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Some Algebraic Properties of the
Schechtman–Varchenko Bilinear Forms

GRAHAM DENHAM AND PHIL HANLON

Abstract. We examine a bilinear form associated with a real arrangement
of hyperplanes introduced in [Schechtman and Varchenko 1991]. Our main
objective is to show that the linear algebraic properties of this bilinear form
are related to the combinatorics and topology of the hyperplane arrange-
ment. We will survey results and state a number of open problems which
relate the determinant, cokernel structure and Smith normal form of the
bilinear form to combinatorial and topological invariants of the arrange-
ment including the characteristic polynomial, combinatorial structure of
the intersection lattice and homology of the Milnor fibre.

1. The Varchenko B Matrices

Let A = {H1, . . . , Hl} be an arrangement of hyperplanes in Rn and let r(A) =
{R1, . . . , Rm} denote the set of regions in the complement of the union of A. Let
L(A) denote the collection of intersections of hyperplanes in A. Included in L(A)
is Rn, which we think of as the intersection of the empty set of hyperplanes. We
order the elements of L(A) by reverse inclusion thus making it into a poset. It is
well known that this poset is a meet semilattice and is a geometric lattice if the
arrangement is central. We will abbreviate L(A) to L when the arrangement is
clear.

For regions S, T ∈ r(A), define H(S, T ) to be the set of hyperplanes in A

which separate S from T . Varchenko [1993] defines a matrix B = B(A) with
rows and columns indexed by the regions in r(A) by saying that the S, T entry
in B is

∏
H∈H(S,T ) aH , where aH is an indeterminate assigned to the hyperplane

H. We will call B = B(A) the Varchenko matrix of the arrangement A.

Example 1.1. As a starting example, let F = {H0, H1, H2} be the arrangement
in R2 where Hj is the line y = (−1)jx for j = 0, 1 and where H2 is the line y = 1.
Note that r(F ) consists of 7 regions. Let these regions be numbered R1, . . . , R7,

This research was partially supported by the National Science Foundation.

149



150 GRAHAM DENHAM AND PHIL HANLON

as follows:
H0

H1

H2

R1 R2

R3

R4

R5

R6

R7

Let aj be the weight assigned to the hyperplane Hj. Then the matrix B is given
by

B =



1 a2 a0a2 a0a1a2 a0a1 a1 a0

a2 1 a0 a0a1 a0a1a2 a1a2 a0a2

a0a2 a0 1 a1 a1a2 a0a1a2 a2

a0a1a2 a0a1 a1 1 a2 a0a2 a1a2

a0a1 a0a1a2 a1a2 a2 1 a0 a1

a1 a1a2 a0a1a2 a0a2 a0 1 a0a1

a0 a0a2 a2 a1a2 a1 a0a1 1


.

Example 1.2. An important example that we will return to several times is the
arrangement A consisting of the

(
n
2

)
hyperplanes Hi,j in Rn given by

Hi,j = {(x1, . . . , xn) : xi = xj}.

Note that A consists of the reflecting hyperplanes for the root system An−1

and so we denote this arrangement by An−1. Two points (x1, . . . , xn) and
(y1, . . . , yn) are in the same region of the complement if and only if the rela-
tive orders of their coordinates are the same. So, the permutations in Sn index
the regions of the complement via the correspondence

σ↔ {(x1, . . . , xn) : xσ1 < xσ2 < · · · < xσn}.

Let ai,j = aj,i denote the weight assigned to the hyperplane Hi,j. For σ, τ in Sn,
the σ, τ entry in B is the product of all ai,j such that i appears to the left of j in
the one-line form of σ but to the right of j in the one-line form of τ . Another way
of saying this is that Bσ,τ is the product of all ai,j such that {σ−1(i), σ−1(j)} is
an inversion of στ−1. In particular, if all parameters aH are set equal to q, then
the σ, τ entry of B is qi(στ

−1), where i(π) denotes the number of inversions of π.

Example 1.3. For each i, let Oi denote the hyperplane in Rn which consists
of all vectors with a 0 in the i-th coordinate, and consider the arrangement
{O1, O2, . . . , On}. In this case, r(A) has size 2n and the individual regions can
be indexed by sequences S = (s1, . . . , sn), where each si is either +1 or −1. The
sequence S corresponds to the region RS which contains all vectors (x1, . . . , xn)
where xi < 0 if si = −1 and xi > 0 if si = 1. Given sequences S, T , the set of
hyperplanes separating RS and RT is equal to the set of Hi such that the i-th
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coordinates of S and T differ. With n = 3 the matrix B appears below (relative
to the ordering on regions which corresponds to the lexicographic order on the
indexing sequences):

B =



1 a3 a2 a2a3 a1 a1a3 a1a2 a1a2a3

a3 1 a2a3 a2 a1a3 a1 a1a2a3 a1a3

a2 a2a3 1 a3 a1a2 a1a2a3 a1 a1a3

a2a3 a2 a3 1 a1a2a3 a1a2 a1a3 a1

a1 a1a3 a1a2 a1a2a3 1 a3 a2 a2a3

a1a3 a1 a1a2a3 a1a2 a3 1 a2a3 a2

a1a2 a1a2a3 a1 a1a3 a2 a2a3 1 a3

a1a2a3 a1a2 a1a3 a1 a2a3 a2 a3 1


.

One of the first appearances of the B matrices was in the work of Schechtman
and Varchenko [1991] on Drinfeld–Jimbo quantized Kac–Moody Lie algebras.
To briefly describe this work, let H be a finite dimensional complex vector space
equipped with a nondegenerate symmetric bilinear form ( , ). We carry the
form over to the dual space H∗ in the usual way. Let α1, . . . , αr be linearly
independent elements in H∗ and let q be a nonzero complex number. Define
UqG to be the C-algebra generated by the elements 1, ei, fi for 1 ≤ i ≤ r and H,
subject to the relations

[h, ei] = 〈αi, h〉ei,
[h, fi] = −〈αi, h〉fi,

[ei, fj] = (qhi/2 − q−hi/2)δi,j ,

[H,H] = 0.

Here δi,j is the Kronecker delta and quh = exp(u(ln q)h) so that we allow conver-
gent power series in h ∈ H as part of UqG. It is possible to define, in addition,
a comultiplication ∆ which maps UqG to UqG⊗UqG and an antipode ε on UqG
so that (UqG,∆, ε) is a Hopf algebra. We won’t need the Hopf algebra structure
here so we refer the reader to [Varchenko 1995, Chapter 4] for their definition.

Let UqN− be the subalgebra generated by f1, . . . fr and let L be the multilinear
part of UqN−. In other words, L is spanned by words in f1, . . . , fr in which each
fi occurs exactly once. So L has dimension r! with basis fσ := fσ1 . . . fσr for
σ ∈ Sr.

Varchenko and Schechtman show that there is a natural contragredient form
S on weight spaces of UqN−. Since L is one such weight space, one can ask for
an explicit description of S relative to the basis {fσ} given above. An important
result in [Schechtman and Varchenko 1991] is that

S(fσ , fτ ) = B(σ, τ),
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where B is the Varchenko matrix for the arrangement Ar−1 (described in our
Example 1.2 above) with parameters

ai,j = (αi, αj).

Varchenko and Schechtman go on to show that the kernel of this contragredient
form describes the Serre relations for the quantum Kac–Moody Lie algebra UqG.

The main topic of this paper will be linear algebraic properties of the B

matrices. We are going to report on a number of results and list a number of
open questions that have to do with the nullspace of B and the Smith normal
form of B. In addition, we will describe a new application of the Varchenko
matrices to the problem of computing the Betti numbers of the Milnor fibre of
the arrangement A.

