
Games of No Chance
MSRI Publications
Volume 29, 1996

The Gamesman’s Toolkit

DAVID WOLFE

Abstract. Tired of all those hand calculations? Of converting to canonical
forms? Of calculating means and temperatures? Of wondering if you’ve
goofed? Wanted to play with the overheating operator, but don’t have any
patience?

The Gamesman’s Toolkit, written in C under UNIX, implements virtu-
ally all of the material in finite combinatorial game theory. It is invaluable
in analyzing games, and in generating and testing hypotheses. Several of
the results presented at the 1994 Combinatorial Games Workshop were
discovered using this program.

The Gamesman’s Toolkit is useful and fun. This paper is an overview
of its features.

1. Overview

The Gamesman’s Toolkit, written in C and running under UNIX, implements
virtually all of the material in finite combinatorial game theory. The toolkit can
be used in one of two ways: as a “games calculator”, by the gamesman who wishes
to do standard algebraic manipulations on games; and as a programming toolkit,
to analyze a particular game, for instance. A broad base of game-theoretic
functions is provided, along with a parser and output routines. Either way, the
program has proved to be a versatile and powerful tool for the student and the
researcher.

2. Use As a Games Calculator

Table 1 shows a sample run of the Toolkit, and gives an idea of its functionality
as a games calculator. Here is the input notation, in a nutshell:

• The caret, ^, represents ↑; the letter v is reserved for ↓. Triple-up can be
typed as either ^^^ or ^3.

• You can assign variables to games and later reuse them. For example, you
can set g = 2|1 and later reuse g in another expression.

93

94 DAVID WOLFE

unix% games The program is executed from the UNIX prompt.
Type ’help’ and... You are told how to get help; the prompt > appears.

> * ? ^ How does ∗ compare with ↑ ?
<> Answer: they are incomparable

> * ? ^^ How does ∗ compare with ↑↑ ?
< Answer: ∗ is less than ↑↑
> -2 + 3/8 + vvv + *6 Compute −2+3

8
+↓↓↓+∗6

-13/8v3*6 Answer: − 13
8

+↓↓↓+∗6 (v3 is short for vvv)

> +[2],*|-2 Find the canonical form of {�2, ∗|−2};
0,*|-2 brackets indicate subscripts, so +[2] is tiny-two

> $[1/2] Cool the last result ($) by 1
2

-1/2|-3/2 {0, ∗|−2} cooled by 1
2 is {−1

2 |− 3
2}

> g = $ Assign a variable g to the last result
g = -1/2|-3/2

> mean g Calculate g’s mean and temperature
-1

> temp g

1/2

> (1|||0||-1|-3)[1/2] Cool 1 |||0 ||−1|−3 by 1
2

1/2||0|g The program uses the value of g to shorten the answer

> no ups Please do not print out ↑ in canonical forms
> ^* What’s the canonical form of ↑∗ ?
0,*|0 It’s {0, ∗|0}
> domino Enter a domineering position
Enter domin...

xxxx

xx

xxxx

The input is ended with an extra carriage return
-3/2|-4 The ten-box position has value {− 3

2 |−4}

Table 1. Sample run of the Gamesman’s Toolkit. The first column is the com-

puter dialogue, and the second contains comments. What the computer prints

is in typewriter font, and what the user types is underlined. Most commonly,

the user enters a game expression, and the computer converts the expression to

canonical form.

THE GAMESMAN’S TOOLKIT 95

• Subscripts in games notation are typically enclosed by brackets for the toolkit.
Thus, the input format for �2 (tiny-2) is +[2], and that for g3 (i.e., g cooled
by 3) is g[3].

• Similarly, superscripts are enclosed by angle brackets < and >.
• The symbol % represents the heating (integral) symbol. Thus, %[1*]<1>g

denotes
∫ 1

1∗ g, that is, g overheated from 1∗ to 1 [Berlekamp 1988; Berlekamp
and Wolfe 1994, p. 214].

3. Use As a Programmer’s Toolkit

The Gamesman’s Toolkit can be extended to analyze a particular game: the
user implements the rules to that game, the program can then evaluate positions
of that game. If you are an experienced (or patient) programmer you should find
the Toolkit quite versatile. (Unfortunately, the extensibility mechanism was not
designed for users without programming experience.)

Several people have written such extensions. Konane (programmed by Michael
Ernst), Toads and Frogs (Jeff Erickson) and Domineering (David Wolfe) come
with the Toolkit. Dan Garcia has written a wonderful interface using Tcl for
playing domineering on an X-window system [Garcia 1996].

To get you started, Table 2 summarizes the most useful files and functions
you’ll need. The listing on page 97 contains a program for evaluating positions
in Wyt Queens. (Wyt Queens, or Wythoff’s game [Berlekamp et al. 1982, p. 61],
is played on a quarter-infinite chess board. One or more queens occupy a square
each, and move independently. A move consists of moving a queen north, west,
or northwest any number of squares. The last player to move wins.)

