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Matroid Bundles

LAURA ANDERSON

Abstract. Combinatorial vector bundles, or matroid bundles, are a com-
binatorial analog to real vector bundles. Combinatorial objects called ori-
ented matroids play the role of real vector spaces. This combinatorial anal-
ogy is remarkably strong, and has led to combinatorial results in topology
and bundle-theoretic proofs in combinatorics. This paper surveys recent
results on matroid bundles, and describes a canonical functor from real
vector bundles to matroid bundles.

1. Introduction

Matroid bundles are combinatorial objects that mimic real vector bundles.
They were first defined in [MacPherson 1993] in connection with combinatorial
differential manifolds, or CD manifolds. Matroid bundles generalize the notion
of the “combinatorial tangent bundle” of a CD manifold. Since the appearance
of McPherson’s article, the theory has filled out considerably; in particular, ma-
troid bundles have proved to provide a beautiful combinatorial formulation for
characteristic classes.

We will recapitulate many of the ideas introduced by McPherson, both for the
sake of a self-contained exposition and to describe them in terms more suited
to our present context. However, we refer the reader to [MacPherson 1993] for
background not given here. We recommend the same paper, as well as [Mnëv
and Ziegler 1993] on the combinatorial Grassmannian, for related discussions.

We begin with a key intuitive point of the theory: the notion of an oriented
matroid as a combinatorial analog to a vector space. From this we develop
matroid bundles as a combinatorial bundle theory with oriented matroids as
fibers. Section 2 will describe the category of matroid bundles and its relation to
the category of real vector bundles. Section 3 gives examples of matroid bundles
arising in both combinatorial and topological contexts, and Section 4 outlines
some of the techniques that have been developed to study matroid bundles.
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Figure 1. An arrangement of oriented hyperplanes in R2 and some of the

resulting sign vectors.
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1A. Oriented matroids. We give a brief introduction to oriented matroids,
particularly to the idea of oriented matroids as “combinatorial vector spaces”.
See [Björner et al. 1993] for a more complete introduction to oriented matroids,
and [MacPherson 1993, Appendix] for specific notions of importance here.

A rank-n oriented matroid can be considered as a combinatorial analog to
an arrangement {ri}i∈E of vectors in Rn, or equivalently, to an arrangement
{r⊥i }i∈E of oriented hyperplanes. (Here we allow the “degenerate hyperplane”
0⊥ = Rn.) The idea is as follows. An arrangement {r⊥i }i∈E of oriented hyper-
planes in Rn partitions Rn into cones. Each cone C can be identified by a sign
vector v ∈ {−, 0,+}E, where vi indicates on which side of r⊥i the cone C lies.
(See Figure 1).

The set E together with the collection of sign vectors resulting from this
arrangement is called a realizable oriented matroid. The sign vectors are called
covectors of the oriented matroid. Every realizable oriented matroid has 0 as a
covector. The hyperplanes describe a cell decomposition of the unit sphere in
Rn, with each cell labeled by a nonzero covector.

More generally, an oriented matroid M is a finite set E together with a collec-
tion V ∗(M) of signed sets in {−, 0,+}E, satisfying certain combinatorial axioms
inspired by the case of realizable oriented matroids. (For a complete definition,
see [Björner et al. 1993, Section 4.1].) In this more general context, we still have



MATROID BUNDLES 3

r1
r2

r3

r4

r5

Figure 2. A rank-3 arrangement of five oriented pseudospheres.

a notion of the rank of an oriented matroid [MacPherson 1993, Section 5.3], and
a beautiful theorem that gives this notion topological meaning.

The Topological Representation Theorem of Folkman and Lawrence [Björner
et al. 1993, Section 1.4; Folkman and Lawrence 1978] says that the set of nonzero
covectors of a rank-n oriented matroid describe a cell decomposition of Sn−1.
More precisely: a pseudosphere in Sn−1 is a subset S such that some homeomor-
phism of Sn−1 takes S to an equator. Thus, a pseudosphere must partition Sn−1

into two pseudohemispheres. An oriented pseudosphere is a pseudosphere to-
gether with a choice of positive pseudohemisphere. An arrangement of oriented
pseudospheres is a set of oriented pseudospheres on Sn−1 whose intersections
behave topologically like intersections of equators. (For a precise definition, see
[Björner et al. 1993, Definition 5.1.3].) For an example, see Figure 2.

An arrangement {Si}i∈E of oriented psuedospheres in Sn−1 determines a col-
lection of signed sets in {−, 0,+}E in the same way that an arrangement of ori-
ented hyperplanes in Rn does. The Topological Representation Theorem states
that any collection of signed sets arising in this way is the set of nonzero covectors
of an oriented matroid, and that every oriented matroid arises in this way.

1B. Oriented matroids as “combinatorial vector spaces”. A strong map
image of an oriented matroid M is an oriented matroid N such that V ∗(N) ⊆
V ∗(M). (Strong maps are called strong quotients in [Gelfand and MacPherson
1992]. See [Björner et al. 1993, Section 7.7] for more on strong maps.)

Consider a realizable rank-n oriented matroid M , realized as a set R =
{r⊥1 , r⊥2 , . . . , r⊥m} ⊂ Rn. If V is a rank-k subspace in Rn, consider the rank-k
oriented matroid γR(V ) given by the intersections {V ∩ r⊥i : i ∈ {1, . . . , m}}. In
terms of the vector picture of oriented matroids, γR(V ) is given by the orthogonal
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Figure 3. A strong map of realizable oriented matroids.

projections of the elements {r1, . . . , rm} onto V . The oriented matroid γR(V )
is a strong map image of M , and encodes considerable geometric data about V .
For instance, the loops in γR(V ) are exactly those ri such that V ⊆ r⊥i , and the
cell decomposition of the unit sphere SV in V given by the equators SV ∩ r⊥i is
canonically isomorphic to the cell complex of nonzero covectors of γR(V ). We
will think of γR(V ) as a combinatorial model for V , and as a combinatorial
“subspace” of M . Figure 3 shows a realization of a rank-2 oriented matroid, a
1-dimensional subspace V of R2, and the resulting oriented matroid γR(V ).