2. The Nullspace of the B Matrices

In this section, we will consider the nullspace of the Varchenko matrices. The
reader may recall that the nullspaces are important in the work of Varchenko and
Schechtman as they encode the analogues of the Serre relations for quantum Kac–
Moody Lie algebras in the case that the arrangement is An−1. In this section
we will survey some known results and state some open problems relating to the
nullspace of the Varchenko matrix.

A starting point for the study of the nullspace of B is the determinant of
B. Note that det(B) is a polynomial in the aH hence will vanish for certain
choices of the aH . The following result, due to Varchenko, gives an elegant
factorization of det(B). As an immediate consequence of this theorem, one
obtains a characterization of those values of the parameters for which B has a
nontrivial nullspace.

Theorem 2.1 [Varchenko 1993, Theorem 1]. The determinant of the bilinear
form of the configuration A is

det(B) =
∏

X∈L(A)∗

(1 − a2
X)l(X),

where L(A)∗ is the set of nonempty intersections in L(A), where aX is the prod-
uct of the aH over hyperplanes H containing X and where l(X) is a nonnegative
integer described explicitly in [Varchenko 1993].

In fact, Varchenko gives two methods to compute the exponents l(X). The first,
which precedes the statement of his theorem is more geometric, the second which
comes later in the paper is more combinatorial. For completeness, we will briefly
describe the second method. To compute l(X), first choose a hyperplane H ∈ A

which contains X. Then l(X) is half the number of regions P which have the
property that X is the minimal intersection containing P ∩H.
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Example 2.2. Consider the B matrix for the arrangement given in Example 1.1
above. The poset of intersections consists of seven elements. Here are these seven
intersections Xi, along with the exponents lXi computed according to the method
of Varchenko described above.

X0 = R2,

X1 = H0,

X2 = H1,

X3 = H2,

X4 = H1 ∩H2,

X5 = H1 ∩H0,

X6 = H2 ∩H0,

lX0 = 0,

lX1 = 3,

lX2 = 3,

lX3 = 3,

lX4 = 0,

lX5 = 0,

lX6 = 0.

According to Varchenko’s theorem, the determinant of B factors as

det(B) = (1− a2
X1

)3(1− a2
X2

)3(1 − a2
X3

)3 = (1− a2
0)3(1− a2

1)3(1− a2
2)3.

It is straightforward to check, using Maple or Mathematica for example, that
this is a correct formula for the determinant.

Now consider this B matrix specialized so that all parameters are equal to q:

B =



1 q q2 q3 q2 q q

q 1 q q2 q3 q2 q2

q2 q 1 q q2 q3 q

q3 q2 q 1 q q2 q2

q2 q3 q2 q 1 q q

q q2 q3 q2 q 1 q2

q q2 q q2 q q2 1


.

The determinant of B is

det(B) = (1− q2)9.

Let G be the group (isomorphic to S3) which permutes the three hyperplanes.
Any permutation of the hyperplanes induces a permutation of the seven regions
and so we get a representation of S3 on the regions which commutes with the
action of B. It is straightforward to check that the vector space spanned by
regions, considered as a G-module, is isomorphic to one copy of the regular
representation together with one copy of the trivial representation.

There are two values of q for which the determinant vanishes. For each value
we can compute the representation of G on the nullspace of B. If q = 1, then B

is the seven by seven matrix of all ones and the nullspace is easily seen to carry
the regular representation. If q = −1 the situation is less clear. However, one
can verify that the nullspace has dimension six and consists of two copies of the
defining representation.
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When you study the nullspace of B for values of the hyperplane weights where
det(B) = 0, the first question that arises is how to determine the dimension of the
nullspace. Deformation theory arguments show that dimension of the nullspace
is no larger than the sum of the exponents l(X) taken over intersections X with
a2
X = 1. To get more information in general is difficult. However, a case of

special interest in which more general statements can be made is the case where
all hyperplane weights are equal to the same number q. In this case, one can
define the Smith normal form of B over C[q] which contains the information
necessary to determine the dimension of the nullspace. The Smith normal form
of B over C[q] is the topic of the next section in this paper. As we will see in
the next section, it is possible for the dimension of the nullspace of B(ζ), for
ζ a complex number, to be strictly smaller than the deformation theory bound
stated above which in this case is equal to the multiplicity of q − z as a divisor
of det(B(q)).

The question of dimension can be slightly broadened to ask for the “structure”
of the nullspace (or more generally the cokernel) meaning a natural choice of basis
for the nullspace (cokernel) as well.

PROBLEM 1. Let A be an arrangement and let {aH} be a choice of parameters
for which the determinant of B vanishes. Find a natural basis for the nullspace
(or for the cokernel) of B in terms of some kind of combinatorial and geometric
information about the arrangement A and the parameters aH .

One could ask what sort of information might go into a solution to Problem 1.
Theorem 2.1 suggests that the necessary information may include facts about
the combinatorial structure of L(A) and in particular at intersections X in L(A)
for which a2

X = 1.
The previous example suggests another interesting question that one can ask

about the nullspace of the Varchenko matrices. Suppose that a finite group G

acts as a group of affine linear transformations and preserves the arrangement
A. Suppose also that the weight assigned to hyperplanes is G-invariant. Then
the group G acts on the regions r(A) and this action commutes with B. So one
can ask for the G-module structure of the nullspace of B.

PROBLEM 2. Let A be an arrangement and let G be a finite group of affine-
linear transformations which preserve the set A. In addition assume that the
weighting on hyperplanes is invariant under the action of G. What can you say
about the G-module structure of the nullspace of B?

What sort of solution might you hope to find for Problem 2? As stated above
in Problem 1, you would like to determine the nullspace of B in terms of some
kind of combinatorial and geometric information related to the lattice L(A) and
the choice of parameters. You would hope for an answer to Problem 2 which
extends this idea to include not just combinatorial information about L(A) but
also information about how G acts on L(A).
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One further problem naturally arises in the situation where there is a group
G acting on the arrangement and where all hyperplane weights are equal to a
single value q. Let V denote the vector space spanned by the set of regions r(A).
Recall that G acts on V and that this action commutes with the matrix B.

For each irreducible representation Ψ of G, let VΨ denote the Ψ-isotypic com-
ponent of V . Because B commutes with the action ofG, B preserves the subspace
VΨ. Varchenko’s theorem gives an elegant formula for the determinant of B as
a linear map of V . A natural question is whether a correspondingly elegant
formula holds for B as a linear transformation of VΨ.

PROBLEM 3. For Ψ an irreducible representation of G, let BΨ be the restric-
tion of B to VΨ. Find a formula for det(BΨ).

A couple of comments about Problem 3. First, what kind of formula could you
hope to achieve in answer to this question? Following the form of Varchenko’s
result, we would expect that the formula for det(BΨ) would depend on the
intersection lattice L(A) and some information about the action of G on L(A).
This information might include, for example, the action of G on the homology
groups of the intervals of L(A). In the best case, the formula would be a product
over elements, or perhaps over orbits of elements, in the intersection lattice L(A).

Second, it should be noted that there is a variant of Problem 3 which might
have a more natural solution. Let Irr denote the set of irreducible representations
of G. Let ρ be a virtual representation of G written as ρ =

∑
Ψ∈Irr cΨΨ. Define

detρ(B) =
∏

Ψ∈Irr

(det(BΨ))cΨ .

