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Unsolved Problems in Combinatorial Games
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Abstract. This periodically updated reference resource is intended to put
eager researchers on the path to fame and (perhaps) fortune.

As in our earlier articles, WW stands for Winning Ways [Berlekamp et al. 1982].
We say that the nim-value of a position is n when its value is the nimber ∗n.

1. Subtraction games are known to be periodic. Investigate the relationship
between the subtraction set and the length and structure of the period.

(For subtraction games, see WW, pp. 83–86, 487–498, and Section 4 of [Guy
1996] in this volume, especially the table on page 67. A move in the subtraction
game S(s1 , s2, s3, . . . ) is to take a number of beans from a heap, provided that
number is a member of the subtraction set {s1, s2, s3, . . .}. Analysis of such a
game and of many other heap games is conveniently recorded by a nim-sequence,
n0n1n2n3 . . . , meaning that the nim-value of a heap of h beans in this particular
game is nh: in symbols, G(h) = nh. Arbitrarily difficult subtraction games can
be devised by using infinite subtraction sets: the primes, for example.)

The same question can be asked about partizan subtraction games, in which
each player is assigned an individual subtraction set [Fraenkel and Kotzig 1987].

2. Are all finite octal games ultimately periodic? (See WW, pp. 81–115, [Guy
1996, Section 4], p. 67 in this volume. Such games are defined by a code
d0·d1d2d3 . . . . If the binary expansion of dk is dk = 2ak + 2bk + 2ck + · · · ,
where 0 ≤ ak < bk < ck < · · · , then it is legal to remove k beans from a heap,
provided that the rest of the heap is left in exactly ak or bk or ck or . . . nonempty
heaps. Some specimen games are exhibited on page 69.)

Resolve any number of outstanding particular cases, e.g., ·6 (Officers), ·06,
·14, ·36, ·64, ·74, ·76, ·004, ·005, ·006, ·007 (One-dimensional tic-tac-toe,

An earlier version of this collection of problems appeared in Combinatorial Games, Pro-
ceedings of Symposia in Applied Mathematics, Vol. 43, 1991. Permission for use courtesy of
the American Mathematical Society. We have retained the numbering of problems present in
that list.
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Treblecross), ·016, ·104, ·106, ·114, ·135, ·136, ·142, ·143, ·146, ·162, ·163,
·172, ·324, ·336, ·342, ·362, ·371, ·374, ·404, ·414, ·416, ·444, ·454, ·564,
·604, ·606, ·644, ·744, ·764, ·774, ·776 and Grundy’s Game (split a heap into
two unequal heaps). Find a game with a period longer than 149459. Explain
the structure of the periods of games known to be periodic.

Gangolli and Plambeck [1989] established the ultimate periodicity of four
octal games that were previously unknown: ·16 has period 149459 (a prime!),
the last exceptional value being G(105350) = 16. The game ·56 has period 144
and last exceptional value G(326639) = 26. The games ·127 and ·376 each have
period 4 (with cycles of values 4, 7, 2, 1 and 17, 33, 16, 32 respectively) and last
exceptional values G(46577) = 11 and G(2268247) = 42.

In Problem 38 in Discrete Math. 44 (1983), 331–334, Fraenkel raises questions
concerning the computational complexity of octal games. In Problem 39, he and
Kotzig define partizan octal games in which distinct octals are assigned to the two
players. In Problem 40, Fraenkel introduces poset games, played on a partially
ordered set of heaps, each player in turn selecting a heap and removing a positive
number of beans from all heaps that are greater or equal to the selected heap in
the poset ordering.

3. Examine some hexadecimal games (games with code digits dk in the in-
terval from 0 to 15 = F: see WW, pp. 115–116, and the last three examples in
the table on page 67 of this book). Obtain conditions for arithmetic periodicity.

Most of the known arithmetically periodic hex games are fairly trivial: ·8 is
a first cousin of Triplicate Nim, ·A, ·B, ·D and ·F are essentially She-Loves-
Me-She-Loves-Me-Not, while ·1A and ·1B, after a couple of exceptional values,
display period 2 and saltus 1. Kenyon’s Game, ·3F in the table of page 69, whose
saltus of 3 countered a conjecture of Guy and Smith that it should always be a
power of two, is a little more interesting. There must be many others that are
possibly accessible to present-day computers.