If M is not realizable, we will still use M as a combinatorial analog to Rn,
with the nonzero covectors in V ∗(M) playing the role of the unit sphere. Strong
map images will be viewed as “pseudosubspaces”.

1C. Matroid bundles. Consider a real rank-k vector bundle ξ : E → B over
a compact base space. Choose a collection {e1, . . . , en} of continuous sections
of ξ such that at each point b in B, the vectors {e1(b), . . . , en(b)} span the
space ξ−1(b). The vectors {e1(b), . . . , en(b)} determine a rank-k oriented matroid
M(b) with elements the integers {1, . . . , n}. Note that any b ∈ B has an open
neighborhood Ub such that M(b′) weak maps to M(b) for all b′ ∈ Ub. (See
[Björner et al. 1993, Section 7.7] for a definition of weak maps. Weak maps are
called specializations in [MacPherson 1993] and weak specializations in [Gelfand
and MacPherson 1992].)

Proposition 1.1. Let ξ : E → B be a real vector bundle with B finite-
dimensional and let µ : |T | → B be a triangulation of B. Then there exists
a simplicial subdivision T ′ of T and a spanning collection of sections of ξ such
that for every simplex σ of T ′, the function M is constant on the relative interior
of µ(|σ|).

This is a corollary to the Combinatorialization Theorem in Section 2C.

Example. Figure 4 shows the Möbius strip as a line bundle over S1, and a
triangulation of S1 with vertices a, b, c. The sections {ρ1, ρ2} associate a single
oriented matroid to the interior of each simplex.
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Figure 4. A spanning collection of sections for the Möbius strip.

Such a simplicial complex and the association of an oriented matroid to each cell
give the motivating example of a matroid bundle:

Definition 1.2. A rank-k matroid bundle is a partially ordered set B (e.g., a
simplicial complex with simplices ordered by inclusion) and a rank-k oriented
matroid M(b) associated to each element b, so that M(b) weak maps to M(b′)
whenever b ≥ b′.

This is a simplification of the definition which appears in [MacPherson 1993].
Any matroid bundle in the sense of MacPherson gives a matroid bundle in the
present sense. Conversely, given a matroid bundle (B,M) in our current sense,
consider the order complex ∆B of B, i.e., the simplicial complex of all chains in
the partial order. The map associating to each simplex b1 ≤ · · · ≤ bm in ∆B the
oriented matroid M(bm) defines a matroid bundle in the sense of MacPherson.

A matroid bundle need not arise from a real vector bundle. For instance, a
matroid bundle may include non-realizable oriented matroids as fibers. Section 3
will give examples of matroid bundles arising in combinatorics that do not cor-
respond to any real vector bundles.

1D. What do we want from matroid bundles? The hope is that the cate-
gory of matroid bundles is closely related to the category of real vector bundles,
or perhaps to one of its weaker cousins, such as the category of piecewise-linear
microbundles or the category of spherical quasifibrations. (These categories are
described below.) Relating bundle theory to oriented matroids promises both
combinatorial techniques for bundle theory and bundle-theoretic techniques for
combinatorics.
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We describe these categories very briefly here. Good sources for a more ex-
tended look at bundles are [Milnor and Stasheff 1974; Husemoller 1996]. The
loose idea is as follows: a (topological) bundle is a map ξ : E → B of topological
spaces such that for some open cover {Ui}i∈I of B, each restriction ξ|ξ−1(Ui)

“looks like” a projection p : Ui × F → Ui, for some space F . Different bundle
theories arise from different notions of “looking like a projection”. E is the total
space of the bundle, and B is the base space. For any b ∈ B, the preimage ξ−1(b)
is the fiber of ξ over b. A morphism from a bundle ξ1 : E1 → B1 to a bundle
ξ2 : E2 → B2 is a commutative diagram

E1
- E2

B1

ξ1
?

- B2

ξ2
?

such that the map of total spaces preserves appropriate structure on fibers.
Three progressively weaker categories of bundles are of particular interest.

The strongest is the category Bun of real vector bundles, in which F ∼= Rk and
for each Ui we must have a homeomorphism h : Ui × Rk → ξ−1(Ui) such that

Ui × Rk
h - ξ−1(Ui)

Ui

ξ
�

p -

commutes and h restricts to a linear isomorphism on each fiber. In the weaker
category PL of piecewise-linear microbundles, F is still Rk, but the maps h
need only be piecewise-linear homeomorphisms with compatible 0 cross-sections.
(See [Milnor 1961] for a precise definition.) A still weaker notion is that of a
quasifibration, which must only “look like” a projection in that for each x ∈ Ui,
y ∈ ξ−1(x), and j ∈ N, the map of homotopy groups

p∗ : πj(p−1(Ui), p−1(x), y) −→ πj(Ui, x)

is an isomorphism; see [Dold and Thom 1958, §§ 1.1, and 2.1]. From this con-
dition it follows that each fiber has the same weak homotopy type. We will
be interested in the category Fib of quasifibrations whose fibers are homotopy
spheres. Any real vector bundle or PL microbundle has a canonical associated
sphere bundle — essentially by taking a sphere around 0 in each fiber — which is
a spherical quasifibration.

Associated to any good bundle theory is a universal bundle — that is, a bundle
Ξ : E∞ → B∞ such that

1. for any bundle ξ : E → B there exists a morphism from ξ to Ξ, and
2. if ξ1 : E1 → B1 and ξ2 : E2 → B2 are bundles and F : ξ1 → ξ2, C1 : ξ1 → Ξ,

and C2 : ξ2 → Ξ are morphisms, then there exists a bundle homotopy from
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C1 to C2 ◦ F , i.e., a morphism H from ξ1 × id : E1 × I → B1 × I to Ξ such
that H|ξ1×{0} = C1 × ∗ and H|ξ1×{1} = (C2 ◦ F )× ∗.

