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The Generalized Baues Problem

VICTOR REINER

Abstract. We survey the generalized Baues problem of Billera and Sturm-
fels. The problem is one of discrete geometry and topology, and asks about
the topology of the set of subdivisions of a certain kind of a convex poly-
tope. Along with a discussion of most of the known results, we survey the
motivation for the problem and its relation to triangulations, zonotopal
tilings, monotone paths in linear programming, oriented matroid Grass-
mannians, singularities, and homotopy theory. Included are several open
questions and problems.

1. Introduction

The generalized Baues problem, or GBP for short, is a question arising in the
work of Billera and Sturmfels [1992, p. 545] on fiber polytopes; see also [Billera
et al. 1994, § 3]. The question asks whether certain partially ordered sets whose
elements are subdivisions of polytopes, endowed with a certain topology [Björner
1995], have the homotopy type of spheres. Cases are known [Rambau and Ziegler
1996] where this fails to be true, but the general question of when it is true or
false remains an exciting subject of current research.

The goal of this survey is to review the motivation for fiber polytopes and the
GBP, and discuss recent progress on the GBP and the open questions remain-
ing. Some recommended summary sources on this subject are the introductory
chapters in the doctoral theses [Rambau 1996; Richter-Gebert 1992], Lecture 9
in [Ziegler 1995], and the paper [Sturmfels 1991]. The articles [Billera et al.
1990; 1993], though not discussed in the text, are nonetheless also relevant to
the GBP.

Before diving into the general setting of fiber polytopes and the GBP, it is
worthwhile to ponder three motivating classes of examples.
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Figure 1. Typical bistellar operations (also known as perestroikas or modifica-
tions) in R2. Left: diagonal flip. Right: vertex insertion/removal.

Triangulations. Let A denote a finite set of points in Rd. A triangulation of A

is, roughly speaking, a polyhedral subdivision of the convex hull of A into sim-
plices, each having the property that their vertices lie in A. Note that not every
point of A need appear as a vertex of one of the simplices in the triangulation.
The set of all triangulations of A is in general a difficult object to compute, but
one that arises in many applications; see [de Loera 1995b]. One approach to
the study and computation of triangulations is to consider an extra structure on
them, namely the connections between them by certain moves called bistellar op-
erations (or perestroikas or modifications). For triangulations of A in R2, typical
bistellar operations are shown in Figure 1, where points of A that are not being
used as a vertex in the triangulation are shown dotted. Figure 2, adapted from
[de Loera 1995b], depicts the set of all triangulations of a particular configuration
of six points in R2, and the bistellar moves which connect them. We remark that
the precise coordinates of the points of A are important in determining which
triangulations and bistellar operations are possible, since we are talking about tri-
angulations using straight geometric simplices. This is different from the point of
view in the theory of triangulated planar maps (see [Goulden and Jackson 1983,
§ 2.9], for example) and also different from the bistellar equivalences of triangu-
lations of PL-manifolds as considered by Nabutovsky [1996] or Pachner [1991].

The most well-studied example of triangulations occurs when A is the vertex
set of a convex n-gon in R2. It is well-known that the number of triangulations
is the Catalan number 1

n−1

(
2n−4
n−2

)
(see, for example, [Stanton and White 1986,

§ 3.1; Stanley 1999, Exercise 6.19] for this and for bijections between triangu-
lations and other standard objects counted by the Catalan number). This is
essentially the only nontrivial example of an infinite family of point configura-
tions whose number of triangulations is known (but see Conjecture 6.5). The
only possible bistellar operations in this case are the diagonal flips from Figure 1,
and it is easy to see that any two triangulations can be connected by a sequence
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Figure 2. All triangulations and bistellar operations for a set A of 6 points inR2.

The points of A form the vertices of two homothetic and concentric equilateral

triangles. Adapted from [de Loera 1995b].

of such flips. There is a well-known bijection between triangulations of an n-gon
and nonassociative bracketings of a product a1a2 · · ·an−1, and under this iden-
tification bistellar operations correspond to “rebracketings”. From this point of
view, the graph of triangulations of an n-gon and diagonal flips was perhaps first
studied in the 1950’s by Tamari [1951] and later in collaboration with others
[Tamari 1962; Friedman and Tamari 1967; Huang and Tamari 1972; Huguet and
Tamari 1978]. These authors distinguished a direction on each rebracketing and
defined a poset on the triangulations having these directed edges as its cover
relations. They were able to show that this Tamari poset is a lattice [Friedman
and Tamari 1967; Huang and Tamari 1972]. Its Hasse diagram is depicted in
Figure 3 for n = 6, for a choice of a particular convex 6-gon whose vertices lie
on a semicircle.

These authors seem also to have been aware (without proof) that this graph
appears to be the 1-skeleton of a cellular (n−4)-sphere, and proved results about
how its “facial” structure interacts with the Tamari lattice structure. Meanwhile,
similar issues of associativity appeared in the early 1960’s in Stasheff’s work
[1963] on homotopy associativity. Stasheff vindicated this apparent sphericity
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Figure 3. Triangulations of a convex 6-gon: the associahedron.

by showing (essentially) that the set of all polygonal subdivisions of an n-gon
indexes the cells in a regular cell complex [Björner 1995, (12.3)] homeomorphic
to the (n− 4)-sphere. Note that in this way of thinking, a diagonal flip bistellar
operation corresponds to a polygonal subdivision whose maximal cells are all
triangles except for one quadrangle (containing the flipping diagonal), and less
refined subdivisions of the n-gon correspond to higher dimensional cells in the
sphere. In an unpublished work (see [Kapranov 1993, p. 120]), Milnor produced
a set of vertex coordinates for the vertices of this (n − 4)-sphere which embed
it as the boundary complex of an (n − 3)-dimensional polytope. Unfortunately,
the existence of this polytopal embedding seems to have been unknown in the
combinatorial geometry community, and was rediscovered in the mid 1980’s after
Perles posed the problem of whether this complex was polytopal; see [Lee 1989].
Independently, Haiman [1984] and Lee [1989] constructed this polytope, which
Haiman dubbed the associahedron. In [Kapranov and Voevodsky 1991; Gel’fand
et al. 1994] it is sometimes called the Stasheff polytope. Kapranov and Saito
[1997] document its occurrence in other surprising geometric contexts.

The associahedron also makes its appearance in computer science, where tri-
angulations of an n-gon show up in the equivalent guise of binary trees, and
bistellar operations correspond to an operation on binary trees called rotation.
Here Sleator, Tarjan and Thurston [Sleator et al. 1988] were able to determine
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the diameter of the 1-skeleton of the associahedron (it is at most 2n − 10 for
n ≥ 13 and is exactly 2n− 10 for infinitely many values of n). Pallo [1987; 1988;
1990; 1993] studied computational aspects of this 1-skeleton and in particular
computed the Möbius function [Stanley 1997, § 3.7] of the Tamari lattice.

In one of Lee’s constructions of the associahedron, he employs the method
of Gale diagrams [Lee 1989, § 4]. Around the same time, Gelfand, Kapranov
and Zelevinsky were using these methods for studying triangulations as part of
their theory of A-discriminants, A-resultants, and A-determinants (see [Gel’fand
et al. 1994] and the references therein). Briefly, the principal A-determinant is a
polynomial EA in a variable set {ca}a∈A indexed by A, which vanishes whenever
the sparse d-variate polynomial in x1, . . . , xd

f :=
∑
a∈A

cax
a

has a root (x1, . . . , xn) in common with all of the derived polynomials

x1
∂f

∂x1
, . . . , xd

∂f

∂xd
.

Their work showed that the Newton polytope of EA, that is, the convex hull in
RA of the set of exponent vectors of the monomials having nonzero coefficients
in EA, is an (n − d − 1)-dimensional polytope whose vertices correspond to a
subset of the triangulations of A called the regular (and later called coherent)
triangulations. A triangulation T of A is coherent if there exists a choice of
heights αa in R for each a ∈ A which induces T in the following fashion: after
“lifting” the points a in Rd to the points (a, αa) ∈ Rd+1 and taking the convex
hull to form a polytope Pα, the “lower” facets of Pα (i.e., those facets whose
normal vector has negative (d+ 1)-coordinate) project to the maximal simplices
of T under the projection Rd+1 → Rd. Figure 4, borrowed from [Rambau 1996],
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Figure 4. A coherent triangulation induced by a choice of heights. From [Rambau 1996].
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Figure 5. The two incoherent triangulations lurking among those in Figure 2

(on the far left and far right of that figure).

illustrates a coherent triangulation of a set A in R2 along with a choice of heights
α which induces it.

After seeing the definition, it is perhaps not obvious that one can have inco-
herent triangulations! However, the standard examples, discussed extensively in
[Connelly and Henderson 1980; Schönhardt 1928], already occur as two of the
triangulations appearing in Figure 2. We have isolated these two triangulations
and depicted them separately in Figure 5. It is a nontrivial exercise to check the
impossibility of assigning six heights to these points in such a way as to induce
either of these triangulations. In general, checking whether a triangulation is
coherent involves checking whether there exists a solution to a certain system
of linear inequalities in the heights αa, where the coefficients in the inequalities
depend upon the coordinates of the points in A; see [Hastings 1998, Chapter 2;
de Loera 1995b, § 1.3].

Gelfand, Kapranov and Zelevinsky called the Newton polytope of EA the
secondary polytope Σ(A). Knowing that the vertices of Σ(A) correspond to the
coherent triangulations of A, it is perhaps not surprising that the higher dimen-
sional faces of Σ(A) correspond to coherent subdivisions, that is, subdivisions into
polytopes which are not necessarily simplices, but induced in a similar fashion
by a choice of heights αa for a in A.

Theorem 1.1 [Gel’fand et al. 1994, Chapter 7, Theorem 2.4]. The faces of
the secondary polytope Σ(A) are indexed by the coherent subdivisions of A, and
reverse inclusion of faces of Σ(A) corresponds to refinement of subdivisions.

In particular, they showed that every bistellar operation between coherent tri-
angulations corresponds to a coherent subdivision and hence forms an edge in
the secondary polytope Σ(A). This has a strong consequence: it implies that
the subgraph of coherent triangulations and bistellar operations is connected
(and even (n−d−1)-vertex-connected in the graph-theoretic sense by Balinski’s
Theorem [Ziegler 1995, 3.5]). Polytopality of Σ(A) also has nice implications for
computing the particular coherent triangulation induced by a choice of heights
αa, such as the Delaunay triangulation of A arising in computational geometry
applications; see [Edelsbrunner and Shah 1992].
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−→

Figure 6. The incoherent triangulations and their neighbors: two equivalent
pictures.

We remark that in the case where A is the set of vertices of a convex n-gon,
every subdivision is coherent, and hence the secondary polytope Σ(A) is the
associahedron encountered earlier.

The fact that the subgraph of coherent triangulations and bistellar operations
is highly connected and forms the 1-skeleton of a cellular (even polytopal) sphere
raises the following basic question:

Question 1.2. Is the graph of all triangulations of A and their bistellar opera-
tions connected?

