cx defines a point in P
∧2

Wx.
The closure of such points will be denoted by Tx and will be called the variety
of tangent lines. The linear span Ex of the homogenization T̃x ⊂

∧2
Wx is then

given by Ex = Span{α ∧ ξ : [α] ∈ Cx smooth point, ξ ∈ Pα}. One of the main
results of [Hwang and Mok 1998b] is this:

Proposition 1.2.1. The distribution W is integrable if Tx is linearly nonde-
generate in P

∧2
Wx for a generic point x ∈ X, that is, if Ex =

∧2
Wx for x

generic.

Proof. From the nondegeneracy condition, it suffices to check the vanishing of
[α, ξ] for α ∧ ξ ∈

∧2
Wx, where [α] ∈ Cx is a generic point and ξ mod Cα is

tangent to Cx at [α]. By Frobenius’ condition, [α, ξ] = 0 if we can find a local
surface in X passing through x tangent to the distribution W such that the
tangent space of the surface at x is generated by α and ξ. By the definition of Cx
and the description of its tangent spaces, we can find a standard minimal rational
curve C which is tangent to α at x such that ξ lies in (O(2) ⊕ [O(1)]p)x = Pα
in the splitting of T (X) over C. Then, we can choose a point y 6= x on C and
deform C with y fixed so that the derivative of this deformation is parallel to ξ
at x. The locus Σ of this deformation will give an integral surface Σ of W at
x so that α and ξ generate Tx(Σ). It follows that we can find W -valued vector
fields α̃, ξ̃ in a neighborhood of x which are tangent to Σ, α̃(x) = α, ξ̃(x) = ξ.
This implies the desired vanishing [α, ξ] = 0 at x. �

If W is integrable, it defines a foliation on X outside a proper subvariety
Sing(W ) ⊂ X of codimension at least 2. Any minimal rational curve which is
not contained in Sing(W ) is contained in a leaf of W . Pick a generic point x,
then the leaf of W containing x can be compactified to a subvariety of X in the
following way. Consider the subvariety covered by all minimal rational curves
through x. Enlarge this subvariety by adjoining all minimal rational curves
through generic points on it. Repeat this adjoining process. This process must
stop after a finite number of steps and the resulting enlarged subvariety gives the
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compactification of the leaf through x [Hwang and Mok 1998b, Proposition 11].
Using this fact, we have the following topological obstruction to the integrability
of W .

Proposition 1.2.2. Let X be a uniruled projective manifold such that b2(X) = 1.
Suppose a choice of H can be made so that the generic variety of minimal rational
tangents Cx is linearly degenerate. Then, the distribution W spanned at generic
point by C̃x cannot be integrable.

Proof. Assuming integrability, compactified leaves of W define a rational fi-
bration of X over a projective variety X′ of smaller dimension. The exceptional
locus of this fibration is contained in Sing(W ) and of codimension at least 2.
But a generic minimal rational curve is disjoint from Sing(W ) [Hwang and Mok
1998b, Proposition 12]. and is contained in a leaf of the fibration. Taking a
very ample divisor on X′ and pulling it back to X, we find a hypersurface in X

disjoint from a generic minimal rational curve. This is a contradiction, since any
effective divisor on X is ample as X is of Picard number 1. �

1.3. In this section we consider meromorphic distributions W spanned by vari-
eties of minimal rational tangents, as in Section 1.2, and give sufficient conditions
for the integrability of W , in terms of properties of the generic variety of minimal
rational tangents Cx.

Proposition 1.3.1. Suppose the generic variety of minimal rational tangents
Cx ⊂ PW ⊂ PTx is irreducible and the second fundamental form σ[α] : T[α](Cx)×
T[α](Cx) −→ NCx|PWx,[α] in the sense of projective geometry is surjective at a
generic smooth point [α] of Cx. Then, W is integrable.

Proof. Let α ∈ C̃x be a generic point and let {α(t) : t ∈ C, |t| < 1} be a local
holomorphic curve. We write

α(t) = α+ tξ + t2ζ + O(t3).

Denote by σα the second fundamental form σα : Tα(C̃x)× Tα(C̃x) −→ NC̃x|Wx,α

in the sense of Euclidean geometry. Then σ[α] is surjective if and only if σα is
surjective. We have ξ ∈ Pα and σα(ξ, ξ) = ζ mod Pα. From now on we will
fix a choice of Euclidean metric on Wx and identify the normal space NC̃x|Wx,α

with the orthogonal complement P⊥α of Pα in Wx. With this convention we may
now choose the expansion for α(t) such that ζ ∈ P⊥α , so that σα(ξ, ξ) = ζ. We
fix α and write σ for σα. Now

α(t)∧α′(t) =
(
α+ tξ + t2ζ +O(t3)

)
∧ (ξ+2tζ+O(t2)) = α∧ξ+2tα∧ζ+O(t2).

It follows that α∧ ζ = α∧ σ(ξ, ξ) lies on Span{β ∧ Pβ : β ∈ C̃x} = Ex ⊂
∧2 Wx.

Since σ is symmetric, by polarization we have α ∧ σ(ξ, η) ∈ E for any ξ, η ∈ Pα.
The hypothesis of Proposition 1.3.1 then implies that α ∧ Wx ∈ E for any
α ∈ C̃x. Varying α we conclude that Ex =

∧2 Wx. Since x is a generic point, W
is integrable, by Proposition 1.2.1. �
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Proposition 1.3.2. Suppose the generic cone Cx ⊂ PWx ⊂ PTx is irreducible
and smooth and dim(Cx) > 1

2 rank(W ) − 1. Then W is integrable.

For the proof of Proposition 1.3.2, we will need Zak’s theorem on tangencies in
Projective Geometry, for the case of projective submanifolds.

Theorem 1.3.3 (Special case of Zak’s Theorem on tangencies [Zak

1993]). Let Z ⊂ PN be a k-dimensional complex submanifold and PE ⊂ PN
be a p−dimensional projective subspace, p ≥ k. Then, the set of points on Z at
which PE is tangent to Z is at most of complex dimension p− k.

Proof of Proposition 1.3.2. In the proof of Proposition 1.3.1 we use the
expansion of a 1-parameter family of minimal rational tangents α(t). In the no-
tations there consider now a 2-dimensional local complex submanifold of minimal
rational tangent vectors {α(t, s) : t, s ∈ C, |t|, |s| < 1}. Write r2 = |t|2 + |s|2.
We have

α(t, s) = α+ tξ + sη + t2σ(ξ, ξ) + 2tsσ(ξ, η) + s2σ(η, η) + O(r3).

Taking partial derivatives we have

α(t, s) ∧ ∂tα(t, s) =
(
α+ tξ + sη + O(r2)

)
∧
(
ξ + 2tσ(ξ, ξ) + 2sσ(ξ, η) +O(r2)

)
= α ∧ ξ + s (η ∧ ξ + 2α ∧ σ(ξ, η)) + 2t

(
α ∧ σ(ξ, ξ)

)
+O(r2)

and

∂s
(
α(t, s) ∧ ∂tα(t, s)

)
(o) = η ∧ ξ + 2α ∧ σ(ξ, η) ∈ Ex.

From the proof of Proposition 1.3.1 we know that α ∧ σ(ξ, η) ∈ Ex, from which
we conclude that ξ ∧ η ∈ Ex, that is,

∧2
Pα ⊂ Ex for each α ∈ C̃x. Suppose now

Ex &
∧2

Wx. Then, there exists µ ∈
∧2

W ∗x such that µ(e) = 0 for any e ∈ Ex.
It follows that for each α, Pα ⊂Wx is an isotropic subspace with respect to µ.

If dim(Cx) > 1
2 rank(W ) − 1, then dim(C̃x) > 1

2 rank(W ), and any such µ

must be degenerate. We claim that this leads to a contradiction. Let Q be the
kernel of µ, so that µ(λ, ξ) = 0 for any λ ∈ Q, ξ ∈Wx. Let π : PW 99K P(W/Q)
be the linear projection. For x generic Cx is linearly nondegenerate in W and
π
∣∣
Cx

is well-defined as a rational map. Consider a point [α] ∈ Cx, α /∈ Q, where
π
∣∣
Cx

is of maximal rank and A = π([α]) is a smooth point of the strict transform
π(Cx). Write To ⊂ P(W/Q) for the projective tangent subspace at A, To = PSo.
Let S ⊂ Wx be the linear subspace such that S ⊃ Q and S/Q = So. Then,
T is tangent to Cx along the fiber F of π−1(A). µ induces a (nondegenerate)
symplectic form µ̄ on Wx/Q, with respect to which So is isotropic. Hence

dimSo ≤ 1
2 dim(Wx/Q),

so that

dimF = dimCx − dimPSo > 1
2

dimWx − 1
2

dim(Wx/Q) = 1
2

dimQ.
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On the other hand, for T = PS, we have

dimT = dimTo + dimQ = (dim Cx − dimF ) + dimQ.

Since the projective space T is tangent to Cx along F , by Zak’s Theorem on
Tangencies we have

dimF ≤ dimT − dimCx = dimQ− dimF,

that is, dimF ≤ 1
2 dimQ, a contradiction. �

1.4. To illustrate the results of Section 1.3, we look at homogeneous contact
manifolds of Picard number 1. Recall that a contact structure on a complex man-
ifold X of odd dimension n = 2m + 1, is a holomorphic subbundle D ⊂ T (X)
of rank 2m such that the Frobenius bracket tensor ω :

∧2D → L := T (X)/D
defines a symplectic form on Dx for each x. A homogeneous contact mani-
fold is a rational homogeneous manifold with a contact structure. According to
Boothby’s classification [1961], any homogeneous contact manifold is associated
to a complex simple Lie algebra in the following way. For a simple Lie algebra g,
the highest weight orbit in g under the adjoint representation has a symplectic
structure induced by the Lie bracket of g, so-called Kostant–Kirillov symplectic
structure. This induces a contact structure on the projectivization X ⊂ Pg of
the highest weight orbit, making it into a homogeneous contact manifold. When
g is of type A, X is the projectivized cotangent bundle of a projective space and
has Picard number 2. When g is of type C, X is an odd dimensional projective
space regarded as a homogeneous space of the symplectic group. These two cases
are not interesting in our study.

We look at a homogeneous contact manifold X associated to an orthogonal
or an exceptional simple Lie algebra. In this case, X has Picard number 1 and
the line bundle L = T (X)/D is an ample generator of Pic(X). In fact, L is the
O(1)-bundle of the embedding X ⊂ Pg. There are lines of Pg lying on X and
they are minimal rational curves on X. When we represent X as G/P , where G
is the adjoint group of g and P is the isotropy subgroup at one point x ∈ X, the
set of all lines on X is homogeneous under G and the set of all lines through x

is homogeneous under P . Since a minimal rational curve is actually a line under
the embedding X ⊂ Pg, we see that Cx is smooth and homogeneous under the
isotropy group P .

Let θ : T (X) → L = T (X)/D be the quotient map and ω :
∧2

D→ L be the
Frobenius bracket. Then θ∧ωm, n = 2m+1, defines a nowhere vanishing section
of KX ⊗Lm+1. This shows that for a line C ⊂ X, T (X)|C = O(2)⊕ [O(1)]m−1⊕
Om+1. The symplectic form θ on D induces an isomorphism D ∼= D∗ ⊗ L,
which gives D|C = O(2)⊕ [O(1)]m−1⊕Om−1⊕O(−1) using T (X)/D|C = L|C =
O(1). This shows that the O(2)-component of T (X)|C is contained in D. Thus
Cx ⊂ PTx(X) is linearly degenerate and is contained in PDx. In fact, the
isotropy representation of P on Tx(X) is irreducible on Dx and Cx must be the
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projectivization of the orbit of a highest weight vector because Cx is compact
and homogeneous under P .

Since X has Picard number 1 and Cx is degenerate Wx = Dx, we have Ex 6=∧2
Dx from Section 1.2. The dimension of Cx is m−1, which is smaller than half

the rank of D, as expected from Section 1.3. In fact, here we have the symplectic
form ω and we can see that C̃x is Lagrangian with respect to ω, as follows. Given
two tangent vectors u, v to C̃x at a point on T (C) for a line C through x, we can
extend them to sections ũ, ṽ of (O(2) ⊕ [O(1)]m−1)-part of T (X)|C vanishing at
some points of C by Section 1.1. Then ũ, ṽ are sections of D|C and ω(ũ ∧ ṽ) is
a section of L having two zeros. From L|C = O(1), we see ω(ũ ∧ ṽ) = 0. This
explains Ex 6=

∧2
Dx, because Ex ⊂ Ker(ω) ⊂

∧2
Dx.