In this situation B∞ is called a classifying space for the category. For any bundle
ξ and bundle map from ξ to the universal bundle, the map of base spaces is called
a classifying map. It follows from the properties above that the universal bundle
is unique up to bundle homotopy, and that for a fixed universal bundle and
fixed real vector bundle, the classifying map is unique up to homotopy. In fact,
every vector bundle over a base space B is characterized up to isomorphism by
a homotopy class of maps from B to B∞. Specifically, a bundle ξ over B with
classifying map c(ξ)is isomorphic to the pullback of Ξ by c(ξ), i.e., the bundle
π1 : {(b, v) : b ∈ B, v ∈ Ξ−1(c(ξ)(b))} → B. In this way isomorphism classes of
bundles over a space B are in bijection with homotopy classes of maps B → B∞.
Thus if G1 and G2 are two categories of bundles with classifying spaces B1

∞ and
B2
∞ then any map B1

∞ → B2
∞ gives a functor from isomorphism classes in G1 to

isomorphism classes in G2.
For rank-k real vector bundles over paracompact base spaces, the classifying

space (often called BOk) is G(k,R∞), the space of all k-dimensional subspaces
of R∞. The universal bundle is the tautological bundle

E∞ = {(V, x) : V ∈ G(k,R∞), x ∈ V } −→ G(k,R∞),

(V, x) −→ V.

(See [Milnor and Stasheff 1974, Chapter 5] for details.) The classifying spaces
BPLk for PL microbundles and BFibk for spherical quasifibrations are harder to
describe explicitly, and we won’t attempt it here. (See [Milnor 1961, Chapter 5;
Stasheff 1963] for constructions. We note in passing that BFibk is isomorphic
to the classifying space for rank-k spherical fibrations [Stasheff 1963]— see the
related discussion in [Anderson and Davis ≥ 1999].) Since BOk has a natural
PL microbundle structure and BPLk has an associated spherical quasifibration,
there are canonical (up to homotopy) classifying maps BOk → BPLk → BFibk,
giving canonical functors from real vector bundles to PL bundles to spherical
quasifibrations.

How do matroid bundles fit into this picture? In Section 2A we will define mor-
phisms of matroid bundles, leading to a category MBk of matroid bundles. This
category has a universal bundle, whose classifying space is called the MacPher-
sonian MacP(k,∞). We can relate matroid bundles to other bundle theories by
finding nice maps between MacP(k,∞) and other classifying spaces.

Topologically, the category of matroid bundles is awkward in that the fibers
are combinatorial objects — oriented matroids— which form no topological total
space. In Section 4 we will discuss how the Topological Representation Theo-
rem allows us to associate a spherical quasifibration (easily) and even a PL mi-
crobundle (gruelingly) to a matroid bundle, giving maps MacP(k,∞)→ BFibk
and MacP(k,∞)→ BPLk and hence giving functors of bundle theories. Another
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key result is the Combinatorialization Theorem described in Section 2C, which
implies a map BOk →MacP(k,∞) and another functor.

Much of the progress on matroid bundles has been in the area of characteristic
classes. A characteristic class for a bundle theory is a rule assigning to each
bundle ξ : E → B an element u(ξ) of H∗(B) such that if

E1
- E2

B1

ξ1
? f - B2

ξ2
?

is a bundle map, then u(ξ1) = f∗(u(ξ2)). (See [Milnor and Stasheff 1974] for
much more on characteristic classes.) From the definition of universal bundles,
it follows that if B∞ is the classifying space for a bundle theory, then the charac-
teristic classes are in bijection with the elements of H∗(B∞). (Note we have not
specified coefficients for cohomology: different coefficients give different interest-
ing characteristic classes.) Thus the maps BOk → MacP(k,∞), MacP(k,∞)→
BPLk, and MacP(k,∞) → BFibk give maps H∗(BFibk) → H∗(MacP(k,∞)),
H∗(BPLk)→ H∗(MacP(k,∞)), and H∗(MacP(k,∞))→ H∗(BOk) between the
characteristic classes of the respective bundle theories. In various cases (e.g.,
with Z2 coefficients) these maps can be shown to be surjective. This gives new
results on the topology of MacP(k,∞) and connects matroid bundles to the
many areas of topology that can be described in terms of characteristic classes.

2. Categories of Matroid Bundles and PL Vector Bundles

2A. The category of matroid bundles. Let B be the poset of cells in a PL
cell complex B. Any matroid bundle (B,M) on B induces a canonical matroid
bundle structure on the poset of cells of any PL subdivision of B, by associating
the oriented matroid M(σ) to each cell in the relative interior of a cell σ ∈ B.
Two matroid bundles on PL cell complexes are defined to be equivalent if there
exists a common PL subdivision of the cell complexes such that the resulting
matroid bundles on this subdivision are identical.

For B an arbitrary poset, a matroid bundle (B,M) induces a matroid bundle
structure (∆B,M′) on the cell complex ||∆B|| by defining

M′({b1 < b2 < · · · < bm}) = M(bm).

We extend the above notion of equivalence by defining (B,M) to be equivalent
to (∆B,M′).

Definition 2.1. If (B1,M1) and (B2,M2) are two matroid bundles, a morphism
from (B1,M1) to (B2,M2) is a pair (f, [Cf ,Mf ]), where f is a PL map from ∆B1

to ∆B2 and [Cf ,Mf ] is an equivalence class of matroid bundle structures on the
mapping cylinder of f that restrict to structures equivalent to (B1,M1) and
(B2,M2) at either end.
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The composition of a morphism (f, [Cf ,Mf ]) from (B1,M1) to (B2,M2) and a
morphism (g, [Cg,Mg]) from (B2,M2) to (B3,M3) is (g◦f, [Cg◦f ,Mg◦f ]), where
Mg◦f is determined by M3 on the simplices of B3 and by Mf on the rest of the
cells of Cg◦f .

The set of rank-k matroid bundles and their morphisms form a category.

Definition 2.2. A morphism from (B1,M1) to (B2,M2) is an isomorphism if
there exists a morphism from (B2,M2) to (B1,M1) such that the composition
of these maps is the identity morphism.