A glance at Figure 2 illustrates that even in small cases where there are inco-
herent triangulations, the graph still appears to be connected. We can provide
some motivation for the Generalized Baues Problem by performing the following
mental exercise while staring at Figure 2. First picture the planar subgraph of
coherent triangulations, by ignoring the two vertices corresponding to the inco-
herent triangulations in Figure 2 (call them T1 and T2). When one imagines
this planar subgraph as a two-dimensional spherical cell complex, that is the
boundary of the three-dimensional secondary polytope Σ(A), the union of the
neighbors of T1 and T2 form the vertices of a hexagonal cell, corresponding to
the unbounded region in the planar embedding; see Figure 6. Now “inflate” this
hexagonal cell on the 2-sphere into a cubical 3-dimensional cell with the extra
two vertices corresponding to T1, T2. This gives a 3-dimensional cell complex
which is still homotopy equivalent (but not homeomorphic) to a 2-sphere.

Roughly speaking, the Baues question in this context asks whether this be-
havior is general: Do the incoherent triangulations and subdivisions of A attach
themselves to the spherical boundary of Σ(A) in such a way as to not change its
homotopy type?

Zonotopal tilings. Consider Figure 7, similar to [Billera and Sturmfels 1992,
Figure 1], depicting the tilings of a centrally symmetric octagon having unit side
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Figure 7. The rhombic tilings of an octagon.

lengths by unit rhombi. As in the case of triangulations of a point set, we have
drawn in edges between the tilings corresponding to certain natural operations
connecting them, illustrated in Figure 8. Similarly, the graph whose vertices
are the tilings of a 10-gon and whose edges are these operations is depicted in
Figure 9, which may not look very planar, but is in fact the 1-skeleton of a
3-dimensional polyotope.

Figure 8. A typical cube flip, also known as a mutation, triangle switch, 1-move,

braid relation, Yang–Baxter relation, elementary flip, or localized phason.
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Figure 9. The graph of tilings of a decagon, seen in R3 from infinity (left) and

from a nearby point. Compare [Ziegler 1993, Figure 3].

These operations have been given various names in the literature, depending
upon the context in which the tilings arise. In the crystalline physics literature
[Destainville et al. 1997; Mosseri and Bailly 1993], where the set of tilings is
a model for the possible states of a crystalline solid, these moves are called
elementary flips or localized phasons. Rather than considering tilings of a 2n-gon,
an equivalent (and useful) viewpoint comes from consideration of arrangements
of pseudolines (see [Björner et al. 1993, Chapter 6] for definition, background
and references). An arrangement of n affine pseudolines in the plane labelled
1, 2, . . ., n counterclockwise gives rise to a rhombic tiling of a centrally symmetric
2n-gon which is “dual” to the line arrangement in the sense of planar maps; see
Figure 10.

In the pseudoline picture, the move depicted in Figure 8 corresponds to moving
one pseudoline locally across the nearby crossing point of two other pseudolines;

1
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Figure 10. A configuration of affine pseudolines and its associated tiling.
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such moves are often called mutations or triangle-switches or 1-moves. When one
thinks of such a pseudoline arrangement as a degenerate braid diagram recording
a reduced decomposition of a permutation (see [Björner et al. 1993, § 6.4]), such
moves are sometimes called braid relations or Yang–Baxter relations.

Rather than restricting our attention to tilings of centrally symmetric poly-
gons, we can more generally consider the set of zonotopal subdivisions of a zono-
tope. A zonotope Z in Rd is the Minkowski sum of a set V of line segments
in Rd, and a zonotopal subdivision of Z is, roughly speaking, a subdivision of
Z into smaller zonotopes, each a translate of a zonotope generated by a subset
of V , and which intersect pairwise along common faces (possibly empty). The
subdivision is cubical if it is as refined as possible, that is each smaller zonotope
in the subdivision is a translate of a cube generated by a linearly independent
subset of V . In the case where Z is a centrally symmetric 2n-gon, V is a set
of n line segments whose slopes match the slopes of the polygon edges. Cubical
tilings in this case coincide with the rhombic tilings depicted earlier, and the
“cube flip” moves which formed the edges in the graphs of Figures 7 and 9 cor-
respond to zonotopal subdivisions of Z in which all of the smaller zonotopes are
cubes except for one which is hexagonal.

Note that the graph of tilings in Figure 7 is circular, and the graph of tilings in
Figure 9 appears to be planar and possibly even polytopal. This reflects the fact
that for centrally symmetric octagons and decagons, all zonotopal subdivisions
are coherent in a sense which will be described below. A special case of Billera
and Sturmfels’ fiber polytope construction [Billera and Sturmfels 1992, § 5] states
that the subset of coherent zonotopal subdivisions of a d-dimensional zonotope
having n generators index the faces an (n − d)-dimensional polytope (which
happens to be itself a zonotope). Thus the graphs in Figures 7 and 9 are the
1-skeleta of these fiber zonotopes.

Coherence of a zonotopal subdivision is defined similarly to coherence of a
triangulation. A zonotopal subdivision T of a zonotope Z in Rd having gener-
ating line segments V is coherent if there exists a choice of segments V̂ in Rd+1

which project down to V under the forgetful projection Rd+1 → Rd and induce
T in the following fashion: the “upper facets” of the zonotope Ẑ generated by
V̂ project to the maximal cells of T under the map Rd+1 → Rd. An example
is shown in Figure 11. Again, it is not obvious that incoherent zonotopal sub-
divisions can exist, but it can be shown for example, that the tiling of a 12-gon
depicted in Figure 10 is incoherent for certain choices of the slopes of edges in the
12-gon, using essentially the same arguments as in [Björner et al. 1993, Example
1.11.2]. As with coherence of triangulations, checking coherence of a particular
tiling is a problem of existence of a solution to a system of linear inequalities,
and the system of inequalities in this case strongly depends upon the slopes of
the segments V (although not upon the length of these segments). Again as in
the case of triangulations, the fact that the graph of coherent tilings and cube
flips is the 1-skeleton of a polytope has strong consequences for its connectivity.
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V Z

Ẑ T

Figure 11. A coherent tiling T , induced by lifting into R3 the generating seg-

ments V of the 2-dimensional zonotope Z, then projecting the upper facets of
the resulting 3-dimensional zonotope Ẑ back into the plane.

This raises the analogous question to Question 1.2:

Question 1.3. Is the graph of all cubical tilings of a zonotope and their cube
flips connected?

One can also view coherence of two-dimensional tilings in terms of pseudolines
and straight lines. A coherent tiling is one whose pseudoline arrangement is
isomorphic to a (straight) line arrangement in which each line has slope perpen-
dicular to the slope of the edge in the polygon to which it corresponds (that is,
to the edge of the polygon labelled with the same number in Figure 10). Some of
this viewpoint is explained in the instructions for the delightful puzzle Hexa-Grid
[MRI n.d.], which supplies foam rubber versions of the rhombic tiles occurring in
Figure 10, and asks the consumer to assemble them into a tiling of a zonotopal
12-gon!

In studying tilings and zonotopal subdivisions of higher dimensional zono-
topes, the oriented matroid point of view has become indispensable; see [Björner
et al. 1993, § 2.2; Ziegler 1996]. The Bohne–Dress Theorem [Bohne 1992; Richter-
Gebert and Ziegler 1994] states that zonotopal subdivisions of Z biject with the
single-element liftings of the realized oriented matroid M associated with the
generating segments V , or using oriented matroid duality, to the single-element
extensions of the dual oriented matroid M∗ (see [Björner et al. 1993, § 7.1]).
From this point of view, the subset of coherent zonotopal subdivisions of Z cor-
responds to the coherent liftings of V [Billera and Sturmfels 1992, § 5]. If one
views realized oriented matroids and their liftings in terms of sphere and pseu-
dosphere arrangements, then the notion of a coherent lifting was explored in the
work of Bayer and Brandt [1997] on discriminantal arrangements, generalizing
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earlier work of Manin and Schechtman [1989]. The discriminantal arrangement
associated to Z in [Bayer and Brandt 1997] is nothing more than the hyperplane
arrangement which is the polar dual of the fiber zonotope associated to Z in
[Billera and Sturmfels 1992].

Monotone paths. Let P be a polytope in Rd, and f a linear functional in (Rd)∗
that achieves its minimum and maximum values uniquely on P , say at two ver-
tices vmin, vmax. A path from vmin to vmax in the 1-skeleton of the boundary of
P will be called f-monotone if every step in the path is along an edge which
strictly increases the value of f (as in the paths produced by the simplex al-
gorithm for linear programming- see [Ziegler 1995, Lecture 3.2]). We wish to
consider the structure of the set of all f-monotone paths. Note that these paths
are exactly the subject of Ziegler’s strict monotone Hirsch conjecture [Ziegler
1995, Conjecture 3.9].

Just as in the case of triangulations of A or tilings of a zonotope Z, there
is a natural set of moves which connect f-monotone paths: if two paths agree
in most of their steps and differ only by following opposite paths around some
2-dimensional face of P , we say that the two paths differ by a polygon move.
Figure 12 illustrates the graph of f-monotone paths and polygon moves where
P is the 3-cube [0, 1]3 ⊂ R3 and f(x1, x2, x3) = x1 + x2 + x3.

1

2

3

vmin

vmax

f

132 312

/ ∖
123 321

∖ /
213 231

Figure 12. Monotone paths in the 3-cube. Edges pointing in the original three

coordinate directions have been labelled 1, 2, 3, and then monotone paths are
labelled by the sequence of directions of the steps.

In general if P is the n-cube [0, 1]n ⊂ Rn and f(x) =
∑n
i=1 xi, the f-monotone

paths biject with permutations of {1, 2, . . ., n}: one obtains a permutation by
recording which coordinate axis is parallel to each step of the path in sequence,
as in Figure 12. The polygon moves across square faces of the n-cube then
correspond to adjacent transpositions of the permutations, and the whole graph
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f

P

Figure 13. Monotone paths (thick lines) in a cyclic 3-polytope with five vertices.

is isomorphic to the 1-skeleton of the well-known permutohedron [Ziegler 1995,
Example 0.10]; see also [Milgram 1966].

What happens for other polytopes P and functionals f ? Figure 13 shows
the graph of f-monotone paths in a (cyclic) 3-polytope with five vertices in
R3 which is the convex hull of the points {(t, t2, t3) : t = −2,−1, 0, 1, 2}, and
f(x1, x2, x3) = x1.

Although this graph is connected, it is perhaps disappointing that it is not
circular as in the case of Figure 12. Once again, geometry comes to the rescue in
singling out a well-behaved subset of f-monotone paths. Say that an f-monotone
path γ on P is coherent if there exists some linear functional g ∈ (Rd)∗ which
induces γ in the following way: each point of γ (not necessarily a vertex) is the
g-maximal point among all those points of P with the same f value, or in other
words, γ is the union over all points x in f(P ) ⊂ R of the g-maximal points in
the fibers f−1(x). With this definition, the monotone path in the middle of the
graph in Figure 13 is incoherent. To see this, assume there is some functional
g inducing this monotone path, and identify g as the dot product with some
fixed vector. Then this vector must point roughly toward the front (the visible
side) of the polytope P in order to induce the right portion of the path, but also
point toward the back (the invisible side) in order to induce the left portion of
the path; contradiction. The remaining six paths in Figure 13 are easily seen to
be coherent (by imagining appropriate functionals g) and the subgraph on the
corresponding six vertices is indeed circular.

