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Littlewood–Richardson Semigroups

ANDREI ZELEVINSKY

Abstract. We discuss the problem of finding an explicit description of the
semigroup LRr of triples of partitions of length at most r such that the cor-
responding Littlewood–Richardson coefficient is non-zero. After discussing
the history of the problem and previously known results, we suggest a
new approach based on the “polyhedral” combinatorial expressions for the
Littlewood–Richardson coefficients.

This article is based on my talk at the workshop on Representation Theory
and Symmetric Functions, MSRI, April 14, 1997. I thank the organizers (Sergey
Fomin, Curtis Greene, Phil Hanlon and Sheila Sundaram) for bringing together
a group of outstanding combinatorialists and for giving me a chance to bring to
their attention some of the problems that I find very exciting and beautiful.

In preparing the note for this volume (October 1998), I made a few small
changes in the original version [Zelevinsky 1997], and added in the end a brief
(and undoubtedly incomplete) account of some exciting progress achieved since
April 1997. I am grateful to the referee for helpful suggestions.

For r ≥ 1, let

Pr = {(λ1, . . . , λr) ∈ Zr : λ1 ≥ · · · ≥ λr ≥ 0}

be the semigroup of partitions of length at most r. Our main object of study
will be the set

LRr = {(λ, µ, ν) : λ, µ, ν ∈ Pr, cλµν > 0} ,
where cλµν is the Littlewood–Richardson coefficient. Recall that Pr is the set
of highest weights of polynomial irreducible representations of GLr(C); if Vλ is
the irreducible representation of GLr(C) with highest weight λ then cλµν is the
multiplicity of Vλ in Vµ⊗Vν . Equivalently, the cλµν are the structure constants of
the algebra of symmetric polynomials in r variables with respect to the basis of
Schur polynomials. We call LRr the Littlewood–Richardson semigroup of order r;
this name is justified by the following result:
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Theorem 1. LRr is a finitely generated subsemigroup of the additive semigroup
P 3
r ⊂ Z3r.

This is a special case of a much more general result well known to the experts in
invariant theory. A short proof (valid for any reductive group instead of GLr(C))
can be found in [Èlashvili 1992]; A. Elashvili attributes this proof to M. Brion
and F. Knop. The semigroup property also follows at once from “polyhedral”
expressions for cλµν that will be discussed later (see Theorem 5 and below).

Problem A. Describe LRr explicitly.

I have been interested in this problem for several years. For example, in [Beren-
stein and Zelevinsky 1992] we determined the set {λ : (λ, δ, δ) ∈ LRr}, where
δ = (r−1, . . . , 1, 0); this proves a special case of Kostant’s conjecture that de-
scribes, for any semisimple Lie algebra, the irreducible components of the tensor
square of the irreducible representation whose highest weight is the half-sum of
positive roots. Practically nothing is known about the list of indecomposable
generators of LRr for general r. We will discuss the “dual” approach, namely
we would like to describe the facets of the polyhedral convex cone LRRr ⊂ R3r

generated by LRr . Remarkable progress in this direction was recently made by
A. Klyachko [1996]. Before discussing his results, we note that cλµν is given by
the classical Littlewood–Richardson rule (see [Macdonald 1995], for example),
which in principle makes Problem A purely combinatorial. In particular, the
Littlewood–Richardson rule (or just the definition) readily implies the following
properties of LRr.

Homogeneity. |λ| = |µ|+ |ν| for (λ, µ, ν) ∈ LRr, where |λ| = λ1 + · · ·+ λr .

Stability. LRr+1 ∩Z3r = LRr, where

Z3r = {(λ, µ, ν) ∈ Z3(r+1) : λr+1 = µr+1 = νr+1 = 0}.

Even stronger, we have LRr+1 ∩Z3r+2 = LRr, where

Z3r+2 = {(λ, µ, ν) ∈ Z3(r+1) : λr+1 = 0}.