We get a better relation to the category of rank-k real vector bundles by consid-
ering only isomorphism classes of matroid bundles:

Definition 2.3. MBk will denote the category of isomorphism classes of rank-k
matroid bundles and their morphisms.

The classifying space for matroid bundles. MBk has a classifying space very
similar in spirit (and, as we shall later see, in topology) to the classifying space
G(k,R∞) for real rank-k vector bundles. Just as G(k,R∞) is the space of all
rank-k subspaces of any Rn, the classifying space for MBk will be the set of all
strong map images of any combinatorial model for any Rn.

Definition 2.4. If Mn is a rank-n oriented matroid then define the combina-
torial Grassmannian Γ(k,Mn) to be the poset of all rank-k strong map images
of Mn, with the partial order M1 ≥M2 if and only if M1 weak maps to M2.

In some papers the combinatorial Grassmannian is defined to be the order com-
plex ∆Γ(k,Mn) of Γ(k,Mn).

The combinatorial Grassmannian was first introduced in [MacPherson 1993]
and was the subject of a previous survey article [Mnëv and Ziegler 1993], to
which we refer the reader for further discussion.

A particularly useful case is when Mn is the coordinate oriented matroid:

Definition 2.5. Let Mn be the coordinate oriented matroid with elements
{1, 2, . . ., n}, i.e., the oriented matroid realized by the coordinate hyperplanes in
Rn. Then Γ(k,Mn) is a standard combinatorial Grassmannian, or MacPherso-
nian, denoted MacP(k, n).

This case is especially important because of a nice alternate description:

Proposition 2.6 [Mnëv and Ziegler 1993]. MacP(k, n) is the poset of all rank-k
oriented matroids with elements {1, 2, . . ., n}, ordered by weak maps.

Note that if M1 strong maps to M2 then Γ(k,M2) ⊆ Γ(k,M1) (and hence
∆Γ(k,M2) is a subcomplex of ∆Γ(k,M1)). In particular:

• If {1, . . . , n} is the set of elements of M , Γ(k,M) is a subposet of MacP(k, n).
• IfM2 is obtained fromM1 by deleting some elements, there is a natural embed-

ding of Γ(k,M2) into Γ(k,M1). In particular, MacP(k, n) ↪→MacP(k, n+ 1)
for any k and n.
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Thus the direct limit limn→∞ Γ(k,Mn) in the category of posets and inclusions
is
⋃
n MacP(k, n), denoted MacP(k,∞).

We can now rephrase the definition of matroid bundles:

Definition 2.7. A rank-k matroid bundle is a poset B and a poset map M :
B →MacP(k,∞).

Modifying definitions appropriately (to accomodate our combinatorial notion of
bundles and bundle morphisms), we see:

Proposition 2.8. The map id : MacP(k,∞) → MacP(k,∞) is the universal
bundle for MBk.

Proof. A matroid bundle M : B → MacP(k,∞) determines a simplicial map
from ∆B to ∆ MacP(k,∞), and M induces a matroid bundle structure on the
mapping cylinder, giving a classifying map. If (f, [Cf ,Mf ]) is a matroid bundle
morphism, then (Cf ,Mf) determines a homotopy between the respective classi-
fying maps. �

Thus MacP(k,∞) is the classifying space for rank-k matroid bundles.
The cohomology of a poset P is defined to be the cohomology of its order

complex ∆P . Thus we have:

Corollary 2.9. The characteristic classes for MBk with coefficients in R are
the elements of the cohomology ring H∗(∆ MacP(k,∞);R).

The finite combinatorial Grassmannians are of interest in their own right from
several perspectives. The spaces ∆Γ(k,Mn) arise as the fibers of a combinatorial
Grassmannian bundle in [MacPherson 1993], for instance, and ∆Γ(n−1, Mn) is
closely related to the extension space E(Mn) discussed in Section 3.

2B. Relations between the real and combinatorial Grassmannians. We
consider more closely the map

γR : G(k,Rn)→ Γ(k,Mn)

introduced in Section 1B. The set of preimages of this map give a stratification
of G(k,Rn) which is semialgebraic. This stratification has the property that if
the closure of γ−1

R (M1) intersects γ−1
R (M2) then M1 weak maps to M2.

By the semi-algebraic triangulation theorem [Hironaka 1975], there exists a
triangulation of G(k,Rn) refining this stratification, giving a simplicial map

γ̃R : G(k,Rn)→ ∆Γ(k,Mn).

(This is described further in [MacPherson 1993] for MacP(k, n) and in [Anderson
and Davis ≥ 1999] for more general Mn.) In the direct limit this gives a map
γ̃ : G(k,R∞)→ ∆ MacP(k,∞) of classifying spaces, and hence describes a map
from the theory of real vector bundles to the theory of matroid bundles.
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The hope is that the map γ̃R preserves a great deal of the topology ofG(k,Rn).
For instance, if the resulting map in cohomology were an isomorphism, then the
process of making matroid bundles out of real vector bundles would preserve
the theory of characteristic classes. There are numerous grounds for pessimism
on this hope. These grounds are detailed in [Björner et al. 1993, Section 2.4].
To give two of the most glaring obstacles, this map is not surjective — it misses
all the non-realizable oriented matroids— and the stratification of G(k,Rn) by
preimages of γR can have strata with arbitrarily ugly topology [Mnëv 1988]. As
an illustration of how bad the topology of combinatorial Grassmannians can be,
we note examples by Mnëv and Richter-Gebert [1993] of non-realizable oriented
matroids Mn with the property that ∆Γ(n−1, Mn) is disconnected.

This makes the array of positive results on γR rather surprising. For small val-
ues of k, for the first few homotopy groups, and for realizable oriented matroids
we have results relating the real and combinatorial Grassmannians.

Theorem 2.10 [Folkman and Lawrence 1978]. ∆Γ(1,Mn) is homeomorphic to
G(1,Rn). If Mn is realizable, γR : G(1,Rn)→ ∆Γ(1,Mn) is a homeomorphism.