4. Availability

The Gamesman’s toolkit is free, and is available by request: send e-mail to
me at wolfe@cs.berkeley.edu. I’ve chosen to distribute it in this way, rather than
by posting it publicly, so that I can maintain a mailing list for notifying you of
significant improvements in the program. You can also download it from http://
http.cs.berkeley.edu/̃ wolfe/games.tar.gz. Enjoy!

Acknowledgement

Elwyn Berlekamp first encouraged me to write the toolkit in a course at UC
Berkeley in Spring of 1989. Many people have since contributed ideas and code
to the program, including Dan Calistrate, Raymond Chen, Jeff Erickson, Michael
Ernst, Dan Garcia, Yonghoan Kim, David Moews, and Martin Mueller.

96 DAVID WOLFE

gameops.h: Performs operations on games (game type)

init() must be called once to initialize the game
routines

make(list type, list type) constructs a game from two lists of op-
tions and converts it to canonical form;
destroys its arguments

zero the zero game

num(Q type), up(int), star(int) construct games consisting numbers, ups
and star

plus(game type, game type) add two games

minus(game type, game type) subtract two games

negative(game type) negate a game

eq(game type, game type), ge(. . .),
etc.

compare games (equal, ≥, etc.)

is int(game type), is num(game type) true if game is an integer, number

list type left options(game type) game’s list of left options

list type right options(game type) game’s right options

output.h: Output routines for games and lists

game printf(game type) output a game plus a newline

game print(game type) output a game without the newline

game sprintn(game type) print a game to a string without newline,
maximum of n characters

list.h: Manipulates lists of integers or games (list type)

list make() returns an empty list

list insert(list type, int or game type) insert an element into a sorted list

list prepend(list type, int or game type) prepend to an unsorted list

int or game type list nth(list type) find the nth element of a list

list copy(list type) return a copy of a list

list free(list type) destroy a list and free its space

rational.h: Manipulates low precision rational numbers (Q type)

Q(int, int) construct a rational p/q

int Q p(Q type), Q q(Q type) numerator or denominator of a rational

hash.h: Maintains a hash table keyed by an (int, list type) pair

boolean hash test(int, list type) true if the hash table contains entry

game type hash get last() get the last entry tested positive

hash put(int, list type, game type) put a value into the hash table; destroys
its list argument

Table 2. Most common functions used by a programmer of the toolkit.

THE GAMESMAN’S TOOLKIT 97

/* A programming example: The game of Wyt Queens */

#include "games.c" /* Includes all the needed .h files */

#define QUEENS_KEY 1001 /* Hash table keys below 1000 are reserved. */

game_type queens (int x, int y) {

list_type posn_as_list, left, right;

game_type g;

int n, min;

/* Encode the position as a list of integers, in order to use the hash

table to store computed positions and avoid recomputing positions */

posn_as_list = list_make();

list_prepend (posn_as_list, x);

list_prepend (posn_as_list, y);

if (hash_test (QUEENS_KEY, posn_as_list)) { /* If pos’n previously computed */

list_free (posn_as_list); /* Free space used by the list */

return hash_get_last(); /* Return computed value */

}

/* Position wasn’t already computed, so evaluate the position recursively. */

left = list_make();

for (n=0; n<x; n++) list_insert (left, queens (n, y)); /* Horizontal moves */

for (n=0; n<y; n++) list_insert (left, queens (x, n)); /* Vertical */

min = (x<y ? x : y);

for (n=1; n<=min; n++) list_insert (left, queens (x-n,y-n)); /* Diagonal */

right = list_copy (left); /* Right’s options are the same as Left’s. */

g = make (left, right); /* Construct the game’s canonical form.

Lists left and right are destroyed. */

/* Store the value of the position in hash table. The posn_as_list is

destroyed and freed by hash_put() by, so no need to list_free() it. */

hash_put (QUEENS_KEY, posn_as_list, g);

return g;

}

#define MAXBUFF 10

void main() {

char s[MAX_BUFF];

init(); /* initialize the toolkit! */

game_sprintn (s, queens(2,6), MAXBUFF-1); /* Store position in string s */

printf ("A queen at location (2,6) has value %s\n", s);

}

Listing 1. Sample extension program for the Toolkit. Lines marked with a
vertical bar on the margin relate to the hash table, and may be ignored on a first
reading, or omitted if efficiency is not an issue. The hash table is used to avoid
the exponential cost of reevaluating the same positions over and over during
recursion.

98 DAVID WOLFE

References

[Berlekamp 1988] E. R. Berlekamp, “Blockbusting and Domineering”, J. Combin.
Theory (Ser. A) 49 (1988), 67–116.

[Berlekamp and Wolfe 1994] E. Berlekamp and D. Wolfe, Mathematical Go: Chilling
Gets the Last Point, A. K. Peters, Wellesley, MA, 1994.

[Berlekamp et al. 1982] E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways
for Your Mathematical Plays, Academic Press, London, 1982.

[Garcia 1996] D. Garcia, “Xdom: A graphical, X-based front-end for Domineering”,
pp. 311–313 in this volume.

David Wolfe
Computer Science Division
UC Berkeley, CA 94720

wolfe@cs.berkeley.edu