1.5. The splitting type of the tangent bundle restricted to a minimal rational
curve can be used to get information about principal bundles associated to the
tangent bundle. For this purpose, we need the full statement of Grothendieck’s
splitting theorem [1957]. Let O(1)∗ be the principal C∗-bundle on P1, which is
just the complement of the zero section of O(1). Given a connected reductive
complex Lie group G, choose a maximal algebraic torus H ⊂ G.

Theorem 1.5.1 [Grothendieck 1957]. Let P be a principal G-bundle on P1.
Then there exists an algebraic one-parameter subgroup ρ : C∗ → H such that P

is equivalent to the G-bundle associated to O(1)∗ via the action ρ. Furthermore,
let V be a vector bundle associated to G via a representation µ : G → GL(V )
on a finite dimensional vector space V . Then V splits as the direct sum of line
bundles O(〈µi, ρ〉), where µi : H → C∗ are the weights of µ and 〈µi, ρ〉 denotes
the integral exponent of the homomorphism µi ◦ ρ : C∗ → C∗.

This theorem can be used in the following situation. We are given a principal
G-bundle P on a uniruled manifold X and an associated vector bundle V via a
representation µ : G → GL(V ) on a vector space V . Usually the vector bundle
V is related to the tangent bundle T (X) so that from the splitting T (X)|C =
O(2)⊕ [O(1)]p⊕Oq on a standard minimal rational curve C, we have information
about the splitting type of V|C. This information helps us understand P and µ

by Theorem 1.5.1.
Consider the case when V is the tangent bundle T (X) itself. The natural

GL(V )-principal bundle associated to T (X) is the frame bundle F. Here V is
an n-dimensional complex vector space. Theorem 1.5.1 applied to F does not
say much. A more interesting case is when there is a reduction of the structure
group of the frame bundle, namely when there exists a subgroup G ⊂ GL(V )
and a G-subbundle G of F. In this case, we say that X has a G-structure. By
Theorem 1.5.1, the splitting type of T (X) on a minimal rational curve gives a
nontrivial restriction on the possibility of G ⊂ GL(V ). One particularly simple
case is when G is a connected reductive proper subgroup and the representation
µ : G ⊂ GL(V ) is irreducible. In this case, we can get a complete classification
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of uniruled manifolds admitting a G-structure in the following manner [Hwang
and Mok 1997].

The key point here is the coincidence of two subvarieties in PTx(X) for a
generic x ∈ X, which are a priori of different nature. On the one hand we have
the variety of minimal rational tangents Cx ⊂ PTx(X). On the other hand, the
G-structure defines the variety of highest weight tangents Wx ⊂ PTx. Indeed,
since G is reductive and µ is irreducible, there is a unique highest weight among
µi with multiplicity one and the orbit of the highest vector in PV defines a
subvariety Wx ⊂ PTx(X). These two subvarieties Cx and Wx coincide. The
proof is as follows.

By Theorem 1.5.1, the existence of a unique highest weight vector and the
existence of a unique line subbundle of highest degree O(2) in the splitting of
V = T (X) on a minimal rational curve C imply that the tangent direction of
the curve C belongs to the orbit of a highest weight vector. Thus, Cx ⊂ Wx.
When G is a proper subgroup of GL(V ), we can easily show that Wx is a proper
nondegenerate subvariety of PTx(X). To prove that Cx = Wx, we need to show
that q ≤ codim(Wx ⊂ PTx(X)) where T (X)|C = O(2) ⊕ [O(1)]p ⊕ Oq. For this,
we look at the splitting type of End(T (X)) over a minimal rational curve C:

End(T (X))|C = [O(2)]q ⊕ [O(1)]p(q+1) ⊕Op
2+q2+1 ⊕ [O(−1)]p(q+1) ⊕ [O(−2)]q.

From the reductivity of G, we have a direct sum decomposition of the Lie algebra
gl(V ) = g ⊕ g⊥ with respect to the trace form. This induces a decomposition
End(T (X)) = U⊕U⊥. At a generic point x ∈ C, the O(2)x-factor in End(T (X))x
corresponds to endomorphisms with image in Cα = Tx(C). Suppose the bundle
U |C corresponding to g contains an O(2)-factor. Then for any γ ∈ Wx, the
tangent space gγ to Wx contains the point α ∈ Wx. This is a contradiction to
the nondegeneracy of Wx. It follows that all O(2)-factors are in U⊥. From the
orthogonality of g and g⊥, endomorphisms in g⊥ which have images in Cα must
annihilate gα, the tangent space to Wx at α. This means that [O(2)]qx annihilates
the tangent space to Wx at α, implying q ≤ codim(Wx ⊂ PTx(X)).

Now we identify Cx = Wx for a generic x ∈ X. ρ : C∗ → G in Theorem 1.5.1
tells us that for each α ∈ Cx, there exists a C∗-action on Tx(X) under which
Tx(X) decomposes as Cα⊕Hα⊕Nα where t ∈ C∗ acts as t2 on Cα, as t on Hα,
and as 1 on Nα. By rescaling, we get a C∗-action on Vx preserving Cx which
fixes Cα, acts as t on Hα, and as t2 on Nα. Moreover, Cα ⊕Hα corresponds
to the tangent space of Cx at α. This fact has an interesting implication on
Tx, that the linear span Ex of Tx contains α ∧Hα and α ∧ Nα for all α ∈ Cx.
In fact, Choose a generic point α + ξ + ζ on Cx. The orbit of the C∗-action is
α+ tξ+ t2ζ. At t = t0, we further consider the curve α+ est0ξ + e2st20ζ. Taking
derivative with respect to s, we get the tangent vector t0ξ + 2t20ζ to Cx at the
point α+ t0ξ + t20ζ. The corresponding element of Tx is

(α+ t0ξ + t20ζ) ∧ (t0ξ + 2t20ζ) = t0α∧ ξ + 2t20α∧ ζ + t30ξ ∧ ζ.
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It follows that the linear span of Tx contains vectors of the form α∧ ξ, α∧ ζ. As
ξ takes values in the tangent space of Cx at α, ζ takes independent values in Nα.
Thus Tx contains α ∧Hα and α∧Nα. This implies that Ex =

∧2
Tx(X).

Moreover, putting t = −1 in the C∗-action on Cx considered above, we see
that Cx is a Hermitian symmetric space of rank at least 2. It is not hard to see
from this that on a uniruled manifold, if an irreducible reductive G-structure
with G 6= GL(n,C) is given, then G = KC where K is the isotropy subgroup of
the isometry group of an irreducible Hermitian symmetric space S of the compact
type of rank at least 2. Such a G-structure will be called an S-structure.

A G-structure G is flat if there exists a local coordinate system whose coor-
dinate frames belong to G regarded as a subbundle of the frame bundle. The
following result of Ochiai will be proved in Section 3.2 below.

Proposition 1.5.2 [Ochiai 1970]. Let S be an irreducible Hermitian symmetric
space of the compact type and of rank at least 2. Let M be a compact simply-
connected complex manifold with a flat S-structure. Then, M is biholomorphic
to S.

The flatness of an S-structure is equivalent to the vanishing of certain holomor-
phic tensors, just as the flatness of a Riemannian metric is equivalent to the
vanishing of the Riemannian curvature tensor in Riemannian geometry. By re-
stricting these tensors to minimal rational curves and considering the splitting
type, it is easy to show the vanishing of these tensors from Ex =

∧2
Tx(X); see

[Hwang and Mok 1997] for details. As a result:

Theorem 1.5.3 [Hwang and Mok 1997]. A uniruled projective manifold with
an irreducible reductive G-structure, G 6= GL(V ), is an irreducible Hermitian
symmetric space of the compact type.

This theorem gives an algebro-geometric characterization of irreducible Hermit-
ian symmetric spaces of the compact type without the assumption of homo-
geneity. For example, Grassmannians of rank at least 2 can be characterized as
the only uniruled manifolds whose tangent bundle can be written as the tensor
product of two vector bundles of rank at least 2.

1.6. To construct a reasonable moduli space of vector bundles on projective
manifolds, we have to restrict ourselves to a special class of vector bundles,
called semistable bundles. On a Fano manifold X of Picard number 1, they can
be defined as follows. Fix a component K of the Chow space of rational curves
on X, so that a generic member is a free rational curve. Given a torsion-free
sheaf F on X choose a generic member C of K so that F|C is locally free. We
can always make such a choice because the singular loci of a torsion-free sheaf
has codimension at least 2 (see [Hwang and Mok 1998b, Proposition 12], for
example). Let F|C = O(a1) ⊕ · · · ⊕ O(ak), a1 ≥ · · · ≥ ak, be the splitting. We
define the slope of F as the rational number µ(F) :=

∑
ai/k. A vector bundle
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V of rank r on X is if stable µ(F) < µ(V ) for every subsheaf F of rank k, with
0 < k < r. It is stable if µ(F) ≤ µ(V ) for every such F.

A well-known problem in Kähler geometry of Fano manifolds is the Calabi
problem on the existence of Kähler–Einstein metrics. The semistability of the
tangent bundle is a necessary condition for the existence of Kähler–Einstein met-
ric. As a result, people have been interested in the stability or the semistability
of T (X) for a Fano manifold X with Picard number 1. By taking wedge prod-
uct, the instability of T (X), or equivalently the instability of T ∗(X), implies the
nonvanishing of H0(X,Ωr(k)) for certain r, k. Thus one sufficient condition for
the stability of T (X) is the vanishing of these cohomology groups. Peternell and
Wiśniewski [1995] proved the stability of T (X) for many examples of X, includ-
ing all X of dimension at most 4 by using this idea. It looks hard to generalize
this method to higher dimensions.

This problem can be studied by relating it to the geometry of Cx for a generic
x ∈ X [Hwang 1998]. Choose H as in Section 1.1 and the corresponding Chow
space K. Suppose T (X) is not stable. Choose a subsheaf F ⊂ T (X) with
maximal value of µ(F ) ≥ µ(T (X)) = p+2

n
. The maximality of µ(F ) implies the

minimality of µ(T (X)/F ), and the vanishing of the Frobenius bracket tensor∧2
F → T (X)/F . Thus, F defines a meromorphic foliation on X. If Cx is

contained in Fx for a generic x ∈ X, we can get a contradiction to the Picard
number of X as in Proposition 1.2.2. Thus PFx ⊂ PTx(X) is a linear subspace
which does not contain Cx. On the other hand, the condition that µ(F ) ≥ p+2

n

reads
∑
ai ≥ r(p+2)

n , where F |C = O(a1) ⊕ · · · ⊕ O(ar) for a generic minimal
rational curve C. This can be rephrased as “the intersection of F |C with the
positive part of T (X)|C has larger dimension than the one expected from the
rank of F”. Since the positive part of T (X)|C corresponds to the tangent space
to Cx, the assumption that T (X) is not stable implies that the tangent spaces
of Cx have an excessive intersection with a linear subspace PFx. More precisely:

Proposition 1.6.1. Suppose that T (X) is not stable. Then, there exists an
integrable meromorphic distribution F ⊂ T (X) of rank r so that for a generic
x ∈ X, the intersection of the projective tangent space at a generic point of Cx
with PFx has dimension greater than r

n(p + 2)− 2.

Thus by studying the projective geometry of Cx, we can prove the stability of
T (X). Although very little is known about the geometry of Cx in general, there
are many cases where Proposition 1.6.1 can be used to show the stability of
T (X). For example, in low dimension, the excessive intersection property gives
a heavy restriction on Cx which gives a contradiction easily. The main results
of [Hwang 1998] that Fano 5-folds with Picard number 1 have stable tangent
bundles and Fano 6-folds with Picard number 1 have semistable tangent bundles
were obtained this way.

Another interesting case is when we know that Cx is smooth and of small
codimension in PTx(X).
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Theorem 1.6.2. Assume that Cx is an irreducible submanifold of PTx(X) for
a generic x ∈ X. If 2p ≥ n− 2, then T (X) is stable.

From the discussion in Section 1.3, our assumption shows that Cx is nondegener-
ate in PTx(X). Theorem 1.6.2 follows directly from Proposition 1.6.1 using the
following lemma, which is a variation of Zak’s theorem on tangencies just as in
the proof of Proposition 1.3.2.

Lemma 1.6.3. Let Y ⊂ Pn−1 be a nondegenerate irreducible subvariety of di-
mension p ≥ n−2

2 . If there exists a linear subspace E ⊂ Pn−1 of dimension
r− 1 such that for a generic point y ∈ Y , the projective tangent space to Y at y
intersects E on a subspace of dimension q − 1 for q ≥ r

n (p + 2), then Y is not
smooth.