In general, it follows as a special case of Billera and Sturmfels’ fiber poly-
tope construction [Billera and Sturmfels 1992, § 7] that the graph of coherent
f-monotone paths in a polytope P is the 1-skeleton of a polytope called the
monotone path polytope. Higher dimensional faces of the monotone path poly-
tope correspond to objects called coherent cellular strings on P with respect to
f . A cellular string on P with respect to f is a sequence (F1, . . . , Fr) of boundary
faces of P with the following properties:
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Figure 14. An incoherent cellular string.

• vmin ∈ F1 and vmax ∈ Fr.
• f is not constant on any face Fi.
• For each i, the f-maximizing face of Fi is the f-minimizing face of Fi+1.

A cellular string (F1, . . . , Fr) is coherent if there exists some functional g ∈ (Rd)∗
such that the union

⋃r
i=1 Fi equals the union over all points x in f(P ) of the

g-maximal points in the fibers f−1(x).
As an exercise to get a feeling for how the cellular strings fit into the graph

of f-monotone paths, and to further motivate the Baues problem, we invite the
reader to try the following labelling exercise. Label each edge in the graph of
Figure 13 by a cellular string containing mostly 1-faces along with exactly one
triangular 2-face corresponding to the polygon move for that edge. Having done
this, there is only one other possible cellular string, consisting of two triangles and
pictured in Figure 14. This cellular string should label a square 2-cell attached
to the four leftmost vertices and edges in Figure 13 (see also the middle picture
in Figure 15). Notice that the resulting 2-dimensional cell complex is homotopy
equivalent to the circular subgraph indexed by coherent cellular strings. This
raises the following question.

Question 1.4. For a polytope P and functional f , is the graph of f-monotone
paths and their polygon moves connected? Is it part of a complex homotopy
equivalent to a (d− 2)-sphere?

This question includes the original question asked by Baues [1980] as a special
case. Specifically, Baues asked if the poset of cellular strings on the permutohe-
dron with respect to a generic linear functional f has the homotopy type of a
sphere (after endowing the poset with a certain topology: see Section 2). His
question is a natural extension of ideas of Adams [1956] and Milgram [1966]
involving edge paths in polytopes as models for loop spaces and iterated loop
spaces: see [Rambau 1996, § 1.2] for a nice sketch of the ideas involved.

As we will see in Section 4, this original Baues question was answered posi-
tively by Billera, Kapranov and Sturmfels [Billera et al. 1994], who resolved it
not only for cellular strings on the permutohedron, but on arbitrary polytopes.
Another proof, for the case of arbitrary zonotopes, was given by Björner [1992].
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2. Fiber Polytopes and the Baues Problem

The theory of fiber polytopes [Billera and Sturmfels 1992] provides a com-
mon framework in which to discuss triangulations, tilings, and monotone paths,
and also a common notion of coherence for these objects. The fiber polytope
Σ(P π→ Q), is a polytope naturally associated to any linear projection of poly-
topes π : P → Q. Let P be a d′-dimensional polytope in Rd

′
, Q a d-dimensional

polytope in Rd and π : Rd
′
→ Rd a linear map with π(P ) = Q. A polytopal subdi-

vision of Q is a polytopal complex which subdivides Q. A polytopal subdivision
of Q is π-induced if

(i) it is of the form {π(F ) : F ∈ F} for some specified collection F of faces of P
having all π(F ) distinct, and

(ii) π(F ) ⊆ π(F ′) implies F = F ′ ∩ π−1(π(F )), and in particular F ⊆ F ′.

It is possible that different collections F of faces of P project to the same sub-
division {π(F ) : F ∈ F} of Q, so we distinguish these subdivisions by labelling
them with the family F. We partially order the π-induced subdivisions of Q
by F1 ≤ F2 if and only if

⋃
F1 ⊆

⋃
F2. The resulting partially ordered set is

denoted by ω(P π→Q) and called the Baues poset. The minimal elements in this
poset are the tight subdivisions, that is those for which F and π(F ) have the
same dimension for all F in F.

We next explain how π-induced subdivisions of Q generalize triangulations,
tilings, and monotone paths. This is perhaps easiest to see for monotone paths
and cellular strings. Given a polytope P and functional f , let Q be the 1-
dimensional polytope f(P ) in R1. Then a cellular string (F1, . . . , Fr) on P with
respect to f gives rise to a family F satisfying the definition for a π-induced sub-
division of Q as follows: F consist of the Fi’s along with their f-minimizing and
f-maximizing faces. Tight π-induced subdivisions of Q correspond to monotone
paths on P .

For triangulations and tilings, there is a concealed projection of polytopes
lurking in the background. Given a point set A in Rd with cardinality n, let
Q denote its convex hull. There is a natural surjection π : ∆n−1 → Q from a
simplex ∆n−1 having n vertices, which sends each vertex of the simplex to one
of the points of A. One can then check that the π-induced subdivisions of Q as
defined above correspond to the following notion of a subdivision of A, which
replaces the naive definition given in Section 1. A subdivision of A is a collection
of pairs {(Qα,Aα)}, where

• Aα are subsets of A,
• each Qα is the convex hull of Aα and is d-dimensional,
• the union of the Qα covers Q, and
• for any α, β, the intersection Qα ∩ Qβ is a face F (possibly empty) of each,

and Aα ∩ F = Aβ ∩ F .
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Tight π-induced subdivisions of Q correspond to triangulations of A. Further-
more, the Baues poset corresponds to the natural refinement ordering on sub-
divisions of A: {(Qα,Aα)} ≤ {(Q′β,A′β)} if and only if for every α there exists
some β with Aα ⊆ A′β (and hence also Qα ⊆ Q′β).

Let Z be a zonotope in Rd generated by n line segments V . Without loss
of generality we may assume that these segments all have one endpoint at the
origin, and we can think of them as vectors pointing in a certain direction rather
than segments. There is then a natural surjection π : In → Z of the n-cube In

in Rn onto Z which sends the standard basis vectors in Rn onto the vectors V .
Then the π-induced subdivisions of Q as defined above correspond to a notion
of zonotopal subdivision of Z explained carefully in [Richter-Gebert and Ziegler
1994, Definitions 1.3 and 1.4], and which replaces the naive definition we gave in
Section 1. Tight π-induced subdivisions then correspond to cubical tilings of Z,
and the Baues poset corresponds to a natural refinement ordering on zonotopal
subdivisions. As was remarked in Section 1, the Bohne–Dress Theorem shows
that the zonotopal subdivisions, or equivalently π-induced subdivisions of Z, are
the same as single-element liftings of the realized oriented matroid M correspond-
ing to the vectors V . It is furthermore true that the Baues poset corresponds to
the usual weak map ordering [Björner et al. 1993, § 7.2] on single-element liftings
of M, or equivalently on the single-element extensions of the dual M∗.

Returning to our general set-up of a projection π : P → Q, we wish to define
when a π-induced subdivision is π-coherent, generalizing the notion of coherence
for triangulations, tilings, and monotone paths. There is more than one way to
say this, and we start with one of the descriptions from [Billera and Sturmfels
1992]. Choose a linear functional g ∈ (Rd

′
)∗. For each point q in Q, the fiber

π−1(q) is a convex polytope which has a unique face F q on which the value of
g is minimized. This face lies in the relative interior of a unique face Fq of P
and the collection of faces F = {Fq}q∈Q projects under π to a subdivision of Q.
Subdivisions of Q which arise from a functional g in this fashion are called π-
coherent. Note that this definition of π-coherence clearly generalizes our earlier
notion of coherence for cellular strings on P .

It is possible to rephrase the definition of π-coherent subdivisions given in
[Billera and Sturmfels 1992] as follows (see also [Ziegler 1995, § 9.1]). Having
chosen the functional g ∈ (Rd

′
)∗ as above, form the graph of the linear map

π̂ : P → Rd+1 given by p 7→ (π(p), g(p)). The image of this map is a polytope
Q̂ in Rd+1 which maps onto Q under the forgetful map Rd+1 → Rd. Therefore,
the set of lower faces of Q̂ (those faces whose normal cone contains a vector with
negative last coordinate) form a polytopal subdivision of Q. We identify this
subdivision of Q with the family of faces F = {F} in P which are the inverse
images under π̂ of the lower faces of Q̂. Under this identification, it is not hard to
check that the subdivision of Q is exactly the same as the π-coherent subdivision
induced by g, described in the previous paragraph. A glance at the definitions
shows that this second definition of π-coherence generalizes the ones we gave for
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coherent subdivisions of a point set A and for coherent zonotopal subdivisions
of a zonotope Z.

Let ωcoh(P π→ Q) denote the induced subposet of the Baues poset ω(P π→ Q)
on the set of π-coherent subdivisions of Q. The following beautiful result of
Billera and Sturmfels which explains all of our pretty polytopal pictures is the
following:

Theorem 2.1 [Billera and Sturmfels 1992, Theorem 3.1]. Let P be a d′-polytope,
Q a d-polytope, and π : P → Q a linear surjection. Then the poset

ωcoh(P π→ Q)

is the face poset of a (d′ − d)-polytope Σ(P π→ Q).
In particular , the tight π-coherent subdivisions of Q correspond to the vertices

of Σ(P π→ Q).

The (d′ − d)-polytope Σ(P π→ Q) is called the fiber polytope of the surjection π.
It generalizes the secondary polytopes Σ(A), fiber zonotopes, and monotone path
polytopes encountered in Section 1. A striking feature of Σ(P π→ Q) is that it
can also be constructed as the “Minkowski average” over points q ∈ Q (in a well-
defined sense; see [Billera and Sturmfels 1992, § 2]) of all of the polytopal fibers
π−1(q). For an algebro-geometric interpretation of the fiber polytope Σ(P π→ Q)
in terms of Chow quotients of toric varieties; see [Kapranov et al. 1991; Hu
≥ 1999].

As a consequence of Theorem 2.1, if one removes the top element 1̂ from
ωcoh(P π→ Q), corresponding to the improper π-coherent subdivision F = {P},
one obtains the face poset of a polytopal (d′−d−1)-sphere, that is the boundary
of Σ(P π→ Q). The generalized Baues problem asks roughly how close the whole
Baues poset ω(P π→ Q) − 1̂ is topologically to this sphere. Before phrasing the
problem precisely, we must first give the poset ω(P π→ Q) − 1̂ a topology. The
standard way to do this is to consider its order complex, the abstract simplicial
complex of chains in the poset [Björner 1995, (9.3)]. From here on, we will abuse
notation and use the name of any poset also to refer to the topological space
which is the geometric realization of its order complex.