Theorem 2.11 [Babson 1993]. ∆Γ(2,Mn) is homotopy equivalent to G(2,Rn).

We will discuss the proof of Theorem 2.11 in Section 4B.

Theorem 2.12 (compare [Mnëv and Ziegler 1993]). Duality holds for the stan-
dard combinatorial Grassmannians: if |E| = n, then ∆Γ(k, E) ∼= ∆Γ(n−k, E).

Theorem 2.13 (compare [Mnëv and Ziegler 1993; Anderson 1998]).

1. If i = 0 or i = 1 then (γ̃R)∗ : πi(G(k,Rn))→ πi(∆ MacP(k, n)) is an isomor-
phism. Further ,

(γ̃R)∗ : π2(G(k,Rn))→ π2(∆ MacP(k, n))

is a surjection.
2. η∗ : πi(∆ MacP(k, n)) → πi(∆ MacP(k, n+1)) is an isomorphism if n >

k(i+ 2) and a surjection for n > k(i+ 1).

Theorem 2.14 [Anderson and Davis ≥ 1999; Anderson et al. ≥ 1999].

1. The maps γ∗R : H∗(∆Γ(k,Mn); Z2) → H∗(G(k,Rn); Z2) for realizable Mn

and γ̃∗ : H∗(∆ MacP(k,∞); Z2)→ H∗(G(k,R∞); Z2) are split surjections.
2. The maps γ∗R : H∗(∆Γ(k,Mn); Q)→ H∗(G(k,Rn); Q) for realizable Mn and
γ̃∗ : H∗(∆ MacP(k,∞); Q)→ H∗(G(k,R∞); Q) are split surjections.

Theorem 2.14 follows from the constructions of combinatorial sphere bundles
associated to matroid bundles described in Section 4A. In terms of characteristic
classes, this theorem implies that matroid bundles have well-defined Stiefel–
Whitney and Pontrjagin classes.

Associated to a rank-k oriented real vector bundle ξ : E → B and its asso-
ciated sphere bundle E0 → B is a cohomology class u ∈ Hk(E,E0,Z) whose
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restriction to each fiber is the orientation class of that fiber. The Thom isomor-
phism of the vector bundle is the isomorphism

φ : Hi(B; Z) −→ Hi+k(E,E0; Z)

x −→ ξ∗(x) ∪ u

[Milnor and Stasheff 1974, Chapter 9]. There is a unique class e(ξ) in Hk(B; Z)
which is mapped to u|E under ξ∗. This is a characteristic class of ξ, called the
Euler class.

The combinatorial sphere bundles associated to matroid bundles admit anal-
ogous constructions, giving a further result on characteristic classes.

Theorem 2.15 [Anderson and Davis ≥ 1999]. There is a well-defined Thom
isomorphism and Euler class for matroid bundles.

2C. The category of PL vector bundles. To compare real vector bundles
and matroid bundles, we need to restrict to real vector bundles with triangulable
base spaces. Specifically:

Definition 2.16. Define V Bk to be the category whose objects are all rank-k
real vector bundles over PL spaces and whose morphisms are the vector bundle
maps preserving this PL structure.

This section will give a functor from V Bk to MBk. Section 1C gave one way
to associate a matroid bundle to a real vector bundle with a triangulated base
space. Here we will use a related method that is less intuitive but more useful.
Consider the map γR : G(k,Rn) → Γ(k,Mn) for a realizable M and the direct
limit map γ : G(k,R∞)→MacP(k,∞). For any V ∈ G(k,R∞) there is a small
neighborhood of V which is mapped by γ to MacP(k,∞)≥γ(V ).

If a real vector bundle ξ : E → B over a PL cell complex B has classifying
map c : B → G(k,R∞), the composition γ ◦ c associates an oriented matroid to
each point in B. We call c tame if γ ◦ c is constant on the interior of each cell.
Thus a tame classifying map defines a matroid bundle structure on the poset of
cells of B.

Combinatorialization Theorem [Anderson and Davis ≥ 1999]. Let ξ =
(π : E → ‖B‖) be a rank-k real vector bundle, where B is a finite-dimensional
simplicial complex .

1. ξ has a classifying map which is tame with respect to some simplicial subdi-
vision of B.

2. For i = 0, 1, let ci : B → G(k, Vi) be a tame classifying maps for ξ. Then
there is a tame classifying map h : B × I → G(k, V0 ⊕ V1), restricting to ci
on B × {i}.

A slightly more complicated form of this theorem holds for bundles over infinite-
dimensional spaces: see [Anderson and Davis ≥ 1999] for details.
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A classifying map to G(k,Rn) determines a spanning collection of n sections
of the bundle, by projecting the unit coordinate vectors in Rn onto the images
of the fibers. Thus Proposition 1.1 is a corollary to the above theorem.

Theorem 2.17. 1. Let ξ : E → B be an element of V Bk and let µ0 : |T0| → B

and µ1 : |T1| → B be two triangulations of B. Let c0, c1 be two classifying
maps for ξ such that γ ◦ ci ◦ µ−1

i is constant on the interior of each simplex .
Then the matroid bundles arising from c0 and c1 are isomorphic.

Thus every element ξ of V Bk gives rise to a unique element F (ξ) of MBk.
2. If Ξ : ξ1 → ξ2 is a morphism in V Bk, then there exists a simplicial decompo-

sition CΞ on the mapping cylinder of the base spaces giving a morphism from
F (ξ1) to F (ξ2) in MBk (unique up to equivalence), denoted F (Ξ).