PROBLEM 3
′
. Compute det(Bρ), for ρ in any set of representations that span

the representation space.

Varchenko [1993] solves Problem 3 for the group of order 2 induced by negation
in the central hyperplane arrangement case.

We conclude this section with a summary of what is known about these prob-
lems in a particularly interesting special case. Let A be the arrangement An−1

given in Example 1.2, with all hyperplane weights set equal to the value q. As
shown in that example, the regions in r(A) are indexed by permutations in Sn.
Moreover, for permutations σ, τ , the σ, τ entry of B is qi(στ

−1). It follows that
B is the matrix for left multiplication by

Γ =
∑
β∈Sn

qi(β)β.

The group G = Sn acts on the arrangement An−1 and hence on the set of
regions in r(A). When the regions are indexed by permutations, this action of
Sn corresponds to the right-regular representation.
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As noted earlier, Problems 1 and 2 are particularly interesting in this case
because the nullspace of B has an interpretation in terms of quantum Kac–
Moody Lie algebras via results of Schechtman and Varchenko. Also in this case,
there is a natural group of symmetries of the arrangement, namely the group
Sn. So we will assume that the weighting on hyperplanes is invariant under Sn
which in this case is equivalent to their all having the same value q.

Hanlon and Stanley [1998] have studied the Sn-module structure of the null-
space of B for this arrangement with weight q on all hyperplanes. We end this
section by cataloguing a number of results and open problems that appear in
their work.

The first step is to understand what Theorem 2.1 says in this case about
the determinant of B. The intersection lattice of A is the partition lattice Πn.
It turns out that the exponent l(X) is 0 unless the partition X has exactly
one nontrivial block. If X has one nontrivial block of size α, then l(X) =
(α− 2)! (n− α+ 1)!. So in this case, Theorem 2.1 specializes to:

Corollary 2.3. Let A be the arrangement An−1 and let all hyperplanes have
weight q. Then

det(B) =
n∏
α=2

(
1− qα(α−1)

)(nα)(α−2)!(n−α+1)!
. (2–1)

This factorization of the determinant in this case was first proved by Zagier
[1992], who came across the B matrix in this case in an entirely different context.

In view of Corollary 2.3, we need only consider values of q that are of the form
q = e2πis/j(j−1) for j ∈ {2, 3, . . . , n}. The first result that appears in [Hanlon
and Stanley 1998] concerns the specialization of that form that is in some sense
the most extreme. This result is stated in terms of the Sn module Lien which is
the representation of Sn on the multilinear part of the free Lie algebra. There
has been a great deal of study of this representation in part because it plays a
role in many diverse mathematical situations.

Theorem 2.4 [Hanlon and Stanley 1998, Theorem 3.3]. Let q = e2πi/n(n−1).
Then

ker
(
Γn(q)

)
= indSnSn−1

(Lien−1)/Lien.

An interesting feature of Theorem 2.4 is the appearance of the module

Wn = indSnSn−1
(Lien−1)/Lien.

It is an old result that Lien is contained in indSnSn−1
(Lien−1). So this is a genuine

(rather than virtual) module which is often called the Whitehouse module. This
name refers to Sarah Whitehouse who came across the representation in quite a
different context. The representation appears earlier in the work of Kontsevich
[1993]. Whitehouse, together with Alan Robinson, investigated the homology
of the space Hn of homeomorphically irreducible trees which have n labelled
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leaves. Here “labelled” is in the graph theory sense of the word, so the numbers
{1, 2, . . ., n} are attached to the leaves. They say that one tree τ is a “face” of
another tree ρ if τ is obtained from ρ by contracting an “internal edge”, i.e., an
edge which is not incident with a leaf. This notion of face gives us a complex
whose boundary map commutes with the action of Sn induced by permutation
of leaf labels. So one can ask for the Sn-module structure of the homology
of this complex. The first result, due to Robinson and Whitehouse [1996], is
that this homology vanishes except in degree n − 2, and that in degree n − 2
the dimension is (n − 2)!. Whitehouse went on to show that the degree n − 2
piece of the homology carries the Sn-module structure which we’ve called the
Whitehouse module. Interestingly, this module has also come up in the work of
Babson et al. [1999] on graphs that are not 2-connected. Recall that a graph G

is “2-connected” if G is connected and remains so under the removal of any one
vertex. Let Nn denote the collection of graphs with vertex set {1, 2, . . . , n} which
are not 2-connected. If we identify a graph by its edge set, then the edge sets of
the graphs in Nn form a simplicial complex which is clearly invariant under that
action of Sn. An interesting result in [Babson et al. 1999] is that the simplicial
homology of Nn is zero except in degree n − 2 and in degree n − 2 carries the
Sn-module structure of the Whitehouse representation.

Hanlon and Stanley went on to state a conjecture which gives a description
of the Sn-module structure of the kernel of B in a more general case than that
covered in their Theorem 3.3. They provided a proof of this conjecture up to
knowing a certain technical fact about the Smith normal form of the Varchenko
matrices. This fact was subsequently proved by Denham, thereby giving a proof
of the following result.

Theorem 2.5 [Denham 1999; Hanlon and Stanley 1998]. Suppose that q is a
root of exactly one of the factors on the right-hand side of (2–1). More precisely ,
suppose that q = e2πis/j(j−1) for some j ∈ {2, 3, . . . , n} and some nonnegative
integer s and that qk(k−1) 6= 1 for k 6= j, 2 ≤ k ≤ n. Then the Sn-module
structure of ker(Γn(q)) is

ker(B(q)) = indSnCj−1
(qj)/ indSnCj (q

j−1),

where Cj−1 is the subgroup of Sn generated by the (j−1)-cycle zj−1 = (j−1,
j−2, . . . , 2, 1), and where qj denotes the linear character of Cj−1 whose value
on zj−1 is qj.

It is not immediately clear why the statement of Theorem 2.5 in the special case
where j = n and s = 1 agrees with the statement of Theorem 2.4. This follows
from the well-known fact that Lien = indSnCn(qn−1) for q a primitive n(n − 1)st

root of unity. An interesting open problem is to extend these results to the case
where 1− qj(j−1) vanishes for more than one j. The paper [Hanlon and Stanley
1998] contains tables which give the Sn-module structure of the kernel of B in
these cases for small values of n.
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We next turn to Problem 3′ and see what is known here in the special case of
A = An−1, with all hyperplane weights equal to q. Hanlon and Stanley [1998]
have proved a result that gives a solution to Problem 3′, but in order to state it
we need some notation.

For each partition η, let P η be the virtual character which has value 0 on
conjugacy classes not indexed by η and which has value n!

cη
on the conjugacy

class indexed by η where cη is the order of the centralizer in Sn of a permutation
with cycle type η.

It is well-known that we can write P η explicitly as

P η =
∑
λ

χλ(η)χλ,

where χλ is the irreducible character of Sn indexed by λ (see [James and Kerber
1981] or [Sagan 1991] for more on the irreducible representations of Sn). It is
easy to see that the virtual characters P η span the representation space of Sn.

The following result, which was originally conjectured by Stanley, give an
elegant solution to Problem 3′ in this case:

Theorem 2.6 [Hanlon and Stanley 1998], Theorem 3.7. For each η ` n, let
Dη(q) denote detPη (B(q)). Then

(i) Dη(q) = 1 unless η is of the form ld1n−ld for some l, d.
(ii) D(ld1s)(q) =

(
D(ld1)(q)

)s! for all l, d and all s ≥ 1.

Note that (a) and (b) reduce the determination of Dη(q) to the cases where η is
of the form ld or ld1.