Littlewood–Richardson semigroups appear naturally in several other contexts:

1. Hall algebra, extensions of abelian p-groups: see [Macdonald 1995].

2. Schubert calculus on Grassmannians: see [Fulton 1997].

3. Polynomial matrices and their invariant factors: see [Thompson 1989].

4. Eigenvalues of sums of Hermitian matrices.

We discuss the last item in more detail. For a Hermitian matrix A of order r, let
λ(A) denote the sequence of eigenvalues of A arranged in a weakly decreasing
order (recall that A is Hermitian if A∗ = A, and such a matrix always has
real eigenvalues). Let HEr denote the set of triples (λ, µ, ν) ∈ R3r such that
λ = λ(A+B), µ = λ(A), and ν = λ(B) for some Hermitian matrices A and B of
order r. The following counterpart of Theorem 1 for HEr is highly non-trivial.
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Theorem 2. HEr is a polyhedral convex cone in R3r.

This theorem was announced by several authors (see below) but apparently the
first complete proof was given by A. Klyachko [1996].

Problem B. Describe HEr explicitly.

Problems A and B are closely related to each other. They have a long history.
Problem B was probably first posed by I. M. Gelfand in the late 40’s (eigenvalues
of the sum of two Hermitian matrices were studied already by H. Weyl in 1912,
but I believe that I. M. Gelfand was the first who suggested studying the cone
HEr as a whole rather than concentrate on individual eigenvalues). A solution
was announced by V. B. Lidskii [1950], but the details of the proof were never
published. F. A. Berezin and I. M. Gelfand [1956] discussed the relationships
between Problems A and B; in particular, they suggested the remarkable equality

HEr ∩Z3r
≥0 = LRr, (1)

where Z≥0 stands for the set of nonnegative integers. A. Horn [1962] solved
Problem B for r ≤ 4 and conjectured a general answer. To formulate his con-
jecture we need some terminology. Let [1, r] denote the set {1, 2, . . ., r}. For a
subset I = {i1 < i2 < · · · < is} ⊂ [1, r], we denote by ρ(I) ⊂ Ps the partition

ρ(I) = (is−s, . . . , i2−2, i1−1).

A triple (I, J,K) of subsets of [1, r] will be called HE-consistent if I, J,K have
the same cardinality s and (ρ(I), ρ(J), ρ(K)) ∈ HEs. For λ ∈ Rr and I ⊂ [1, r],
we will write |λ|I =

∑
i∈I λi; in particular, |λ|[1,r] = |λ| = λ1 + · · ·+ λr.

Horn’s Conjecture. Let λ, µ, and ν be vectors in Rr with weakly decreasing
components. Then (λ, µ, ν) ∈ HEr if and only if |λ| = |µ| + |ν| and |λ|I ≤
|µ|J + |ν|K for all HE-consistent triples (I, J,K) of subsets of [1, r].

The proofs of Horn’s Conjecture and equality (1) were announced by B. V. Lid-
skii [1982]; unfortunately, as in the case of the paper by V. B. Lidskii [1950]
mentioned earlier, the detailed proofs never appeared.

We now discuss the results in [Klyachko 1996]. First the author proves The-
orem 2; moreover, he gives the following description of a set of defining linear
inequalities for HEr , which is very close (but not totally equivalent) to Horn’s
Conjecture. Modifying the definition of HE-consistent triples, we will call a triple
(I, J,K) of subsets of [1, r] LR-consistent if I, J,K have the same cardinality s
and (ρ(I), ρ(J), ρ(K)) ∈ LRs.

Theorem 3 [Klyachko 1996]. Horn’s conjecture becomes true if HE-consistency
in the formulation is replaced by LR-consistency.

The fact that any (λ, µ, ν) ∈ HEr satisfies the inequalities |λ|I ≤ |µ|J + |ν|K
for all LR-consistent triples (I, J,K) was proved independendly in [Helmke and



340 ANDREI ZELEVINSKY

Rosenthal 1995]. A. Klyachko proves that these inequalities are necessary and
sufficient. In fact, he makes a stronger statement which was reproduced in
[Zelevinsky 1997]: he claims that all these inequalities are independent, i.e.,
they correspond to facets of the polyhedral convex cone HEr. It was recently
discovered by C. Woodward and P. Belkale that the last statement is false! As
reported in [Fulton 1999], P. Belkale has recently shown that all the inequalities
for which c

ρ(I)
ρ(J),ρ(K) > 1 are redundant.