We can now state the Generalized Baues Problem, in at least two forms, one
stronger than the other. Both of these forms appear, implicitly or explicitly,
either in the first mention of the problem by Billera and Sturmfels [1992, p. 545]
or in the later formulation of [Billera et al. 1994, § 3].

Question 2.2 (Weak GBP). Is ω(P π→ Q) − 1̂ homotopy equivalent to a
(d′ − d− 1)-sphere ?

Question 2.3 (Strong GBP). Is the inclusion

ωcoh(P π→ Q)− 1̂ ↪→ ω(P π→ Q)− 1̂

a strong deformation retraction?
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The strong GBP captures the sense we had from Figures 2 and 13 that the in-
coherent subdivisions were nothing more than “warts” attached to the spherical
subcomplex indexed by the coherent subdivisions, and that these warts could be
retracted onto this subcomplex. We should beware, however, that these pictures
of small examples can be deceptive. In particular, we mention a vague metacon-
jecture that has several examples of empirical evidence; see [Athanasiadis 1999;
de Loera et al. 1996; Athanasiadis et al. 1997, Remark 3.6]:

Vague Metaconjecture 2.4. Let Pn → Qn be a “naturally occurring” infinite
sequence of polytope surjections in which either

dim(Qn)→∞ or dim(Pn)− dim(Qn)→∞

as n approaches infinity . Assume also that for some value of n there exist π-
induced subdivisions of Qn that are π-incoherent . Then as n approaches infinity ,
the fraction of the number of π-coherent subdivisions out of the total number of
π-induced subdivisions approaches 0.

In other words, the warts take over eventually.
Besides the weak and strong versions, one can imagine other intermediate

versions of the GBP. For example, one might ask whether the inclusion referred
to in the strong GBP induces only a homotopy equivalence, rather than the
stronger property of being a deformation retraction. We will resist naming these
other versions, since they seem not to have been addressed in the literature.

Knowing that ωcoh(P π→ Q) is the poset of faces of a (polytopal) regular cell
complex, the reader may be disappointed that we have not defined the entire
Baues poset ω(P π→ Q) to be the poset of faces in some regular cell complex, since
it appears to be so in all of our small examples. For example, Figure 15 shows
the order complex of ω(P π→ Q)−1̂ for the example in Figure 13, which turns out
to be the barycentric subdivision of the regular cell complex one would have liked
to call “the Baues complex”. Whenever such a regular cell complex exists, then
of course, the order complex of ω(P π→ Q)− 1̂ will be its barycentric subdivision,
and hence homeomorphic to the original regular cell complex. Unfortunately,

Figure 15. Left: Monotone paths as in Figure 13, defining P and Q. Middle: A
regular cell complex that has ω(P

π→ Q) − 1̂ as its poset of faces. Right: The

order complex of ω(P
π→ Q)− 1̂.
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such a regular cell complex does not exist in general; relatively small examples
show that lower intervals in ω(P π→ Q)−1̂ need not be homeomorphic to spheres,
which is the necessary condition for a poset to be the poset of faces of a regular
cell complex [Björner 1995, (12.5)]. One way to obtain such an example is to
add a seventh point a0 to the point configuration A in Figure 2, in any location
in the same plane. Then the unique proper subdivision of A∪{a0} which leaves
the convex hull of A completely unrefined lies at the top of a lower interval that
is not homeomorphic to a sphere.

3. Relations to Other Problems

Having stated the GBP, we can now explain how it relates to some of our
previous questions, and to other problems in discrete geometry and topological
combinatorics.

Connectivity questions. Questions 1.2, 1.3, and 1.4 are clearly related to
the GBP, and appear at first glance to be weaker, in that they only ask for
connectivity of a certain graph rather than homotopy sphericity of a complex.
However, a positive answer to the strong GBP does not quite imply a positive
answer to either of these questions. There are at least two subtleties associated
with this conclusion, which we will now attempt to make precise.

For an element of a finite poset, let its rank be the length of the shortest
saturated chain below it in the poset, so that minimal elements have rank 0. Let
Aπ, Bπ denote the elements at rank 0 and rank 1 respectively in the Baues poset
ω(P π→ Q), and let Gπ be the graph on the union Aπ∪Bπ obtained by restricting
the Hasse diagram for ω(P π→ Q) to this union of its bottom two ranks. Given
a point set A, let GA denote its graph of triangulations and bistellar operations.
Similarly, for a zonotope Z, let GZ be its graph of cubical tilings and cube
flips, and for a polytope P with a linear functional f , let GP,f be the graph of
monotone paths and polygon moves.

The first subtlety we encounter is the relation between the graphs GA, GZ ,
GP,f and the graph Gπ. It is tempting to say that the barycentric subdivision of
GA, GZ, or GP,f is the same as Gπ for the appropriate map π, since the vertex
sets of each of these barycentric subdivisions forms a subset of the vertices of
the appropriate Gπ. However, it takes some work to show that these graphs
coincide.

• In the case of point sets A, a slight generalization of the pulling construction
described by Lee [1991, § 2] can be used to show that every subdivision can be
refined to a triangulation, so elements of rank 0 in the Baues poset coincide
with the triangulations. Furthermore, the results and ideas of [Santos 1999]
can be used to show that the elements of rank 1 coincide with the bistellar
operations. Both of these assertions are easy when A is in general position,
but otherwise become subtle.
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• In the case of zonotopes Z, it is known that every zonotopal subdivision can
be refined to a cubical tiling [Björner et al. 1993, Corollary 7.7.9], so elements
of rank 0 in the Baues poset coincide with cubical tilings. For cube flips, one
must first define these flips “correctly” for zonotopes in dimensions higher
than 2, using the oriented matroid notion of mutations on the single element
lifting associated to the tiling. Then a result of Santos [1997a, Theorem
4.14(ii)] combined with our previous assertion about bistellar flips can be
used to prove that the elements of rank 1 in the Baues poset correspond to
cube flips [Santos 1998].

• In the case of a polytope P and functional f , one can check directly that
every cellular string can be refined to a monotone path, so elements of rank
0 in the Baues poset coincide with monotone paths. However, whenever the
functional f is not generic in the sense that it is constant on some edge of P ,
one needs to be careful about how one defines polygon moves. Our previous
naive definition will not suffice, as illustrated by Figure 16. Nevertheless, it is
possible to correct this definition so that all elements of rank 1 in the Baues
poset correspond to these corrected polygon moves [Santos 1998].

The second subtlety arises from the fact that even in cases where the GBP
has a positive answer, connectivity of ω(P π→ Q) does not necessarily imply
connectivity of the graph Gπ, since the 1-skeleton of ω(P π→ Q) (or rather
its order complex) contains some vertices corresponding to poset elements with
ranks higher than 0, 1. On the other hand, one would like to be able to apply
the following easily verified lemma to ω(P π→ Q):

f

P

1

2

3

4

Figure 16. Left: A tetrahedron P with a nongeneric functional f for which
vertices 2, 3 have the same f -value. Right: The boundary complex of the fiber

polytope Σ(P
π→ Q), whose face poset coincides with the poset of all cellular

strings (all are coherent). Note that the cellular string (123, 234) labelling the

bottom edge of this complex does not correspond to a polygon move as we had
earlier defined it.
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Lemma 3.1. Let X be a finite poset with a top element 1̂, and assume that X
has the property that every strict principal order ideal X<x := {x′ ∈ X : x′ < x}
either is connected , empty , or consists of two incomparable poset elements.

Then the graph obtained by restricting X to its elements at rank 0 and 1 is
connected .

Of course the GBP only implies the hypotheses of this lemma are satisfied with
X = ω(P π→ Q) for the strict principal order ideal X<1̂. But there is some
hope that if one could prove the weak GBP in some case, then one can also
prove homotopy sphericity for the rest of the order ideals X<x, and hence can
use the lemma. Under the genericity assumptions which were mentioned above
for triangulations and monotone paths, one can check that these principal order
ideals are Cartesian products of Baues posets for smaller polytopes, and hence
their connectivity follows from positive answers to the GBP for these smaller
polytopes. In particular, the positive answer for the strong GBP for monotone
paths [Billera et al. 1994] (to be discussed in the next section) implies a positive
answer to all of Question 1.4 under the assumption that the functional f is
generic. Without such genericity assumptions, the structure of these principal
order ideals may be more complicated. A specific study of these principal order
ideals in the case of triangulations of a point set A was initiated by Santos [1999].

Flip deficiency. While we are discussing Questions 1.2, 1.3, and 1.4, it is ap-
propriate to mention questions about the number of bistellar neighbors of a
triangulation, the number of cube flip neighbors of a tiling, and the number of
polygon-move neighbors of a monotone path. In the general setting of π : P → Q,
every tight π-coherent subdivision ofQ represents a vertex of the (d′−d)-polytope
Σ(P π→ Q), and therefore will have at least d′ − d neighboring tight π-coherent
subdivisions lying along the edges of the polytope. On the other hand, π-induced
subdivisions which are not π-coherent may have fewer neighbors, in which case
we will say that the subdivision in question has flip deficiency. If the subdivi-
sion has no neighbors we say that it is isolated, which of course gives a negative
answer to the GBP if d′ − d > 1 in that case. Note that the example with all
coherent cellular strings in Figure 16 shows that for monotone paths, we must
either be careful to restrict ourselves to the case of a generic functional f , or else
redefine what is meant by a “polygon-move” in talking about flip-deficiency.

Flip deficiency has been very well-explored for cubical tilings of zonotopes in
the guise of counting simplicial regions of hyperplane arrangements or mutations
in oriented matroids; see [Richter-Gebert 1992, Introduction § 3] for a nice sum-
mary. For triangulations, flip-deficiency has been explored only more recently;
see [de Loera et al. 1999; Santos 1997b]. For monotone paths, the question of
flip deficiency appears not to have been considered much at all.

A related question concerns the level of connectivity of the graphs GA, GZ ,
GP,f of triangulations and bistellar moves, tilings and cube flips, monotone paths
and polygon moves respectively. For each of these graphs, the induced subgraph
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on the coherent elements is the 1-skeleton of (d′ − d)-polytope and hence is
(d′ − d)-vertex-connected in the graph-theoretic sense by Balinski’s Theorem
[Ziegler 1995, § 3.5]. One can ask whether the entire graphs GA, GZ , GP,f share
the same level of vertex-connectivity, which is stronger than saying that every
vertex has at least d′−d neighbors. Very recently, Azaola and Santos [Azaola and
Santos 1999] proved the first nontrivial positive result in this direction, showing
that for point sets A in Rd with d + 4 points (so d′ − d = 3), the graph of
triangulations and bistellar moves is 3-connected. The question has only been
resolved negatively in some cases where flip-deficiency exists [de Loera et al.
1999; Santos 1997b].