(iii) D(ld)(q) =
∏
m|l
(
1−qdm(n−1)

)µ(m)ld(d−1)!/m, where, in the exponent on the
right-hand side, µ denotes the number-theoretic Möbius function.

(iv) D(ld ,1)(q) = D(ld)(q)D(ld)

(
qn/(n−2)

)−1
.

3. The Smith Normal Form of B(q)

Let notation be as in the previous section, so that A is an arrangement of
hyperplanes and B is the Varchenko matrix of the arrangement A. In this
section we will assume that all parameters aH are equal to a parameter q. So
B is the matrix with rows and columns indexed by regions whose R, S entry is
qn(R,S) where n(R, S) is the number of hyperplanes which separate R and S.

We can specialize Varchenko’s Theorem (Theorem 2.1) by setting all aH = q

to get a formula for the determinant of B:

det(B) =
∏

X∈L(A)∗

(1 − q2h(X))l(X),

where h(X) is the number of hyperplanes in A which contain X. A consequence
of this formula is that det(B) vanishes only at q being certain roots of unity.
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Because the entries of B come from C[q] (which is a PID), we can define the
Smith normal form of B over the ring C[q]. Recall that the Smith normal form
of a matrix M over a Euclidean domain R is a normal form for left and right
multiplication by unimodular matrices. In other words, the Smith normal form
of M , denoted SNF(M), is a particular choice from the set of matrices

{UMV : U and V are unimodular matrices over R}.

The matrix SNF(M) is a diagonal matrix with each entry along the diagonal
dividing the next one. The diagonal entries are chosen up to multiplication by
units in R. In our case, the units in C[q] are the nonzero complex numbers
so we can assume that each diagonal entry in SNF(B) is a monic polynomial.
Note also that if M is square, the unimodular conditions on U and V imply that
det(SNF(M)) = det(M).

Let Θ denote the set of roots of det(B). By the divisibility condition on
successive entries of SNF(B), the (i, i)-entry of SNF(B) is of the form∏

z∈Θ

(q − z)p(i)
z ,

where the exponents p(i)
z satisfy

p(1)
z ≤ p(2)

z ≤ · · · ≤ p(N)
z

for each z ∈ Θ, where N denotes the number of regions in the complement of A.
Therefore, SNF(B) is completely determined by the sequences {p(i)

z }Ni=1 for each
z ∈ Θ. It is sometimes more convenient to work with an equivalent sequence of
numbers σ(i)

z , where σ(i)
z is equal to the number of j such that p(j)

z is equal to
i. In terms of the Smith normal form, σ(i)

z is the number of diagonal entries in
SNF(B) that are exactly divisible by (q − z)j .

Example 3.1. Let A be the arrangement given in Example 2.2. The B matrix
with all parameters set equal to q is given in that example, as is SNF(B). The
sequences that determine SNF(B) as above are

{p(i)
1 } = {p(i)

−1} = 0, 1, 1, 1, 2, 2, 2.

The σ sequences for this arrangement are

{σ(i)
1 } = {σ(i)

−1} = 1, 3, 2.

This example demonstrates one of two facts about the p(i)
z that are straightfor-

ward to prove:

Proposition 3.2. Let the sequences p(i)
z be those associated to the Smith normal

form of the arrangement A in Rn. Then

(i) If z and w are both primitive j-th roots of unity , then p
(i)
z = p

(i)
w for every i.

(ii) For every root of unity z and every i, p(i)
z = p

(i)
−z.
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The computation of the Smith normal form of the Varchenko matrices arises as
our next problem of interest in this paper.

PROBLEM 4. (i) Determine the Smith normal form of B in terms of some
information about the arrangement A.

(ii) Is SNF(B) determined just by the intersection lattice of A?

Aside from the intrinsic interest of computing the Smith normal form of the
matrices B, this problem is directly relevant to the determination of the nullspace
of B in the case that all parameters aH are set equal to q. As noted in the last
chapter, facts about the Smith normal form of B were needed by Denham [1999]
to prove a conjecture of Hanlon and Stanley. In the next section, we will describe
another application of the Smith normal form of B (due to Denham), this time
to computing the homology of the Milnor fibre of the arrangement A.

Note that the Smith normal form of B is determined by the numbers p(i)
z

for every z ∈ Θ and every i. So an alternative formulation of Problem 4 is the
following.

PROBLEM 4
′
. Determine the numbers p(i)

z for i ≥ 0 and for each z ∈ Θ.
Equivalently, determine the numbers σ(i)

z for i ≥ 0 and for each z ∈ Θ.

One general result is known that gives an elegant partial solution to Problem 4′.

Theorem 3.3 [Denham and Hanlon 1997]. For any arrangement A and any
nonnegative integer i, σ(i)

1 = σ
(i)
−1 is the i-th Betti number of the arrangement .

Equivalently , ∑
i

σ
(i)
1 λi =

∑
j

λp
(j)
1 = (−λ)rχ

(−1
λ

)
,

where χ(λ) is the characteristic polynomial of the lattice L(A) and r is the rank
of L(A).

Example 3.4. To illustrate an instance of Problem 4, we consider the arrange-
ments An−1. For each n in the range 2 ≤ n ≤ 5 there is a chart below which
gives the numbers σ(i)

z . To understand these charts, assume that n is fixed. By
Corollary 3.1 we know that z ∈ Θ if and only if z is a primitive d-th root of unity
for some d that divides j(j − 1) and some j ≤ n. These numbers d index the
rows of the charts below. In view of Proposition 3.2 (b) we do not include d of
the form 2d′ where d′ is odd. So the number σ(j)

z that appears in the d, j entry
of the chart below is the number of entries in SNF(B) that are exactly divisible
by (q − e2πi/d)j.

With these notational conventions, the Smith normal forms of the arrange-
ments An−1 for small values of n are as follows:

n= 2:
(d j = 0 1

1 1 1
)

n= 3:
(d j = 0 1 2

1 1 3 2
3 5 1 0

)
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n= 4:


d j = 0 1 2 3
1 1 6 11 6
3 17 4 3 0
4 22 2 0 0

12 22 2 0 0

 n= 5:



d j= 0 1 2 3 4
1 1 10 35 50 24
3 70 20 30 0 0
4 102 10 8 0 0
5 114 6 0 0 0

12 100 20 0 0 0
20 114 6 0 0 0


Theorem 3.3 gives a description of the numbers that appear in the rows indexed
by d = 1 in the tables above. More specifically, Theorem 3.3 equates the poly-
nomial Q(λ) obtained by using the numbers in the first row as coefficients to a
polynomial obtained from the characteristic polynomial of the lattice of intersec-
tions of the arrangement An−1. The lattice of intersections of the arrangement
An−1 is the partition lattice Πn which is well-known to have characteristic poly-
nomial χ(λ) =

∏
i=1,n−1(λ−i). So Theorem 3.3 states that the polynomialQ(λ)

is equal to

Q(λ) = (−λ)n−1
n−1∏
i=1

(−1
λ
− i
)

=
n−1∏
i=1

(1 + iλ).

A specific case of this factorization is n = 5 where Theorem 3.3 predicts that

1 + 10λ+ 35λ2 + 50λ3 + 24λ4 = (1 + λ)(1 + 2λ)(1 + 3λ)(1 + 4λ).

It is easy to check that two sides of the above equality are in fact equal. Problem 4
asks for an extension of Theorem 3.3 to d > 1.