4. Extend the analysis of Domineering to larger boards. (Left and Right take
turns to place dominoes on a checker-board. Left orients her dominoes North-
South and Right orients his East-West. Each domino exactly covers two squares
of the board and no two dominoes overlap. A player unable to play loses. See
[Berlekamp 1988], WW, pp. 495–498, and the articles in this book starting on
pages 85 and 311.)

An earlier version of this paper asked what are the values of 4× 4 and 4× 5
boards. David Wolfe has found them to be ±{0, {2|0, 2+2 ||2|0,−2}|||0} and 1,
respectively. Berlekamp has shown that the value of a 4× n board, if n is odd,
is twice that of the corresponding 2 × n board plus a correction term of lower
temperature. For the value g of the 4× 6 board, Wolfe’s program [1996] needed
more than 200 characters to print it. g is incomparable with both +2 and −2,
but he can show that −4(+2) < g < 3(+2). Dan Calistrate observes that the
value of a 6× 6 board is ±1 to within ‘ish’ (infinitesimally shifted).
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Figure 1. Yonghoan Kim’s snakes of value 2−n.
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Table 1. Temperatures in Domineering.

Yonghoan Kim [1996] announced that there are snakes of value 2−n for all
positive integers n (Figure 1). Various subsets of these snakes give a sequence of
hot games (the penultimate row of the next table), another sequence of numbers,
and several infinitesimals. Wolfe [1993] also has snakes with interesting values.

Table 1 shows temperatures of certain Domineering positions, as reported by
Berlekamp. The rows are various overheating and warming operators associated
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with various (families of) positions, and the columns are their arguments. The
entries are the temperatures of the resulting games (for references, see Problem
52 below).

Row 2 applies to 3×n boards with n odd and an additional square appended
at one corner; row 3 to 2 × n boards with n odd. The headings 1e, 1d refer
to the argument 1 in the respective cases of even positions, which warm by
overheating, and of odd positions, which warm by overheating and then adding
∗, distinguished by a star on the operator sign. If we omit the two entries in the
1d column, the rightmost temperature in each row (except the first) matches the
leftmost temperature in the next row.

Berlekamp asks, as a hard problem, to characterize all hot Domineering posi-
tions to within “ish” (i.e., infinitesimally shifted). As a possibly easier problem
he asks for a Domineering position with a new temperature, i.e., one not occur-
ring in the table above.

5. Analyze positions in the game of Go. (Compare [Berlekamp and Wolfe 1994;
Berlekamp and Kim 1996; Landman 1996].)

6. In an earlier edition of this paper I asked if Go-Moku (Five-in-a-row, Go-
Bang, Pegotty) is a win for the first player. An affirmative answer for the
unrestricted version and for the version where 6-in-a-row doesn’t count as a
win was given by Allis, van den Herik and Huntjens [1993]. Lustenberger [1967]
showed that Four-in-a-row on a 4×n board is a first-player win for n sufficiently
large. Selfridge states that n = 28 suffices. To find the least n should nowadays
be a straightforward computer exercise.

7. Complete the analysis of impartial Eatcakes. (See WW, pp. 269, 271, 276–
277. Eatcakes is an example of a join or selective compound of games. Each
player plays in all the component games. It is played with a number of rectangles,
mi × ni; a move is to remove a strip 1× ni or mi × 1 from each rectangle, either
splitting it into two rectangles, or reducing the length or breadth by one. Winner
removes the last strip.)

For fixed breadth the remoteness becomes constant when the length is suffi-
ciently large. But ‘sufficiently large’ seems to be an increasing function of the
breadth and doesn’t, in the hand calculations already made, settle into any clear
pattern. Perhaps computer calculations will reveal something.

8. Complete the analysis of Hotcakes. (See WW, pp. 279–282. Also played
with integer-sided rectangles, but as a union or selective compound in which
each player moves in some of the components. Left cuts as many rectangles
vertically along an integer line as she wishes, and then rotates one from each
pair of resulting rectangles through a right angle. Right cuts as many rectangles
as he wishes, horizontally into pairs of integer-sided rectangles and rotates one
rectangle from each pair through a right angle. The tolls for rectangles with one
dimension small are understood, but much remains to be discovered.)
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9. Develop a misère theory for unions of partizan games. (In a union of two
or more games, you move in as many component games as you wish. In misère
play, the last player loses.)