Proof. 1. Since c0 and c1 are both classifying maps for ordinary vector bundles,
we know there exists a homotopy H : B × I → G(k,R∞) from c0 to c1 in the
category of ordinary vector bundles. B × I has a PL structure induced by B,
and µ0 and µ1 give PL triangulations of B × {0} and B × {1}, respectively. By
[Hudson 1969, Corollary 1.6], there exists a triangulation µ : |T | → B × I which
restricts to a subdivision of the given triangulations at either end. Note that the
composition of H|B×{0,1} with γ̃ : G(k,R∞)→ ∆ MacP(k,∞) is simplicial with
respect to T . By the Simplicial Approximation Theorem, there is a simplicial
map homotopic to γ̃ ◦H. Since the only simplicial approximation to a simplicial
map is itself, this simplicial map must restrict to ci on B × {i}.
2. Because the map of base spaces is PL, as above we get a triangulation CΞ

of the mapping cylinder which restricts to PL triangulations of the base spaces
at either end. Any two such triangulations have a common simplicial subdivi-
sion. Again applying the simplicial approximation theorem, we get a matroid
bundle structure MΞ on CΞ which restricts to the appropriate matroid bundle
isomorphism classes at either end. Thus CΞ and MΞ define a matroid bundle
morphism. �

The map F defined in the previous theorem is easily seen to be a covariant
functor from V Bk to MBk.

3. Examples of Matroid Bundles

Matroid bundles arise in various contexts besides that of real vector bundles.
We give some examples here.

Combinatorial Grassmannians. For any oriented matroid Mn, the identity
map on Γ(k,Mn) defines a matroid bundle. As mentioned before, this bundle
is of independent combinatorial interest, for instance in relation to the next
example.
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Extension spaces. Let M be an oriented matroid with elements E. A nonzero
extension of M by x is an oriented matroid M ′ with elements E∪{x} such that
M ′\x = M and M is not a loop in M ′. The nonzero extensions of M form a
poset E(M), ordered by weak maps. Since nonzero extensions M ∪x correspond
exactly to orientations on corank-1 strong map images M/x of M , there is a
canonical double cover E(M) → Γ(rankM−1, M). Thus E(M) has a natural
matroid bundle structure.

If M and all extensions of M are realizable, then the order complex ∆E(M) is
a (rankM−1)-sphere, and its matroid bundle structure arises from the standard
tangent bundle structure on the sphere. For more general M , life is not nearly
so simple. As mentioned before, Mnëv and Richter-Gebert [1993] have found
examples for which ∆E(M) is not even connected. The topology of general
∆E(M) is a mystery of some importance — for instance, due to its connection to
the Generalized Baues Conjecture [Mnëv and Ziegler 1993; Reiner 1999].

Combinatorial differential manifolds. The theory of matroid bundles arose
out of the theory of combinatorial differential manifolds, or CD manifolds, the
main subject of [MacPherson 1993]. A CD manifold consists of a simplicial
complex equipped with an atlas of oriented matroid coordinate charts. Such an
atlas yields a matroid bundle structure in a canonical way. All of this is described
in detail in [MacPherson 1993]. We review the idea briefly here.

Let N be a differential manifold and η : |T | → N be a piecewise smooth
triangulation of N (i.e., smooth on every closed simplex). Consider a point t
in the interior of some simplex |σ| of |T |. For each vertex s of starσ, the line
segment from t to s in |σ ∪ {s}| gives a smooth path ps : [0, 1] → N from η(t)
to η(s) in N . The tangent vectors {p′s(0) : s ∈ star σ0} ⊂ Tη(t)(N), each defined
up to a positive scalar, give an oriented matroid M(t). This oriented matroid
can be viewed as the combinatorial remnant of an embedding of | starσ| into
Tη(t)(N), and hence as a combinatorial coordinate chart.

A triangulation is tame if there exists a subdivision of T into regular cells so
that M ◦η is constant on each open cell. Thus associated to a tame triangulation
there is a triple (T, T̂ ,M), with

• T a simplicial complex,
• T̂ a regular subdivision of T ,
• M : T̂ → MacP(n, |T 0|) a map associating to each cell of T̂ an oriented

matroid.

This triple constitutes a CD manifold.
More generally, a CD manifold is defined to be any triple (T, T̂ ,M) satisfying

certain combinatorial axioms intended to makeM look like an atlas of coordinate
charts on T (see the complete definition in [MacPherson 1993]). A canonical
construction of a matroid tangent bundle associated to any such atlas is given
in [MacPherson 1993, Section 3.2].
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CD manifolds are the basis for the combinatorial formula for Pontrjagin classes
found in [Gelfand and MacPherson 1992]. This formula is discussed in more
detail in Section 4C.

Not all CD manifolds arise from differential manifolds (for instance, there
exist CD manifolds involving non-realizable oriented matroids). Indeed, nothing
in the definition of CD manifolds promises immediately that the base space of a
CD manifold is a topological manifold.

Conjecture 3.1. If (X, X̂,M) is a CD manifold , then X is a PL manifold .

In [Anderson 1999a] this conjecture was proved under the restriction that all
oriented matroids involved are Euclidean. Euclidean oriented matroids [Björner
et al. 1993, Section 10.5] are essentially oriented matroids with the intersection
properties of a real vector arrangement. The class of Euclidean oriented matroids
includes all realizable oriented matroids and all oriented matroids of rank less
than 4.

4. Methods

We outline here some of the most important methods that have developed for
studying matroid bundles.

4A. Sphere bundles. One disturbing aspect of the definition of matroid bun-
dles is the absence of a topological total space. Our understanding of real vector
bundles ξ : E → B follows largely from various constructions involving the total
space E, or the sphere bundle {(b, v) : b ∈ B, v ∈ ξ−1(b), v 6= 0} → B. The
Topological Representation Theorem leads to combinatorial analogs to these for
matroid bundles. As mentioned in Section 1B, the intuition that makes an ori-
ented matroid M a combinatorial model for a vector space also makes V ∗(M)\0
a combinatorial model for the unit sphere in that vector space. We will discuss
two ways to use these spheres to construct combinatorial sphere bundles over
matroid bundles.

A spherical quasifibration associated to a matroid bundle.

Definition 4.1. If M : B →MacP(k,∞) is a matroid bundle, define

E(M) = {(b, X) : b ∈ B,X ∈ V ∗(M(b))},
E0(M) = {(b, X) : b ∈ B,X ∈ V ∗(M(b))\0}.

Each of these sets is partially ordered by (b1, X1) ≥ (b2, X2) if and only if b1 ≥ b2
and X1 ≥ X2.