A. Klyachko also proves the following weaker version of (1). Let LRQr be the
set of all linear combinations of triples in LRr with positive rational coefficients;
equivalently, LRQr = ∪N≥1

1
N LRr .

Theorem 4 [Klyachko 1996]. HEr ∩Q3r
≥0 = LRQr .

Theorems 3 and 4 appear in [Klyachko 1996] as a by-product of the study of
stability criteria for toric vector bundles on the projective plane P 2. In view of
these theorems, the equality (1) and Horn’s Conjecture would follow from the
affirmative answer to the following problem:

Saturation Problem. Is it true that LRQr ∩Z3r
≥0 = LRr?

In other words, does the fact that cNλNµ,Nν > 0 for some N ≥ 1 imply that
cλµν > 0? This is true and easy to check for r ≤ 4. On the other hand, an
obvious analogue of the problem for type B has negative answer (as pointed out
to me by M. Brion, counterexamples can be found in [Èlashvili 1992]).

Examples. We list here the linear inequalities corresponding to LR-consistent
triples for r ≤ 3; combined with the conditions λ1 ≥ · · · ≥ λr, µ1 ≥ · · · ≥ µr ,
ν1 ≥ · · · ≥ νr, and |λ| = |µ|+ |ν|, they provide a description of the cone HEr.

• r = 1: No inequalities.

• r = 2: λ1 ≤ µ1 +ν1, λ2 ≤ min(µ1 +ν2, µ2 +ν1).

• r = 3: λ1 ≤ µ1 +ν1,

λ2 ≤ min(µ1 +ν2, µ2 +ν1),

λ3 ≤ min(µ1 +ν3, µ2 +ν2, µ3 +ν1),

λ1 +λ2 ≤ µ1 +µ2 +ν1 +ν2,

λ1 +λ3 ≤ min(µ1 +µ2 +ν1 +ν3, µ1 +µ3 +ν1 +ν2),

λ2 +λ3 ≤ min(µ1 +µ2 +ν2 +ν3, µ1 +µ3 +ν1 +ν3, µ2 +µ3 +ν1 +ν2).

For instance, the inequality λ2 +λ3 ≤ µ1 +µ3 +ν1 +ν3 corresponds to the triple
(I, J,K) = ({2, 3}, {1, 3}, {1, 3}), which is LR-consistent because the triple of
partitions (ρ(I), ρ(J), ρ(K)) = ((1, 1), (1, 0), (1, 0)) obviously belongs to LR2.

Assuming the affirmative answer in the Saturation Problem, Theorem 3 pro-
vides a recursive procedure for describing the semigroup LRr. Although quite
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elegant, this procedure is not very explicit from combinatorial point of view.
Thus, we would like to formulate the following problem:

Problem C. Find a non-recursive description of LRr .

Equivalently, Problem C asks for a non-recursive description of LR-consistent
triples. We would like to suggest an elementary combinatorial approach to this
problem based on the “polyhedral” expressions for the coefficients cλµν given
in [Berenstein and Zelevinsky 1992]. To present such an expression, it will be
convenient to modify Littlewood–Richardson coefficients as follows. We will
consider triples (λ̄, µ̄, ν̄) of dominant integral weights for the group SLr . Let
Vλ̄ be the irreducible SLr-module with highest weight λ̄, and let cλ̄µ̄ν̄ denote
the dimension of the space of SLr-invariants in the triple tensor product Vλ̄ ⊗
Vµ̄ ⊗ Vν̄ . The relationship between the cλ̄µ̄ν̄ and the Littlewood–Richardson
coefficients is as follows. We will write each of the weights λ̄, µ̄ and ν̄ as a
nonnegative integer linear combination of fundamental weights ω1, ω2, . . . , ωr−1

(in the standard numeration):

λ̄ = l1ω1 + · · ·+ lr−1ωr−1,

µ̄ = m1ω1 + · · ·+mr−1ωr−1,

ν̄ = n1ω1 + · · ·+ nr−1ωr−1.