10. Extend the analysis of Squares Off. (See WW, pp. 299. Played with heaps
of beans. A move is to take a perfect square (> 1) number of beans from any
number of heaps. Heaps of 0, 1, 2 or 3 cannot be further reduced. A move
leaving a heap of 0 is an overriding win for the player making it. A move leaving
1 is an overriding win for Right, and one leaving 2 is an overriding win for Left.
A move leaving 3 doesn’t end the game unless all other heaps are of size 3, in
which case the last player wins.)

11. Extend the analysis of Top Entails. (WW, pp. 376–377. Played with stacks
of coins. Either split a stack into two smaller ones, or remove the top coin from
a stack. In the latter case your opponent’s move must use the same stack. Last
player wins. Don’t leave a stack of 1 on the board, since your opponent must
take it and win, since it’s now your turn to move in an empty stack!)

Julian West [1996] wrote a program to check a student’s work and calculated
the first 38,000 values. He found loony positions at 2403 coins, 2505 coins, and
33,243 coins. The authors of WW did not know of a loony stack of more than 3
coins. These results are typical of the apparently quite unpredictable nature of
combinatorial games, even when they have quite simple rules.

12. Extend the analysis of All Square. (WW, pp. 385. This game involves
complimenting moves after which the same player has an extra bonus move.
Note that this happens in Dots-and-Boxes when a box is completed. All Square
is played with heaps of beans. A move splits a heap into two smaller ones. If
both heap sizes are perfect squares, the player must move again: if he can’t he
loses!)

13. Analyze the misère version of the octal games of Problem 2. (See [Alle-
mang 1984] and WW, pp. 411–421.)

William L. Sibert made a breakthrough by completing the analysis of misère
Kayles; see the postscript to [Sibert and Conway 1992]. Plambeck [1992] has
used their method to analyse a few other games, but there’s a wide open field
here.

14. Moebius, when played on 18 coins has a remarkable pattern. Is there any
trace of pattern for larger numbers of coins? Can any estimate be made for the
rate of growth of the nim-values?

(Played with a row of coins. A move turns 1, 2, 3, 4 or 5 coins, of which
the rightmost must go from heads to tails, to make sure the game satisfies the
ending condition. The winner is the player who makes all coins tails. See WW,
pp. 432–435; Pless 1991; Curtis 1976; 1977; 1982).
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15. Mogul has an even more striking pattern when played on 24 coins, which
has some echoes when played on 40, 56 or 64 coins. Thereafter, is there complete
chaos? (See Problem 14. A move turns 1, 2, . . . , 7 coins.)

16. Find an analysis of Antonim with four or more coins. (WW, pp. 459–462.
Played with coins on a strip of squares. A move moves a coin from one square
to a smaller-numbered square. Only one coin to a square, except that square
zero can have any number of coins. It is known that (a, b, c) is a P-position in
Antonim just if (a + 1, b + 1, c + 1) is a P-position in Nim, but for more than 3
coins much remains to be discovered.)

17. Extend the analysis of Kotzig’s Nim. (WW, pp. 481–483. Players alter-
nately place coins on a circular strip, at most one coin on a square. Each coin
must be placed m squares clockwise from the previously placed coin, provided m

is in the given move set, and provided the square is not already occupied. The
complete analysis is known only for a few small move sets.)

In spite of recent advances [Fraenkel et al. 1995], a great deal remains to be
discovered. Is the game eventually periodic in terms of the length of the circle
for every finite move set? Analyze the misère version of Kotzig’s Nim.

18. Obtain asymptotic estimates for the proportions of N-, O- and P-positions
in Epstein’s Put-or-Take-a-Square game. (WW, pp. 484–486. Played with
one heap of beans. At each turn there are just two options: to take away or add
the largest perfect square number of beans that there is in the heap. Thus 5 is
a P-position, because 5± 4 are both squares; 2 and 3 are O-positions, a win for
neither player, since the best play is to go from one to the other, and not to 1
or 4, which are N-positions.)

19. Simon Norton’s game of Tribulations is similar to Epstein’s game, but
squares are replaced by triangular numbers. Norton conjectures that there are
no O-positions, and that the N-positions outnumber the P-positions in golden
ratio. True up to 5000 beans.