Note the following properties of E(M) and E0(M):

• The projections π′ : E(M) → B and π : E0(M) → B onto the first compo-
nent are poset maps. Thus they give simplicial maps ∆E(M) → ∆B and
∆E0(M)→ ∆B.
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c c
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b

M(1) = M(0) =

0

Figure 5. Fibers over elements of a poset 1 > 0.

• For any element b of B, the fiber ∆π−1(b) is the barycentric subdivision of
the pseudosphere complex V ∗(M)\0, hence is a sphere. The fiber ∆(π′)−1(b)
is the cone on this sphere.

• If ξ : E→ B is a vector bundle with a triangulation η : ||B|| → B and a tame
classifying map giving a matroid bundle M : B → MacP(k,∞), then for any
vertex b of ∆B, the unit sphere in ξ−1(η(b)) is canonically isomorphic to the
fiber over b in ∆E0(M).

• The simplicial map ∆E0(M) → ∆B is not necessarily a topological sphere
bundle. For example, let B be the poset 1 > 0 and M : B → MacP(2, 3) be
as shown in Figure 5.

The fiber over each vertex of ∆B is an S1, but the fiber over the 1-
simplex {1, 0} is not an S1 × I, since it contains a 3-dimensional simplex
{{1, 0}, a−b+c+} > {{1, 0}, a−b0c+} > {{0}, a−b0c+} > {{0}, a0b0c+}}.

Theorem 4.2 [Anderson and Davis ≥ 1999].

1. ∆E0→ ∆B is a spherical quasifibration.
2. A morphism of matroid bundles induces a morphism of the corresponding

spherical quasifibrations.
3. Let EG → G(k,Rn) be the unit sphere bundle over G(k,Rn), and let M

be a realizable rank-n oriented matroid . Then there is a map of spherical
quasifibrations

EG - ∆E0

G(k,Rn)
? c- ∆Γ(k,M)

?

The Z2 cohomology of G(k,Rn) is generated by the Stiefel–Whitney classes
[Milnor and Stasheff 1974]. The classifying space BFib for spherical quasifibra-
tions also has well-defined Stiefel–Whitney classes [Stasheff 1963]. Given a map
of spherical quasifibrations, the induced map on the cohomology rings of the
base spaces preserves Stiefel–Whitney classes. Thus as a corollary to Theorem
4.2 we have Theorem 2.14.1. See [Anderson and Davis ≥ 1999] for constructions
of explicit combinatorial Stiefel–Whitney classes in H∗(∆Γ(k,M); Z2).
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In addition, a spherical quasifibration gives a Serre spectral sequence, whose
collapsing gives the Thom isomorphism and Theorem 2.15.

A PL microbundle associated to a matroid bundle. A much more complicated
construction associates to any matroid bundle a PL microbundle. For the full
construction see [Anderson et al. ≥ 1999]. Here we will outline some key points
of the construction.

Theorem 4.3 [Anderson 1999b]. Let M1  M2 be a weak map of oriented
matroids.

1. If X ∈ V ∗(M1) then there is a unique maximal g(X) ∈ V ∗(M2) such that
X ≥ g(X).

2. The map g : V ∗(M1)→ V ∗(M2) thus defined is a poset map.
3. If Y ∈ V ∗(M2) then g−1(Y ) is contractible.
4. If rank(M1) = rank(M2) and X ∈ V ∗(M1)\0 then g(X) 6= 0.

Thus a weak map M1  M2 gives a simplicial map g : V ∗(M1) → V ∗(M2)
of balls, and, if the oriented matroids have the same rank, a simplicial map
g : V ∗(M1)\0→ V ∗(M2)\0 of spheres.

Theorem 4.4 [Anderson et al. ≥ 1999]. If M1  M2  M3 are oriented
matroids and gij denotes the poset map V ∗(Mj)\0 → V ∗(Mi)\0 as above, then
g32 ◦ g21(X) ≤ g31(X) for every X ∈ V ∗(M1)\0.

If this last inequality were an equality, then g would give a functor from the
category Γk of rank-k oriented matroids and weak maps to the category of PL
spheres and PL maps, and the homotopy colimit of the image of this functor
would give a PL sphere bundle over any matroid bundle. With the inequality we
have, a much more delicate construction (detailed in [Anderson et al. ≥ 1999])
uses g to construct a PL sphere bundle over the second barycentric subdivision of
the base space of any matroid bundle. Since PL microbundles have well-defined
rational Pontrjagin classes and these classes generate H∗(G(k,R∞); Q), we have
Theorem 2.14.2.

4B. Hairs. Babson [1993] generalized combinatorial Grassmannians to combi-
natorial flag spaces, and developed a new tool, hairs, to study rank-2 strong map
images.

Let G(v1, . . . , vm,Rn) denote the topological space of all flags V1 ⊂ V2 ⊂ · · · ⊂
Vm ⊆ Rn of subspaces in Rn with dimVi = vi for every i. As a combinatorial
analog to these flag spaces, we define:

Definition 4.5. If Mn is an oriented matroid and {v1 < · · · < vm ≤ n} is a
chain in N, let

Γ(v1, . . . , vm,M
n)

= {(N1, . . . , Nm) : Ni ∈ Γ(vi, Ni+1) if i < m and Nm ∈ Γ(vm,M)}.
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This is a poset, ordered by componentwise weak maps.

Theorem 4.6 [Babson 1993]. Let Mn be any oriented matroid of rank greater
than 1.

1. ∆Γ(1, 2,Mn) is homotopy equivalent to G(1, 2,Rn).
2. ∆Γ(2,Mn) is homotopy equivalent to G(2,Rn).

Let p1 denote the projection ∆Γ(1, 2,Mn) → ∆Γ(1,Mn) and p2 the projec-
tion ∆Γ(1, 2,Mn) → ∆Γ(2,Mn). The latter projection is easily seen to be a
quasifibration. The crucial result in the proof of Theorem 4.6 is the following:

Lemma 4.7. p1 is a quasifibration with fiber a homotopy RPn−2.