As a corollary of Theorem 1.6.2, we get the stability of T (X) in the following
cases, most of which have not been proved previously:

• smooth linear sections of codimension 1 or 2 of Grassmannians of rank 2;
• smooth hyperplane sections of Grassmannian of rank 3 of dimension 9;
• smooth linear sections of dimension at least 10 of the 16-dimensional E6 sym-

metric space;
• smooth linear sections of dimension at least 20 of the 27-dimensional E7 sym-

metric space.

2. Deformation Rigidity of Irreducible Hermitian Symmetric
Spaces and Homogeneous Contact Manifolds

2.1. We propose to study deformation of certain Fano manifolds of Picard
number 1 by considering deformations of their bundles of varieties of minimal
rational tangents and distributions spanned by them. As a first step we deal
with irreducible Hermitian symmetric spaces of the compact type, and proved
in [Hwang and Mok 1998b] their rigidity under Kähler deformation, as follows.

Theorem 2.1.1. Let S be an irreducible Hermitian symmetric space of the
compact type. Let π : X→ 4 be a regular family of compact complex manifolds
over the unit disk 4. Suppose Xt := π−1(t) is biholomorphic to S for t 6= 0 and
the central fiber X0 is Kähler . Then, X0 is also biholomorphic to S.

The case of S ∼= Pn being a consequence of the classical result of Hirzebruch and
Kodaira [1957], we restrict ourselves to S of rank at least 2. (The case of the
hyperquadric also follows from [Brieskorn 1964].) S is associated to holomorphic
G-structures, as explained in Section 1.5. On S the varieties of minimal rational
tangents Cx ⊂ PTx(S) are highest weight orbits of isotropy representations as
discussed in Section 1.5. They turn out to be themselves Hermitian symmetric
manifolds of the compact type of rank 1 or 2, and irreducible except in the case of
Grassmannians G(p, q) of rank at least 2, where Cx is isomorphic to Pp−1×Pq−1,
embedded in Ppq−1 by the Segre embedding.
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Under the hypothesis of Theorem 2.1.1 we proceed to prove that the central
fiber X0

∼= S. Denote by T the relative tangent bundle of π : X→4. Pick some
to 6= 0 and a minimal rational curve C on Xto . By considering the deformation
of C as a curve in X, we obtain a subvariety C ⊂ PT such that for a point y on
Xt; t 6= 0; the fiber Cy ⊂ PTy is isomorphic to the embedded standard variety
of minimal rational tangents Co ⊂ PTo(S). At a generic point x of the central
fiber every minimal rational curve is free and the normalized Chow space Mx of
such curves marked at x is projective and nonsingular. Over such a point Cx is
the same as the variety of minimal rational tangents. Here we make use of the
hypothesis that X0 is Kähler, which implies that the deformations of C situated
on X0 are irreducible and of degree 1 with respect to the positive generator of
Pic(X0) ∼= Z.

Suppose we are able to prove that, for a generic point x on X0,

(A) Mx
∼= Co and

(B) Cx ⊂ PTx is linearly nondegenerate.

Then, it follows readily that the latter is isomorphic to the model Co ⊂ PTo(S)
as projective submanifolds. From this one can readily recover a holomorphic S-
structure on the complement of some subvariety E of X0. As a subvariety of X, E
is of codimension at least 2, and a Hartogs-type extension theorem resulting from
[Matsushima and Morimoto 1960] allows us to obtain a holomorphic S-structure
on X0. Since flatness of holomorphic G-structures is a closed condition, the S-
structure on X0 is flat, leading to a biholomorphism X0

∼= S, as a consequence
of Ochiai’s theorem, Proposition 1.5.2.

(A) can be established by induction except for the case of G(p, q); p, q > 1
where Cx ∼= Pp−1 × Pq−1. In the abstract case it is possible to have nontrivial
deformation of Pp−1 × Pq−1, as exemplified by the deformation of P1 × P1 to
Hirzebrach surfaces. However, in our situation the individual factors Pp−1 and
Pq−1 correspond to projective spaces ∼= Pp and Pq (respectively) of degree 1
in S. By cohomological considerations we prove that limits of such projective
spaces cannot decompose in the central fiber, thus establishing (A) even in the
special case of S = G(p, q), with p, q > 1. We refer the reader to [Hwang and
Mok 1998b, § 3] for details.

2.2. It remains now to prove (B) that on the central fiber X0, generic varieties
of minimal rational tangents Cx ⊂ PTx are linearly nondegenerate. From (A) we
can identify Mx with Co ⊂ PTo(S), and realize the tangent map Φx : Mx → Cx
as the restriction of a linear projection PTo(S) → PWx, where PWx is the
projective-linear span of Cx. We proceed to prove (B) by contradiction. The
assignment of Wx to each generic x on X0 defines a (meromorphic) distribution
on X0. Since X0 is of Picard number 1 by Proposition 1.2.2 if Wx 6= Tx at generic
points the distribution W is not integrable. On the other hand, by Proposition
1.2.1, W is integrable whenever the variety of tangential lines Tx ⊂ P

∧2
Wx
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is linearly nondegenerate at generic points x. To prove (B) by contradiction it
remains therefore only to check the condition of linear nondegeneracy on Tx ⊂
P
∧2

Tx. As explained in Section 1.5, To ⊂ P
∧2

To(S) is nondegenerate for the
model Co. Since the tangent map Φx : Mx → Cx; Mx

∼= Co; is the restriction
of a linear projection PTo(S) → PWx, it follows that Tx ⊂ P

∧2
Wx is linearly

nondegenerate, as desired.

2.3. Deformation rigidity can be asked for other rational homogeneous spaces,
too.

Conjecture 2.3.1. Let S be a rational homogeneous space with Picard number
1. Let π : X→ ∆ be a regular family of compact complex manifolds with Xt ∼= S

for all t 6= 0. If X0 is Kähler , X0
∼= S .

We expect that the method of Sections 2.1 and 2.2 can be generalized to a general
S, although the details will not be straightforward. When S is a homogeneous
contact manifold, this was done in [Hwang 1997]. We will sketch the main ideas
here.

Let S be a homogeneous contact manifold of dimension n = 2m + 1 associ-
ated to an orthogonal or an exceptional simple Lie algebra as in Section 1.4. We
consider π : X→ ∆ as in Conjecture 2.3.1. There exists a distribution D of rank
2m on X which may have singularity on X0 and gives the contact distribution on
Xt, t 6= 0. Just as the deformation rigidity of Hermitian symmetric spaces was
obtained by the recovery of the S-structure at a generic point of X0, the defor-
mation rigidity of homogeneous contact manifolds can be obtained by showing
that D defines a contact structure at a generic point of X0. Here, in place of
Ochiai’s result, we can just look at the Kodaira–Spencer class [LeBrun 1988].

By the Lagrangian property of Cs, for s ∈ S, discussed in Section 1.4, Ts is
contained in the kernel of

ω :
∧2 Ds → Ls.

Now the key point of the proof of the deformation rigidity of homogeneous con-
tact manifold is the fact that Ts is nondegenerate in PKer(ω) ⊂ P

∧2
Ds. This

can be checked case by case as in [Hwang 1997, Section 2]. In other words, the
symplectic structure on Ds is completely determined by Cs.

To prove the deformation rigidity, we argue as in Sections 2.1 and 2.2. Let
x ∈ X0 be a generic point and choose a section σ : ∆ → X with σ(0) = x. If
the family Cσ(t) ⊂ PTσ(t)(Xt) remains unchanged as projective subvarieties as
t → 0, then the linear span of Tσ(t) is isomorphic to Ker(ω) of S. This implies
that D defines a contact structure at x and we are done. As in Sections 2.1
and 2.2, an induction argument reduces the proof of the rigidity of Cσ(t) to
showing that Cx is linearly nondegenerate in Dx. But linear degeneracy would
imply the integrability of the distribution D using the linear nondegeneracy of
Ts in Ker(ω), just as in Section 2.2. Integrability of D gives a contradiction to
Section 1.2, thus Cσ(t) is rigid.
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3. Tautological Foliations on Varieties of Minimal Rational
Tangents and the Method of Analytic Continuation

3.1. In this section, we consider the following problem. For two Fano manifolds
X1, X2 with bundles of varieties of minimal rational tangents C1 ⊂ PT (X1),C2 ⊂
PT (X2) and a biholomorphism f from an open subset U1 ⊂ X1 to an open subset
U2 ⊂ X2 satisfying df(C1) = C2, when can we say that f sends the intersection
of a minimal rational curve with U1 to the intersection of a minimal rational
curve with U2. In other words, when does C ⊂ PT (X) determine the minimal
rational curves locally? One sufficient condition is that Cx has generically finite
Gauss map as a projective subvariety of PTx(X) for generic x and U1, U2 are
sufficiently generic. This is contained in Corollary 3.1.4 below.

We start with some notations. In this section, we will view a distribution D

on a manifold as a subsheaf of the tangent sheaf. We will be always looking at
generic points of the manifold where all distributions concerned are locally free,
and we regard the distribution as a subbundle of the tangent bundle at such
points. We will not make notational distinction between sheaves and bundles
in this case. Given a distribution D on a manifold, the derived system of D is
the distribution ∂D := D + [D,D], and its Cauchy characteristic Ch(D) is the
distribution defined by Ch(D)(U) := {f ∈ D(U), [f, g] ∈ D(U), ∀g ∈ D(U)}, for
any open subset U of the manifold. Ch(D) is always integrable.

Let X be any complex manifold and U ⊂ X be a sufficiently general small
open set. Given any subvariety C ⊂ PT (U), we consider two distributions J and
P on the smooth part of C defined by

Jα := (dπ)−1(Cα),

Pα := (dπ)−1(Pα),

where dπ : Tα(C)→ Tx(U) is the differential of the natural projection π : C→ U

at α ∈ C, x = π(α), and Pα ⊂ Tx(X) is the linear tangent space of Cx :=
π−1(x) ⊂ PTx(X) at α. Both J and P are canonically determined by C. J has
rank p+ 1 and P has rank 2p+ 1, where p is the fiber dimension of π : C→ U .
Also we have the trivial vertical distribution V of rank p on C defining the fibers
of π. Clearly, V ⊂ J ⊂ P.

Now assume that X is a uniruled projective manifold and C is part of the
variety of minimal rational tangents on X. Then we have a meromorphic multi-
valued foliation F on C defined by lifting minimal rational curves. When we work
on a small open set of C, we may assume F is a foliation by curves on that open
set, by choosing a specific branch of the multi-valued foliation. We call F the
tautological foliation. Since F is defined by lifting curves, J = V + F at generic
points of C.

Proposition 3.1.1. P = ∂J.



368 JUN-MUK HWANG AND NGAIMING MOK

Proof. For notational simplicity, we will work over Γ = T (X)\ (0-section). Let
γ : Γ→ PT (X) be the natural C∗-bundle. Let C′ := dγ−1(C), J′ := dγ−1J,P′ :=
dγ−1P,V′ := dγ−1V, and F′ := dγ−1F. It suffices to check that P′ = ∂J′.

We start with ∂J′ ⊂ P′. It suffices to show [V′,F′] ⊂ P′. Let x1, . . . , xn be a
local coordinate system on U . Let v1 = dx1, . . . , vn = dxn be linear coordinates
in the vertical direction of Γ. Let v =

∑
i e
i ∂
∂vi

be a local section of V′ and
f =

∑
i f

i ∂
∂vi

+ ζ
∑
j vj

∂
∂xj

be a local section of F′ over a small open set in C′.
Here ei, f i, ζ are suitable local holomorphic functions. Dividing by ζ and looking
at generic points outside the zero set of ζ, we may assume that ζ ≡ 1. Then
[v, f ] =

∑
i e
i ∂
∂xi

modulo V′. But this is precisely the vector v viewed as the
tangent vector to X. Hence [v, f ] ∈ P′.

From the above expression of [v, f ] modulo V′, we see that the rank of ∂J′ is
higher than the rank of J′ by at least p, which shows ∂J′ = P′. �

Proposition 3.1.2. F ⊂ Ch(P).

Proof. Let D be the Chow space parametrizing minimal rational curves. Let
U ⊂ C be a sufficiently generic small open set. Locally, we have a morphism
ρ : U → D whose fibers are leaves of F. In a neighborhood of a generic point
[C0] ∈ D corresponding to a minimal rational curve C0, we have a distribution
P̂ on D defined as follows. Note that the tangent space to D at [C] near [C0] is
naturally isomorphic toH0(C,NC) whereNC is the normal bundle of C inX. We
know that NC ∼= [O(1)]p⊕[O]q. Let P̂[C] be the subspace ofH0(C,NC) consisting
of sections of [O(1)]p-part. This gives a distribution P̂ in a neighborhood of [C0].
From Section 1.1, P = dγ−1P̂. So the result follows from the following easy
lemma. �

Lemma 3.1.3. Let f : W → Y be a submersion between two complex manifolds
and N be a distribution on Y . Let K be the distribution defined by the fibers of
f . Then K is contained in the Cauchy characteristic of the distribution df−1N.