In order to refine Problem 4, we will take a different point of view on the
Smith normal form. Let V be the module over A = C[q] spanned by the regions
in the complement of A. Note that B determines a C-linear transformation from
V to V which commutes with the action of A. Let ζ(q) be any polynomial in
A. Since B commutes with the action of A on V , multiplication by ζ(q) defines
a map on C, the cokernel of B.

By definition, C is V/ im(B). As a vector space over C, C has dimension
equal to the sum of the degrees of the entries in SNF(B). We will want to say a
bit more about the structure of C. For each z ∈ Θ, let K(j)

z denote the kernel
in C of multiplication by (q − z)j , and let k(j)

z = dimC(K(j)
z ). Then k

(j)
z equals

the number of i with p(i)
z ≤ j. Note that

K(0)
z ⊆K(1)

z ⊆ K(2)
z ⊆ · · · .

Let L(j)
z = K

(j)
z /K

(j−1)
z . By the comments above, we see that dimC(L(j)

z ) is
equal to σ(j)

z , the number of p(i)
z which are equal to j. It is not difficult to show

that
C =

⊕
z∈Z

⊕
j≥0

L(j)
z .

Now suppose that G is a group of affine transformations defined over C that
permutes the set of hyperplanes. Then G acts on the set of regions as well and
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this action commutes with the actions of both B and C[q]. So G acts on the
spaces L(j)

z for each z ∈ Θ and each j. Problem 1 asks one to determine the
dimensions of the L(j)

z , or equivalently to determine the character of the identity
in G acting on each L

(j)
z . One can ask more generally about their G-module

structures of the L(j)
z .

PROBLEM 5. Determine the G-module structure of the spaces L(j)
z in terms

of some information about the action of G on the arrangement A.

A simpler, but still interesting, variant of Problem 5 is to determine theG-module
structure of the entire cokernel of B.

Example 3.5. To illustrate these concepts and problems we do an example.
Let A = {H0, H1, H2} be the two-dimensional arrangement where H0 is the line
x = 0, H1 is the line y = 1 and H2 is the line y = −1. Let G be the group of
order four generated by h and v, where h is the reflection of R2 across the line
x = 0 and v is reflection of R2 across the line y = 0.

Index the regions in the complement of the arrangement R1, . . . , R6 so that
R1, R3, R5 are those in the half-plane x < 0 arranged from top to bottom and
R2, R4, R6 are those in the half-plane x > 0 arranged from top to bottom. The
B-matrix of this arrangement with respect to this ordering is

B =



1 q q q2 q2 q3

q 1 q2 q q3 q2

q q2 1 q q q2

q2 q q 1 q2 q

q2 q3 q q2 1 q

q3 q2 q2 q q 1

 .

The Smith normal form of B is given by

SNF(B) = diag
(
1, 1− q2, 1− q2, 1− q2, (1 − q2)2, (1− q2)2

)
,

so that the cokernel has dimension 14 (over C.) A basis for the image of B is
given by the six vectors

µ1 = (1, q, q, q2, q2, q3),

µ2 = (1−q2) · (0, 1, 1, 1+2q−q2, 1+q, 1+2q+q2−q3),

µ3 = (1−q2) · (0, −2, −1, −3q, −q, 1−4q2),

µ4 = (1−q2) · (0, 1, 0, q, 0, 1),

µ5 = (1−q2)2 · (0, 0, 0, 1, 0, q−1),

µ6 = (1−q2)2 · (0, 0, 0, 0, 0, 1).
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So, the kernel of multiplication by 1±q on L(1)
±1 has dimension 5 and has a basis

given by

ν2 = (1∓q) · (0, 1, 1, 1+2q−q2, 1+q, 1+2q+q2−q3),

ν3 = (1∓q) · (0, 0, 1, 2+q−2q2, 2+q, 3+4q−2q2−2q3),

ν4 = (1∓q) · (0, 1, 0, q, 0, 1),

ν5 = (1−q2)(1∓q) · (0, 0, 0, 1, 0, q−1),

ν6 = (1−q2)(1∓q) · (0, 0, 0, 0, 0, 1).

The group G = {e, h, v, hv} acts on the ordered set of regions by

e = (R1)(R2)(R3)(R4)(R5)(R6),

h = (R1, R2)(R3, R4)(R5, R6),

v = (R1, R5)(R2, R6)(R3)(R4),

hv = (R1, R6)(R2, R5)(R3, R4).

So, it is possible to explicitly calculate the action of any group element on the
basis elements above. For example,

v · ν2 = (1∓ q) · (1 + q, 1 + 2q + q2 − q3, 1, 1 + 2q − q2, 0, 1)

= (1∓ q) · (1 + q) · µ1 + (1 + q − q3) · ν2 + (−2q − q2 + q3) · ν3

+ (3q + q2 − q3) · ν4 + (−1− q − q2) · ν5 + (4− q)(1− q2) · ν6.

So the contribution to the trace of v that arises from the ν2-diagonal term is
1 + q − q3 = 1 since (q − q3)ν2 = 0 in K(1)

z .
A tedious calculation along the same lines as above shows that the characters

of G acting on L
(j)
z are

j= 1:
(z g= e h v hv

+1 5 −1 1 −1
−1 5 1 1 1

)
j= 2:

(z g= e h v hv

+1 2 −2 0 0
−1 2 2 0 0

)

4. Local Systems and the Milnor Fibre

Earlier we cited a result of Schechtman and Varchenko which describes the
Serre relations for a quantum Kac–Moody Lie algebra in terms of the Varchenko
matrices B. In this section, we give a second application of the Varchenko matrix
of an arrangement A — this time to an invariant of the singularity of a hyperplane
arrangement at the origin.

Let A be an essential arrangement in Cn with defining polynomial Q : Cn →
C. Let M = Q−1(C\{0}) denote its complement, and N = Q−1(0) the union
of the hyperplanes. A local system on M is a representation of the fundamental
group π1(M) in a complex vector space W.
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For local systems of rank one, various authors have studied the homology
H·(M,W), for the most part in connection with generalized hypergeometric func-
tions: see [Kohno 1986; Gel’fand 1986], or the references provided in [Varchenko
1995]. When the local system is trivial, one recovers the ordinary homology
H·(M,C), which is isomorphic to the Whitney homology of the lattice L(A).

When the defining polynomial Q is real, there is a strong deformation retract
of M onto Salvetti’s CW-complex X [Salvetti 1987]. In this case, there are
explicit chain complexes that calculate H•(M,W) and H•(Cn, N,W). The B

matrix appears as part of an important chain map between the two complexes.
Our interest in local systems over the arrangement’s complement comes from a

special case. It is well known that, if A is a central arrangement, the restriction of
the defining polynomial to the complement, Q : M → C∗, gives M the structure
of a fibre bundle over C∗ [Milnor 1968]. The typical fibre F = Q−1(1) is a
complex manifold of dimension n−1, known as the Milnor fibre of the polynomial
Q (or of A). F is homotopically equivalent to an infinite cyclic covering of M ,
so its singular homology is

H•(F,C) = H•(M,CZ),

for a local system

CZ = C[t, t−1].

If the polynomial Q is real, then, we can exploit the complexes defined by (4–1)
to study the homology of the Milnor fibre (Section 4C).

Milnor [1968] considered arbitrary polynomial maps f : Cn → C that vanish
at 0. In particular, he showed that if the polynomial f has an isolated singularity
at 0, then the Milnor fibre of f has the homotopy type of a bouquet of spheres.
The Milnor fibre of defining polynomials of arrangements, then, continue to be of
interest by forming a restricted family of examples in which the singularity is not
isolated. Although the homotopy type of the Milnor fibre of a real arrangement
is determined by the face lattice of an arrangement, an explicit description of the
homology is only known in special cases; see [Cohen and Suciu 1998; Orlik and
Randell 1993]. Moreover, it is not known if, in general, the intersection lattice
of a complex hyperplane arrangement determines the Milnor fibre’s homology.