(2)

The definitions readily imply that if λ, µ, ν ∈ Pr are such that |λ| = |µ| + |ν|
then cλµν = cλ̄µ̄ν̄ , where the coordinates ls, ms and ns in (2) are given by

ls = λr−s − λr−s+1, ms = µs − µs+1, ns = νs − νs+1. (3)

Thus, the knowledge of LRr is equivalent to the knowledge of the semigroup

LRr = {(λ̄, µ̄, ν̄) ∈ Z3(r−1)
≥0 : cλ̄µ̄ν̄ > 0}.

Passing from LRr to LRr has two important advantages. First, the coefficients
cλ̄µ̄ν̄ are more symmetric than the original Littlewood–Richardson coefficients:
they are invariant under the 12-element group generated by all permutations of
three weights λ̄, µ̄ and ν̄, together with the transformation replacing each of these
weights with its dual (i.e., sending (ls, ms, ns) to (lr−s, mr−s, nr−s)). Second, the
dimension of the ambient space reduces by 2, from 3r−1 to 3(r−1). On the other
hand, LRr has at least one potential disadvantage: the condition |λ| = |µ|+ |ν|
is replaced by a more complicated condition that

∑
s s(ls +ms + ns) is divisible

by r (in more invariant terms, this means that λ̄ + µ̄ + ν̄ must be a radical
weight, i.e., belongs to the root lattice). To illustrate both phenomena, one can
compare the description of LR2 given above with the following description of
LR2 which is equivalent to the classical Clebsch–Gordan rule: LR2 consists of
triples of nonnegative integers (l1, m1, n1) satisfying the triangle inequality and
such that l1 +m1 + n1 is even.
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We now give a combinatorial expression for cλ̄µ̄ν̄ (this is one of several such
expressions found in [Berenstein and Zelevinsky 1992]). Consider a triangle in
R2, and subdivide it into small triangles by dividing each side into r equal parts
and joining the points of the subdivison by the line segments parallel to the
sides of our triangle. Let Yr denote the set of all vertices of the small triangles,
with the exception of the three vertices of the original triangle. Introducing
barycentric coordinates, we identify Yr with the set of integer triples (i, j, k)
such that 0 ≤ i, j, k < r and i+ j + k = r. Let ZYr be the set of integer families
(yijk) indexed by Yr ; we think of y ∈ ZYr as an integer “matrix” with Yr as the
set of “matrix positions.” To every y ∈ ZYr we associate the partial line sums

lts(y) =
s∑
j=t

yr−s,j,s−j,

mts(y) =
s∑
k=t

ys−k,r−s,k,

nts(y) =
s∑
i=t

yi,s−i,r−s,

(4)

where 0 ≤ t ≤ s ≤ r. We call these linear forms on RYr tails, and we say that
y ∈ RYr is tail-positive if all tails of y are ≥ 0. We also say that a linear form
on RYr is tail-positive if it is a nonnegative linear combination of tails.

Theorem 5 [Berenstein and Zelevinsky 1992]. For any triple (λ̄, µ̄, ν̄) as in (2),
the coefficient cλ̄µ̄ν̄ is equal to the number of tail-positive y ∈ ZYr with prescribed
values of line sums

l0s(y) = ls, m0s(y) = ms, n0s(y) = ns, (5)

where 1 ≤ s ≤ r − 1.

In other words, let Tr ⊂ ZYr denote the semigroup of tail-positive elements, and
let σ : ZYr → Z3(r−1) be the projection given by (5). Then Theorem 5 says that

σ(Tr) = LRr. (6)

In particular, this implies at once that LRr (and hence LRr) is a semigroup.
Furthermore, Theorem 5 implies the following description of the convex cone
LR

R
r generated by LRr .

Corollary 6. A linear form f on R3(r−1) takes nonnegative values on LR
R
r if

and only if the form f ◦ σ on RYr is tail-positive.