Theorem 3.1.4. Suppose that a component of Cx has generically finite Gauss
map regarded as a projective subvariety in PTx(X). Then F = Ch(P).

Proof. Suppose that for some v ∈ V(U), h ∈ J(U) and f ∈ F(U), we have
[v, f ] + h ∈ Ch(P)(U). Then it is easy to see that v ∈ Ch(P)(U). In fact, to
show [v, p] ∈ P(U) for any p ∈ P(U), it suffices to show [v, [w, f ]] ∈ P(U) for any
w ∈ V(U), by using Proposition 3.1.1. From [v, [w, f ]] = [w, [v, f ]] + [f, [w, v]]
and [h, w] ∈ P(U), we see that [v, [w, f ]] ∈ P(U).

So it suffices to show that there is no nonzero v ∈ V(U) ∩ Ch(P)(U). We
will work on Γ as in the proof of Proposition 3.1.1. We need to show that any
v ∈ V′(ρ−1(U))∩Ch(P′)(ρ−1(U)) is tangent to a fiber of γ. Suppose there exists
such a v =

∑
i ai

∂
∂vi

. Then [v, f ] ∈ Ch(P′) where we used the same letter f to
denote the section of F′ lifting a section f of F. For any section k of V′, k =∑
i ei

∂
∂vi

, we have [[v, f ], k] ∈ P′. Modulo vertical part, [[v, f ], k] =
∑
i k(ai) ∂

∂xi
.
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For this to be a section of P′,
∑
i k(ai) ∂

∂vi
must be a section of V′. Since [v, k] is

a section of V′, we conclude that
∑
i v(ei)

∂
∂vi

is a section of V′. In other words,
for any vector field k =

∑
i ei

∂
∂vi

tangent to C′x,
∑
i v(ei)

∂
∂vi

remains tangent
to C′x. This implies that v is in the kernel of the differential of the Gauss map
of C′x. By assumption on the Gauss map of Cx, such v must be tangent to the
fibers of γ on C′. �
Corollary 3.1.5. Under the assumption of Theorem 3.1.4 on C, F is a single-
valued meromorphic foliation on C uniquely determined by C. In particular , the
tangent map Φx : Mx → Cx is birational .

We note that the Gauss map on Cx is generically finite, whenever the latter is
irreducible, nonsingular and distinct from the projective space, by Zak’s Theorem
on tangencies [Zak 1993]. This is in particular the case at generic points for Fano
complete intersections X ⊂ Pn of dimension at least 3 provided that c1(X) ≥ 3
(X being of Picard number 1); see [Kollár 1996, Section V.4].

3.2. In Section 1.5 we have stated in Proposition 1.5.2 the result of Ochiai’s
characterizing irreducible Hermitian symmetric spaces S of the compact type
and of rank at least 2 in terms of flat S-structures. We will prove the result
here, which follows from this proposition:

Proposition 3.2.1. Let S be an irreducible Hermitian symmetric manifold of
the compact type and of rank at least 2. Denote by C→ S the bundle of varieties
of minimal rational tangents. Let U1, U2 ⊂ S be two connected open sets and
f12 : U1 → U2 be a biholomorphism such that (f12)∗C|U1 = C|U2. Then, f12

extends to a biholomorphic automorphism of S.

Proposition 3.2.1 implies Proposition 1.5.2, as follows. Since the S-structure on
M is flat, given any x ∈M there exists a neighborhood Ux of x and a biholomor-
phism f : Ux → S of Ux onto some open subset U of S such that f∗W|Ux = C|U ,
where W → M is the bundle of varieties of highest weight tangents defined by
the S-structures. Starting with one choice of x and f , Proposition 3.2.1 allows us
to continue f holomorphically along any continuous curve, by matching different
fy on Uy on intersecting regions using global automorphisms. This leads to a
developing map, which is well-defined on M since M is simply connected. The
resulting unramified holomorphic map F : M → S is necessarily a biholomor-
phism, since S is simply connected.

Ochiai’s original proof of 3.2.1 [1970] used harmonic theory of Lie algebra
cohomologies. We will give an alternate proof of Proposition 3.2.1, by making use
of analytic continuation. The bundle π : C → S of varieties of minimal rational
tangents is equipped with a one-dimensional foliation F, as in Section 3.1. Recall
that for [α] ∈ Cx, T[α]Cx = Pα mod Cα, by definition. Since f12 preserves C, it
also preserves Pα = (dπ)−1(Pα). By Theorem 3.1.4, (f12)∗F = Ch((f12)∗P) =
Ch(P) = F. In other words, f12 preserves the holomorphic foliation F, that is,
where defined f12 sends open sets on lines to open sets on lines.
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To explain our approach note that the problem of analytic continuation of F-
preserving germs of holomorphic maps also makes sense for the case of Pn. For
n = 2 and denoting by B2 ⊂ C2 ⊂ P2 the unit ball, any such map f : B2 → P2

defines a holomorphic mapping f# on some open subset D ⊂ (P2)∗ of the dual
projective space, where D is the open set of all lines having nonempty (and
automatically connected) intersection with B2. In this case D is the complement
of a closed Euclidean ball in (P2)∗, and f# extends holomorphically to (P2)∗ by
Hartogs extension, from which we can recover an extension of f from B2 to
P2, by regarding a point x ∈ P2 as the intersection of all lines passing through
x. In place of implementing this argument in the case of irreducible Hermitian
symmetric spaces, we will adopt here a related but more direct argument, by
analytically continuing along lines. This approach was adopted in [Mok and
Tsai 1992] in a similar context, but the argument there was incomplete due
to the possibility of multivalence of analytically continued functions. We will
complete the argument by making use of C∗-actions on S.

We start with a lemma concerning analytic continuation along chains of lines.
By a chain of lines K on S we mean the union of a finite number of distinct
lines C1, . . . , Cm such that Cj ∩ Cj+1 is a single point for 1 ≤ j < m − 1. We
write K = C1 + C2 + · · ·+ Cm. We will say that K is nonoverlapping to mean
Cj ∩ Ck = ∅ whenever |j − k| ≥ 2. We will more generally be dealing with
F-preserving meromorphic maps f : Ω 99K S on a domain Ω ⊂ S. By this we
mean that at a generic point, f is a local biholomorphism and F-preserving.

Lemma 3.2.2. Let K = C1 + C2 + · · ·+Cm be a nonoverlapping chain of lines
on S, o ∈ C1, and f be a germ of F-preserving meromorphic map at o. Then,
there exists a tubular neighborhood U of K and an F-preserving meromorphic
map f̂ : U → S such that f̂ extends the germ f .

The assumption that K is nonoverlapping is not essential. In general, one can
replace K by a chain K̃ of P1 and a holomorphic immersion πo : K̃ → S,
πo(K̃) = K. The analogue of Lemma 3.2.2 says that there is a Riemann domain
π : U → S including πo : K̃ → S such that f extends to f̂ : U → S.

Proof. Let Ωo b Ω ⊂ S be open subsets and f : Ω 99K S be an F-preserving
meromorphic map. Suppose Co ⊂ S is a line such that Co∩Ωo is nonempty and
irreducible. Denote by F (S) the Fano variety of lines on S. Since Co is reduced
and irreducible, for [C] ∈ F (S) sufficiently close to [Co], C ∩ Ωo is nonempty
and irreducible. The meromorphic map f : Ω → S gives rise to a meromorphic
map f# : D → F (S) on some open neighborhood D of [C] in F (S). Denote
by ρ : C → F (S) the universal family of lines on S. Then, f# ◦ ρ is defined on
ρ−1(D).

Over Ω, f can be recovered from f# ◦ ρ, as follows. For x ∈ Ω, let σ1 and σ2

be two germs of holomorphic sections of C at x, σ1(x) 6= σ2(x). If f is locally
biholomorphic at x, then f(y) = (f#◦ρ)(σ1(y))∩(f#◦ρ)(σ2(y)) for y sufficiently
near x, where a point [α] ∈ C is identified as a line Cα ⊂ Tx(X). In other words,
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f(x) is simply the point of intersection of image lines of two distinct lines passing
through x. For x ∈ Ω in general, let Σo be Graph(f# ◦ρ◦σ1)∩Graph(f#◦ρ◦σ2),
σ1(x) 6= σ2(x), and Σ be the unique germ of irreducible component of Σo which
dominates the germ of Ω at x. Then, Σ is the germ of graph of the meromorphic
map f at x. But the same procedure can be used to define a meromorphic map
f̂ for x lying in a neighborhood U of C, provided that f# ◦ ρ is defined in a
neighborhood of σ1(x) and σ2(x). This observation, together with the following
obvious Lemma, implies readily that f admits an extension to a meromorphic
map f̂ : U → S on some tubular neighborhood U of C, which is necessarily
F-preserving, since it is F-preserving on Ω ∩ U .

Lemma 3.2.3. Let Vo ⊂ V ⊂ S be nonempty connected open subsets of S. Let
g : Vo → S be an F-preserving meromorphic map. Suppose g# ◦ ρ is defined on
the graph of two nonintersecting holomorphic sections σ1, σ2 : V → C over V .
Define now Σ ⊂ V × S to be the unique irreducible component of Graph(g# ◦
ρ ◦ σ1) ∩Graph(g# ◦ ρ ◦ σ2) which projects onto V . Then, Σ is the graph of an
F-preserving meromorphic map ĝ : V → S such that ĝ|Vo ≡ g.

We continue with the proof of Lemma 3.2.2. In the application of Lemma 3.2.3,
the important thing is to have some holomorphic section of C over V . In the
application to prove Proposition 3.2.2, there is no difficulty with finding such
local sections on tubular neighborhoods of pieces of rational curves C (taking
m = 1 and C1 = C) since the lift Ĉ of C to C already lies in the domain of
definition of f# ◦ ρ. �
We remark that in place of Lemma 3.2.3 one can also take intersections of alge-
braic families of lines, by first extending the domain of definition of f# ◦ρ to C|U
for some tubular neighborhood U of C, using Oka’s Theorem on Hartogs radii
(see [Mok and Tsai 1992] and the references there).

By Lemma 3.2.2, any f ∈ Ω can be analytically continued along tubular
neighborhoods of chains of lines. Since S is rationally connected by (nonover-
lapping) chains of lines, f can be extended to any point on S. However, it is not
obvious that given y ∈ S, the germ f̂y of an extension f̂ at y obtained along a
nonoverlapping chain of lines K, y ∈ K, emanating from x ∈ Ω (not necessarily
o) will be independent of x and independent of the chain of lines. We will show
that this is indeed the case, by making use of C∗-actions on S. This will yield
the following result:

Lemma 3.2.4. In the notation of Proposition 3.2.1, f12 : U1 → U2 extends to a
birational map F : S → S.

Proof. Let y ∈ S and K, with K′ ⊂ S, be two (nonoverlapping) chains of lines
joining x and x′ on Ω to y. We may choose a Harish-Chandra chart Cn ⊂ S

such that Ω b Cn, y ∈ Cn, no irreducible component of K or K′ lies on S −Cn
and all points Ci ∩ Ci+1 and C ′j ∩C ′j+1 lie on Cn. We can now join x to y by a
continuous path on Cn consisting of paths on Ci; similarly x′ can be joined to y
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by a continuous path consisting of paths on C ′j. Joining x′ to x by a continuous
path on Ω we obtain a closed continuous path γ(t), γ : [0, 1] → Cn ⊂ S. f

can then be analytically continued along λ to obtain f̂ , such that the germ f̂x
(by abuse of notations) at t = 1 may a priori be distinct from the germ fx at
t = 0. We are going to exclude the latter possibility by making use of C∗-actions
on S. For λ ∈ C∗, f can be analytically continued along the path γλ given by
γλ(t) = λ(γ(t)). Denote by f̂λ, with f̂1 = f̂ , the analytic continuation of f as a
meromorphic map on a tubular neighborhood of γλ. For λ small enough, γλ lies
on Ω. As f is defined on Ω for the germs of the extended maps at t = 1 we have
f̂λx = fx for λ small, hence for λ = 1, by the identity theorem on holomorphic
functions. With this we have proven that f can be analytically continued from
Ω to S. Applying this to the F-preserving biholomorphism f12 : U1 → U2 in
Proposition 3.2.1 and to its inverse f21 : U2 → U1, we conclude that f12 can
be extended to a birational map F : S 99K S. The proof of Lemma 3.2.4 is
complete. �

For the proof of Proposition 3.2.1 it remains to establish one more fact:

Lemma 3.2.5. Let S be an irreducible Hermitian symmetric manifold and F :
S 99K S be a birational self-map. Suppose for a generic line C on S, F |C maps
C onto a line C ′. Then, F is a biholomorphism.