In Section 4A, we introduce the Varchenko–Salvetti chain complexes. Sec-
tion 4B indicates the role of the B matrices, and 4C specializes the construction
to apply to the Milnor fibre.

4A. Salvetti’s complex. In order to describe the general setup, recall that
the fundamental group π1(M) is generated by loops {αH : H ∈ A} around each
hyperplane [Randell 1982]. Let W be a (complex) local coefficient system defined
by a representation ρ : π1(M)→ End(W). For each H ∈ A, let bH = ρ(αH). We
require in what follows that the image of ρ be abelian. Subject to this constraint,
one can choose any set of commuting endomorphisms bH ∈ End(W), since then
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the representation ρ factors through H1(M,Z), and H1(M,Z) is freely generated
by the cycles around each hyperplane.

π1(M)
ρ- End(W)

...
...

...
...

..�

H1(M,Z)

Ab

?

Salvetti’s complex consists of cells indexed by pairs of faces of the real ar-
rangement corresponding to A. Let L denote the face lattice of the arrangement,
ordered by reverse inclusion, so that Lk is the set of faces of codimension k. For a
face P and a hyperplane H, let P (H) = 0 if P ⊆ H, and P (H) = ±1 otherwise,
depending on whether P lies on the positive or negative side of H. The face P is
uniquely determined by these values. With this notation, we recall the definition
of the vector product of faces with regions: for any P ∈ L and R ∈ r(A), the
region PR ∈ r(A) is determined by

(PR)(H) =
{
R(H) if P (H) = 0,
P (H) otherwise,

for each H ∈ A.

Example 4.1. We return to the arrangement of Example 1.1, defined by linear
forms f0 = x − y, f1 = x + y, and f2 = y − 1. Let P = {(x, y) : x > 1, y = 1}.
Then the triples (F (H0), F (H1), F (H2)) for faces F = P , R7, and PR7 are

P ←→ (+1,+1, 0),

R7←→ (−1,+1,−1),

PR7←→ (+1,+1,−1),

so PR7 = R1.

The cells in dimension k of the Salvetti complexes X and X′ are indexed by pairs
consisting of a face in codimension k and a region containing the face. As vector
spaces, let

Ck(X) = Ck(X′) = C
{
E(P,R) : P ∈ Lk, R ∈ L0, R ≤ P

}
⊗C W. (4–1)

We use the symbol ≺ to denote the covering relation in the lattice L. Coorient
the faces of the real arrangement, and for faces Q ≺ P , let ε(P,Q) be +1 or −1
according to whether or not the coorientations P and Q agree. See [Varchenko
1995, (2.4.2)]. Given a pair P ≥ R and a face Q such that Q ≺ P , define

B(R,Q;P ) =
∏

H∈A:P(H)=0

b
Q(H)R(H)/4
H .
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The boundary maps ∂ : Ck(X) → Ck−1(X) and ∂′ : Ck(X′) → Ck−1(X′) are
given by

∂E(P,R) =
∑
Q≺P

ε(P,Q)B(R,Q;P )E(Q,QR) (4–2)

and
∂′E(P,R) =

∑
R≤Q≺P

ε(P,Q)E(Q,R). (4–3)

Proposition 4.2 [Varchenko 1995]. The chain complex with boundary map
(4–2) computes the homology of the complement with local coefficient system W:

Hk(C•(X)) ∼= Hk(M,W).

The chain complex with boundary map (4–3) computes the relative homology of
the pair (Cn, N) with local coefficient system W:

Hk(C•(X′)) ∼= Hk(Cn, N,W).

4B. Relation to the B matrix. For any face P ∈ L, let |P | ∈ L(A) denote
the smallest subspace of Rn that contains P . For 0 ≤ k ≤ n, define a map
Sk : Ck(X)→ Ck(X) by

Sk(E(P,R)) =
∑
S≤P

B(R, S)E(P, S),

on the basis of Ck(X) given in (4–1). Here,

B(R, S) =
∏

H∈A:P(H)=0

b
R(H)S(H)/4
H ,

where R and S are regions satisfying R, S ≤ P . Note that the subarrangement
A|P | equals {H ∈ A : P (H) = 0}, and its regions can be identified with those
regions R ≤ P . With this in mind, one finds that

Sk =
⊕
P∈Lk

( ∏
H∈A|P |

b
−1/4
H

)
B(A|P |),

where the weights of the hyperplanes of A|P | are taken to be aH = b
1/2
H .

One can verify that Sk−1∂k = ∂′kSk; that is, S• : C•(X) → C•(X′) is a chain
map [Varchenko 1995].

4C. Application to the Milnor fibre. In this section, A is a real, central
arrangement. The (complex) homology of the Milnor fibre of A is isomorphic to
H•(M,C[t, t−1]), where π1(M) acts on C[t, t−1] by bH = t, for all H ∈ A. Since
the determinants of the B matrices are nonzero over C[t

1
2 , t−

1
2 ], the chain map

S• is an injection, and the short exact sequence

0→ C•(X) S→ C•(X′)→ cokerS• → 0 (4–4)
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gives rise to a long exact sequence in homology. Since the homology of C•(X′)
is zero for central arrangements [Varchenko 1995], one obtains an isomorphism

Hk−1(F,C) ∼= Hk−1(C•(X)) ∼= Hk(cokerS•)

for 1 ≤ k ≤ n. The first isomorphism is useful for calculation, since we have
an explicit description for the chain complex on the right-hand side, so calcu-
lating homology reduces to linear algebra suitable, in small enough cases, for a
computer algebra program. The second isomorphism reduces the problem fur-
ther to a chain complex that is finite-dimensional over C; however, as we see in
Section 3, the cokernel of S• is still poorly understood.

We can write
cokerSk =

⊕
P∈Lk

cokerB|P |

as vector spaces, although the boundary map does not preserve this decompo-
sition. Since multiplication by the determinant of a matrix map annihilates its
cokernel, and Hk−1(F,C) is isomorphic to a subquotient of cokerSk, the deter-
minant of Sk annihilates Hk−1(F,C). However, a more precise statement can be
made.

Proposition 4.3. For a real , central arrangement of l hyperplanes and k for
which 1 ≤ k ≤ n, Hk−1(F,C) consists of a direct sum of modules of the form

C[t, t−1]/(Φd(t)),

where d | gcd(h(X), l) for some X ∈ L≤k that satisfies l(X) 6= 0. (Recall that
h(X) is the number of hyperplanes containing X, while l(X) is introduced in
Theorem 2.1.)

Proof. A cyclic (monodromy) group Z/lZ acts on H•(F,C) via multiplication
by t. A complete discussion can be found in [Dimca 1992]. That is, tl acts as
the identity, and H•(F,C) contains no nilpotent elements. The proposition is
proven by comparing these constraints on Hk−1(F,C) with the expression for
the determinant of Sk. �

The proposition shows, for example, that multiplication by 1−t killsHk−1(F,C)
for 0 ≤ k < k0, where k0 is the smallest codimension of a flat X that is not,
in some sense, a “general position” intersection of hyperplanes (p(X) 6= 0), and
for which h(X) divides the number of hyperplanes in the arrangement. This is
of interest because the direct summand of Hk−1(F,C) annihilated by 1 − t is
known [Orlik and Terao 1992; Cohen and Suciu 1995], while the higher torsion
is more elusive.