20. Complete the analysis of D.U.D.E.N.E.Y. (Played with a single heap of
beans. Either player may take any number of beans from 1 to Y , except that
the immediately previous move mustn’t be repeated. When you can’t move you
lose. Analysis easy for Y even, and known for 53/64 of the odd values of Y ; see
WW, pp. 487–489.)

Marc Wallace and Alan Jaffray have made a little progress here, but is the
situation one in which there is always a small fraction of cases remaining, no
matter how far the analysis is pursued?

21. Schuhstrings is the same as D.U.D.E.N.E.Y., except that a deduction of
zero is also allowed, but cannot be immediately repeated (WW, pp. 489–490).
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22. Analyze nonrepeating Nim, in which neither player is allowed to repeat a
move. Assume that b beans have been taken from heap H , and pick your variant:

medium local : b beans may not be taken from heap H until some other move is
made in heap H .

short local : b beans may not be taken from heap H on the next move.
long local : b beans may never again be taken from heap H .
short global : b beans may not be taken from any heap on the next move.
long global : b beans may never again be taken from any heap.

23. Burning-the-Candle-at-Both-Ends. John Conway and Aviezri Fraenkel
ask us to analyze Nim played with a row of heaps. A move may only be made in
the leftmost or in the rightmost heap. Of course, when a heap becomes empty,
its neighbor becomes the end heap.

Conway has some recollection that the analysis was completed. For one or
two heaps the game is the same as Nim. The P-positions for three heaps are
{n, m, n} with m 6= n. If this game is indeed analyzed, then there is also Hub-
and-Spoke Nim, proposed by Fraenkel. One heap is the hub and the others
are arranged in rows forming spokes radiating from the hub. There are several
versions:

(a) beans may be taken only from a heap at the end of a spoke;
(b) beans may also be taken from the hub;
(c) beans may be taken from the hub only when all the heaps in a spoke are

exhausted;
(d) beans may be taken from the hub only when just one spoke remains;
(e) in (b), (c) and (d), when the hub is exhausted, beans may be taken from a

heap at either end of any remaining spoke; i.e. the game becomes the sum of
a number of games of Burning-the-Candle-at-Both-Ends.

24. Continue the analysis of The Princess and the Roses. (WW, pp. 490–
494. Played with heaps of beans. Take one bean, or two beans, one from each
of two different heaps. The rules seem trivially simple, but the analysis takes on
remarkable ramifications.)

25. Analyze the Conway–Paterson game of Sprouts with seven or more spots,
or the misère form with five or more spots. (WW, pp. 564–568. A move joins
two spots, or a spot to itself by a curve that doesn’t meet any other spot or
previously drawn curve. When a curve is drawn, a new spot must be placed
on it. The valence of any spot must not exceed three. Since this question was
asked, Daniel Sleator of AT&T Bell Laboratories has pushed the normal analysis
to about 10 spots and the misère analysis to about 8.)

26. Extend the analysis of Sylver Coinage. (WW, pp. 575–597. Players
alternately name different positive integers, but may not name a number that is
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the sum of previously named ones, with repetitions allowed. Whoever names 1
loses. See [Nowakowski 1991, Section 3].)

27. Extend the analysis of Chomp. (WW, pp. 598–599. Players alternately
name divisors of N , which may not be multiples of previously named numbers.
Whoever names 1 loses.) David Gale offers a prize of US$100.00 for the first
complete analysis of 3D-Chomp, i.e., where N has three distinct prime divisors,
raised to arbitrarily high powers.

28. Extend Uléhla’s or Berlekamp’s analysis of von Neumann’s game from
diforests to directed acyclic graphs (WW, pp. 570–572; [Uléhla 1980]). Since
Chomp and the superset game [Gale and Neyman 1982] can be described by
directed acyclic graphs but not by diforests, the proposed extension could pre-
sumably throw some light on these two unsolved games.

29. Prove that Black doesn’t have a forced win in Chess.

30. A King and Rook versus King problem. Played on a quarter-infinite
board, with initial position WKa1, WRb2 and BKc3. Can White win? If so,
in how few moves? It may be better to ask, “what is the smallest board (if
any) that White can win on if Black is given a win if he walks off the North
or East edges of the board?” Is the answer 9 × 11? In an earlier edition of
this paper I attributed this problem to Simon Norton, but it was proposed as
a kriegsspiel problem, with unspecified position of the WK, and with W to win
with probability 1, by Lloyd Shapley around 1960.