Proof. We denote by B ⊂ S the subvariety on which F fails to be a local
biholomorphism and call B the bad locus of F . Suppose B is of codimension at
least 2 (and the same applies to F−1), then F induces a linear isomorphism θ

on Γ(S,K−1
S ) by pulling back. Identifying S with its image under the projective

embedding by K−1
S , F is nothing other than the restriction of the projectivization

[θ∗] : PΓ(S,K−1
S )∗ → PΓ(S,K−1

S )∗

to S, thus a biholomorphism.
It remains to show that the bad locus B of F is of codimension at least 2.

Otherwise let R ⊂ B be an irreducible component of codimension 1. Choose a
connected open subset U on which F is an open embedding. Let xo ∈ U and C

be a line passing through xo. C is standard and small deformations of C fill up
a tubular neighborhood G of C. Write Z ⊂ B for the set of indeterminacies of
F . Since X is of Picard number 1, C must intersect R. Deforming xo ∈ U and
hence C slightly without loss of generality we may assume that C intersects R
at a point x1 ∈ R − Z. Since F is holomorphic and ramified at x1 there exists
a nonzero tangent vector η ∈ Tx1(S) such that dF (η) = 0. For any x ∈ C we
denote by α(x) some nonzero vector tangent to C at x.

Either η /∈ Pα(x1) or η ∈ Pα(x1). In both cases we are going to obtain a
contradiction. Since T (S)|C is semipositive there exists s ∈ Γ(C, T (S)|C) such
that s(x1) = η. Suppose η /∈ Pα(x1), then s(x) /∈ Pα(x) for a generic x ∈
C. On the other hand, since F |C : C → S is a biholomorphism onto a line
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C ′ = F (C) ⊂ S, F∗s is a well-defined holomorphic section in Γ(C ′, T (S)) such
that for y1 = F (x1), F∗s(y1) = dF (s(x1)) = dF (η) = 0. From F∗s(y1) = 0
it follows that F∗s(y) ∈ Pβ(y) for any y ∈ C ′, y = F (x), β(y) being a nonzero
vector tangent to C ′ at y. Choosing x generic on C we get a contradiction from
s(x) /∈ Pα(x), F∗s(y) ∈ Pβ(y) and from dF (Pα(x)) = Pβ(y), which follows from
dF (C̃x) = C̃′y.

Suppose now η ∈ Pα(x1). Write T (S)|C ∼= O(2) ⊕ [O(1)]p ⊕ Oq . Let s ∈
Γ(C,O(2) ⊕ [O(1)]p) be such that s(x1) = η. We may choose s so that s

vanishes at some point x0 ∈ C. Then, for the corresponding decomposition
T (S)|C′ ∼= O(2) ⊕ [O(1)]p ⊕ Oq, since F preserves C along C, we have F∗s ∈
Γ(C ′,O(2)⊕ [O(1)]p) such that F∗s is not tangent to C ′ and such that F∗s(y0) =
F∗s(y1) = 0, a plain contradiction. Since Ker(dF (x1)) 6= 0 leads in any event
to a contradiction, we have proven that the bad set of F is of codimension at
least 2 in S. The proof of Lemma 3.2.5 is complete. �

With Lemma 3.2.5 we have completed the proof of Proposition 3.2.1.

4. Minimal Rational Tangents and Holomorphic Distributions
on Rational Homogeneous Manifolds of Picard Number 1

4.1. In the study of Fano manifold of Picard number 1 through their varieties
of minimal rational tangents, next to irreducible Hermitian symmetric manifolds
we have the rational homogeneous manifolds S of Picard number 1. The non-
symmetric ones are distinguished by the existence of nontrivial homogeneous
holomorphic distributions.

In Sections 1.4 and 2.3 we studied the case of homogeneous contact manifolds.
As will be seen, the contact case is special among the nonsymmetric ones. By
the Tanaka–Yamaguchi theory of differential systems on S, Ochiai-type theorems
hold for any S 6= Pn. On nonsymmetric S, there is a natural distribution D1,
whose definition will be recalled shortly. In case S is neither of symmetric nor
of contact type, it follows from [Yamaguchi 1993] that any D1-preserving local
holomorphic map extends to an automorphism of S. Yamaguchi’s proof uses har-
monic theory of Lie algebra cohomologies, just as Ochiai’s proof of Proposition
1.5.2. We will give an alternate proof of relevant results from Tanaka–Yamaguchi,
by the method of analytic continuation as in Section 3. We start by recalling
some basic facts concerning S.

Fixing a base point o ∈ S, we may write S = G/P , where G is a connected and
simply-connected simple complex Lie group and P ⊂ G is the maximal parabolic
subgroup fixing o. Let g be the Lie algebra of G and p be the parabolic subalgebra
corresponding to P . Write u ⊂ p for the nilpotent radical and let p = u + l be
a choice of Levi decomposition. The center z of l is one-dimensional. We fix a
Cartan subalgebra h ⊂ l, which is also a Cartan subalgebra of g. We have the
root system 4 ⊂ h∗ of g with respect to h. We can uniquely determine a set 4+
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of positive roots by requiring that u is contained in the span of negative root
spaces. (Here our sign convention is opposite to the choice in some references,
e.g. [Yamaguchi 1993]. As many geometers do, we prefer this choice for the
reason that positive roots correspond to positive line bundles.) Fix a system
of simple roots Σ = {α1, . . . , αr}. The maximality of p implies that there is a
unique simple root αi satisfying αi(z) 6= 0. We say that S is of type (g, αi).

Conversely, given a Cartan subalgebra h, a simple root system of (g, h) and
a distinguished simple root αi, we can recover p ⊂ g and hence S = G/P , as
follows. For an integer k, −m ≤ k ≤ m, we define 4k to be the set of all roots∑r
q=1 mqαq with mi = k. Here m is the largest integer such that 4m 6= 0. For

α ∈ 4 we denote by gα the corresponding root space. Write

g0 = h⊕
⊕
α∈40

gα,

gk =
⊕
α∈4k

gα, for k 6= 0

for the eigenspace decomposition with respect to ad(z). More precisely, there
exists an element θ ∈ z such that [θ, v] = kv for v ∈ gk, so that the eigenspace
decomposition g =

⊕m
k=−m gk endows g with the structure of a graded Lie

algebra. We denote by (g, αi) the Lie algebra g with this graded structure and
say that (g, αi) (and S) is of depth m. We have

p = g0 ⊕ g−1 ⊕ · · · ⊕ g−m;

l = g0;

u = g−1 ⊕ · · · ⊕ g−m.

Identify To(S) with g/p ∼= g1 ⊕ · · · ⊕ gm. For 1 ≤ k ≤ m, the translates of
g1 + · · ·+ gk under G defines a homogeneous holomorphic distribution Dk on
S, so that D1 & D2 & · · · & Dm = T (S) defines a filtration of the holomorphic
tangent bundle.

For x ∈ S we denote by Px ⊂ G the maximal parabolic subgroup fixing x

(so that Po = P ). Denote by Ux ⊂ Px the unipotent radical, Lx = Px/Ux,
and regard D1

x as an Lx-representation space. Consider the set of all highest
weight vectors ξ of D1

x as an Lx-representation space and denote by Wx ⊂
PD1

x the collection of projectivizations [ξ]. Lx acts transitively on Wx, so that
Wx ⊂ PD1

x is a rational homogeneous projective submanifold. We call Wx the
variety of highest weight tangents. The collection of Wx as x ranges over S
defines a homogeneous holomorphic fiber bundle W→ S. We denote by L1

x the
image of Lx in the bundle of automorphisms GL(D1

x) and denote by L1 → S,
L1 ⊂ GL(D1), the fiber bundle thus obtained.

We proceed to relate varieties of highest weight tangents Wx ⊂ PD1
x with

minimal rational curves. More generally, we discuss the construction of rational
curves associated to roots. For ρ ∈ 4+, let Hρ ∈ hρ = [gρ, g−ρ] be such that
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ρ(Hρ) = 2. We call Hρ the coroot of ρ. Basis vectors Eρ ∈ gρ, E−ρ ∈ g−p
can be chosen such that [Eρ, E−ρ] = Hρ, [Hρ, Eρ] = 2Eρ, [H,E−ρ] = −2Eρ
so that the triple (Hρ, Eρ, E−ρ) defines an isomorphism of sρ = hρ ⊕ gρ ⊕ g−ρ
with sl2(C); see [Serre 1966, VI, Theorem 2, p. 43 ff.]. Let now Cρ ⊂ X be
the P SL(2,C) orbit of o = eP under the Lie group Sρ ∼= P SL(2,C), Sρ ⊂ G

with Lie algebra sρ. Consider S of type (g, αi). Write Hj for Hαj and let ωi
be the i-th fundamental weight with ωi(Hj) = δij , and E be the underlying
vector space of the representation of G, with lowest weight −ωi, defining the
first canonical embedding τ : S ↪→ PE. We have Hv = −ωi(H)v for any H ∈ h

and a lowest weight vector v ∈ E. For the rational curve Cρ with ωi(Hρ) = s we
have Hρv = −sv. Since Hρ is a generator of the weight lattice of sρ, the pull-
back of O(1) on PE to Cρ, which is the dual of the tautological line bundle, gives
a holomorphic line bundle ∼= O(s). In particular, for ρ = αi we have ωi(Hi) = 1
so that τ(Cαi) is a line, and Cαi ⊂ S represents a generator of H2(S,Z) ∼= Z.
We have

τ : H2(S,Z)
∼=−→ H2(PE,Z) ∼= Z.

In general, Cρ ⊂ S is a rational curve of degree s = ωi(Hρ).
A minimal rational curve C ⊂ S is of degree 1, and will also be called a line. C

is called a highest weight line if and only if [Tx(C)] ∈Wx at every x ∈ C. Since
the lowest weight orbit in Pg1 agrees with the highest weight orbit, Cαi ⊂ S is
a highest weight line. We will see that in case all roots of g are of equal length,
any line is a highest weight line. This is not the case in general.

From now on we will assume S 6= Pn. We have the following result of Tanaka
[1979] and Yamaguchi [1993] and its immediate corollary (see [Hwang and Mok
1999]).

Proposition 4.1.1. Let U ⊂ S be a connected open set . Then a holomorphic
vector field on U can be extended to a global holomorphic vector field on S if it
preserves W|U . Furthermore, if S is neither of symmetric type nor of contact
type, then a holomorphic vector field on U can be extended to a global holomorphic
vector field on S if it preserves D1|U .

Corollary 4.1.2. Let U1, U2 ⊂ S be connected open sets and f12 : U1 → U2

a biholomorphic map preserving the distribution D1 ⊂ T (S). If S is neither
of symmetric nor of contact type, then f12 can be extended to a biholomorphic
automorphism of S. When S is of symmetric type or of contact type, f12 can
be extended to a biholomorphic automorphism of S, if f12 preserves the fiber
subbundle W ⊂ PD1.

The proof of Proposition 4.1.1 as given in [Tanaka 1979; Yamaguchi 1993] re-
quires algebraic machinery that are quite distinct from techniques explained
in this survey. For S of symmetric type, this is just Ochiai’s theorem which we
proved in Section 3.2. The same proof works for S of contact type. In Section 4.2
we will give directly a proof of Corollary 4.1.2 for the case when all roots of g
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are of equal length, by showing that a local D1-preserving holomorphic map nec-
essarily preserves the bundle W ⊂ PD1 of varieties of highest weight tangents
and by applying the method of analytic continuation in Sections 3.1 and 3.2.
An adaptation of the argument will apply even in the case with roots of unequal
lengths. We will need the following obvious interpretation of the Frobenius form.

Lemma 4.1.3. Let S be a rational homogeneous manifold of Picard number 1
and of depth m ≥ 2. Let k be a positive integer 1 ≤ k < m and write F k :
Dk
o ⊗Dk

o → To(S)/Dk
o for the Frobenius form for the distribution Dk at o ∈ S.

Under an identification of To(S) with g1 ⊕ · · · ⊕ gm, we have F k(ξ, ζ) = [ξ, ζ]
mod g1 ⊕ · · · ⊕ gk.