Extension spaces, MacPhersonians and OM-Grassmannians. Let Z be
a d-dimensional zonotope generated by a set of n vectors V . As mentioned in
Section 1, one can associate to V its oriented matroid M. The Bohne–Dress
Theorem [Bohne 1992; Richter-Gebert and Ziegler 1994] then implies that the
Baues poset ω(P π→ Q) is isomorphic to the extension poset E(M∗), consisting of
all single-element extensions of the dual oriented matroid M∗ ordered by weak
maps. The following Extension Space Conjecture [Björner et al. 1993, § 7.2]
appears not to be attributable to any single source:

Conjecture 3.2. For a realizable oriented matroid N, the order complex of the
extension poset E(N) − 1̂ is homotopy equivalent to a (rank(N) − 1)-sphere.

Hence the extension space conjecture is equivalent to the special case of the
weak GBP dealing with zonotopal subdivisions. We will discuss positive cases
of this conjecture, mostly taken from [Sturmfels and Ziegler 1993], in Section 4,
but we mention that the results of Mnëv and Richter-Gebert [1993] show that
one cannot remove the assumption that N is realizable. They cleverly construct
nonrealizable oriented matroids N of rank 4 for which E(N)− 1̂ is disconnected!

The extension space E(N) is also closely related to certain combinatorial mod-
els of Grassmannians called OM-Grassmannians (see [Anderson 1999a] in this
same volume, or [Richter-Gebert 1992, Introduction, § 4; Rambau 1996, § 1.2;
Mnëv and Ziegler 1993] for fuller discussions). Briefly, given an oriented matroid
M, the OM-Grassmannian Gk(M) is the poset of rank k oriented matroids which
are strong images [Björner et al. 1993, § 7.7] of M, ordered by weak maps. If M

has rank d, the order complex of Gk(M) is intended as a combinatorial model
for the Grassmannian of k-planes in Rd. In the special case where M is the
Boolean or free oriented matroid on d elements, Gk(M) is called the MacPherso-
nian MacP(d, k), due to its occurrence in the work of Gelfand and MacPherson
[1992; [MacPherson 1993]] on combinatorial formulas for characteristic classes.
The following was conjectured by MacPherson when M is Boolean, and for all
realizable M by Mnëv and Ziegler [Richter-Gebert 1992, Conjecture 4.2; Mnëv
and Ziegler 1993, Conjecture 2.2].
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Conjecture 3.3. If M is a realizable oriented matroid of rank d, then Gk(M)
is homotopy equivalent to the Grassmannian of k-planes in Rd.

Babson [1993] showed that Conjecture 3.3 is true for k ≤ 2, and in the Boolean
case, that MacP(d, 3) is homotopy equivalent to the appropriate Grasmmannian.
See [Mnëv and Ziegler 1993].

The relation to extension spaces and the Baues problem is that the extension
poset E(M) is a double cover of Gd−1(M) in the sense that there is a two-to-one
order-preserving map E(M) → Gd−1(M). As a consequence, one can view the
conjecture that Gd−1(M) is homotopy equivalent to the Grassmannian of (d−1)-
planes in Rd (or (d − 1)-dimensional real projective space) as a projectivized
version of the Extension Space Conjecture. This also implies that the positive
results of Sturmfels and Ziegler [1993] on the Extension Space Conjecture 3.2
give some special cases of Conjecture 3.3.

4. Positive Results

In this section we review results which give a positive answer to the weak
or strong GBP. The methods used tend to segregate into the three paradigms
described below, where we have indicated the references whose proofs exemplify
these paradigms:

Retraction: A proof of the strong GBP, by exhibiting an explicit homotopy
retracting ω(P π→ Q) onto ωcoh(P π→ Q). See [Billera et al. 1994, Theorem 2.3;
Rambau and Ziegler 1996, Theorem 1.4; Athanasiadis et al. 1997, Theorem 1.2].

Homotopies: A proof of the weak GBP by a short chain of homotopy equiva-
lences from ω(P π→ Q) to some poset known to have spherical homotopy type.
See [Björner 1992, Theorem 2; Edelman et al. 1997, Theorem 1.2].

Deletion-Contraction: An inductive proof of the weak GBP using (sometimes
implicitly) the notion of deletion-contraction from matroid theory. See [Billera
et al. 1994, Theorem 1.2; Sturmfels and Ziegler 1993, Theorem 1.2; Edelman and
Reiner 1998, Theorem 3; Rambau and Santos 1997, Theorem 1.1].

Recall the general set-up: we consider a linear surjection of polytopes π : P → Q

with P,Q being d′, d-dimensional, respectively, and with P having n vertices. We
divide our discussion of positive results into the following categories:

• d = 1 (monotone paths),
• d′ − d = 2 (low codimension),
• P=cube (zonotopal tilings),
• n− d′ = 1 or P=simplex (triangulations),
• cyclic polytopes.

The case d = 1: Monotone paths. The original paper of Billera, Kapranov and
Sturmfels that posed the GBP [Billera et al. 1994] proves both the weak and
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strong GBP for monotone paths and cellular strings, under our usual genericity
assumption that f is nonconstant along each edge of P . Rambau and Ziegler
[1996] claim that the proofs in [Billera et al. 1994] can be adapted to remove this
assumption. There are two proofs given in [Billera et al. 1994], one which follows
the Retraction paradigm in proving the strong GBP (their Theorem 2.3) and one
which implicityly uses the Deletion-Contraction paradigm (their Theorem 1.2)
to prove the weak GBP.

This settles the original problem of Baues [1980, Conjecture 7.4], which is
the special case in which the polytope P is a permutohedron and f is a generic
functional. The weak GBP for cellular strings on zonotopes, as in Baues’ special
case, also follows from work of Björner [1992, Theorem 2] (motivated by the
preprint version of [Billera et al. 1994]), which is a good example of the Homo-
topies paradigm. Björner observes that cellular strings on a zonotope Z are the
same as what he calls the essential chains in the poset of regions [Edelman 1984]
of the hyperplane arrangement which is the polar dual [Ziegler 1995, § 7.3] to Z.
An essential chain in a bounded poset is a chain from the bottom element to the
top element in which every step corresponds to a noncontractible (open) inter-
val. Björner shows that the subposet of essential chains ordered by refinement
is homotopy equivalent to the order complex of all chains in the proper part of
the poset. For the poset of regions of a hyperplane arrangement, the homotopy
type is known to be spherical by work of Edelman and Walker [1985]. Björner
actually proves his result not just for zonotopes or realized oriented matroids,
but for an arbitrary oriented matroid, where the notion of a cellular string and
the poset of regions still make sense.

The case d′ − d ≤ 2: Low codimension. In very low codimension there is not
much to say. If d′ − d = 0 then P = Q and the only π-induced subdivision of
Q is the improper one. In the case d′ − d = 1, there are exactly two proper
π-induced subdivisions of Q, one coming from the “top” faces of P with respect
to the projection π, the other coming from the “bottom” faces. Both of these
subdivisions are coherent, and hence ωcoh(P π→ Q), ω(P π→ Q) are both 0-
spheres.

In the case d′ − d = 2, the fiber polytope Σ(P π→ Q) is a polygon, and
hence ωcoh(P π→ Q) is its boundary circle. Rambau and Ziegler [1996] use the
Retraction paradigm to prove the strong GBP in this case.

The case P = cube: zonotopal tilings. We saw in Section 2 that the case when
P is a d′-cube corresponds to the case of zonotopal subdivisions and tilings of
the zonotope Z = Q = π(P ). Furthermore, if M denotes the oriented matroid
associated to the generating segments V of Z, then we saw that the Baues poset
is the same as the poset of single-element extensions E(M∗) for the dual oriented
matroid M∗, and the weak GBP is the same as the Extension Space Conjecture
(Conjecture 3.2) for M∗.
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The extension space conjecture was investigated by Sturmfels and Ziegler
[1993], who proved most of the strongest positive results at present. They showed
that an inductively defined technical hypothesis called strong Euclideanness on
the oriented matroid M implies that the extension space conjecture holds, using
the Deletion-Contraction paradigm. They then showed that an oriented matroid
on n elements with rank r is strongly Euclidean under various hypotheses: if
r ≤ 3, or n − r ≤ 2, or when M is the alternating oriented matroid Cn,r that
comes from a cyclic arrangement of vectors [Björner et al. 1993, § 9.4]. Since
oriented matroid duality exchanges r for n − r and keeps n fixed, and since the
alternating oriented matroids satisfy (Cn,r)∗ ∼= Cn,n−r, their results imply the
weak GBP when P is a d′-cube and Q = Z is a d-dimensional zonotope under
the following conditions:

• d′ − d ≤ 3, or
• d ≤ 2, or
• Z is a cyclic zonotope.

It was also shown by Bailey [1997] that the hypothesis of strong Euclideanness
holds for M∗ when M is the oriented matroid associated to a d-dimensional
zonotope having d+ 1 generic generating segments, but with arbitrary multiple
copies of each segment. Hence the weak GBP also holds for tilings of such
zonotopes. We remark that for d = 2, the cubical tilings of these zonotopes
(hexagons) were enumerated by MacMahon [1915–16, vol. 2, §X] in 1899.

Before closing our discussion of the Baues problem for tilings, we would like to
mention an important result of Santos which shows that the GBP for zonotopal
tilings is a special case of the GBP for triangulations. To any realized oriented
matroid M one can associate a polytope Λ(M) known as its Lawrence polytope
[Bayer and Sturmfels 1990; Billera and Munson 1984; Santos 1997a, Chapter
4; Björner et al. 1993, § 9.3], using the technique of Gale transforms. This
construction, due to Jim Lawrence (unpublished; see [Ziegler 1995, p. 183]) gives
an encoding of all the information of the oriented matroid M into the face lattice
of the polytope Λ(M), and is useful for transferring matroid constructions and
examples into the world of polytopes.

Theorem 4.1 [Santos 1997a, Theorem 4.14; Huber et al. 1998]. Let Z be a
zonotope with associated oriented matroid M. There is a natural bijection between
the subdivisions of Λ(M) and the zonotopal subdivisions of Z (=single-element
liftings of M) which induces an isomorphism between the associated Baues posets.

Consequently, a negative answer to the GBP for zonotopal tilings produces a
negative answer for triangulations. We remark that the Lawrence construction
applies more generally to oriented matroids M which are not necessarily realiz-
able, yielding a matroid polytope Λ(M) [Björner et al. 1993, § 9.1] rather than
a polytope. Santos’ result also applies in this situation, where one defines the
triangulation of a matroid polytope via his definition of a triangulation of an
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oriented matroid [Santos 1997a]. This definition unifies previous notions of such
triangulations that had been proposed by Billera and Munson [1984] and Ander-
son [1999b].

The case n − d′ = 1 or P = simplex: triangulations. When n − d′ = 1 the
polytope P must be an n-dimensional simplex ∆n−1. We saw that in this case
the Baues poset is the poset of subdivisions of the point set A, where A is the
image under π of the vertices of ∆n−1.

When the dimension d of A’s ambient space is very small, as in the case of
zonotopal tilings in R1, there is not much to say. For d ≤ 1 every subdivision is
coherent, and the secondary (or fiber) polytope Σ(A) is a Cartesian product of
simplices whose dimensions are given by the multiplicities of the interior points
in A, and one less than the multiplicities of the end points.