We conclude this section with a remark and some numerical data. First, one
can use the complex C•(X) to calculate group homology when our arrangement
is a real, K(π, 1) arrangement. For example, the fundamental group of the
arrangement An−1 is the pure braid group Pn, and in this case C•(X) coincides
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with a construction from D. B. Fuks. In this case, Hk(F,C) = Hk(P ′n,C), where
P ′n is the derived subgroup of the pure braid group. As in Section 2, one can
attempt to make use the Sn-module structure. Using Fuks’ complex, E. V.
Frenkel [1988] has found an expression for the Sn-invariant part of Hk(P ′n,C).
In a parallel vein, Cohen and Suciu [1998] construct a complex that is useful for
group homology calculations for supersolvable, rather than real, arrangements.

The reader is invited to find a pattern in our computations of the homology
of the Milnor fibre for the arrangement An−1, in parallel with our Example 3.4.
The table below shows the characteristic polynomial of the monodromy operator
on Hp(F,C); in particular, the Betti numbers of F are just the degrees of the
polynomials. These polynomials were also calculated for n ≤ 5 in [Cohen and
Suciu 1998].

p n= 2 3 4 5

0 1− t 1− t 1− t 1− t
1 (1− t)(1− t3) (1− t)4(1− t3) (1− t)9

2 (1− t)3(1− t3)(1− t6)2 (1− t)24(1− t2)2

3 (1− t)16(1− t2)2(1− t10)6

p n= 6 7

0 1− t 1− t
1 (1− t)14 (1− t)20

2 (1− t)70(1− t3) (1− t)154(1− t3)
3 (1− t)134(1− t3)14(1− t5)6 (1− t)560(1− t3)20

4 (1− t)77(1− t3)13(1− t5)6(1− t15)24 (1− t)923(1− t3)121

5 (1− t)498(1− t3)102(1− t21)120

5. Factorizations of B

In this section, we will give two combinatorial recipes for writing the B matrix
of an n-dimensional arrangement as a product. The first, given in Section 5B,
shows that

B = M t · diag(A0, A1, . . . , An) ·M,

where M is invertible as a matrix of polynomials in the weights {a0, . . . , al−1},
and the dimension ofAk is the n−kth Betti number of the arrangement’s complex
complement.

The second factorization is only defined for central arrangements. It depends
on an order of the hyperplanes, A = {H0, H1, . . . , Hl−1}. The factorization has
the form

B = B[al−1 ← 0]Ml−1,
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where B[al−1 ← 0] denotes the matrix obtained from B by specializing the
weight of Hl−1 to zero. Proceeding inductively,

B = M0M1 · · ·Ml−1,

whereMk is a matrix whose entries are polynomials in the weights {a0,a1,. . .,ak}.
Both factorizations are applications of the Möbius function of the same type

of poset, studied first by Edelman [1984]. We begin with its description.

5A. Posets on the set of regions. As before, let r(A) denote the set of regions
of a real arrangement A, and let H(R, S) denote the set of hyperplanes in A

that separate regions R, S ∈ r(A). For a fixed region R ∈ r(A), Edelman’s poset
P (A, R) has underlying set r(A), ordered by S <R T if and only if H(R, S) ⊂
H(R, T ). It is not hard to verify that R is the unique bottom element of P (A, R),
and that the poset is graded by |H(R, S)|, for S ∈ P (A, R). See [Edelman 1984]
for details.

Let Z be any flat in Rn that intersects A transversely. By this, we mean an
affine subspace Z for which, for X ∈ L(A), if X ∩ Z 6= ∅ then codim(X ∩ Z) =
codimX + codimZ. Partition the regions of A by setting

r1 = {S ∈ r(A) : S ∩ Z 6= ∅},

and r0 = r(A)\r1. For any region R ∈ r(A), define a new poset P (A, Z, R)
on r1 ∪ {0̂} using the ordering <R, with an added bottom element 0̂. We shall
be most interested in such posets for R ∈ r0, in which case one simply has the
subposet of P (A, R) restricted to r1 ∪ {R}, under the identification 0̂ = R.

Example 5.1. Let Z be the line x = −2 in the arrangement of Example 1.1, and
let R = R1. Then r1 = {R2, R3, R4, R5}, and the posets P (A, R) and P (A, Z, R)
are as follows:

R1

R2

R3

R4

R5

R6R7

0̂ = R1

R2

R3

R4

R5

P (A, R) P (A, Z,R)

For a, b ∈ {0, 1}, let Bab be the submatrix of the B matrix whose rows and
columns are indexed by ra and rb, respectively. The factorization results of this
section depend on the following important observation.

Lemma 5.2. Under the hypotheses above, B10 = B11U , where U is a |r1| × |r0|
matrix with entries

U(i, j) = −µj(0̂, i)B(i, j),

for i ∈ r1 and j ∈ r0. µj is the Möbius function of the poset P (A, Z, j).
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Proof. The claim is equivalent to the equation∑
j∈r1

−µk(j)B(i, j)B(j, k) = B(i, k). (5–1)

Observe that, for any j ∈ r1,

B(i, j)B(j, k) = B(i, k)
∏
H

a2
H ,

where the product is taken over hyperplanes H ∈ H(i, j)∩H(j, k). With this in
mind, let

rik(S) = {j ∈ r1 : H(i, j) ∩H(j, k) = S},
for sets S ⊆ A. It is enough to show that, for every S ⊆ A,∑

j∈rik(S)

µk(j) =
{
−1 if S = ∅,

0 otherwise.
(5–2)

Let A′ = A\H(i, k), and consider the order-preserving surjection of posets
π : P (A, Z, k) → P (A′, Z, π(k)) induced by the inclusion of regions of A into
regions of A′. For any region j ∈ r1, the hyperplanes that separate j from k in
A′ equal H(i, j)∩H(j, k). It follows that, for j, j′ ∈ r1, π(j) = π(j′) if and only
if j, j′ ∈ rik(S) for some S ⊆ A.

For any S ⊆ A, if rik(S) is nonempty, let x = π(rik(S)). Let µ′ denote
the Möbius function of P (A′, Z, π(k)). A routine argument shows that the fibres
π−1(x) each contain upper bounds, for all x ∈ P (A′, Z, π(k)). It follows that π
induces a closure operation on P (A, Z, k) by letting ̄ be the maximum element
satisfying π(̄) = π(j). Using a well-known property of closure operations (see
[Stanley 1986]),

µ′π(k)(x) =
∑

j∈π−1(x)

µk(j) =
∑

j∈rik(S)

µk(j).

Since no hyperplanes of A′ separate regions k and i, π(i) is the only element
of P (A′, Z, k) that covers 0̂. It follows that the Möbius function satisfies

µ′π(k)(x) =
{−1 if x = π(i),

0 for any other region.

x = π(i) exactly when S = ∅, so equation (5–2) is proven. �

The next proposition gives a more explicit description of the matrix U in a
special case. Their proofs will appear in [Denham ≥ 1999]. Let A be a central
arrangement and let f be a linear functional for which H = ker f ∈ A. Let
Z = ker f + 1, a hyperplane parallel to H. The induced arrangement AZ is
known as the decone of A with respect to H [Orlik and Terao 1992]. Inclusion
identifies the regions of AZ with regions of A; moreover, if R ∈ r(A), either R
or −R intersects Z.
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For R ∈ r(A)\r(AZ) and S ∈ r(AZ), let

WR(S) = S ∩ {H ∈ AZ : H 6∈ H(−R, S)},

where S denotes the topological closure of S in Z. WR(S) should be thought of
as the topological space consisting of the walls around chamber S that do not
separate S from −R, in the deconed arrangement.