Under the hypothesis of Corollary 4.1.2, it follows readily that f12 : U1 → U2

preserves the set of ξ 6= 0 for which the rank of (F 1
ξ ) is minimal. For [ξ] ∈Wo it

is easy to see that rank(F 1
ξ ) ≤ rank(F 1

η ) for any nonzero η ∈ D1
o . In the contact

case rank(F 1
ξ ) = 1 for any ξ 6= 0, and f12 does not necessarily preserve W. For

the noncontact case it is however not straightforward in the case of exceptional
Lie algebras g = E6, E7, E8 to determine rank(F 1

ξ ).

4.2. We consider in what follows the case of simple Lie algebras g for which all
roots are of equal length, including g = Dn (n ≥ 4), E6, E7, E8, (for which there
are associated (g, αi) neither of symmetric nor of contact type). We start with
a discussion of the root space decomposition for g1. Consider a highest weight
line C, o ∈ C, Tx(C) = CEµ for a root vector Eµ corresponding to a highest
weight µ ∈ h∗ of g1. Define

4′1(µ) = {ρ ∈ 41 : µ− ρ ∈ 4},
4′′1(µ) = {ρ ∈ 41 : µ+ ρ ∈ 4},
4⊥1 (µ) = {ρ ∈ 41 : µ− ρ, µ+ ρ /∈ 4}.

When all roots of g are of equal length, any ρ-chain attached to µ is of length at
most 2, so that 41 = {µ}∪4′1(µ)∪4⊥1 (µ)∪4′′1 (µ) is a disjoint union. We have
the following corresponding lemma on the Grothendieck splitting of D1 over C.

Lemma 4.2.1. Let S be a rational homogeneous manifold of the above type, and
C ⊂ S be a rational curve tangent to the distribution D1. Then, D1|C is of the
form O(2) ⊕ [O(1)]u ⊕Ov ⊕ [O(−1)]r for some nonnegative integers u, v and r.

Proof. Since Hµ is a generator for the weight lattice of sµ = hµ⊕gµ⊕g−µ, the
root space decomposition of D1

o gives rise to a Grothendieck splitting of D1|C ,
with gρ corresponding to the direct summand O(dρ), where [Hµ, Eρ] = dρEρ, that
is, dρ = ρ(Hµ). For g with roots of equal length, dρ = 2, 1, 0,−1, corresponding
to the decomposition 41 = {µ} ∪ 4′1(µ) ∪4⊥1 (µ) ∪4′′1(µ). �
We write Pα for the positive part at o, Zα for Ovo and Nα for [O(−1)]ro. The
proof of Lemma 4.2.1 also shows that Dk/Dk−1|C can have only summands of
degree 1, 0 and −1 for k > 1. We know that T (S)|C must be of the form



VARIETIES OF MINIMAL RATIONAL TANGENTS 377

O(2)⊕ [O(1)]p ⊕Oq . The quotient bundle T (S)/D1|C is semipositive. From the
knowledge of splitting types of Dk/Dk−1|C and using composition series, we see
that T (S)/D1|C has at most summands of degree 1 and 0, and that the number
of O(1)’s in the Grothendieck splitting is exactly r, the number of roots in4′′1(µ).
This implies u = p, namely, that every deformation of a highest weight line is
a highest weight line. We may thus take W → S to be a bundle of varieties of
minimal rational tangents.

The Grothendieck decomposition of D1|C as in Lemma 4.2.1 implies that Wo

is the closure of the graph of a vector-valued cubic polynomial in p variables.
More precisely, let Θ ⊂ 40 be the set of positive roots such that µ − θ ∈ 4′1.
Then |Θ| = p. Write Θ = {θ1, . . . , θp} and E−a for E−θa. In a neighborhood of
[α], α = Eµ, we have the cubic expansion of Wo as the closure of the image of
[Φ] : Cp −→ PTo(S) for the vector-valued cubic polynomial Φ : Cp −→ To(S)
defined by

Φ(z) = Eµ +
∑
a

[
Eµ, E−a]za +

1
2!

∑
a,b

[
[Eµ, E−a], E−b

]
zazb

+
1
3!

∑
a,b,c

[[
[Eµ, E−a], E−b

]
, E−c

]
zazbzc.

We are now ready to state the following result which reduces distribution-
preserving local maps to those preserving varieties of highest weight tangents.

Proposition 4.2.2. Let S be a rational homogeneous manifold of Picard num-
ber 1. Assume that S is neither of the symmetric nor of the contact type, and
that it is of type (g, αi) for some simple Lie algebra g for which all roots are
of equal length. Denote by D1 ⊂ T (S) the homogeneous holomorphic distribu-
tion corresponding to g1, and by W ⊂ PD1 the homogeneous holomorphic fiber
bundle of varieties of highest weight tangents. Then, any D1-preserving germ of
holomorphic maps must preserve W.

For the proof of Proposition 4.2.2 we will need a number of lemmas.

Lemma 4.2.3. Let S be a rational homogeneous manifold as in Proposition 4.2.2,
o ∈ S be a fixed base point , and F : D1

o ×D1
o → D2

o be the Frobenius form. For
ξ ∈ D1

o denote by Fξ : D1
o → D2

o the linear map defined by Fξ(ζ) = F (ξ, ζ). Let
α be a highest weight vector of D1

o as an Lo-representation space. Then, there
exists some nonzero vector η ∈ D1

o such that rank(Fη) > rank(Fα).

Proof. For k ≥ 1 let µk and λk ∈ 4k denote, respectively, the highest and
lowest weight of gk. For any (g, αi) of the contact type, g2 is 1-dimensional and
λ2 = λ is the only weight in42, while λ−ρ is a positive root for any ρ ∈ 41. For
S as in the Lemma, in particular not of the contact type, by a straightforward
checking, λ2 − µ1 /∈ 41. In fact, λ2 does not even dominate µ1. Write α = Eµ1

and 4′′1(µ1) = {ρ(1), . . . , ρ(r)}. Then, rank(Fα) = r. Since [g1, g1] = g2 we
have λ2 = ϕ1 + ψ1 for some ϕ1, ψ1 ∈ 41. There are two possibilities. Either
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both ϕ1, ψ1 ∈ 4⊥1 (µ1), or we may take ϕ1 ∈ 4′′1(µ1), ψ1 ∈ 4′1(µ1). Writing
β = Eϕ1 and γ = Eψ1 we have in both cases [α, γ] = 0. For t ∈ C consider
the vector ηt ∈ g1 given by ηt = α + tβ. We may choose basis vectors Eρ
of gρ such that [α,Eρ(i)] = ±Eµ1+ρ(i); [ηt, γ] = [α, γ] + t[β, γ] = ±tEλ2 . Since
λ2−µ1 /∈ 41, Eλ2 is not proportional to any Eµ1+ρ(i) and is linearly independent
of [α, g1] = Im(Fα). As Eλ2 ∈ Im(Fηt ) for t 6= 0 it follows that [ηt, g1] contains
at least p + 1 linearly independent elements for t 6= 0 sufficiently small, so that
rank(Fηt) > rank(Fα), as desired. �

Lemma 4.2.4. Let S be a rational homogeneous manifold as in Proposition
4.2.2. Suppose there exists some D1-preserving germ of holomorphic map which
does not preserve W. Then, there exists a holomorphic bundle of connected
reductive Lie groups H → S, L1 & H & GL(D1) such that , denoting by V ⊂
PD1 the orbit H ·W under the natural action of H on PD1, the canonical map
V → S realizes V as a holomorphic fiber bundle for which the fibers Vx ⊂ PD1

x

are rational homogeneous submanifolds conjugate to each other under projective
linear transformations. Moreover , W & V & PD1.

Proof. Consider the group Q of germs of holomorphic maps f : (S, o) →
(S, o) such that f preserves D1. We can identify the maximal parabolic P as
a subgroup of Q. Let A ⊂ GL(D1

o) be the algebraic subgroup consisting of all
dϕ(o) ∈ GL(D1

o), ϕ ∈ Q. Any A-invariant subvariety contains Wo and hence
A ·Wo, the orbit of Wo under A. A ·Wo is a constructible set and its Zariski
closure A ·Wo is again A-invariant. The complement B of A ·Wo in A ·Wo is
A-invariant. B is constructible and its Zariski closure B ⊂ A ·Wo is a proper A-
invariant subvariety. It follows that B must be empty, otherwise B would contain
A ·Wo, so that B = A ·Wo, a plain contradiction. Thus, Vo := A ·Wo is a closed
subvariety in PD1

o . By assumption there exists ν ∈ A such that ν(Wo) 6= Wo,
so that Wo & Vo. Since Vo is homogeneous under A, it must be smooth. As
each component of Vo is P -invariant and contains Wo, we conclude that Vo is an
irreducible homogeneous submanifold of PD1

o . Let Ho ⊂ GL(D1
o) be the identity

component of A. Then, Vo = Ho ·Vo ⊂ PD1
o is a rational homogeneous manifold

equivariantly embedded in PD1
o . Passing to projectivizations it follows readily

from Borel’s fixed point theorem that Ho ⊂ GL(D1
o) is reductive.

To prove Lemma 4.2.4 it remains to show that Vo & PD1
o . Denote by Zo ⊂

PD1
o the subset consisting of all [η] such that rank(Fη) = rank(Fα), with [α] ∈

Wo. By Lemma 4.2.3, Zo & PD1
o . On the other hand, for any D1-preserving

ϕ ∈ Q, rank(Fdϕ(η)) = rank(Fη), so that Vo = A·Wo ⊂ Zo & PD1
o , as desired. �

We will prove Proposition 4.2.2 by getting a contradiciton to W & V & PD1.
The idea is a variation of the proof of Cx = Wx in Section 1.5.

Lemma 4.2.5. Let W & V & PD1 be as given in Lemma 4.2.4. Then, for each
[α] ∈Wo, T[α](Vo) ⊂ (Pα ⊕ Zα)/Cα.
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Proof. Let C ⊂ S be a minimal rational curve passing through o. In what
follows we write D for D1. By Lemma 4.2.1 we have

(D∗⊗D)|C ∼=
(
[O(1)]r⊕Ov⊕[O(−1)]p⊕O(−2)]

)
⊗
(
O(2)⊕[O(1)]p⊕Ov⊕[O(−1)]r

)
.

Write To(C) = Cα and take ω∗ ∈ D∗o to be a covector annihilating Pα ⊕ Zα.
Then, ω∗ ∈ D∗o lies in the well-defined direct summand [O(1)]r of D∗|C. To prove
the Lemma it suffices to prove that ω∗(η) = 0 whenever η mod Cα ∈ T[α](Vo).
As in Section 1.5 let U ⊂ D∗ ⊗ D be the holomorphic subbundle where Ux ⊂
D∗x ⊗Dx = gl(Dx) is the Lie algebra of Hx for any x ∈ S. Consider the direct
sum decomposition D∗ ⊗D = U ⊕ U⊥. The decomposable tensor α⊗ ω∗ lies in
F := O(2)⊗ [O(1)]r ⊂ (D∗⊗D)|C . Since F ∼= [O(3)]r and every direct summand
of (D∗ ⊗ D)|C is of degree at most 3, we have F = F ′ ⊕ F ′′ with F ′ ⊂ U |C
and F ′′ ⊂ U⊥|C from the uniqueness of Grothendieck decompositions. Since
every element of F is of the form α ⊗ τ∗ for some τ∗ ∈ [O(1)]rx, we must have
correspondingly a decomposition [O(1)]rx = Q′ ⊕ Q′′ such that F ′ = Cα ⊗ Q′
and F ′′ = Cα ⊗ Q′′. The arguments of Section 1.5 show that Ux contains no
nonzero decomposable tensor element, implying therefore that Q′ = 0 and hence
F = F ′′ ⊂ U⊥|C , which means that ω∗(η) = 0 whenever η mod Cα is tangent
to Vo at [α], as desired. �

Lemma 4.2.6. Let ζ ∈ Zα be such that [ζ, Pα] = 0 for the Lie bracket [ · , · ] :
g1 × g1 → g2. Then ζ = 0.