31. David Gale’s version of Lion and Man. L and M are confined to the non-
negative quadrant of the plane. They move alternately a distance of at most one
unit. For which initial positions can L catch M?

Conjecture: L wins if he is northeast of M. This condition is clearly necessary,
but the answer is not known even if M is at the origin and L is on the diagonal.

Variation. Replace quadrant by wedge-shaped region.

32. Gale’s Vingt-et-un. Cards numbered 1 through 10 are laid on the table.
L chooses a card. Then R chooses cards until his total of chosen cards exceeds
the card chosen by L. Then L chooses until her cumulative total exceeds that of
R, etc. The first player to get 21 wins. Who is it?

(The rule can be interpreted to mean either “21 exactly” or “21 or more”.
Jeffery Magnoli, a student of Julian West, thought the second interpretation the
more interesting, and found a first-player win in six-card Onze and in eight-card
Dix-sept.)

33. Subset Take-away. Given a finite set, players alternately choose proper
subsets subject to the rule that, once a subset has been chosen, none of its subsets
may be chosen later by either player. Last player wins. David Gale conjectures
that it’s a second-player win; this is true for sets of less than six elements.
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34. Eggleton and Fraenkel ask for a theory of Cannibal Games or an analysis
of special families of positions. They are played on an arbitrary finite digraph.
Place any numbers of “cannibals” on any vertices. A move is to select a cannibal
and move it along a directed edge to a neighboring vertex. If this is occupied,
the incoming cannibal eats the whole population (Greedy Cannibals) or just one
cannibal (Polite Cannibals). A player unable to move loses. Draws are possible.
A partizan version can be played with cannibals of two colors, each eating only
the opposite color.

35. Welter’s Game on an arbitrary digraph. Place a number of monochro-
matic tokens on distinct vertices of a directed acyclic graph. A token may be
moved to any unoccupied immediate follower. Last player wins. Make a dictio-
nary of P-positions and formulate a winning strategy for other positions. See
A. S. Fraenkel and Joseph Kahane, Problem 45, Discrete Math. 45 (1983),
328–329, where a paper is said to be in preparation.

36. Restricted Positrons and Electrons. Fraenkel places a number of Posi-
trons (Pink tokens) and Electrons (Ebony tokens) on distinct vertices of a Welter
strip. Any particle can be moved by either player leftward to any square u

provided that u is either unoccupied or occupied by a particle of the opposite
type. In the latter case, of course, both particles become annihilated (i.e., they
are removed from the strip), as physicists tell us positrons and electrons do.
Play ends when the excess particles of one type over the other are jammed in
the lowest positions of the strip. Last player wins. Formulate a winning strategy
for those positions where one exists. Note that if the particles are of one type
only, this is Welter’s Game; since a strategy is known for Misère Welter (WW,
pp. 480–481), it may not be unreasonable to ask for a misère analysis as well.
See Problem 47, Discrete Math. 46 (1983), 215–216.

37. General Positrons and Electrons. Like 36, but played on an arbitrary
digraph. Last player wins.

38. Fulves’s Merger. Karl Fulves, Box 433, Teaneck NJ 07666, sent the
following game. Start with heaps of 1, 2, 3, 4, 5, 6 and 7 beans. Two players
alternately transfer any number of beans from one heap to another, except that
beans may not be transferred from a larger to a smaller heap. The player who
makes all the heaps have an even number of beans is the winner.

The total number of beans remains constant, and is even (28 in this case,
though one is interested in even numbers in general: a similar game can be
played in which the total number is odd and the object is to make all the heaps
odd in size). As the moves are nondisjunctive, the Sprague–Grundy theory is
not likely to be of help. Fulves’s particular game can be solved using Steinhaus’s
remoteness function [1925] as follows.



484 RICHARD K. GUY

The number of odd heaps is even. If the number of odd heaps is two, there is
an immediate win: such a position is an N-position of remoteness 1. In normal
play, P-positions have even remoteness, and N-positions have odd remoteness.

To calculate the remoteness of a position:

• If there are no options, the remoteness is 0.
• If there is an option of even remoteness, add one to the least such remoteness.
• Otherwise, add one to the greatest odd remoteness.

WIN QUICKLY — LOSE SLOWLY.