Lemma 5.3. Let A be a central arrangement , and take Z as defined above,
R ∈ r(A)\r(AZ) and S ∈ r(AZ). Let µR be the Möbius function of the poset
P (A, Z, R). Then

µR(0̂, S) = χ(WR(S)),

the reduced Euler characteristic of WR(S).

Definition 5.4. For any hyperplane H ∈ A, define a map of sets fH : r(A)→
L(AH) by letting fH(R) =

∣∣R∩H∣∣, the intersection of all hyperplanes containing
R ∩H.

It is shown in [Denham ≥ 1999] that the Möbius function of P (A, Z, R) has a
simple description in these terms.

Proposition 5.5. For R ∈ r(A)\r(AZ) and S ∈ r(AZ), µR(0̂, S) = 0 unless
fH(R) ≥ fH(S). Moreover , if fH(R) ≥ fH(S), let d be the codimension of
fH(R) in H. If S is bounded ,

µR(0̂, S) =
{

(−1)d−1 if −R = S;
0 otherwise.

If S is unbounded ,

µR(0̂, S) =
{

0 if −R = S;
(−1)d otherwise.

5B. Induction on dimension. Our first decomposition is not unique: it de-
pends on an arbitrary choice of a flag of flats in general position with respect to
the arrangement A. By this, we mean affine subspaces Zd for which

Z0 ⊃ Z1 ⊃ · · · ⊃ Zn,

codimZd = d, and for X ∈ L(A), X ∩ Zd = ∅ if codimX > n − d; otherwise,
codim(X ∩ Z) = codimX + d, for 1 ≤ d ≤ n.

Let
rd = {S ∈ r(A) : S ∩ Zd 6= ∅, S ∩ Zd+1 = ∅}

for 0 ≤ d < n, and let rn consist of the single region containing the point Zn.
Let Ba,b be the submatrix of B with rows and columns indexed by ra and rb,
respectively. For 0 ≤ d < n, Bdd can be identified with the B matrix of the
arrangement AZd , and Lemma 5.2 applies. It states that Bd+1,d = Bd+1,d+1Ud,
where Ud is the matrix with entries

Ud(i, j) = −µj(0̂, i)B(i, j)
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for i ∈ rd+1 and j ∈ rd, and µj is the Möbius function of P (AZd , Zd+1, j).
If one orders the basis r(A) so that r0 precedes r1, one finds that

B = M t
0 · diag(B00 − U t0B11U0, B11) ·M0,

where

M0 =
(
I|r0| 0
U0 I|r1|

)
.

More generally:

Theorem 5.6. Order the regions of a real arrangement A so that R < S if
R ∈ ra and S ∈ rb with a < b, in the notation above. Subject to this ordering ,
B = M t · diag(A0, A1, . . . , An) ·M , where

Ad = Bdd − U tdBd+1,d+1Ud

is an rd × rd matrix for 0 ≤ d < n, An = (1), and

M =
−→∏

0≤d<n

(
I|rd| 0
Ud I|rd+1 |

)
. �

By the assumption that Z1 is in general position, the intersection semilattice of
AZ1 is a truncation of that of A: L(AZ1) = L≤n−1(A). By induction, L(AZd) =
L≤n−d(A).

Let µ be the Möbius function of L(A), and let

bk =
∑

X∈Lk(A)

(−1)kµ(0̂, X).

It is well known [Orlik and Terao 1992] that |r(A)| =
∑n
k=0 bk. Since the inclusion

map from AZd to A identifies the restriction of µ with the Möbius function of
L(AZd),

∣∣r(AZd)
∣∣ =

∑n−d
k=0 bk; consequently, |rd| = bn−d.

It can be shown that the matrix Ak, is equivalent to the bilinear form Bk

defined in [Varchenko 1993, Section 20], under a suitable change of basis. This
leads to another proof of Theorem 3.3.

5C. Induction on the number of hyperplanes. The second factorization
requires that A be a real, central arrangement. In order to give a description, let
H = ker f be a hyperplane in A, and let Z = ker f + 1 be a hyperplane parallel
to H.

Proposition 5.7. B factors as B = B[aH ← 0]MH , where the matrix

MH(R, S) =


1 if R = S,
−µS(0̂, R)B(R, S) if H separates R from S,
0 otherwise,

and µS is the Möbius function of the poset P (A,±Z, S), where the sign is chosen
so that S ∩ ±Z = ∅.
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Proof. For convenience, we reorder the basis of the space of regions so that
r(AZ) appears first in order. Let 2m = |A|, and let σ : r(A) → [2m] be a
bijection for which σ(R) ≤ m and σ(−R) = σ(R) + m for R ∈ r(AZ). Let Q
be the corresponding permutation matrix, Q(R, i) = δσ(R),i, for R ∈ r(A) and
i ∈ [2m]. In the notation of Lemma 5.2,

Q−1BQ =
(
B00 B01

B10 B11

)
.

Since B(−R,−S) = B(R, S), we have B00 = B11 and B01 = B10. Using
Lemma 5.2, it follows that

Q−1BQ =
(
B00 0
0 B11

)(
Im U

U Im

)
= Q−1B[aH ← 0]MHQ.

�
The proposition relates two B matrices, one with the hyperplanes weighted ar-
bitrarily, and the other with one hyperplane given weight zero. One can apply
the proposition to each hyperplane in succession to obtain the following.

Theorem 5.8. Let A = {H0, H1, . . . , Hl−1} be a real , central arrangement of
hyperplanes. For 0 ≤ d ≤ l − 1, let Zd be a parallel translate of Hd. Then
B(A) = M0M1 · · ·Ml−1, where Md is a matrix over Z[a0, . . . , ad]. Explicitly ,

(i) Md(S, S) = 1,

(ii) Md(R, S) = −µS(0̂, R)B(R, S) if d = max{k : Hk ∈ H(R, S)},
(iii) Md(R, S) = 0 otherwise.

Here again, µS is the Möbius function of P (A,±Zd, S), with the sign chosen so
that S ∩ Zd = ∅.

Example 5.9. Consider the arrangement A2 from Example 1.2. Order the hy-
perplanes H12, H23, H13, and order the regions 123, 213, 132, 231, 312, 321. Then
B = M0M1M2, where

M1 =



1 0 a23

0 1 0
a23 a12a23 1

1 a12a23 a23

0 1 0
a23 0 1


and

M2 =



1 0 0 −a12a23a13

1 a13 0 a23a13

1 0 a13 a12a13

a12a13 a13 0 1
a23a13 0 a13 1

−a12a23a13 0 0 1

 ,
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and the off-diagonal entries of M0 are all zero, except for a12 in entries (123, 213),
(213, 123), (312, 321), and (321, 312).

We conclude with an example of the sort of information this theorem gives us.
In the notation of Proposition 5.7,

Q−1MdQ =
(
I Ud

Ud I

)
,

so that detMd = det(I −U2
d ). One can use Proposition 5.5 to show that I −U2

d

is upper-triangular. Then keeping track of the diagonal entries shows that

detMd = det(I − U2
d ) =

∏
X

(1− a2
X)l(X) ,

where the product is taken over all X ∈ L(A) for which d = max{k : Hk ≤ X}.
This gives another proof of Varchenko’s formula, Theorem 2.1.
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