Proof. Write µ for the highest weight in g1 and choose α = Eµ. Recall that Θ is
the set of positive roots θ in4o such that µ−θ = ρ ∈ 4′1(µ). Then, for any θ ∈ Θ
we have [ζ, E−θ] = ±[ζ, [ᾱ, Eρ]]. Since [ᾱ, ζ] = 0 and by hypothesis [ζ, Pα] = 0 we
conclude from the Jacobi identity that [ζ, E−θ] = 0. We proceed to deduce ζ = 0
from [ζ, Pα] = 0 by showing that the latter implies [ζ, Zα] = [ζ, Nα] = 0, so that
[ζ, g1] = 0, implying ζ = 0. To see this, by the cubic expansion of Wo and writing
ξa = [α,E−a], Zα is spanned by ζab =

[
[α,E−a], E−b]

]
= [ξa, E−b], a, b ∈ Θ,

so that [ζ, ζab] = [[ζ, ξa], E−b] − [[ζ, E−b], ξa] = 0. Similarly, Nα is spanned
by ωabc = [[[α,E−a], E−b], E−c] = [ζab, E−c] so that [ζ, ωabc] = [[ζ, ζab], E−c] −
[[ζ, E−c], ζab] = 0, as desired. �

Proof of Proposition 4.2.2. It suffices now to prove that V as constructed in
Lemma 4.2.4, W & V & P(D) cannot possibly exist. Suppose otherwise. Then
for [α] ∈ Wo & Vo we have by Lemma 4.2.5, T[α](Vo) = E mod Cα for some
vector subspace E of Do such that

Pα & E ⊂ Pα ⊕ Zα.

By the polarization argument of Section 1.3 E is isotropic with respect to the
vector-valued symplectic form [ · , · ]. It follows that there exists some nonzero
vector ζ ∈ Zα such that [ζ, Pα] = 0, contradicting Lemma 4.2.6. The proof of
Proposition 4.2.2 is complete. �
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For S of type (g, αi) as in Proposition 4.2.2, the arguments of analytic contin-
uation of Sections 3.1 and 3.2 apply to show that any D1-preserving germ of
holomorphic map extends to an automorphism of S, as in Corollary 4.1.2. The
proof of Proposition 4.2.2 is also valid for g = Bn and for (F4, α4). The remaining
cases of (Cn, αi), (F4, α2), (F4, α3), (G2, α2) are characterized by the fact that
W & C, that is, by the existence of minimal rational curves other than highest
weight lines. We will say for short that (g, αi) is of excessive type. We will
exclude (G2, α2) from our discussion, since the underlying complex manifold is
biholomorphic to the 5-dimensional hyperquadric. For the rest, Cs is the closure
of the isotropy orbit of the highest weight vector in g2, from which it can be
shown that W = C ∩ PD1.

For (g, αi) of excessive type with g = Cn, F4; we can still apply the method
of analytic continuation to prove Corollary 4.1.2, provided that we prove (1) the
analogue of Proposition 4.2.2 and (2) that any W-preserving germ of holomorphic
map is E-preserving for the foliation E on W defined by highest weight lines,
E = F|W. (1) can be done by a straightforward verification that highest weight
vectors ξ are characterized by the minimality of rank(F 1

ξ ), which we omit. (2) can
be done by an adaptation of Section 3.1, as follows. We consider the distribution
R on W defined by R = (dσ)−1P for σ : W → S the restriction of π : C → S to
W. Then, E ⊂ Ch(R). If ϕ is a germ of W-preserving holomorphic map, then
ϕ∗E is a foliation such that ϕ∗E ⊂ Ch(R). If E 6= ϕ∗E then at a generic point
[α] of W we have some vertical vector η 6= 0 tangent to Wx at [α], x = σ([α]),
such that η ∈ Ch(R), by comparing leaves of E and ϕ∗E through the same
point. Writing η = v mod Cα the arguments of Theorem 3.1.3 then shows that
for k =

∑
i ei

∂
∂vi

tangent to W′x,
∑
i v(ei)

∂
∂vi

remains tangent to C′x (not W′x).
However, since W′x ⊂ γ−1D1

x, we conclude that∑
i

v(ei)
∂

∂vi
∈ γ−1D1

x ∩ C′x = W′x,

so that η lies in the kernel of the Gauss map of Wx in PD1
x. As Wx & PD1

x is
linearly nondegenerate this leads to a contradiction.

5. Varieties of Distinguished Tangents and an Application to
Finite Holomorphic Maps

5.1. We hope that readers who have followed this note so far would agree, at
least partially, that it is quite rewarding to study Cx. It will be very nice to
construct something like Cx using nonrational curves, because general projective
manifolds do not have rational curves at all. We can proceed as follows. For a
given projective manifold Y , fix a component M of the Chow space of curves.
Let My be the subscheme corresponding to curves through y ∈ Y . We have the
tangent map Φy : My → PTy(Y ) defined on those points corresponding to curves
smooth at y. Then the closure of the image of Φy would play the role of Cx. The
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problem is that quite often this would give the whole PTy(Y ) and we cannot get
anything interesting out of it. However, by taking a special piece of the image of
Φy, we get an interesting object, which plays an important role when we study
generically finite holomorphic maps to uniruled manifolds. Here we will recall
some basic definitions and main results of [Hwang and Mok 1999, Section 1].

Let g : M → Z be a regular map between two quasi-projective complex
algebraic varieties. We can stratify M and Z into finitely many nonsingular
quasi-projective subvarieties. On the other hand, given g : M → Z with both M
and Z smooth, we can stratify M into finitely many quasi-projective subvarieties
on each of which g has constant rank. Applying these two stratifications repeat-
edly, we can stratify M naturally into finitely many irreducible quasi-projective
nonsingular subvarieties M = M1 ∪ · · · ∪Mk, such that for each i, the reduced
image g(Mi) is nonsingular and the holomorphic map g|Mi : Mi → g(Mi) is of
constant rank. It will be called the g-stratification of M . The following two
properties of this stratification are immediate:

(i) Any tangent vector to g(Mi) can be realized as the image of the tangent
vector to a local holomorphic arc in Mi.

(ii) When a connected Lie group acts on M and Z, and g is equivariant, Mi and
g(Mi) are invariant under this group action.

For a given projective manifold Y , fix M as above and let Φy : My → PTy(Y )
be the tangent map, which is well-defined on a subset Mo

y ⊂ My corresponding
to curves smooth at y. Let {Mi} be the Φy-stratification of Mo

y. A subvariety
of PTy(Y ) will be called a variety of distinguished tangents in PTy(Y ), if it is
the closure of the image Φy(Mi) for some choice of My and Mi. Note that there
exist only countably many subvarieties in PTy(Y ) which can serve as varieties
of distinguished tangents, because the Chow space has only countably many
components.

Given an irreducible reduced curve l in Y and a smooth point y ∈ l, consider
My which parametrizes deformations of l fixing y. [l] is contained in Mo

y, where
the tangent map is well-defined. Let M1 be the component of the stratification of
Mo
y associated to the tangent map, so that [l] ∈M1. The variety of distinguished

tangents corresponding to M1 is called the variety of distinguished tangents
associated to l at y and is denoted by Dy(l). It is an irreducible subvariety and
PTy(l) is a smooth point on it. Dy(l) is a generalization of Cx for a general
curve l.

Although we do not have Grothendieck splitting for general l, we can get
partial information as follows. In the splitting for a standard minimal rational
curve C,

T (X)|C = O(2) ⊕ [O(1)]p ⊕ [O]q,

the sum of the O(1)-part and the O-part can be replaced by the normal bundle
of the general curve l. The O-part alone can be studied as the part generated
by sections of the conormal bundle of l. In general we have to be careful about
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the singularity of the curve. Let N∗l = I/I2 be the conormal sheaf of l, where
I denotes the ideal sheaf of l. We have a natural map j : N∗l → Ω(Y )|l, where
Ω(Y ) = O(T ∗(Y )). j is injective if l is an immersed curve. In general, Ker(j) is
a sheaf supported on finitely many points. Let N ′l be the image of j in Ω(Y ).
If l is a standard minimal rational curve, sections of N ′l correspond to sections
of Oq . So the dimension of Cx is n − 1 − h0(l, N ′l ). Using the property (i) of
the stratification and general deformation theory, we can get a partial result for
general l (see [Hwang and Mok 1999] for details):

Proposition 5.1.1. Let y ∈ Y be a sufficiently general point and l be a curve
smooth at y. Then the tangent space of Dy(l) at the point PTy(l) has dimension
at most n− 1− h0(l, N ′l ), where n = dim(Y ).

In general, the variety of distinguished tangents for a nonrational curve is not
as useful as Cx, because we do not have a good choice of “minimal” M as in the
case of uniruled manifolds. So far, their main interest is in connection with the
study of finite morphisms to uniruled manifolds by the following theorem.

Theorem 5.1.2. Let f : Y → X be a generically finite morphism from a pro-
jective manifold Y to a uniruled manifold X. Choose x ∈ X and y ∈ f−1(x) so
that y is sufficiently general and df : Ty(Y )→ Tx(X) is an isomorphism. Then
each irreducible component of df−1(Cx) ⊂ PTy(Y ) is a variety of distinguished
tangents Dy(l) for a suitable choice of a curve l through y.

Sketch of proof. Choose a generic point x ∈ X and a component C1 of Cx.
Choose a minimal rational curve C through x so that PTx(C) is a generic point
of C1. Let l be an irreducible component of f−1(C) through y ∈ f−1(x). For
simplicity, assume that l is smooth so that N ′l = N∗l . A nonzero section of the
conormal bundle of C can be lifted to a nonzero section of the conormal bundle
of l. Thus h0(l, N ′l ) ≥ h0(C,N∗C).

Obviously Pdf−1
y (Tx(C)) ∈ Dy(l). Thus each generic point of df−1

y (C1) is
contained in some Dy(l) for a suitable choice of a curve l, depending on C,
satisfying h0(l, N ′l ) ≥ h0(C,N∗C). Since there are only countably many sub-
varieties in PTy(Y ) which can serve as a variety of distinguished tangents,
we can assume that df−1

y (C1) ⊂ Dy(l), by choosing l generically. We have
dim(C1) = n− 1− h0(C,N∗C). Applying the previous proposition,

n− 1− h0(C,N∗C) = dim(df−1
y (C1)) ≤ dim(Dy(l))

≤ n− 1− h0(l, N ′l ) ≤ n− 1− h0(C,N∗C),

which implies df−1
y (C1) = Dy(l). �

5.2. As an application of the results of Section 5.1, we will prove the following
rigidity theorem for generically finite holomorphic maps over rational homoge-
neous spaces of Picard number 1.
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Theorem 5.2.1. Let S be a rational homogeneous space of Picard number 1
different from Pn, and Y be any n-dimensional compact complex manifold . Given
a family of surjective holomorphic maps ft : Y → S parametrized by ∆ = {t ∈
C, |t| < ε}, we have a holomorphic map g : ∆→ Auto(S) with g0 = idS so that
ft = gt ◦ f0.

Proof. Choose a sufficiently small open set U ⊂ Y so that ft|U is biholomorphic
for any t ∈ ∆. Let C ⊂ PT (S) be the variety of minimal rational tangents. By
Theorem 5.1.2, df−1

t (Cf(y)) is a family of varieties of distinguished tangents for
each y ∈ U . From the discreteness of varieties of distinguished tangents, we see
that df−1

t (Cft(y)) = df−1
0 (Cf0(y)) for all t ∈ ∆. Thus the biholomorphic map

gt := ft ◦ f−1
0 from f0(U) to ft(U) preserves C. By Corollary 4.1.2, gt can be

extended to an automorphism of S. Since ft = gt ◦ f0 on U , it must hold on the
whole Y . �

6. Lazarsfeld’s Problem on Rational Homogeneous Manifolds
of Picard Number 1

6.1. When we have a surjective holomorphic map f : Y → Z between two
projective manifolds, it is a general principle of complex geometry that the target
Z is more positively curved than the source Y in a suitable sense. Among all
projective manifolds, the projective space is most positively curved in the sense
that projective manifolds with ample tangent bundles are projective spaces, a
result of Mori ([Mori 1979]). Combining these two, one may ask: if a projective
manifold Z is the image of a projective space under a holomorphic map, is Z
itself a projective space? This was a conjecture of Remmert and Van de Ven
[1960], proved by Lazarsfeld [1984]. Not surprisingly, Lazarsfeld used this result
of Mori:

Theorem 6.1.1 [Mori 1979]. Let X be a Fano manifold and P ∈ X be a point .
If the restrictions of T (X) to all minimal rational curves through P are ample,
then X is a projective space.

The idea of Lazarsfeld’s proof is as follows. Given f : Pn → Z, it is immediate
that Z is Fano. Choose a generic P ∈ Z and consider any minimal rational curve
C through P . Then f−1(C) must have ample normal sheaf, because it is a curve
in Pn. This forces C to have ample normal sheaf, and Z is a projective space by
Theorem 6.1.1.

It is expected that rational homogeneous manifolds of Picard number 1 are the
next most positively curved manifolds after projective spaces. So the following
question of Lazarsfeld is a natural generalization of Remmert and Van de Ven’s
conjecture:

Conjecture 6.1.2 [Lazarsfeld 1984]. Let S be a rational homogeneous manifold
of Picard number 1. For any surjective holomorphic map f : S → X to a
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projective manifold X, either X is a projective space, or X ∼= S and f is a
biholomorphism.