For d = 2, things start to get interesting. The fact that the graph of triangu-
lations and bistellar operations is connected follows from work of Lawson [1977],
who gave an algorithm which starts with any triangulation and moves it toward
a particular coherent triangulation called the Delaunay triangulation. Joe [1989]
observed that this procedure does not work in general for d = 3. However, Ra-
jan [1994] and Edelsbrunner and Shah [1992] observed that a generalization of
this flipping procedure works to move a particular coherent triangulation to the
unique coherent triangulation which is induced by some chosen set of heights. In
fact, this procedure amounts to nothing more than linear programming on the
secondary polytope Σ(A).

It is claimed at the end of [Billera et al. 1994] that one can positively answer
the GBP for A in R2, and this was justified under the extra assumption that the
points lie in general position by Edelman and Reiner [1998] using the Deletion-
Contraction paradigm. The idea in their proof is to choose an extreme point v of
A, and use the fact that every subdivision of A gives rise to a lower-dimensional
subdivision of the vertex figure of A at v. This gives an order-preserving map of
subdivision posets which is shown to induce a homotopy equivalence by a tech-
nical argument, akin to the usual Quillen Fiber Lemma [Björner 1995, (10.5)].
The question of flip-deficiency for A in R2 was resolved by de Loera, Santos and
Urrutia [1999]. They give a clever counting argument involving Euler’s formula,
showing that every triangulation has at least |A|−3 bistellar neighbors, so there
is no flip deficiency.

For A in R3 and higher dimensions, our knowledge of bistellar connectivity
and the GBP for triangulations is astoundingly limited. Very recent work of
Azaola and Santos [1999] shows that in low codimension, d′ − d = 3, the graph
of triangulations and bistellar operations is 3-connected, so in particular, there
is no flip deficiency in this case. De Loera, Santos and Urrutia [de Loera et al.
1999] used a similar counting argument as in the d = 2 case to show that for
A in R3 in general position and convex position (i.e., no point of A is in the
convex hull of the rest) there can be no flip deficiency. Both of these positive
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results are tight, in a sense, since an unpublished example of de Loera, Santos
and Urrutia gives a triangulation of a configuration of 8 points in R3 with one
point interior, having only 3 bistellar neighbors. They also exhibit in [de Loera
et al. 1999], a triangulation of 9 points in R3 in general position with on point
interior, having only 4 bistellar neighbors, and a triangulation of 10 points in
convex general position in R4 having only 4 bistellar neighbors.

There are relatively few families of polytopes in higher dimensions whose
triangulations have been well-studied, other than the cyclic polytopes which will
be discussed in the next heading. We mention a few of these other families here.

Triangulations of the d-cube which use few maximal simplices are desirable for
the purposes of fixed point algorithms [Todd 1976; Ziegler 1995, Problem 5.10].
Therefore one would be interested in algorithms which enumerate the triangula-
tions, such as the program PUNTOS [de Loera 1995a], which enumerates all the
triangulations lying in the same connected component of the graph of bistellar
operations as the coherent triangulations. Unfortunately, de Loera [de Loera
1995b, Theorem 2.3.20; 1996] has shown that incoherent triangulations of the
d-cube exist for d ≥ 4 (including some with flip deficiency) so it is not known
whether one can produce all triangulations of the cube by this method.

We momentarily digress to point out a (perhaps) surprising fact about the
triangulations of a point set A which are extremal with respect to the number of
maximal simplices — they need not be coherent! Such an example comes from
work of Ohsugi and Hibi [1997], and was further analyzed by de Loera, Firla and
Ziegler; see [Firla and Ziegler 1997]. This example is a point configuration A

having 15 points in R9 lying in convex position (in fact, having all coordinates
0 or 1), for which the the maximal number of maximal simplices in a regular
triangulation is smaller than for an arbitrary triangulation. This example also
has the same property for triangulations with the minimal number of maximal
simplices.

Cartesian products of simplices ∆m ×∆n were conjectured to have only co-
herent triangulations (see [Ziegler 1995, Problem 5.3]). This is true when m or
n is equal to 1, as the secondary polytope in this case is known to be the per-
mutohedron [Gel’fand et al. 1994, p. 243]. However, de Loera [1995b, Theorem
2.2.17; 1996] showed that there are incoherent triangulations whenever m, n ≥ 3,
and Sturmfels [1996, Theorem 10.15] showed that they exist when m = 2 and
n ≥ 5. A close study of the secondary polytope Σ(∆m ×∆n) and its facets was
initiated by Billera and Babson [1998], whose point of departure was the fact
that a typical fiber of the map ∆(m+1)(n+1)−1 → ∆m ×∆n is a transportation
polytope, i.e., the polytope of nonnegative (m+ 1)× (n+ 1) matrices with some
prescribed row and column sums. The Ph.D. thesis of R. Hastings [1998] con-
tains some interesting ways to view arbitrary triangulations of ∆m ×∆n, and a
few different ways to view incoherence for triangulations of point sets in general.

Another interesting family of polytopes are the (k, n)-hypersimplices ∆(k, n)
defined in [Gelfand and MacPherson 1992] as the convex hull of all sums of k dis-
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tinct standard basis vectors ei1 + · · ·+eik in Rn. Particular triangulations of the
second hypersimplex ∆(2, n) were studied by de Loera, Thomas and Sturmfels
[de Loera et al. 1995], and by Gelfand, Kapranov, and Zelevinsky (see [de Loera
1995b, § 2.5]). Stanley [1977] gave a triangulation of ∆(k, n) in general, which
recovers a computation of its normalized volume due to Lagrange. In the special
case k = 2 this triangulation coincides with the one given in [de Loera et al.
1995].

Cyclic polytopes C(n, d). The cyclic polytope C(n, d) is defined to be the convex
hull of any n distinct points on the d-dimensional moment curve

{(t, t2, . . . , td); t ∈ R}.

Cyclic polytopes play an important role in polytope theory because of the Upper
Bound Theorem of McMullen [Ziegler 1995, § 8.4]: for any i, the cyclic poly-
tope C(n, d) achieves the maximum number of i-dimensional faces possible for a
d-dimensional polytope with n vertices. Although the definition of C(n, d) im-
plicitly depends upon the parameters t1 < · · · < tn which are the x1-coordinates
of the points chosen on the moment curve, much of the combinatorial structure
of C(n, d) (including its face lattice, and its set of triangulations and subdivi-
sions) does not depend upon this choice. Therefore we will omit the reference to
these parameters except when necessary.

Note that the moment curve in Rd
′

maps to the moment curve in Rd under
the natural surjection π : Rd

′
→ Rd which forgets the last d′ − d coordinates.

This equips the cyclic polytopes with natural surjections π : C(n, d′)→ C(n, d).
Much has been said recently about the fiber polytopes and GBP for these natural
maps, which include as special cases the study of triangulations of C(n, d) when
d′ = n − 1, and the monotone paths on C(n, d′) with respect to the functional
f(x) = x1 when d = 1. The culmination of much of this work on the GBP
was achieved very recently by Athanasiadis, Rambau, and Santos [Athanasiadis
et al. 1998]. They use the deletion-contraction paradigm along with the “sliding”
technique from [Rambau 1997b; Rambau and Santos 1997] to give a positive
answer to the weak GBP for all of the maps π : C(n, d′)→ C(n, d). The following
table gives a chronological summary of the progress on positive answers to the
(weak) GBP for π : C(n, d′)→ C(n, d).

d′ = n− 1, d = 1 (folklore)
d′ = n− 1, d = 2 [Stasheff 1963]
d = 1 [Billera et al. 1994]
d′ − d ≤ 2 [Rambau and Ziegler 1996]
d′ = n− 1, d ≤ 3 [Edelman et al. 1997]
d′ = n− 1 [Rambau and Santos 1997]
d = 2, d′ = n− 2 [Athanasiadis et al. 1997]
d = 2, n < 2d′ + 2, d′ ≥ 9 [Reiner 1998]
arbitrary n, d′, d [Athanasiadis et al. 1998]
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In [Athanasiadis et al. 1997], the authors determine when the fiber polytope
Σ(C(n, d′) π→ C(n, d)) is canonical in either of the following two ways:

• all π-induced subdivisions of C(n, d) are π-coherent ( this happens only when
d− d′ ≤ 2, or n − d′ = 1 and d = 2, excepting a few sporadic cases), or

• not all π-induced subdivisions are π-coherent, but the subset of π-coherent
subdivisions does not depend upon the choice of parameters t1 < · · · < tn
(this happens exactly if d = 1, d′ − d ≥ 2, and n− d′ ≥ 2).

The remaining results about cyclic polytopes deal exclusively with the case of
triangulations of C(n, d) and their combinatorics, that is, n − d′ = 1. The
philosophy here has been to try and generalize as many things as possible from
the case d = 2, where the cyclic polytope C(n, 2) is a convex polygon as in
Figure 3. For d = 2 we know almost everything about the triangulations and
subdivisions, as was described in Section 1. All these subdivisions of C(n, 2)
are coherent, so the poset of subdivisions is the face poset of the secondary
polytope Σ(A), the (n − 3)-dimensional associahedron. The 1-skeleton of the
associahedron is the Hasse diagram for the Tamari poset (see Figure 3), and this
poset turns out to be a lattice (oriented sideways in that figure).

In contrast to the d = 2 case, not every triangulation of C(n, d) is coherent in
general, starting with C(9, 3), C(9, 4), C(9, 5); see [Athanasiadis et al. 1997]. It is
also perhaps disappointing that triangulations of C(n, d) can have flip-deficiency
[Rambau and Santos 1997], and the higher Stasheff–Tamari posets are not lat-
tices for d ≥ 4 [Edelman et al. 1997]. On the bright side, Rambau and Santos
[1997] prove that even though triangulations of C(n, d) are not always coherent,
they do enjoy the somewhat weaker property of being lifting triangulations; see
[Santos 1997a, Definition 3.4; Björner et al. 1993, p. 410]. Rambau [1997b] also
proves the interesting fact that triangulations of C(n, d) are always shellable as
simplicial complexes (see [Björner 1995, § 11.1] for the definition and significance
of shellability).