Returning to the Littlewood–Richardson semigroup LRr , we have the projection
∂ : LRr → LRr given by (3). This projection extends by linearity to a projection
∂ : R3r−1 → R3(r−1), where R3r−1 is the subspace of triples (λ, µ, ν) ∈ R3r

satisfying |λ| = |µ| + |ν|. It is clear that the cone LRRr ⊂ R3r−1 is given by
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the linear inequalities f ◦ ∂ ≥ 0 for all linear forms f as in Corollary 6. This
suggests the following strategy for determining the set of LR-consistent triples.
Take a triple of subsets (I, J,K) in [1, r] of the same cardinality s, consider the
corresponding linear form |µ|J + |ν|K − |λ|I on R3r−1, write this form as f ◦ ∂,
and compute the form f ◦ σ on RYr . A straightforward calculation gives

(f ◦ σ)(y) =
∑

(i,j,k)∈Yr

(
#(I>i)−#(J>r−j)−#(K>r−k)

)
yijk, (7)

where #(I>i) stands for the number of elements of I which are > i. Taking into
account Theorem 3, we obtain the following new criterion for LR-consistency.

Theorem 7. A triple of subsets (I, J,K) of the same cardinality s in [1, r] is
LR-consistent if and only if |ρ(I)| = |ρ(J)| + |ρ(K)| and the form in (7) is
tail-positive.

In particular, since every tail-positive linear form is obviously a nonnegative
linear combination of the yijk, we obtain the following necessary condition for
LR-consistency.

Corollary 8. If a triple of subsets (I, J,K) in [1, r] is LR-consistent then

#(I>i) ≥ #(J>r−j) + #(K>r−k) (8)

for all (i, j, k) ∈ Yr.

It would be interesting to deduce this corollary directly from the Littlewood–
Richardson rule. One can show that (8) is not sufficient for LR-consistency.
In fact, Theorem 7 can be used to produce other necessary conditions for LR-
consistency. One can hope to solve Problem C by generating a system of neces-
sary and sufficient conditions for LR-consistency using this method.

Added in October 1998: Since April 1997, important progress has been achieved
in the problems discussed above. Here is a very brief and incomplete discussion
of some of these developments.

First, a nice self-contained exposition of Klyachko’s results was given in the
seminar talk [Fulton 1999]. One can also find there an account of some new
developments in related areas, and an expanded list of references.

A beautiful affirmative solution to the Saturation Problem has been an-
nounced in [Knutson and Tao 1998]. The proof is entirely combinatorial, and it
basically follows the “polyhedral” approach discussed above. The main new in-
gredient is a geometric reformulation of the Littlewood–Richardson rule in terms
of certain planar configurations of line segments (the honeycomb model).

Several interesting analogues and generalizations of the polyhedral cones HEr
and LRr were introduced and studied in [Brion 1998; Berenstein and Sjamaar
1998; Agnihotri and Woodward 1997]. It would be interesting to use a geometric
approach developed in [Brion 1998] for a solution of Problem C above.
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Let me conclude with the following remark. The Littlewood–Richardson co-
efficients and the corresponding semigroups LRr have an obvious generalization
for the tensor products of any given number (instead of just two) of polynomial
irreducible representations of GLr(C). Let cλ

µ(1),...,µ(p) denote the multiplicity of
Vλ in Vµ(1) ⊗ Vµ(p) , and define

LR(p)
r = {(λ, µ(1), . . . , µ(p)) : λ, µ(k) ∈ Pr, cλµ(1),...,µ(p) > 0} .

It might look surprising but the study of “multiple LR-semigroups” LR(p)
r can

be reduced to that of the ordinary ones using the following fact:

Proposition 9. We have

cλµ(1),...,µ(p) = cλ̃µ̃,ν̃ , (9)

where partitions λ̃, µ̃, ν̃ ∈ Ppr are given by

ν̃(j−1)r+i = δj1λi, µ̃(j−1)r+i =
p∑

k=j+1

µ
(k)
1 , λ̃(j−1)r+i = µ

(j)
i +

p∑
k=j+1

µ
(k)
1 (10)

for 1 ≤ j ≤ p and 1 ≤ i ≤ r.

Notice that the partition ν̃ in Proposition 9 has the same Young diagram as
λ, and that λ̃ − µ̃ is a skew diagram whose connected components are trans-
lates of µ(1), . . . , µ(p). The equality (9) is then well known; see [Macdonald
1995]. Formulas (10) define a linear embedding ϕ : P p+1

r → P 3
pr such that

ϕ(LR(p)
r ) = ϕ(P p+1

r )∩LRpr . It follows in particular that the saturation property
for ordinary Littlewood–Richardson semigroups implies the saturation property
for the semigroups LR(p)

r .
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