The concept of hairs arises in the proof of this lemma. Note that an ele-
ment of Γ(1,Mn) is just a pair {X,−X} of antipodal covectors, and an ele-
ment of Γ(1, 2,Mn) is such a pair together with an embedded circle in ∆V ∗(M)
containing X and −X. It is convenient to consider the space Γ̃(1, 2,Mn) of
such pairs together with an orientation on the circle. Then the projection
p : Γ̃(1, 2,Mn) → Γ(1, 2,Mn) is a double cover, and one shows that p̃1 = p1 ◦ p
is a quasifibration with fiber a homotopy sphere.

Since each such circle has antipodal symmetry, an element of Γ̃(1, 2,Mn) can
be represented by an oriented path of covectors from X to −X. Babson’s proof
factors p̃1 through a series of intermediate spaces which, instead of recording
a path from X to −X, record only a shorter path which starts at X and is
contained in a rank-2 strong image of Mn. These paths are called hairs. At each
stage of the factorization the ends of the hairs are cut off, until at the last stage
they are simply a single covector (an element of Γ(1,Mn)). All the intermediate
projections except the last are homotopy equivalences, while the last is easily
seen to be a quasifibration.

To prove Theorem 4.6, fix a basis B for Mn, and let M0 be the oriented
matroid obtained from Mn by deleting all elements not in B. Then ∆Γ(1,M0),
∆Γ(2,M0), and ∆Γ(1, 2,M0) are easily seen to be homotopic to the analogous
real flag spaces. The first part of Theorem 4.6 is proved by considering the
diagram

∆Γ(1, 2,Mn) - ∆Γ(1,Mn)

∆Γ(1, 2,M0)

d12
?

- ∆Γ(1,M0)

d1
?

where the vertical maps are obtained by deleting elements not in B from each
oriented matroid. The map d1 is easily seen to be a homotopy equivalence: both
spaces are homeomorphic to RPn−1. Lemma 4.7 showed that the horizontal maps
are quasifibrations with fiber RPn−2. One can also check that the induced maps
on fibers are weak homotopy equivalences. A quasifibration has an associated
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long exact sequence of homotopy groups [Dold and Thom 1958], so we have a
diagram with exact rows:

· · ·πi(p−1
1 (x), y) - πi(∆Γ(1, 2,Mn), y) - πi(∆Γ(1,Mn), x) - πi−1(p−1

1 (x), y) · · ·

· · ·πi(p−1
1 (x′), y′)
?

- πi(∆Γ(1, 2,M0), y′)
?

- πi(∆Γ(1,M0), x′)
?

- πi−1(p−1
1 (x′), y′) · · ·
?

where x and x′ are base points in ∆Γ(1,Mn) and ∆Γ(1,M0), respectively, and
y and y′ are base points in the fibers of p1 over x and x′, respectively. It follows
that d12∗ : πi(∆Γ(1, 2,Mn), y)→ πi(∆Γ(1, 2,M0), y′) is an isomorphism.

Knowing this, one proves the second statement of Theorem 4.6 by considering
the diagram

∆Γ(2,Mn) � ∆Γ(1, 2,Mn)

∆Γ(2,M0)

d2
?

� ∆Γ(1, 2,M0).

d12
?

The horizontal maps are quasifibrations, and a diagram as before proves d2 is
a homotopy equivalence.

4C. Pontrjagin classes. The theorem of the previous section is the first step in
an approach of Gelfand and MacPherson to finding a combinatorial formula for
the rational Pontrjagin classes of a differential manifold ([Gelfand and MacPher-
son 1992]). As described in Section 3, a triangulation of a differential manifold
yields a CD manifold, which in turn yields a matroid bundle. Associated to any
matroid bundle (B,M) there is a quasifibration Y → B, where the fiber over a
vertex b is ∆Γ(2,M(b)). In turn, there is a quasifibration Z → Y in which the
fiber over a vertex (b, N) is ∆Γ(1, N). This is analogous to the association to a
tangent bundle TM →M the Grassmannian 2-plane bundle G2(TM)→M and
the circle bundle G1(G2(TM)) → G2(TM). If the matroid bundle arose from a
differential manifold, we also get a fixing cycle, analogous to the orientation class
of G2(TM). These analogies allow one to reproduce in a combinatorial context
a formula for Pontrjagin classes arising in Chern–Weil theory.

5. Areas for Further Research

1. We do not know the kernel of the map

γ̃∗ : H∗(∆Γ(k,Mn), R)→ H∗(G(k,Rn), R)

for any coefficients R. Any nontrivial elements would give exotic characteristic
classes for matroid bundles which may have interesting combinatorial interpre-
tations.

2. Is γ̃∗ surjective in integer coefficients? One motivation for this question is that
integer characteristic classes are used to distinguish exotic differential structures
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on spheres. Thus a positive answer to this question would suggest that CD
manifolds can distinguish exotic differential structures.

3. Any smooth manifold has a tame triangulation, giving a CD manifold. Thus if
Conjecture 3.1 is true in general, then CD manifolds lie somewhere between the
differential and PL categories. The question is where. Does every PL manifold
have a CD structure? Is every CD manifold smoothable?

4. The computational question of calculating the homotopy groups of some of
the finite MacPhersonians becomes more enticing in light of the stability result,
Theorem 2.2. Theorem 1.1 gives π0 and π1, but beyond this the question is open.

5. Under the right notion of “complex oriented matroid”, one should get a useful
theory of complex matroid bundles. There are two likely candidates for the fibers.
Ziegler’s notion of complex matroids [Ziegler 1993] has already proved to encode
nontrivial aspects of complex structure, and gives a “combinatorial complex
Grassmannian” by exactly the same construction as Γ(k,Mn). Alternatively,
one could define a complex oriented matroid to be a direct sum of two real
oriented matroids. Neither avenue to complex matroid bundles has yet been
explored.

6. To reiterate a question from [MacPherson 1993], what are the combinatorial
analogs to such topological theories as transversality, cobordism, surgery, and
so on?
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