If the number of odd heaps is zero, the position is terminal. All other P-
positions must contain at least four odd heaps. Some examples, with their even
remotenesses r, are:

P-position r P-position r P-position r

1 1 1 25 2 1 1 1 1 1 23 4 1 1 1 1 2 4 18 10
1 3 3 21 4 1 1 1 2 2 21 6 1 1 1 1 3 5 16 12
1 5 5 17 6 1 1 1 3 3 19 8 1 1 1 1 6 8 10 18
1 7 7 13 8 1 1 1 4 4 17 10 1 1 1 2 3 8 12 14
1 9 9 9 10 1 1 1 5 5 15 12 1 1 1 2 5 9 9 20
3 5 9 11 10 1 1 1 6 6 13 14 1 1 1 3 6 7 9 22

1 1 1 7 7 11 16 1 1 2 2 2 3 17 10
1 1 2 5 19 6 1 1 1 8 8 9 18 1 1 2 2 4 5 13 14
1 1 3 6 17 8 1 1 2 3 7 14 12 1 1 2 3 5 5 11 18
1 1 4 7 15 10 1 1 2 4 9 11 14 1 1 2 4 6 7 7 20
1 2 3 9 13 12 1 1 3 5 8 10 18 1 1 3 3 3 4 13 16
1 3 5 5 14 12 1 2 2 3 5 15 12 1 1 3 4 4 7 8 24
1 5 6 7 9 14 1 2 2 7 7 9 14 1 1 4 4 4 5 9 24
2 3 3 3 17 8 1 2 3 3 8 11 14 1 2 2 3 3 3 14 16
2 5 5 5 11 14 1 2 5 5 7 8 16 1 2 3 3 5 7 7 22
2 5 7 7 7 14 1 3 3 3 3 15 14
3 3 4 5 13 14 1 3 3 4 7 10 16
3 3 7 7 8 16 1 3 3 6 6 9 18

1 3 4 4 5 11 18
2 2 3 3 9 9 16
2 3 3 5 5 10 18
3 3 3 5 6 8 20

Table 2 shows a winning strategy from Fulves’s starting position.
Richard Nowakowski has investigated some variants of Fulves’s game:

1. Take a row of consecutive coins. A move is to take one or more coins from a
heap and put them on an adjacent heap of coins provided that the second heap
is at least as large as the first. Assume that we start with a row of adjacent
coins, that is, each heap consists of one coin. The nim-values are periodic with
period seven and the values are 0 1 2 0 3 1 0 with no exceptional values. To prove
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Remoteness Position

21 1 2 3 4 5 6 7
20 1 1 2 4 6 7 7 The only other winning move is to

� � 1 2 3 3 5 7 7, and takes 2 moves longer.
19 1 1 1 4 6 7 8 1 1 1 2 6 7 10 · · · ∗

� � In the lefthand variation, 1 1 1 3 6 7 9
18 1 1 1 1 6 8 10 also wins, but 4 moves more slowly.
17 1 1 1 7 8 10 · · · ∗
16 1 1 1 7 7 11
15 1 1 1 6 7 12 · · · ∗
14 1 1 1 6 6 13
13 1 1 1 5 6 14 · · · ∗
12 1 1 1 5 5 15
11 1 1 1 4 5 16 · · · ∗
10 1 1 1 4 4 17
9 1 1 1 3 4 18 · · · ∗
8 1 1 1 3 3 19

� | �

7 1 1 3 4 19 1 1 1 2 3 20 1 1 1 2 4 19
| � �

6 1 1 2 5 19 1 1 1 2 2 21
| |

5 1 3 5 19 1 1 2 3 21 1 1 1 1 2 22 1 1 1 1 3 21
� � � �

4 1 3 3 21 1 1 1 1 1 23
� � � �

3 1 1 5 21 1 1 3 23 1 1 1 2 23 1 1 1 1 24
� �

2 1 1 1 25
� � ∗ other options

1 1 2 25 1 1 26 lose more quickly.
� �

0 2 26 wins.

�
�
�
�

P
P
P
P

P
P
P

P
P

P

�
�
�
�
�
�
��

Table 2. Winning strategy for Fulves’s game.

this one needs to know the nim-values of the game with the first heap having
two coins and also the game with both end heaps haing two coins. The latter is
periodic with period seven: the nim-vales are 2 1 0 0 1 3 0 with no exceptions.
The former also has period seven. The values are 5 5 4 2 5 6 4 but they do not
start until the game 2.115.