Kapranov and Voevodsky [1991] suggested a generalization of the Tamari
poset on triangulations of C(n, 2) to a partial order on triangulations of C(n, d),
which they called the higher Stasheff orders, and which were studied by Edelman
and Reiner [1996] under the name of higher Stasheff-Tamari orders. Actually,
this latter paper defines two possible such orders which are related to each other,
and it is not quite clear (though presumably true) that one of these orders is
the same as that considered by Kapranov and Voevodsky. In [Edelman and
Reiner 1996] it was proved for d ≤ 3 that these two partial orders coincide and
both are lattices, and also that for d ≤ 5 the graph of bistellar operations on
triangulations of C(n, d) is connected. This last result was greatly improved
by Rambau [1997b], who showed that the graph is connected for all d. In this
paper, Rambau introduces the important “sliding” idea mentioned earlier: when
one slides the n-th vertex on the moment curve down toward the (n−1)-st ver-
tex, a subdivision of C(n, d) induces a subdivision of C(n−1, d). This map on
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subdivisions plays a crucial role in the positive answer to the weak GBP for
triangulations of C(n, d) in [Rambau and Santos 1997], and more generally, the
weak GBP for π : C(n, d′) → C(n, d) in [Athanasiadis et al. 1998]. Previously
Edelman, Rambau and Reiner [Edelman et al. 1997] had used the lattice struc-
ture on the poset of triangulations and the Homotopies paradigm to positively
answer the weak GBP for triangulations of C(n, d) with d ≤ 3. In that same
paper, the authors show that for arbitrary d, both higher Stasheff–Tamari orders
on the set of triangulations have proper parts which are homotopy equivalent to
(d− 4)-spheres.

5. Negative Results

Recall from the previous section that we had a positive answer to the strong
GBP by Billera, Kapranov, and Sturmfels [Billera et al. 1994] for d = 1, and by
Rambau and Ziegler [1996] for d′ − d ≤ 2. Together these imply that a negative
answer to the weak GBP would require a surjection π : P → Q with d ≥ 2
and d′ − d ≥ 3 so that d′ ≥ 5. In the paper that includes their positive result,
Rambau and Ziegler cleverly construct such a counterexample π : P → Q with
the minimum possible dimensions d′ = 5, d = 2. In fact, they show that the
Baues poset ω(P π→ Q) in this case is not homotopy equivalent to a 2-sphere
by showing that it has an isolated element: a π-coherent subdivision of Q which
lies below no other element of the poset! Their counterexample is also quite
small and uncomplicated, in the sense that P has only 10 vertices, and the point
configuration A in R2 which is the image of these 10 vertices under π is relatively
simple: it consists of a triangle with three copies of each corner vertex, along
with one interior point of the triangle. They also give a perturbed version of
this same example in which the point configuration A lies in general position in
R2, and the Baues poset is again disconnected (although it does not have any
isolated points). These counterexamples can also be used to produce negative
answers to the weak GBP for all d′, d with d ≥ 2 and d′ − d ≥ 3.

In light of this counterexample, attention has shifted to the motivating special
cases of the GBP dealing with triangulations of point sets A and zonotopal tilings
of a zonotope Z. Here no counterexamples have been found. The construction
closest to a counterexample was provided by the previously mentioned work
of Mnëv and Richter-Gebert [1993]. They produce (by two different methods)
examples of rank 4 oriented matroids M whose extension posets E(M) contain
isolated points. These examples do not give a counterexample to the Extension
Space Conjecture or to the weak GBP because the oriented matroids in question
are not realizable, that is they do not come from a zonotope Z. However, they do
settle in the negative an earlier extension space conjecture which did not assume
realizability of M.

We should also view the instances of flip deficiency for triangulations found
in [de Loera et al. 1999; Santos 1997b] as negative results, although they are
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far from settling the GBP. In particular, Santos’ constructions [Santos 1997b]
show that the ratio of the number of bistellar flips of a triangulation of A to the
“expected lower bound” |A| − d− 1 can approach zero.

We summarize the main open cases of the (weak) GBP here:

Question 5.1. (i) Is the poset of zonotopal subdivisions of a d-dimensional
zonotope with d′ generators homotopy equivalent to a (d′−d−1)-dimensional
sphere?

(ii) Is the poset of subdivisions of a point set A in Rd homotopy equivalent to a
(|A| − d− 2)-dimensional sphere?

As was mentioned earlier, the work of Santos [1997a] shows that the first question
is a special case of the second, and therefore a counterexample for the first
would also settle the second, as well as the Extension Space Conjecture 3.2 and
Conjecture 3.3.

6. Open Questions, Problems, Conjectures

The main open problems related to the GBP are Questions 1.2, 1.3, 5.1. In
this section, we collect other problems and questions, some of which address
more specifically the expected frontier between the cases of π : P → Q for which
the GBP has positive and negative answer. In some cases, we go out on a limb
by offering our predictions, but we warn the reader that many of these opinions
are not based on very much data, and are only the opinion of this author.

We begin by conjecturing the frontier between good and bad behavior for
triangulations, inspired by the positive and negative results contained in [Azaola
and Santos 1999; de Loera et al. 1999].

Conjecture 6.1. Let A be a point configuration in Rd with d ≤ 2, or d = 3
and in convex position, or |A| − d ≤ 4. Then

(a) The strong GBP has positive answer for subdivisions of A (without the gen-
eral position assumption needed in [Edelman and Reiner 1998]).

(b) Furthermore, the graph of triangulations and bistellar operations is (|A| −
d− 1)-vertex-connected, so in particular every triangulation of A has at least
|A| − d− 1 bistellar neighbors.

(c) On the other hand, there exists a point configuration in convex position in
R4 and also one not in convex position in R3, each of which has an isolated
triangulation which refines no other subdivision.

In fact, it would be nice to have a simpler proof of the weak GBP for A in R2,
even assuming general position, or perhaps a proof of the strong GBP via the
Retraction paradigm.

For zonotopal tilings, one wonders whether there are realizable oriented ma-
troids exhibiting the behavior of the counterexamples of Mnëv and Richter-
Gebert [1993].
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Question 6.2. Does there exist a zonotope with a cubical tiling that refines no
other zonotopal tiling?

For monotone paths we know that the strong GBP has a positive answer, but an
interesting question remains about connectivity via polygon moves. Note that
as was mentioned in Section 3, one must be careful to define polygon moves
correctly in the case where f is constant on some of the edges of P .

Conjecture 6.3. For a d-dimensional polytope P , the graph of f-monotone
paths and polygon moves is (d− 1)-vertex-connected .

In particular , every f-monotone path has at least d−1 neighbors in the graph
GP,f of polygon moves.

Perhaps this can be proven by adapting the proof of the weak GBP for monotone
paths given in [Billera et al. 1994, Theorem 1.2]?

One can also ask for bounds on the number of monotone paths. The existence
of neighborly polytopes [Ziegler 1995, p. 16], in which every pair of vertices forms
a boundary edge, shows that the number of f-monotone paths on P can grow
exponentially in the number of vertices of P . For coherent monotone paths, the
story is different. Let rd(n) denote the maximum number of coherent f-monotone
paths for any linear functional f on a d-dimensional polytope P having n vertices.
It is shown in [Athanasiadis et al. 1997, Remark 3.8] by a simple geometric
argument that for d fixed, rd(n) grows no faster than O(n3d−6). Motivated by
McMullen’s Upper Bound Theorem [Ziegler 1995, § 8.4], one might expect that
the linear functional f(x) = x1 on the cyclic polytope C(n, d) which induces the
natural surjection C(n, d)→ C(n, 1), also achieves this maximum value rd(n) for
f-monotone paths. However, a counterexample is given in [Athanasiadis et al.
1997, Remark 3.8]. Nevertheless, the results of [Athanasiadis et al. 1997] show
that the number of f-monotone paths for f(x) = x1 on C(n, d) grows like a
polynomial in n of degree d − 2, and the authors pose the following question
[Athanasiadis et al. 1997, Question 3.10]:

Question 6.4. For fixed d, does rd(n) grow no faster than O(nd−2)?

Athanasiadis [Athanasiadis 1998] has answered this question positively for d ≤ 4.
In the special case where P is a d-dimensional zonotope having n generators,

counting f-monotone paths turns out to be equivalent to counting the number
of different possible linear orderings by linear functionals of a certain affine point
configuration with n points in Rd−1. Upper and lower bounds for the number of
such functionals were addressed recently by Edelman [1998].

Although much is known about cyclic polytopes relating to the GBP, there
remain several interesting open questions. One challenge is to count the number
of triangulations of C(n, d). Some data is given in [Athanasiadis et al. 1997,
Table 4], compiled using PUNTOS [de Loera 1995a] and software of Rambau
dedicated to this task. As said in the introduction, almost the only nontrivial
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known formula counting triangulations is the Catalan number

1
n− 1

(
2n− 4
n− 2

)
,

enumerating triangulations of the n-gon C(n, 2). We also have the following
mostly trivial results:

• C(n, 1) has 2n−2 triangulations,
• C(d+ 1, d) has 1 triangulation,
• C(d+ 2, d) has 2 triangulations, and
• C(d+ 3, d) has d+ 3 triangulations by the results of [Lee 1991].

Santos [1998] recently made the following conjecture for C(d + 4, d), based on
the known data:

Conjecture 6.5. Let ad be the number of triangulations of C(d+ 4, d). Then
the second difference ad − 2ad−1 + ad−2 has the following form:

a2k − 2a2k−1 + a2k−2 = 2k

a2k+1 − 2a2k + a2k−1 = 2k+1 + k2k−1.

(proved by Santos),

He points out that this conjecture easily leads to simple closed form for ad.
Specifically, one would have

ad = kd2d/2 − (d+ 4),

where

kd =
{

d+ 8 if d is even,
(3d+ 23)/(23/2) ≈ 1.06d+ 8.13 if d is odd.

As was mentioned earlier, in [Athanasiadis et al. 1998] the authors give a
positive answer to the GBP for all of the projections between cyclic polytopes.
The special case of the projection π : C(n, d′)→ C(n, 2), along with the methods
used in [Athanasiadis et al. 1997, Theorem 1.2; Reiner 1998] inspire the following
conjecture, which would also partly explain the importance of the interior point
of Q present in the Rambau–Ziegler counterexample [Rambau and Ziegler 1996].

Conjecture 6.6. The strong GBP has positive answer for π : P → Q if Q lies
in R2 and all vertices of P project under π to the boundary of Q.

The proof of the weak GBP for triangulations of cyclic polytopes given by Ram-
bau and Santos [1997] uses the Deletion-Contraction paradigm. We next discuss
some other conjectural approaches to this result, involving the relation of cyclic
polytopes to cyclic zonotopes and alternating matroids [Björner et al. 1993, § 9.4].

For any point configuration A in Rd, the dual point configuration or Gale
transform A∗ lives in R|A|−d−1 [Ziegler 1995, Lecture 6]. A single element ex-
tension of the oriented matroid M corresponding to A∗ gives rise to a subdivision
of A called a lifting subdivision [Björner et al. 1993, p. 410], and hence gives a
map from the extension poset E(M) to the poset of subdivisions of A. In the
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case where A is the set of vertices of a cyclic polytope C(n, d), A∗ is a cyclic
arrangement of vectors [Ziegler 1995, Problem 6.13] so that M is the alternating
matroid Cn,n−d−1. Therefore the results of [Sturmfels and Ziegler 1993] imply
that E(Cn,n−d−1) is homotopy equivalent to an (n−d−2)-sphere. Furthermore,
[Rambau and Santos 1997] shows that every triangulation of C(n, d) is a lifting
triangulation (although it is not known whether this is true for all subdivisions),
so that this map has a chance to be surjective.