Applying Theorem 6.1.1, as in the case of S = Pn, we see that the problem is
to understand the curves on S on which the restrictions of T (S) are not ample.
Of course, minimal rational curves are such examples. But in general, there are
a lot of other curves with this property. When S is a hyperquadric, Paranjape
and Srinivas [1989] showed that minimal rational curves are the only curves on
S with this property, and using this, they settled the conjecture. When S is a
Hermitian symmetric space, Tsai [1993] had classified certain classes of curves on
S where the restrictions of T (S) are not ample, and settled the conjecture. For
this, he needed a very detailed study of the global geometry of curves on S, using
fine structure theory of Hermitian symmetric spaces [Wolf 1972]. Generalizing
his methods to other S looks hopelessly complicated. To start with, very little
is known about global structure of curves on S. Furthermore, even the local
picture, say the structure of isotropy representation of the parabolic group, has
completely different features from the symmetric case. In [Hwang and Mok 1999],
we have settled the conjecture in full generality by a different approach. We will
survey this work in this section.

6.2. First, we reduce Conjecture 6.1.2 to the following extension problem of
holomorphic maps.

Theorem 6.2.1. Let S be a rational homogeneous space of Picard number 1
different from Pn and f : S → X be a finite morphism to a projective manifold
X different from Pn. Let s, t ∈ S be an arbitrary pair of distinct points such
that f(s) = f(t) and f is unramified at s and t. Write ϕ for the unique germ
of holomorphic map at s, with target space S, such that ϕ(s) = t and f ◦ϕ = f .
Then ϕ extends to a biholomorphic automorphism of S.

In fact, once Theorem 6.2.1 is proved, we can use automorphisms of S arising
from various choices of ϕ to conclude that f : S → X is a quotient map by a
finite group action on S. Then Lazarsfeld’s conjecture follows from the following.

Proposition 6.2.2. Let S be a rational homogeneous space of Picard number
1 of dimension n ≥ 3, different from Pn. Suppose there exists a nontrivial finite
cyclic group F ⊂ Aut(S) which fixes a hypersurface E ⊂ S pointwise. Then S is
the hyperquadric, E is equal to an O(1)-hypersurface, and the quotient of S by
F , endowed with the standard normal complex structure, is a projective space.

In principle, Proposition 6.2.2 can be checked case by case. It can be proved also
using induction on the dimension by showing that a suitable deformation of E
is itself homogeneous and preserved by the F -action.

To prove Theorem 6.2.1, it suffices to show that ϕ preserves C ⊂ PT (S) for
S of symmetric type or contact type, and the distribution D1 for the other S,
by Corollary 4.1.2. For simplicity, we will assume that the Fano manifold X has
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the property that Cx ⊂ PTx(X) is a proper subvariety, namely q > 0. In the
case q = 0 and X different from Pn, essentially the same argument works when
combined with the result in [Mok 1988, 2.4].

6.3. We will consider S of symmetric type or of contact type first. We need
to show that ϕ sends Cs1 to Ct1 for s1 sufficiently close to s. From Theorem
5.1.2, ϕ sends a variety of distinguished tangents Ds1 in PTs1(S) to a variety of
distinguished tangents Dt1 in PTt1(S). From the property (ii) of g-stratification
mentioned in Section 5.1, Ds1 and Dt1 are invariant under the action of isotropy
groups at s1 and t1 respectively. Moreover, from the countability of varieties
of distinguished tangents, we can assume that Ds1 and Dt1 are conjugate un-
der the G-action. After G-conjugation, ϕ induces an automorphism of PTs1(S)
preserving Ds1 , and we need to show that it preserves Cs1 .

When S is of symmetric type, an automorphism of PTs(S) preserving an
isotropy-invariant proper subvariety must preserve the highest weight orbit Cs
from the fine structure theory of Hermitian symmetric spaces ([Wolf 1972]). In
fact, one can show that the highest weight orbit is a singularity stratum of any
other isotropy-invariant subvariety. Thus ϕ must preserve C, and we are done.
Alternatively, the argument in Section 6.4 case (1) gives a different proof without
using the fine structure theory.

When S is of contact type, we can show that Ds1 must be equal to Cs1 di-
rectly. It is easy to see that any proper isotropy-invariant subvariety of PTs(S)
is contained in PDs, the contact hyperplane. From the basic structure theory of
isotropy orbits, Cs ⊂ Ds ⊂ PDs. The Lagrangian property of Cs in Section 1.4
can be used to show that the variety of tangential lines to Ds is nondegenerate
in P

∧2
Ds unless Ds = Cs. But if the variety of tangential lines to Ds is nonde-

generate in P
∧2

Ds, then the distribution D must be integrable by arguing as in
Section 1.2, since Ds is the pull back of the variety of minimal rational tangents
in X. This is contradictory to the definition of D. This proves Conjecture 6.1.2
in the contact case.

6.4. For the proof of Theorem 6.2.1, it remains to consider the case of S of
depth m ≥ 2 and of noncontact type. We will also again exclude the unnecessary
case of (G2, α2). By Corollary 4.1.2 it suffices to show that ϕ preserves D1, or
equivalently that ϕ preserves the bundle of varieties of highest weight tangents
W, by Proposition 4.2.2. Suppose otherwise. By the argument of Lemma 4.2.4
there exists a holomorphic fiber bundle V→ S, V ⊂ PT (S) preserved by ϕ, such
that the fibers Vx ⊂ PTx(S) are rational homogeneous submanifolds conjugate
to each other under projective transformations. Either

(1) Vx ⊂ PTx(S) is linearly nondegenerate, or
(2) V ⊂ PDk for some k for 2 ≤ k < m, and V 6⊂ PD1.

In the linear nondegenerate case (1), since ϕ preserves some isotropy-invariant
proper subvariety as in Section 6.3, Vx & PTx(S) and V → S defines a G-
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structure over S, with G ⊂ PGL(To(S)) being the identity component of the
group of projective linear transformations on PTo(S) leaving Vo invariant. As
Vo is linearly nondegenerate in PTo(S), G is reductive by Borel’s fixed point
theorem. It follows from Theorem 1.5.3 that S must be biholomorphic to an
irreducible Hermitian symmetric manifold of the compact type and of rank at
least 2, contradicting the assumption on S.

We are going to rule out the linearly degenerate case (2), V ⊂ PDk for some
k with 2 ≤ k < m, V 6⊂ PD1. Only the cases of depth at least 3 matter, with
g = F4, E6, E7 or E8. By Corollary 4.1.2 it suffices to show that if ϕ is Dk-
preserving for some k ≥ 2, then it must already be D1-preserving. Consider the
Frobenius form F k : Dk

o×Dk
o → To(S)/Dk

o . From Lemma 4.1.3, ϕ must preserve
the subvariety of [ξ] ∈ PDk

o for which rank(F kξ ) is minimum. To deduce that ϕ
is necessarily D1-preserving it remains therefore to establish this result:

Proposition 6.4.1. Let η1 be a highest weight vector of g1 = D1
o as an Lo-

representation space and ξ ∈ Dk
o − g1. Then, rankF kξ > rankF kη1

.

The rank of F kξ is constant along the P -orbit of ξ and is lower semicontinuous
in ξ ∈ Dk

o . Consider the C∗-action on Dk
o defined by the centre of Lo, given by

t · ξ = tξ1 + t2ξ2 + · · ·+ tkξk

according to the decomposition ξ = ξ1 + ξ2 + · · · + ξk, ξj ∈ gj . From lower
semicontinuity we conclude that rank(F kξ ) ≥ rank(F kξi ) whenever i is the largest
index for which ξi 6= 0. Consider gj as an Lo-representation space. Noting that
the highest weight orbit in Pgj lies in the Zariski closure of any orbit in Pgj to
prove the Proposition it suffices to show that rank(F kηj) > rank(F kη1

) for highest
weight vectors ηj of gj, j = 2, . . . , k. Furthermore, as ηj lies on the same P -orbit
of some ηj + θj−1, 0 6= θj−1 ∈ gj−1, using the C∗-action as described it follows
readily that rank(F kηk) ≥ · · · ≥ rank(F kη2

), thus reducing the proof of Proposition
6.4.1 to the special case of ξ = η2. For the case of g = F4 a straight-forward
checking shows that indeed

rank(F kη2
) > rank(F kη1

)

is always valid. For the exceptional cases g = E6, E7, E8, for which roots are of
equal length, in place of tedious checking we have the following statement with
a uniform proof.

Proposition 6.4.2. Let g = E6, E7, E8 and (g, αi) be of depth at least 3. For
k ≥ 2 and for ηj highest weight vectors of gj as an Lo-representation space, we
have rank(F kη2

) = 2 rank(F kη1
).

Proof. We will interpret rank(F kηs), for s = 1, 2, as Chern numbers. In the
notations of Section 4.1, for S of type (g, αi) and for ρ ∈ 4+, the rational curve
Cρ ⊂ S is of degree ωi(Hρ). When all roots of g are of equal length, the root



VARIETIES OF MINIMAL RATIONAL TANGENTS 387

system is self-dual, and for ρ =
∑m
j=1 mjαj, we have Hρ =

∑m
j=1 mjHαj , so that

for ρ ∈ 4s, Cρ is of degree s. For s = 1, 2 write Cs for Cµs . We have

rank(F kηs) = dim
([
ηs,
⊕k

j=1 gj

]
mod

⊕k
j=1 gj

)
. (∗)

Denote by Ek the holomorphic vector bundle Dm/Dk. We claim that

rank(F kηs) = c1(Ek) · Cs,

from which rank(F kη2
) = 2 rank(F kη1

) follows, since Cs is of degree s. Ek admits
a composition series with factors Dl/Dl−1, k < l ≤ m. To prove the claim by
the argument on splitting types of Dl/Dl−1 as in Section 4.2, we have

c1(Dl/Dl−1) · Cs =
∣∣{ρl ∈ 4l : ρl − µs ∈ 4l−s}

∣∣− ∣∣{ρl ∈ 4l : ρl + µs ∈ 4l+s}
∣∣.

Observe that for l > k, whenever ρl+µs = ρl+s ∈ 4l+s we also have ρl+s−µs =
ρl ∈ 4l. From this and adding up Chern numbers we have

c1(Ek) · Cs =
∣∣{ρ ∈ 41 ∪ · · · ∪ 4k−1 : ρ+ µs ∈ 4k ∪ · · · ∪ 4m}

∣∣ = rank(F kηs),

by (∗), as claimed. The proof of Proposition 6.4.2 is complete. �

We remark that, using the composition series, splitting types of Dl/Dl−1 over
Cs, and the fact that Dm/Dl is nonnegative, one can easily verify that Ek|Cs ∼=
[O(1)]rs ⊕Oqs , rs = rank(F kηs), and qs = rank(Ek)− rs.

Proposition 6.4.1 follows from Proposition 6.4.2. From this we also rule out
alternative (2) (that V ⊂ PDk for 2 ≤ k < m but V 6⊂ PD1). We have thus
proven by contradiction that in the nonsymmetric and noncontact case, the local
biholomorphism ϕ on S must preserve varieties of highest weight tangents. By
Corollary 4.1.2 we conclude that ϕ extends to a biholomorphic automorphism
on S. By Proposition 6.2.2 the finite map f : S → X must be a biholomorphism
unless X ∼= Pn. With this we have resolved Conjecture 6.1.2 of Lazarsfeld’s.
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(1960), 137–155.

[Mok 1988] N. Mok, “The uniformization theorem for compact Kähler manifolds of
nonnegative holomorphic bisectional curvature”, J. Differential Geom. 27:2 (1988),
179–214.

[Mok and Tsai 1992] N. Mok and I.-H. Tsai, “Rigidity of convex realizations of
irreducible bounded symmetric domains of rank ≥ 2”, J. Reine Angew. Math. 431
(1992), 91–122.

[Mori 1979] S. Mori, “Projective manifolds with ample tangent bundles”, Ann. of
Math. (2) 110:3 (1979), 593–606.



VARIETIES OF MINIMAL RATIONAL TANGENTS 389

[Ochiai 1970] T. Ochiai, “Geometry associated with semisimple flat homogeneous
spaces”, Trans. Amer. Math. Soc. 152 (1970), 159–193.

[Paranjape and Srinivas 1989] K. H. Paranjape and V. Srinivas, “Self-maps of
homogeneous spaces”, Invent. Math. 98:2 (1989), 425–444.

[Peternell and Wísniewski 1995] T. Peternell and J. A. Wísniewski, “On stability of
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Math. Ann. 142 (1960), 453–486.
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