The misère version of this variant might be interesting.
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2. Take a row of three consecutive heaps, of sizes i, j, k. Then:

(a) If j > i and j > k, the nim-value of the position i.j.k is i
∗
+ k.

(b) If i = j and j ≥ k, the nim-value is i + k.
(c) If either i > j or k > j, the nim-value is j.

The proof follows easily by consideration of the tables of nim-values for j =
0, 1, 2, 3, . . . .

39. Sowing or Mancala Games. Kraitchik [1941, p. 282] describes Ruma,
which he attributes to Mr. Punga. Bell and Cornelius [1988, pp. 22–38] list Con-
gklak, from Indonesia; Mankal’ah L’ib Al-Ghashim (the game of the unlearned);
Leab El-Akil (the game of the wise or intelligent); Wari; Kalah, from Sumeria;
Gabata, from Ethiopia; Kiarabu, from Africa; as well as some solitaire games
based on a similar idea. Botermans et al. [1989, pp. 174–179] describe Mefuhva
from Malawi and Kiuthi from Kenya. Many of these games go back for thousands
of years, but several should be susceptible to present day methods of analysis.
For a start, see [Erickson 1996] in this volume.

Conway starts with a line of heaps of beans. A typical move is to take (some
of) a heap of size N and do something with it that depends on the game and on
N . He regards the nicest move as what he calls the African move in which all
the beans in a heap are picked up and ‘sowed’ onto successive heaps, and subject
to the condition that the last bean must land on a nonempty heap. Beans are
sowed to the right if you are Left, to the left if you are Right, or either way if
you’re playing impartially.

In the partizan version, the position 1 (a single bean) has value 0, of course;
the position 1.1 = {0.2 | 2.0} has value {0 |0} = ∗; and so does

1.1.1 = {1.0.2, 2.1 | 1.2, 2.0.1},
since 2.1 = { | 3.0}, 3.0 = { | } = 0 and 1.0.2 = { | 2.1}, so that the position
3 has value 0, 2.1 has value −1, 1.0.2 value −2, 1.1.1 value {−2,−1 | 1, 2} = 0,
1.1.1.1 value 0, and 1.1.1.1.1 value ±1

2 .

40. Chess again. Noam Elkies [1996] has found endgames with values 0, 1, 1
2
,

∗, ↑, ↑∗, ⇑ ∗, etc. Find endgames with new values. (See also Problems 29, 30
and 45.)

41. Sequential compounds of games have been studied by Stromquist and
Ullman [1993]. They mention a more general compound. Let (P, <) be a finite
poset and for each x ∈ P let Gx be a game. Consider a game G(P ) played
as follows. Moves are allowed in any single component Gx provided that no
legal moves remain in any component Gy with y > x. A player unable to move
loses. The sequential compound is the special case when (P, <) is a chain (or
linear order). The sum or disjunctive compound is the case where (P, <) is an
antichain. They have no coherent theory of games G(P ) for arbitrary posets.
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They list some more specific problems that may be more tractable. Compare
Problem 23 above.

42. Beanstalk and Beans-Don’t-Talk are games invented by John Isbell and
by John Conway [Guy 1986]. Beanstalk is played between Jack and the Giant.
The Giant chooses a positive integer, n0. Then J. and G. play alternately n1,
n2, n3, . . . according to the rule ni+1 = ni/2 if ni is even, = 3ni±1 if ni is odd;
i.e. if ni is even, there’s only one option, while if ni is odd there are just two.
The winner is the person moving to 1. If the Giant chooses an odd number > 1,
can Jack always win? Not by using the Greedy Strategy (always descend when
it’s safe to do so, e.g., play the moves that are underlined in the game below),
as may be seen from n0 = 7 (J’s moves in parentheses).

7 (22) 11 (34) 17 (50) 25 (74) 37 (110) 55 (166) 83 (248) 124 (62) 31 (94) 47
(142 71 (214) 107 (322) 161 (482) 241 (722) 361 (1082) 541 (1624) 812 (406) 203
(608) 304 (152) 76 (38) 19 (56) 28 (14) 7 . . .