Conjecture 6.7. When A is the set of vertices of a cyclic polytope C(n, d),
the map described in the previous paragraph is a homotopy equivalence from the
extension space E(Cn,n−d−1) to the poset of subdivisions.

A different approach relates the triangulations of cyclic polytopes to cyclic hy-
perplane arrangements and the work of Manin and Schechtman [1989], Ziegler
[1993], and Kapranov and Voevodsky [1991] on cyclic hyperplane arrangements
and zonotopes and the higher Bruhat orders.

Let Z(n, d) be the d-dimensional cyclic zonotope with n generating segments in
the directions {(1, ti, t2i , . . . , td−1

i )}ni=1 for any n distinct values of the parameters
t1 < · · · < tn. The higher Bruhat orders B(n, d) were defined in [Manin and
Schechtman 1989], and may be thought of as a natural poset structure on the
cubical tilings of Z(n, d). For d = 1, B(n, 1) is the the weak Bruhat order
[Björner et al. 1993, § 2.3(b)] on the symmetric group. Ziegler [1993] observed
that there were actually two natural and related (but different!) definitions for
higher Bruhat orders, which he calledB(n, d) and B⊆(n, d). Among other things,
he showed that the homotopy type of the second of these posets B⊆(n, d) is
spherical. Rambau [1997a] later showed that B(n, d) also has spherical homotopy
type.

As was mentioned in Section 4, Kapranov and Voevodsky [1991] define a par-
tial order on triangulations of C(n, d), and Edelman and Reiner [1996] consider
two such related partial orders S1(n, d) and S2(n, d), generalizing the Tamari
poset on triangulations of C(n, 2). It is not quite clear, although presumably
true, that the order S1(n, d) coincides with the order defined in [Kapranov and
Voevodsky 1991]. In [Edelman et al. 1997], it is shown that both posets S1(n, d)
and S2(n, d) have spherical homotopy type. Kapranov and Voevodsky also define
an order-preserving map B(n, d)→ S1(n+2, d+1), and a similar map was given
two definitions by Rambau in [1997b]. Rambau shows that his two definitions
give the same map, but it is not clear that his map is the same as the one in
[Kapranov and Voevodsky 1991]. For d = 1, this map coincides with a map from
permutations to triangulations of an n-gon studied by Björner and Wachs [1997,
§ 9], and by Tonks [Tonks 1997].

Conjecture 6.8. The maps B(n, d)→ S1(n + 2, d+ 1) defined by Kapranov–
Voevodsky and Rambau are the same map fKVR, and fKVR induces a homotopy
equivalence between the proper parts of these posets. (True for d = 1, by [Björner
and Wachs 1997, § 9].)
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The fact that these posets have homotopy equivalent proper parts already follows
from the sphericity results previously mentioned. What does this have to do with
the GBP? It is easy to see that for any zonotopal subdivision of Z(n, d), the set
of all cubical tilings which refine it forms an interval both in B(n, d) and in
B⊆(n, d). This gives a very natural order-preserving map from the Baues poset

ω(In → Z(n, d))

to the poset of proper intervals in B(n, d) or B⊆(n, d). Similarly, for any subdi-
vision of C(n, d), the set of triangulations which refine it forms an interval both
in S1(n, d) and in S2(n, d), giving an order-preserving map from the Baues poset
ω(∆n−1→ C(n, d)) to the poset of proper intervals in S1(n, d) or S2(n, d).

Conjecture 6.9. (a) The image of the map from ω(In → Z(n, d)) to the
poset of proper intervals in either B(n, d) or B⊆(n, d) is exactly the set of
noncontractible (open) intervals. (True for d = 1, by [Björner and Wachs
1997, § 9].)

(b) The image of the map from ω(∆n−1 → C(n, d)) to the poset of proper inter-
vals in either S1(n, d) or S2(n, d) is exactly the set of noncontractible intervals.
(True for d ≤ 3, by [Edelman et al. 1997, Lemma 6.3].)

The previous conjecture would have two nice consequences:

(i) It would completely describe the homotopy type of all intervals (and hence
compute the Möbius function) in both higher Bruhat orders B(n, d), B⊆(n, d)
and in both higher Stasheff–Tamari orders S1(n, d), S2(n, d). The intervals
which are the images of the above maps are always isomorphic to Cartesian
products of posets B(n′, d), B⊆(n′, d) or S1(n′, d), S2(n′, d) for smaller val-
ues n′ < n, and hence by the known sphericity results, are also homotopy
spherical.

(ii) It would imply that ω(In → Z(n, d)) is homotopy equivalent to the sus-
pension of the proper part of B(n, d) or B⊆(n, d), and similarly ω(∆n−1 →
C(n, d)) is homotopy equivalent to the suspension of the proper part of S1(n, d)
or S2(n, d). This follows from the fact observed by Walker [Walker 1988] that
the poset of proper intervals in a bounded poset P is homeomorphic to the
suspension of the proper part of P , and the fact that the poset of proper non-
contractible intervals in P is a deformation retract of the poset of all proper
intervals in P [Edelman et al. 1997, Lemma 6.5].

Conjectures 6.8 and 6.9 fit into a diagram of conjectural homotopy equivalences
(among spaces which are all known to be homotopy equivalent to an (n−d−1)-
sphere) connecting the Baues posets for triangulations of C(n, d) and zonotopal
tilings of Z(n, d) to each other and to the higher Bruhat and higher Stasheff–
Tamari orders:
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Susp(B(n, d)− {0̂, 1̂}) Susp(fKVR)- Susp(S1(n+ 2, d+ 1)− {0̂, 1̂})

ω(In → Z(n, d))

6

ω(∆n+1 → C(n+ 2, d+ 1)).

6

In addition to the previous specific conjectures, we would also like to describe
some more general problems related to the GBP.

The first of these relates to the concept of an iterated fiber polytope introduced
by Billera and Sturmfels [Billera and Sturmfels 1994]. Given a tower P π→ Q

ρ→ R

of linear surjections of polytopes, it was shown in [Billera and Sturmfels 1992]
that the map π induces a surjection of the fiber polytopes

π : Σ(P
ρ◦π−→ R) −→ Σ(Q

ρ→ R).

They called the fiber polytope of this surjection the iterated fiber polytope

Σ(P π→ Q
ρ→ R).

It is also clear how one can iterate this construction further, to define higher
iterated fiber polytopes associated to longer towers of surjections.

Question 6.10. Study the iterated fiber polytopes for subsequences of the tower
of natural surjections

∆n−1 = C(n, n− 1)→ C(n, n− 2)→ · · · → C(n, 2)→ C(n, 1)

between cyclic polytopes. Are there any cases (like those classified in [Athanasi-
adis et al. 1997]) where the structure of the iterated fiber polytope does not depend
upon the choice of points on the moment curve defining C(n, d)?

Another line of inquiry is suggested by the first part of Conjecture 6.9. Ziegler
[1993] considers the higher Bruhat orders B(n, d), B⊆(n, d) as posets of uniform
extensions of the affine oriented matroid corresponding to a cyclic hyperplane
arrangement of hyperplanes. More generally, he introduces these uniform exten-
sion posets U(M, g),U⊆(M, g) for any affine oriented matroid (M, g). The map
considered in Conjecture 6.9 can be generalized to a map from the extension
poset E(M) to the set of proper intervals in U⊆(M, g): send a single element
extension of M to the set of uniform extensions which lie below it in E(M).

Question 6.11. Study the map from the extension space E(M) to the poset
of proper intervals in U⊆(M, g). Are there any nice classes of affine oriented
matroids (M, g) where the image of the map is exactly the set of noncontractible
proper intervals?
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As was the case in Conjecture 6.9, whenever the above question has a positive
answer, the map in question induces a homotopy equivalence between E(M)
and the suspension of the proper part of U(M, g). The examples of Mnëv and
Richter-Gebert [1993] show that E(M) does not always have spherical homotopy
type, but it is still possible that such a homotopy equivalence may exist even in
cases where sphericity fails.

Our last question relates to Stembridge’s q = −1 phenomenon occurring in the
context of cubical tilings of zonotopes; see [Stembridge 1994]. A zonotope Z is
a centrally-symmetric polytope, and hence the antipodal map induces a natural
involution ω on its set of cubical tilings. Say that a tiling of Z is centrally
symmetric if it is fixed by this involution ω. Consider also the graph GZ of
cubical tilings and cube flips on Z. It can be shown that this graph will always
be bipartite. We say that the q = −1 phenomenon holds for Z if the number
of centrally symmetric tilings of Z is the same as the difference in cardinality of
the two sides of the bipartition of GZ.

Stembridge [1994] observed that known formulas counting symmetry classes
of plane partitions implied the q = −1 phenomenon for zonotopal hexagons in
the plane (with multiple copies of the three line segments which generate the
hexagon as a zonotope). Further examples involving certain zonotopal octagons
were found by Elnitsky [1997] and Bailey [1997]. However, one can check that
the phenomenon does not hold for all zonotopes Z, as there are already examples
of zonotopal octagons for which it fails.

Question 6.12. For which zonotopes Z does the q = −1 phenomenon hold?
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Note Added in Proof

The recent paper [Athanasiadis et al. 1999] resolves Conjecture 6.3 affirma-
tively for simple polytopes and for 3-dimensional polytopes, but negatively in
general. Specifically, it is shown that for d ≥ 3, the graph of f-monotone paths
in a d-polytope with respect to a generic functional f is at least 2-connected,
but there exist examples for each d ≥ 3 in which the graph contains a vertex of
degree 2.
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lattice of binary trees”, RAIRO Inform. Théor. Appl. 27:4 (1993), 341–348.
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Paris, 1951.

[Tamari 1962] D. Tamari, “The algebra of bracketings and their enumeration”, Nieuw
Arch. Wisk. (3) 10 (1962), 131–146.

[Todd 1976] M. J. Todd, The computation of fixed points and applications, Lecture
Notes in Economics and Mathematical Systems 124, Springer, Berlin, 1976.

[Tonks 1997] A. Tonks, “Relating the associahedron and the permutohedron”, pp. 33–
36 in Operads: Proceedings of Renaissance Conferences (Hartford, CT and Luminy,
France, 1995)), edited by J.-L. Loday et al., Contemporary mathematics 202, Amer.
Math. Soc., Providence, RI, 1997.

[Walker 1988] J. W. Walker, “Canonical homeomorphisms of posets”, European J.
Combin. 9:2 (1988), 97–107.

[Ziegler 1993] G. M. Ziegler, “Higher Bruhat orders and cyclic hyperplane arrange-
ments”, Topology 32:2 (1993), 259–279.

[Ziegler 1995] G. M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics
152, Springer, New York, 1995.



336 VICTOR REINER

[Ziegler 1996] G. M. Ziegler, “Oriented matroids today”, Dynamic surveys in combi-
natorics 4 (1996). See http://www.combinatorics.org/Surveys/index.html. Frequent
updates.

Victor Reiner

School of Mathematics

University of Minnesota

Minneapolis, MN 55455

United States

reiner@math.umn.edu