In Beans-Don’t-Talk, the move is from n to (3n±1)/2∗ where 2∗ is the highest
power of two dividing the numerator; the winner is still the person moving to 1.
Are there any drawn positions? There are certainly drawn plays, e.g., 7 (5) 7
(5) . . . , but 5 is an N-position because there is the immediate winning option
(5×3+1)/24 = 1, and 7 is a P-position since the other option (7×3+1)/2 = 11 is
met by (11×3−1)/25 = 1. What we want to know is: are there any O-positions
(positions of infinite remoteness)?

(For a definition of remoteness see Problem 38 above. There are several
unanswered questions about the remotenesses of positions in these two games.
Remoteness may also be the best tool we have for Problems 18 and 19 above.)

43. Inverting Hackenbush. John Conway turns Hackenbush (described on
page 56 in this volume) into a hot game by amending the move to ‘remove an
edge of your color and everything thus disconnected from the ground, and then
turn the remaining string upside-down and replant it’. The analysis replaces
the ‘number tree’ (WW, p. 25) by a similar tree, but with the smaller binary
fractions replaced by increasingly hot games. The game can be generalized to
play on trees: a move that prunes the tree at a vertex V includes replanting the
tree with V as its root.

44. Konane [Ernst and Berlekamp]. There is much to be discovered about
this fascinating and eminently playable game, which exhibits the values 0, ∗,
∗2, ↑, 2−n, and many other infinitesimals and also hot values of arbitrarily high
temperature.

45. Elwyn Berlekamp asks: ‘What is the habitat of ∗2?’ This value, defined
as {0, ∗ | 0, ∗}, does not occur in Blockbusting, Hackenbush, Col or Go. It does
occur in Konane and 6 × 6 Chess. What about Chilled Go, Domineering and
8× 8 Chess?
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46. There are various ways of playing two-dimensional Nim. One form is dis-
cussed on p. 313 of WW. Another is proposed by Berman, Fraenkel and Kahane
in Problem 41, Discrete Math. 45 (1983), 137–138. Start with a rectangular
array of heaps of beans. At each move a row or column is selected and a positive
number of beans is taken from some of the heaps in that row or column [Fremlin
1973]. A variant is where beans may be taken only from contiguous heaps. Other
variants are played on triangular or hexagonal boards; a special case of this last
is Piet Hein’s Nimbi, solved by Fraenkel and Herda [1980].

47. Many results are known concerning tiling rectangles with polyominoes.
One can extend such problems to disconnected polyominoes. For instance, can
a rectangle be tiled by 22 22 ? By 22 22 2 ? If so, what are the smallest
rectangles that can be so tiled?

48. Find all words that can be reduced to one peg in one-dimensional Peg Soli-
taire. (A move is for a peg to jump over an adjacent peg into an empty adjacent
space, and remove the jumped-over peg: for instance, 1101 → 0011 → 0100,
where 1 represents a peg and 0 an empty space.) Examples of words that can
be reduced to one peg are 1, 11, 1101, 110101, 1(10)k1. Georg Gunther, Bert
Hartnell and Richard Nowakowski found that for an n×1 board with one empty
space, n must be even and the space must be next but one to the end. If the
board is cyclic, the condition is simply n even.

49. Elwyn Berlekamp asks if there is a game that has simple, playable rules,
an intricate explicit solution, and is provably NP or harder.

50. John Selfridge asks: is Four-File a draw? Four-File is played on a chess-
board with the chess pieces in their usual starting positions, but only on the a-,
c-, e- and g-files (a rook, a bishop, a king, a knight and four pawns on each side).
The moves are normal chess moves except that play takes place only on these
four files; in particular, pawns cannot capture and there is no castling. The aim
is to checkmate your opponent’s king.

51. Elwyn Berlekamp asks for a complete theory of closed 1 × n Dots-and-
Boxes, those with starting position

r r r r r r r r r r

r r r r r r r r r r

A sample position is

r r r r r r r r r r

r r r r r r r r r r

(See WW, Chapter 16.) Are there more nimber decomposition theorems? Com-
pile a datebase of nim-values.
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52. Berlekamp notes that overheating operators provide a very concise way of
expressing closed-form solutions to many games, and David Moews observes that
monotonicity and linearity depend on the parameters and the domain. How does
one play sums of games with varied overheating operators? Find a simple, elegant
way of relating the operator parameters to the game. See WW, pp. 163–175,
[Berlekamp 1988; Berlekamp and Wolfe 1994; Calistrate 1996].
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